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This thesis is concerned with the study of the properties and

applications of bilinear stochastic processes X,, t € Z satisfying

_tl
r h T

X s s g YRS B R 50T hee | A B INBRY wiR (iin et atebie
j=l J J j=1 3i6=3 i=1 j=1 ij =i t=3 t

i2]
for some sequence e, t € Z of independent identically distributed real
random variables with common mean 0 and variance 0% < ® and constants
By By eee s B, by by eee s bh’ Bij' b€l E€m 1R, 283

The basic properties of stationary time series are outlined in
Chapter 1. Some properties of linear time series models, such as auto-
regressive, moving average and mixed autoregressive-moving average
models are also given. Bilinear time series models are introduced and
the Subba Rao - Gabr test of linearity of stationary time series is
reviewed.

Chapter 2 presents existence theorems for bilinear models.
Sufficient conditions for the existence of a stationary process Xt' t €2
satisfying the bilinear model above are obtained. Ergodicity of the
process Xt’ t € Z defined above is also discussed. Stationarity condi-
tions for linear models are derived from those of bilinear models.

Chapter 3 gives a method of obtaining expressions for the mean,
variance and covariances of bilinear models. The mean, variance and
covariances of linear models are derived from those of bilinear models.
It is demonstrated that bilinear models are not necessarily distinguish-
able from linear models as far as covariance properties are concerned.

A class of bilinear processes that appear to be white noise under
second-order analysis are analysed in some detail in Chapter 4. Two

methods that use higher order moments in discriminating between a true

white noise and a bilinear process with the same covariances are

iv



presented. Also considered is the classical invertibility

problem for bilinear processes.

The estimation of the parameters of bilinear models is
considered in Chapter 5. A method of order detemination
based on covariances and the information criterion of Akaike
is given. A rule for forming forecasts for bilinear models
is given. Bilinear models are fitted to three real time
series and forecasts ottained from the bilinear models are

compared with the forecasts obtained from linear models.
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CHAPTER

PRELIMINARIES

1.1 INTRODUCTION

In this chapter, we compile some basic ideés needed for an under-
standing of the subsequent chapters. Section 1.2 discusses the statis-
tical properties of a stationary time series. Autocovariance and
autocorrelation functions are defined and their properties are given.
Spectral density function and bispectral density function are given as
two special cases of polyspectra.

Section 1.3 discusses the properties of linear time series models
such as autoregressive, moving average, and mixed autoregressive-moving
average models. The autocovariance function and the spectral density
function of these models are given. Bilinear time series models are
introduced in section 1l.4. Some results on the simple bilinear process
satisfying (1.4.2) are provided. Finally, a brief review of the test
for linearity of stationary time series, as was developed by Subba Rao

and Gabr [38], is given in section 1. 5.

1.2 BASIC CON

1.2.1 Stocastic (Random) Processes And Time Series Analysis

A stochastic (or random) process is defined as a family of random
variables Xt where t is a parameter running over a suitable index set T
and is denoted by X, t € T. If T = bisn v s 05 0il was k= 8, thon X,

t € T is said to be a discrete parameter process. If T = {-», =}, then
Xt' t € T is called a continuous parameter process. The state space,

S of Xt’ t € T is the space in which the possible values of Xt’ the ™ 1de:
If S = (-, ©), then we call Xt' t € T a real-valued stochastic process.

We will consider only the real-valued discrete parameter process Xt’ t el

in what follows.



The term 'time series! is used in statistical literature to mean a

()]

collection of observatioﬁs of a random process made sequentially in time.
When considering time series, there is taken to be an underlying real-
valued discrete-time stochastic process-Xt, t € Z and the available

data Xy t=1, 2, «oo , N is a sample segment from all of the possible
series that Xt' t € Z could have produced. Time series analysis refers
to that body of principles and techniques which deal with analysis of
the observed data Xy t=1, 2, ¢ » N. Usually, the data are analysed
to try to find a model that approximates the true underlying generating
random process X, t €.

1.2.2 Stationary Processes

Intuitively speaking, a random process Xt' t-£ 7% is said to be
stationary if the statistical properties of the process do not change
over time. There are two notions of stationarity, namely complete
(strict) stationarity and stationarity up to order m, m > 0, m € Z.

A completely (strictly) stationary process is a stochastic process
X,, t € Z with the property that for any positive integer n and any

t
points t,;, t,, «e. tn and h € Z, the joint probability distribution

of {X, » X, » see » X, } is the same as the joint probability distri-
 EE ) t )

bution of
{X X ¥

t,+h’ Xt2+h' sRa s e
n
A stochastic process Xt’ t € Z is said to be stationary up to

order.m, if for any positive integer n and any points tl. tz' ol tn

o

and h € Z, the joint moments up to order m of {Xt . Xt R s G ¢
2 n

1

i h h jol eee 9
is the same as the joint moments up t§ order m of {Xt1+h' Xt2+h'

th+h}' That is,



Efz. Y iy, )¢z (X

)kn} L 2.1)

= E{(X )kl (X )kz e (xt 5
n

.44 t_ +h
1 2

for all possible non-negative integers kl, kz, Seie ey kn satisfying

ky +k, # aen ¥ kn < m.
If we are given that Xt’ t € Z is stationary up to order 2 then
we have,

(a) E(Xt) = u, independent of t

(b) Var(X,) = E{(X, - w)?*

02
X

» independent of t
| RN

1]

le) CoviX, X )

HE #27 E{(Xt - u)(Xt+k - Wi

1]

REk) . ks, it ol

n

a function of k only

)

1e2etn Autocovariance And Autocorrelation Functions

The function R(k), k € Z defined in (1.2.2) is known as the auto-
covariance function of lag k, and

Py T R(k)/R(0) (1.2.3)

for k = 0, #, *, ... is known as the autocorrelation function of lag k.
The autocovariance and autocorrelation functions possess the following

properties

(1) R(0) = Var(X,) = oﬁ =P p =1
(1) |R(kK)| < R(0) =D |p, | €1, ke 2 ¢ (1.2.2)

(1i1) R(-k) = R(k) &P p_, = p,» k € L

)

(iv) R(k) and p, are both positive semi-definite in the sense

that for any set of time points tl. T e tn € Z, and all real numbers
2
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RS e SR
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YRR T W o 20"

§oki gl 1A (1.2.6)

1.2:% Polyspectra

Let Xt’ t € Z be a random process stationary up to order k. Let

Mk(sll Szt eese 9 sk-l) = E{Xt Xt+sl ee e Xt+sk_l} (1.2.7)

be ‘the product moment of order k of the random variables Xt’ Xt+s » 'oole
1

AN | . Then M (s,, s ) is the coefficient of

2% °°° » S-
k-1 g

t+s

(61 62. A e ek) in the expansion of the moment generating function

M(B,s B, «oe » 6,) = Elexp(B, X, + 6, XHS1 toaan BRCE T O

k-1

2’

(lc 2. 8)
Let Ck(s1’ S5 see s Sk-l) be the joint cumulant of order k. Then

Cla s B o ses v B o) in the cosfficient of {8 0, .. s B8 ) In'the
2 k-1 1 2 k

k( 1
expansion of the cumulant generating function

{85 B0 emes 6) = J0g (8, 80 s B (1.2.9)

By the stationarity condition, M (s, s,, ... » sk-l) and C, (s , S0 ees
I sk—l) do not depend on t.
The Fourier transforms of the k-th order cumulants are called

'polyspectra'.

Definition 1.2.1. The k-th order polyspectrum (or k-th order cumulant

spectrum) is defined by

f(wl. wzt eos mk"l)

1]
r——y
| -
| SSEEE—
.
'_J
w
™
™ 8
.
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o
H
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xp{-1 (c gl B+ 0 i eidd
exp{ (wl S, 38 Ly q K-L)

(-TT S w s TT, i = 1, 2| eee k-l)

A sufficient condition for the existence of (1.2.10) is that the

cumul@nts Ck(sl. s2. ey Sk-l) are absolutely summable, ie

o] (e o]
. L 2_}a>lck(sl. B9 sss s B )| % (1.2.11)
S 1-- sk-l_

Polyspectra were introduced by Shiryaev [33]. Brillinger [6] and
Brillinger and Rosenblatt Bﬂ have given a comprehensive treatment of the
theorectical properties of polyspectra and have discussed also the
estimation of polyspectra from sample data. An important property of
polyspectra is that all polyspectra of higher order than the second
vanish when Xt’ t € Z is a Gaussian process. See Priestley [30, p.87é].

The Second Order Polyspectrum

Since

C,(s,) = Cov(X, Xt+s1)

R(s,) » (1.2.12)

it follows that the second order polyspectrum is given by

fw,) = f(w)
e -iws
# = °F Rlg)e » ST LWL
2 g=-©
l o0} 5
= —{R(0) + 2 I R(s)Cos ws .2.13)
2ql - s=1

The function of f(w), -7 € w £ 7 is called the (power) spectral density

function., The spectral density function always has the following

properties

{1).8(0) = o;

i
= Jﬁ f(w)dw (1:2:14)
-T



(i e () 10 e S wiSa
(iii) for real valued processes
fw) =f(~w) , -TSWET.
The spectral density function is comprehe:nsively tréated in standard
books like Priestley [30].

The Third Order Polyspectrum

The third-order cumulant Ca(sv Sz) is identical with the third-

order moment about the mean, ie

Ca(s1’ sz) C(sl, sz)

B0, - W) (R, = W0, - )

where U = E(Xt)' The third order polyspectrum may be written as

1 © o i
flw, w,) = T S o(s., s )etlwys tw,s,)
1 2 2 = 1y : 2
(277) S == § ==
1 2
(-1 LW, w, M) (1.2.15)

The function f(wl, wz) is called the bispectral density function
(or simply 'Bispectrum'). For a real valued process, the third-order
central moments satisfy the following symmetric relations

C(sys 8,) = C(s, 8;) = C(-5,, 8, - 5,) = G(s, - 8,, - 8,) (1.2.16)

while the following symmetric relations hold for f(wl, w, )

f(wl, wz) = f(wz, w, )= f(wl. By wz) = f(- 0 100 wz)

£(~ w, - w,) 3.2.97)

2

where F(- W, = w2) is the complex conjugate of f(- W,

» - w).
Bispectra are discussed by Tukey f&] and Akaike [1] Applica-
tions of bispectral analysis are described by Has;elma.n. Munk and
MacDonald [23] and Lii, Rosenblatt and Van Atta [27] amongst others.
Some progress has been made in the use of Bispectral technigues to

describe non-linear processes. See Brillinger [6], Godfrey [13] and

e £




1.3 LINEAR TIME SERIES MODELS

The theory of linear time series models such as autoregressive,
moving average, or mixed autoregressive-moving average models are well
developed and excellent accounts of this theory can be found in Box and
Jenkins[:5] and Chatfield [9] amongst many other standard books. We

give below a brief summary.

qB80E Purely Random Processes: "White Noise"

The process Xt' t € Z is called a purely random process if it
consists of a sequence of uncorrelated random variables. For such a
process to be stationary up to order 2, we reguire only that

E(X,) = u , independent of t

T
2
Var(Xt) o,

s, independent of t

Cov(X,, X,, ) =0, for all s 0

The spectral density funciton of the stationary purely random process
is given by

flw) = o;/Zn , T WETW (1.3.1)

The purely random process is often called "white noise", particu-
larly in the engineering literature. From now on, we denote a 'purely

random process! by e,, t € Z. The e,, t € Z are usually assumed to be

t’ t
normally distributed with mean zero and variance 0% < e,

1 32 The General Linear Process

A stochastic process X,, t € Z is said to be a general linear

t

process if it can be expressed in the form

X, =k

L Eu®t-u a.e [P] (1.3.2)



o avery 403 7 wheres e + 7 S o “r anAAm e+ =
or every t in 2 where e,, t € 2 is a purely random process with mean
v

zero and variance 02 < ® , and g0 U 2 0 is a given sequence of constants
satisfying

@0

z 2 <@

u=0 “u

The series (1.3.2) converges in the quadratic mean.

If we let g =0, u < 0, then we may re-write (1.3.2) as

Xt & =§m €ut-u
= G(B)et , (1.3.3)
where
G{B) = g_w g, B » (1.3.4)
and
Buet s gl

If we assume that the inverse
G (B) = u(B) (1,.3.5)
exists, we can write (1.3.3) in the alternative form

ﬂ(B)Xt = e, (1.3.6)

If G(B), for |B] € 1, converges for all complex numbers B on or
within the unit circle, we say that the model (1.3.2) is stationary.
We shall say that the series (1.3.2) is 'invertible' if m(B), for
|B] £ 1 converges.

The autocovariance function of Xt' t € Z satisfying (1.3.2) is

B, X )

R(s) T S

e o]

gt. % £ Bais (1.3:3)

Z-00

The spectral density funciton of Xt' t € 2 is given by

- h




2 . ’:
flw) = <= ale™¥)a(elw)
2
02
=— |[Hw)|?2, -Tswgm (1.3.8)
2T
where
alw) = 6(s"2)
T B’ ¥ o (1.3.9)
U=-o0

is known as the 'transfer funetion'. Also, the third-order central
moments of X, t € Z satisfying (1.3.2) is given by

C(Sl’ Sz) = E(Xt X X )

t+s; “tts,
Lol
T (1.3.10)
3 =_mgu gu+s1 gu+s2
where e;, t€Z are independent and
i 3
e E(e}) .
The bispectral density functiomn is given by
Hs
flw,, w,) = gy H(w,)H(w,)H(- v, - w,) (1.3.11)

(-‘iT < wliwz § n)

1l.3.3 Autoregressive Process

A stochastic process Xt. t € Z is said to be an autoregressive
process of order r, denoted by AR(r), if it satisfies the difference

equation

X
Xg= I a;X 4o, a.e [P] (1.3.12)

for every t in Z where al. az. Bisialig ar are constants and et. % E L A8
a purely random process with mean zero and variance 0? < » , FEquation

(1.3.12) may be written in the form

-9_



[
)
.
ok
W
p—

u(E)It = e, tL.

v

where

T

@(B) =1 - aB - a2B2 * vae sl (1.3.14)

For stationarity we require that all the roots of a(B) must lie outside

the unit circle.

The autocovariance function of Xt' t € Z satisfying (1.3.12) is

R(s) alR(l) + a2R(2) [ Spancii: ! arR(r) + o, 8=0)]

{1.3.15)

alR(s -1) +a,R(s ~ 2) + ... ¢ arR(s -r),

S = ﬂ.’ i2 ...J

The second set of equations in (1.3.15) is called the Yule-Walker
equations for an AR(r) process. The spectral density funciton of the
stationary AR(r) process is given by

2
’ =% < w s m (103016)

1.3.4 Moving Average Process

A stochastic process Xt’ t € Z is said to be a moving average
process of order h, denoted by MA(h), if it satisfies the difference
equation

h

X, = j{-l b, s +e, a.e [P] (1.3.17)

for every t in Z where bl. by «ss » b:are constants, and e,, t € Z

h t

is a purely random process with mean zero and variance 0? < « ,

2

Equation (1.3.17) may be written in the form

X, = B(Ble, : (1.3.18)

where

B(B) =1 + blB + bzaa' R oo thh (1.3.19)

For invertibility of the MA(h) process, we require that all the

=10 -




w

roots of B(B) must lie outside the unit circie.

The autocovariance function of Xt’ t ¢ Z satisfying (1.3.17) is

h 3
Bls) an™ Bulb; , 8 =0
j=0
- h-s
- = + -
. ii bj bj+s MR e T TRS TR P - T (1.3.20)
=0 , ls] >n

)
where bo = 1. The spectral density function of the invertible MA(h)

process is given by
o2

fw) = —

27

2

» STLWLT {1+3.21)

B(e-iw)

1.3.5 Mixed Autoregressive-Moving Average Process

A stochastic process Xt' t € Z is said to be a mixed autoregressive-
moving average process of order (r, h), denoted by ARMA(r, h), if it

satisfies an equation of the type

T h
X, = B e X i Eihe e a.e [P] (1.3.22)
t j=1 8 = j=1 J t-J t
for every t in Z where al. B so0 s B, bl, b2, A e bh are constants
and €ys t € Z is a purely random process with common mean zero and

variance 0% < @ , Equivalently, we may write (1.3.22) as

a(P)Xt = B(B)et (1.3.23)

where a(B) and B(B) are given by (1.3.14) and (1.3.19) respectively.
The process Xt’ t € Z satisfying (1.3.22) is stationary if all the
roots of a(B) lie outside the unit circle and invertible if all the
roots of B(B) lie outside the unit circle.

The autocovariance function of Xt' t € Z satisfying (1.3.22) will
be like that of an autoregressive series after lag h. That is,

R(s) =aR(s - 1) +aR(s -2) +... +aR(s-1), sxh (1.3.24)

z

1 Ty LR



The first h autocovariances depend on the moving average parameters

b,y by «.e » b as well as on the autoregressive parameters a,, a

h 2, o0

ee s 8. Equation (1.3.24) is called the Yule-Walker equations for an
ARMA(r, h). The spectral density funciton of the ARMA(r, h) process is
given by

o Bte " 1"

f(w)=_‘ " »
am la (e71%]2

=T 6 w 6 m (103025)

1.4 BILINEAR TIME SERIES MODELS

Linear time series models are widely used in many fields because
these models can be analysed with considerable ease and they provide
fairly good approximations for the true underlying generating random
process. However, the underlying structure of the series may not be
linear and what is more, the series may not be Gaussian. In these
situations, second-order properties, such as covariances and spectra,
can no longer adequately characterize the properties of the series and
one is led then to consider non-linear nodels which can provide a
better fit.

A particular class of non-linear models which has been found to be
useful in many fields is the bilinear models. Bilinear models have been
extensively discussed in the control theory literature. One could check
Ruberti, Isidori and d'Alessandro [32] and Bruni, Dupillo and Koch [8]
for further details. Until recently the theory of bilinear models dealt
with the structural theory of deterministic bilinear differential equa-
tions. The study of bilinear models as stochastic models was initiated
by Subba Rao [34, 35, 36, 37] and Granger and Andersen [14, 15 J.

Let s t € Z be a sequence of independent identically distributed

random variables with E(et) = 0 and E(e%) = 02 <o, Let 815 80 cve 5 8,

='12 -
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b gih b, and B.., 1 €i <m, 1 £j €L be real constants. The

1’ 2! L AL L s h ij o

general form of the bilinear model, as defined in IiS] is
h m &

K= P FALT SRR N S Ul L e A e ST
t j=1 I 35 J L= 15 ij t=1Tt-3 t

T
a.e [P] (1.4.1)

for every t in Z. If Xt' t € Z satisfies (1.4.1), Granger and Andersen []é
uses the notation that X,, t € Z is BARMA(r, h, m, &,), where BARMA is
the abbreviation for Bilinear Autoregressive Moving Average Model.

Various simple forms of (1.4.1) are discussed in the literature by
the following authors: Granger and Andersen [14, 15], Subba Rao [34, 35 , 36,
37], Tuan Dinh Pham and Lanh Tat Tran [/l ], Subba Rao and Gabr [397,
Bhaskara Rao, Subba Rao and Walker [4,], Tong [40], Hannan [22],
Quinn [31] and Guegan [18]. The simple bilinear process X,, t € 2
satisfying

X, =BX je, , te a.e [P] (1.4.2)

for every t in Z for some constant B, where €4r t € Z are independent

and each e, is distributed as N(0, 02?), is extensively studied inElS]

where it has been shown that the autocorrelation seguence for Xt’ te 2

is
= = )
Py 1 k=0
2(1 _ 32
288 7 M Opiely GBS
v R 50 TN R
=0 elsewhere |

where A = 0B. We have found the expressions given therein for the third
and fourth central moments to be incorrect. Under the normality assump-
tion for ey series, the third and fourth central moments can be shown

to be

448050 9% o] (1o 4ed)
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Dy Doy eee s bh

and Eij' 1 <€i<€m 1<) <L be real constants.
general form of the bilinear model, as defined in [iS] is

iy h m L _
. = E £ Xt-j + jil bjet_j + iil‘jil Bij Xt-iet-j te,

a.e [P] kP G
for every t in 2. If X, t € 2 satisfies (1.4.1), Granger and Andersen [15]

uses the notation that Xt’ t € Z is BARMA(r, h, m, &,), where BARMA is

the abbreviation for Bilinear Autoregressive Moving Average Model.

Various simple forms of (l.4.1) are discussed in the literature by
the.following authors: Granger and Andersen EAJ 15], Subba Rao [}4, 35 » 36,
37], Tuan Dinh Pham and Lanh Tat Tran [41 ], Subba Rao and Gabr [397],
Bhaskara Rao, Subba Rao and Walker [ A ], Tong [40], Hannan [_22],

Quinn [31] and Guegan [18]. The simple bilineer process X,, t € 2

t

satisfying
X, =B X _je, 1 te a.e [P] (1.4.2)

for every t in Z for some constant B, where e,, t € Z are independent

t’
and each ey is distributed as N(0, o02), is extensively studied inl}S]

where it has been shown that the autocorrelation sequence for Xt’ t e Z

is

== = '

Py = i k 0
21_2
LR = M A TR (1.4.3)
1%2% + & '

=0 elsewhere |

where A = 0B. We have found the expressions given therein for the third

and fourth central moments to be incorrect. Under the normality assump-
tion for ey series, the third and fourth central moments can be shown

to be

343
B[(x, - Bx,0)3] = i

4L+ 5X%Y ,)2 <1 (1. 4e4)

Yiai)®
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and

E[(xt'- E(Xt))“]

3o J
2 1+ 322 + 19A% + 31A% + 39)% + 45)%°% ,
1 - 22)Q - 3)\")1 '

(1.4.5)

provided that 3A\* < 1. This correction affects column 5 of Table 1 in

[14].

An interesting generalisation of (1.4.2) is the process X;» t €2
satisfying

X, =a X + B X

t t-1 fod Sen TR ace [P] (1.4.6)

for every t in Z and for some constants a and B where s t € Z are
independent and each e is distributed as N(0, 0). The existence of a
stationary and invertible process Xt' t € Z satisfying (1.4.6) is
discussed in [15], [:37] and [Aﬂ. The existence problem for a process

X,, t € Z satisfying special cases of the model

t’
r My

i TR MNE TR
s L SRS I T

ixj
for every t in Z are discussed in [ 4], [37], [39) and [46].

So far all these studies have failed to include the moving average

£-1%t-j t e a.e [P] (1.4.7)

h
part I bjet-j in (1.4.1). This study, outlined in chapters 2, 3, 4
J=1

and 5, is devoted to the study of the full bilinear model (1.4.1). For
mathematical convenience, we will confine ourselves to the study of the

process X,, t € Z satisfying

27
h m £

T
G R Al MR R, SN e WIS T (e TRV O W i . SO e,
t t 321 j ot=d =1 J ot <1 §=1 ij " t-it-j

i2j a.e [P] (1.4.8)

for every t in Z.

S



1.5 TEST FOR LINEARITY OF STATIONARY TIME SERIES

Subba Rao and Gabr [}é] have constructed two tests aimed at
detecting whether & stationary time series is Gaussian and if the
process is non-Gaussian, whether it conforms to a linear model. Hinich
BLQ has given a modification of their approach that mzkes use of the
large sample properties of the sample bispectrum. We give below a
brief summary of the Subba Rao - Gabr approach.

We have indicated in section 1.2.4 that if a process is Gausssian
then all its polyspectra of higher order than the second are identically
zero. In particular, relation (1.3.11) shows that if u3 = 0, then the
bispectral density function of the general linear model is identically
zero for all frequencies. Of course, if the random variables €4s t €2
are Gaussian, then u, = 0 and f(w;, w,) =0, -7 € w;,w, £ 7 . Thus, if
the process X, t € Z is Gaussian (Gaussianity of e.,» t € Z imples
Gaussianity of Xt’ v €4 Tor Xt satisfying (1.3.2)), then the bispectral

density function f(w,, w,) =0, -m € w,, w, £ ™.

i
The test for Gaussianity is carried out by examining the null-
hypothesis that the bispectrum is zero at all freguencies. The test
statistic has a form similar to Hotelling's T? statistic and is
constructed from the values of the estimated bispectrum over a grid of
frequencies. Using (1.3.8) and (1.3.11) we obtain
lf(wi. wj)l2

e '-ﬂswi’w.sﬂ
4 f(wi)f(u)j)f(wi + uE) -

constant.

The test for linearity is based on the constancy of the sample values of

Xij over a grid of frequencies, and the test statistic again has a form

w15



similar to Hotelling's T2,

The fact that a process Xt' t € Z has a zero bispectrum aoes not
necessarily mean that Xt. t € Z is a Guassian process for it is possible
for a non-Gaussian process to have a zero bispectrum. See Priestley
DO, p.877]. Also, the.constancy>of Xij does not necessarily imply that
the process Xt’ t € Z follows a linear model. As pointed out in [}O],
it is reasonable to suppose that in most practical situations deviations

from Gaussianity or linearity would show up in the form of the bispectrum.

i



EXISTENCE THEOREMS FOR BILINEAR MODELS

2.1 INTRODUCTION

2ok General Form of Bilinear Models - Vectorial Representation

Le't Xt, tzocc ’ -l’ O, 1] e e and et’ tzl.l "'l, O, l’ e e ’ be

two real stochastic processes defined on some probability space (2, &, P).

Let Z denote the set of all integers. We call €, t € Z the input or

unobservable process and Xt’ t € Z the output or observable process. Xt’

t €.2 is said to be a Bilinear Model with respect to the input process

T h m L
RS T TR ORI R Ty s Ty R T tare Batt WaciliBai Ao te
j=1 j= J -J 1=1 §=1 1) " t=1i "t-] T

for every t in Z, for some constants al, az, siois Oy bl. b2, et o
andﬁij.lsism,lsjgl.

We usually assume the input process €y t € Z to be independent
identically distributed with common mean 0 and variance ¢? < o,

The first part of (2.1.1) is identifiable as the autoregressive
part of the process Xt’ t € Z, the second as the moving average part of
Xt' t €Zand the third part is the 'pure! bilinear part of Xt’ t.€%. A
study of bilinear models subsumes the study of autoregressive models as
well as the study of moving average models and mixed autoregressive-
moving average models.

One cannot fail to notice that (2.1.1) can also be labelled as the
bilinear model for e, t € Z with respect to Xt’ t € Z. The labelling is

a matter of semantics, and we will always put the observable process on

£ne 1eft of (R.1.11.

= A7



A rndthama+3 3 e 2 =3 L - A
For mathematical convenience, we wish to consider the proc

)

ege
COo

X,, t € 2 satisfying

tl

a.e [P] (2.1.2)

for every t in Z.

I Xt' t € Z satisfies (2.1.2), we use the notation that X., t € 2

t'
is BARMA (r, h, m, 2), where BARMA is the abbreviation for Bilinear
Auﬁoregressive Moving Average Model. The phrase "with respect to
€ t € 2" in the description of the process Xt

without undue misunderstanding.

s T £ 272 1s omitted

The purpose of this chapter is to examine under what conditions
a process Xt’ t € Z exists satisfying (2.1.2) for a given sequence

e,» t € Z of independent identically distributed random variables with

t’
common mean 0 and common variance 02 < = and constants B os s o By
g Dy eee s bh and Bij’ 1<igm 1£j <% wherei 2 j. This problenm

has been tackled by Bhaskara Rao, Subba Rao and Walker [4.] for the special

class of models satisfying

i g e W e U e ooy SR B a.e [P] (2.1.3)
: t- { - -
Bligq 400 inied W t
for every t in Z.
After putting this model in vector form, they gave a sufficient
condition for the existence of a strictly stationary process satisfying
(2.1.3). Earlier, Subba Rao and Gabr [39] gave a sufficient condition

for the existence of a second-order stationary process Xt’ t € 2, satis-

fying (2.1.3) with p = q. The sufficient conditions in both situations

- 18 -
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. 4 caiid
uiiicient

D

o~ odhos & < ~ I S T S
also obtained the same

ubba Rao and Gabr [3

U
>
o
7/!

were uthe Sarne.
conditions for the existence of a second-order stationary process Xt'
t € Z satisfying

D P P
D GERT— Il R e o B U QP A ST 63 5 S ¢

iy g a.e [P] (2.1.4)
j=1 J J i=1 j=1 1Jit=3 =)

i2j
for every t in Z,
Adapting the method given in Bhaskara Rao, Subba Raoc and Walker [4].
we give a sufficient condition under which a strictly stationary process
X ; t € 2 exists satisfying (2.1.2). Before that, we would like to put

t

(2.1.2) in vector form.

Theorem 2.1.1. Suppose a process X

» t £ Z satisfies (2.1.2). Let

t
p = max {r, n} (2.1.5)
g = min {m, SL} (2.1.6)
o smik sl o) (2.1.7)
A=la,a, a; «.ca, O D 0.0
pxp
1 208 D bt Benl-Dasis o1 0:0
ORclpsiBnns. el 030 Gk 180
ol R RN (2.1.8)
i e @ TSRt i 4 B e S
\ —_—
(p-r)
CT = CLO 00 Ol cse O) (2.109)
1xp
T AP
P. = (bj) O’ O. LU ’ O) ’ J ’1’ 2, e ’ h
1xp (2.1.10)

=0, forall j > hwhen h<g

where 0 is the null vector in which every entry is zero.

-39



- IRE |- R it 0 oo e RR RO
3183 i) u
R | B xs WO e O
. . . " . . (2.1.11)
LO 0 es e O 0 O cee OJ
Mtcinia gt e,
(p-m+j-1)
(J = A5 B5 sen g)
=0, forall j > gwhen h > g
where O is the null matrix in which every entry is zero.
T ed% AN
Iy = (kt'  Lf A Xt-p+1) » L e (2.1.12)
Lxp
Then
% q 5
Fa . + b. . . ¥ ¢ = S
ST TS B €4ms jil By Xy 5 ey 5 tCep mee [F] (2.1.13)

for every t in Z.

Proof By direct verification.

Now, we replace the existence problem as follows. We are given a

sequence €., t € Z of independent identically distributed real random

i
variables with common mean 0 and common variance 0? < @ and matrices

R4 Bj,j=l. 2 asn o e pj.j=1, 2, eee y gand C . Under what
PXP oo px1 pxl

condition does there exist a vector-valued process Xt’ t € Z each with

p-components satisfying

{ = + = S e = s
lt A Et-l jzl Eh et_a jil BJ lt-g et-J ’ Cet a.e [P] (21 14)

for every t in Z.

We will also discuss some special cases at the end of this chapter.

2.2 PRELIMINARIES

Pedvd On Kronecker Product of Matrices

In this section, we record some results on kronecker product of

- 20 -
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)
(o)
i)

results are used in th the results in

(44
44

sections 2.3 and 2.4.

For any two matrices A = (aij) and B = (bij) of orders m x n and
r x s respectively, we denote the kronecker product of A and B by A & B
and is defined to be the following matrix of order mr x ns

A8B=[a Ba, B...a,B

B

ale aZZB ce e a2n (2.2.1)

LamB ap,B .. amnBJ

We adopt the following notation. For any matrix D, we denote the
(i,j)-th element of D by (D)ij or (D)i,j. if the elements of D are not
indicated specifically before. If C is a column vector, the i-th
component of C is denoted by (C)i or (C)il when the elements of C are not
explicitly indicated before. In stands for the identity matrix of order
n x n in which every diagonal entry is equal to unity and every non-
diagonal entry is equal to zero. Also, O stands for the null matrix or
vector as the case may be.

The element aijbuv which is the ((i -1)r +u, (j - 1)s + v)-th
allement of ‘bhe matrix ArB B for s e s s llp ). At 2T e s
W=, R wee » ¥3 A0A Vv =12, 55s s 8) 15 denoted by (A B B)ij;uv'
In fact,

(4 8 B)ij,uv aijbuv

(& 8 B) (s 2 )ren, (3-1)stv (2.2.2)
We give below some of the properties of kronecker products (for
details see Neudecker [29]).

Lemma Bedsd

(a) For any three matrices A, B and C,
(A8B)BC=A8 (BB C) (2.2.3)

(b) For any four matrices A, B, C and D, where A and B are

-



the same order and C and D are of the same order,
(A+B)B(C+D)=(a8B8C)+(A8D)+(B8C)+ (B8 D)
(2.2.4)
(¢) For any four matrices A, B, C, and D,
(A R B)(C R D) = (AC) R (BD), (22.5)
provided the matrices involved are comformable for multiplication.
If Al, Az' o0 iy An. By» Bz’ e e Bn are 21 matrices, then
(A, B B,)(4, B B,) «v. (An B Bn) = (RAy wus An) 8 (B,B, «.. Bn),
(Re246)
provided the matrices involved are conformahle for multiplication.

(d) Let A and B be two square matrices with eigen values
pxp gxq

Qs Qys oee s up and By B,y eeo » Bq respectively. Then the eigen values
of A B B are the pq numbers aiBj where d =35 12,0000., pand J== 15 2, W
.« » Q. See Lancaster [26, p. 260].

2 2nid Spectral Radius of a Matrix

Let A = (aij) be a square matrix of order n x n with eigen values
As Ao wee » Ao We denote the maximum of |A |, A |5 eee » |2 | by
38 il n 1 2 n
o(A), and p(A) is usually called the spectral radius of A. We give below

some of the properties of p(A).

Lemma Lo RATE

(2) p(A) € ||a]] for any norm ||*]|| on the linear space of all
square matrices of the same order.
(b) There exists a positive constant K such that for any positive
integer m, we have
[ (&)1 < Ko(a))" (2.2.7)
for all i and j.
(e) n

p(A) < max > [P |
ygign 322 M

-22 -y



n n
Sy z lai.l
i ja Y

n n 1
ghik s Bt |F
=1 j:l +d

<n max Iai.l (2, 2.8)
Yed, S

(d) Let A be a square matrix. Then p(A ® A) <1 if and only if
PXp

p(a) < 1.
Proof (a), (b) and (c) are standard fare treated in any good book on
matrix algebra. One could check Kato [25, p.36] for (c). We prove (d)
now.
Let @ s ozz. soe s C!p be the eigen values of A. Then
p(A) <1 if and only if l"‘il 3. Tor Bl 4 E 1B s e B
if and only if Iaiaj{ €0y Tor alld .3 =g Lo iy e
if and only if p(A @ A) <1,
by Lemma 2.2.1 (a).

AR Convergence of Sequences of Random Vectors

Let {Xn’ n 2 1} be a sequence of random vectors each of the same
order p x 1 defined on some probability space (2,&*, P). We say that

I Y converges absolutely almost surely [P] if
nzl
z I(ln)il . i a.e [P] (2.2.9)
nzl
forevery i =1, 2, ees 5 Do

We say that I Xn converges in the mean if there exists a random
nxl

vector ¥ of p-components such that

m
Lim B 20001 ), %= €X): | =0 (2.2.10)
pHo n=1 s 4 Ll X 1

=23 =



for every:di Sil, &y olas > Ds
We say that Z Xn converges in the quadratic mean if there exists a

nzl
random vector Y of p-components such that

m
T3 ' = i
LnEl Z (), ~(I)]|®=0 (2.2.11)
m¥o n=l

for every i =1, 2, «e« » Do

2.3 EXISTENCE THEOREM: THE CASE g =1

In this section, we give a simple sufficient condition for the
existence of a strictly stationary vector-valued process gt, tiE-Z
conforming to the bilinear model

X, =AX, jtbe, 1 +BX je, 7 +Ce, a.e [P] (2.3.1)

for every t in Z for a given sequence e,, t € Z of independent identically

t

distributed random variables with common mean 0 and variance 0% <« angd

matrieces A 5 Bigi Dblsi o0 %
PXp pxp Ppx1 pxl

We treat the case g = 1in (2.1.14) specially because we can describe
the process gt, t €2, if it exists, explicitly as an infinite series in
et's. The case q > 1 is more complicated. We will discuss this case in
section 2.4.

We begin with a Lemma.

Lemma 2.3.1 Let f be a vector-valued measurable function defined on

the infinite-dimensional Euclidian space RxRxRKx... , ie, for every
sequence (xl. X p wee s oee ) of real numbers, f(xl, X p eee «) g &
vector in some p-dimensional Euclidian space RF. Let €. t € 2 be a real
strictly stationary process. Then

f(et' 8430 B o ssnn) Ay b &R
is strictly stationary.
Proof Obvious.

The following is the main result of this section.

el 7
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. el e ey
lneorem e Do

3]
[0

a¥E A A ey YOIl AS A * ¥ oo e 0% S SR e . 9
Let e,, t € 2 be a sequence of independent identical
v

distributed real random variables defined on a probability space (%2, &, P)

such that E(e,) = 0 and E(ef‘;) = 02 < ®, Let A and B be two matrices of

order pxp such that
p(A8A+02B8B) =A<

Let b and C be two column vectors with components bl, bz’ cee 3 bp and

Cl, Cz. Sheadity Cp respectively. Then, the series of random vectors

r
i IS (A Ber 0i(Ga + b
t-r =

_s )
31 j= it

et-r-l

converges absolutely almost surely [P] as well as in the mean for every

fixed + in Z. Further, if
Tr

X,=Co,Fbe, g b B IR B J{Ce, -t he, L)y b EE
t t -1 21 j=1 t-J t-r t-T-1

then Kt’ t € Z is a strictly stationary process conforming to the bilinear
model

ik +
ey B e T Cey

b
n
b
1<

for every t in Z.
Conversely, if lt' t € Z is a strictly stationary vector-valued
process satisfying

g A
S S R T

+ Oe, a.e [P} (2.3.2)

for every t in Z for some sequence s t € Z of independent identically

distributed random variables with E(et) = 0 and E(e%)==02‘<«>and e rO

matrices A, B, b, and C of orders pxp, pxp, pxl, px1 respectively satisfying
p(ABA+0*BBB) =<1,

then

4

X, = Ce, + be + Z N (A + Be, ,)(Ce - 5]
i t t"l I‘?l j=l t-J)( ‘t_r bet‘r‘l) d. € [PJ

for every t in Z.

Proof. The proof given below is an adaptation of the proof given in

-2
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section 3 of Bhaskara Rao L4 ] and is carried out

-
0]
=
ry
M
oo 1
)
o
o
i~
2
f

b

]
o ]

in the following steps.

1°. For almost sure convergence, we show that

™
<
I E[| M (h+Be ,)(Cey . +Dbey ) et (2.3.3)
1 j=1
for every 1 =1, 2, «eo , Po This would then imply that the series
by
LR A +iBe, L JHbe, ' he. v 1
) $=1 t-J t-r t-r

is absolutely convergent almost surely [P] as well as in the mean. See
Chung [10, (xi), p. 42].

2°, We establish (2.3.3) for i = 1. The general case is clear.
First, we note that for every t in 2, r2>land s =1, 2, ... , P,

E|((A + Be,_)(C + b

et-r -'et-r— 1) )sl

p D
= E 51 (A)Sj Bs i By z(a)

iy
~~
toJ
2
)
N

b..p ST
. jo-td i
1 814 vaab=ns 3

P
RN S T e

p
A) .|IC:|E e
ll( Joyllcs1Eley i

IN
n Mg

[(a) sy |Ele, .4l

P P
2
ek, loigphieg I=aipivs [(B) 3115 Eley ey oyl

/N

P p
[z [wlle;l + 3 1) linllo
j& 5 d

+{§ |®) . llc.] + ;i |(B) _;llb, |{o?

521 R j=1 8 "]
(by Cauchy-Schwartz in equality)

R

where K is a constant which depends only on A, B, b, C, o and independent
0

of r and t.
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(=}

Hy

2 2, we show that

=3
.ZH [

(o
Ul
=

(A + Bet-j‘)(cet-r + bet-r-l) l]

:
LK, pA : ‘ (2.3.4)

for some constant K, > 0.
Observe that

b
E|[j§l (A + Bey ;)(Cey . + bet-zul)Jll

r-1
EIHJEI (A + Bet_j)][(A + Bet-r)(cet—r + bet-r-l)]'}ll

P r-1
El T n (A + Bet—j) ls((A % Bet-r)(cet-r + t r-l)) l

s=1 (J=1

P r-1 S il
£ 1z lEl[.g (A + Bet-j)Jlsl](El((A + Be, )(Ce, _ + bet_r_l))sl)
s=1 j=1
r-1
(In the above derivation, we have used the fact that 11 (A + Bet—j) and
j=1
(A + Bet-r) (Cet-r + bet-r-—l) are independently distributed.)

p [ r-1 2
<K sil E\ jzl (A + Bet_j) is

(By 2° and Cauchy-Schwartz inequality.)

Now, for any s =1, 2, «ee » P»

r-1 oA
jlll (4 + Bet—j) 1s

r=1 o ot ¢
= jEI(A + Bet_j) B ng(A + Bet j) Tecka

(By 2.2.2)

r-1
= Jql(A 4 Be ) 8 (A 4 Be ) i1

(By Lemma 2.2.1 (c).)
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r-1 :
E jil (A + Bet-j) 1s

r-1
jIll(E(A + Bet-j) 8 (A + Bet-j))

1s;3;ls, because e,'s are independent.

t

"

((E[(a + Be,) B (A + Bet)])r'

i
)ls;ls. because e,'s are identically

t
distributed.

¥ 2 r-1
- ((ElA8Ar+e ABB+e BBA+eIBBB]) ") 4. by

Lemma 2.2.1 (Db).

o 2 =1
= ((A8A+0°B 8 B) )ls;ls
r-1

< K X, for some constant K>0 by (2.2.7)

Hence,
r-1

r
n » 2
EI{.]E e D g pet-r-l)]'ll g T
j=1
for a suitable choice of the constant K > 0.

!

4°. Since A < 1, we have

x
ril El{jlzll (4 + Bet_j)(Cet_r B ;)et_r_l)]ll < o
Thus (2.3.3) is established.

5%, By Lemma 2.3.1, the vector-valued process X,» t € Z defined by

T
X, = Ce, + Ye i A ik v g R e + be }y L EZ
t t -1 | t-j t-r t-r-1

is strictly stationary. Further, we have

X, =Ce +Dbe .+ (A+Be  }[Ce, , +De

t t=-2

>
O F R AR 4 Be .)(Ce + be )]
e 137 B IR0 o

= Ce, + be

: 11 (A + Bet-l) L, 19 teZ

t-

+ B X

it it TR 24-1%¢-1

By + Cet' t el

- DR



6%, Conversely, if X, , t € Z conforms to the bilinear model (2.3,2)

T

above, we observe that for any n > 2

Ne=l)
Ly =obepituling fotad beilipbletiBay 0 0o, F ey )
r=1 j=1
n
- 321 (& + Bet_j) ? P a.e [P] (2.3.5)

for every t in Z.

As in 3°, we note that for any 1< u, v <P,

: l
E| jlll (A + Bet—j)‘Juvl

O~

<

~

E

n 2
jr_“ll (A + Bet_j)]uv] }
n
2

<K , for some positive constant K > O.
2 2
Since X < 1,
n
LimE 1 (A ¢ Bet .) = 0.
: =J
nyo  j=1
Since zt’ t € Z is a strictly stationary process, gt_n, n 2~ 1 converges
to X, in distribution. Consequently,
n

n (A + Be
Jj=l

t—j) Zt-n’ n > 2 converges to 0 in distribution and hence

in probability. See Chung ELO, Theroem 4. 4.6, p.9é]. We can find a
subsequence of this sequence which converges to 0 a.e [P]. See Chung
ﬁO, Theorem 4.2.3, p.73]. Taking Limits along this subsequence in
(2.3.5) we obtain

r

X, = Gop b bac i a8yl (A+Bet_j)(0et_r+_’9

Xy 3 ST
t t 81 7 51 =1 t-r-1 a.e [P]

for every t in Z. The almost sure convergence of the above series follows

from the first part of the theorem:

0 0 The Theorem is proved 0 0
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REMARKS  2.3.3

(1) If we are looking for a real valued strictly stationary process
Xt' t € Z conforming to the bilinear model

X,=aX , +be , +BX e +a a.e [P] (2.3.6)
for every t in Z for a given sequence €pr t € Z of independent identically
distributed real random Qariables @ith common mean O and variance
02 < ©» , a sufficient condition for its existence is given by

a* + Bt ot <4 ' (2.3.7)
The result follows at once by taking p = q =1 in Theorem 2.3.2. The
coefficient b plays no role at ;ll in the above condition (2.3.7).

If we are merely looking for a real valued strictly stationary
process X't, t € Z satisfying

X', = Xt BT el tie, a.e [P] (2.3.8)
for every t in Z under the above assumptions on the et's, the same
condition (2.3.7) is sufficient for its existence. The moving average
part be, , of the process has no bearing on the existence of a strictly
stationary process confoming to (2.3.6).

The model (2.3.6) without the moving average part was extensively
studied by Tuan Dinh Pham and Lanh Tat Tran [41], Subba Rao [37 and
Granger and Andersen [15] among others.

(2) The phenomenon described above in (1) also runs true in the
general case (2.3.1). The same sufficient condition

p(ABA+02B8B)<1
works true for the existence of a vector-valued strictly stationary
process conforming to (2.3.1) with or without the presence of the moving
average part be, ; in (2.3.1)s

(3) The above phenomenon is not surprising. In Linear models,

the above runs true. We will come to this part in the form of corollaries

at the end of this section.

ol 75



(4) Let e t € Z be a sequence of independent identically distri-

t’
buted real random variables with common mean 0O and variance 02 < o,
We are interested in the existence of a real strictly stationary BARMA

(r, 1» %» 1) model X,» t €2, ie, Xy t € Z satisfying

t'
r Ll
i : 4
X, j; a, X, 4 +bo, ;) + jzl By Xy j04p t oy aee [P] (2.3.9)

This model can be put in the vector form as follows.

Let
p = max {r, 2}
q=1 (p-r)
e o
z o 3
A = a, 8,8  «o0 ar D0 SN0
pPxXp
b @ R B G R0 ISR (R T
Dl e e ) e A G )
107 0 030G 0300 Lo
(p-2)
( )
B = 811 821 cee 8211 O O see O
pPXp
0 50 S R o g SN
0 0 RPN 0 s 0 1R 0 0 5 )
LR A R AU R
DT = (br 0, O- see O)
1xp
CT = (lv Ov Or cee 9 0)
1xp
A s S8 X ), te2
t gl U B Gt et T R
1xp
Then,
E, =AZX j+be . +BX e . +Ce a.e [P]

for every t in Z.
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A sufficient condition is
p(ABA+02BBB) <1

Subba Rao [37] considered the model (2.3.9) without the moving

average part be in (2.3.9) and with r = &.

t-1

(5) Let s t € Z be a sequence of independent identically, distri-
buted real random variables with common mean O and variance 02 < o ,
Suppose a2 + B2 0% =1 and |a| <1. If o is not two-valued, then there
exists a stationary real valued process Xt’ t € Z such that

X, =8 X o+

% g3 ¥ ey, * BX

51% T % a.e [F]

for.every t in Z. To show the existence of the process, first we show

that

T
I E| T (a + Be, .)(e + be )| € »
i eyt t-J t-r t-r-1

from which it follows that the series

T
T oo aiat Be . )le + be )
1 ja t-J t-r t=-r-1

converges absolutely almost surely [?] as well as in the mean.

Note that for r 2 2

r
Eljlzll (a + Bey )y .+ bey )l
B
- Eljli1 (a + Bey ;)(a + Bey ey .+ bey . )
r-1
= 121 Ela + Bet-jl El(a + Bet-r)(et-r + bet_r_l)]
= K a™1
where @ = E|la + Be,| and
K = E|(a + Bet-r)(et—r + bet-x&l)l

< lalEle 7 | + lablE|e it | 2
t-r t-r-1! + IB|E(et-r) +le|EIet-ret-r-l|

SRS L



| + logl)o?

- i< \r-
bSi)o

™

! )= b ,
< (la] + lab])o + (|
and is independent of r and t.
Now, we claim that d <1. Two cases arise. If e, is degenerate,
then e; = 0 a.e [P_]. Consequently,

d = Ela + ell

Elal

|a]

<l

If e;is not degenerate and not two-valued, then la + Bellis not degenerate.

So,

Q
!

= Ela + Be.ll

A

i
(E(a + Bel)z)‘. by Cauchy-Schwartz inequality

(a2 + Bzoz)’é

1

=4
This settles the claim. Consequently,
T
ril ! jlll .4 Bet-j)(et-r : bet_r_l)l £,
If we set
r
e e T e T ril 321 (a + Be, ;)(ey .+ e, 1),

then Xt’ t € Z is the desired process.

(6) If one has a real strictly stationary process ey L E Z with
common mean O and variance 0? < «, one would like to see whether there
exists a strictly stationary vector-valued process gt. t € Z satisfying
(2.3.2). The proof given above for Theorem 2.3.2uses strongly the fact
that et's are independent. Tuan Dinh Pham and Lanh Tat Tran [Ll] gave a
proof based on the stong law of large numbers of the fact that there
exists a real strictly stationary process Xt' t € Z satisfying

Xt =8 Xt—l + BX
for every t € Z for a given sequence ey t € Z of independent identically

t-let-l + ey a.e [P]

- PP



distributed real random variables with common mean 0O and variance
g? < « provided

a? + B%0? <1

We establish a result now generalizing the above result of Tuan Dinh
Phaw and Lanh Tat Tran [41, Theorem 2.1, p. 618].

Proposition 2.3.4 Let €, t € Z be an ergodic process with E(et) =0

and E(efc) = 02 < @, Then there exists a strictly stationary process
Xt' t € Z satisfying

+ be 45 Bl

+ =) £ + e a.e [P]

t1%a 7 %t

for every t in Z if a? + B%0? < 1.

Proof The definition of ergodic process is measure theoretic. We will
give its definition later. Every ergodic process is pre-supposed to be
strictly stationary. A consequence of a process Yt' t € Z being ergodic
is that, if E|Y,| < =,

Yo +Y1 +Y2 t oo +Yn-l

n
converges a.e [P] to E(Y,).

To establish this result, we first show that the series

o
I .1 (& F e, Jlel: ihibe )
r3l 2 t-] t-r t-r-1

converges a.e [P] for every t in Z.

Let us look at, for t in 2 and r 21,

h o
Plts ©) = 0 {a &8s,
j=1 -

Taking logarithms, we obtain

ilog!P(t,r) | =

n My

1
= logla +Re, .|
Ir j 1 @ t‘:j

Since e, t € 2 is ergodic, logla + Be =1, 2, ... , is ergodic.

t-jl ’j
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et us check

t:i

i

E log |la + Beol 3 E log (a + Beo)z

VZa)

2 log E (a + Be,)?

3 log (a2 + B%02) < 0.

By the ergodic theorem,

log |a +Bet—jl = E log |a + Beol a.e [P]

H|

Lim
T J

O e

s
< 0,
The rest of the details follow in exactly the same way as in the
préof of theorem 2.1 of [41].
Query. Is Xt' t € Z defined above ergodic?
The answer to this question is in the affirmative. At this juncture,
let us recapitulate what is meant by an ergodic process. Let €y t €2 be

a strictly stationary process defined on some probability space (9%25, P).

Ergodicity of €yr t € Z can be defined in two ways. Let, for each t € Z,

1

P =018 18y 5 B o0 s 3

]

the smallest sub- 0-field of B with respect to which
e et_l. €4 _pr ee. are measurable.
Note that
DT RV 28 DB D...
3 2 1 0 % | -d

The tail o-field of e,, t € Z is defined to be the o-field

t
oo =00
-N&-=-0N%-
t e
=-co t=0
e t €2 is said to be ergodic, if its tail g-field Fis P-trivial, ie,

for every A in @ P(A) =0 or1l.
Equivalently, ergodicity can be defined in the following way. For

each t in Z, let

B
at i O{th et‘l’l' et+2. eve .}
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Note that
. DF,DOF 2B OFO>HEOF O...

The tail O-field is defined to be the o-field

If @ is P-trivial, e, t € Z is ergodic.

t
Proposition 2.3.5 Let eys t € Z be an ergodic process with E(et) =

and E(e%) =02 <o, If a?+B2%? <1, then there exists an ergodic
process Xt' t € Z satisfying

Xt =25 Xt—l + bet-l + B Xt—let-l + e, a.e Dﬂ

for every t in Z.
Proof By Proposition 2.3.4, existence and strict stationarity of
Xt’ t € Z is assured, we show that Xt' t € Z is ergodic. Let us find its
tail o-field. For each t in Z, let
P, =oleys e gs € o +oo ) and
Fo=ol Xy X g0 X pe eee ]
From the representation of Xt as a function of €pr €4 g0 oo it is clear

that X, is measurable with respect to 5%: Mso, X

t ’ Xt-2' ees 4are &11

t-1

méaéurable with respect té?-t. Consequently,'?fé(:?;cfor every
t in Z. (Note that, if =sach e, is a function of Xt’xt-l’°"’
then ‘3{('3‘;.). Therefore,

S

Tail o-field of Xt' t €2

3
¥

O
g
b

Tail o -field of et, tiE &

<0
Since & is P-trivail, &% is P-trivial. Hence X, t € Z is ergodic.

More generally, we have the following result,
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Theorem 2.3.6 Let €y t € Z be a sequence of independent identically

distributed random variables with E(e,) = 0 and E(ei) = g* < »,  Let

t
A and B be two matrices each of order pxp such that p(A 8 A+02B8B) <1,

Then given any C and b, there exists an ergodic process Xt' teiZ
px1 px1

satisfying
X, =AK ot be, , *BX jey . ¥ Ce, a.e [P]

for every t in Z.

Proof From the representation of X, given in the proof of Theorem 2. 3.2,

t

it is clear that each Kt is a function of e Note that any

4 i1t ccc e
sequence of independent random variables has P-trivial tail o-field.

This is Kolmogorov's Zero-One Law. The rest of the details are similar
to the ones given above.

(7) If the stochastic process to be modelled for a given time
series data started only a finite number of steps ago, the same condition
stipulated in the above theorem guarantees that the process involved is
asymptotically stationary. To be more specific, suppose the p-variate
process starts at time t = O with the initial random vector beingzo and
satisfies

X, =Cey +hey 7 +AX 1 +BX je a.e [P] (2.3.10)
for t =1, 2, 3, ... for some sequence {e;, e, e, ... } of independent,
jdentically distributed random variables with common mean E(e,) = O and

common variance E(eg) = 02 < « and for some constant matrices A, B, b, and

C of orders pxp, Pxp, pxl and pxl respectively. Repeated use of (2.3.10)

gives
tel P
X, = Ce, + e PR ril 321 ok Bet-j)(cet-r X 2'e‘t,-r-l)
t
4 'El (A + Bet-j )go
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P ~ < <+ o A3 /
r CV'LT‘\' U = Ky 3| iy sees o

The process Xt' t = 2435 4 eee defined by

t-1 r G
Y, =0, t e, * L N A4 e ) Ce ¢ 4 Y41 %A + Be,) X
Ba s Yora A Jia = S e SEn

has the property that gt and Y, have the same distribution for every

t

t =2, 3, 4y «es o This follows from the fact that {eo, e €, enn }

are independently identically distributed. Under the condition

p(A8A+02B8B)< 1,

5 o
ril jI:Il (A + Bej)(Cer + _'t?er+l)

converges absolutely a.e [P] and
t
{ H'{A + Bej) I t 2 2}
J=1
converges to 0 in probability. Consequently, the process

{f,» t =2 3 4 +.. }, and hence the process {X,, t =2, 3, 4 ...}

t’
converges to the random vector
T

Ce, + be, + T 1 (A + Be,)(Ce_ + be
0 1 1 j=1 J r 8 45

+l)

in distribution. See Chung ILO, Theorem 4. 4.6, p.92]. One cannot fail to
notice that the distribution of the limiting random vector above is the
same as that of Kt' t € 2 whose representation is given in the above
theorem.

(8) If E(ej) < =, then we can show that the series

X

I T (A+Be )(Ce  +Db

e )
. t-r = tey-
r21 j=1 -

converges in the quadratic mean. The proof given above for the theorem
can easily be adapted to establish this.
Finally, as promised in (3) of Remarks 2.3.3, we obtain results on

existence of certain linear processes as corollaries of Theorem 2.3.2.
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Corollary 2 3s7 1. Let ey t € Z be a sequence of independent identically

distributed real random variables with a common mean 0 and variance
02 < ®, Then there exists a strictly stationary process Xt’ t E'Z

satisfying
: 44
X; =k ayaln adnbeis. b e a.e [P] (2.3.11)

for every t in Z if the roots of the polynomial
S il 2 0 A r
f{ix) =1 ~ax ~8ax cee - oEX (2,3.12)
are in absolute value greater than unity.

Proéf The model (2.3.11) can be put in the vector form as follows, let

p=r
qQ =1
A = 'a a a e & a.1
i 1
pXp £
(R ey 0
'y i 5, G 0
G 5 A+ e 0
| )
T
L R Rl 104 ol
1xp
LR | Tt G VR
1xp
= (X, X X ), t ez
t tr’ t_ll L ’ t-p+1 ’
1xp
Then
X, =AX, o tbe, 5 + Cey a.e [F] (2.3.13)

for every t in Z.
A sufficient condition for the existence of astrictly stationary
vector-valued process X,, t ¢ Z satisfying {2.3.13) ds

p(A B A) <1 (2.3.14)

e -



v Le
¥y =EmO

N

A ~
Leie

td
m

(d), condition (2.3.14) is equivalent to p(A) <1, which
in turn is equivalent to the condition that the roots of the character-
istic polynomial

r r-1 r-2 )
glx) = x" - a)x - a,Xx e S (2.3.15)

are less than one in modulus.
Since the roots of (2.3.12) are the reciprocals of the roots of
(2.3.15), the result follows.

Corollary 2.3.8. Let €y t € Z be a sequence of independent identically

distributed real random variables with common mean O and variance 0% < =,
Then there exists & strictly stationary process Xt’ t € 2 satisfying
T =

Bgi jil & L a.e [P] (2.3.16)
for every t in Z if the roots of the polynomial

Ty = 1500 0= azx2 g arxr
are in absolute value greater than unity.
Proof. Now (2.3.16) is the same as (2.3.11) without the moving average
part bet-l in (2:3:11). The result follows from Corollary 2.3.7 since the
condition (2.3.14) holds true for the existence of a strictly stationary
process conforming to (2.3.11) with or without the presence of the moving

average part be, ; in (2.3.11).

2.4 EXISTENCE THEOREM: GENERAL CASE

Before stating our next theorem on the existence of a vector-valued

2

process Xt' t € Z satisfying the general vectorial model (2.1.14), we

give a Lemma which on its own may be of independent interest.

Lemma  2.4.1. I a5 12 1l is a sequence of real numbers satisfying
n
|aLn - an_ll <K X (2.4:1)
for every n 2> 2 for some positive constant K and A <1, thena , n2>1
n
is a Cauchy sequence and hence convergent.

Proof. Let b, n2 1 be defined by
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n .
b= 8 M E O ALY
n o
=L
Then b~ A(1- A) asn >o, This implies that for each positive
number €, we can find a positive number N such that
E e
- < i} > N
Ibn bml < /K for all integers n, m > N
for some positive constant K. It is not difficult to show that if n, m 2 N
then

el € xly, -

la,
<e
Therefore & , n > 1 satisfying (2.4.1) for some positive constant K and

A <1 is a Cauchy sequence of real numbers. Hence &, o > 1 is convergent.

REMARK  2.4.2

If lim lan -

I = 0, it does not necessarily mean that a,n >1
1>

a
n-1
converges. To see this, consider

1 1,
an=l+é+'§+ooc+ipn21

1
It is evident that a_ + © as n > « but ]an - == a0 g *om,

a
n-1

The following is the main result of this section.

Theoren 2.4.3 Lete,, te Z be a sequence of independent identically

distributed real random variables defined on some probability space

n

(2, &, P) such that E(e,) = 0 and E(ei) 0> <w, LetA, B,, B, ... B

q
be q + 1 matrices each of order pxp and
=5 ]
2 J-1 J=2
=t oS BE B A Blioel B e - AR + B.
I, [ 5 8 ( . s 5.1t By)

L j-2
+ (W7 B + AT B+ ... 4B ) 8 Bj]
(J = 2, Spitebieiiy Q) (2.4-3)
Suppose &ll the eigen values of the matrix




T | )
S % - 11 12 Fa . rh-l rq
p axp g o
1,20 BAsGed 0
SR A0 s M S
P (2. 40 4)

O O 9 L 3 I 9
: e

have moduli less than unity, ie p(I') = A<L Let C, b, b,s ... » b be

q +1 column vectors each of order pxl. Then there exists a vector-valued

striectly stationary process gt. t € 2 conforming to the bilinear model

g q
= + Z b. . + . . . .
Kt A Kt-l 5 —Jet-J jil BJ zt—get-J + Cet a.e IR] {2.4.5)

for every t in Z.

Proof For this general case, it is not easy to provide an infinte series
representation (as we did in the case of q = 1) for each Xt’ = R
result we will proceed as in Bhaskara Rao, Subba Rao and Walker [4] and
exhibit the process Et' t € Z as an almost sure limit of a sequence

§n 4 t €2, n21 of strictly stationary processes. The proof is broken
’

down into the following steps.
1%, Let the process S » D t €2 be defined as follows
’

S A0 0 P 3 L O

L

= Cet , if n =20

)

!
= Go, & L Eﬁet—j + (A + B, _ + B

00 /803,00 * B2 Bpoe2%2 oo

+ B s A 2D (2. 4.6)

S e
qQ ~n-q,t-q t-q
for every t in Z.

We show that lim §n exists almost surely [P] for every t in Z.

n->o

st

If X, is the almost sure limit of §n e n l for every t in Z, then it

t 't
is obvious that the process zt’ t € Z conforms to the bilinear model
(2.4+5). Using Lemma 2.3.1, it is easy to check that for every fixed

n in 2, §n 4’ t € 2 is a strictly stationary process.
’
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We show that

[

El(gn.t)il £ kA
for everyn > 0O and i =1, 2, ... , p, where k is a positive constant.
Since A <1, this would then imply that §n,t’ n > 1 converges almost
surely [P] for every t in 2 (See Lemma 2.4.1).

3%, We now settle the question of integrability of s ,'s. Fix

=Nt
t in Z. Note that

Ent, §n,t ’ §n-l,t

(8 ¥ Byey gle Ja g Tl 5t ot e TR e e
=R A8y ot Seide 8 e o
A LI LA ET P M L A (2.4.7)
where Qn(et-l’ €y_p% 42t 0 et-n) is a matrix of order pxp and each entry

of this matrix is a polynomial in et-l' et-Z’ cee s € o in which the

power index of each et—j is either 0 or 1. Consequently, every entry in

e ) and hence in s, 4 is integrable. It is clear
’

L N e
t-2' t-n

Q (e q

that the distribution of 5 does not depend on t.

,t

4% It is convenient to deal with the following processes. Define

*
|

=0, ifn <D

C yifn =D

]

Qn(et-l’ €i_pr ooe et_n)C A b

for every t in Z. [Equivalently

(=1 = 3
3n,t En,tet-n s Uy LSBT (2.408)

From the remark made on Qn(-)'s in 39 it is obvious that every
entry in §g % is square integrable. Further, it is easy to check that
’
the g;’t's satisfy the following

s = (A + Bie

=y L )§

+ B S* + L B s*

¥*
t-1’2n-1,t-1 * ©28p-2,4-2%-2 ° g 2n-q,1-q “t-q

(2.4.9)

o



for every n,t in Z. Also, the distribution of s¥* does not depend on

—71 T

since the et's are independently identically distributed. Since

§n,t = §;,tet-n for all niand b 9N 4.
El (s, )31 = El(gx slleg ol
< (E(e* )00 EE, PP
= =htodl e S
, 2\ 2
< o(E((s3 ))?)

for every i =1, 2, «.. p. It suffices to obtain an upper bound .for
E((§n 2 )2 for everyi =1, 2, ... , p and n,t in Z. For this we

evaluate

3* 3* =
E(s ’ 8 s¥ ) = M., s’y

50, In the following, we use (2.4.9) and (2.2.4)

ELIL - (U FUNE Y LR A LIP P NP PP
* §§—q.t-qet-q] B LA+ B n)8ns 40
P Bt B P Big tq i)
= {((a + Byo, o)g% 1 1) 8 (A + B, J)e*, . )}
+. LA+ Biet_l)gg-l,t_l) & (8, §§-2,t-2et-2)
t(Bo 8) 5 408y p) 8 ((A+Be, 1)sk ) o)
t (B, sk oy o€y o) 8 (B, 8% 54 ce, o))
+{((a +Be y)spy 1 1) 8 (B g 5, 5o 3)
P (B 854353 B ((A+Bey e,y 4a)
1B 8his seatn! 8. (B %—3-‘0-3%-3)
t(By 8% 3 4 38430 B (B2 82 5 4 cey o)
t (B, 23,4353 @ (B, 575,450 3))
. PR S S R DR SRR s s
+ {((a + Bie,. 1) -1,t-1 ) 8 (Bq E;-q.th,eth)
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S e ) 8 ((A B.e ) # )
+ (“q EX atatel LB Bagy el ol )
e ' (R ¥
+ (BZ :n-2,t-2et—2) 8 (bq §n-q,t—qet-q)
o 3* o R 3*
" (Bq =n—q,t-q”c-q) - (“2 §n—2,t-2€t-2)
+.".'.....I.............. ..... L B )
3* o ¥
g (Bq-l §n-q+1,t-q+1e‘t-q+1) . (Bq =n-q.t-qet-q>
+ ¥* 8 *
(Bq En-qet-q) (Bq-]_En-q+1,t—q+1et-q+1)
+ (B ) 8 (B s* g gk atas £.10)

s¥ e
g ~n-q, t-q t-q q =n-g,t-q t-q
We evaluate the expectation of each expression within each set of
brackets { } in (2.4.10).

¢°. Concider the expression within the first set of brackets { }

in (2.4.10). By (2.2.5) and (2.2.4)

((a +:8.e, 5ok o 7) B (@t Ble, ,0aR ;50

= ((a + Ble ) g (A+B \%t ))(sn T4 l *-l,t-l)

= (A8 A+ e 1 AgB, + €1 B, 8 A+ eé 1 B, 8 B))(s* 8% o & Eﬁ-l,t-l)
Since Eﬁ-l.t—l is a function of Sp ot By ge eoc v O Eﬁ-l,t-l and €] are
independently distributed. So,

E((A +Bje, 7)) 8 (A+Bye, ))(s¥ 8%, )

= (ABA+0%B; 8 B;)Mn_:L {2.4:11)

= Fl Nn_l

7°. Consider the following expression in the second set of such

brackets. Using (2.2.4), (2.2.5) and (2.4.9) to expand sk , we obtain

-1 » t‘l

((A+3Be g)ony,1a’® (B, 20 5 40%-2)
= (At Byoy )4 + B e, pletinta't B Bno3,4-3%3

+ B, s* e e sle TS * -
5o 2n-d, 1= 424 q 2n-g-1, $-q-1%4-q-178 (Bag} 5 ¢ 2% o)

- A



= ((& +Bye, 1)(A+Be, J)st o, o) 8 (B, s 54 284 0)
+ ((A +B et-l)BE §3_3,t_3et-3) Bie = s 222~ 2)
: IR PRPPR r  hy tr (18  L Ul S T TR R e R P
* A ¥ Bey 1B B a1, tq-1teg-1? B B Bnp 1202
= ((A + Bﬂet-l)(A + B}e ) 8 B 284 2)( s b 2 ég-Z.t-Z)
+ ((A +Bye, 1) 8Boey )(B, 82 54 g8, 5 838% 5, o)

+ ® PP PP OGP O LOLL L PPV OIPPIPEPEPOLEELP OB ELLLLEELEEOEILEORES

J(B. s* e B

3*
+ ((A + B e ) 8 B et 2 q _.n_q_l’t-q-l ‘t,—q—l §'n'2,t'2)

Therefore

E((A + Byey 3)88 4178 (B 875 4 2% 2)

E{(dd Byt Bie, o BB e HIEEl o v o B 8 5 o)

T QR0 s SR ek 0

) 8 B )M

E((a + Bletél)(Aet_z' i t 5

((E(a + Blet’l)E(Ae

o?((AB ) 8 B,)M

)) 8 B )M

t—2 % t 2

In a similar fashion, we can show that

)&((A+Be 18k ))

E((B, 8} 5, t-2%4-2 End,ta

2
L0 1
= (P2 B (ABl))Nn_2 Y end

y 3*
E((B, 8% 5 .2%:.2) B (B, 8% 5 1 ~ey o))

' 2
=0 (52 8 Bz)Mn_2.
Consequently, the expected value of the entire expression in the second

set of such brackets in (2.4.10) is

2 i
o?[B, 8 (AB) + (AB ) 8B +3B 8 Bz]Mn_2

=T M (2. 4.12)

- L6 -



x . s e : - g 0
2 nraciine 1deac Amil e + +V e = i 7Y e
» S fursulng ldaeas similar 10 Thnose used in 7/, we can

0n

how that the
expected value of the entire expression in the third set of such brackets
in (2.4.10) is
o2[B, & (A%B; + AB,) + (A%B, + AB,) R B, + B & E;]Mn_3
= T3 Mn—3 (2.4.13)
9°. The expectations of other expressions in (2.4.10) can be

evaluated analogously. Finally, we obtain

Blis* Bigks )

Mn =nsd “—nzt

"

I 0
-
=z

5 Moos (2. 4214)

for all n.

10°. For each n 2 1, let

Y =M ‘
-1 n
pZax1
hn-l
)n-q+lJ
Then
( YL )
I =0r T rq__l 1;1 s
120 -.-0 0f M,
T WA ORGSR e |
= p2 = :
O O L I O M
[y p? =) 'n-qj
=TI
=ML .=, = ¥ (2. 4.15)

= 47 -



T every ch el B el GRS B pzq

o}

From this, it follows that (¥ ).] < %, i
En'i 3
and n > 1., where A = piI') and K, is a positive constant. In particular,

we have I(Mn)il < Kq X for every i =1, 2, vus » p2andmn 2 1. Since

M = E(_S_* 8 )l
n

S*
T, t o d Yk
we have

n
B((s2 );)% € K, X

for everyi =1, 2, ««. , p and n,t in Z. From this inequality, the

inequality stated in 2% follows. See also 4°.

0 0 The Theorem is proved 0 0

REMARKES 2obed

(1) The most important feature that emerges by comparing Theorem 2.4.3
above and the Theorem in section 4 of Bhaskara Rao, Subba Rao and Walker [ 4]
is that the presence of moving average part makes no impact on the existence
problem. This is also typical of Linear processes as the following

corollary shows.

Corollary 2.4.5 Let et. t € Z be a sequence of independent identically
distributed real random variables with common mean 0 and variance g* < ™,
Then there exists a strictly stationary process Xt' t €Z satisfying

4 L
% a.e [P] (2.4.16)
X, = E a, Xt-j + jil tﬁet-j + ey

for every t in Z if the roots of the polynomial

2
= - '8, X =B X - mes wiR X
£ix) =12 i 2 %

are in absolute value greater than unity.

Proof. The model (2.4.16) can be put in the vector form as follows. Let

5 -



pXp 1% Ty p-1 °p

O O O L N
\ - OJ
R TP N ¢ T L Y
o= J ] y eoe 3 Q
. Ixp
CT = (1p o, O, ces 3 O)
1xp
ST O o . X ), t €2
2t Uil P RARGE B S U L
1xp
Then
Tor= X, ek % b.e + C é.e [P] (1)
=% e S G %

for every t in Z.

A sufficient condition for the existence of a strictly stationary
real vector-valued process X,, t € Z satisfying (2.4.17) is

p(A8A) <1
The rest of the details follow in exactly the same way as in the proof of
corollary 2.3.7 of section 2.3,

(2) Finally, we remark that the process satisfying (2.4.5) in
Theorem 2.4.3 is ergodic. This follows from the following observations.
For every n 2 1, Fhe process §n,t' t € Z defined in step 1°% in the proof

of Theorem 2.4.3 is ergodic. Since

L:'Lm_S_n.t=§t a.e [P]

n-co

for every t in 2, Zt' t € Z is ergodic.

MR



ON THE MOMENTS OF BILINEAR PROCESSES
The purpose of this chapter is to develop a method of calculating all
joint moments up to order 2 of the vector-valued process X , t € 2
.
: ; 7]
D AR  § $50Y, Thie, s SR i Ce TN e e P elled
== =t-1 31 =j t=] g+l J Tt=] t=j 7 (3.1.1)

for every t in Z for some sequence e ., t € Z of independent identically
3 U B

- ; . s a 5 : 5
distributed real random variables with common mean 0 and variance 0° < ©

end matrices A, G, e 3= ly 25 saw s gand B, 5 J =1, 2, ave » Qo
DX Pk e 3
’ N Pxp

It is tempting to assume that since the bilinear process Zt v
satisfying (3.1.1) is strictly stationary, it must be stationary up to any
order. This is not necessarily true since a process may be strictly
stationary even though none of its moments exist. Such a process will not
be useful since the main tools of time series analysis have traditionally

been the first and second moments of the series. We show that under the

striet stationarity condition

for the general case of g > 1, and E(e:) < =, the vector-valued bilinear
process defined by (3.1.1) is second-order stationary. This implies, in
particular, the existence of all joint moments up to order 2.

Subbz Rao [37, p.248] and Granger and Andersen [15] have discussed
some special cases of the general model (3.1.1) and showed that for these
special cases the covariance structure is identical with the covariance

structure of some suitable linear processes. See also Subba Rao and

- )



Gabr [39] .

In this chapter, we show that given any real bilinear model (2.1.2),
there exists a linear process such that their covariance structures are
identical. I was informed by my supervispr that Tuan Dinh Pham [46]‘ has also
arrived at the same conclusion after obtaining a Markovian representation
of bilinear processes. But our method here is simple and direct.

We also show that for the general vector-valued bilinear model
(3.1.1) there exists a vector-valued linear process such that their
covariance structures are identical whenever the matrix A in (3.1.1) is
of a specified type. Incidentally, the real bilinear model (2.1.2) can
be put in the vector form (3.1.1) with the matirix A being of this special
type.

3.2 FIRST AND SECOND ORDER MOMENTS OF BILINEAR PROCESSES

Let A&, Byy B,y «ee Bq be q + 1 matrices each of order pxp and

by by eee s bq and C be q + 1 column vectors each of p-components. Let

¥, 2
e., t € Z be a sequence of independent identically distributed random

t
variables with E(et) = 0 and E(eé) = 02 <@, Let I be the matrix given in
Theorem 2.4.3 built on A, B, B, ... B and g%, Jf p(T) <4, by

Theorem 2.4.3, there exists a strictly stationary vector-valued process

X

Xy t € Z satisfying

I, = A X, t .% Qjet-j + .% Bj gt_jet_j t Ce, a.e [F] (3.2.1)
j=1 j=1
for every t in Z.

It is natural to enquire whether E(gt) and Disp (gt) exist. Strict
stationarity does not guarantee existence of moments. If E(gt) and
Disp(lt) exist, we find a way to calculate these moments. This section is
devoted to a study of this problem.

The question of existence of E(Xt) and Disp(gt) can easily be

settled in the case q = 1 because in this case Kt admits an infinite

- 5 -



series representation in terms of e,, €, -y eee o
o ke £’ Tt-1
Tia;fe: B il Let A and B be two sguare matrices each of order pxp.
let C and b be two column vectors each of p-components. Let €4 LIES
be a sequence of independent identically. distributed random variables with
x LIAE, 2
E(e,) = 0 and L(eg) = %, A0 7 Let
p(L 8 A +0%B 8 B) <1.
Then the following are valid.
(1) e(a) <1
(ii) For the bilinear process X,, t € Z satisfying
Zpo= AR ohbep g ¥R g8t Coy a.e [p]
for every t € 2, E(zt) exists.
232 o S e e "1 BC o
(1ii) “(lt’ o (xp A) (3.2.23
{iv) «If E(eg) < © , then Disp(zt) exists.
(v) Further, if V = B(X, X;) , then V satisfies
T - T
V = AV A% @ +B.V Bi+tiA {3:.2.3)
px_[:
for some constant matrix A given by
A =2SB +BSAT+0%(CC  +bb  +Bu b +Dbpul B
pxp
+ACDH +bcT AT + 202BC G BY) + B H BY
+k (Bcp +bc' BT
and
s =c2apct +cpfaT + 0?80 ct + 026cT BT) + x, ¢ T
pXp
m
H o=k (hpucC +cufa’ +0?Bcc’ +02cc” BT) +x, ccf
pXp

where k f and kk are the third and fourth-order cumulants respectively

of et. t E Gy 405

3 X
E(et) =k

5y o an®
E(et) = 30" + k“

Proof By Theorem 2.3.2,

RS



5 t‘ == =L e U-J =1 e L,—I'-l
r>l j=1
for every t in Z. The above series converges absolutely almost surely
[P] as well as in the mean. Since
2 !
L E + Be, .)(Ce + be < @
I Bl}n (a+Be j)(Ce . +bey . o))l
r2l le
for ry 8 = Xy 21041 Db BE(X ) ex1s8ts and 18 gliven Dy
i < - f . —‘t‘
b
E(X)=0+0+E I T (A+Be, .)(Ce + be )
T : t-] e I S S
¥ r2l j=1

T
o AN | QR ¢ T Bet_j)(Ce

+ be )
2l j=l t-r t-r-1

(See Chung [10, (xi), p.42].)

r-1
> I E(A + Be, .)|E((A + Be, _)Ce, _)
231 i) t=] t-r° t-r
r-1
+ Z |1 E(A+Be, .)|E((A + Be, _)be ¥
r?l[j=l t-J } =y = -1l
because €y, t € Z are independent
. s Tant e i B
r2l
because et's are identically distributed
)
=02z A" B e
r2l
B / o L=l
Since E(X,) exists I A must be convergent.
~ P

This happens if and only if p(A) <1, if and only if (I - A) is invertible.

In that case,

This proves (i), (ii), and (iii).

If E(e:) < ©» , one can show that

o R



Lot

is convergent in the quadratic mean. From this, it follows that Disp(X,)

exists. This proves (iv).
We will establish (v) as part of a more general result, namely
Theorem 3.2. 4.

The above proof gives the following corollary.

Corollary 3.2.2. Let A and B be two matrices each of order pxp. If

o(L 8 A+ BB B) <1, then p(A 8 A) <1 and hence p(A) < 1.
See Lemma 2.2.2(d). We are unable to establish the above result

directly. Existence Theorem 3.2.1 gives a result on matrix algebral .

A B

Lemma 3.2.3. Let F = [

] be & partitioned matrix in which A and B
CD

are square matrices. If p(F) <1, then p(4) < 1.
Proof. Let A and D be of orders pxp and gqxq respectively. Let A be an

eigen value of A. We show that A is an eigen value of F. Note that

» 0 B
C D-)\.L
q

1
A Ipiq

& |A—)\IPH(D->\Iq)-C(A->\Ip)IBI
(See Morrison [28, p.68].)

=0
Since p(F) <1y |A| <1. Hence p(4) < 1.

The following result is the main result of this section.

Theorem _ 3.2.4. Let A, Bx' Bz. Ny Bq be q + 1 matrices each of order
pxp and C, 21 ’ 22 ) eee Eq be q + 1 vectors each of order pxl. Let

et’ t € 2 be a sequence of independent identically distributed random

- Bh



variables with E(e;) = 0 and E(ef) = 0® <. Let T be the matrix of
Theorem 2.4.3 built on A, B, B , ... , Bq and 0%. Then the following
statements are true.

(1) e(a) <1

(11) For the strictly stationary process X,» t €2 satisfying

q q

o Q.et.+ L B, X + Ce a.e [P]

X AR
j=1.7d B 5 d Tt b

Wahd 1
for every t in Z, E(zt) exists.

AL
(111) E(X,) = 02(1p = Ayt jil BJ. Co, {9.9.0)

(iv) It E(ez) < » , then Disp(gt) exists.
(v) Further, if V = E(_)gt Kz) » then V satisfies
T

vV ={AVA

2 2 T T
+02 B, V BY) + 0%(B, + A B)VE, +B, v(a B)T)
PP

/

2 2
+0 {(B3 +AB +& Bl)v B,

2 p 41

+B, V(A B+ A2 B)T)

+ 02{(B, +AB, + A2B, + A>B))VB, + BV(A B, + A2 B,
+A3 BI)T} + 800 0GB BsOB LN BELSS

-3 T
+0%{(B +AB + A2 B CEECNRETN il RS
( q q-1 q-2 1) q

2 q-1 T
4 Bq V(A Bq-l + A Bq_2 Flaeees + A Bs)} ¥ A,

T
tAMD 4 (A Az) {3.2.5)

for some constant matrices A, and A, , where

q q \ q
By oot oot o 0 g p._bc.[\+c2 z B.y_lpl.‘Jroz z Q.HTB'?
q i q
W W e e e
j=1 J J i=l j=1 J 5= J
q q q q
+ 5 B WG -1AT+ £ B HB] +k, I B ooyl 4k, Zb B
j=1 7 =l j=1 j=179
SRR
ao« § At 8 Y
2 3 N]
J=l
pXPp
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0 \b A b e e e LA S rin
L Lo A e o g = g e S
s % [f: 4+ B )+ A(B + F ¥k ;2(: + B )
Y g S IR 0o e i Tied
P FATHEN S o 0B,
9 2 e s
P& 2L PG bt B T R apa E A b )C
P e 13 e s ot 00 !
b 22 J=2 B ) B?
o o5 i+ T e oinisien e
L (B, ; + 4B, B, s A JH By
']_
and
| m
s = GZ(AECT+CETAT+02BCCT+OZCCTB*)
pxp 2
Fa e R
3
H =ky(Auc +cp a"+02Bcct+o02ceia’)
DXp
o € CT
4
Wlk) =oc*C, if k=0
pPXL
K e
=t & Gat ors bR s ¢ H o)
;:1 J J
J
K %
i % pE-3 Biio . if k> 0
j=1 :
!
B = 12 BJ
pXp j=1

where k¥ and k are the third and fourth-order cumulants respectively
3 4

t
3 o
E(et) = k3
4 2 L
E(et) = 30" + k,

Proof (1) Since p(I') <1, by Lemma 3.2.3
p(A 8 A+ 02 B1 8 Bl) A DS
By Gorollary 3.2.2,

p(a) <1
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~
LA om

Vs e ) htd -+
0% lhneore 5 A U

2 )= all fwvam he T ~ e D | - vyt Al
(ii) Recell from the proo el SO P € Z is obtained

as an almost sure limit of a sequence §T t. e &4 n > 31 of strictly
i

t’
’
tationary processes. See steps 1° and 2° of the proof of Theorem 2.4.3.

In fzct, we now show that the sequence S

t Z, n > 1 of random vectors
=n,t’ £ 4 2 S

indeed converges to zt in the mean for every t in Z.
Recall from step 2°. of Theorem 2.4.3, that we have proved that
Bl (8,4 - Spoa, sl € & A
for every n > 1, for i=1, 2, ... , p and for some constant k, where
A= p(I') < 1. This means that the sequence §n.t’ n 2 1 is Cauchy in the
mean. Consequently, there exists an integrable random vector Xt’ GEl
such that _S_n g 1 > 1 converges to X—t in the mean. See Theorem B of

’

Halmos [21, p.lOi]. This lt is almost surely equal to our gt above.

Thus we have proved that E(X,) exists and equal to Lim E(S ,). See
g g
Chung ]__lO. Theorem 4. 5.4, p.97].
(111) Since X,, t € Z satisfies
q q
= X + . ¢ A o+ s S0
X, =A%, jil blet-g jil BJ Lt-get—J Ce, a.e [P] (3.2.6)

for every t in Z and E(gt) exists, we can take expectations both sides of

the above equality after multiplying on either side by e We obtain

t-
S

Now, we take expectations on both sides of the above equality (3.2.6).

Let
T E(X_t)
Then
q
TR R N i A
j=1

This means that,

o R



Ve
4
I
=
Y
=
I
Q
[N)
61,0
to
Q

. v f12 n
Bl (8,4 = Bp1,e21l TR B K

for everyn > 1, fori =1, 2, ... , p and for some constant k > 0 in
steps 29, and 3% in the proof of Theorem 2.4.3.
As in Lemma 2.4.1, we can show that §n,t’ n 2 1 is a Cauchy
seguence in the quadratic mean. Consequently, S » n 2 1 indeed
5 3 U e 7

to X, in the quadratic mean. See Halmos [21, Theorem B, p.107]. Hence

converges

Disp(zt) exists and in fact

)

Disp(X,) = Lim Disp(S
t 400 =N, t
See Chung [10, Theorem 4. 5. 4, p.97].

Now we proceed to obtain V = E(_)gt gz).

(v) Since X,, t € 2 satisfies (3.2.7) and Disp(gt) exists, then
m
E(;t Lt) exists.
Since X,, 1 € Z satisfying (3.2.6) is first-order stationary, we
obtain the following

E( )

5
£4-1%4-1%¢-j

o2 py+ k C, ifi=]}
(3.2.8)
=_Q .ifi*j
and

= B(X )

1=

—

-

~
|

£%t-k

02C, 1T k=0
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R Yl i . L W e I T
3=l -
f X k-]
3 :!::| 4: Fi E C ’ 1f k > O (3.:.9)
i
tl—
Let E(e?) = k_and E(e?) = 30" + k <o, where k_ and k_ are the
v 3 v 4 3 4
+third and fourth-order cumulants respectively of the process €y RS,
Let
SR
vV = EQX, X))
DPXp
S(k) = E(X ylisg M e
: =t =t-k t-k &

pXp

Note that

Ty
it
R S T el S
= &3 Y. o AT 4R TR E R i R Ty SRS SR |
51 =t-1 O et s L O R R i B
o m a q a
: T <k di S T
FRh A N G S | S, T R e R TR O . O
j4l i v W v R j=1 t=j =t-1 P P i1 =t-1i =t~ t-1"t-]
;g R e iRy <
s R b8, e . K, LB ilieae e wahs
121, 551 I e I P [ | j i=1 j=1 A ==bwd “hed he ey
% % b bT + % B X CT
¥ b6, e b o G T
im] <] { U=l V=3 g j=1‘] t-J t-j 't
q T g SRE T
£ £ Ceiel X5 4 B B ¥boe. Y o 00 % twGesel b b
yal t t] == j=1 JHL=30 §=1 t t-j =j
+ A lt-let i Cet Kt-l At ey CC

Since zt’ t € Z satisfying (3.2.6) is second-order stationary, we
obtain the following
E(Xy 5 gt—jet-iet-j)
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== LA ’ e ; b Jo
(2. 20205)
At il g T a p 8
e g“V+ 20" C C +H Al ans JJ
wWnere
: L8 T e T T 2 il . T

H = ﬂs(é B 6+ ¢ PR R R o0 0 B kCC
Makine use of (3.2.8), (3.2.9), (3.2.11) and the fact that the

are independent and identically distributed,

we take expectations on both sides of (3.2.10) to obtain

m q T q m
VY=AV & + 065 B . B VB SR 2ol B4 )RS
§=l J J j=1 J
Ci T T
4.3 B 8 (GrlIA T i (3.2.12)

s =Y o

where 4. is the matrix of Theorem 3.2.4.
4

Let us now consider S(k) , k > 0, For k= 0 , we obtain

s(0) = 8
-?(AyC +Cu 2" 02 BIOC +02CC B)+k GO
(3.2.13)
For k 4 0 , we obtain
= 2 7 4 T T
S(k) = A S(k-1) + 62 B, V + ¢*(B + B,)C C” + o% b, L
+k b O +B H (3.2.14)
a-k k . e

By successive substitution for the quantity S(k) in (3.2.14), we obtain

e - 2 2 k-1
S(k) =A S +0%(B tAB _, +tA"B ,t.... tA T BV

3

2
+o*[(B+B) +AB +B ) +A2(B+E ) + ...

k-1 i 2 2
+ A (B+Bl)]CC L O T YRR R

k-2
k-1 T 2 k-1 T

\ + + e e 00
+ A bl)g ks(l’k Ab ,+A*b 4 + A Ql)c
2 k-1 3
+ (B, +AB, ; +A% B, .+ .eees +A B )H (3.2.15)

1
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Now,

q

£ S(j - 1)BF = o? B, V Bf + 02(B, + A B,)V BY
j:]_ j 2 1 3

2 5 2 ik
+0 (B3 + AP * A Bl)v B, * eeees

+AB + A% B +

+ 02(B
( q_l q_2 q_3 sesse

q-2 &
+ A B,)V Bq + 4, (3.2.16)

where Az is the constant matrix of Theorem 3.2.4.

If we now substitute (3.2.16) into (3.2.12) we obtain the expres-
sion (3.2.5).

This completes the proof.

REMARKS _ 3.2.5

(1) The equation (3.2.5) is linear in V and can be solved explicitly
once all the matrices involved are given explicitly.

(2} 1 E(e%) <o, and a® + o2 B2 < 1, then there exists a strictly
stationary and second-order process Xt' t € Z satisfying

X

+ a Xt-l + bet_1 + B Xt-let—l + et a.e Bﬂ

for every t in Z with

E(X,) =u = o2 B/(1 - a)

and

02

E(X2) ‘
t T s e 32 o2

%.+ b>+2ab+2Bu(l +a+ b{}
when €y t € Z is a Gaussian process.
) E(e:) < « and p(T) <1, where T is the matrix of Theorems

2.1.1 and 2.4.3, then there exists a strictly stationary second-order

process Xt’ t ¢ Z satisfying

H
=

PRSI te —a.e [®]



he mean of X _, t € Z is given by
1Y

ql
= E(X 3 ¢ e W -
g T s 4
J=l
r (304.17)
1« 248
j=1 4
where q' = min (m, 2). From (3.2.17) one notices that B(Xt) =0 if and
only if
G'
5 6jj =0
j=1
2.3 COVARIANCE STRUCTURES OF BILINEAR AND LINEAR PROCESSES

In this section, we show that for every bilinear process (2.1.2),
there exists an ARMA process with identical covariance structures. This
result comes as a special case of a corresponding result for vector-
valued processes satisfying (3.1.1) with the matrix A having some

specified structure.

Theorer  3.3.1. Let e, t € Z be a sequence of independent identically
distributed real random variables with E(et) = 0, E(e%) = 02 and

E(e;) <, Let A, By B, ¢ev Bq be q + 1 matrices each of order pxp.
Let C, 21, 22, oon ﬁh be q + 1 column vectors each of order pxl. Let
p{l') <1, where I' is the matrix of Theorem 2.4.3 built on A, B,, B,, ...
ces-s B and 0%
g

For the bilinear strictly stationary second-order vector-valued

process X,» t € Z conforming to the model

q q '
= A X + Z b. . + z B. X . 3 + C . . -
- 7] j=1 g ) j=1 9 St-3%t-] % e El t23)

for every t in Z with the matrix A given by

- 62 -



( 3
_:_ = { a :; < . . a - C
i’ 1 2. g p-1 p
1 00 L& b 0
Ko R B 0 (3.3.2)
|
|
0 0,8 new 1 0

[41])

e e TN £ = . Rt TSR Rt P Ll S - Sy G
there exists an ARMA process ol orqer(p.q)wluh autoregressive coefficients

a, 8 5 oee » & and moving average coefficients being functions of

B, 5B, 5 eataliiy Lq and C such that they have identical

is easy to show that

Ty
) =8 if k=0
8

{33.3)

i

ol R T & o O TR

where 1 = E(X,) and S is the pxp matrix given by the expression (3.2.13).

Using (3.3.3), we obtain the following

a

m g ‘ 1 m
B(Z,,, ) =AY+ I8 83 -2)% 3 b -1),
Ll J=1 J J=l J
= e oy A
B(x, . X5 =aF v+ a2t or Busty-1) + 252 3B sTy-2)
_t-f-_b: = j=1 J j=2 .J

J

4 T 2 T
¥ vern gt A RO S« B+ ) 3T By 8 (J - k)
=k- v

] j=k

b, W - 2)

b, W (j - 1) + ¥
TR

19 j

N .0

4 T q T
e FA P I B vk S+ F T DN 1)
j=k-1 Y j=k Y

+ OZ[Ak‘z By + Ak‘3(B1 BL) t sense

. A(B1 + B2 e s ek Bk-z) + (B1 + B2 4 e

T



k-1 4 C
AT Kirim e AR (3.3.4)
and
E(i:zt 12) =AB(X 05 ﬁ,) ¥ 0*B CET,
it Rrd (3.3.5)

expression (3.2.9) and S(k) , k 2 0 is the pxp matrix given by the
expression (3.2.15).

If we now let

2y = RI{X 3 g 1
(k) = EL(X 1064 w7}

B T T
=By Iy - MY

and noting that

kL‘T=A‘_¢gT+czBCE‘,

we obtain from (3.3.5)

c(k) = A C(k-1) , k> q (3.3.6)
Since
c(k) = |R(k) R(k41) R(k+2) R(k+p-1)1
pXp
R(k-1) R(k) R(k+1) ees R(k+p-2)
R(k-2) R(k-1) R(k) ees R(k+p-3) (3.3.7)
R(k-p+l) R(k-p+2) R(k-p+3) ... R(k)
where R(k) = E{(Xt - U)(Xt+k -uwl},

u E(Xt) ’

expression (3.3.6) is equvalent to

R(k) =a R(k-1) +a, R(k-2) +..... + 5 R(k - p) » k>q
(3.3.8)

2



s A3 =Y N 3 2 2w A 3 S TV o > 2 ) IV o AN e T A e
provided tne consiant matrixXx A 18 given oy B (W5 T 50 N ilnese ejuatlions

(3.2.8) are the same as the Yule-Walker equations for an ARMA (p,q) and

)

thus show that the process X., t € Z conforming to the bi
t
(3.3.1) with the matrix A defined by (3.3.2) has identical covariance

structure as some ARMA (p,q) process.

Corollary  3.3.2 Let €4r t € Z be a sequence of independent identically

distributed real random variables with E(et) 0, E(ei) = 02 and

ot

) <ew, Let Ay, Bys Byy eoe o B. be g + matrices of Theorem 2.1.1.
be q + 1 column vectors of Theorem 2.1.1. Let
p(T') <1, where T is the matrix of Theorem 2.4.3 built on A, B,, B

2' oo

... » B and o®. For the bilinear strictly stationary second-order

Neo)

process Xt' t € Z conforming to the model

m £
Bie B nEA e B X, B o e
i=1 j=2

i2]

a.e [P] (3.3.9)

for every t in Z, there exists an ARMA (r, max (h, g)), g = min (m, &)
with autoregressive coefficients By B,y ese ar and moving average

coefficients being functions of a,, a,, ... , a by, by eee bh and

B..' 1 <ig<m 1K) <L 12 J such that they have identical covariance

. FReplace the matrix A of Theorem 3.3.1 with the matrix A of
Theorem 2.1.1. The result follows from Theorem 3.3.1.

We have seid in section 2.1.1 of chapter two that the study of
bilinear models subsumes the study of ARMA models. We now obtain the
second-order moments and autocovariances of some linear models from

those of bilinear models

Corollary  3.3.3. Let er L € Z be a sequence of independent identically

- bb s



distributed real random variables with E(et) = 0 and E(e
Then there exists a strictly stationary second-order pro
conforming to the linear model

h

L b.e

+
e

*s

for every t in Z.
Further more,
E(Xt) =0

and the autocovariance function of Xt' t € Z is given by

h-k
R(k)=02 Z b‘] bj+k y AL X w0y Ay 2y s o B
j=0
=0 s 22 > h
= R(-k) o IF ko B
where R(k) = E(Xt Xt+k) = R(-k) and b, =. k1 B
Proof. The model (3.3.10) can be put in the vector form
p=q=h
( §
RS = e e 105
pxp
100 e 020
0 4 Dl U
000 e D
| )
E:f ‘-‘(bjo O, 05 «ee .O),j=l, s e y 4
1xp
0% = (1, 0 O ookt ')
1xp
Sl T P ), t ez
t il % e e e -
1xp
Then
X, =AX + % b + Ce
B 10 e T Biey 5 t

- 66 -
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cess Xt' t e

02 < > .

a.e [P] (3.3.10)

as follows. Let

(3.3.11)

a.e [P] (3.3.12)



s +
L

£ o2

A& sufficient condition for the existence of a strictly stationary
second-order vector-valued process zt’ t € Z satisfying (3.3.12) would be

” LY
r.ﬁ:-.z(l.

which is p(2) < 1, by Lemma 2.2.2 (d). For the matrix A given by (3.3.11).
p(A) < 1 is always satisfied becsuse p(A) = 0. Hence no restrictions on

the b.'s are required for a process Xt’ t € Z satisfying (3.3.10) to be
;

.

stationary.

From Theorem 3.2.4, we obtain the following.

U E(Et) =0

v = B(X, X1) = Disp(X,)

g T

| IRERMEERT Sl g : 7
=AVA 40200 +0% Z b,k * 2 AW(G -1,
e e e ) J
Qg
: T
S W (j - 1)A (3.3.13)
j=1
where
Wk) =02 C , ifk=0
k nlR G =t
o A" C+o2 T A2 o MEk-D
i= X

It is not difficult to check that

C_ m r ]

z ¥ - 1)k; = o%lq-1

Sl by z bj bj+l O s O
Jj=0
Q=2
‘Z=0 bj bj+2 O ises O
J (3.3.14)
aq
JEO T

where b, = l. \ J
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.
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ees RAQ=
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Y s e LR R0 )
O 5\
R(g-2)
R(g-3)
R(0) J
bj+1 o

This estaeblishes the result for R(k), k

From

c(l) = A

and

c(k)

q
I b W
j=1 7Y

vV +

Expanding (3.3.15) we obtain

the proof of Theorem 3.3.1,

Y

- 68 -

we obtain

J

lp 2' s e ’ q-lo

(3.3.15)

(3.3.16)



.16) , we obtain

m
o
(@]
)
=

C
1=
-~
)
V%)

R{k) =u085 Ri>iqs
This completes the proof.

Corollary 3.3.4. Let e,, t € 2 be & sequence of independent identically

v

distributed real random variables with E{e,) = 0 and E(e?) = 0% < »,
Let the roots of the polynomial

P(x) 2 1=, X~ By X = wasie D x"

be greater than unity in absolute value. The strictly stationary second-

order process X,, t € Z conforming to the model
v

X, = >i By Xy gty a.e [P] (3.3.17)

for every t in Z has mean zero and autocovariance function given by

R(0) = &a; R(1) + &, R(2) + ... +a_R(r) + 0 (3.3.18)
and
R(k) =&, R(k-1) +a, R(k-2) +.. +a Rk-1),k>0
(3.3.19)
where R(k) = E(Xt Xt+k) = R(-k)

Proof. By Corollary 2.3.8, the strictly stationary second-order process
X, t € Z satisfying (2.2.17) admits the vector representation

X, =AX, 5 +Ce a.e [P]

for every t in 2 with the matrix A being of the special type (3.3.2).

From Theorems 3.2.1 and 3.2.4, we obtain

"
-

c(0)

1
=
Ib<

- 69 -
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Expressions (3.3.18) and (3.3.19) are easily derived from (3.3.20) and

.3.5. let e, t €Z be a sequence of independent identically

distributed real random variables with E(e,) = 0 and E(ef) = 0* <= .,

Let the roots of the polynomial

be greater than unity in absolute value. The strictly stationary second-
Ly

order process X,, t € Z conforming to the model
= v

h

¥ 3¢
X = E v . + Z . . . « e
X, = Ioag X o Byey s e, a.e [P] (3.3.22)

for every t in 7 has mean 0 and autocovariance function given by

R(k) =a, R(k-1) +a, R(k - 2) + ... +a_R(k-1), k> h

(3.3.23)

The first h autocovariances depend on the moving average parameters

Bys; Bar sse » bh, as well as on the autoregressive parameters a,, a

2, e e

oo . ’ ar'

Proof. By Corollary 2.4.5, the strictly stationary second-order process
t € 7 satisfying (3.3.22) admits the vector representation

);t.

h

I b Z, o jf;l bie, ; + Ce, a.e [P]

for every t in Z with the matrix A being of the special type (3.3.2).
The autocovariance function (3.3.23) and the comments following it follow

from Theorems 3.2.4 and 3.3.1.

-0 <



3.4 AUTOREGRESSIVE AND MOVING AVERAGE STRUCTURES OF BILINEAR PROCESSES

In section 3.3, we have seen that for any bilinear process

Xt' t € 2 satisfying
q q
X, = AK g+ I obeg o+ I BiX je s +Ce awe [F] (3.4.1)
j=1 j=1
for every t in Z, under some conditions, there exists an ARMA process
with identical covariance structures. Suppose in the bilinear model
above, the moving average part is missing, ie,
q
P T T 351 By Xy 5oy ¥ Cey a.e [P](3.4.2)
for every t in Z (certainly, we do have an ARMA process whose covariance
structure is identical with that of (3.4.2)). Is there an autoregressive
process wiose covariance structure is identical with the one of (3.4.2)?
This question we are unable to settle generally. However, in some special

cases, it does indeed work out to be true.

We look at the case q = 1. For given matrices A and B , let
PXp pPXp

I =A8 A+ 0% B8 B, where 02 is the variance of ;s t € 2. Assume

p(r') <1 and E(ez) < . Then for the process X;, t € Z satisfying

X, =A X, 1 tBX 4 et_l-gcet a.e Bﬂ (3.4.3)
for every t in 2, let y = E(X,) and V = E(¥, X}).

From Theorems 3.2.1 and 3.3.1, recall:

I -A) '8¢

-
V=AVA  +02BVB +a

s=c2(Apct+cpy AT+ 02Bccl +02cct BY) 4 k €0
Ho=k (A cT+cut AT+ 02BCCt +02Cch BY) 4 k, © ¢!



A=aSBL+BSA +02CGC +202BC ¢ 8 + BuBY
T
c(0) = E(X, X) - By
\ T 2 T
= A C(0)A” + 0° B C(0)B" + b,
el 7 T
= A C(O) + A" (304-4)
T T
C(k) =EX,, %) -HU
=AC(k - 1)
Ty |
= A C(l) ’ k = 2, 3, ses e o (3'4'5)
where
A3=A+AHETA* +OZBHETBT-HET
i T
A,=BS+AUP -uu . (3. 4.6)

From (3.4.5), it is obvious that the process X, t € Z conforming
to the bilinear model (3.4.3) with the matrix A being of the special
type (3.3.2) has the same covariance structure as an ARMA (p, 1) process.
See also Subba Rao [37, p.248]. Such a process will have the same
covariance structure as an autoregressive process of order p when A“ = 0.
The matrix A“ is a null matrix if B C = 0 and k3 = E(ez) = 0.

An example of such a process is the BARMA (p, 1, %, 1) process

Kt' t € Z satisfying

L= Doa, X b By B W By Tp st ennee £ By, Koy

+e, a.e [P] (3.4.7)

where €., t € Z is a sequence of independent identically distributed
random variables with E(et) = 0, E(e;) = 02, E(eé) = 0 ans E(e:) G e

In the vector representation of (3.4.7), we notice that

- TR



IR R o C 0
B 0 B, Bgy == Bou G SANE
PXD

00 C ey U D0 S E
SV . . 2 5
lo L SR e RS
J

T = (1, O, O, cee O)

| el &

p = max {r, L}
Hence B C = 0, From the above discussion, we have-A“ = 0.

Corollary 3.3.2 establishes the fact that for any bilinear process
Xt; t ¢ Z satisfying (2.1.2), under some conditions, there exists an
ARMA process with identical covariance structures. Suppose in the
bilinear model (2.1.2), the autoregressive part is missing, ie,

h n L
X, 5. Ziobie guite & cldaB giBdnes vt a.e [P] (3.4.8)
ok t-] 1=] §=1 ij “t-1t~) t
12}
for every t in Z, it is not difficult to show that Xt’ t € Z satisfying

(3.4.8) admits the vector representation (3.4.1) if we let

p=o

g = min (m, L)

g = max (h, g)

( )
A =i d0 0.0 e D0
PXp
3 _Dsfrras Ol
01 O uedrullet)
OL0L0 oD
\ )

i J
B = (b0 00 0 see 0) 4§ =10 2 eee g
1xp
R B TR AR
1xp

i S



X, = (X,

—t - t Xt-l' eeoe Xt-p+l) » t e Z

If we now let p(I') <1, whereT is the matrix of Theorem 2.4.3
built on A, By, B,y +.. » By and o* with E(e)) < ©, we obtain from
equation (3.3.6) of Theorem 3.3.1 that there exists a moving average
process with identical covariance structures.

Repeating the above discussion for the purely bilinear process

X t € Z satisfying

m £

Y= o 3 s
t 1=1 j=1 813 t-j g et a.e [P] (3¢ 4+9)

i2j
for every t in Z, we note that, under suitable conditions, there exists

a moving average process of order min {m, 2} with identical covariance

structures.

3.5 EXAMPLES WITH NUMERICAL TLLUSTRATIONS

3.5.1 _Methods of ARMA Model Identification

Before we give examples to illustrate some of the points discussed
in chapter 2 and 3, let us first summarise two methods of ARMA model

identification.

(a) BOX-JENKINS METHOD
Basic to the Box and Jenkins [ 5] method of ARMA model

identification is the partial autocorrelation function given by

b = Py yif k=1

|a(k, 0)]/|B(x, 0)] , ifk>1,

where B(s,t) is the sxs matrix defined by

> Tlw



At : o
S\ @ - - »

A 3

ot
|

)

!

t-c4 E

Prar Py o pt—s+2}
I

!

’\ L
Piaeat Mtaan Py J

L
0. = R(k)/R(0)

and A(s,t) is the matrix composed of the first s - 1 columns of B(s,t)
with the s-th column given by p where
. )

o~ = (ot+l. Pess® *** * Pits

The Box-Jenkins procedure uses the fact that if Xt' t € Z actually
is ARMA (p, O), then @kk is non-zero for k £ p and identically zero for
k > p. Also used in the Box-Jenkins procedure is the fact that if the
process is ARMA (0, g), then Py = 0, k > q. The inspection of sample
autocorrelations ﬁk's and partial autocorrelations @kk's should indicate
the model or models to be entertained. This is done by comparing the
estimated functions with their large-lag standard errors (see Table 3.1),
and then seeing where the cut-offs, if any, occur in the ﬁk's and &k*fs.
TABLE 3.1 SUMMARY OF BOX-JENKINS IDENTIFICATION PROCEDURE

g

(1) B, NNO, 5@ +2 L BZ)), k>q~ ARMA (0, q)
k=1

(2) §, >N, #) » k> p + ARMA (p, 0)

(3) Neither (1) nor (2) holds, then ARMA (p,q) is to be tried for
some p,q > 0.

n is the number of observations used in calculating the ﬁk's

and &kk's'

When p and q are both greater than zero, this procedure would not

yield unique values of p and g.

R



GKM R- AND S-ARRAYS METHOD
. r‘
Gray, Kelly and McIntire l}fﬂ uses R- and S-array elements
as the following ratios.

(£ ) = i 1 .
Rn\lm) Hn(Am)/Hn(lv fm)

£ H e 7
Sn(Lm) “n+1(l’ lm)/hn(fm)

where Hn(fm) is the determinant of the nxn matrix with (i, j)-th element
q -, B : e SR i *

given by fm+i+j-2’ and hn+l(l’ fm) is the determinant of the (n +1) x (n + 1)

matrix with (1, j)-th element equal to 1 and (i, j)-th element for i > 2 is

In their work, £ =p orf = (-1)B pm; The properties

given by fm+i+j-3' % y 2

of the R- and S-arrays on which the GKM procedure depend are summarized below.

Let X., t € Z be a stationary ARMA (p,q) process satisfying

3 . A a.e Bﬂ

for every t in Z. Suppose that Sn(fm) and Rr(fm) are defined, p > 0 and

= - — m
Sn(fm) + 0, where o Yot ) (-1) p» then

(1) for some integer m_ and some constant c, £ 0;

0

Sn(fm) =C m2my

Sn(fmo-l) * Cl
if and only if n =pand®m =g - p + 1. Also

Sn(fm) = Cz » I & m,

sn(fm1+l) f C,

for some integer m, and some constant c, 4+ 0, if and only if n = p and

W q - p. Moreover,

P P : m
C,= (-1)T( j§1 ¢j) if £ e ar £ ==} o

and

-



S _(f )

k' -k+m+l’ T n' -n+m+l
if and only if n = p and m = q. See Woodward and Gray [45] for proof.

m - -
(3) Rn+l((-l) P = RygP) =0, m2m, ngm,

and

R ) 30

'n+1(oq-p ¢

= e (U—“-pﬂ) % 0

SR 0
R4y (1077 po ) ¥
-O-p"}‘l

R 4 ((-1) P_gpi1) 3

if and only if n = p, . g + 1 and e Bl

A process is a stationary ARMA (p,q) process if and only if the

associated R- and S-arrays are as in Tables 3.2 and 3.3 respectively

TABLE 3.2 R-ARRAY WHERE X., t € Z IS ARMA (p,q)

t
(R, (£,) = Ry(m))
et i 2odamkinadicp p+l
-1 B (~1 R,(-1) R_(-1) 0
. . " .p .
-q-p-1 | Ry(-g-p-1) R,(-gq-p-1) R (-g-p-1) ©
-g-p R,(-g-p) R,(-q-p) Rp(-q-p) NON-ZERO
Q-p R,(q-p) R,(q-p) R_(g-p) NON-ZERO
q-pt1 [ R (a-p#1) R (g-p#1) Ry(a-p+) 0O
' R (j R (] - C
J L) ,() R, () 0

- P



TABLE 3 S-ARRAY WHERE X., t €7 IS ARMA (p,q)
s (f) =8 (m)
n
2 L

- i P ptl
-i S, (-1) S,(-1) c, U
-g-p-2 | S,(-g-p-2)  S,(-g-p-2) ¢, U*
-g-p-1 | S,(-g-p-1)  S,(-g-p-1) C, + o
-q-p S, (-q-p) S,(-q-p) c, 2q NON-
: : : {2q NON- CONSTANT
Q-p S,(e-p) S,(g-p) CONSTANT -C,
q-p+l | 8,(g-p#l)  S_(g-p#l) C, Ux
g-pt2 | S,(g-p#2)  S,(q-p+2)  C, U¥
J $,0) s,0) C, U

U* = undefined

In Table 3.3, column p+l contains several undefined elements.
That is, in the presence of noise the column having the characteristiecs
of column p will be followed by a highly variable column. So p is
identified as the first column having the correct constant behaviour

followed by a highly variable column.

REMARK _3.5.1 When p = 0, the Box-Jenkins method and the R- and S-arrays

procedure all use primarily the autocorrelation function with its

property that Py = 0, Tox ali lo >iqo

3.5.2 Examples
The following examples illustrate further the work of this chapter

and chapter 2.

EXAMPLE 3.1. We consider the BARMA (1, 1, 1, 1,) process Xpp t €2

satisfying

0



=a X + be + BR € t € ¥ . 5.1)
Ay S8 Ted 1 e 7 b 2o SR - aee [F] (Ges1)
for every t in Z where s t € Z are independent for each ey is distri-

2 2 R o el ) B i Pheg s o T S R e A s 4
buted as n(u, o] ). Ihe lmportance Ol TnlsS eXa e is that

a bilinear model containing an autoregressive part, a moving average part
and a bilinear part.

By Remarks 2.3.3 (1), the strict stationarity condition is

a? + B% o*<1.
The mean, second moments and covariances are as follows

u = EX,) = Bo?@1 - a)

t

E(};t xt+x)
k-1 2 o 2
=g (a m, + oS kol =g ey L e B e > 0
R(0) =m, - u?
oy Rl 2 2
R(k) =& (am +bo®+ (1-2a)u%), k>0

Our numerical illustration consists of 500 points generated from
the process (3.5.1) witha = 0.5, b=0.4, B=0.3and 0% = 1.
Using these values of a, b, B and 0%, we obtain the theoretical mean
and covariances to be
u = 0.60

R(0)

3.04

2.10(0.50)1{'l . koa

R(k)
Figure 3.1 gives a graph of the data; columns 2 and 3 of Table 3.4 give
the theoretical and sample autocovariances respectively. We note that

n-Ikl

R =3 £ (X - T,

g 40
e k
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TABLE 3.4
THEORETICAL AND SAMPLE AUTOCOVARIANCES FOR REALIZATIONS OF LENGTH 500 OF THE BARMA PROCESSES IN EXAMPLES
3.1 o 305
LAG EXAMPLE 3.1 EXAMPLE 3.2 EXAMPLE 3.3 EXAMPLE 3.4 EXAMPLE 3.5
k R(K) k() R(K) R(K) R(K) R(K) R(K) R(K) R(K) R(K)
0 3.0400 3.2105 6. 6358 6. 5254 Fe0033 3.2720 2. LT 2+2343 4.0003 = 3.9956
1 2.1000 22011 5.5193 5.2871 e o7 19382 1.0724 1.0489 2.9816 2.9835
2 1.0500 1.1104 4.0305 3..5839 0. 5600 0. 5849 0. 5866 0.6287 Vo L3 k11835
3 0. 5250 0.4826 2.7778 2.1196 0.0000 -0.0713 0.1800 0.1675 -0.4535 =04 4274
4 0.2625 0.1950 1.8464 11323 0.0000 -0.062/4 0.0000 0.0187 -1.2382 -1.2747
5 0.1313 0.0739 L1977 0. 6156 0.0000 -0.0184 0.0000 0.0250 -1.2092 -1.3262
6 0.0656 0.0582 0.7635 0. 3147 0.0000 0.0757 0.0000 0.1435 -0.6958 -0.8822
74 0.0328 -0.0141 0. 4860 -0.0097 0.0000 0.0225 0.0000 0.0544 -0.0973 -0.3588
8 0.016/ -0.1368 0.2996 -0.2633 0.0000 -0.1276 0.0000 -0.0793 0.3077 00713
9 0.0082 -0.2184 0.1854  -0.4670 0.0000 -0.3136 0.0000 -0.0978 0. 4285 83757
10 0.0041 -0.2381 0.1140 -0.4921 0.0000 -0.2348 0.0000 =0.1722 0. 3266 0. 5258
11 0.0021 -0.0959 0.0698 -0.3971 0.0000 -0.0052 0.,0000 -0.0493 0.1305 0.5239
12 0.0010 -0.0695 0.0426 =0.4709 0.0000 0.0474 0.0000 -0.0012 -0.0426 0.2561
€13 0.0005 -0.2402 0.0259 -0.7095 0.0000 -0.0792 0.0000 -0.0271 -0.1308 -0.2263
14 0.0003 -0. 4305 0.0157 -0.9625 0.0000 -0.2585 0.0000 -0.0833 -0.1309 -0.6558
15 0.0000 -0. 4869 0.0095 -1.0482 0.0000 -0.4188 0.0000 -0.2185 -0.0773 -0.8439
16 0.0000 -0, 4092 0.0058 -0.9663 0.0000 -0. 3737 0.0000 -0.2260 -0.0129 -0.7L44
57 0.0000 -0.2958 0.0035 =0i 7550 0.0000 -0.2082 0.0000 -0.1766 0.0316 -0.4032
18 0.0000 -0.1102 0.0021 -0.4538 0.0000 0.0140 0.,0000 0.0266 0.0459 -0,0120
19 0.0000 -0.0303 0.0012 -0.1959 0.0000 0.0282 0.0000 0.0518 0..035% 053142
20 0.0000 -0.0208 0.0007 -0.0146 0.0000 -0.0572 0.0000 -0.0400 0.0149 0. 5120
21 0.0000 0.1031 0.0004 0.2061 0.0000 0.0375 0.0000 -0.0067 -0.0039 0.5576
22 0.0000 0.1773 0.0003 0.3503 0.0000 0.0962 0.0000 -0.0362 -0.0133 0.37.7
23 0.0000  0.2049 0.0002  0.4312 0.0000  0.1289 0.0000  0.0094 | -0.0142  0.0386
24 0.0000 0.2161 0.0001 0.5718 0.0000 0.1603 0.0000 0.1076 | -0.0086 -0.2760
25 0.0000 0.2258 0.0001 0. 7350 0.0000 0.1405 0.0000 0.1467 ; -0.0017 -0. 3945
X 0. 5988 0. 4425 0.7031 0.934 | -0.0239

i
l
l
l




where n is the number of data points. Columns 2 and 3 of Table 3.5
give the sample autocorrelations and partial autocorrelations respec-
tively. While Table 3.6 shows portions of the R- and S-arrays at

fm = (-1)m 6m’ From Sl(m) and Rz(m) columns, it is clear that p = q = 1.
The fitted ARMA (1, 1) model is

X, = 0.280 + 0.533 X, ; + 0.319a, ,; +a

t.
where E(at) = 0 and Var(at) = 1.609, leading to a 60.9 per cent increase
in the error variance.

EXAMPLE 3.2. Let us now consider a bilinear process with the moving

average part missing. We consider the BARMA (2, 0, 2, 2) process
Xt,t € Z satisfying
2 2=

X = 8, RO R AR e Bl a.e |P .
8 j-_-l J t—J =1k j:l 1J t-1 t-J v [J (3 5-2)

i2]
for every t in Z where e,, t € Z are independent and each ey is distri-

buted as N(0, o?). First we identify the A, B, B,, C and T matrices.

A = 'al e, )
2x2
1 &% 7
f \
2§é 3 811 Bzx
0 93
Bo = 822 0
2x%2
0 0 4
et = (@, 0)
1x2

g



TABLE 3.5

SAMPLE AUTOCORRELATIONS AND PARTIAL AUTOCORRELATTIONS FOR REALIZATIONS OF LENGTH 500 OF TiHE BARMA PROCESSES

-€8_

LAG EXAMPLE 3.1 EXAMPLE 3.2 EXAMPLE 3.3 EXAMPLE 3. 4 EXAMPLE 3.5

X Oy b Pk by Py By Py Bk Py Dk
1 0.686  0.686 0.810 0.810 0.592  0.592 0.469  0.469 0.747  0.747
2 0.346 -0.234 0.549 -0.312 0.179 -0.265 0.281 0.078 0.296 -0.591
3 0.150 0.037 0.325 =-0.020 20,022 . 0,002 0.075 -0.108 20107 <0062
4 0.061 -0.002 gi17) el 0,020 -0.019  0.072 0.008 =0.012 -0.319  0.012
5 0.023 -0.002 0.094  0.032 -0.006 -0.050 0.011 0.042 «D: 392" " <0 028
6 0.018 0.020 0.048 =~0.033 0,023 0,052 0,064,  0.072 A0, 0910 (1,003
7 -0.004 -0.048 =0,001 /. =05073 0.007 -0.043 0.024 -0.050 -0.090 -0.055
8 0,013 0,037 -0.040 0.007 -0.039 -0.047 -0.036 -0.076 0.018 0.042
9 -0.068 -0.017 «0,072  + «0.032 -0.096 =0.056 0,044 0,010 0,094  0.050
10 =007 -0.015 -0.075  0.034 -0.072 0.038 «0.097  «0.039 0.132  0.008
11 -0.030  0.066 20, 06% - ~0.001 -0.002 0.034 -0.022 0.039 0.131 0.016
12 -0.022 -0.070 20,072V =05102 0.014 =-0.047 -0.001 0.005 0.064 -0.111
13 -0.075 -0.090 -0.109 -0.061 “0.08L . =0,030 -0.012 -0.036 -0,057 -0.078
14 «0.134 . =0:052 ~0,148 =~0.027 -0.079 -0.055 ~0.037  =0.027 «0. 1647 -0, 001
15 T 1 B s 35 -0.161 0.017 ~0,128 " %0,073 -0.098 -0.078 “0.211. .. =0,043
16 -0.127  0.003 -0,148 =0.015 01110 S h. 007 -0,100 = <0006 -0.179 -0.009
17 -0.092 -0.018 -0,116  0.009 -0.064 -0,010 -0.079 =0.002 ~QcABT S 0,053
18 w0034 - 02018 -0.070 0.037 0.004  0.030 0.012  0.068 -0.003 0,042
19 -0.009 -0.030 -0.030 ~0.003 0.009 -0.039 0.023 -0.005 0.079 0.011
20 -0.006 0,003 -0.002  0.008 -0.017 ~0.009 -0.018 " «0,0%3 0,128 0.022




TABLE 3.6
R- AND S-ARRAYS AT fm = (-l)m Py FOR A REALIZATION OF LENGTH 500 OF THE BARMA (1, 1, 1, 1) PROCESS IN
EXAMPLE 3.1

-78-

R,(m) R,(m) R,(m R,(m) Rg(m) R,m) m S,(m) 8S,(m) 5,(m) S, (m) Sg(m) S¢(m)

-0.023 -0.003 0,003 =-0.030 0,096 =-0.232 =5 =3.639 13.050 31.647 132.118 1437.865  2.114
0.061L 0.008 0,008 0,014 0.231 -0.005 -4 =3.475 17.906 -89.050 1015.585  -2.158 =-2.995
-0.150 -0.033 -0,043 =0.232 0.000 =0.004 -3 -3.301 13.739 -59.084 2,161  27.197 15.050
0.346 04120 0.241 0.000° '0.003 ~ 0,001 =2 -2,982  8.880 - =2.156 3.682  -12,063 286,392
-0.686 =-0.314 -0.009 =0.000 0.004 =0.019 -1 -2.459 2.081 -2.035 =-23.180 -14.899  7.167

i1.000 0.074 0.001 -0.008 0.011 -0.031 O -1.686 1.832 -1.200 -10.523 11.523 6. 681
-0.685 -0,016 0.000 -0.005 0,023 0,020 1 -1.504 1.721 31.845 10.210 -4.048 2+ 381
0.346 0,003 °0.005 0.058 0,016 0,015 2 <~1.435 1.879 <0.869 14.195 -9.025 5. 361
-0.150 -0.001 0,006 =-0.029 -0.007 0.022 3 =-1.404 =7.267 =9.439 6. 333 10.195 6. 368
0.061 -0,007 0.065 0.007 0.531 0.036 4 <=1.379 -0.952 -5.146 -0.131 10.626 5233
-0.023 -0.,010 -0.003 0,007 -0.002 0.035 5 =<~1.787 4.941 7.865 =10.577 =144.387 2.934




¥ 0
et
where
ASEIRY 2 242 2p " 2n 2 2.
1z eyt OB gsaa, FO0TBB., 8.8, + 06, B, a) + 0782,
L L
a, a, 0 0
1 0 0 0
| J
b 02’6 (B., *'2a.8..) ‘& 68 a.B.,B O1
@ 22'F2n 1513 Rt N 1*21%22
Lxd
5 Ea
”11E22 E)21622 0 0
611522 0 B21622 0
0 0 0 0
| )
Let
I e n
s (X, kt_l) N L Y
152
then the vector form of (3.5.2) is
2
= + . - " + .
Et A Kt-l jil BJ Kt-Jet—J Cet a.e [P]

for every t in Z. The strict stationarity condition p(I') <1 implies that
the roots (in modulus) of the equation

|r2 ey K, = ye I =9
lie inside the unit circle.

The mean, second order moments and covariances can be evaluated
using the methods stated in the proofs of Theorems 3.2.4 and 3.3.1. We
state the results.

W= E(X) = ot (B, '+ 822)/(1 i az)

11

% BE =



T v

Bl

13 22

2

= 1% 202(:'2 4 E;z + E
+ 22, (u(2B), + By, + Byy) + Byyla, wt 0 B))))

2

- 2a2u(611 + 2822)

o u(2B,, + B, * le) i Bzz(al U+ 0° 811)
Then
(1 - a} - a3 - o%B%, + B, + B,,(B,, + 22, B ,)))E(X])
=2(a, a, + 0% B,y 1B, + a; By,))E(X X, ;) + 0% q,
{1 ~ 8, ~ 0* B, 822)E(Xt Xt-l)
= (a, + ke B Bzz)E(Xé) + o2 d,
E(X, X, ) =&, B(X X, ,) +a, EXP) + 0*(B,, + 2B,,)u
E(Xt Xt-k) g E(Xt Xt-k+l) ¥ a, E(Xt Xt—k+2)
+ 0%(By, + B u, k>2
and

R(k) =a, R(k-1) +a, R(k - 2), k> 2

Our numerical illustration consists of 500 points generated from

the process (3.5.2) with

a, = 1.10,
a, =-0.30 ,
311 = 0,20 ,
321 = 0.15,
By -0.10 ,
o = 1 .

Using these values of aj's and Bij's. we obtain the following:

- B



R(0) = 6.6358
R{1l) = 5.5193

R(2) = 4.0305

R(k) =1.1R(k=-1) - 0.3R(k=~-2), k> 2.

Figure 3.2 gives a graph of the data; columns 4 and 5 of Table 3.4
give the theoretical and sample autocovariances respectively. Columns
L ;nd 5 of Taeble 3.5 give the estimated autocorrelations and partial
autocorrelations respectively, while Table 3.7 shows portions of the
R- and S-arrays at { = (-1)" ﬁh' The S,(m) column suggests that an
ARMA (1, 2) might be an appropriate model, while the S,(m) column suggests
an ARMA (2. 0) model. See also column 5 of Table 3.5. To choose the best
ARMA model we employ the information criterion of Akaike (AIC). See
Akaike [2] . This is given by

AIC = n log 6% + 2(number of parameters)
where n is the effective number of observations used in the estimation
process and 02 is the sample estimate of 6% - e give the AIC values for

slternative ARMA (p, @) P» @ = 1, 2 models fitted to the mean deleted

observations, X, = X, - 0.4425 with n = 498.

FITTED MODEL AIC VALUE &2

ARMA (1, 1) 357.3 2.0397
ARMA (1, 2) 352.2 2.0148
ARMA (2, 0) 348.6 2.0042
ARMA (2, 1)  350.4 2.0074
ARMA (2, 2) 352.1 2.0101

- BYw
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TABLE 3.7

3.7

R- AND S-ARRAYS AT fm = (-l)m 6m FOR A REALIZATION OF LENGTH 500 OF THE BARMA (2, 0, 2, 2) PROCESS IN EXAMPLE
R,(m) R,(m) R,(m) R,(m) Ry m) R (m) m S (m) S,(m S, (m) S, (m) Sg(m) 8, (m)
0.048 0.004 =-0.042 0,058 0.082 12.981L -6 =2.956 1.334 9.593 12.544  -0.468 4. 682

-0.094 0.002 -0.027 -0.008 0.083 -0.131 -5 =-2.840 -26.936 -11.021 -116.685 -73.933 2. 432
0.174 0.020 0.008 -6,403 0.136 0.004 -4 -2.872 8.472  -0.146 -115.179 -2.355 7.687
-0.325 -0.044 0,008 -0,133 =-0.004 =-1.339 -3 -2.691 6.913 117.624 2.282 -0.024 7. 648
0.549 0.079 0.131 -0.003 =-0.004 0.002 -2 =2.475  7.608 -2.328 6,024 -7.639 36,189
-0.810 -0.190 0.003 =-0.331 0.001 -0,001 -1 =-2,2 2,375 0.048 6.102 -19.509 -123,831
1,000 0.059 0.003 0.004 =-0.002 -0.006 O -1.810 2,479 -6.031 7.804 -36.790 2.635
-0.810 -0.,028 -0.004 -0.037 0.006 =-0,011 1 -1.678 2.248 -0. 741 8.146 3. 669 be 944
0.549 0.012 -0.,002 =-0.015 0.010 0.133 2 =-1.591 Ly 39350 =13 951 5.127 =0.372 S5e 411
-0.325 0,001 -0,024 -0.012 0,006 0.051 3 =-1.534 =-1.339 =-23.019 0.933 -8.7.46 5. 421
0,174 0.002 0.013 =0.007 =0.267 0.012 4 =1.544 14,709 =2.437 0.189 -7.084 6.207
-0.094 -0.017 0.004 =-0,008 0.021 0.005 5 -1l.511 3.305 2. 685 6.560 -11.038 4e 791
0.048 0.042 0.006 0,060 -0,005 0.135 6 -0.969 3.584 <0.769 8.901 0.193 4+ 501




The minimum AIC value is obtained with an ARMA (2, 0), but it will
be seen that the AIC values of some of the models are very close. The
A
fitted ARMA (2, 0) model is

b e 100 1 AX -
X, = 0.109 + 1.076X, , - 0.322K, , + a

t
where E(at) = 0 and Var(at) = 2.0, leading to a 100 per cent increase

in the error variance.

EXAMPLE 3.3. Let us consider a bilinear process with the autoregressive

part missing. We consider the BARMA (0, 2, 2, 2) process Xt’ t e Z
satisfying

X = boe + be + R

y7 1 t-1 2 t=2 pf 822 X

11 Xt-let-l $-2%4-2 7 Sy

a.e [P] (3.5.3)

for every t in Z where €y t € Z are independent and each e, is distri-

buted as N(0, 02).

The A, Bl, Bz. bl, 22, C and T matrices are identified to be

’

A% =21040
2x2
1l 0
B1 =18, Y
2x2
L)
B, = {B._ 0]
2 22
2%2
0 OJ
R
b, = (b 0)
1x2
T
b, = (b, 0)
1x2
¢t = (1, 0)
1x2

- 90 =



AR o 811 000
S 0 000
¢ O
1 00 OJ
= g2(p2 \
Tz o) 822 000
Al
B11622 000
811822 000
10 00 0
e hal
8x8 1 2
;S ¢

The vector form of (3.5.3) is given by (3.1.1) withp = q = 2 and

: Y2 .
z.t T4 (Xt’ kt-l) o b Eindis

1x2

I is the matrix of Theorem 2.4.3 built on 4, B,, B, and 02. The
strict stationarity condition p(I') < 1 imples that the roots (in modulus)

of the eguation
T S SRR 0
y o 811 y c 822 0
lie inside the unit circle.

The mean, second-order moments and covariances are given by

u = E(X,) = 0®(8;, + B,,)

= 2
M, = E(x2)

2 PR e T T 2
o 1 b1 bz 20 (B11 + 822 + 311 322)

(1= To" (AT F By )
* ZU(bl 811 ® b2 822)}

ML
E(xt Xt—l) v B11 Bzz Mz 5 bl o bz(b1 tu le) g u(zsxl 1 Bzz)

%



22 11
¥ X = o%(b + M B .
E(X, X, ,) = o*(b, S
L(lt )'t—k) = U , K> 2

Thus
R(k) =0, k>2
OQur numerical illustration consists of 500 points generated from

the process (3.5.3) with

b, =0.35
= Oo O
e11 5
=0 30
B22
o2=1
Using these values of b]. bz' 811’ 822 and g2, we obtain the following
o(T) = 0.391
i = 0. 700
R(0) = 3.0033
R(1) = 1.7752
R(2) = 0.5600
R(k) =0 ’ e 2

Figure 3.3 gives a graph of the data; columns 6 and 7 of Table 3.4
give the theoretical and sample autocovarainces respectively. Columns 6
and 7 of Table 3.5 give the sample autocorrelations and partial autocor-
relations respectively. Column 6 of Table 3.5 suggests an ARMA (0, 2)
model. The fitted ARMA (0, 2) model is

X, =0.703 + 0.763&t_1 + 0.322at_2 e

t t

where E(at) = 0 and Var(at) = 1,962, leading to a 96 per cent increase in

-9 o
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the error variance.

4]

EXAMPLE  3.4. In this example we consider a purely bilinear process

t € Z satisfying

I 010

3 Uj lt-jet-j 95 "

J

a.e [P] (3.5.4)

for every t in Z, where the €y t € Z are independent and each e, is

distributed as N(0, 02). Let p = g. We obtain the A,
and I matrices to be
R N R
axq
T B e D
01 0 «u 00
10 00 ove d U
R Y
1xq
B, = {6,00 ... 0
J J
axq
C O O s e O » j = l' 2, e e ’
AR 1 7 RS

t

C' B ’ B ’ L ’ E
2

1 q

q-

T' is the matrix of Theorem 2.4.3 built on A, Bl. B e s (g B SE e
2 q

2
O . Xt’

if we let

L, = (B Ty qr eoe i o gt a8

t € Z satisfying (3.5.4) admits the vector representation (3.4.2)

It is easy to show that the strict stationarity condition p(T') < 1

implies that the roots (in modulus) of the equation

SR

v¥-23y
2

see = Az = Az = D
-1 7 " g

A. =0 6. ] j = 1, 2’ sees
( 5 ; J q)

lie inside the unit circle.

The mean, E(Xg) and variance are obtained to be

-9 -



. B R
u = E(Xt) = O _§ﬂxj
=4
2
G q q 9
E(X]) = - L2 T aReR N. hidk 3
¢ IRNEE e j=1* 1=y ¥
i=1 J i<j
R(0) = ¢ G R SRS o I B
3= 2

Computation of all second-order moments (and hence covariances) of the
bilinear process (3.5.4), in principle, is possible. However, the

algebra involved is very tedious. It suffices to observe that

-

(X %, .) =20, 0%y +E(x22) I 6 “ 3 oo |3
e el Tt T I B A L D
i=1 i=2 j=1
JH-1
where
E(X2e2) = g e :
n(ltet = 3 342 -§1 -§1 Ay Aj .
o R il L N )
j=1. .9 i<j
Also
2 ek
B(X, Xt-q> pe & o B
- iR
Thus
R(k)=0vk>q
When q = 3, we obtain the following results
g2
" 2 2 2
E(X%) = 1#2 A8 &2 A4 +2 A +2 AL A,

{1« 4% - X5 =125
1 2 3

+2°% A+20 %)
173 23

- 95 -



Thus

R(0)

R(1)

R(2)

R(3)

R(k)

v =3 i 3 3 s /"2\ ey ,,2 i,
Lt_l) = (A A, A, AJEULL) }\1(/\1 + Az 3 Aa)
+ (A X ¥ AR A
Xi 0) = A Ag B(XD) + 0% X,(%; + 4, + 25) + 0% A, A, t w2
Kpo3) = 0% 25 (O + 4, 4+ 2) +0®
X*-,') = Uz » k > 3
02
= 1 A AAe b s ¥ ASHI A B0 FoAS 4 ) )2
e ¢ BT ta o 2 3 1 2 3
02
. 2
= Ay 4+ A0 - A2 - a2 - a2
1-22 -22-2)
+ (A A, + A, A2 AR R A )]}
0'2

ARy + 2, + 2,)@ - A2 - a2 -22)

"

(1 - 2A3-23-2%

A A2+ (A + 4, +2,)3)

Opk>3

gl V0 VG W

Our numerical illustration consists of 500 points generated from

the process (3.5.4) with g = 3 and

0. 40

0.30

0.20

p !

Using these values of 61, 62. 63 and 0%, we obtain the following

<O



y
1l
[
.
O
o
(=

o
=)
p—
I
N
[
I~
-3
~

R(2) = 0.5866
R(3) = 0.1800
R(k)=0 lk>3

Figure 3.4 gives a graph of the data; columns 8 and 9 of Table 3.4
give the theoretical and sample autocovariances respectively. Columns 8
and-9 of Table 3.5 give the sample autocorrelations and partial autocor-
relations respectively. Column 8 of Table 3.5 suggests that p = 0 and
g =2or 3. However, on the basis of the information criterion of
Akaike [ 2], the ARMA (0, 3) model

g Ry

- -

Xt =00,:935. & 0.438at_1 e O.,39at_2 + 0.119at_

with E(at) = 0 and Var(at) = 1,716 provided a better fit. This ARMA (0, 3)
model leads to 7< per cent increase in the error variance.

EXAMPLE 3.5. Let us consider a bilinear process whose covariance

structure is the same as some autoregressive process. We consider the

BARMA (2, O, 3, 1) process X,, t € Z satsifying

+ e

Do Aeig®y BB

X, = a, X

& + a, X

+ b1 Xt-2et-l +

t-1 t-2

a.e [P] (3.5.5)
for every t in Z where €;r t € Z are independent and each et is distri-
buted as N(O, 02).

The A, B, C and T matrices are identified to be

4 = fa, a, o)
3x3
SR R0
o gl L 0
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3x%3
0070
0.0 6
CT = (1r 0, O)
el

9x9

Xp» t € 7 satisfying (3.5.5) admits the vector representation (3.4.3)
if we let

X, = (X X g0 X, 5) » t €2

The mean, second-order moments and covariances are then given by

p=0
R(0) = 0?(1 - 82)/d
R(k) = a, R(k - 1) + a, Rik <. 2Y 2k >0

where

bt 2 2 % iho
d.r (1-28,)00-a8%s 8l =0tbl 08 bl) - 20 (8, 8 %0 b, b,)
Our numerical illustration consists of 500 points generated from

the process (3.5.5) with

a, = .20

= -0.61

b= 10,25
1

by B -0.15

o it

Using these values of a,, a,, b,, b, and o? , we obtain the following

p(T') = 0.659
jo =0
R(0) = 4.0003
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R(k) = 1.20R(k - 1) - 0.6lR(k - 2) , k>0

Figure 3.5 gives a graph of the data; columns 10 and 11 of Table 3.4

J

b

give the theoretical and sample autocovariances respectively. Columns 10
and 11 of Table 3.5 give the estimated autocorrelations and partial auto-
correlations respectively, while Table 3.8 shows portions of the R- and
S-arrays at f = (-1)" b+ From S,(m) and R, (z) columns, it is clear

2 and g = 0. The ARMA (2, 0) fitted to the data is

that p

X, = 1.206%,_; - 0.605x, , +a

; ¥
with'E(&t) = 0 and Var(at) = 1,116, leading to an 11.6 per cent increase

in the error varilance.

Summary 3.6

In the above examples, we fitted ARMA models using Box-Jenkins
method in some cases and R- and S-arrays method in the remaining cases
for known bilinear models. The primary purpose of this study is to
examine how the error variance increases with wrong model fitting. The

findings are summarized in the following table.

TABLE 3.9 COMPARISON OF ERROR VARIANCES OF LINEAR AND BILINEAR MODELS

True Model Fitted Model érigirsziiaiﬁe
BARMA(1, 1, 1, 1) ARMA(1, 1) 60.9
BARMA(2. 0. 2. 2) AR(2) 100
BARMA (0, 2, 2, 2) MA(2) 96
BARMA(O, 0, 3, 3) MA(3) 72
BARMA(2, 0, 3, 1) AR(2) 11.6
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TABLE .8

R- AND S-ARRAYS AT f = (-1)™ §_ FOR A REALIZATION OF LENGTH 500 OF THE BARMA (2, 0, 3, 1) PROCESS IN
EXAMPLE 3.5
Rl(m) Rz(m) Ra(m) R“(m) Rs(m) Rs(m) m slhn) Sz(m) Ss(m) S“(m) Ss(m) Ss(m)
-0.221 -0.072 -0.003 -0.003 -0,037 -0.060 -6 =-2.503 4.738 -10.102 -10.143 161.041 113.102
0.332 0.102 0.004 -0.041 0.273 -0.114 -5 -1.961 4.598 -0.882 -19.362 125.797 2.582
=0,319 ~0,249 0.003 0,027 0.111 0,003 -4 -1.335 4.532 11.612 -212,293 -2.624 8. 622
0.107 -0.886 0.010 -0.110 0.002 =-0.002 =3 1.768 4.517 42,364 2.576  =5.453 -24.315
03296~ 0.2 0.104 -0.001 0.009 -0.010 =2 =-3.521 4.704 =-2.608 -1.736  -4.665 -6.895
-0.747 -0.253 0.006 -0.003 0.000 -0.009 -1 -2.339 2.779 =-2.062 4.798 92.582 . -0.379
1.000 0.150 0,002 =-0.019 0.009 -0.008 O -1.747 2.897 0.695 4e 687 4e 721 he 648
-0.747 -0,161 0.002 =-0.002 0.007 0.033 1 -1.397 2.864 =5.215 ~17.468 -0.926 5,042
0.296 0.560 -0.002 -0.,006 0.006 0.007 2 =-0.639 2.876 =-10.732 5,462 -6.286 8.061
0,107 0.156 0,005 =2.590 =0,001 0.008 3 -3.981 2.641 0.011 5.450  40.647 he 702
SE3L9 -0.0610 00057 0,003, =0,011. 0,011 4 -2.040 2.601 =~5.445 3.635 10.794 -25.530
0.332 0.034 -0,004 =-0.002 -0.015 -0.086 5 =1.665 2.994 =-2.113 24.094 2.934 -3.636
-0.221 -0.039 -0.002 0.008 =0.013 =-0.071 6 <1.407 3.323 =4.672 -23,130 21.778 =66.479




NOISE AND INVERTIBILITY OF

In this chapter, we analyse in some detall a class of purely

s that appear to be white noise under second-order

(V]

()]

bilinear process

: { 2 o Fanaad Aae = s e
analvc; S \anzsiysis based just on 1 st-and
J .

m

econd-order moments only).
In our definition, to be given in section 4.2, such a process is said
to be purely bilinear white noise. We are interested in the bilinear

white noise process Xt’ t € Z satisfying
+ t 5 J .t_q_j e.t_q 8. [P] (401.1)
for every t in 2

or some q > 0 and constants by, b,, ... , bm where

4 t £ Z is a sequence of independent identically distributed random
variables with E(et) = 0 and E(ei) = 02 <@ , Purely bilinear white

noises are indeed very useful in that they could be used to modify or
extend linear models to bilinear models. We will return to this use of
purely bilinear white nolse in chapter 3.

Ml so considered in this chapter is the classical invertibility
problen for bilinear processes. Some simple invertibility conditions
are derived for the second-order stationary process Xt,t € Z satisfying
+ B X

X =a X + b + e

"4 A't,.-l

£-15¢-1 1 a.e [P] (4.1.2)

for every t in Z for some real numbers a, b and B where e

®t-1
4 t €72 is a
seguence of independent identically distributed real random variables
with E(e,) = 0, E(e?) " o? and E(e:) <o, The classical invertibility
problem of the process X,, t € Z satisfying (4.1.1), and of the process
X, b€ 7 satisfying (2.3.9) are also studied.

Finally, we consider the problem of distinguishing a purely

bilinear white noise from a pure white noise. See definition of pure

white noise in section 4.2. We show that the Bispectral density function
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analysis method of Subba Rao and Gabr [3@ works true for Xt' te?Z
satisfying (4.1.1) contrary to an earlier opinion expressed by Granger
and Andersen ELS. p.AB] in relation to the single term model

Xt = B xt-2et-l te, - . a.e IPJ (4.2.3)

The Granger and Andersen [lﬂ method of performing second-order analysis
on Yt = X;. t € Z was considered for the more general purely bilinear

white noise given by (4.1.1).

4.2 PURFLY BILINEAR PROCESSES AND WHITE NOISE

Let e t € Z be a sequence of random variables with the following

t'

properties.

(1) E(et) 0. forall t 2.

(11) E(e})

02 <o forall t € 2

(iii) R(k) = E(ege, ;)

0 forall t eZ and k € Z withk $ 0
Such a process is called White Noise. A simple example of white noise
is a sequence of independent identically distributed random variables
with common mean O and variance 0? < @, This type of process is
usually assumed to have a normal distribution and is called 'pure white
noise'.

In this section, we study some pure bilinear processes which are

white noises. We introduce a definition.

Definition  4.2.1l. Let €y t € Z be a sequence of independent identi-
cally distributed, random variables with common mean 0 and variance
g2 < © ., The second-order purely bilinear process Xt’ t € Z satsifying
m £ .
Xt = e + iil jilsij Xt—iet-j a.e [P] {d:2.1)

i2J

wy IO s
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SOl
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[@>]

) eva sy 4 ~ P SR ok =
for every t 1n e consiant

v
< ne

(=
()
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o
[}
Q
o+
o
O
[e4]

purely bilinear

Z fo <
1J
white noise if

r ) = 0 for a1l t €1 Z

R(k) = E(X )

t lt+k

for all t,k € Z with k # 0

Granger and Andersen fi5, p.42] gave the following example of a
purely bilinear process whose covariance structure is identical with the
covariance structure of some suitable white noise.

Xt =6, + Bet-k Xt-R a.e [PJ {42.2)

for every t in Z for some B and & > k.
We show that for a more general class of purely bilinear processes,
the above phenomenon still rings true.

Theorem  4.2.2. Let e,, t € Z be a sequence of independent identically

distributed random variables with common mean 0 and variance 0% < o ,
ie, €, t € Z is pure white noise. If there is a second-order stationary

process Xt' t el satisfying

m

3 =ie jzl tﬁ Xt-q-j o e a.e [P] (4.2.3)

for some g > 0 and by, b,y «e. bm constants, and also satisfying the

strict stationarity condition p(T) <1 of Theorem 2.4.3, then X,, t € Z

tl
is purely bilinear white noise.
Proof. We put (4.2.3) in vector form as follows. Let

p=m+tl

A =2 {000 oos- 0 0]
PXpP

o
=
o
.
.
.
=]
o

‘©
o
o
=

—
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B = ¥ "1
B = 40 b, b, «s »
DXp
0-0 0 s sk 0
00 0 0
T
i 2 (1) 0,0, S O)
1xp
and
RS MY, X ), t ez
24 PP Rgaye wesl Relndp s
1xp
Then
X, =AZ 1 B zt-qet-q'+ Ce, a.e [Pl (4a2.8)

for every t in Z. I' of Theorem Z2.4.3 works out to be

P =ABA+0 BB B, ifqg=1

=B 4 00«0 0P ESIB)
¢ Vol | LI ¢ D 4P 0
p = =
TR gl MV ERIE ¢ 0
D LS
0 00 i3 R 1
L1 D 2"
)
if qf> 4
Hence, in the framework of the model (2.4.5), B % By i e vl =0

g

and B = B. We easily check that B C = 0. From Theorem 2.4.3, we observe
q

that

q .
4
p = EE,) 02(1p - &) Lz Bj]C

=1

"

e Ty hige
o3( » )

=0

This can be easily verified directly by working with the model (iR )
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1S 18 thne

rix of variances and covariances

of Xt' X BRI ( o From Theorem 2.4.3, this matrix V satisfies

t-1’
the equation

m

VZAVA +0°BY BT

4 ‘=g cT {420 5)

This equation can be solved easily. We find that

=)

—

W

~—
|

= Ccv\Xt, Xt-k)

0. for k = d5 2 Wity it

m
o2/(1 ~ . & ©* v?) fork =0 (Le2.6)
el Saps

i
X.), k> 0 in the proof of

By considering the expressions E(ggt+k X

Theorem 3.3.1, we have

Rx(k) =0 forall'k=1, @ sev =

This shows that the process Xt' t € Z is white noise. The abovg asser-
tion can also be worked out by using directly (4.2.3).

In section 3.4, we have remarked that for any purely bilinear
process, there exists a moving average process with ldentical covariance
structrues. There are purely bilinear processes which are not white

noise. The following process is an example.

CORRCEE S e :
X e %) BJ £-5%%-3 a.e [P]

for every t in Z. See section 3.5. In view of this, one might wonder

whether processes Xt' t € Z satsifying

Masrails

CONCTONE R N a.e [P] (4.2.7)
t t $a) §ed ij, =1 t=j

i>j
for all t in Z would be white noise. Not always. Granger and Andersen

[15, D. 42] have given the following example

2 =0y 1 Blet-l X2 ?t Bzet-g Xt..3 a.e [P]
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for every t in Z.

Granger‘and Andersen E15, p.42] have given a condition under which
(4o2.7) will appear to be white noise. However, this condition is a
mere statement which is not substantiated.

We would like to work out the bispectrum of the model considered
in Theorem 4.2.2 in secfion hedia vLemma Le2.3, to be stated below, will
be useful in section A.A. Bef&re that we want to make some comments on
vector difference equations of order 1.

Suppose Xt’ t=0,1, 2, ... is a sequence of vectors each of order
pxl and satisfies the following difference equation

ST Ay

for t = 1, 2, 3, eeeees , for some matrices A and b . We can
pxp pxl

always solve this equation and express Xt as a function of t, Y, , A and
b. A necessary and sufficient condition for this solution to be indepen-
dent of t is that (Ip - A) is invertible, or, equivalently, p(A) < 1.

Lemma Le2s3. Let €y t €2 be a sequence of independent identiéally

distributed random variables with mean 0 and variance 0? < ® ., Suppose
there exists a second-order stationary pwgcess Xt’ t € Z satisfying
m

i jil b5 X4-q-3|°t-q a.e [P] (4.2.8)
for every t in 2 for some constants bys Dos Dys wine s bm and q > 0. Let
I' be the matrix associated With the vector-valued process representation
of the above process, ie,

zt = A Xt-l + B Kt-qet-q ¥ e, a.e [P]
for every t in Z, where A, B and I are as given in Theorem 4.2.2. Assume

that the strict stationarity condition p(I') <1 holds. Let
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V ={000...0 o®} 0% ... o®p2 . o”b
rxXr
00 D O o 0 0
010...0 O O e A0 0
000...0 0 AR L . )

where r = q * m.

Then p(V) < 1.

Proof. Since Xt’ t € Z is second-crder stationary,

) = Constent, for allEiin 7,

Let us calculate E(X2). Squaring both sides of (4.2.8) we obtain

m m
2 = 2 + . s . + 2 2 2
Xt el 2etet-q ljil tb yt-q-a] et-q {jil tﬁ Xt-q-j

m m :
0 b SRS R U s M SR 1 (4e2.9)
TR t-g-1i t—q-a}
i<j
But
B(Xy_ g1 xt_q_j) = Cov(Xt_q_i xt_q_j)
= 0, from Theorem 4.2.2.
If we now take expectations on both sides of (4.2.9) we obtain
2 : : & 2 ‘
2 = + b.EX . . ie
E(x2) = 0 jil 0* b, ( t_q_J) (4.2.10)

We attempt to put (4.2.10) in the form of a first-order difference
equation. Let
r=q+m

W = (B(2), B(XZ ) wen s B(ER )

1xr
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HE: = (1’ Gr ‘:'9 ey O)
Ly
With this notation, we can write (4.2.10) as the first-order vector

difference eguation

W, =V W + 0% H (4e2.11)

W =W f
» S =t-1 ior

all t. Conseguently, p(V) < 1. See the remarks preceding Lemma 4.2.3.

Because of second-order stationarity of Xt’ s O

4.3  INVERTIBILITY

Suppose Xt’ teZand e,, t € Z are two stochastic processes
’ v

satisfying
T h ikl I
¥ = .3 a, X, + I ble tebincw Fof R n Bl ih a.e [P
t o) j ot-] j=1 J t-] 1=1 j=1 ij T t-it=) t
i2]

for every t in Z, and for some constants al, az, e P ar, bl, bz’ s b g bh
and Bij' 1<ig<m1lg) <L withi> j. It is natural to express Xt
purely as a function of eyr €4 70 €4 o1 see for every t in Z. The
results of chapter 2 do attempt to achieve this. Under some conditions
on the process €., t € Z and the coefficients &,, 8,y ees ar, by bz, Sy

y t € 2 is indeed written

a . S Loy i
o-'bhandBij’lslsm'l\J\R"l/J‘Xt

as a function of €1r €4 10 B4 s see o It is natural to enquire whether
one can express e, purely as a function of Xt’ Xt-l’ Xt-z' «+s for every
t in Z. This is the classical invertibility problem. We do not know of
any nice conditions under which invertibility holds. For some simple
models, described in the following theorems, we give some simple inverti-
bility conditions. The result of Theorenm 4.3.1, to be stated below,

generalizes a result of Tuan Dinh Pham and Lanh Tat Tran [41, p. 622].

T 1



(e » =
ulcail Ta callill AlluT

r 2 - - ) . T ] .
en |16/ introduced a notion of invertibility

o

which they claim is relevant to both linear and non-linear time series
models. Hellin [19] bhas studied therelationship between classical
invertibility, Granger - Andersen invertibility and what-he calls
generalized invertibility. According toHallin[l?] the three inverti-
pility concepts are equivalent with respect to Linear ARMA models with
constant coefficients. We confine ourselves to the classical concept.
We now give some invertibility conditions.
Theorem L.3.1. Let e, t € Z be a sequence of independent identically

t
distributed random variables with E(e%) <o, Let a and B be two real

numbers such that
a2+6202<l.
Then the bilinear process Xt’ t € Z satsifying

X=aXt_l+be + B X

% <1581 5 a.e [P] (4.3.1)

t-1
for every t in Z for some real number b, is invertible if

E In|b + B xtl < 0.

Proof. Repeated use of (4.3.1) gives

n-1 we)
6 =1 <al .4 I Y A iin BNl e )
t t t-1 el j=1 t-] t-r t-r-1
n n
+ (-1) 321 (b + 8 Xt_j)et_n (4.3.2)

for all tin Zandn =1, 2, 3, eee &
From the expression (4.3.2), we can express e, purely as a function
of X,» Xi g0 oo 0 if we can show
Lim ; (b +BX e =0 2 [P]
n-o j __1 t’j t‘n « e

Since e, t € 2 are identically distributed, it is enough to show that

-:11] -



Lin o
f (b+ BX, ;) =0

We observe the following facts.

(1) Koo te Z is ergodic. See Remarks 2.3.3(6)
(2) 1loglb + R Xt-jl I B P i SR e
Now, let
n
Pn, t) = 11 (b+BX .)
31 i

Taking logarithms, we obtain

n
% log|P(n, t)| = % : loglib# Bk )
¢ e t'J
j=1
By the ergodic theorem,
Lim 2 50g|P(n, t)| = E log|b +
naco & 10810, = E log|b + B X_| a.e [P]
<0
Hence,
lin ﬁ (b + R X ) =0
n-+e t-j a.e [PJ

j=1
This completes the proof.

REMARK 4e3.2. The condition

Elog|b+ 8B xt[ <0

given in Theorem 4.3.1 involves the distribution of X,, t € Z. We do

t
not yet know the distribution of Xt for a given distribution of €,
Thus, it is virtually impossible to characterize all values of a, b, B
and 0% for which the second-order stationary process Xt' t € Z satis-
fying (4.3.1) is invertibie.

We can obtain a sufficient condition.

E log|b + B Xt|=é E log (b + B Xt)2
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< £ log E(b +8 Xt)2 » by Jensen's inequality.
< 3 log(? +20b BE(Xt) + g2 E(X%))

Hence a sufficient condition for invertibility is

b? + 2 b B E(X,) + B%E(X2) <1 (403.3)
In case the €y t € 2 are Gaussian, then

u=EX,) = o? 8/(1 - a)

E(X2) = o2 {;+b2+2ab+2su(1+a+b)}

il = 82 o 02 82
See Example 3.1 of section 3.5.
When b = 0, we obtain from (4.3.3) that a sufficient condition for

the invertibility of the process X ,, t € Z satisfying

t
X, =aX . +BX je , te a.e [P]
is
BZE(XE) <12
This agrees with the condition obtained by Granger and Andersen EL5 5 Da 74:],
Subba Rao D7 s p.249] and Tuan Dinh Pham and Lanh Tat Tran [Al ;S p.6223.
The invertibility problem for the more general model (2.3.9) will
pe discussed in Theorem 4.3.4.
In section 4.2, we initiated the study of the bilinear model

Xt’ t ¢ Z satisfying

m .
R )
Xt = e, - [j‘.. bj Xt-q-jJet-q » a.e [P]
for every t in Z, for some q > 0, for some sequence et. tie ot

independent identically distributed real random variables with E(et) =0

o E(ei) =02 < @ and constants by, b,y eee b . DNext, we study the

(classical) invertibility problem of this process.

Theorem 4. 3.3. Let €y t € Z be a sequence of independent identically
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33k wv B o iy al sy el Y & i) { = e T
distributed random variables with v\€“_) = 0 &and L(e%) €00 3L Let O(I“) <3,
v

3

where I' is given in Theorem 4.2.2 for given b,, b,, ««e » b and
m
c? = E(ei). Then the second-order strictly stationary process Xt’ T E.Z

satisfying
m
T T S T ) ave [P] (4.3.0)
E

for every t in Z, is invertible if
m
2 2 b g <1 (/”3.5)
j=1 *

Proof. Repeated use of (4.3.2) gives

n-1 AN
 Tate ril ) i]ll L.‘El o Xt-iq-j]Xt-rq
+ (-1)° E [ § Tl R .]e. (4.3.6)
3=1 {§=l J t-ig-j| t-nq o

for a1l t in Z and n = 1. 2, 3, eee
From the expression (4.3.6), we can express e, purely as a function

Of Xt' Xt-l’ X't—2. see lf we can show

Lim?I[g N .]e' =0 ave [F]
st ] j=1 J° erig=ii] “hbrng . =
Since €y t € Z are identically distributed, it is enough to show that
Lim;[g - AL .}:o a.e [F]
e PSR PPSIRE B2
We observe the following facts.
(1) X te Z.is grgodic. See Remark 2.4.4 (2)
(2) Fix t € Z. Then
m n m

Z b. X P ] z b- X ’ Z b- X . see iS er diCo
P B o IR B s R

- AL L -



.t B

X e . (because mean is 0)
s =] o v=-q-J

m
s Ol E(Xi) (because Xt is white noise. See Theorem 4.2.2)

= from 4.2.6

(4) Fix t in Z. Then

m m I
dogl £ b, X, .|, dogl 2% R 5 il Solopl Eeib ik S T
g1 9 t-g-J j=1. 9 t-29-] ja1 9 t-3q-]

is ergodic.

(5) E log|
j

3 E log

ntMmB
o’
bt
1
™M g
o’
P
5
Nel
1
[
| S—
N

(@ il
<od oo il Y e e 3
N g t‘-q'J]

r i) 1
I b o*
Jaynoe
< % log
I
y BRSO
{ feld ity

< $logl =0, by (4e3.5)
Now, we look at

n

m
1
gl Y R e S SRR T
n i-z_-l Oglj=l j .t_lq_J I

By the ergodic theorem, the above sequence has a constant limit almost

surely. This 1limit is < 0. Hence

n m

Li boidy ciiaky g

n_{’; Il .2 ; t-ig-j 0 a.e [P]
i1=1. §j=1
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This completes the proof.

Next, we study the classical invertibility problem of the process
Xt' t € Z satisfying

¥ % ‘
X, = P R {
RS S T g1t [E By Kpglepn tep wee [F]
j=1 j=l

for every t in Z, for some sequence € t € Z of independent identically

distributed real random variables with E(et) =0, E(ei) . R

constants a,, &,, «+. , 8 811, 821, S le.

r

Theroem  4.3.4. Let e,, t € Z be a sequence of independent identically

distributed random varaibles with E(et) = 0 and E(e:) o, Tet A, B
bPXp DpPxp

pgl > p;i be the matrices of Remarks 2.3.3 (4). Let

p(A®A+0c?°B8B)<1

where 02 = E(eé).

Then the bilinear process Xt’ t € Z satisfying

é.e IP-.] (4—0 3- 7)

for every t in Z, is invertible if

B.. X =0

+ ¢
Eloglb ;B t_J]

J

. M=

Proof. Repeated use of (4.3.7) gives

r
By T Xt - jil aj Xt-g
VP T bt I B X M, - T i
i $=1 31 jl “t-mtl-j t-m j=1 j Tt-m-j
RRTER e (4.3.8)
il 3l J1 "t-m+l-j’ "t-n gy

fOI'alltinZ&ndn:ln 2' 30 csee o

- 116 -



4

by ; CRSPINE R R
From the expre

function of Xt' X X y wes oy XE we can ishow

Lim

>

)
] Ml S (T e =0
e 4 jl1 “t-mtl-j° t-n

Since €.,

Lim T

>0

(b + Y =0

m=1 J

ij. ™M =

3 Bsy Loomtl-g

We observe the following facts.

(1) X» t e Z satisfying (4.3.7) is ergodic. See Theorem 2.3.6.
L L

{2) Pix t e Z.' Then (b + jil le Xt—j)' (b + J{l B. 51 - J)

e
(b + §1 831 b J). «ee » 1is ergodic .

£ %
(3) Fix t € Z. Then log|b + {1 8. xt_jl, loglb + ng S L Jl
A
log|b + £ B i1 Xi2-3 o eoe » is ergodie,
j=1
Now let,
n L

P(n,t) = mzl (b + jil Biy Xt—m+l-j)
Taking logarithms, we obtain

1 , B 2

= log|P(n,t)| = = mil log|b + J{l 831 s J,
By the ergodic theorem

Lim 2 1og|P(n t)] = E log|b + % B. ] 8.0 [ﬁ]

n-+w j=1 Ji t -J b

<0

Hence,
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cssion (4.3.8), we can express e

t

» 1 € Z purely as a

a.e Dﬂ

t £ Z are identically distributed, it is enough to show that



X
Lim T
I (b+ L B =
‘ B Bi1 B mppgl ek a.e [P]

(1) The condition

I 2
Eloglb+ I B, X
g1 1

Mg

involves the distribution of X,, t € 2. We obtain a sufficient condition.

L
Edog|b# LI BX, =g Bl (bt & Y 2
f=] JL =g j=1 Jl t‘j)
4
< 2 log E(b + =
J_.
Jensen's inequality.
L
<% log(b*+2bp 2 By
j=
R0
o0& T Biay Boar B Yo ing '
i=1 j=1 = o i 1 t-1 t-;j))
where
-, & 3
w=EX)=0"8,/(0- I a;)
=i
Hence a sufficient condition for invertibility is
] L 2 L
+ 2 b z St -

j=1.79 T iep g

(2) Subba Rao [37] considered the model (4.3.7) without the moving
errage part be, ; in (4.3 7) and with r = 2. He used the Granger-
Andersen invertibility concept to obtain a sufficient condition for

invertibility. His condition is

T PRy
c. B E(zt Zt)B c <1 (4.3.10)
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. © o e I e T e, = 7 )
where D » C are the matrices 01 RelarXsS Kedes) (..,) and

pxp pxl

XT R iR Jats X ) PR 3
=t by A 5 ', ThegE T y
1xL

We can evaluate (4.3.10) to obtain

[N & :

iil jz_t__l By By B(X, 5 Xt_j) ek (4.3.11)
We note that expression (4.3.11) is the same as (4.3.9) with b = 0.
(3) The condition for the invertibility of the moving average

process Xt’ t € Z satisfying

X, =be, - +e a.e [P] (4.3.12)

for every t in Z under the above assunptions on the e ,'s, can be deduced

4
from (4.3.9) by putting le =0 forall J =1, 2, sse » 3, '"The condition

for invertibility is

o] <1 (4,5:13)

4.4 ON THE BISPECTRAL ANALYSIS OF PURELY BILINEAR WHITE NOISE PROCESSES

The sample bispectrum is beginning to play an important role in
testing Geussianity and linearity of stationary time series. See
Subba Rao and Gabr [39] and Hinich [2/].

Let Xt’ t € Z be a real valued process with finite moments up to
the third-order and is stationary up to the third-order. If Xt, ATt e A
pure white noise, then the third-order moments

Clikys kp) = BL(X, - WXy =Wy - w (4e4.1)

where U = E(Xt) will be zero for all values of k1 and k2 Ini g

Thus, the bispectral density function

f(wl. LU) = z

Clk., k,)e 1w +kw,) (4 4e2)
Lo femr k ok
1
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is zero for all frequencies w, and w, when X, t € Z is pure white noise.
On the other hand, the third-order moments for some values of k1 and k2

and the bispectral density function for many frequencies w, and w:, are

usually non-zero when X,, t € 2 is non-linear.

v

Gebr [12] has obtained an exact expression for the bispectral

density function of the process X,, t € Z satisfying

t’

Xt =a Xt—l +: B Xt-let-l 7k ey a.e [P]

for every t in Z where ey t € Z is a sequence of independent identically
distrubuted normal random variables with E(et) = 0 and E(eé) = 1.
Granger and Andersen Els. p.AB] have considered the third-order

moments of the process Xt' t € Z satisfying

R - Dlooe 4 Ty a.e [P (a3

for some t in Z where ey t € Z is a sequence of independent identically

distributed normal random variables with E(et) = 0 and E(ez) =02 <
They come to the conclusion that all the third moments are zero for

Xt' + £ 2 satisfying (4. 4.3) and so are of no use for identification

between pure white noise and some bilinear models. Our results below

contradicts this claim.
We show below that the third-order moments (and hence the bispec-

tral density function) of the second-order stationary process X . A1 S/

t,

satisfying (4.2.3) are non-zero for some values of k, and k, € Z (and

for many frequencies -T LW, W, § 7). In view of the symmetric relations

(see chapter 1) satisfied by C(k,, k,), we restrict attention to the
plane{oskl<oo,k1$k2<oo}.

Let e,, t € Z be a sequence of independent identically distributed

t
normal random variables with E(et) = 0 and E(eé) R T

b,y Dys oo bm be m real numbers. Let p(I') <1, where I is the matrix

1'
of Theorem 4.2.2. We proceed to calculate the third moments and the
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bispectral density function of the process X t € Z satisfying

t,

- |
et jzl bj Xt—q-jjet-q ace [P] (4.4.4)

We assume Xt' t € Z satsifying (4.4.4) is stationary up to the third-

order.

We proceed in the following steps.
1° The mean, variance and covariances of the second-order

stationary process Xt' t € Z satisfying (4.4.4) are given by

0 s T 5 e 2
2°. We obtain C(k,, k,) for all k, 3 k, with k, and k, lying

inside the plane {0 <k <, k £k <e}. Some rather tedious algebra

shows that

Clk,» k )

. o? bj E(Xi) o £k, = 3wl k=g R g

0 elsewhere (4eds'5)

3%,  When k1 = k2 = 0, we obtain from (4.4.4) that

m . m 2
3 - g3 . Ly by & g i
%2 % jp 89 Ei-g-3| * 7 ®4%-q jil By Tteg-y

Since e, is independent of Xs' s < t and E(et) =0 = E(ez), we obtain

c(o, 0) = E(Xg) =0 (4o 40 6)

4° For k, =k, =1, we have

b £ )

m
- 2
E(X 3k tt+1-q “t4l-g-

b? E(X
j=1. *

2
t xt+1
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(PR Z b b (e
i=1 j=1 J

1<)

& t+l -q Xt+1-q-i Xt+l-q-j)

2 2 — 2 2
X84 17-q Tril-g-j © “t%-qtl Tttlog-]

m
2 2
®t-qt+l-q Xt+1—q-j[lzl b, Xt-q-i]

when j = 1,
- 2
E(Xtet+1 -q t—q) % 1§lb E(Xt-qet-q t-q- 1)
= 0
because E( X )= 0 forall 3 &1, 2y wex'y Wa

-q t-q t-q-1

When j > 1, it is easy to check that

E(X(et4-q F41-q-3) = ©
Hence
m m
E(X, Xt+l) T iil ji o5 b E(X et+l -q w1 ~g~3 Xt+1-q-j)
i<

m
=2 X b, b
- E(Xt t+l-q t-q t+1-q 3)

: r s : . I
(Since E(ltet+1—q Xt+l—q—i Xt+l—q—j) =0 foralli>1andj>1i).

We can show that

E(X,ef,q_ e P Tidion. L c* bi1 E(X{) » J =20 35 «es » m,
Thus,
c(1, 1) = E(X, X2..)
m-1 .
= 20" b, E(xi)[le b, bJ+l] (4e4.7)

5°, For a given second-order stationary process Xt. teZ

satisfying (4e4.4), all values of C(k, k), k > 1 can be evaluated and
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after some initial values, C(k, k) will satisfy a.linear difference
equation. This linear difference equation is always satisfied for all
values of k 22m + g + 1. This fact is now demonstrated below.

First we note that

2
Xt X‘t,+2m +qtl
M [jt+2m+q+l b 28y onig 1 ® t+2m+1[le by xt+2m+l-j]
2 . m m
z b2 X w2 BB N ok
®412m ], ©) TeaaogBE LS S8 R e o Xt 42m41-]
i<
Then
s 2
E(Xy Xironiq i) 3§1 TR )
5 m m
+20° & I b b E(X X
e B e - U Xt+oni1-3)
i<j
= 2
§ 0* b E(Xy X ionn-g)
j=1
(Using 4e4.5)
That is

C(2mq+l, 2m+g+l) = z 02 b2 C(2m+l-j, 2m+l-j).
j=1

Generally, we would obtain after some initial values

m
- 2 %2 . d
c(k, k) = jil 0® by C(k - q - J, k=-q = j) (4o 4.8)
We now have a difference equation (4.4.8), which can be put in the

following vector form

[ o(k, k) | [ Ce1, k1) |
C(k-1, k-1) C(k-2, k-2)
=V
c(k-2, k=2) k=5, k=3) (4e4.9)
k C(k-r+1,ker+4» . c(k-r, k-r) ]
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where r =q + m and V is as given in Lemma 4.2.3. Since p(V) <1,

exists. We show that this limit a, say, is zero. In (4.4.8), take limit

as k > © We have

m
a =1!75% o? b; a
j=1

m
gince I 0% b2 <1, the only solution to the above is that a = 0.
s

Hence

Lim =
o Utk k) =0, (4. 4.10)
6°, Having obtained all the non-zero third-order moments we use

the symmetric relations

)

Clk,s k,) = Clk, k;) = C(-k,, k,-k,)

2 2

= C(kz'klr -kl) = C(kl"kz, -kZ)

C(k, k) = C('kn O) = C(O' ‘k)
to show that the bispectral density function of the third-order stationary

process X, t € Z satisfying (4.4.4) is of the form

{ hl(wlo LUZ) + hz(wly wz) e =
+h (W, w,y) + glwys wz)} :
pr Wy T ; (4422 )

-T LW

where

By, w,) = o%b; B(X}) (e-1lw (@t o,)

+ e_i((q+j)“ﬁ+j“ﬁ) + e-i(qu&-ju&)

+ ei (J wl-qwz) 3 ei(qwl+(q+j )wz)
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+ € .
(-7 < w, w, <M | (4e4012)
and
glwy, w) = é c(k, k){e-ik(w1+w2) 3 g5 4 eisz}
k=1
- S W, w, £ 7 (4 4.13)

We now give the third-order moments and bispectral density function
of four special cases of (4.4.4).

EXAMPLE L.4.1l. Let us consider the process Xt' t €7 satisfying

X, =e, +tbe ) X 5 a.e [P]

for every t in Z where et, t € Z is a sequence of independent identically
distributed normal random variables with E(e,) = 0 and E(ez) = 02 < o,

We assume Xt’ t € Z is stationary up to order 3. Then

r = 2 2 i = < =
C(kx’ kz) = 0% b, E(Xt) » if k, =1 and k, 2
= 0 elsewhere (2. 4.14)
and
20D E(XZ)J ; oy
o ) - 1 %7 jCos(w, + 2w,) + Cos(2w, + w,) + Cos(w, - w,)
(2m)2
(-m L w, w, &) (42 4.15)
where

R(0) = E(X}) = 0/ - o® b}) , 0% b} < 1.

EXAMPLE __ 4.4.2. Our next example is the process Xt' t € Z satisfying

Xt = b, X, .e t+ e a.e [P]

for every t in Z where et. t € Z are defined as in Example 4.4.1.

Assuming Xt, t € Z is stationary up to order 3 we obtain

C(ky» k,) = 0® b E(XP) if k; =1 and k, = 3
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= 0 elsewhere (4e 4416)

and
o* b, E(X?)
Yl sy ;
£lw,, w,) = -1(wyt3w,) , ~103wtw,) | o-1(2w-0,)
(2m)*2
¢ tlwm20) | 1(20,430)) | 1(30 ”2“’2)} (4o 4e17)
(-1 £ w, w, <7
where

E(x?) = 0® /(0 - ¢* b]) , o® b} <1.

EXAMPLE  4.Z4.3. We now consider a two parameter bilinear white noise.

Let Xt’ t £ Z be a third-order stationary process satisfying

Xt gty § et—l(bl Xt-2 -5 kt-3) a.e Bﬂ

for every t in Z where €y t € Z are defined as in Example 4.4.1. We give
below the third-order moments and the bispectral density function.

For k, $ k, , we obtain

C(K,, k,) =0 A R(0) if k; =1 andk, = 2
=0 A R(0) ifk =2andk, =3
= 0 elsewhere (4.4.18)
When kl = kZ =k, we obtain
0 ifk=0
20 A3 A, R(0) ifk=1
40 A} A2 R(0) if k =2
B0 X)) =4 (4o 4419)
20 A7 Xz R(0) if k = 3
20 A2 A,(2 A7 A+ A7 + 1)R(0) if k=4
20 A, A (25 # 2 a2 &3 + ARI0) Paf k eh
and
C(k, k) = A2 C(k - 2, k=-2) + 27 Clk - 3 k- 3)
k = 6. 7. 8' oo (4.4‘20)
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where

and
R(0) = E(Xi) = 0%/(1 - Af - Ag)

Note that Lim C(k, k) = 0 by (4.4.10)

koo
Al so,
2 0 A R(0)
flw, w) = Cos(w, + 2w) + Cos(Rw, + w,) + Cos(w, - w,)
(zm) 2 :
o A, R(0) (20,430, i (3w, 42 .
g 2| mi(ewt30)) | -1 3w, +2w,) + e-l(wl-Zmz)

(2m)?2

% ei(Zwl-wz) P ei(w1+3u&) 2 ei(th+ub)}

o ok, k)
+ ] —
k=1 (2m)?2

grik(wtw) | dkw, kg (40 4020)

< )

~

(=1 & Wy, W,

EXAMPLE 4. 4.4. Finally, we consider a two parameter bilinear white noise

withq = 2 and m = 2. Let Xt’ t € Z be a third-order stationary process

satisfying

X, = e, * e,c_;,(b1 Xy 5t b, Xt-A) a.e [P]

for every t in Z where €y t € Z are defined as in Example 4.4.1,

For this process we obtained the third-order moments to be

(a) when k, 3 k,

C(k,, k,) =02, R(0) if k, =1 and k, = 3
=0 A, R(O) if k, =2 and k, = 4
= O elsewhere (1.2.22)

(b) when k, =k, =k
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£y

0 if k =

20 A3 A, R(0) ik =2
c(k, k) = lo if k=2 (4. 4.23)
4o Ay A3 R(0) 2E k=3
(20 A} A, R(0) if k = 4
and
C(k, k) = A2 C(k - 3, k= 3) + A2 C(k- 4 k - 4)
k =5, 6 Tn. ans (4o 4e24)
where
}\j =ij gy =1, -2
and
R(0) = E(X?) = 0?/(1 - A} - A)
tii C(k, k) = 0 , by (4e4.10)
The bispectral density is given by
20 A, R(0) .
f(w,, w,) = ‘—?;;;;——— Cos(2w, + 4w,) + Cos(4w, + 2w,) + Cos (2w, - 2w,)
: o A, R(0) Siw30) | 103w Hw,) | i (2w -w)
(2m)?

ei(m1-2w2) X ei(2m1+3w2) % ei(3w1+2w2)}

+
o C(k, k)| . i : :

b O] U, N L)
k=1 (2m)?

Let us now consider the implication of applying Subba Rao = Gabr
linearity test to a purely bilinear white noise Xt’ t € Z satisfying

(Lo bed). By way of introduction, we consider the simple purely bilinear
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white noise of Example 4.4.l. Since the process in Example 4.4.1 is

white noise, its spectral density function is given by

f(w) = R(0)/2m

2 y
. . (4o 4+ 26)

on(l - o* bi)

Constant
Using (4.4.15) and (4. 4.26) we obtain

|, w.)]*

i £liy) £l) £l +w))

2 T2 2 2
20% bi(1 - 0° b})

(-m g w, w, <M (4 4427)

Equation (4.4.27) shows that Xij is not a constant for all i and j.
This result holds true for the more general bilinear model Xt’ [ A
satisfying (4.2.3). Therefore, the tests, consﬁrudaifrom the bispectral
density function, of Subba Rao and Gabr 138] will be of great use for
jdentification between pure white noise and pure bilinear white noise of
the type given in (4.2.3).
Finally, we give plots of the bispectral density functions (4.4.15),
(4o 4e16)s (4e4e?1) and (4.4.25). Let b = 0.6 and 0®= 1.0 in (4.4.15) and

(4o 4e16). Also let b = 0.45, b, = 0,35 and 0% = 1.0 in (4.4.21) and

2
(4,4,25). Using these values, we present the graphs of the bispectral
density functions (4e4.15)s (4e4.16), (4e4.21) and (4e4.25) in Figures
Lel, 4eR, 4e3 &and 4.4 respectively. In the graphs given, X stands for W
Y stands for w, and

Z(x, y) = lf(wl. wz)l » S LW W <T.

The red colour is used to indicate the lower side of the surface while the

green colour indicates the upper side.
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FIG. 4.1  THE MODULUS OF THE BISPECTRUM OF THE PROCESS

Xt = O‘éxt-Zet—l + ey e, = N(0, 1).

A/ i
Al , il

s 0T0 013

FIG. 4.2 THE MODULUS OF THE BISPECTRUM OF THE PROCESS

Xt = 0.6Xt_36t_2 + et; et = N(O’ 1)'
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ISPECTRUM OF THE PROCESS
Xt e (O.LSXt_2 + O'BSXt-B)et—l +oe,.5 0y ~ N(0, 1)

THE MODULUS OF THE B

Zy 0,20 10 0.10

 FIG, _ hek “THE MODULUS OF THE BISPECTRUM

QF THE PROCESS

tes ey~ N(0, 1).

x, = (0.45K, 3 * 0.35%,_ )42 © %

= Lok =



o b L SiminS PROopERTIIRS OF SQUARES OF PURELY BILINEAR WiITE NOISE

SRR
fme way of distinguishing between linear =rd non-linear models is
tc perform & second-order analysis on the squares of the series. If

s pure white noise, then Xi, t € Z would also be white noise.

t € 2 is purely bhilinsar white ncise, then

X2, t € Z may not be white noise. .
For the general single term purely bilinear white noise Xt’ t el

satisfying

= 1
Xy Bet-k Xt-ﬁ e L <k a.e [p]

for every t in 2 where e,, t € Z are independent and each e, t € Z is

t t’

distributed as N(0, 02%), Granger and Andersen f?ﬁ, p.AS] have shown that

X%, t € 2 has the same covariance structure as an ARMA(L, k) process.

The fact that Xt’ t € Z is white noise but Xi, t € Z is something

else does not necessarily mean that X t € Z 1s bllinear as other non-

1?
linear series may have similar properties. See, for example, Granger and
Andersen [15, p.AA]. However, i1t seems reasonable to suppose that in
most practical situations of fitting bilinear models to a series that is
white noise, deviations from pure white noise would show up in the
X2, t e L

We show below that for the general purely bilinear white noise
X, t € 2 satisfying (4.2.3), Xz.

structure as some ARMA processes. In what follows, X

t € Z would have the same covariance

+? t € Z is assunmed

to be stationary up to order 4 and €y t € Z are assumed to be independent

and each ey is distributed as N(0, 02).

We use equation (4.2.3) and consider E(Xé Xi_k). We obtain

m
2 2 - 2 2 2 2 2 2
E(Xt Xt-k) = g% E(X?%) + jil o] bj E(Xt-q-j xt-k)
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o 2 - ;2 ) £ 9
t2 I I otby by E(, X X7 ) (45.1)

.2 N SR .
. X7 ,) can be evaluated for a&il k and &

— v 2 _ >
L(kt_q_l kt—q-j Xt-k) 0, k kO .
Then
p 2 .2 2 x2 2 2
= 1 . + ’ >k e 5.2
B XZ ) JE 0% by BOXE o Xg )t 0P BXY .k >k (4.5.2)
If we now let
_ v2
Ty = X4
1 = = E 2
by = B(Y,) = E(Z)
(P) Cov (Y g Yy k) = E{(Y uy)(yt—k - Uy)} ’

we obtain from (4.5.2)

m
_ 2 _ - 2 2(9 _ 2 3.2
E(Xt i- k) = % o? bJ(R (k - q=-3j3) + u ) 4+ uy(l .§ 0° b?)
j=1 Jj=1
(by using 02 = (1 - z o? bz)u)
=1’
=Zob2Rk—- + , k>k .
L ; ( q - j) uy .
J
or
R (k) = z ObzR(k-q-J).k>k (4.5.3)
y j=1 J

Fquation (4.5.2) is the Yule-Walker equation for an ARMA(g + m, k).
To illustrate the kind of methods employed to obtain kO we consider

the following examples.

(1) Let Xt’ t € Z be the process considered in Example 4.4.1, ie,

Xt’ t € Z satisfies

X, =e +tbe, X , a.e [P].
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Let Al = 0b,, then (see also Granger and Andersen ElS, p.Aﬁ].)

. 30%(1 + Af)
E(X{) = » 3A) <1
1 -33)@ - A%

c*(1 + 2Af)
E(x? g —
t t-l a - Ai)z
22_2 2
E(xt Xt k) A E(xt P t k) + o2 E(X ), k, > 1
Thus,
20"
R_(0) = (4e 5. 4)
y 1 - 2221 - 32Y)
20" A?
R 1) = —m , (4e5.5)
y @ - 22?2
and
= A2 k-2), k22 .5.
R (k) = ] Ry ) 2 (4.5.6)

Hence Yt = X% for the process Xt' t £ Z considered in this example has

the same covariance structure as some ARMA(2, 1) process.

(2) Let Xt’ t € Z be the process considered in Example 4.4.3, ie,

Xt' t € Z satisfies

X, = e * (b, X, , D, Xt-B)et-l a.e [P]

For this model we obtain

4y — 4 piyvd 4 vl 2 32 pf{y?2 y2
E(Xp) = 3A) E(X{ o) + 30, E(X{ ) + 18X A E(XP , X¢ )

2
+ 302 B(XIML + A% + 2% + 2407 30315 + 22 + 2}

2 y2 Yy - 12 2 p(yh 2 b pry2
E(XE XE 1) = AT AJ B(X! ) + AT E(XZ ) XZ ) + A EQXE 3 X¢_ 4)
+ 021 + 222 + 3221 + 12xF AD) + 402 A2(3A1(1 + 222)
3 2
AN+ 24 Az)}E(Xt)
2 y2 )y - y2 2 2piy2 5 13
E(X2 X2 o) = AL B(X¢ ,) + MJE(XE 5 XP 5) + 0®E(XR)(1 + 367 A3)
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w2 w2 _ 2 o 2 Z 4
B(Xf X2 5) = A B, X2 5) + 2] B(X! 3)
+ o? E(XE)(l + 12>\‘1' Ag(l + 2A§))
2 2 - 2 e 2 2 2 2 3 3
B(XE XE_ ) = A E(X} 5 X2 4) + g E(XZ 3 )t o E(XI) (1 + 427 A7)
and
2 2 - 2 2 2
E(thtk) = A} E(Xt2 tk)+)\ E(xt3 tk) + o2 E(X), k> 5
where (4. 5.7)
., =0b, yj=1, 2,
A jrd
and
E(X?) = 02/(1 - A3 - A))
Thus
- 12 2
Ry(k) = A Ry(k - 2) + AT R (k-3), k35

So, Yt = X% for the process Xt' t € 72 considered in this example has the
same covariance structure as some ARMA(3, 4).

(3) Finally, let X, t € Z be the process considered in Example
4ebe3. Then Xt' t € Z satisfies

X, = e, + (b X, 3t Db X 4) 42 a.e [P].
For this model we obtain

E(Xg) = 30 B(XY 5) + 307 E(X!_ ) +182} A B(X}_ 5 X2 )
+ 302 E(X2)(1 + A2 + A2).
EQIE XE5) = AL A B ) + N E(XE ) X 5) + A7 B(XE ) X2 .)
+ 02 E(x2)(1 + A] + 16)% A3)
BXE X3 o) = M BOE o Xig) + A3 B(XE 5 X))
+ 02 B(XF)(1 + 247 + 2)7 + 427 A))
E(Xg X7, ) = A B(XE 3 X3 ,) + A2 B(XP_, Xp ) + 0 E(XY) » k23

(4. 5.8)
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where )5 =0 bj y ] =1, 2 end

E(X]) = 0?/(Q - A3 - A)) .
Thus,

Ro(k) = AT R (k- 3) + AR (k- 4), k>3 (4.5.9)
So, Yt = Xé for the process Xt' t € 2 considered in this example has the

same covariance structure as some ARMA(4, 2).
Figure 4.5 shows a series of 500 terms generated by the bilinear

white noise model

Xp = (0.45X, 5 + 0.35%, jle, | + e, (4. 5.10)

where ey is a normal N(O, 1) white noise. Columns 2 and 3 of Table 4.1
give the sample autocorrelations of the series and the squares of the
series respectively. Figure 4.6 shows a series of 500 terms generated

by the bilinear white noise model

Xt = (0.45Xt_3 + O'BSXt-A)et-Z te, (40 5.11)

where ey is normal N(0, 1) white noise. Columns / and 5 of Table 4.1
give the sample autocorrelations of the series and the squares of the
series respectively. In all cases the approximate standard error is

0.045. It is seen that in both cases Xt jdentifies as pure white noise

under covariance analysis but Xi certainly does not.
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SA¥PLE AUTOCORRELAITONS FOR REALIZATIONS OF LEKGTE 500 CF
THE BILINEAR WHITE NOISE MODELS (4. 5.10) AND (4.5.11).

LAG MODEL (4.5.10) MODEL (4.5.11)
k B (X)) B (XD | B (X)) B (x2)
1 0.007 0.285 -0.037 -0.100
2 0.033 0.23 0.031 0.209
3 -0.049 0.198 0.006 0.037
4 -0.043 0.022 -0.057 0.121
5 -0.006 0.009 -0.047 0.046
6 0.057 -0.051 0.063 0.023
7 -0.025 0.019 0.013 0.032
8 -0.030 -0.077 -0.099 -0.010
9 -0.025 -0.02 0.057™ 0.022

10 -0.028 0.035 -0.039 0.055

11 0.054 -0.008 J -0, 001 0.038

12 0.035  0.028 0.050 0.049

13 -0.036 0.044 -0.010 -0.027

14 -0.069 -0.008 -0.026 0.019

15 -0.049 -0.026 -0.081 -0.069

16 -0.008 0.005 -0.015 -0.022

17 -0.025 -0.005 -0.076 -0.042

18 0.007 -0.028 0.056 ~0.024

19 0.019 -0.023 -0.005 -0.089

20 -0.047 -0.046 -0.020 -0.043
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ON _THE FITTING OF BILINFAR MODELS TO TIME SERIES DATA

5.1  INTRODUCTION

Let e,, t € Z be a sequence of independent identically distributed

t’
real random variables with common mean O and variance 02 < o, In

what follows, we also assume e,, t € Z to be normally distributed. Let

t

Xys Xpp eee s X be a realisation of the process Xt’ t €2 satisfying

r h m 2
X, = % a, X .+ I be .+ I I B.X .e .te
t j =l J t—‘] j :l J t-J i =1 j =l lJ t-l t-J t
12

a.e [P] (5.1.1)
for every t in Z, for some constants Bls Bos eer s B b1' bz, cee 5 bh
and Bij’ 1<ig<mlcg<j<i i2j. Let p(I') <1, where I is the
matrix of Theorem 2.4.3 built on A, B,, B,, ... Bq of Theorem 2.4.1 and
0%, Under the assumption that model (5.1.1) is invertible, this chapter
considers the estimation of the parameters of the bilinear time series
model given by (5.1.1).

Also considered in this chapter is the problem of selecting
r, h, m and £ in modeling the BARMA(r, h, m, &) process X0 tE yA
satisfying (5.1.1). We show how the covariance structure could be
utilized to determine r, h, m and & in a BARMA(r, h, m, L) process,
despite the fact that the bilinear model (5.1.1) is not necessarily
distinguishable from linear ARMA models as far as the covariance proper-
ties are concerned.

An important use of time series models is to provide forecasts and
sometimes, the performance of a time series model is judged on the basis
of its forecasting performance. A rule for forming forecasts for the
bilinear model (5.1.1) is given. Finally, we consider the fitting of

bilinear time series models to some real time series data. The forecasts
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obtained from the bilinear models are compared with the forecasts obtained

from the bestl linear ARMA models.

5.2  ESTIMATION OF THE PARAMETERS OF BILINEAR TIME SERIES MODELS

Subba Rao [37] has considered the estimation of the parameters of

the bilinear model

P P q
X =80+ I a;X ,+ I I B,

+ e (5.2.1)
b ja i=1 j=1 b

t-i t,]

and Gabr and Subba Rao [ll] have considered the estimation of the subset
bilinear model

2 m

X, =a, + Z a + I b X e + e
t 0 ki tki j=1 Ty8j t-rj t-sj t

(5.2.2)
i=l

where k;, K,y oo » kR. are subsets of the integers (1, 2, «ee » P)»

1<k, £k, & oo & kJZ, £ pi p is the order of the best linear autoregres-
sive model that fits the data, and the pairs of integers

(rros) el ={(1, j):di=1,2 e 5J=1,2 ou.}

1
(rzn 52) € T2 Tl - {(rl' 51)}

(I‘mn Sm) [ Tm

m {(r -1’ Sm l)} » M SP .,

The model (5.2.2) is a special case of (5.2.1). The statistical proper-
ties, such as stationarity, first and second-order moments and spectral
density function, of the above two models in the general form are not
yet known,

We wish to restrict attention to the fitting of those bilinear
models whose second-order properties we can investigate and interpret.
Let g = min (m, &), then the model (5.1.1) splits into two forms depending

on whether m > £ or m < 2. When m D £, model (5.1.1) can be written in
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the form

T h

X, =e, + L aj X, .+ T b, e

t-J B =1 J Tt

B Ky p e F B, Xl

)

+ (Bllxt-l +

+ B
T

+ (822 Xt—2 +B X € o

+ LR )
32 " t-3 2 Xt-m

+ sese0s0er0n

+ (B + ... + B

ee Yt-g * Pt g Ftog1 ng Ften'Ct-g
& =g) (5.2.3)

If m € 2, then model (5.1.1) can be written in the form

* (811 Xt—l tB, % Foen Bml

* (Bzz Xt—2 t8

+ s 00 0cecnse

¥ Bmg R ®t-g’

m=g (5.2.4)
Let R be the total number of parameters of the autoregressive, moving
average and the pure bilinear parts of the model (5.1.1). From (5.2.3)
and (5.2.4), we obtain the value for R to be

R=r+h+3nm+1)-(m-2)m-82 +1)],ifn>2%

r+h+dmm+1l), ifmg? (5.2.5)
From (5.2.5) one cannot fail to notice that the total number of parameters
of the BARMA(r, h, m, £) model (5.1.1) can be excessive.

We now consider the estimation of the parameters of the hilinear
tinme series model satisfying (5.2.3) or (5.2.4) when we have a realiza-
tion {xl. X0 oes xn} on the time series Xt, t € Z under the assumption
that (5.2.3) and (5.2.4) are invertible. Proceeding as in Subba Rao [37],
we can show that maximizing the likelihood function of {xn , xno+ » see xh}

0
is the same &s minimizing the function

- 142 -



M

S(8) = e: (5.2.6).
Ny
'3 ' =
with respect to the parameters § (al. 8, ses 8,y b, b, .., b,
Biyr By vee s Bmg) where n = max {r, m} + 1. Let 6,=a, 0, =a, ..
LI I er = a » er+1 = b1" er+2 b ,.‘.’ e h, er+h+l =811’ er+h+2 - 821’ ..
cee s B = Byp Then the partial derivatives of S(6) are given by
. 3s(8) n pe w
— =2 I e =t ;
096, t 96, °
i i
t=n,
= (5.2.7)
3% (8) n fa3e,)f3e,) . n d2% .
3556 =2 L |55 |[55 | *2 % e 556
i teng 1 J t=n i"7j J
where the partial derivatives of e, satisfy the recursive equations

t

de h ae de
t t-d t-8
= ==-X,.= X Db, Z B (t) ——
aai t-1i j=1 J Ba g=1 Bai
(i = l’ 2’ cass 1‘)
RS - il EXCE
by ja1 B gm By
(k = 1. 2. eee 9 h)
de h de g 8
t L
==X e, = X b, - X B (t) =5—
aBuv tru tev j=1 J aBuv s=1 38
(.V= l' 2| sse g. u =vsp V+lp sese m)
m
Bs(t) = E Bjs Xt_j » 8 =l' 2, ees 3 £
J=s
In calculating these partial derivatives, we set
et = 0. t = 1. 2. see no - 1
and also
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€9
[¢4]

ct

=O » ‘t:l' 2’ X » no-l; i =l| 2’ L Y pR.

Q
D
[ N

In evaluating the second-order partial derivatives we approximate

373(9) ol [ﬁ“ﬁ] | (5.2.12)

06,986, 06, [ (96.
1 7 t=n, 1 J

as is done in Marquardt algorithm. See also Gabr and Subba Rao [1].

Now let
O [aséﬁ) ' 333(2_9).‘ Y ajé@)} (5.2.13)
1xR 1 2 R
and
2 .
e {8 s<@>] (5.2.04
RxR 3618%
Expanding G(B) near § = § in a Taylor series, we obtain
0 =06(8) + H(E) (B~ 8)
Rewriting this equation, we get
(- 8) =1 '(9a(® ,
and thus obtain the Newton-Raphson iterative equation
= -i
B4y = 8 - H(g0(g) (5.2.15)

where Qk is the set of estimates obtained at the kth stage of interation.
The estimates obtained by the iterative equations (5.2.15) usually
converge, but to obtain a good set of estimates it is necessary that we
have good sets of initial values of the parameters. The prohblem of
obtaining the initial values of the parameters is discussed in the next

section.

5.3 ORDER DETERMINATION AND INITIAL VALUES

The method of estimating the parameters of the BARMA(r, h, m, &)

model (5.1.1) described in section 5.2 is based on the assumption that the
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order (r, h, m, &) of the model is specified z rri-», Tn practice, *he
values r, h, m, and & are invariahly unknown and suitable values have to
be ipferred from the data. We give a method based on the observed covari-
ance structure of the data.

We have shown (see Corollary 3.3.2.) that for the bilinear strictly
stationary second-order process Xt' t € Z conforming to the bilinear
model (5.1.1) there exists an ARMA (r, max(h, g)), g = min(m, L) with
autoregressive coefficients being a,, a,, «.. , a, and moving average
coefficients being functions of a,, a,, ... a_» by by eee s bh and
Bij"l £ig<m 1<£Jj<4 12 ) such that they have identical covari-
ance structures. Thus, given a time series data we can determine r and
q = max(h, g) by using the sample autocovariances of the series and one
of the methods of section 3.5. No method is yet available to us for the
unique determination of h, m and £. From (5.2.3) and (5.2.4), it is

evident that the maximum lag of the input process e,, t € Z involved in

t
these difference eguations is q.

In view of the above observation, it seems reasonable to consider
first the fitting of the best linear ARMA model based on the realisation
{x) %, oee s xn}. Let the order of this linear ARMA model be (r', g).
We then replace r by r', 'h and £ by q to obtain the BARMA(r', q, m, q)
model

r! q m g

X, =2 a. X, .+ Z b, e .+ I I B.X e, . te
. 2 e e L

i2)
" (5.2.16)
The choice of the value of m is made on the basis of the information
criterion of Akaike [2] given in section 3.5.2. In choosing the value
of m, it is necessary to use the same number of observations over which

we wish to fit and compare models for various m values.
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To obtazin our initiazl estimates we proceed as follows. When we
wish to fit the BARMA(r', q, m, q) model, we choose the coefficients of
this model to the corresponding coefficients of the BARMA(r', q, m-1l, q)
model and set the rest of the g coefficients equal to zero. It may be
necessary in some situations to overfit the bilinear part in (5.3.16) to
the more elaborate bilinear part

n g+l

r I B..X, .e .te
321 j=1 ij “t-i Tt-j t

izj
This kind of overfitting will only be considered when the residuals from
the model (5.2.16) do not satisfy the assumptions of normality and

independence.

5.4  RESIDUAL ANALYSIS

An important assumption we have made in section ‘5.1 concerning the
errors e,, t € 2 of the model (5.1.1) is that they are mutually indepen-
dent and Gaussian. Suppose the correct model is a bilinear model of the
form (5.1.1) tut an incorrect ARMA model is fitted to the éeries. Then
the residuals from the incorrect ARMA model may be bilinear rather than
linear. Similarly, if an incorrect hilinear model is fitted to the
series, then the residuals from this incorrect bilinear model will be
correlated. One method of differentiating between a pure white noise
and a bilinear white noise with the same covariances is to apply covari-
ance analysis to the squares of the series. To check whether the
assumptions of pure white noise are satisfied by the errors s t e 3,
we examine the serial correlation of the squares of the residuals.

It is important to realize that the residuals are necessarily

correlated even if the true errors are independent. In view of this, no
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elal -

borate tesi procelure based on residuals is adopited. We chall only

m

examine the first few values of the serial correlations of both the
residuals and the squares of the residuals and see if any are signifi-
cantly different from zero.. We must also bear in mind that if just one
value of the serial correlations is significant there would not be
enough evidence to reject the model.

In conclusion, we examine the serial correlations of the residuals
and the squares of the residuals of the incorrect linear ARMA models
fitted to the bilinear models of section 3.5.2. The results are tabulated
in Pable 5.1. The approximate 95% confidence interval for these values
is #0.09, if true correlation is zero. The correlogram of the residuals
themselves do not point to any model inadequacy. The correlogram of the
squares of the residuals do suggest that the residuals are not linear in
the case of the BARMA processes of Examples 3.1, 3.2, 3.3 and 3.4. The
correlogram of the squares of the residuals of the linear AR(2) model
of Example 3.5 fails to detect the expected non-linearity in the residuals.
In practice, one would not expect to be able to detect model inadequacy
or non-linearity of the residuals each time by a mere test of independence
or Gaussianity on the residuals. Consequently, this method or any other
method of detecting model inadequacy by tests based on residuals can

only be used as a general guide.

5.5  FORECASTING

An important use of time series models is to provide forecasts and
sometimes the performance of a time series model is judged on the basis
of its forecasting performance. Suppose that Xt’ 1t €Z is a discrete
parameter time series and, when at time t = t,, a forecast is required

of the future value Xt Such a forecast has to be based on the past

0+k.

- 147 -



- 87T -

TABLE 5.1

CORRELOGRAM OF THE RESIDUALS AND SQUARES OF THE

THE BARMA PROCESSES IN EXAMPLES 3.1-3.5

RESIDUALS OF THE INCORRECT LINEAR ARMA MODELS FITTED TO

LAG EXAMPLE 3.1 EXAMPLE 3.2 EXAMPLE 3.3 EXAMPLE 3.4 EXAMPLE 3.5
k 6k(at) 6k(a§) 6k(at) 6k(a§) 6k(at) 6k(a§) ﬁk(at) 6k(a§) 5k(at) 6k(a§)
1 0.009 0.493 -0.006 0.565 -0.003 0. 441 -0.001 0. 341 -0.029 0.031
2 0.012 0.174 0.022 0.317 0.002 0.243 -0.005 0.089 0.036 -0.,016
3 -0.044 0.042 -0,011 0.111 ~-0.016 0.126 -0,015 0.067 -0.029 -0.077
4 -0.006 -0.005 -0, 040 0.053 -0.009 0.021 0,001 0.014 -0.028 0.034
5 -0.028 -0.016 0.007 ~-0.005 -0.016 -0.007 ~0,024 0.013 -0.028 -0.034
6 0.029 -0.028 0.065 -0.043 0.03, -0.018 0.077 -0.010 0.036 ~-0.047
7 0.014 -0.043 -0.024 -0.035 -0.003 -0.005 0,025 -0.015 ~0.013 0.002
8 -0.033 -0.057 0.008 -0.039 0,013 -0.054 -0.047 -0.041 -0.049 -0.089
9 -0.011 -0.029 -0.054 -0.040 -0.080 ~0.021 -0,006 -0.031 0.008 0.003
10 -0.086 0.005 -0.060 -0.022 -0.049 0.001 -0.069 0.018 -0.050 0.012
11 0.031 0.036 0.038 =-0.012 0.031 0.042 -0.004 0.104 0.032 0.015
12 0.046 0.005 0.020 -0.007 0,014 <-0.004 0.026 -0.007 0.063 0.043
13 -0.016 -0.007 -0,013 -0.032 -0,010 0.015 0.005 -0.036 -0.047 0.063
14 -0.068 -0.031 -0.073 -0.033 -0.023 -0.032 0.004 -0.030 -0.059 0.032
15 -0.072 -0.049 ~0.045 =0.027 -0.080 -0.028 -0.056 -0.049 -0.090 -0.068
16 -0.021 ~0.047 -0.037 =0.015 -0.037 -0.021 -0.068 -0,036 -0.001 -0.033
17 -0.062 -~0.054 -0.048 =0.042 -0.054 =0,043 -0.066 -0.023 -0.056 -0.007
18 0.030 -0.037 0.008 -0.033 0.035 -0.041 0.055 -0.011 0.018 0.023
19 0.029 -0.029 0.028 -0.048 0.038 -0.054 0.048 -0.042 0.014 -0.005
20 -0.060 ~0.065 -0.047 =0.059 -0.079 -0.063 -0.054 =0.092 -0.031 -0,018




and present of the series, ie XS. s &t Denote the forecasi rnzde 2t

)

0.
time t = t, for k-steps ahead by Xt (k). The forecast error is defined by
0

g, (6) = Xy m Xy (O (5.5.1)

while the k-step forecast error variance or expected square error is

defined by

o? (k) E(efGO (k))

E[(xtoJrk - Xy (x))2] (5.5.2)

Then it is well known that oez(k) is minimum if and only if

g, 00 = B(Ey /X o s < g (5.5.3)

For a bilinear model of the form (5.1.1), formula (5.5.3) can be
used to form forecasts, provided the model is invertible. Our rule for
forming forecasts is as follows. Write down the equation for Xto+k;
everything on the right-hand side that has already occurred at time t, is
given its observed value, anything that has yet to occur is replaced by

its conditional expectation. Applying this rule to model (5.1.1) we

obtain
_ T h ]
Xto(k) = jil aj X 0(k -3) + 321 bJéto(k -3)
n &
+ )21 ;f-l Bys B [X, 3Bt e 3 (5.5.4)
i2j

where Ec denotes the conditional expectation given the semi-infinite

realisation Xs' s £ to and

I k-j)=X « 9 J 2
to( i) totk=] forj > k (5. 5. 5)
=Xt(k-j),forj<k '
0
‘éto(k- j) =et°+k‘j » forj ;k
(5.5.6)
=0 » for j <k
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ircs € t € Z 1s assumed to be indsrenient

t’

Ty
O

b Xq, s < tin (5.1.1), it
is not difficult to show that as far as model (5.1.1) is concerned

2

E(X, , e, .)=0%, fori=]
t-1 7t (5.5.7)
=0 , fori>]
Thus,
Ec[Xto w-1 eto+k-j]
_ s Dy
Xt°+k-i et°+k—j » for j2 kand i2 j
= ¢? Bjj , for j <k and i = (5.5.8)
=0 sy for j <k and i > j

We now use (5.5.4) to write down the forecasting expressions for
the BARMA processes of section 3.5

(a) BARMA Process of Example 3.1

Model:

Xt = g X‘t—l + bet-l + BXt-let-l + et

Forecasting Expressions:

bd
—
[
N
i

aX, +be, +BX e
0 Y b to Y

aX (k-1)+02RB, k>1
0 to

(b) BARMA Process of Example 3.2

>4
—
oy
~
"

Model:

X

Xo=ay R g teay X ot (Byy Xy g + By Xy Jley g VB, Xy oy o ¥

Forecasting Expressions:

X, (1) =a X, +a X +B8 . X, e, +8 X e
t, 1ty 2 to-l 1 7t 21 to-l to
+8 X e
22 to-l to-l
- 2
Xt°(2) =a, Xto(l) ta, Xto +8,, Xtoeto + 0° B,,

= 2
xto(k) =a, Xto(k -1) +a, xto(k -2)+o0°(B +8B ), k>2
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(¢) Z4RML Process of Example 3,32

Model:

X, =b

t 1et-l tb

2842 t By i gy By, Xy ooy o ey

Forecasting Expressions:

X, (1) =be, + be +B . X, e, +B _X e
. to 1 to 2 to-l 11 to to 22 to-l to-l
xt (2) = bzet tB,, Xt e, + g? .,
0 0 4] 0
- _ 2
Xto(k) = 0%(B;, +B,,) » k>2
= E(Xt)
=y

(d) BARMA Process of Example 3./

Model:

X, =6, X +6, X +0 te

1-1%¢-1 t-2%t-2 3 Xy 384 3t ey

Forecasting Expressions:

Xto(l) =6, Xtoeto + 0, Xto-leto-l + 8, Xto-2eto-2
- 2
xta(z) =6, Koy * O, X ey g 0% 0
- 2
Xt (3) = 63 Xt ey +0 (61 + 62)
0 o “o
- A2
Xto(k) =0%(6, +6,+6), k>3
= E(Xt)
=4
(e) BARMA Process of Example 3.5
Model:
Xt = a, Xt—l +a, Xt-2 + b, Xt-2et—l + b, XtPBet—l + ey
Forecasting Expressions:
= +
Xto(l) &, xto ta, xto_l + b, Xto-leto b, Xy 2 e
Xt (2) = al.xt (1) + a, Xt

0 0 0
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(k) =e) X (k-1)+a, X (k-2),x>2
[ 0

The evaluation of Xt (k) from the model depends on the unknown
0
parameters. Typically, we substitute the estimates of the parameters
obtained by the methods of section 5.2. - We ectimate o2 by

&% = S(8)/(n - n, +1) (5.5.9)

3
Ly
(g%
w

s v o_ e oA
forecasts thus obilained are dernoted by i, (¥), k. =1, 2, 3, ees 3
‘o
and the error by

éto(k) = xt0+k - Xto(k) (5.5.10)

The mean sum of squares of the forecast errors for the period (to + k,
t, tk+1, «oo , t, +k +n) is given by

a2 _ _ 1 a2 R

Oa(}.) = ;‘I e't +(l\) (5-5.11)
The expressiorlﬁé(k) will be used to measure the superiority of one

model over the others.

5.6  NUMERICAL ILLUSTRATIONS

5. 6.1 Simulation Studies

(a) BARMA Process of Example 3.1

For the simulated series of Example 3.1 we identified and fitted
an ARMA (1, 1) model. Here r'= q =1, and using (5.2.16), we consider

the bilinear model

Xt = 8 Xt-l + bet-l + [.Z le Xt‘j]et-l + et (5.601)
The AIC value is found to be minimum when m = 1 and the estimates obtained
are 4 = 0.5137, b = 0.3832, B = 0.3057 and &2 = 1.0052. The AIC value is

8.5738.

The true model is the BARMA(1, 1, 1, 1) model
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with 0% = 1.0.

(b) BARMA Process of Example 3.2

The AIC analysis of this series under linear model assumption was
less clear cut. The minimum AIC value is attained with an AR(2) model,
but as was pointed out in section 3.5 the AIC values for the 4R(2) ,
ARMA(1, 2), ARMA(2. 1) and ARMA(2, 2) models are very close. In practice,
one would consider all these ARMA models before reaching a decision on
the best bilinear model. However, using the ARMA(2, 2) model as the
corfect linear model, we entertain the bilinear model

2 2

2 m
X, = I a, X .+ L be .+ L I B X
j= RC I 1 B Bt B P R S R

i2]

t—iet-j + e, (5.6.2)

We noted in chapter 3 that the bilinear model (5.1.1) has an ARMA
covariance structure with or without the moving average part

h

z tﬁet-j in (5.1.1). In view of this we also consider model (5.6.2)
Jj=1

without the moving average part. When the moving part is missing in
(5.6.2) we obtain q = min(m, 2) = 2. Generally, m connot be lgss than
the nunber of moving average coefficients in the identified linear ARMA
model when the moving average part is omitted in (5.1.1).

The AIC value is found to be minimum when m = 2 and without the

moving average part in (5.6.2). The estimates obtained are 31 = 1.0678,

~

8, = -0.2872, B, = 0.2062, B,, =0.1400, B,, = -0.1041 and ¢® = 0.9916.

21

The AIC value is 5.8083.
The true model is the BARMA(2, 0, 2, 2) model

X, = 110K, , - 0.30X, , + 0.20K, ;e ) + 0.15%, e . - 0.10K, e, -+ e,

with o? = 1.0.
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L¥MA Process of Tyermnle 3.3

We identified and fitted a linear MA(2) model to this series. So

£,
o
o]
]
P
o]
n

0and h = £ = 2, and using (5.2.16) we consider the bilinear

§ B.. X, .e, . + e, (5.6. 3)
12]

The AIC value is found to be minimum when m = 2 and the estimates
obtained are b, = 0.5381, b, = 0.3492, B,, = 0.3843, B,, = 0.0172,
B,, = 0.2879 and 0% = 0.9909. The AIC value is 5.46L6.

The estimate of the bilinear coefficient 821 is very small when
compared with the estimates of the other bilinear coefficients. This
suggests a parsimonious model of the form

+ B + e (5.6.4)

X = blet_ + b 22 Xt-Zet-Z N

% 1 Pyt R X

t-1%¢-1
On fitting model (5.6.4) to the data we obtain the following estimates:
b, = 0.5353, b, = 0.3347, B,, = 0.4015, B,, = 0.3047 and 62 = 0,9950.
The AIC value is 5.5038.

The true model is the BARMA(O, 2, 2, 2) model

X, = O'5Set-1 + O.35et_2 + 0. 40X

N + 0.30X

£-1%¢-1 t-2%-2 ' %
with 0% = 1.0.

(d) BARMA Process of Example 3.4

We identified and fitted a linear MA(3) model to this series. So

we set =0 and h = & = 3, and using (5.2.16) we considerthe bilinear model
: ? 3 B..X (5.6.5)
X, = I bp.e, .+ I I . .e, ., te . 6.
t j=1 J =] i1 j=1 i t=i"t=] t
i2j

The AIC value is found to be minimum when m = 3 and without the moving

3
part I bje'b- in (5.6.5). The estimates obtained are §11= 0. 4326,
J=1 :
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B, =-0.0260, B, =-0.0200,8, =0.3:79. B =-0.0251, B, =0.2247

and 02 = 0.9936. The AIC value is 8.8153. Now some of the bilinear
coefficients are very small when compared to other bilinear coefficients.
This suggests a parsimonious model of the form

=B,

3 B (5.6.6)

X181 Kin8go * Bys Fyigey 3t e
The estimates obtained on fitting model (5.6.6) to the data are
By, =0.416, B,, = 0.3312, B,, = 0.2206, and 0% = 0.9996. The AIC
value is 5.8257.

The true model is the BARMA(O, 0, 3, 3) model

X, = 0.40X

+ + 0. 30X

t-2et-2 + O.ZOXt_Bet_3 +

t~1%¢-1
with o2 = 1.0.

(e) BARMA Frocess of Example 3.5

We identified and fitted a linear AR(2) model to this series. As
was pointed out in section 3.4, the bilinear model (5.1.1) without the
moving average part could have the same covariance structure as some
linear autoregressive process. We were unable to give a general condi-
tion under which the bilinear model (5.1.1) without the moving average
part could have an autoregressive covariance structure. However, we do
know that the autoregressive coefficients of the linear AR model are the
same as the autoregressive coefficients of the bilinear model. Suppose
the correct model for a time series data is the bilinear model

m £

X, = Z a,X, .+ Z I

TSI Bt R S R |
12

B.. X, ,e, . t e

ij “t~i7t~j t’ (5.6.7)

but the best linear ARMA model that fits the data is the AR(r) model

r
Xt = jil aj tij + Zt. (5.6.8)

Then the errors, Zt from (5.6.8) are in effect bilinear rather than linear.

It follows that we can fit a purely bilinear model of the form
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21 ] ] {
%5 Zt-iet-j + el (5.6.9)

to the errcrs. e czn use (5.6.9) to modify (5.6.8) to a bilinear model
of the form (5.6.7). This will in gzeneral be our modus operandi for fitting

bilinear models 1¢c time series data that admits an autcregrescive model as
the best linear ARNA model. Use of residuals to modify a linear model to
a bilinear model with identical covariance structure can be applied in all
cases of fitting bilinear models to time series data.

The AR(2) model obtained was

X, = 1.2059%, | (5.6.10)

. 1 - 0.60538, , + 2

t

with Var(Zt) =1.116. To the residuals Zt’ we have fitted the bilinear

white noise model

Zt = (O.2467Zt_2 + 0.1782Z + e (5.6.11)

$-37%4.1 &y

with 8% = 1.0280. On eliminating Z, between (5.6.10) and (5.6.11), we

obtain
Xt = l°2059Xt-1 - O.6O53Xt_2 + (0.2467Xt_2 - 0.1193Xt_3
- 0.0656X, , + 0.1079%, e, , + e, (5.6.12)
which suggests that the bilinear model
Xt =a X te, X0t (821 Xt-2 * 831 Xt—3 ¥ Bu: Xt-4
B, X ey, tey (5.6.13)

should now be entertained.
On fitting model (5.6.13) to the original series we obtained the

following estimates: a1 = 1.2009, &,6 = -0.6076, B,, = 0.2377,

2 21

B,, = -0.1115, B,, = -0.0715, B, = 0.0415 and 8% = 1.0047. The AIC
value is 14.3026. The parsimonious model obtained is the BARMA(2. 0, 3, 1)
model

Xt = 1.2006X£_l - 0'6059Xt-2 + O.ZAIMXt_zet_l - 0.16481t_3et_1 + e,
- (5.6.14)
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with 02 = 1.0077, AIC = 11.81.49.
The true model is the BARMA(2, 0O, 3, 1) model

X, = 1.20X, ) - 0.61X, , + 0.25K, s, . - 015K, se, ) + e,

with o2= 1.0.

5.6.2 Fitting of BARMA Models To Real Data

(a) Ber Nevis Temperatures

First we consider the daily drybulb temperatures (°F) at noon on
Ben Nevis for the days 1lst., February - 18th., August 1884, giving
two hundred observations. The series is referred to in Andersoa [3:] as
series A¥. The graph of this data is plotted in Figure 5,1(a) and its sample
autocorrelations up to fifty lags are plotted in Figure 5.1(b). The sample
autocorrelation function shows that there is a linear trend in the
series. In order to remove the trend, Anderson |3, p.112-116] has
differenced and obtained the series

Xy

a - B)Yt

Ty

original series

The series Xt thus obtained seems to be free from trend and the following
linear model is identified, estimated and diagnostically checked by
Anderson [3, p.llé]:

X, = -0.238a

+ (5.6.15)

4oy = 0-3058, , ta

t
with Var(at) = 17.91.

We use the first one hundred and eighty observations for model
fitting, and the next twenty observations are used for forecasting
purpose. The MA{2) model fitted to the one hundred and eighty observa-

tions is the model

X, = -0.2751a .- 0.3218a, , + &, ‘ (5.6.16)

with Var(a t) = 18.0, where Xt is change in temperature. Since the best

linear ARMA model is an MA(2) model, we entertain the model
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2 m 2
X. = Z be, .+ Z I B..X

be (5.6.17)
1 g g

t-1%t-3 © %t

izj
The 210 value is found to be winimum when m = 2 and the parsimonious
BARMA(O, 2, 2, 2) model obtained is

+ 0.0175X + e

Y, = -0. 241'7et_ £-2%1-2 %

1)

- - OC3AY
0.3060e, . - 0.0C3EL, e, .

1

(5.6.18)
where Xt is change in temperature and 0® = 16.10, AIC = 499.92., This
leads to 10. 6% reduction in error variance.

The first twenty serial correlations of the residuals from the
models (5.6.16) and (5.6.18) are given in columns 2 and 3 respectively of
Teble 5.2. Given in columns < and 3 of Table 5.3 are the first twenty
seridl correlations of the squares of the residuals from the models
(5.6.16) and (5.6.18) respectively. The approximate 95% confidence
interval for these values is #0.15, if true correlation is zero. From
Talhle 5.3, it is clear that the values for k = 2, 3, certainly appear
significant for the model (5.6.16).

For the next twenty days, both model (5.6.16) and (5.6.18) were
used to forecast and the results are given in Tahle 5.,. The mean sum of

squares of the one-step-ahead forecast errors are:

MA(2) BARMA(O, 2, 2, 2)

(50 6.16) (5' 6.18)
First 10 days 1.7 19. 4
First 15 days 19.5 17.5
First 20 days 17.5 16.0

The bilinear model (5.6.18) reduces mean square error (MSE) by 10.6% for
the first ten days, 10.3% for the first fifteen days and 8.6% for the
first twenty days. The bilinear model produces a small but consistent

reduction in the mean square error. The performance of the bilinear
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TABLE

5e2

CORRELOGRAM OF THE RESIDUALS OF THE ARMA AND BARMA MODELS FITTED TO THE SERIES OF SECTION 5.6.2

BEN NEVIS TEMPERATURES
MA(2) BARMA (O, 2, 2, 2)

IBM CLOSING STOCK PRICES
MA (1) BARMA(O, 1, 1, 1)

SUNGPOT NUMBERG

ARMA(8, 1) BARMA(8, 1, 5, 2)

(5.6.16) (5.6.18) (5,6.20) (5, 6.22) (5.6.23) (5.6.24)

L:G by (ay) b, (ey) p(a,) b(ey) Pla,) ple,)
1 0.013 0.007 -0.014 -0.004 0.002 0.039
2 0.068 0.034 -0.077 -0.055 -0.013 0.109
3 -0.048 -0.072 -0.141 -0,117 -0,007 -0.001
A -0.064 -0.031 0.112 0.110 -0.004 0.081
5 -0,017 -0.042 0.044 0.081 0.012 0.028
6 -0,035 -0.052 -0.044 -0.049 0.033 0.057
7 -0.008 0.076 -0.004 -0.007 0.036 0.101
8 -0.019 -0,041 0. 040 0.041 0.119 -0.049
9 0,017 -0.014 -0.069 -0.043 0.107 0.081
10 -0.021 0.011 0.016 -0.017 -0.020 0.031
11 0.000 0.:029 0.057 0.086 0.034 0.049
12 ~0.006 0.015 -0.002 -0.003 -0.008 0.074
13 <0.045 -0.029 -0.078 -0.087 -0.107 0.027
14 -0.069 -0.065 0.007 0.015 -0.054 9.0L0
15 <0.144 -0.131 0.069 0.031 0.024 0.100
16 -0.061 -0.030 9.059 0.069 0.003 0.093
17 -0.005 -0.015 -0.030 -0.050 0.173 0.131
18 0,025 0,087 =0,046 -0.061 -0.043 -0.048
19 0.055 0.026 -0.084 -0.067 -0.032 0.001
20 -0,078 -0.047 0.138 0.127 -0,088 0.064




-'[9‘[-

CORRELOGRAM OF THE SQUARES OF THE RESIDUALS OF THE ARMA AND BARMA MODELS FITTED TO THE SERIES OF SECTION 5. 6.2

TABLE

5.3

BEN NEVIS TEMPERATURES
MA(2) BARMA(0, 2, 2, 2)

IBM CLOSING STOCK PRICES
MA(1) BARMA(O, 1, 1, 1)

SUNSPOT NUMBERS
ARMA(8, 1) BARMA(B, 1, 5, 2)

(5.6.16) (5.6.18) (5, 6.20) (5. 6.22) (5. 6.23) (5.6.24)
LAG ok(ai) ok(ez) p(ai) 6(ei) b(a?) B(e?)
k
1 0.090 0.006 0.230 0.130 0.281 0.126
2 0.199 0.123 0.055 0.06L 0.154 0.119
3 0.160 0.135 -0.034 -0.003 -0.039 0.003
4 0.093 -0.015 -0.036 -0.015 -0,048 -0.052
5 0.099 0.032 -0.059 -0.075 -0.075 0.032
6 -0.032 -0.044 -0.075 -0.078 -0.070 -0.007
7 0.09, -0.008 -0.049 -0.053 -0.015 -0.047
8 0.006 0.010 -0.050 -0.060 0,037 0.141
9 0.073 0,019 -0.009 -0.044 0.128 0.035
10 -0.044 -0.087 0.021 0.008 0.026 0.027
11 -0.040 -0.004 0.075 0.052 0.020 0.074
12 -0,036 -0.006 0.034 0.019 -0.015 -0.058
13 -0.013 -0.031 0.038 0.105 -0.027 -0.071
14 -0.066 -0.054 0,113 0.081 -0.079 0.014
15 -0.056 -0.031 -0.001 -0.001 0.020 0.014
16 -0.054 -0.020 0.030 0.024 -0.018 0.050
17 -0.111 ~0.128 0.005 0.063 -0.054 0.059
18 0.006 0.005 -0.010 0,010 -0.034 -0.080
19 P "00049 -0.’066 0.036 0. 024 "Oo 007 O. 066
20 -0,028 0.025 0.013 -0.007 0.017 -0.034




TABLE 5.4

FORECASTING THE BEN NEVIS TEMPERATURES FROM MODELS BASED ON 180 OBSERVATIONS

= 9L -

ONE-STEP-AHEAD PREDICTIONS MORE THAN ONE-STEP-AHEAD PREDICTIONS
Predicted Xt Predicted Xt Predicted Xt Predict.od Xt
MA(2) BARMA(O, 2, 2, 2) © MA(2) BARMA(O, 2, 2, 2)
t X, (5.6.16) (5.6.18) (5.6.16) (5.6.18)
181 bied 1.2 .7 41.2 1.7
182 42, 1.8 42.7 39.5 40.5
183 45.2 4l.4 (1.9 39.5 4047
184 1.0 43.9 bl d 39.5 1.0
185 37.0 40.6 40.9 39.5 .2
187 41.0 39-0 39-3 39-5 4,_]_.6
188 45,0 40.9 4.1 39.5 1.9
189 47.9 43.2 43.7 39.5 42,1
190 56. 5 45.3 46.0 39.5 42,3
191 55.6 51.9 52.8 39.5 42.5
192 5442 51.0 53.3 39.5 42.8
193 52.5 52.1 53.1 39.5 43.0
194 524 4 5l.4 52.3 39.5 43.2
195 Lie9 52.0 52. 6 39.5 43,4
196 40.9 46.5 46. 4 39.5 43.7
197 Al.1 hhe7 45.5 39.5 43.9
198 44.8 43.9 bhel 39.5 Lbol
199 46,7 4547 45.9 39.5 Lhe 3
200 49. 4 46.1 4644 39.5 L. 6




model seems to be better when 1t is used for forecasting severzl steps

(b) I2¥ Conmon Stock Closing Prices

Far ~i1r cens=2 myamn’ IRT= anred Ae + e TRV A
POT OUur SecConld eXEmDL € WE COonelilder ithe ioa 2

W

ily conmon stoeck

bl

closing prices for one hundreld and elghty-five itrading dsys starting

/i, May 19el. Tne original data which consists of three nunired and

4
1t

sixty-nine coservetions is series B in Box and Jenxins [ 5). Box and

|
t

Jenkins fitted MA(1) models separately to the first and second halves of
the differenced series, as well as to the complete series after differ-
encing. Using the results obtained by fitting the MA(1) models they
produced evidence that in later periods the MA(1) model suffers a
significant change in parameter value. We confine ourselves to the
first half of the series.

The graph of the closing prices for the first one hundred and
eighty-five trading days is plotted in Figure 5.2(a) and its sazple autocor-
relations up to forty-six lags are plotted in Figure5.2(b). The sample.
autocorrelation function shows that there is a linear trend in the series.
Granger and Andersen Eié] have considered the first one hundred and
sixty-nine trading days. They have fitted the bilinear model

= ki
Z, =0.022, je, 1 + e, (5.6.19)

to the residuals Zﬁ.obtained from the MA(1) model

X, = 0.262, ) +2 (5.6.20)

t t’

where Xt is change in price. Our interest in this series is to illust=-
rate further the use of residuals to modify a linear model to a bilinear
model of the form (5.1.1)

The MA(1l) model fitted to the first one hundred and eighty-five

observations is the model

+a (5.6.20)

X, =
{ = 027288, ) +a,
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with Kar(a+) = 26..9, where X, is change in vrice. To the residusls &,
() (% %

we have fitted the bilinear model

&, = O°O259at-let~l + ey (5.6.21)
with &% = 23.08. On elininating &, tetween (5.4.20) and (5.6.21) we
obtain

L, = 0.2728e .

%, = 0.2728e, , + 0.0259%, je, . + e,

which suggests that the bilinear model

X, = be +

t 4-1 T By qep g toe

+ (5.6.22)
should now be entertained. On fitting model (5. 6.22) to the first
one hundred and eighty-five observations we obtained the following
estimates: b = 0.2148, B = 0.0271 and 0% = 24.88. The point to note
here is that using our estimation procedure described in sections 5.2
and 5.3, we also arrived at the model (5.6.22). The first twenty serial
correlations of the residuals from the models (5.6.20) and (5.6.22) are
given in columns 4 and 5 respectively of Table 5.2. Given in columns 4
and 5 of Table 5.3 are the first twenty serisl correlations of the
squares of the residuals from the models (5.6.20) and (5.6.22) respec-
tively. The approximate 95% confidence interval for these values is
#0.15,1if true correlation is zero. From Tahle 5.3, it is clear that the
value for k = 1 certainly appears significant for the model (5.6.20).

We have not calculated forecasts,rsince the parameter values for
the two halves of the series differ significantly.

(¢) Wolfer Sunspot Numbers

For our third example we consider the annual sunspot numbers
given in Waldmeier Elj]. Woodward and Gray [;4] have given a list of
linear ARMA models fitted in the literature for this yearly data:
Granger and Andersen [15] have fitted the bilinear model
Xt = 0'202Zt-l - 0.0ZZZZt_zet_l + e,
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to the residuals Zt' from the AR(2) model

Xt = ;Av70 + 1;425Xt_1 - 0'731Xt-2 + Zt

fitted by Box and Jenkins [5] to the annual sunspot numbers for the

period 1770 to 1869. Using the AIC criterion, Subba Rao [37] has

fitted a bilinear model of the form (5.2.1) withp = 3 and q = 4 to the
annual sunspot numbers fbr the period 1700 to 1945, Gabr and Subba Rao EJ]
have also fitted their subset bilinear model (5.2.2) to the annual sunspot
numbers for the period 1700 to 1920.

We consider the annual sunspot numbers for the years 1749 to 1924,
giving one hundred and seventy-six observations. The series is plotted
inFigure 5.3(a) and its sample autocorrelations up to forty-four lags are
plotted inFigure 5.3(b). The sample auotcorrelations exhibit an oscillatory
behaviour. Woodward and Gray [;4] have also considered the one hundred
and seventy-six observations and have used the R- and S-arrays of Gray,
Kelley and McIntire [17] to identify and fit the following ARMA(8, 1)
model

(1 - 1.64B + 0.94B2)(L - 0.1748B - 0.0309B% - 0.0136B® - 0.2528B"

- 0.1429B° - 0.16163‘)Xt = (1 - 0. 597213)at (5. 6.23)

with Var(at) = 215,23, where X, = Y, - Y and Y, denotes the observed

sunspot numbers. Model (5.6.23) has roots close to the unit circle.
Making use of the observed ARMA(8, 1) covariance structure, we have
fitted the following BARMA(8, 1, 5, 2) model to the mean deleted .
observations

X, = 2.0381X, ; - 1.4203K, , + 0.0704K,_, + 0.268X, , - 0.07L8X,

t 5

+ 0,05/1X, _, - 0.0225X, , + 0.0112X, o - 0.807le, ,

- (0.0304Xt_2 - 0.0103X + (O'OBZZXt- - 0.0155

t-3%¢-2 3 t-4

- 0. 0038X (5- 6- 24)

t-S)et-Z + e,

with 82 = 151.43. We can expand the left hand side of (5.6.23) to obtain
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X, =1.8148X

t t-l - 1-1958X

+ 0,1272X + 0.2529X

to2 3 - 0.2589%,

t-4 5

+ 0.1649X, o - 0.1307°K, . + 0.1509K, o - 0.5972, ; + e,

| (5.6.25)

By comparing (5.6.24) and (5.6.25), one notices some similariites
between the autoregressive coefficients of the two models.

The first twenty serial correlations of the residuals from the
models (5.6.23) and (5.6.24) are given in columns 6 and 7 respectively
of Table 5.2. Given in columns 6 and 7 of Table 5.3 are the first
twenty serial correlations of the squares of the residuals from the
models (5.6.23) and (5.6.24) respectively. The approximate 95% confidence
interval for these values is 0,15, if true correlation is zero. From
Table 5.3, it is clear that the value for k = 1 certainly appears signifi-
cant for the model (5.6.23).

For the next twenty years, both model (5.6.23) and (5.6.24) were
used to forecast and the results are given in Table 5‘.'5. The mean sum
of squares of the one-step-ahead forecast errors is 83.69 for the
ARMA(8, 1) model (5.6.23) and 49.77 for the BARMA(8, 1, 5, 2) model
(5.6.24). Thus, a 40.5% reduction in error mean square results from
using the bilinear model over the ARMA model. The bilinear model (5.6.24)
also performs better than the linear model (5.6.23) when they are used

for forecasting several steps ahead.
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TABLE 5.5
FORECASTING THE ANNUAL SUNSPOT NUMRERS FROM MODELS BASED ON THE YEARS 1749 TO 192/

ONE-STEP-AHEAD PREDICTIONS

MORE THAN ONE-STEP-AHEAD FPREDICTIONS

Predicted Xt Predicted Xt Predicted Xt Predicted Xt
ARMA(8. 1)  BARMA(8, 1, 5, 2) ARMA(8, 1)  BARMA(8, 1, 5, 2)
Year Xy (5.6.23) (54 6.24) (5.6.23) (5.6.24)
1925 Lbe3 34 4 39.8 3he 4 39,8
1926 63.9 65.2 66.0 53,2 _ 58. 6
1927 69.0 75.7 75.0 67.3 69.0
1928 77.8 68.8 68.2 73.3 63.0
1929 64.9 74 6 6l.4 69.9 57,7
1930 35,7 51.5 44,0 59.7 42.8
1931 21,2 16.8 16.6 45.1 29.3
1932 11.1 13.9 16.7 30.7 22,0
1933 5.7 10.4 10.7 . 20.8 22.8
1934 8.7 11.5 12.8 18,4 30.5
1935 36.1 22,2 22.5 23.9 A.7
1936 9.7 57.1 68.3 - 34.9 52.0
1937 11444 99.3 100.3 47.8 57.8
1938 109.6 116.0 105.3 58.6 57.6
1939 88.8 88.8 87.6 64.2 52,2
1940 67.8 6l.3 6L.0 63.3 bl 2
1941 47.5 Lbe 6 40.5 5646 36. 6
1942 30.6 26,2 28. 4 46.3 32,3
1943 16.3 16.2 20,9 35.8 3244
1944 9.6 11.7 13.1 28.2 36.3
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