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SUMMARY 

A review of the available literature on automatic classification 

methods in chemical structure applications has shown that there has 

been surprisingly little interest in the use of unsupervised approaches 

in this area, considering the potential value of these in large structure­

based chemical information systems. In the first section of the thesis the 

suitability of such an approach,using a simple hierarchical clustering 

technique and an approximate structure representation based on fragment 

·sets derived from the structure diagram,was investigated. Using a 

connection table representation: of structures, the feasibility of 

combining the classification method with automatic substructure 

handling techniques important in current computer-based systems WdS also 

considered. Finally, the value of results based exclusively on two-

dimensional substructural descriptors was assessed. 

Preliminary stUdies using a simple binary representation of structures 

and recording only the fragments shared between each structure pair demon­

strated the feasibility of the approach. Detailed studies were then 

carried out to compare alternative methods of structure representation 

and comparison, the former involving investigations of both substructural 

descriptors and their numerical representation. Generally accepted 

evaluation procedures were not available to test the success of methods 

and the classifications and association measures used in their derivation 

were assessed partly on chemical significance and partly on predictive 

performance. 

More detailed numerical representations, based on the number of 

occurrences of the fragment types in a structure, gave better separations 

of structures and also better predictions than representations based only 

on the presence or absence of a fragment. In the former case better 



results were given by definitions which distinguished between equivalent 

subsctructures occurring in chains and non-aromatic ring systems. In the 

comparison of structures, simple matching coefficients and a simple 

Euclidean distance measure performed as well as more complicated measures 

using fragment weighting, and the simpler coefficients often gave a 

better result, both in structure separation and predictive performance. 

Also, the coefficients based on quantitative fragment descriptions were 

no better than those based on simple binary representations using additive 

coding. The use of standardised characters with the distance function 

gave poor results. Coefficients showing the best separation of structures 

gave best predictions, but prediction levels were close and differences 

were difficult to interpret. Similar trends, however, were observed in 

a number of different samples suggesting that the results are of some 

significance. In contrast, different substructural definitions did not 

perform similarly in different samples, and in two small data sets, one 

involving similar structural types and the other very dissimilar types, 

opposite trends were observed in predictive performance. Another larger 

related group showed little variation. There was some within sample 

consistency between classification and predictive performances although 

the fluctuations shown in the two small samples were not paralleled by 

equally wide variations in structural arrangements and the significance 

of these prediction results would need to be tested further. Atom 

descriptions gave poor predictions and classifications in most cases. 

However, in the small structurally diverse sample they gave a good 

prediction due to the particular distribution of functional groups in 

this sample i.e. the occurrence of groups important for activity in 

dissimilar structural types with similar molecular formulae. This 

result therefore was not considered particularly significant and other 



structurally diverse groups involving different struyture-property 

relationships are not expected to behave in this way. The wide dis­

parity between classification and predictive performances in this example, 

however, illustrated the practical difficulties involved in choosing 

suitable methods and showed how this could depend on the particular 

application. 

The above investigation clearly demonstrated the potential of an 

unsupervised classification approach for structuring large data bases and 

dealing with both closely related and diverse structural types. The good 

agreement between observed and 'predicted' property data in this work also 

suggested the method could be useful in structure-property correlation 

studies. This was investigated in the second section of the thesis by 

comparing the approach with an alternative empirical method based on re­

gression analysis. The analyses were carried out under similar conditions 

to the classifications, and like the classification approach the regression 

model developed is the first of its kind able to look at structure-property 

relationships in diverse sets of structures, and to use automatic proce­

dures of substructural analysis. 

Structure-property agreement in the regression case did not vary widely 

with the size of substructures although larger fragments gave lower residual 

errors, and in some cases a more significant correlation. Furthermore, the 

use of higher order relationships did not lead to a significant improvement 

over a linear function. An assessment of predictive performance using pre­

dictions simulated by the 'hold-one-out' technique showed that this was 

not simply related to the significance of the correlation. However, the re­

gression coefficients required for prediction were not al~ays available 

and with more suitable 'learning sets' the more significhnt correlations 

are expected to give a better result. Interpretation of the regression 



solutions was limited both by the approximate nature of substructural 

definitions and their interdependency. Nevertheless, many of the coeffic­

ients were statistically significant and although coefficients themselves 

did not differ significantly each substructures contribution to the 

property in question could be explained sensibly in physicochemical terms, 

giving good agreement~with the results obtained in other similar 

investigations. The regression solutions therefore had potential value 

in rationalising structure - property relationships, and in 

biological applications they could aid more detailed analyses. 

The classification and regression methods gave similar levels of 

prediction, although under equivalent conditions ie. using the same 

substructural definitions, the regression equations always gave the better 

result. This suggested some difference between approaches, which would 

not be unreasonable in view of the more accurate nature of the regression 

method. Comparisons with other similar structure - property studies 

based on pattern recognition and additive statistical modelling, showed 

that both methods were potentially useful for quantitative prediction. 

Correlations in the regression case were also as successful as those 

obtained in semiempirical studies, using ~lantum - chemical or linear 

free energy related parameters to descibe structures. Additionally, the 

two approaches dealt equally well with diverse structural groups and could 

be used in early drug design studies to investigate possible new leads. 
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INTRODUCTION 

In recent years there has been considerable interest in numerical 

classification techniques in research areas of information science concerned 

with the development of more efficient data handling techniques. Most of 

the research has been directed towards improving retrieval strategies for 

1-3 large document collections. But increasingly the method is becoming 

important for a variety of data analysis problems e.g. property estimation, 

which in the past have been dealt with by techniques such as factor analysis, 

principal component analysis and regression analysis. 

Despite the widespread interest in numerical classification methods 

for handling bibliographic data1- 3 there has been very little application 

of the approach to chemical structure information. The purpose of the 

present study is to see Whether suitable methods can be developed in this 

area. With the growing interest in automatic procedures for the design of 

4-9 new drugs the study considers the value of automatic classification for 

property prediction as well as for structure retrieval. In the former case 

its suitability is evaluated by comparing structure-property correlations 

with those given by a new empirical method based on regression analysis. 

There is now a wide range of automatic classification techniques 

available and the different approaches are discussed in detail in Chapter I. 

The particular approach considered in this investigation is bas~d on clUster 

analysis, where structures are grouped according to the relationship between 

individual members of the group under consideration. These relationships 

must first be expressed quantitatively and in turn the statistical measures 

of association used to obtain them require that the structures first be 

represented in ·numerical form. There are therefore a number of different 

stages involved in the classification process, each of which requires 

approximations which will affect the final result. 

One of the major problems in automatic classification is to define 

- 1 -
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meaningful numerical representations of the original data. The accuracy 

of the numerical descriptors depends on a number of factors, such as the 

nature of the original data and the type of association measure considered. 

In the case of a chemical structure a variety of representations are 

possible, some of which provide a more accurate description of the real 

structure than others. The structure diagram, which is the level of 

structural description used throughout the present investigation,is only 

an approximate two-dimensional projection of the real structure, but it is 

an important starting point because of its widespread use in chemical 

information systems and in chemical communications in general. 

The literature shows that in the few applications where chemical data 

have been subjected to automatic cluster-based classification procedures 

. 10 11 a combination of structure and property data is usually cons~dered. ' 

In addition, structural descriptions are usually chosen on the basis of 

. 10-13 their assumed diagnostic ~portance. The main objective of the 

present investigation is to devise methods for handling the structural 

attributes of chemical species using techniques which could be easily 

incorporated in existing computer-based chemical information systems, and 

which could be applied automatically. 

The structure diagram may be represented in a variety of ways for the 

purposes of computer manipulation, but for explicit and unambiguous 

definitions connection tables or linear notations are usually employed. 14- 16 

The methods developed here are based on a connection table representation. 

This is broken down automatically into sets of substructures which are 

suitable for setting up the appropriate numerical representations for 

structure comparison. Because of the simplicity of the connection table 

record and its very close relationship to the structure diagram,the frag-

mentation process is straightforward and the algorithm developed is fast 

and simple. Algorithms of this type had been developed previously for use 
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17 
in computer-based substructure search systems, in which similar numerical 

representations are considered. The substructures obtained do not uniquely 

define the structure diagram, and incorporate some redundancy, the extent 

of which depends on the size of the substructure being used. Finally, 

additional approximations must be made in setting up numerical records 

which can be used as a basis for structure comparison. The extent of the 

approximations in this case depends on which association measure is used 

and the type of numerical descriptors which are appropriate for its 

application. The difficulties arising in obtaining meaningful comparisons 

between individuals are discussed in detail in Chapter 1, and the specific 

problems arising in the case of chemical structures are discussed in 

Chapters2 and 3. Often the choice of representation is restricted by the 

type of association measured considered and vice versa. Both qualitative 

and quantitative numerical representations have been considered here, and 

a variety of association measures capable of handling these, ranging from 

simple matching coefficients to distance measures and probabilistic 

similarity functions. Probabilistic measures, unlike distance and simple 

matching coefficients have not been extensively applied, although a wide 

variety of such measures have been proposed. This is because of the large 

amounts of computation usually involved in calculating them. The 

probability measures considered in this investigation had previously not 

been applied and thus particular attention is paid to their performance 

compared with that of the non-probabilistic measures. 

Finally the individual estimates of resemblance between structures 

must be summarised in a way which will reveal meaningful chemical groups. 

Again, a wide range of methods is available at this stage, but in this 

case the difficulties arising in choosing appropriate methods is largely 

independent of the nature of the original data. Because of this,the study 

has concentrated on evaluating different structural representations and 

estimates of resemblance between structures, and has Used for this purpose 
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a simple hierarchic clustering technique throughout.
18 

This and other 

similar clustering techniques are described in Chapter I. Variations in 

the first two stages of the classification process have been considered 

separately so that their effect could be clearly assessed, and full 

details of the methods developed are given in Chapter 3. 

In choosing suitable methods cluster evaluation constitutes a major 

problem because of the absence of widely accepted evaluation procedures. 

This is partly because of general disagreement over the objectives of 

classifications and partly due to the mathematical properties of the method. 

The problems involved and the methods of evaluation currently in use are 

discussed in Chapter I. In many applications classifications are expected 

to have inductive properties and this has become an important criterion 

for judging classification performance. 

The method of evaluation considered here is based on the assumption 

that the structural features of chemical compounds are related to their 

physical, chemical and biological properties. However, because the structure 

diagram is only an approximate representation of the real structure it 

provides only a limited basis for the prediction of the properties of the 

molecule it describes. The expected imperfect correlations between structure 

and property data nevertheless provides a basis for the comparison of the 

methods developed. The classifications and association measures used to 

derive them were compared by simulating the prediction of an observable 

property in each case, and determining the extent of the agreement between 

observed and predicted property values. Whether or not the classifications 

and association measures are suitable tools for predictions however depends 

on the approximations in the method. Thus, in order to estimate their 

predictive value it was necessary to compare the predictions with some 

carried out by alternative approaches. 
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Quantitative property estimations in chemical structure applications 

are more usually based on structure-property correlations using regression 

. 4-9 analysls. This approach was considered a suitable alternative here as 

it is a more exact approach with widely accepted procedures of evaluation. 

The regression analysis methods developed to date relate property data 

either empirically to a set of structural features, or semi-empirically to 

known physicochemical parameters, which in turn are related to structure. 

Usually methods are concerned with variations in side chain structures, and 

property data is related to these only. But in this study the whole 

molecular structure was taken into account to explain the property in 

question. This new approach increases the usefulness of the structure-

property correlation method, as it enables a wide range of structural types 

to be examined simultaneously. The important consequence "of this is that 

the method can be used to explore possible new lead structures,5 in contrast 

with existing methods which are aimed at optimising activity within a given 

chemical series. The new regression approach is discussed in detail in 

Chapt~r 4. Basically the property of the set of structures under consid-

eration, taken as the dependent variable is assumed to be related linearly 

or by some other simple function to the structural attributes of the 

compounds which are expressed as a set of independent variables. Provided 

the correlations obtained are significant they are then used as a basis for 

prediction. The usual,' tests of significance were applied and were used to 

compare the suitability of a number of different structural representations. 

Predictions were simulated using the'hold one out' technique. 5,19,20 Each 

structure in turn is removed from the set of structures under investigation 

and a property value is estimated for it from the results of the regression 

analysis on the remaining structures in the set. Details of the methods 

developed are given in Chapters 2 and 4. 
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Because of the potential application of this new empirical approach 

to structure-property correlation the methods developed here were 

considered as a possible tool for property prediction, in addition to 

providing a basis for the evaluation of the classification work, and where 

possible the results were compared with other regression approaches 

described in the literature. Comparisons however were made difficult for 
< 

the reason that very few other investigations reported to date have tried 

to use the correlations obtained by regression analysis for property 

prediction. Comparisons with the classification work were also limited 

because the large numbers of sub structural fragments necessary to describe 

whole structures often prevented a regression analysis. 

The classification and regression methods were tested using a number 

of small data samples extracted from the literature. From the results 

obtained the suitability of methods for larger scale applications is 

considered in view of the computational difficulties expected. It is 

possible in such small investigations as this that the results may be 

influenced by the failure of the sample to adequately represent the 

population2,21 and this is taken into account both during the comparison of 

methods and in the consideration of larger scale applications. 

The regression analysis and pattern recognition techniques described 

could be of value in a wide range of applications. The classification 

approach for example could be put to numerous uses in chemical information 

systems. Thus, file structures based on this technique, which brings 

together chemically similiar structures could lead to more effective 

structure retrieval strategies and could also be used to obtain specialised 

sub-files from general data bases. The method could also be used for 

classifying substructure search output. One of the stages involved in the 

classification process is the calculation of similarity or dissimilarity 
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coefficients between the structures to be classified, and if suitable 

coefficients could be developed then these could be used to rank search 

output in order of their relevance to the search question. Depending on 

the type of coefficient used relevance could be measured on an ordinal 

or even more precise scale. In addition to employing the classification 

technique for file organisation and manipUlation purposes it may also be 

possible to use the relationships derived between structures to bring out 

relationships between structure and property data. This would considerably 

increase the usefulness of the approach in chemical information systems in 

which properties and structure diagrams are already available in machine-

22-24 readable form. The new regression method described could also be of 

considerable value in this reas. It is the first statistical correlation 

technique developed which can handle diverse structural types. This may 

lead to a better understanding of the contributions to activity of 

different sub structural features, which. could in turn increase the value 

of the approach as a diagnostic tool in drug design. With suitable data 

the method could therefore be used to explore possible new lead structures5 

in addition to providing a useful empirical tool for property prediction. 

Where applicable it is expected that the regression methods developed will 

be a better method for prediction than the classification approach, and 

will therefore be the preferred approach in applications were quantitative 

structure-prope~y correlation for property prediction is the main objective. 

Depending on the type of application and the type of data available both 

approaches could be valuable in computer-based chemical information systems 

based on the structure diagram. The scope and limitations of the two 

approaches are discussed more fully in Chapter 2. 



CHAPTER 1 

Numerical Classification 



1.1 Background 

Much of the early work on numerical classification was carried 

out in the biological sciences, where it is usually referred to 

as numerical or mathematical taxonomy. As early as 1898 Heincke
25 

used a phenetic distance measure to distinguish between races of 

herring and in 1909 Czekanowski 26 employed a distance coefficient 

in physical anthropology. One of the first statistics extensively 

applied was the "Coefficient of Racial Likeness" developed by 

27 Pearson in 1926, although this has been considered mainly by 

anthropologists and has not been taken up by taxonomists in 

general. This measure is a type of simnarlity coefficient and 

it was ultimately developed by Mahalanobis into a "Generalised 

Distance" statistic.
28 

Other similar statistics 'were developed 

by Anderson and Abbe29 and Anderson and Whitaker30 • The growth 

of automatic methods was slow initially, and most of the early 

statistics were used mainly as discriminant functions to help 

identify new individuals and place them in existing classification 

schemes. They were therefore of limited use, and did not lead to 

any major advances. 

Following this initial work in the natural sciences the use of 

numerical classification methods spread gradually to other areas, 

although until more recently the main application outside the 

natural sciences was concentrated in the behavioural sciences. 

Here some early applications are those by Zubin31 in 1938 and 

Thorndike in 1953. 32 One of the main difficulties impeding 

progress in the early years was the lack of adequate processing 

facilities, and it is only within the last decade or so, with the 

- 8 -
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general availability of automatic computing facilities to take 

on the burden of the 1arge,amounts of computation usually 

involved, that the use of numerical classification methods has 

become widespread. One of the most important advances in the 

natural sciences was the application of cluster analysis' and 

these methods opened the way to present-day numerical classifi­

cation techniques. Work in this area was initiated by Sneath33 ,34 

Michener and Soka1 35 and Soka1 and Michener36 in the late fifties. 

Clustering techniques have now been successfully applied in many 

different areas, and there has been a great proliferation of 

methods in the last few years. Attempts to categorise these and 

produce comprehensive reviews however has been difficult because 

of the diverse nature of applications. Reviews of methods and 

applications are usually directed towards a particular subject 

area. Possibly because of the long standing application of numerical 

classification techniques in the biological sciences a particularly 

wide range of literature is available in this area, and some very 

useful reviews have appeared, 
37 

such as those by Johnson , 

Blackwelder38 , Sneath,39, Wi11iams and Da1e40 , and Soka1 et 141 a • 

1.2 The Basic Approach 

The various approaches to automatic classification in use today 

are often collectively referred to as non-parametric methods of 

pattern recognition. Within different fields these methods have 

been given a variety of different titles, and some of the mor~ 

common ones, :such as numerical c1assifi~ation, automatic c1assifi-

cation, mathematical taxonomy and numerical taxonomy, are often 

used interchangeably. The basic aim of these methods is to reveal 

the essential and otherwise unidentifiable relationships within 
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data sets by summarising the available information on individual 

members. An important characteristic· which the different 

approaches share is that no assumptions are made about the 

underlying stptistical distribution of the data in question. 

Automatic classification procedures are of two basic types. If 

they are required to fit new data into existing classification 

schemes the classification rules employed must first classify 

correctly the existing information. This is often referred to 

as supervised learning. If the classification process is 

required to identify meaningful clusters in previously unknown 

distributions of individuals the clustering rules used are not 

based on available information concerning class identity, and 

this process is usually referred to as unsupervised learning. 

The present investigation is concerned mainly with applications 

of this second type. 

1.3 Unsupervised Learning Methods 

The majority of unsupervised classification methods begin with 

the calculation of the degree of resemblance between the individ­

ual members· of the data sample. If the nature of the data is such 

that classes are very distinct, or if the sample is small then 

these measures may be sufficient to reveal the underlying structure 

of the data without the application of involved mathematical 

clustering procedures. Usually however such procedures are needed 

to bring out the essential relationships present. Two approaches 

have become important in recent years for this purpose. Firstly, 

the methods which partition the data into groups according to 

predefined rules on the definition of clUsters and class membership. 

These methods are usually referred to collectively as methods of 



.- 11 -

cluster analysis. Secondly, there are the ordination or mapping 

techniques which summarise the available information on individ-

ua1 relationships so that individuals can be conveniently 

represented in two or three dimensions for visual display purposes. 

Using this second approach the individuals are initially assumed 

to be distributed through an n-dimensiona1 hyperspace whose 

coordinates represent the features used to describe them. Some 

confusion has arisen over different terminologies and the terms 

clustering and cluster analysis are often used to encompass all 

the various approaches possible, including display methods. 

Whichever approach is used the ba.sic objective is to summarise 

the relationships in the data in a way which will result in the 

smallest possible loss of information. However the choice of 

suitable method is often a difficult one .,as the uncertain mathe-

matica1 properties of the methods make it. impossible to estimate 

the extent of the data loss 'a priori'. This problem is discussed 

in later sections of the present chapter. 

Until recently ordination procedures have been less widely applied 

than methods of cluster analysis but they are now increasingly 

used, and are often applied in conjunction with clustering 

techniques. 20, 42-45 Using this approach there are several ways 

46 47 
of reducing the data for visual display purposes.' Procedures 

such as factor analysis, principal component analysis and principal 

coordinate analysis have been widely considered, particularly in 

the behavioural sciences. 48 ,49 Multidimensional scaling techniques 

are also of importance, and these techniques, usually refp-rred to 

as linear and non-linear mapping techni~~es, have recently been 

used in chemical structure applications to aid other pattern 



- 12 -

recognition methods in the investigation of structure-property 

relationships. 20 

1.4 General Advantages of a Numerical Approach to Classification 

Numerous problems arise when applying classification methods. 

Some of the more general conceptual difficulties involved are 

discussed below in sections 1.5.2(a) and (b). Over and above 

these difficulties many additional problems arise when applying 

numerical techniques. 

a numerical approach. 

What, therefore, can be gained from using 

46 Sneath and Sokal have recently enumerated 

some of the possible advantages, and those of relevance here are 

now discussed briefly. 

Compared with conventional classification methods a numerical 

approach increases objectivity by reducing the number of arbitrary 

decisions to be made. Investigators in favour of the conventional 

classification approach however view this particular advantage 

with some doubt as they feel that arbitrary decisions based on 

intuitive reasonings are essential for a meaningful result. A 

less questionable advantage is that the approach allows much of 

the classification process to be automated. This is important 

in areas where large amounts of information are involved. Another 

benefit arising from this is the ability of the method to handle 

larger numbers of characteristics, which reduces the dangers of 

arbitrary pre-selection of features in the description of 

individuals. These were important properties influencing the 

initial interest in the approach in biological applications, 

where the expanding volume of data and the growing numbers of 

characteristics used to represent it were becoming increasingly 

difficult to handle by conventional means. Because data is 
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held in numerical form another advantage is that the required 

information for classification could be easily integrated in 

existing computer-based systems. In some areas automatic 

classification is leading to a vital revision of existing 

ideas, for example in the biological sciences, and in many 

applications the method is becoming important for its heuristic 

1 40, 46, 50 t" h th th va ue. As well as genera ~ng ypo eses e approach 

is also of value in shedding new light on existing hypotheses, 

and examples of this may be found in the behavioural sciences. 51,52 

Finally, numerical classification has considerable potential as 

a tool for prediction and there have been numerous reports in 

the literature illustrating its possible value in this area, for 

example Sneath10 , Kowalski and Bender12, Payke153 , Ting et a1 54 , 

55 
and Chu • 

1.5 Numerical Classification Based on Cluster Analysis 

In most cluster-based classification applications there are 

three basic stages,involved. Initially numerical representations 

of the original data must be chosen which provide a suitable basis 

for the comparison of individuals. Using these and a statistical 

measure of association, quantitative estimates of similarity or 

dissimilarity between individuals are then obtained. Finally, 

a set of clustering rules are applied to these quantitative 

measures held in matrix form. 

1.5.1 Definition of Terms 

The development of numerical classification techniques in a wide 

range of disciplines has led to an equally wide range of termin-

ologies in defining methods. As seen earlier the classification 

process itself comes under a variety of different headings 
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depending on the field in which it is applied e.g. terms such 

as numerical taxonomy, mathematical taxonomy, taximetrics and 

systematics are usually considered in the biological sciences. 

Other terms such as non-parametric pattern recognition, cluster­

analysis, Q-analysis, grouping, clumping and classification are 

used in mathematical applications, sociology, psychology and 

information retrieval. The terms numerical classification, 

automatic classification and pattern recognition are used in 

the present study and occasionally the labels sup~rvised and 

unsupervised learning are used in cases where a distinction is 

being made between these different approaches. 

The different terminologies arising in defining methods has 

added to the many conceptual problems involved in describing the 

classification process. This is particularly true in some of 

the earlier stages of the classification process, and there has 

been much confusion over the definition of data and the relation­

ships arising between the original data and its representation 

in numerical form. 

In the following discussion the members of the data set undergoing 

classification are referred to as entities, Objects or individuals. 

These are broken down into a number of descriptive features 

referred to as characters or features. The nature of these 

depends on the way individuals are fragmented. Thus, a character 

may represent a particular aspect of the individual which is 

either present or absent, or else it may take on a number of 

separate values. These are referred to as character states, 

character values or characteristics. In the case of characters 

representing a single characteristic, characters and characteristics 
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become equivalent. The numerical descriptors used to 

represent characters are referred to as attributes, and the 

different values which they may take are referred to as 

attribute states. The nature of attributes depends both on 

the type of numerical representation chosen and on the nature 

of the characters they represent and, as with characters and 

characteristics, there mayor may not be a 1:1 relationship 

between characters and attributes. Thus, characters repre­

senting single, qualitative characteristics may be represented 

by a single attribute, whereas multi-state characters which 

cannot be represented conveniently in this way must be repre­

sented by a set of attributes which cover the required range 

of variation. The different types of qualitative and quanti­

tative character definitions which may arise and the possible 

numerical representations of these will not be discussed any 

further here as these are described in detail in section 

1.5.2(c). 

Although the above definitions have been adhered to as far as 

possible, it is difficult to be completely consistent in the 

use of these terms, particularly with such terms as character, 

and characteristic, which are considered to have equivalent 

meanings in every day usage. In the discussions preceding the 

description of character types the features of individuals are 

discussed in more general terms and no distinctions are drawn 

between characters and characteristics. At this stage descriptive 

features have been referred to as characters and occasionally 

the term characteristic has been used where it was felt that 

this was more appropriate. 
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1.5.2 Defining the Data 

Data representation is a particularly critical stage of the 

classification process and is one which involves a number of 

separate issues, some of a fundamental nature. First of all 

the important characters of the individuals in question must 

be identified. Having chosen these, the relative importance 

of characters must be decided upon. Finally, a suitable 

numerical representation must be chosen which will convey the 

required information. The first two issues, concerning the 

choice and significance of characters involve more fundamental 

questions which arise whether or not numerical procedures are 

adopted, but this important point is often overlooked, and has 

been the cause of much unfair criticism of automatic classifi-

cation methods. 

1.5.2.(a} Choice of Characters 

(i) Conceptual Problems - Nature of Classification - Nature of Classes 

To deal satisfactorily with the questions of character choice 

and character importance it is necessary to know the precise 

nature of classifications and their objectives. However from 

the time of the Greeks up to the present day there has been no 

universal agreement over the purposes of classifications, and 

as a result these properties are difficult to define. 

Nature of Classifications 

Some of the earliest ideas on systematic classification were 

b d . t t 1· 1 . 56-58 H Ith h th.i ase on Ar1S 0 e 1an og1C. owever a oug s approach 

was initially widely considered it is strictly only suitable for 

simple, logical systems, where the individuals undergoing 

classification can be defined in such a way that the remainder 
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of their properties can be automatically inferred. Eventually 

th od t t f 1 ° ° 1 59 hi h ese 1 eas gave way 0 a se 0 genera pr1nc1p es w c 

were considered to be of universal applicability. These 

principles were based on the premise that there cannot be 

one ideal and absolute scheme of classification for any 

particular set of objects but t~at there must always be a 

number of classifications which differ according to the purpose 

for which they have been constructed. Many of the currently 

used techniques in numerical classification however have been 

influenced by the classification views held in the biological 

sciences where, until recently, these general principles have 

been largely ignored. The early development of taxonomic theory 

in this area was based on the belief that living things belong 

to ideal or 'natural' systems and are governed by special laws 

layed down by a creator. The general principles of classi-

fication which had been widely used in the case of inanimate 

objects were therefore considered inappropriate and biological 

classification took a very different course. 

The early development of taxonomic theory before Darwin was 

based on Lindley's concept of 'natural affinity,.60 This was a 

very vague concept explained in terms of a 'Plan of Creation'. 

Following the theory of evolution, evolutionary considerations 

were in general thought, to be essential for an understanding of 

natural systems, and the concept of 'natural affinity' was re-

interpreted in terms of these relationships. However, evolutionary 

characteristics are not easy to define and in many ways this 

redefinition helped to widen the gap between biological and other 

types of classifications, as the concept of 'natural affinity' 

could now be even more broadly interpreted. From this time there 
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was very little agreement over the importance of evolutionary 

characteristics and their relative value in explaining natural 

affinity compared with observable characteristics. This 

controversy eventually led to general disagreement over the 

interpretation of natural systems and by the beginning of this 

century this in turn had led many investigators in the field to 

t o th t hO h h t b d 61-67 ques 10n e concep s upon w 1C suc sys ems were ase. 

° 65-67 The main influence in this area came from G11mour who 

believed that the isolation of biological classification from 

classification in general had been damaging and was largely 

responsible for much of the confusion which existed. More 

recently, and especially since the consideration of numerical 

techniques, when biologists and others were forced to re-examine 

their objectives, Gilmour's views have been more widely supported. 

However, many of the old ideas persist, and the objectives of 

classifications continues to be a controversial issue. In the 

biological sciences in particular, opinion is still very much 

divided. Some of the old concepts are still firmly upheld and 

there continues to be disagreement over the relative importance 

of observable and evolutionary features. Many investigators now 

feel that difficulties such as these will never be resolved until 

the principles of classification have themselves been thoroughly 

re-evaluated. 

Nature of Classes 

Despite differing views over classification objectives, it is 

generally agreed that the usefulness of classifications will 

depend on the number of characteristics used to define the 

individuals or objects in question, and that a classification 

which utilizes all known characteristics is more generally useful 
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than one based on a more limited range. However, whereas the 

traditionalists regard such classifications as approximations to 

a single, ideal classification scheme others feel that these 

should be considered as flexible arrangements which change as 

new knowledge is acquired, but which never aim towards a single 

66 
end. This latter view is in keeping with the general principles 

of classification and with Gilmour's basic philosophy. 

One of the characteristics of the early classification schemes 

based on Aristotelian logic is that for class membership each 

individual is expected to possess all the properties which were 

used to define the class in question. Such arrangements are 

now usually referred to as monothetic groups. Most applications 

today however are based on polythetic arrangements where the 

criterion for class membership is based on the numbers of shared 

attributes between individuals. Polythetic classifications were 

first considered in the natural sciences. At the time when the 

concept of 'natural affinity' was first introduced and larger 

numbers of characteristics were involved, it was soon realised 

that the members of classes did'not necessarily possess anyone 

diagnostic character i.e. any one feature which is common to all 

68 class members. This is now regarded as one of the essential 

characteristics of polythetic classes, although such arrangements 

were not formally defined as such until much later.
69 

Recent 

definitions of polythetic groups distinguish two basic types. Thus, 

polythetic groups are defined as those whose members have a large 

number of characteristics in common but where no character is 

either essential for class membership or is sufficient to allow 

membership. Fully polythetic groups must satisfy the above 
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conditions and in addition require that no feature be common to 

all its members. The large numbers of descriptors usually 

involved in present day applications often prevent this last 

condition being met. Consequently most polythetic arrangements 

are of the former type. 

From the previous discussion on classification objectives, poly-

thetic arrangements are obviously more suitable for/general 

purpose classifications or for classifications where the 

objectives are not well defined. If the objectives are more 

specific then monothetic arrangements may be more appropriate, 

although in this Case there is a high risk of misclassification 

when the number of descriptors considered is large. Some 

arrangements of this type have recently been criticised by Sneath 

and Sokal,46 e.g. Maccacaro70 and Williams and Lambert.
71 

(ii) Statistical Problems 

The availability of improved computing facilities in recent years 

has made it possible to consider larger numbers of characteristics 

during the classification process. The arguments in favour of 

large numbers of descriptors to obtain more general or 'natural' 

classifications are discussed in the previous section. Leaving 

these aside there are additional problems concerning the desire-

ability of this approach from a statistical point of view. Past 

investigations of supervised learning methods have shown that a 

small sample to feature ratio can have an adverse effect on the 

classification result, and in the case of two-way classification 

schemes, for example, it has been shown that a sample to feature 

t o b I ab ° ° ~bl 72,73 H t ra ~o e ow out 3 ~s undes~ra e. owever, mos of the 

research in this area has been carried out on this type of 
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application and although a similar dependence on the sample to 

feature ratio is not expected with unsupervised learning methods 

it is not certain what effect, if any, the ratio has on the 

classification result in this case. Some investigators have 

stressed the need for large numbers of features in the unsuper-

vi sed case to reduce the risk of distortion in estimating 

d f ' '1 't 46 egrees 0 S1m1 ar1 y. However the choice of features here 

usually depends on the particular requirements of the user, 

and whether he wishes to derive a specialised classification 

or a more general one with wider predictive powers. 

1.5.2.(b) Importance of Characters 

Related to the problem~ of character choice is the question of 

character significance. When numerical methods were first intro-

duced in the biological sciences character weighting was cons id-

ered an essential part of the classification process. The 

relative importance of different characters however was based 

largely on intuitive judgements and the differing interpretations 

of character importance led to widespread confusion. The intro-

duction of automatic procedures was therefore seen as an ideal 

opportunity to revise existing ideas concerning character values, 

and consequently most of the numerical techniques considered at 
• 

that time employed equally weighted characters. Because of this, 

equal weighting is often wrongly associated with numerical methods 

and is assumed to be an essential feature of the numerical approach. 

o 
(i) 'A priori' and 'A poster}ri' weighting 

Many arguments have been put forward in favour of character 

weighting and an equally large number against it. Increasingly, 

forms of 'a priori' weighting, where the value of characters is 

estimated prior to classification, are considered unacceptable 
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although some who are in favour of equal weighting are in 

agreement with some forms of 'a posteriori' weighting. 46 ,47 

However, some still criticise the arguments which have been 

put forward for equal weighting and claim that this process 

. 75 76 is itself a form of 'a priori' weight1ng.' Jardine and 

Sibson
74 

have recently suggested that much of the disagreement 

over character weighting has arisen due to a failure to distin-

guish between forms of 'a priori' and 'a posteriori' weighting. 

They claim that much of the controversy concerns only 'a 

posteriori' weighting, as most of the so called 'a priori' 

arguments are usually based on some previous knowledge. An 

example of this is the case of expedient weighting discussed 

by Inglis,75 where a character preselection process is applied 

to reduce large numbers of characters to within workable limits. 

This is not an instance of true 'a priori' weighting as the 

preselection process in such cases is usually based on previous 

evidence of character importance. 

It is generally accepted however that in most typesof application 

some forms of character weighting, whether desirable or not, 

are unavoidable. The above case of expedient weighting is an 

example in question. 

(ii) Character Probabilities 

Much attention has been given to the problem of character 

weighting in biological applications. The weighting process 

here is usually based on intuitive judgements, but an issue of 

more general relevance which has recently been given 

attention in many different fields is the question of whether 

or not the statistical distributions of characters should also 

be taken into account in deciding on character importance. The 
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arguments put forward in favour of character weighting in this 

case have their basis in probability theory. Thus, should 

characters which arise infrequently in the set of objects or 

individuals in question be considered more important than 

. frequently occurring characters? Secondly, should characters 

which are highly correlated with other characters be considered 

less important? This second question involves a number of 

separate issues which will be considered later. 

The usual argument used in favour of weighting is that infre-

quently occurring characters are more discriminating, and should 

be weighted more heavily because of their diagnostic value. 

Several different weighting procedures based on character 

frequencies have been proposed, and where a quantitative 

approach is considered it is more usual for the character 

frequencies to be taken into account during the comparison of 

individuals, rather than during the preceding stage of character 

definition.
74 

Thus, during the comparison of characters the 

likelihood of a particular pair of values arising in two 

individuals is determined and the less probable this co-

occurrence the more similar the individuals are said to be 

with respect to the given character. An example of this 

approach is the similarity index derived by Goodall.
77 

In 

defining similarity he considers character value frequencies 

in conjunction with the usual, definition of this term, and 

applies these criteria to both ordered and metric data. In 

the case of data which is qualitative and unordered.character 

value probabilities are the only consideration. This approach 

has been considered in the present investigation and the particular 

methods developed are discussed in Chapter 3. Other similar 

S . 78 
approaches have been proposed by mlrnov, and Rogers and 

Tanimoto. 79 
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Many workers have criticised the use of probabilistic procedures 

in numerical classification,as in order to apply them it is 

necessary to make certain assumptions about the underlying 

statistical distribution of the data. For example, Goodall's 

method is based on the null hypothesis that the values which 

each character may take are randomly distributed amongst the 

individuals in question with probabilities equal to their 

observed relative frequencies. Several investigators feel 

that this approach is unsuitable for classification purposes 

50 in the case of finite data sets e.g. Williams and Lance and 

Williams and Dale
40

, because it is impossible to obtain null 

hypotheses which are independent of the given data set, and 

that if such procedures are employed, different samples must 

inevitably lead to different results. They therefore consider 

these procedures to be invalid. Others have rejected probab-

ilistic methods for similar reasons. 

(iii) Correlation and Redundancy 

Closely related to the problem of character frequencies is the 

question of character correlation. A number of different problems 

are involved here, for which there are again no generally accepted 

solutions. Many different types of corr~lation have been discussed 

in the literature. 46 , 74 All of these, regardless of their 

particular nature, will result in some degree of redundancy, 

but the main difficulty lies in determining exactly how they 

affect the result and whether or not these effects are desirable. 

In the extreme case, where one characteristic always arises in 

conjunction with another, and thus always implies the presence 

of the other, then this may be thought of as total character 

redundancy. However,whether this is redundancy in the true 

sense of the word will depend on~e nature of the association. 
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Secondly, as in the above case of character frequencies, there 

is the problem of handling finite data sets and determining 

whether the correlations observed are simply a characteristic 

of the particular data sample in question. Recently in 

attempting to resolve these problems some investigators have 

expressed concern over ,data sampling and the need for adequate 

. 21 46 50 sample Slze. ' , 

The differing terminologies which have arisen to explain the 

various types of association possible have added to the problems 

arising. For example, Sneath and Soka146 and Jardine and Sibso~4 

both discuss logical correlations but their definitions do not 

coincide. Most agree that care must be taken in the choice of 

characters to avoid, where possible, true redundancy in defini-

tion, for example, where two different characters are considered 

one of which is simply a re-expression of the other, or where 

two characters are related logically and the one can be thought 

of as a re-expression of the other. This second example coincides 

with Sneath and Sokal's definition of logically redundant charac-

terse They give the example of two characteristics one of which 

defines the presence of haemoglobin and the other defines the 

redness of blood, where the latter is dependent on the presence 

of haemoglobin. H0wever, this example is straightforward but 

difficulties arise when the dependency is only partial. Jardine 

and Sibson define logically related characters as all those which 

are conditionally related. Thus they include in this category 

characters which are known to be related empirically, but are 

not necessarily related logically in the sense given above. 

Associations of this type, defined by Sneath and Sokal as 

empiricial correlations, are sample dependent i.e. the 

correlation observed in one data set need not necessarily arise 

in any other. Jardine and Sibson have pointed out the dangers 
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involved in this case and suggest these may often be overcome by 

careful choice of characters at the outset. However, whether or 

not such correlations can be successfully eliminated still leaves 

unanswered the question of their desirability. Some investigators 

feel they should be accounted for in some way, and in cases where 

they cannot be eliminated, some form of weighting procedure should 

. 80-83 be appl~ed. Others feel that correlations should not be 

eliminated indiscriminately, and as all successful classifications 

rely on their presence it is important to distinguish between 

those which have an adverse effect on the result and those which 

74 are essential for the formation of sensible clusters. Evaluating 

their effect however is not an easy task because of the mathemat-

ical limitations of the method and the wide range of applications, 

making direct comparisons of weighted and unweighted characters 

difficult. To give an example of the sort of problems arising 

84 Rohlf recently investigated 45 different species of North 

American mosquito and concluded that character redundancy should 

be avoided where possible as it causes elongation of generic 

clusters, and makes individuals at the periphery of clusters 

appear more isolated than they should be. 85 Power on the other 

hand points out that if the degree of correlation varies within 

each of the species studied, then this information is important 

for discriminating between groups, and should be reta1ned at all 

costs.These oppos1ng views typify the arguments appearing 1n the 

literature over the desirability of character correlations, and 

unless numerical classification is placed on a more formal basis 

there is little chance of resolv1ng such differences of opinion 

fully. 
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1.5.2.(c) Choice of Numerical Representation 

The final step in the data preparation stage or preprocessing 

phase is the conversion of the chosen identifiers or descriptors 

into a form suitable for computation. Approximations are unavoid-

able at this stage and it is vital that the numerical descriptors 

chosen ar~ as representative as possible of the original informa-
l 

tion, while at the same time providing a suitable basis for 

comparison. 

The types of character definitions possible and the measurements 

of similarity and dissimilarity for which they are suitable have 

, th l't 46 t been widely discussed ~n e ~ erature. Basically wo 

different types of information may arise, namely measurement data, 

usually referred to as quantitative data, and secondly qualitative 

data which refers to some kind of descriptive quality such as 

colour variation. Both types of information may be dealt with in 

a variety of ways. 

(i) Qualitative values 

Depending on the way characters are chosen, qualitative descrip-

tions may either by represented by two-state or binary descriptors 

(attributes), or by qualitative multi-state descriptors (attributes). 

For example if a charccter is chosen which represents some 

characteristic Which is either present in an individual or absent 

then a binary representation is used. If the character chosen 

may take on a number of different values Which are unordered and 

which mayor may not be linked logically,then there are various 

ways of representing this character numerically so that the 

various possibilities may be identified. One of the more usual 

ways is to select a suitable set of two-state attributes to cover 

the required range of variation. However, in the case of logically 
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related characteristics such as colour differences this type 

of coding presents a number of difficulties, as the descriptors 

or attributes chosen in this case are mutually exclusive i.e. 

the presence of one of the values, (giving a positive score on 

one of the attributes) automatically infers the absence of the 

remaining possibilities and a negative score on all remaining 

attributes in the set. This gives rise to two basic problems. 

Firstly~ if two individuals do not agree with respect to this 

character the coding method gives rise to two mismatches. 

Secondly, if a similarity of dissimilarity measure is used which 

takes into account the agreement of negative scores then the 

degree of similarity is exaggerated and the extent of the 

distortion will depend on the number of two-state attributes 

employed. Thus, although this method has been used by some 

investigators e.g. Rogers and Tanimoto,79 Sneath and Soka146 

have recently suggested that the approach be used for logically 

independent characteristics only. 

(ii) Ordered values 

Where the character chosen may take on a number of different 

values which are not quantitative but which belong to an ordered 

series, a set of two-state attributes may again be employed. 

However, it is not the most satisfactory approach in this case, 

as difficulties would arise in ensuring that values closer 

together in the series are considered more similar than those 

which are further apart. This could best be accomplished by 

assigning arbitrary numerical values to the series and treating 

these in much the same way as measurement data (see below). 

(iii) Quantitative values 

Quantitative characters, where the different possibilities arising 
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are both ordered and metrical present fewer problems, and here 

the choice of definition often depends on the type of associa-

tion measure considered. Thus the different values which a 

character may take may be represented by numerical quantities 

which coincide with the original measurement values, or, if a 

binary representation is required, the measurements can be 

broken down into a number of two-state attributes in much the 

same way as ordered characters described above, where suitable 

numerical values have been arbitrarily defined. If the values 

are continuous they may be divided into a suitable set of inter-

vals, each of which is considered as a separate attribute. 

However, whether the original measurement data is discrete or 

continuous, a few problems are presented by this breaking down 

process. The process,may be carried out in a number of ways 

depending on whether the resulting two-state attributes for a 

given character are to be regarded as additive or non_additive.
46 

Where the data is continuous, and each attribute chosen must 

represent a range of values, the attributes are mutually exclusive 

and it is important that the class intervals be as small as 

possible to minimise the information loss. In the case of 

characters which take on discrete values a number of different 

representations are possible. The additive and non-additive 

coding procedures which are commonly used for qualitative 

characters are equally applicable here. These procedures have 

46 been discussed in detail by Sneath and Sokal and are only 

described briefly below. 

Using the additive coding method, if a character represents a 

series of numerical values ranging from 0 to n, these would be 

represented by n two-state attributes, all of which would be 

zeroised to represent value 0, the first of which would be 
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set to represent value 1, the first two of which would be set to 

represent value 2 and so on through to\alue n, when all 

attributes would be set. This approach enables differences in 

magnitude to be accounted for, although as with qualitative 

multi-state characters the degree of similarity or dissimilarity 

may be exaggerated, depending on the number of two-state attri­

butes required to reprsent all possible values. In this 

particular case however, the association between individuals is 

exaggerated when negative matches are ignored. Thus, in the 

above example, if two individuals have values 1 and 2 respectively 

for the character in question these will be considered less 

similar with respect to this character than two individuals 

with values 2 and 3 respectively, as the latter case gives 

rise to two matches and the former to one. The choice of 

association measure is therefore critical in this case. 

Using the non-additive approach each two-state attribute repre­

sents a different value and attributes are mutually exclusive, 

as in the above example given for continuous measurements. In 

the non-additive coding method described by Sneath and Sokal the 

first of each set of two-state attributes employed to represent 

characters is used to denote the presence or absence of the given 

character. This means that if two individuals possess a value 

for this character they will at least agree with respect to this 

first attribute:, even if their respective values differ. 

Although the additive and non-additive coding methods described 

by the above authors usually refer to ordered, non-metrical quantities, 

they are equally applicable to metric quantities and the additive 

coding method in particular has been useful in cases where binary 

representations are required. 
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(iv) Missing values 

One of the problems in obtaining suitable numerical codes for 

character comparison is deciding on the treatment of negative 

score agreements between two individuals in finite data sets 

i.e. whether the absence of a particular characteristic in 

two individuals should be considered as contributing to the 

similarity between them. From the previous discussion it is 

obvious that this question becomes even more of a problem 

when characters are represented by sets of two-state attri­

butes. Here the breaking-down process not only introduces 

redundant definitions which distort the degree of similarity 

or dissimilarity, it also has a weighting effect on the 

characters concerned, as the number of two-state attributes 

required for each mUlti-state character varies with the range 

of values ,the character may possess. As the exact effect this 

has depends on whether or not the mutual absence of character­

istics in individuals is ignored, the choice of association 

measure in these cases is of vital importance. The different 

types of association measure which are capable of handling such 

two-state attribute sets are discussed below. 

Estimation of Resemblance 

Traditionally the measures of association_. used to estimate 

quantitatively the degree of resemblance between individuals 

coded in numerical form are referred to as coefficients of 

similarity or coefficients of resemblance. 46 Sneath and Sokal 

have suggested recently that the former term be restricted to 

coefficients which are strictly similarity coefficients to avoid 

confusion. As the interest in numerical procedures for classifi­

cation increases several investigators have attempted to categorise 
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the different coefficients available and assess their suitability 

in different applications, but this has been difficult because of 

the wide range of measures available and the diverse nature of 

applications. Four basic types of coefficient are now recognised. 

1.5.3.(a) Association coefficients --
Some of the earliest coefficients of resemblance used in numerical 

classification are those which operate on a binary representation 

of the data. In the older literature these are usually referred 

to as coefficients of association. They are also often referred 

to as matching coefficients as they are based on counting the 

number of actual agreements between pairs of individuals compared 

with the number of possible agreements. These long established 

measures were used in a variety of disciplines before they were 

first adopted for use in numerical classification. 

Many different association coefficients have been proposed and 

these large numbers have arisen mainly due to uncertainty over 

the treatment of negative attribute scores in pairs of individuals, 

and whether agreeing and disagreeing pairs of values should be 

treated equally. Thus, some association coefficients ignore 

negative attribute agreements altogether e.g. Jacchard's 

coefficient and Dice~ coefficient, some give extra weight to 

matched pairs of values e.g. Dice's coefficient and others give 

extra weight to unmatched pairs of values e.g. the coefficient 

of Rogers and Tanimoto. One of the simplest association coef-

cients is the so called simple matching coefficient which gives 

equal weight to matched and unmatched attribute pairs and 

includes negative matches. 

The different types of association coefficient may give widely 

different coefficient values for the same set of data. This in 
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itself is not a particularly serious defect but another 

characteristic of these coefficients is that they are not 

necessarily jointly monotonic i.e. the pair-wise associations 

between individuals ranked in increasing or decreasing order 

of magnitude do not necessarily lead to the same order of pairs 

in all cases. This could have a much more serious effect on 

the classification result. These differences have prompted 

a number of comparative studies of association coefficients 

attempting to define the relationships between them. 86- 88 

Investigations so far have shown many of the association coef­

ficients to perform closely e.g. the simple matching coefficient 

and the association coefficient of Rogers and Tanimoto have 

been shown to be jointly monotonic. Other association coef­

ficients have also been found to behave similarly, although 

most of the investigations to date have concentrated on a small 

number of measures and difficulties of application have so far 

prevented a rigorous comparison of methods. 

Coefficients of this type, which distinguish only between 

attribute values which match and those which do not are obviously 

most suited to qualitative data which can be meaningfully repre­

sented in binary form. They are therefore most appropriate for 

handling characters, which define a characteristic which is either 

present in an individual or is absent. The measures can however 

be applied to multi-state characters provided these are first 

suitably broken down into binary representations as described 

previously. This approach is not particularly suitable for 

multi-state characters which are either ordered or metrical, 

and especially if the data is continuous, because of the informa­

tion loss in the transformation to binary form. Data of this 

type may be more realistically dealt with by similarity measures 
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capable of dealing directly with quantitative values. The 

approach is more suitable for multi-stat~ characters which 

are purely qualitative, but even here difficulties may arise. 

One of the the major problems which has been discussed in a 

previous section is the weighting effect introduced when the 

ranges of possible values for each character differ. Also in 

these cases, leaving aside the problem of negative attribute 

matches, should matches arising in different characters be 

treated equally or should allowance be made for ~he fact that 

a match arising in say a six-state character is less likely 

than one which arises in a two-state character? Very few 

association coefficients take this into account and one of the 

better known matching coefficients which does consider the 

probability of a given match arising is the similarity coef-

d b s o 78 
ficient propose Y mlrnov. 

A general association coeff~cient which is suitable for all 

89 types of data has recently been proposed by Gower. One 

important advantage of this coefficient is that it is able to 

consider a mixture of data types in a single investigation. 

1.5.3.(b) Distance Coefficients 

Distance measures are another group which have been extensively 

applied in numerical classification. They are most suitable 

for use with quantitative data and are often referred to in 

numerical classification stpdies as measures of 'taxonomic 

distanfe'. The different distance coefficients proposed, ranging 

from the earliest reported applications by Heinke to the present 

b t d o th lOt t 40, 46, 74, 90-94 day have ~en well documen e ln e 1 era ure, 

and some of the important early formulations applied in the 

biological sciences, such as Pearsons coefficient of racial 



- 35 -

likeness and the related generalised distance measure proposed 

by Mahalanobis have been mentioned in an earlier section. In 

general, distance measures express the similarity or dissimi-

larity between individuals in terms of their distance apart 

in an n-dimensional space whose coordinates are based on the 

characters used for the description of individuals. Most measures 

of similarity and diSSimilarity, including distance measures give 

rise to coefficient values between pairs of individuals which 

satisfy the following conditions, 

for individuals x and y 

d (x,y) 0 if x = y 

d (x,y) = d (y,x) 

In addition to these, distance measures also satisfy the following 

condition, usually referred to as the metric or triangular inequality, 

for individuals x, y and z 

d (x,y) + d (y,z) )" d (x,'Z.) 

This third property is an important one which distinguishes distance 

measures from many of the commonly used similarity coefficients. 

It also gives distance measures the property of being jointly 

monotonic. 

The most commonly used distance measure which is now widely used 

in cluster analysis is the simple Euclidean distance, where the 

distance between two individuals i and j in an n-dimensional 

space is defined as follows 

where X
ik 

is the value of the kth character for individual i. 

This measure together with the problems associated with its use 
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90 74 
have been fully discussed by Sokal, Sneath and Sokal and 

others. 

Another metric closely related to the above is the absolute 

or city block metric, 

n 
E 
k=1 

This has been used by Carmichael and Sneath.
95 

Other more 

general distance measures which include the Euclidean and city 

block distances as special cases are the Minkowski metrics. 

One of the main difficulties in using distance measures of the 

above type is handling characters which are based on different 

unit measurements. These differing scales may seriously 

distort the overall degree of similarity between individuals, 

and to compensate for this and for differences in character 

ranges, standardisation prooedures are often employed before 

distances are calculated. A variety of character standard-

90 96 97 isation procedures have been proposed. ' , The most common 

approach is to standardise characters so that they possess a zero 

mean and a unit variance, using the standard deviations derived 

90 from the complete set of individuals. Although this has the 

effect of preserving relative distances, it and other similar 

methods have been criticised for also having the effect of 

diluting the differences between characters which may be of 

important discriminating value. Most investigators would agree 

that in the calculation of distance coefficients some form of 

preprocessing is usually necessary in order to calculate meaning-

ful distances. However despite the widespread use of standard-

isation procedures at this time there is still very little 

general agreement over their validity and their exact effect on 



- 37 -

t I "" t" It 46, 74 he c asslflca ~on resu • 

The above distance coefficients are just a few examrles of some 

of the more commonly used distance measures. Usually these 

coefficients can take any posi~ive value and differ in this 

respect from other similarity and dissim~larity measures, which 

are usually normalised within the range 0 to 1, or -1 to +1. 

Another property of distance functions is that they may be 

easily transferred into a corresponding set of similarity 

functions, for example by co~sidering reciprocal or complementary 

values which are normalised in some way. The reverse process of 

converting similarity measures to distance measures is more 

difficult,because of the need for distance measures to satisfy 

the metric inequality. However, a number of similarity coef-

ficients can be put into metric form e.g. the simple matching 

coefficient,and various methods have been proposed for achieving 

th " 49,Q8-102. 
lS. 

In contrast with the examples given above some of the earlier 

proposed distance measures e.g. the Mahalanobis D2 statistic, 

have the advantage of allowing character correlations to be taken 

into account. However, some of the early measures have been 

designed especially for continuous data and many investigators 

feel they ar~ unsuitable for clustering applicatiQns where 

discontinuous measurements are involved. 

5 3 ( ) Probabilistic Coefficients 1 ••• c 

The above measures of resemblance are the most widely applied in 

numerical classification. Recently much attention has been given 

to the prbblem of character value distributions and their effect 

on the classification result, and many probabilistic and information-

theoretic similarity measures have been proposed which take these 
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into account. The coefficients which consider the frequency 

of occurrence of characteristics to be a measure of their 

importance, and the various problems arising in their use 

have already been discussed during the assessment of characters 

in section 1.5.2(b). So far these measures have not been widely 

applied because of the computational difficulties usually 

involved in deriving them. They are usually based on exact 

probabilities, although there are some exceptions to this, 

particUarly in some of the earlier methods described e.g. 

Smirnov's coefficient. 

In addition to the above probabilistic measures there are a 

number of measures which have their basis in information theory 

and consider the information content or entropy of characters. 

Information content in information theory is considered analogous 

to the concept of entropy developed in thermodynamics. Thus, it 

is considered to be a measure of disorder of characters and is 

directly related to the number of alternatives possible and their 

relative probabilities, when all known information is recorded. 

103 Shannon developed some of the earlier ideas in this area and 

derived the following expression for characters which may take 

on a range of different values, 

H = n 
- L 

i=1 
log p. 

~ 

where H is a measure of the uncertainty, or choice, Pi is the 

frequency attached to characteristic i and n is the total number 

of possibilities. Thus, assuming each character value for a 

given character is equally likely the entropy increases as the 

number of alternatives possible increases. If the probabilities 

of different character values are not equal then this has the 
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effect of lowering the entropy. It also has a weighting effect 

on characters, whose distributions are not equivalent, in much 

the same way as the probabilistic measures discussed previously. 

The recent literature shows that a number of investigators have 

considered this approach in deriving information indices for 

individual characters but so far studies have mainly been at an 

exploratory level and there have been few applications involving 

the setting up of similarity indices for complete individuals. 

Information measures have a number of useful properties. 

Because information statistics are based on probability theory, 

not only are they additive over characters they also allow the 

inter-dependency of characters to be taken into account, should 

this be required. A number of entropy measures have been proposed 

which take character correlations into account. In this case 

the probability distributions of characters are not assumed to 

be independent, and entropy values are calculated using conditional 

probability distributions. Several different approaches to this 

104-107 problem have recently been reported in the literature. 

Another advantage of the approach is that the relationship between 

the information statistic and the chi-square distribution enables 

statistical tests of significance to be applied. Finally, inform-

ation measures like many association coefficients can be converted 

into metric form. 

1.5.3(d) Correlation Coefficients 

The last type of coefficient which has been widely applied in 

numerical classification is the correlation coefficient. These 

may be considered as special cases of a wider class known as angu­

lar coefficients. 46 The most commonly used coefficient of this type 
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is the Pearson product-moment correlation coefficient, which 

handles continuous data. Other similar coefficients have also 

been used for ranked and two-state characters. These measures 

have been considered over a wide area although many investi-

gators have recently questioned their suitability for numerical 

'f' t' 108,109 F 1 'P , d t class~ ~ca ~on. or examp e, us~ng earson s pro uc -

moment correlation coefficient the essential requirement for 

perfect correlation between two individuals is that the set of 

character values for one of the individuals be linearly related 

to the set of character states for the other, and the values of 

individual characters need not necessarily be in agreement. In 

I , t' W' h rt 110 thi i t b some app ~ca ~ons e.g. ~s a, s coeffic en has een 

found to be totally unsuitable for obtaining meaningful 

separations of the data, whilst in others e.g. strauss et al,111 

it has been found more appropriate than other measures. 

Correlation coefficients are therefore still considered useful 

in some areas although in general they are becoming less popular 

than other measures. 

1.5.3.(e) Choice of Resemblance Measure 

Many investigators have considered in detail the problems 

involved in choosing suitable methods of similarity and dis­

, , 1 ' t 40, 46, 74 
SID~ ar~ y. As seen in the previous section the choice 

of coefficient is often dependent on the nature of the original 

data. Thus association or matching coefficients are more 

suitable for use with qualitative information whilst distance 

measures are more appropriate for quantitative data and especially 

for continuous data. Where a genuine choice exists however there 

is at present no definite ruling as to which coefficient to use. 
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For example, in the case of dichotomous data the major problem 

is deciding whether or not to include negative matches in the 

similarity coefficient. In cases such as this the coefficient 

chosen is often the one which is shown by empirical evidence to 

be the most appropriate for the particular type of application 

in question. Another factor which influences the choice of 

method is the amount of computation involved. With improved 

processing facilities over the past few years this is becoming 

a less important consideration although with certain coefficients, 

where the computational load is high e.g. the probabilistic 

similarity measures, this is still an influential factor. The 

choice of resemblance measure is also influenced by the nature 

of the clustering method used. For example, in the case of the 

hierarchical clustering methods a number of investigators who 

have considered the mathematical properties of these have shown 

many of them to be unsuitable for use with coefficients which 

do not have strict numerical significance. Because of the 

arbitrary nature of scaling procedures and the processes involved 

in combining attributes, many coefficients have only ordinal 

significance and this means that quite a large proportion of 

resemblance measures are on mathematical grounds unsuitable for 

use with the majority of hierarchical clustering methods. For 

example Jardine and Sibson74,112 have shown that a very inaccurate 

representation of the data may result when using a hierarchical 

clustering method, such as the single-linkage method, unless a 

metric coefficient is used. However many disagree with their 

views and question the validity of a mathematical approach in 

choosing suitable methods. This point is discussed further in 

,-,- ~ .. -~ ",", -~ ~ ... ,. 
i :", , 
... 11'.1' '. l 
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in sections 1.5.4 and 1.5.5. Thus, with the general disagree-

ment over the importance of the mathematical properties of 

methods, the resemblance measure chosen in cases where a choice 

of methods exists usually depends on evidence of previous 

performance, and on the particular preferences of the user. 

Methods of Cluster Analysis 

As discussed in previous sections most classification methods 

based on cluster analysis proceed via a pair-wise measure of 

similarity or dissimilarity of the set of individuals in 

question. The wide variety of clustering me~hods available 

to handle these are well documented, but the different categor-

isations of methods appearing in the literature are often 

misleading. One of the problems of defining methods is that it 

is often difficult to draw clear divisions betwen the various 

classifications possible, and anyone classification method may 

give rise to clusters which satisfy a number of separate conditions. 

A good summary of the basic cluster arrangements possible is given 

74 by Jardine and Sibson. These distinguish between simple and com-

pound clusters, partitional and overlapping clusters, and numerically 

stratified clusters which are hierarchic or non-hierarchic. Clusters 

are defined as simple if no class includes any other class, other-

wise they are compound. Partitional clusters, in contrast with 

overlapping clusters, are disjoint or else one cluster is totallY 

included in another. Numerically stratified clusters are those 

which have associated numerical levels and clusters at a given 

level are nested with clusters at a higher level. If the clusters 

at each level are partitional then the arrangement is said to be 

hierarchical. 



- 43 -

The various clustering methods currently in use in numerical 

classification applications are outlined below. 

1.5.4(a) Clustering Methods and Applications 

Partitioning techniques which give rise to simple clusters and 

form~a partition of the set of individuals are often applied 

when the user is interested in partitioning the set into a 

predetermined number of clusters. These methods are also 

frequently referred to as optimisation techniques as they 

partition the set so as to optimise some predefined clustering 

criterion. One of the problems in using this approach is 

deciding on the appropriate number of clusters, and some of 

these methods allow this number to be changed during the 

course of the analysis. In addition they also allow re-allo-

cation of individuals which may have been poorly classified 

initially. 

The partitioning techniques which do not lead to distinct or 

disjoint clusters have become important in applications where 

it is essential to permit overlap between groups for the 

classification to be of any value. For example, in language 

studies overlapping clusters are particularly useful to account 

for multiplicity of word meanings, and in this area classification 

methods which give rise to Overlapping clusters are usually 

referred to as clumping techniques. This term was first intro-

duced by Jones and Needham and fellow workers at the Cambridge 

. 113-118 Language Research Unlt and the techniques they developed 

have been considered primarily for document retrieval purposes. 

Like most clust~ring methods clumping procedures begin with the 

computation of a resemblance matrix from the original data. The 

methods then seek to partition indWidlals into two groups so as 
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to minimise a cohesion function defined between the groups. 

The methods developed depend on the type of cohesion function 

defined and the small~r of the two classes obtained is usually 

the cluster sought. The clustering procedure is usually 

carried out by choosing a cluster centre at random and by 

successively eliminating individuals from this centre until 

the given cohesion function is minimised. In this way, by 

iterating from different starting points, a series of clusters 

may be obtained. However this independent search for classes 

not only gives rise to overlapping clusters but also to clusters 

which are not necessarily unique, and this is one of the most 

serious disadvantages of the approach. 

Simple clusters and especially two-way classification schemes 

have become important recently for a variety of data analysis 

problems, including chemical applications directed towards 

rt d " t" 10,20,54,55 t" " prope Y pre lC lon. Numerically stra lfled clusterings 

on the other hand convey more overall information about the data, 

and apart from the clumping procedures described above they are ~ 

the methods most usually considered in applications where data 

structuring for retrieval purposes is of primary importance. 2 

One of the disadvantages of these methods is that they contain 

no provision for re-allocation of individuals Which may have been 

poorly classified at an early stage in the analysis. This problem 

is more serious for monothetic than for polythetic techniques. 

Another problem is deciding on the number of clusters present. In 

many applications which use this approach this question is irre-

levant but in cases where some indication of the number of groups 

present is required, a variety of statistical procedures have been 
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proposed for identifying the level in the hierarchy which gives 

° 119-122 the most meaningful separat~on of classes. 

Until recently numerically stratified clustering methods which 

give rise to disjoint clusters at each level have been more 

widely considered than those giving overlapping clusters. These 

are usually referred to as hierarchical arrangements and they 

are often represented graphically in the form of a dendrogram -

a two-dimensional diagram illustrating the fusions or partitions 

which have been made at each successive level in the hierarchy. 

Initially hierarchical classifications were thought to be 

particularly relevant in biological systems, and the dendrogram 

representation closely resembles the traditional classification 

schemes developed in this area. Their widespread use in this 

area eventually led to their application in many different fields. 

However, it has been increasingly realised with the changing 

attitudes towards classification that nested mutually exclusive 

arrangements do not'always provide the most satisfactory 

explanation of the data and within many of these areas there 

has been a move towards more flexible arrangements which involve 

° h O hO 74,123-125 
overlapp~ng ~erac ~es. Despite this trend hierarchical 

groupings are still widely used and are thought to be the most 

practical, if not the most sensible arrangements in many applica-

tions. Computationally they are more straightforward and require 

less space than overlapping arrangements. This is an important 

consideration, for example in information systems/where large 

amounts of data are involved. 

Hierarchical clustering techniques are usually implemented using 

agglomerative procedures, where individuals are successively 

grouped together until they belong to a single class. Divisive 
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procedures which operate in the reverse direction have also been 

used e.g. the techniques of association analysis developed by 

. . 42 126 127 Lambert and Wl11lams' and MacNaughton-Smith but the 

agglomerative approach is preferred for a number of reasons. 

Firstly, it is more straightforward and easier to program. In 

addition, there is a greater risk with divisive techniques of 

inappropriate allocation of individuals. This is a particularly 

important factor in the case- of hierarchical methods where, 

unless special reallocation procedures are employed, there is no 

facility for redistributing individuals once they have been 

classified. In the literature, hierarchical clustering methods 

are frequently categorised according to whether divisive or 

agglomerative procedures are employed, but Jardine and Sibson74 

have recently pointed out that such categorisations are invalid 

as they fail to distinguish between algorithms and the clustering 

methods which they implement. The basic differences between 

methods arise in fact because of the ways of defining similarity 

between groups, and between individuals and groups. 

One of the first hierarchical clustering methods considered was 

the single linkage or nearest neighbour method. 34 ,128 This is 

computationally the simplest of the hierarchical methods and is 

one of the easiest to implement. It is so called because 

connections between groups and between individuals and groups 

are established by single links between pairs of individuals. 

Thus using an agglomerative approach groups, initially consisting 

of single individuals, are fused according to the 'distance' 

between their nearest members, at. each level the groups with the 

smallest distance being fused. Distances between groups are 

therefore defined as the distance between their closest members. 
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Another similar approach where distances are based on furthest 

neighbours within groups is the complete-linkage method. One 

of the problems of the single-linkage method is the tendoncy 

of the method to cluster together at a relatively low level 

individuals linked by chains of intermediates. This so-called 

chaining effect is often viewed as a defect of the single-

linkage method, as the majority of users are looking for homo-

geneous, compact clusters even though in general there is no 

reason to believe that these are the only types of structures 

present infueir data. Jardine and Sibson
74 

point out that this 

is more a description of the method than a defect and is useful 

when the user is looking for optimally connected clusters rather 

than homogeneous clusters. However, the effect does mean that 

the single-linkage method fails to resolve relatively distinct 

129 
clusters if a small number of intermediate points are present, 

and several modifications have been proposed in an attempt to 

overcome this problem. For example many of the density search 

techniques have their origin in the single-linkage method and 

. tt t t h .. 129-134 Th th d arose ~n an a emp 0 overcome c a~n~ng. ese me 0 s 

seek regions of high density or modes in the data, where each 

mode is taken to signify a different group. 

The other important hierarchical clustering techniques which have 

arisen to avoid the extremes introduced by the single-linkage and 

complete-linkage methods are those which base the distances 

between groups, and between individuals and groups on some kind 

of average linkage procedure. A variety of different methods 

have been proposed for averaging \ over groups, and many of these 

36 
were developed by Sokal and Michener. These investigators also 

introduced weighting procedures to compensate for the possible 
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defects introduced by averaging over groups. In some applications 

these have been found to have an adverse effect on the classifica-

t " It 135 
~on resu • However, in other cases they could be useful to 

account for disparities in group size and sample size. Weighted 

and unweighted average linkage methods and their possible uses 

46 have been discussed in detail by Sneath and Sokal. 

1.5.4.(b) Choice of Clustering Method 

With such a wide range of clustering techniques available the 

choice of suitable methods is often a difficult one, in the 

absence of a formal defintion of the term cluster. Occasionally, 

as in the case of resemblance measures, the choice of clustering 

method is governed by the amount of computation involved. For 

example, optimisation techniques usually require large amounts of 

computer time and are consequently unsuitable for use with large 

data sets. Hierarchical techniques have the advantage over these 

of requiring far less computing and are therefore more appropriate 

for use with larger data sets. However where there are no such 

clear indications of suitability, as for example when one of a 

number of possible approaches based on a given clustering technique 

must be chosen, this is a much more serious problem. In the past 

there have been very few attempts to resolve these difficulties. 

More recently with the growing number of possibilities, there 

have been attempts to evaluate quantitatively the performances of 

different approaches to make the choice of method an easier one. 

These have mainly taken the form of empirical investigations, but 

increasingly investigators are considering more formal approaches 

74 136 and some e.g. Jardine and Sibson, and Wolfe have attempted to 

construct a mathematical framework within which different clustering 

techniques may be investigated. Unfortunately the theoretical 
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considerations do not always support the empirical evidence and 

there is considerable disagreement over the feasibility of a 

theoretical approach. 74 For example Jardine and Sibson and 

Jardine, Jardine and Sibson137 have objected to several hier-

archical clustering techniques on mathematical grounds although 

in many applications these techniques appear to perform satis-

factorily. Basically, these authors show that a clustering method 

which transforms a similarity or dissimilarity coefficient into 

a hierarchic dendrogram may be regarded as a process whereby the 

ultrametric inequality is imposed on the resemblance measure 

which may originally not have satisfied this particular condition. 

Then they specify certain simple conditions that any such trans-

formation should satisfy and show that the single-linkage method 

is the only hierarchical clustering technique to meet all of these. 

In practice however this clustering method has been shown in 

certain applications to perform less satisfactorily than other 

hierarchical methods and this has led several investigators to 

criticise the technique and the mathematical arguments put forward 

in its favour. For example Williams et a1138 have found that the 

hierarchical techniques objected to by Jardine and Sibson are more 

helpful in 'providing useful information for the investigator than 

is the single-linkage method, and they question the need for these 

techniques to meet the proposed mathematical criteria. In another 

139 empirical investigation Forgey concluded that the single-linkage 

method performed well with very distinct clusters of any shape, 

but as soon as a moderate number of intermediate points or 'noise' 

points were introduced the results quickly became erratic. Such 

conflicting viewpoints are commonplace in the current literature. 

Since classification techniques are used primarily for data 

simplification and data description many investigators, like the 
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above, feel that a pragmatic approach to the classification 

problem is a more reasonable one than one which restricts 

investigations to the use of mathematically acceptable methods. 

others, however, feel that investigations into the theoretical 

aspects of clustering techniques are essential for a proper 

understanding of methods and that future investigation should 

be directed more towards the efficient implementation of existing 

techniques which are known to be useful and whose theoretical 

background is reasonably well understood, rather than towards 

140 the development of new approaches. 

Evaluation Problems 

At each stage in the classification process the user is faced 

with a wide range of alternQtives, and with the rapid growth of 

methods in recent years there have been a number of attempts to 

put cluster analysis on a more formal basis and adopt a more 

rigorous" approach to classification problems in general, as seen 

earlier. In addition to investigations into the theoretical basis 

of classifications for testing the validity of methods, on a less 

theoretical level many procedures have been proposed for testing 

t t t o to 1 ° °fo fIt 141-147 he s a 1S 1ca S1gn1 1cance 0 c us ers. However, whilst 

there continues to be no general agreement over the purposes of 

classifications and on what constitutes a cluster such procedures 

can only serve as a guideline in the evaluation of methods, and 

some investigators feel they may even be misleading. For example 

Williams and Dale40 suggest that it is the usefulness to the 

investigator of the division into groups which is important, and 

that even if this division is not significant in the statistical 

sense it may still be of value to the user when large amounts of 

data are involved. 
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Traditionally classifications have been judged according to how 

well they perform in the particular application for which they 

have been constructed, and despite the move towards more formal 

evaluation procedures this qualitative approach continues to be 

widely applied. Indeed many investigators feel that because of 

the philosophical problems arising in defining classifications 

it will never be possible to develop precise mathematical models 

which are universally applicable, and that the ultimate criterion 

for evaluating methods will always be the value judgement of the 

148 
user. 



CHAPTER 2 

The structure Diagram in Chemical Information Handling and 

Structure - Property Correlation 



2.1 Introduction 

Numerical methods have been used for some considerable time in 

chemical applications for the interpretation of experimental data. 

with the availability of more efficient structure handling tech­

niques over recent years there has been a steady increase in the 

use of such methods, especially in areas concerned with identifying 

relationships in the data which could be useful for prediction or 

for establishing cause and effect relations. However, so far in 

such investigations explicit definitions of the structure diagram 

have not played a major role. 

One area of application which is now receiving widespread attention 

is the investigation of quantitative structure-property relation­

ships in biological systems, which could be useful for predicting 

the activity of compounds and helping to rationalise drug mechanisms. 

Empirical and semiempirical methods, which give approximate pre­

dictions of activity, have been most widely applied to date 4-9 

and other more theoretical approaches based on molecular orbital 

calculations 149-151 which would be more valuable for establishing 

cause and effect relations have made slower progress because of the 

complex nature of processes taking place in biological systems152 

and the difficulties of calculating accurate wave functions. 

In the more empirical approaches developed, physichochemical 

characteristics of molecules have generally been considered more 

useful parameters for activity rationalisation than structural 

characteristics, and fewer investigations have~been based on 

structural attributes derived directly from the structure diagram. 

- 52 -
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The empirical and semi-empirical methods developed for use in 

structure - property studies to date have been based largely on 

statistical correlation techniques which seek direct relationships 

between structures and properties. More recently a variety of non­

parametric pattern recognition techniques have been applied, and 

the structural attributes of molecules have been more widely con­

sidered in this type of application~,12,13,54,55,153,156 These 

methods first received attention in spectroscopic studes157 but 

they are now gaining in popularity in biological applications, 

because of their ability to handle diverse structural types, and 

property measurements of a non-parametric nature. 

Methods of pattern recognition 'could be put to a variety of different 

uses in chemical structure applications although so far the main 

emphasis has been on the development of methods which could be use­

ful for property prediction. Another important possibility is the 

development of more efficient file-handling strategies in large 

structure collections. Classifications which are suitable for this 

type of application have been proposed in other areas1- 3 and it is 

possible that these could be used in large chemical information 

systems to improve file-handling techniques and to reduce the cost 

of retrieving compounds for drug research. 158 As discussed below 

the structure diagram could be a valuable tool in this type of 

application. 

The Structure Diagram 

Use in Chemical Communication 

The structure diagram is one of the most widely used representations 

of chemical compounds. A large proportion of the chemical literature 

is structure-oriented159 , as are many of the questions posed by 
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chemists. As a result of this many chemical information systems 

are structure-based, and in automated systems, processing is 

usually carried out on a machine-readable representation of the 

structure-diagram. 16 This is often fragmented to ease handling 

problems and the various fragmentation methods which have been 

developed have proved to be very useful for search and retrieval 

as well as for storage. 15 ,16,160 If similar representations could 

be used in the development of automatic classification or quanti-

tative structure-activity methods, these methods could be of very 

general applicability in chemical information systems. 

Structure-Property Relationships 

The structure diagram may be considered as a very approximate two-

dimensional projection of the real structure. It can also be thought 

of as an approximate pictorial representation of the wave function 

of the molecule. Usually it corresponds more closely to valence 

bond or localised molecular orbital descriptions than to delocalized 

molecular orbital descriptions, because of the difficulty of re-

presenting delocalised bonds in graphical form. However, it can 
I 

distinguish between cr and n bonds, and takes some account of 

electron delocalisations by equalising alternating single and 

double bonds. 

In addition to providing an approximate method of indicating bond 

orders the structure diagram also shows the atoms which are 

connected, and although it does not provide explicit descriptions 

of atom arrangements and stereochemical relationships these are 

sometimes implicit in the two-dimensional definition. Because of 

these relationships and the relationship between the wave function, 

structure and other properties, the characteristics of structure 
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diagrams should be correlated approximately with the physical, 

chemical and biological properties of the molecule it represents. 

It is difficult to estimate the extent of this correlation 'a 

priori' because of the large approximations involved, but the ex­

pected imperfect correlation between structure diagram and observable 

properties could be of some value in structure-property studies, and 

could have other uses in automatic classification applications. One 

of the problems of using automatic classification methods, dS seen 

in Chapter 1, is devising suitable procedures for measuring classi­

fication performance, and here the correlation could be useful for 

simulating the predictive performance of classifications and the 

sxmilarity measures used to derive them. The extent of the agreement 

between observed and 'predicted' properties could then provide a 

useful basis for the comparison of methods. The expected correlation 

also leads to the possibility that resemblance measures or classifi­

cations based wholly or in part on structural features will be of 

some value for property prediction. 

Use in structure-Property Studies 

From a very early stage in the development of empirical structure­

property methods the structure diagram has been considered of limited 

value for correlating changes in chemical structure with changes in 

biological response. Even before the beginning of this century in­

vestigators were starting to use physical and physicochemical proper­

ties in preference to structural formulae.161-163 In present day 

applications these parameters are still often preferred to stuctural 

data, and, with the exception of the Free-Wilson regression model 7 

and some recent studies based on pattern recognition, most of the 

investigations in this area are based on the semi-empirical regression 
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model developed by Hansch4, which considers linear free energy-

related parameters from organic chemistry. 

The usual arguments raised against the structure diagram in 

structure-activity studies is that it is not sufficiently dis-

criminating to resolve the important properties of chemical compounds 

which govern biological activity. A drug response is usually the 

outcome of a complex series of events which control the transference 

of the drug to the biological receptor and the reaction taking place 
. \ 

at the receptor site, and most investigators feel that it is pre-

ferrable in this type of application to consider the physical and 
I 

chemical properties of structures which are most likely to influence 

these events. 

The questionable suitability of the structure-diagram in structure-

property studies has been discussed at length in the recent litera-

ture~,l64-l66 For example Cavallito164 has stressed the need for 

steric and electronic descriptions of component 'functional groups 

and of the molecule as a whole, and points out that these features 

cannot be obtained satisfactorily from two-dimensional or even three-

dimensional descriptions of the structure diagram. Seydel165 also 

believes that physicochemical properties are more useful, and that 

an understanding of drug action cannot be obtained by simply comparing 

structural formulae. Other similar views are held by Albert166 and 

Verloop8, and Albert supports his arguments by giving examples of 

drug activities where the necessary physical properties to bring 

about a biological response can be produced by many different kinds 

of structure. However, where there are no obvious links between 

structure and biological action a number of separate structural re-

quirements may be involved and it is possible that a careful exami-
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lion of individual substructures in this case could help identify 

the characteristics most important for activity. 

Although physicochemical properties of structures have been pre-

ferred, the semi-empirical methods basedon the Hansch approach 

have until recently met with limited success. The basic Hansch 

approach is modelled on the Hammett equation167 , originally de­

veloped for use in nonbiological systems, and Hansch168 has sug-

gested that one of the reasons for the moderate success of the 

approach is the reluctance of users to explore parameters other 

than the well known Harnmett a constants. The~e were origipally 

used to investigate the effects of substituents on reaction rates 

in organic chemistry, and although they are important for explain-

ing activity at the biological receptor they do not account for 

other important processes taking place such as membrane penetra-

tion and transport to the receptor site. In the early sixties 

Hansch169 introduced lipophilic parameters into the basic linear 

free energy-related model to account for some of these processes, 

and in more recent applications steric parameters and an increas-

ing number of physical properties have also been explored which 

. . 4 6 8 170 171 may ~nfluence the changes tak~ng place. ' " , 

In addition to the above, structural descriptions have been intro-

168 
duced in a few cases. For example, Hansch and Yoshimoto 

have used structural information with linear free energy related 

parameters in an investigation of a series of benzamidine deri-

vatives, and have shown these to improve the agreement obtained 

in this case between structure and property. In another appli­

cation Martin et al172 have combined structural and physical pro-

per ties to investigate the relationship between the structures of a 

group of aminotetralins and aminoindanes and their inhibitory 
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properties, using discriminant analysis. This very recent interest 

in structural parameters has possibly been influenced by the recent 

success of structural descriptions in pattern recognition appli­

cations, and the investigations in this area has served to narrow 

the gap between existing empirical and semi-empirical approaches. 

Comparison of Structural and Physicochemical Parameter~ in Structurc­

Property Studies 

Despite the approximations in the structure diagram, structural 

features in empirical structure-property studies have a number of 

possible advantages over semi-empirical correlation methods based on 

experimentally determined physicochemical quantities. One factor 

which limits the value of a physicochemical approach is the reliabi­

lity of the experimental quantities invol"ed. For example, the physi­

cal constants used,in the linear free energy related model are usually 

obtained from non-biological systems, and one of the problems here 

is ensuring that the experimental conditions are satisfactory. In 

addition, because of the difficulties of obtaining accurate measure­

ments the parameters required are often in limited supply. Partition 

coefficients, which have been widely used since the importance of 

hydrophobic bonding properties was first realised, are an example 

of this. The difficulties of obtaining reliable values of this para­

meter has been partly overcome by the discovery that partition co­

efficients have additive and constitutive properties which enables 

them to be calculated from the individual contributions of the 

molecular components.173-177 The value of this however is seriously 

limited by the accurracy of the available experimental data, and the 

fact that experimental values are often determined under different 

conditions. Also experimental values used for the calculation of 
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new partition coefficients are often obtained from different systems, 

and because they do not account for steric and electronic interactions 

with neighbouring groups, the parameters derived from one system may 

not be suitable for use in another. 4 ,l78 For example it hus been 

shown that partition coefficients determined 1n aromatic systems are 

not suitable for use in aliphatic systems,173,l75,l76 and the de-

viations which have been observed in this case are thought to be due 

to folding interactions in aromatic systems, causing depressions in 

coefficient values. Interactions with neighbouring groups are now 

being studied more closely, but until more is understood about these, 

measured coefficients are preferrable to calculated ones, particularly 

in larger, more complex structures. Another difficulty with partition 

coefficients is that they are usually parabolically and not linearly 

related to the biological response and, although useful approximations 

can be made by assuming a linear relationship, this has discouraged 

a number of workers from using partition coefficients as reference 

systems. 

These various considerations therefore limit the applicability of 

the method, whereas similar limitations do not arise with structural 

parameters, and these have the advantage of being able to handle 

larger molecules for which experimental parameters are not yet 

available. The only restriction in this case is the availability 

of reliable biological properties for a sufficient number of 

structures. 

One of the main arguments put forward in favour of the semi­

empirical approach is that the parameters used have a physical 

meaning and it is possible to give the regression equations a phy­

sical interpretation which might help towards an understanding of 
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action. However, the value of the approach as a diagnostic tool 

depends on the relationships arising between parameters, and, as 

larger numbers of experimental constants are introduced into the 

basic linear free energy-related model, the interpretation of the 

regression results becomes increasingly difficult~ Usually the in-

clusion of larger numbers of variables has the effect of improving 

the overall agreement obtained between structure and activity, and 

this is important from a prediction point of view. However, many 

of the semi-empirical constants now used have been found to be 

interdependent, which makes it difficult to interpret individual 

contributions when they are applied simultaneously. Another problem 

arising is that many of the physicochemical constants have themselves 

179 180 been found to be made up of several components, ' each of which 

may have a different influence on the structures reactivity. Because 

of these difficulties it has been suggested that the physicochemical 

model may be of limited value in establishing casual relationships 

between structures and properties, and that such mechanistic studies 

8 should be left to more specific, quantum-mechanical parameters. 

Structural parameters are considerably more straightforward, and, 

although a physical interpretation of the result is not essential 

in this case, it is possible that the individual contributions of 

structural components to activity will be of some help in rational-

ising drug action. 

Choosing Suitable Substructures 

One of the main problems in using structural parameters is deciding 

which features of the molecule are the most important. The serious-

ness of this problem depends on the particular approach used. Thus, 

in the Free-Wilson mathematical regression model biological activity 
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is related only to the substituents that vary within the series. 

Relatively simple substituents are usually considered, and these 

are not broken down into smaller components. Other structure-

property investigations based on the structure diagram have taken 

into consideration the whole molecule, but these have usually con-

centrated on the structural features considered to be of greatest 

chemical significance. This applies to the majority of supervised 

and unsupervised learning methods developed so far. The approach 

is not an entirely satisfactory one, however, as it prejudges the 

value of substructures, and risks overlooking features of possible 

interest. A systematic analysis of the structure diagram reduces 

this danger, but in this case it is difficult to extract substruc-

tures which reveal all the groups of chemical interest. For example, 

if only large substructures are chosen they may mask important 

functional groups. Smaller substructures on the other hand often 

miss important information on ring systems such as, for example, 

the relationships between substituents, which may be an important 

factor determining a structure's behaviour. These difficulties could 

be overcome if all possible substructures were included in the des-

cription, but this would be impractical because of the amount of 

redunda~t information involved. 

Representations with some redundancy are acceptable in certain 

types of application, for example in substructure search systems 

where screen strategies operate by matching query and structure re-

presentations to establish whether particular substructures present 

in the query are also present in the structure. }lowever, if retrie­
r 

val is based on measuring the degree of association between gLlqy and 

structure representation, or if structure comparisons are required 
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for classification or predictLon purposes, then the redundant 

information couJd seriously distort the levels of similarity 

and dissimilarity obtained. The problems of holding redundcmt 

information when applying similarity coefficients have already 

been discussed in detail in Chapter 1. Unfortunately, it is not 

certain exactly what effects redundancy has on the performance of 

methods. In this particular case it is possible that the addition­

al information will be of some value in the classifications, al­

thou1h excessive redundancy is expected to have an undesireable 

effect. These questions have been largely avoided in chemical 

applications so far. 

Similarly, in regression analysis redundant substructural des­

criptions could cause difficulties. Firstly too many parameters 

may be involved and secondly many of the substructures may be too 

highly correlated to be included in the same regression equations. 

The problems arising with interdependent fragments in regression 

analysis are discussed in more detail in section 2.5. 

Another difficulty arising is that the importance of substructures 

may depend on the particular objectives of the study, and whether 

for example the analysis is required for the prediction of a parti­

cular biological property or to organise chemical structure data 

for retrieval purposes. The problem is therefore to extract from 

the structure diagram the structural features which are most re­

levant to the analysis in question. In regression analysis there 

is the additional problem of ensuring the number of sUbstructures 

employed does not exceed the number of compounds, and it 

has been suggested that some of the recently developed methods of 
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pattern recognition could be of some value in this area. 5 ,12,55,181 

However, the supervised learning methods proposed to extract the 

sUbstructures most relevant to the analysis have been questioned 

in the recent literature. 182 

2.3 Automatic Classification Methods 

2.3.1 

As mentioned in earlier sections the main interest in automutic 

classification methods in chemical applications to date has been 

to identify relationships between structure and property data which 

could ultimately be of value for property prediction. In many areas, 

and particularly in biological activity stUdies the available data 

is of a qualitative or semiqualitative nature, measured either on a 

nominal scale or on ordinal scale, indicating relative degrees of 

activity. The question most usually asked therefore is whether or 

not a given structure is likely to have a particular activity or 

level of activity, and the problem is one of developing classifi­

cation rules which can successfully separate structures into one of 

. a number of fixed, predetermined classes. As a result most of the 

classification methods developed have been based on the supervised 

learning approach. The main interest so far has been in developing 

methods which can discriminate between active and inactive compounds 

and a variety of techniques have been developed specially for 

handling this type of two-class problem. These are outlined below 

and other less widely applied methods,su~~/visual display techniques 

and unsupervised learning methods are also summurised. 

Supervised Learning 

The basic aim of supervised learning methods is to develop classi­

fication rules which can correctly classify the data for which 

properties are available and to subsequently apply these rules to 
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categorise individuals for which the required property is not 

known. In this process the initial data is referred to as the 

training set, and the data undergoing classification as the tcst 

set. 

A method which has been widcly applied in chemical structure 

applications for the analysis of spectroscopic data is the linear 

learning machine157 and this has more recently been considered in 

a number f t t bi 1 i 1 ti it t di 12,55,153,183 o s ruc ure- 0 og ca ac v y sues. 

Using this approach error-correcting procedures are employed to 

define a linear function which can successfully separate the 

structures in the training set into active and inactive categories. 

The defined hyperplane, often referred to as the'decision surface' 

is then used to predict the likely activities of the test set 

structures. As in most non-parametric pattern recognition appli-

cations reported in the literature to date the classification rules 

operate on a matrix of coefficients defining relationships between 

pairs of structures, and in the case of supervised learning appli-

cations these relationships are usually defined in terms of a 

distance function. Preprocessing procedures are then often applied 

to this distance matrix to transform the originally defined attri-

bute space into a form more suitable for classification. For example, 

data transformations are often employed to make class discrimination 

easier. They are also employed to reduce the dimensionality of the 

original n-space to ensure that the ratio of the number of structures 

72 73 to the number of structural features is within acceptable limits. ' 

These reductions are achieved either by discarding dimensions, con-

sidered expendible, or by combining them. 
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One of the main limitations of supervised learning methods of this 

nat~e is that the methods are only as good as the initial training 

set. The preprocessing stage necessarily imposes some bias on the 

method, and if the training set does not adequately represent the 

structures to be classified there is a serious risk of misidenti-

fication. Also, using the learning machine it is often difficult to 

separate the preprocessing stage from the decision-making stage. In 

the case of feature selection, for example, the importance of features 

is usually determined by introducing each dimension individually or 

in a group and measuring their separate effects on the classification 

result. Another difficulty is that preprocessing requirements often 

oppose each other and in this case a compromise must be reached. 

Discriminant analysis is another supervised learning technique which 

has been used for classification in chemical structure applica-

t
" 12,20,153,172 
~ons. This approach is similar to the linear learning 

machine in that it seeks a discriminant function which can be used to 

place structures into one of two categories. The same theoretical 

limits on the structure to feature ratio are also applicable. In 

this case, however, the discriminant function is trained by the 

method of least squares and these procedures have a firmer statistical 

basis than the feedback learning procedures employed in the learning 

machine case. This gives the approach a number of statistical ad-

vantages but less flexibility. 

An alternative to the learning machine which has been considered by 

a number of workers is the K-nearest-neighbour classification 

th d 20,54,55,153 me o. Individual relationships between structures are 

computed in the usual way, and the approach assumes that the closer 

two points are in the defined structure. space the more alike they are 
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from a property point of view. Structures of unknown activity are 

therefore classified by the majority rule of the K nearest known 

structures in the training set. The approach is preferred by some 

investigators because of its conceptual and computational simplicity 

and the fact that many of the measurements involved have a firm 

statistical basis. It also gives an indication of the overall re-

lationships arising between structures, which the learning machine 

does not do, and there are no restrictions on the number of structu-

ral features which can be used in the analysis. 

Visual Display 

The objectives~of ordination or display methods is to reduce the 

structure space to a small number of dimensions, so that the ultimate 

classification can be performed by the user. The different approaches 

have been outlined in Chapter 1. 

In chemical structure applications linear and non-linear mapping 

techniques have received the most attention, and in a recent investi-

gation of classification methods in chemical applications, Kowalski & 

Bender20 discuss the relative merits of these two approaches. The 

basic difference between them is that the final coordinates in the 

non-linear case are not linear combinations of the original n-space. 

These workers suggest that the non-linear approach is a more useful 

method of dealing with multivariate chemical data and that the non-

1 . . . . t' . d d b S 184 1near, error m1n1m1sa 10n mapp1ng proce ure propose y .ammon 

is possibly the most useful approach, because it attempts to pre-

serve interpoint distances. 

The validity of the final projection depends on a number of factors, 

including the type of resemblance coefficient used, and ideally 

these should be monotonic. Also, because the projections are only 
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approximations of the original n--space, and interclass boundaries 

are not exactly defined the above investigators suggest that 

structures appearing near the interface of two classes should be 

classified by other means. 

Display methods have not received much attention as a classification 

method in their own right, and their main use has been in providing 

an aid to other more accurate methods, by allowing the user a rough 

visual examination of his data. 

Unsupervised Learning 

Methods of finding clusters in multidimensional data using unsuper-

vised classification techniques have been considered for some time, 

although very few applications of this approach have been reported 

in the chemical literature. Some recent applications have appeared 

for correlating structure and property data. For example Kowalski 

20 and Bender have applied a hierarchical clustering technique to 

identify clusters in two synthetic data bases of chemical interest, 

and they compare the usefulness of this approach with display and 

supervised learning methods. Sneath10 has also used a hierarchical 

cluster method to classify a group of naturally occurring amino acids, 

using structural descriptors based on the structure diagram, and he 

uses the relationships obtained to correlate the structures and bio-

logical activities of a group of peptides. 

The interest in unsupervised classification methods is growing 

steadily, and, as in the supervised case investigators are beginning 

to consider their value in preliminary investigations.for extracting 

181 the most relevant material for more accurate studies. Hansch, for 

example, has used a hierarchical clustering technique in conjunction 

with regression analysis to cluster the substituents of a closely 
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related series, so that the most suitable derivatives could be 

selected for regression analysis. Other possible uses of this 

approach are discussed below. 

Comparison of Supervised and Unsupervised Learning Approaches 

Although very few classification methods have been applied to 

chemical structure data the techniques already used in this area 

show these methods could be of some value in structure-property 

studies, in cases where more accurate statistical correlation 

techniques are inapplicable. So far supervised learning methods 

have been developed which have been very useful for handling di­

chotomous variables. The less widely used unsupervised learning 

approaches have the advantage that they can also handle more 

accurate property measurements, since the property undergoing 

prediction in this case is not directly involved in the develop­

ment of the classification rules. TI1ey could therefore be of use 

in areas where supervised approaches are inappropriate and the 

data is not sufficiently accurate or the conditions are not suit­

able for regression analysis. 

Both supervised and unsupervised approaches have a number of use­

ful properties. In the unsupervised case there are no theoretical 

limits on the number of structural attributes which can be in­

cluded in the analysis. There are also fewer preprocessing re­

quirements compared with the supervised approach, although some 

preprocessing may be needed in this case, for example, scaling 

procedures to prevent inadvertant feature weighting when measure­

ments of different units are employed. One of the possible 

benefits of the preprocessing procedures applied in the 

supervised case to obtain a better separation of the data is 

that these are bften thought to provide useful information 
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on the relative importance of individual substructures. Unsuper­

vised methods on the other hand give a better indication of the 

overall relationships between structures. 

Another important property of unsupervised methods is their 

possible application in large data collections for storage and 

retrieval purposes. Investigations in this area on a number of docu­

ment b~sed collections have shown that stratified and hierarchical 

cluster methods can be applied on a small scale to develop retrieval 

strategies which are more efficient than linear retrieval methods and 

also potentially more effective in terms of precision and recall. 2 

If suitable large scale procedures could be developed in this area 

then it is possible that such file arrangements could lead to con­

siderable retrieval benefits in chemical information system currently 

operating in the registration and substructure search modes. 15 

A Novel Classification Method for Handling Chemical structures 

In view of the possible uses of unsupervised classification methods 

in chemical information systems, a method has been developed for the 

classification of chemical structures which combines a hierarchical 

clustering method with some automatic structure handling techniques 

of very wide applicability in existing computer-based systems. The 

main objective has been to develop methods for handling the structu­

ral features of chemical species, where these are derived automati­

cally from a connection table representation of the structure dia-

gram. 

This is one of the first investigations reported which bases the 

classification of struct~es on a systematic analysis of the structure 

diagram, and the possible advantages of using this approach have been 

discussed in se~tion 2.2.5. It is also the first unsupervised 
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classification method reported which attempts a more formal 

approach to property prediction, using a technique similar to the 

K-nearest neighbour method. 

The classification methods developed are described in detail in 

the following chapter. 

2.4 Regression Analysis 

2.4.1 

The empirical and semi-empirical regression models developed so 

far to investigate structure-biological activity relationships aim 

to optimise activity within groups of related structural types by 

considering variations in side-chain structures. The structures under 

investigation are expected to share a common nucleus, which is assumed 

to have a constant effect on the result, and changes in the observed 

biological response are attributed to the physicochemical or structu­

ral properties of the variable part of the structure. 

The two main approaches developed are the linear free energy-related 

model developed by Hansch and the mathematical model, usually asso­

ciated with Free and Wilson, both of which have been referred to in 

earlier discussions. 

The Semi-empirical Model 

The semi-empirical parameters used in the linear free energy-related 

method have been discussed in section 2.2.4. Using this approach, 

biological activity is correlated with one or more physicochemical 

properties with which the particular drug response is assumed to be 

associated. The very early attempts to define semi-empirical re­

lationships between structures and biological activities, using 

Hammet reaction rate constants were largely unsuccessful. Eventually 

it was realised that a biological response is not necessarily governed 

by chemical reaction rates and other processes, such as drug transport 

a~d membrane penetration, may be of dominant importance. To help 
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account for these processes Hansch and co-workers introduced a 

substituent partitioning parameter into the basic Hammet ex­

pression in 1964.
169 

This parameter was defined as the difference 

between the logarithms of theactanol/water partition coefficients 

of the substituted and unsubstituted parent compound in a series. 

The expression they derived led to a considerable improvement in 

the agreement between structure and activity, and it is now often 

ref erred to as the 'p- C1 - n: equation'. Since its initial formu-

lation this equation has frequently been modified by introducing 

steric parameters and, more recently, a range of experimental para-

meters (see earlier) to help improve the agreement obtained. 

The use of the Hansch method and modified versions of it have ra-

pidly increased within the last ten years, although as discussed 

in previous sections users have been slow in considering parameters 

other than those involved in the basic Hansch model. 

The Empirical Model 

The empirical, mathematical model, in which biological activity is 

expressed as a function of the activity contributions associated with 

substituent groups and the parent compound, has received much less 

attention than the Hansch approach. 

Serious work on empirical, mathematical methods began as early as 

1956, when Bruice and co_workers185 constructed a mathematical model 

to correlate the thyroxine-like activity of a group of congeners with 

the sum of constants assigned to different sUbstituents of the mole-

cules. They obtained reasonably good correlations between observed 

and calculated activities. Free and Wilson gave a more general des-

7 cription of this empirical model in 1964, where they defined the 

biological response of a derivative in a homologous series in terms 
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of the sum of the substituent group contributions to activity 

plus that of the parent structure. The substituent contributions 

are evaluated in much the same way as the physicochemical para­

meters in the semi-empirical model, i.e. by the least-squares 

solution of a set of linear equations, one for each of the mole­

cules in the series. The basic assumption in this case is that 

every time a particular functional group appears at the same po­

sition in the molecule it will add or substract a constant amount 

to the overall biological activity of the molecule, regardless of 

what other substituents are present. The interpretation of sub­

stituent constants and the ability of these to predict the acti­

vity of any combination of substituents will therefore depend on 

the validity of this additivity assumption. The method has been 

applied by a number of different investigators,186-188 although 

so far applications of this approach for the design of new lead 

structures have not been reported. 

The success of these two regression methods dependson the members 

of the group under study having a similar mode of action, and to 

increase the likelihood of this it is important to keep structural 

differences to a minimum. The most serious limitation of the mathe­

matical model is the need for activity contributions of substitu­

ents to be additive. The practical limitations in the physico­

chemical model have already been discussed in section 2.2.4. These 

various requirements limit the predictive value of the methods and 

the need to minimise structural variations also limits their value 

as diagnostic tools for r,tationalising activity. 
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A Novel Empirical Regression Model Based on Explicit Structure 

Definitions 

So far, regression methods have not been used to relate property 

or activity data to total molecular structure. If suitable methods 

could be developed in this area this would remove the restrictions 

on structural variations arising in exising approaches, and the 

analysis could be used to explore a much wider range of structural 

types. This, in turn, would increase the use of the method as a 

tool for prediction and it may also increase the value of the re­

gression solutions for interpreting the role played by individual 

substructures. 

In view of these possibilities a method has been developed for 

correlating biological activities and other properties to the 

characteristics of the entire molecule~ The method is empirical 

but differs from the Free-Wilson approach and the other regression 

methods developed to date in making no distinctions between side 

chains and parent structures, and breaking these down in an equi­

valent manner. Structure diagrams are fragmented systematically 

using some techniques of chemical structure handling important in 

existing storage and retrieval systems, and like the classification 

approach described above, the method developed could therefore be 

useful in computer-based systems where properties and structure 

diagrams are already available in machine-readable form. 22- 24 

Perhaps the most valuable property of this approach compared with 

the Hansch and Free-Wilson regression models, is its ability to 

handle diverse structural types, as this ~eans that the method could 

be used to explore possible new lead structures. 5 So far in structure-
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biological activity studies the main approach to disGovering new 

classes of biologically active ~ompounds has been to investigate 

the chemical changes taking place at the molecula~ level, and in 

particular the changes occurring at the biological receptor. As 

discussed in the introduction to this chapter promising new 

approaches are now being developed in this area, but investi­

gations have been difficult because of the complexity of drug­

receptor interactions and the largely unknown nature of biolo­

gical receptocs. An empirical regression method able to examine 

total structure could be useful in this area For speculating on 

new leads, and possibly for initiating more direct studies. 

Details of the method developed in this study ~re given in 

Chapter 4. 

2.5 A Comparison of Regression Analysis and Pattern Recognition in 

Quantitative Structure-Property Studies 

In structure-property investigations tp date, the choice of methods 

has usually depended on the type of property measurements avai1able. 

Thus, parametric approaches such as regression analysis have been 

considered in cases were suitable interval or ratio data is available, 

whereas non-parametric classifi~ation methods/have been used when 

only quantitative measurements are available. As more attention 

is given to non-parametric methods., and classification methods are 

in~oduced which are capaple of handling more accurate pro~erty mea­

surements ~he user if faced with a growing number of alternatives, 
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and it is necessary for him to consider more closely the relative 

advantages of each approach. 

One of the main advantages of the classification approach is that 

there are fewer requirements concerning the underlying statistical 

nature of the data, and the only assumption needed in this case is 

that a relationship between the structures and the defined properties 

exists. Another advantage is that the interpretation of the data is 

not restrictred to current accepted schools of thought. In contrast, 

the regression method assumes certain relationships to exist 'a 

priori'. This places constraints on the method and on the inter­

pretation of the data, but the theoretical basis of the approach 

also gives it a number of advantages over the classification approach. 

2.5.1 Data Requirements 

2.5.l(a) The Dependent Variable 

One important requirement of the regression method is the need for 

property measurements, considered as the dependent variable, to be 

quantitative, and ideally these values should be measured on a 

continuous scale. ,Semi-quantitative measurements are also suitable, 

provided degrees of activity are measured on a suitable interval 

scale, and the range of activity covered is large enough. However, 

measurements of this type are not often available, because of the 

practical difficulties involved in measuring accurate response rates 

in biological systems, and this is seen as one of the major limita­

tions of the approach at the present time. Classification methods 

on the other hand can handle less accurate property measurements 

and can deal with the qualitative and semi-qualitative measurements 

more usually found in this area. 
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2.5.l(b) Independent Variables 

Another restriction of the regression method is the need to control 

the number of explanatory or independent variables\used in the ana­

lysis, and to keep this number below the number of structures involved. 

This could be a particularly serious problem in cases where diverse 

structural types are considered or when investigations are based on 

a systematic analysis of the structure diagram, because of the larger 

numbers of substructures usually involved in these cases. Similar re­

strictions arise in the supervised learning case but they are not 

applicable inursupervised methods. 

The other important factors influencing the agreement obtained between 

structure and property data in the regression case are the number of 

degrees of freedom involved and the correlations arising between 

structural components. Although fewer restrictions of this nature are 

expected in the classification case, the advantage of the regression 

approach is that there are available reliable statistical criteria to 

measure the exact effects of these various conditions on the agreement 

obtained. In the classification case the uncertain mathematical 

properties of the approach have so far prevented a rigorous assess­

ment of the conditions which may influence the final result and those 

which do not. Thus in the basic regression model the number of de­

grees of freedom have a measurable effect on the result ~nd character 

correlations are known to increase the standard errors of the re­

gression coefficients. The problem with character correlations in 

the classification case is further complicated by the fact that cer­

tain types of correlation are thought to be essential for a meaning­

ful result, and considerable difficulties arise over deciding which 
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correlations are admissable and which are likely to have an ad-

verse effect on the final result. These problems have been discussed 

in detail in Chapter 1. 

Choosing a suitable numerical representation of the structural 

attributes is also more of a problem in classification. Quantitative 

or semi-quantitative representations are most suitable inthe re-

gression case but in the classification case, depending on the way 

substructures are initially defined and the type of similarity co-

e 
efficient applied, a variety of qualitative and quantitative repre7n-

tations are possible which may be equally appropriate. 

2.5.2 Evaluation Procedures and Available Statistical Criteria 

2.5.2(a) Regressions 

The available statistical proceduresin regression analy~is make it 

possible in this case to test the reliability of the results and to 

evaluate the contributions of individual substructures. This is the 

most important advantage of the approach but the validity of the 

available statistical criteria depends on the data first satisfying 

a number of important distribution requirements)in addition to the 

189 data requirements already outlined above. Thus,the basic re-

gression model requires that the explanatory variables be measured 

without error and that the property parameter considered as the de-

pendent variable be taken from a population of independently and 

normally distributed variates. The first of these requirements is no 

problem in structure-property stUdies based on two-dimensional sub-

structural descriptors, but the second condition is much more diffi-

cult to satisfy. Practical difficulties usually prevent biological 

experiments being repeated a large number of times. The biological 
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parameters used in regression analysis are therefore usually the 

outcome of only a few independent observations and it must be 

assumed that these values are based on populations satisfying the 

above data requirements. It is also assumed that the variance around 

the regression line is constant and independent of the explanatory 

and dependent variables. 

Provided these various conditions are approximately met another 

problem arising is the misuse of the available statistical quanti-

t
. 8,190 
~es. There are a variety of statistics available to estimate 

the significance of the correlation and the correct usage of these 

often depends on the particular interests of the user. For example, 

the standard deviation of the estimate is a useful indication of 

whether the relationship provides a good summary of the data, but 

it does not take into account the numerical range of the dependent 

variable and is not a reliable indication of the extent of the 

agreement obtained. The multiple correlation coefficient (R) is 

more useful for this purpose and the literature shows this to be 

the most frequently consulted statistic for estimating the signifi-

cance of the correlation. However, as a 'goodness of fit' measure 

it is not the most reliable statistic because it does not take into 

consideration the number of degrees of freedom in the analysis. High 

correlation coefficients obtained using large numbers of structural 

attributes therefore do not necessarily mean that the agreement bet-

ween structure and property is significant, because the successive 

introduction of explanatory variables will tend to increase the value 

of R. Because of this, R is also inappropriate for comparing the 

performance of two regressions which involve different degrees of 
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freedom although it has been used for this purpose. To estimate 

the significance of correlations, R should therefore be considered 

in relation to the number of structures and the number of indepen­

dent variables, and significance levels should be estimated from 

these values using the F test. Statistical measures are also 

available to compare regression coefficients and to test whether 

the values obtained are significantly different from each other. 

However, the correlations reported have often omitted significance 

tests, and very little attention has been paid to relationships 

arising between independent variables. 

2.5.2(b) Classifications 

Similar statistical guides are not available in the classification 

case, although occasionally null hypotheses have been advanced 

which enable certain statistical tests to be applied to estimate 

the significance of clusters. 191 Usually it is assumed that the 

individuals studied belong to a single class or that they are re­

gularly or randomly distributed with no class identity. The diffi­

culty in using this type of approach is that the usual 'goodness 

of fit' tests such as chi-square and the Kolmogorov-Smirnov sta­

tistics may not always be suitable. I They can be applied to super­

vised learning problems, as here a certain result is expected, 

and they can therefore be used to estimate the success rate of the 

method. However, they are of questionable value in unsupervised 

classification applications and in this case it is necessary to 

find simpler measures to estimate method performance, such as for 

example criterion functions. These have been discussed in Chapter 1. 
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Quantitative methods of evaluation are still the exception rather 

than the rule in classification applications and, as stated in the 

previous chapter, classifications are still largely evaluated empi-

rically on the basis of their performance in the particular appli-

cation in question. In structure-property investigations therefore 

performance is usua~ly measured in terms of predictive power. 

Property Prediction 

So far there have been very few structure-property applications 

reported in the literature which have been used to predict the bio-

logical activity of a compound before its synthesis. This is possibly 

because of the potential economic value of such predictions. However, 

until more recently there have also been very few simulated pre-

dictions reported and investigators have relied on less accurate 

criteria to estimate the predictive utility of methods. 

In supervised learning applications the suitability of methods for 

prediction has been judged largely on their ability to correctly 

classify the initial training set structures. Similarly in regression 

analysis very few of the correlation studies carried out to date 

have reported on the predictive value of methods, and most investi-

gators have taken the correlation obtained from the analysis to be 

a sufficiently useful guide to the predictive power of the regression 

equations. However, in each case the property values estimated from 

the initial analyses are not necessarily a good indication of pre-

dictive value as each structure included in the analysis is allowed 

to influence its own result. A more reliable estimate of predictive 

5 19 power can be obtained using 'hold n out' procedures,' and these 
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b 1 · d . tit· t· 12,20,55,172 have een app ~e ~n some more recen nves ~ga ~ons. 

In using this technique a compound or set of compounds is excluded 

from the original analysis and the regression solutions or classi-

fication rules developed are then used to predict the activity of 

the structure or structures excluded. The procedure is usually 

repeated until all the structures have been predicted or a suffi­

ciently large number to demonstrate the suitability of the method. 

'Hold n out' procedures are not appropriate in unsupervised learn-

ing and in this case predictions must be based on the 'distances' 

defined between individual structures or classes of structures. 

Few quantitative approaches to prediction have been reported in 

this case. 

Although very little literature is available in this area, re-

gression analysis is a more accurate technique than methods of 

pattern recognition, and it is expected to be the preferred approach 

in applications where quantitative structure - property correlat-

ion or property prediction is the primary objective. However, 

where suitable property data is not available for regression, 

classification methods could be useful for giving more approximate 

estimates of activity. 

Computational Considerations 

The regression analysis and classification methods developed in the 

present investigation, like most other applications reported up to 

the present, have been designed for experimental purposes only and 

would not necessarily be the most efficient approaches in an operat-

ional system. The particular problems arising in obtaining viable 

methods will depend on the purpose for which the methods are con-
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sidered and the required scale of application. 

Of the two approaches, regression analysis is computationally more 

straightforward and a wide range of standard statistical procedures 

is available in this case for implementing methods. In recent years 

program packages have been developed which allow the relevance of a 

large number of explanatory variables to be examined in a variety of 

different ways. In addition to providing details of the numerical 

solution to the regression equations the packages usually provide 

other relevant information about the data at the users request., 

Similar computational aids are not widely available in the classi-

fication case because of the numerous approaches possible in this 

case. Some program packages have been developed which allow a wide 

choice of association measures and clustering methods to be 

1 . d192-196 app 1e , although most of the algorithms reported to date 

have been concerned largely with the implementation of clustering 

techniques, and displaying clusters geometrically. 

The demand for large scale applications is probably higher in the 

classification case, and devising methods which are suitable for 

this type of application presents a considerable problem. The pro-

cessing and storage requirements in large scale operations will vary 

with the particular techniques involved. Clustering techniques, for 

example, as seen earlier vary considerably in their demands on 

computer storage and time. For most methods which require the compu-

tation of the full similarity matrix the time is roughly proportional 

to mn2 (where n is the number of objects and m the number of charac-

ters) , so that increasing the number of objects has a greater effect 

than increasing the number of descriptors. If methods could be de-

veloped which require only part of the similarity matrix this would 
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lead to an important saving in time and it would also save on 

storage, since the space taken up by the similarity matrix usually 

greatly exceeds the space taken up by the original data matrix, 

particularly in larger data sets. Much of the information con-

tained in a large similarity matrix is not required by the cluster-

ing algorithm, and in recent years several procedures have been 

proposed for cutting down on the amount of redundant information 

t d
192,193,197,200 genera e However, using these it is often diffi-

cult to decide 'a priori' which similarities are required and which 

are not, and the methods usually involve making a number of appro-

ximations. There has so far been very little practical experience 

of these th d 197,198,220-205 d"t" t d t b me 0 s, an ~ ~s expec e 0 e some 

time before the large scale problems are fully worked out. In 

time the situation will be helped as faster and larger machines 

become available. 



CHAPTER 3 

A Method for the Automatic Classification of Chemical structures 



3.1. 

3.1.1. 

Introduction 

The Basic Approach 

The following section deals with the development of a new 

approach to the automatic classification of chemical structure 

data. It is based on an unsupervised, hierarchical clustering 

technique which has been widely applied in the biological sciences 

and related disciplines, but infrequently used in chemical 

applications. The methods developed are the first automatic 

classification procedures applied to chemical structures to 

employ structural attributes based solely on the two-dimensional 

structure diagram, and derived automatically from a machine 

readable representation of the structure diagram. 

As the successful outcome of the classification process 

depends on making suitable choices at several more or less independ­

ent stages, the study has concentrated on examining some of the 

alternatives possible at these stages, and their effects on the 

classification result in some small scale applications. For 

reasons discussed previously, the methods developed concentrate 

on the problems of structure representation and structure compar­

ison, and a wide range of alternatives is considered at each of 

these stages. 

The choice of suitable structure representation itself 

involves a number of separate issues, each of which is examined 

in turn. Thus, the question of suitable structural characteristics 

is considered by examining a range of atom and bond-centred fragments. 

How best these should be represented internally is also considered, 

by comparing a variety of different numerical representations. 
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Another stage involved is deciding on the relative importance 

of different structural features, and this question is considered 

during the comparison of association coefficients, when a number 

of probabilistic measures are examined. 

structural attributes are recognised and assigned automatically 

by computer, and thus the algorithm developed could be applied 

without modification to any group of structures. The structures 

are clustered by the single-linkage method,46 which is the 

simplest of the hierarchical clustering techniques. The various 

properties of the method and its advantages over other hierarchical 

techniques have been discussed in Ch~pter 1. Using this approach, 

each similarity or dissimilarity coefficient must be examined at 

least once, which means that for a group of N structures the 

2 206 
method has a time dependence of at least order N. An algorithm 

has recently been developed which reduces this requirement, and 

makes it possible to deal with of the order 103 to 104 structures 

by this method. 

Evaluation Problems 

One of the difficulties in investigations of this nature is 

obtaining suitable data to test the validity of methods. Because 

there are no standard evaluation procedures available, ideally the 

structures used should enable comparisons to be made with other 

methods, and they should also have known physicochemical or 

biological properties for correlation studies. The classifications 

could be evaluated on the basis of their retrieval effectiveness, 

and this approach has been considered in investigations into the 

use of hierarchical clustering techniques in document-based 

1 2 information systems.' Several procedures have been proposed for 
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measuring classification effectiveness in terms of precision and 

recall data, but to use this method effectively it is necessary 

to obtain experimental systems, which are suitably representative 

of an operational environment. Obtaining the appropriate 

conditions would necessarily involve some user interaction, together 

with access to working systems, and this type of collaboration is 

often difficult and time-consuming. A more accessible method of 

evaluation is to use the relations within the data, in this case 

structure-property relationships, to estimate the predictive power 

of methods. The possible chemical interpretation of the classifi-

cations obtained in this study also provides a basis for method 

evaluation on a qualitative level. 

Feasibility study 

Before suitable data sets satisfying the above requirements were 

extracted from the literature, a preliminary study was carried out 

on a number of small random data samples taken from the Chemical 

Abstracts Service Registry File, and search output from the 

. 17 207 
Sheff~eld Substructure Search System.' The investigations 

used simple binary representation of structures, based on augmented 

atom descriptions, 208 and structure comparisons were based on the 

number of fragments common to each structure pair. Details of the 

fragment definition, and the processes involved in deriving the 

classifications are given in the following section. 

The resulting classifications were displayed as dendrograms and 

these clearly showed that the method had been successful in 

clustering together structures of a similar chemical type, where 

present. For example, Figure 1 gives the classification obtained 

for one of the CAS data samples, in which the steroid structures 
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present have been clearly identified. 

In view of the very simple conditions used, and the crude 

measure of association, which only takes into account the 

information shared by each structure pair, these results were 

encouraging and well demonstrated the potential of the method. 

Data sets 

The investigations following these initial attempts were carried 

out on a number of data samples recently considered by other 

investigators for automatic classification or structure-

property modelling. The main samples used were a group of 20 

naturally occurring amino acids, 39 structurally diverse local 

anaesthetics, and a group of 79 synthetic penicillin structures. 

Details of these and the available property data are given in 

Appendix 1. 

10 The amino acids were taken from an investigation by Sneath and 

were useful because they allowed comparisons to be made with an 

alternative classification approach in which structures are 

represented by a combination of manually derived structural attri-

butes, and physical, chemical and biological properties. 

1 1 h t · t k f k f' 1 209 The oca anaest e lCS, a en rom the wor 0 Agln et a , 

were another useful group, as they tested the ability of the 

methods developed here to handle diverse structural types. They 

also allowed comparisons to be made with Agin's semiempiricial, 

quantum-chemical approach to the structure-property problem. 

Finally, the penicillin structures were taken from a study by Bird 

2W and Marshall, who looked at the relationship between the serum 

binding properties of penicillins and the hydrophobic character of 



- 88 -

their side-chains, expressed in terms of Hansch substituent 

values. These therefore enabled useful comparisons to be made 

with this widely used semiempirical approach to structure­

property correlation. 

3.2 A Comparison of Some Alternative Numerical Representations of 

Substructures 

Detailed investigations of association measures and sub structural 

fragments using the above data samples were preceded by a compar­

ison of a number of different numerical representations, in Which 

different amounts of detail are recorded about each substructure. 

A simple binary representation, recording the presence or absence 

of each fragment type is compared with a more detailed represent­

ation indicating the different occurrences of each fragment type, 

and this, in turn, is compared with a representation based on 

multiple fragment occurrences, which does not distinguish between 

the equivalent structural features arising in chains and non­

aromatic ring systems. 

Investigations were carried out on the amino acid and anaesthetic 

structures, and three simple coefficients of association were used 

for structure comparison. These coefficients are preferrable to 

the very simple measure considered previously, because they take 

into account the number of unshared fragments in each structure 

pair, and they are also normalised. Negative score agreements 

are also taken into account in some cases. The;numerous 

coefficients of association proposed for binary strings have 

been discussed in Chapter 1, and the particular coefficients 

considered here are described below. A more detailed discussion 

of the coefficients used is also given in Section 3.3. 



- 89 -

3.2.1 Method 

3.2.1(a) Subsctructures 

Each structure used in the analysis is coded as a redundant 

connection table15 for input to the computer. Bonds were divided 

into five types for coding, namely, single chain, single ring, 

double chain,. double ring, and aromatic ring bonds. Tautomeric 

bonds were not represented as such, but were reduced to one of 

the five possibilities listed above. 

Similarity coefficients (SCs) and dissimilarity coefficients 

208 
(DCs) were based on the presence or absence of augmented atoms 

in the structure. These are centred on each atom of each 

structure, and consist of the central atom, the bonds it forms 

and the atoms to which it is bonded, excluding hydrogen atoms 

and bonds to hydrogen. Figure 2 shows the augmented atom 

fragments occurring in the amino acids, asparagine and glutamine. 

3.2.1(b) Numerical Representations 

The following three descriptions in terms of augmented atoms 

were used, 

(1) The presence or absence of an augmented atom type 

in a structure was noted. The second and subse-

quent occurrences of the same augmented atom type 

in the same structure were ignored. 

(ii) Each occurrence of an augmented atom type in a 

structure was noted. A suitable set of atrributjes 

was selected to cover the different occurrences in 

each structure and multiple occurrences of the same 

augmented atom type were allowed for in the calcu­

lation of SCs and DCs by an additive coding method.10 
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(iii) Multiple occurrences of augmented atom types 

were treated as in (ii) but only three bond 

types namely alternating ring bonds, single 

bonds and double bonds were disc~iminated. 

Thus, in contrast to (i) and (ii) ring and 

chain bonds were not differentiated in the 

case of double and single bonds. 

All three representations were considered in the set of amino 

acids, and structure representations (i) and (ii) in the case 

of the anaesthetics. 

The first stage in the calculation was to analyse each set 

of structures and note all of the augmented atom types which 

occurred. This gave a list of all the attributes upon which the 

calculation ofSCs and Des were based. Next, a description of 

each structure in terms of the set of attributes was formed and 

stored in a bit vector. Each pair of bit vectors was then 

compared to calculate the SC or De between the correponding pair 

of structures. The particular additive coding method considered 

involves some logical redundancy, as the attributes selected for 

each augmented atom type are not mutually exclusive. This 

approach has been discussed in detail in Chapter 1. 

3.2.1(c) structure Comparison 

For each pair of structures the attributes were divided into 

four groups containing a, b, c and d attributes, Where 'a', 'b', 

'c' and 'd' are the entries in a 2 x 2 contingency table, i.e. 

'a' is the number of attributes Which are common to both structures, 

'b' and 'c' are the numbers which occur in he first structure but 

not the second and vice versa, and 'd' is the number which occurs 

in the set of structures but in neither of the pair of structures 
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to Which this SC or DC refers. 

The three coefficients 10 , 46 used were: _ 

1 Dice's SC 2a 
2a+b+c 

2 ~ 
(ad-bc) ~ 

[(a+b) (a+c) (d+b) (d+c)J 

3 Sneath's DC b+c 
a+b+c+d 

The matrix of SCs obtained for the amino acids using ~ and 

structural representation (ii) is shown in Table 1. 

3.2.1(d) Clustering 

The structures were finally classified by the single-linkage 

74 method using an agglomerative algorithm originated by van Rijsbergen. 

Dendrogram representations were derived manually from the cluster 

listings produced by the clustering algorithm. The particular 

clustering procedure implemented by the algorithm is a modification 

34 of the single-linkage clustering method described by Sneath. 

Each level of association arising in the matrix is examined in 

turn and initially structures related with the highest possible 

se or lowest DC values are clustered. Successively lower~els 

of association are then examined. The criterion of admission of 

a new structure into a cluster is that the new member should be 

associated with at least one of the members of the existing 

cluster at the given SC or DC value. Similarly, for the union 

of two clUsters at least one member from each cluster should be 

associated at the given level of association. The basic difference 

between this approach and Sneath's method is that the levels at 

Which clUsters are formed are based on the se and DC values 

arising within the group and are not arbitrarily set at equally 

spaced intervals. A simple example is given in Figure 3, which 
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shows the initial clusters formed for amino acids asparagine, 

glutamine, arginine and lysine using the SCs derived from ~ 

and structure representation (ii). The SC levels at which 

clusters are formed are underlined. Moving down the hierarchy 

asparagine and glutamine are the first structures to form a 

cluster at level 0.94. At the next highest association level 

of 0.77 arginine and lysine also form. a separate cluster, and 

the initial cluster remains unchanged. Finally the two clusters 

join at level 0.74 due to an association between lysine and 

glutamine at this level. From a computational point of view one 

of the advantages of the single linkage method over other hier­

archical clustering methods is that it is not n0cessary to con­

struct a new association matrix at each new level examined, as 

clusters are always formed on the basis of associations between 

individual members. 

Results and Discussion 

3.2.2(a) Predictive Performance 

The relative usefulness of the structural representations 

were assessed by simulating the 'predictive' use of the SCs and 

DC, and the classifications derived from them. Unfortunately the 

gross approximations of the method and the dependency of predicted 

property values on observed property values prevents the applica­

tion of significance tests, such as chi-square. to measure the 

significance of the differences between the predictions obtained 

by alternative methods. Apart from showing possible predictive 

value, the predictions are therefore only intended to provide 

rough guidelines to the usefulness of methods, and to illustrate 

possible trends in cases where different techniques are compared. 
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The dendrogram representations of the classifications serve a 

similar purpose. 

A different property was considered for each of the data 

sets. The properties available in the case of the anaesthetics 

were Log (MBC) i.e. minimum blocking concentration values used 

b . t 1 209 i id I 1 211 d Y Ag1n ea. In the am no ac s p va ues were use • 

(i) The Similarity and Dissimilarity Coefficients 

It was assumed that the property of each structure in turn 

was not known and its property was set equal to that of the 

structure with which it was most similar according to the values 

of the se or De in question. The average value of the difference 

between observed and predicted property values was then calculated. 

Where a structure's highest similarity was with two or more others 

the average of the property values was taken. 

The results obtained for the amino acids are given in the lower 

entries in the cells in Table 2. The best result was obtained 

using Dice's se and ~, and structural representation (ii). These 

both gave average deviations of 0.43 pI units between observed and 

predicted values. It is instructive to compare the average devia-

tion obtained with two other values which could be obtained under 

other circumstances. A high value would arise if it were not poss-

ible to form classes of the amino acids from the 20 studied. In 

this case the predicted value for any acid would be the average pI 

value taken over the other 19 structures. The average deviation 

in this case is 1.08 pI units. The smallest possible value which 

could be expected would occur if each acid had its highest 

se or lowest De with the acid which also had the nearest pI 

value. In this case the average deviation between observed and 
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predicted values would be 0.26 pI units. Dice's coefficient 

is thus close to the smallest possible value of 0.26 for this 

set of structures and is very much less than the values of 1.08 

which would have resulted if no resolution of structures had 

been obtained. 

An examination of Table 2 shows the level of prediction to 

improve as the structural representation becomes more detailed, 

and the result obtained using structure representation (ii) is 

very much better than it is with representation (i). Using 

these two representations a similar improvement is observed in 

the local anaesthetics, as shown in Table 3. In this case 

structure representation (ii) and Sneath's DC give the lowest 

average deviation of 0.84 log (MBe) units. Compared with the 

amino acids this value is not quite as good when viewed against 

the smallest deviation possible in this case of 0.09. However, 

it is still a considerable improvement over the value of 1.69 

which would be obtained if no resolution of structures had 

occurred. The mean deviations obtained using structure repre­

sentation (i) are much closer to this value. 

(ii) The Classifications 

The classifications were tested in a similar manner to the 

association coefficients but the 'predicted' value of a structure 

in this case was taken to be the average property value of the 

cluster which it joined. The best predictions were again obtained 

using structure representation (ii). The remaining entries in 

Table 2 give the results obtained for the amino acids. As before, 

o and Dice's se performed best, giving an average deviation of 
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0.39 pI units. Dice's SC also gives the lowest deviation in the 

anaesthetics (mean deviation 1.16 log (MBC) units), and the results 

in this case are shown in the upper entries of Table 3. 

3.2.2(b) structural Arrangements 

In all cases the clusters obtained are sensible from a 

general, qualitative chemical point of view, and the examp~es given 

in Figures 4 to 8 show that there is a gradual improvement in the 

resolution as the level of detail included in the structure 

representation is increased. These results are in agreement 

with the different levels of prediction obtained. 

The dendrogram representations show that structure repre­

sentation (i) is not sufficiently powerful to distinguish between 

some of the more closely related amino acid structures, such as 

the two acidic amino acids, aspartic and glutamic acids, and the 

amides asparagine and glutamine. These pairs are differentiated 

at the two higher levels of description. Similarly in the 

anaesthetics, structure representation (i) has successfully 

identified the important structural types, but it is unable to 

distinguish between some of the more closely related structures 

present e.g. -the group of normal alcohols, and other structures 

involving the same substructural components, e.g. phenol and 

hydro quinone, and quinoline and phenanthroline. These different 

groups are again resolved at the most detailed level of des­

cription. 

The ability of the different structural representations to 

separate cyclic and acyclic derivatives v~ries in each sample. 

In the closely related group there is a gradual improvement in 

the separation as the level of description becomes more detailed. 
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In the structurally diverse group, because of other, wider 

differences arising structure representation (i) gives a more 

satisfactory separation here, and the two representations 

considered (i.e. (i) and (ii)) give roughly equal performances. 

The classifications for the amino acids using structure 

representation (ii) correspond closely to those described by 

10 . 211 Sneath and Me~ster. Thus, the structures show a broad 

breakdown into cyclic and acyclic classes and two clearly 

defined clusters are formed between the two carboxyl acids and 

the two amides. Lysine and arginine, which contain two -NH2 

groups also form a separate cluster. The acyclic hydroxy amino 

acids, serine and threonine do not cluster initially, but these 

join the same cluster at different levels. Sneath's DC values, 

reclassified by the single-linkage method also give a very 

similar result (Figure 9). This close agreement with Sneath's 

results is encouraging, and it illustrates the usefulness of 

systematically derived structural descriptors, compared with 

physicochemical parameters and structural attributes preselected 

on a chemical basis. 

Graphs of observed against predicted property values were 

plotted to illustrate the strength of the relationship between 

the structural classifications and the property in question, and 

examples of the type of agreement obtained in each sample are 

given in Figures 9A and 9B. In the amino acids sample the 

scatter of points clearly shows the ability of the method to 

discriminate between the three main groups present i.e. the two 

strongly acidic structures, the two strongly basic structures, 

and the remaining amino acids which have almost neutral pI 



- 97 -

values. The results in the anaesthetics are not so easily 

interpreted, as there is not such an obvious relationship in 

this sample between structure and activity. The predictions 

obtained in this case are discussed more fully in the following 

section. 

In the comparison of approaches the study showed that the 

mean deviations between observed and 'predicted' property values 

are a useful estimate of the predictivity of methods, when they 

are compared with the best possible result which could be 

obtained under the given circumstances. However this measure 

does not take into account the numerical range of property 

values covered by the data set, and it is not the most suitable 

quantity to consider when making comparisons across different 

data samples. Ideally, property deviations should be looked at 

in relation to the observed property range, and a more reliable 

estimate of the agreement between observed and 'predicted' 

properties can be obtained by taking the sum of squares of 

the differences between observed and 'predicted' values as a 

ratio of the sample variance. This more frequently applied 

statistic was therefore used in subsequent investigations of 

association measures and sub structural fragments. The most 

satisfactory numerical representation here, noting fragment 

occurrences, was also used in these studies and multiple 

occurrences were recorded either in a series of two-state 

attributes, as above, or in a single, multi-state or quantita­

tive attribute, depending on the association measure used. 

3.3 An Evaluation of Some Different Measures of Resemblance 

The large numbers of similarity and dissimilarity measures 

available for use in automatic classification applications were 
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discussed in detail in Chapter 1. As very few comparative 

studies have yet been carried out in this area, the essential 

differences between coefficients are not fully understood, and 

in most studies this presents the user with a serious problem 

of choice. 

As seen in Chapter 1 many of the available coefficients 

require a qualitative, binary representation of the data, others 

need a quantitative description, whilst others can be applied 

equally well in either case. A variety of these coefficients 

have been examined, with the exception of correlation coeffi­

cients which are now thought to be of questionable value in auto­

matic classification appJications of this nature. 

The investigations look at a number of simple matching coeffi­

cients and compare these with a distance measure and a number of 

probalistic measures. The simple matching coefficients are an 

important group to consider because of their widespread applica­

tion in a wide range of discipline~ and their simplicity both from 

a conceptual and computational point of view, in comparison with 

more sophisticated quantitative measures. Their main limitation 

is that they require a binary representation of the data. As 

discussed in Chapter 1, the essential differences between 

matching coefficients lies in their treatment of matched and un­

-matched pa~rs of values in two individuals, and in their treat­

ment of negative matches (see also section 3.2). These differ­

ences are examined in a number of different formulations to see 

whether or not they have a significant effect on the classification 

result, and in particular whether the inclusion of negative 

matches is important. 

Distance measures are another group of coefficients which 
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have been widely used in automatic classification applications, 

and they are a particularly, interesting group in the present 

investigation because of their recent widespread consideration 

in applications of pattern recognition techniques to chemical 

d t 20,54,55,153 structure a a. The value of these coefficients is 

that they can handle quantitative descriptions of the data, and 

although other coefficients have been proposed which can do this, 

distance measures are more appealing from a conceptual point of 

view and are usually more straightforward computationally than 

other forms of quantitative measure. 

Probabilistic coefficients are another useful group to 

consider, as these have so far been very infrequently applied in 

numerical classification, due to the large amounts of computation 

usually involved. To date no applications of this type of coeffi-

cient have been reported in the chemical literature. As discus-

sed in Chapter 1, one of the more usual arguments put forward in 

favour of character weighting is that infrequently occurring 

characteristics are more discriminating and should be more 

heavily weighted than frequently occurring states. A number of 

probabilistic coefficients have been therefore examined based on 

this premise. 

For a meaningful comparative study of the above coefficients 

and of the classifications produced from them, the same structural 

representation.wa.s used throughout, i.e., the same SUbstructure 

was considered in each case, and one of two equivalent numerical 

representations of this was employed depending on the type of 

resemblance measure in question. 

Similar coefficient performances were given by the amino 

acids, local anaesthetics and penicillins, and only the results 
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obtained for the local anaesthetic structures have been reported 

below. 

3.3.1 Method 

3.3.1(a) The structure R~presentations 

As in the investigation of structural representations, the 

structure of each anaesthetic was described as a redundant 

connection table, and this was used to obtain a set of augmented 

atoms upon which measures of similarity and dissimilarity were 

based. The anaesthetics were first analysed to identify the 

different augmented atoms arising, and based on these a set of 

attributes was chosen to represent each structure. The following 

two descriptions were used, 

, 
(i) For each augmented atom type identified a suitable 

set of attributes was selected to cover the different 

occurrences in each structure. Thus each attribute 

in the given set of structures was used to indicate 

whether or not the particular fragment type was 

present in a structure at the given frequency. Using 

this qualitative description multiple occurrences of 

the same fragment in a structure were then accounted 

for by additive coding. 10 This corresponds to structure 

representation Cii) considered in section 3.2. 

(ii)' A single attribute was chosen to represent each 

augmented atom type and it indicated the number of 

occurrences in a structure of the given fragment 

type. 

In case (i)' a binary vector was set up to ~escribe each structure, 

and in case (ii)'a vector whose attribute values corresponded to 
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augmented atom frequencies. The SC or DC between each pair of 

structures was then calculated from the corresponding pair of 

vectors 

3.3.1(b) The Similarity and Dissimilarity Coefficients 

(i) Association/Matching Coefficients 

The three simple coefficients of association examined were 

used in the previous investigation of numerical representations, 

and details of their formulation are given in Section 3.2. For 

completeness these are listed again below, and the numbering of 

expressions corresponds to the numbers used in Table 4. 

1. 

2. 

3. 

2a . Dice's SC = ~~--2a+b+c 

(ad-bc) 
[(a+b)(a+c) (d+b) (d+c)J4 

b+c Sneath's DC = --~~­a+b+c+d 

, 
These three coefficients were applied to structure representation (i) 

Both Dice's SC and Sneath's DC are normalised within the. range 

o and 1, whereas 0 values lie within the range -1 to +1. The 

important difference between Dice's SC and the remaining two is 

that it does not take into account negative score agreements 

between pairs of structures. In this SC;matching pairs of binary 

values carry twice the weight of disagreeing pairs, which means 

its magnitude is greater than other similar coefficients based on 

positive matches, in which matched and unmatched pairs of values 

are weighted equally:e.g. Jacchard's coefficient. The dissimilarity 

coefficient defined by Sneath is the complement of Sokal and 

Michener's simple matching coefficient36 expressed as a percentage, 

and using this, matched and unmatched pairs of binary values are 

weighted equally. Matched and umatched pairs of values are also 
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equally weighted in the ~ coefficient, and in this case agreeing 

pairs of values, including negative agreements, are balanced 

against disagreeing pairs of values in the numerator. ~,Which 

is also frequently referred to as the four-point correlation 

coefficient is a measure often considered in statistics because 

2 of its relation to X • In this particular application however 

the arrangement of the data upon which the measure is based 

cannot be compared with the conventional 2x2 contingency tables 

used for tests of independence in statistics, and it is doubtful 

whether any meaning can be. attached to such a test in this case. 

(ii) Distance Coefficients 

The distance measures considered are based on the simple 

90 Euclidean distance measure proposed by Sokal. Thus, the 

number of occurrences of each augmented atom type in a structure 

is regarded as a metric quantity, and the similarity between 

pairs of structures is expressed in terms of their distance 

apart in an n-dimensional space, ~mere the coordinates represent 

the n different augmented atom types arising in the total set of 

structures. Distances are first computed between individual 

augmented atoms and these are then summed over all fragment 

types to gain an overall measure of dissimilarity between structure 

pairs, as follows, 

2 
o jk = 

n 
L 
i=1 

where Xij is the number of occurrences in the jth structure of 

the augmented atom fragment defined by attribute i. As in Sokal's 

basic formulation the squared distance is used as the measure of 

dissimilarity in order to avoid square root terms on the right 

hand side of the expression. 
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Problems due to differences in scale between the attributes 

involved in the distance expression do not arise in this case, 

but it is possible that differences in the range of frequency 

values arising for each fragment type could lead to an unsatis-

factory result. To compensate for possible distortions, there-

fore a second distance measure is computed after first standard-

ising frequency values so that each attribute possesses a zero 

mean and unit variance (coefficient 4a in Table 4). 

The above distance measures were applied to structure 

representation (ii)'. 

(iii) Probabilistic Coefficients 

The three coefficients considered in this category are based 

77 
on the probabilistic similarity index proposed by Goodall. During 

the comparison of pairs of structures, each attribute is consid-

ered in turn and the weight attached to the particular pair of 

values arising for that attribute is calculated from the 

likelihood of that pair of values, or a more 'similar' pair 

of values arising according to Goodall's definition of similarity 

for individual attributes. The definition of Similarity depends 

on the type of attribute in question. Thus, in the case of the 

qualitative two-state binary attributes in structure represent-

ation (i)' pairs of differing binary states are regarded as being 

equally dissimilar, and the similarity between agreeing positive 

and negative binary scores is based on the probability of the 

particular pair of values arising. The less probable the match 

in question the more similar the structure pairs are said to be 

with respect to this attribute. The binary attributes considered 

here are a special case of the qualitative attributes discussed by 
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Goodall, and have been treated in a similar manner. The 

similarity (S) between attribute values in this case may 

* be summarised as follows: -

For binary states i and j 

i I' j 

S" > 0 
1.J 

i = j ) 

and the probability term associated with values i and j is 
2 

p, , = L Pk i = j 
1.J k£Q 

where Q = {k: (Pk ~ Pi)} 

ie. the set of all k (1 ~ k ~ n being understood) such that 

and i #- j 

The similarity between attribute values i and j is then defined 

as follows 

Sij = 1 - Pij 

'The definition of similarity is more complicated in the 

case of the quantitative augmented atom descriptions given in 

structure representation (ii)', since the magnitude of attribute 

values must also be taken into account here. The different values 

which an attribute may take, representing the frequency of occurr-

ence of each augmented atom in a structure, are now treated 

as metric quantities, and Goodall's definition of similarity 

for ordered, metrical attributes is used. Thus, in two 

structures, agreeing attribute values are considered more simi-

lar than values which differ, and those with a small differ-

ence are considered more similar than those with a larger 

the following terms from symbolic logic are used to simplify the 
presentation of expressions, 
)(implies), £(is included in), A(and), V(inclusive or), : (such that) 
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difference. If pairs of values should differ by the same amount 

these are resolved in the same way as qualitative attributes, 

descriged above, i.e. by taking into account the likelihood of 

each pair of values arising. Thus, for a given attribute which 

takes on frequency values V. and V. in one pair of structures 
1. J 

and values Vk and Vl in another, 

Iv. 
l. 

- V I < j IVk - V I I :) Sij > SkI 

j I 
<Ivi-Vjl = IVk - VII) A 0: Pi < 1: Pi) 

t=i t=k 

j 1 
<Ivi-Vjl = IVk - VII) A 0: Pi = L Pi) t=i t=k 

and the probability term associated with pairs ij is 

where Q 

and 

The third probabi1istic measure considered was also based on 

structure representation (ii)', except in this case a modifi-

cation of Gooda11's definition of similarity for quantitative 

attributes was used, where the identification of pairs of 

frequency values which are more similar than the particular 

pair of values in question is based on frequency values alone. 

Thus, in the above expression, the attribute pairs k, t which 

qualify for inclusion in the probability expression derived for 

values i, j are those which satisfy the following condition, 
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In practice, the probabilities of different attribute values 

are not exactly known and must be estimated from the sample of 

individuals in question on the basis of observed frequency values. 

Also, to reduce the amount of computation involved, each attribute 

in a structure is assumed to be independent of the others. 

Having obtained probability terms for individual attributes 

in the above manner, an overall measure of similarity between 

pairs of structures is then obtained by summing the appropriate 

probability terms over attributes in the following way, 

n 

L - log p 1 2 
x=l x, , 

where P 1 2 is the similarity term derived for attribute x in x, , 

structure pair 1 and 2, and n is the total number of attributes. 

Negative logarithmic terms are taken as a measure of similarity 

in preference to complement values. This is a very much simplified 

version of the similarity expressions derived by Goodall between 

individuals, where, following the ordering relations derived for 

individual attributes, he computes the cumulative probabilities 

over total sets of attributes to determine the likelihood of the 

particular pair of attribute sets for the individuals in question 

or any more similar pair of sets arising. 

The above three probability measures appear in Table 4 as 

coefficients 5, 6 and 7 respectively, and coefficient 7, based on 

the modified version of Goodall's definition of similarity for 

ordered, metrical attributes, is referred to in the text, as the 

'minimum distance' coefficient, so as not to be confused with 

coefficient 6. 
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3.3.2 Coefficient Performance 

3.3.2(a) Nearest Neighbours 

Following the evaluation procedures used in the investigation 

of numerical representations of structural attributes, the similar-

ity and dissimilarity coefficients described above were compared 

by simulating their predictive use. Thus, to obtain a 'predicted' 

value for the property of each anaesthetic, the structure with 

which it is most closely associated was used. The observed log 

( ) 1 . b . t 1 209 id d b f MBC va ues glven y Agln ea, were cons ere as e ore, 

and where more than one nearest neighbour arose the average log 

(MBC) value over the set of nearest neighbours was calculated. 

For each resemblance coefficient, the sum of the squares 

of the differences between observed and predicted log (MBC) values, 

taken as a ratio of the sum of the squares of deviations of the 

observed values from their mean was calculated. The average value 

of the difference between observed and predicted log (MBC) values 

was also calculated and both these measures were taken as an 

indication of the effectiveness of the different coefficients 

under examination. The property deviations are shown in Table 4. 

The lowest sum of squares ratio and mean deviation was obtained 

using the squared distance coefficient, which gave a sum of squares 

ratio of 0.34 and a mean deviation between observed and estimated 

property values of 0.79 log (MBe) units. As in Section 3.2 the 

mean deviations were put into perspective by comparing them with 

the best possible result which could be obtained for the given 

set of values, the mean deviation which would have resulted if 

there had been no resolution of the anaesthetics into classes, 

and, finally, the mean deviation of observed property values from 
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their mean value. These quantities are 0.09, 1.69 and 1.65 log 

(MBC) units respectively. The deviation of 0.79 log (MBe) units 

produced by the squared distance coefficient is therefore a good 

improvement on the mean deviation for the total set and the mean 

deviation assuming a homogeneous group. The worst result was 

obtained using probabilistic coefficient 6, based on the 

quantitative frequency descriptions given in structure represent­

ation (ii)', where the mean deviation between observed and 

estimated property values of 1.891 log (MBe) units exceeded both 

the above values. The sum of squares ratio also exceeded unity 

in this case. The probabilistic measure based on structure 

representation (i)' also gave a poor result. 

With the exception of the above two probabilistic coefficients, 

the reduction in the variance as measured by the sum of squares 

ratio is reasonably good. However, as previously mentioned, it 

is not possible to evaluate these results from a rigorous 

statistical point of view, but in view of the method of prediction 

and the sample size in question it is unlikely that the very close 

values obtained by the different coefficients are significantly 

different, with the possible exception of the results given by 

the squared distance coefficient compared with those obtained 

using the probabilistic measures 5 and 6. 

The extent of the relationship between the property in 

question and the structural differences as measured by the 

distance coefficient is shown in Figure 10, which gives a plot 

of observed log (MBe) values against the predictions simulated on 

the basis of this DC. 

Using each coefficient a number of the anaesthetics are very 
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well predicted, for example the structural isomers phenyltoloxamine 

and diphenhydramine. Other structures which have been well pre­

dicted in each case are the group of normal alcohols, ranging 

from n-propanol to n-octanol. Methanol is not included in this 

series due to the absence in its structure of a methylene group, 

making its association with ethanol very much weaker than the 

latter's association with propanol. Using the two distance coeffi­

cients and Sneath's DC, each alcohol in the group, except for 

the terminal members, are equally highly associated with the two 

alcohomadjacent to it in the series, whereas the similarity 

coefficients give closest associations with the next highest 

alcohol present. These different relationships are brought out 

in the dendrogram representations illustrated in Figures 8,' and 

11 - 17, and are discussed in the following section, describing 

the classifications obtained. The first of the above cases is 

an interesting one as the predicted property value for each 

alcohol is the value which would be obtained by linear inter­

polation from the two nearest neighbours in the homologous series. 

This in fact-gives a better prediction than the second case, the 

reason being that the alcohols are fairly widely distributed 

through the particular structure set from an activity point of 

view. Thus, predictions based on the mean of two adjacent values 

are closer to the observed value of the alcohol in question than 

are either of the two adjacent values taken independently. 

Apart from the above well defined structural types some 

variations are observed, depending on the resemblance coeffi­

cient applied. Quinolone and 8-hydroxyquinolone, for example 

which are similar both in structure and activity are well 
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predicted in the case of the simple association coefficients 

and distance measures, but are poorly predicted by the probilb­

ilistic coefficients, with the exception of coefficient 6 which 

gives a good prediction for quinoline. The reason for this is 

that the probabilistic factors coming into play with these 

measures do not necessarily relate the most similar structural 

types. In the present sample the most similar structural types 

do not always lie cl~est together onthe scale of activity, for 

example, the alcohols mentioned above are fairly widely distri­

buted through the group, and therefore this particular property 

of the probabilistic measures is not necessarily an undesirable 

one. However, in the present example it has an adverse effect 

on the result, giving quinoline and 8-hydroxyquinoline closer 

associations with structures such as O-phenanthroline and quinine, 

which are much further apart on the activity scale in question. 

Using the 'minimum distance' probability coefficient, 8-hydroxy­

quinoline is most closely associated with phenol, which again 

results in a poor prediction. 

Some of the anaesthetics have been poorly predicted in every 

case because they do not belong to a distinct chemical group and 

form no other strong associations, e.g. eserine, dibucaine and 

quinine. Chloroform which is another structure belonging to this 

category is an unusual case as it contains a unique set of aug­

mented atom fragments, and it is instructive to see how the 

different coefficients handle this particular situation. Thus, 

the simple matching coefficients 0 and Dice's SC, which depend 

on the number of structural features in common to each structure 

pair, give negative and zero levels of association respectively 

between this structure and the remaining structures present, as 
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these have no features in common. The dissimilarity and distance 

coefficients on the other hand base similarity or the 'distances' 

between structures on the smallest number of unshared features. 

In these cases therefore, chloroform associates with some of the 

smaller structures in the sample because these structure pairs 

are the least dissimilar with respect to the particular DC in 

question. Thus, using Sneath's DC and the squared distance 

coefficient, chloroform forms a definite association with methanol, 

despite the fact that these structures have no augmented atoms in 

common •. A similar situation arises with the probabi1istic 

coefficients, as again in these cases similarity is not merely 

based on a straightforward matching of shared attributes. Using 

all three coefficients in this category, chloroform associates 

most closely with the saturated bridged ring system antipyrene, 

which although close in activity, is structurally very dissimilar. 

These examples show how coefficients which do not rely on a straight 

matching of common structural features may give rise to groupings 

which are not the most similar chemically, and this could be an 

important consideration in applications concerned primarily with 

structure organisation for retrieval. 

3.3.2(b) Classifications 

As before, classifications were assessed on the basis of 

their predictive value, and on the chemical significance of 

clusters. 

(i) Simulated Predictions 

In this case the 'predicted' property value for each 
. . 

anaesthetic is taken to be the average log (MSC) value for the 

cluster which is joins. The predictions are given in Table 4 and 
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th~y show how the performances in this case follow closely the 

results obtained using nearest neighbours. Thus, the probabilistic 

measures again perform poorly, particularly coefficients 5 and 6, 

and the mean deviation of 1.973 log (MSC) units using coefficient 

6 again exceeds the sample mean deviation and the deviation result­

ing if no resolution of structures into classes had taken place. As 

before the sum of squares ratio also exceeded unity in this case. 

Dice's se gave the best sum of squares ratio, and the mean devia­

tion between observed and predicted property values was again 

lowest when using the squared distance coefficient. With the 

exception of probability coefficient 6, predictions obtained from 

nearest neighbours are slightly better than those given by the 

classifications, which is not an unreasonable resu1t , in view of the 

information loss accompanying the transformation from an association 

matrix to a dendrogram and the diverse structural types present. 

Again/the different levels of prediction lie reasonably close 

together, with the exception of the very good prediction obtained 

using the squared distance coefficient and the poor predictions 

obtained using probability coefficients 5 and 6. However, as 

discussed earlier the method of prediction used and the dependency 

of estimated property values on observed values prevents the 

application of statistical tests to compare the different levels 

of prediction, and it is therefore not possible to say with 

certainty whether any of the values are significantly different 

from each other. On the basis of the present evidence it would 

therefore be unwise to draw any firm conclusions on the performances 

of the different coefficients, and the only possible way of obtain­

ing meaningful comparisons with this type of investigation would 
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be to attempt to show up possible trends on an empirical basis 

by applying the coefficienmto a much wider range of structures. 

(ii) Structural Arrangements 

From the previous discussion it is clear that the levels 

of prediction obtained by the different resemblance reasures 

are of limited value in comparative studies. However, comparing 

the overall structural arrangements obtained by each measure it 

is interesting to note that the coefficients giving the best 

predictions also give the sharpest resolution of structures from 

a chemical point of view. Thus/the simple association coefficients, 

the squared distance measure and the 'minimum distance' probability 

coefficient,which give reasonably good levels of prediction, also 

show some well defined chemical groups, and a very clear breakdown 

into cyclic and acyclic classes at an early stage in the classi­

fication i.e. at a low level of association. Using the squared 

distance coefficient, for example, there is a very definite split 

between cyclic and acyclic structural types, with the exception 

of antipyrene which associates with the acyclic group, and of 

eserine, diphenhydramine, phenyltoloxamine, caramiphen and quinine, 

which have cyclic and acyclic components of comparable size. This 

second group forms no strong associations with the remainder of 

the set of structures and except for the two structural isomers, 

phenyltoloxamine and diphenhydramine, which form a separate 

cluster, these join classes by chaining at a much lower level of 

similarity. With a few minor variations a similar pattern is 

followed by the other coefficients listed above. Probability 

coefficients 5 and 6 on the other hand, which give worse predict­

ions, give a poorer resolution of structures in comparison and do 
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not show a clear division into predominantly cyclic and acyclic 

classes. Similarly, the classification using the standardised 

distance coefficient is less satisfactory from a qualitative 

chemical viewpoint, and this also gives a poor prediction. 

Some of the coefficients have given rise to very similar 

arrangements, although none of the measures considered are 

jointly monotonic. For example, ~ and Dice's se give almost 

identical classifications, and Sneath's De and the squared 

distance coefficient also give close results. The standardisa­

tion of frequency values in the case of the distance measure 

has had an adverse effect on the result, and the classification 

obtained in this case bears little resemblance to the arrangement 

given by the non-standardised measure. The classification using 

the 'minimum distance' probability coefficient also bears little 

resemblance to arrangements given by the other two probability 

measures. In this case a much clearer resolution of structures 

is obtained and the arrangements correspond more closely to those 

given by Dice's se and ~. 

In addition to the above very close agreements, all the 

coefficients showing a broad breakdown into cyclic and acyclic 

classes give reasonably similar arrangements overall. In each 

case the smaller group of acyclic structures as mentioned earlier 

reveals a well defined cluster of normal alcohols and the slightly 

different arrangements produced by similarity and dissimilarity 

coefficients, due to the different relationships these different 

measures give between adjacent members of the group, are clearly 

indicated. Using Sneath's DC and the squared distance coefficient 

methanol and isopropanol join the alcohol cluster 
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and these fuse at a slightly lower level of association, due in 

both cases to an association with ethanol. Using 0 and Dice's se 

isopropanol also joins the alcohol cluster but in these cases 

methanol is completely dissociated from the group. This is because 

it has no augmented atom fragments in common with the rest of the 

group, which is an important requirement with this type of 

similarity measure, as discussed earlier. 

The larger group of cyclic structures first shows a broad 

breakdown according to the size of the ring system present)with 

structures incorporating larger acyclic components separating from 

structures without this feature. At a higher level of similarity 

the former group tends to cluster according to the nature of the 

ring substituent, whereas the latter breaks up according to the 

nature of the ring system. Thus, the latter group reveals a well­

defined cluster of simple benzene derivatives, consisting of toluene, 

phenol, benzyl alcohol and hydroquinone. A similar arrangement is 

also given by the standardised distance measure, except that in 

this case phenol and hydroquinone initially form a separate cluster 

and join toluene and benzyl alcohol after these two have joined 

the alcohol cluster. In contrast, none of the probabilistic 

measures, including the'minimum distance' probability coefficient 

show a definite relationship between these different benzene 

derivatives, and these are dispersed through the group. 

The nitrogen containing heterocyclic ring derivatives present, 

involving small acyclic components also form some well defined 

clusters. Some of the associations formed in this case and the 

differences arising with each similarity and dissimilarity measure 

have been discussed in the previous section. Using Sneath's DC, 
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the squared distance coefficients, 0 and Dice's DC, quinoline and 

8-hydroxyquinoline form a separate cluster at a high level. 0-

phenanthroline is also associated with this cluster when 0 and 

Dice's SC are applied, and pyridine in the case of the standard-

ised distance coefficient. However, the remaining nitrogen hetero-

cycles arising are not associated with these structures. In the case 

of benz~idazole this is because the five-membered heterocyclic ring 
~ 

present is classed as a saturated ring and is coded with localised 

ring bonds, giving it a much lower association with the other mitro-

gen heterocyclic derivatives present, which are classed as unsatur-

ated systems. In all other cases, it is because of the more power-

ful influence of larger acyclic components. A similar scattering of 

N-heterocyclic structures occurs using the probabilistic measures, 

a Ithough the above arguments do not necessarily apply in this case. 

As seen earlier, these measures have the ability to bring together 

quite dissimilar structural types, and in this case, not even 

quinolone and 8-hydroxyquinoline form a separate cluster initially. 

Probability coefficient 5 initially forms separate clusters between 

quinolone and O-phenanthroline and between 8-hydroxyquinoline and 

quinine, and these pairs eventually join to form a single cluster at 

a lower association level. Using probability coefficient 6, quinoline 

does in fact associate with 8-hydroxyquinoline first, but the 

latter structure again forms a stronger association with quinine, 

resulting in a separate cluster between these two structures which 

is eventually joined by quinoline. The 'minimum distance' probab-

ility coefficient gives rise to a separate cluster between quino-

line and O-phenanthroline, and in this case 8-hydroxyquinoline 

is more closely related to the phenolic derivatives present, 

initially forming a cluster with 2-naphthol and phenol. 
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Within the cyclic group containing larger acyclic components 

the associations vary from coefficient to coefficient, but in 

general the main clusters are formed between the dia1ky1amino 

ethyl ester derivatives of benzoic acid and the dialkylamino 

derivatives of acetanilide. The squared distance coefficient for 

example gives a well defined cluster between procaine, tetracaine 

and xylocaine. Dibucaine and caramiphen, which also have similar 

acyclic substituents are not included in this group due to the 

different types of ring systems present. However, using the two 

similarity measures, 0 and Dice's se, a cluster is formed between 

procaine, tetracaine and caramiphen despite the fact that 

caramiphen contains an additional 5-membered saturated ring system. 

In this case xylocaine chains at a lower association level. A 

closer examination of these structures in Appendix 1 shows that 

the side chain in procaine is more closely related to the side 

chain appearing in caramiphen than that arising in xylocaine. As 

a result, the number of shared features between procaine and 

caramiphen is greater than the number shared between procaine and 

xylocaine, and therefore when the above two similarity measures 

are applied a closer association is formed between the first pair. 

Using the squared distance measure, however, the reverse situation 

arises, as the presence of the 5-membered ring now increases the 

number of unshared features present compared with those arising 

between procaine and xylocaine. Another pair of structures which 

have side chains similar to those arising in this group are 

phenyltoloxamine and diphenhydramine. These two structural isomers 

form a clearly defined cluster in every case but they are dissociated 

from the rest of the structures in this group because of the 

diphenylmethane ring configuration. 
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Although such clearly defined chemical groups do not 

arise with the probabilistic measures, particularly ~hen 

coefficients 5 and 6 are applied, some of the more closely 

related structural types are still clustered satisfactorily 

in these cases., For example, the above named structural 

isomers still form a separate cluster in each case, and the 

normal alcohols are also clearly identified. 

3.4 Choosing Suitable Substructures 

Introduction 

Obtaining meaningful descriptions of the original data, 

which convey as much of the original information as possible 

and are at the same time suitable for representation in numerical 

form, involves, as seen in Chapter 1, a number of separate and 

very important issues, and this is probably the most critical stage 

of the classification process. The particular problems arising in 

chemical applications have been outlined in Chapter 2. Using repre­

sentations based on the structure diagram one of the main difficulties, 

discussed in this earlier chapter, is choosing fragments of a 

suitable size which will bring out all the features of possible 

chemical relevance. Thus, larger fragments provide more detail 

on ring systems and ring SUbstitution patterns whereas smaller 

fragments have the advantage of being able to identify important 

functional groups, often masked by larger substructures. 

Another difficulty arising, particularly in the case of sub-
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structuresdervied automatically from a connection table represent-
~ 

ation of the structure diagram,is the degree of overlap between 

descriptors. This becomes more serious as the fragment size 

increases, and with larger fragments the variety of substruct-

ures also increases. One possible solution to the masking problem 

with large substructures would be to include a number of the 

smaller defintions with these. However this would lead to further 

increases in the amount of redundant information held. 

In view of the above considerations a number of different 

fragment definitions have been examined, and some of these have 

been combined in two additional representations, to give some 

indication of the effects of this type of multilevel description 

on the classification result. 

Investigations so far have shown that it is difficult to 

draw very definite conclusions on the suitability of different 

techniques, because of the difficulties of measuring statistical 

differences between method performances, and comparing them on a 

quantitative basis. The measures considered are useful for 

illustrating trends in the data and if similar trends are observed 

in different samples then these are more likely to be of some 

significance. In the present case comparisons have not been 

possible on a very wide scale although in the evaluation of 

fragment performances it has been possible to make some very 

useful comparisons across the three main data samples under 
~ 

consideration i.e. the 20 amino ~ids, the 39 local aryesthetics 

and the 79 penicillin structures. 

3.4.1. Method 

3.4.1(a) The Association Measure 

The classifications were carried out using Dice's se and 
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the binary representation of structures based on additive coding 

described in the previous section. In this earlier study simple 

matching coefficients were shown to perform as well as, and in 

some cases better than the more detailed association measures 

based on quantitative fragment descriptions. One of these 

measures was therefore applied in the present study as they 

require shorter numerical representations than the quantitative 

measures, and this was an important consideration here, because 

of the larger numbers of descriptors arising with larger frag-

ments and fragment combinations. 

3.4.1(b) The structure Representation 

Details of the numerical representation used and the way 

in which this is derived from a redundant connection table 

record are given in the previous section. 

3.4.1(c) The Fragments 

A wide range of atom and bond-centred fragments may be 

extracted from the connection table record, and the particular 

definitions examined here are some of the fragment types which 

have already been investigated elsewhere as screens for substruc­

. 208 212 213 ture searchlng. ' , Four bond-centred and two atom-centred 

fragments were considered in all, and in each type the fragments 

describe progressively larger regions of the molecule around the 

central bond or atom. The two atom-centred fragments used were 

simple atom descriptions and augmented atoms, the second of which 

was used for the investigation of association measures and numerical 

representations described previously. The four bond-centred frag-

212 213 ments, referred to in previous publications ' as 'simple 

pairs', 'augmented pairs','bonded pairs' and 'octuplets', show 

a more gradual expansion from the central bond. Thus, simple pairs 

describe the central bond and the atoms it connects, augmented pairs 
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describe, in addition the terminal connectivities of the atom 

pair, bonded pairs describe the external bond types, and 

finally octuplets describe both the external bonds and the 

external atoms i.e. the atoms connected to the central atom 

pair. Figure 18 gives the different substructures arising in 

three of the penicillin side chain structures. As these 

examples show the three largest bond-centred fragments have 

the advantage that they can identify ortho ring substituents 
~~ 

and separate these from meta and para ring derivates. Larger 
~ 

fragments would be required to distinguish meta and para 

disubstituted structures, and other more detailed substituion 

patterns. 

3.4.2 Fragment Performances 

3.4.2(a) Prediction Levels 

Property predictions were simulated in the manner described 

in previous sections, and summaries of the deviations between 

observed and predicted property values obtained in each sample 

are given in ·Tables, 5,6 and 7. Sum of squares ratios were 

calculated as before, and in Figures 19 to 24 these are plotted 

against sample to feature ratios to illustrate the different 

levels of prediction obtained by each fragment. 

(i) Nearest Neighbours' 

The predictions based on highest se values in each sample 

are given in Figures 19, 21 and 23. As shown, the greatest 

variation in fragment performances arises in the structurally 

diverse group of local anaesthetics, and the least variation 

in the penicillins. 

Some interesting differences are shown in the two smaller 

samples. In the amino acids augmented atoms perform very well, 
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and the larger bond-centred fragments give slightly better 

performances than the smaller ones. Simple pairs and bonded 

pairs combined show a slight improvement over the separate 

performances of these fragments, and octuplets combined with 

these show a further improvement, although the result in this 

second case is not as good as the prediction given by octuplets 

on their own. In the anaesthetics opposite trends are shown, 

with atoms and the smaller bond-centred fragments giving better 

performances than the larger fragments. Atoms give the lowest 

sum of squares ratio, and simple pairs show a marked improvement over 

bonded pairs and octuplets. The combined fragment performances 

in this case lie close to the average performances of the different 

fragments involved. 

In contrast with these two groups, the different fragment 

performances in the penicillins lie within a very close range, 

with simple pairs giving the lowest sum of squares ratio of 0.34 

and octuplets the highest value of 0.51. The combined fragment 

performances are again close to the average performances of the 

individual fragments involved. 

(ii) Classifications 

Predictions based on the classifications are shown in Figures 

20, 22 and 24. These are very similar to the predictions given by 

nearest neighbours, although a few differences arise, and the most 

notable of these occur in the amino acids. In this group the 

larger fragments again perform best, but there is now a more 

marked separation between octuplets and the remaining bond-centred 

fragments, with this fragment giving an improved result and the 

others much lower levels of prediction, and variance ratios in the 
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region of unity. As before, simple pairs and bonded pairs combined 

lead to a, slight improvement, but when octuplet descriptions are 

included with these a very poor prediction results, despi~e the 

improved result given by octuplets alone. These differences are 

discussed below. 

n 
In the a~esthetics, there is, as with the nearest neighbours, 

a gradual improvement in the prediction level as the fragment 

size decreases, with atoms giving the lowest sum of squares ratio 

of 0.21 and octuplets the highest value of 0.67. The range is 

slightly smaller in this case. 

A similar, very small range is covered in the penicillins, 

with augmented atoms giving the lowest sum of squares ratio of 

0.49, and simple pairs and bonded pairs the highest value of 

0.65. The levels of prediction are slightly lower in this case. 

The combined fragment performances in the two larger samples 

are very similar to the nearest neighbour results. 

From a prediction point of view therefore the fragments 

behave differently in each sample. The amino acids and local 

anaesthetics show opposite trends in fragment performances, and 

the penicillins, which have some of the characteristics of the 

closely related group and some of the structurally diverse group, 

show a fairly constant level of prediction. However, many of the 

differences arising in the two smaller samples are quite small, 

and with a few exceptions they are unlikely to be of statistical 

significance. In addition, the reliability of the predictions for 

comparative studies, as discussed in Section 3.3, will depend on 

the particular relationships arising in each sample between 

structure and property data. In view of these difficulties, and 
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the absence of rigorous evaluation procedures, it is therefore 

important that the differences between samples be judged in 

relation to the types of structural arrangements produced. 

These are discussed below. 

3.4.2(b) structural Arrangements 

In each sample all of the fragments produce sensible 

chemical arrangements, with the exception of some of the 

clusters obtained using atom descriptions. A few interest­

ing variations arise but 'in each sample essentially the 

same arrangements are produced and examples of these are 

given in Figures 25 to 32. 

In the amino acids some of the more closely related 

structures, such as the two acidic amino acids, aspartic and 

glutamic acid, and the amides, asparagine and glutamine, form 

well defined clusters in every case. The cyclic and acyclic 

derivates are also clearly separated in most cases, although 

the non-aromatic ring derivates are not always associated with 

the cykic structures, and chain onto the acyclic group. The 

aromatic derivates are well defined, even when simple atom 

descriptions are used. Using bonded pairs, however tryptophan 

does not join this group, due to the more important influence 

of the partially satured 5-membered ring system in this case, 

and it clusters instead with histidine, which incorporates a 

similar 5-membered ring system. 

other similar structural types arising in the acyclic group, 

which are not quite as closely related as the structure pairs 

mentioned above, are not clearly identified in every case, and are 

only clustered when more detailed fragment descriptions are used. 
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For example, the basic amino acids, lysine and arginine cluster 

when octuplets and augmented atoms are used, but are not 

strOng/lY associated in other cases. Using simple p~ir, 

augmented pair and bonded pair descriptions these structures 

chain at very low levels of association and the very poor 

predictions obtained for them account for the low prediction 

levels in these classification cases. They also account for the 

poor prediction levels in the combined fragment cases, and explain 

why octuplets combined with simple pairs and bonded pairs give a 

much less satisfactory prediction level than octuplet descriptions. 

alone. Atoms give a slightly better prediction because lysine and 

arginine now cluster with the cyclic derivative, histidine, which 

has similar basic properties. This is an example of one of the 

more satisfactory associations arising from atom descriptions, as 

although these fragments have failed to identify the gross struct­

ural features present, they have successfully identified the 

important NH groups in these structures which account for their 

high basicity. 

other similar acyclic structures which do not form a definite 

cluster in each case are the long chain alkyl derivatives, leucine, 

isoleucine and valine. Again the larger fragmf'nts, augmented atOIllS 

and octuplets, have been successful in identifying these, but using 

augmented pairs and bonded pairs the structures are not strongly 

linked. Leucine and isoleucine come together again when atoms and 

simple pair descriptions are used, due to the inability of these 

fragments to distinguish between them, and augmented atoms, as 

discussed previously, are also unable to separate these two 

isomers. 
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Using atom descriptions a number of unsatisfactory associa­

tions arise between cyclic and acyclic derivatives of comparable 

size, although, as seen from the example quoted earlier, these 

associations are not necessarily unsatisfactory from a prediction 

point of view. Another example of this is the cluster formed 

between proline and valine, both of which are only slightly acidic. 

Atom descriptions are unable to separate these two structures, and 

like leucine and isoleucine these cluster at se level 1. 

The combined fragment descriptions give results very close 

to the performances of the original fragment descriptions and they 

show that the additional information in these cases has not led to 

any serious distortion in the relationships between structures. 

Simple pairs, bonded pairs and octuplets combined give clusters 

which are almost identical to those produced by octuplets alone, 

and the reason for the wide discrepancy between the prediction 

levels in these two cases is discussed at the beginning of this 

sub-section. 

In the local anaesthetics, atoms give rise to a much larger 

number of associations between quite unrelated structural types, 

but the other classifications give more satisfactory clusters from 

a structural point of view. The classification produced by aug­

mented atoms has been described in detail in Section 3.3 (Figure 

11), and the bond-centred fragments give results which are very 

close to this. They all show an early breakdown into cyclic and 

acyclic classes. The smaller acyclic group shows a well defined 

cluster of normal alcohols, but depending on the fragment size, 

methanol and isopropanol are not always closely associated with 

this group. Thus methanol has no augmented pair fragments, bonded 
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pairs or octuplets in common with the larger alcohols, and is 

dissociated from the group in these cases. Using simple pairs, 

on the other hand, it now has one feature in common with the 

rest of the group and joins it at a lower level. Simple pair 

descriptions are also unable to distinguish between n-propanol 

and isopropanol, and these cluster at se level 1, before joining 

the main alcohol cluster at a slightly lower level. Using the 

larger bond-centred fragments, isopropanol, like methanol, is 

dissociated from the main cluster. When simple pairs and bonded 

pairs are combined methanol again joins the alcohol group, 

because of the simple pair feature it has in common with the 

group. However, because of the larger numbers of descriptors 

involved in this case its association with ethanol is now very 

much weaker than in the simple pair case. 

The larger cyclic group also shows some clearly defined and 

chemically sensible clusters in each case, which correspond closely 

to those produced by the simple matching coefficients discussed in 
v 

the previous section. Thus, simple benzene derivat~es form a 

separate cluster, or are reasonably closely associated, as are 

the fused ring derivates quinoline, 8-hydroxyquinoline and 0-
~ 

phenanthroline. In each case, as before, be?imidazole does not 

associated with this second group because of the influence of the 

5-membered ring, which is coded as a localised ring system, and 

the remaining heterocyclic compounds are also dissociated from 

this group because of the larger and more important influence 

of acyclic components in these cases. In addition, the cyclic 

group shows some well defined clusters between the structures 

involving this type of component, i.e. the previously discussed 

dialkylamino derivaties of acetanilide and the dialkylamino 

ethyl ester derivates of benzoic acid. In all 
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cases the two structural isomers, phenyltoloxamine and diphen­

hydramine, are not strongly linked with this group for reasons 

given in Section 3.3, and in each case these two isomers form 

a separate cluster at a high level. 

The arrangements of structures in the cluster of cyclic 

compounds is roughly 'the same in each case. Simple pairs give 

a slightly different breakdown initially, but these also give 

the same basic clusters at higher levels. Using the larger bond 

centred fragments, and fragment combinations the breakdown corres­

ponds closely to the structuring produced by augmented atoms i.e. 

there is an initial breakdown between rings with large and small 

acyclic components, with the first group dividing according to the 

nature of the chain structure, and the second according to the 

type of ring system. Using simple pairs the initial splitting 

depends more on the type of ring system present, which means that 

the simple benzene derivatives are now more closely related to 

structures such as xylocaine and procaine, than to the fused ring 

derivatives involving small ring substituents, such as quinoline, 

O-phenanthroline and 8-hydroxyquinoline. However, the type of 

chain component has also had some influence in this case, bringing 

structures such as dibucaine, caramiphen and eserine clearly 

within the bounds of the simple ring group, due to associations 

with xylocaine, tetracaine and procaine. Diphenhydramine and 

phenyltoloxamine are also more closely related to this group than 

to the fused ring group. 

One noticeable effect on the classification as the fragment 

size increases is the increased degree of chaining, particularly 

with some of the smaller acyclic structures which share very few 
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features with the rest of the acyclic group. As the fragment 

size increases, progressively larger numbers of these chain at 

se level 0, or at a very low level of association, and because 

these structures are very poorly predicted this accounts for 

the gradual lowering in the prediction level in moving from 

simple pairs through to octuplets. For example, structures 

such as methanol, acetone and propanol form strong associations 

in the acyclic group in the simple pair case and are all reason­

ably well predicted in this case. Isopropanol which clusters 

separately with propanol is also well predicted. Augmented pairs 

give a slightly less satisfactory result for these structures, 

and methanol is now completely dissociated from the acyclic group 

and is very poorly predicted. Acetone and isopropanol are also 

dissociated, but form a separate cluster further along the' 

hierarchy and are well predicted as a result. Propanol remains 

within the acyclic group but now associates with the higher 

alcohols present, all of which have much lower log (MDC) values. 

Finally, using the two largest bond-centred fragments acetone, 

methanol and isopropanol all chain at very low levels and are 

all very poorly predicted. An interesting result with octuplets 

compared with the smaller fragments is that urethane and ethyl 

ether, which leave the acyclic group when augmented pair and 

bonded pair descriptions are used rejoin it again in this case. 

This leads to a slight improvement in the prediction levels, but 

these are not as good as the predictions obtained for these 

structures using simple pairs. This is because of the absence in 

the acyclic group at the octuplet level of description of the other 

smaller acyclics of lower activity, and the resulting much lower 

group average log (MBe) value, on which the prediction of these 
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structures is based. Examples of some of the above predictions 

are given in Table 8. 

In contrast with the above fragment types atoms do not give 

a clear separation of cyclic and acyclic derivatives and fail to 

identify the groups which are usually regarded to be of chemical 

interest, such as the normal alcohols, and the simple benzene 

derivatives. They are unable to separate the various structural 

isomers present, such as propanol and isopropanol, and phenyl­

toloxamine and diphenhydramine, and they also give some unsatis­

factory associations between ring and chain structures of compar­

able size e.g. hexanol and phenol, and heptanol and benzyl alcohol. 

other structures they are unable to separate are those which have 

identical molecular formulae except for the number of hydrogen 

atoms present, for example, thymol and 2-naphthol. 

Many of the associations, however are good from a prediction 

point of view. This is because the hydrophobic and hydrophilic 

groups important for activity are present in a wide range of 

structural types, and atoms have been able to recognise many of 

the structures with similar functional groups, without identifying 

the wider structural differences which would normally separate 

these. For example, eserine which has no strong associations in 

other cases, and is poorly predicted by the larger fragments, 

clusters with tetracaine, which has a dissimilar ring system, but 

a reasonably close level of activity. These structures have a 

number of important features in common, such as similar amine, 

tertiary amine, carboxy and aromatic groups. The structures which 

lie closest to eserine on the activity scale in question are quinine­

and caramiphen, but these are not as strongly associated due to 

larger numbers of carbon atoms. Quinine is also well pr~dicted. 
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With the more detailed fragment descriptions this saturated 

bridged ring structure chains at a low level, but using atoms 

it clusters with dibucaine, which has a similar high level of 

activity. The two structures have dissimilar characteristics 

overall, but they share a quinoline ring system, and they both 

show the features considered important for local anesthetic 

activity i.e. the presence of an aromatic component separated 

from a hydrophilic group by a carbon chain. 

Some of the smaller, less active structures have also been 

better predicted in this case, such as thymol, 2-naphthol and 

diethyl ether. The two phenols form a separate cluster and are 

well predicted. These chained in the case of the larger fragments. 

Diethyl ether clusters with butanol, which has a very close level 

of activity, and this previously formed only very weak associa-

tions in the acyclic group. Butanol, which normally clusters 

with the higher alchols, is also better predicted in this case, 

and hexanol, which clusters with phenol is another of the alcohols 

which is well predicted. Not all of the associations are more 

successful for prediction, for example, benzyl akohols association 

with heptanol instead of the simple benzene derivatives, results in a 

very poor prediction for this structure. However, the large number 

of good associations has resulted in an overall improvement in the 

level of prediction, and examples of these are given in Table 9. 

In the penicillin sample, the penicillin nucleus has had 

very little influence on the classifications produced except to 

increase the overall levels of similarity obtained between 

structures. The clusters have been determined largely by the 

nature of side chain structures, and as these cover quite a wide 
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range of structural types the sample in this respect resembles 

the structurally diverse group of local anaesthetics. Another 

point of similarity between the two samples is that similar 

levels of activity are often shown by quite dissimilar 

chemical types. 

The penicillin side chain structures may be divided into 

five main categories, namely, a small group of acyclic structures. 

and a larger group of cyclic compounds which divides into groups 

of simple benzenes, naphthalenes, quinolines and thiophens. Each 

of the fragments used, except atoms, have been successful in 

identifying these different groups, and similar overall arrange­

ments have been produced in each case. Octuplets fragments give 

a slightly sharper resolution of clusters, and the naphthalene 

structures in this case are broken down into a number of smaller 

groups which are separated to some extent. The remaining groups 

are still clearly defined, however, and the only other difference 

in this case is the separation of the thiophen group from the 

remaining cyclic structures by the small acyclic group. 

Within each of the main groups the fragments show a few 

variations which could be of importance, the main differences 

being found in the simple benzenes, which make up the largest 

part of the cyclic cluster. A large proportion of the structures 

in this group are simple halogen derivates, and the smallest 

fragment used i.e. simple pairs, tends to cluster these 

according to the number of halogen substituents present. Thus, 

the non-substituted derivates are separated from the monohalogen 

derivates and these in turn are separated from the di- and tri­

halogen derivatives. The different halogens are separated, but 

no distinctions are drawn between ortho, meta and para ring deriva-
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tives of a similar type, and these often cluster together at se 

level 1, e.g. the ortho, meta and para fluoro substituted pheno-

xymethyl derivatives 52, 53 and 54, and the ortho, meta and para 

fluoro substituted a-phenoxyethyl derivatives 60, 61 and 62. At 

the other end of the scale octuplets tend to cluster the simple 

benzene group according to the type of benzene derivative in 

question, and in particular the nature of the connecting side 

chain to the parent structure. This latter feature is often of 

predominent importance, and brings structures involving different 

numbers of halogen substituents within the same cluster. For 

example, a welld~ined cluster is formed between the various 

chloro substituted a-methoxybenzyl derivatives, and another cluster 

is formed between two a-aminobenzyl derivatives, one of which 

involves a single chlorine substituent in the para position to the 

eH~ group and the other, two chlorine substituents in the meta 
L 

and para positions. The various mono- and di-halogen derivatives 

which involve similar connecting side chains are again clustered 

together as in the simple pair case, but now a distinction is 

drawn between the ortho and the meta and para ring derivatives. 

The latter pair are still inseparable and the ortho derivative 

usually joins these at a slightly lower level. 

The remaining, medium-sized fragments perform some~here in 

between these two extremes. The augmented atom classification 

corresponds more closely to the simple pair result, and usually 

brings together the structures involving similar numbers of 

halogen substituents. It is also unable to distinguish between 

ortho, and.meta and para ring derivatives. In this case however, 

sharper distinctions are made between the different types of 
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benzene derivatives, for example, simple pairs are unable to 

separate the structural isomers 41, 42, 57, 58 and 59, some of 

which are dichloro substituted a-methoxybenzyl derivatives, and 

others dichloro substituted a-phenoxyethyl derivatives, but these 

two groups are clearly separated in the augmented atom case. 

The bonded pair result is similar in many respects to the 

octuplet result, but it also retains some of the characteristics 

of the augmented atom classification. Thus, many of the clusters 

formed involve only mono- or di-halogen derivatives but in this 

case, the position of the halogen group has often been a more 

significant factor than the type of group. This has given rise 

to a number of mixed halogen groups, such as the cluster formed 

between the a-methoxybenzyl side chain structures 39, 40 and 45, 

which are meta substituted bromo, chloro and fluoro derivatives 

respectively. Another example is the cluster formed between the 

two a-methoxybenzyl derivatives 42 and 44, which are both substi­

tuted in the meta and para positions to the CH2 group, and one of 

which is a dichloro derivative and the other a chlorofluoro 

derivative. Halogen derivatives of a similar type, however, are 

still brought together in cases where the overall structural 

features are similar, although as with augmented pairs and octuplets 

ortho substituted derivatives are now distinguished from meta and 

para derivatives. In this case quite wide separations have oft~n 

arisen between these isomers. For example, the ortho fluoro sub­

stituted a-phenoxyethyl derivative no longer clusters with the 

meta and. para derivatives in this group but clusters instead with 

the ortho chloro substituted derivative" Another example is the 

ortho fluoro substituted phenoxymethyl derivative, which is more 
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closely associated with the non-substituted derivative in this 

group than with the corresponding meta and para derivatives. 

In the simple benzene cluster therefore there are a number 

of basic similarities between each of the classifications, but 

there are also a number of important differences. Each of the 

results, is sensible on a chemical basis, and the variations 

arising have had very little effect on the overall levels of 

prediction obtained. From a structure-property viewpoint there­

fore it is impossible to say which of the fragments, if any, is 

of greatest value •. It is also difficult to say which of the 

structural arrangements is the most satisfactory. However, the 

differences here could be quite important in a retrieval Situation, 

and the choice of suitable fragment in this case could depend on 

the particular application. 

Atom descriptions produce a very different classification 

result, . and as in the anaesthetics they give rise to a larger 

number of associations between quite dissimilar structural types. 

Some of the very close associations have been retained, for 

example, between the various structural isomers, such as the 

simple benzene derivates 23 and 24, and 32 and 33, and the 

naphthalene derivates 68, 69 and 70. A number of the closely 

related halogen derivatives have also been clustered, as have 

several of the acyclic derivatives. However there is no longer 

a clear division between the different chemical groups discussed 

above, and a large number of associations arise between dissimilar 

ring types, and between ring and chain structures of a similar 

size. For example, the n-heptyl side chain derivative now 

clusters with the non-substituted benzyl derivative, and the 
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a-amino derivatives of these two side chain structures also 

cluster together. The longer alkyl chains cluster with the 

larger ring derivatives, and some of the smaller ring systems 

incorporating alkyl side chains also make associations with 

these, such as the association between the aa-diethy1benzyl 

derivative and one of the naphthalene derivatives. 

The associations using atoms have led to better predictions 

in a few cases, but there have been fewer improvements in this 

case compared with the anaesthetics, and there has not been an 

overall reduction in the level of prediction obtained. The 

less satisfactory associations are due to the fact that the 

structures which are most similar on a size bosis~ in this 

particular sample do not incorporate the most similar functional 

groups as often as they did in the anaesthetics. However, the 

associations have not led to a noticeable drop in the prediction 

level, and it is much more difficult in this sample to rational­

ise the structure-activity relationships, and to explain the 

fairly constant level of prediction in terms of individual 

associations and the hydrophobic and hydrophilic groups arising, 

which are thought to be important for serum binding. 

3.5 Conclusions 

Tne results of these investigations show that the 

combination of structure handling techniques originally 

developed for information storage ana retrieval, ana numerical 

taxonomic techniques developed for biological classificot10n, 

lead to classifications which are sensible from a general qualit­

ative chemical point of .view. The metnods developea g~ve SUD­

Stant1al agreement between the classifications and SCs ana Des 
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based on the structure diagram, and the available physical and 

biological properties. Predictions simulated on the basis of 

the classifications, SCs and DCs were found to be in good agree­

ment with observed property values. This result is encouraging 

as it shows that structure-property relationships implicit in 

the data can be brought out without the construction of a 

physical model defining explicitly the relationships betwpen 

the structure diagrams and the observed properties. The 

results therefore suggest that the method could be valuable 

for property prediction, as well as for file handling purposes. 

The initial investigations showed that it is possible to 

obtain sensible clusters under very simple conditions, applying 

simple matching coefficients to binary representations of the 

structure diagram. They indicated however that this type of 

numerical representation of structures is feasible provided 

the different occurrences of different fragment types in a 

structure are described and a distinction is made between 

cyclic and acyclic substructure~. These details were therefore 

included in all subsequent investigations. 

In the comparison of resemblance measures the results 

obtained for 39 local anaesthetics showed that it is possible 

with a relatively simple classification approach to obtain 

meaningful chemical groupings in a quite diverse range of 

structural types. Most local anaesthetic agents considered 

acceptable for clinical purposes incorporate a lipophilic 

aromatic residue and a hydrophilic amino group connected by 

an intermediate hydrocarbon chain. It has been shown, however, 

that a wide variety of structures exhibit local anaesthetic 

activity and in the present sample structures range fran very 
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simple a1iphatic molecules such as methanol and chloroform to 

fairly complex structures such as eserine and caramiphen. 

The performances of the similarity and dissimilarity coeff­

icients and the classifications derived from them were compared, 

as in the investigation of numerical representations, using the 

relationship between structure and property to simulate the 

prediction of log (MBC) values. However, the difficulty with 

this approach in structurally diverse samples in which similar 

chemical types do not always have similar activities, is that 

prediction levels do not necessarily reflect the type of classi­

fication arising. Therefore this may not be the most useful 

method of evaluation. Even so, some agreement was obtained in 

the present sample between predictive performances of coefficients, 

and the classifications derived from them, and the type of 

structural arrangements produced. The best results were obtained 

for the simple matching coefficients, based on binary represent­

ations of fragments, and the simple distance function which uses 

a quantitative fragment description. These measures gave better 

classifications and also better predictions than the functions 

involving probabilistic weighting, where the significance of 

each fragment is related to its probability of occurrence. The 

simpler measures also showed that the coefficients based on more 

detailed quantitative fragment descriptions performed no better 

than those based on simple binary representations in which fragment 

occurrences are taken into account. Another important observation 

was the very poor result given by the standardised distance function 

compared with the non-standardised measure, and this suggested that 
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the standardisation process had masked the important differences 

between fragments. Thus, both character standardisation and 

character weighting procedures used in this study have an adverse 

effect on the result. 

The amino acids and penicillins showed similar relative 

performances between coefficients, and this suggests that the 

differences indicated between measures are of some significance. 

However, in each sample, many of the predictions were close, 

and considering the small scale of application and the very 

approximate method of evaluation used, additional studies would 

be required to verify the observed trends. The probabilistic 

measures performed particularly poorly, and in this case it 

would be useful to investigate whether other weighting criteria 

would be more appropriate, for example information-theoretic 

character evaluations, where the significance of a character 

is related to the total number of alternatives possible for 

that character, expressed in terms of a probability function. 

In the final investigation, a simple matching coefficient 

and binary representation were used to test the classification 

performances of a number of two-dimensional substructural 

definitions. Again, sensible chemical arrangements were obtained 

using a wide range of definitions, and very simple fragment 

descriptions were found to be as effective as more detailed 

definitions in some cases. On this occasion, however, there was 

not always good agreement between the chemical significance of 

classifications and their predictive performance. For example, 

atom descriptions gave the least satisfactory structural arrangements 
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and poor predictions in the amino acid and penicillin samples, 

but a good prediction in the structurally diverse group of local 

anaesthetics. In this sample the functional groups which are 

important for activity often arise in compounds showing quite 

wide structural differences overall, and atoms have been more 

successful in some cases in identifying these groups. However, 

as the results obtained for the two larger samples show, this 

is not necessarily the case and the suitability of this fragment 

will depend on the particular relationships arising between 

structures in the data sample in question. 

The remaining fragments gave similar classifications in each 
again 

sample but/showed some interesting variations in predictive per-

formance. The wider differences arising in the two smaller 

samples could be explained satisfactorily. These were not the 

outcome of wide differences in structural arrangement, and the 

prediction levels in these groups appeared to be a lot more 

sensitive to small changes in the classification than the levels 

produced in the larger penicillin sample. This suggested that 

the differences were not of any real significance. On the other 

hand there appeared to be some consistency in the two smaller 

groups between prediction and classification performances, with 

the fragments giving the best predictions also producing a slightly 

sharper resolution of structures, and this could mean that the 

differences shown between samples, were of some importance. However, 

as each sample has performed differently and there are no statistical 

tests available to compare them, here, as in the comparison of 

coefficients, investigations would be required on a much wider scale, 

using a much larger range of structures and properties, before any 
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trends in the data could be treated with confidence. Without more 

definite guidelines of this nature, the present investigation 

illustrates the importance of considering a range of descriptors 

for any particular application. As in the previous study of co-

efficients, the classifications obtained by many of the fragments 

were close, and the 'best' of these from a chemical point of view 

could depend on the application or even the interests of the in-

vestigator. Finally, it has been shown that the predictive value 

of the calssification may not be the most useful criterion for 
---

evaluating method performance, and, depending on the aims of the 

classification, the structural arrangements could be more useful, 

especially in comparative studies. However, the results suggest 

the relationships between structure and property data using small 

samples may be influenced by the particular structures and property-

values arising, and in larger samples more consistent results and 

a closer agreement between the predictive performances of clusters 

and their chemical significance may be obtained. 



CHAPTER 4 

The Development of an Empirical structure - Property 

Correlation Method based on Regression Anal¥sis 



4.1 Introduction 
o~t 

This chapter describes the work carried/on a new empirical 

structure-property correlation method based on regression analysis. 

Property data is related directly to the structural features of the 

molecule, and this is the first statistical model of this type re-

ported to employ automatic procedures of substructural analysis, and 

to relate property data to the structural characteristics of the 

complete molecule. 

The approach is simple, and its advantage over other parametric 

approaches based on regression analysis have been discussed in 

Chapter 2. Probably the most important feature of the method is its 

utilization of all the structural features present, and its resulting 

ability to handle structures which do not belong to the same chem~ca1 

series. As discussed earlier, most other approaches are restricted to 

the investigation of side chain structures and to the problem of 

property optimisation within a given lead series. In a recent investi-

214 gation Nys and Rekker have also looked at a wider range of struct-

ural features, using a similar regression model to determine fragment TI 

values. However, they do not base their analysis on an automatic 

breakdown of the structure diagram, and structural features are not 

investigated systematically, but chosen on the basis of assumed che-

mical significance. One of the problems with the more usually con-

sidered semi-empirical structure-property methods which rely on phy-

sicochemica1 property data is the reliability of calculated property 

values and the frequent need to measure these directly. This is no. 

problem in the empirical case, and with the increasing costs of pre-

. d· 11 . th h t· 1· d tr· 158 par~ng new compoun s, espec~a y ~n e p armaceu ~ca ~n us ~es, 
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this may be an important factor governing the choice of methods in 

future applications. 

The model developed is subject to the usual limitations asso­

ciated with the use of regression analysis, and the important re­

striction on the sample to feature ratio has meant that investiga­

tions have not been possible on the small group of amino acids. In 

this sample the variety of sUbstructures exceeds the number of struc­

tures even when very small fragments are considered. The local anaes­

thetics and penicillins are more suitable data sets, and it has been 

possible in these to consider a variety of substructural definitions. 

As the number of substructures increases with the fragment size, a 

wider range of fragments could be considered in the larger of the 

two groups. In both samples it has also been possible to extend the 

range slightly in cases where the number of substructures does not 

greatly exceed the number of structures, by discarding features common 

to each structure, and features which always arise together. This has 

no effect on the regression soultions. Where necessary some very 

highly correlated variables have also been excluded and this should 

affect the result only slightly, because of the large numbers of 

variables us~ally employed. 

An attempt is made to estimate the power of the method for 

property prediction by simulating the prediction of unknown property 

values using the 'hold-one-out' technique. This, as discussed in 

Chapter 2, gives a more realistic assessment of predictive prn~er than 

the regression equations in which all the structures are included, 

as each structure in the second case is influenced by its own observed 
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value. In applying this technique the structures under investigation 

are partitioned into two sets, the 'test set' consisting of the 

single structure to be predicted and the 'design set' consisting of 

all other structures in the group. The regression analysis is then 

carried out'on the design set and the regression constant and co­

efficients obtained are used to 'predict' the property of the structure 

in the test set. 

In the earlier attempts to correlate structure and property 

data mathematically, simple linear combinations of structural or 

physicochemical parameters were usually considered. However, it 

eventually became evident that the addition of interaction terms 

to such equations could sometimes lead to a better correlation~15-217 

In the present case higher order terms would take into account very 

approximately the interaction between substructures and it is possible 

that these will lead to similar benifits in the correlation. Two 

such expressions have therefore been considered to see whether these 

give a significant improvement over the linear result. 

As with the classification work, the results obtained from such 

small investigations as these may not be of general significance. 

However, in this case it is possible to say whether the results are 

significant from a statistical point of view, and this puts the 

approach at a considerable advantage over the non-parametric methods. 

An indication is also given of th~ likely contributions to activity 

of individual substructures and a very important feature of the 

method is that it is possible to estimate the significance of these 

contributions and to compare them on a statistical basis. 
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4.2 The Empirical Model 

In the basic regression model it is assumed that the property 

under investigation, y, of the ith compound is related to the 

structural features present in this compound by the expression, 

n 
= L bjXij + const 

j=l 

where there are n types of structural fragments in the set of struc-

tures, and x .. is the number of times that the jth fragment occurs 
~J 

in the ith structure. The regression coefficient, b., for the jth 
J 

feature represents the contribution of this feature to the property 

in question, and both this and the regression constant (const) are 

determined by the analysis. 

In the anaesthetics the following two expressions were also 

considered 

(2) 
log (MBC) i = 

n 
L 
j=l 

b,x
i

, + Cj(X, ,)2 I + const 
J J ~J 

where b., x .. and const are as defined above in (1), and c, is the 
J 1J J 

regression coefficient of the squared term for the jth fragment. 

(3) 

log (MBC) , 
~ 

n n-l 
= L b.x

i
. + L 

j=l J J j=l 
+ const 

where x .. , b., c. and const are as defined above, xik is the number 
~J J J 

of times of the kth fragment occurs in the i th structure, where l<k<n, 

and d
jk 

is the coefficient for the cross product term relating to 

fragments j and k. The first of these expressions is a quadratic 

which includes only squared terms, whilst the second includes both 

these terms and cross-product terms, i.e. a full quadratic. 
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4.3 Method 

4.3.1 The Input Matrix 

The regression analysis was carried out automatically using 

21q a computer manufacturers statistical analysis programs, and an 

example of the type of input matrix required by the regression 

package is given in Figure 33. This is also derived automatically. 

In it structures are identified by row numbers, and for each structure 

a frequency vector is set up giving the frequency of occurrence of 

each substructure present in that structure. These vectors are very 

similar to the 'distance' vectors, used for the computation of 

distance coefficients in the classification work, and they are ob-

tained by a very similar process. Thus, structures are input to the 

computer as redundant connection table records and these are first 

analysed to determine the different fragment types occurring. The 

fragments are then listed and used to set up the required frequency 

vectors for regression. Property values are included in the matrix 

as an additional variable, and the information to be used as the 

dependent variable, in this case the property values, are identified 

on input to the regression programs. 

4.3.2 Dependent Variables 

The property data used as the dependent variable in .these in-

vestigations were the local anaesthetic and serum binding property 

values used previously to test the predictive performances of the 

classifications. As before, serum binding values were considered in 

the form log (B/F), where the amount of penicillin bound to human 

serum (B), is taken as a ratio of the amount left free, (p). Thus 

structural features with positive regression coefficients increase 

serum binding, whereas they decrease local anaesthetic activity. 
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Independent Variables 

The different substructures used in this investigation have 

already been described in Chapter 3. 

In the anaesthetics, regressions were carried out using atom, 

simple pair and augmented pair descriptions. Attempts to use larger 

fragments in this smaller sample failed because the number of 

variables required to represent the structures in these cases great­

ly exceeded the number of structures. An automatic analysis of the 

39 structures showed them to contain 4 different atom fragments, 16 

simple pairs and 43 augmented pairs. The augmented pair fragments 

were reduced to the required limit by excluding a number of perfect­

ly correlated fragments. Two groups of three fragments and three 

groups of two fragments were found to have within group correlation 

coefficients equal to one, and by excluding all but one of the frag­

ments from each of these groups the number of variables was reduced 

to 36. 

In the penicillins, augmented atoms, bonded pairs and octuplets 

were considered in addition to the fragments used above. Excluding 

where they arose the fragments of the parent structure which occurred 

with the same frequency in every structure, the group was found to 

contain 7 different atom fragments, 14 simple pairs, 33 augmented 

pairs, 45 augmented atoms, 51 bonded pairs and 97 octuplets. The 

octuplet set was reduced to the necessary limit by excluding per­

fectly correlated fragments, as described for the anaesthetics. It 

was possible to exclude 26 such fragments in all, giving a final 

total of 71 variables. 
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The quadratic expressions used in the anaesthetics involve 

much larger numbers of variables and it would not have been possible 

to consider these in every sample and for every substructure. In 

this sample they gave rise to too many augmented pair variables 

for analysis, leaving atoms and simple pair descriptions. Atoms, 

however, do not show up any structural characteristics and the ex­

pressions were considered to be of less value with this definition. 

They were therefore only applied in the simple pair case. 

Using expression (2) it is only necessary to introduce 

squared terms for the variables for which more than two different 

values occur in the given set of structures. Ten of the simple pair 

fragments arising in the anaesthetics fall into this category and 

including these gave a total of 26 variables in all. Expression (3) 

gives rise to a total of 152 variables, and of these 69 occur with 

the same frequency in every structure and could be considered as 

constants. Another 39 variables which belonged to groups of per­

fectly correlated variables were also excluded. This reduced the 

number of variables to 44, which was finally reduced below the re­

quired limit by excluding another 8 variables belonging to groups 

of highly correlated features, where the intra-group correlations 

exceeded 0.9. Again in this case one variable from each group was 

retained. 

The Correlations 

Structure-Property Agreement 

The regression analyses were carried out at two different levels 

of significance i.e. by including in the regression set variables 

which will give a fit at two different levels of confidence. At the 

first level,usually referred to as the 99% level,there is effectively no 
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confidence limit, and each independent variable is forced into 

the regression set, providing its pivot element satisfies certain 

b " "t" 218 as~c cr~ er~a. At the second level a stepwise procedure is 

followed, in which structural fragments are introduced in decreasing 

order of their pivot elements, and only those with coefficients sig-

nificantly different from zero at the 10% level are retained. 

The different correlations arising in each sample are compared, 

and the significance of each correlation determined using the F-test. 

To test the significance of individual correlations F-values were 

computed as follows: 

F = 

where R is the multiple correlation coefficient, n is the numbers of 

structures, (m-1) is the number of independent variables included in 

the regression (Yl)' and (n-m) is the numbers of degrees of freedom 

(Y2). For two correlations obtained within the same data sample, F 

values were computed as follows: 

F 

where reI is the residual error obtained using correlation 1, Yl 

is the number of degrees of freedom for correlation 1 and reI < re2. 

From the values of F, Yl and Y2 the corresponding significance 

level can be found from statistical tables by checking against the 

appropriate threshold values of the F distribution. The 5% signifi-

cance level is usually considered the lowest limit of confidence for 

general statistical purposes,and correlations which did not differ 

significantly at this level were considered identical. At this level 

there is a 1 in 20 probability that the given result could have arisen 

by chance. 
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Summaries of the analyses obtained in each sample are given 

in Tables 10 and 11. In all cases high correlation coefficients 

were obtained and F values were of high significance. The results 

at the 10% level do not differ significantly from those at the 99% 

level, although these give a slightly lower residual error in most 

cases and therefore provide a slightly better explanation of the data. 

The correlations at this level are discussed below. 

In each sample there is a gradual improvement in the result as 

the fragment size increases. Thus the lowest residual error in the 

anaesthetics is obtained using augmented pair descriptions, and the 

agreement between structures and properties in this case is slightly 

bet~er than in the simple pair case. The two correlations differ 

at the 5% level. Atom descriptions give a very poor residual error 

in comparison with these two fragments, and the correlation in this 

case differs significantly from the simple pair result at the 1% 

level, and from the augmented pair result at the 0.1% level. 

Quadratic terms introduced with simple pairs do not lead to a 

noticeable improvement. Neither of the cQrrelations differs signi­

ficantly from the linear result at the 5% level, and when only squared 

terms are introduced (expression 2) the residual error is increased 

slightly. The full quadratic (expression 3) gives a better result 

and leads to a marginal improvement over expression 1. However, both 

correlations again differ from the augmented pair result at the 5% 

level, and in the case of expression (2) a difference is indicated 

at the 1% level. 

The penici11insshow a similar gradual improvement in the corre­

lation as larger fragments are considered. A few differences arise 
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between the medium sized fragments and more significant differences 

in the extreme cases. AtonlS again give the least satisfactory 

correlation and the highest residual error. Simple puirs lead to 

only a slight improvement in this case, and the differences between 

these two correlations is not significant. Augmented atoms, aug­

mented pairs and bonded pairs all give lower residual errors, and 

correlations which differ from the atom and simple pair results at 

the 1% or. 0.1% levels. These medium sized fragments give very simi­

lar results and no differences are indicated between them at the 

5% level. Octuplets give the lowest residuul error and thus the 

most satisfactory explanation bf the data. The correlation in this 

case differs from the atom and simple pair results at the 0.1% level, 

and the augmented atom and bonded pair results at the 5% level. 

However, augmented pairs, which give a slightly lower residual 

error than bonded pairs and augmented atoms do not differ signi­

ficantly from the octuplet result. 

Use of the Correlations for Property Prediction 

Property predictions, simulated by the 'hold-one-out' tech­

nique, were carried out for each of the local anaesthetics, and 

for a random sample of 20 of the penicillins (see Appendix 1). 

Augmented pair descriptions were used in the local anaesthetics. 

In the penicillins, in addition to considering the best correlation 

result using octuplets, predictions were also carried out with some 

of the medium sized and smaller fragments to see in which way the 

different agreements between structures and properties influence 

the levels of prediction obtained. 
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A property value was obtained for each test set structure by 

summing the appropriate regression coefficients from the design 

set, as shown in the examples given in Figures 34 and 35. Fragments 

present in the test set structure which are absent in the design 

set, or which have been excluded from the regression, are assumed 

to have zero coefficient values. 

The predictiornfor the anaesthetics are summarized in Table 12. 

This shows that the regression coefficients obtained at the 10% sig­

nificance level give a much more satisfactory result, and the pre­

dicted values at this level are listed in Table 13. Eight of the 

structures present contain unique augmented pair fragments, which 

meant that insufficient parameters were available for prediction 

from the analyses which excluded them. In these cases it is neces­

sary either to estimate the missing values or to assume they are 

zero. They were assumed to be zero in the present case. This re­

sulted in much less satisfactory predictions for the structures in 

question (the predicted values wereslightly better at the 99% level), 

and removal of these from the set led to a reduction in ti1e sum of 

squares ratio between observed and predicted log (MSC) values from 

0.27 to 0.13. The extent of the agreement between observed and 

predicted property values at this significance level is shown in 

Figure 36. structures containing unique fragments are marked in 

parenthesis, and the 450 line, which would mark the correlation 

if predictions were completely accurate, is also indicated. The 

mean- deviation between observed and predicted properties for the 

group which excludes the structures containing unique fragments is 
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0.45 log (MSC) units, compared with a range of 6.95 and a mean 

deviation for observed values of 1.43. 

The results show the predictiornto be in reasonably good 

agreement with observed property values, although as expected, they 

are not as good as the values estimated from the full regression 

analysis. The correlation between observed log (MBe) v.alues and 

the values estimated from the full analysis at the 10% level is 

shown in Figure 37, and summaries of the property deviations in 

this case and at the 99% level are given in Table 12. The best 

estimated property values from the full regression are also listed 

with the best predictions in Table 13. These give a sum of squares 

ratio of < 0.01 and a mean deviation between observed and estimated 

property values of 0.07 log (MSC) units. 

The predictions for the 20 penicillins are summarised in Table 

14. These are also reasonably good, and in this sample very similar 

results are obtained at the two different levels of significance, 

with the 99% level giving a better prediction in some cases. Regression 

coefficients obtained at higher confidence levels are in general ex­

pected to give more reliable estimates of the different substructural 

contributions to activity. In the present case however tllere are no 

detectable differences between the correlations at the 10% and 99% 

levels and the very close predictions obtained at these levels is 

not an unreasonable result in view of this. The d~ferent fragment 

types also perform very closely, and this is perhaps a more surpris­

ing result in view of the statistical differences indicated between 

the correlations obtained with these fragments. Octuplets, which give 

the best correlation result, give the least satisfactory predictions 
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at both significance levels, and augmented atoms and simple pairs 

give the best levels of prediction. Using the larger fragments more 

of the structures in the sample used for prediction contain unique 

fragment descriptions, but these structures, although less satis­

factorily predicted in many cases, do not necessarily give rise to 

the worst pre0ictions in the group. The slightly lower prediction 

levels given by bonded pairs and octuplets therefore cannot be satis­

factorily explained on this basis. As mentioned above however the 

predictions are all very close and the particular variations arising 

in this small sample may not be of any practical significance. Possibly, 

investigations with larger samples, using larger design sets, in which 

all the substructures required for prediction are available at all 

times, would provide better indications of any important differences 

existing between fragments. 

The best predictions, using augmented ato~s at the 99% level are 

plotted against observed log (B/F) values in Figure 38. In this case 

two of the structures contain unique fragment descriptions, and 

these are marked in parenthesis. They have been reasonably well pre­

dicted here, but give less satisfactory results in the bonded pair 

case. Other structures which are poorly predicted by each fragment 

contain substructures which have been excluded from the regression 

during the analysis of the design set. However, they can~ot be ex­

plained on this basis alone, as such fragments are also present in 

some of the well predicted structures, and these are therefore more 

difficult to account for. The two positional isomers, structures 23 

and 24, give identical predictions in each case. This is because they 

have identical observed serum binding measurements and under the par-
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ticular conditions of the analysis they also have identical 

representations, i.e. none of the fragment types considered, in­

cluding the larger definitions, are able to distinguish between them. 

As in the previous sample the predicted property values, although 

reasonable, are not as good as the values estimated from the full 

structure set. The best agreement in this latter case, for the same 

sample of 20 structures, is shown in Figure 39, and the property de­

viations for each of the fragments used for prediction are sUlnmarised 

in Table 14. These give a lowest sum of squares ratio of 0.044 and 

a lowest mean deviation of 0.102 log (B/F) units, compared with lowest 

values of 0.126 and 0.187 log (B/F) units respectively in the pre­

diction case (sample range 2.27, mean deviation for observed values 

0.54). The estimated and predicted property values in these two cases 

are listed in Table 15. 

Interpretation of the Regression Solutions 

In addition to giving approximate estimations of unknown pro­

perty values, the regression coefficients obtained from the analyses 

should also give some indication of the influence of different sub­

structures on the property in question. Except with atoms the sub­

structural contributions obtained in each sample make sense chemically, 

and more detailed accoun~of two of the analyses obtained at the 10% 

significance level are given below. 

Table 16 gives the augmented pair results in the anaesthetics 

sample, and Table 17 the augmented atom contributions in the penicil­

lins. In this second sample octuplets, which give the best overall ex­

planation of the data, show a wider variety of chemical features in 

fragment definitions, and the regression coefficients in this case are 

much more difficult to interpret on a chemical basis. The medium 
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sized fragments are more straight-forward and augmented atoms in 

particular show up a number of important functional groups which 

enable closer comparisons to be made with other similar investigations 

reported in this area. 

In the anaesthetics all except two of the regression coefficients 

are significant at the 1% level, and show the fragments containing 

carbon-carbon bonds tend to increase activity (negative coefficient 

values), whereas carbon-oxygen containing fragments in general de-

crease activity. Fragments containing carbon and tertiary nitrogen 

also tend to increase activity. However, those containing carbon and 

primary or secondary nitrogen bonds have coefficients which are not 

significantly different from zero at the 10% level, and these are not 

included in the regression. The chlorine containing fragment gives a 

negative coefficient, and its t statistic shows it to be a significant 

contributor, although it only occurs in one structure. The t-values 

listed show that the fragments with the highest coefficient values 

are not necessarily the most significant on statistical grounds, as 

this will depend on the way the fragments are distributed through 

the sample. 

These results are consistent with the findings of Agin et al,209 

219 and of other authors who report that local anaesthetic activity de-

pends on the hydrophobic nature of the compound, with aromatic and 

other hydrophobic groups tending to increase activity and hydrogen-

bonding groups to decrease it. To test whether the differences bet-

ween coefficients w~re of statistical significance, pairs of coeffi-

cient values were compared using the following expression: 

s (b.,b.) 
~ J 

j s/ + 

s 
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where S. and S. are the standard errors of the regression coeffi-
lo J 

cients for fragments i and j respectively, s is the residual error 

of the regression and C .. is the normalised cross-product term from 
loJ 

the inverse cross-product matrix relating to fragments i and j. The 

significance level for the given fragment pair is then found by 

checking the value S(b., b.) against values of Students t distribution 
lo J 

at the appropriate number of degrees of freedom, (i.e. the number of 

degrees of freedom for the given regression analysis). 

During the comparison of coefficients particular attention was 

given to differences between similar substructures arising in chains 

and rings e.g. fragments lC-C2 (chain) and lC-C2 (ring), and 2C-Ol 

(chain) and 2C-Ol (ring) etc., and to differences between carbon-

carbon chain fragments involving different eegrees of substitution. 

None of the pairs examined, however, were found to differ significant-

ly at the 5% level, or even at the 10% level. On statistical grounds, 

therefore, the different fragment contributions are equally signifi-

cant and this means that the coefficient values cannot be taken as a 

measure of the relative importance of substructures. The individual 

contributions, however, can be regarded with some confidence as these 

are of high statistical significance and the different contributions 

are also largely in agreement with established trends. 

Similarly in the penicillins the regression coefficients obtained 

are sensible from a chemical point of view, and agree with other re-

cent · t· t· 210,220 J.nves loga loons reporting on the relationships between 

the hydrophobic nature of penicillin side chain structures and serum 

binding properties. Thus, results for augmented atoms in Table 17 

show how the substructures containing hydrophilic groups, such as the 
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hydroxyl and the primary amine groups, tend to reduce serum binding 

(negative coefficient values) ,and fragments with hydrophobic proper­

ties such as the aromatic substructures, to increase binding. All 

except four of the coefficients are significant at the 1% level and 

two of these remaining four are significant at the 2% level. Once more, 

however, none of the coefficients differ significantly from each other 

at the 5% level, and the different contributions to serum binding must 

again be interpreted tentatively. The larger bond-centred fragments 

considered in this case also fail to show up any statistical differences 

between fragment contributions. 

4.5 Conclusions and Comparisons with other Regression Approaches on the 

same Data 

The structure-property correlation method described here makes 

yse of the technique of regression analysis and some techniques of 

substructural analysis to investigate a number of simple, empirical 

relationships between the structures and properties of organic compounds. 

The correlations obtained are very encouraging in view of the large 

approximation~ involved, and the two data sets used demonstrate the 

ability of the method to handle both related and dissimilar structural 

types. 

Statistical tests were applied where possible to estimate the 

significance of the correlations and to test the differences arising 

between fragment performances. In cases where statistical signficance 

is not indicated this does not mean that the results are not of some 

practical significance, although interpretations of the data must be 

more tentative in this case. 



- 159 -

Highly significant correlations between structure and property 

data were obtained using a variety of substructural definitions. 

The strength of the relationship did not vary greatly with the type 

of descriptor, although in both samples, the larger fragments gave 

progressively better results, and, in some cases, correlations which 

were significantly better than those based on smaller definitions. No 

detectable differences were given between the correlations obtained 

at the 10% and 99% significance levels, and in the penicillins, the 

fragments giving the better correlations did not lead to better levels 

of predictiona This result may have something to do with the parti­

cular sample used for prediction, and the fact that many of the sub­

structures required were either missing from the design set, or were 

excluded from it during the analysis. Other larger samples incorporat­

ing more of the substructures required for prediction may possibly 

show up wider differences, and would enable more reliable cOTlIparisons 

to be made. 

Expressions involving quadratic terms did not lead to a signi­

ficant improvement over a linear function, and where these expressions 

were considered they did not perform as well as a linear function 

based on larger fragments. 

The smaller fragments led to the loss of some information on 

ring systems, and although the larger bond-centred fragments provided 

more detail of this nature, these were still unable to identify the 

different isomers possible, except for distinguishing ortho substi­

tuents from meta and para derivatives. Larger fragments could be 

generated automatically from connection table~representations and 

this could provide more detailed information on ring systerrsHowever, 
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such fragments involve a much wider variety of substructures, and 

the mathematical restrictions on the structure to feature ratio, 

would seriously limit their use. Ring information of this type 

would be better extracted from a linear notation, such as the 

W· L· N t t· 221-223 h 1· ·t d t·l f . ~swesser ~ne 0 a ~on, were exp ~c~ e a~ s 0 r~ng 

substituents and their location are provided. 

The method compares well with the quantum-chemical and semi-

209 empirical regression models described by Agin et a1 ,and Bird and 

Marshall,210 and it has the advantage over these approaches of being 

more generally applicable, and of requiring fewer assumptiomabout 

the mode of action of compounds. The analysis obtained for the 

anaesthetics using Agin's expression is summarised in Table 10. 

Only two of the correlations bases on structural descriptors differ 

significantly from this result, and a number of them give a slightly 

lower residual error. Figure 40 shows the agreement between observed 

and estimated log (MBe) values using Agin's expression, and Table 12 

summarises the property deviations in this case. The mean~deviation 

between observed and estimated property values is 0.18 log (MBe) 

units, and the sum of squares ratio 0.01, compared with lowest values 

of 0.07 log (MBe) units and < 0.01 in the case of structural des-

criptors. Similar results were obtained in the penicil1ins, and a 

summary of the analysis by Bird and Marshall is given in Table 11. 

As shown, a slightly lower residual error is given by a number of 

the larger fragment definitions, and the correlation based on octup-

lets differ~significantly from the semi-empirical result at the 1% 

level. The agreement between observed and estimated log (B/F) values 

in the semi-empirical case, for example of 20 structures used for 
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prediction is shown in Figure 41, and the property deviations for 

these are summarised in Table 14. The smallest deviations using 

structural descriptors are again slightly better than those ob­

tained by this method. 

Property predictions by the semi-empirical approaches were 

not available for comparison, but the above very good comparisons, 

together with the reasonably good levels of prediction obtained by 

the 'hold-one-out' technique illustrate the possible value of the 

empirical approach for predicting biological activity. 

The regression coefficients from the analyses could also be 

given a sensible explanation in terms of each substructure contri­

bution to activity. Using each fragment the individual contributions 

to activity were reasonably highly significant in most cases, and al­

though statistical differences were not indicated between substruc­

tures, the consistent results throughout and their close agreement 

with the physical interpretations given to regression equations in 

other similar investigations suggest the method could be of some help 

in rationalising the changes taking place in biological systemso 

However the method is very approximate, and several factors in­

fluence the significance of the regression coefficients. The frag­

ments used are not independent of each other, and the overlapping 

substructures derived from the redundant connection table record 

add to the dependency problem. Smaller fragments involve less over­

lap, but very small substructures do not provide a satis-

factory resolution of chemical types. This is better provided by 

larger fragments, but in addition to involving more overlap 

between substructures these eventually become more difficult 

to interpret chemically, as the functional groups con-
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sidered important for activity become incorporated in larger sub­

structures. The very approximate nature of substructural descriptors 

is another factor which limits the chemical interpretation of the 

regression equations. In view of these difficulties other more acc­

urate quantum - mechanical constants, which are more independent 

and fundamental in nature, and can be calculated more specifically 

for different positions of the relevant molecules, may be 

better starting points for mode of action studies and providing inf­

ormation on the relative importance of different groups. However, 

even the best regression models eventually have to be tested using 

more direct experimental techniques, such as NMR and ESR methods, and 

from a practical point of view the above empirical method has the 

advantage over these of being very easily applicable and applicable 

on a wide scale in information systems which already hold structure -

property files in suitable machine - readable form. It also has the 

important property of being able to handle structures which do not 

necessarily belong to the same chemical series, and has been shown 

here to handle these as effectively as closely related groups. This 

broadens the scope of the method considerably and in biological 

applications it enables the investigation of structures which do not 

belong to known active classes. Although approximate, the method could 

therefore be useful in preliminary drug design studies to point out 

compounds of potential biological interest before application of 

more accurate methods of analysis. 



CHAPTER 5 

Discussion of the Classification and Regression Approaches 

as Methods for structure - Property Correlation 
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The classification and regression methods described above compare 

very favourably with other similar structure-property correlation methods 

described in the recent literature, and the property predictions simulated 

in each case show that both hold promise as methods of prediction. The 

same set of structures and properties were used to compare the performances 

of the two approaches, and where direct comparisons were possible the 

classifications gave results which were comparable with the regressions. 

The regression equations gave slightly better predictions on the whole, 

although not in every case. Those obtained for the anaesthetics and peni­

cillin samples are summarised in Tables18 and 19. In the anaesthetics the 

best regression equation, based on augmented pairs gave a sum of squares 

ratio between observed and predicted log (MBe) values of 0.27, compared 

with values of 0.46 and 0.48 in the classification and nearest neighbour 

cases using the same fragment definition. The best classification result 

in this sample is given by atom descriptions, which as shown give a better 

prediction level than the best regression result quoted above, both in the 

nearest neighbour and single-link cluster cases. A scatter diagram showing 

the slightly better agreement reached in the nearest neighbour case is 

given in Figure 42 (compare with the best regression result, Fi~ure 36). 

Predictions based on the best regression results in the penicillins, 

using augmented atoms, simple pairs, bonded, pairs and octuplets are listed 

in Table 20 with the corresponding classification results for the same 

sample of 20 structures. Again, the results for each fragment are slightly 

better in the regression case. In this small sample very close performan­

ces are given by the two approaches. The best regression prediction is ob­

tained using augmented atoms at the 99% significance level (sum of squares 

ratio 0.126), and the best classification result, based on augmented atoms 

and the simple distance coefficient is only slightly lower than this 
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(sum of squares ratio 0.181). Scatter diagrams showing the agreements 

reached in these two cases are given in Figures 38 and 43 respectively. 

The differences occurring in the anaesthetics are slightly wider, but it 

is unlikely that the variations in predictive performances arising in 

either sample are of statistical significance. 

Froln these few investigations, therefore, it is difficult to make 

any definite statements on the relative performances of the two approaches. 

Some of the classification predictions are better than the regressions, 

but under similar conditions consistently better results are given by the 

more accurate regression method. These could well be of some significance, 

but because of the closeness of the results, it would be necessary to test 

this in other applications. With less, accurate property measurements the 

interpretation of the regression solutions is more limited, and where only 

qualitative (nominal or ordinal) property measurements are available, the 

classification approach may be more appropriate. This point is discussed 

in Chapter 2. Regression analysis, however, may still be applied in these 

172 cases, and although the individual substructurel contributions to acti-

vity have less meaning here, it is possible that the regression equations 

will continue to give better overall agreements between structure and pro-

perty data, and thus more accurate estimates of activity. 

There are therefore two questions arising from this study which re-

quire further investigation. Firstly, it is necessary to establish whether 

the differences indicated in predictive performance are of some practical 

significance. Because of the very approximate nature of the struculra1 

descriptors used it may be that the regression approach has no particular 

advantage over the classification method, even when accurate property 

measurements are available. However, the regressions do give consistent-

ly better results, and if similar differences are observed in other appli-
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cations this would increase the possible significance of these results. 

Secondly,if a difference is shown to exist between the two approaches, 

would similar relative performances be given with less accurate property 

measurements? Wider investigations with other types of property data 

would be needed to establish this. 

The above additional information on relative performances would give 

a clearer indication of the most suitable roles which could be played by 

each approach in structure-property investigations. Depending on the per­

formances found other factors could also influence the choice of methods. 

For example, the very useful statistical tests which can be applied in 

the regression case could be an important consideration. The majority of 

these tests are applicable even in the case of nominal property data, e.g. 

F and t tests are still valid in this case, and statistics such as the 

multiple correlation coefficient and residual error have their usual 

meaning. The regression coefficients Can also be given a rough interpre­

tation, although in this case it is not possible to compare them statisti­

cally. However, the sign and magnitude of these values still provide an 

approximate indication of which substructures are important contributors 

to the property in question and whether one contribution is more or less 

than another. This information and the various statistical criteria mentioned 

are not available in the cl&ssification case, but the classifications have 

a number of other useful properties which could be important in defining 

structure-property relationships. The method gives a rough pictorial re­

presentation of the data and shows approximately how the different struct­

ures under investigation are related to each other. This could be an ex­

tremely useful type of representation, for example, in showing up re­

lationships between active and inactive derivatives. The c1assification 

method also has the advantage that much larger numbers of substructures 



- 166 -

can be considered than in the regression case, although, as discussed 

in earlier chapters, much further research is required in this area to 

determine the exact changes brought about by altering the sample to 

feature ratio. 

There are also computational differences to be considered. With the 

now widespread availability of standard statistical packages, the re­

gression approach is much more easily applicable. However, the classifi­

cation method has a potentially very useful application in large computer­

based files for the storage and retrieval of chemical structure information, 

and if a practical application is found in this area, it would mean that the 

data would already be in a form suitable for structure-property calcula­

tions of this type 

Each approach, therefore, has a number of properties in its favour, 

and as they both present the data differently it may be that the choice 

of methods, where a choice exists, will depend on the type of application 

in question. From a prediction point of view, the odds are weighed slight­

ly in favour of the regression method, and unless considerable differences 

in the relative performances of the two approaches are indicated in other 

applications, it is expected that this will be the preferred apporach in 

applications where structure-property correlation and prediction are the 

main objectives. However, this would not rule out the very useful contri­

butions which could be made by the classification method in preliminary 

studies, and these could be used to show up important structural relation­

ships in the data and to give rough property assignments before the appli­

cation of more accurate methods. 



DESCRIPTION OF CDr-1PUTER PROGRAMS 



computation was carried out on the Sheffield University ICL 1907 

computer, which has a 24-bit word length and a cycle time of approximately 

2 ps. 

i Data Files 

Structures were coded as redundant connection tables on punched cards 

initially, and these were used to store the connection tables on magnetic 

tape or disc by user program. The redundant records were based on a 

compacted, multi-level description, details of which have been reported 

224 elsewhere. In them each bond is specified twice, once at each atom it 

links, and in addition to giving bond orders the record also indicates 

whether bonds are present in rings or chains. An example of the redundant 

record is given in Figure 44. 

ii Software 

Computer programs were written in PLAN (the ICL assembly language), 

FORTRAN and ALGOL. Only limited facilities were available at the outset 

of these investigations for the manipulation of source programs on magnetic 

tape or disc, particularly in the case of PLAN programs, and because of 

the numerous modifications required during the course of the study, user 

programs were therefore retained on card files. 

ii(a)The Classification Programs 

The main classification programs were written in PLAN, and these incor-

porated PLAN and FORTRAN subroutines for the calculation of similarity and 

dissimilarity coefficients. Initially, connection tables were analysed and 

the different structural features present listed. These were then used to 

derive the appropriate numerical representations, upon which the calculation 

of SCs and DCs were based. The setting up of numerical representations and 

comparison of structures were carried out in different segments of the same 

program and the resulting SC or DC values were stored on magnetic tape ready 
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for the clustering phase. The central processing times and core storage 

requirements of this first phase varied slightly with the sample size 

and the type of association measure used (core storage between 2,000 and 

4,000 words + working storage: CPU times ranging from a few seconds in 

the aminoocids sample to up to 50-60 seconds in the two larger samples). 

Before clustering,a ranked listing of similarity and dissimilarity 

coefficients was required. The particular single-link clustering algorithm 

used generates clusters level by level, starting at the highest level, and 

this meant it was necessary to arrange coefficients either in decreasing 

order of similarity of increasing order of dissimilarity. This step was 

carried out on magnetic tape, using standard ICL sorting routines before 

the coefficients were input to the clustering program. Prior to clustering 

it was also necessary to identify the structure pair associated with each 

coefficient value, to note all the pairs arising at each different level 

and finally to determine the maximum number of pairs arising with a given 

similarity coefficient, so that the required arrays could be set for 

clustering. These various tasks were performed by a PLAN program, which 

incorporated the FORTRAN clustering algorithm in the form of a subroutine. 

The calling program was also required to initialise count fields, and to 

zeroise the arrays in which the cluster information is proouced. The 

clustering routines were called for each new value of similarity or dissimi­

larity, after all the structure pairs arising at the level in question had 

been placed in the appropriate pair vectors. A listing of the clusters 

formed at each level was produced, except where these are identical with 

those arising at the previous level. Single-element clusters were ignored. 

Variations in central processing times with the different sample size were 

not as wide in this second phase, and core storage requirements were roughly 

the same (CPU times ~ 20 seconds: core storage between 3,000 and 5,000 words 
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+ working storage). 

The basic clustering routines were modified slightly to identify the 

highest associations between structures, and the associations arising for 

each structure in the cluster it first joins. These were the pair values 

required for prediction, and they were listed by the calling program before 

being output to magnetic tape in readiness for the prediction phase. 

Prediction programs were written in ALGOL. The pair values together 

with observed property values, read in separately from a card file, were 

used to estimate a property value for each structure, firstly in the nearest 

neighbour case, then in the classification. Any number of predictions could 

be carried out in the same computer run, provided these were specified on 

input. A listing was 'produced of predicted property values, deviations 

between observed and predicted values, mean property deviations, and other 

statistical quantities important for estimating the agreement between 

observed and predicted values, such as variance ratios and standard devia-

tions. 

The classification programs were linked by means of job control state­

ments so that they could be run in series, and the standard software routines 

used were also linked in with these so that all operations could be carried 

out in the same computer run. A flowchart of the basic operations is given 

in Figure 45. Only the important input/output operations have been indicated. 

Nearest neighbours and first cluster associations output at the end of the 

second stage were not in a form suitable for input to the ALGOL prediction 

routines. The record layouts produced by the PLAN 'write' statements during 

the second stage were preceded by a word count field and in this format they 

could not be read directly by standard ALGOL 'read' routines. To interface 

the prediction and clustering phases, therefore, a small PLAN subprogram was 

used, which first of all extracted the appropriate pair values from the 
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magnetic tape record, and secondly converted these from fixed point to 

floating point form, suitable for ALGOL processing. The PLAN 'decoding' 

statements were held as a special subroutine and were called by the predict-

ion programs each time a new pair of structure values was required. 

ii(b)The Regression Programs 

The 

analysis 

regression analyses were carried out using the ICL statistical 

219 package ) and supporting programs to obtain the data in a form 

suitable for input to the statistical package were written in PLAN and 

FORTRAN. Prediction routines were written partly in PLAN and partly in 

ALGOL. 

The frequency vectors required for regression, giving the frequency 

of occurrence of the different fragment types arising in each structure, 

were very similar to the representations required in the classification 

case for the calculation of distance functions and the quantitative probab-

ilistic measures, and almost identical routines were employed here for the 

analysis of connection tables. In this case the vectors were used to set 

up a so-called observation matrix, consisting of the fragment frequency 

values, designated as the set of independent variables, a structure identi-

fication field, and a property value, which was read in separately and 

identified as the dependent variable on input to the regression package 

(see Figure 33). Where necessary the PLAN programs developed to generate 

the observation matrix incorporated FORTRAN subroutines for the derivation 

of the appropriate quadratic terms. Detailed descriptions of the type of 

input formats required by the regression package are given in the ICL manual. 

The regression solutions and regression coefficients were listed on the 

line-printer and other useful information was produced, such as details of 

the matrices used during the course of the analysis, and details of estimated 

property values and their deviations from observed values. This additional 
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information was requested on input. 

It was not possible to interface the regression package with user 

programs, and this meant that the matrix generation, regression analysis 

and prediction phases could not be run in series, in the same way as t~e 

classification programs. Another limitation of the package in the system 

in question was that input was required in card form. The regression 

coefficients needed for prediction were also output in this form which 

meant prediction involved three separate stages altogether. Firstly, in 

the data generation phase, the appropriate frequency vectors for the 

structures undergoing prediction were excluded from the observation 

matrix, one at a time. The regression coefficients produced by these 

reduced matrices, together with observed property values, were then 

returned to the PLAN-program, used to generate the original data 

matrix, for calculation of .the approPFiate property value. Predictions 

were batched to save time. The resulting sets of observed and predicted 

property values were then input to the ALGOL routines used for prediction 

in the classification case, to determine the extent of the agreement 

between observed and estimated values. A summary of the different 

stages involved is given in Figure 46. 



APPENDICES 



I Data Sets and Properties 

Sample 1 20 Naturally Occurring Amino ACids,lO 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Structure 

(ala.nine) 

HN=fNHCH2CH2CH2THCOOH (arginine) 

NH2 NH2 

H
2

NCCH
2

CHCOOH 
11 I 
o NH2 

(aspartic acid) 

(asparagine) 

(cysteine) 

HOOCCH
2

CH
2y

HCOOH 

NH2 

H2NtCH2CH2?HCOOH 

o NH 
2 

(glutamic acid) 

(glutamine) 

(glycine) 

CH3CH2TH~HCOOH 

CH3 NH2 

CH
3T

HCH2yHCOOH 

CH3 NH2 

(histidine) 

(isoleucine) 

(leucine) 
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pI Value 

6 0 00 

10.76 

2.77 

5.41 

5.07 

3.22 

5.65 

5.97 

7.59 

6 0 02 

5.98 



- 173 -

(20 Naturally Occurring Amino Acids continued) 

Structure pI Value 

12 H2NCH2CH2CH2CH2CHCOOH (lysine) 9.74 
. f 

NH2 

13 CH
3

SCH
2

CH
2y

HCOOH (methionine) 5.74 

NH2 

14 Q-CH2yHCOOH (phenyl_alanine) 5.48 

......:: NH 
2 

15 

o-COOH (proline) 6.30 

16 HOCH
2y

HCOOH (serine) 5.68 

NH2 

17 HOCH -CHCOOH (threonine) 6.16 
1 1 
CH3 NH2 

18 

(JLJL ::---.. I I CH
2y

HCOOH (tryptophan) 5.89 

NH2 

19 
HO~CH2CHCOOH (tyrosine) 5 0 66 

- I 
NH2 

20 CH
3 

CH - CHCOOH (valine) 5.96 
I 1 

CH3 NH2 
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209 Sample 2: 39 Local Anaesthetics 

Structure 

1 CHpH (methanol) 

2 CH
3

CH
2

OH (ethanol) 

3 CH
3n

CH
3 

(acetone) 

° 
4 CH

3y
HCH

3 
(isopropanol) 

OH 

5 CH
3

CH
2

CH
2

OH (propanol) 

6 N=CCH2NHfiOCH2CH3 (urethane) 

° 
7 CH

3
CH

2
OCH

2
CH3 

(ethyl ether) 

8 CH
3

CH
2

CH
2

CH
2

OH (butanol) 

9 

8 /1 
(antipyrene) ° NH 

10 g N~ ~ (pyridine) 

11 CHC1
3 

( chloroform) 

12 

HO{ I)-OH (hydroquinone) 

13 

~ }NH2 (aniline) 

14 

~ }CH2OH (benzylalcohol) 

Log (MBC) Value 

3.09 

2.75 

2.60 

2.55 

2.40 

2.00 

1.93 

1.78 

1.78 

1.77 

1.50 

1.40 

1.30 

1.30 
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(39 Local Anaesthetics continued) 

Structure Log (MBC) Value 

15 <\ I>-NH~CH 3 
(acetanilide) 1.17 

° 
16 CH3CH2CH2CH2CH20H (pentanol) 1.20 

17 (\ I)-OH (phenol) 1.00 

18 
(\ }

CH
3 

(toluene) 1.00 

H 
I 

19 ~Il (benzimidazo le) 0.81 
~ N 

20 CH3CH2CH2CH2CH2CH20H (hexanol) 0.56 

21 (\ I)-N02 (ni trobenzene) 0.47 

22 00 :--." I N/ 
(quinoline) 0.30 

23 QC (B-hydroxyquinoline) 0.30 
......... N ...... 

OH 

24 CH3CH2CH2CH2CH2CH2CH20H (heptanol) 0.20 

(}Gr0H 25 /' I " (2-naphthol) 0.00 
:--." /.. 

~C<'O 
26 

/ I -OCH3 (methy1anthranilate) 0.00 
......... NH 

2 

27 CH3CH2CH2CH2CH2CH2CH2CH20H (octanol) -0.16 
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(39 Local Anaesthetics continued) 

Structure- Log (MBC) Value 

28 -0.52 

29 ~ ..... I~ , , (O-phenanthroline) 

N' I 
-0.80 

30 (ephedrine) -0.80 

31 H N~ ;'>-COCH2CH2NCH2CH 3 (procaine) -1.67 
2 11 I 

o C2HS 

CH
3 Q- /C2HS 

(xylocaine) -1.96 32 \ I. NHCCH2N" 
C

2
H

5 
CH

3 

33 
<; /~CHOCH2CH2~CH3 

(diphenhydramine) -2.80 © CH3 
I~ 

34 CH3CH2CH2CH2NH -©-~OCH2CH2~CH3 (tetracaine) -2.90 

o CH
3 

35 (phenyltoloxamine) -3.20 
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(,39 Local Anaesthetics continued) 

36 

37 

38 

39 

CH
3

NHCO 
11 
o 

Structure 

oqrN OCH2CH2CH2CH3 

'/ I " 
~ ~ 

?HCH2CH2~C2HS 

o C2HS 

Log (MBC) Value 

(quinine) -3.60 

(eserine) -3.66 

(caramiphen) -4.00 

(dibucaine) -4.20 
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Sample 3: 79 Penici11ins 210 

Parent Compound 

co -- N --- CH COO 

Penicil-
lin R L09(B/F) Value 

* -0.659 1 H-

2 CH 3 -0.753 

3 CH3CH2CH2CH2CH2CH2CH2- 1.085 

* 
T3

H
7 

4 C
3
H7C- 1.144 

I 
C3

H7 

5 CH
3

OCH
2
- -1.110 

6 CH
3

CH
2

OCH
2

- -0.410 

7 CH3CH2CH2CH20CH2- 0.154 

S* CH
3

CH
2T

HOCH2- -0.052 

CH
3 

* CH
3

CH
2y

H- -0.602 9 

OCH
3 

10 CH3CH2CH2CH2TH- 0.454 

OCH2CH3 

11 CH3CH2OCH
2

CH2- -0.477 

12 CH
3

CH
2

CH
2T

H- -0.30S 

NH2 
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(79 Penici11ins continued) 

Penicil-
lin ~ Log (B/F) Value 

13 CH3CH2CH2CH2CH2CH21H- 0.292 

NH2 

14 ~1- 0.826 

IS 
\ (QCH) 

-0.017 

OCH 3 

16 LOOS 

17 <\ I)-CH2- 0.188 

rQCH

3 * ~ / CH2- 0.525 18 

OCH
3 

19 (\ /)-?H-
0.327 

CH
3 

20 
f{;;- f2

H
S 

'\ / C-
I 

1.16S 

C2
HS 

21 <, l)-crH
- 0.673 

Br 

22 (\ l)-rH- O.SSO 

Cl 
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(79 Penici11ins continued) 

Penicil-
lin R Log (B!F) Value -

Cl 

23 * (\ I(ru-
Cl 

1.195 

24 * Cl --<\ I)-rH- 1.195 

Cl 

Cl 

25 Cl -\\ 1-rH- 1.510 
Cl 

26 (\ }-yH-
-0.659 

NH2 

* CH 3-<\ I)--?H-27 0.176 

NH2 

28 C1-V-yH- 0.087 

NH2 

Cl 

* Cl =z\ l)--fH- 0.664 29 

NH2 

F 

30 ~ }-rH- -0.454 

NH2 

H2N 

31 ~·/>-TH- -0.865 

NH2 
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(79 Penicillins continued) 

Penicil­
lin 

33 

34 

35 

36 

37 

38 

39 

R 

H°-o-1H-
NH2 

CHP-<\ }-9H-
NH2 

0 II-©-
H

2
Nfl \ I. fi"6 o 0 

I~ 

N 0-[2; 
I" 
/. 

(\ 1)-1H
-

OH 

©-fH
-

OCH
3 

Br 

~\-;)-fl!-
OCE 3 

Log (B/F) Value 

-0.695 

-0.575 

-0.213 

-0.140 

0.231 

0.056 

0.213 

0.865 
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(79 Penicillins continued) 

Penicil-
lin R Log (B/F) Value -

Cl 

40 ©-rH- 0.689 

OCH
3 

Cl 

41 ~T"- 0.720 

OCH
3 Cl 

Cl 

42 Cl-©-'iH- 1.061 

OCH) 

Cl 

43 Cl~TH- 1.440 

Cl OCH 3 

F 

44 Cl-@-?H- 0.689 

OCH
3 

F 

45 (\) fH- 0.269 

OCH
3 

* 
02Nb--CH_ 

46 0.176 

6cH3 

47 (\ IrOCH2- 0.589 
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(79 Penicillins continued) 

Penicil­
lin 

48* 

49 

50 

51 

52 

53 

54 

* 55 

R 

(\ I; 0<fH-
CH

3 

CH 
I 3 

(\ I)-°r-
CH 3 

V-0CH
-

([) 
F 

( ;)-oCH2-

F~ I)-OCH2-

Cl 

( /~o~-
CH3 

Log (B!F) Value 

0.644 

1.091 

0.792 

1.541 

1.032 

0.704 

0.644 

1.380 
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(79 Penicillins continued) 

Penicil­
lin 

* 56 

57 

58 

59 

60 

61 

62 

63 

R 

Cl-<\ I)-O?H-
CH

3 

Cl 

(, 1!:°9H
-

Cl CH 3 

Cl 

Cl-(, /) 0'iH-
CH

3 

Cl 

~O'ia-
CH 

Cl 3 

F 

(, I)-O?,-
CH 

3 

F 
~, }0'iH-

CH
3 

F-<\ }OTH-
CH

3 

Cl 

(, I~OTH-
C2HS Cl 

Log (B/F) Value 

1.261 

1.380 

1.574 

1.510 

0.788 

0.720 

0.602 

1.297 
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(79 Penicillins continued) 

Penicil-
lin R Log(B/F) Value -

64 00 :---... /. 
0.788 

65 ro-" /. 
1. 337 

66 OO-CH 0.661 
:---... /: 3 

* 0.602 67 OO-OCHJ 
:---... /. 

* 68 OO-oCH2CHJ 0.921 

......... /' 

69 OO-0CH- 1.252 

:---..1 /. ~H 
3 

I 

70* 
~CHJ 

1. 574 

" /' 

71 
UCH-

0.140 

S 2 

72 
U-CHCH2-

-0.327 

S I 
NH2 
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(79 Penicillins continued) 

Penicil­
lin 

73 

74 

75 

* 76 

77 

* 78 

R 

([JLCH-
S I 

OCH
3 

Br~CH-
S I 

OCH3 

Cl-1CJl-CH-
S I 

OCH
3 

lXCOCH

] /1 " 
~ /' 

r CH
3 

~OCH2CH] 
~I /' 

Log (B!F) Value 

0.158 

0.940 

0.707 

0.122 

0.207 

0.362 

0.466 

* Penici1lins 'predicted' by the regression method using the 'hold-­
one-out' technique 
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., . 225 
Sample 4: 18 PenlCllllns 

Parent Compound (see previous sample) 

Penicil­
lin 

1 

2 

3 

4 

5 

6 

R 

<\ 1-iH
-

COOH 

(\ InH
-

o=s=o 
I 
CH

3 

(\ I>-CH-
o=k=o 

I 
OH 

I 
CH

3 
CH 'IT 'eaOH 

'0 CH
3 

Cl 

Cl~OCH2-
CH

2
NH

2 

B Value 

54 

47 

60 

64 

22 

89 
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(18 Penicillins continued) 

Penicil-
lin 

7 

8 

9 

10 

11 

12 

13 

R 

)\/~ 
CH

2
NH

2 

(\ IrCH
- 0 I 11 

NHCH
2

SOH 
11 

CH­

[[Jf600H 
S 

o 

~ I)-CH=CHCH
2

-

< I)-CNHCNHCH-
,\ 11 11 

o 0 

B Value 

67 

11 

5 

49 

45 

88 

94 
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(18 Penici11ins continued) 

Penicil­
lin 

14 

15 

16 

17 

18 

R 

CH
3

CNHCNHCNHCH-

11 116 000 

;1 
CH

3 I 

CH3NH~~6 
o 0 

~I 

B· Value 

50 

26 

50 

86 

95 



IT Altering the Sample to Feature Ratio in Classification Applications 

In designing a classification system one of the most serious prob­

lems arising as discussed earlier is deciding on the number of features 

to be used when a finite number of objects is available. Some attention 

has been given to this question in the present investigation, although 

the statistical problems arising have only been touched upon very briefly. 

The effects of altering the sample to feature ratio is an area which has 

been considered recently by a number of investigators, but so far investi­

gations have been restricted to very simple two-way classification systems, 

where each class has equal 'a priori' probabilities, and it has been easy 

to measure the experimental classification result against expected theore­

tical performances. In such simple systems it has been shown that the 

error rate on the design data is a monotonically increasing function of 

the ratio of sample size for feature size, and that quite wide discre­

pancies between observed and expected error rates arise when the sample 

to feature ratio falls below 3. In real cl~ssification situations, which 

are much more complicated than the above system and where less is known 

about the probability structure, the problem is much more difficult to 

evaluate in terms of observed and expected classification performances. 

Unsupervised systems are even more difficult to assess, because there is 

no prior knowledge of class structure in this case, and a formal approach 

is virtually impossible. Until the properties of these systems are under­

stood more fully, therefore, it is only possible to tackle the problem 

empirically, by examining method performances in relation to sample to 

feature ratios. 

In the present study a few empirical investigations were carried out 

on a number of random samples taken from the group of 79 penicillins. 

Progressively larger samples were considered, and it was found that the 
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resulting increase in the structure to feature ratio did not lead to 

a noticable improvement in predictive performance. The samples used, 

however, w~ere unsatisfactory for a number of reasons. Firstly, they 

did not lead to very wide differences in the structure to feature ratio. 

Secondly, because a different sample was considered in each case, direct 

comparisons of the different predictive performances were not strictly 

valid. A more satisfactory approach would be to vary the number of sub­

structures in a fixed sample, rather than varying the sample size, but 

additional investigations along these lines were not possible in the time 

available. 

Futher work is therefore needed in this area, and it is hoped that 

the increased attention given to statistical problems in supervised 

learning systems will encourage a similar interest in the unsupervised 

case, as more serious investigations are carried out with this type of 

approach. 



III Semi-empirical Structure-Property Correlations using Structural 

Parameters 

The very good agreement between structure and property data using 

the above empirical regression model led to some additional investiga-

ticns in this area to see whether the methods of handling chemical 
.\ 

structures automatically could be equally effective in the case of semi-

empirical problems. Time and data limitations prevented a very thorough 

investigation of the area, but some useful studies were possible which 
i 

demonstrated the potential value of the approach. 

In the method developed, the property parameters derived from the 

analysis of one set of structures were used to predict the properties of 

another set, and estimated properties were subsequently correlated with 

some obsyrved property. The approach compares closely with the semi-
I 

empirical correlation method developed by Hansch and co-workers, except 

structure-property relationships in this case are based on the structural 

features of the entire molecule. The group of 79 penicillin structures 

used to test the empirical regression model were considered again here, 

so that direct comparisons between the two approaches could be made. Using 

these, the primary objective was to establish whether useful cor~elations 

could be obtained between observed serum binding measurements and esti-

mated partion coefficients, where the latter are calculated from the frag-

ment IT contributions derived from an independent se~ of structures, ana-

lysed by the empirical method. This second structure set, for which parti-

tion coefficients were already available, was referred to as the training 

or learning set, and the required fragment IT values were obtained from 

its analysis using the following expression: 

1 log P, 
1. 

n 

= ~ ITjXij + const 
J=1 
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where log P. is the observed partition coefficient for learning set 
~ 

structure i, and the quantitaties n, TI j , Xij and const are as defined 

in Chapter 4 ( IT
j 

was defined previously as bj - the regression coeffi­

cient derived from the ana1ys~s for fragment j). Using the appropriate 

fragment IT values, partition coefficients were then estimated for the 

penicil1ins ~s follows: 

2 log P
k 

n 
= L ITjX .. + const 

j=l 1.) 

where there are m fragment types in the sample, ~j is the frequency of 

occurrence of fragment j in penicillin k, IT. is the regression coeffi-
J ' 

cient derived from the learning set for fragment j and const is the re-

gression constant derived from the same analysis. The empirical regressipn 

214 
model developed by Nys and Rekker is similar to this, except for\the 

differences in structura1.description outlined in Chapter 4. 

Observed serum binding values were finally correlated with estimated 

partition coefficients, using the observed property as the dependent va-

riab1e as follows: 

3 log (B !F) = a log P + c 
observed calculated 

where a is the regres.sion coefficient from the analysis, and c the re-

gression constant. 

One of the difficulties of this approa~h is obtaining suitable 1earn-

ing set structures with the required property information. The required 

structures in the present case, i.e. structures with suitable substructures 

and known partition coefficients, were obtained from a number of different 
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literature sources, and one important feature of the resulting learning 

set was that it contained quite a wide variety of structural types, 

ranging from simple chain structures to some simple benzenoid and fused 

heterocyc1ic derivatives, none of which were related closely to the peni­

cillins. Because of this, difficulties were encountered in obtaining some 

of the larger penicillin substructures, and it was necessary to restrict 

investigations to smaller fragments which could account for most of the 

substructures present in the test set. Of the fragment types consid~ed 

simple pairs were able to account for all the penicillin substructures, 

and some of th~ results obtained with these are reported below. 

The learning set, consisting of 130 structures in all, contained 26 

simple pair fragments, 17 of which arose in the group of 79 penicillins. 

Table 20 summarises the results of the regression analyses carried out on 

the learning set at the 99% and 10% significance levels using these frag­

ments as the independent variables. A Significant difference. between the 

two levels was not indicated, and both correlations were found to be sig­

nificant at the 0.1% level. At the 99% level of analysis all of the sub­

structures required for the prediction of the penicillins were included 

in the regression set. At the 10% level some of the less significant ones 

were excluded, and just as in the empirical model, the missing fragment 

values in this case were assumed to be zero. The parameters obtained 

at this level resulted i~ slightly less satisfactory partition coefficient 

estimations in the penicillin sample, and the different agreements reached 

with observed serum binding values in the two cases are summarised in 

Table 21. The slightly better property estimations, however, did not lead 

to a significant improvement i~ the correlation, and both results were 

significant at the 0.1% level. 
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In view of the good correlation obtained in the penicillin sample, ( 

the investigations were taken a stage further, and an attempt was made 

to use both the original learning set and the penicillins, as learning 

sets to predict serum binding values in another smaller group of peni-

cillins, where neither property was assumed available. Details of the 

sample of 18 penicillin structures used in this investigation are give~ 

in Appendix 1. Partition coefficients were first estimated for the group, 

as described above, and these quantities were then substituted in the 

right hand side of expression 3, to predict a serum binding value for 

each structure, using the slope and intercept values derived from the 

analysis of the larger penicillin sample. 

Due to greater variations in side chain structures in this sample, 

a wider range of substructures was present, and not all of these were 

present in the learning set of 130 structures used to predict the larger 

sample. Suiteable extensions to this learning set were not possible in the 

time available, and the three additional simple pair fragments arising in 

the sample were assumed to have zero IT contributions. The structures con-

taining these fragments were therefore expected to be less well predicted. 

Estimated partition coefficients were then used in expression 3 to obtain 

log (B/F) values, using the regression constant and coefficient values ob-

tained from the analysis of the larger sample which gave the lowest re-

sidual error. 

4. log (B/F) 1 ca c 0.6619 log P 1 + 1.1726 ca c 

The best log (B/F) predictions were obtained using the partition coeffi-

cients derived from fragment IT contributions obtained at the 99% level, 

and the corresponding B values for these are listed with observed values 

i~ Table 22. Compounds containing the fragments not present in the learn-
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ing set of 130 structures are asteFisked. As expected, most of these 

were poorly predict~d. Some other structures were also poorly predicted, 

for example structures 10, 16 and 17. The quite wide discrepancy between 

observed and predicted serum binding values in structure 10 is an inter-

esting result, as the higher predicted value is much nearer the expected 

value for this structure on a hydrophobicity basis. The other wider 

differences arose in the case of the multiple amide structures 13 to 17, 
\ 

but it has been noted that these st~ctures are also difficult to handle 

. 224 by the ld'ansch method. Remaining structures were reasonably predicted, 

and a few were very well predicted such as the thiacyclohexane (9) and the 

phenoxymethyl (6.) deri va ti ves. The carboxy compounds 1, 2 a,,\d 11 were 

also quite well predicted. 

The results obtained in these few investigations were extremely en-

couraging in view of the limitations of the learning sets and the numerous 

approximatipns involved. Correlatiqn coefficients were statistically signi­

ficant, although smaller than usually, obtained in empirical investigations 

under similar conditions. Log (B/F) predictions were also reasonably good 

in the smaller test sample, considering the two different learning sets 

involved in this case, one of which did not contain all the fragment types 

required. Many other fragments needed for prediction were present in only 

a few learning set structures, and an additional problem in the learning 

set used to predict partition coefficients was the number of dissimilar 

structural types involved. This meant that the fragment IT contributions 

derived from this set may not have been entirely appropriate for prediction 

of the two penicillin groups, because of environmental differences bet~een 

samples. Investigations could not be taken any further in the time avail-

able, but it is\ expected that larger, more representative learning sets!,! 

allowing for the investigation of a wider va,riety of substructures, will 
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lead to improvements in the correlations, and, hopefully, predictions 
\ 

which are comparable with those obtained in the empirical case. 
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6·00 Alanine 
10·76 Arginine 
2'77 Aspartic acid 
5·41 Asparagine 
5'0.7 Cysteine 
3·22 Glutamic acid 
5·65 Glutamine 
5 ·97 Glycine 
7·59 Histidine 
6·0.2 Isoleucine 
5 ·98 Leucine 
9·74 Lysine 
5·74 Methionine 
5'48 Phenylalanine 
6·30. Proline 
5·68 Serine 
6·16 Threonine 
S'S') Tryptophan 
5'66 Ty.~jne 
5·96 Valine 

(NH2) (NH2) 

0.'503 0.·621 0'621 0.'734 0.'577 0.'577 0·693 0.'537 0.·784 0·784 0.'577 0.·621 0.'50.3 0.·331 1),734 0'844 0. 416 0.·471 0.·844 
0.'452 0.'578 0.'434 0.'524 0.'645 0.'586 0'359 0'452 0'452 0'766 0.'452 0'318 0'114 0·434 0'317 0.·213 0.·281 0.'377 

0.·722 0.·552 0.'935 0'668 0.'530. 0.·491 0.'583 0.'583 0.'535 0.·583 0.·452 0.·20.3 0.'70.5 0.'639 0.·354 0.'539 0'494 
0'552 0.'668 0.'935 0·530. 0·491 0.·583 0.·583 0.·668 0·583 0.·452 0.·20.3 0.·552 0.·494 0.'354 0.'417 0.'494 

0.'50.8 0.·508 0.·629 0.·469 0.'552 0.'552 0.'50.8 0.'70.5 0.·434 0.·282 0.·662 0.'602 0.'347 0.·40.3 0.'60.2 
0.'743 0.'491 0.·442 0.'535 0·535 0.'614 0.·535 0·403 0.'171 0.·655 0.-590. 0.-30.1 0.-485 0.-450 

0.-491 0-442 0-535 0-53~ 0.-743 0-535 0-40.3 0-171 0-50.8 0.-450 0.-302 0-367 0-450 
0-457 0.-530. D-5Jo. 0.-661 0.·530. 0.'426 O-:~90 0.-629 0-575 0.-350. 0.·399 0·575 

0'491 0.'491 0-442 0'491 0.·359 0-277 0-469 0'41.2 0-47.5 0'322 0-412 
HXlO 0.-535 0-583 0-452 0.-203 0-552 0-639 0·354 0·417 0·930 

0'535 0-583 0.-452 0.-203 0.-552 0-639 0.-354 0.-417 0.-930 
~ 0.-535 0-40) 0.-171 0-508 0-450 0-302 0.-367 0.-450 

0.-452 0.-10.3 0-552 0.-494 0.-354 0-417 0-494 
0.-114 0.-434 0-377 0-6-10. 0.-835 0-377 

0-282 0-240 0.-164 0.-0.88 0-2-10. 
0.-763 0-347 0-538 0-602 

0-288 0.-473 0'696 
0.'589 0.-288 

0.-345 

- Table 1 pI and ~ values for 20 amino acids. The ~ values were calculated using structure 
representation (ii),(augmented atoms). 



pI Amino acid Ala Arg Asp Asp Cys Glu Glu Gly His lieu Leu Lys Met Phen Pro Ser The Try Tyr Vat 

6·00 Alanine 
10·76 Arginine 
2'77 Aspartic acid 
5·41 Asparagine 
S '07 Cysteine 
3·22 Glutamic acid 
S'65 Glutamine 
5 ·97 Glycine 
7·59 Histidine 
6·02 Isoleucine 
S '98 Leucine 
9·74 Lysine 
S'74 Methionine 
5'48 Phenylalanine 
6·30 Proline 
5'68 Serine 
6-16 Threonine 
S'S') Tryptophan 
5-66 Ty.osine 
5-96 Valine 

(NH2) (NH 2) 

0'S03 0·621 0'621 0·734 O'S77 0'577 0'693 0·537 0·784 0'784 0·577 0·621 0·503 0·331 0'734 0'844 0416 0·471 0·844 
0-452 0·578 0·434 0'524 0·645 0'586 0'359 0'452 0'452 0'766 0'452 0·318 0·114 0'434 0'371 0·213 0·281 0'371 

0'722 0'552 0·935 0·668 0·530 0'491 0'583 0'S83 0'S3S 0'S83 0·452 0'203 0'705 0·639 0·354 0'539 0'494 
0-552 0'668 0·935 0'S30 0'491 0'583 0'583 0'668 0'583 0·452 0·203 0'552 0'494 0·354 0'417 0·494 

0'508 0'508 0'629 0'469 0·552 0'552 0·508 0'705 0·434 0·282 0'662 0'602 0'347 0'403 0'602 
0-743 0·491 0·442 0·535 0-535 0'6]4 0·535 0·403 0']71 0·655 0'590 0·302 0·485 0·450 

0·491 0·442 0·535 0'535 0'743 0·535 0·403 0·171 0'.508 0·450 0·302 0'367 0·450 
0·457 0'530 0'530 0·66] 0·530 0·426 O-:~90 0·629 0·575 0·350 0·399 0·575 

0'491 0·491 0'442 0·491 0·359 0·277 0·469 0'4]2 0'475 0'322 0'412 
HJOO 0·535 0·583 0·452 0·203 0·552 0·639 0·354 0·417 0·930 

0'535 0·583 0·452 0·203 0·552 0·639 0-354 0·417 0'930 
~ 0·535 0·403 0,]71 0·508 0·450 0·302 0·367 0·450 

0'452 0·103 0'552 0·494 0·354 0·417 0·494 
0,1]4 0-434 0'377 O'MO 0·835 0·377 

0·282 0·240 0'164 0·088 0'2-l0 
0'763 0'347 0'538 0·602 

0'288 0·473 0'696 
0'589 0·288 

0·345 

'~able 1 pI and ~ values for 20 amino acids. The ~ values were calculated using structure 
representation (ii),(augmented atoms). 



structural 
representation 

se or OC (i) (ii) (Hi) 
type 

Dice se 0.81 0.39 0.42 

- 0.43 0.48 

Sneath DC 0.81 0.74 0.76 

- 0.50 0.46 

0 0.81 0.39 0.42 

- 0.43 0.48 

Table 2 Mean differences between observed and 'predicted pI values 
for 20 naturally occurring amino acids using three types of 
se and DC and three structural representations in terms of 
augmented atoms. The upper values in the cells were calcu­
lated from the average pI value of the cluster which an acid 
joined and the lower entry from the acid(s) with which the 
acid with 'unknown' pI value has the highest se or lowest DC. 



structural 
representation 

SC or IX: 
(i) (ii) 

type 

Dice SC 1.53 1.17 

1.46 0.99 

Sneath DC 1.32 1.30 

1.27 0.84 

0 1.56 1.27 

1.51 1.07 

Table 3 Mean differences between observed and 'predicted' log 
(MBe) values for 39 local anaesthetics using three 
types of SCand DC and three structural representations 
in terms of augmented atoms., For an explanation of the 
different cell entries see Table 2. 



Predictions based on highest se or lowest DC Predictions based on classification 1 

Measure I 

of n A n A 2 n A ¥ I x.-~.I n A 2 n I A ,! 
Association ~ I x.-x.\ L (x.-x. ) L I x.-x.1 L (x.-x. ) L x.-x.l 1. 1. 1. 1. 1.=1 1. 1. i=l i=l 1. 1. i=l 1. 1. i=l . 1 1. 1.! 1.= 1 

¥ Ix.-xl 
n (x._x)2 ~ I Xi-X I n ( - 2 
L n J; 

x.-x) 
i=l l 1. 1. 

i=l l=l l=l 

1 0.603 0.527 0.994 0.707 0.543 

2 0.650 0.662 1.071 0.772 0.664 

3 0.511 0.428 0.843 0.788 0.819 

4 0.477 0.343 0.786 0.653 0.659 

4(a) 0.648 0.611 1.069 0.867 0.859 

5 0.882 0.928 1.454 0.958 0.950 

6 1.147 1.618 1.891 1.196 1.420 

7 0.602 0.516 1.000 0.732 0.679 

Table 4 Log (MBe) estimations for a group of 39 local anaesthetics, based on a number of 
different measures of association and the classifications obtained using these. 
x. is the observed property value, x. the 'predicted' property value, x the mean 
oEserved property value fer the grou~ and n the total number of structures in the 
group. The numbering of the coefficients is the same as that used in the text. 

I ! 
n 

, 

! 

1.167 
I 

1.273 

1.300 

1.076 

1.429 

1.579 
! 

1.973 

1.207 i 



Predictions based on highest se Predictions based on classification 

Fragment ~ I X'-~i I n ~ 2 ~ I x.-~. I n I xi-~i I n ~ 2 ~ I x.-~.I 
type 1: (xi-xi) 1: 1: (xi-x.) 

i=l ~ i=l i=l ~ 1 i=l i=l 1 i=l 1 1 

I I x.-x I n (Xi-3d 2 
n n (x._x)2 

L n L I X.~X I L 1 
n 

. 1 1 i=l i=l 1 i=l ~= 

Atoms 0.774 0.533 0.796 0.807 0.528 0.830 

Augmented atoms 0.421 0.125 0.428 0.384 0.111 0.395 

Simple pairs (SP) 0.879 0.704 0.904 1.025 1.010 1.054 

Augmented pairs 0.879 0.774 0.904 0.768 0.849 0.790 

Bonded pairs OF) I C.803 0.613 0.826 0.838 0.899 0.862 

Octuplets (ex:) 0.684 0.446 0.704 0.404 0.111 0.416 

SP + BP 0.663 0.525 0.682 0.770 0.864 0.792 

SP + BP + OC 0.635 0.460 0.653 0.833 1.074 0.857 

Table 5 PI estimations for 20 naturally occurring amino acids, based on Dice's se aDj the 
classifications obtained with this coefficient, using a variety of different fragment 
definitions. Quantities Xi, xi, x and n are defined in Table 4. 

I 
I 
, 

I 

I 



Predictions based on highest se Predictions based on classification 

fragment r Ix.-~.I n A 2 n I A n AI n " 2 ~ I x.-~.I type r (x. -x. ) r x.-x.\ r Ix.-x. r (x.-x. ) 
i=l ~ ~ i=l ~ ~ i=l ~ ~ i=l ~ ~ i=l ~ ~ i=l ~ ~ 

r Ix.-xl 
n (x._x)2 ~ Ix.-x.1 

n (x._x)2 r n L 
i=l ~ ~ i=l ~ ~ ~ n 

i=l i=l 

Atoms 0.384 0.133 0.633 0.449 0.214 0.740 

Augmented atoms 0.603 0.527 0.994 0.707 0.543 1.167 

Simple pairs (SP) 0.418 0.301 0.690 0.546 0.339 0.899 

Augmented pairs 0.686 0.726 1.130 0.639 0.456 1.053 

Bonded pairs (BP) 0.797 0.899 1.314 0.767 0.579 1.264 

Octuplets (ex:: ) 0.786 0.824 1.296 0.796 0.667 1.312 

SP + BP 0.529 0.457 0.873 0.651 0.459 1.073 

SP + BP + ex:: 0.564 0.492 0.930 0.725 0.586 1.196 

~------- ~-

TabJe 6 Log (MBe) estimations for 39 local anaesthetics under the co~ditions specified in 
Table 5. Quantities x., x., x and n are defined in Table 4. 

~ ~ 



Predictions based on highest se 
Fragment 

type n 
l: 
i=l 

I x.-~. \ l. l. 

n 
L I x.-xl l. i=l 

Atoms 0.614 

Augmented atoms 0.683 

Simple pairs (SP) 0.591 

Augmented pairs 0.693 

Bonded pairs (BP) 0.670 

Octuplets (oc) 0.677 

SP + BP 0.641 

SP + BP -+ QC. 0.645 

n "2 l: (x. -x. ) 
i=l l. l. 

n ( - 2 l: x.-x) 
i=l l. 

0.393 

0.475 

0.343 

0.473 

0.434 

0.506 

0.399 

0.404 

¥ I x.-~.I 
.i=l l. l. 

n 

0.335 

0.373 

0.323 

0.378 

0.366 

0.370 

0.350 

0.352 

Predictions based on classification 

~ Ix.-~.I 
i=l 1. l. 

¥ Ix.-x I 
i=l 1. 

0.709 

0.694 

0.719 

0.821 

0.783 

. 0.707 

0.801 

0.694 

n " l: (x._x)2 
i=l l. i 

n ~ (x.-x) 2 
l.=l l. 

0.574 

0.495 

0.572 

0.631 

0.574 

0.540 

0.646 

0.508 

n 
l: 
i=l 

Ix.-~.I 
1. 1. 

n 

0.387 

0.379 

0.392 

0.448 

0.427 

0.386 

0.437 

0.379 

Table 7 Log (B/F) estimations for 79 penicillins, under the conditions specified in Table 5 
Quantities x., ~., x and n are defined in Table 4. 

l. l. 



Fragment type 
used for 

classification 

Simple pairs 

Augmented pairs 

Bonded pairs 

Octuplets 

Observed log(MBC) 

Table 8 

Predicted log (MBe) 

Acetone Isopropanol Propanol Urethane Ethyl ether 

1.66 2.40 2.55 1.72 1.22 

2.55 2.60 2.60 -0.52 -0.09 

-0.20 -0.12 0.72 -0.65 -0.15 

-0.12 -0.20 0.72 1.33 1.34 

2.60 2.55 2.40 2.00 1.93 

Examples of the classification results in 39 local anaesthetics for the smaller acyclic 
structures, showing the general improvement in the level of 'prediction' as the fragment 
size decreases 



Fragment type 
used for 

classification 

Atoms 

Simple pairs 

Augmented pairs 

Bonded pairs 

Octuplets 

Observed 10g(MBC) 

Table 9 

Predicted log (MBe) 

Eserine Quinine Dibucaine Diethyl ether Butanol 

-2.90 -4.20 -3.60 1.78 1.93 

-0.56 -0.65 -2.18 1.22 0.45 

-0.55 -0.42 -2.90 -0.10 0.45 

-0.09 -0.58 -2.86 -0.15 0.45 

-0.65 -0.58 -0.12 1.34 0.45 

-3.66 -3.60 -4.20 1.93 1.78 

-- -- - --- - ----- '----

Examples of the classification results in 39 local anaesthetics, showing some of the 
improvements obtained with atom descriptions 

I 



Independent variables Significance Variables 
I 
Degrees of Multiple Residual F 

level included in freedom correlation error statistic 
Type No regression coefficient 

Atoms 4 99% 3 + const 35 0.979 0.433 266.12 (35,3) 
10% 2 + const 36 0.979 0.429 410.58 (36,2) 

Simple pairs 16 99% 14 + const 24 0.995 0.261 169.71 (24,14) 
10% 11 + const 27 0.994 0.258 202.08 (27, ll) 

Simple- pairs 24 99% 19 + const 19 0.995 0.284 :-99.00 (19,19) 
+ 10% 9 + const 29 0.993 0.280 226.94 (29,9) 

Squared terms 

Simple pairs 36 99% 27 + const 11 0.998 0.232 101.44 (11,27) 
(Quadratic) 10% 13 + const 25 0.996 0.240 238.46 (25,13) 

Augmented pairs 36 99% 30 + const 8 0.999 0.228 133.07 (8,30) 
10% 18 + const 20 0.998 0.164 276.67 (20,18) 

r£I (Agin) 1 - 1 + const 37 0.993 0.240 260.51 (37,1) 

Table 10 Summary of the empirical regression results in 39 local anaesthetics, including the 
semi-empirical result obtained by Agin et al 209 for the same structures. 



Independent variables Significance Variables Degrees of Multiple Residual F 
level included in freedom correlation error statistic 

Type No regression coefficient 

Atoms 7 99% 6 + const 72 0.877 0.333 39.96 (72, 6) 
10% 4 75 0.920 0.332 lJ2.94 (75,4) 

Simple pairs 14 99% 12 + const 66 0.912 0.297 27.23 (66,12) 
10% 7 72 0.932 0.315 68.19 (72,7) 

Augmented pairs 33 99% 28 51 0.979 0.208 41.55 (51,28) 
10% 14 65 0.976 0.199 94.16 (65,14) 

Bonded pairs 51 99% 39 40 0.982 0.221 27.47 (40,39) 
10% 20 59 0.975 0.212 57.26 (59,20) 

Octuplets 71 99% 52 27 0.987 0.184 19.45 (27,52) 
10% 25 54 0.986 0.164 74.97 (54,25) 

Augmented atoms 44 99% 29 50 0.976 0.225 34.97 (50,29) 
10% 14 65 0.972 0.215 79.76 (65,14) 

Err 

(Bird & Marshal~ 1 - 1 + const 77 0.924 0.256 450.45 (77,1) 
-- ._-- -

Table 11 Summary of the empirical regression results in the penici11ins, including the semi­
empirical result obtained by Bird and Marshal1 210 for the same structures. 



I 
Independent Significance n A n A n A 2 n A 2 

~ Ix·-~·I variables level L Ix.-x·1 L Ix.-x·1 L (x.-x. ) L (x.-x. ) 
i=l ~ ~ i=l ~ ~ i=l 

~ ~ 
i=l 

~ ~ i=l ~ ~ 

~ Ix.-x I 
n (x._x)2 L n 

i=l ~ i=l 
~ 

Augmented 99% 55.3 0.86 153.60 0.95 1.42 
pairsa 10% 26.5 0.41 43.07 0.27 0.68 

Augmented 99% 2.68 0.04 0.41 0.00(3) 0.07 
pairsb 10% 3.13 0.05 0.53 0.00(3) 0.08 

aI b (Agin) - 7.08 O.ll 2.12 0.ol(3) 0.18 

Table 12 Log (MBC) estimations for 39 local anaesthetics using the empirical regression 
method. Quantities x., x., x ond n are defined in Table 4. A summcu:y of the 
property estimations~y Agin' s semi-empirical method is also included. 

Notes 

a Property 'predictions' by the 'hold one out' technique. 

b Property estimations based on the analysis of the total structure set. 



Table 13 Best estimated and predicted 10q (MBe) values in 
3':{ local anaesthetics by the empirical regression 
mJthod. 

Observed b Estimated Predictedd Estimated 
a c log (MBC) Compound log (MBC) log (MBC) log (MBC) 

1 3.09 3.09 2.20· 3.08 

2 2.75 2.77 2.73 2.60 

3 2.60 2.47 1.71 2.37 

4 2.55 2.50 2.02 2.16 

5 2.40 2.26 2.19 2.15 

6 2.00 2.00 0.98· 1.84 

7 1.93 1.94 2.82 1.78 

8 1.78 1. 75 1.77 1.70 

9 1.78 1.78 0.75· 1.62 

10 1.77 1.64 1.73 1.67 

11 1.50 1.50 2.35 1.47 

12 1.40 1.31 0.94 1.53 

13 1.30 1.17 1.31 1.48 

14 1.30 1.33 1.45 1.04 

15 1.17 1.14 1.24 1.34 

16 1.20 1.24 1.27 1.26 

17 1.00 1.38 1.50 1.55 

18 1.00 1.10 1.25 1.16 

19 0.81 0.81 0.89· 0.57 

20 0.56 0.73 0.76 0.83 

21 0.47 . 0.47 1.15* 0.66 

22 0.30 0.39 0.47 0.29 

Continued ... 

(Agin)e 



Table 13 continued 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

Notes 

0.30 0.29 -0.07 0.25 

0.20 0.23 0.19 0.38 

0.00 -0.21 -0.39 0.19 

0.00 0.03 0.12 -0.10 

-0.16 -0.28 -0.35 -0.06 

-0.52 -0.44 0.47 -0.26 

-0.80 -0.71 -0.87 -0.79 

-0.80 -0.80 ·-0.30 -0.73 

-1.67 -1.56 -0.98 -0.62 

-1.96 -1.93 0.00 -2.01 

-2.80 -2.91 -3.24 -3.00 

-2.90 -2.77 -1.64 -2.40 

-3.20 -3.23 -1.85 -3.28 

-3.60 -3.60 -0.47* ... 3.77 

-3.66 -3.66 -0.99* -3.25 

-4.00 -4.00 -0 .. 84* -3.93 

-4.20 -4.33 -3.99 -4.85 

a structure diagrams in Appendix 1 

b taken from Agin, Hersh and Ho1zman209 

c best estimations based on the full structure 
set, using augmented pairs at the 99% signifi­
cance level 

d best 'predictions' (based on the'hold one out' 
technique), using augmented pairs at the 10% 
significance level. 

e estimations from a regression of log (MBe) on 
aI (Agin et al. 209 ). 

* structures containing unique augmented pair 
fragments 



Tabl'e 14 

I 
Independent Significance " 2 " 2 

, 

n A n A n n n A 

variables level I ! x.-x.! I !x.-x.! I (x.-x. ) I (x.-x. ) L Ix.-x·1 
i=l ~ ~ i=l ~ ~ i=l ~ ~ i=l 

~ ~ i=l ~ l. 

¥ ! x.-x ! n (x.-x) 2 n , 

L 
i=l l. i=l 

l. , 

Simple pairs 99% 5.196 0.482 1.920 0.219 0.260 
10% 5.077 0.471 1.868 0.213 0.254 

Bonded pairs 99% 4.959 0.460 2.451 0.279 0.248 
10% 5.800 0.538 2.870 0.327 0.290 

Augmented 99% 3.740 0.347 1.110 0.126 0.187 
atoms 10% 4.595 0.427 1.967 0.224 0.229 

Octup1ets 99% 5.457 0.507 2.882 0.328 0.273 
10% 5.383 0.500 3.037 0.346 0.269 

Simple pairs 99% 4.260 0.396 1.443 0.164 0.213 

Bonded pairs 10% 3.030 0.282 0.734 0.084 0.152 
I 

Augmented 10% 2.960 0.275 0.721 0.082 
I 

0.148 
atoms 

Octup1ets 10% 2.039 0.189 0.387 0.044 0.102 

In 
4.045 0.376 1.119 0.127 0.202 Bird & 

Marsha11 
----

C:mtinued ••• 



Table 14 (continued) Log (B/F) estimations by the empirical regression method for 
a random sample of 20 of the 79 penicillins taken from Bird 
and Marshall. Quantities x., ~., x and n are defined in Table 4, 

Notes 

a see Table 12 

~ ~ where x refers to the mean observed property value for the sub-
set and n the number of structures in this set. A summary of 
Bird and Marshall's semi-empirical result for the same subset 
is also included. 

b best property estimations based on the analysis of the total set of 79 
structures 



Table 15 Best estimated and predicted log (B/F) values in the 
random sample of 20 pencillin structures, by the 
empirical regression method. 

Compound a Observed Estimated Predicted Estimated 
log (B/F)b log (B/F)c log (B/F)d log (B/F) (B&M)e 

1 -0.659 -0.774 -0.907* -0.628 

4 1.144 1.316 1.363 1.656 

8 -0.052 -0.135 -0.199 -0.218 

9 -0.602 -0.329 -0.386 -0.374 

18 0.525 0.346 0.232 0.363 

23 1.195 1.2~2 1~O84 0.987 

24 1.195 1.212 1.084 0.963 

27 0.176 -0.352 -0.907 0.026 

29 0.664 0.497 0.522 0.494 

32 -0.695 -0.601 -0.514 -0.457 

46 0.176 0.066 0.148* 0.260 

48 0.644 0.783 0.717 0.646 

55 1.380 1.111 1.064 0.934 

56 1.261 1.111 1.074 0.987 

67 0.602 0.693 0.562 0.855 

68 0.921 0.887 1.177 1.099 

70 1.574 1.274 1.238 1.251 

76 0.122 0.203 0.033 0.202 

78 0.362 0.397 0.453 0.446 

79 0.466 0.591 0.536 0.690 

Continued ••• 



Notes to Table 15 

a structure diagrams in Appendix 1. 

b taken from Bird and Marshall. 210 

c best estimations based on the full structure set, using 
augmented atoms at the 10% significance level. 

d best 'predictions' based on the 'hold one out' technique, 
using augmented atoms at the 99% level. 

e estimations from a regression of log (B/P) on LIT 
and Marshal1210 ). 

(Bird 

* structures containing unique augmented atom fragments. 



Table 16 Results of the empirical regression analysis 
on 39 local anaesthetics using augmented pairs 
at the 10% significance level. 

Structural feature Regression Student t 
coefficient (20 degrees of freedom ) 

9SC - cl -0.80 11.12 

lC - Cl (chain) -0.51 18.03 

1C - C2 (chain) -1.08 13.33 

2C - C2 (chain) -1.10 18.36 

1C - C3 (chain) -1.95 17.90 

1C • Cl -0.14 5.70 

1C • C2 -0.31 9.43 

2C • C2 -0.38 7.32 

0C - N2 -0.53 6.38 

2C - N2 (chain) 
-0.68 3.83 

2N = 00 

2C - N2 (ring) -0.58 5.60 

0C - C0 0.74 3.96 

1C - 00 1.24 10.13 

1C - 01 (chain) 0.61 5.60 

2C - 00 0.21 2.46 

2C - 01 (chain) 0.25 2.04 

2C ~ 01 (ring) 

2N - 01 (ring) -0.57 3.04 

IN - N2 (ring) 

2C - Cl -0.28 4.53 

regression 2.35 25.88 
constant 

rJ; zero Continued ••• 



Note to Table 16 

The fragments are represented in the form naA - Dnb 
where na and nb are the numbers of non-hydrogen 
atoms bonded to atoms A and B respectively. The terms 
ring and chain given after fragments indicate the po­
sitions of atoms A and B in the structure, in cases where 
these are not clear 



Table 17 Results of the empirical regression analysis on 
79 penicillins using augmented atoms at the 10% 
significance level 

Structural feature Regression Student t 
coefficient (65 dgrees of freedom) 

C - C - C -0.492 1.83 
I 
Br 

H N -2 
S 

C 
* 

C*C - S 

* 
C 

-0.463 1.73 

N 
I 

0 =s= 0 
I 
C 

0 = S 

Br - C 0.854 5.22 

C* S* C 

S* C - C 0.315 2.75 
* 
C 

F - C 

C* C - F 0.255 3.16 
* 
C 

HN-C 
2 

-0.470 7.14 

Cl - C 0.573 17.45 

C* C* C 0.137 2.46 

0 

I 
C - C - C 0.251 9.26 

Continued ••• 



Table 17 continued 

c - N - C 

o == C 

HO - C 

H C - C 
3 

regression 
constant 

-0.141 2.41 

-0.828 5.36 

-0.334 2.84 

0.194 4.73 

0.245 14.49 

excluded from the regression 



Note to Tables 16 and 17 

Delocalized ring bonds are denoted by asterisks. 
All other bonds indicated in the penicillins are 
presnet in chains. The perfectly correlated frag­
ments in each sample (intra group correlation co­
efficients of + 1) are bracketed, and only one 
fragment from each group is included in the calcu­
lations. 



n A n I A 
n A 2 n A 2 n A 

L Ix.-x·1 L x.-x·1 L (x.-x. ) L (x.-x. ) L Ix.-x·1 
Method Structural i=l ~ ~ i=l 1 ~ i=l 1 1 i=l 1 1 i=l 1 ~ 

feature n _ n (x.-x) L Ix.-x I E n 
i=l ~ i=l 1 

Regression Augmented 26.50 0.41 43.07 0.27 0.68 
pairsa 

Nearest Augmented 33.71 0.52 76.79 0.48 0.86 
neighbour(s) pairsb 

Classification Augmented 41.08 0.64 73.56 0.46 1.05 
pairsc 

Nearest Atoms c 24.70 0.38 21.51 0.13 0.63 
neighbour(s) 

Classification Atoms c 28.87 0.45 34.45 0.21 0.71 

Table 18 A summary of the best prediction results in the anaesthetics py the nearest 
neighbour, classification and empirical regression methods 

Notes 

a at the 10% significnace level 

b using the simple distance coefficient 

c using Dice's coefficient 

I 
1 



Table 19 

n A n A n A 2 n A 2 n A 

E Ix.-x·1 L ! x. -x.! L (x.-x.) L (x.-x.) L ! x.-x·1 Method structural i=l ~ ~ i=l ~ ~ i=l ~ ~ i=l ~ ~ i=l ~ ~ 
feature 

~ ! x.-x I n (x._x)2 L n i=l ~ i=l ~ 

Regression Simple pairs 
a 

5.077 1.868 0.471 0.213 0.254 

bonded pairsb 
4.959 0.460 2.451 0.279 0.248 

b 
5.457 0.507 2.882 octuplets 0.328 0.273 

b augmented 3.740 0.347 1.110 0.126 0.187 
atoms 

Nearest Simple pairs c 
5.227 0.485 2.056 0.234 0.261 

neighbour(s) 
d 

bonded pairs 6.655 0.618 3.212 0.365 0.333 

octuplets d 
6.149 0.571 3.393 0.387 0.307 

c 5.060 0.470 2.314 '0.264 0.253 augmented 
atoms 

Classification Simple pairs c 6.731 0.625 4.094 0.466 0.337 

bonded paris d 7.657 0.711 3.875 0.441 0.383 

Continued ••• 



(Classification) octuplets d 6.049 0.562 3.029 0.345 0.302 

augmented 
c 4.745 0.441 1.589 0.181 0.237 

atoms 

---- - -------

Table 19 (continued) A summary of the best prediction results in the sample of 20 penicillin 
structures, by the nearest neighbour, classification and empirical re­
gression methods. 

Notes 

a at the 10% significance level 

b 
at the 99% significance level 

c using the simple distance coefficient 

d using Dice's coefficient 



Independent variables Significance Variables Degrees of Uultip1e Residual F statistic 

Type No level included in freedom correlation error 
regression coefficient 

Simple pairs 27 99% 26 + const 103 0.848 0.489 10.136 (103,26) 

10% 13 + const 116 0.817 0.502 17.873 (116,13) 

Table 20 Summary of the empirical regression results for a group of 130 mixed structures from 
the literature with known partition coefficients. (see Appendix Ill). 



Independent Variables I Degrees of Multiple Residual Regression Regression F statistic 
variables included in freedom correlation error coefficient constant 

regressio~ coefficient 

. b 
log P estlIDated 1 + C 77 0.786 0.414 0.6619 1.1726 124.465 

log P estimated
C 1 + C 77 0.766 0.431 0.6502 -0.5264 '109.441 

-- --- -- '----------- - ------ _._--

Table 2'1 Summary of the regressions of observed log (B/F) values on estimated partition coefficientsa 

in 79 penicillins 

I';otes a .,estimated from the fragment contributions obtained from the analysis of 130 structures 
taken from the literature with known partition coefficients (see Table 20). 

b fragment n values obtained at the 99% significance level. 

c fragment n values obtained at the 10% significance level. 



Table 22 Serum binding predictions for a group of 18 penicillins·, 
obtained by the semi-empirical regression method described 
in Appendix III. 

Compound Observed B Predicted B l1B 

1 54 42 12 

2 47 55 8 

3 60 74 14 
... 

4 64 60 4 

5-':' 22 95 13 

6 89 92 3 

7 67 83 16 

8* 11 54 43 

9 5 7 2 

10 49 99 50 

11 45 51 6 

12 88 70 12 

13 94 74 20 

14 50 31 19 

15 26 10 16 

16 50 15 35 

17 86 50 36 

18 95 9 86 

• Structures supplied by A.E. Bird, Beecham Pharmaceuticals, Chemo-
therapeutic Research Centre, Brockam Park,Betchworth, Surrey. 



Notes to Figures 

l. 

Fragment Key (to Figures 19 to 24) 

2. 

Code 

A 
SP 
AP 
BP 
OC 
AA 

Fragment Type 

Atoms 
Simple pairs 
Augmented pairs 
Bonded pairs 
Octup1ets 
Augmented atoms 

Bond Key (to Figure 44) 

3. 

4. 

Code 

1 

2 

3 

4 

5 

6 

7 

8 

Bond Type 

Acyclic single bond 

Acyclic double bond 

not used 

Acyclic triple bond 

Cyclic single bond 

Cyclic double bond 

Cyclic aromatic bond 

Cyclic triple bond 

All classifications were carried out using the single-link 

clustering method
46

• 

De1oca1ised ring bonds in fragment definitions are represented by 

asterisks. (Other bonds indicated are self explanatory). 
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Figure 1 Dendrogram showing the classification obtained for a CAS registry file sample using structure 
representation (i) and a simple matching coefficient based on the number of attributes shared 
between structures . 



Figure 2 Augmented atom fragments occurring in the amino acids 
asparagine and glutamine. 

Structure Fragments 

o - C 

N - C x 2 

H2N C CH
2 

CH COOH 
11 I 

N - C - C 
11 

o NH2 0 

C = 0 x 2 

C - C - C 

C - C - C 
1 
N 

C - C - C 
11 
0 

0 - C 

N - C x 2 

H2N ~ CH2CH2 rH COOH N - C - C 
11 

o NH2 0 

C = 0 x 2 

C - C - C x 2 

C - C - C 
I 
N 

C - C - C 
11 
0 

Using structure representation (ii), a = 9 (attributes Common to both 
structures), b = 0 (attributes only in asparagine), c = 1 (attributes 
only in glutamine) and d = 35 (attributes absent from both structures 
for the given structure set). Therefore ~ = 0.935 (see next figure and 
Table 1). 
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Figure 3 Initial single-link clusters formed between the amino acids, asparagine, glutamine, arginine 
and lysine, using ~ and structure representation (ii). 
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Figure 4 Dendrogram showing the classification obtained for 20 amino acids using 0 and structure 
representation (i) 
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Figure 5 Dendrogram showing the classification obtained for 20 amino acids using 0 and structure 
representation (iii) 
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Figure 6 Dendrogram showing the classification obtained for 20 amino acids using 0 and structure 
representation (ii) 
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Figure 7 Dendrogram showing the classification obtained for 39 local anaesthetics using ~ and 
structure representation (i) 
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Figure 8 Dendrogram showing the classification obtained for 39 local anaesthetics using 0 and 
structure representation (ii) 



Figure 9 
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Dendrogram showing the classification obtained for 20 amino acids using the DC values derived 
by Sneath on the basis of structural and physicochemical descriptors combined 10 
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using the classification based on 0 and structure 
representation (ii). 
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Figure 11 Dendrogram showing the classification obtained for 39 local anaesthetics using Dice's 
coefficient and structure representation (ii) 
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Figure 12 Dendrogram showing the classification obtained for 39 local anaesthetics using 
Sneath's DC and structure representation (ii) 
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Figure 13 Dendrogram showing the classification obtained for 39 local anaesthetics using the 
simple distance coefficient and structure representation (ii)' 
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Figure 14 Dendrogram showing the classification obtained for 39 local anaesthetics using the 
standardised distance coefficient and structure representation (ii)' 
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Figure 15 Dendrogram showing the classification obtained for 39 local anaesthetics using a 
probability coefficient based on structure representation (ii) 
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figure 17 Dendrogram showing the classification obtained for 39 local anaesthetics using a 
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Figure 18 Augmented atom, simple pair, augmented pair, bonded pair and octuplet fragments occurring in three 
penicillin side chains, showing the distinction possible between ortho ring derivatives and meta 
and para derivatives when using larger bond - centred fragments. 
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Continued •.• 



Figure 18 (continued) F 
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Property (pI) deviations by the nearest neighbour method in 20 amino acids, using a variety of 
fragment definitions. In this figure and figures 20 to 24 fragments are compared using the structure 
to feature ratio (see fragment key in notes to figures), and structure comparisons are based on 
Dice's coefficient, using representations equivalent to structure representation (ii) and additive 
coding. Quantities Xi' ~i' x and n are defined in Table 4. 
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, Figure 20 Property (pI) deviations by the classification method (single-link clusters) in 20 amino acids, 
using a variety of fragment definitions. (see Figure 19) 
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Figure 21 Property (log MBC) deviations by the nearest neighbour method in 39 local anaesthetics, usi~g a 
variety of fragment definitions. (see Figure 19) 
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Figure 22 Property (log MBe) deviations by the classification method (single-link clusters) in 39 local 
anaesthetics, using a variety of fragment definitions. (see Figure 19) 
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Figure 23 Property (log B/F) deviations by the nearest neighbour method in 79 penicillins, using a variety of 
fragment definitions. (see Figure I9) 
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using a variety of fragment definitions. (see Figure 19) 
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Figure 25 Dendrogram showing the classification obtained for 20 amino acids using structure representations 
based on augmented pair descriptors. Structure comparisons in this and all following classifications 
were based on Dice's coefficient, using representations equivalent to structure representation (11) 
and additive coding. 
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Figure 26 Dendrogram showing the classification obtained for 20 amino acids using Dice's 
coefficient and octuplet descriptors. (see Figure 25) 
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Figure 27 Dendrogram showing the classification obtained for 20 amino acids using Dice's 
coefficient and simple pair,bonded pair and octuplet descriptors. (see Figure 25) 



~ I 
i 

'--

'--- t-

- ., 

--- 1 
! 

1 

0.7 0.8 0.9 

I 
I 

, , 

I 
I 

3 
I 

I 
I 

J 
I 

Antipyrene 
Methanol 
Quinine 
Dibucaine 
Caramiphen 
Diphenhydramine 
Phenyltoloxamine 
O-Phenanthroline 
Procaine 
Xylocaine 
Tetracaine 
Eserine 
Ethanol 
Benzimidazole 
Pyridine 
Aniline 
Chloroform 
Urethane 
Ethyl ether 

Butanol 
Pentanol 
Toluene 
Hydroquinone 
Nitrobenzene 
Phenol 
Hexanol 
Benzylalcohol 
Heptanol 
Octanol 
Quinoline 
Acetanilide 
Methylanthranilate 
Ephedrine 
8-Hydroxyquinoline 
2-Naphthol 

ThYJOOl 
Acetone 
Isopropanol 
Propanol 

Figure 28 Dendrogram showing the classification obtained for 39 local anaesthetics using Dice's 
coefficient and atom descriptors. (see Figure 25) 
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Figure 29 Dendrogram showing the classification obtained for 39 local anaesthetics using Dice's 
coefficient and simple pair descriptors. (see Figure 25) 
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Figure 30 Dendrogram showing the classification obtained for 39 local anaesthetics using Dice's 
coefficient and bonded pair descriptors. (see Figure 25) 



Figure 31 Dendrogram showing the classification obtained for 79 
penicillins using Dice's coefficient and augmented atom 
descriptors (see Figure 25). Structure diagrams are given 
in Appendix 1. 
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Figure 32 Dendrogram showing the classification obtained for 79 
penicillins using Dice's coefficient and simple pair 
descriptors (see Figure 25). Structure diagrams are given 
in Appendix 1. 



LrI 

~ 
I 

r 
1 

I 

I I 

I I 
L-. 

Dice's se 

0.89 0.90 0.92 0.94 0.96 0.98 

I 
I 

, 
I 

I 
I 

I 
1 

I 
1 
, , 

1 

I 
1 , 

35 
12 
4 
3 
13 
1 
2 
10 
5 
6 
9 
11 
7 
8 
71 
72 
73 
75 
74 
36 
76 
79 
77 
78 
16 
66 
64 
65 
67 
51 
69 
70 
68 
20 
15 
18 
46 
17 
21 
14 
22 
26 
27 
30 
31 
19 
25 
28 
29 
23 
24 
47 
37 
44 
53 
54 
52 
39 

38 
48 
49 
50 
34 
32 
33 
63 
43 
42 
58 
59 
57 
41 

14 o 
55 

1 5 6 
1 
2 
o 

6 
6 
6 
45 

1 



OBSERVATION MATRIX (user name defined on input to #XD53) 

ROW 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.09 

ROW 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2.75 

ROW 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 2.60 

ROW 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 2.55 

ROW 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2.40 

Row 6 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 2.00 

Row 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 1.93 

ROW 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1.78 

Figure 33 Part of a Structure/Property matrix for 39 local anaesthetics,for regression analysis using 
HXDS3 and structure descriptions based on augmented pru~s._ Structures are referred to by ROW 
number and numerical values indicate the number of times each fragment type (in the defined 
structure set) arises in each structure. Property values are cited last and are identified 
as the dependent variable on input to the analysis. 



Figure 34 Application of the empirical regression method to predict 
the log (MBe) value of a local anaesthetic, using the 'hold­
one-out' technique. The regression coefficients were 
obtained at the 10% significance level, using augmented 
pairs to describe structures 
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ie. The predicted 10g(MBC) value of this structure is -3.99, observed 
value -4.20 



Figure 35 Application of the empirical regression method to predict 
the serum binding value of a penicillin, using the 
'hold-one-out' technique. The regression coefficients 
were obtained at the 10% significance level, using 
augmented atoms to describe structures 
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continued •• 



ie. the predicted log (E!F) value for this structure is 1.084, 
observed value 1.195 

+ excluding the fragments of the parent compound which are 
constant in each structure 
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Figure 36 Observed against best 'predicted' log (MBC) values in 39 local 
anaesthetics by the empirical regression method, using augmented 
pair descriptors at the IO% significance level. (Predictions 
based on the 'hold-one-out' technique) 
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Figure 37 Observed against best estimated log (MBC) values in 39 local 
anaesthetics by the empirical regression method, using augmented 
pair descriptors at the ro% significance level. (Estimations 
from the full structure set). 
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Figure 38 Observed against best 'predicted'log (B/F) values in 20 
penicillins by the empirical regression method, using 
augmented atom descriptors at the 99% significance level. 
Predictions based on the 'hold-one-out' technique. (Best 
overall result for this sample) 
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Figure 39 Observed against best estimated log (B/F) values in 20 penicillins 
by the empirical regression method, using octuplet descriptors at 
the 10% significance level. Estimations from the full structnre 
set. 
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Observed against estimated log (MBC) values in 39 local 
anaesthetics after Agin et.al 209. Estimations from the full 
structure set. 
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Figure 41 Observed against estimated log (B/F) values in 20 penicillins 
after Bird and Marshall 210. Estimations from full structure 
set. 
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Figure 42 Observed against best 'predicted' log (MBC) values in 39 local 
anaesthetics by the classification method, using highest 
associations based on Dice's coefficient (additive coding) and 
atom descriptors. (Best overall result for this sample) 
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Figure 43 Observed against best 'predicted' log (B!F) values in 20 
penicillins by the classification method, using single-link 
clusters based on the simple distance coefficient and 
augmented atom descriptors. 
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1 0 01 1 2 

2 C 03 1 1 7 3 7 8 

3 C 02 7 2 7 4 

4 C 03 7 3 1 5 7 6 

5 C 01 1 4 

6 C 02 7 4 7 7 

7 C 02 7 6 7 8 

8 C 03 7 7 7 2 1 9 

9 C 03 1 8 1 10 1 11 

10 C 01 1 9 

11 C 01 1 9 

Figure 44 Example of a redundant connection table record. (Bond t}~s are specified in notes 
to Fiqures} 
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Figure 45 Flowchart of the basic classification procedure. 



Figure 46 Flowchart of the 
basic regression procedure. 
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