
Germyl Linker Cleavage with 

Carbon-Based Electrophiles 

A thesis submitted towards the 
fulfilment of the degree of PhD 

By 

Christopher J. G. Gripton 

University of Sheffield 

Western Bank 

Sheffield 

S37HF 

February 2004 

Academic Supervisor: Dr A. C. Spivey, University of Sheffield 
Industrial Supervisor: Dr N. J. Parr, GlaxoSmithKline 



Abstract 

Abstract 

This thesis describes the successful identification of a novel cross-coupling protocol 

for alkylaryldichlorogermanes, as part of an investigation towards the development of 

organogermanium linkers for solid phase synthesis. The application of Friedel-Crafts 

acylation towards the ipso degermylation of aromatic molecules with concomitant 

introduction of acyl functionality is also described. 

By way of introduction, an in depth review of the literature surrounding Group 14 

organometallic cross-couplings is presented, concentrating on the recent 

developments in the area of organosilicon and organogermanium cross-coupling 

chemistry. This is followed by a review of the literature precedent for ipso 

acyldesilylation and acyldestannylation of aromatic molecules. 

Results are then presented that detail the work carried out towards successful 

arylgermane cross-coupling. Following extensive study and attempted optimisation 

of trialkylarylgermane cross-couplings, it was discovered that the incorporation of 

heteroatoms onto the germanium centre was necessary to obtain synthetically 

acceptable cross-coupling yields. 

Further results are also presented In relation to acyldegermylation studies that 

illustrate the reactivity of arylgermanes towards acyl electrophiles, and the effect on 

acyldegermylation of varying the electronic nature of the aryl group attached to 

germanium. 
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Abbreviations 
AcCI 

APC dimer 

aq 

b 

Binap 

BnTMAF 

Bu 

ca. 

Celite® 

CI 

cod 

18-crown-6 

CSI 

d 

DABCO 

dba 

DIBAL 

DMA 

DMAP 

DME 

DMF 

DMSO 

Dppe 

Dppf 

Dppp 

ee 

e.g. 

EI 

ESI 

Et 

Acetyl chloride 

AlIylpalladium(II) chloride dimer (C3H sPdCI)2 

Aqueous 

Broad 

2,2' -Bis( diphenylphosphino )-1,1' -binaphthyl 

Benzyltrimethylammonium fluoride 

Butyl 

Circa (Latin "about") 

A high grade diatomaceous earth used as a filter aid. 

Chemical ionisation 

Cyc looctadiene 

1,4,7,10,13,16-Hexaoxacyclooctadecane 

Chlorosulfonyl isocyanate 

Doublet 

Diazabicyclo[2.2.2]octane 

Dibenzy Iideneacetone 

Diisobutylaluminium hydride 

N,N-Dimethylacetamide 

N,N-Dimethylaminopyridine 

1,2-Dimethoxyethane 

N,N-Dimethylformamide 

Dimethylsulfoxide 

1 ,2-Bis( diphenylphosphino )ethane 

I, I' -Bis( diphenylphosphino )ferrocene 

1 ,3-Bis( diphenylphosphino )propane 

Enantiomeric excess 

Exempli gratia (Latin "for example") 

Electron impact 

E1ectrospray ionisation 

Ethyl 
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Et20 

EtOAc 

EtOH 

FIA 

GC 

GCIMS 

c.HCI 

Hex 

HRMS 

i.e. 

IMes·HCI 

IPr·HCI 

LCIMS 

Me 

MeCN 

MeN02 

mp 

MS 

MSA 

Diethy I ether 

Ethyl acetate 

Ethanol 

Flow injection analysis 

Gas chromatography 

Gas chromatography-mass spectrometry 

Concentrated aqueous HCI, 37% w/v, 10M 

Hexyl 

High resolution mass spectrometry 

Id est (Latin "that is") 

l,3-Bis(2,4,6-trimethylphenyl)imidazolium chloride 

l,3-Bis(2,6-diispropylphenyl)imidazolium chloride 

Liquid chromatography-mass spectrometry 

Methyl 

Acetonitrile 

Nitromethane 

Melting point 

Mass spectrometry 

Methanesulfonic acid 

n- or normal normal 

NBS N-Bromosuccinimide 

NCS N-Chlorosuccinimide 

NMP N-Methylpyrrolidone 

NMR Nuclear magnetic resonance 

OAc Acetate 

OTf Trifluoromethanesulfonyl 

Pd(dba)2 Bis( dibenzylideneacetone )palladium(O) 

Pd2dba3 Tris( dibenzylideneacetone )dipalladium(O) 

Pd(PPh3)4 Tetrakis(triphenylphosphine )palladium(O) 

Ph Phenyl 

P(Mes)3 Tris-(2,4,6-trimethylphenyl)phosphine 

PPh3 Triphenylphosphine 
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ppm 

PPTS 

i-Pr 

psi 

q 

RCM 

Rf 

RI 

rt 

s 

s- or sec 

SPE 

t 

TASF 

TBAF 

TBAI 

TBAOH 

TBAT 

t- or tert 

TFA 

THF 

TLC 

TMAF 

TMDS 

TMG-Br 

TMS-CI 

Tol 

Ts 

Parts per million 

Pyridinium para-toluenesulfonate 

iso-Propyl 

Pounds per square inch (pressure) 

Quartet 

Ring closing metathesis 

Retention factor 

Retention time 

Room temperature 

Singlet 

Secondary 

Solid phase extraction 

Triplet 

Tris( dimethylamino )sulfonium difluorotrimethylsilicate 

Tetra-n-butylammonium fluoride 

Tetra-n-butylammonium iodide 

Tetra-n-butylammonium hydroxide 

Tetra-n-buty lammoni urn triphenyldifluorosi I icate 

Tertiary 

Trifluoroacetic acid 

Tetrahydrofuran 

Thin layer chromatography 

Tetramethylammonium fluoride 

Tetramethyldisiloxane 

Trimethylgermanium bromide 

Trimethy lchlorosilane 

para-Tolyl 

para-Toluenesulfonyl 
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Chapter 1 Introduction to Cross-coupling 

1 Introduction to cross-coupling 

1.1 Group foyrteen organometallic cross-coupling 
reactjons 

Control of carbon-carbon bond formation is invariably a key issue in the synthesis of 

even moderately complex organic molecules. One of the most important methods of 

carbon-carbon bond formation is by cross-coupling. The reaction of an 

organometallic complex with an organic (pseudo )halide in the presence of a 

palladium catalyst provides an elegant and efficient route for carbon-carbon bond 

formation, especially between unsaturated centres. The most common cross-coupling 
I 

methods in use today are the Suzuki reaction of organoboron compounds, the Stille 

reaction of organostannanes,2-4 and to a lesser extent the Negishi reaction of 

. 5,6 
organoztncates. Notwithstanding the wide utility of these methods, all have 

significant drawbacks from a synthetic standpoint: organoboronic acids and esters can 
I 

be difficult to synthesise and purify and are unstable to many reaction conditions, 

organostannanes and their halostannane by-products are highly toxic and atom 

inefficient,7 whilst organozincates are highly reactive and difficult to prepare. 

In the case of the Stille reaction with organotin reagents there are many variations, 

and only the mechanistic details of the transformation will be considered in depth 

here. Detailed discussions on the scope of the Stille reaction and the versatility of 

organotin reagents in synthesis can be found in the reviews written by Stille, Mitchell 
• 3,4,8,9 

and Davies. 

It was not until Hiyama's pioneering work with fluorosilanes in the late 1980's that it 

was recognised that the inherent unreactivity of organosilanes and germanes towards 

cross-coupling, resulting from the absence of a significant dipole across C-Si and C-
10 

Ge bonds as compared to C-Sn bonds, could be overcome. Furthermore, 

.\ d h h d h . 11,12 organosl anes an germanes ave tea vantage t at they are generally non-toxIc. 

Fluorosilanes, however, are not particularly attractive coupling partners from a 

synthetic standpoint as they are inconvenient to prepare and unstable towards 
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Chapter 1 Introduction to Cross-coupling 

chromatography. Subsequent efforts by various groups have therefore been directed 

towards the development of readily accessible organosilane and organogermane 

derivatives that retain the favourable handling and cross-coupling characteristics of 

organostannanes but without the associated toxicity. Significant progress towards this 

end has now been achieved and will be described in some detail. 

Organogermane cross-coupling reactions have been much less widely explored than 

their organosilane counterparts, probably in part due to the higher cost of germanium 

relative to silicon. Germanium-carbon bonds are intermediate between silicon-carbon 

and tin-carbon bonds in terms of their reactivity towards electrophiles.
13 

Considering 

the ability of organotin and activated organosilicon compounds to cross-couple it 

seems likely that an appropriately activated organogermanium compound should also 

undergo cross-coupling reactions. There are three reported examples of heavily 

activated organogermanes undergoing a cross-coupling reaction and these will also be 

discussed. 

1.2 Organotin cross-coupling reactions 

The palladium(O) catalysed cross-coupling of an organostannane with an 

organohalide is known as the Stille reaction, and is a widely used method of carbon­

carbon bond formation in unsaturated systems. The reaction has been 

comprehensively studied, and has found widespread synthetic application. 

The scope of organotin cross-coupling chemistry will only be briefly considered here, 

with discussion concentrating on cross-coupling reactions involving hypervalent tin 

species, and the mechanism of coupling. Both of these subjects have a direct bearing 

on the cross-coupling reactions of other hypervalent group 14 organometallic 

compounds, which are extensively discussed later in this chapter. 

R"-X 
+ 

R'-SnRa 

R'-R" 
+ 

X-SnRa 

Figure 1.1 General form of a Stille coupling between organotin and organobalide 

'd 3,4 res. ues 
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Chapter 1 Introduction to Cross-coupling 

h I· f .. fi b . 14,15 T e cross-coup 109 0 an organotlO species was Irst 0 served by Miglta, but was 

further developed and popularised by Stille.
16

,17 The use of phosphine co-catalysts to 

improve yields and extend the scope of the reaction has been investigated by others, 
• 2,18 

most notably Farma. 

The reaction is synthetically useful because it provides an attractive and simple means 

of constructing many commonly observed chemical moieties, most especially biaryl 

units and conjugated alkene systems that can be difficult to construct via other 

methods. The organostannane reagents themselves are stable to air and moisture, and 

withstand common separation techniques, such as distillation or silica 

chromatography. The reagents are also easy to synthesise and are often commercially 

available. They possess low nucleophilicity compared to Grignard organomagnesium 

reagents, organolithium reagents or Negishi organozincate reagents, which in tum 

means that they are compatible with a much greater range of functional groups within 
4 

either of the coupling partners. The main drawback with organotin reagents is their 

. . . II h' . h I'd b d 8,9,19 acute tOXICity, especla y t e tnorganotlO a ley-pro ucts. 

The organic group transferred from tin can be alkynyl, alkenyl, aryl, benzyl, or 

3,4 3,4,20 h d f 
allyl, although transfer of alkyl groups has also been reported. T e or er 0 

reactivity of these groups is accepted to be alkynyl > alkenyl > aryl> allyl> benzyl 

»alkyl. Only one group will routinely be transferred from tin, as the triorganotin 

halide by-product reacts at least a hundred times slower than the parent 
4 

tetraorganotin. The other three ligands at the tin centre are usually either methyl or 

butyl, both of which are resistant to transfer in the presence of more reactive organic 

groups, and behave as non-transferable dummy ligands. Butyl groups are usually 

preferred as they lessen both the volatility and the toxicity of the reagent. This design 

of the organotin reagent leads to the selective transfer of only one group from tin. 

- 10-
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~snBU3 

BU3Sn~n-Pent 

OH 

Introduction to Cross-coupling 

.. Trod 
0 

ii OC:::'Et .. I ~. n-Pent 0 

~CO'Et OH 

I 

iii ~ .. 
OSiEta 

3 
Figure 1.2 Examples of Stille couplings 

21 
Reagents and conditions: i) Pd(PPh3)4, LiCI, THF, 66°C, 24h, 75%; ii) 

[(PhCH2)Pd(PPh3h(CI)] , THF, 60°C, 36h, 73%;22 iii) Pd(PPh3)4, THF, 50°C, 86h, 

72%.23 

The (pseudo)halides used in Stille couplings are usually ~-unsaturated bromides, 

iodides, or triflates.
18 

Organochlorides are traditionally very unreactive in Stille 

cross-coupling reactions due to a reluctance to undergo oxidative addition with 

palladium, although recent developments of the phosphine co-catalyst have overcome 

~ 3 
this limitation. The organic group of the halide generally must not possess sp 

hydrogens ~ to the halogen, as ~ hydride elimination to generate an alkene from the 

cr-palladium(II) intermediate is a much faster process than the desired 

transmetallation step. As a result the organohalides are generally alkenyl, allyl, aryl 
4 

or benzyl compounds. However, very recent advances with phosphine co-catalysts, 

related to the activation of aryl chlorides, have been made to facilitate the coupling of 

organostannanes and alkyl halides possessing ~- hydrogens.
25

,26 
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Chapter 1 Introduction to Cross-coupling 

1.2.1 Organotin cross-coupling mechanism 

The traditionally accepted mechanism of cross-coupling follows a four stage catalytic 

cycle: 

R' - R" 

ROO 
I 

R'-Pd-L 
I 
L 

/somerisation 

L 
I 

R'-Pd-R" 
I 
L 

X-R' 

L 
I 

R'-Pd-X 
I 
L 

R"-SnBu3 

X-SnBu3 

34 
Figure 1.3 Traditional mechanism of organotin cross-coupling reactions ' 

However, this mechanism has been convincingly criticised by Espinet, who has 

carried out several detailed kinetic and mechanistic studies and proposed several 

refinements-
27

,28 Espinet' s reasoning is quite detailed and will not be reproduced 

here, although the chemistry involved in each step will be outlined. For the purposes 

of this report Espinet's mechanism will be used as the model for Stille reactions, and 

other group 14 organometallic cross-couplings. 

- 12-
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L 

R' - R" \~ 
)i~~~:~~~~n 

R" 
I 

R'-Pd 
I 
L 

Transmetallation 

R"-SnBu
3 I I 

R'-Pd-X 
I 
L 

Introduction to Cross-coupling 

X-R' 

Oxidative 
Addition 

L 
I 

R'-Pd-X 
I 
L 

R' 
I 

L-Pd-X 
I 
L 

L R"-SnBu3 

Figure 1.4 Espinet's proposed mechanism for organotin cross-coupling 
27,28 

reactions. 

1.2.1.1 Oxidative addition 

The first step of the mechanism is oxidative addition of the organohalide to the 

palladium(O) catalyst. This is believed to occur via the nucleophilic displacement of 

halide by a coordinatively unsaturated palladium(O) 14 electron species, and gives rise 

initially to a square-planar cis-[PdR'XL2] complex. This cis-Pd complex then 

isomerises to a trans-[pdR'XL2] compound, which can autocatalyse the 

• •• 29 
IsomensatIOn. 

The order of reactivity of the organohalides to oxidative addition is I > Sr ::::: OTf » 

CI.
30 

The rate of insertion is enhanced by the presence of strong a-donor ligands such 

as trialkylphosphines, which increase electron density on palladium, thereby 

increasing its nucleophilicity. 

- 13-



Chapter 1 Introduction to Cross-coupling 

1.2.1.2 Traosmetallatjoo 

The second step of the catalytic cycle is the transmetallation of the unsaturated 

organic group from tin to the more electrophilic palladium(lJ) species. Initially the 

palladium coordinated halide is proposed to attack the tin centre, thereby increasing 

the electrophilicity of palladium and simultaneously increasing the nucleophilicity of 

carbon atoms a. to tin. The overall effect of this is to facilitate the association of 

carbon and palladium via electrophilic attack by palladium. Following this 

association, a ligand is lost from palladium. This is in contrast to the traditionally 

accepted dissociative mechanism where a ligand is initially lost to form a trivalent 

palladium electrophile that then attacks carbon. Such a dissociative mechanism is 

27 
inconsistent with some kinetic and thermodynamic observations, and with known 

• • 31 
palladIUm chemIstry. 

~ R"-SnBu3 
X-Pd·R' ~ 

I 
L 

Bu 
BU/"~n_R" 
Bu"': : 

X'Pd-R' , '. 
L L 

Bu 
-L BU/"~n_R" 

---i~~ Bu'" I I 
X-Pd-R' 

I 
L 

-X-SnBu3 .. 

27 
Figure 1.5 Associative mechanism of transmetallation 

R" 
I 

Pd-R' 
I 
L 

The proposed associative mechanism for transmetallation generates aT-shaped cis­

[PdR' R" L] species which is able to immediately participate in a reductive elimination 

process. The implication of a hypervalent tin species in the transition state and 

transmetallation intermediate clearly suggests that coordinate unsaturation of the 

metal centre is a necessary requirement of the organometallic coupling partner. 

Due to the electrophilic nature of the palladium(Il) centre in this step, transmetallation 

is favoured by factors that reduce its electron density. This includes phosphine 

ligands that are good electron acceptors and preferably also poor electron donors, 

although in reality the choice of ligand is a compromise between the reactivity of the 

catalyst towards oxidative addition and transmetallation. Another factor that 

influences electron density on palladium is the nature of the coordinated halide. The 

- 14 -
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order of reactivity for the transmetallation step in terms of the halides present is CI > 

Br> 1.
32 

It is for this reason that triflates are commonly used, as they readily undergo 

oxidative addition to palladium(O), yet in the presence of chloride can be readily 

exchanged, to generate a more reactive organopalladium(lI) chloride species. 

1.2.1.3 Redyctive elimination 

Transmetallation gives aT-shaped palladium(II) complex with the organic ligands cis 

to each other. The final step of the mechanism is the reductive elimination of the two 

organic ligands on palladium(II), to form the coupled product and regenerate the 

coordinatively unsaturated palladium(O) catalyst. Bond formation in a reductive 

elimination process is the result of orbital overlap between the two eliminating 

ligands. Consequently, reductive elimination is promoted by ligands that possess a 

large steric bulk, which force the organic ligands spatially closer together. 

1.2.2 Hypervllent omlnot;n cross-couplings 

If the palladium complex is too poor an electrophile for reaction to occur, then 

increasing the nucleophilicity of the organostannane can accelerate transmetallation. 

Intramolecular chelation of tin by amines to form a hypervalent tin centre has been 

demonstrated to increase reactivity of organostannanes towards palladium 

electrophiles. Vedejs has reported a carbastannatrane compound, where the tin centre 

is intramolecularly chelated by nitrogen, and is then sufficiently reactive to transfer a 
20 

methyl group. 

Figure 1.6 Methyl transfer from Vedejs' carbastannatrane 

Reagents and conditions: i) 4-bromoanisole, PdCh(dppt), toluene, 75°C, 2h, 94%. 

- 15-



Chapter 1 Introduction to Cross-coupling 

In a complementary study Brown has shown that a dimethylbenzylaminotin complex 

reacts a hundred times faster than the analogous compound with a methyl group in 

place of the dimethylamino moiety.33 

Figure 1.7 Increase in the rate of phenyl transfer due to intramolecular chelation 

Reagents and conditions: i) 2-furanoyl chloride, [trans Pd(PhCO)(Cl)(PPh3)2], THF, 

65°C. 

The formation of a hypervalent tin compound is not only limited to compounds where 

a pendant ligand is able to intramolecularly coordinate to the tin centre. In order for 

oxidative addition to occur with aryl chlorides Fu developed a Pd2dba31P(t-Bu3)2 

catalyst system. However the presence of two exceptionally strongly electron­

donating phosphines then completely inhibits the transmetallation step. In order to 

overcome this, Fu also added an intermolecular fluoride source to form a hypervalent 

tin species that is more reactive towards the electron rich palladium(II) species.
34 

I.~ 
~OMe 

Figure 1.8 Activation of organotin complexes by intermolecular fluoride 

Reagents and conditions: i) 4-chloroanisole, Pd2(dba)3, P(t-Buh, CsF, 1,4-dioxane, 

100°C, 48h, 82%. 

1.3 Organosjlicon cross-coupling reactjons 

Organosilanes are inherently less polar, and therefore less reactive, than 

organostannanes. Hiyama overcame this problem through the coordination of a 

fluoride nucleophile to the silicon centre, thereby increasing the reactivity of 
. 3540 

axial ligands a. to the metal centre. 

- 16-



Chapter 1 Introduction to Cross-coupling 

Figure 1.9: Increasing reactivity of ligands at silicon via coordination of fluoride 

1.3.1 Cross-coupling of alkyl and balo sUanes 

Heck-type couplings of organosilanes had been previously described by Kumada,41 
42 43 . . . 

Hallberg and Matsuda. In 1988 Hlyama extended hIs use of nucleophlles to 

activate organosilanes and described the first coupling of a organosilanes with aryl 

halides mediated by intermolecular fluoride and proceeding via a Stille-type 
44 

mechanism. 

Reagents and conditions: i) organic halide, APC dimer, TASF, Solvent, 50°C. 

R Organic Halide Conditions Yield 
I 

Vinyl 0) HMPA 98% 
~ ~ 

Vinyl 1~(CH2)8C02Me HMP AIP(OEt)3 88% 

E-Styryl I~Ph HMPAIP(OEt)3 32% 

Phenylethynyl Br ~Ph THF 83% 

Allyl Br~Ph THF 28% 

Figure 1.10: Cross-coupling oftrimethylsilyl compounds with TASF activator 

Despite the success of vinyl- and alkynyl trimethylsilanes as coupling partners, 

substituted alkenyl- and allyl trimethylsilanes did not react in satisfactory yield under 

these conditions. This led Hiyama to introduce electron-withdrawing substituents 

onto silicon; this was designed to activate the system by increasing the polarity of the 
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Chapter 1 Introduction to Cross-coupling 

silicon-carbon bond and facilitating coordination of the tluoride to the silicon 
45 

centre. 

Reagents and conditions: i) APe dimer, TASF, THF, 50°C. 

SiMe3 
SiMe2F 
SiMeF2 

SiF3 

Reaction time 
24h 
10h 
48h 
24h 

Yield 
0% 
81% 
74% 
0% 

Figure 1.11: Cross-coupling of fluorosilanes 

Mono- and ditluorosilanes were found to be optimal substrates in these reactions 

whereas tritluorosilanes were wholly unreactive. Hiyama suggested that this was 

most likely due to the formation of co-ordinately saturated hexavalent 

pentatluorosilicate species. A similar pattern emerged for arylsilane cross-coupling 
46 

to give biaryls, a reaction that could also be performed in the presence of carbon 
47 

monoxide to give diarylketones. Tritluorosilane derivatives were however required 

for cross-coupling of a-substituted benzyl substrates with aryl tritlates. At 

temperatures below 70·C these transformations were shown to proceed with complete 

. f fi . h 48 retention 0 con IguratlOn at t e a-stereocentre. 
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Chapter 1 Introduction to Cross-coupling 

(} ~ .. ~ ~ 

A SiEtF2 I ~ OEt 

0 ii .. OMe 
MeO ~ Si(n-Pr)F2 

0- iii QyCX) S SiEtF2 
.. rs~ I ~ ~ 

0 

~SiF' Iv .. 

Figure 1.12: Cross-coupling of organosilanes 

Reagents and conditions: i) 4-Iodoethoxybenzene, APC dimer, KF, DMF, 70°C, 81%; 

ii) l-iodonaphthalene, APC dimer, KF, DMF, 100°C, 94%; iii) 3-iodoquinoline, APC 

dimer, CO, KF, DMF, 100°C, 78%; iv) trifluoromethyl p-acetophenyl sulfonate, 

Pd(PPh3)4, TBAF, THF, 50°C, 51 %. 

Cross-coupling of alkyl groups using fluorosilanes was also found to be possible. 

Hiyama noted that in the absence of organosilanes, TASF ([Me3SiF2r [(Et2N)3St) 

itself reacts as a coupling partner and methylates various aryl halides and alkenyl 
49 

iodides. 

~ srN 
Figure 1.13: Methylation of 4-bromoacetophenone with T ASF 

Reagents and conditions: i) TASF, APC dimer, THF, 50°C, 82% 

- 19 -



Chapter 1 Introduction to Cross-coupling 

Subsequently, alkyl trifluorosilanes in combination with tetrabutylammonium fluoride 

(TBAF) and Pd(PPh3)4 were shown to be effective for coupling of various alkyl 

d . d'd' d d . ld 50,5\ groups to aryl bromides an 10 1 es In mo erate to goo Yle s. 

Reagents and conditions: i) 4-bromoacetophenone, Pd(PPh3)4, TBAF, THF, 100°C. 

R Yield 
n-CSH13Si 65% 

Ph ............... SI 71% 

Me02c~SI 72% 

NC~SI 54% 

Figure 1.14: Cross-coupling of alkylsilanes 

Hiyama also demonstrated the ability of chlorosilanes to undergo cross-coupling 

reactions in the presence of fluoride.
52 

Although fluoro and chlorosilanes are both 

unstable to atmospheric conditions and chromatography, the ability to use 

chlorosilanes is advantageous as they are the precursors for the synthesis of 

fluorosilanes. Using chlorosilanes themselves avoids the need for an extra synthetic 

step using harmful and harsh fluorinating agents. 
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Ou
~ 

i, ii~ ,b I ~ 

,b eN 

Reagents and conditions: i) KF, DMF, rt, 3h; ii) 4-bromobenzonitrile, Pd(OAch, 

PPh3, 120°C, 20h. 

SiRj Yield 
SiMe2CI 37% 
SiMeCh 51% 
SiEtCh 70% 
SiCh 0% 

Figure 1.15: Chlorosilane cross-coupling 

Meo~ 

~SiEtCI2 
I, ii ~ h ~ 
Meo~~ 

l,b 

i, iii 
~ 

F 

Figure 1.16: Chlorosilane cross-coupling examples 

Reagents and conditions: i) KF, DMF, rt, 3h; ii) 4-bromofluorobenzene, Pd(OAc)2, 

PPh), 120°C, 20h, 91%; iii) 2-bromonitrobenzene, Pd(OAc)2, PPh3, 120°C, 20h, 92%. 

As with the fluoro analogues, dichloroalkylsilanes were the optimal coupling partners, 

and the trichloro analogue remained wholly inert. In the presence of Pd(O) and 

triisopropylphosphine, chlorosilanes activated by fluoride are also able to react with 

aryl chlorides.
53 

The unreactivity seen for trifluorosilanes was not observed for the 

analogous trichlorosilanes. 
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MeO'O,-=::: Meo%= 
/. ---~ I '-=::: // SiR

3 
~ CN 

Reagents and conditions: i) 4-chlorobenzonitrile, (i-Pr3PhPdCh, KF, DMF, 150°C, 

20h. 

SiMe2CI 93% 
SiEtCI2 95% 
SiCh 73% 

Figure 1.17: Reactivity of chlorosilane cross-couplings with aryl chlorides 

n-Pr "" 
~ 

F 

n-pr""Ou 
I'-=::: 

~ SiEtCI2 
F 

0 
ii n-BU~ ~ 

I~ 

Figure 1.18: Examples of chlorosilane cross-couplings with aryl chlorides 

Reagents and conditions: i) 3,4-difluorochlorobenzene, (i-Pr3PhPdCh, KF, DMF, 

150°C, 20h, 64%; ii) 3-chloroacetophenone, (i-Pr3P)2PdCh, KF, DMF, 150°C, 20h, 

83%. 

Hydroxide was also found to be a superior activator to fluoride for chlorosilane cross-
54 

couplings. 
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Oul I, II ~ 
~ N I ~ 

hOMe 

Reagents and conditions: i) solvent, activator, rt 3h ii) 2-bromopyridine, Pd(OAc)2, 

ligand. 

Activator 
KF 

NaOH 

Ligand Solvent 
DMF 
THF 

Temperature Time 
18h 
39h 

Yield 
23% 
69% 

Figure 1.19: Comparison ofKF and NaOH activators for chlorosilane cross­

couplings 

Hiyama demonstrated the practicality of the chemistry that he had developed in the 

synthesis of an artificial HMG-CoA reductase inhibitor NK-I 04, which is indicated in 

the regulation of cholesterol biosynthesis. The key E-alkenyl chlorodimethylsilane 

cross-coupling substrate was prepared by hydrosilylation of a terminal alkyne.
55

,56 
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F 

iii .. .. 

NK-104 0 

Figure 1.20: Synthesis ofNK-104 via a silyl cross-coupling reaction 

Reagents and conditions: i) Me2CISiH, (t-BU)3P'Pt(DVDS), rt, Ih; ii) APC dimer, 

aryl iodide, TBAF, THF, 60°C, 80% over 2 steps; iii) TFA, CH2Ch, rt, 16h, 67%, 

98%ee. 

Hiyama also prepared 5 '-substituted pyrimidine nucleosides with potential antitumour 

and antiviral activity using an E-alkenyl methyldifluorosilane cross-coupling 
57 

protocol. 

Reagents and conditions: i) APC dimer, TBAF, THF, 60°C 

It 1rield 
Phenyl 64% 
n-C6H13 60% 

Figure 1.21: Cross-coupling with iodopyrimidine nucleosides 
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More recently, aryl ethyldifluorosilanes have also been shown to react with Wang 
. . 58,59 

resin-bound aryl IOdides. 

_____ uo 
F2EtSi-Q-R 

° 

Reagents and conditions: i) Pd(OAc)2, P(2-furylh KF, DMF, 120°C, 30h. 

R 
n-Butyl 

Methoxy 

Conversion(a) 
100% 
100% 

(a) Conversion estimated by 1 H 
NMR of cleaved coupled 
product 

Figure 1.22: Cross-coupling with resin bound aryl iodides 

R 

Halosilanes are generally synthesised either by hydrosilylation of alkynes with 

chloroalkylsilyl hydrides to form alkenylsilanes (e.g. figure 1.20), or by the action of 

an aryl-metal on an appropriate silyl chloride electrophile.
52 

Conversion of silyl 

chlorides to fluorides is generally achieved by the action of toxic and harmful 
60 61 

fluorinating reagents such as SbF 3 or CuF2. 

1.3.2 Cross-coypling of sjloxanes 

In 1989 Tamao disclosed that alkenylsiloxanes were also competent partners for 

cross-coupling with aryl iodides. Siloxanes offer advantages over halosilanes as they 

are easier to handle by virtue of being less Lewis acidic. Both monoalkoxy- and 

dialkoxys ilanes coupled in high yield with l-iodonaphthalene using allyl palladium 

chloride dimer as catalyst, triethylphosphite as ligand and TBAF as fluoride source. 

Trialkoxysilanes coupled in poorer yields, possibly due to a tendency to form 

unreactive hexavalent coordinatively saturated species under the coupling 
62 

conditions. 
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n-Bu 

~ n-Bu 

Reagents and conditions: i) l-iodonaphthalene, APC dimer, P(OEt)3, TBAF, THF, 

50°C. 

SiR3 Yield 
SiMe2(OEt) 95% 
SiMe(OEt)2 96% 

Si(OEt)3 54% 

Figure 1.23: Reactivity of alkenyl siloxanes 

Tamao also reported the intramolecular hydrosilylation of a homopropargylic alcohol 

followed by cross-coupling to give trisubstituted homoallylic alcohols.
62 

Figure 1.24: Hydrosilylation cross-coupling protocol 

Reagents and conditions: i) (HMe2Si)2NH, H2PtCk6H20, CH2Ch, rt; ii) E-2-

bromostyrene, APC dimer, P(OEth, TBAF, THF, 50°C; 42% over two steps. 

This type of coupling was applied to the formal synthesis of the antileukaemic 
63 

substance nitidine chloride. 
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MeOyyl 

M=»eo OMe 4, 
MeO C02Me 

I ~ 0) --------=~-.. MeO 

(EtO}Me
2
Si ~ b 0 

o 

J 
MeO 

MeO .. .. 
MeO 

nitidine chloride 
Figure 1.25: Synthesis of nitidine chloride via a siloxane cross-coupling protocol 

Reagents and conditions: i) aryl iodide, APC dimer, P(OEth, TBAF, THF, 60°C; 

76%. 

Shibata was the first to investigate aryl trimethoxysilanes as coupling partners with 

aryl bromides for the synthesis of substituted biaryls. Representative of a large 

number of biaryls prepared in this manner was 4-(trans-4-n-propylcyclohexyl)-3',4'-

difluorobiphenyl which is used in active matrix liquid crystal displays.64 

n-pr/,·,Ou 

I~ 
b Si(OMe}3 

n-Pr I •• , 

F 
.. 

F 

Figure 1.26: Aryl siloxane cross-coupling 

Reagents and conditions: i) 3,4-difluorobromobenzene, Pd(OAch, PPh3, TBAF, 

toluene, 110°C, 90%. 

Subsequently, DeShong expanded the scope of this type of cross-coupling yet further 

to encompass efficient coupling with both electron deficient and electron rich aryl 
65·67 

bromides and iodides. 
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Reagents and conditions: i) 4-iodotoluene, Pd(dba)2, TBAF, DMF, 85°C. 

R Yield 
Vinyl 63% 

Phenyl 90% 
Allyl 60% 

Figure 1.27: DeShong's cross-coupling of organotrimethoxysilanes 

Reagents and conditions: i) aryl iodide, Pd(dba)2, TBAF, DMF, 85°C. 

Si(OR13 Aryl iodide Yield 
Si(OMe)J p-Acetyl 58% 
Si(OMe)3 p-Anisyl 54% 

Si(OCH2CF3)3 p-Tolyl 97% 
Si(OCH2CF3)J p-Anisyl 77% 

Figure 1.28: DeShong's cross-coupling of phenyl trialkoxysilanes with various 

aryl iodides 

DeShong's initial cross-coupling conditions were only reactive when using aryl 

iodides, and he later reported an improved catalytic system, which could even couple 

aryl chlorides and aryl trisiloxanes when using Buchwald's 2-

(dicyclohexylphosphino )biphenylligand.
68 
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Xv I R 
.& 

Ph

V --.. I R 
.& 

Reagents and conditions: i) Ph-Si(OMe)3, Pd(OAch, ligand, TBAF, DMF, 85°C. 

R Halide Ligand Yield 
p-Acetopheny I Br PPh3 86% 

p-Tolyl Br PPh3 82% 
p-Anisyl Br PPh3 74% 
2-Pyridyl Br PPh3 76% 
2-Thienyl Br PPh3 64% 

p-Acetophenyl CI PPh3 29% 
p-Acetophenyl CI P(Cyh(o-biphenyl) 47% 

p-Tolyl CI P(CYh(o-biphenyl) 63% 
e-Anis~l CI P{C~h{o-bil2hen~Q 71% 

Figure 1.29: Improved siloxane cross-couplings 

Nolan has also demonstrated that aryl chlorides and bromides are appropriate 

coupling partners when nucleophilic imidazolium carbenes are employed as the 
69 

ligand. 

Xv I R 
.& 

Ph

V --.. I R 
.& 

Reagents and conditions: i) Ph-Si(OMe)3, Pd(OAc)2, IPr'HCI, TBAF, 1,4-

dioxaneffHF,80°C. 

R Halide Time Yield 
p-Tolyl Br 6h 93% 

p-Acetopheny I Br Ih 100% 
2-Pyridyl Br 7h 81% 
p-Anisyl CI 17h 19% 
p-Tolyl CI 4h 29% 

p-Acetophenyl CI 3h 100% 
e-C~ano CI 2h 100% 

Figure 1.30: Siloxane cross-coupling with imidazolium carbene co-catalyst 

Most recently, Fu has shown that aryl trisiloxanes can undergo cross-coupling with 

alkyl bromides using PdBr21P(t-Bu)2Me as catalyst and TBAF as fluoride source.
70 
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O Si(OMe)3 0 
"" • I "" I --< -..:..-- h 

,./ R' 

Reagents and conditions: i} alkyl bromide, PdBr2, P(t-BU}2Me, TBAF, rt. 

Alkyl bromide Yield 

/"0 
<... I 71% 
O~Br 

o 
llr ,~ 79% 

EtO' 'M4 'Br 

o 

rN~Br 73% OJ 
Figure 1.31: Alkylation of aryl siloxanes 

Denmark has demonstrated that commercially available vinylpolysiloxane can be 

cross-coupled with aryl and alkenyl halides.
7

! Polysiloxanes are attractive coupling 

partners from an industrial perspective as several polyalkenylsiloxanes are 

inexpensive items of commerce. 
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Reagents and conditions: i) aryl iodide, Pd(dbah, TBAF, THF, rt. 

Aryl iodide Yield 
p-Acetophenyl 88% 

p-Anisyl(a) 63% 
m-Nitro 87% 

m-Benzyl alcohol 59% 
o-Methyl benzoate 83% 

I-Naphthyl 64% 

(aJ AsPh3 added 

Figure 1.32: Vinylation of aryl iodides using polysiloxanes 

72 73,74 
DeShong and Masuda have demonstrated that aryl and alkenyl trisiloxane cross-

coupling substrates can be readily prepared from commercial trialkoxysilanes via 

palladium catalysed coupling with aryl halides. One drawback with this is that the 

reaction usually works poorly for electron deficient aryl substrates. Masuda has also 

recently shown [Rh( cod)(MeCN)2]BF 4 to be effective for the coupling of electron 

. d' h '1 75 deficient aryl halIdes an tnet OXYSI anes. 

Denmark has explored the synthetic utility of siloxane-based cross-coupling as a 

powerful method for the preparation of stereodefined trisubstituted alkenes from 
76-78 78,79 

propargylic alcohols via intramolecular syn and anti hydrosilylation protocols. 
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i-Pr 
i-Pr'$i_O 

H ) 

. P i-Pr 
1- r, I. 

~ r0 

Introduction to Cross-coupling 

II '=boH 
~ f ~ 

- R 

Reagents and conditions: i) H2PtCk6H20, CH2Ch, 83%; ii) aryl iodide, Pd(dbah, 

TBAF, THF. 

Aryl iodide Temperature Yield 
Phenyl rt 88% 

p-Anisyl rt 72% 
p-Acetophenyl rt 70% 

m-Benzyl alcohol rt 81% 
o-Anisyl 35°C 74% 

p-Ethyl benzoate 45°C 86% 

Figure 1.33: Intramolecular syn-hydrosilylation/cross-coupling 

i-Pr 
i-Pr'$i_O 

H ) 
i-Pr ,i-Pr II ~OH 

.. n-Bu~Si..., n Bu 
V--·~- f~ 

- R 

Reagents and conditions: i) [(C6H6)RuChh. CH2Ch, 40°C, 86%; ii) aryl iodide, 

Pd(dba)2' TBAF, THF. 

Aryl iodide Temperature Yield 
Phenyl 45°C 65% 

p-Anisyl rt 60% 
p-Acetopheny I rt 66% 

m-Benzyl alcohol rt 59% 
o-Anisyl rt 68% 

p-Ethyl benzoate 40°C 72% 

Figure 1.34: Intramolecular anti-hydrosilylation/cross-coupling 

In addition to hydrosilylation, it is also possible to carry out formylsilylation with 

homopropargylic alcohols. Cross-coupling of the resulting siloxanes gives highly 
80 

substituted a,~-unsaturated aldehydes. Interestingly, cross-coupling of this type of 

electron deficient alkenyl siloxane requires the use of copper iodide and a hydrosilane 

as co-catalysts. 
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R 

i-Pr 
i-Pr'Si_O 

H ) 
.. 

. P i-Pr 1- r I 0==xJ 
R 

Introduction to Cross-coupling 

Ii ~OH .. 

Reagents and conditions: i) [Rh(t-BuCN)4][CO(CO)4], CO 150psi, toluene, 70°C, 

72% for both R = Hand R = Me; ii) aryl iodide, APC dimer, CuI, KF·2H20, 

methylhydrocyclosiloxane, DMF, rt. 

R i) Yield Aryl iodide ii) Yield 
H 72% Phenyl 93% 
H p-Anisyl 87% 
H p-Acetophenyl 91% 
H _g--:T()lyl(a) 79% ._- --.----------.~ 

Me 72% p-Acetophenyl 83% 

(a) Increased quantities ofsiloxane and KF2H]O 
required 

Figure 1.35 SHylformylation and cross-coupling 

Cyclic alkenyl siloxanes can also be synthesised using ring closing metathesis.
81 

This 

approach has been used to synthesise medium sized rings containing 1,3-cis-cis 

82 
dienes, 
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\/ \/ 
I O,Si~ 1~'Si 
L, -.r ,1r ,~ ---I"~ I 
~MmMn~ ~ m n 

Reagents and conditions: i) Schrock's molybdenum catalyst, benzene, rt; ii) APC 

dimer, TBAF, THF, rt, 45-75min. 

m,n Ring size RCM:yield Cross-coul!ling :yield 
1,1 8 83% 60%(a) 

2,1 9 81% 70% 
3,1 10 82% 63% 
4,1 11 81% 55% 
5,1 12 83% 72% 
2,2 10 80% 71% 

(a) J: J mixture of 7 and 8 membered rings 

Figure 1.36: ReM/cross-coupling formation of medium sized cyclic 1,3-dienes 

Formation of the cyclic octadiene (m,n = 1,1) did not proceed smoothly, and the 7-

membered cine rearrangement product was also observed in addition to the desired 

cis-cis 8 membered diene. 

This protocol was also applied to the total synthesis of the antifeedant natural product 
83 

(+ )-brasilenyne. 
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\/ \/ 

7°~ -__ a c;ro~ 
OPMB OPMB 

.. .. .. CI ii 

PMBO 
(+ )-brasilenyne 

Figure 1.37 Synthesis of (+)-brasilenyne via ReM/cross-coupling protocol 

Reagents and conditions: i) Schrock's molybdenum catalyst, benzene, rt, 92%; ii) 

APe dimer, TBAF, benzene, 60°C, 61 %. 

1.3.3 $ilatranes 

The coupling of siloxanes with aryl triflates is an inefficient reaction, usually 

resulting in hydrolysis of the triflate rather than oxidative addition. In an attempt to 

address this limitation DeShong has utilised silatranes as coupling partners with aryl 

triflates.
84 

Unlike Vedejs' carbastannatrane (figure 1.6), or Kosugi's carbagermatrane 

(figure 1.66), DeShong found that silatrane was not sufficiently hypervalent to cross­

couple and required the presence of intermolecular fluoride for a successful reaction 

to take place (cf Faller's germatrane, figure 1.68). 
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Reagents and conditions: i) aryl triflate, TBAF'20H20, Pd(dbah, P(CY)2(o-biphenyl). 

THF,60°C, 12h; ii) aryl halide, TBAF, Pd(OAch, PPh3, THF, 60°C. 

(Pseudo )halide 
OTf 
OTf 
OTf 
OTf 
Br 
Br 
I 

R 
p-Anisyl 
o-Anisyl 
Phenyl 
p-Tolyl 

p-Acetopheny I 
p-Anisyl 

p-Acetophenyl 

Yield 
90% 
90% 
75% 
87% 
71% 
73% 
80% 

Figure 1.38: DeShong's silatrane cross-couplings 

The use of TBAF with 20 equivalents of water is required to avoid hydrolysis of the 

triflate. The use of silatranes is advantageous when coupling triflates as the alkoxide 

leaving group expelled as a result of the attack of fluoride at silicon remains tethered 

to the silicon centre and is less available to hydrolyse the triflate. 

1.3.4 $ilacyclobutanes (siletanes): 

During the mid 1990's Denmark's lab reported on the enhanced Lewis acidity of 

silacycJobutanes relative to simple trialkylsilanes in Mukaiyama-type aldol addition 

85,86 Th' h 'b d h . I . fi reactions. IS en ancement was attn ute to t e stram re ease on gomg rom a 

tetra- to a penta-coordinate species. 
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qilR + Nu­
R 

Tetracoordinate 
Ideally tetrahedral 

C-Si-C ",90°, ideally 109° 

Relief of 
Baeyer 
strain 

• 

Introduction to Cross-coupling 

Pentacoordinate 
Ideally trigonal bipyramidal 

C-Si-C ",goo, ideally 90° 

Figure 1.39: Strain release Lewis acidity 

In 1999 Denmark, in pursuit of reactive silanes that would be more versatile than 

halosilanes and siloxanes, reported the successful cross-coupling of cis- and trans-

alkenyl methylsilacyclobutanes with aryl iodides.
87

,88 The reactions worked well for 

both electron deficient and electron rich aryl iodides and proceeded with almost 

complete retention of configuration for substituted alkenes. E­

alkenylsilacyclobutanes were synthesised via reduction of an alkyne with DIBAL, 

followed by quenching with l-chloro-l-methylsilacyclobutane. The Z-alkene isomers 

were prepared by reduction of the corresponding I-alkynyl-l-methylsilacyclobutane 
87 

with DIBAL. 

Reagents and conditions: i) aryl iodide, Pd(dba)2, TBAF, THF, rt. 

Arylsilane: R 
E-Hept-l-enyl 
Z-Hept-l-enyl 

Vinyl 
2-Propenyl 

Aryl Iodide: R' 
p-Acetophenyl 
p-Acetophenyl 
p-Acetopheny I 
p-Acetophenyl 

Yield (%) 
84 
88 
85 
89 

Product E/Z ratio 
99.7/0.3 
2.0/98.0 

Figure 1.40 Silacyclobutane cross-coupling 

Although methylsilacyclobutanes proved to be too unreactive to effectively transfer 

aryl groups, the analogous aryl halosilacyclobutanes proved to be sufficiently 

activated to allow smooth formation of biaryls. 89 
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Reagents and conditions: i) aryl iodide, APC dimer, P(t-Bu)J, TBAF, THF, 65°C. 

Arylsilane: R Aryl Iodide: R' Yield {%} 
p-Anisyl Phenyl 91% 
p-Anisyl p-Acetopheny I 73% 
p-Anisyl I-Naphthyl 85% 
p-Anisyl m-Nitro O%a 

p-Anisyl o-Tolyl 89% 
p-Anisyl m-Pyridyl 71% 
o-Tolyl m-Tolyl 76% 
o-Tol~1 o-Nitro 77% 

Figure 1.41 Arylsilacyclobutane cross-coupling 

ArylchlorosilacycIobutanes were synthesised from the reaction of 

dichlorosilacycIobutane with the appropriate organometallic reagent. Conversion of 
89 

the chlorides to aryltluorosilacycIobutanes was accomplished with CUF2. 

1.3.5 Silanols 

The use of silanols as coupling reagents was first demonstrated by Hiyama in 1999 

when cross-coupling aryl monosilanols with aryl iodides using silver(1) oxide as an 
• 90 

actIvator. 
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\/ ROvI R.~Si-OH--..::::-'" -...:::: 
'V I ~ R' 

Reagents and conditions: i) aryl iodide, Pd(PPh3)4, Ag20, THF, 60°C. 

Arylsilanol: R 
p-Anisyl 
p-Anisyl 
p-Anisyl 

p-Trifluoromethyl 
o-Tolyl 

Aryl iodide: R' 
Phenyl 
o-Tolyl 

p-Acetophenyl 
p-Anisyl 
p-Anisyl 

Yield (%) 
80% 
67% 
50% 
84% 
30% 

Figure 1.42: Hiyama's cross-coupling of arylmonosilanols with Ag20 activator 

Hiyama later demonstrated that di- and trisilanols could also couple in good yields 

and under milder reaction conditions or shorter reaction times.
91 

In these further 

studies Hiyama showed that the silver(I) oxide activator underwent chemical change 

and was converted to silver(l) iodide during the course of the reaction. This indicated 

that the silver salt was not only activating the silanol but was also interacting with the 

arylpalladium(II) iodide intermediate. The unreactivity of trimethylsilane and 

pentamethyldisiloxane analogues was suggested to implicate the hydroxy group(s) as 

also having a crucial role in the reaction mechanism. 
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Reagents and conditions: i) aryl iodide, Pd(PPh3)4, Ag20, THF, 60°C. 

Arylsilane SiRJ Aryl iodide Time {h} Yield 
p-Anisyl SiMe3 Phenyl 36 0% 
p-Anisyl SiMe20SiMe3 Phenyl 36 4% 
p-Anisyl SiMe20H Phenyl 36 80% 
p-Anisyl SiEt(OH)2 Phenyl 12 95% 
Phenyl SiEt(OH)2 p-Anisyl 12 95% 
Phen~l Si{OHh(a) E-Anis~l 12 83% 

(aJ Silanetriol most likely present as an un purified mixture of 
trisiloxanes 

Figure 1.43: Cross-coupling of arylsilanols 

In 2000 Denmark carried out similar reactions coupling alkenyl monosilanols with 
9293 

aryl iodides in excellent yields with little isomerisation of the alkene geometry. . 

's! _1--.... ~~ R 
n-C5Hll~ I.OH ~ n-C H ~ 5 11 

Reagents and conditions: i) aryl iodide. Pd(dba)2. TBAF, THF. rt. 

Alkene geometry Aryl iodide Time (min) Yield E/Zratio 
E Phenyl 10 91% 97.8/2.2 
Z Phenyl 10 90% 2.7197.3 
E 2-Thienyl 180 83% 95.7/4.3 
Z 2-Thienyl 180 81% 2.5/97.5 
E p-Acetopheny I 10 93% 96.5/3.5 
Z p-Acetophenyl 10 92% 4.8/95.2 
E p-Anisyl 10 95% 97.2/2.8 
Z E-Anis~l 10 94% 2.6197.4 

Figure 1.44:Alkenyl silanol cross-coupling 

Denmark also demonstrated the coupling of a-alkoxyalkenylsilanols in the presence 

94 
ofTBAF. 
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Reagents and conditions: i) aryl iodide, APC dimer, TBAF, THF, rt. 

R Time {min) Yield {%) 
p-Ethyl benzoate 10 84% 

o-Methyl benzoate 240 92% 
o-Anisyl 10 74% 

m-CH20Ac 20 87% 

Figure 1.45: Cross-coupling of a-alkoxyalkenylsilanols 

AlkynyJ monosilanols were shown to be competent substrates for this type of cross-
95 

coupling. 

Ph-==--SiMepH --... Ph < ) 
Figure 1.46: Alkynylsilanol cross-coupling 

Reagents and conditions: 4-iodotoluene, Pd(PPh3)4, TBAF, THF, 60°C, 99%. 

It was at this point in time that detailed mechanistic work by Denmark revealed an 

unforeseen commonality between the silacyclobutane, siloxane and silanol based 

coupling protocols: they all react via a common intermediate in the presence ofTBAF 

in THFIH20. Using careful 29Si and 19F NMR analysis this intermediate was 

identified as being a silanol with a hydrogen-bonded fluoride adduct.
96 

The fact that 

the rate of these reactions is second order in regard to the silanol concentration led 

Denmark to suggest that this intermediate probably dimerises prior to transfer of the 
• 8S 

alkenyl group to palladIUm. 
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I 
\ / ----1--. R~tSi"ORI ' 

R~Si.OH 

\ / \ / 
R~Si.O,Si~R 

F~ --·H 

R' = Me, n-Pr 

Introduction to Cross-coupling 

Figure 1.47: Reaction ofsilacyclobutanes, silanols and disiloxanes with TBAF 

Reagents and conditions: i) TBAF, H20, THF, rt. 

Following this intriguing discovery, Denmark went on to carry out alkenyl- and aryl 

silanol cross-couplings using bases as activators in place of fluoride. Sodium hydride, 

potassium trimethylsilanolate,97 and cesium carbonate
98 

were all shown to be viable 

alternatives to fluoride. These protocols are valuable synthetically because they allow 

cross-coupling to be carried out in complex molecules that are sensitive to fluoride 

ions, for example those containing certain silyl ether protecting groups. 

\/ 

n-C5H1~Si.OH 

Reagents and conditions: i) l-iodonaphthalene, Pd(dbah, activator, DME, 60°C. 

Activator 
MeLi 
NaH 
KH 

KOt-Bu 
KOSiMe3 

Time (min) 
1440 
60 
15 

180 
120 

Yield 
0% 
81% 
82% 
90% 
93% 

Figure 1.48:Alkenyl silanol cross-coupling 

Whereas fluoride most likely activates silanes via a hydrogen-bonded silanol-fluoride 

adduct leading to a pentavalent silicate species (vide infra), Denmark proposed that 

bases activate the silanol by forming a silanolate anion which, in addition to 

dimerising to form a hypervalent silicate, is also capable of coordinating to the 
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arylpalladium(II) halide, thereby rendering the rate determining transmetallation step 
85 

intramo lecular. 

R~I. 
SI,O / e I 

ljdAr~ 
R 

transmetallation 
R~PdArLn 

Figure 1.49: Proposed transmetallation mechanism for base mediated silanol 

cross-coupling 

Synthesis of silanols has generally been carried out by hydrolysis of the 

corresponding chlorosilanes,91 or by lithiation of an appropriate alkenyl or aryl halide 

followed by quenching with hexamethylcyclotrisiloxane.
92 

Denmark has recently 

described a much milder synthesis of arylmonosilanols via the palladium catalysed 

coupling of arylbromides with 1 ,2-diethoxy-l, 1 ,2,2-tetramethyldisilane, followed by 

mild hydrolysis using an AcOHINH40Ac buffer at pH 5.6.
99 

1.3.6 Safety-catch silanes 

The previously described work involving halosilanes, siloxanes and silanols has 

firmly established organosilane cross-coupling as a viable rival to Suzuki and Stille 

couplings for simple substrates. However, alkenyl- and aryl heterosilanes are both 

reactive and labile, even to atmospheric conditions, and as a result are difficult to 

handle; more so even than the corresponding boronic acids or esters. This makes 

them unsuitable for carrying through even relatively simple synthetic sequences and 

will limit their applicability to the total synthesis of complex, multifunctional organic 

molecules. Consequently, one of the most recent and significant developments in the 

organosilane cross-coupling arena has been the advent of "safety-catch" silanols. 

Safety-catch silanols are ideally stable to a wide range of reaction conditions, easy to 

handle and stable to moisture and chromatography, but possess a moiety that can be 
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selectively unmasked or "activated" under specific conditions to reveal a reactive 

silanol functionality. 

The requirements for a useful safety-catch silanol are similar to those for silane 

precursors for Fleming-Tamao oxidation (the fluoride promoted oxidation of 

alkylsilanes to alkyl alcohols by hydrogen peroxide) for which various ingenious 
100,101 

safety-catch strategies have already been devised. Indeed, the requirements 

placed on the silicon centre to allow Fleming-Tamao oxidation to proceed appear to 

be similar to those for cross-coupling; namely that a heteroatom substituent on silicon 

is necessary for initial coordination of fluoride to give a pentavalent 

. d' 100, 101 A "fi d'f~ . h ~ h'l ~ FI . mterme late. sIgn! Icant I lerence IS t at salety-catc Sl anes lor emmg-

Tamao oxidation liberate alkylheteroatom-substituted silanes rather than alkenyl- or 

arylheteroatom-substituted silanes (e.g. silanols). This requirement either rules out or 

limits the scope of many of the Fleming-Tamao safety catch silanes for application in 

cross-coupling where frequently an aryl or alkenyl group is in fact selectively 

. . • •. 100,101 
removed from SIlIcon m preference to the alkyl group to be oXldlsed. 

/-~SiR2R' 'activation' (-~SiR20H 
Ar-Hal, ~, Pd(O) 

/-\-Ar 
\ I \ I '-_oJ '-_J cross-coupling '-_oJ 

SiR2R' SiR2X e OH 
'activation' F ,H20 2 

\A/ • 
\A/ 

• \A/ 
Fleming-Tamao 

X = heteroatom oxidation 
Safety-catch 
silanelsilanol 

Figure 1.50: Comparison of Fleming-Tamao oxidation requirements with silane 

cross-coupling requirements 

The methylsilacyc10butanes developed by Denmark (vide supra) can be considered to 

constitute the first safety-catch silanols described for cross-coupling. 

Methylsilacyclobutanes are, however, restricted to the transfer of simple alkenyl 

groups and the strain inherent in the four-membered ring makes them rather labile 
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compounds. More versatile examples of safety-catch silanols that have been 

subsequently described are: 

Si/yl Hydrides: These derivatives were first reported as viable cross-coupling 

substrates by Denmark in 2000. Silyl hydrides were shown to transfer u-

alkoxyalkenyl groups to aryl iodides in good yields using TBAF in THF.
94 

It was 

proposed that the hydrides were converted to silanols, in situ, by fluoride catalysed 

oxidative hydrolysis. Indeed, evolution of a gas was observed on mixing the hydrides 

with TBAF in THFIH20. Since silyl hydrides are generally stable to flash 

chromatography they are attractive coupling precursors. However, the scope and 

limitations of these derivatives as coupling partners has yet to be fully explored. 

Reagents and conditions: i) aryl iodide, TBAF, THF, rt; ii) IN HC!. 

a-Alkoxyvinl::1 silane Aryl iodide Time (min) H~drol~sed Yield 

U S1 
m-Ethyl benzoate 10 81% 

OBu 

~Sl p-Ethyl benzoate 10 89% 

OBu 

~SI o-Tolyl 30 83% 

OBu 

~Si p-Anisyl 10 Yes 94% 

OBu 

~Si o-Cyano 900 76% 

as; p-Acetophenyl 10 71% 

Figure 1.51: Cross-coupling reactivity of a-alkoxyvinyl silyl hydrides 
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2-Pyridylsilanes: In 2001 Yoshida utilised a dimethyl(2-pyridyl)silyl moiety to cross­

couple alkenyl groups with aryl- and heteroaryl iodides in the presence of 

TBAFIH20. IH NMR was used to monitor the reaction of 2-pyridylsilane with 

commercially available TBAF at rt in d8-THF. This revealed that the alkenyl 2-

pyridyl silane underwent selective nucleophilic ipso-desilylation to remove the 
102-\04 

pyridine ring and consequently form an alkenylsilanol in situ. The precursors 

were stereodefined trisubstituted alkenylsilanes, prepared by Heck-type coupling 

reactions of vinyldimethyl(2-pyridyl)silane with aryl iodides. During the Heck 

coupling the 2-pyridylsilyl group was proposed to coordinate to the palladium, 

thereby facilitating delivery of the alkenyl group for carbopalladation. This 

combination of Heck and cross-coupling chemistry allowed the synthesis of tri­

substituted alkenes, but could not access tetra-substituted alkenes. 

R ~~ ____ • R~I ';:::: Rill 

Y-:SiV ~'V 
R' / \ 

Reagents and conditions: i) Aryl iodide, PdCh(PhCN)2, TBAF, THF, 60°C. 

j 

R R R " Aryl iodide Yield 
n-Bu H H H 99% 

p-Tolyl H H p-Formyl 91% 
2-Thienyl H H p-Acetophenyl 100% 
m-Pyridyl H H o-Tolyl 97% 

Phenyl H Phenyl p-Acetophenyl 57% 
3-Thienyl H Phenyl p-Ethyl benzoate 71% 

Phenyl Phenyl H p-Acetophenyl 75% 
2-Thienyl Phenyl H m-Formyl 84% 

Phen:yl 3-Thien:yl H e-Eth:yl benzoate 100% 

Figure 1.52: Cross-coupling of alkenyl2-pyridyl sHanes 

2-Thienylsilanes: Hiyama has accessed alkenyldimethyl(2-thienyl)silanes via the 

stereoselective hydrosilylation of alkynes with dimethyl(2-thienyl)silane, and has 

observed that they can be selectively activated by TBAFIH20, again with IH NMR 

evidence for nucleophilic ipso-desilylation of the thienyl ring. IDS Alkenyl 

dimethylsilanol formation occurs under milder conditions than required when 
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employing the corresponding 2-pyridylsilanes. 2-Thienylsilanes have previously 

been employed as safety-catch silanes in the context of Fleming-Tamao 
100,101 

oxidation. 

\/ ____ R~I ~ 
R~SiUS -

~ h h CF 
3 

Reagents and conditions: i) aryl halide, Pd(OAch, TBAF, THF, rt. 

R Aryl halide Time Yield 
E-Hexyl p-Iodo trifluoromethyl Ih 100% 
E-Hexyl p-Iodo anisole 30min 97% 
E-Hexyl Iodo p-Ethyl benzoate 30min 94% 
E-Hexyl p-Bromo trifluoromethyl 5h 96% 
Z-Hexyl p-Iodo trifluoromethyl Ih 98% 

H p-Iodo trifluoromethyl 30min 90% 
Phenyl p-Iodo trifluoromethyl Ih 98% 

Trimeth~lsil~l ~-Iodo trifluorometh~l Ih 95% 

Figure 1.53: Cross-coupling of alkenyl2-thienyl sHanes 

2-Thienylsilanes and (3 ,5-bistrifluoromethy lphenyi)dimethy lsilanes have been 

• • 106,107 
employed in the synthesIs of poly(p-phenylenevmylene )s. 
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ii • 

n 

Reagents and conditions: i) RuHCl(CO)(PPh3)3, HSiMe2Ar, CH2Ch, rt, Ih; ii) APC 

dimer, TBAF'3H20, THF. 

Aryl 

2-Thienyl 

3,5-bistritluoromethylphenyl 

i) Yield 
75% 

[(£/£)/(£/Z)] >99/1 
89% 

[(£/£)/(£/Z)] =99/1 

ii) Yield 

99% 

99% 

5300 (1.62) 

6300 (2.30) 

Figure 1.54: Use of thienylsilanes and (3,5-bistrifluoromethylphenyl)silanes in 

cross-coupling 

The precise mechanism for the transformation with (3,5-

bistritluoromethylphenyl)dimethylsilanes is unclear, as Katayama presents no 

information relating to the intermediate formed. However it seems plausible that the 

3,5-bistritluoromethylphenyl group is masking a silano\. A further possibility is that 

it is also increasing the Lewis acidity of the silicon centre, thereby activating it 

towards the coordination of tluoride. 

Dimethylphenylsilanes: The dimethylphenylsilyl group is the prototypical safety­

catch silane for Fleming-Tamao oxidation, as introduced and popularised primarily by 

Fleming himself. 100,101 In this context alkyl dimethylphenylsilanes are readily 

prepared by a wide range of methods, they are stable to a wide variety of reaction 

conditions, and activation is usually achieved by electrophilic ipso-desilylation of the 

phenyl group using e.g. TFAlKHF2, HBF4·Et20, BF3'2AcOH, Br2, KBr/AcOOH, ICI, 
100,101 

Hg(OAc)2, or Hg(OTFA)2. 
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The dimethylphenyl group is also easily appended to alkenyl moieties and Anderson 

has shown that this group is a viable safety-catch silanol for cross-coupling of alkenyl 

groups. I 08 Electrophilic activation is not applicable in this context because the alkene 

would undergo ipso-desilylation in preference to the phenyl group. However, 

nucleophilic activation using potassium tert-butoxide in the presence of 18-crown-6 

was shown to display selectivity for ipso-desilylation of the phenyl ring, liberating the 

requisite alkenyl silanols exclusively. These silanols were found to cross-couple 

efficiently with iodobenzene under Denmark's conditions although, interestingly, the 

major products were those of cine substitution, suggestive of either a Heck-type 

. db' d' 108 mechanism or reactIOn via a P (O)-car ene mterme late. 

Ph~ ~ 
-/Si~1 ~ - ___ Phs r. 

V j"OH 
ii_Ph~ 

I iii ! 
Figure 1.55: Anderson's coupling of a phenyldimethylsilane 

Reagents and conditions: i) t-BuOK, 18-c-6, TBAF, undried THF, rt, 2h, 76%; ii) 

iodobenzene, Pd2(dba)3, TBAF, undried THF, rt, 30min, 89%; iii) t-BuOK, 18-c-6, 

TBAF, iodobenzene, Pd2(dba)3, undried THF, rt, 45min, 85%. 

The robust nature of the dimethylphenylsilyl moiety and the reasonably mild 

activation conditions make this approach very appealing from a synthetic standpoint. 

However, the scope of this type of safety-catch silanol remains to be delineated 

particularly with respect to the level of selectivity that can be achieved during 

activation when employing a more diverse set of alkenyl and aryl substrates. 

Dimethylbenzylsilanes: A very recently described safety-catch silane for cross­

coupling is the dimethylbenzyl group as introduced by Trost.10
9 

Dimethylbenzylsilyl 

substituted alkenes can be accessed via hydrosilylation of alkynes or a silyl-alkyne 

Alder ene reaction. 
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\/ x? RXSi'V'" Ph R I R' 
----~ I ~ 

R R R R 

Reagents and conditions: i) organiC iodide, Pd2(dba)rCHCh, TBAF, THF, O°C 

10min, rt <4h. 

a-Alkoxyvinyl silane 

C02Me 

~Sl 

~SI 
~n~ ..... SI 

6H IT 

~~ ..... SI 

6H IT 
SI 

~OPiv 
SI 

~OPiV 
SI 

~OPiV 

Aryl iodide 

Phenyl 

p-Acetophenyl 

m-Pyridyl 

Phenyl 

o-Tolyl 

p-Acetophenyl 

m-Cyano 

m-Anisyl 

Figure 1.56: Cross-coupling of benzylsilanes 

Yield 

97% 

89% 

78% 

65% 

95% 

91% 

91% 

92% 

60% 

The dimethylbenzylsilane appears to be the most reactive of the safety-catch silanes 

disclosed thus far, as it releases a silanol after just 10 minutes at O°C in the presence 
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of TBAF. This reactivity is neatly complemented by the stability of 

dimethylbenzylsilanes towards mild acids, bases, and buffered fluoride solutions.
109 

\/ 
Ph"'-../Si 

~C02Me 
OTBDPS 

.. 
\1 

Ph"'-../Si 

~C02Me 
OH 

Figure 1.57: Stability of benzylsilanes towards buffered fluoride 

Reagents and conditions: i) TBAF, AcOH, DMF aq, rt, 24h, 83%. 

Triallylsilanes: More recently still, Hiyama has shown the ability of aryltriallylsilanes 

I
. 110 

to undergo cross-coup mg. 

l,iI ROv-"::::: 
.. ,r/ -..::::: 

I R' 
.0 

Reagents and conditions: i) TBAF, DMSOIH20 (1011), rt, Ih; ii) aryl bromide, PdCh, 

PCY3,80°C. 

R R' Time Yield 
H p-Trifluoromethyl 3h 95% 
H p-Nitro 3h 87% 
H p-Anisyl 3h 92% 
H o-Biphenyl 3h 98% 
H I-Naphthalene 3h 96% 
H m-Benzothiophenyl 5h 93% 

p-Anisyl p-Ethyl benzoate lh 72% 
p-Trifluoromethyl p-Ethyl benzoate lh 49% 

o-Tol~1 e-Eth~1 benzoate lh 57% 

Figure 1.58: Cross-coupling of aryltriallylsilanes 

Aryldiallylmethylsilanes and arylallyldimethylsilanes do not undergo coupling under 

these conditions, although Hiyama has shown that phenylallyldimethylsilane is 

converted to a mixture of phenyldimethylsilanol and diphenyltetramethyldisiloxane 

by the action of TBAF in DMSOIH20. He has not been able to elucidate the product 
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obtained when phenyltriallylsilane is exposed to fluoride, although it seems likely that 

these couplings also proceed via a silanol or siloxane intermediate resulting from the 

cleavage of allyl groups by fluoride. 

1.4 Mechanism of organosilane cross=couplings 

The reactions of organosilanes and organogermanes with unsaturated (pseudo)halides, 

catalysed by Pd(O), are generally regarded as proceeding via a mechanism similar to 

that proposed for the Stille reaction of organostannanes (vide supra). 

For Stille cross-coupling of organostannanes, judicious choice of ligand/palladium 

source, solvent and temperature are generally sufficient to allow for an efficient 

catalytic process (although fluoride salts are sometimes added in specific 

circumstances, vide supra). For organosilanes and organogermanes, it is apparent 

from the foregoing survey that the inclusion of a nucleophilic activator such as 

fluoride is generally essential. Clearly, the additive further modulates the reactivity of 

the intermediates in the catalytic cycle, but a consensus has yet to emerge as to the 

relevance and relative importance of various mechanisms by which this modulation 

might be achieved. The following discussion focuses on the possible interactions of 

fluoride salts with the reactive intermediates that participate in the rate determining 

transmetallation step, i.e. the aryl Pd(II) halide species and the group 14 

organometallic species. As most available data pertains to organosilanes, the possible 

interactions are introduced in this context before briefly considering likely similarities 

and differences for organogermanes and germatrane-type reactants. 

1.4.1 Interactions of fluoride salts with the aryl PdUO halide 

intermediate 

Fluoride ions can participate in halide exchange with the initially formed aryl Pd(II) 

halide intermediate. As the result of the higher electronegativity of fluorine relative 

to the other halides, the resulting aryl Pd(II) fluoride might be expected to be more 

electrophilic at palladium and hence more reactive towards transmetallation. 

However, aryl Pd(II) fluorides have been reported to be rather inert relative to the 
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III 
corresponding iodides, bromides, and chlorides. In contrast, aryl Pd(lI) hydroxides 

are known to be highly active towards transmetallation, at least in Suzuki cross­

coupling of boronic acids, where their high reactivity has been suggested to accrue 

from their ability to coordinate to boronic acids, forming boronic "ate" complexes and 

d · h b II" I I 112,113 Th ' . . 'fi ren ermg t e su sequent transmeta atlOn In/ramo ecu ar. IS IS slgm Icant 

because most fluoride salts, such as TBAF, contain water of crystallisation and are 

extremely difficult to obtain and use in anhydrous form. Ligand exchange at 

palladium of the halide by hydroxide associated with the hydrated fluorides could 

occur under most of the conditions used for cross-coupling with these activators. 

L 
1 I 

R -Pd-X 
I 
L 

TBAF·H20 

~ 
TBAF + HX 

L 
1 I 

R -Pd-OH 
I 
L 

Figure 1.59: Proposed formation of aryl palladium(II) hydroxides 

This might allow a similar intramolecular transmetallation pathway as proposed for 

Suzuki reactions to operate. 

L 
1 I 

R -Pd-OH 
I 
L 

Suzuki cross-coupling 

BOH(OR)2 

~ 

Organosilane cross-coupling 

Figure 1.60: Potential commonality between cross-coupling transmetallation of 

organoboranes and organosilanes 
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In support of this hypothesis, Denmark has shown that water is a critical additive in 

fluoride promoted reactions of alkenylsilanols with perfluorobutylsulfonylbenzene 
114 

(phenyl nonaflate, PhONf). 

Reagents and conditions: i) phenyl nonaflate, PdCh, P{t-Bu)2{2-biphenyl), fluoride, 

solvent, rt. 

Fluoride Solvent Yield 
TBAF'3H20 1,4-dioxane 40% 
TBAF'4H20 1,4-dioxane 71% 
TBAF·6H20 l,4-dioxane 95% 
TBAF·8H2O l,4-dioxane 89% 

TBAF'IOH20 I A-dioxane 76% 
TMAF DMF 1% 

TMAF·4H20 DMF 95% 
TMAF·6H20 DMF 99% 
TMAF'8H20 DMF 83% 

Figure 1.61: Effect of water additive on cross-coupling 

Crucially, tetramethylammonium fluoride (TMAF), which can be obtained rigorously 

anhydrous, was shown to be ineffective for promotion of these cross-couplings in the 

absence ofwater.
114 

Denmark interpreted this as being due to competitive cleavage of 

the sulfonate by fluoride to give phenol in the absence of water. However, given that 

two equivalents of TMAF were employed and just 20% phenol was recovered after 

24h suggests that this may not be the only factor; no control experiments using aryl 

halides in place of the nonaflates were reported. 

1.4.2 Interactions of nucleophilic fluoride salts with 

oraanosilanes 

Coordination of a nucleophile such as fluoride or hydroxide to the tetrahedral silicon 

centre of an organosilane cross-coupling partner results in re-hybridisation to a 

trigonal bipyramidal pentavalent species. The coordination is favoured if electron 
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withdrawing substituents are already present on the silicon centre making it more 

electrophilic.
115 

The polyhalosilanes, siloxanes and silanols that constitute the most 

effective substrates for cross-coupling are clearly predicated towards this type of 

interaction. The most electron withdrawing ligands generally prefer to occupy apical 

positions, interconversion between sites occurring by Berry pseudorotation.
116 

Coordination of fluoride is particularly thermodynamically favourable because an 

. b d' fi d 117 extremely strong SI-F on IS orme . 

In anionic pentavalent complexes the negative charge is distributed over the axial 

nucleofuge centres a to the metal rather than being concentrated on the metal centre, 

thereby increasing the nucleophilicity of the ligands and the electrophilicity of the 

118-123 h' I' h d I" f h . b d 124 metal centre. T IS resu ts In en ance po ansatlon 0 t e key SI-C on, 

which, in the context of a catalytic cross-coupling cycle, would be expected to 

facilitate an associative transmetallation step. 

F 

RIII'~r:_R 
R"'I 

Nu 

Figure 1.62: Coordination of a nucleophile increases the positive charge on the 

metal centre and the negative charge on the a ligands 

The formation of a pentavalent complex enhances the rate of ligand exchange,120 and 

it is likely that many of the polyheterosubstituted silanes that are competent in 

fluoride-promoted cross-coupling reactions (e.g. trifluoro-, trichloro- and 

trialkoxysilanes) react via common pentavalent intermediates containing fluoride 

and/or hydroxide ligands (cf Denmark's silacyclobutanes and silanols).96 The fact 

that qualitative differences exist between the coupling profiles of the various substrate 

types most likely simply reflects the relative rates of formation and eventual 

concentrations of the active species. 
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This explanation of activation should also be applicable to the examples of Stille 

couplings enhanced by nucleophiles (cf Vedejs, Brown and Fu, vide supra). 

Of course, if transmetallation occurs by an associative pathway there must be 

coordinative unsaturation at the group 14 metal centre that participates. Pentavalent 

species can react via hexavalent intermediates, but hexavalent group 14 

organometallics will be unable to transmetallate without prior ligand dissociation. As 

indicated earlier in this discussion (section 1.3.1), this was the basis of Hiyama's 

proposal that trifluorosilanes were unreactive towards fluoride-promoted cross­

coupling with alkenyl and aryl halides due to the formation of hexavalent 
• • 41,45,125 

pentafluoroslhcates. 

It seems however, that more than hypervalency alone is needed to allow cross­

coupling to take place, and that the precise nature of the hypervalent species may also 

have a crucial effect on transmetallation. This is consistent with observations that 

Heck reactions of alkenyltrialkylsilanes can be promoted by fluoride under conditions 
126 

that do not allow cross-coupling. Heck reactions proceed via a catalytic cycle that 

does not involve transmetallation, but pentavalent silane intermediates would still be 

expected to accelerate the key C-C bond forming step involving alkene insertion into 

the Si-C bond by virtue of the enhanced dipole across this bond. Denmark's 

discovery that silanols are particularly reactive towards cross-coupling in the presence 

of fluoride and water may hold the key to the additional requirements for efficient 
96 

transmetallation. In addition to facilitating the coordination of fluoride to silicon by 

forming a H-bonded fluoride adduct, the silanol may also allow coordination of the 

group 14 organometallic to the palladium centre. This process has been suggested as 

an alternative entry to boronic "ate" complexes that can render the transmetallation 
•• 112,113,127 

step in Suzuki cross-couplmgs mtramolecular. 

- 56-



Chapter 1 Introduction to Cross-coupling 

L 
1 I 

R -Pd-X 
1 
L 

Suzuki cross-coupling 

L L 
1 I -L 1 I 

HX R -Pd-0 8 R -Pd-O 
~ L 'B,,·OR - 12 18 

- ~OR R -BIIOR 
R2 ~ 

8 OR 

R2SOH(ORh 
(3 

):iR2YO~ 
L 

1 I -L 1 I 
R -Pd-O R R -Pd-O 1 \ ' - 1 I R HX L 2 .... s1 ... R R2-Si: 

R 8'y 81 R 
Y 

Organosilane cross-coupling 
[Y = R or F] 

B(ORh08 

~ L 
1 I 

R -Pd-L 
12 

X 
R 

R2YSi08 

Figure 1.63: Proposed coordination of palladium by boronate or silicate 

This proposed mechanism of intramolecular transmetallation for silicon is supported 

by the observation that basic, non-nucleophilic activators are also able to promote 

cross-coupling via deprotonation of the silanol to form a silanolate anion that 

85 
activates a second silanol molecule intermolecularly. Of course, it is also plausible 

that the involvement of dimers or higher aggregates may also play an important role 

in the fluoride mediated pathways, but there is no strong evidence for this so far. 

Pre-coordination of the organometallic to palladium has also been proposed for the 

transfer of the (2-pyridyldimethylsilyl)methyl group from tin to palladium. The 

(trimethylsilyl)methyl group is known to be highly resistant to Stille coupling transfer 

and makes a better dummy ligand than even alkyl groups. ltami has reported that 

replacing a methyl group on silicon with a 2-pyridyl ring makes the system highly 

103,128 
reactive to transfer. 
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o 

\/ ~I "=: -erR Si~ I -..;: 
~ 

Reagents and conditions: i) 4-iodoacetophenone, PdCh(MeCNh, P(C6Fs)3, THF, 

50°C, 24h. 

R Yield 
N 84% 

CH 
N'HCl 

Figure 1.64: Coordination driven silylmethyl transfer in Stille coupling 

The importance of the pyridine nitrogen in coordination is underlined by the failure of 

the phenyl and protonated pyridyl analogues to undergo reaction. Furthermore, 119Sn 

NMR analysis of the starting stannane revealed that there is no evidence for 

coordination of tin by nitrogen. Following reaction of the starting stannane with 

PdCh(MeCN)2 IH NMR analysis of the pyridine protons revealed coordination of 

pyridine nitrogen to palladium. 

Figure 1.65: Coordination of 2-pyridyldimethylsilyl to palladium 

Reagents and conditions: i) PdCh(MeCNh, PPh3, THF, 40°C, 69%. 

Based on this evidence, it is proposed that the dramatic increase in reactivity of the 

pyridylsiJyl group compared to the phenylsiJyl group is due to the coordination of 

pyridine to palladium prior to transmetallation. 
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1.5 Qrganogermanjum cross-coupling reactions 

1.5.1 Carbagermatraoes 

Intramolecular coordination of a trans-annular nitrogen atom to a metal centre is 

known to activate group 14 metals (vide supra), and Kosugi has used a pentavalent 
129 

carbagermatrane to successfully transfer alkynyl, alkenyl, allyl and aryl groups. 

Reagents and conditions: i) 4-bromotoluene, Pd2(dba)3.CHCh, P(o-Tol)3, THF, 

sealed tube, 120°C, 24h. 

R Group Yield 
Butyl 8% 

Allyl (a) 88% (77%ib) 

Phenyl 95% (85%ib
) 

Vinyl 82% 
l-Ethoxyvinyl 59% 
PhenylethynyI 67% 

(a) PPh3 used as ligand (b) 
Isolated yields in brackets 

Figure 1.66: Kosugi's carbagermatrane cross-couplings 

The trans-annular relationship between the amine and the metal allows for strong 

coordination of the germanium centre by the nitrogen lone pair, rendering it 

pentavalent, as evidenced by various spectroscopic and structural observations, 

including the lengthening of the Ge-C bond linking the group to be cross-coupled. 130 

The pentavalent nature of the carbagermatrane is sufficient activation for these 

couplings to proceed in good yield without the addition of any intermolecular fluoride 

or base. 

As coupling partners carbagermatranes are advantageous due to their stability towards 
130 

a range of reaction conditions. Like carbastannatranes, however, their utility is 

currently compromised by the lack of an efficient method for their synthesis. Kosugi 
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adapted Vedejs' carbastannatrane synthesis involving hydrozirconation of 

triallylamine using Schwartz's reagent, transmetallation with germanium(lV) chloride 

(cf tin(lV) chloride), and then reaction of the resulting l-chloro-2,8,9-

. h G . d l·th· 20,129 tricarbagermatrane Wit ngnar or organo I lUm reagents. 

l,iI. C;~ 
CI 

III • C;~ 
R 

Reagents and conditions: i) Cp2Zr(H)Cl, LiAIH4, THF, rt, 3h; ii) GeCI4, -78°C ~ rt 

4h, 89%; iii) R-M (M = Mg or Li), THF, reflux. 

RGroue Yield 
Butyl 74% 
Allyl 82% 

Phenyl 97% 
Vinyl 98% 

l-Ethoxyvinyl 86% 
Phen~leth~n~l 11% 

Figure 1.67: Synthesis of carbagermatranes 

However, this route is heavily compromised by the high cost of Schwartz's reagent 

and difficulty of scale-up due to the high dilution conditions required. 131 Moreover, 
132 

the reproducibility of this route has since been questioned in the literature, and also 

h . h· 133 k by another researc er Wit In our own group. In 2000, a Merc process group 

published an evaluation of known routes to l-chloro-2,8,9-tricarbastannatrane which 

culminated in the development of a disproportionation reaction between 

Cl fi d b
· . 131,134 

N(CH2CH2CH2SnBu3)3 and Sn 4 at 100°C ollowe y an aCldibase extractIon. 

The potential of an analogous approach to l-chloro-2,8,9-tricarbagermatrane 

preparation has not been assessed, but even if successful would be unattractive from 

the perspective of atom economy. 
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1.5.2 Germatranes 

In order to overcome the drawbacks of using carbagermatranes in cross-coupling 

chemistry Faller investigated the use of germatranes, which can be synthesised from 

the corresponding trichlorogermanes and triethanolamine in the presence of base. 

This work was published in 2002 during the course of our own studies. \32 

Reagents and conditions: i) 4-iodotoluene, Pd(dbah, AsPh3, TBAF, THF, 70°C. 

R Group Yield 
Phenyl 43% 

E-Styryl 64% 
Z-Styryl (E/Z = 22/78) 73% (E/Z = 28/72) 

Phenylethynyl(a) 91 % 
(a) P(t-Buh(o-biphenyl) used as ligand in place 
ofAsPh3 

Figure 1.68: Faller's germatrane cross-couplings 

Unlike Kosugi's carbagermatranes, the presence of fluoride is essential for 

germatranes to react, perhaps suggesting that the alkoxy substituents on germanium 

are not permanently bound to the metal centre. The cross-coupling yields are also 

poorer than those reported by Kosugi, and it seems that alkenylgermatranes may also 

participate in Heck reactions as all the cis alkenylgermatranes gave small or increased 

amounts of trans product in addition to the desired cis product. 

In the context of their synthetic utility, germatranes are less attractive than 

carbagermatranes as they are unstable towards chromatography, and require 

trichloroorganogermanes as a starting material. In our hands, trichloroarylgermanes, 

although known, have been highly problematic to synthesise (vide infra). 
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1.5.3 Trjethoxygermanes 

Faller also carried out cross-couplings with phenyl- and 

phenylethynyl(triethoxy)germane as control experiments to determine the importance 

of coordination by the germatrane's trans-annular nitrogen in facilitating cross-
132 

coupling. 

Reagents and conditions: i) 4-iodotoluene, Pd(dba)2, ligand, TBAF, THF, 70°C. 

RGroup 
Phenyl 

Pheny lethyny I 

Ligand Yield 
AsPh3 25% 

P(t-BuMo-biphenyl) 30% 

Germatrane Yield 
43% 
91% 

Figure 1.69: Faller's triethoxygermane cross-couplings 

It can be seen that in both cases the internal coordination present in the germatrane 

offers significantly increased reactivity. 

1.5.4 Trjfyrylarylgermanes 

Oshima has developed trifurylgermane as a compound capable of carrying out a 

palladium catalysed germylation of aryl halides to give trifurylarylgermanes. Again, 

this work was published in the summer of 2002 during the course of our own 
135 

studies. 

Figure 1.70: Oshima's trifurylarylgermane synthesis 

Reagents and conditions: i) p-iodoanisole, Pd(OAc)2, dppf, CS2C03, DMF, rt, 1.5h, 

83%. 
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Trifurylarylgermanes are reactive coupling partners for a germy I cross-coupling 

reaction in the presence of fluoride, thus allowing a cross-coupling reaction using two 

h
. 1~ 

aryl halides as t e orgamc components. 

R' 

i, ii .. 

R 

Reagents and conditions: i) TBAF (4eq, l.OM in THFIH20), NMP, rt, 10min; ii) aryl 

halide, Pd2(dba)3·CHCh, P(2-furyl)3, lOO°C, 6.5h. 

R R' Halide Yield 
p-Anisyl Phenyl Iodide 90% 
p-Anisyl Phenyl Bromide 100% 
p-Anisyl m-Trifluoromethyl Bromide 80% 
p-Anisyl I-Napthyl Iodide 70% 
p-Anisyl m-Anisyl Iodide 59% 
m-Anisyl Phenyl Iodide 59% 
m-Anisyl m-Trifluoromethyl Bromide 64% 
m-Anisyl I-Napthyl Iodide 65% 
Phenyl m-Trifluoromethyl Bromide 64% 
Phenyl I-Napthyl Iodide 52% 

E-Oct-l-en~l Phen~l Iodide 60% 

Figure 1.71: Oshima's trifurylarylgermane cross-coupling 

IH and 19F NMR analysis of the product from the reaction of trifurylarylgermanes 

with TBAF in THF/water revealed that there were no fluorines or furyl groups in the 

reactive organogermanium intermediate, allowing Oshima to tentatively suggest a 

trihydroxyarylgermane as the active cross-coupling species. 

Figure 1.72: Proposed fluoride mediated cleavage of germanium-furyl bonds 

Reagents and conditions: i) TBAF (4eq, 1.OM in THFIH20), THF, reflux, 5h. 
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2 Introduction to Friedel-Crafts demetallation 

2.1 Cleavage of silicon-aryl bonds 

The cleavage of Aryl-Metal bonds by electrophiles is a well known process for the 
13 

Group 14 metals silicon, germanium and tin. The range of practical electrophiles 

for cleaving aryl-silicon bonds includes: 

o SiR, OE R' ~R' 0 
0 

Entry Electrophile Reference Product 
TFA 136 

HCI04 13 

H2SO4 13 Ar-H 

CF3S03H 137 

HBF4 138 
-_._-.-_ .. _._--_._-_._._---_._---------.- -.---.-.-.--.--------------.--.------

139 
2 

140 
Ar-CI 

136 
3 

140 
Ar-Br 

4 

5 

10 

Table 2.1: Electrophilic cleavage of silicon-aryl bonds 
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The most relevant transformations to this project are those where cleavage and 

diversification of a library molecule can be accomplished with the simultaneous 

formation of a carbon-carbon bond (entries 13, 14 and 15). 

Friedel-Crafts alkylation (entry 14) is generally low yielding, whilst cyanation using 

ClS02NCO (entry 15) is unattractive due to the highly toxic nature of the reagents 

and the limited possibilities for further diversification. It was therefore decided to 

investigate the Friedel-Crafts ipso-acyldemetallation (entry 13) of arylgermanes. The 

following discussion looks at the precedent for this transformation involving 

arylsilanes and arylstannanes. 

2.2 Acyldesilylatjoo 

The use of acyl chlorides in the presence of Lewis acid promoters to synthesise aryl 

ketones via ipso desilylation was first described in 1970 by Eabom.
153 

Reagents and conditions: i) aromatic acyl chloride, aluminium(II1) chloride, CS2, 

O°C, 30min, 46°C, 1.55h. 

R R' Yield 
p-Me H 60% 

o-OMe H 73% 
p-SiMe3 p-SiMe3 69% 

p-Me m-N02 76% 
p-CI H 58% 
o-Me o-Me 68% 

Figure 2.1. Acyldesilylation: Eaborn 1970 

Since Eabom published this first study, the chemistry has been widely used, but 

scarcely refined. A 1979 review by Effenberger collated work on acylative cleavage 

of carbon-silicon bonds up to that point and summarised the findings as follows: 154 
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• Aryl C-Si bonds are 103_104 times more reactive towards AcCI + 

aluminium(III) chloride than aryl C-H bonds. 

• Acetyl fluoride with BF 3 Lewis acid does not react exclusively at the ipso 

position. 

• Strong electron donating substituents (e.g. NMe2: 0'+ = -1.7, NH2: 0'+ = -

1.3, OH: 0'+ = -0.92, OMe: 0'+ = -0.78) will direct the substitution 

regardless of the position of the SiMe3 group. 

Some of the applications of this chemistry are shown below: 

Vollhardt cyclised bis(trimethylsilyl)acetylene with various a,ro-diynes in the 

presence of CpCo(COh to synthesise 4,5-bis(trimethylsilyl)benzocyclobutanes, 

indanes and tetralins, and further explored the electrophilic substitution of these 

compounds. Following a selective mono bromodesilylation, he was able to achieve 
155 

an acetyldesilylation using Eaborn's conditions. 

Reagents and conditions: i) AcCI, aluminium(III) chloride, CS2, rt, 5h, 56%. 

Figure 2.2: Vollhardt's 1977 acetyldesilylation of benzocyciobutanes 

The cyclisation to form tetralins was later adapted as the cornerstone of an elegant 

steroid synthesis, involving a selective bromodesilylation.
146 

The importance of steric effects in Friedel-Crafts alkylations and acylations was 

underscored by the work of Sasaki. 
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Reagents and conditions: i) l-adamantyl chloride, aluminium(III) chloride, CH2Ch, -

78°C, 80%; ii) AcCI, TiCI4, CH2Ch, -78°C, 45%. 

Figure 2.3: Sasaki's 1980 TiCl4 promoted acetyldesilylation 

Sasaki was attempting to alkylate o-tolyltrimethylsilane using adamantyl chloride, 

however only the para isomer was isolated. The para isomer was also obtained in 

75% yield when m-tolyltrimethylsilane was employed. However, acetylation of the 

same compound gave the desired ortho isomer, albeit in low yield. This reaction is 

noteworthy for the use of CH2Ch as solvent in place of carbon disulfide as used by 
156 

Eabom (vide supra). 

Work by Dunogue further illustrates some interesting facets of this chemistry: 

& i:(iMe, .. ~I ~I 
Me3Si Me

3
Si ~ 

~ Ii ~ .. 
Me

3
Si ~ 

0 

Figure 2.4: Dunogues' 1980 functionalisation of xylenes 

Reagents and conditions: i) AcCl, aluminium(III) chloride, CH2Ch, O°C 30min, -

40°C 2h, 91 %; ii) conditions as for i), 88% yield. 

Di-TMS substituted aryls will only undergo one cleavage due to the deactivating 

effect of the newly installed carbonyl group. Where there is a choice of two TMS 

groups the directing effect of other substituents, or steric considerations become 
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important, whilst if there is no choice then ipso substitution takes precedent of the 

f k d d·· 157 effects 0 wea or mo erate lrectmg groups. 

Reagents and conditions: i) RCOCl, aluminium(III) chloride, CH2Ch. 

Y R Teml!erature Time Yield 
F AcCI -80°C ~ 40°C 3h 79% 
F PhCOCI Rt ~ 44°C 18h 52% 
Et AcCI -80°C ~ 40°C 3h 68% 
Et PhCOCI Rt ~ 44°C 12h 41% 

Figure 2.5: Dunogues' 1990 functionalisation of fluoro and ethylbenzenes 
158 

In 1981 Fleming exemplified the use of his dimethylphenylsilyl group, by 

synthesising vinyl dimethylphenylsilanes from the reaction of 

bis(dimethylphenylsilyl)cuprate with acetylenes. In order to demonstrate that the 

dimethylphenylsilyl group does not interfere with vinylsilane chemistry he selectively 

cleaved the vinylsilane bond with AcCl/aluminium(III) chloride.
159 

No 

acetophenone was observed. 

o 
~SiMe2Ph __ -I"~ ~ 

Figure 2.6: Fleming's 1981 cleavage ofvinylsilanes 

Reagents and conditions: i) AcCl, aluminium(III) chloride, CH2Ch, O°C, 30min, 

69%. 

157 
Silylated acenaphthylenes can also be acyldemetallated. 
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Ii 

o 

Figure 2.7: Dunogues' 1982 acetylation ofsHyl substituted acenaphthylenes 

Reagents and conditions: i) AcCI, aluminium(III) chloride, CH2Ch, O°C 30m in, -

40°C 2h, 80%; ii) conditions as for i), 35% yield. 

As part of his studies towards the synthesis of ergot alkaloids produced by the fungus 

Claviceps, Barrett investigated the acyldesilylation of 4-(trimethylsilyl)indole.
160 

Figure 2.8: Barrett's 1984 acetylation of sHyl substituted indoles 

Reagents and conditions: i) Acel, aluminium(III) chloride, CH2Ch, 17h, rt, 95%. 

In order to obtain the observed selectivity for ipso-desilylative acylation at the C-4 

position it was necessary to first deactivate the C-3 position by forming the N-acyl 

compound. 

Katz has utilised the ipso directing effect of trimethylsilyl groups in his work towards 
• 161·163 

the synthesis of chiral hehcenes. 
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Figure 2.9: Katz acylation ofsilyl substituted naphthalenes (1986, 1993, and 

1997) 161-163 

Reagents and conditions: i) CICH2CH2COCI, aluminium(III) chloride, CH2Ch. -

78°C, 1.5h, 76%; ii) AC20, aluminium(III) chloride, CH2Ch, O°C, 40min, 86%. 

The use of the TMS group allows the naphthalene ring to be acylated selectively at 

the 7-position, rather than the 6 or 8 positions. 

Shudo investigated the synthesis of aromatics with trimethylsilyl or trimethylgermyl 

groups in place of a tert-butyl group in a compound of known anti-leukaemic 

•• 164 
activity. 

Figure 2.10: Shudo's 1990 acylation of tri-silylbenzene 

Reagents and conditions: i) AcCI, aluminium(III) chloride, CS2, DoC, 77%; ii) 

conditions as for i), 7% yield. 

Acyldesilylation of 2,4,6-tris(trimethylsilyl)benzene or 1,3-bis(trimethylsilyl)benzene 

gave the corresponding acetophenones, which were further transformed to chalcones. 
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2.3 Acyldegermylatjoo 

Maire has reported that phenyltrimethylgermane, phenyltrimethylsilane and 

phenyltrimethylstannane, can be acetyldemetallated by the action of 

AcClIaluminium(III) chloride. However, there is no specific detail given for 

I · . h 165 acyldegermy atlon In t e paper. 

2.4 Acyldestaooylatjoo 

The earliest mention of acyldestannylation was in Eabom's seminal work of 1970, 

extending the reaction from silicon to tin. No reaction occurred in the absence of 

aluminium(III) chloride. 

153 
Figure 2.11: Eaborn's acyldestannylation 

Reagents and conditions: i) AcCI, aluminium(lII) chloride, CS2, -30°C, 30min, 98%. 

Neumann further exemplified this chemistry in 1989. 
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Reagents and conditions: i) R'COCI, aluminium(III) chloride, CH2Ch, -30°C, 2h. 

It It' l{ield 
p-Tolyl Methyl 60% 
m-Tolyl Methyl 83% 
m-Tolyl Phenyl 50% 
m-Tolyl t-Butyl 100% 

p-Chloro Methyl 60% 
p-Chloro Phenyl 40% 

Isomers 

m/p 97/3 
m/p 65/35 

(a) 

(a) 77/23 mixture of ketone (meta/para 94/6) / t­
butyl toluene (meta/para 85/15) 

Figure 2.12: Neumann's tin mediated Friedel-Crafts acyldestannylation 166 

In addition to highly activated ani lines and phenols, arylstannanes are also reactive 

towards ipso-formy ldestanny lation. 

Reagents and conditions: i) N-Methyl-N-phenylformamide, POCh, 70°C, 3h. 

It l{ield 
H 56% 

p-Tolyl 70% 
m-Tolyl 55% 

p-Anisyl 96% 
o-Anisyl 79% 
~-Chloro 10% 

Figure 2.13: Neumann's tin mediated Vilsmeier formylation
166 

Acyldemetallation of both arylsilanes and arylstannanes is accomplished using 

identical reagents, but varying the reaction time and temperature. As the reactivity of 

I . h I h'I' I fi' f 167,168 group 14 aryl-meta s Wit e ectrop I es IS argely a unction 0 the J3-effect this 

precedent for silicon and tin should also be applicable to acyldegermylation. 
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3 Organogermanium linker cleavage with 
carbon electrophiles 

3.1 Background to the project 
. 169,170 171 ,172 

Like organotm and organosilicon compounds, organogermanium species 

have previously been shown to be useful as linkers in solid phase chemistry.173 Like 

other group 14 metal based linker constructs they are most applicable to the solid 

phase synthesis of molecules with an aromatic core. 

Ellman was the first to use a germanium analogue of an organosilicon linker to 

demonstrate the synthetic utility of germanium linker molecules in the combinatorial 

d
. . 174 

sol id phase synthesis of benzo lazepmes. 

R3 
/ 

i" ". x--a:1-R' 

R' 0 

x = H or Br 

Figure 3.1: Ellman's germanium based linker for combinatorial synthesis of 

benzodiazepines 

Reagents and conditions: i) TF A; ii) Br2. 

In this case, the use of germanium in place of silicon allowed cleavage of the electron 

deficient benzodiazepines with electrophiles milder than HF. 

Of more interest to this study is Spivey's germanium linker molecule that has been 

previously developed in these laboratories and has been shown to be applicable to the 
175, 176 177 178 

combinatorial synthesis of pyrazoles, pyrimidines, and oligothiophenes. 
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\ / 

uSN I '-':: N 

/ 
h OR 

.. ~
Ge 

'7 I 'Ar 

a°-.../'o ~ N~ R)lN~ I: 
~ 

n-Hex 

n-Hex n-Hex 

Figure 3.2 Spivey's germanium based linker 

The most common methods of cleavage from organosilane linkers utilise strong acids 

such as HF and TF A to effect protodesilylation of the aromatic group, although 

174 
bromine and ICI have also been employed. Organostannane linkers are much more 

. 13 166 179 
reactive towards electrophlles and have also been cleaved by bromine, ICI , and 

180 
NaI in the presence of an oxidant, Spivey has shown that germanium linkers are 

also sufficiently reactive towards electrophiles to be cleaved by halonium ions 

. • 175, 176 
including NCS to give analytically pure haloaromatlcs. 
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Figure 3.3: Cleavage of Spivey's arylgermane linker with various electrophiles 

Reagents and conditions: i) TF A; ii) NCS; iii) Br2; iv) ICI 

3.2 Aims and objectives of the project: Cross­
coupling 

A useful extension to the cleavage protocols already employed would be the ability to 

use carbon based electrophiles in the cleavage. This would offer another opportunity 

to incorporate functionality into the molecule during the otherwise diversity 

redundant cleavage step. One of the more obvious potential approaches, in the light 

of precedent with tin and silicon, is the development of an arylgermane cross­

coupling protocol, i.e. a "Germyl-Stille" or "Germyl-Hiyama" reaction. A palladium 

catalysed reaction between arylgermanes and easily varied aryl halides would otTer an 

inherent increase in the diversity of the substrate during the cleavage step. The 

resulting biaryl motif is commonly seen in pharmaceuticals and agrochemicals. 

Limited success had already been obtained from undergraduate studies. The work 

described in the following chapters has built on these preliminary studies.
181 

The primary objective of the research was to develop, optimise and delineate the 

scope of this type of reaction in the context of a linker cleavage protocol. In order to 

achieve this objective, there were three aims for the project: 

1. To synthesise a relevant solution phase model system on which to test 

experimental conditions. 
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2. To identify a suitable method to appropriately activate arylgermanes, most likely 

via the formation of pentavalent germanate complexes. 

3. To develop a compatible catalyst system. It was anticipated that some of the 

compromises required of the catalyst during the reaction cycle would need to be 

overcome in order to facilitate the crucial transmetallation step. 

3.3 Aims of the project: Frjedel-Crafts degermylatjoo 

A complementary protocol to cross-coupling cleavage, which would also benefit from 

concomitant carbon-carbon bond formation, would be Friedel Crafts ipso­

acyldegermylation, as discussed for silicon and tin in chapter 2. 

The primary objective of the research in this area was to identify suitable reaction 

conditions based on the existing work with silicon and tin. These conditions would 

then be applied to a variety of arylgermanes in order to determine the scope of ipso­

degermylation using acylium ions. 

The progress made towards these two synthetic challenges IS described in the 

following two chapters. 
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4 Cross-coupling results and discussion 

4.1 Approaches tOwards djmethylarylgermane cross­
coupling 

4.1.1 Activation of group 14 organometallics. 

As described in chapter 1, cross-coupling reactions of group 14 organometallics are 

widely known with tin, but are also becoming increasingly prevalent with silicon. 

Organostannanes are usually sufficiently reactive to transmetallate with palladium 

without further activation; even in unfavourable cases the addition of an 

intermolecular nucleophile is usually enough to facilitate coupling. Silicon is 

markedly less reactive and usually requires pre-activation of the silicon centre itself 

as well as the addition of an intermolecular nucleophile. 

At the time this project commenced, the only known example of an organogermane 

cross-coupling was that of Kosugi's carbagermatrane, which suggested that a 

hypervalent organogermane would indeed couple successfully. In light of this, it was 

hypothesised that even in the absence of fluoride, the reactivity of germanium was 

probably intermediate between silicon and tin. Furthermore, owing to the fact that 

germanium is known to be more susceptible towards hypervalency than silicon,118 it 

was believed that the reactivity of an organogermane would be closer to tin than to 

silicon. Consequently, it was anticipated that only an intermolecular nucleophile may 

be required to secure activation, and that pre-activation of the germanium centre 

would not be needed. 

4.1.2 Starting point 

Previous work and experience from undergraduate studies,181 coupled with an 

understanding of the mechanism of cross-coupling, enabled a tentative starting point 

to be identified. The solution-phase model tolylgermane 1 was chosen as a suitable 

compound for initial studies. This compound contains an electron neutral aryl group, 

with a benzylic methyl group that could act as a convenient NMR marker. 

Bromobenzonitrile 2 was selected as the initial coupling partner as it is an electron-
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deficient aryl bromide that should be highly reactive towards oxidative addition. The 

presence of the bromide was also expected to provide a good compromise in terms of 

the reactivity of the aryl halide towards oxidative addition, and of the 

arylpalladium(II) halide towards transmetallation. Commercial Pd2(dba)3 was used as 

the palladium source, and triphenylphosphine was employed as the initial phosphine 

as these catalyst components are commonly used in cross-coupling chemistry. 

Dimethylformamide was used as the solvent as this had been shown to give the 

. fl' s:' h . 181 highest consumptIOn 0 ary germane In lourt year experIments. 

\/ 

C
OE~Ge~ 

~ ~ o 1 

.................... _ ............................................ -
Br~ 

~CN 
2 

CN 
3 

Figure 4.1: Proposed starting point for cross-coupling reaction studies 

Reagents and conditions: i) Pd2(dbah, PPh3,jluoride, DMF 

The first step was to look at various fluoride sources in order to determine the optimal 

activation of the organogermane. Once this had been achieved it was intended to 

delineate the scope of the reaction via a combinatorial scanning experiment looking at 

the effect of varying the aryl group on germanium and the aryl halides. Finally, the 

catalyst and reaction conditions would be optimised by screening various phosphines 

and solvents. 

For the scanning experiment it was planned to use tolyl, anisyl and acetophenyl 

groups, as electron neutral, electron rich and electron deficient aryl groups 

respectively, on germanium. Bromo- and iodobenzonitriles were chosen as electron 

deficient aryl halides, bromo- and iodobenzene as the electron neutral aryl halides and 

bromo N,N-dimethylaniline as the electron rich halide. 

In order to analyse the large number of reaction mixtures that this approach would 

involve, it was decided to initially analyse each experiment using quantitative GCIMS 

to gain an estimate of the yield before isolating the product from the most promising 
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experiments. Such an approach also required the synthesis of authentic products and 

calculation of response factors relative to an internal standard. 

4.1.3 Synthesis of reaction materials 

A rapid and efficient synthesis of dimethylarylgermane linkers and solution phase 

models starting from germanium(lV) chloride had been previously developed in the 

group. 175 Germanium(lV) chloride 6 is initially reduced to give a germylidene 

species 7, which is then inserted into the homobenzyl activated C-CI bond of 

chlorophenol 5, and the resulting trichlorogermylphenol 8 exhaustively methylated. 

~
~ OH ~CI _..:.-.. V 

HO ~ HO 

Iv • 

4 5 

II • GeCI2'1,4-c1ioxane 
7 

Figure 4.2: Synthesis of trimethylgermylphenol 

Reagents and Conditions: i) c.HCI, 100°C, 3h (90%); ii) TMDS, 1 A-dioxane 110°C 

3h (75%); iii) 5, 140°C, 17h (74%); iv) MeMgBr, toluene, 110°C, 16h, (73%). 

The resulting trimethylgermylphenol 9 was then protected as an ethoxyethyl ether to 

give trimethylgermane 10, and selectively chlorodemethylated to give the activated 

chlorodimethy I germane 11. 
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~GeMe, __ 1 __ COE~GeMe3 

HO ~ 9 O~10 
\/ 

Ii COEV~ G~CI 
- I 

~ 

o 11 

Figure 4.3: Synthesis of aryldimethylgermane solution phase model 

Reagents and Conditions: i) CS2C03, TBAI, MeCN, 2-chloroethyl ethyl ether (92%); 

ii) SnCI4, MeN02, SO°C, 17h (100%). 

The desired tolylgermane 1 was synthesised by the reaction of 

chlorodimethylgermane 11 and commercialp-tolyl magnesium bromide in 76% yield. 

Figure 4.4: Synthesis of dimethyltolylgermane 

Reagents and Conditions: i) p-ToIMgBr, THF (76%). 

For the scanning experiment an electron rich and electron deficient aryl germane were 

also needed; anisylgermane 13 was synthesised from chlorodimethylgermane 11 and 

anisole 12. 

Br~ 

~OMe 
12 

\/ 
I,ll _ COE~Ge0 

O~ ~O/ 
13 

Figure 4.5: Synthesis of dimethylanisylgermane 

Reagents and Conditions: i) n-BuLi, THF, -78°C, lh, ii) 9, THF, -78°C ~ rt 2h (43% 

i-ii). 
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Synthesis of acetophenylgermane 16 required the formation of the diethylacetal of 4-

bromoacetophenone 14, which was quickly and cleanly accomplished using catalytic 

NBS in EtOH.
182 

The resulting aromatic acetal 15 was lithiated and quenched with 

chlorodimethylgermane 11. Deprotection of the crude acetal was accomplished using 

PPTS.
175 

Figure 4.6: Synthesis of dimethylacetophenylgermane 

Reagents and Conditions: i) NBS, HC(OEt)3, EtOH, 17h (93%); ii) n-BuLi, THF, -

78°C, Ih, iii) 11, THF, -78°C, 17h; iv) PPTS, acetone, H20, S6°C, 17h (86% ii-iv). 

Of the aryl halides being used in the scanning experiment, only 4-iodobenzonitrile 18 

was not commercially available, and this was synthesised via diazotisation of 4-
183 

aminobenzonitrile 17 followed by reaction with Nal. 

~NH2 _____ • (VI 
NC~ NC~ 

17 18 

Figure 4.7: Synthesis of 4-iodobenzonitrile 

Reagents and Conditions: i) NaN02, H2S04, H20, -SoC, 30min; ii) NaI, -SoC ~ rt, 

(64%). 

4.1.4 "Aythentic" prodyct synthesis 

In order to monitor the cross-coupling reactions and assess their yields by quantitative 

GCIMS it was necessary to calculate response factors for the authentic products. Of 

the 9 possible products 3 were commercially available; 4-methylbiphenyl 19, 4-

methoxybiphenyl 20, and 4-acetylbiphenyl 21, and one was eventually not needed; 4-

acetyl-4' -dimethylaminobiphenyl. The remaining six compounds were synthesised 
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via Suzuki reactions in a reaction carousel using the appropriate arylboronic acids and 

aryl halides. 

R~ , + 
h- B(OH)2 

Br'Q-"-:::: R~: 
h- --.. ,-..-:::: 

R' 
h- R' 

Reagents and Conditions: i) Pd(PPh3)4, NaOH (aqueous), EtOH, toluene, 90°C, 17h. 

R R' Product Yield 
Me (22) NMe2 (25) 26 22% 

OMe(23) NMe2 (25) 27 16% 
OMe(23) CN (2) 28 38% 
Ac (24} CN (2} 29 64% 

Figure 4.8: "Authentic" product synthesis 

The final authentic product for analytical purposes, 4-cyano-4'-methyl-biphenyl 3, 

was synthesised by a one-pot Negishi reaction according to a literature procedure for 

the synthesis of an intermediate to potential inhibitors of P450 enzymes. 184 

Br~ 

~ 
30 

I, II, III 
• 

3 eN 

Figure 4.9 Synthesis of 4-cyano-4'-methyl-biphenyl 

Reagents and Conditions: i) t-BuLi, THF, -78°C; ii) ZnCh, THF, -78°C ~ rt, 1.5h; 

iii) benzonitrile 2, Pd(PPh3)4, THF, 70°C, 2.5h (35%). 

The literature procedure for purification of biaryl 3, following an aqueous extraction, 

was recrystallisation from isopropanol. Analysis of the recrystallised product by 1 H 

NMR revealed that in fact the sample was a co-crystallised (ca. 1: I) mixture of the 

desired product and 4,4'-dimethylbiphenyl. The impurity results from the homo­

coupling of 4-methylphenylzinc chloride. The procedure was modified to include 

column chromatography, which allowed the authentic product 3 to be obtained as 

analytically pure white needles. 
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With the authentic products in hand, it was then possible to calculate the response 

factors relative to an internal standard. Naphthalene was chosen as the standard as it 

eluted well away from any other peaks in the GelMS chromatogram. Solutions were 

made up containing a known amount of naphthalene with a known equimolar amount 

of the authentic product and then analysed three times before taking an average value 

of the ratio of naphthalene molar peak area to the authentic product molar peak area. 

Authentic ~roduct Res~onse factor relative to na~hthalene 

--{ > ( }-CN 3 0.341 (± 0.003) 

0(> 19 0.9l3 (± 0.007) 

Meo-{ > < > 20 0.833 (± 0.006) 

AC-\ > < > 21 0.508 (± 0.004) 

--{) ( }-NMe2 26 0.513 (± 0.004) 

Meo-Q C)-NMe2 27 0.788 (± 0.006) 

Meo-{ > ( }-CN 28 0.683 (± 0.006) 

AC-\ > o-CN 29 0.558 (± 0.004) 

Table 4.1: Product response factors relative to naphthalene internal standard for 

"authentic" product biaryls 

4.1.5 Scanning experiment: Initial fluoride experiments 

Precedent with silicon (vide supra) has demonstrated the fundamental importance of 

the activator in Group 14 organometallic cross-coupling reactions. The first cross­

coupling reactions therefore were directed towards looking at the effect of fluorides 

on cross-coupling in order to hopefully identify a robust initial reaction to use as a 

base for further fine-tuning and optimisation. 

- 83-



Chapter 4 Cross-coupling results and discussion 

Tolylgennane 1 was reacted with benzonitrile 2 in DMF, using a Pd2(dbahlPPh3 

catalyst system and various fluorides, heated in a sealed reaction vial. The fluorides 

were weighed out under a stream of anhydrous nitrogen gas to keep deliquescence to 

a minimum. 

\/ 

C
OE~Ge~ 

~ ~ o 1 eN 
• 

3 

Reagents and Conditions: i) 4-bromobenzonitrile, Pd2(dbah (5mol% Pd), PPh3 

(10mol%), fluoride (2.2eq), DMF, 48h. 

Fluoride Temperature GCIMSyieid Isolated Yield 
TBAF·3H20 130°C 0.1% 

KF 130°C 13% 
BnTMAF 130°C 32% 22% 

KF and 18-crown-6 130°C 8% 
KF and 18-crown-6 150°C 15% 

Figure 4.10: Cross-coupling experiments with fluoride variable 

CsF was also investigated separately with BnTMAF as a control experiment. 

Fluoride 
BnTMAF 

CsF 

Temperature GCIMS yield 
130°C 1.4% 
130°C 7% 

Table 4.2:Comparison of BnTMAF and CsF as cross-coupling activator 

These experiments appeared to confinn the contention that the activator is critically 

important with yields varying from the trace level, to an isolated 22%. BnTMAF 

initially appeared to be the best activator, but in a further investigation CsF seemed to 

be superior to BnTMAF. However, the reproducibility of these reactions was very 

poor; the BnTMAF-promoted yield of 22% obtained in the initial experiments was 

never reproduced. In spite of this, it was decided to proceed with both BnTMAF and 

CsF as activators for the combinatorial scanning experiment. 
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4.1.6 Scanning experiment 

The cross-coupling of dimethylarylgermanes with 4-bromo- (2) and 4-

iodobenzonitrile (18), bromo- (31) and iodobenzene (32), and 4-bromo-N,N­

dimethylaniline (25), in the presence of CsF and BnTMAF was investigated using a 

combinatorial approach. The results are presented in figure 4.11 for tolylgermane 1, 

in figure 4.12 for anisylgermane 13, and in figure 4.13 for acetophenylgermane 16. 

X'Q + I 
~ R 

.. 
R 

Reagents and Conditions: i) Pd2(dbah (5mol% Pd), PPh3 (lOmol%), fluoride (2.2eq), 

DMF, 150°C, 48h. 

R X Aryl halide Fluoride Product GelMS l:ield 
CN Br 2 BnTMAF 3 1% 
CN Br 2 CsF 3 33% 
CN I 18 BnTMAF 3 Not observed 
CN I 18 CsF 3 4% 
H Br 31 BnTMAF 19 31% 
H Br 31 CsF 19 6% 
H I 32 BnTMAF 19 Not observed 
H I 32 CsF 19 8% 

NMe2 Br 25 BnTMAF 26 8% 
NMe2 Br 25 CsF 26 Not observed 

Figure 4.11: Scanning experiment: tolylgermane cross-couplings 

The high degree of variability was a concern and led to a change in the sampling 

method. Previously the reactions had been worked up to give a crude sample, to 

which a known amount of naphthalene was added before analysing the mixture. In 

order to both speed up analysis and decrease the potential for error, the reaction 

mixtures were sampled directly. A known volume of reaction solution was removed, 

a known volume of naphthalene standard solution added, and the mixture then diluted 

and analysed by Ge/Ms. 
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MeO 

R 

Reagents and Conditions: i) Pd2(dba)3 (5mol% Pd), PPh3 (lOmol%), fluoride (2.2eq), 

DMF, 150°C, 48h. 

R X Aryl halide Fluoride Product GCIMS l:ield 
CN Br 2 CsF 28 28% 
CN Br 2 BnTMAF 28 0.7% 
CN I 18 CsF 28 2.5% 
CN I 18 BnTMAF 28 Not observed 
H Br 31 CsF 20 1.3% 
H Br 31 BnTMAF 20 19% 
H I 32 CsF 20 4% 
H I 32 BnTMAF 20 1.3% 

NMe2 Br 25 CsF 27 Not observed 
NMe2 Br 25 BnTMAF 27 16% 

Figure 4.12: Scanning experiment: anisylgermane cross-couplings 

\/ x'O (~GeOy I bib + I .. 
b R 

0 
10c 0 R 

Reagents and Conditions: i) Pd2(dbah (5mol% Pd), PPh3 (lOmol%), fluoride (2.2eq), 

DMF, 150°C, 48h. 

R X Aryl halide Fluoride Product GCIMS l:ield 
CN Br 2 BnTMAF 29 3% 

CN Br 2 CsF 29 15% 
CN I 18 BnTMAF 29 Not observed 
eN I 18 CsF 29 13% 
H Br 31 BnTMAF 21 7% 

H Br 31 CsF 21 1.0% 

H I 32 BnTMAF 21 2.5% 

H I 32 CsF 21 11% 

NMe2 Br 25 BnTMAF 33 Not observed 
NMe2 Br 25 CsF 33 Not observed 

Figure 4.13: Scanning experiment: acetophenylgermane cross-couplings 
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On initial inspection, the results from figures 4.11, 4.12 and 4.13 appear to present 

few, if any, clear trends. However, following careful analysis they do allow some 

trends to be identified and conclusions drawn. Of the three dimethylarylgermanes 

used (1, 13, and 16), acetophenylgermane 16 performed consistently worse than both 

tolylgermane 1 and anisylgermane 13. Of these two compounds, tolylgermane 1 gave 

higher coupling yields. This is broadly consistent with literature precedent for 

arylsilane cross-coupling reactions, in which electron rich nucleophiles are more 

smoothly transferred than electron deficient systems. Bromides appear to be better 

coupling partners than the corresponding iodides, again in agreement with existing 

precedent. Another predictable conclusion is the superiority of the electron deficient 

benzonitrile coupling partner when compared to the electron neutral phenyl group. 

The electron rich dimethyl aniline was generally unreactive. The following reagent 

combination appeared to be optimal (figure 4.14). 

\/ 

COE~Ge~ ~ ~ o 1 

• 

3 
eN 

Figure 4.14: Best case coupling identified by scanning experiment 

Reagents and conditions: i) 4-bromobenzonitrile, CsF (2.2eq), Pd2(dba)3 (5mol% Pd), 

PPh3 (lOmol%), DMF, 150°C, 48h, GCIMS yield 33%. 

One area of concern arising from these results however, was the apparent variability 

in the GC/MS yields. Although the trends described above seemed to be genuine, 

they did not appear to be smooth, consistent, or of great magnitude. 

4.1.7 Phosphine screen 

Having identified the "best-case" conditions for further investigations, the next step 

was to examine the effect of the phosphine co-catalyst. It was expected that the 

transmetallation of the aryl group from germanium to palladium would be the rate-
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limiting step, and consequently, it was hoped that a careful choice of ligand could 

exert a large effect on the reaction. 

eN 
3 

Reagents and conditions: i) 4-bromobenzonitrile, CsF (2.2eq), Pd2(dba)3 (5mol% Pd), 

phosphine (lOmol%), DMF, 150°C, 48h. 

Phos~hine GCIMS:yield 
PPh3 0.7% 

P(o-Tolh Not observed 
P(2-Furyl)3 0.1% 
P(P-C6H4F)3 0.4% 

P(P-C6H4CF 3)3 0.1% 
P(C6FS)3 0.3% 
P(Mes)3 0.1% 

PPh2(2-Pyridyl) Trace 
Dppe 0.4% 
Dppp 1.1% 
Dppf 0.1% 
Binap 0.8% 

PCY2( o-bipheny I) Not observed 
P(OEt)3 Not observed 
P{t-BU}3 Not observed 

Figure 4.15: Phosphine co-catalyst screen 

The results from the phosphine screen were disappointing. The moderate yields from 

previous experiments (i.e. up to 33%) were irreproducible (cj 0.7%). Only one 

phosphine, dppp, offered any improvement over the PPh3 control experiment, 

although several seemed to have comparable reactivity; P(P-C6H4F)3, P(C6FSh, dppe 

and binap. The improvements offered by dppp, and to a lesser extent binap, may be 

related to the bidentate nature of these ligands. A bidentate ligand will force the 

catalytic species to adopt a cis conformation at all times, will assist reductive 

elimination, and may significantly alter the mechanism of the transformation by 

reducing, if not eliminating, the need for trans to cis isomerisations during the 

catalytic cycle. 
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4.1.8 Experiments in an inert atmosphere 

The results from the phosphine screen highlighted concerns over the reproducibility 

of the coupling reactions. GCIMS yields of 28-33% had been obtained on four 

separate occasions in the initial scanning experiments (fluoride screen figure 4.10, 

experiments with tolylgermane 1 figure 4.11, and experiments with anisylgermane 13 

figure 4.12), including an isolated yield of 22% in the fluoride screen (figure 4.10). 

During the scanning experiment however GCIMS yields had been as low as 0.7% 

(figure 4.12), and during the phosphine screen GCIMS yields were consistently at the 

sub 1 % level (figure 4.15). The irreproducibility was not easily explained and one 

possibility was that it was related to the experimental method. Experiments up to this 

point had been carried out in reaction vials, and as such were neither strictly 

anhydrous nor in a rigorously inert atmosphere. There was concern that this could be 

affecting the reaction, possibly by allowing poisoning of the catalyst. Another 

possible introduction of error was the difficulty in accurately weighing the small 

masses of catalyst being used (ca. 6mg Pd2(dba)3, 7mg PPh3). In order to determine if 

this was having an effect it was decided to repeat some of the couplings in a 

rigorously inert and anhydrous system with a larger catalyst loading. Two identical 

experiments were carried out, one of which was degassed with a repeated freeze­

pump-thaw cycle to remove dissolved oxygen. 

\/ 

COE~Ge~ _--. .. .v ~ o 1 
3 

eN 

Reagents and conditions: i) 4-bromobenzonitrile, CsF (2.2eq), Pd2(dbah (20mol% 

Pd), PPh3(40mol%), DMF, 150°C. 

Reaction 

1 
2 

Degassed 

No 
Yes 

GCIMS yield 
after 1 hour 

1.3% 
1.9% 

GCIMSyieid 
after 24 hours 

1.3% 
1.9% 

Figure 4.16: Cross-couplings in an inert atmosphere 
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The results from these experiments confirmed that the GCIMS yield of 33% in the 

scanning experiment was irreproducible. The problem with the reaction was not 

related to catalyst poisoning, as an inert atmosphere and a degassed reaction solvent 

had made little if any difference compared to the less rigorously controlled 

experiment. Similarly, the higher catalyst loading (20mol% Pd, cf 5mol% Pd for 

previous experiments) did not appear to have made any significant difference. 

The one very intriguing result that was revealed by these experiments was the fact 

that whatever reaction was occurring was taking place in the first hour of heating. In 

order to investigate this further it was decided to look at the reaction yields varied as a 

function of the reaction temperature and duration. 

4.1.9 Time-temperature experiments 

As in the inert atmosphere experiments described above, it was decided to carry out 

this study in a round bottom flask rather than a reaction vial. The reagents were 

combined and placed in an inert atmosphere prior to heating and monitoring as a 

function of time. 

\/ 

C
OE~Ge~ 

~ ~ o 1 

.. 
3 

eN 

Figure 4.17: Time-temperature variable cross-coupling experiments 

Reagents and conditions: i) 4-bromobenzonitrile, CsF (2.2eq), Pd2(dba)3 (20mol% 

Pd), PPh3(40mol%), DMF, 150°C. 

The reaction was initially heated at SO°C and sampled after 1 and 2 hours, the 

temperature was raised to 100°C and the reaction again sampled after a further 1 hour. 

Finally, the reaction was raised to 120°C and then sampled after another hour, and 

after 17 hours, making a total reaction time of 21 hours (figure 4.1S). 
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130 .----------------------------------------------

120 - - - - - -.~ ..... ~---------------....... ~ ~ 

~ 110 
f! 
:::l 

E 100 
~ 

--- ~ ~ -------I • Sampling pair( 1-- ------ ----- -- -------- --
E 
~ 90 

80 ~ ..... ~. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -..... 

o 2 4 6 8 10 12 14 16 18 20 22 24 

Time/houlS 

Figure 4.18: Variation of temperature and time of sampling points 

Temperatur Time GCIMS yield 
e 

800 e Ih 0% 
80 0 e 2h 0% 
IOOoe 3h 0% 
1200 e 4h 0.1% 
120°C 24h 0.1% 

Table 4.3: GCIMS yields for time-temperature cross-coupling experiments 

These results confirm the hypothesis that a reaction takes place rapidly once a 

threshold temperature is reached. No reaction whatsoever occurs below 120°C. 

4.1.10 Solvent screen 

Having investigated fluoride activators and phosphine variables, and having looked at 

couplings in an inert atmosphere the next variable for consideration was the solvent. 

A wide range of solvents was investigated, including polar, non-polar, coordinating 

and non-coordinating solvents. 
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eN 
3 

Reagents and conditions: i) 4-bromobenzonitrile, CsF (2.2eq), Pd2(dba)3 (20mol% 

Pd), PPh3 (40mol%), solvent, ISO°C, 24h. 

Solvent 
DMF 
DMA 
NMP 
MeCN 
DMSO 

THF 
1,4-Dioxane 

1,2-Dimethoxyethane 
Toluene 

Pyrrolidine 

GCIMS yield 
1.0% 
4% 

Trace 
0.1% 
Trace 
Trace 
Trace 
0.1% 
Trace 

Not observed 

Figure 4.19: Solvent screen 

Again, few of the solvents tried offered any significant improvement over the use of 

DMF, however, DMA did give a relatively dramatic 4% yield compared to the 1% 

yield from the control experiment with DMF as solvent. 

4.1.11 Bjphasjc reactions 

As an extension to the solvent screen, tolylgermane 1 was exposed to typical phase-

fi k· I' d' . 1,185 trans er Suzu I coup mg con ItlOns. 
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\/ 

COE~Ge~ ~ ~ o 1 CN 
3 

Reagents and conditions: i) 4-bromobenzonitrile, Pd2(dbah (20mol% Pd), PPh3 

(40mol%), toluene, EtOH, aqueous activator (2eq), I I SoC, 17h. 

Activator 
KOH 

NaOAc 
TBAF'3H20 

GCIMSyieid 
0.3% 
Trace 
Trace 

Figure 4.20: Biphasic reaction conditions 

The reaction was then attempted using Pd(PPh3)4 as the catalyst to determine whether 

the Pd2(dba)3IPPh3 combination used previously was comparable to Pd(PPh3)4, which 

is known to be a successful catalyst under Suzuki conditions (vide supra). 

\/ 

C
OE~Ge~ _____ .. 

~ ~ o 1 CN 
3 

Reagents and conditions: i) 4-bromobenzonitrile, catalyst (20mol% Pd), toluene, 

EtOH, aqueous activator (2eq), I I SoC, 17h, GCIMS yield 0.1 %. 

Activator 
KOH 

Degassed KOH 
Degassed CsF 

Catalyst 
Pd(PPh3)4 

Pd2(dba)3 + PPh3 (40mol%) 
Pd2(dba)3 + PPh3 (40mol%) 

GCIMS yield 
0.1% 
Trace 
Trace 

Figure 4.21: Further biphasic reaction conditions 

These results merely served to confirm that both Pd2(dba)3IPPh3 and Pd(PPh3)4 

possessed similar catalytic ability; namely that neither gave any significant cross­

coupling activity under Suzuki conditions, and furthermore that degassed bases made 

little, if any, difference to the coupling. 
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4.1.12 Actiyator screen 

The final variable that could be expected to make a significant difference was the 

activator. The assumption had been that fluoride would be the most appropriate 

activator for germanium, as both silicon and tin are known to be highly fluorophilic 

due to the thermodynamic preference for forming the extremely strong metal-fluoride 

bond. As a result of this fluoride has been the activator of choice for silicon and tin 

(vide supra). However, results to this point had not provided unequivocal evidence 

that fluoride was the activator of choice for germanium, and furthermore the 

formation of germanium-oxygen bonds is also known to be highly thermodynamically 

favourable.
186 

With this in mind it was felt necessary to investigate the use of non­

fluoride activators to see if nucleophilic oxygen or nitrogen compounds could effect 

cross-coup ling. 

eN 
3 

Reagents and conditions: i) 4-bromobenzonitrile, activator (2.2eq), Pd2(dba)3 

(20mol% Pd), PPh3(40mol%), DMF, 150°C, 24h. 

Activator 

CsOH 
NaOMe 

H202ILiOH 
H2N-OH.HCIINEt3 

DMAP 
DABCO 

Pyrrolidine 
Ag20 (a) 

GCIMSyieid 
0.5% 
Trace 
0.1% 

Not observed 
0.1% 
0.2% 
Trace 
0.1% 
0.1% 

(a): 4-iodobenzonitrile was used in 
90 

place of 4-bromobenzonitrile 

Figure 4.22: Investigation of non-fluoride activators 
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The use of different activators did not lead to any improvement in cross-coupling 

activity, with the reaction remaining stubbornly irreproducible when compared to the 

moderate yield observed in the fluoride screen and scanning experiments. The fact 

that the control experiment in the absence of any activator actually gave the highest 

GelMS yield in this screen suggested that the germanium centre could be "tin-like", 

and be capable of participating in a cross-coupling reaction without an activator. 

Another possibility was that the two equivalents of activator were over-activating 

germanium and giving a coordinatively saturated hexavalent germanium species 

unable to react with a palladium electrophile in the transmetallation step. 

One intriguing finding from these experiments was that in the absence of an activator 

tolylgermane 1 is not observed in the crude product GelMS chromatogram. This was 

in marked contrast to experiments using an activator, where the aryl germane (1, 13, 

and 16) has been present in large amounts according to the GelMS results. This 

implies that an activator perhaps either inhibits consumption of the starting material, 

or stabilises the arylgermanes, thereby preventing decomposition under the reaction 

conditions. 

4.1.13 Phosphine screen in the absence of activators 

As a result of the relatively high GelMS yield in the absence of cesium fluoride 

(figure 4.22), and the possibility of an increased consumption of the starting 

arylgermane, it was decided to repeat a limited phosphine screen to see if the catalytic 

species could be optimised to give increased reactivity in the absence of an activator. 

The effect of DMA as solvent in the absence of activator was also considered, as was 

the use of the more nucleophilic anisylgermane 13. The use of a sub-stoichiometric 

amount of activator was also investigated, to rule out the possibility of over-activated, 

unreactive hexavalent co-ordinately unsaturated germanates being formed in solution. 
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\/ 

C
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Reagents and conditions: i) 4-bromobenzonitrile, Pd2(dbah (20mol% Pd), PPh3 

(40mol%), DMF, 150°C, 24h. 

Phos~hine Other variables GelMS l:ield 
PPh3 0.4% 
P(p-

C6H4F)3 0.9% 
P(C6FSh Trace 

Dppp 0.8% 
Dppe 0.3% 
Binap 3% 
PPh3 DMA solvent 0.5% 
PPh3 Anisylgermane (lOb) 3% 
PPh3 O.2eg CsF activator 1.5% 

Figure 4.23: Phosphine screen in the absence of activators 

No significant increase in cross-coupling reactivity was noted in any of these 

experiments, although the superiority of DMA over DMF was reinforced, as was the 

increased nucleophilicity and hence marginally increased activity of anisylgermane 

13 over tolylgermane 1. A sub-stoichiometric amount of activator seemed to give a 

slightly greater amount of desired product, but the yield certainly remained of the 

same order of magnitude as that for reactions both with and without activator. 

4.1.14 "Best-case" coupling 

In order to give some validation to the work that had been carried out so far, the best 

combination of reagents and starting materials were combined and subjected to cross­

coupling conditions. 
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eN 
3 

Figure 4.24: "Best-case" coupling conditions 

Reagents and conditions: i) 4-bromobenzonitrile, CsF (2.2eq), Pd2(dba)3 (20mol% 

Pd), dppp(40mol% P), DMA, 150°C, 24h, GCIMS yield 4%. 

Somewhat gratifyingly, the best observed conditions from the screening experiments 

did give the highest GCIMS yield seen since the scanning experiment. Nevertheless, 

the yield in this case was still incomparable to the GCIMS and isolated yields 

observed during the fluoride screen (figure 4.10 and table 4.2) and the initial scanning 

experiment (figures 4.11, 4.12 and 4.13). 

4.1.15 Conclusions 

The work carried out to this point had been unsuccessful in developing a cross­

coupling protocol for organogermanes. Despite some promising results at the start 

the reactions displayed unaccountable and unacceptable irreproducibility. Even for 

the control conditions coupling tolylgermane 1 with benzonitrile 2 the yields obtained 

were highly variable. 
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eN 
3 

Reagents and conditions: i) 4-bromobenzonitrile, CsF (2.2eq), Pd2(dbah (5mol% or 

20mol% Pd), PPh3 (l Omol% or 40mol%), DMF, 150°C, 24h or 48h. 

EXl!eriment Figure GCIMS !ield 
Initial fluoride screen 4.10 7.4% 
Scanning experiment 4.11 33.2% 

Phosphine screen 4.15 0.7% 
Inert atmosphere 4.16 1.3% 
Solvent screen 4.19 1.0% 

Figure 4.25: Irreproducibility in control coupling experiments 

This irreproducibility remained a grave concern and a significant impediment to the 

development of a successful cross-coupling reaction of organoarylgermanes. 

The extensive reaction screening carried out had looked at every major variable in the 

reaction conditions, yet had failed to delineate conditions for a successful cross­

coupling reaction. It was concluded that aryltrialkylgermanes were clearly unreactive 

towards cross-coupling, and that this could most likely be attributed to insufficient 

activation of the germanium centre, and/or inability to interact with the palladium(II) 

electrophile. 

4.2 New approaches to orgaoogermaoe cross­
coupling 

Group 14 organometallics that are unreactive to cross-coupling have been previously 

activated by the coordination of a nucleophile to the metal centre. The formation of 

the resulting pentavalent (or hexavalent) metal anion increases the partial positive 

charge on the metal. Crucially, this is also accompanied by an attendant increase in 

. h· I I· d h 118 the partial negative charge on t e aXla Igan centres a to t e metal. It is this 

increase in the ligand's partial negative charge which improves its nUc1eophilicity, 

and thereby its reactivity towards an electrophilic arylpalladium(II) species. The 
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coordination of a nucleofugal group to the metal centre will also facilitate further 

coordination to the metal centre, and will stabilise any developing negative charge in 

the transition state 

~~:NU-

R-"R ---I"~ 
R 

NJ­
&+I •• ,R 

R-M 
~R 

Figure 4.26: Coordination of a nucleophile increases negative charge a to the 

metal 

Three methods have previously been used to form hypervalent metal centres in order 

to overcome a lack of reactivity in cross-coupling reactions: 

1. Addition of an intermolecular nucleophilic activator to the reaction mixture 

2. Installation of a pendant intramolecular activator within the organometallic 

species 

3. Pre-activation by modifying the electronic properties of the metal centre to 

make coordination of an intermolecular activator a more favourable process 

The first approach is essentially that which has been explored, without success, in 

section 4.1. The second approach has been previously used with Ge (figure 1.66), Sn 

(figure 1.6) and recently Si (figure 1.38), whilst the third avenue of investigation has 

until recently been the most common method of activating organosilanes, as outlined 

in section 1.3. Potential applications of the latter two approaches in the context of a 

germanium-based linker are detailed below. 

4.2.1 pendant intramolecylar activation of organogermanes 

The use of carbastannatranes, intramolecularly coordinated organostannanes, 

carbagermatranes and germatranes in cross-coupling chemistry has been presented in 

chapter 1. Further to these approaches however, there is very little known about 

organogermanium cross-coupling reactions. A germatrane would be too unstable and 
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would be an unsuitable starting point for incorporation into a linker molecule due to 

the potential ease of degermylation and loss of the library molecule. 

Carbagermatranes however could provide a useful template for the design of a new 

linker. 

~o-o-c:~ 

6 
R 

Figure 4.27: Possible carbagermatrane based linker. 

However, as highlighted previously, the synthesis of carbagermatranes is non-trivial , 

and consequently less elaborate analogues that retain the favourable coupling 

characteristics would be more attractive. In order to probe the effect of 

intramolecular coordination on germyl cross-couplings the following molecules were 

considered as interesting systems that could be used to investigate the cross-coupling 

reactivity of arylgerrnanes with varying degrees of intra-molecular coordination. 

34 35 36 

Figure 4.28: Proposed carbagermatrane test system, and analogues 

Carbagerrnatrane 34 is the tolyl analogue of the phenyl molecule successfully 

employed by Kosugi ,129 whilst compounds 35 and 36 could be used to probe whether 

the rigorous control of intramolecular geometry imposed by the carbagermatrane is 

necessary for a reaction to occur. 
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A practically useful intramolecular nucleophile would probably be attached by a 

single tether (36) rather than two or three tethers (35 or 34). However, the 

effectiveness of a pendant nucleophile is likely to be reduced by increasing degrees of 

freedom between the Lewis acidic metal centre and the Lewis basic nucleophile. In 

light of this compromise, it is possible that compound 36 would actually be 

insufficiently reactive. If this was the case, then the problem could be addressed by 

introducing unsaturation in the form of benzene rings: 

6 fMe, < (rMe, ~ ~ V-'6Me' 
,,::; ~Me2 ~N 

'GeMe2 6M~ GeMe2 

b b 
37 38 39 40 

Figure 4.29:Single-tether organogermanes for cross-coupling testing 

Of these compounds, 39 and 40 are perhaps the most interesting. In compounds 37 

and 38 the metal and the activator are linked by aryl and benzyl organogermanes 

respectively. Compounds of these types are often unstable to acids and other 

electrophiles, and would likely be susceptible to degermylation. In addition to this, 

compound 37, and perhaps compound 38, could also suffer from competition between 

the linker backbone and the aryl group in a cross-coupling reaction. Compounds 39 

and 40 are linked by a homobenzylorganogermane moiety and would be expected to 

be considerably more stable; the drawback however is that these compounds have 

more degrees of freedom between the Lewis acidic and basic sites of the molecule. 

It was decided not to pursue this area of research, as it appeared more complex and, 

less synthetically accessible than the alternate approach of modifying the electronic 

characteristics of the germanium centre. This area of study is however being 

investigated in the group (Joseph Hannah, Spivey Group, 2002 to the present day). 
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4.2.2 pre-activation of organogermanes 

Typical pre-activation approaches with silicon have used the incorporation of halo or 

alkoxy groups at the silicon centre. It is known that hetero substituted germanes can 

be easily transformed into chlorogermanes by the action of c.HCI (vide supra). It was 

envisaged that the effects of pre-activating the germanium centre could be 

investigated using the following chlorogermane derivatives: 

CI CI 
\ I 

CI/Ge~ 

~ 
41 42 43 44 

Figure 4.30: Proposed chlorogermanes for testing cross-coupling reactions 

Compounds 41-44 were to be tested for cross-coupling activity both with and without 

fluoride activator. The intention of these experiments was to discover what extent of 

pre-activation was necessary for a successful cross-coupling reaction. Ideally, either 

compound 42 or 43 would prove to be an appropriate substrate as these both have 

scope to be incorporated into a linker via the remaining alkyl groups on germanium. 

CI CI 

~Geo I I R UO ~ ~ 

Figure 4.31: Potential incorporation of heteroatoms into an organogermane 

linker 

Chlorogermanes and other heterogermane species are susceptible to polymerisation in 

the presence of water to form cyclic and linear oligomeric or polymeric germyl 

186 
oxides. 
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f R R R t I I I 
O-Ge-O-Ge-O-Ge 

I I I 
R R R n 

Figure 4.32: Hydrolytic polymerisation of organogermanes with hetero 

substituents 

This reactive instability would make hetero substituted organogermanes themselves 

unsuitable for use as linker molecules. Consequently, it was envisaged that should 

this method of activation give rise to a successful cross-coupling reaction then it 

would be necessary to synthesise a linker molecule possessing latent functionality 

which would allow the selective installation of hetero atoms in situ. This approach 

would constitute a safety catch linker strategy, 

For simple compounds like tolylgermanes 41-44, trichlorotolylgermane 44 is an 

attractive precursor. It has been reported that trichlorotolylgermane 44 can be 

synthesised via the insertion of a dichlorogermylidene into an aryl-bromine bond,I87 

Compound 41 should then be readily accessed by exhaustive methylation of this 

trichloride. 

C~Ge~ _'-__ M.3Ge~ 

44 41 

Figure 4.33: Proposed synthesis of trimethyltolylgermane 

Reagents and conditions: i) MeMgBr. 

It was envisaged that compounds 42 and 43 would be less trivial to make, due to the 

difficulty of selectively adding sub-stoichiometric amounts of organometallic reagents 

188 . I b ' II . I I' to chlorogermanes. An me egant, ut potentIa y practlca so utlon would be the 

addition of 1-2 equivalents of MeMgBr to trichlorotolylgermane 44, followed by 

regeneration of the germanium-chlorine bonds to give a statistical mixture of 
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compounds 41-43. Purification could be effected either by fractional distillation of 

the products, or by a hydrolytic work-up to afford insoluble polymeric germyl oxides. 

The insoluble polymer would then be filtered to remove by-products, and the mono-, 

die, and tri- oxygen substituted germanes recovered by selective rechlorination on 

decreasing the pH and extracting the resulting chlorogermanes into organic 
189 

solution. 

CI,Ge'O-. ---L-

44 

Figure 4.34: Possible syntheses of arylgermanes 9 and 10 

Reagents and conditions: i) MeMgBr; ii) distillation; iii) H20, followed by He!. 

4.2.3 Further approaches to orgaoogerrnaoe cross-coy piing 

The original hypothesis had been that germanium would behave in a "tin-like" 

manner, and that only an intermolecular nucleophile would be required to facilitate 

cross-coupling. This theory had been tested and disproved by the initial work 

directed at developing the cross-coupling of dimethylarylgermanes (1, 13, and 16), 

suggesting that germanium may in fact be more like silicon, and that pre-activation of 

the metal centre is necessary for cross-coupling. 

With this in mind, it was decided to pursue the pre-activation of organogermanes by 

incorporating heteroatoms at the germanium centre. It was felt that this approach 

would be easier to accomplish than the synthesis of either carbagermatrane 34, and 

analogues 3S and 36, or of the pendant intramolecularly activated compounds 37-40, 

and would also be easier to incorporate into the current linker design. 
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4.3 Heterogermane C[OSs-coupling 

4.3.1 Approaches to the synthesjs of trjchlorotolylgermane 

The crucial compound for the synthesis of germanes 41-43 was the trichlorogermane 

44. A literature synthesis of this very compound, and its tribromo analogue 45, had 

been reported by Schmidbaur in 1999.
187 

CI3Ge'Q Br3Ge'Q 
GeCli1,4-dioxane -'---"~ I + I 

7 h h 

44 45 

Figure 4.35: Schmidbaur's synthesis of trihalotolygermanes 

Reagents and conditions: i) 4-bromotoluene, aluminium(III) chloride, 80°C, 24h, 

98%. 

In this reaction, 4-bromotoluene is used both as reagent and as solvent, and is present 

in large excess. Purification of the reaction mixture is carried out by first filtering 

whilst hot, to remove solid aluminium(III) chloride and germylidene starting material, 

and then removing bromotoluene by distillation in vacuo, to leave the product as a 

white solid. The first two attempts to replicate this work both gave rise to no 

observable product, with only bromotoluene being isolated. The reaction was 

therefore repeated at 140°C under the conditions used for synthesising 

trichlorogermylphenol8. 

Proton NMR again revealed the presence of no product in the residue after 

distillation, but GCIMS did indicate the presence of a trace amount of 

trichlorogermane 44. Correspondence with Schmidbaur revealed that the 

germylidene complex used by his group had been synthesised via reduction of 

germanium(lV) chloride with Et3Si-H rather than TMDS, using a method developed 

by Kouvetakis.
l90 

It was decided to repeat the reaction using germylidene synthesised 

by the alternate route. 
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I .. GeCli1,4-dioxane 
7 

Figure 4.36: Attempted synthesis of dichlorogermylidene complex 

Reagents and conditions: i) Et3SiH, LiAI~, 1 A-dioxane, toluene, 800 e for 14h, 

1000 e for 4-8h, 1200 e for 1-2.5h. 

The literature method for Kouvetakis' synthesis of germylidene 7 reported a rapid 
190 

colour change after 4 hours at 100°C. The first experiment was raised to 120°C 

after 4h at 1000 e and then worked up after 1 hour, even though no colour change was 

observed. No desired product had been formed. Repeating the reaction at 100°C for 

8 hours, and then 1200 e for 1.5h still led to no colour change, but gave a 2% yield. 

Repeating the reaction at 120°C (2.5h), resulted in a colour change and an 18% yield 

190 . h· d· ld h (cf literature 70%). DespIte t e Increase Yle t e compound was difficult to 

isolate by this method and was contaminated with small amounts of LiAlH4 that could 

not be removed by decantation. 

Despite these problems the synthesis of trichlorotolylgermane 44 was attempted using 

the Et3SiH derived germylidene 7, in conjunction with Schmidbaur's method, to give 

a 33% yield of the desired compound. On this occasion the presence of the reported 

tribromo analogue 45 was also observed. Although this represented an improvement 

on previous attempts, it was still incomparable to the reported 98% yield, and coupled 

with the difficulties in isolating both trichlorogermane 44 and the required 

germylidene 7 it was decided not to pursue this approach. 

Another potential approach to germanes 41-44 was the selective addition of Grignard 

or organolithium reagents to germanium(lV) chloride or germanium(lV) ethoxide. 

This type of reaction is generally poorly selective, and previous work in the group 

with germyltrichloride 8 had led to <10% yields of the mono addition product.
IS8 

Moderate yields have been reported using germanium(lV) ethoxide and p-anisyl 

magnesium bromide formed in situ (36% for mono addition, 27% for di addition).187 
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Before the addition could be investigated, it was first necessary to obtain a sample of 

germanium(IV) ethoxide. Surprisingly, given the proclivity of germanium(IV) 

chloride to polymerise and form germanium(lV) oxides in water, solvolysis does not 

occur between germanium(lV) chloride and ethanol. Instead, it is necessary to carry 

out the reaction in the presence of either an amine base to sequester HCI, or metallic 

sodium to pre-form the sodium alkoxide in situ. Owing to a simpler work up we 

elected to use the sodium alkoxide method.
191 

EtOH I, iI .. Ge(OEt) .. 
46 

Figure 4.37: Synthesis of germanium(IV) ethoxide 

Reagents and conditions: i) sodium metal, rt, 30min; ii) GeCl4 (6), reflux, 3h, 27%. 

The literature workup involved filtration over a pad of Celite® to remove NaCI 

precipitate followed by purification by distillation. The precipitate was so fine and 

took so long to remove by filtration that ethoxide 46 was invariably hydrolysed to the 

oxide before distillation could be attempted. The solution to this was to centrifuge the 

crude reaction mixture and decant the supernatant. Removal of the solvent in vacuo, 

followed by distillation in a Kugelrohr oven under nitrogen gave the desired product 

in 27% yield. 

With ethoxide 46 in hand, we were then able to compare the reactivity of 

germanium(lV) chloride and the less reactive, therefore more selective, ethoxide 26. 

In order to accurately analyse the reaction and determine the product distribution, the 

reaction was quenched with MeMgBr to give a mixture of predominantly the stable, 

isolable methylated arylgermanes 41 and 47. 
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or 
I, II Me3Ge'Q 

----.. I + 
~ 

GeCI.(6) 

Ge(OEt). (46) 
41 

Reagents and conditions: i) p-TolMgBr (leq), THF, -78°C, 1 h; ii) MeMgBr, -78°C ~ 

rt over 1 h, reflux 1 h. 

Germanium(IV) compound 18 NMR Ratio of 41147 
3.96/1 
2.74/1 

Figure 4.38: Addition of Grignard reagent to germanium(IV) compounds 

The ratio of products was assessed from the integrals of the germanium-methyl 

signals. Other impurities included bitolyl resulting from homo-coupling of the 

Grignard reagent present in both samples, and a small amount of 

tritolylmethylgermane present in the GeCl4 reaction mixture. Unexpectedly, the 

addition to the chloride was more selective than to the ethoxide, but both 1H NMR 

and GC/MS analysis indicated that the chloride reaction mixture contained many 

more impurities than the ethoxide reaction mixture. No further work was carried out 

to improve the selectivity in either of these reactions, although it is possible that the 

less reactive iso-propoxide, sec-butoxide or tert-butoxide analogues would give 

cleaner, more selective reaction mixtures. 

4.3.2 Synthesis of linker related chlorogermanes 

4.3.2.1 Precedent for the synthesis of linker related chlorogermanes 

At this point in time, a co-worker in the group, David Turner (Spivey Group 2000-

2003), developed a new route to the linker system that allowed variation of the methyl 
192 

spectator ligands on germanium. 

The newly developed route relied on the selective formation of a 

dichloroanisylgermane intermediate. 
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CI CI 

i,n ~Ge0 
.. HO~ ~OMe 

48 

RR 

iii .. ~Ge~ 
HO~ ~OMe 

R R 

Iv,v ... ~G~Ar 
HO~ 

Figure 4.39: Turner's synthesis of arylgermanes with variable substitution at 

germanium 

Reagents and conditions: i) 4-bromoanisole, Mg, THF, reflux, 17h; ii) 1 M HCII 

CH2Ch, followed by c.HCI, Ih, rt; iii) R-M, THF, reflux, 17h; iv) HCI (l.OM in 

EhO), rt, Ih; v) Ar-M, THF, reflux, 17h. 

Trichlorogermylphenol 8 is arylated with p-anisyl magnesium bromide, and solvent 

removed in vacuo, before the crude reaction mixture is partitioned between dilute 

aqueous HCl (added slowly), and CH2Ch. The layers are then separated to remove 

inorganic impurities. The CH2Ch layer is then further acidified with dilute HC\. It is 

proposed that this both removes the first anisyl group, and installs the first chloride on 

germanium to give a chlorodianisylgermylphenol. Concentrated .HCl is then added 

and the mixture stirred for 1 hour in order to remove the second anisyl group to give 

the dichloroanisylgermylphenol. This phenol can then be reacted with a Grignard 

reagent, or other organometallic (R-M), to introduce the desired substitution at 

germanium. HCI in ether is then used to smoothly remove the remaining anisyl group 

to give a disubstituted monochlorogermanium species analogous to 

chlorodimethylgermane 11, which can be reacted with an organometallic aryl group 

(Ar-M) to give the desired linker precursor. 

4.3.2.2 Synthesis of linker related chlorogermylpheools YiB selectlye 

electrophWc dearylatlon 

For our purposes, this chemistry appeared intriguing, as it demonstrated the ability to 

selectively install two chlorine atoms onto an aryl germane , a solution that neatly 

corresponded to the problem faced in synthesising dichlorotolylgermane 43. 
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Although the original intention had been to synthesise arylgennanes with methyl and 

chlorine substituents (41-44) in order to test the hypothesis that pre-activation would 

assist cross-coupling, proceeding directly with linker related compounds now 

represented a more efficient strategy. 

\ pi 

COE~Ge~ ~ ~ o 49 

CI CI 
\ I 

CI .... Ge~ 

~ 
44 

Figure 4.40: Linker related chlorogermane target compounds 

Dimethyltolylgennane 1 had already been prepared, and although 

trichlorotolylgennane 44 was difficult to obtain as a pure compound in high yield the 

closely related phenyl analogue is commercially available. Of the remaining 

chlorogennanes 49 and 50, dichlorogennane 50 was the obvious starting point, as it is 

most closely related to dichloroanisylgennylphenol 48. Nevertheless, the synthesis of 

compound 50 would require some modifications to the Turner method. 

~
GeCI3 . 

I I, II -----HO .0 
8 

CI CI 

iii • COE~Ge~ 
~ ~ o 50 

Figure 4.41: Initial synthesis of dichlorotolylgermane 50 

Reagents and conditions: i) 4-bromotoluene, Mg, THF, reflux, 17h; ii) c.HCII 

CH2Ch, rt, Ih; iii) 2-chloroethyl ethyl ether, CS2C03, TBAI, MeCN, 85°C, 17h. 

- 110-



Chapter 4 Cross-coupling results and discussion 

Trichlorogermylphenol 8 was treated with a large excess of p-tolyl magnesium 

bromide before being worked up as previously described for the 

dichloroanisylgermylphenol 48. The crude reaction mixture was analysed by IH 

NMR, and examination of the signals for the methylene groups a and p to germanium 

revealed the presence of two major linker related products. The chemical shifts for 

the p methylene groups were 32.71ppm and 32.81ppm, and the signals were present 

in a ratio of ca. 311 respectively. The chemical shift of these methylene groups is 

known to be affected by substitution at germanium; the corresponding 

trichlorogermylphenol 8 has a chemical shift of 32.97ppm for its p methylene, whilst 

trimethylgermylphenol 9 has a chemical shift of 32.51 ppm for the same protons. The 

substitution of chlorine atoms for methyl groups at germanium shifts the methylene 

signals downfield. 

The desired dichloride 51 was clearly not the major product of the reaction. Indeed 

the reaction had given either a mixture of tritolylgermylphenol (major) and 

chloroditolylgermylphenol (minor), or of chloroditolylgermylphenol (major) and 

dichlorotolylphenol (minor). 

The crude reaction mixture was then split into portions for further analysis and 

reaction. Firstly a sample was re-subjected to a biphasic mixture of c.HCI and 

CH2Ch, with heating to 30°C for 23 hours. On work up the ratio of products had 

changed from ca. 3/1 to ca. 2/3 for 32.71ppm/32.81ppm, with the more highly 

chlorinated compound now in excess. However, it was still difficult to 

unambiguously determine whether the mixture corresponded to the mono- and di­

chlorides, or to the tritolyl and mono-chloride. 

To resolve the ambiguity, a further sample of crude reaction mixture was subjected to 

methyl magnesium bromide to cap any germanium-chlorine bonds present. Column 

chromatography was unable to separate the two resulting compounds formed, but the 

proton NMR of the mixture was very revealing. Firstly, there was only one signal 

corresponding to a germanium-methyl group, not two, and secondly the signal for one 

of the methylene groups p to germanium remained unchanged at 32.75, whilst the 

other had moved upfield to 32.68. The peaks remained in a ca. 3/1 ratio for the 
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signals at '02.75/ '02.68. The major product of the reaction had not therefore been the 

desired dichlorotolylgermylphenol 51, but rather tritolylgermylphenol 52, with the 

minor component being chloroditolylgermylphenol 53. 

~
~ GeCI3 

HO ~ 
I, II ~ 

8 

ao 
~Ge~ Major 

~ ~ 
HO 52 

+r( 
CI, V 

~
GeA Minor 

I~ ~ 
HO 

III .. 

~r( V V Major 

~Ge~ 
~ ~ 

HO 52 

+ O~ 
Me "'-

\ 

~
Ge~ Minor 

I~ ~ 
HO 

53 54 

Figure 4.42: Attempted synthesis of dichlorotolylgermylphenol31 and methyl 

capping of crude reaction mixture 

Reagents and conditions: i) 4-bromotoluene, Mg, THF, reflux, 17h; ii) c.HCI/ 

CH2Ch, rt, 1 h; iii) MeMgBr, toluene, reflux, 17h. 

A further sample of the crude reaction mixture from the attempted synthesis of 

dichlorotolylgermylphenol 51 was taken and subjected to a mixture of c.HCI and 

refluxing CH2Ch for 5 hours. Following workup, IH NMR analysis indicated that the 

ratio of 52/53 had changed to the point where chloroditolylgermylphenol 53 was the 

major product but remained contaminated with a trace of tritolylgermylphenol 52 

(ratio of 52/53 ca. 4/96). 

The use of a biphasic mixture of c.HCI and CH2Ch as the electrophilic dearylating 

agent had several drawbacks; the organogermane starting materials and products 

remained in the organic layer, whilst the electrophile was in the aqueous layer. When 

the mixture was heated, gaseous HCI was rapidly lost from solution, reducing the 
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concentration of acid and thus further reducing its activity. In order to address this, a 

final sample of the crude reaction mixture was subjected to neat acetic acid at reflux. 

Although acetic acid is not as strong an acid as c.HCI, it was hoped that the increased 

temperature and homogeneous nature of the reaction mixture might lead to a cleaner, 

more selective reaction. The ratio of products, as assessed by I H NMR, remained 

unchanged by the action of acetic acid. The remainder of the crude sample from the 

initial reaction was purified by column chromatography and the major product 

unambiguously identified as tritolylgermylphenol 52. Using this material another 

method to synthesise either chloroditolylgermylphenol 53, or 

dichlorotolylgermylphenol 51 was attempted using c.HCI and CH2Ch in a sealed 

tube. 

Again, although the major product after 3.5h at 45°C was chloroditolylgermylphenol 

53, some of the tritolylgermylphenol 52 remained unreacted. 

It was decided at this point that c.HCI, although suitable for removing electron rich 

anisyl groups from germanium, was unsuitable for the clean and selective removal of 

tolyl groups from germanium. What was required was a strong, non-volatile acid, 

miscible with organic solvents. In 1994 Bardin reported several electrophilic agents, 

including triflic acid, capable of cleaving the electron deficient aryl-germanium bond 
193 

oftriethylgermylpentafluorobenzene. 

Et,Ge~F ---'-___ ArF 

FYF FYF 
F F 

Figure 4.43: Bardin's electrophilic cleavage of triethylgermylpentanuorobenzene 

with triflic acid 

Reagents and conditions: i) TfUH, 100%. 

Acetic acid (pKa 4.76) had been shown to be unreactive towards tolyl groups, 

whereas triflic acid (pKa -14) was able to remove pentafluorophenyl groups. Given 
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that a biphasic mixture of concentrated aqueous HCl (pKa -8) and CH2Ch had proven 

to be not quite active enough to remove a single tolyl group from germanium, it was 

felt that methanesulfonic acid (pKa -2.6) might be a better starting point than TF A 

(pKa -0.25) for further work. 

Consequently, tritolylgermylphenol 52 was dissolved in CH2Ch and the resulting 

solution subjected to varying concentrations of methanesulfonic acid. After the time 

indicated, the reaction was quenched with saturated NaHC03 solution. The cleaved 

heterogermanes formed a white emulsion residing in the CH2Ch layer. Separation of 

the layers, followed by treatment of the organic layer with c.HCl gave a crude mixture 

chlorogermanes 51 and 53, whose ratio was assessed by IH NMR. 

ad 
~Ge0 

HO~ ~ 
52 

Reagents and conditions: i) MSA, CH2Ch, rt. 

MSA concentration 
7.7M 
5M 
2M 

0.23M 

Reaction time 
2min 
36min 
39min 
38min 

CI CI 

~'de~ 
~ ~ 

HO 51 

Product distribution: 51153 
35/65 
53/47 
26174 
0/100 

Figure 4.44: Electrophilic dearylation of tritolylgermylphenol 52 using varying 

concentrations of MSA 

It can be seen that a concentration of MSA of O.23M gave desired 

chloroditolylgermane 53 cleanly and selectively in quantitative yield. 
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Now that chloroditolylgermane 53 had been successfully synthesised, attention turned 

to dichlorotolylgermane 51. It was anticipated that a high concentration of MSA for 

an appropriate period of time should allow selective formation of the dichloride. 

Reagents and conditions: i) MSA, CH2Ch, rt. 

MSA concentration 
5M 
5M 

2.5M 
2.5M 
6M 

Reaction time 
lh 4min 
Ih 31min 
Ih 31min 
2h 2min 

2h 30min 

Product distribution: 51153 
83/17 
89/11 
65/35 
78/22 

>9911 (82% isolated yield) 

Figure 4.45: Electropbilic dearylation oftritolylgermylpbenol 52 using varying 

concentrations of MSA 

It can be seen that the use of 6M MSA for 2.5h at rt gave the desired product cleanly, 

with only a trace of monochloride 53 by proton NMR. The mixture of compounds 

was partitioned between O.5M aqueous NaOH and CH2Ch to give hydrolysis products 

51a and 53a and the layers separated. Treatment of the CH2Ch layer with c.HCI 

regenerated monochloride 53, whilst acidification of the base layer followed by 

extraction with CH2Ch gave the dichloride 51. The solubility difference between 

hydrolysis products of 51a and 53a can be explained by the presence of the extra 

germanium-chlorine bond in dichlorotolylgermylphenol 51. In the presence of base 

the phenol is deprotonated, and any germanium-chlorine bonds present are 

hydrolysed to give oligomers rather than free hydroxygermanes.
186 

Hydrolysis 

product Sla possesses two germanium oxygen bonds in addition to the deprotonated 
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phenol and is water soluble, whereas the single germanium-oxygen bond In 

hydrolysis product 53a is insufficient to impart water solubility on the compound. 

R-O,O 
R"o-V"GeQ 

R = H, Ge, Ar or Na+ 
R' = Ge or Na+ 

53a 

R-O O-R 
~'de~ 

R"OV ~ 
R = H, Ge, Ar or Na+ 
R' = Geor Na+ 

51a 

Figure 4.46: Hydrolysis products of chlorogermylphenols 53 and 51 

Chloroditolylgermylphenol 53 was capped with methyl magnesium bromide to give 

methylditolylgermylphenol 54, which was then subjected to 0.23M MSA to give 

chloromethyltolylgermylphenol 55. 

Figure 4.47: Electrophilic dearylation of methylditolylgermylphenol 32 using 

MSA 

Reagents and conditions: i) MeMgBr, toluene, reflux, 17h, 90%.; ii) 0.23M MSA, 

CH2Ch, rt, 99%. 

Both chloromethyltolylgermylphenol 55 and dichlorotolylgermylphenol 51 were next 

protected as ethoxyethyl ethers via the same method used for protecting 

trimethylgermylphenol9. 
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CI Me 
_____ COE~'de~ 

V ~ o 49 

CI CI 
\ I 

I .COE~Ge~ 
V ~ o 50 

Figure 4.48: Synthesis of chlorotolylgermane solution phase models 

Reagents and Conditions: i) CS2C03, TBAI (IOmol%), MeCN, 2-chloroethyl ethyl 

ether, reflux, 17h. 

In both cases the reaction failed to give pure products; starting phenol 51 or 55, and 

tetrabutylammonium salts from the catalytic iodide were present in each reaction 

mixture. Attempts to remove the ammonium salts from either sample by extraction or 

filtration proved only partially successful, but dichlorogermane 50 could be separated 

from its starting phenol 51 by partitioning between CH2Ch and aqueous NaOH. 

Ether 50 remained in the organic layer, whilst phenol 51 was found in the basic layer. 

This approach was not successful for the separation of ether 49 from its starting 

phenol 55. 

To address the problem of the tetrabutylammonium salts, test reactions were carried 

out on trimethylgermylphenol 9 using water soluble iodide salts that could be 

removed by extraction. 
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Reagents and conditions: i) CS2C03, iodide (lOmol%), MeCN, 2-chloroethyl ethyl 

ether, reflux, 17h. 

Iodide Yield 
TBAI 92% 
CsI 88% 

E4NI 96% 

Figure 4.49: Test reactions for phenol protection with alternate iodide sources 

Both cesium iodide and E4NI successfully catalysed the reaction, and both were 

removed from the reaction mixture by a simple extraction between CH2Ch and water. 

Dichlorotolylgermylphenol 51 was then protected using catalytic E4NI. 

CI CI 

____ .. COE~'de~ 
V ~ o 50 

Figure 4.50: Protection of dichlorotolylgermylphenol51 

Reagents and Conditions: i) CS2C03, E4NI (lOmol%), MeCN, 2-chloroethyl ethyl 

ether, reflux, 17h, 35%. 

Despite the moderate yield, this approach did provide a clean sample of the desired 

dichlorotolylgermane 50. 

The mixture of chloromethyltolylgermanes 53 and 49 was subjected to p-tolyl 

magnesium bromide and purified to generate methylditolylgermane 56 in 75% yield 

from the starting chloromethyltolylphenol 53. 
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CI Me 

COE~Ge~ ~ ~ o 49 

Me,d 
• CO~E-..::::: GeQ 

I ~ I ~ 
o 

56 

Figure 4.51: Arylation of chloromethylgermane 49 

Reagents and conditions: i) p-ToIMgBr, THF, reflux, 19h. 

There had been some concern about the effect that MSA might have on the 

ethoxyethyl chain in the linker model compounds. Now that methylditolylgermane 

56 was in hand, it was decided to attempt an electrophilic dearylation to determine if 

this was a feasible approach to the synthesis of chloromethyltolylgermane 49. 

\ ,ei 
_ .... COE~Ge~ 
~ ~ o 59 

Figure 4.52: Electrophilic dearylation of methylditolylgermane 56 

Reagents and conditions: i) 0.23M MSA, CH2Ch, rt, 30min, 94%. 

The formation of chloromethyltolylgermane 49 proceeded smoothly, and gave the 

desired product cleanly and in good yield. 

4.3.3 Cross-coupling of cblorogermanes 

Having developed syntheses of chloromethyltolylgermane 49 and 

dichlorotolylgermane 50 it was now possible to explore the cross-coupling chemistry 

of these compounds. Cross-coupling was studied using the conditions determined by 

the scanning experiment (figure 4.14). Each experiment was carried out twice. 
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x y 
\ I 

CO~E~ Ge~ _--+-.. 
Ih ~ o 

1,490rSO eN 
3 

Reagents and conditions: i) 4-Bromobenzonitrile, CsF (2.2eq), Pd2(dba)3 (lOmol% 

Pd), PPh3 (20mol%), DMF, 150°C, 48h. 

Experiment X Y Germane GCIMSyieid 
1 Me Me 1 4% 
1 Me CI 49 4% 
1 Cl CI SO 0.9% --_. __ ... -- -_._-_. __ ._._---"-_._-- ... - _ .. _ .... _---------_._----- --_.- .. __ ... -- ........... ...... _ .. -

2 Me Me 1 3% 
2 Me Cl 49 5% 
2 CI CI 50 0.5% ._. __ ._-_._--_. __ . __ ... _._---_ ... _. __ ._ .. _. ---_._._._---_._._---_ ....... _._._ ... _ .. _-
3 Me Me 1 4% 

Figure 4.53: Effect of substitution at germanium on cross-coupling 

Dichlorotolylgermane 50 proved to be a poorer substrate than dimethyltolylgermane 

1, whilst chloromethyltolylgermane 49 offered only a slight improvement over 

dimethyltolylgermane 1. The yield for the dimethyltolylgermane 1 (ca. 4-5%) was 

higher than had been observed previously, with the exception of the original, and 

unrepeatable, 33% yield (figure 4.11). Consequently, it was decided to revisit the 

cross-coupling chemistry of dimethyltolylgermane 1. 

4.3.4 oimetbyltolylgermane: second pbosphine SCreen 

Due to the large variation in yields between the initial scanning experiment (sections 

4.1.5 and 4.1.6) and the subsequent screening experiments (sections 4.1.7 to 4.1. 13) 

there had always been some concern as to which were the more reliable results. The 

apparent reproducibility of a ca. 4-5% yield lent credence to the idea that the yield of 

33% was the outlying result, but the phosphine screening experiment had still been 

characterised by yields below I %. It was decided to carry out a second screening 

experiment using selected phosphines 
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\/ 

C
OE~Ge~ ___ _ 

~ ~ o 1 eN 
3 

Reagents and conditions: i) 4-bromobenzonitrile, CsF (2.2eq), Pd2(dbah (20mol% 

Pd), phosphine (40mol% P), DMF, 150°C, 24h. 

Phosphine GCIMS yield 
PPh3 3% 
Dppp 3% 

P(P-C6H4Fh 7% 
P(C6Fs)3 2% 

Binap 6% 

Figure 4.54: Second phosphine screen 

Although the GC yields obtained were consistently higher than in the previous 

phosphine screen (section 4.1.7) they remained too low to be practically useful. 

4.3.5 Cross-coupUng chemistry of fyrylgermanes 

At this point in time Oshima published his cross-coupling studies using 
I3S 

trifurylgermane (section 1.5.4). This precedent suggested the analogous 

difurylgermane 57 as a potential cross-coupling reagent. It was anticipated that this 

compound could be synthesised from dichlorotolylphenol 51, and indeed this was the 

case. 
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CICI QP 
~'GeQ __ •. ~Ge~ 

HO 51 V ~ 
HO 58 

Figure 4.55: Synthesis of difurylgermane 57 

Reagents and conditions: i) furan, n-BuLi, THF, O°C, I.Sh, 39%; ii) CS2C03, E4NI 

(lOmol%), MeCN, 2-chloroethyl ethyl ether reflux, 19h, 88%. 

Trifurylphenylgermane 60 was also synthesised from commercial 

trichlorophenylgermane 59 in order to carry out control reactions. 

CI,G.'O - __ ~ [OJ,GeO 
59 60 

Figure 4.56: Synthesis of trifurylphenylgermane 60 

Reagents and conditions: i) furan, n-BuLi, THF, QOC, 1.5h, 81 %. 
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Trifurylphenylgermane 60 was initially reacted with benzonitrile 2 using Oshima's 

conditions (although this was not one of the arylbromides Oshima used). 

Reagents and conditions: i) TBAF (3eq, I.OM in THFIH20), NMP, rt, 10min; ii) aryl 

bromide, Pd2(dba)3.CHCh (lOmol% Pd), P(2-furyl)3 (IOmol%), 100°C, 16h. 

R R' Germane Aryl bromide Product Yield 
Furyl H 60 4-Cyano 2 
Furyl H 60 3-Trifluoromethyl 62 63 34% 
Linker Meth~1 57 3-Trifluorometh~1 62 

Figure 4.57: Furylgermane cross-coupling reactions 

As no coupled product was formed, trifurylphenylgermane 60 was exposed to cross­

coupling, exactly as reported by Oshima, with benzotrifluoride 62.
135 

This afforded 

coupled product 63 in 34% yield (cj 64% reported by Oshima). However, using the 

same conditions difurylgermane 57 did not react. Both GCIMS and IH NMR 

indicated the recovery of starting material 57 (isolated in 20% yield after work up). It 

was concluded that, surprisingly, TBAF was not leading to hydrolysis of the 

germanium-furyl bonds. 

In order to test this, furylgermanes 57 and 60 were reacted with TBAF in refluxing 

THF. Oshima had reported that trifurylgermane 60 gave the hydrolysis product 64 

under these conditions, as evidenced by NMR (figure 1.72). 
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60 

GP 
C
OE~Ge~ 

~ ~ o 
57 

Cross-coupling results and discussion 

F 
HO, I :.1\ 
HO~?e \..J 

OH 
64 

.. Unchanged starting material 

Figure 4.58: Oshima's proposed furylgermane cross-coupling intermediate, and 

attempted formation of the analogous intermediate for difurylgermane 57 

Reagents and conditions: i) TBAF (4eq or 3eq, l.OM in THF/H20), THF, rt, 3h, 

reflux,4h. 

The crude reaction mixtures were analysed by negative ion ESI FIA/MS. Nothing 

was seen for difurylgermane 57, but, for trifurylphenylgermane 60, a peak at mlz 203 

was observed and tentatively identified as a related hydrolysis product 65. 

65 

Figure 4.59: Proposed structure for trifurylphenylgermane hydrolysis product at 

miz203 

This in itself is an interesting result, as Oshima had only used NMR data to propose 

the involvement of a trihydroxygermane intermediate, our mass spectrometry studies 

would appear to lend weight to that proposal. 

The contrast in behaviour between trifurylgermane 60 and difurylgermane 57 when 

exposed to TBAF is dramatic; trifurylgermane 60 undergoes complete hydrolysis of 

the furyl-germanium bonds, behaving more like an arylsilane than an arylgermane,I94 

whilst difurylgermane 57 remains unchanged. 
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Trifurylgermanes are however known to have anomalous characteristics when 

compared to other organogermanium species and one notable difference is in the 

polarisation of the Ge-H bond in trifurylgermane compared to a trialkylgermane.
195 

In the presence of base, trifurylgermane behaves as a source of nucleophilic 

germanium, whereas a trialkylgermane will have a relatively electrophilic germanium 

centre, and will consequently act as a source of hydride. 

cf. 

Figure 4.60: Relative polarisation of Ge-H bond in trifurylgermane and 

trialkylgermanes 

Reagents and conditions: i) t-BuOK, DMF 

Trifurylgermane also behaves atypically relative to other triorganogermanes and 

triorgano group 14 organometallic hydrides when it comes to Et3B catalysed 

hydrogermylation of alkenes,196 the palladium(O) catalysed hydrogermylation of 

alkynes and dienes,197 and the palladium catalysed carbonylative hydrometallation of 

alkynes.
198 

The unusual reactivity profile of trifurylgermanes has been proposed by 

Oshima to be explained by the large degree of p1t-d1t bonding between furyl groups 

(and also, thiophenyl, benzofuryl and benzothiophenyl groups) and the germanium 

199 
centre. 

R R R R 

n / - bta- ~G/A- ~/e 
R..)(x)...,ge- R X ,ge_ R X / e:::. R X 5'e-

X=O,S 

R. R = H. H or (!: 
Figure 4.61: p1t-d1t Overlap between furyl, thiophenyl, benzofuryl or 

benzothiophenyl groups and germanium 
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4.3.6 Fyrther cross-coypling chemistry of chlorogermanes 

4.3.6.1 Application of Oshima's conditions to chlorogermanes 

Despite the large discrepancy between the reactivity of trifuryl and difurylgermanes 

towards cross-coupling, Oshima's work, in conjunction with emerging work from 

Denmark's laboratories on the mechanism of silicon cross-couplings,96 had clearly 

demonstrated the essential role of hydroxy groups on the metal centre for activation 

towards cross-coupling. Although difurylgermane 57 had not been a suitable 

precursor to a dihydroxygermane it was felt that dichlorogermane 50 would be a more 

labile precursor. It was therefore expected that dichlorogermane 50 would be able to 

smoothly form a hypervalent hydroxy germane or germoxane oligomer in the presence 

of TBAF and its associated water of crystallisation. To test this idea it was decided to 

expose dichlorogermane 50 to Oshima's cross-coupling conditions. Firstly however, 

a more efficient synthesis of dichlorotolylgermane 50 was required. 

Following the success of the dearylation of methylditolylgermane 56 to form 

chloromethyltolylgermane 49, it was decided to investigate the electrophilic 

dearylation of tritolylgermane 66 to form dichlorotolylgermane 50 and 

chloroditolylgermane 67. 
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50: R = CI 
67: R = Tolyl 

Cross-coupling results and discussion 

Figure 4.62: Synthesis and dearylation of tritolylgermane ether 66 

Reagents and conditions: i) CS2C03, TBAI, MeCN, 2-chloroethyl ethyl ether, reflux, 

17h, 90%; ii) 0.23M MSA, CH2Ch, rt, 30min, to give 67 96%; iii) 6M MSA, CH2Ch, 

rt, 3h, to give 50 97%. 

The ethoxyethyl protection was carried out, using the same conditions as for 

trimethylgermane 10, to give ether 66 in high yield. Mono and di-dearylations were 

carried out using the conditions applied to the synthesis of phenols 51 and 53, and 

both proceeded in excellent yield. This approach offered a much simplified and 

higher yielding route to the desired compounds (tritolylgermylphenol 52 ~ 

dichlorogermane 50 in 87% yield, cf 29% by protection of dichlorophenol 51). 

Methylation of chloroditolyl ether 67 was carried out as for chloroditolylphenol 53 to 

give previously obtained methylditolyl ether 56 in 93% yield. 

With an efficient synthesis of dichlorotolylgermane 50 now developed, the cross­

coupling chemistry of chlorogermanes was revisited, initially using the method that 

had been successful for coupling trifurylgermane 60 and benzotrifluoride 62 (section 

4.3.5). 
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Figure 4.63: Cross-coupling of dichlorotolylgermane 50 using Oshima's 

conditions 

Reagents and conditions: i) TBAF (3eq, l.OM in THFIH20), NMP, rt, IOmin; ii) 3-

bromobenzotrifluoride, Pd2(dba)3·CHCh (IOmol% Pd), P(2-furyl)3 (IOmol%), 100°C, 

16h,7%. 

Disappointingly, this reaction only gave a 7% isolated yield of biaryl 68. To form a 

more direct comparison with trifurylphenylgermane 60, trichlorophenylgermane 59 

was also tested as a cross-coupling precursor. This also allowed a direct comparison 

between dichloride 50 and trichloride 59. 

Figure 4.64: Cross-coupling oftrichlorophenylgermane 59 using Oshima's 

conditions 

Reagents and conditions: i) TBAF (4eq, l.OM in THF/H20), NMP, rt, lOmin; ii) 3-

bromobenzotrifluoride, Pd2(dbakCHCb (IOmol% Pd), P(2-furyJ)3 (lOmol%), 100°C, 

16h. 

Trichlorophenylgermane 59 failed to react using Oshima's conditions. The disparity 

between this and trifurylphenylgermane 60, which gave a 32% yield, is both 

counterintuitive and difficult to explain. The germanium-chlorine bonds in 

trichlorophenylgermane 59 will almost certainly be hydrolysed by the action of the 

water associated with TBAF, and should give a species very closely related, if not 

identical, to trihydroxygermane 64, yet seemingly do not lead to a cross-coupling 

reaction. The most plausible explanation is that the large amount of chloride liberated 
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by the hydrolysis of Lewis acidic chlorogermanes is perhaps inhibiting the reaction in 

some manner. 

4.3.6.2 Hydroxide mediated chlorogermane cross-couplings 

Having established dichlorotolylgermane 50 as a potential coupling partner, giving 

superior yields to previous studies, we then re-examined the literature of chlorosilane 

cross-couplings (section 1.3.1), especially Hiyama's 1997 report that hydroxide is a 

superior activator to fluoride in chlorosilane cross-couplings.
54 

Hiyama employed a long induction time, during which the activator and 

organometallic were pre-mixed and allowed to react together. Moreover, Hiyama 

also allowed the palladium and phosphine sources to be stirred for 40 minutes to 

allow the active catalyst species to form. Hiyama's 1997 paper contained an example 

of a dichloroethyltolylsilane, highly analogous to dichlorogermane 50, undergoing 

cross-coupling with 3,5-bistrifluoromethylbromobenzene 69. 

CI CI 
\ I 

.............. Si~ 

~ 
I, Ii 

Figure 4.65: Hiyama's hydroxide mediated cross-coupling of dichlorotolylsilane 

Reagents and conditions: i) NaOH (6eq), THF, rt, 3h; ii) 3,5-

bistrifluoromethylbromobenzene, Pd(OAc)2 (lmol%), PPh3 (2mol%), 60°C, 39h, 

85%. 

This report provided an opportunity to make a direct comparison between the cross­

coupling activity of organosilanes and organogermanes. 
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70 

Figure 4.66: Hydroxide mediated cross-coupling of dichlorotolylgermane 50 

Reagents and conditions: i) NaOH (6eq), THF, rt, 3h; ii) 3,5-bistrifluoromethyl 

bromobenzene, Pd(OAc)2 (5mol%), PPh3 (lOmol%), 66°C, 24h, 32%. 

Pleasingly, these conditions gave an isolated yield of 32%. Even more pleasingly, the 

coupling proved to be reproducible, as repeat reactions gave yields of 32% and 36%. 

Now that successful cross-coupling conditions had been identified, it was decided to 

reinvestigate the effect of substitution at germanium. 

59 

70: R = Me 
71: R = H 

R 

Reagents and conditions: i) NaOH (6eq), THF, rt, 3h; ii) 3,5-bistrifluoromethyl 

bromo benzene, Pd(OAc)2 (5mol%), PPh3 (lOmol%), 66°C, 24h. 

x y Germane Product Yield 
Me Me 1 70 0% 
Me CI 49 70 0% 
CI CI 50 70 36% 

••••• __ •••••• _ .... H ..... _ .. _._.· __ .... ·_. ____ • __ • __ .M 
_········ .. • ... _·H ••• H ....... -----.... 

GeCh 59 71 43% 

Figure 4.67: Investigation into the effect of substitution at germanium 

These results show clearly the importance of the heteroatomic substitution at 

germanium. Both the dimethyl, and surprisingly, the chloromethylgermanes 1 and 59 

respectively were unreactive and furnished no coupled product at all. 
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Dichlorogermane 50 gave a moderate yield, with trichloride 59 offering a slight 

increase in reactivity. Regardless of this, it can be seen that dichloro substitution at 

germanium is clearly sufficient for cross-coupling, and can be satisfactorily 

incorporated into a linker model compound. 

In the reactions carried out so far, solid sodium hydroxide had been used as an 

activator. Although successful, this base is deliquescent, and consequently can absorb 

varying amounts of water prior to use. It was felt that this represented a potential 

source of irreproducibility. Hiyama had reported that aqueous sodium hydroxide 

could also be used. It was decided to test aqueous sodium hydroxide, the more 

soluble cesium hydroxide at 60°C, and also to examine Hiyama's sodium hydroxide 

and potassium fluoride conditions at elevated temperature (i.e. 120°C).52 

70 

Reagents and conditions: i) activator (6eq), solvent, rt, 3h; ii) 3,5-bistrifluoromethyl 

bromobenzene, Pd(OAc)2 (5mol%), PPh3 (lOmol%), 24h. 

Activator Solvent Tem~erature Yield 
NaOH (aq) THF 60°C Starting material + trace product 

CsOH THF 60°C Starting material + trace product 
NaOH DMF 120°C 1,3-Bis(trifluoromethyl)benzene 

NaOH (aq) DMF 120°C 1,3-Bis(trifluoromethyl)benzene 
KF DMF 120°C 62% 

Figure 4.68: Alternate activation methods 

At 60°C, neither aqueous sodium hydroxide nor cesium hydroxide were successful 

activators, whilst at elevated temperature both forms of hydroxide activator reduced 

the aryl halide to 1,3-bis(trifluoromethyl)benzene. The use of potassium fluoride 

however led to a significantly improved reaction, giving cross-coupled product 70 in 

a synthetically useful yield for the first time (62%). Having established viable cross-
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coupling conditions that proceeded in good yield it now remained to see ifthe catalyst 

could be further optimised. 

4.3.6.3 Optimisation of dichlo[otolylgerrnane C[OSs-coupling 

Optimisation of the catalyst was approached using an array method, and reactivity 

assessed using ESI LCIMS. Before this could be commenced, we needed a cross­

coupling product that possessed an ESI ionophore, and it was felt that acetophenone 

72, derived from bromoacetophenone 14, would offer this. 

CI CI 

C
OE~Ge~ ____ _ 

~ ~ o 50 

o 

Figure 4.69: Cross-coupling of 4-bromoacetophenone 

Reagents and conditions: i) NaOH (6eq), THF, rt, 3h; ii) 4-bromoacetophenone, 

Pd(OAc)2 (5mol%), PPh3 (lOmol%), 60°C, 24h, 28%. 

Using bromoacetophenone 14 and solid sodium hydroxide activator, an isolated yield 

of 28% was obtained (cf 32-36% for 3,5-bistrifluoromethylbromobenzene). 

Subsequent LCIMS analysis confirmed the ability of biaryl 72 to be ionised by 

positive ion electrospray. 

For the optimisation work, it was decided to firstly screen a series of phosphine co­

catalysts under several different activator conditions using Radleys Greenhouse 

parallel synthesisers. Solid sodium hydroxide at 60°C and 120°C, aqueous sodium 

hydroxide at 60°C and 120°C, and potassium fluoride at 120°C were all tested in 

conjunction with eight co-catalysts. The reactivity of each individual reaction was 

assessed using LC peak areas. As both starting bromide 14 and starting 

chlorogermane 50 co-eluted under the LC conditions (see appendix 8.4) the peak area 

of the desired product 72 was compared to the combined peak area of both starting 

materials (14 and 50) in order to estimate the reactivity. Summation of this ratio for 
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each variable allowed an insight into the effect on reactivity each variable was able to 

exert. 

CI CI 

COE~Ge~ ___ .. 

V ~ o 50 

o 

Reagents and conditions: i) activator (6eq), THF or DMF, rt, 3h; ii) 4-

bromoacetophenone, Pd(OAch (5mol%), ligand (10mol%), 60°C or 120°C, 24h. 

NaOH NaOH NaOH (s) NaOH (aq) KF (s) I 
(s) 60°C (aq)60°C 120°C 120°C 120°C 

PPh3 - 0.12 0 0 1.19 (11%) 1.32 
P(o-Tolh - 0.25 1.76 0 0.29 2.30 

P(2-furyl)3 - 0.12 1.20 0 0.98 2.29 
P(P-C6H4F)3 - 0 0.59 0 1.92 (34%) 2.50 

Dppp(a) - 0.15 0.95 0 2.21 (20%) 3.30 
Dpp(8

) - 0.20 0 0 1.09 1.29 
IMes'HCl(a) - 0 0 0 2.11 (38%) 2.11 
Lieandless - 0 0.40 0 1.65 2.05 

I 0.84 4.90 0.00 11.44 
Isolated yields in brackets (a): 5mol% of co-catalyst used 

Figure 4.70: Peak area ratio of product/starting material for chlorogermane 

cross-coupling phosphine co-catalyst optimisation 

As anticipated, potassium fluoride at an elevated temperature was by far the most 

successful activator, although it was interesting to note that sodium hydroxide at 

120°C allowed some reaction with certain phosphines. For the phosphines 

themselves dppp, and P(P-C6~F)3 both represented a significant improvement over 

PPh3. In addition to these P(o-Tol)J, P(2-furyl)3, and IMes·HCI also represented 

general improvement over PPh3. However, in conjunction with potassium fluoride 

IMes'HCI, dppp, and P(P-C6H4Fh, appeared superior to the other phosphines. It was 

decided to pursue the use of dppp, P(P-C6~F)3, and IMes'HCI, with PPh3 as a control 

in order to carry out a screen of palladium sources. 
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CI CI 

COE~Ge~ _--. .. 

~ ~ o 50 

o 

Reagents and conditions: i) activator (6eq), THF or DMF, rt, 3h; ii) 4-

bromoacetophenone, Pd(OAc)2 (5mol%), ligand (lOmol%), 60°C or 120°C, 24h. 

Pd(OAc)2 PdCIz(MeCN)2 APC dimer Pd2(dbah Pd(PPh314 1: 
PPh3 1.26 2.48 0.71 1.26 1.35 (8) 7.06 
P(p-

C6H4F)3 1.53 0.48 0.82 1.52 1.65 6.00 
Dppp(b) 2.52 2.73 0.89 1.34 1.81 9.30 

IMes'HCI(b) 2.15 2.19 1.88 0.22 0.98 7.42 
1: 7.47 7.87 4.30 4.35 5.79 

Isolated yields in brackets (a): Excess PPh3 was not added (b): 5mol% of co-catalyst 
used 

Figure 4.71: Palladium source optimisation 

In this screen, the pre-eminence of dppp as the best co-catalyst was reinforced. Allyl 

palladium chloride dimer and the two palladium(O) sources all performed poorly in 

comparison with palladium(II) acetate. The bis acetonitrile adduct of palladium(II) 

chloride, in conjunction with dppp, was marginally the best catalyst source. 

Reactions with Pd(OAc)2, PdCh(MeCNh, PPh3 and dppp were repeated on a larger 

scale. 
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CI, ,CI 

(
0tJE--=::: Ge~ ~ __ .. 
I~ ~ 

° 50 

Reagents and conditions: i) KF (6eq), DMF, rt, 3h; ii) 4-bromoacetophenone, 

Palladium (5mol%), Ligand (IOmol%), 120°C, 24h. 

PPh3 
D (a) 55% 60% 

(aJ: 5mol% of co-catalyst used 

Figure 4.72: Isolated yields for best case catalyst combinations 

Although the reactivity of some of these catalysts is similar, the combination of 

PdCh(MeCN)2 and dppp does indeed appear to be the best catalytic system, giving an 

isolated yield of 60% for the coupling of dichlorotolylgermane 50 and 4-

bromoacetophenone. Optimisation of the activator, the palladium source and 

phosphine co-catalyst, accompanied by an unoptimised change of solvent, has taken 

the yield of this coupling from an initial 28% up to the currently observed 60%. 
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One final factor to consider was the fact that use of KF instead of NaOH means that 

there is now no explicit water or hydroxy equivalents added to the reaction. The only 

water incorporated into these cross-coupling reactions is that associated with the 

fluoride and the solvent, as neither KF nor DMF are anhydrous, and neither were 

rigorously dried prior to use. In order to crudely test whether there was sufficient 

water present, 2 drops of distilled water were added to the reaction mixture whilst the 

chlorogermane precursor was being stirred with the fluoride source. The reaction 

gave an isolated yield of 43% of biaryl 72 (cf 60% without additional water), 

suggesting that an excess of water may be deleterious to the reaction. 

4.3.6.4 Examples of chlo[oge[mane C[OSs-coupling 

With yields now at a synthetically useful level we turned our attention to an 

exploration of the scope of the coupling. To this end, electron deficient aryl halides 

69, 73, 74 and 76 were selected for study. 
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CI CI 

COE~Ge~ ___ .. ~ 
;V ~ ~Ar 

o 50 

Reagents and conditions: i) KF (6eq), DMF, rt, 3h; ii) aryl halide, PdCh(MeCN)2 

(5mol%), dppp (5mol%), 120°C, 24h. 

Aryl Halide 

69 

73 

74 

o 76 Br)lN~ 

Product Yield 

70 63% 

72 25% 

75 79% 

Figure 4.73: Cross-coupling of dichlorotolylgermane 50 with electron deficient 

halides 

The poor yield of the aryl iodide 73 can be partly explained by the significant amount 

of bisacetophenyl dimer revealed by GCIMS. GCIMS analysis also indicated that 

pyridine 76 had failed to give any identifiable products related to the starting material. 

The other two examples both coupled in good yield. 

Electron rich aryl halides however, did not couple successfully. 
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Reagents and conditions: i) KF (6eq), DMF, rt, 3h; ii) aryl halide, PdCh(MeCN)2 

(Smol%), dppp (Smol%) or IMes'HCI (Smol%), 120°C, 24h. 

Aryl Halide Co-catalyst Product Yield 

~ 77 Dppp 

Br .0 
ONMe, 

1.0 25 Dppp 
Br 

MeO)) 
1.0 78 Dppp 

Br 

~ 77 IMes·HCI 

Br .0 
ONMe, 

1.0 25 IMes'HCI 
Br 

MeO)) 
1.0 78 IMes·HCI 

Br 

Figure 4.74: Cross-coupling of dichlorotolylgermane 50 with electron rich aryl 

halides 

None of these examples gave any identifiable coupling products, largely due to a 

failure of the starting aryl halides to undergo oxidative addition. The use of the better 

a-donor IMes'HCI rather than dppp did not alleviate this problem. 

4.3.6.5 Synthesjs and cross-coyp!jng of anjsylgermanes 

The next task was to probe the effect of changing the arylgermane coupling partner. 

Synthesis of dichloroanisylgermane 81 was accomplished using an analogous 

approach to the synthesis of dichlorotolylgermane 50. 
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MeO OMe 

~GeCI3 ----:. __ • 'OJ::> 
HO~8 ~ ~ 

HO~ ~OMe 
79 

MeO OMe 

'00 
.. COE~Ge~ 
~ ~ o 80 OMe 

Figure 4.75: Synthesis of trianisylgermane 80 

Reagents and conditions: i) 4-bromoanisole, Mg, THF, reflux, 17h, 74%; ii) CS2C03, 

TBAI (lOmol%), MeCN, 2-chloroethyl ethyl ether, 78%. 

Formation of the trianisylgermylphenol 79 took place smoothly and in better yield 

than the formation of tritolylgermylphenol 52, whilst protection of the phenol 

afforded trianisylgermane 80. Similarly, bis-dearylation also proceeded cleanly. 

MeO OMe 

'00 
COE~Ge~ ~ ~ o 80 OMe 

CI CI 

___ .. COE~Ge0 
O~ ~OMe 

81 

Figure 4.76: Synthesis of dichloroanisylgermane 81 

Reagents and conditions: i) c.HCl, CH2Ch, rt, 3h, 82%. 

Thus, using a biphasic mixture of CH2Ch and c.HCl at rt over 3 hours (cl Turner's 

synthesis of dichloroanisylgermylphenol, section 4.3.2.1) the desired cross-coupling 

substrate dichloroanisylgermane 81 was obtained in good yield. 

As electron rich aryl halides had failed to undergo oxidative addition when coupling 

with dichlorotolylgermane 50, only electron deficient and electron neutral aryl halides 

were examined in conjunction with dichloroanisylgermane 81. 
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CI CI , , MeO'Q (~G·O I 
I bib 

• I 
o 81 OMe b Ar 

Reagents and conditions: i) KF (6eq), DMF, rt, 3h; ii) aryl halide, PdCh(MeCN)2 

(5mol%), dppp (5mol%), 120°C, 24h. 

Entry Aryl Halide Product Yield 
0 

1 if 14 85 5% 

Br b 

2 Ph-Br 31 20 36% 

3 ~ Br b CF
3 

62 86 51% 

4 h 69 87 71% 

Br b CF
3 

Br 

5 cO 74 88 56% 
b b 

6 D Br ~N 
82 89 44% 

v9. (a) 7 ~ ~ 83 90 -
I b Br 

~N02 
8 Ib 84 91 47% 

Br 

(aJ 43% of aryl halide starting material recovered 

Figure 4.77: Cross-coupling of dichloroanisylgermane 81 

For unclear reasons bromo acetophenone 14 (entry 1) coupled in surprisingly poor 

yield, whilst ortho substituted 2-bromobiphenyl 83 (entry 7) gave 43% recovery of 

starting aryl bromide 83, and an inseparable mixture of desired terphenyl 90 and 
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homo-coupled dimers of both starting materials 81 and 83. The yields ranged from 

good (hexafluoride 87, entry 4, 71%) to moderate (methoxybiphenyl 20, entry 2, 

36%), with 3-benzotrifluoride (86, entry 3), naphthyl analogue (88, entry 5), and 4-

nitro analogue (91, entry 8) being formed in yields of 51%, 56% and 47% 

respectively. The heteroaromatic 3-anisylpyridine 89 was formed in 44% yield (entry 

6). 

From this work it is difficult to draw any clear conclusions about the relative cross­

coupling ability of dichloroanisylgermane 81 and dichlorotolylgermane 50. 

CI CI , , 

C0X)'E~ Ge~ IA ~ o R 
.. R~ ~ Ar 

50: R= Me 
81: R = OMe 

Reagents and conditions: i) KF (6eq), DMF, rt, 3h; ii) aryl halide, PdCh(MeCNh 

(5mol%), dppp (5mol%), 120°C, 24h. 

Yield 
Entry Aryl Halide Product 

R = Me (50) R = OMe (81) 

1 ~ srN 14 85 60% 5% 

2 69 87 63% 71% 

3 74 88 79% 56% 

Figure 4.78: Comparison of dichlorotolylgermane 50 and dichloroanisylgermane 

81 

The yields for dichlorotolylgermane 50 are routinely moderate to high and are quite 

consistent. With the exception of bromohexafluoride 69, dichlorotolylgermane 50 
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gives higher yields than dichloroanisylgermane 81. The yields for the reactions with 

dichloroanisylgermane 81 are less consistent with the aryl bromides shown, 

particularly the anomalously low result for the coupling with bromoacetophenone 14. 

4.3.7 Synthesis and cross-coupling of germyl hydrides 

Work within the group (Teyrnon Jones, Spivey Group, 2000-2004) had revealed that 

dimethylhydrogermanes can undergo atmospheric oxidative dimerisation in the 

presence of palladium. 

Figure 4.79: Oxidative dimerisation of hydrogermane 

Reagents and conditions: i) Pd2(dba)J, non-degassed NMP, rt, 17 hours. 

Considering this observation in the context of installing heteroatomic substituents 

onto germanium for cross-coupling, it seemed plausible that germy I hydrides might 

make ideal safety catch germanes for cross-coupling. To this end, 

dichlorotolylgermane 50 and dichloroanisylgermane 81 were both reduced with 

LiAIH4 to give germyl hydrides 92 and 93 respectively. 

CI CI H H 

COEV~ 'Geo - ___ COVE~ Ge~ 
I~ I~ I~ ~ 
ORO R 

Reagents and conditions: i) LiAl~, THF, 60°C, 17h. 

Starting material 
50 
81 

R 
Me 

OMe 

Product 
92 
93 

Yield 
Quantitative 

91% 

Figure 4.80: Synthesis of germyl hydrides 

Both dihydrides were formed in excellent yield, and then subjected to cross-coupling 

using the conditions applied to dichlorogermanes 50 and 81. 
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H H 

COE~Ge0 i, iI II~ 
O~ ~R 

~:R=Me R 
93: R= OMe 70: R= Me 

84: R= OMe 

Figure 4.81: Cross-coupling of hydrides 92 and 93 

Reagents and conditions: i) KF (6eq), DMF, rt, 3h; ii) 3,5-bis(trifluoromethyl) 

bromobenzene, PdCh(MeCN)2 (5mol%), dppp (5mol%), 120°C, 24h. 

Neither system gave any discernible products related to the starting hydrogermanes or 

starting aryl bromide. 

4.4 Conclusions 

4.4.1 Reactivity of arvlgermanes 

The work carried out has allowed several conclusions to be drawn about the cross­

coupling chemistry of arylgermanes. It would appear that aryldimethylgermanes do 

not undergo coupling, despite the seemingly promising initial results. Instead, 

dichloro substitution at the germanium centre is necessary for a successful reaction. 

One facet of this work that requires explanation is the variable and irreproducible 

level of reactivity of the aryldimethylgermanes. Early work gave a GCIMS yield of 

32% and an isolated yield of 22% (section 4.1.5), the scanning experiment (section 

4.1.6) gave GCIMS yields of 33% (tolylgermane 1, bromobenzonitriIe 2 and CsF), 

31 % (tolylgermane 1, bromo benzene 31 and BnTMAF) and 28% (anisylgermane 13, 

bromobenzonitrile 2 and CsF). The control reactions in the screening experiments 

routinely gave GCIMS yields at a sub 5%, or even sub 1 % level for the CsF mediated 

coupling between tolylgermane 1 and benzonitrile 2. 
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eN 
3 

Reagents and Conditions: i) 4-bromobenzonitrile, Pd2(dba)3 (5mol% Pd), PPh3 

(lOmol%), fluoride (2.2eq), DMF, 150°C, 48h. 

Experiment 
Fluoride screen 

Scanning experiment 
Scanning experiment 

Phosphine screen 
Inert atmosphere 
Solvent screen 

Chlorogerrnane investigations I 
Chlorogerrnane investigations II 
Chlorogerrnane investigations III 

(aj Isolated yield in brackets 

Conditions 
BnTMAF 
BnTMAF 

CsF 
CsF 
CsF 
CsF 
CsF 
CsF 
CsF 

GCIMS Yield 
31.7% (22%ia

) 

1.1% 
33.1% 
0.7% 
1.9% 
1.0% 
3.9% 
2.9% 
3.5% 

Figure 
4.10 
4.11 
4.11 
4.15 
4.16 
4.19 
4.53 
4.53 
4.53 

Figure 4.82: Variable yields of tolylgermane cross-coupling control reaction 

Care was taken to exclude moisture from the reactions; however glovebox conditions 

were not employed and some opportunities existed for the introduction of air and 

water. Firstly they were carried out in sealed reaction vials; whilst the vials were 

oven dried, the lids could not be oven dried and the vials could not be evacuated and 

effectively placed in an inert atmosphere. In addition to this, all of the fluorides used, 

even those already hydrated, are extremely hygroscopic. Weighing under a stream of 

nitrogen into a sealed vial was sufficient to prevent deliquescence, but almost 

certainly did not prevent the absorption of some moisture. 

At the time this study was commenced, the mechanism of group 14 cross-coupling 

was poorly developed and had only been considered as being that of a Stille-type 

process, and the importance of water in silicon or germanium cross-coupling reactions 

was not suspected. Since then, much work has been carried out that has detailed the 

crucial role played by water or hydroxide in Hiyama-Denmark cross-coupling 
85,96,135 • h 

chemistry. In hg t of these reports it seems plausible that water is an essential 
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reagent for tetra-organogermane couplings, and that the variable yields could be 

attributable to the absorption of varying amounts of atmospheric moisture in each 

reaction. 

Chlorogermanes however, have been shown to be competent cross-coupling 

substrates, giving synthetically useful yields. It is noteworthy that these couplings are 

highly sensitive to the conditions and reagents employed (cf unsuccessful initial 

chlorogermane study in section 4.3.3 and the successful chlorogermane studies 

described in section 4.3.6). 
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i, II, iii 
oriv 

~ 

R 

Reagents and conditions: i) 4-bromobenzonitrile, CsF (2.2eq), Pd2( dba)3 (lOmol% 

Pd), PPh3 (20mol%), DMF, 150°C, 48h; ii) TBAF (3eq, 1.0M in THFIH20), NMP, rt, 

IOmin; ii) 3-bromobenzotrifluoride, Pd2( dba)3.CHCh (lOmol% Pd), P(2-furyl)3 

(lOmol%), 100°C, 16h, 7%; iii) KF (6eq), DMF, rt, 3h, then 3,5-bistrifluoromethyl 

bromo benzene, Pd(OAc)2 (5mol%), PPh3 (lOmol%), 120°C, 24h; iv) NaOH (6eq), 

DMF, rt, 3h, then 3,5-bistrifluoromethyl bromobenzene, Pd(OAc)2 (5mol%), PPh3 

(IOmol%), 60°C, 24h. 

Aryl Halide Activator Catal;rst Product Yield Figure OCN Pd2(dba)31 
10 2 CsF 3 1% 4.53 

PPh3 Br 

~ 62 TBAF 
Pd2(dba)JI 

68 7% 4.63 
Br 0 CF

3 
P(2-furyl)3 

E 69 NaOH Pd(OAchl 70 36% 4.67 
PPh3 

Br 0 CF
3 

E 69 KF Pd(OAchl 70 62% 4.68 
PPh3 

Br 0 CF
3 

Figure 4.83: Cross-coupling reactions with chlorogermanes 

The conditions for the three reactions are similar, with perhaps the most significant 

differences being the nature of the catalyst and the number of equivalents of activator. 

It is noteworthy that 4-bromobenzonitrile failed to give a coupling reaction with 

trifurylphenylgermane 60, suggesting that the choice of aryl halide may have had 

some effect on the poor coupling of the initial chlorogermane study. The two poor 

reactions also share a common palladium source, whereas the successful reaction 

utilises a pre-formed catalyst of palladium(II) acetate and triphenylphosphine, which 

is an effective source of a palladium(O) catalyst. It seems likely that this, in 
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conjunction with the induction period allowing dichlorogermane 50 to react with 

fluoride and associated water, is the major factor behind the dramatic improvement in 

reactivity . 

The current synthesis of dichlorogermanes 50 and 81 relies on selectively removing 

the electron rich tolyl or anisyl groups with electrophiles. In order to broaden the 

scope of the arylgermane coupling partner it is desirable to identify a more general 

synthetic approach. A modification of the dichloroanisylgermane chemistry 

developed in the group could solve this problem. 

MeO OMe 

00 
cOE~Ge0 
o~ ~OMe 

81 

....... ...1 ......... -

Figure 4.84: Potential synthesis of varied dichloroarylgermanes 

Reagents and conditions: i) mild acid, selective for mono-dearylation, ii) aryl metal, 

iii) stronger acid, selective for di-dearylation. 

Such an approach is contingent on the aryl group for cross-coupling being less 

electron rich than p-anisyl groups, and also being stable to acid. Other electron rich 

aryls that could be utilised in place of p-anisyl include 2-furyl and 2-thienyl. 

4.4.2 Relative cross-coy piing reactivity of chlorogermanes 

and chlorosilanes 

In general, the susceptibility of group 14 metals towards hypervalency increases as 

the periodic table is descended. From the position of germanium within group 14 of 
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the periodic table it might be expected, a priori, that organogermanes would display a 

susceptibility to hypervalency intermediate between that of organosilanes and 

organostannanes. Drawing on the mechanistic situation outlined for organosilanes 

(vide supra), this might be expected to translate into an intermediate susceptibility 

towards transmetallation and cross-coupling. 

It is clear from the comparison between the reactivity of Vedejs' carbastannatranes 

and Kosugi's carbagermatranes, discussed in sections 1.2.2 and 1.5.1 respectively, 

that organostannanes are significantly more reactive towards cross-coupling than 

organogermanes. On the evidence of publications to date it is not, however, possible 

to reliably quantify the relative susceptibilities towards cross-coupling of 

organogermanes and organosilanes as comparative studies have not been published. 

The work in this thesis enables some of the first direct comparisons to be drawn 

between silicon and germanium. 

One of the most striking features of this work was the difference between the 

reactivity of dichlorotolylgermane 50 and Hiyama's dichloroethyltolylsilane
54 

in the 

palladium catalysed, hydroxide mediated coupling with 3,5-

bistrifluoromethylbromobenzene. 

Hero: M = Ga, R = C:~ (50) 

Hivama: M = Si, R = H 

I, II .. 

70 

Figure 4.85: Hydroxide mediated cross-coupling of dichloroethyltolylsilane and 

dichlorogermane 50 

Reagents and conditions: i) NaOH (6eq), THF, rt, 3h; ii) 3,5-

bistrifluoromethylbromobenzene, Pd(OAc)2 (lmol%), PPh3 (2mol%), 60°C, 39h. 
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Whilst it was pleasing to identify successful cross-coupling conditions for 

organogerrnanes, it was surprising to see that the yield for dichlorogerrnane 50 was 

markedly inferior to the yield for dichloroethyltolylsilane (36% for Ge, cf 85% for 

Si
5
\ Contrary to the original hypothesis that organogerrnanes would be intermediate 

between organostannanes and organosilanes, the reactivity instead appears to follow 

the trend Si > Ge « Sn. 

This surprising order of reactivity may be explained by considering the scandide, or 

transition metal, contraction, which describes the effect on the atomic properties of p-

block elements resulting from filling the d-orbitals of period 4 for the first time.
2oo 

Although the effect is felt for all p-block elements in periods 4, 5 and 6, it is strongest 

for the post-scandide elements in period 4, which are the first in the periodic table to 

be affected by a full d-orbital. 

Electrons in d-orbitals are poorly shielding, meaning that the effect of the increased 

nuclear charge as period 4 is traversed is felt more strongly on the valence electrons 

of period 4 p-block elements than would be expected. The most obvious illustration 

of this is the smaller than expected covalent radii for germanium as a result of the 

scandide contraction, and for lead due to the lanthanide contraction resulting from the 

filled 4f-orbital. 
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Group 14 Covalent Radii 

160 

E 140 Q. -en 
.~ 120 
"0 
E - 100 c 

I-+-Covalent radius/pm I 
~ 
cu 
> 80 0 
0 

60 

C Si Ge Sn Pb 

Element 

. 86 C 201 Figure 4. : ovalent radii of group 14 elements 

The scandide and lanthanide contractions also affect the electronegativities of the 

group 14 elements, and consequently affect the chemistry of silicon, germanium, tin 

and lead, to the extent that germanium has more in common with carbon than silicon 

or tin, and silicon has more in common with tin, than with carbon or germanium. 

Group 14 Electronegativities 

2.8 -,---------- --------, 

>. 
2.6 -1----,---------------4 

~ en 
> -

2.4 -I--~"'C"'"---------_,;J.-_l , ______ -, 
;; ·c 
~ ~ 2.2 -I----'\-T------~_='_~.L--_j 

-+-Allred-Rochow 

& Pauling 5 :§ 2. 0 -f------'l~-__:::"."...~====__.r__---_l 
... ::l 
- cu 

_ Mulliken-Jaffe 
g D. 1.8 -I----4-~-----',-----_j 

iii 1.6 -I--------------"'~_:__-l 

1.4 +-- ---r---....,.--- - -r-- - ---,-----f 

c Si Ge 

Element 

Sn Pb 

201 
Figure 4.87: Electronegativities of group 14 elements 
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The trend in electronegativity C » Si < Ge > Sn < Pb for the Pauling and Mulliken 

scales, and C » Si < Ge > Sn >Pb for the Allred-Rochow scale is clearly unlike the 

general trends of periodicity, which hold that electronegativity decreases as the group 

is descended. The effect of this is that germanium-carbon bonds are more covalent, 

or less polar, than silicon-carbon or tin-carbon bonds, and are correspondingly less 

reactive. In a finely balanced palladium mediated process such as cross-coupling 

reactions, small differences in metal-carbon bond character could have a large effect 

on reactivity. 

4.5 Future work 

Much work remains to be done in the exploration of organogermanium cross-coupling 

chemistry. 

The current catalytic system appears unable to facilitate the coupling of electron rich 

aryl halides. Although they are routinely less reactive than electron deficient aryl 

halides it is nevertheless rare for electron rich aryls to be wholly unreactive and it 

would be desirable if a more efficient catalytic system could be identified to 

overcome this limitation of the scope of reactivity. 

Another variable shown to be important in organosilane cross-coupling is the amount 

of water present. The current protocol does not explicitly account for the inclusion of 

the water necessary to the reaction, instead relying on the use of undried DMF solvent 

and hydrated KF. It would seem desirable to explore the precise amount of water 

needed by studying the reaction using anhydrous solvent and fluoride hydrates with 

known stoichiometry. It seems plausible that this study may also lead to further 

optimisation of the reaction yield. Investigations using LCIMS, and IH and 19F NMR 

into the precise nature of the active arylgermanium species would also be valuable to 

gain an insight into the mechanism of organogermane cross-couplings compared to 

organosilanes or organostannanes. 

Another area of study that appears important will be investigations of the synthesis 

and reactivity of germanols. It is known that germoxane oligomers are formed in 

preference to germadiols and germatriols, but the synthesis of a mono germanol may 
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be possible. The reactivity of such a compound could then be investigated in light of 

the proposed mechanistic pathways for silanol couplings that allow the pre­

coordination of the organometallic with the palladium catalyst. 

Chlorogermanes are interesting from the point of view of expanding the scope of 

group 14 organometallic cross-coupling chemistry and gaining an insight into the 

relative reactivity of the group 14 elements, and the differences between the 

chemistries of silicon germanium and tin. However, they remain a reactive and labile 

species, and would be unlikely to provide a practical applied solution to the problem 

of solid phase organogermane cross-coupling. In light of this, it would be highly 

desirable to develop a practical safety-catch organogermanium linker. The brief 

initial investigation of germy I hydrides as cross-coupling partners has been 

unsuccessful, but these compounds remain as a potential coupling partner if an 

effective method for hydrolysing the germanium-hydrogen bond can be identified. 

Once an appropriate safety catch linker has been developed then it remains to transfer 

this chemistry to the solid phase and apply it to the synthesis of diverse libraries of 

e.g. pharmaceutical compounds with a biaryl motif. Another area of study within the 

research group where this work could have direct relevance is in the cleavage of semi­

conducting oligothiophenes from germanium. The electronic properties of 

oligothiophenes are affected by the nature of the end groups, and various aromatic 

molecules have been used in this regard. 
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5 Friedel-Crafts degermylation results and 
discussion 

5.1 Acetvldegermylatjoo of aryltrjmethylgermaoes 

The second area of arylgermane chemistry explored in this project was Friedel-Crafts 

acyldegermylation, using an acylium ion as the electrophile to form aryl ketones. 

This methodology represents another opportunity to cleave library molecules from a 

germanium based linker with a carbon-based electrophile, and, as described in chapter 

2, there is literature precedent for the analogous ipso demetallation of arylsilanes and 

arylstannanes. The reactivity of Group 14 aryl-metal species towards electrophiles is 

known to be related to the magnitude of their p-effect, which increases in the order Si 

< Ge « Sn, as demonstrated by Eabom's 1960 study of the relative rate of cleavage 

of aryl-metal bonds by proton electrophiles.
13 

r(YMEta r(YH 
V --·"V 

Reagents and conditions: i) HCI04, solvent, H20 

M Solvent Kre, 
Si MeOH I 
Ge MeOH 36 
Sn EtOH 3.Sx105 
Pb EtOH 2 x 108 

Figure 5.1: Relative magnitude of the p-effect for group 14 metals 

Interpolation of the chemistry of silicon and tin thus led to a high degree of 

confidence that the reaction could also be applied to arylgermanes. 

The starting point for this work was to identify conditions that could be applied to 

germanium. Eabom's initial work had used aluminium(I1I) chloride in carbon 
153 

disulfide as the solvent, but later work from other groups had shown that CH2Ch 
156,159 • 

could also be used as solvent. ThIs seemed to be a better starting point, and it 

was decided to replicate Dunogues' acyldesilylation of 3,S_xylene,202 using a 
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modified method taken from Dunogues' 1993 refined acyldesilylation method ISO and 

Katz' 1993 acyldesilylation of naphthalenes and acenaphthylenes.
161 

Dunogues synthesised silyl xylene 94 from m-xylene, starting with a "silicon Birch" 

reduction to give the unconjugated 1 ,5-dimethyl-3,6-disilyl-1 ,4-cyclohexadiene, 

which was aromatised with p-chloranil to gave a mixture of the disilyl and 5-silyl m­

xylenes, which were separated by distillation to give silyl xylene 94 in 60-64% yield. 

We anticipated that lithiation of bromoxylene 77 using n-BuLi, followed by 

quenching with TMS-CI would also furnish the desired compound. 

BrllY y i, ii .. 

77 94 95 

Figure 5.2: Attempted silylation of 3,5-bromoxylene 

Reagents and conditions: i) n-BuLi, THF -78°C, 30min; ii) TMS-Cl, -78°C ~ rt, 17h. 

Although the reaction mixture appeared as a single spot by TLC, analysis of the 

reaction mixture by GelMS and IH NMR revealed a mixture of the desired silyl 

xylene 94, and butyl xylene 95, presumably as a result of the reaction of excess aryl 

lithium with the butyl bromide by-product. In order to address this issue, the reaction 

was repeated using s-BuLi and t-BuLi, and instead of warming to rt overnight was 

stirred at -78°C for 30 min before being warmed to rt over just 1 hour after the silyl 

chloride had been added. 
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Bryy y I, II .. 

77 94 

Reagents and conditions: i) alkyl lithium, THF -78°C, 30min; ii) t-BuLi, THF _78°C, 

30min; iii) TMS-CI, -78°C 30min, ~ rt, I h. 

Alkyllithium Yield 
s-BuLi 68% 
t-BuLi 36% 

Figure 5.3: SHylation of 3,5-bromoxylene with alternate alkyllithiums 

In each case a pure sample of silyl xylene 94 was obtained. Owing to the superior 

yield, s-BuLi was employed in further experiments. 

---.~ 
94 96 97 

Figure 5.4: Acylation of sHyl xylene 94 

Reagents and conditions: i) aluminium(III) chloride, AcCI, CH2Ch, O°C ~ -78°C 

30min; ii) 94, CH2Ch, -78°C th, 96%. 

The desired ipso acyldesilylated product 96 was not the sole compound isolated; IH 

NMR and GCIMS indicated that the ortho acyldesilylated isomer 97 had also been 

formed, giving a yield of 96% for the two isomers. Analysis of the 1 H NMR integrals 

indicated that the two isomers were present in a ca. 50/50 ratio. This is in contrast to 

Dunogues' claim that the reaction is regiospecific. 

It was decided to use trimethylgermyl substituted aromatics in order to determine the 

scope of reactivity of arylgermanes towards acyldegermylation. Tolylgermane 41 

was synthesised via reaction of trimethylgermyl bromide with commercial p­

tolylmagnesium bromide. 
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Me3Ge'Q 
Me3Ge-Br --... I 

~ 

41 

Figure 5.5: Synthesis of trimethyltolylgermane 

Reagents and conditions: i) p-ToIMgBr, THF, rt, 4.Sh, 91 %. 

Other arylgermanes were synthesised via Iithiation of the appropriate aryl bromide, 

followed by quenching with trimethylgermanium bromide (TMG-Br). 

Br'O I R 
~ 

Reagents and conditions: i) s-BuLi, THF -78°C; ii) TMG-Br, -78°C, ~ rt. 

Lithiation Time at Time 
Entry Aryl bromide Product Yield time -7SoC at rt 

1 p-Methoxy 12 lSmin{a) lSmin lSmin 101 89% 
2 m-Methoxy 9S 30min(a) 30min 30min 102 20% 
3 o-Methyl 99 lSmin(a) lSmin lSmin 103 72% 
4 m-Methyl 100 30min(a) 30min lSmin 104 
53,S-Dimethyl 77 30min(a) 30min 15min 105 
6 m-Methyl 100 30min(b) 30min 15min 104 12%(c) 
7 3,5-Dimethyl 77 30min(b) 30min 15min 105 69%(d) 
S 2,6-Dimethyl 106 45min(b) 45min 30min 107 80% 
9 o-pyridyl 76 4Smin(b) 30min 30min lOS 81 % 

(a): s-BuLi was used (b): n-BuLi was used (c): The starting material was the crude 
product from entry 4. Yield is calculated from the amount of aryl bromide used in 
entry 4 (d): The starting material was the crude product from entry 5. Yield is 
calculated from the amount of aryl bromide used in entry 5 

Figure 5.6: Germylation of aryl bromides 

There was incomplete metallation in the reactions with 3-bromotoluene 100, and meta 

bromoxylene 77 using s-BuLi (entries 4 and 5), and in each case, a mixture of desired 

product germane and starting material bromide was obtained. The crude reaction 

mixtures were further exposed to n-BuLi and TMG-Br to give samples of pure 

product (entries 6 and 7). o-Xylene 107 and pyridine lOS were also synthesised using 

n-BuLi (entries 8 and 9). 
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meta Benzoate 110 was prepared using Knochel's i-PrMgCI chemistry.203 

Figure 5.7: Germylation of aryl iodides using i-PrMgCI 

Reagents and conditions: i) i-PrMgCI, THF -40°C, 90min; ii) TMG-Br, -40°C, 2h 

40min, 75%. 

With a range of arylgermanes in hand, attention turned to exploring the scope of ipso 

acyldegermylation. It was anticipated that, in accordance with the ~-effect for group 

14 metals, arylgermane bonds should be more reactive towards acylium ions than aryl 

silanes. Consequently, the method used for the ipso-acyldesilylation of silyl xylene 

94 was employed. 

Reagents and conditions: i) aluminium(III) chloride, AcCI, CH2Ch, O°C ~ -78°C 1 h; 

ii) Arylgermane, CH2Ch, -78°C 1 h, ~ rt 1 h. 

Entry Arylgermane 
1 p-Methyl 41 
2 p- Methoxy 101 
3 m-Methoxy 102 
4 o-Methyl 103 
5 m-Methyl 104 
6 3,5-Dimethyl 105 
7 2,6-Dimethyl 107 
8 o-Pyridyl 108 
9 m-Ethyl benzoate 110 

Product 
111 
112 
113 

114 
96 +97 

115 

Yield 
85% 
63% 

78% (a) 

Jb) 

65% 
76% (c) 

53% 

(aj Acylation was directed by the methoxy group; 
degermylation was not observed (bj No identifiable 
compounds isolated (c) Mixture of 3,5 and 2,4 dimethyl 
acetophenone isomers isolated 

Figure 5.8: Acylation of arylgermanes 
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The results for the ipso acyldegermylation revealed some interesting facets of the 

strength of germanium's ~ effect and its ability to direct ipso substitution. p­

Tolylgermane 41 (entry 1), p-anisylgermane 101 (entry 2), m-tolylgermane 104 

(entry 5), and 2,6-xylene 107 (entry 7) gave the expected ipso substituted 

acetophenones in good yield. The successful reaction of the sterically hindered 2,6-

xylene 107 can be ascribed to the release of steric crowding when the Wheland 
204 

intermediate is formed. Surprisingly o-methyl arylgermane 103 (entry 4) did not 

give any identifiable products, in contrast to Sasaki's report of a 45% yield of the ipso 

substituted acetophenone when o-methyl aryl silane was exposed to TiCI41 AcCI.
156 

This observation could perhaps be ascribed to preferential protodegermylation if any 

moisture was present in the reaction media. Similarly to silyl xylene 94, 3,5-dimethyl 

arylgermane 105 (entry 6) gave a ca. 50/50 mixture of 3,5 dimethyl and 2,4-dimethyl 

acetophenones 96 and 97 in 76% combined yield. 

Electron deficient pyridylgermane 108 and germy I benzoate 110 (entries 8 and 9 

respectively) both failed to undergo degermylation at -78°C, rt, or even in refluxing 

CH2Ch. It is possible that the unreactivity of pyridylgermane 108 could also be 

attributed to coordination of the pyridine nitrogen to any of the Lewis acids present. 

One of the more interesting results was the reaction of m-anisylgermane 102 with 

acetyl chloride. Dunogues has reported for silicon that acylation is preferentially 

b h 1 d· . b· 205 influenced y strong ort 0 para lrectmg su stltuents. 
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NoMe 

Ph~ 
o 

50% 

Me3SiyyOMe 

Ph~ 
o 

33% 

o Ph 

Me
3
Sk""'X ~OMe 
U 

13% 

Me3SiyyOMe 

~Ph 
o 

4% 

Figure 5.9: Dunogues' acylation of m-anisylsilane 

Reagents and conditions: i) aluminium(III) chloride, PhCOCl, CS2, O°C. 

We had hoped that the ipso directing effect of a germanium substituent would be 

sufficient to overcome the ortholpara directing effect of the methoxy substituent. 

MeaGeyyOMe 

I,ll. yV 
o 

113 

Figure 5.10: Acylation of arylgermanes 

Reagents and conditions: i) aluminium(III) chloride, AcCl, CH2Ch, O°C ~ -78°C t h; 

ii) aryl germane , CH2Ch, -78°C th, ~ rt th, 78%. 

In the event, we found that the methoxy group still preferentially directed the 

acylation, to give the trisubstituted arylgermane 113. Acylation para to the methoxy 

group and ortho to the germy I substituents, rather than ortho to the methoxy group 

and para to germanium was confirmed by a nuclear Overhauser effect experiment 

(see experimental). In light of the fact that both SiMe3 and GeMe3 substituents have 

similar Hammett 0'+ values (-0.14 and -0.19 respectively),206 which are much less 

207 
negative than that for OMe (-0.78), perhaps this selectivity is not surprising. 

Arylgermane 82 was further subjected to aluminium(III) chloridel AcCI to see if a 

second acyl group could be installed by ipso degermylation, but no identifiable 

products could be recovered. 
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Finally, to exemplify the Friedel-Crafts acyldegermylation of aromatic groups from 

our linker model system, dimethylanisylgermane 13 was exposed to aluminium(III) 

chloride/AcCI, giving 4-methoxy acetophenone 112 in 52% yield. 

\/ 

COE~Ge0 O~ ~OMe 
13 

o 
1,11 ~ ~ I 

.0 OMe 
112 

Figure 5.11: Acylation of arylgermanes 

Reagents and conditions: i) aluminium(III) chloride, AcCI, CH2Ch, O°C -+ -78°C 1 h; 

ii) arylgermane, CH2Ch, -78°C I h, -+ rt 1 h, 52%. 

5.2 Conclusions 

In light of the scant literature precedent, this work represents the first properly 

reported study of acyldegermylation and has allowed some conclusions to be drawn 

about the susceptibility of arylgermanes towards ipso demetallative cleavage with 

acylium ions to form aryl ketones. There are some limitations on the nature of the 

aryl group at germanium; the most appropriate aryl groups are those that are electron 

neutral or slightly electron rich. Aromatic rings with strong electron donating 

substituents can find their Friedel-Crafts chemistry directed not by the germanium 

substituent, but by the electron donating group instead. This was disappointing, as it 

had been hoped that the ipso directing effect of germanium would prove to be 

stronger than the ortho/para directing effects of e.g. methoxy substituents. 

It had also been hoped that the increased reactivity of C-Ge bonds towards 

electrophiles in comparison to C-H bonds (and also C-Si bonds) 13 might have 

facilitated acylation of strongly electron deficient rings, which are normally 

unreactive towards this form of chemistry. However, this does not appear to be the 

case, as both pyridine 109 and meta-benzoate 110 remained unchanged by the action 

of aluminium(II1) chloride/ AcC\' 
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The effect of steric hindrance remains ambiguous; whilst the highly congested 2,6-

xylene 107 reacted cleanly, ortho-toluene 103 did not. It is unclear whether the 

failure of ortho-toluene 103 to give the desired product is related to the substitution 

pattern or not, as the reactivity of xylene 107 could be ascribed to a release of the 

strain resulting from steric crowding, and may be an atypical case. 

It had been hoped at the outset that the germanium ipso directing influence would be 

sufficiently enhanced relative to that of silicon to allow for the regioselective 

synthesis of arylketones that are otherwise difficult to construct. The results obtained 

suggest that this is not the case, and that the Friedel-Crafts chemistry of arylgermanes 

is similar to that of arylsilanes. Perhaps this is unsurprising as the magnitude of the 

p-effect on going from silicon to germanium is only increased by a factor of 36 (vide 

supra). Nevertheless, this methodology still represents a powerful opportunity for the 

diversification of aromatic libraries containing aromatic ketones. 

5.3 Future work 

The work described above is only a preliminary study of Friedel-Crafts 

acyldemetallation, and there is a need for further investigation in this area. 

Firstly, this work has delineated the scope of the arylgermane undergoing acylation, 

but has not looked at the nature of the acylating agent. It would be valuable to 

investigate the reactivity of aromatic acyl chlorides with varying electronic 

characteristics, a range of aliphatic acyl chlorides, including some with substitution at 

the a-position and also of sulfonyl chlorides. In addition, it still remains to be shown 

that this chemistry can be carried out on the solid phase. 

Once the scope of the acylating agents has been established then one potential 

application of this methodology is the synthesis of libraries of pharmaceutical 

compounds that contain an aryl ketone moiety. This chemistry may also find 

significant use in another project within the group in the solid phase synthesis of 

semi-conducting oligothiophenes as a means of installing end-groups (vide supra), 

typically these end groups may be long chain alkyls. In practice, these alkyl groups 

are often installed as ketones due to the fact that Friedel-Crafts acylation is generally 
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superior to Friedel-Crafts alkylation and because the polar carbonyl group facilitates 

purification by chromatography. Thus, following purification the ketone carbonyl 

functional group can be cleanly reduced to a methylene unit using Lewis acid 

promoted hydride reduction. 
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6 Experimental 

6.1 General directions 

Solvents and reagents: See appendix 8.1 for preparation of solvents, and appendix 

8.2 for the preparation of reagents. 

Chromatography: Flash chromatography was carried out on Silica gel (BDH Silica 

gel for flash chromatography) according to the method described by Still,208 or by 

using either Isolute Flash Silica (lg, 5g, 50g) or Varian Bond Elut Si (lOg) SPE 

cartridges in conjunction with a Varian Vac-Elut-20 vacuum manifold. TLC was 

performed on aluminium backed silica gel plates (Merck Silica gel 60 F254) which 

were developed with UV fluorescence (254 nm and 365nm) and KMn04(aq)/Ll. 

IH NMR spectra: These were recorded at 250MHz on Bruker AC-250 instrument or 

at 400MHz on a Bruker AM-400 instrument. Chemical shifts (OH) are given in parts 

per million (ppm) as referenced to the appropriate residual solvent peak. Broad 

signals are assigned as b. All spectra were compared with reference spectra of 

authentic products and reagents. 

I3C NMR spectra: These were recorded at 63MHz on Bruker AC-250 instrument or 

at 101 MHz on a Bruker AM-400 instrument. Chemical shifts (Oe) are given in parts 

per million (ppm) as referenced to CHCh, and are assigned as s, d, t, and q, for C, 

CH, CH2, and CH3 respectively. 

Mass Spectra: Low resolution and high-resolution spectra were recorded on a va 

Prospec spectrometer, with molecular ions and major peaks being reported. 

Intensities are given as percentages of the base peak. Molecular weights are 

calculated using 74ae, 35CI and 79Br isotopes. HRMS values are valid to ±5ppm. 

GCIMS: Analyses were carried out using a Perkin Elmer Turbomass mass 

spectrometer and Autosystem XL gas chromatograph. ac methods are outlined in 

appendix 7.3 and retention times are given in minutes. MS data is reported as above 

and all EI spectra were compared to the NIST database to confirm identity. 
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LCIMS: Analyses were carried out using a Micromass LCZ mass spectrometer and 

Hewlett Packard 1100 liquid chromatograph. LC methods are outlined in appendix 

7.4 and retention times are given in minutes. MS data is reported as above. 

Elemental analysis: Analyses were carried out by Mr Alan Jones (University of 

Sheffield) using a Perkin Elmer 2400 CHN elemental analyser. 

Melting points: Analyses were carried out using a Khofler hot stage or Gallenkamp 

melting point apparatus and are uncorrected. 

Microwave: Reactions using microwave irradiation were carried out using a 

Personal Chemistry EmrysTM creator. 

6.2 Cross-coupling 

6.2.1 Approaches towards djmethylarvlgermane cross-

coupling 

6.2.1.1 Synthesis of reaction materials 

Dichlorogermylidene 1,4-dioxane complex (7) 

Method l09,210 

Molecular Weight =231.60 
Molecular Formula =C4HsCI2Ge02 

• 209,210 
According to the method of Mlronov, tetramethyldisiloxane (0.593g, 

4.41mmol), germanium(lV) chloride 6 (0.940g, 4.38mmol), and lA-dioxane (2mL) 

were refluxed at 100°C for 3h. After cooling to O°C the suspended white needle 

crystals were isolated by filtration, and then washed with cold chloroform (3 

x 30mL). Drying under high vacuum gave dichlorogermylidene 7 as white needles 

(0.761g, 3.29mmol, 75%). R/O.OO (CH2Ch); Mp 178-182°C (decomp.) (ef 178-

180°C
209

,210); MS (EI) m/z 144 (M'+ 57%), 109 (83%), 88 (100%), 74 (14%), 58 

(80%). 
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Method 2
190 

According to the method of Kouvetakis,190 to a suspension of lithium aluminium 

hydride (0.02Sg, 0.669mmol) in anhydrous toluene (2SmL) under N2, was added 

triethylsilane (S.6mL, 4.07g, 3S.1mmol), anhydrous l,4-dioxane (l0.2mL, 10.5g, 

0.1l9mol) and germanium(IV) chloride 6 (2.00mL, 3.76g, 17.Smmol). The mixture 

was then heated at 84°C for 14 hours. No colour change was observed, so the 

temperature was increased to 100°C for 5 hours. Still no colour change was observed 

so the mixture was heated at 84°C for 17 hours, after which the temperature was 

increased to 120°C. After 2.S hours at the elevated temperature a rapid colour change 

was observed from clear and colourless to orange. Heating was stopped immediately, 

the solution filtered whilst still hot, and the resulting solid further washed with hot 

toluene. The filtrate was then cooled to -20°C, filtered and the crystals washed with 

cold l,4-dioxane to give dichlorogermylidene complex 7 as cream needles (0.708g, 

3.06mmol, 17%). Analytical data as above. 

211 
4-(2-ChloroethylJphenol (5) 

~CI 

HOJV 
5 

Method 1: Sealed tube 

Molecular Weight =156.61 
Molecular Formula =C8HgCIO 

4-(2-Hydroxyethyl)phenol 4 (0.498g, 3.60mmol) and c.HCl (3mL, 30.0mmol) were 

heated in a sealed tube at 103°C for 3h. After cooling, the reaction mixture was 

diluted with H20 (30mL), and then extracted with Et20 (3 x 30mL). Organic extracts 

were combined, dried with MgS04 and concentrated in vacuo to give a brown oil. 

Purification by column chromatography (10 x 2.Scm Silica gel eluted with CH2Ch) 

gave chlorophenol 5 as a pale brown oil that formed white fibres on standing: 

(0.505g, 3.22mmol, 90%). Rf0.31 (CH2Ch); IH NMR (Cncl)) cS 2.99 (2H, t, J7.0, 

CH2CH2Cl), 3.67 (2H, t, J 7.0, CH2CH2Cl), 4.89 (tH, s, OH), 6.78 (2H, d, J 9.0, 

HOCCHCHCCH2), 7.09 (2H, d, J 9.0, HOCCHCHCCH2); MS (EI) mlz 156 (M+ 

16%), 107 (100%),91 (8%), 77 (15%). 
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Method 2: Microwave 

4-(2-Hydroxyethyl)phenol 4 (0.508g, 3.68mmol) and concentrated aqueous HCI 

(2mL) were combined in a microwave reaction tube, sealed and irradiated at 165°C 

for 180 seconds with a fixed hold time. The reaction mixture was extracted with 

CH2Ch (2 x 10mL), filtered through a hydrophobic frit and concentrated in vacuo. 

The residue was purified with a 5g Silica gel SPE cartridge eluting with 

cyclohexane/EtOAc, 111 to give chlorophenol 5 as a clear colourless oil, which 

formed white fibres on standing (0.548g, 3.50mmol, 95%). Analytical data as above. 

4-(2-Trichlorogermanylethvl)phenol (8) 175 

Method 1: Sealed tube 

Molecular Weight =300.11 
Molecular Formula =CSHgCI3GeO 

Chlorophenol 5 (0.467g, 2.98mmol) and dichlorogermylidene complex 7 (0.544g, 

2.35mmol) were heated in a sealed tube at 140°C for 16h. After cooling, the mixture 

was diluted with CH2Ch (50mL), and added slowly and dropwise to H20 (7SmL) to 

give a white precipitate that was collected by filtration. The precipitate was washed 

with H20 (3 x 60mL) and CH2Ch (3 x 60mL) and air-dried. The dry precipitate was 

dissolved in c.HCI (37% w/v, SOmL) and extracted with CH2Cb (3 x 75mL). The 

organic extracts were dried with MgS04, filtered and concentrated in vacuo to give 

trichlorogermylphenol 8 as a pale brown oil (0.520g, 1.73mmol, 74%). Rf 0.00 

(CH2Cb); IH NMR (CDCh) B 2.30 (2H, m, CH2CH2GeCh), 2.97 (2H, m, 

CH2CH2GeCh), 5.09 (1H, bs, Oll), 6.79 (2H, d, J9.0, HOCCHCHCCH2), 7.10 (2H, 

d, J 9.0, HOCCHCHCCH2); MS (EI) mlz 300 (M+ 9%), 179 (5%), 121 (85%), 107 

(100%),91 (24%), 77 (21%), 65 (15%). 

Method 2: Microwave 

Chlorophenol 5 (O.620g, 3.95mmol), and dichlorogermylidene complex 7 (O.855g, 

3.69mmol) were irradiated in a microwave reaction tube at 140°C for 4 minutes with 

a fixed hold time. After cooling, the mixture was diluted with CH2Cb (25mL), and 
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added slowly and dropwise to H20 (60mL) to give a white precipitate that was 

collected by filtration. The precipitate was washed with H20 (3 x 30mL) and CH2Ch 

(3 x 30mL) and air-dried. The dry precipitate was dissolved in c.HCI (50mL) and 

extracted with CH2Ch (3 x 25mL). The organic extracts were filtered through a 

hydrophobic frit and concentrated in vacuo to give trichlorogermylphenol 8 as a pale 

brown oil (0.798g, 2.66mmol, 72%). Analytical data as above. 

4-(2-TrimethylgermanylethylJphenol (9) 175 

Molecular Weight =238.86 
Molecular Fonnula =C11H18GeO 

A solution of MeMgBr (32.0mL, 3.0M in EhO, 96.0mmol) was added by cannula to 

trichlorogermylphenol8 (4.78g, 16.0mmol) in toluene (20mL). The resulting mixture 

was heated at 110°C for 16h, the reaction was then quenched with H20 (IOmL). HCI 

(1 M, 100mL) was added to dissolve precipitates, and was then extracted with Et20 (3 

x 100mL). The organic washings were dried with MgS04 and concentrated in vacuo. 

Purification by column chromatography (15 x 5cm Silica gel, eluted petrol/EtOAc, 

911) gave trimethylgermylphenol 9 as a brown oil (2.9Ig, 12.2mmol, 76%). RfO.36 

(petrollEtOAc, 9/1); 18 NMR (CDC I) 0 0.00 (9H, s, Ge(CH3h), 0.95, (2H, m, 

CH2CH2Ge(CH3)3), 2.51 (2H, m, CH2CH2Ge(CH3)3), 5.25, (1 H, s, OH), 6.63, (2H, d, 

J 8.5, HOCCHCHCCH2), 7.00, (2H, d, J 8.5, HOCCHCHCCH2); MS (EI) mlz 240 

(M+ 8%), 225 (65%), 197 (18%), 119 (100%), 105 (82%), 77 (33%). 

175 
4-[(2-TrimethylgermanylJethyl1phenyl (2-ethoxyethylJ ether (10) 

C:~GeMe, 

10 

Molecular Weight =310.96 
Molecular Fonnula =C15H26Ge02 

Method 1: TBAI catalyst 

Trimethylgermylphenol 9 (0.507g, 2.12mmoJ), cesium carbonate (0.826g, 2.54mmol) 

and tetrabutylammonium iodide (0.0788g, 0.218mmol) were dissolved in 20mL 

- 167-



ChapterS Experimental 

MeCN under N2 atmosphere. To this resulting solution was added 2-chloroethyl ethyl 

ether (0.460g, 0.4 7mL, 4.24mmol). The solution was then heated at reflux for 24 

hours, until no phenol remained by TLC. Purification by column chromatography 

(7cm silica gel eluting with petrol/EtOAc, 911) gave trimethylgermyl ether 10 as a 

light brown oil (0.605g, 1.95mmol, 92%). Rf 0.73 (petroI/EtOAc, 9/1); 10 NMR 

(CDC b) 8 0.0 (9H, s, Ge(CH3)3), 0.92 (2H, m, CH2CH2Ge(CH3h), 1.14 (3H, t, J 7.0, 

CH3CH20), 2.52 (2H, m CH2CH2Ge(CH3)3), 3.50 (2H, q, J 7.0, CH3CH20), 3.68 (2H, 

t, J 5.0, OCH2CH20Ar), 4.00 (2H, t, J 5.0, OCH2CH20Ar), 6.74 (2H, d, J 8.5, 

OCCHCHCCH2), 7.00 (2H, d, J 8.5, OCCHCHCCH2); MS (EI) m/z 312 (M'+ 6%), 

297 (29%), 269 (5%), 223 (4%),147 (18%),119 (79%), 73 (100%). 

Method 2: Et4NI catalvst 

Trimethylgermylphenol 9 (0.247g, 1.03mmol), cesium carbonate (0.439g, 1.35mmol) 

and tetraethylammonium iodide (0.0287g, 0.112mmol) were dissolved in 4mL MeCN 

under N2 atmosphere. To this resulting solution was added 2-chloroethyl ethyl ether 

(0.346g, 0.35mL, 3.19mmol). The solution was then heated at reflux for 16.5 hours, 

until no phenol remained by TLC. Purification by column chromatography (7 x 3cm 

silica gel eluting with petrol/EtOAc, 9/1) gave trimethylgermyl ether 10 as a light 

brown oil (0.309g, 0.993mmol, 96%). Analytical data as above. 

Method 3: Csi catalyst 

Trimethylgermylphenol9 (0.259g, 1.08mmol), cesium carbonate (0.446g, 1.37mmol) 

and cesium iodide (0.0300g, 0.115mmol) were dissolved in 4mL MeCN under N2 

atmosphere. To this resulting solution was added 2-chloroethyl ethyl ether (0.346g, 

0.35mL, 3.19mmol). The solution was then heated at reflux for 24 hours, until no 

phenol remained by TLC. Purification by column chromatography (7 x 3cm silica gel 

eluting with petrollEtOAc, 9/1) gave trimethylgermyl ether 10 as a light brown oil 

(0.296g, 0.950mmol, 88%). Analytical data as above. 
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4-U2-Chlorodimethylgermanyllethyl}phenyl f2-ethoxyethyl) ether 

1111
175 

()()GeMe,GI 
11 

Molecular Weight =331.38 
Molecular Formula =C14H23CIGe02 

Trimethylgermyl ether 10 (0.605g, 1.95mmol) was dissolved in anhydrous MeN02. 

SnCI4 (2.54g, 1.14mL, 9.75mmol) was then added by syringe and the solution heated 

at 50°C overnight, TLC indicated that no trimethylgermane ether 10 remained. The 

sample was then purified by distillation at 80°C under a high vacuum (0.5mmHg) for 

3 hours. 1H NMR indicated that neither MeSnCh by-product or trimethylgermane 

ether 10 starting material were present, giving chlorodimethylgermane 11 as a dark 

brown liquid (0.644g, 1.95mmol, 100%). Rf 0.00 (petroI/EtOAc, 911); IH NMR 

(COCh) 0 0.59 (6H, s, Ge(CH3)2CI), 0.92 (2H, m, CH2CH2Ge(CH3hCI), 1.14 (3H, t, 

J 7.0, CH3CH20), 2.52 (2H, m, CH2CH2Ge(CH3hCI), 3.50 (2H, q, J 7.0, CH3CH20), 

3.68 (2H, t, J 5.0, OCH2CH20Ar), 4.00 (2H, t, J 5.0, OCH2CH20Ar), 6.74 (2H, d, J 

8.5, OCCHCHCCH2), 7.00 (2H, d, J 8.5, OCCHCHCCH2); MS (EI) mlz 332 (M'+ 

57%),297 (6%), 281 (7%),224 (14%), 193 (14%), 139 (27%), 121 (32%), 73 (76%), 

45 (100%). 

4-112-dimethyl-(4-methylphenyl)germanyllethyllphenyl f2-ethoxyethyl) 

ether (1) 

\/ 

C
OE~GeA 

~ ~ 
° 

Molecular Weight =387.06 
Molecular Formula =C21 H30Ge02 

1 

Chlorodimethylgermane 11 (0.553g, 1.67mmol) was placed in an N2 atmosphere and 

dissolved in 10mL anhydrous toluene immediately after purification. A solution of p­

TolMgBr in Et20 (6.30mL, 6.30mmol, 1.0M) was added via syringe with stirring. 

The solution was then heated at reflux for 14 hours. Distilled H20 (20mL) was added 

dropwise to destroy remaining p-ToIMgBr, forming a white precipitate. 1 M HCI 

(75mL) was added to dissolve precipitates; Et20 (100mL) was added to dissolve 
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organic components. The phases were separated, and the aqueous phase was 

extracted with EhO (3 x 75mL). Organic washings were combined, dried with 

MgS04, and evaporated. The resulting mixture was purified by column 

chromatography (7 x 18cm Silica gel eluted with CH2Ch/toluene, 8/2) to give 

tolylgermane 1 as a dark brown oil (0.493g, 1.27mmol, 76%). Rf 0.42 

(CH2Ch/toluene, 8/2); IH NMR (CDC h) ~ 0.48 (6H, s, Ge(CH3)2), 1.36 (3H, t, J 7.0, 

CH3CH20), 1.38 (2H, m, ArCH2CH2Ge), 2.46 (3H, s, ArCH3), 2.78 (2H, m, 

ArCH2CH2Ge), 3.70 (2H, q, J 7.0, CH3CH20), 3.87 (2H, t, J 5.0, OCH2CH20Ar), 

4.19 (2H, t, J 5.0, OCH2CH20Ar), 6.95 (2H, d, J 8.5, OCCHCHCCH2), 7.20 (2H, d, J 

8.5, OCCHCHCCH2), 7.30 (2H, d, J 8.0, GeCCHCHCCH3), 7.49 (2H, d, J 8.0, 

GeCCHCHCCH3); l3e NMR (CDCh) ~ -3.5 (2q), 15.3 (q), 18.2 (t), 21.5 (q), 30.4 (t), 

66.9 (t), 67.6 (t), 69.2 (t), 114.7 (d), 128.8 (d), 129.0 (d), 129.4 (d), 133.4 (d), 137.1 

(s), 137.7 (s), 138.1 (s), 157.1 (s); IR (neat) 2927, 2869, 1611, 1510, 1246, 1125, 

1089,1067,795,593 em-I; MS (EI) mlz 388 (7%) (M'+), 195 (100%); HRMS calc'd 

for C21H300/40e 388.1458, found 388.1457, error -0.16 ppm; Elemental analysis 

expected for C21H3002Ge C 65.17%, H 7.81%, analysis found C 65.14%, H 8.07%. 

4-lf2-Dimethyl-(4-methoxyphenyl)qermanyllethyIJphenyl (2-

ethoxyethyl) ether (13) 

\/ 

Molecular Weight =403.06 (OJCJE
1 
~ Geo~ 

0.0 .0 OMe Molecular Formula =C21 H3QGe03 

13 

4-Bromoanisole 12 (0.55mL, 0.823g, 4.4mmol) was dissolved in 10mL anhydrous 

THF under N2 and cooled to -78°C. n-BuLi (2.5M in hexanes, 5mmol) was added 

dropwise and slowly over 10min. The resulting mixture was then stirred for 45 

minutes. Chlorodimethylgermane 10 (0.372g, 1.12mmol) was dissolved in 2mL 

anhydrous THF and then added to the solution of 4-lithioanisole, the C02/acetone 

bath was removed and the solution allowed to warm to rt. Distilled water was added 

dropwise to destroy any remaining organometallic, and the resulting mixture then 

extracted between distilled water (1 OmL) and EtOAc (2 x 1 OmL). The organic 
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washings were combined, dried with MgS04 and concentrated in vacuo. Purification 

by column chromatography (16 x Scm Silica gel, eluted with toluene/ CH2Ch, 8/2) 

gave anisylgermane 13 as a light brown oil (0.195g, 0.483mmol, 43%). R.r 0.17 

(toluene/ CH2Ch, 8/2); IH NMR (CDCb) cS 0.37 (6H, s, Ge(CH3)2), 1.27 (2H, m, J 

9.0, ArCH2CH2Ge), 1.27 (3H, t, J7.0, CH3CH20), 2.67 (2H, m, J9.0, ArCH2CH2Ge), 

3.66 (2H, q, J 7.0, CH3CH20), 3.8 (2H, t, J 5.0, OCH2CH20Ar), 4.12 (2H, t, J 5.0, 

OCH2CH20Ar), 6.86 (2H, d, J 8.5, OCCHCHCCH2), 6.94 (2H, d, J 8.5, 

GeCCHCHCOCH3), 7.11 (2H, d, J 8.5, OCCHCHCCH2), 7.41 (2H, d, J 8.5, 

GeCCHCHCOCH3); I3C NMR (CDC I) cS -3.6 (q), 15.2 (q), 18.2 (t), 30.2, 55.1 (q), 

66.8 (t), 67.7 (t), 69.1 (t), 113.8 (d), 114.6 (d), 128.7 (d), 132.0 (s), 134.4 (d), 137.1 

(s), 156.9 (s), 159.9 (s); IR (neat) 2930, 1592, 1510, 1279, 1247, 1180, 1125, 1093, 

1032, 922, 821, 600 cm'l; MS (EI) mlz 404 (6%, M'+), 389 (10%), 296 (25%),281 

(15%), 211 (100%), 121 (58%), 107 (78%); HRMS calc'd for C21H3074Ge03 

404.1407, found 404.1410, error -l.Oppm; Elemental analysis expected for 

C21H30Ge02 C 62.58%, H 7.50%, analysis found C 62.59%, H 7.75%. 

1-Bromo-4-(1.1-diefhoxyefhylJbenzene (15)182 

~EI 

BrN 
15 

Molecular Weight =273.17 
Molecular Formula =C12H17Br02 

4-Bromoacetophenone 14 (1.289g, 6.47mmol) was added to a flame-dried round 

bottom flask, placed under N2, and dissolved in anhydrous EtOH (20mL). Triethyl 

orthoformate (2.2mL, 1.96g, 13.2mmol) was added via syringe, then NBS (0.0283g, 

0.0159mmol) was added. The mixture was stirred at rt for 17 hours, before adding 

aqueous NaOH (2M, 30mL), followed by Et20 (70mL). The phases were separated 

and the aqueous layer extracted with Et20 (2 x 50mL). The organic washings were 

combined, dried with MgS04 and concentrated in vacuo to give diethyl acetal 15 as a 

colourless oil (1.64g, 6.0Immol, 93%). R, 0.91 (PetrollEtOAc, 911); 18 NMR 

(CDC b) cS 1.21 (6H, t, J 7.0, OCH2CH3), 1.53 (3H, s, ArC(OEthCH3), 3.41 (4H, m, 

OCH2CH3), 7.40 (2H, d, J 9.0, Ar CH's), 7.47 (2H, d, J 9.0, Ar CH's); MS (EI) mlz 
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274 (M+ 1%),259 (2%), 227 (39%), 200 (27%),183 (100%),157 (23%),147 (24%), 

103 (43%), 75 (48%). 

4-U2-Dimethyl-(4-acetophenyl)germanyllethyllphenyl (2-ethoxy-ethyl) 

ether (16) 

\ / 

COEt~GeOy ~ I h o 
Molecular Weight =415.07 
Molecular Formula =C22H3QGe03 

o 
16 

Diethyl acetal 15 (4.84g, 17.9mmol) was dissolved in anhydrous THF (50mL) under a 

nitrogen atmosphere and cooled to -78°C. n-BuLi (7mL, 2.5M in hexanes, 

17.5mmol) was added slowly and dropwise in ImL portions to the cooled solution 

with stirring. The resulting mixture was stirred at -78°C for 1 hour. 

Chlorodimethylgermane 11 (2.24g, 6.76mmol) was dissolved in anhydrous THF 

(4mL) and added dropwise to the solution of the aryl lithium. The resulting mixture 

was stirred at -78°C for 30 minutes, before the C02/acetone bath was removed and 

the solution allowed to warm to rt over 17 hours. 

Aqueous HCI (1 M, 20mL) was added, and the mixture was then partitioned between 

distilled water (100mL) and Et20 (IOOmL). The aqueous layer was further extracted 

with Et20 (2 x 50mL). The organic washings were combined and dried with MgS04, 

before being filtered and concentrated in vacuo. 

The crude mixture was then dissolved in distilled acetone (95mL). Distilled water 

(lOmL) and PPTS (0.215g, 0.854mmol) were added to the solution, which was then 

refluxed for 17 hours. Solvent was removed in vacuo, and the resulting crude mixture 

partitioned between EtOAc (lOOmL) and distilled water (100mL). The aqueous layer 

was further extracted with EtOAc (2 x 50mL), and organic layers were combined, 

dried with MgS04, filtered and concentrated in vacuo. Purification by column 

chromatography (20 x Scm Silica gel, eluted with petrol/EtOAc, 911) gave 

acetophenylgermane 16 as a light brown oil (2.41g, 5.81mmol, 86%). Rf 0.25 
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(petrollEtOAc, 9/1); IH NMR (CDC h) 0 0.39 (6H, s, Ge(CH3)2), 1.25 (3H, t, J 7.0, 

CH3CH20), 1.30 (2H, m, J 8.5, CH2CH2Ge), 2.62 (3H, s, COCH3), 2.65 (2H, m, J 8.5, 

CH2CH2Ge), 3.61 (2H, q, J 7.0, CH3CH20), 3.78 (2H, t, J 5.0, OCH2CH20Ar), 4.10 

(2H, t, J 5.0, OCH2CH20Ar), 6.83 (2H, d, J 9.0, OCCHCHCCH2), 7.06 (2H, d, J 9.0, 

OCCHCHCCH2), 7.56 (2H, d, J 8.0, GeCCHCHCCOCH3), 7.92 (2H, d, J 8.0, 

GeCCHCHCCOCH3); 13C NMR (CDC h) 0 -3.8 (q), 15.2 (q), 17.9 (t), 26.6(q), 30.1 

(t), 66.8 (t), 67.5 (t), 69.0 (t), 114.6 (d), 127.4 (d), 128.7 (d), 133.4 (d), 136.5 (s), 

136.9 (s), 148.7 (s), 157.0 (s), 198.4 (s); IR (neat) 2930, 1683, 1511, 1389, 1246, 

1124,1065,955,819,604 cm- I
; MS (EI) mlz 416 (M+ 13%),401 (12%),296 (19%), 

277 (27%), 254 (47%), 223 (55%), 211 (100%), 193 (39%); HRMS calc'd for 

C22H3074Ge03 416.1407, found 416.1415, error -1.9 ppm; Elemental analysis 

expected for C22H30Ge03 C 63.66%, H 7.29%, analysis found C 63.44%, H 7.52%. 

4-lodobenzonifrile (18/
83 

,D
CN 

I,Q 
I 

18 

Molecular Weight =229.02 
Molecular Formula =C7H4IN 

4-Aminobenzonitrile (0.0997g, 0.843mmol) was dissolved in aqueous sulfuric acid 

(2.5M, l.4mL) and cooled in an ice/salt bath. NaN02 (0.0675g, 0.978mmol) was 

dissolved in distilled water (0.5mL) and added to the acidic solution, which was then 

stirred at -5°C for 30 minutes. Sodium iodide (0.316g, 2.11 mmol) was added to the 

diazonium compound and the mixture warmed to rt. The resulting foam and solution 

were diluted with distilled water (20mL) and extracted with EtOAc (2 x 10mL). The 

organic layer was then washed with saturated aqueous Na2S203 (l5mL), and saturated 

aqueous NaHC03 (l5mL), before being dried with MgS04 and concentrated in vacuo. 

Purification by column chromatography (5 x lOcm Silica gel, eluted with 

petrollEtOAc, 911) gave 4-iodobenzonitrile 18 as white crystals (0. 124g, 0.540mmol, 

64%). Rf 0.58 (petrollEtOAc, 9/1); IH NMR (CDCh) 0 7.37 (2H, d, J 8.5, 

ICCHCHCCN), 7.84 (2H, d, J 8.5, ICCHCHCCN); MS (EI) mlz 229 (40%, M+), 102 
• 212 

(100%); Melting po lOt 128.3-129.9°C (cl 124-125.5°C ). 
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General method for the sYnthesis of biarvls by Suzuki coupling: 

4-AcetYI-4'cyano-biphenYI (29) 213 

29 

Molecular Weight =221.26 
Molecular Formula =C1sH11NO 

4-Bromobenzonitrile (0.366g, 2mmol), and Pd(PPh3)4 (0.118g, 0.1 mmol) were added 

to a carousel reaction tube, placed under an N2 atmosphere, and dissolved in 

anhydrous toluene (4mL). Aqueous NaOH (2M, 2mL), and 4-acetophenyl boronic 

acid (0.366g, 2.2mmol) in anhydrous EtOH (1mL) were then added to the reaction 

tube, which was heated at 90°C for 17 hours. The reaction mixture was partitioned 

between EllO (2 x IOmL) and distilled water (IOmL), the organic washings were 

combined, dried with MgS04, filtered and concentrated in vacuo. Purification by 

column chromatography (5 x 15 em Silica gel, eluted with petrol/EtOAc, 19/1) gave 

4-acetyl-4' -cyano-biphenyl 29 as an off-white powder (O.285g, 1.29mmol, 64%). Rf 

0.16 (petrollEtOAc, 911); IH NMR (CDC h) 0 2.65 (3H, s, COCH3), 7.69 (2H, d, J 

9.0, CNCCHCHC), 7.72 (2H, d, J 9.0, CCHCHCCOCH3), 7.77 (2H, d, J 9.0, 

CNCCHCHC), 8.07 (2H, d, J 9.0, CCHCHCCOCH3); MS mlz (EI) 221 (M'+ 32%), 

206 (100%), 178 (24%), 151 (34%), 75 (9%); GCIMS R, 8.53min; Melting point 
214 

107.5-109.8°C (cf 117-120°C ). 

4-N,N-Dimethylamino-4 '-methyl-biphenyl (26/
15 

26 

Molecular Weight =211.31 
Molecular Formula =C1sH17N 

The above general method, using 4-bromo-N,N-dimethylaniline (0.402g, 2.01mmol), 

Pd(PPh3)4 (0.119g, 0.102mmol), and 4-methylphenyl boronic acid (0.301 g, 

2.21mmol) was employed. Purification by column chromatography (5 x 15cm silica 
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gel, eluted with petrol/EtOAc, 9/1) gave 4-N,N-dimethylamino-4'methylbiphenyl 26 

as white needles (0.0936g, 0.443mmol, 22%). Rf 0.76 (petroIlEtOAc, 9/1); 10 NMR 

(CDC!) 0 2.37 (3H, s, ArCH3), 2.98 (6H, s, N(CH3h), 6.80 (2H, d, J 9.0, 

CCHCHCN(CH3)2), 7.20 (2H, d, J 8.0, CH3CCHCHC), 7.45 (2H, d, J 8.0, 

CH3CCHCHC), 7.48 (2H, d, J 9.0, CCHCHCN(CH3)2); MS (EI) m/z 211 (M"+ 100%), 

195 (l3%), 165 (14%), 152 (16%), 106 (12%); GCIMS Rt 6.87min; Melting point 
216 

130.6-135.3°C (el 120-122°C ). 

4-N,N-Dimethvlamino-4'-methoxy-biphenvl (271 217 

dJ
NMe2 

~I 
I 
~ Molecular Weight =227.31 

Molecular Formula =C I5HI7NO 
MeO ~ 

27 

The above general method, using 4-bromo-N,N-dimethylaniline (0.40Ig, 2.00mmol), 

Pd(PPh3)4 (O.121g, O.l04mmol), and 4-methoxyphenyl boronic acid (0.338g, 

2.22mmol) was employed. Purification by column chromatography, (toluene/ 

CH2Ch, 8/2) gave 4-N,N-dimethylamino-4'-methoxy-biphenyl 27 as a brown powder 

(0.073Ig, 0.322mmol, 16%). Rj- 0.35 (toluene/ CH2Ch, 8/2); 10 NMR (CDC!) 0 

2.99 (6H, s, N(CH3h), 3.85 (3H, s, OCH3), 6.82 (2H, d, J 9.0, CCHCHCN(CH3h), 

6.96 (2H, d, J 9.0, CH30CCHCHC), 7.47 (2H, d, J 9.0, Ar CH's), 7.49 (2H, d, J 9.0, 

Ar CH's); MS (EI) mlz 227(M+ 100%), 212 (99%), 184 (19%), 168 (10%), 113 

(14%); GCIMS Rt 8.39min; Melting point 153.7-154.7°C (el 157°C
218

). 

4-Cyano-4 '-methoxy-biphenyl (2st 9 

MeO 
28 

Molecular Weight =209.25 
Molecular Formula =C I4H11NO 

The above general method, using 4-bromobenzonitrile (0.370g, 2.03mmol), Pd(PPh3)4 

(0.120g, 0.104mmol), and 4-methoxyphenyl boronic acid (O.339g, 2.23mmol) was 
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employed. Purification by column chromatography, (PetrollEtOAc, 9/1) gave 4-

cyano-4'-methoxy-biphenyI28 as white needles (0.162g, 0.775mmol, 38%). Rf 0.29 

(petrollEtOAc, 911); IH NMR (CDC h) 8 3.88 (3H, s, OCH3), 7.02 (2H, d, J 9.0, Ar 

CH's), 7.55 (2H, d, J9.0, Ar CH's), 7.65 (2H, d, J9.0, Ar CH's), 7.71 (2H, d, J9.0, 

Ar CH's); MS (EI) mlz 209(M'+ 100%), 194 (34%),166 (57%), 140 (37%); GCIMS 

Rt 7.12min; Melting point 105.4-107.8°C (el 103_104°C
98

). 

4-Cyano-4'-methyl-biphenyl (3)184 

3 

Molecular Weight =193,25 
Molecular Formula =C'4H"N 

To a three necked round bottom flask fitted with a condenser, a septum, a solids 

addition tube charged with 4-bromobenzonitrile (0.426g, 2.34mmol) and Pd(PPh3)4 

(O.118g, 0.102mmol, 4.3mol%), was added 4-bromotoluene (l.Olg, 5.89mmol) in 

THF (8mL) under an argon atmosphere. The solution of 4-bromotoluene was cooled 

to -78°C, t-BuLi (7.8mL, 11.7mmol, 1.5M in pentane) added dropwise and then the 

mixture was stirred for 30min at -78°C. A solution of ZnCh (0.829g, 6.08mmol) in 

THF (lSmL) was then added via syringe. The C02/acetone bath was removed and the 

resulting mixture warmed to rt with stirring over 1 h. The solids addition tube was 

inverted to add the aryl bromide and catalyst, and the mixture heated at 70°C for 2.Sh. 

The reaction mixture was then quenched with H20 (SOmL) and partitioned between 

1M HCI (200mL) and EtOAc (200mL). The aqueous layer was further extracted with 

EtOAc (3 x 100mL). The organic washings were combined, dried with MgS04, and 

evaporated. The resulting brown crystals were recrystallised (isopropanol) to give a 

1:1 mixture of desired product 3 and 4,4'-dimethyl-biphenyl by IH NMR. 

Purification by flash chromatography (5 x IS cm silica gel, eluted with petrol/EtOAc, 

1911) gave 4-cyano-4' -methyl-biphenyl 3 as white needles (0.IS8g, 0.819mmol, 

35%). RfO.32 (petrollEtOAc, 1911); IH NMR (CDC h) cS 2.41 (3H, s, ArCH3), 7.28 

(2H, d, J 8.0, CH3CCHCHC), 7.49 (2H, d, J 8.0, CH3CCHCHC), 7.67 (2H, d, J 8.5, 

CCHCHCCN), 7.70 (2H, d, J8.5, CCHCHCCN); MS (EI) mlz 193 (M'+ 100%),190 

- 176-



Chapter 6 Experimental 

(14%), 178 (8%), 165 (19%); GCIMS Rt.7.68min; Melting point I05-I06°C (cf 

184 
104-I07°C ). 

Authentic product response factor calculations 

The authentic product and naphthalene standard were weighed out into a 10mL 

volumetric flask and dissolved in DMF. The resulting solution was analysed by 

GC/MS three consecutive times, and the average ratio of standard area/product area 

from the integrated TIC was used to calculate the response factor. 
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Molar ratio Area ratio 
Product Standard Product standardl standard/ 

product product 
4-Me, 3 0.0103g, 0.0102g, 
4'-CN 0.0804mmol 0.0528mmol 

1.522 0.4787 
••• H •• __ "" • N •• N ...... • .... __ ._ ..... _., ............. _._ .... . 

4-Me 
19 0.0120g, 0.0126g, 

0.0936mmol 0.0749mmol 1.250 1.141 
.. _._."_H .... _. ___ ·_· ____ ······· __ .· ___ · __ ·_ ._ .. _.- -_._._- _ .. __ ..... " .-.- .. --.. --.-----~----.---.-.- ... -

4 OM 20 
0.0137g, 0.0 136g, 

- e 0.107mmol 0.0738mmol 1.448 1.206 
_._--_._. __ . __ ._._._--------_.-- .---_.-.- -_. __ ._._---_._.-._-_.---_._--

4-Ac 
21 0.0117g, 0.0131g, 

0.0913mmol 0.0668mmol 
1.367 0.6942 

.. _. - - ______ '_. __ ._. __ .. _._._. __ .H._ ... __ .. ,_ 

4-Me, 26 0.0114g, 0.0110g, 
4'-NMe2 0.0889mmol 0.0521mmol _ ........... _---_. ,-- --_ ... _ ... _.- _ ......... . 

1.708 0.8758 

4-0Me, 27 O.OI13g, 0.0112g, 
4'-NMe2 0.0882mmol 0.0493mmol 

1.789 1.410 

Response 
factor 

0.314 
(± 0.003) 

0.913 
(± 0.007) 

0.833 
(± 0.006) 

0.508 
(± 0.004) 

0.513 
(±.0.004) 

0.788 
tt O.OO~) 

4-0Me, 28 0.0116g, 0.0103g, 
4'-CN 0.0905mmol 0.0492mmol 

1.839 1.256 0.683 
. __ ._. ____ ._._ .... _ .... _.. ... .. ..... . ... (± 0.0.06) 

4-Ac, 29 0.0144g, 0.0127g, 
4'-CN 0.112mmol 0.0574mmol 

1.957 1.091 

6.2.1.2 Cross-coypling; Scanning experiment 

Initial fluoride experiments (Figure 4.10 and Table 4.21 

1 

General method 

('YCN 

~ 2 
Br 

Pd2dba3• PPh3 

DMF 
fluoride 3 

0.557 
(± 0.004) 

CN 

A 3mL reaction vial was charged with tolylgermane 1, 4-bromobenzonitrile, 

Pd2(dba)3, PPh3, and fluoride. The reagents were dissolved in DMF (1 mL), sealed and 

heated at 130°C for 48 hours. The reaction mixture was sampled and analysed by 

quantitative GCIMS with naphthalene internal standard to give the following results. 

Coupling with KF + 18-crown-6 activator 

Tolylgermane 1 (0.0993g, 0.257mmol), 4-bromobenzonitrile (0.0555g, OJ05mmol), 

Pd2( dba)3 (0.0054g, 0.00590mmol), PPh3 (0.0060g, 0.0230mmol), KF (0.0313g, 
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0.538mmol), 18-crown-6 (0.145g, 0.550mmol). Naphthalene (O.0087g, 

0.0680mmol). 4-Cyano-4'-methyl-biphenyl: GC/MS R, 7.58min; yield 8%. 

Coupling with KF activator 

Tolylgermane 1 (0.0919g, 0.237mmol), 4-bromobenzonitrile (0.0517g, 0.284mmol), 

Pd2(dbah (0.0057g, 0.0062mmol), PPh) (0.0060g, 0.023mmol), KF (O.0352g, 

0.605mmol). Naphthalene (0.01 07g, 0.0836mmol). 4-Cyano-4' -methyl-biphenyl: 

GC/MS R, 7.58min; yield 13%. 

Coupling with TBAF.3Hi O activator 

Tolylgermane 1 (0.0925g, 0.239mmol), 4-bromobenzonitrile (0.0524g, 0.289mmol), 

Pd2(dba)3 (O.0053g, 0.0059mmol), PPh3 (O.0059g, 0.023mmol), TBAF.3H20 (O.178g, 

0.564mmol. Naphthalene (O.0119g, 0.0930mmol). 4-Cyano-4'-methyl-biphenyl: 

GC/MS R, 7.58min; yield 0.1 %. 

Coupling with an TMAF activator 

Tolylgermane 1 (0.0989g, 0.256mmol), 4-bromobenzonitrile (0.0539g, 0.296mmol), 

Pd2(dba)3 (0.0060g, 0.0066mmol), PPh) (0.0064g, 0.024Ilmol), BnTMAF (0.088Ig, 

0.521 mmol). Naphthalene (O.0119g, 0.0930mmol). 4-Cyano-4' -methyl-biphenyl: 

GC/MS R, 7.58min; yield 32%. Purification by column chromatography (8 x 3cm 

Silica gel, CH2Ch/petrol, 8/2) gave 4-cyano-4' -methyl-biphenyl as off white needles 

(0.0109g, 0.0563mmol, 22%). Analytical data as above. 

Coupling with CsF activator 

Tolylgermane 1 (0.0999g, 0.258mmol), 4-bromobenzonitrile (O.0565g, 0.310mmol), 

Pd2( dba)3 (0.01 14g, 0.0124mmol), PPh3 (0.0136g, 0.0519mmol), and CsF (O.175g, 

1.15mmol). Naphthalene (0.0 I 09g, 0.0852mmol). 4-Cyano-4' -methyl-biphenyl: 

GC/MS R, 7.58min; yield 7%. 

Coupling with KF + 18-crown-6 activator at 150'C 

Tolylgermane 1 (O.0948g, 0.245mmol), 4-bromobenzonitrile (O.0552g, OJ03mmol), 

Pd2(dba)3 (0.0055g, 0.00601mmol), PPh3 (0.0063g, 0.0240mmol), KF (0.0330g, 

0.568mmol) and 18-crown-6 (0.146g, 0.554mmol). Naphthalene (0.01 64g, 

0.128mmol). 4-Cyano-4'-methyl-biphenyl: GC/MS R, 7.58min; yield 15%. 
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Scanning experiment: Tolylgermane cross-couplings (Figure 4.11) 

\ I 

CO~E~ Ge~ I~ ~ o 
1 

General method 

N R 

~ 
Pd2dba3• PPh3 
DMF 
CsF or BnTMAF 

R 

3,19,or26 

A 3mL reaction vial was charged with tolylgermane 1, aryl halide, Pd2(dba)3, PPh3, 

and fluoride. The reagents were dissolved in DMF (I mL). sealed and heated at 150°C 

for 48 hours. Naphthalene solution (O.OlmL, 0.25M) was added to a 25~L sample of 

crude reaction mixture and diluted with CHCI3 to give 0.5mL of solution. Analysis 

by quantitative GC/MS gave the following results. 

Scanning experiment general method: Coupling with 4-

bromobenzonitrile and BnTMAF 

Tolylgermane 1 (0. 1 07g, 0.276mmol), 4-bromobenzonitrile (O.0597g, O.328mmol), 

Pd2(dba)3 (0.0062g, 0.00677mmol), PPh3 (O.0072g, 0.0275mmol), BnTMAF 

(0.0872g, 0.5 1 5mmol). 4-Cyano-4'-methyl-biphenyl: GCIMS Rt 7.58min; yield 1%. 

Coupling with 4-bromobenzonitrile and CsF 

Tolylgermane 1 (0.104g, O.269mmol), 4-bromobenzonitrile (0.0590g, 0.324mmol), 

Pd2(dba)3 (0.0062g, 0.00677mmol). PPh3 (O.0072g, 0.0275mmol) and CsF (0.1 109, 

O.724mmol. 4-Cyano-4'-methyl-biphenyl: GCIMS Rt 7.57min; yield 33%. 

Coupling with 4-iodobenzonitrile and BnTMAF 

Tolylgermane 1 (0.104g, O.269mmol), 4-iodobenzonitrile (0.0816g, 0.356mmol), 

Pd2(dba)3 (0.0063g, 0.00688mmol), PPh3 (O.0070g, 0.0267mmol) and BnTMAF 

(O.I02g,O.603mmol): 4-Cyano-4'-methyl-biphenyl not observed. 

Coupling with 4-iodobenzonitrile and CsF 

Tolylgermane 1 (0.100g, 0.258mmol), 4-iodobenzonitrile (0.0832g, 0.363mmol), 

Pd2(dba)3 (0.0059g, 0.00644mmo\), PPh3 (0.0067g, 0.0255mmol) and CsF (0.0840g. 

0.553mmol): 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 7.57min; yield 4%. 
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Coupling with bromobenzene and BnTMAF 

Tolylgermane 1 (O.lOIg, 0.26Immol), bromobenzene (33IlL, 0.0494g, 0.31Smmol), 

Pd2(dba)3 (0.0060g, 0.006SSmmol), PPh3 (0.0069g, 0.0263mmol) and BnTMAF 

(0.106g,0.626mmol). 4-Methyl-biphenyl: GCIMS R, 3.S4min; yield 31 %. 

Coupling with iodobenzene and BnTMAF 

Tolylgermane 1 (O.lOlg, 0.261mmol), iodobenzene (35IlL, 0.0639g, 0.313mmol), 

Pd2(dbah (0.0060g, 0.00655mmol), PPh3 (0.0068g, O.0259mmol) and BnTMAF 

(0.136g, 0.804mmol). 4-Methyl-biphenyl was not observed. 

Coupling with iodobenzene and CsF 

Tolylgermane 1 (O.0607g, 0.157mmol), iodobenzene (35IlL, 0.0639g, 0.313mmol), 

Pd2(dba)3 (0.0060g, O.00655mmol), PPh3 (O.0068g, O.0259mmol) and CsF (O.136g, 

0.89Smmol). 4-Methyl-bipheny1: GCIMS R, 3.55min; yield 8%. 

Coupling with 4-bromo-N.N-dimethylaniline and BnTMAF 

Tolylgermane 1 (0.0998g, O.258mmol), 4-bromo-N,N-dimethylaniline (O.0628g, 

0.3I4mmol), Pd2(dba)3 (0.00S9g, 0.00644mmol), PPh3 (O.0068g, O.0259mmol) and 

BnTMAF (0.102g, 0.603mmol). 4-N,N-Dimethylamino-4'-methyl-biphenyl: GCIMS 

R, 9.75min; yield 8%. 

Coupling with 4-bromo-N.N-dimethylaniline and CsF 

Tolylgermane 1 (0.100g, 0.258mmol), 4-bromo-N,N-dimethylaniline (0.0638g, 

0.319mmol), Pd2(dba)3 (0.0063g, 0.00688mmol), PPh3 (0.0069g, O.0263mmol) and 

CsF (0.0949g, 0.625mmol). 4-N,N-Dimethylamino-4' -methyl-biphenyl was not 

observed. 
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Scanning experiment: Anisvlgermane cross-coupling general method 

(Figure 4.12) 

\ / 

COE~Ge0 
O~ ~OMe 

13 

General method 

N R 

~ 
Pd2dba3• PPh3 

DMF 

• 

CsF or BnTMAF 

~:::::...IR 
1'0:::: 

MeO .0 

20,27 or 28 

A 3mL reaction vial was charged with anisylgermane 13, aryl halide, Pd2(dba)3, PPh3, 

and fluoride. The reagents were dissolved in DMF (1.5mL), sealed and heated at 

150°C for 48 hours. Naphthalene solution (O.OlmL, 0.2SM) was added to a 25~L 

sample of crude reaction mixture and diluted with CHCh to give 0.5mL of solution. 

Analysis by quantitative GCIMS gave the following results. 

Coupling with 4-bromobenzonitrlle and BnTMAF 

Anisylgermane 13 (O.104g, 0.257mmol), 4-bromobenzonitrile (O.0588g, 0.323mmol), 

Pd2(dba)3 (O.0058g, 0.00633mmol), PPh3 (O.0064g, 0.0244mmol) and BnTMAF 

(O.IOlg, 0.597mmol). 4-Cyano-4'-methoxy-biphenyl: GCIMS Rt 10.19min; yield 

0.7%. 

Coupling with 4-bromobenzonitrlle and CsF 

Anisylgermane 13 (O.104g, 0.258mmol), 4-bromobenzonitrile (O.0579g, 0.318mmol), 

Pd2(dba)3 (0.0059, 0.00644mmol), PPh3 (O.0065g, 0.0248mmol) and CsF (0.0789g, 

0.519mmol). 4-Cyano-4'-methoxy-biphenyl: GCIMS Rt 1O.23min; yield 28%. 

Coupling with 4-iodobenzonitrlle and an TMAF 

Anisylgermane 13 (O.104g, 0.258mmol), 4-iodobenzonitrile (O.0745g, 0.325mmol), 

Pd2(dba)3 (O.0061g, 0.00666mmol), PPh3 (O.0063g, 0.0240mmol) and BnTMAF 

(O.0956g, 0.565mmol) dissolved in. 4-Cyano-4'-methoxy-biphenyl was not observed. 
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Coupling with 4-iodobenzonitrile and CsF 

Anisylgermane 13 (0.104g, 0.257mmol), 4-iodobenzonitrile (0.0713g, 0.311 mmol), 

Pd2(dba)3 (0.0059g, 0.00644mmol), PPh3 (0.0066g, 0.0252mmol) and CsF (0.0848g, 

0.558mmol). 4-Cyano-4'-methoxy-biphenyl: GCIMS Rt 10.18min; yield 2.5%. 

Coupling with bromobenzene and BnTMAF 

Anisylgermane 13 (0.103g, 0.255mmol), bromobenzene (33~L, 0.0494g, 

0.315mmol), Pd2(dba)3 (0.0058g, 0.00633mmol), PPh3 (0.0065g, 0.0248mmol) and 

BnTMAF (O.0938g, 0.554mmol). 4-Methoxy-biphenyl: GCIMS R, 5.11min; yield 

19%. 

Coupling with bromobenzene and CsF 

Anisylgermane 13 (O.I04g, 0.259mmol), bromo benzene (33~L, 0.0494g, 

0.315mmol), Pd2(dba)3 (0.0058g, 0.00633mmol), PPh3 (O.0065g, 0.0248mmol) and 

CsF (0.0820g, 0.540mmol). 4-Methoxy-biphenyl: GCIMS Rt 5.1 Omin; yield 1.3%. 

Coupling with iodobenzene and BnTMAF 

Anisylgermane 13 (0.105g, 0.259mmol), iodobenzene (35~L, 0.0639g, 0.313mmol), 

Pd2(dbah (0.0058g, 0.00633mmol), PPh3 (0.0063g, 0.0240mmol) and BnTMAF 

(0.0872g,0.515mmol). 4-Methoxy-biphenyl: GCIMS R, 5.11min; yield 1.3%. 

Coupling with iodobenzene and CsF 

Anisylgermane 13 (0.104g, 0.258mmol), iodobenzene (35~L, 0.0639g, 0.313mmol), 

Pd2(dbah (O.0060g, 0.00655mmol), PPh3 (0.0066g, 0.0252mmol) and CsF (0.0869g, 

O.572mmol). 4-Methoxy-biphenyl: GCIMS R, 5.llmin; yield 4%. 

Coupling with 4-bromo·N.N·dlmethvlaniline and BnTMAF 

Anisylgermane 13 (0.105g, 0.259mmol), 4-bromo-N,N-dimethylaniline (0.645g, 

O.322mmol), Pd2(dba}3 (O.0059g, 0.00644mmol), PPh3 (0.0065g, 0.0248mmol) and 

BnTMAF (0.105g, O.620mmol). 4-N,N-Dimethylamino-4' -methoxy-biphenyl: 

GCIMS R, 12.35min; yield 16%. 
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Coupling with 4-bromo-N,N-dimethylaniline and CsF 

Anisylgermane 13 (0.105g, O.260mmol), 4-bromo-N,N-dimethylaniline (O.0642g, 

O.321mmol), Pd2(dba)3 (0.0059g, 0.00644mmol), PPh3 (O.0066g, 0.0252mmol) and 

CsF (0.0935g, 0.616mmol). 4-N,N-Dimethylamino-4'-methoxy-biphenyl was not 

observed. 

Scanning experiment: Acetophenvlgermane cross-couplings (Figure 

4.13) 

\/ rlYR 
COE~~ GeOy _~ __ ~ ___ .. 

10 I ~ o Pd2dba3• PPh3 

o DMF 

R 

CsF or BnTMAF 16 21 or 29 

General method 

A 3mL reaction vial was charged with acetophenylgermane 16, aryl halide, Pd2(dba)3, 

PPh3, and fluoride. The reagents were dissolved in DMF (1.5mL), sealed and heated 

at 150°C for 48 hours. Naphthalene solution (0.01 mL, O.25M) was added to a 25IJL 

sample of crude reaction mixture and diluted with CHCh to give O.5mL of solution. 

Analysis by quantitative GC/MS gave the following results. 

Coupling with 4-bromobenzonltrlle and BnTMAF 

Acetophenylgermane 16 (0.1 09g, 0.263mmol), 4-bromobenzonitrile (0.0588g, 

0.323mmol), Pd2(dba)3 (O.0061g, O.00666mmol), PPh3 (O.0070g, 0.0267mmol) and 

BnTMAF (0.0880g, O.520mmol). 4-Acetyl-4'cyano-biphenyl: GCIMS Rt 12.93min; 

yield 3%. 

Coupling with 4-bromobenzonltr/le and CsF 

Acetophenylgermane 16 (0.108g, 0.259mmol), 4-bromobenzonitrile (O.0567g, 

0.311 mmol), Pd2( dba)3 (O.0060g, 0.00655mmol), PPh3 (0.0069g, 0.0263mmol) and 

CsF (O.149g, O.981mmol). 4-Acetyl-4'cyano-biphenyl: GCIMS Rt 12.90min; yield 

15%. 
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Coupling with 4-lodobenzonltrile and BnTMAF 

Acetophenylgermane 16 (0.107g, 0.257mmol), 4-iodobenzonitrile (0.0779g, 

0.340mmol), Pd2(dbah (0.0058g, 0.00633mmol), PPh3 (0.0068g, 0.0259mmol) and 

BnTMAF (0.0973g, 0.574mmol). 4-Acetyl-4'cyano-biphenyl was not observed. 

Coupling with 4-iodobenzonitrile and CsF 

Acetophenylgermane 16 (0.107g, 0.259mmol), 4-iodobenzonitrile (0.0825g, 

0.360mmol), Pd2(dba)3 (0.0064g, 0.00699mmol), PPh3 (O.0072g, 0.0275mmol) and 

CsF (0.0825g, 0.543mmol). 4-Acetyl-4'cyano-biphenyl: GCIMS R, 12.90min; yield 

13%. 

Coupling with bromobenzene and BnTMAF 

Acetophenylgermane 16 (0.108g, 0.260mmol), bromobenzene (33IlL, 0.0494g, 

0.315mmol), Pd2( dba)3 (0.0059g, 0.00644mmol), PPh3 (0.0068g, 0.0259mmol) and 

BnTMAF (0.1 02g, 0.605mmol). 4-Acetyl-biphenyl: GCIMS R t 7.30min; yield 7%. 

Coupling with bromobenzene and CsF 

Acetophenylgermane 16 (0.108g, 0.260mmol), bromo benzene (33IlL. 0.0494g. 

0.315mmol). Pd2( dba)3 (0.0060g. 0.00655mmol), PPh3 (0.0070g, 0.0267mmol) and 

CsF (0.100g. 0.660mmol). 4-Acetyl-biphenyl: GCIMS Rt 7.30min; yield 1.0%. 

Coupling with iodobenzene and BnTMAF 

Acetophenylgermane 16 (0.108g. 0.260mmol). iodobenzene (35IlL. 0.0639g, 

0.313mmol), Pd2(dba)3 (0.0060g, 0.00655mmol). PPh3 (0.0066g, 0.0229mmol) and 

BnTMAF (0.103g. 0.610mmol). 4-Acetyl-biphenyl: GCIMS R t 7.29min; yield 2.5%. 

Coupling with lodobenzene and CsF 

Acetophenylgermane 16 (0.108g. 0.260mmol), iodobenzene (35IlL, 0.0639g, 

0.313mmol), Pd2(dba)3 (0.0057g, 0.00622mmol). PPh3 (0.0065g. 0.0248mmol) and 

CsF (0.0983g, 0.647mmol). 4-Acetyl-biphenyl: GCIMS R, 7.32min; yield 11%. 

Coupling with 4-bromo-N,N-dimethylanillne and BnTMAF 

Acetophenylgermane 16 (0.108g. 0.260mmol). 4-bromo-N,N-dimethylaniline 

(0.0620g, 0.3 I Ommol), Pd2( dbah (0.0061 g. 0.00666mmol), PPh3 (0.0069g, 
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O.0263mmol) and BnTMAF (O.0995g, O.588mmol). 4-Acetyl-4'-N,N-dimethylamino­

biphenyl was not observed. 

Coupling with 4-bromo-N,N-dlmethylaniline and CsF 

Acetophenylgermane 16 (0.I08g, 0.260mmol), 4-bromo-N.N-dimethylaniline 

(0.0637g, O.318mmol), Pd2(dba)3 (0.0059g, O.00644mmol). PPh3 (0.0068g, 

0.0259mmol) and CsF (0.0926g, 0.610mmol). 4-Acetyl-4' -N.N-dimethylamino­

biphenyl was not observed. 

6.2.1.3 Cross-coypling: Phosphine screen (Flgyre 4.15) 

1 

General method 

Br 

~CN 
N 2 

Pd2dba3, PR3 

DMF, CsF 
3 

eN 

A 3mL reaction vial was charged with tolylgermane 16. 4-bromobenzonitrile. 

Pd2(dba)3, phosphine. and CsF. The reagents were dissolved in DMF (1.5mL), sealed 

and heated at 150°C for 48 hours. Naphthalene solution (0.01 mL, O.25M) was added 

to a 25).lL sample of crude reaction mixture and diluted with CHCh to give 0.5mL of 

solution. Analysis by quantitative GC/MS gave the following results. 

Coupling with triphenylphosphine co-catalyst 

Tolylgermane 1 (0.0995g, 0.257mmol), 4-bromobenzonitrile (0.0569g, 0.313mmol), 

Pd2(dbah (0.0059g, 0.00644mmol). PPh3 (0.0066g, 0.0252mmol) and CsF (0.0859g. 

0.566mmol). 4-Cyano-4'-methyl-biphenyl: GCIMS Rt 7.49min; yield 0.7%. 

Coupling with tri(o-tolylJphosphlne co-catalyst 

Tolylgermane 1 (O.IOOg, 0.25Smmol), 4-bromobenzonitrile (0.0569g, 0.313mmol), 

Pd2(dba)3 (0.0062g, 0.00677mmol), P(o-Tol)3 (O.OOSOg, 0.0263mmol) and CsF 

(0.OS75g, 0.576mmol). 4-Cyano-4' -methyl-biphenyl was not observed. 
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Coupling with tri-2-furylphosphlne co-catalyst 

Tolylgermane 1 (O.lOlg, 0.261mmol), 4-bromobenzonitrile (0.0563g, 0.309mmol), 

Pd2(dba)3 (0.0061g, 0.00666mmol), P(2-furyl)3 (0.0061g, 0.0263mmol) and CsF 

(0.804g,0.529mmol). 4-Cyano-4'-methyl-biphenyl: GCIMS R, 7.46min; yield 0.1 %. 

Coupling with tri-(4-fluorophenylJphosphine co-catalyst 

Tolylgermane 1 (0.0995g, 0.257mmol), 4-bromobenzonitrile (0.0571 g, 0.314mmol), 

Pd2(dba)3 (0.0058g, 0.00633mmol), P(P-C6H4F)3 (0.0078g, 0.0247mmol) and CsF 

(O.116g,O.764mmol). 4-Cyano-4'-methyl-biphenyl: GCIMS R, 7.48min; yield 0.4%. 

Coupling with tri-(4-trifluoromethylJphenylphosphlne co-catalyst 

Tolylgermane 1 (0.0996g, 0.257mmol), 4-bromobenzonitrile (0.0556g, 0.30Smmol), 

Pd2(dba)3 (0.0060g, 0.00655mmol), P(P-C6H4CF3)3 (0.0120g, 0.0257mmol) and CsF 

(O.0932g, 0.614mmol). 4-Cyano-4'-methyl-biphenyl: GCIMS R, 7.46min; yield 

0.1%. 

Coupling with tri(pentafluoro'phenylphosphine co-catalyst 

Tolylgermane 1 (O.lOlg, 0.261mmol), 4-bromobenzonitrile (0.0559g, OJ07mmol). 

Pd2(dba)3 (0.0060g, 0.00655mmol), P(C6FSh (0.0I33g, O.0250mmol) and CsF 

(0.0888g, 0.585mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS R, 7.47min; yield 

0.3%. 

Coupling with trimesity/phosphlne co-catalyst 

Tolylgermane 1 (0.099Sg, 0.257mmol), 4-bromobenzonitrile (0.0586g, OJ22mmol), 

Pd2( dba)3 (0.0059g, 0.00644mmol), P(2,4,6-trimethylbenzene)3 (0.0 I ~Og, 

0.0257mmol) and CsF (0.0818g, 0.539mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS 

R, 7.45min; yield 0.1 %. 

Coupling with dlphenyl-2-pyrldylphosphlne co-catalyst 

Tolylgermane 1 (0.0989g, 0.256mmol), 4-bromobenzonitrile (0.0551 g, 0.303mmol), 

Pd2(dba)3 (0.0060g, 0.00655mmol), PPh2(2-pyridyl) (O.0068g, O.0258mmol) and CsF 

(0.0897g, 0.591mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS R, 7.44min; yield 

trace. 
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Coupling with dppe co-catalyst 

Tolylgermane 1 (0.0997g, 0.258mmol), 4-bromobenzonitrile (0.0567g. 0.311 mmol), 

Pd2(dba)3 (0.0060g, 0.00655mmol), dppe (0.0050g, 0.0125mmol) and CsF (0.0906g, 

0.596mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 7.48min; yield 0.4%. 

Coupling with dppp co-catalyst 

Tolylgermane 1 (0.101 g, 0.261 mmol), 4-bromobenzonitrile (0.0575g. 0.316mmol). 

Pd2(dba)3 (0.0060g, 0.00655mmol), dppp (0.0053g, 0.0128mmol) and CsF (0.1 109, 

0.724mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 7.50min; yield 1.1%. 

Coupling with dpp' co-catalyst 

Tolylgermane 1 (0.0989g, 0.256mmol), 4-bromobenzonitrile (0.0550g, 0.302mmol), 

Pd2(dba)3 (0.0060g, 0.00655mmol), dppf (0.0071g, 0.0128mmol) and CsF (0.0853g, 

0.562mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 7.45min; yield 0.1%. 

Coupling with binap co-catalyst 

Tolylgermane 1 (0.102g, 0.264mmol), 4-bromobenzonitrile (0.0580g, 0.319mmol), 

Pd2(dba)3 (0.0060g, 0.00655mmol), Binap (O.OOSlg, 0.0130mmol) and CsF (0.OS75g, 

0.576mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 7.49min; yield O.S%. 

Coupling with dicyclohexy/{o-biphenyl)phosphlne co-catalyst 

Tolylgermane 1 (0.1 ~Og, 0.258mmol), 4-bromobenzonitrile (0.0571 g. 0.314mmol). 

Pd2(dba)3 (0.0061g, 0.00666mmol), PCY2(o-biphenyl) (0.0091 g, 0.0260mmol) and 

CsF (0.0909g, 0.59Smmol). 4-Cyano-4'-methyl-biphenyl; GCIMS R, 7.46min; yield 

trace. 

Coupling with trl-tert-butylphosphlne co-catalyst 

Tolylgermane 1 (0.10 1 g, 0.261 mmol), 4-bromobenzonitrile (0.0565g, O.3lOmmol), 

Pd2dba3 (0.0059g, 0.00644mmol), P(t-Buh (1.16SM in anhydrous THF, 22JlL, 

O.0257mmol) and CsF (O.0923g, 0.608mmol). 4-Cyano-4' -methyl-biphenyl; GCIMS 

R, 7.46min; yield trace. 
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Coupling with triethylphosphite co-catalyst 

Tolylgermane 1 (0.103g, 0.266mmol), 4-bromobenzonitrile (0.0561 g, 0.308mmol), 

Pd2dba3 (0.0060g, 0.00655mmol), P(OEt)3 (4.4 ilL, 0.0042g, 0.0253mmol) and CsF 

(0.0894g, 0.589mmol). 4-Cyano-4'-methyl-biphenyl; GC/MS R, 7.45min; yield 

trace. 

6.2.1.4 Cross-coupling: Experiments In an Inert atmosphere (Figure 

1 

,O
CN 

I 2 
Br h 

Pd2dba3• PPh3 

DMF, CsF 

CN 

3 

Experiments in an inert atmosphere general method: Experiment 1 

Tolylgermane 1 (0.0998g, 0.258mmol), 4-bromobenzonitrile (0.0551 g, 0.303mmol), 

Pd2dba3 (0.0230g, 0.0251mmol), PPh3 (0.0247g, 0.0942mmol), were dissolved in 

anhydrous DMF (1.5mL) in a round bottom flask fitted with a condenser and placed 

in an N2 atmosphere. Anhydrous CsF (0.104g, 0.685mmol) was weighed under a 

stream of N2 and then added to the reaction flask, which was again placed in an N2 

atmosphere. The mixture was then heated at 150°C. 

After 1 hour a 251lL sample of crude reaction mixture was removed, naphthalene 

solution (IOIlL, 0.25M) was added and the mixture diluted with CHCh to give 0.5mL 

of solution. Analysis by quantitative GCIMS indicated the presence of 4-Cyano-4'­

methyl-biphenyl; GC/MS R, 7.46min; yield 1.3%. 

After 24 hours a 25 ilL sample of crude reaction mixture was removed, naphthalene 

solution (l0 ilL, 0.25M) was added and the mixture diluted with CHCh to give 0.5mL 

of solution. Analysis by quantitative GCIMS indicated the presence of 4-Cyano-4'­

methyl-biphenyl; GC/MS R, 7.46min; yield 1.3%. 
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Experiment 2: Degassed reaction mixture 

As for the general method for experiments in an inert atmosphere, except using 

tolylgermane 1 (0.105g, 0.271mmol), 4-bromobenzonitrile (0.0586g, 0.322mmol), 

Pd2dba3 (0.0246g, 0.0269mmol), PPh3 (0.0270g, 0.103mmol), and CsF (0.0833g, 

0.548mmol) dissolved in anhydrous DMF (1.5mL). The reaction mixture was 

subjected to three freeze-pump-thaw degassing cycles before being heated at 150°C. 

After 1 hour analysis by quantitative GCIMS indicated the presence of 4-Cyano-4'­

methyl-biphenyl; GCIMS R, 7.48min; yield 1.9%. 

After 24 hours analysis by quantitative GCIMS indicated the presence of 4-Cyano-4'­

methyl-biphenyl; GCIMS R, 7.47min; yield 1.9%. 

6.2.1.5 Cross-coupling: Time-temperature investigation (Figure 4.17) 

\ / 

COE~-.;;:::: Ge~ I~ ~ o 
1 

~
CN 

I 2 
Br ~ 

Pd2dba3• PPh3 

DMF, CsF 

CN 

3 

Tolylgermane 1 (0.102g, 0.264mmol), 4-bromobenzonitrile (0.0580g, 0.319mmol), 

Pd2dba3 (0.0237g, 0.0259mmol), PPh3 (0.0269g, 0.103mmol), were dissolved in 

anhydrous DMF (l.5mL) in a round bottom flask fitted with a condenser and placed 

in an N2 atmosphere. Anhydrous CsF (0.0830g, 0.546mmol) was weighed under a 

stream of N2 and then added to the reaction flask, which was again placed in an N2 

atmosphere. The mixture was then heated at 80°C. 

After 1 hour a 25J.lL sample of crude reaction mixture was removed, naphthalene 

solution (10J.lL, 0.25M) was added and the mixture diluted with CHCh to give 0.5mL 

of solution. Analysis by quantitative GCIMS indicated the presence of 4-Cyano-4'­

methyl-biphenyl; GC/MS R, 7.44min; yield trace. 

The reaction was further heated at 80°C for a second hour, before being sampled 

again. 4-Cyano-4'-methyl-biphenyl; GC/MS Rt 7.44min; yield trace. 
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The temperature was then raised to 100°C, and the reaction sampled after a third hour. 

4-Cyano-4'-methyl-biphenyl; GCIMS Rt 7.44min; yield trace. 

The temperature was finally raised to 120°C, and sampled after a fourth hour. 4-

Cyano-4' -methyl-biphenyl; GCIMS Rt 7.44min; yield 0.1 %. 

The reaction was heated at 120°C for 17 hours (21 hours in total), before being finally 

sampled. 4-Cyano-4' -methyl-biphenyl; GCIMS Rt 7.44min; yield 0.1 %. 

6.2.1.6 Cross-coypling: Solyent screan (Figyre 4.19) 

1 

General method 

,D
CN 

I 2 
Br ~ 

Pd2dba3, PPh3 

solvent, CsF 

CN 

3 

A 3mL reaction vial was charged with tolylgermane 16, 4-bromobenzonitrile, 

Pd2(dba)3, PPh3, and CsF. The reagents were dissolved in various solvents (l.SmL), 

sealed and heated at IS0°C for 48 hours. Naphthalene solution (O.OlmL, 0.2SM) was 

added to a 2SIlL sample of crude reaction mixture and diluted with CHCh to give 

O.SmL of solution. Analysis by quantitative GCIMS gave the following results. 

Coupling with DMF solvent 

Tolylgermane 1 (O.0896g, 0.231 mmol), 4-bromobenzonitrile (0.OS02g, 0.276mmol), 

Pd2dba3 (0.0211g, O.0230mmol), PPh3 (O.0244g, O.0930mmol) and CsF (0.0797g, 

O.S2Smmol) dissolved in anhydrous DMF (I.SmL). 4-Cyano-4'-methyl-biphenyl; 

GCIMS Rt 7.47min; yield 1.0%. 

Coupling with DMA solvent 

Tolylgermane 1 (O.0911g, O.23Smmol), 4-bromobenzonitrile (O.OS09g, O.280mmol), 

Pd2dba3 (O.0212g, O.0232mmol), PPh3 (O.0243g, O.0926mmol) and CsF (O.0895g, 

0.S89mmol) dissolved in DMA (l.SmL). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 

7.49min; yield 4%. 
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Coupling with HMP solvent 

Tolylgermane 1 (O.0893g, 0.231mmol), 4-bromobenzonitrile (O.OS06g, 0.278mmol), 

Pd2dba3 (O.0213g, 0.0233mmol), PPh3 (O.0244g, 0.0930mmol) and CsF (O.0869g, 

O.S72mmol) dissolved in NMP (l.SmL). GCIMS Rt 7.44min; yield trace. 

Coupling with MeCH solvent 

Tolylgermane 1 (O.0900g, 0.233mmol), 4-bromobenzonitrile (0.OS14g, 0.282mmol), 

Pd2dba3 (O.021Ig, 0.0230mmol), PPh3 (O.0239g, 0.091Immol) and CsF (O.0802g, 

0.S28mmol) dissolved in anhydrous MeCN (l.SmL). 4-Cyano-4' -methyl-biphenyl; 

GCIMS Rt 7.44min; yield 0.1%. 

Coupling with DMSO solvent 

Tolylgermane 1 (O.0894g, 0.231 mmol), 4-bromobenzonitrile (O.OS06g, 0.278mmol), 

Pd2dba3 (O.0213g, 0.0233mmol), PPh3 (0.0241 g, 0.0919mmol) and CsF (0.0749g, 

0.493mmo\) dissolved in DMSO (l.SmL). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 

7.44min; yield trace. 

Coupling with THF solvent 

Tolylgermane 1 (0.0880g, 0.227mmol), 4-bromobenzonitrile (0.0490g, 0.269mmol), 

Pd2dba3 (0.0215g, 0.0235mmo\), PPh3 (0.0245g, 0.0934mmol) and CsF (0.0870g, 

0.S73mmol) dissolved in anhydrous THF (1.5mL). GCIMS Rt 7.44min; yield 0.1%. 

Coupling with 1 A-dioxane solvent 

Tolylgermane 1 (0.0895g, 0.231mmol), 4-bromobenzonitrile (0.OS03g, 0.276mmol), 

Pd2dba3 (0.021Sg, 0.0235mmol), PPh3 (0.0242g, 0.0923mmol) and CsF (0.1011g, 

0.66Smmol) dissolved in anhydrous 1,4-dioxane (1.5mL). 4-Cyano-4'-methyl­

biphenyl; GCIMS Rt 7.44min; yield trace. 

Coupling with DME solvent 

Tolylgermane 1 (0.089Sg, 0.231 mmol), 4-bromobenzonitrile (0.0501 g, 0.275mmol), 

Pd2dba3 (0.0212g, 0.0232mmol), PPh3 (0.0244g, 0.0930mmol) and CsF (0.1034g, 

0.681mmol) dissolved in DME (l.SmL). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 

7.44min; yield 0.1 %. 
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Coupling with toluene solvent 

Tolylgermane 1 (0.0890g, 0.230mmol), 4-bromobenzonitrile (0.050 I g, 0.275mmol), 

Pd2dba3 (0.021Ig, 0.0230mmol), PPh3 (0.0244g, 0.0930mmol) and CsF (O.0807g, 

0.53Immol) dissolved in anhydrous toluene (1.5mL). GCIMS Rt 7.44min; yield 

trace. 

Coupling with pvrrolidine solvent 

Tolylgermane 1 (O.0993g, 0.257mmol), 4-bromobenzonitrile (0.0567g, 0.312mmol), 

Pd2dba3 (O.0237g, 0.0259mmol), and PPh3 (O.0272g, 0.104mmol) dissolved in 

anhydrous DMF (1.5mL); 4-Cyano-4'-methyl-biphenyl was not observed. 

6.2.1.7 Cross-coypling: Bipbasic reactions (Figyres 4.20 and 4,21) 

1 

1}
CN 

I 2 
Br ~ 

Pd2dba3, PPh3 

Toluene, EtOH, 
base, H20 

CN 

3 

Biphasic reaction general method: Coupling with KOH activator In 

toluene/water solvent system 

Tolylgermane 1 (O.IOOg, 0.258mmol), 4-bromobenzonitrile (O.0570g, 0.313mmol), 

Pd2dba3 (0.021Ig, 0.0230mmol), and PPh3 (0.0243g, 0.0926mmol), were dissolved in 

anhydrous toluene (ImL), and anhydrous EtOH (O.2mL) in a round bottom flask. 

KOH (0.0353g, 0.628mmol) was dissolved in distilled water (0.5mL) and added to 

the organic solution and a condenser fitted. The reaction apparatus was evacuated 

and flushed with N2 (x3), before being heated at 115°C for 17 hours. 

Naphthalene solution (lOIlL, 0.25M) was added to a 25J..lL sample of crude reaction 

mixture and diluted with CHCb to give 0.5mL of solution, which was then analysed 

by quantitative GCIMS to indicate the presence of 4-Cyano-4'-methyl-biphenyl; 

GCIMS R, 7.45min; yield 0.3%. 
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Coupling with NaOAc activator in toluene/water solvent system 

Tolylgermane 1 (0.0999g, 0.258mmol), 4-bromobenzonitrile (0.0561 g. 0.308mmol). 

Pd2dba3 (O.0212g, 0.0232mmol), and PPh3 (0.0244g, O.0930mmol). and a solution of 

NaOAc (0.0465g, 0.567mmol) dissolved in distilled water (0.5mL). 4-Cyano-4'­

methyl-biphenyl; GCIMS R, 7,44min; yield trace. 

Coupling with TBAF.3H1.0 activator in toluene/water solvent system 

Tolylgermane 1 (0.102g, 0.264mmol), 4-bromobenzonitrile (0.0587g, 0.322mmol). 

Pd2dba3 (O.0212g, O.0232mmol), PPh3 (0.0243g, 0.0926mmol). and a solution of 

TBAF.3H20 (0.190g, 0.603mmol) dissolved in distilled water (O.5mL). 4-Cyano-4'­

methyl-biphenyl; GCIMS R, 7.44min; yield trace. 

Coupling with KOH activator and Pd(PPh31.f catalyst In toluene/water 

solvent system 

Tolylgermane 1 (0.10 1 g, 0.261 mmol), 4-bromobenzonitrile (0.0570g, 0.313mmol), 

Pd(PPh3)4 (0.0596g, 0.0515mmol), and a solution of KOH (0.0353g, 0.628mmol) 

dissolved in distilled water (O.5mL). 4-Cyano-4'-methyl-biphenyl; GCIMS R, 

7.45min; yield 0.1 %. 

Coupling with degassed aqueous KOH activator In toluene/water 

solvent system 

Tolylgermane 1 (0. 1 02g, 0.264mmol), 4-bromobenzonitrile (0.0573g. 0.315mmol), 

Pd2dba3 (O.0234g, 0.0256mmol), and PPh3 (0.0268g, 0.102mmol). KOH (0.0975g. 

0.174mmol) was dissolved in distilled water (I mL) and the resulting solution 

degassed with 3 freeze-pump-thaw cycles. O.35mL of this solution was added to the 

reaction mixture. 4-Cyano-4'-methyl-biphenyl; GCIMS R, 7.45min; yield trace. 

Coupling with degassed aqueous CsF activator In toluene/water 

solvent system 

Tolylgermane 1 (0.0992g, 0.256mmol), 4-bromobenzonitrile (0.0578g. 0.318mmol), 

Pd2dba3 (0.0238g, 0.0260mmol), and PPh3 (0.0274g, 0.104mmol). CsF (0.262g, 

0.173mmol) was dissolved in distilled water (1 mL) and the resulting solution 
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degassed with 3 freeze-pump-thaw cycles. 0.35mL of this solution was added to the 

reaction mixture. GCIMS Rt 7.45min; yield trace. 

6.2.1.8 Cross-coupling: Actiyator screen (Figure 4,22) 

1 

General method 

(('YCN 

~ 2 
Br 

Pd2dba3• PPh3 

DMF. activator 

CN 

3 

A 3mL reaction vial was charged with tolylgermane 16, 4-bromobenzonitrile, 

Pd2(dba)3, PPh3, and various activators, The reagents were dissolved DMF (1.5mL), 

sealed and heated at 150°C for 48 hours. Naphthalene solution (0,01 mL, 0,25M) was 

added to a 25j..lL sample of crude reaction mixture and diluted with CHCh to give 

0.5mL of solution, Analysis by quantitative GC/MS gave the following results, 

Coupling with DMAP activator 

Tolylgermane 1 (0,0995g, 0,257mmol), 4-bromobenzonitrile (O,0572g, 0.314mmol), 

Pd2dba3 (O,0229g, 0.0250mmol), PPh3 (0.0238g, 0.0907mmol) and DMAP (O,0712g, 

0,583mmol), 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 7.47min; yield 0,2%. 

Coupling with NaOMe activator 

Tolylgermane 1 (O,0993g, 0.257mmol), 4-bromobenzonitrile (O.0568g, 0.312mmol), 

Pd2dba3 (O,0212g, 0.0232mmol), PPh3 (O.0245g, 0.0934mmol) and commercial 

NaOMe (O.0334g, 0.6I8mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 7.47min; 

yield 0.1%. 

Coupling with CsOH activator 

Tolylgermane 1 (O.IOIg, O.261mmol), 4-bromobenzonitrile (O.0554g, O.304mmol), 

Pd2dba3 (O.0216g, 0.0236mmol), PPh3 (O.0245g, 0.0934mmol) and CsOH (O.0938g, 

0.795mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 7.44min; yield trace. 
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Coupling with DABCO activator 

Tolylgermane 1 (O.IOOg, 0.258mmol), 4-bromobenzonitrile (0.0568g, 0.312mmol), 

Pd2dba3 (0.0215g, 0.0235mmol), PPh3 (0.024Ig, 0.0919mmol) and DABCO 

(0.0678g, 0.605mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 7.44min; yield 

trace. 

Coupling with pyrrolidine activator 

Tolylgermane 1 (O.IOOg, 0.258mmol), 4-bromobenzonitrile (0.0571 g, 0.314mmol), 

Pd2dba3 (0.0235g, 0.0257mmol), PPh3 (0.0273g, 0.104mmol) and pyrrolidine (47J.tL, 

0.0402g, 0.566mmol). 4-Cyano-4' -methyl-biphenyl; GCIMS Rt 7.41 min; yield 

0.1%. 

Coupling with hydroxY/amine activator 

Tolylgermane 1 (0.0998g, 0.258mmol), 4-bromobenzonitrile (0.0561 g, 0.308mmol), 

Pd2dba3 (0.0235g, 0.0257mmol), PPh3 (0.0268g, 0.102mmol), H2N-OH.HCI 

(0.0400g, 0.576mmol), and NEt3 (0.08mL, 0.0581 g, 0.574mmol). 4-Cyano-4'­

methyl-biphenyl; GCIMS R, 7.41 min; yield 0.1 %. 

Coupling with anionic peroxide activator 

Tolylgermane 1 (O.IOOg, 0.258mmol), 4-bromobenzonitrile (0.0573g, 0.315mmol), 

Pd2dba3 (0.0236g, 0.0258mmol), PPh3 (0.0268g, 0.102mmol), H202 (aqueous 6%w/v, 

0.325mL, 0.573mmol), and UOH.H20 (0.0242g, 0.577mmol). 4-Cyano-4' -methyl­

biphenyl was not observed. 

Coupling with silver{/) oxide activator 

Tolylgermane 1 (0.0999g, 0.258mmol), 4-iodobenzonitrile (0.0716g, 0.313mmol), 

Pd2dba3 (0.0238g, 0.0260mmol), PPh3 (0.0270g, 0.103mmol) and Ag20 (0.0732g, 

0.316mmol). 4-Cyano-4' -methyl-biphenyl; GCIMS R, 7.42min; yield 0.1 %. 

Coupling without activator 

Tolylgermane 1 (0.100g, 0.258mmol), 4-bromobenzonitrile (0.0567g, 0.311 mmol), 

Pd2dba3 (0.0235g, 0.0256mmol), and PPh) (0.0270g, 0.103mmol). 4-Cyano-4'­

methyl-biphenyl; GCIMS R, 7.44min; yield 0.5%. 
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6.2.1.9 CrQss-cQypling; phosphine screen in the absence Qf actiyatQr 

(Figyre 4,23) 

1 

General method 

r(YCN 

~ 2 
Br 

Pd2dba3, PR3 

DMF, CsF 

CN 

3 

A 3mL reaction vial was charged with tolylgermane 16, 4-bromobenzonitrile, 

Pd2(dbah, and various phosphines. The reagents were dissolved in DMF (1.5mL), 

sealed and heated at 150°C for 48 hours. Naphthalene solution (0.01 mL, 0.25M) was 

added to a 25~L sample of crude reaction mixture and diluted with CHCh to give 

0.5mL of solution. Analysis by quantitative GCIMS gave the following results. 

Coupling with triphenylphosphine co-catalvst 

Tolylgermane 1 (0.0996g, 0.257mmol), 4-bromobenzonitrile (0.0570g, 0.313mmol), 

Pd2dba3 (0.0238g, 0.0260mmol), and PPh3 (0.027Ig, 0.103mmol). 4-Cyano-4'­

methyl-biphenyl; GC/MS Rt 7.43min; yield 0.4%. 

Coupling with trl-(4-fluorophenylJphosphine co-catalyst 

Tolylgermane 1 (0.100g, 0.258mmol), 4-bromobenzonitrile (0.0570g, 0.3 1 3mmol), 

Pd2dba3 (0.0236g, 0.0258mmol), and P(P-C6H4F)3 (0.0326g, 0.103mmol); 4-Cyano-

4'-methyl-biphenyl; GC/MS Rt 7.43min; yield 0.9%. 

Coupling with tri(pentafluoroJphenylphosphine co-catalyst 

Tolylgermane 1 (0.101 g, 0.261 mmol), 4-bromobenzonitrile (0.0569g, 0.3 I 3mmol), 

Pd2dba3 (0.0235g, 0.0257mmol), and P(C6FS)3 (0.0539g, O.IOlmmol). 4-Cyano-4'­

methyl-biphenyl was not observed. 

Coupling with dppp co-catalyst 

Tolylgermane 1 (0.0995g, 0.257mmol), 4-bromobenzonitrile (0.0561 g, 0.308mmol), 

Pd2dba3 (0.0236g, 0.0258mmol), and dppp (0.0213g, 0.05 1 6mmol). 4-Cyano-4'­

methyl-biphenyl; GC/MS Rt 7.44min; yield 0.8%. 
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Coupling with dppe co-catalyst 

Tolylgermane 1 (0.101 g, 0.261 mmol), 4-bromobenzonitrile (0.0568g, 0.312mmol), 

Pd2dba3 (0.0237g, 0.0259mmol), and dppe (0.0205g, 0.0515mmol). 4-Cyano-4'­

methyl-biphenyl; GCIMS Rt 7.43min; yield 0.3%. 

Coupling with Binap co-catalyst 

Tolylgermane 1 (0.0998g, 0.258mmol), 4-bromobenzonitrile (0.0569g, 0.313mmol), 

Pd2dba3 (0.0236g, 0.0258mmol), and binap (0.0317g, 0.0509mmol). 4-Cyano-4'­

methyl-biphenyl; GCIMS Rt 7.46min; yield 3%. 

Coupling with triphenylphosphine co-catalyst and DMA solvent 

Tolylgermane 1 (0.101 g, 0.261 mmol), 4-bromobenzonitrile (0.0571 g, 0.314mmol), 

Pd2dba3 (0.0239g, 0.0261 mmol), and PPh3 (0.0269g, 0.1 03mmol) dissolved in DMA 

(1.5mL). 4-Cyano-4'-methyl-biphenyl; GCIMS R, 7.42; yield 0.5%. 

Coupling with less than stoichiometric amount activator 

Tolylgermane 1 (O.IOOg, 0.258mmol), 4-bromobenzonitrile (0.0568g, 0.312mmol), 

Pd2dba3 (0.0236g, 0.0258mmol), PPh3 (0.0269g, 0.103mmol) and CsF (0.0092g, 

0.0606mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 7.43min; yield 1.5%. 

Unactivated coupling with anisylgermane 

Anisylgermane 13 (0.104g, 0.258mmol), 4-bromobenzonitrile (0.0570g, 0.313mmol), 

Pd2dba3 (0.0236g, 0.0258mmol), and PPh3 (0.0269g, 0.103mmol); 4-Cyano-4'­

methoxy-biphenyl GCIMS Rt I 0.17min; yield 3%. 

6.2.1.10 Best case coy pIIng (Figyre 4.24) 

('(YeN 

N Sr 

Pd2dba3, dppp 
DMA, CsF 

.. 
CN 

Tolylgermane 1 (O.IOOg, 0.258mmol), 4-bromobenzonitrile (0.0570g, 0.313mmol), 

Pd2dba3 (O.0235g, 0.0257mmol), dppp (0.0207g, 0.502mmol) and CsF (0.0895g, 
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0.589mmol) dissolved in DMA (1.5mL). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 

7.45min; yield 4%. 

6.2.1.11 Cross-coupling: Second phosphine screen (Figure 4.55) 

General method 

~CN 

~ Br 

Pd2dba3, PR3 

DMF, CsF 

CN 

The reactions were carried out using the general method for the previous phosphine 

screen (vide supra). The reagents were dissolved in 1.35mL of anhydrous DMF 

Coupling with triphenylphosphine co-catalyst 

Tolylgermane 1 (0.0907g, 0.234mmol), 4-bromobenzonitrile (0.0514g, 0.282mmol), 

Pd2dba3 (0.0105g, 0.0115mmol), PPh3 (0.0122g, 0.0465mmol) and CsF (0.155g, 

1.02mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 8.67min; yield 3%. 

Coupling with tri-(4-fluorophenylJphosphine co-catalyst 

Tolylgermane 1 (0.0887g, 0.229mmol), 4-bromobenzonitrile (0.0508g, 0.279mmol), 

Pd2dba3 (0.0106g, 0.0116mmol), P(P-C6H4F)3 (0.0147g, 0.0465mmol) and CsF 

(0.0808g,0.532mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 8.67min; yield 3%. 

Coupling with tri(pentafluoroJphenylphosphine co-catalyst 

Tolylgermane 1 (0.0896g, 0.232mmol), 4-bromobenzonitrile (0.0512g, 0.281 mmol), 

Pd2dba3 (0.0106g, 0.01 16mmol), P(C6Fs)3 (O.0249g, 0.0468mmol) and CsF (O.0739g, 

0.487mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 8.68min; yield 7%. 

Coupling with dppp co-catalyst 

Tolylgermane 1 (O.0889g, 0.230mmol), 4-bromobenzonitrile (0.0511 g, 0.281 mmol), 

Pd2dba3 (O.0106g, 0.01l6mmol), dppp (0.0095g, 0.0230mmol) and CsF (O.0743g, 

0.489mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 8.67min; yield 2%. 
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Coupling with binap co-catalyst 

Tolylgermane 1 (0.0892g, 0.230mmol), 4-bromobenzonitrile (0.0517g, 0.284mmol), 

Pd2dba3 (0.01 04g, 0.0114mmol), binap (0.0141 g, 0.0226mmol) and CsF (0.0823g, 

0.54Immol). 4-Cyano-4'-methyl-biphenyl; GCIMS R, 8.67min; yield 6%. 

6.2.2 Approaches towards chlorogermane cross-coupling 

6.2.2.1 Synthesis of chlorogermanes 

(4-Methyl-phenylJtrichlorogermane (44) 187 

Method 1 

Molecular Weight =270.08 
Molecular Formula =C7H7CI3Ge 

According to the method of Schmidbaur,187 4-bromotoluene (17 .3g, 0.101 mol), 

GeCh'I,4-dioxane 7 (synthesised via reduction with TMDS, 0.506g, 2.18mmol), and 

aluminium(III) chloride (0.0299g, 0.244mmol) were combined, placed under N2 and 

heated at 80°C for 25 hours. The hot mixture was then filtered through a hot sinter, 

and the resulting solids washed with hot anhydrous toluene. Solvent was removed 

from the filtrate in vacuo, and the resulting sample was further purified by reduced 

pressure distillation to remove 4-bromotoluene. NMR analysis of the distillation 

residue indicated that there was none of the desired product present. 

Method 2: Sealed tube 

GeCh'l,4-dioxane 7 (synthesised via reduction with TMDS, 0.495g, 2.14mmol), 4-

bromotoluene (3.63g, 21.2mmol), aluminium(III) chloride (0.0360g, 0.270mmol) and 

anhydrous 1,4-dioxane (lmL) were combined in a sealed tube and heated at 140°C for 

44 hours. The mixture was allowed to cool and then diluted with CHCh (10mL) 

before being filtered. Solvent was removed from the filtrate in vacuo to give a cream 

solid (3.l4g). GCIMS of the crude reaction mixture revealed a large amount of 

starting bromotoluene, and only a trace of the desired product 44: 
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220 
4-Bromotoluene Rf 0.87 (petrollEtOAc, 9/1); 18 NMR (CDC h) 0 2.31 (3H, s, 

ArCH3), 7.06 (2H, d, J 8.5, BrCCHCHCCH3), 7.38 (2H, d, J 8.5, BrCCHCHCCH3); 

GCIMS Rt 5.42min; MS (EI) m/z 170 (37%, M+), 91 (100%),65 (24%). 

187 
Trichlorotolylgermane 44. RfO.OO (petrollEtOAc, 9/1); GCIMS Rt 9.73 min; MS 

(EI) m/z 270 (16%, M+), 235 (20%), 126 (38%),91 (100%),65 (38%). 

Method 3 

According to the method of Schmidbaur,187 4-bromotoluene (O.696g, 4.07mmol), 

GeCh'I,4-dioxane 7 (synthesised via reduction with Et3SiH, 0.021 g. 0.0885mmol), 

and aluminium(III) chloride (Img, 9llmol) were combined, placed under N2 and 

heated at 80°C for 24 hours. The crude sample was dissolved in CH2Ch (IOmL) and 

filtered to remove solids. Solvent was removed from the filtrate in vacuo and the 

sample then distilled under reduced pressure to leave a viscous oil (8mg). Analysis 

by GCIMS revealed the presence of 4-bromotoluene as the major component, with the 

desired products trace amounts: 

4-Bromotoluene. Analytical data as above. 

Trichlorotolylgermane 44. Analytical data as above. 

187 
Tribromotolylgermane 45: RfO.OO (petroI/EtOAc, 9/1); GelMS R t 12.94 min; MS 

(EI) mlz 402 (6%, M'+), 321 (34%),279 (4%),234 (4%), 153 (45%),91 (100%),65 

(87%). 

GermaniumOV) ethoxide (46) 191 

Ge(OEt)4 Molecular Weight =252.84 
46 Molecular Formula =CSH20Ge04 

Sodium metal (O.972g, 42.2mmol) was added to anhydrous ethanol (20mL) and then 

flushed with N2. The resulting suspension was stirred at rt until the sodium had 

dissolved. Germanium(IV) chloride 6 (ImL, 1.88g, 8.76mmol) was then added 

dropwise to the solution of sodium ethoxide and the solution refluxed for 3 hours. 

The reaction mixture was then centrifuged at 3200rpm for 10 minutes, the supernatant 
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was decanted and solvent removed in vacuo. The resulting residue was purified by 

Kugelrohr distillation under N2, collecting the fraction boiling between 183-189°C to 

give germanium(IV) ethoxide 46 as a clear colourless liquid (0.594g. 2.35mmol. 

27%), Rf 0.00 (petrol/EtOAc, 9/1); IH NMR (CDC h) 0 1.28 (l2H, t, J 7.0, 

OCH2CH3), 3.96 (8H, q, J 7.0, OCH2CH3); IR (neat) 3328, 2973, 1380, 1090, 1049, 

881cm· l
. 

(4-methyl-phenyIJtrimethylgermane (41 t 1 

Molecular Weight =208.83 
Molecular Formula =C,oH,sGe 

Method 1: Reaction of germaniumOV) chloride with 4-methyl­

phenyl magnesium bromide 

Germanium(IV) chloride 6 (85~L, 0.160g, 0.750mmol) was dissolved in anhydrous 

THF (10mL), and cooled to -78°C. A solution of 4-methyl-phenyl magnesium 

bromide (1.0M in THF, 0.75mL, 0.750mmol) was then added both dropwise and 

slowly and the mixture stirred for 1 hour. A solution of methyl magnesium bromide 

(3.0M in Et20, 1.5mL, 4.5mmol) was then added dropwise and the solution allowed 

to warm to rt, before being retluxed for I hour. Distilled water (I mL) was added 

dropwise to destroy excess Grignard reagent, aqueous HCI (l.OM, 5mL) was added, 

and the solution extracted with Et20 (2 x 10mL). Organic washings were combined 

and dried with MgS04 before being filtered and concentrated in vacuo to give 0.142g 

of crude reaction products. GCIMS analysis of the crude mixture revealed a complex 

reaction mixture including: 

4-Bromotoluene. Analytical data as above 

221 
Tolyltrimethylgermane 41: Rf 0.84 (PetroI/EtOAc, 9/1); GCIMS Rt 6.62min; MS 

(EI) mlz 210 (M'+ 6%),195(100%),165(19%),91(32%). 

122 
4,4'-Dimethyl-hipheny : Rf 0.91 (PetrollEtOAc, 9/1); GCIMS Rt 12.44min; MS 

(EI) mlz 182 (M'+ 100%), 167 (56%), 89 (18%). 
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A compound tentatively assigned as ditolyldimethylgerman/
23 

47: R, 0.84 

(PetrollEtOAc, 9/1); GCIMS Rt 14.80min; MS (EI) mlz 286 (M"+ 3%), 271 (100%), 

165 (27%), 91 (33%). 

A compound tentatively assigned as tritolylmethylgermane: R, 0.84 (PetroI/EtOAc. 

9/1); GCIMS Rt 20.72min; MS (EI) mlz 362 (M+ 1%),347 (100%), 271 (13%),165 

(50%),91 (52%). 

Tolyltrimethylgermane 411ditolyldimethylgermane 47 were present in 87113 ratio 

from IH NMR, integrating diagnostic germanium methyl peaks at (5 0.40ppm and (5 

0.64ppm respectively. 

Method 2: Reaction of germanium{/V) ethoxide with 4-methvl­

phenyl magnesium bromide 

Germanium(IV) ethoxide 46 (O.198g, 0.783mmol) was dissolved in anhydrous THF 

(lOmL), and cooled to -78°C. A solution of 4-methyl-phenyl magnesium bromide 

(l.OM in THF, 0.75mL, 0.750mmol) was then added both dropwise and slowly and 

the mixture stirred for 1 hour. A solution of methyl magnesium bromide (3.0M in 

Et20 , 1.5mL, 4.5mmol) was then added dropwise and the solution allowed to warm 

up to rt, before being refluxed for 1 hour. Distilled water (I mL) was added dropwise 

to destroy excess Grignard reagent, aqueous HCI (l.OM, 5mL) was added, and the 

solution extracted with Et20 (2 x 10mL). Organic washings were combined and dried 

with MgS04 before being filtered and concentrated in vacuo to give O.134g of crude 

reaction products. GCIMS analysis of the crude mixture revealed a complex reaction 

mixture including: 

Tolyltrimethylgermane 41. Analytical data as above. 

4,4'-Dimethyl-biphenyl. Analytical data as above. 

A compound tentatively assigned as ditolyldimethylgermane 47. Analytical data as 

above. 
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Tolyltrimethylgermane 411ditolyldimethylgermane 47 were present in 82/18 ratio 

from IH NMR, integrating diagnostic germanium methyl peaks at 0 0.40 and 0 0.64 

respectively. 

Attempted sYnthesis of 4-(2-Cdichloro-(4-

methylphenyIJgermanyllethyll phenol (51) 

~Br 
I ~ ,M9,THF 

.. 

4-Bromotoluene (40.8g, 0.239mol) was added to dry magnesium turnings (S.38g, 

O.222mol) suspended in anhydrous THF (200mL) and the mixture stirred for 3 hours. 

The solution was decanted to remove precipitates and solids and then titrated using 

224 . h . f . the method of Paquette to give t e concentratton 0 the resulting Gngnard reagent 

as 0.82mol dm
o3

• 

The Grignard reagent (llSmL, 94.3mmol) was added to trichlorogermylphenol 8 

(2.74g, 9. 1 mmol) dissolved in anhydrous THF (20mL), and the mixture then heated at 

reflux for 17 hours. Minimum distilled water was added dropwise to destroy excess 

Grignard reagent, solvents were then removed in vacuo. The residue was taken up in 

CH2Ch (70mL) and aqueous HCI (1M, 3SmL) added dropwise over 90 min. The 

layers were separated and HCI (l M, 2SmL) added to the CH2Ch layer, followed by 

c.HCI (lSOmL) with vigorous stirring for 1 hour. The acidified CH2Ch layer was 

then separated and the acid layer extracted with CH2Ch (2 x IOOmL), organics were 

dried with MgS04, filtered, concentrated and analysed by IH NMR to give 8.17g of 

crude product including: 
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Tritolylgermylphenol52. Analytical data as below. 

Chloroditolylphenol53. Analytical data as below. 

Integration of the methylene signals a. to germanium indicated that 

tritolylgermylphenol 52 (82.77) and chloroditolylphenol 53 (8 2.84) were present in a 

ca. 75/25 ratio by 'H NMR. 

The crude mixture was then subjected to the following conditions: 

Silica column chromatography 

Si02 chromatography 
• 

1.62g of the crude reaction mixture of 52 and 53 (ca. 75/25) was purified by column 

chromatography (lOx 5cm Silica gel, eluted with petrollCH2Ch 2/8) to give 

tritolylgermylphenol 52 (0.4569g, O.978mmol). Analytical data as below. 
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Treatment with MeMgBr 

MeMgBr .. HO 

Experimental 

ad 
~GeQ 

I ~ I ~ 

54 

52/54 ca. 75/25 

2.02g of the crude mixture of 52 and 53 (ca. 75/25) was dissolved in anhydrous 

toluene (35mL), and subjected to MeMgBr (3.0M in E120, 3.8mL, II.4mmol) at 

11 SoC for 17 hours. Water was added dropwise to destroy excess Grignard reagent 

and the resulting mixture partitioned between CH2Ch (3 x SOmL) and aqueous HCI 

(IM,30mL). Organics were dried with MgS04, filtered and concentrated in vacuo 

and analysed by IH NMR as before to give tritolylgermylphenol 52 and 

methylditolylphenol 54 in a ca. 75/25 ratio. 

Treatment with c.HCI at 30 'C 

ad 
HO ~

Ge~ 

I~ ~ 

52 d 
~CIGeQ~~ 
I ~ I ~ 

HO 
53 

52153 ca. 40/60 

2.50g of crude mixture of 52 and 53 (ca. 75/25) were dissolved in CH2Ch (lSmL), 
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c.HCl (40mL) was added, and the biphasic mixture heated at 30°C for 23 hours. The 

layers were separated, and the acid extracted with CH2Ch (3 x 70mL), organics 

combined, dried with MgS04, concentrated in vacuo and analysed by 1 H NMR as 

before to give tritolylgermylphenol 52 and chloroditolylphenol 53 in a ca. 40/60 ratio 

by lHNMR. 

Treatment with c.HCI at 40"C 

53 
52/53 ca. 75/25 

1.01g of crude mixture of 52 and 53 (ca. 75125) were dissolved in CH2Ch (7mL) and 

c.HCI (40mL), and then heated at 40°C for 5 hours with vigorous stirring. The layers 

were separated, and the acid layer extracted with CH2Ch (2 x 30mL), organics were 

combined, dried with MgS04. filtered, concentrated and analysed by lH NMR as 

before to give tritolylgermylphenol 52 and chloroditolylphenol 53 in a ca. 4/96 ratio 

by lHNMR. 
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Treatment with acetic acid 

HO 

HO 

Experimental 

'ad 
~

Ge~ 
I~ ~ 

52 d 
~

CIGeA 
I~ ~ 

53 
52153 CB. 75/25 

1.02g of crude mixture of 52 and 53 (ca. 75/25) was dissolved in glacial acetic acid 

(20mL) and heated at 98°C for 5 hours. No consumption of starting material was 

observed by TLC (petrollEtOAc, 9/1). 

4-12-fChlorodi-(4-methylphenylJgermanyllethyllphenol (53) 

Molecular Weight =411.47 
Molecular Formula =C22H23CIGeO 

A solution ofMSA (38f.lL, O.0561g, O.584mmol) in CH2Ch (1.46mL) was added to a 

solution of tritolylgerrnylphenol 52 (O.0502g, 0.1 07mmol) dissolved in CH2Ch (1 mL) 

to give a solution with a concentration of MSA of O.23M. The resulting mixture was 

stirred at rt for 35 minutes, before being neutralised with saturated NaHC03 solution 

until effervescence ceased. The layers were separated and the aqueous layer extracted 

with CH2Ch (2 x 15mL), organics were combined and then shaken with c.HCI 

(20mL), separated again, dried with MgS04, filtered and concentrated in vacuo to 

give chloroditolylphenol 53 as a brown oil (0.395g, 0.106mmol, 99%). Rf 0.00 

(petroIlEtOAc, 9/1); IH NMR (COCh) l) 1.90 (2H, m, CH2CH2Ge), 2.38 (6H, s, 
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ArCH3), 2.84 (2H, m, CH2CH2Ge), 5.29 (IH, s, OH), 6.72 (2H, d, J 8.5, 

HOCCHCHC), 7.05 (2H, d, J 8.5, HOCCHCHC), 7.24 (4H, d, J 8.0, 

GeCCHCHCCH3), 7.47 (4H, d, J 8.0, GeCCHCHCCH3); l3e NMR (CDCb) o2l.l 

(t), 21.5 (q), 29.1 (t), 115.3 (d), 129.1 (d), 129.4 (d), 132.3 (s), 133.5 (d), 135.5 (s), 

140.4 (s), 153.8 (s); IR (neat) 3368, 2920, 1598, 1515, 1234, 1090,799,595 cm-'; 

MS (EI) mlz 412 (M+ 28%),320 (11%), 291 (58%), 165 (14%),120 (100%), 91 

(45%); HRMS calc'd for C22H23CI74GeO 412.0649, found 412.0667. error-4.3ppm. 

4-12·lChioromefhyl·(4-mefhyiphenyl)germanyllefhyl}phenoi (55) 

\ ,CI 

Molecular Weight =355,79 ~"=::: GeQ"=::: 
HO'o ,0 Molecular Formula =ClsH16CI2GeO 

55 

A solution of MSA in CH2Ch (0.238M, 20mL) was added to methylditolylphenol S4 

(0.459g, 1.17mmol) and the mixture stirred for 30 minutes before being neutralised 

with saturated aqueous NaHC03. The aqueous layer was then extracted with CH2Ch 

(2 x 20mL), the organic washings were combined and then treated with c.HCI 

(30mL), the phases were separated and the acid layer further extracted with CH2Ch (2 

x 20mL). The organic washings were combined and dried with MgS04, before being 

filtered and concentrated in vacuo to give chloromethyltolylphenol SS as a pale brown 

oil (0.318g, 0.947mmol, 99%). R/O.OO (petroIlEtOAc, 9/1); IH NMR (CDCb) 0 0.80 

(3H, s, GeCH3) 1.70 (2H, m, CH2CH2Ge), 2.39 (3H, s, ArCH3), 2.82 (2H, m, 

CH2CH2Ge), 6.76 (2H, d, J 8.5, HOCCHCHC), 7.06 (2H, d, J 8.5, HOCCHCHC), 

7.25 (2H, d, J 8.0, GeCCHCHCCH3), 7.45 (2H, d, J 8.0, GeCCHCHCCH3), phenol 

proton not observed; llC NMR (CDC b) 0 1.7 (q), 21.5 (q), 22.4 (t), 29.1 (t), 115.3 

(d), 129.1 (d), 129.3 (d), 132.6 (d), 145.1 (s), 150.8 (s), two quaternary carbons not 

seen; IR (neat) 3412, 3017, 2921,1598,1513,1447, 1191, 1090, 797cm-'; MS (EI) 

mlz 336 (M'+ 3%), 244 (10%), 215 (34%), 201 (5%), 181 (5%), 165 (5%), 120 

(100%), 91 (29%); HRMS calc'd for CI6HI9CI74GeO 336.0336, found 336.0333, 

error 0.9ppm. 
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4-(2·fTri.(4-methylphenyIJgermanyllethyllphenol (52) 

ad 
HO ~

Ge~ 

I~ ~ 
52 

Molecular Weight =467.15 
Molecular Formula =C29H30GeO 

4-Bromotoluene (l3.6g, 79.6mmol) dissolved in anhydrous THF (lOmL) was added 

to a suspension of magnesium turnings (l.99g, 82.0mmol) in anhydrous THF (60mL). 

The solution was briefly warmed by hand to initiate the reaction and then allowed to 

stir for 1 hour at rt. Trichlorogermylphenol 8 (2.02g, 6.7mmol) was dissolved in 

anhydrous THF (lOmL) and then added to the solution of Grignard reagent, the 

resulting mixture was refluxed for 22 hours. Distilled water was carefully added 

dropwise to destroy excess Grignard and aqueous HCI (1.0M, 75mL) was added to 

dissolve inorganics. The solution was then extracted with Et20 (3 x 70mL) after 

which the organic washings were combined, dried with MgS04 and concentrated in 

vacuo. Purification by column chromatography (8 x 10cm silica gel, eluted with 

petrollEtOAc, 19/1 ~ petrollEtOAc, 9/1) to give tritolylgermylphenol 52 as a clear 

colourless oil (2.48g, 5.31mmol, 79%). Rf 0.42 (petroIlEtOAc, 9/1); IH NMR 

(CDCI3) B 1.80 (2H, m, CH2CH2Ge), 2.39 (9H, s, ArCH3), 2.77 (2H, m, CH2CH2Ge), 

4.69 (1H, s, OH), 6.74 (2H, d, J 8.5, HOCCHCHC), 7.07 (2H, d, J 8.5, 

HOCCHCHC), 7.22 (6H, d, J 8.0, GeCCHCHCCH3), 7.41 (6H, d, J 8.0, 

GeCCHCHCCH3); 13C NMR (CDCh) 0 16.4 (t), 21.5 (q), 30.3 (t), 115.1 (d), 118.8 

(d), 129.1 (d), 133.5 (s), 134.9 (d), 137.2 (s), 138.7 (s), 153.5 (s); IR (neat) 3402, 

2920, 1512, 1228, 1087, 799 cm- I
; MS (EI) mlz 468 (M+ 2%), 376 (19%), 347 

(100%), 255 (10%), 181 (17%), 165 (21%), 91 (32%); HRMS calc'd for 

C29H3074GeO 468.1509, found 468.1518, error -2.0ppm; Elemental analysis 

expected for C29H30GeO C 74.56%, H 6.47%, analysis found C 74.20%, H 6.55% .. 
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4-12-IMethvldi-(4-methylphenvlJgermanyllethyllphenol (54) 

54 

Molecular Weight =391.05 
Molecular Formula =C23H26GeO 

Methyl magnesium bromide (3.0M in Et20, 2mL, 6mmol) was added to a solution of 

chloroditolylphenol 53 (0.457g, I.llmmol) in anhydrous toluene (IOmL), and the 

resulting mixture heated at 115°C for 18 hours. Distilled water was added dropwise 

to destroy excess Grignard reagent, and the mixture then partitioned between Et20 

(lOOmL) and aqueous HCl (1M, 25mL), with the aqueous layer being further 

extracted with EhO (3 x 50mL). The organic layers were combined, dried with 

MgS04, filtered and concentrated in vacuo to give methylditolylphenol 54 as a pale 

brown oil (0.391g, 1.00mmol, 90%). Rj 0.66 (petroI/EtOAc, 8/2); IH NMR (CDCh) 

80.60 (3H, s, GeCH3), 1.53 (2H, m, CH2CH2Ge), 2.37 (6H, s, ArCH3), 2.69 (2H, m, 

CH2CH2Ge), 4.57 (lH, bs, OH), 6.74 (2H, d, J 8.5, HOCCHCHC), 7.05 (2H, d, J 8.5, 

HOCCHCHC), 7.19 (4H, d, J 8.0, GeCCHCHCCH3), 7.38 (4H, d, J 8.0, 

GeCCHCHCCH3); 13C NMR (CDC h) 8 -5.0, (q), 16.9 (t), 21.4 (q), 30.1 (t), 115.1 

(d), 128.8 (d), 128.9 (d), 133.9 (d), 135.5 (s), 136.8 (s), 138.3 (s), 153.6 (s); IR (neat) 

3352,3011,2919,1512,1236,1087, 798cm- l
; MS (EI) mlz 392 (M'+ 3%), 377 (10%), 

300 (38%), 271 (100%),255 (21%), 181 (36%), 165 (27%),91 (30%); HRMS calc'd 

for C23H2674GeO 392.1195, found 392.1204, error -2.3ppm; 

4-12-IDichloro-(4-methylphenylJgermanyllethyllphenol (51) 

51 

A solution of MSA in CH2Ch (6.03M, 40mL) was added to tritolylgermylphenol 52 

(0.406g, 0.869mmol) and the mixture stirred at rt for 2.5 hours. The reaction mixture 
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was then transferred to a large conical flask and neutralised with saturated aqueous 

NaHC03 solution (200mL) initially added dropwise, and then stirred for 15 minutes. 

Phases were separated and the aqueous layer extracted with CH2Ch (2 x 50mL). The 

organic washings were treated with c.HCI (150mL), the phases separated and the acid 

layer extracted with further CH2Ch (2 x 50mL). The organics were combined, dried 

with MgS04, filtered, concentrated in vacuo and analysed by I H NMR as before to 

reveal the presence of dichlorotolylphenol 51 and a trace of chloroditolylphenol 53. 

The crude mixture was partitioned between CH2Ch (30mL) and aqueous NaOH 

(O.5M, 60mL). The layers were separated and the basic layer extracted with CH2Ch 

(2 x 15mL). The organic washings were combined and extracted with further NaOH 

(O.5M, 50mL). The organics were dried with MgS04, filtered and concentrated in 

vacuo to give chloroditolylphenol 53 (O.008g, 0.0194mmol, 2%). Analytical data as 

above. 

The basic layers were combined, filtered to remove precipitates, and then cautiously 

treated with aqueous HCI (1M, 50mL), before being further acidified with c.HCI 

(lOOmL). The now acidic layer was then extracted with CH2Ch (3 x 50mL), the 

organic washings were combined, dried with MgS04, filtered and concentrated in 

vacuo to give dichlorotolylphenol 51 as a pale brown oil (0.252g, O.708mmol, 82%). 

R,O.OO (petrollEtOAc, 9/1); In NMR (CDC b) 8 2.07 (2H, m, CH2CH2Ge), 2.39 (3H, 

s, ArCH3), 2.94 (2H, m, CH2CH2Ge), 4.82 (lH, bs, Oll), 6.74 (2H, d, J 8.5, 

HOCCHCHC), 7.07 (2H, d, J 8.5, HOCCHCHC), 7.27 (2H, d, J 8.0, 

GeCCHCHCCH3), 7.46 (2H, d, J 8.0, GeCCHCHCCH3); 13C NMR (CDCh) 8 21.6 

(q), 27.6 (t), 28.5 (t), 115.5 (d), 129.3 (d), 129.6 (d), 132.0 (d), 132.1 (s), 133.8 (s), 

142.0 (s), 154.1 (s); IR (neat) 3350, 2921, 1597, 1514, 1235, lO90, 799, 695 cm· l
; 

MS (El) m/z 356 (5%),235 (8%), 165 (2%), 120 (100%), lO7 (31%), 91 (59%),65 

(32%); nRMS calc'd for ClsHI6CI/4GeO 355.9790, found 355.9802, error -3.3ppm. 
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4-12-TTri-( 4-meth vl-phenvlJ-germanvll-eth v/}-phen vi (2-ethoxv-eth vlJ 

ether (66) 

66 

Molecular Weight =539.26 
Molecular Formula =C33H38Ge02 

2-Chloroethyl ethyl ether (1.8mL, 1.78g, 16.4mmol) was added to a solution of 

tritolylgermylphenol52 (1.50g, 3.21mmol), cesium carbonate (1.50g, 4.56mmol), and 

TBAI (O.l28g, 0.345mmol) dissolved in MeCN (50mL), and the resulting mixture 

heated at 80°C for 16 hours. The crude reaction mixture was then partitioned 

between EhO (75mL) and aqueous HCI (lM, 75mL), and the aqueous layer further 

extracted with Et20 (2 x 25mL). The organics were combined, dried with MgS04, 

and concentrated in vacuo before being filtered through silica gel (3 x 6cm, eluting 

with petrollEtOAc, 85: 15) to give tritolylgermane 66 as a clear colourless oil (1.56g, 

2.89mmol,90%). Rf O.65 (petrollEtOAc, 9/1); IH NMR (CDCb) 0 1.28 (3H, t, J 7.0, 

CH3CH20), 1.81 (2H, m, CH2CH2Ge), 2.39 (9H, s, ArCH3), 2.78 (2H, m, 

CH2CH2Ge), 3.63 (2H, q, J 7.0, CH3CH20), 3.80 (2H, t, J 5.0, OCH2CH20Ar), 4.12 

(2H, t, J 5.0, OCH2CH20Ar), 6.85 (2H, d, J 8.5, OCCHCHCCH2), 7.11 (2H, d, J 8.5, 

OCCHCHCCH2), 7.22 (6H, d, J 8.0, GeCCHCHCCH3), 7.42 (6H, d, J 8.0, 

GeCCHCHCCH3); I3C NMR (CDCh) 0 15.3 (q), 16.4 (t), 21.5 (q), 30.3 (t), 66.9 (t), 

67.5 (t), 69.1 (t), 114.6 (d), 128.7 (d), 129.1 (d), 133.6 (s), 135.0 (d), 137.2 (s), 138.7 

(s), 157.0 (s); IR (neat) 2921,1509,1245,1124,1086,798 cm- I
; MS (EI) mlz 540 

(M·+ 4%), 448 (10%), 347 (100%), 271 (15%), 255 (9%), 165 (16%), 91 (20%); 

HRMS ca1c'd for C33H3874Ge02 540.2084, found 540.2082, error 0.4ppm; Elemental 

analysis expected for C33H3874Ge02 C 73.50%, H 7.10%, analysis found C 73.43%, H 

7.51%. 
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4-(2-fChloro-di-f4-methyl-phenyl)-germanyll-ethyl'-phenyl (2-ethoxy­

ethyl) ether (67J 

CkO 
0vEGeQ Molecular Weight =483,58 

C I ~ I ~ Molecular Formula =C26H31CIGe02 
.0 .0 

° 67 

Tritolylgermane 66 (O.275g, 0.510mmol) was dissolved in a solution of MSA in 

CH2Ch (O.25M, 12.3mL) and stirred at rt for 55 minutes. The reaction mixture was 

added dropwise to distilled water (IOmL) and shaken, the phases were separated and 

the aqueous layer extracted with CH2Ch (2 x 20mL). The combined organic layers 

were shaken with c.HCI (50mL), phases separated and the acid layer extracted with 

CH2Ch (2 x 20mL). The organic washings were combined, dried with MgS04, 

filtered and concentrated in vacuo to give chloroditolylgermane 67 as a pale brown oil 

(O.237g, 0.49mmol, 96%). Rf 0.00 (petrollEtOAc, 9/1); 10 NMR (CDCh) cS 1.25 

(3H, t, J 7.0, CH3CH20), 1.87-1.94 (2H, m, CH2CH2Ge), 2.39 (6H, s, ArCH3), 2.81-

2.88 (2H, m, CH2CH2Ge), 3.61 (2H, q, J 7.0, CH3CH20), 3.79 (2H, t, J 5.0, 

OCH2CH20Ar), 4.09 (2H, t, J 5.0, OCH2CH20Ar), 6.82 (2H, d, J 8.5, 

OCCHCHCCH2), 7.09 (2H, d, J 8.5, OCCHCHCCH2), 7.24 (4H, d, J 8.0, 

GeCCHCHCCH3), 7.47 (4H, d, J 8.0, GeCCHCHCCH3); 13C NMR (CDCh) cS 15.2 

(q), 21.1 (t), 21.5 (q), 29.1 (t), 66.8 (t), 67.5 (t), 69.0 (t), 114.7 (d), 128.8 (d), 129.4 

(d), 132.3 (s), 133.4 (d), 135.6 (s), 140.3 (s), 157.2 (s); IR (neat) 2923, 1610, 1511, 

1244, 1124, 910, 799, 733cm- l
; MS (EI) mlz 484 (M'+ 6%), 291 (32%), 248 (35%), 

192 (100%), 91 (22%),45 (39%); ORMS calc'd for C26H31C174Ge02 484.1224, found 

484.1229, error-O.9 ppm. 
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4-12-IMethyl-di-(4-methyl-phenylJ-germanyll-ethyl}-phenyl (2-ethoxy­

ethylJ ether (56) 

56 

Molecular Weight =463.16 
Molecular Formula =C27H34Ge02 

Method 1: Protection of 4-12-lmethyldi-(4-

methylphenylJgermanvllethyllphenol 

2-Chloroethyl ethyl ether (0.5mL, 0.495g, 4.56mmol) was added to a solution of 

methylditolylphenol 54 (0.600g, 1.53mmol), cesium carbonate (0.622g, 1.9Immol), 

and TBAI (0.0557g, 0.151 mmol) dissolved in MeCN (16mL), and the resulting 

mixture heated at 80°C for 17 hours. The crude reaction mixture was then partitioned 

between EtOAc (20mL) and distilled water (20mL), and the aqueous layer further 

extracted with EtOAc (2 x 20mL). The organics were combined, dried with MgS04 

and concentrated in vacuo before being purified by column chromatography (50g 

Isolute Silica gel SPE cartridge, eluted with petrollEtOAc, 19/1) to give 

methylditolylgermane 56 as a pale brown oil (0.462g, 0.997mmol, 65%). Rf 0.56 

(petro llEtOAc , 9/1); IH NMR (CDCb) B 0.57 (3H, s, GeCH3), 1.24 (3H, t, J 7.0, 

CH3CH20), 1.52 (2H, m, CH2CH2Ge), 2.34 (6H, s, ArCH3), 2.67 (2H, m, 

CH2CH2Ge), 3.59 (2H, q, J 7.0, CH3CH20), 3.77 (2H, t, J 5.0, OCH2CH20Ar), 4.08 

(2H, t, J 5.0, OCH2CH20Ar), 6.82 (2H, d, J 8.5, OCCHCHCCH2), 7.06 (2H, d, J 8.5, 

OCCHCHCCH2), 7.17 (4H, d, J 8.0, GeCCHCHCCH3), 7.37 (4H, d, J 8.0, 

GeCCHCHCCH3); I3C NMR (CDCb) B -5.0 (q), 15.2 (q), 16.9 (t), 21.5 (q), 30.2 (t), 

66.9 (t), 67.5 (t), 69.1 (t), 114.6 (d), 128.7 (d), 129.0 (d), 134.0 (d), 135.6 (s), 137.0 

(s), 138.4 (s), 156.9 (s); IR (neat) 2922,1510, 1245, 1125, 799 em-I; MS (EI) mlz 464 

(M'+ 6%), 449 (6%), 347 (41%), 271 (100%), 195 (54%), 181 (49%), 165 (33%),91 

(44%); HRMS caIc'd for C27H34
74Ge02 464.1771, found 464.1785, error -3.2ppm; 

Elemental analysis expected for C27H34Ge02 C 70.02%, H 7.40%, analysis found C 

70.31%, H 7.76%. 
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Method 2: Methvlation of 4-l2-fchloro-di-(4-methyl-phenylJ­

germanyll-ethy/}-phenyl (2-ethoxy-ethylJ ether 

Methyl magnesium iodide (3.0M in Et20, ImL, 3mmol) was added to a solution of 

chloroditolylgermane 67 (0.233g, 0.48Immol) dissolved in anhydrous THF (9mL), 

and the resulting mixture heated at reflux for 22 hours. Distilled water was added 

dropwise to destroy excess Grignard reagent, and the mixture then partitioned 

between Et20 (5mL) and aqueous HCl (5mL), the acid layer was further extracted 

with EllO (2 x 5mL). The organic layers were combined and washed with saturated 

aqueous Na2S203 solution (5mL), before being dried with MgS04, filtered and 

concentrated in vacuo to give methylditolylgermane 56 as a clear colourless oil 

(0.207g, 0.447mmol, 93%). Analytical data as above. 

4-l2-fChloro-methyl-f4-methyl-pheny/)german yllethy/}-phenyl (2-

ethoxy-ethylJ ether (49) 

\ ,CI 

C
OE~GeA 

~ ~ o 
Molecular Weight =407.48 
Molecular Formula =C2QH27CIGe02 

49 

A solution of MSA in CH2Ch (0.23M, 6mL) was added to methylditolylgermane 56 

(0.122g, 0.262mmol) and the mixture stirred for 30 minutes before being added 

dropwise to saturated aqueous NaHC03 (lOmL). The aqueous layer was then 

extracted with CH2Ch (2 x IOmL), and the combined organic washings treated with 

c.HCl (20mL), the phases were separated again, and the acid layer was further 

extracted with CH2Ch (2 x 1 OmL). The combined organic layers were then dried 

with MgS04, filtered and concentrated in vacuo to give chloromethyltolylgermane 49 

as a pale brown oil (O.IOlg, 2.48mmol, 94%). R/O.OO (petroIlEtOAc, 911); IH NMR 

(CDC h) b 0.79 (3H, s, GeCH3), 1.26 (3H, t, J 7.0, CH3CH20), 1.71 (2H, m, 

CH2CH2Ge), 2.39 (3H, s, ArCH3), 2.84 (2H, m, CH2CH2Ge), 3.61 (2H, q, J 7.0, 

CH3CH20), 3.79 (2H, t, J 5.0, OCH2CH20Ar), 4.11 (2H, t, J 5.0, OCH2CH20Ar), 

6.85 (2H, d, J 8.5, OCCHCHCCH2), 7.10 (2H, d, J 8.5, OCCHCHCCH2), 7.25 (2H, d, 

J 8.0, GeCCHCHCCH3), 7.45 (2H, d, J 8.0, GeCCHCHCCH3); 13C NMR (CDCI3) b 

- 216-



Chapter 6 Experimental 

1.7 (q), 15.2 (q), 21.5 (q), 22.4 (t), 29.1 (t), 66.9 (t), 67.5 (t), 69.0 (t), 114.7 (d), 128.9 

(d), 129.4 (d), 132.6 (d), 134.2 (s), 135.2 (s), 140.2 (s), 157.2 (s); IR (neat) 2925, 

2868,1610,1511, 1246, 1197, 1125, 797cm- l
; MS (EI) mlz 408 (M+ 10%),357 (3%), 

301 (3%), 215 (24%), 192 (100%), 120 (16%), 91 (17%), 73 (27%), 45 (69%); 

HRMS calc' d for C20H27Cf4Ge02 408.0911, found 408.0918, error -1.6 ppm. 

4-f2-CDichloro-(4-methyl-phenyl)-germanyll-ethyl1-phenyl (2-ethoxy· 

ethyl) ether (50) 

CI" CI 

COE~Ge0 Molecular Weight =427.90 
~ ~ Molecular Formula =C19H24C12Ge02 

o 
50 

Method 1: Ethoxyethyl protection of 4-f2·Cdlchloro-(4-

methylphenyl)germanyllethyl1phenol with Et~NI catalyst 

Oichlorotolylphenol 51 (0.790g, 2.22mmol), cesium carbonate (O.S75g, 2.69mmol), 

E4NI (0.0600g, 0.233mmol) and 2-chloroethyl ethyl ether (0.75mL, O.742g, 

6.83mmol) were dissolved in MeCN (20mL) under an N2 atmosphere and heated at 

reflux for 17 hours. The resulting crude reaction mixture was hydrolysed with 

aqueous NaOH (O.SM, 75mL) and then extracted with CH2Ch (3 x 75mL). The 

combined organic washings were treated with further aqueous NaOH (2M, 2 x 

75mL). The basic washings were retained whilst the CH2Ch layer was treated with 

c.HCI (15mL), dried with MgS04' filtered and concentrated in vacuo to give 

dichlorotolylgermane 50 as a pale brown oil (0.332g, O.776mmol, 35%). Rf 0.00 

(petrollEtOAc, 9/1); IH NMR (COCh) 0 1.26 (3H, t, J 7.0, CH3CH20), 2.09 (2H, m, 

CH2CH2Ge), 2.40 (3H, s, ArCH3), 2.96 (2H, m, CH2CH2Ge), 3.62 (2H, q, J 7.0, 

CH3CH20), 3.79 (2H, t, J 5.0, OCH2CH20Ar), 4.10 (2H, t, J 5.0, OCH2CH20Ar), 

6.84 (2H, d, J 8.5, OCCHCHCCH2), 7.11 (2H, d, J 8.5, OCCHCHCCH2), 7.27 (2H, d, 

J 8.5, GeCCHCHCCH3), 7.47 (2H, d, J 8.5, GeCCHCHCCH3); IlC NMR (COCi) 

o 15.2 (q), 21.6 (q), 27.7 (t), 28.5 (t), 66.9 (t), 67.5 (t), 69.0 (t), 114.S (d), 129.0 (d), 

129.6 (d), 132.0 (d), 132.2 (s), 133.7 (s), 142.0 (s), 157.5 (s); IR (neat) 2975, 2926, 

2870,1512, 124S, 1125, SOOcm- l
; MS (EI) mlz 428 (M'+ 16%),235 (10%),192 
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(33%), 120 (39%), 91 (45%), 73 (49%), 45 (100%); HRMS calc'd for 

CI9H24Ch740e02 428.0365, found 428.0352, error 3.0ppm. 

The retained basic washings were treated with c.HCl (200mL) and then extracted with 

CH2Ch (3 x 75mL). The organic layers were combined, dried with MgS04, filtered 

and concentrated in vacuo to give dichlorotolylphenol 51 starting material (0.504g, 

1.42mmol, 63%). Analytical data as above. 

Method 2: Ethoxyethvl protection of 4-12·ldichloro-(4-

methylphenylJgermanyllethyllphenol with Csi catalyst 

Dichlorotolylphenol 51 (0.430g, 1.21mmol), cesium carbonate (1.42g, 4.36mmol), 

Csi (0.0659g, 0.233mmol) and 2-chloroethyl ethyl ether (0.5mL, 0.495g, 4.56mmol) 

were dissolved in MeCN (8mL) under an N2 atmosphere and heated at reflux for 17 

hours. The resulting crude reaction mixture was partitioned between aqueous NaOH 

(2M, 3 x 50mL) and CH2Ch (50mL). The organic washings were treated with c.HCI 

(75mL), dried with MgS04, filtered and concentrated in vacuo to give 

dichlorotolylgermane 50 as a pale brown oil (0.330g, O.77lmmol, 64%). Analytical 

data as above. 

Method 3: Electrophlllc dearylation of 4-12-ltri-(4-methyl­

phenyIJ-germanyll-ethylJ-phenyl (2-ethoxy-ethylJ ether 

A solution of MSA in CH2Ch (6.04M, 12mL) was added to tritolylgermane 66 

(0.141 g, 0.261 mmol) and stirred at rt for 3 hours, before being added to distilled 

water (20mL). The phases were separated and the aqueous layer extracted with 

CH2Ch (2 x 20mL). The combined organic washings were then shaken with c.HCI 

(50mL), before being separated and the acid layer further extracted with CH2Ch (2 x 

lOmL). The organic washings were combined, dried with MgS04, filtered and 

concentrated in vacuo to give dichlorotolylgermane 50 as a pale brown oil (0.1 09mg, 

0.254mmol, 97%). Analytical data as above. 

- 218-



ChapterS 

6.2.2.2 Cross-coupling of cblorogermanes 

1: R=R'= Me 
49: R= Me. R'= CI 
50: R=R'=CI 

General method 

r(YCN 

~ 2 
Sr 

Pd2dba3• PPh3 
DMF. CsF 

.. 

Experimental 

CN 

3 

A 3mL reaction vial was charged with germanes 1, 49, or SO, 4-bromobenzonitrile, 

Pd2(dba)3, phosphine, and CsF. The reagents were dissolved in DMF (1.5mL), sealed 

and heated at 150°C for 48 hours. Naphthalene solution (0.0 I mL, 0.25M) was added 

to a 25f.lL sample of crude reaction mixture and diluted with CHCh to give 0.5mL of 

solution. Analysis by quantitative GC/MS gave the following results. 

Cross-coupling of to/r/germane 1 and 4-bromobenzonltrlle (Figure 

4.54) 

Reaction 1 

Tolylgermane 1 (O.IOOg, 0.258mmol), 4-bromobenzonitrile (0.0562g, 0.309mmol), 

Pd2dba3 (0.0128g, 0.0140mmol), PPh3 (O.0135g, 0.0515mmol), CsF (O.0949g, 

0.625mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 8.68min; yield 4%. 

Reaction 2 

Tolylgermane 1 (O.lOlg, 0.26Immol), 4-bromobenzonitrile (O.057Ig, 0.314mmol), 

Pd2dba3 (0.OII7g, 0.0128mmol), PPh3 (0.OI33g, 0.0507mmol), CsF (0.I08g, 

0.711mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS R, 8.68min; yield 3%. 

Reaction 3 

Tolylgermane 1 (O.lOIg, 0.261mmol), 4-bromobenzonitrile (0.0585g, 0.321mmol), 

Pd2dba3 (0.01 199, 0.0130mmol), PPh3 (0.OI33g, 0.0507mmol), CsF (0.129g, 

0.849mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS R, 8.68min; yield 4%. 
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Cross-coupling of chloromethvltolylgermane 49 and 4-

bromobenzonitrile (Figure 4.54) 

Reaction 1 

Experimental 

Chloromethyltolylgermane 49 (0.105g, 0.258mmol), 4-bromobenzonitrile (O.0573g, 

O.314mmol), Pd2dba3 (0.0153g, O.0167mmol), PPh3 (0.0137g, 0.0522mmol), CsF 

(0.0897g,0.591mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 8.67min; yield 4%. 

Reaction 2 

Chloromethyltolylgermane 49 (0.105g, 0.258mmol), 4-bromobenzonitrile (O.0570g, 

0.313mmol), Pd2dba3 (0.0119g, 0.0130mmol), PPh3 (0.0137g, 0.0522mmol), CsF 

(0.0982g,0.646mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 8.67min; yield 5%. 

Cross-coupling of dichlorotolylgermane 50 and 4-bromobenzonitrile 

(Figure 4.54) 

Reaction 1 

Dichlorotolylgermane 50 (0.1 109, O.257mmol), 4-bromobenzonitrile (0.0563g, 

0.309mmol), Pd2dba3 (0.0136g, 0.0149mmol), PPh3 (0.0139g, 0.0530mmol), CsF 

(0.0924g, 0.608mmol). 4-Cyano-4'-methyl-biphenyl; GCIMS Rt 8.67min; yield 

0.9%. 

Reaction 2 

Dichlorotolylgermane 50 (0.0758g, O.I77mmo)), 4-bromobenzonitrile (0.0388g, 

O.213mmol), Pd2dba3 (O.0077g, 0.00841mmol), PPh3 (0.0092g, 0.0351mmol), CsF 

(O.0598g, 0.394mmol) dissolved in anhydrous DMF (ImL). 4-Cyano-4'-methyl­

biphenyl; GCIMS Rt 8.67min; yield 0.5%. 
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6.2.3 Approaches towards fyrvlgermane cross-coy piing 

6.2.3.1 Synthesis of fyrvlgermanes 

4-l2-fDi-(2-fury/)-(4-mefhylphenv/)qermanyllefhyIJphenol (58) 

qp 
~Ge~ 

~ lA HO 
58 

Molecular Weight =419.02 
Molecular Formula =C23H22Ge03 

n-Butyl lithium (2.5M, 2.2mL, 5.5mmol) was added dropwise with stirring to a 

solution offuran (0.45mL, 0.412g, 6.19mmol) in anhydrous THF (IOmL) at O°C and 

stirred for 30 minutes. A solution of dichlorotolylphenol 51 (0.502g, 1.41 mmol) in 

anhydrous THF (5mL) was then added dropwise to the solution of furyl lithium at 

O°C, the ice bath removed and the resulting mixture allowed to warm to rt over 90 

minutes. The mixture was then heated at reflux for 17 hours. Distilled water was 

cautiously added to destroy any excess organometallic species before the crude 

reaction mixture was partitioned between distilled water (30mL) and Et20 (3 x 

20mL). Organic washings were combined, dried with MgS04, filtered and 

concentrated in vacuo. Purification with a Silica gel SPE cartridge (10g eluted with 

cyclohexane ~ cyclohexanelEtOAc, 19/1 ~ cyclohexane/EtOAc, 9/1 ~ 

cyclohexane/EtOAc, 8/2) to give difuryltolylphenol 58 as a pale brown oil (0.230g, 

0.550mmol, 39%). R/ 0.63 (petrollEtOAc, 8/2); IH NMR (COCh) 0 1.82 (2H, m, 

CH2CH2Ge), 2.39 (3H, s, ArCH3), 2.83 (2H, m, CH2CH2Ge), 5.93 (l H, s, 011), 6.48 

(2H, m, fury I CH's), 6.73-6.74 (2H, m, fury I CH's), 6.76 (2H, d, J 9.0, 

HOCCHCHCC), 7.07 (2H, d, J 9.0, HOCCHCHC), 7.23 (2H, d, J 8.0, 

GeCCHCHCCH3), 7.48 (2H, d, J 8.0, GeCCHCHCCH3), 7.76-7.77 (2H, m, fury I 

CH's); 13C NMR (CDCI3) 015.9 (t), 20.8 (t), 29.2 (q), 109.0 (d), 114.5 (d), 120.3 (d), 

128.3 (d), 128.5 (d), 130.6 (s), 133.5 (d), 135.8 (s), 138.7 (s), 146.6 (d), 152.8 (s), 

154.1 (s); IR (neat) 3418, 2923, 2853, 1513, 1461, 1377, 1199, 1000, 800cm'(; MS 

(ESI+) mlz 443 [M+Nat (100%); HRMS calc'd for C23H220/4GeNa 443.0678, 

found 443.0690, error 2.7ppm. 
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4-l2-fDi-(2-furyl).( 4-methvl-phen V')-german vll-eth VI1-phen vi (2-ethoxy­

ethyl) ether (57) 

OP 
C
OE~Ge~ 

JV ~ 
° 

Molecular Weight =491.13 
Molecular Formula =C27H30Ge04 

57 

Difuryltolylphenol 58 (0.190g. 0.454mmol). cesium carbonate (0.163g. 0.501 mmol). 

TBAI (0.0173g. 0.0468mmol) and 2-chloroethyl ethyl ether (0.23mL. 0.227g. 

2. 1 Ommol) were dissolved in MeCN (20mL) and heated at reflux for 18.5 hours. The 

crude reaction mixture was partitioned between distilled water (20mL) and Et20 (2 x 

20mL). The organic washings were combined. dried with MgS04• filtered and 

concentrated in vacuo before being filtered through Silica gel (5g SPE cartridge. 

eluting with cyclohexanelEtOAc. 8/2) to give difuryltolylgermane 57 as a pale brown 

oil (O.197g, 0.401mmol, 88%). Rf0.48 (petroIlEtOAc, 8/2); In NMR (CDC b) B 1.24 

(3H. t, J 7.0, CH3CH20). 1.79 (2H, m, CH2CH2Ge), 2.35 (3H, s, ArCH3), 2.80 (2H, 

m, CH2CH2Ge), 3.59 (2H, q, J 7.0, CH3CH20), 3.77 (2H. t, J 5.0, OCH2CH20Ar), 

4.08 (3H, t, J 5.0, OCH2CH20Ar), 6.44-6.46 (2H, m, furyl CH's), 6.69-6.70 (2H, m, 

Furyl CH's), 6.81 (2H, d, J 9.0, OCCHCHCCH2), 7.08 (2H, d, J 9.0, 

OCCHCHCCH2), 7.19 (2H, d, J 8.0, GeCCHCHCCH3), 7.43 (2H, d, J 8.0, 

GeCCHCHCCH3), 7.71 (2H, m, furyl CH's); 13C NMR (CDCI) B 13.9 (t), 15.2 (q), 

20.2 (q), 28.5 (t), 65.5 (t), 66.2 (t), 67.7 (t), 108.3 (d), 113.2 (d), 119.6 (d), 127.4 (d), 

127.9 (d), 129.9 (s), 132.9 (d), 135.2 (s), 138.0 (s), 145.9 (d), 153.5 (s), 155.7 (s); IR 

(neat) 2924, 2868, 1610, 1510, 1245, 1124, 1002, 800cm-1
; MS (ESI+) mlz 515 

[M+Nat (100%); HRMS calc'd for C27H300/4GeNa 515.1254. found 515.1240, 

error -2.6ppm. 
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Tri-(2-furyIJ-phenyl-germane 60135 

oJ~ 
trO 

60 

Molecular Weight =350.90 
Molecular Formula =ClsH14Ge03 

Experimental 

n-Butyl lithium (2.5M, 8mL, 20.0mmol) was added dropwise with stirring to a 

solution of furan (1.6mL, 1.50g, 22.0mmol) in anhydrous THF (15mL) at O°C and 

stirred for 30 minutes. A solution of phenyltrichlorogermane (l.OOg, 3.91 mmol) in 

anhydrous THF (4mL) was then added dropwise to the solution of fury I lithium at 

O°C, the ice bath removed and the resulting mixture allowed to warm to rt over 16 

hours. Distilled water was cautiously added to destroy any excess organometallic 

species, before the crude reaction mixture was partitioned between distilled water 

(30mL) and EtOAc (3 x 30mL). The organic washings were combined, dried with 

MgS04, filtered and concentrated in vacuo. Purification using a Biotage flash 

chromatography system with a 50g Silica gel cartridge (eluted with cyclohexane -+ 

cyclohexanelEtOAc (19/1) -+ cyclohexane/EtOAc (9/1) -+ cyclohexanelEtOAc, 8/2) 

I h· I 225 gave tri-(2-furyl)-pheny -germane 60 as a w Ite powder (1.11 g, 3.15mmo , 81 %). 

Rf 0.61 (petrollEtOAc, 812); In NMR (CDC h) 3 6.50 (3H, dd, J 2.0, 3.0, 

GeCCHCHCHO), 6.84 (3H, d, J 3.0, furyl CH's), 7.39-7.46 (3H, m, phenyl CH's), 

7.64-7.68 (2H, m, phenyl CH's), 7.78 (3H, d, J 2.0, fury I CH's); MS (EI) mlz 352 

(M'+ 6%),275 (6%),218 (6%), lSI (12%), 144 (30%), 134 (100%), 128 (50%), liS 
225 

(14%); melting point 90.3-93.7°C (cf 92-94°C ). 
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6.2.3.2 Cross-coypling of fyrylgermanes (FigYre 4.58) 

Cross-coupling of tri-(2-furvlJphenvlgermane (60) with3-

bromobenzotrifluoride 

Br'OCF3 
I 62 

h 

Pd2dba3·CHC13, 

P(2-furylh 
NMP, TBAF 

.. 

Experimental 

h· 135 '[1 I Using the method of Os Ima, tn ury germane 60 (0.106g, 0.301 mmol), and 3-

bromobenzotrifluoride (48JlL, 0.0774g, 0.344mmol) were weighed into a round 

bottom flask and placed in an N2 atmosphere, before being dissolved in anhydrous 

NMP (I.4mL). TBAF (1M in THF, 1.6mL, 1.6mmol) was added and the solution 

stirred at rt for 10 minutes. Pd2dbarCHCh (0.0297g, 0.0287mmo\) and P(2-furyl)3 

(0.0137g, 0.0590mmol) were dissolved in anhydrous NMP (1.4mL) and added to the 

reaction mixture, which was then stirred at 100°C for 20 hours. The crude reaction 

mixture was poured onto water (IOmL) and then extracted with EtOAc (3 x 5mL), the 

organic washings were combined, washed with brine (5mL), dried with MgS04, and 

concentrated in vacuo. The residue was purified with an SPE cartridge (lOg Silica gel 

eluting with cyclohexane) to give 3-(trifluoromethyl)-biphenyl 63
226 

as a clear 

colourless oil (0.0227g, 0.102mmol, 34%). Rf 0.89 (petroI/EtOAc, 8/2); IH NMR 

(CDC h) 0 7.40-7.84 (9H, m, aryl CH's); MS (EI) mlz 222 (M'+ 100%),201 (22%), 

152 (41%), 76 (6%), 75 (6%). 
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Cross-coupling of difurv/tolylgermane 57 and 3-bromobenzotrifluoride 

57 

Pd2dba3· CHCI3• 

P(2-furylh 
NMP. TBAF 

II ~ 

Using the method of Oshima above, with difuryltolylgermane 57 (0.103g, 

0.21Ommol), 3-bromobenzotrifluoride (35J..1.L, 0.0564g, 0.251 mmol), and TSAF (I M 

in THF, 0.6mL, 0.6mmol) in NMP (0.9mL). Pd2dba3'CHCh (0.023Ig, 0.0223mmol) 

and P(2-furyl)3 (O.OI13g, 0.0487mmol) in NMP (0.9mL). The residue was purified 

with an SPE cartridge (lOg Silica gel eluting with petrollEtOAc, 19/1 ~ 

petrollEtOAc, 8/2) to give difuryltolylgermane 57 (0.0205g, 0.0418mmol, 20%). 

Analytical data as above. 

Reaction of tri-(2-furv/J-phenyl-germane with TBAF 

TBAF (l.OM in THF, 0.450mL, 0.450mmol) was added to tri-(2-furyl)-phenyl­

germane 60 (0.0388g, O.lllmmol) was dissolved in anhydrous THF (lmL) and 

stirred at rt for 3 hours, after which TLC analysis revealed that some starting material 

still remained. The mixture was then heated at reflux for 4 hours, at which point TLC 

revealed that all starting material had been consumed. The crude reaction mixture 

was then analysed by ESI - FIAIMS to tentatively reveal the presence of ions at mlz 

203, tentatively assigned as [PhGeF(OHh-Hr, and mlz 183, tentatively assigned as 

[PhGe02r· 
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6.2.4 Further approaches towards chlorogermane cross­

coupling 

6.2.4.1 Chlorogermane cross-coupling with fluoride activator 

following the method of Oshima 

CI CI 
, I 

R,
Ge0 
~R' 

Br'OCF3 
I 62 
~ 

Pd2dba3,CHCI3' 
P(2-furylh 

50: R = Linker, R' = Me NMP, TBAF 
59: R= CI, R'= H 

R' 
63: R'= H 
68: R'= Me 

Cross-coupling of dichlorotolylgermane 50 with 3-

bromobenzotrifluoride (Figure 4.64) 

Using the method of Oshima above, with dichlorotolylgermane 50 (0.0851 g, 

0.199mmol), 3-Bromobenzotrifluoride (35IJ.L, 0.0565g, 0.251 mmol) and TBAF (I ,OM 

in THF, 0.6mL, 0.6mmol) in NMP (lmL), and also Pd2(dba)),CHCh (O.OllOg, 

0.0I06mmol) and P(2-furylh (0.005Ig, 0.0220mmol) in NMP (lmL). The residue 

was purified with an SPE cartridge (lOg Silica gel eluting with cyclohexane) to give 

4-methyl-3' -trifluoromethyl-biphenyl 68
227 

as a clear colourless oil (0.0034g, 

0.0144mmol,7%). Rf 0.87 (petrol/EtOAc, 19/1); 18 NMR (CDCh) 8 2.42 (3H, s, 

ArCH3), 7.49-7.78 (m, 8H, Ar CH's); MS mlz (EI) 236 (M'+ 100%), 167 (73%), 152 

(4%),91 (12%). 

Cross-coupling trichlorophenylgermane with 3-bromobenzotrifluoride 

(Figure 4.65) 

Using the method of Oshima above, with trichlorophenylgermane 59 (35IJ.L, 0.0554g, 

0.217mmol), 3-Bromobenzotrifluoride (35IJ.L, 0.0565g, 0.251 mmol) and TBAF (I ,OM 

in THF, 1.0mL, 1.0mmol) in NMP (1mL), and Pd2dba3'CHCh (0.01l4g, 

0.0110mmol) and P(2-furyl)3 (0.0048g, O.0207mmol) in NMP (lmL). GCIMS 

indicated the presence of no desired product. 
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6.2.4.2 Chlorogerrnane cross=coupling with hydroxide actlyators 

following the method of Hiyama
54 

Hydroxide mediated Cross-coupling with 3.5-

bis(trifluoromethylJbromobenzene (FIgures 4.67 and 4.68) 

x y 

COE~Ge~ ~ ~ o 
1: X= Y= Me 
49:X=Me. Y=CI 
50:X= Y= CI 

or CI3Ge~ 

V 
59 

1:3 

U 69 
Br CF3 F C 

Pd2dba3• PPh3 

THF. CsF 

.. 3 

70: R = Me 
71: R = H 

Cross-coupling of dichlorotolylgermane (50) 

R 

Powdered sodium hydroxide (0.0464g, 1.16mmol) was added to dichlorotolylgermane 

50 (O.lOlg, 0.235mmol) dissolved in THF (lmL), and then stirred at rt for 3 hours. 

Palladium(II) acetate (0.0118g, 0.0526mmol) and triphenylphosphine (0.0256g, 

0.0976mmol) were dissolved in THF (2mL) and stirred at rt for I hour. ImL of the 

resulting catalyst solution was then added to the solution of hydrolysed 

chlorogermane, along with 3,5-bis-trifluoromethyl-bromo-benzene (34J.lL, 0.057g. 

0.195mmol). The reaction mixture was then heated at reflux for 24 hours, before 

being partitioned between Et20 (3 x 10mL) and distilled water (IOmL). Organic 

washings were combined, dried with MgS04, filtered and concentrated in vacuo, 

before being purified on a Silica SPE cartridge (5g, eluting with cyclohexane) to give 

4-methyl-3',5' -bis-trifluoromethyl-biphenyl 70
227 

as a clear liquid (0.01 89g, 

0.0622mmol, 32%). Rf 0.65 (cyclohexane); IH NMR (CDC h) 0 2.44 (3H, s, 

ArCH3), 7.33 (2H, d, J 8.0, CH3CCHCHCAr), 7.52 (2H, d, J 8.0, CH3CCHCHCAr), 

7.84 (lH, s), CF3CCHCCF3, 8.01 (2H, s, ArCCHCCF3); MS mlz (EI) 304 (M'+ 91%), 

285 (19%),235 (66%),215 (39%), 165 (100%), 91 (66%),69 (25%). 
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Cross-coupling of chloromefhylfolvlgermane (49) 

Powdered sodium hydroxide (0.0660g, 1.6Smmol) was added to 

chloromethyltolylgermane 49 (0.107g, 0.263mmol) dissolved in THF (I mL), and then 

stirred at rt for 3 hours. 

Palladium(II) acetate (0.03ISg, 0.140mmol) and triphenylphosphine (0.0710g, 

0.271 mmo!) were dissolved in THF (5mL) and stirred at rt for I hour. I mL of the 

resulting catalyst solution was then added to the solution of hydrolysed 

chlorogermane, along with 3,5-bis-trifluoromethyl-bromo-benzene (38~L, 0.064Sg, 

0.220mmol). The reaction mixture was then heated at reflux for 24 hours, before 

being partitioned between Et20 (3 x 10mL) and distilled water (IOmL). Organic 

washings were combined, dried with MgS04, filtered and concentrated in vacuo. 

GCIMS of the crude reaction mixture indicated only the presence of starting material 

3,5-bis-trifluoromethyl-bromo-benzene: Rf 0.75 (cyclohexane); IH NMR (CDCh) cS 

7.84 (tH, s, CF3CCHCCF3), 7.98 (2H, s, BrCCHCCF3); MS EI mlz 292 (M
o

+ 57%), 

273 (19%), 223 (7%), 213 (100%),163 (67%),144 (56%),75 (79%),69 (47%). 

Cross-coupling of folylgermane (1) 

Powdered sodium hydroxide (0.0507g, 1.26mmol) was added to dichlorotolylgermane 

50 (O.IOIg, 0.26Immol) dissolved in THF (ImL), and then stirred at rt for 3 hours. 

Palladium(II) acetate (0.03ISg, 0.I40mmol) and triphenylphosphine (0.0710g, 

0.271mmol) were dissolved in THF (SmL) and stirred at rt for 1 hour. ImL of the 

resulting catalyst solution was then added to the solution of hydrolysed 

chlorogermane, along with 3,5-bis-trifluoromethyl-bromo-benzene (38~L, 0.0645g, 

0.220mmol). The reaction mixture was then heated at reflux for 24 hours, before 

being partitioned between EhO (3 x 10mL) and distilled water (IOmL). Organic 

washings were combined, dried with MgS04, filtered and concentrated in vacuo. 

GCIMS of the crude reaction mixture indicated only the presence of starting material 

3,S-bis-trifluoromethyl-bromo-benzene. Analytical data as above. 
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Cross-coupling of phenyltrichlorogermane (59) 

Powdered sodium hydroxide (0.0547g, 1.37mmol) was added to 

phenyltrichlorogermane 59 (42.5IlL, 0.0673g, 0.262mmol) dissolved in THF (ImL), 

and then stirred at rt for 3 hours. 

Palladium(II} acetate (0.0118g, 0.0526mmol) and triphenylphosphine (0.0256g, 

0.0976mmol) were dissolved in THF (2mL) and stirred at rt for 1 hour. 1 mL of the 

resulting catalyst solution was then added to the solution of hydrolysed 

chlorogermane, along with 3,5-bis-trifluoromethyl-bromo-benzene (34IlL, 0.057g, 

0.195mmol). The reaction mixture was then heated at reflux for 24 hours, before 

being partitioned between Et20 (3 x 10mL) and distilled water (10mL). Organic 

washings were combined, dried with MgS04, filtered and concentrated in vacuo, 

before being purified on a Silica SPE cartridge (5g, eluting with cyclohexane) to give 

3,5-bis-trifluoromethyl-biphenyl 71 as a clear liquid (0.0273g, 0.0941 mmol, 48%). 

Rf 0.78 (petroI/EtOAc, 9/1); IH NMR (CDC i) 0 7.46-7.64 (5H, m, phenyl CH's), 

7.87 (1H, s, CF3CCHCCF3), 8.03 (2H, s, PhCCHCCF3); 13C NMR (CDC b) S 120.9 

(d), 127.3 (d), 127.5 (d), 128.9 (d), 129.3 (d), 4 quaternary carbons not seen; IR (neat) 

3070, 2928, 1383, 1350, 1279, 1177, 1134, 1063, 896, 764, 706, 683cm·1; MS mlz 

(EI) 290 (M+ 100%), 271 (14%), 221 (15%), 201 (42%), 152 (35%), 75 (8%), 69 

(6%); HRMS calc'd for C14HSF6 290.0530, found 290.0542, error-4.1ppm. 

Hydroxide mediated cross-coupling of dichlorotolylgermane (50) with 

4-bromoacetophenone (figure 4.70) 

CI" CI 

C:~GeQ 
50 

o 

~14 
BrN 

Pd2dba3, PPh3 

THF, CsF 

72 

Powdered sodium hydroxide (0.0556g, 1.39mmol) was added to dichlorotolylgermane 

50 (O.lOOg, 0.234mmol) dissolved in THF (ImL), and then stirred at rt for 3 hours. 
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Palladium(II) acetate (0.0104g, 0.0463mmol) and triphenylphosphine (0.0230g, 

0.0876mmol) were dissolved in THF (2mL) and stirred at rt for] hour. ] mL of the 

resulting catalyst solution was then added to the solution of hydrolysed 

chlorogermane, along with 4-bromo-acetophenone (0.0421 g, 0.211 mmol). The 

reaction mixture was then heated at reflux for 24 hours, before being partitioned 

between EtOAc (3 x ]OmL) and distilled water (IOmL). Organic washings were 

combined, dried with MgS04, filtered and concentrated in vacuo. Purification was 

carried out by mass-directed automated preparative LC/MS to give 4-acetyl-4'-

213 h' d methyl-biphenyl 72 as a w Ite power (0.0124g, 0.0590mmol, 28%): Rf 0.41 

(petroI/EtOAc, 9/1); IH NMR (CDCh) 8 2.41 (3H, s, CH3CAr), 2.64 (3H, 

SCH3COAr), 7.28 (2H, d, J 8.0, CH3CCHCHCAr), 7.54 (2H, d, J 8.0, 

CH3CCHCHCAr), 7.67 (2H, d, J 8.0, ArCCHCHCCOCH3), 8.02 (2H, d, J 8.0, 

ArCCHCHCCOCH3); MS (ESI+) m/z 211 [M+H+]; (El) mlz 210 (M'+ 42%), 195 

(100%), 165 (25%), 152 (39%); LC Rt 3.49min; Melting point 116.9-118.3°C (cf 
228 229 

114-115°C ,121-122°C ). 

6.2.4.3 Cross-Goupliog of dichlorotolvlgerrnaoe (50) with 3.5-bis-

trifluorornethvl-brorno-beozene ysing alternate activators 

(Figure 4.69) 

X3 

CICI U 69 

COE~Ge0 _B_r ___ C_F...:..3 •• F3C 

~ ~ Pd2dba3• PPh3 

o solvent, activator 70 

Aqueous NaOH mediated cross-coupling at 60 'C 

Aqueous sodium hydroxide (2.0M, 0.7mL, 1.40mmol) was added to a solution of 

dichlorotolylgermane 50 (0.0907g, 0.212mmol) dissolved in THF (ImL), and then 

stirred at rt for 3 hours. 

Palladium(II) acetate (0.0154g, 0.0686mmol) and triphenylphosphine (0.0362g, 

0.138mmol) were dissolved in THF (3mL) and stirred at rt for 1 hour. I mL of the 
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resulting catalyst solution was then added to the solution of hydrolysed 

chlorogermane, along with 3,5-bis-trifluoromethyl-bromo-benzene (31j.lL, O.0527g, 

0.180mmol). The reaction mixture was then heated at reflux for 24 hours, before 

being partitioned between EtOAc (3 x 1 OmL) and distilled water (1 OmL). Organic 

washings were combined, dried with MgS04, filtered and concentrated in vacuo. 

GelMS of the crude reaction mixture indicated only the presence of starting aryl 

bromide. Analytical data as above. 

CsOH mediated cross-coupling at 60 OC 

Cesium hydroxide monohydrate (0.241 g 1.44mmol) was added to a solution of 

dichlorotolylgermane 50 (0.0748g, 0.175mmol) dissolved in THF (1 mL), and then 

stirred at rt for 3 hours. 

Palladium(II) acetate (0.0154g, 0.0686mmol) and triphenylphosphine (0.0362g, 

0.138mmol) were dissolved in THF (3mL) and stirred at rt for 1 hour. 1 mL of the 

resulting catalyst solution was then added to the solution of hydrolysed 

chlorogermane, along with 3,5-bis-trifluoromethyl-bromo-benzene (31 ilL, 0.0527g, 

O.180mmol). The reaction mixture was then heated at reflux for 24 hours, before 

being partitioned between EtOAc (3 x IOmL) and distilled water (IOmL). Organic 

washings were combined, dried with MgS04, filtered and concentrated in vacuo. 

GCIMS of the crude reaction mixture indicated only the presence of starting aryl 

bromide. Analytical data as above. 

NaOH mediated cross-coupling at 1200C 

Powdered sodium hydroxide (0.0548, 1.37mmol) was added to a solution of 

dichlorotolylgermane 50 (0.0970g, 0.227mmol) dissolved in DMF (ImL), and then 

stirred at rt for 3 hours. 

Palladium(II) acetate (O.0212g, O.0944mmol) and triphenylphosphine (0.0499g, 

O.l90mmol) were dissolved in DMF (4mL) and stirred at rt for 1 hour. 1 mL of the 

resulting catalyst solution was then added to the solution of hydrolysed 

chlorogermane, along with 3,5-bis-trifluoromethyl-bromo-benzene (31j.lL, 0.0527g, 

O.180mmol). The reaction mixture was then heated at 127°C for 24 hours, before 
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being partitioned between EtOAc (3 x 10mL) and distilled water (lOmL). Organic 

washings were combined, dried with MgS04, filtered and concentrated in vacuo. 

GelMS of the crude reaction mixture indicated only the presence of des-bromo 

starting material 1,3-bis-trifluoromethyl-benzene: MS (EI) mlz 214 (M
o

+ 88%), 195 

(92%),164 (40%),145 (100%), 75 (23%), 69 (13%). 

Aqueous NaOH mediated cross-coupling at 120 'C 

Aqueous sodium hydroxide (2.0M, 0.7mL, 1.40mmol) was added to a solution of 

dichlorotolylgermane 50 (0.0933g, 0.217mmol) dissolved in DMF (I mL), and then 

stirred at rt for 3 hours. 

Palladium(II) acetate (0.0212g, 0.0944mmol) and triphenylphosphine (0.0499g, 

0.190mmol) were dissolved in DMF (4mL) and stirred at rt for I hour. I mL of the 

resulting catalyst solution was then added to the solution of hydrolysed 

chlorogermane, along with 3,5-bis-trifluoromethyl-bromo-benzene (31J.!L, O.0527g, 

O.lS0mmol). The reaction mixture was then heated at 127°C for 24 hours, before 

being partitioned between EtOAc (3 x lOmL) and distilled water (10mL). Organic 

washings were combined, dried with MgS04' filtered and concentrated in vacuo. 

GCIMS of the crude reaction mixture indicated only the presence of des-bromo 

starting material 1,3-bis-trifluoromethyl-benzene: Analytical data as above. 

KF mediated cross-coupling at 120 'C 

Powdered potassium fluoride (0.0820, 1.4lmmol) was added to a solution of 

dichlorotolylgermane 50 (O.0897g, O.210mmol) dissolved in DMF (ImL), and then 

stirred at rt for 3 hours. 

Palladium(II) acetate (0.0212g, O.0944mmol) and triphenylphosphine (O.0499g, 

O.190mmol) were dissolved in DMF (4mL) and stirred at rt for I hour. I mL of the 

resulting catalyst solution was then added to the solution of hydrolysed 

chlorogermane, along with 3,5-bis-trifluoromethyl-bromo-benzene (31 J.!L, O.0527g, 

O.180mmol). The reaction mixture was then heated at 127°C for 24 hours, before 

being partitioned between EtOAc (3 x lOmL) and distilled water (IOmL). Organic 

washings were combined, dried with MgS04, filtered and concentrated in vacuo. 
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Purification using Silica gel SPE cartridge eluting with cyclohexane gave 4-methyl-

3',5'-bis-trifluoromethyl-biphenyl 70 as a clear colourless oil (O.0341g, O.112mmol, 

62%). Analytical data as above. 

6.2.4.4 Qptimisation of croas-coupling of dlchlorotolylgermane (SOl 

with 4-brgmo-acetgphenone 

50 

o 

~14 erN 
Pd2dba3• PPh3 

solvent, activator 

72 

Hydroxide mediated phosphine screen in THF (Figure 4.70) 

Dichlorotolylgermane 50 (O.850g, 1.99mmol) was dissolved in THF (1O.25mL). 

Portions of the resulting solution (O.194M, O.5mL, 0.0969mmol) were added to 

sixteen reaction vials in a greenhouse parallel reactor vessel (A I-A5, B I-B3, C I-C5, 

DI-D3). Powdered sodium hydroxide was then added to eight vials (At O.035g, 

0.875mmol; A2 0.033Ig, O.828mmol; A3 0.0440g, 1.1Ommol; A4 0.0315g, 

O.788mmol; A5 O.0303g, 0.758mmol; BI O.0424g, l.06mmol; B2 0.0354g, 

0.885mmol; B3 O.0369g, 0.923mmol), and aqueous sodium hydroxide to eight vials 

(2M, 0.35mL in CI, C2, C3, C4, C5, DI, D2, and D3) and the resulting mixtures 

stirred for 5 hours. 

PaIladium(I1) acetate (0.0673g, 0.300mmol) was dissolved in THF (30mL) and 3mL 

portions (0.0 I M, 0.0300mmol) added to triphenylphosphine (0.0159g, 0.0606mmol), 

tri(o-tolyl)phosphine (0.01 84g, 0.0605mmol), tri-2-furylphosphine (0.0 139g, 

0.0599mmol), tris-( 4-fluorophenyl)phosphine (0.0190g, 0.060 I mmol), dppp 

(O.0123g, O.0298mmol), dppf (O.0164g, O.0296mmol), and IMes·HCI (O.0205g, 

0.060Immol). An eighth 3mL portion was measured out to provide a sample of 

Iigandless catalyst. The resulting mixtures were then stirred at rt for I hour. 
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4-Bromo-acetophenone (0.421g, 2.12mmol) was dissolved in THF (10.SmL) and 

O.SmL portions (0.201 M, 0.101 mmol) added to each reaction vial. Catalyst solutions 

(2mL) were then added to the reactions: triphenylphosphine (AI and Cl), tri(o­

tolyl)phosphine (A2 and C2), tri-2-furylphosphine (A3 and C3), tris-(p­

fluorophenyl)phosphine (A4 and C4), dppp (A5 and C5), dppf (Bl and 01), 

IMes·HCl (B2 and D2) and palladium(II) acetate solution (B3 and 03). The reactions 

were then heated to 60°C for 22 hours. 

An aliquot (O.SmL) of each reaction was added to MeCN (0.2SmL) in a 96 well filter 

block, the mixtures were then filtered and each well rinsed with further MeCN 

(0.2SmL). Each filtrate was then sampled (SO/lL) and further diluted with MeOH 

(lOO/lL) before being submitted for ESI LC/MS. The samples using solid sodium 

hydroxide suffered from precipitation problems and could not be analysed. 

The ratio of the LCIUV peak areas of desired product 72 CRt 3.49min, mlz 211 

[M+H+]) divided by the LCIUV peak area of starting materials (4-

bromo acetophenone 14 Rt 2.89min, not ionised; dichlorogermane 50 Rt 2.94min, mlz 

392 hydrolysis product) is as follows: 

PPh3 
P(o-Tol)3 

P(2-furyl)3 
P(P-C6H4Fh 

Dppp 
Dppf 

IMes·HCI 
Ligandless 

NaOH (s) 60°C NaOH (aq) 60°C 
0.12 
0.2S 
0.12 
o 

O.IS 
0.2 
o 
o 

Hvdroxide mediated phosphine screen In DMF (Figure 4.70) 

Oichlorotolylgermane 50 (l.S2g, 3.SSmmol) was dissolved in OMF (15.2SmL). 

Portions of the resulting solution (O.233M, O.5mL, 0.117mmol) were added to sixteen 

reaction vials in a greenhouse parallel reactor vessel (A I-AS, B 1-B3, C I-CS, D I-D3). 

Powdered sodium hydroxide was then added to eight vials (AI 0.0313g, 0.783mmol; 

A2 0.0443g, 1. 11 mmol; A3 0.0365g, 0.913mmol; A4 0.0346g, O.865mmol; AS 

0.0302g, 0.7SSmmol; Bl 0.0337g, 0.843mmol; B2 0.03ISg, 0.788mmol; B30.0399g, 

- 234-



Chapter 6 Experimental 

0.998mmol), and aqueous sodium hydroxide to eight vials (2M, 0.35mL in C I, C2, 

C3, C4, C5, 0 I, 02, and 03) and the resulting mixtures stirred for 5 hours. 

Palladium(II) acetate (0.0917g, 0.408mmol) was dissolved in OMF (40mL) and 4mL 

portions (0.0102M, 0.0408mmol) added to triphenylphosphine (0.0208g, 

0.0793mmol), tri(o-tolyl)phosphine (0.0244g, 0.0802mmol), tri-2-furylphosphine 

(0.0185g, 0.0797mmol), tris-(4-fluorophenyl)phosphine (0.0253g, 0.0799mmol), 

dppp (O.Ol64g, 0.0398mmol), dppf (0.0220g, 0.0397mmol), and IMes·HCI (0.0I37g, 

0.0402mmol). The resulting mixtures were then stirred at rt for I hour. 

4-8romo-acetophenone (0.618g, 3.lOmmol) was dissolved in OMF (15.5mL) and 

O.5mL portions (0.200M, 0.1 OOmmol) added to each reaction vial. Catalyst solutions 

(2mL) were then added to the reactions: triphenylphosphine (AI and CI), tri(o­

tolyl)phosphine (A2 and C2), tri-2-furylphosphine (A3 and C3), tris-( 4-

fluorophenyl)phosphine (A4 and C4), dppp (AS and CS), dppf (8 I and D I), 

IMes'HCI (82 and 02) and palladium(II) acetate solution (83 and 03). The reactions 

were then heated to 120°C for 22 hours. 

The ratio of the LC/uV peak areas of desired product 72 divided by the LC/UV peak 

area of starting materials 14 and 50 is as follows: 

PPh3 

P(o-Tol)3 
P(2-furyl)3 

P(P-C6H4F)3 
Dppp 
Dppf 

IMes'HCI 
Ligandless 

NaOH (s) 120°C 
o 

1.76 
1.2 

0.S9 
0.95 
o 
o 

0.4 

NaOH (aq) 120°C 
o 
o 
o 
o 
o 
o 
o 
o 

Fluoride mediated phosphine screen in DMF (figure 4.70) 

Oichlorotolylgermane 50 (l.52g, 3.S5mmol) was dissolved in DMF (15.2SmL). 

Portions of the resulting solution (0.233M, O.SmL, 0.117mmol) were added to eight 

reaction vials in a greenhouse parallel reactor vessel (A I-AS, 81-B3). Potassium 

fluoride was then added (AI 0.0442g, 0.761mmol; A2 0.0463g, 0.797mmol; A3 
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0.0479g. 0.824mmol; A4 0.0513g, 0.883mmol; A5 0.0457g. 0.787mmol; Bl 0.0429g. 

0.738mmol; B2 0.0519g. 0.893mmol; B30.0445g. 0.766mmol) and the resulting 

mixtures stirred for 5 hours. 

Palladium(II) acetate (0.0917g, 0.408mmoI) was dissolved in DMF (40mL) and 4mL 

portions (0.0 102M. 0.0408mmol) added to triphenylphosphine (0.0208g. 

0.0793mmol), tri(o-tolyl)phosphine (0.0244g, 0.0802mmol). tri-2-furylphosphine 

(0.0185g. 0.0797mmol), tris-( 4-fluorophenyl)phosphine (0.0253g, 0.0799mmol), 

dppp (0.0164g. 0.0398mmol), dppf (0.0220g. 0.0397mmol), and IMes·HCI (0.0137g, 

0.0402mmol). The resulting mixtures were then stirred at rt for I hour. 

4-Bromo-acetophenone (0.618g, 3.IOmmol) was dissolved in DMF (15.5mL) and 

0.5mL portions (0.200M, 0.1 OOmmol) added to each reaction vial. Catalyst solutions 

(2mL) were then added to the reactions: triphenylphosphine (A I), tri(o­

tolyl)phosphine (A2), tri-2-furylphosphine (A3), tris-(4-fluorophenyl)phosphine (A4), 

dppp (A5), dppf (B 1). IMes' HCI (82) and palladium(II) acetate solution (B3). The 

reactions were then heated to 120°C for 22 hours. 

The ratio of the LCIUV peak areas of desired product 72 divided by the LC/UV peak 

area of starting materials 14 and 50 is as follows: 

PPh3 
P(o-Tol)3 

P(2-furyl)3 
P(P-C6H4Fh 

Dppp 
Dppf 

IMes'HCI 
Ligandless 

1.19 
0.29 
0.98 
1.92 
2.21 
1.09 
2.11 
1.65 

Isolated yields (5g Silica gel SPE cartridge, eluted with cyclohexane ~ petrollEtOAc, 

19/1) are as follows: 

PPhJ: 4-acetyl-4'-methyl-biphenyl 72 as a white amorphous powder (0.0022g, 

0.0105mmol, 10.5%). Analytical data as previous. 
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P(P-CJl4FJJ: 4-acetyl-4' -methyl-biphenyl 72 as a white amorphous powder 

(O.007Ig, 0.0338mmol, 34%). Analytical data as previous. 

Dppp: 4-acetyl-4' -methyl-biphenyl 72 as a white amorphous powder (O.0042g, 

O.0200mmol,20%). Analytical data as previous. 

IMes·HCI: 4-acetyl-4' -methyl-biphenyl 72 as a white amorphous powder (O.0080g, 

0.0380mmol, 38%). Analytical data as previous. 

Palladium catalvst screen (Figure 4.71) 

50 

~14 
BrN 

Pd, PR3 
DMF, KF 

72 

Oichlorotolylgermane SO (I.OOg, 2.34mmol) was dissolved in OMF (IO.SmL). 

Portions of the resulting solution (O.223M, O.SmL, 0.111 mmol) were added to twenty 

reaction vials in a greenhouse parallel reactor vessel (A I-AS, B I-BS, C I-CS, 01-05). 

Potassium fluoride was then added to the vials (AI 0.0423g, 0.728mmol; A2 0.0496g, 

0.8S4mmol; A3 0.048Sg, 0.83Smmol; A4 0.0424g, 

0.738mmol; BI 0.0418g, 0.719mmol; B2 O.0473g, 

0.814mmol; B4 0.0513g, 0.883mmol; B5 0.0511g, 

0.78Smmol; C2 0.0481g, 0.828mmol; C3 0.0479g, 

0.886mmol; CS 0.OS93g, 1.02mmol; 01 0.0448g, 

0.880mmol; 03 0.0509g, 0.876mmol; D4 0.0507g, 

0.859mmol) and the resulting mixtures stirred for 3 hours. 

Palladium(II) 

0.0605mmol), 

acetate (O.0139g, 0.0619mmol), 

Pd2dba3 (O.0554g, 0.0605mmol), 

0.730mmol; AS 

0.814mmol; B3 

0.880mmol; Cl 

0.824mmol; C4 

O.77lmmol; 02 

0.873mmol; 05 

PdCh(MeCNh 

[PdCl(C3Hs)b 

0.0429g, 

0.0473g, 

0.0456g, 

O.OSlSg, 

0.OSI1g, 

0.0499g, 

(0.01 57g, 

(O.0225g, 

0.0615mmol), and Pd(PPh3)4 (O.0681g, 0.0589mmol) were each dissolved in OMF 

(3mL). Triphenylphosphine (0.0256g, 0.0976mmol), tris-( 4-fluorophenyl)phosphine 

(0.0315g, 0.0996mmol), dppp (O.0264g, 0.0640mmol), and IMes'HCl (O.0171g, 
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0.0502mmol) were each dissolved in OMF (2.5mL). 0.5mL of each palladium 

solution was then combined with O.55mL of each phosphine solution to give a 

1.05mL solution of each catalyst combination. I mL of each catalyst solution was 

then added reaction vials as follows: Al Pd(OAc)2IPPh3; A2 PdCh(MeCN)21 PPh3; 

A3 [PdCl(C3Hs)hIPPh3; A4 Pd2dba3lPPh3; AS Pd(PPh3)4; B 1 Pd(OAch/P(p-C6H4Fh; 

B2 PdCh(MeCNhl P(P-C6H4F)3; B3 [PdCI(C3HS)hl P(P-C6H4F)3; B4 Pd2dba31 P(p­

C6~F)3; B5 Pd(PPh3)41 P(P-C6H4F)3; CI Pd(OAc)2/dppp; C2 PdCh(MeCN)21 dppp; 

C3 [PdCl(C3Hs)hl dppp; C4 Pd2dba31 dppp; C5 Pd(PPh3)41 dppp; D I 

Pd(OAc)2/IMes'HCI; D2 PdCh(MeCN)21 IMes'HCI; D3 [PdCI(C3HS)hl IMes'HCI; 

04 Pd2dba31 IMes'HCI; 05 Pd(PPh3)41 IMes·HCI. Finally, 4-bromo-acetophenone 

(0.417g, 2.09mmol) was dissolved in DMF (10.5mL) and O.5mL of the resulting 

solution (0.200M, 0.0998mmol) was added to each reaction vial. The reactions were 

then heated at 120°C for 24 hours. After the reaction solutions had cooled and settled 

O.tmL of each was removed and diluted with MeOH (O.4mL) before being analysed 

by LCIMS as before. 

Pd(OAch PdCh(MeCN)l APC dimer Pdldba3 Pd(PPh3)4 t 
PPh3 1.26 2.48 0.71 1.26 1.35 (8) 7.06 

P(P-C6H4Fh 1.53 0.48 0.82 1.52 1.65 6.00 
Dppp(b) 2.52 2.73 0.89 1.34 1.81 9.30 

IMes' HCI(b) 2.15 2.19 1.88 0.22 0.98 7.42 

t 7.47 7.87 4.30 4.35 5.79 

(aJ No extra PPh3 co-catalyst was added 

Cross-coupling using Pd(OAch/PPh3, catalvst (Figure 4.721 

Powdered potassium fluoride (0.0906, t.56mmol) was added to a solution of 

dichlorotolylgermane 50 (0.1 109, 0.257mmol) dissolved in DMF (lmL), and then 

stirred at rt for 3 hours. 

Palladium(II) acetate (0.0079g, 0.0351 mmol) and triphenylphosphine (0.0165g, 

0.0629mmol) were dissolved in OMF (1.5mL) and stirred at rt for 1 hour. 1 mL of the 

resulting catalyst solution was then added to the solution of hydrolysed 

chlorogermane, along with 4-bromobenzophenone (0.0414g, 0.208mmol). The 

reaction mixture was then heated at 127°C for 24 hours, before being partitioned 

between CH2Ch (5mL) and distilled water (5mL) and then filtered through a 
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hydrophobic frit, which was rinsed with a further 2mL CH2Ch. The combined 

organics were washed with water (SmL), and filtered through a hydrophobic frit, 

which was again rinsed with CH2Ch (2mL). Organics were once more combined and 

concentrated in vacuo. Purification using Silica gel SPE cartridge eluting with petrol 

~ petrol/EtOAc, 97/3 gave 4-acetyl-4'-methyl-biphenyl 72 as a white powder 

(0.0254g, 0.121mmol, 58%). Analytical data as above. 

Cross-coupling using Pd(OAc)tdppp catalyst (Figure 4.72) 

Powdered potassium fluoride (0.0944, 1.62mmol) was added to a solution of 

dichlorotolylgermane 50 (0.1 109, 0.257mmol) dissolved in DMF (1 mL), and then 

stirred at rt for 3 hours. 

Palladium(II) acetate (0.0074g, 0.0330mmol) and dppp (0.0 133g, 0.0322mmol) were 

dissolved in DMF (l.SmL) and stirred at rt for 1 hour. 1 mL of the resulting catalyst 

solution was then added to the solution of hydrolysed chlorogermane, along with 4-

bromobenzophenone (0.0449g, 0.226mmol). The reaction mixture was then heated at 

127°C for 24 hours, before being partitioned between CH2Ch (SmL) and distilled 

water (5mL) and then filtered through a hydrophobic frit, which was rinsed with a 

further 2mL CH2Ch. The combined organics were washed with water (SmL), and 

filtered through a hydrophobic frit, which was again rinsed with CH2Ch (2mL). 

Organics were once more combined and concentrated in vacuo. Purification using 

Silica gel SPE cartridge eluting with petrol ~ petrollEtOAc, 97/3 gave 4-acetyl-4'­

methyl-biphenyl 72 as a white powder (0.0259g, 0.123mmol, 54%). Analytical data 

as above. 

Cross-coupling using PdCI2(MeCNb/PPh3 catalyst (Figure 4.72) 

Powdered potassium fluoride (0.0918, 1.58mmol) was added to a solution of 

dichlorotolylgermane 50 (O.lllg, 0.259mmol) dissolved in DMF (ImL), and then 

stirred at rt for 3 hours. 

PdCh(MeCN)2 (0.0083g, 0.0319mmol) and triphenylphosphine (0.0166g, 

0.0633mmol) were dissolved in DMF (1.5mL) and stirred at rt for 1 hour. ImL of the 

resulting catalyst solution was then added to the solution of hydrolysed 
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chlorogermane, along with 4-bromobenzophenone (O.0452g, 0.227mmol). The 

reaction mixture was then heated at 127°C for 24 hours, before being partitioned 

between CH2Ch (5mL) and distilled water (5mL) and then filtered through a 

hydrophobic frit, which was rinsed with a further 2mL CH2Ch. The combined 

organics were washed with water (5mL), and filtered through a hydrophobic frit, 

which was again rinsed with CH2Ch (2mL). Organics were once more combined and 

concentrated in vacuo. Purification using Silica gel SPE cartridge eluting with petrol 

~ petrollEtOAc, 97/3 gave 4-acetyl-4'-methyl-biphenyl 72 as a white powder 

(O.0240g, 0.1 14mmol, 50%). Analytical data as above. 

Cross-coupling using PdC/z(MeCNJidppp catalyst (Figure 4.72) 

Powdered potassium fluoride (0.0926, 1.59mmol) was added to a solution of 

dichlorotolylgermane 50 (O.112g, 0.262mmol) dissolved in DMF (lmL), and then 

stirred at rt for 3 hours. 

PdCh(MeCN)2 (O.0097g, 0.0374mmol) and dppp (O.0129g, 0.0313mmol) were 

dissolved in DMF (1.5mL) and stirred at rt for 1 hour. 1 mL of the resulting catalyst 

solution was then added to the solution of hydrolysed chlorogermane, along with 4-

bromobenzophenone (0.0441 g, 0.222mmol). The reaction mixture was then heated at 

127°C for 24 hours, before being partitioned between CH2Ch (5mL) and distilled 

water (5mL) and then filtered through a hydrophobic frit, which was rinsed with a 

further 2mL CH2Ch. The combined organics were washed with water (5mL), and 

filtered through a hydrophobic frit, which was again rinsed with CH2Ch (2mL). 

Organics were once more combined and concentrated in vacuo. Purification using 

Silica gel SPE cartridge eluting with petrol ~ petrol/EtOAc, 97/3 gave 4-acetyl-4'­

methyl-biphenyl 72 as a white powder (0.0276g, 0.131 mmol, 59%). Analytical data 

as above. 
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Cross-coupling using PdC/2(MeCNJidppp catalYst with added water 

(section 4.3.6.3J 

50 

° ~14 
Br)l) 
PdCI2(MeCN)2' dppp 
DMF, KF, H20 

72 

Powdered potassium fluoride (0.0822, 1.41mmol), and distilled water (2 drops) were 

added to a solution of dichlorotolylgermane 50 (0.0953g, 0.223mmol) dissolved in 

DMF (I mL), and then stirred at rt for 3 hours. 

PdCh(MeCN)2 (0.0370g, O.143mmol) and dppp (0.OS74g, 0.139mmol) were 

dissolved in DMF (SmL) and stirred at rt for 1 hour. 1 mL of the resulting catalyst 

solution was then added to the solution of hydrolysed chlorogermane, along with 4-

bromobenzophenone (O.0337g, O.169mmol). The reaction mixture was then heated at 

127°C for 24 hours, before being partitioned between CH2Ch (5mL) and distilled 

water (SmL) and then filtered through a hydrophobic frit, which was rinsed with a 

further 2mL CH2Ch. The combined organics were washed with water (SmL), and 

filtered through a hydrophobic frit, which was again rinsed with CH2Ch (2mL). 

Organics were once more combined and concentrated in vacuo. Purification using 

Silica gel SPE cartridge eluting with petrol ~ petrol/EtOAc, 97/3 gave 4-acetyl-4'­

methyl-biphenyl 72 as a white powder (O.OIS3g, O.12Immol, 43%). Analytical data 

as above. 

6.2.4.5 Examples of djchlorotolylgermane (50) cross-coupling using 

PdClz(MeCNb/dppp catalyst (Figyre 4.73) 

General method of optimised dichloroarvlgermane cross-coupling 

Dichloroarylgermane (Tolyl, or Anisyl) was dissolved in 1 mL DMF and stirred with 

KF for 3 hours at rt to furnish the activated arylgermane. During this time 

PdCh(MeCN)2 and dppp (or IMes'HCI) were dissolved in DMF and stirred at rt for 1 
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hour to give the active catalytic species. The aryl halide coupling partner and a I mL 

portion of the catalyst solution were then added to the arylgermane solution and the 

resulting mixture heated at 120°C for 24 hours. The crude reaction mixture was 

partitioned between distilled water (5mL) and CH2Ch (5mL) and filtered through a 

hydrophobic frit, which was rinsed with further CH2Ch (2mL). The combined 

organics were washed with further water (SmL) and filtered through a second frit, 

which was again rinsed with CH2Ch (2mL). The organics were again combined and 

concentrated in vacuo to give the crude reaction mixture. 

Cross-coupling with 4-iodoacetophenone (Figure 4.73) 

50 

o 

~73 IN .. 
PdCI2(MeCN)2' dppp 
DMF. KF 

o 

72 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (O.079Sg, 1.37mmol), dichlorotolylgermane SO (O.0953g, 

O.223mmol), 4-iodobenzophenone (O.0427g, O.174mmol), and I mL of 

PdCh(MeCNh (O.0370g, O.143mmol) and dppp (O.0574g, O.139mmol) dissolved in 

DMF (SmL). Purification using Silica gel SPE cartridge eluting with petrol ~ 

petrollEtOAc, 97/3 gave 4-Acetyl-4'-methyl-biphenyl 72 as a white powder (O.0090g, 

O.042Smmol,25%). Analytical data as above. 

Cross-coupling with 2-bromopyridlne (FIgure 4.73) 

D76 ~ 
Br N II_ ~::-"N I 

PdCI2(MeCNh. dppp I .& 

DMF. KF. Hp 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (O.0817g, 1.41 mmol), dichlorotolylgermane SO (O.0953g, 
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0.223mmol), 2-bromopyridine (l71lL, 0.0282g, 0.178mmol), and I mL of 

PdCh(MeCNh (0.0370g, 0.143mmol) and dppp (0.0574g, 0.139mmol) dissolved in 

DMF (8mL). GCIMS analysis revealed no identifiable products from the reaction. 

Cross-coupling with 1-bromonaphthalene (Figure 4.73) 

CI" CI 

COE~Ge~ ~ ~ o 
50 

PdCI2(MeCNh, dppp 
DMF, KF, H20 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (0.0806, 1.39mmol), dichlorotolylgermane 50 (0.0953g, 

0.223mmol), I-bromonaphthalene (25j..1.L, 0.0372g, 0.180mmol), and I mL of 

PdCh(MeCNh (0.0370g, 0.143mmol) and dppp (0.0574g, 0.139mmol) dissolved in 

DMF (8mL). Purification using Silica gel SPE cartridge eluting with cyclohexane 
230 

gave 1-( 4-methyl-phenyl)-naphthalene 75 as a clear colourless film (0.0311 g, 

0.142mmol,79%). RfO.26 (cyclohexane); IH NMR (CDCh) 0 2.48 (3H, s, ArCH3), 

7.31-7.34 (2H, m, Ar CH's), 7.40-7.57 (6H, m, Ar CH's), 7.84-7.96 (3H, m, Ar 

CH's); MS (EI) mlz 218 (M+ 100%),203 (73%), 189 (11%), 108 (27%), 95 (28%). 

Cross-coupling with 5-bromo-meta-xylene (Figure 4.74) 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (0.0810g, 1.39mmol), dichlorotolylgermane 50 (0.0953g, 

0.223mmol), 5-bromo-meta-xylene (24f.lL, 0.0327g, 0.177mmol), and I mL of 

PdCh(MeCN)2 (0.0370g, 0.143mmol) and dppp (0.0574g, 0.139mmol) dissolved in 

DMF (8mL). GCIMS analysis revealed no identifiable products from the reaction. 
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Cross-coupling with 4-bromo-N.N-dimethvlanlline (Figure 4.74) 

50 26 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (0.0793g, 1.36mmol), dichlorotolylgermane 50 (0.0953g, 

0.223mmol), 4-bromo-N,N-dimethylaniline (0.0338g, 0.169mmol), and 1 mL of 

PdCh(MeCN)2 (O.0370g, O.143mmol) and dppp (O.0574g, O.139mmol) dissolved in 

DMF (SmL). GCIMS analysis revealed no identifiable products from the reaction. 

Cross-coupling with 2-bromoanlso/e (Fioure 4.74) 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (O.OS59g, l.4Smmol), dichlorotolylgermane 50 (O.0953g, 

O.223mmol), 2-bromoanisole (22,....L, 0.0330g, 0.1 76mmol), and 1 mL of 

PdCh(MeCN)2 (O.0370g, 0.143mmol) and dppp (0.0574g, 0.139mmol) dissolved in 

DMF (SmL). GC/MS analysis revealed no identifiable products from the reaction. 
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6.2.4.6 Examples of djchlorotolylgermane ISO) cross-coupling usjng 

PdCll'MeCNl:J'Mes·HCI catalyst 

Cross-coupling with 5-bromo-meta-xvlene (Figure 4.7 4) 

50 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (O.0917g, 1.58mmol), dichlorotolylgermane 50 (O.0983g, 

O.230mmol), 5-bromo-meta-xylene (241lL, O.0327g, O.I77mmol), and 1 mL of 

PdCh(MeCN}2 (O.0192g, O.0740mmol) and IMes'HCI (O.0254g, O.0745mmol) 

dissolved in DMF (4mL). GCIMS analysis revealed no identifiable products from the 

reaction. 

Cross-coupling with 4-bromo-N,N-dlmethvlanillne (Figure 4.74) 

50 

Br 
f)

NMe2 

I ~ 25 

PdCI2(MeCN)2' 
IMes·HCI, 
DMF, KF, Hp 

"-
26 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (O.0853g, 1.47mmol), dichlorotolylgermane 50 (O.0983g, 

O.230mmol), 4-bromo-N,N-dimethylaniline (O.0350g, O.175mmol), and 1 mL of 

PdCh(MeCN}2 (O.0192g, O.0740mmol) and IMes·HCI (O.0254g, O.0745mmol) 

dissolved in DMF (4mL). GCIMS analysis revealed no identifiable products from the 

reaction. 
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Cross-coupling with 2-bromoaniso/e (FIgure 4.74) 

MaO)) 
_B_r_1 _h_

7

_

8 

---u-II_" ~:o : I 
PdCI2(MeCN)2' I 
IMes-HCI, h 

50 DMF, KF, H20 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (O.08I8g, 1.41 mmol), dichlorotolylgermane 50 (O.0986g, 

O.230mmol), 2-bromoanisole (22J.1.L, O.0330g, O.l77mmol), and 1 mL of 

PdCh(MeCN)2 (O.OI92g, O.0740mmol) and IMes'HCI (O.0254g, O.0745mmol) 

dissolved in DMF (4mL). GCIMS analysis revealed no identifiable products from the 

reaction. 

6.2.4.7 Synthesjs of anjsylchlorogermanes 

4-(2-fTri-(4-methoxyphenylJgermanyllethyllphenol (79) 

MeO OMe 

00 
~Ge~ 

HO~ ~OMe 
79 

Molecular Weight =515.15 
Molecular Formula =C29H3QGe04 

4-Bromoanisole (7.SmL, I1.2g, O.OS99mol) was added to a suspension of magnesium 

turnings (1.54g, O.0632mol) in THF (130mL), and the resulting solution stirred until it 

had cooled to rt. A solution oftrichlorogermylphenol 8 (3.00g, IO.Ommol) dissolved 

in anhydrous THF (20mL) was then added to the Grignard reagent and heated at 

reflux for 17.Shours. The reaction mixture was quenched with methanol (20mL) and 

then partitioned between distilled water (lOOmL) and EtOAc (3 x IOOmL). Acid was 

not used in the work-up to avoid cleavage of the germanium-aryl bonds. The organic 

washings were dried with MgS04, filtered and concentrated in vacuo. Purification 

with a SPE cartridge (SOg, eluting with petrol ~ petrollEtOAc, 19/1 ~ petrollEtOAc, 

911 ~ petrollEtOAc, 8/2 ~ petrollEtOAc, 7/3) gave trianisylphenol 79 as a clear 
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colourless oil (3.82g, 7.42mmol, 74%). R,0.21 (petrol/EtOAc, 8/2); IH NMR 

(CDC b) 8 1.77 (2H, m, CH2CH2Ge), 2.76 (2H, m, CH2CH2Ge), 3.84 (9H, s, 

ArOCH3), 6.74 (2H, d, J 8.0, HOCCHCHCCH2), 6.95 (6H, d, J 8.5, 

GeCCHCHCOCH3), 7.05 (2H, d, J 8.0, HOCCHCHCCH2), 7.41 (6H, d, J 8.5, 

GeCCHCHCOCH3); 13C NMR (CDCI3) 816.7 (t), 30.3 (t), 55.1 (q), 114.0 (d), 115.2 

(d), 128.2 (s), 128.9 (d), 136.2 (d), 137.0 (s), 153.6 (s), 160.3 (s); IR (neat) 3417, 

2931,1592,1498,1279,1246,1179,1091,1029,816, 793cm- l
; MS (El) mlz 516 (M'+ 

1%),395 (100%), 347 (13%), 271 (18%), 181 (17%), 120 (17%), 107 (16%), 91 

(31%); HRMS calc'd for C29H3074Ge04 516.1356, found 516.1358, error -0.3ppm; 

Elemental analysis expected for C21H30Ge02 C 67.72%, H 5.87%, analysis found C 

67.41%, H 5.78%. 

4-12-lTri-(4-mefhoxvpheny/)germanyllefhyllphenyl 2-ethoxy-ethyl 

efher(80) 

MeO OMe 

00 
COE~Ge0 O~ ~OMe 

80 

Molecular Weight =587.26 
Molecular Formula =C33H38Ge05 

Cesium carbonate (2.17g, 6.65mmol), TBAI (0.157g, 0.42mmol), and 2-chloroethyl 

ethyl ether (2.5mL, 2.47g, 22.8mmol) were added to a solution of trianisylphenol 79 

(2.33g, 4.52mmol) dissolved in MeCN (75mL), and the resulting solution heated at 

reflux for 15 hours. Once the reaction was complete by TLC analysis the mixture was 

partitioned between distilled water (lOOmL) and EtOAc (2 x 100mL, 50mL). The 

combined organic washings were combined, dried with MgS04, filtered and 

concentrated in vacuo. The crude product was then filtered through silica (Sg SPE 

cartridge, eluted with petrollEtOAc, 9/1), before being concentrated to give 

trianisylgermane 80 as a pale yellow oil (2.06g, 3.51mmol, 78%). R, 0.44 

(petrollEtOAc, 8/2); IH NMR (CDCh) 8 1.25 (3H, t, J 7.0, CH3CH20), 1.76 (2H, m, 

CH2CH2Ge), 2.75 (2H, m, CH2CH2Ge), 3.61 (2H, q, J 7.0, CH3CH20), 3.79 (2H, t, J 

5.0, OCH2CH20Ar), 3.83 (9H, s, ArOCH3), 4.10 (2H, t, J 5.0, OCH2CH20Ar), 6.83 
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(2H, d, J 8.5, OCCHCHCCH2), 6.93 (6H, d, J 8.5, GeCCHCHCOCH3), 7.08 (2H, d, J 

8.5, OCCHCHCCH2), 7.40 (6H, d, J 8.5, GeCCHCHCOCH3); 13C NMR (CDCh) 

815.2 (q), 16.7 (t), 30.3 (t), 55.1 (q), 66.8 (t), 67.5 (t), 69.0 (t), 114.0 (d), 114.6 (d), 

128.2 (s), 128.7 (d), 136.1 (d), 137.1 (s), 153.6 (s), 160.3 (s); IR (neat) 2929,1592, 

1511, 1290, 1253, 1181, 1094, 1027, 823cm'l; MS (EI) mlz 588 (M'+ 2%), 480 (8%), 

395 (100%), 347 (16%), 271 (66%), 181 (31%), 91 (46%); HRMS calc'd for 

C33H3874GeOs 588.1931, found 588.1939, error -1.4ppm; Elemental C33H38GeOS 

expected C 67.S%, H 6.S%, found C 67.1%, H 6.6%. 

4-(2-fDichloro-(4-methoxy-phenylJ-germanyI1-ethy/}-phenyl 2-ethoxy­

ethyl ether (81) 

CI, ,CI 

Molecular Weight =443.90 C
o:VE1 ~ Geo~ 
0.0 .0 OMe Molecular Formula =C19H24C12Ge03 

81 

Trianisylgermane 80 (2.04g, 3.47mmol) was dissolved in CH2Ch (27mL). To the 

resulting solution aqueous HCl (1M, 4.SmL, 4.Smmol) was added dropwise over 2 

minutes with vigorous stirring. After S minutes, c.HCI (53mL, 0.530mol) was added, 

dropwise to begin with, to give a vivid violet coloured organic layer. The resulting 

biphasic mixture was vigorously stirred at rt for 45 minutes, whereupon the organic 

layer was pipetted out and filtered through a hydrophobic frit. The acid layer was 

shaken with further CH2Ch (2 x 20mL), which was also removed and filtered through 

a hydrophobic frit, and the combined organic washings concentrated in vacuo, with 

further volatiles removed under a high vacuum. Proton NMR analysis of the resulting 

crude product (1.39g) revealed a ca. 50/S0 mixture of 4-{2-[chloro-di-(4-methoxy­

phenyl)-germanyl]-ethyl}-phenyl 2-ethoxy-ethyl ether and dichloroanisylgermane 81. 

The crude reaction mixture was redissolved in CH2Ch (20mL), further c.HCI (50mL, 

O.SOOmol) added and the solution again vigorously stirred for 2 hours. The CH2Ch 

layer was again removed, the acid layer washed CH2Ch (2 x 20mL) and the combined 

washings again filtered through a hydrophobic frit, before being concentrated in 

vacuo and further volatiles removed under a high vacuum to give 
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dichloroanisylgerrnane 81 as a pale brown oil (1.27g, 2.86mmol, 82%). Rf 0.00 

(petrollEtOAc, 8/2); IH NMR (COCll) B 1.26 (3H, t, J 7.0, CH3CH20), 2.09 (2H, m, 

CH2CH2Ge), 2.96 (2H, m, CH2CH2Ge), 3.61 (2H, q, J 7.0, CH 3CH20), 3.79 (2H, t, J 

5.0, OCH2CH20Ar), 3.85 (3H, s, ArOCH3), 4.10 (2H, t, J 5.0, OCH2CH20Ar), 6.84 

(2H, d, J 8.5, OCCHCHCCH2), 6.97 (2H, d, J 8.5, GeCCHCHCOCH3), 7.11 (2H, d, J 

8.5, OCCHCHCCH2), 7.49 (2H, d, J 8.5, GeCCHCHCOCH3); 13C NMR (COCh) 

B 15.2 (q), 27.8 (t), 28.6 (t), 55.3 (q), 66.9 (t), 67.5 (t), 69.0 (t), 114.5 (d), 114.8 (d), 

126.5 (s), 129.0 (d), 133.7 (d), 157.5 (s), 162.2 (s), one quaternary carbon not 

observed; IR (neat) 2930, 1592, 1512, 1290, 1253, 1181, 1094, 1027,824, 795cm- l
; 

MS (EI) mlz 444 (M+ 18%),251 (5%), 192 (68%), 120 (41%), 107 (100%), 92 

(74%), 78 (46%), 45 (78%); HRMS calc'd for C19H24Ch74Ge03 444.0314, found 

444.0302, error 2.9ppm. 

6.2.4.8 Cross-coypling of anlsyldlcblorogermane (81) (flgyre 4.77) 

Cross-coupling with 4-bromo-acetophenone 

o 

~14 Br~ .. 
PdCI2(MeCN)2' dppp 
DMF. KF MeO 

85 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (0.0913g, 1.57mmol), dichloroanisylgermane 81 (0.118g, 

0.266mmol), and 4-bromobenzophenone (0.0384g, 0.193mmol). PdCh(MeCNh 

(0.0232g, 0.0894mmol) and dppp (0.0348g, 0.0844mmol) were dissolved in DMF 

(4mL). Purification using Silica gel SPE cartridge eluting with petrol --t 

petrollEtOAc, 97/3 gave 4-acetyl-4'-methoxy biphenyl 85
213 

as a colourless film 

(0.0021g, O.OlOOmmol, 5%). RfO.08 (cyclohexane); IH NMR (CDCll) B 2.62 (3H, s, 

ArCOCH3), 3.85 (3H, s, ArOCH3), 6.97 (2H, m, CH30CCHCHCAr), 7.45-7.50 (4H, 

m, CH30CCHCHCCCHCHCCOCH3), 7.98 (2H, m, ArCCHCHCCOCH3); MS mlz 

(EI) 226 (M"+ 53%), 211 (100%), 183 (20%),168 (28%), 139 (43%), 106 (14%). 
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Cross-coupling with 1-bromonaphtha/ene 

PdCI2(MeCN)2' dppp MeO 
DMF, KF 

Experimental 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (0.0834g, 1.44mmol), dichloroanisylgermane 81 (O.115g, 

0.259mmol), I-bromonaphthalene (28IlL, 0.0417g, 0.20 I mmol), and I mL of 

PdCh(MeCN)2 (O.0160g, 0.0617mmol) and dppp (O.0245g, 0.0594mmol) dissolved in 

DMF (3mL). Purification using Silica gel SPE cartridge eluting with petrol ~ 
231 

petrollEtOAc, 19/1 gave 1-( 4-methoxy-phenyl)-naphthalene 88 as clear colourless 

prisms (0.0272g, 0.116mmol, 58%). Rf 0.16 (cyC\ohexane); IH NMR (CDCl0 8 

3.91 (3H, s, ArOCH3), 7.01-7.07 (2H, m, Ar CH's), 7.40-7.56 (6H, m, Ar CH's), 

7.84-7.96 (3H, m, Ar CH's); MS mlz (EI) 234 (M'+ 100%), 219 (38%), 203 (14%), 

189 (55%), 163 (9%), 101 (23%),95 (29%); Melting point 1 1O.4-116.2°C (el 114-

115°C232). 

Cross-coupling with 3.5-bis(trlfluoromethylJbromobenzene 

PdCI2(MeCN}z, dppp MeO 
DMF, KF 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (O.0863g, 1.49mmol) dichloroanisylgermane 81 (0.114g, 

0.257mmol), 3,5-bis-trifluoromethyl-bromo-benzene (34IlL, 0.0578g, 0.197mmol), 

and ImL ofPdCh(MeCN)2 (0.0160g, 0.0617mmol) and dppp (0.0245g, O.0594mmol) 

dissolved in DMF (3mL). Purification using Silica gel SPE cartridge eluting with 

cyc\ohexane gave 4-methoxy-3',5'-bis-trifluoromethyl-biphenyl 87 as a clear 

colourless oil (0.045Ig, O.141mmol, 71%). Rf 0.22 (cyclohexane); IH NMR 
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(CDCh) 8 3.89 (3H, s, ArOCH3), 7.04 (2H, d,J9.0, CH30CCHCHCAr), 7.57 (2H, d, 

J 9.0, CH30CCHCHCAr), 7.81 (1H, s, CF3CCHCCF3), 7.98 (2H, s, ArCCHCCF3); 

l3e NMR (CDCh) & 55.4 (q), 114.7 (d), 120.2 (d), 126.6 (d), 128.4 (d), 5 quaternary 

carbons not seen; IR (neat) 2940, 2842, 1610, 1521, 1383, 1279, 1185, 1132, 1061, 

830, 682cm-1
; MS (EI) mlz 320 (M+ 100%), 305 (16%), 301 (20%), 277 (60%), 251 

(9%), 188 (13%); HRMS calc'd for C15HIOF6 0 320.0636, found 320.0625, error 

3.4ppm. 

Cross-coupling with bromobenzene 

o 31 
Br~ 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (0.0889g, 1.53mmol), dichloroanisylgermane 81 (0.0997g, 

0.225mmol), bromobenzene (20IlL, 0.0298g, 0.190mmol), and 1 mL of 

PdCh(MeCNh (0.0277g, 0.107mmol) and dppp (0.0448g, 0.109mmol) dissolved in 

DMF (5mL). Purification using Silica gel SPE cartridge eluting with cyclohexane 

gave 4-methoxy-biphenyl 20
217 

as a white powder (0.0125g, 0.0678mmol, 36%). R, 

0.26 (cyclohexane); IH NMR (CDC h) 8 3.87 (3H, s, ArOCH3), 6.98-7.01 (2H, m, 

CH30CCHCHCAr), 7.31-7.34 (IH, m, ArCCHCHCH), 7.40-7.46 (2H, m, Ar CH's), 

7.53-7.59 (4H, m, Ar CH's); MS (EI) mlz 184 (M
o

+ 100%), 169 (57%), 141 (57%), 

115 (46%), 76 (8%); Melting point 86.7-88.2°C (el 87°d
33

). 
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Cross-coupling with 4-nitrobromobenzene 

CI, ,GI ONO'84 dYl N0
2 

COE~Ge0 _B_r_______ I ~ ~ 
O~ ~OMe PdCI2(MeCNh, dppp MeO .b 

81 DMF, KF 91 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (0.0886g, 1.52mmol), dichloroanisylgermane 81 (O.0970g, 

0.219mmol), 4-nitrobromobenzene (0.0392g, O.194mmol), and 1 mL of 

PdCh(MeCN)2 (0.0277g, O.l07mmol) and dppp (0.0448g, 0.109mmo\) dissolved in 

DMF (5mL). Purification using Silica gel SPE cartridge eluting with cyclohexane ~ 

petro l/EtOAc , 97/3 gave 4-methoxy-4'nitro-biphenyl 91
234 

as a yellow amorphous 

powder (0.0217g, 0.0947mmol, 47%). Rj 0.35 (PetroI/EtOAc, 9/1); IH NMR 

(CDC h) 0 3.89 (3H, s, ArOCH3), 7.03 (2H, J 9.0, CH30CCHCHCAr), 7.59 (2H, J 

9.0, CH30CCHCHCAr), 7.70 (2H, J 9.0, ArCCHCHCN02), 8.28 (2H, J 9.0, 

ArCCHCHCN02); MS (EI) mlz 229 (M+ 100%), 199 (27%),183 (18%), 168 (32%), 

152 (22%),139 (64%); Melting point 105.6-106.7°C (ej 107_108°C
98

). 

Cross-coupling with 3-bromopyridine 

o 82 
Br~N -PdCI2{MeCNh, dppp 

DMF, KF 
dJl 

I ~ ~ N 

MeO .b 
89 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (0.0887g, 1.53mmol), dichloroanisylgermane 81 (0.0963g, 

0.217mmol), 3-bromopyridine (18~L, 0.0291 g, 0.1 84mmol), and 1 mL of 

PdCh(MeCN)2 (0.0277g, 0.107mmol) and dppp (0.0448g, 0.109mmol) dissolved in 

DMF (5mL). Purification using Silica gel SPE cartridge eluting with cyclohexane ~ 

4 h I 'd' 235 petrollEtOAc, 9/1 gave 3-( -met oxy-pheny )-pyn me 89 as an off white film 

(0.0150g, 0.08 I Ommol, 44%). Rj 0.13 (PetrollEtOAc, 8/2); IH NMR (CDCb) 03.87 

(3H, s, ArOCH3), 7.02 (2H, d, J 9.0, CH30CCHCHCAr), 7.35 (1H, dd, J 5.0, J 8.0, 
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ArCCHCHCHN), 7.53 (2H, d, J 9.0, CH30CCHCHCAr), 7.85 (lH, d, J 8.0, 

ArCCHCHCHN), 8.55 (lH, d, J 5.0, ArCCHCHCHN), 8.83 (lH, s, ArCCHN); MS 

(EI) mlz 185 (M
o

+ 100%),170 (55%),142 (50%),115 (27%), 89 (17%), 89 (17%). 

Cross-coupling with 3-bromobenzotrifluoride 

o 62 
Br~CF3 .. 

PdCI2(MeCNh, dppp 
DMF, KF 
~I 

I '-'::: ~ CF3 

MeO ~ 
86 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (0.0872g, 1.50mmol), dichloroanisylgermane 81 (0.0971 g, 

0.219mmol), 3-bromobenzotrifluoride (261lL, 0.0424g, 0.188mmol), and 1 mL of 

PdCh(MeCNh (0.0277g, 0.107mmol) and dppp (0.0448g, 0.109mmol) dissolved in 

DMF (5mL). Purification using Silica gel SPE cartridge eluting with cyc10hexane 

gave 4-methoxy-3' -trifluoromethyl-biphenyl 86 as a clear colourless oi\236 (0.0246g, 

0.0975mmol, 52%): Rf 0.27 (cyclohexane); IH NMR (CDCh) 0 3.87 (3H, s, 

ArOCH3), 6.98-7.02 (2H, m, CH30CCHCHCAr), 7.52-7.56 (4H, m, Ar CH's), 7.71-

7.74 (1H, m, Ar CH), 7.79 (1H, s, ArCCHCCF3); MS (EI) mlz 252 (M+ 100%),237 

(41%),209 (69%), 183 (17%),139 (15%). 

Cross-coupling with 2-bromo-biphenyl 

'::0, ~ I '-'::: 83 

Br ~ 
• 

PdCI2(MeCNh, dppp 
DMF,KF MeO 

90 

Using the general method given above, with the following reagents: powdered 

potassium fluoride (0.0834g, 1.44mmol), dichloroanisylgermane 81 (0.0941 g, 

0.212mmol), 2-bromo-biphenyl (32IlL, 0.0440g, 0.189mmol), and 1 mL of 

PdCh(MeCNh (0.0277g, 0.107mmol) and dppp (0.0448g, 0.109mmol) dissolved in 
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DMF (5mL). Purification using Silica gel SPE cartridge eluting with cyclohexane 

gave: 

2-Bromobiphenyl starting material as a clear colourless liquid (0.0183g, 0.0786mmol, 

42%). R/O.57 (cyclohexane); 18 NMR (CDC h) () 7.17-7.24 (IH, m, Ar CH), 7.32-

7.37 (2H, m, Ar CH's), 7.42 (5H, m, Ar CH's), 7.66-7.69 (tH, m, Ar CH); MS (EI) 

m/z 232 (M+ 72%), 152 (100%), 126 (11%),76 (42%). 

A complex mixture of inseparable products (0.0152g), GC/MS indicated the presence 

of: 

4,4'-Dimethoxybiphenyl R, 16.74min; MS (EI) mlz 214 (M'+ 99%),199 (100%).171 

(43%), 156 (15%), 139 (13%), 128 (28%). 

4"-Methoxy-f1,1 ';2',1 "Jterphenyl90
226 

R, 18.73min; MS (EI) mlz 260 (M'+ 100%), 

245 (14%),229 (41%), 215 (46%), 202 (41%),107 (17%), 95 (21%). 

f1,1 ';2',1 ";2",1 "'JQuaterphenyl R, 21.38min; MS (EI) mlz 304 (M'+ 100%), 289 

(11%),276 (7%), 226 (8%),151 (48%), 145 (27%). 

6.2.5 Approacbes tOwards Hydrjdogermane cross-coupling 

4-(2-lf4-Methvl-phenyIJ-germanyll-ethyll-phenyl (2-ethoxy-ethylJ ether 

(92) 

92 

Molecular Weight =359,01 
Molecular Formula =C19H2t!Ge02 

LiAIH4 (0.0756g, 1.98mmol) was added to a solution of dichlorotolylgermane 50 

(0.109g, 0.254mmol) in anhydrous THF (IOmL) at O°C, the solution was then warmed 

to rt before being heated at reflux for 16.5 hours. The crude reaction mixture was 

cooled to O°C before aqueous HCI (1M, ImL) was added cautiously. Once 

effervescence had ceased, further aqueous HCl was added (1M, 25mL) and the acid 

layer extracted with CH2Ch (2 x 25mL). The organics were combined and washed 
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with HC) (1M, 10mL), before being dried with MgS04, filtered and concentrated in 

vacuo to give dihydrotolylgermane 92 as a clear colourless oil (0.0911 g, 100%); Rf 

0.71 (petrollEtOAc, 9/1); IH NMR (CDC I)) 8 1.26 (3H, t, J 7.0, CH3CH20), 1.47 

(2H, m, CH2CH2Ge), 2.36 (3H, s, ArCH3), 2.76 (2H, m, CH2CH2Ge), 3.61 (2H, q. J 

7.0, CH3CH20), 3.79 (2H, t, J 5.0, OCH2CH20Ar), 4.11 (2H, t, J 5.0, OCH2CH20Ar), 

4.36 (2H, m, GeH2), 6.85 (2H, d, J 9.0, OCCHCHCCH2), 7.09 (2H, d, J 9.0, 

OCCHCHCCH2), 7.17 (2H, d, J 8.0, GeCCHCHCCH3), 7.38 (2H, d, J 8.0, 

GeCCHCHCCH3); 13C NMR (CDC h) 813.8 (t), 15.2 (q), 21.4 (q), 31.8 (t), 66.9 (t), 

67.5 (t), 69.0 (t), 114.6 (d), 128.8 (d), 129.1 (d), 131.1 (s), 134.9 (d), 136.2 (s), 138.6 

(s), 157.1 (s); IR (neat) 2922, 2043, 1511, 1245, 1124, 747 cm- I
; MS (EI) mlz 360 

(M+ 18%), 260 (8%), 239 (13%), 165 (47%), 120 (55%), 91 (43%), 73 (49%), 45 

(100%); HRMS calc'd for CI9H2674Ge02 360.1145, found 360.1143, error 0.5ppm. 

4-(2-{(4-Methoxy-phenyll-germanyll-ethy/}-phenyl (2-ethoxy-ethyl) 

ether (93J 

H H 

Molecular Weight =375.01 COVEI~ Geo~ 0,0 ,0 OMe Molecular Formula =C19H26Ge03 

93 

LiAI~ (0.101 g, 2.65mmol) was added to a solution of dichloroanisylgermane 81 

(0.149g, 0.336mmol) in anhydrous THF (lOmL) at ODC, the solution was then warmed 

to rt before being heated at reflux for 17 hours. The crude reaction mixture was 

cooled to ODC before saturated aqueous NH4CI solution (lmL) was added cautiously. 

Once effervescence had ceased, further saturated aqueous NH4Cl was added (25mL) 

and the aqueous layer extracted with CH2Ch (2 x 25mL). The organics were 

combined filtered through a hydrophobic frit, before being concentrated in vacuo to 

give dihydroanisylgermane 93 as a clear colourless oil (O.115g, OJ07mmol, 91 %); Rf 

0.07 (petrollEtOAc, 9/1); IH NMR (CDC I)) 8 1.27 (3H, t, J 7.0, CH3CH20), 1.43-

1.52 (2H, m, CH2CH2Ge), 2.74-2.80 (2H, m, CH2CH2Ge), 3.62 (2H, q, J 7.0, 

CH3CH20), 3.80 (2H, t, J 5.0, OCH2CH20Ar), 3.83 (3H, s, ArOCH3), 4.12 (2H, t, J 

5.0, OCH2CH20Ar), 4.37 (2H, m, GeH2), 6.86 (2H, d, J 9.0, OCCHCHCCH2), 6.92 
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(2H, d, J9.0, GeCCHCHCOCH3), 7.11 (2H, d, J9.0, OCCHCHCCH2), 7.41 (2H, d, J 

9.0, GeCCHCHCOCH3); lle NMR (CDCh) 813.9 (t), 15.2 (q), 31.8 (t), 55.1 (q), 

66.9 (t), 67.5 (t), 69.0 (t), 114.0 (d), 114.5 (d), 128.8 (d), 136.2 (d), 157.0 (s), 176.1 

(s), two quaternary carbons not observed; IR (neat) 2974, 2928, 2870, 2043, 1593, 

1511, 1247, 1180, 1125, 823 em'l; MS (EI) mlz 376 (M+ 10%), 268 (16%), 239 

(22%),192 (35%),181 (39%), 121 (27%),73 (36%), 45 (100%); HRMS calc'd for 

CI9H2674Ge03 376.1094, found 376.1102, error-2.2ppm. 

Cross-coupling of dihydrotolylgermane (92) 

H H 
\ , 

C
OE~Ge~ 

~ ~ o 92 

X3 

U 69 

Br CF3 II ~ 
PdCI2(MeCNh. dppp 
DMF. KF 

70 

Powdered potassium fluoride (0.0872g, 1.50mmol), was added to a solution of 

dihydrotolylgermane 92 (O.0842g, 0.235mmol) dissolved in DMF (lmL), and then 

stirred at rt for 3 hours. 

PdCh(MeCNh (0.0136g, 0.0524mmol) and dppp (0.0208g, 0.0504mmol) were 

dissolved in DMF (2.5mL) and stirred at rt for 1 hour. 1 mL of the resulting catalyst 

solution was then added to the solution of hydrolysed chlorogermane, along with 3,5-

bistrifluoromethylbromobenzene (35IlL, 0.0594g, 0.203mmol). The reaction mixture 

was then heated at 127°C for 22 hours, before being partitioned between CH2Ch 

(5mL) and distilled water (5mL) and then filtered through a hydrophobic frit, which 

was rinsed with a further 2mL CH2Ch. The combined organics were washed with 

water (5mL), and filtered through a hydrophobic frit, which was again rinsed with 

CH2Ch (2mL). Organics were once more combined and concentrated in vacuo. 

GC/MS analysis revealed the presence of no identifiable products. 
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Cross-coupling of dihydroanisylgermane (93) 

H H 

(E~Ge0 
o~ ~OMe 

93 

1:3 

U 69 

Br CF3 II" 
PdCI2(MeCNh, dppp 
DMF, KF 

Experimental 

MeO 

Powdered potassium fluoride (O.l03g, l.77mmol), was added to a solution of 

dihydroanisylgermane 93 (0.10Sg, 0.27Smmol) dissolved in DMF (I mL), and then 

stirred at rt for 3 hours. 

PdCh(MeCN)2 (0.0 136g, 0.0524mmol) and dppp (0.0208g, 0.0504mmol) were 

dissolved in DMF (2.5mL) and stirred at rt for 1 hour. 1 mL of the resulting catalyst 

solution was then added to the solution of hydrolysed chlorogermane, along with 3,5-

bistrifluoromethylbromobenzene (35~L, 0.0594g, 0.203mmol). The reaction mixture 

was then heated at 127°C for 22 hours, before being partitioned between CH2Ch 

(SmL) and distilled water (SmL) and then filtered through a hydrophobic frit, which 

was rinsed with a further 2mL CH2Ch, The combined organics were washed with 

water (SmL), and filtered through a hydrophobic frit, which was again rinsed with 

CH2Ch (2mL). Organics were once more combined and concentrated in vacuo. 

GCIMS analysis revealed the presence of no identifiable products. 

6.3 Friedel-Crafts degermylatjoo 

6.3.1 Synthesis 

Trimethyl-(3,5-dimefhyl-phenyll-silane (94)202 

94 

Molecular Weight =178.35 
Molecular Formula =C11H1SSi 

3,5-Dimethylbromobenzene (O.4mL, 0.S45g, 2.94mmol) was dissolved in anhydrous 

THF (20mL) and cooled to -7S0C. s-BuLi (I.3M, 3.17mL, 4.12mmol) was added 
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slowly and dropwise, and the resulting solution stirred for 30 minutes. TMS-Cl 

(0. 190mL, 0.163g, 1.50mmol) was then added dropwise and the solution stirred for 30 

minutes, and then allowed to warm to rt over 1 hour. Distilled water (5mL) was 

added dropwise and the resulting mixture was partitioned between EtOAc (2 x 25mL) 

and 1m Hel (20mL). The organic extracts were dried with MgS04, filtered and 

concentrated in vacuo. Purification by column chromatography (5 x 7cm Silica gel, 

eluting with petrol) gave Silylxylene 94 as a clear colourless liquid (0.182g, 

1.02mmol, 68%). Rf 0.90 (petrol); IH NMR (CDC h) B 0.35 (9H, s, (CH3)3Si), 2.42 

(6H, s, CH3C), 7.10 (1H, s, CH3CCHCCH3), 7.24 (2H, s, CHC(Si(CH3)3)CH); MS 

m/z(EI) 178 (M+29%), 163 (100%),135 (21%),105 (15%). 

221 
Trimethyl-(4-methyl-phenvl}-germane (41 J 

Me3Gen 
I ~ Molecular Weight =208.83 

Molecular Formula =C1oH16Ge 
41 

Trimethylgermanium bromide (1.7mL, 2.62g, 13.3mmol) was dissolved in anhydrous 

THF (20mL) under N2 and cooled to O°C. p-TolMgBr (1.0M in THF, 11 mL, 

11mmol) was added dropwise and the mixture stirred at rt for 4.5 hours before being 

quenched with distilled water (2mL). The resulting mixture was partitioned between 

1 M HCl (20mL) and Et20 (3 x 20mL) before being dried with MgS04, filtered and 

concentrated in vacuo. Purification using a 50g Silica gel SPE cartridge eluting with 

petrol gave p-tolylgermane 41 as a clear colourless liquid (2.08g, 9.96mmol, 91 %). 

RfO.80 (petrol); IH NMR (CDCb) 8 0040 (9H, s, (CH3)3Ge), 2.37 (3H, s, CH3C), 

7.21 (2H, d, J7.0, CH(CH3)CCH), 7.41 (2H, d, J7.0, CHC(Ge(CH3)3)CH); MS m/z 

(EI) 210 (M+ 5%),195 (100%),165 (25%),139 (9%),105 (20%),91 (39%). 
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. 237,238 
T"mefhyl-(3-mefhvlpheny/)-germane (104) 

Molecular Weight =208.83 
Molecular Formula =ClOH16Ge 

Experimental 

3-Bromotoluene (0.370mL, 0.522g, 3.05mmol) was dissolved in anhydrous THF 

(I4mL) under N2 and cooled to -78°C. n-BuLi (2.5M, 1.8mL, 4.50mmol) was added 

slowly and dropwise and the resulting solution stirred for 25 minutes. 

Trimethylgermanium bromide (0.490mL, 0.757g, 3.83mmol) was then added 

dropwise and the reaction mixture stirred for 30 minutes. The C02/acetone bath was 

removed, and the reaction mixture stirred for a further 20 minutes before being 

quenched with distilled water (2mL) and partitioned between Et20 (2 x 20mL) and 

H20 (20mL). The organic extracts were dried with MgS04 and concentrated in 

vacuo. GCIMS of the crude reaction mixture indicated the presence of a significant 

amount of unreacted aryl bromide. The crude mixture was dissolved in THF (14mL) 

and exposed to n-BuLi (l.OmL, 2.5M, 2.5mmol) at -78°C for 30 minutes, before 

being quenched for a second time with trimethylgermanium bromide (0.490mL, 

0.757g, 3.83mmol) and stirred for a further 15 minutes. Work up as before gave a 

crude mixture. Purification by column chromatography (4 x 2cm Silica gel, eluting 

with petrol) gave m-tolylgermane 104 as a clear colourless liquid (0.0742g, 

0.355mmol, 12%). RfO.74 (petrol); IH NMR (CDCh) B 0.38 (9H, s, (CH3)3Ge), 2.35 

(3H, s, CH3C), 7.12-7.29 (4H, m, Ar Clfs); MS mlz (EI) 210 (M+ 5%), 195 (100%), 

165 (20%), 105 (11 %),91 (45%). 

237,238 
Trimefhyl-(2-mefhylphenyll-germane (103) 

Molecular Weight =208.83 
Molecular Formula =C1oH16Ge 

2-Bromotoluene (0.360mL, 0.512g, 2.99mmol) was dissolved in anhydrous THF 

(15mL) under N2 and cooled to -78°C. s-BuLi (I.3M, 3.5mL, 4.55mmol) was added 

slowly and dropwise and the resulting solution stirred for 5 minutes. 
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Trimethylgermanium bromide (0.485mL, 0.749g, 3.79mmol) was then added 

dropwise and the reaction mixture stirred for 15 minutes. The C02/acetone bath was 

removed, and the reaction mixture stirred for a further 15 minutes before being 

quenched with distilled water (2mL) and partitioned between Et20 (2 x 20mL) and 

H20 (20mL). The organic extracts were dried with MgS04 and concentrated in 

vacuo. The resulting mixture was purified by column chromatography (4 x 2cm 

Silica gel, eluting with petrol) to give o-tolylgermane 103 as a clear colourless liquid 

(0.450g, 2.16mmol, 72%). Rj 0.83 (petrollEtOAc, 9/1); IH NMR (CDCI3) 0 0.46 

(9H, s, (CH3hGe), 2.46 (3H, s, CH3C), 7.18-7.27 (3H, m, Ar CN's), 7.42-7.46 (IH, 

m, (CH3)3GeCCH); MS mlz (EI) 210 (M+ 8%),195 (64%), 165 (15%).105 (25%), 91 

(100%). 

Trimethvl-(3,5-dimethyl-phenylJ-germane (105' 

Me3Geyy y 
105 

Molecular Weight =222.86 
Molecular Formula =C11 H18Ge 

3,5-Dimethylbromobenzene (0.410mL, 0.558g, 3.02mmol) was dissolved in 

anhydrous THF (l5mL) under N2 and cooled to -78°C. s-BuLi (I.3M, 3.5mL, 

4.55mmol) was added slowly and dropwise and the reSUlting solution stirred for 5 

minutes. Trimethylgermanium bromide (0.485mL, 0.749g, 3.79mmol) was then 

added dropwise and the reaction mixture stirred for 15 minutes. The C02/acetone 

bath was removed, and the reaction mixture stirred for a further 15 minutes before 

being quenched with distilled water (2mL) and partitioned between EhO (2 x 20mL) 

and H20 (20mL). The organic extracts were dried with MgS04 and concentrated in 

vacuo. GCIMS of the crude reaction mixture indicated the presence of a significant 

amount ofunreacted aryl bromide. The crude mixture was dissolved in THF (l4mL) 

and exposed to n-BuLi (1.0mL, 2.5M, 2.5mmol) at -78°C for 30 minutes, before 

being quenched for a second time with trimethylgermanium bromide (0.490mL, 

0.757g, 3.83mmol) and stirred for a further 15 minutes. Work up as before gave a 

crude mixture, which was purified by column chromatography (4 x 2cm Silica gel, 
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eluting with petrol) to give xylylgermane 105 as a clear colourless liquid (0.464g, 

2.08mmol,69%). RfO.74 (petrol); IH NMR (COCh) 8 0.52 (9H, s, (CH3)3Ge), 2.46 

(6H, s, CH3C), 7.11 (1H, s, CH3CCHCCH3), 7.24 (2H, s, 

CH3CCHC(Ge(CH3h)CHCCH3); 13C NMR (COCh) 8 -1.7 (q), 21.5 (q), 130.1 (d), 

130.7 (d), 137.3 (s), 142.4 (s); IR (neat) 2972, 2909,1597,1236,1137,828,600 cm· l
; 

MS (El) mlz 224 (M'+ 11%),209 (100%),179 (11%),119 (8%),105 (16%); HRMS 

calc'd for CIIH1874Ge 224.0620, found 224.0623, error -1.2ppm. 

Trimethyl-(2.6-dimethylpheny/)-germane (107' 

Me3Gex) I Molecular Weight =222.86 
~ Molecular Formula =C11H1BGe 

107 

2,6-0imethylbromobenzene (0.400mL, 0.556g, 3.00mmol) was dissolved in 

anhydrous THF (10mL) under N2 and cooled to -78°C. n-BuLi (2.5M, 1.8mL, 

4.50mmol) was added slowly and dropwise and the resulting solution stirred for 45 

minutes. Trimethylgermanium bromide (0.490mL, 0.757g, 3.83mmol) was then 

added dropwise and the reaction mixture stirred for 45 minutes. The CO2/acetone 

bath was removed, and the reaction mixture stirred for a further 30 minutes before 

being quenched with distilled water (2mL) and partitioned between Et20 (2 x 20mL) 

and H20 (20mL). The organic extracts were dried with MgS04 and concentrated in 

vacuo. The resulting mixture was purified by column chromatography (4 x 2cm 

Silica gel, eluting with petrol) to give xylylgermane 107 as a clear colourless liquid 

(0.537g, 2.41mmol, 80%). Rf 0.71 (petrol); IH NMR (COCh) 8 0.57 (9H, s, 

(CH3)3Ge), 2.48 (6H, s, CH3C), 7.01-7.04 (2H, m, CH3CCHCHCHCCH3), 7.14-7.20 

(tH, m, CHCHCH); I3C NMR (COCh) 0 3.6 (q), 24.6 (q), 127.8 (d), 128.4 (d), 143.5 

(s), one quaternary carbon not observed; IR (neat) 3052, 2968, 2909, 1566, 1448, 

1236,833, 768 cm,l; MS (EI) mlz 224 (M+ 14%), 209 (100%), 179 (7%), 119 (20%), 

105 (39%); HRMS calc'd for CIIHI874Ge 224.0620, found 224.0622, error-O.6ppm. 
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Trimefhyl-(4-mefhoxyphenvlJ-germane (101 t21 
Me3Ge~ 

~OMe 
101 

Molecular Weight =224.83 
Molecular Formula =C10H1SGeO 

Experimental 

4-Bromoanisole (0.380mL, 0.S68g, 3.04mmol) was dissolved in anhydrous THF 

(lSmL) under N2 and cooled to -78°C. s-BuLi (I.3M, 3.SmL, 4.SSmmol) was added 

slowly and dropwise and the resulting solution stirred for S minutes. 

Trimethylgermanium bromide (0.485mL, 0.749g, 3.79mmol) was then added 

dropwise and the reaction mixture stirred for IS minutes. The C02/acetone bath was 

removed, and the reaction mixture stirred for a further IS minutes before being 

quenched with distilled water (2mL) and partitioned between Et20 (2 x 20mL) and 

H20 (20mL). The organic extracts were dried with MgS04 and concentrated in 

vacuo. The resulting mixture was purified by column chromatography (4 x 2cm 

Silica gel, eluting with petro I/EtOAc , 911) to give p-anisylgermane 101 as a clear 

colourless liquid (0.60Sg, 2.69mmol, 89%). Rj 0.90 (petroIlEtOAc, 9/1); In NMR 

(CDC h) 0 0.39 (9H, s, (CH3hGe), 3.83 (3H, s, OCH3), 6.94 (2H, d, J 8.S, 

CH30CCH), 7.42 (2H, d, J 8.S, (CH3)3GeCCH); MS mlz (EI) 226 (M+ 6%), 211 

(100%),181 (17%), 121 (19%), lOS (13%), 89 (17%). 

239 
Trimefhyl-(3-mefhoxyphenylJ-germane (102) 

Molecular Weight =224.83 
Molecular Formula =C10H1SGeO 

3-Bromoanisole (0.250mL, 0.369g, 1.97mmol) was dissolved in anhydrous THF 

(10mL) under N2 and cooled to -78°C. s-BuLi (1.3M, 2.3SmL, 3.06mmol) was added 

slowly and dropwise and the resulting solution stirred for 30 minutes. 

Trimethylgermanium bromide (0.310mL, 0.4 79g, 2.42mmol) was then added 

dropwise and the reaction mixture stirred for 30 minutes. The C02/acetone bath was 

removed, and the reaction mixture stirred for a further 30 minutes before being 

quenched with distilled water (2mL) and partitioned between Et20 (2 x ISmL) and 
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H20 (10mL). The organic extracts were dried with MgS04 and concentrated in 

vacuo. The resulting mixture was purified by column chromatography (4 x Scm 

Silica gel, eluting with petrol/EtOAc, 19/1) to give m-anisylgermane 102 as a clear 

colourless liquid (0.0867g, 0.386mmol, 20%). Rf 0.39 (petrol); 10 NMR (CDCh) 0 

0.39 (9H, s, (CH3)3Ge), 3.83 (3H, s, OCH3), 6.86-6.90 (I H, m, 

GeCCHCHCHCOCH3), 7.03-7.09 (2H, m, Ar CH's), 7.31-7.34 (IH, m, 

GeCCHCHCHCOCH3); MS mlz (EI) 226 (M+ 11%), 211 (100%), 181 (13%), lOS 

(18%),91 (19%). 

Trimefhvl-(2-pyridylJ-germane (10Sl
4

0,241 

Molecular Weight =195.79 
Molecular Formula =CeH13GeN 

2-Bromopyridine (0.285mL, 0.472g, 2.99mmol) was dissolved in anhydrous THF 

(30mL) under N2 and cooled to -78°C. n-BuLi (2.5M, l.4mL, 3.50mmol) was added 

slowly and dropwise and the resulting solution stirred for 45 minutes. 

Trimethylgermanium bromide (0.450mL, 0.696g, 3.52mmol) was then added 

dropwise and the reaction mixture stirred for 30 minutes. The C02/acetone bath was 

removed, and the reaction mixture stirred for a further 30 minutes before being 

quenched with distilled water (2mL) and partitioned between Et20 (2 x 20mL) and 

H20 (20mL). The organic extracts were dried with MgS04 and concentrated in 

vacuo. The resulting mixture was purified by column chromatography (4 x 2cm 

Silica gel, eluting with petrollEtOAc, 8/2) to give pyridylgermane 108 as a clear 

colourless liquid (0.475g, 2.43mmol, 81 %). Rf 0.69 (petrollEtOAc, 8/2); 10 NMR 

(CDC h) 0 0.42 (9H, s, (CH3)3Ge), 7.11-7.17 (1 H, m, Ar CH), 7.42-7.45 (1 H, m, Ar 

CH), 7.50-7.54 (IH, m, Ar CH), 8.71-8.73 (IH, m, Ar CH); MS mlz (EI) 197 (M'+ 

28%), 196 (37%),182 (100%), 152 (94%), 93 (70%), 89 (50%). 
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Ethyl3-(trimethylgermanyl)benzoate (110) 

Me3Ge'VC02Et 
I Molecular Weight =266.87 
~ Molecular Formula =C12H1SGe02 

110 

Ethyl 3-iodo-benzoate (0.490mL, 0.809g, 2.93mmol) was dissolved in anhydrous 

THF (30mL) under N2 and cooled to -40°C. iso-Propyl magnesium chloride (2.0M in 

THF, 1.65mL, 3.3mmol) was then added slowly and dropwise, and the resulting 

mixture stirred for 90 minutes. Trimethylgermanium bromide (0.445mL, 0.687g, 

3.48mmol) was then added slowly and dropwise and the reaction solution stirred for a 

further 2.75 hours before being quenched with aqueous NH4Cl solution (ImL) and 

partitioned between CH2Ch (3 x 20mL) and distilled water (30mL). The organic 

extracts were dried with MgS04, filtered, then filtered through Silica gel and 

concentrated in vacuo to give m-benzoate 110 as a clear colourless liquid (O.581g, 

2.18mmol, 74%). Rf 0.79 (petrollEtOAc, 8/2); IH NMR (CDC b) 0 0.46 (9H, s, 

(CH3hGe ), 1.44 (3H, t, J 7.0, CH2CH3), 4.43 (2H, q, J 7.0, CH2CH3), 7.42-7.48 (lH, 

m, GeCCHCHCHCC02Et), 7.67-7.71 (IH, m, GeCCHCHCHCC02Et), 8.02-8.07 

(l H, m, GeCCHCHCHCC02Et), 8.21 (l H, m, GeCCHCC02Et); I3C NMR (CDCh) 0 

-1.8 (q), 14.4 (q), 60.8 (t), 127.8 (d), 129.4 (d), 129.9 (s), 133.9 (d), 137.4 (d), 143.0 

(s), 166.9 (s); IR (neat) 2977, 2908, 1715, 1590, 1367, 1261, 1117,826,742 cm- I
; 

MS mlz (EI) 268 (M'+ 1%), 253 (100%), 225 (48%), 149 (17%), 119 (31%), 104 

(28%),91 (34%), 89 (32%); HRMS (ESl+) calc'd for C12Hl/4Ge02 269.0597, found 

269.0588, error-3.4ppm. 
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6.3.2 Acylation 

General method for acylation: Acetylation of trimethyl-(3,5-

dimethylphenylJsilane to give 3,5-dimethylacetophenone (96l
42 

and 

2,4-dimethylacetophenone (97t
3 

+ 

94 96 97 

To a suspension of aluminium(III) chloride (0.0808g, 0.606mmol) in anhydrous 

CH2Ch (lmL) under nitrogen and cooled to O°C with stirring, was added acetyl 

chloride (41 ~L, 0.0453g, 0.577mmol) dissolved in anhydrous CH2Ch (0.5mL) 

dropwise and slowly. The solution was then cooled further to -78°C. Silylxylene 94 

(0.0859g, 0.502mmol) was dissolved in anhydrous CH2Ch (0.5mL) and added to the 

acetyl tetrachloroaluminate solution slowly and dropwise, before being stirred for 1 

hour. The reaction was quenched with saturated aqueous NH4Cl solution before 

being warmed to rt and extracted with CH2Ch (3 x 5mL). The organic layers were 

combined, dried with MgS04, filtered and concentrated in vacuo. Purification of the 

crude product by column chromatography (4 x 6cm Silica gel, eluted with 

petrol/EtOAc, 9/1) gave an inseparable mixture of 3,5 and 2,4 dimethylacetophenones 
242 243 . 

96 and 97 respectively (0.0715g, 0.482mmol, 96%). Rf 0.42 (petro IIEtOAc , 

9/1); GelMS Rt 8.74min, MS mlz (EI) 148 (M'+ 44%), 133 (100%), 105 (61%), 77 

(28%); Rt 9.11min, MS mlz (EI) 148 (M+ 50%), 133 (100%), 105 (70%), 77 (28%). 
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Acetylation of trimethyl-(4-methyl-pheny/)-germane to give 4-
242 

methylacetophenone (111) 

Using the general method above, but with aluminium(III) chloride (O.SlSg, 

O.613mmol) in CH2Ch (tmL), acetyl chloride (41/-tL. O.0453g. 0.577mmol) in 

CH2Ch (0.5mL) and p-tolylgermane 41 (0.0972g, 0.465mmol) in CH2Ch (0.5mL), to 

give 4-methylacetophenone 111 (0.0534g, 0.398mmol, 86%). Rf 0.47 (petroI/EtOAc, 

9/1); IH NMR (CDCh) B 2.42 (3H, s, CH3CO), 2.59 (3H, s, (CH3C), 7.26 (2H, d, J 

8.0, CH3CCH), 7.87 (2H, d, J 8.0. CH3COCCH); MS mlz (EI) 134 (M'+ 34%), 119 

(100%),91 (76%),65 (26%). 

Acetylation of trimethyl-(3-methylpheny/)-germane to give 3-
244 

methvlacetophenone (114) 

Using the general method above, but with aluminium(III) chloride (0.0803g, 

0.602mmol) in CH2Ch (tmL), acetyl chloride (41/-tL, 0.0453g, 0.577mmol) in 

CH2Ch (0.5mL) and m-tolylgermane 104 (0.104g, 0.498mmol) in CH2Ch (0.5mL), to 

give 3-methylacetophenone 114 (0.0436g, 0.325mmol, 65%). RfO.28 (petroI/EtOAc, 

19/1); IH NMR (CDCh) B 2.42 (3H, s, CH3CO), 2.61 (3H, s, CH3C), 7.33-7.41 (2H, 

m, CH3CCHCH). 7.75-7.79 (2H. m, CHC(COCH3)CH); MS mlz (EI) 134 (M+ 28%), 

119 (100%), 91 (77%),65 (28%). 
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Acetylation of trlmethyl·(3.5·dimethyl·phenyl)·germane to give 3.5· 
. 242. 243 

dlmethylacetophenone (96) and 2.4-dlmethylacetophenone (97) 

Me3Gev AcCI, AlC~, CH,CI,. ~ + ~ 
105 96 97 

Using the general method above, but with aluminium(II1) chloride (0.0798g, 

0.598mmol) in CH2Ch (ImL), acetyl chloride (41 ~L, 0.0453g, 0.577mmol) in 

CH2Ch (0.5mL) and m-xylene 105 (0.112g, 0.S03mmol) in CH2Ch (O.SmL), to give 

an inseparable mixture of isomers assigned as 3,S and 2,4 dimethylacetophenones 
242 243 . 

96 and 97 (cj Sllylxylene 94) 0.057g, 0.380mmol, 76%). R/0.42 (petroIlEtOAc, 

9/1); GCIMS Rt 8.63min, MS mlz (EI) 148 (M+ 31%), 133 (100%), lOS (71%), 77 

(25%); Rt 8.98min, MS mlz (EI) 148 (M'+ 34%), 133 (100%), 105 (86%), 77 (26%). 

Acetylation of trlmethyl·(2.6.dimethylphenyl)-germane to give 2.6· 
244 

dimethylacetophenone (115) 

Using the general method above, but with aluminium(II1) chloride (0.0807g, 

0.605mmol) in CH2Ch (ImL), acetyl chloride (41~L, 0.0453g, 0.577mmol) in 

CH2Ch (O.SmL) and o-xylene 107 (0.1 12g, 0.503mmol) in CH2Ch (0.5mL), to give 

2,6-dimethylacetophenone 115. R/0.31 (petrol/EtOAc, 9/1); IH NMR (CDCh) 0 2.26 

(6H, s, CH3C), 2.49 (3H, s, CH3CO), 7.01-7.04 (2H, m, CH3CCH), 7.14-7.20 (IH, m, 

CHCHCH); MS m/z (EI) 148 (M'+ 24%), 133 (l00%), 105 (81 %), 77 (26%). 
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Acetylation of trimethyl-(4-methoxyphenylJ-germane to give 4-
242 

methoxyacetophenone (112) 

o 

~ ~OMe 
112 

Using the general method above, but with aluminium(III) chloride (0.0833g, 

0.624mmol) in CH2Ch (ImL), acetyl chloride (41)lL, 0.0453g, 0.577mmol) in 

CH2Ch (0.5mL) and p-anisylgermane 101 (0.105g, OA67mmol) in CH2Ch (0.5mL), 

to give 4-methoxyacetophenone 112 (0.0442g, 0.294mmol, 63%). R, 0.33 

(petroIlEtOAc, 8/2); IH NMR (CDCh) 8 2.56 (3H, s, COCH3), 3.87 (3H, s, OCH3), 

6.93 (2H, d, J 9.0, CH30CCH), 7.94 (2H, d, J 9.0, CH3COCCH); MS mlz (EI) 150 

(M'+ 33%), 135 (100%), 107 (20%), 92 (25%), 77 (43%). 

Acetylation of trimethyl-(3-methoxvphenvlJ-germane to give 2-

(trimethylgermylJ-4-methoxyacetophenone (113) 

113 

Using the general method above, but with aluminium(lII) chloride (0.0837g, 

0.628mmol) in CH2Ch (ImL), acetyl chloride (41)lL, 0.0453g, 0.577mmol) in 

CH2Ch (0.5mL) and m-anisylgermane 102 (0.118g, 0.525mmol) in CH2Ch (0.5mL), 

to give acetylanisylgermane 113 (0.1 09g, OA10mmol, 78%). Rj- 0.38 (petrollEtOAc, 

9/1); IH NMR (CDC h) 8 0041 (9H, s, Ge(CH3)3), 2.58 (3H, s, COCH3), 3.88 (3H, s, 

OCH3), 6.89 (IH, dd, J 8.5 and 3.0, CH30CCHCHCCOCH3), 7.21 (lH, d, J 3.0, 

(CH3)3GeCCH), 7.91 (1H, d, J 8.5, CH3COCCH); IR (neat) 2964, 1677, 1587, 1563, 

1269, 1227, 1045,827 em-I; 13C NMR (CDCI3) 8 0.0 (q), 26.8 (q), 55.1 (q), 111.9 (d), 

121.2 (d), 132.5 (d), 143.3 (s), 167.2 (s), two quaternary carbons not observed; MS 

mlz (EI) 253 ([M-Mer 100%),238 (II %),223 (27%), 119 (23%), 89 (18%); HRMS 

(EI) ca1c'd for C12HI874Ge02 268.0519, found 268.0521, error-0.7ppm. 
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IH NMR Id nOe experiment: 

H1 07.21ppm 
H2 06.89ppm 
H3 0 7.91ppm 

Experimental 

Irradiation of the trimethylgermyl protons at 0 0.41 ppm gave a response at 0 7.2lppm 

(HI), irradiation of the methoxy protons at 0 3.88ppm gave responses at 07.21 ppm 

(HI) and 0 6.89ppm (H2), whilst irradiation of the acyl protons at 0 2.58ppm gave a 

response at 0 7.91ppm (H3), thus confirming the above substitution pattern. 

Acetylation of anisylgermane 13 to give 4-methoxvacetophenone 

(112{42 

\ / 

COE~ ..... , Geo AcCI AICI CH CI I .... I .... . 3' 2 2 .. 

o A A OMe 
~ ~OMe 

13 112 

Using the general method above, but with aluminium(III) chloride (0.0602g, 

0.451mmol) in CH2Ch (lmL), acetyl chloride (35 ilL, 0.0387g, 0.493mmol) in 

CH2Ch (0.5mL) and anisylgermane 13 (0.140g, 0.347mmol) in CH2Ch (0.5mL), to 

give 4-methoxyacetophenone 112 (O.0273g, O.182mmol, 52%). Analytical data as 

above. 

- 269-



Chapter 7 Bibliography 

7 Bibliography 

(1) Miyaura, N.; Suzuki, A. Chern. Rev. 1995,95,2457-83. 

(2) Farina, V. Pure Appl. Chem. 1996,68, 73-8. 

(3) Mitchell, T. N. Synthesis 1992, 803-15. 

(4) Stille, J. K. Angew. Chem. 1986,98,504-19. 

(5) Negishi, E.; King, A. 0.; Okukado, N.J Org. Chem. 1977,42,1821-3. 

(6) Negishi, E.-i. Handbook of Organopalladium Chemistry for Organic Synthesis; 

John Wiley and Sons Ltd.: Chichester, 2002, 1,229-247. 

(7) Lukevics, E.; Pudova, O. in Chemistry of Organic Germanium, Tin and Lead 

Compounds; Rappoport, Z., Apeloig, Y., Eds.; John Wiley and Sons Ltd.: 

Chichester, 2002, 2, 1685-1714. 

(8) Davies, A. O. Appl. Organomet. Chern. 1997,11,929-930. 

(9) Davies, A. O. Organotin Chemistry; John Wiley and Sons Ltd.: Chichester, 

1997. 

(10) Hiyama, T. in Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, 

P. J., Eds.; Wiley-VCH: Weinheim, 1998,421-453. 

(II) Lukevics, E.; Ignatovich, L. in Chemistry of Organic Germanium, Tin and Lead 

Compounds; Rappoport, Z., Apeloig, Y., Eds.; John Wiley and Sons Ltd.: 

Chichester, 2002, 2, 1653-1683. 

(12) Thomas, E. 1. Science of Synthesis 2003, 5,195-204. 

(13) Eabom, C.; Pande, K. C. J Chem. Soc. 1960, 1566-71. 

(14) Kosugi, M.; Sasazawa, K.; Shimizu, Y.; Migita, T. Chem. Lett. 1977,301-2. 

(15) Kosugi, M.; Shimizu, Y.; Migita, T. Chem. Lett. 1977, 1423-4. 

- 270-



Chapter 7 Bibliography 

(16) Milstein, D.; Stille, J. K. J Am. Chern. Soc. 1979, 101,4992-8. 

(17) Milstein, D.; Stille, 1. K. J Org. Chem. 1979, 44, 1613-18. 

(18) Farina, V.; Krishnan, 8.; Marshall, D. R.; Roth, O. P. J. Org. Chem. 1993,58, 

5434-44. 

(19) Chemistry of Tin; Second ed.; Smith, P. J., Ed.; Chapman and Hall: London, 

1997. 

(20) Vedejs, E.; Haight, A. R.; Moss, W. O. JAm. Chem. Soc. 1992,114,6556-8. 

(21) Scott, W. J.; Stille, J. K. J Am. Chern. Soc. 1986, 108,3033-40. 

(22) Stille, J. K.; Sweet, M. P. Organometallics 1990, 9, 3189-91. 

(23) Hirama, M.; Fujiwara, K.; Shigematu, K.; Fukazawa, Y. JAm. Chem. Soc. 

1989,111,4120-2. 

(24) Littke, A. F.; Schwarz, L.; Fu, O. C. JAm. Chem. Soc. 2002, 124,6343-6348. 

(25) Tang, H.; Menzel, K.; Fu, O. C. Angew. Chern., Int. Ed. 2003, 42, 5079-5082. 

(26) Menzel, K.; Fu, O. C. J. Am. Chem. Soc. 2003, 125,3718-3719. 

(27) Casado, A. L.; Espinet, P. JAm. Chem. Soc. 1998,120,8978-8985. 

(28) Casado, A. L.; Espinet, P.; Gallego, A. M. J Am. Chern. Soc. 2000, 122, 11771-

11782. 

(29) Casado, A. L.; Espinet, P. Organometallics 1998,17,954-959. 

(30) Stille, J. K. In Chem. Met.-Carbon Bond; Hartley, F. R., Patai, S., Eds.; John 

Wiley and Sons Ltd.: Chichester, 1985, Vol. 2, 625-787. 

(31) Cross, R. J. Adv. Inorg. Chern. 1989, 34, 219-92. 

(32) Stille, 1. K.; Lau, K. S. Y. Acc. Chem. Res. 1977,10,434-42. 

- 271 -



Chapter 7 Bibliographv 

(33) Brown, J. M.; Pearson, M.; Jastrzebski, T. B. H.; Van Koten, G. J. Chern. Soc., 

Chern. Cornrnun. 1992, 1440-1. 

(34) Littke, A. F.; Fu, O. C. Angew. Chern., Int. Ed. 1999,38,2411-2413. 

(35) Hiyama, T.; Obayashi, M.; Sawahata, M. Tetrahedron Lett. 1983,24,4113-16. 

(36) Hiyama, T.; Obayashi, M.; Mori, I.; Nozaki, H. J. Org. Chem. 1983,48,912-14. 

(37) Fujita, M.; Hiyama, T. J. Am. Chern. Soc. 1985,107,8294-6. 

(38) Fujita, M.; Hiyama, T. Tetrahedron Lett. 1987,28,2263-4. 

(39) Fujita, M.; Obayashi, M.; Hiyama, T. Tetrahedron 1988,44,4135-45. 

(40) Fujita, M.; Hiyama, T. J. Am. Chern. Soc. 1985,107,4085-7. 

(41) Yoshida, J.; Tamao, K.; Yamamoto, H.; Kakui, T.; Uchida, T.; Kumada, M. 

Organometallics 1982, 1,542-9. 

(42) Hallberg, A.; Westerlund, C. Chem. Lett. 1982, 1993-4. 

(43) Kikukawa, K.; Ikenaga, K.; Wada, F.; Matsuda, T. Chem. Lett. 1983, 1337-40. 

(44) Hatanaka, Y.; Hiyama, T. 1. Org. Chem. 1988,53,918-20. 

(45) Hatanaka, Y.; Hiyama, T. J. Org. Chern. 1989,54,268-70. 

(46) Hatanaka, Y.; Fukushima, S.; Hiyama, T. Chern. Lett. 1989,1711-14. 

(47) Hatanaka, Y.; Hiyama, T. Chern. Lett. 1989,2049-52. 

(48) Hatanaka, Y.; Hiyama, T. J. Arn. Chern. Soc. 1990,112, 7793-4. 

(49) Hatanaka, Y.; Hiyama, T. Tetrahedron Lett. 1988,29,97-8. 

(50) Matsuhashi, H.; Asai, S.; Hirabayashi, K.; Hatanaka, Y.; Mori, A.; Hiyama, T. 

Bull. Chem. Soc. Jpn. 1997, 70,437-444. 

- 272-



Chapter 7 Bibliographv 

(51) Matsuhashi, H.; Kuroboshi, M.; Hatanaka, Y.; Hiyama, T. Tetrahedron Lett. 

1994,35,6507-10. 

(52) Hatanaka, Y.; Goda, K.; Hiyama, T.; Okahara, Y. Tetrahedron 1994, 50, 8301-

16. 

(53) Gouda, K.-i.; Hagiwara, E.; Hatanaka, Y.; Hiyama, T. J Org. Chern. 1996,61, 

7232-7233. 

(54) Hagiwara, E.; Gouda, K.-i.; Hatanaka, Y.; Hiyama, T. Tetrahedron Lett. 1997, 

38, 439-442. 

(55) Takahashi, K.; Minami, T.; Ohara, Y.; Hiyama, T. Tetrahedron Lett. 1993, 34, 

8263-6. 

(56) Takahashi, K.; Minami, T.; Ohara, Y.; Hiyama, T. Bull. Chern. Soc. Jpn. 1995, 

68, 2649-56. 

(57) Matsuhashi, H.; Hatanaka, Y.; Kuroboshi, M.; Hiyama, T. Heterocycles 1996, 

42,375-84. 

(58) Homsi, F.; Nozaki, K.; Hiyama, T. Tetrahedron Lett. 2000,41,5869-5872. 

(59) Homsi, F.; Hosoi, K.; Nozaki, K.; Hiyama, T. J Organomet. Chern. 2001,624, 

208-216. 

(60) Damrauer, R.; Danahey, S. E. Organornetallics 1986, 5, 1490. 

(61) Hatanaka, Y.; Fukushima, S.; Hiyama, T. Tetrahedron 1992,48,2113-26. 

(62) Tamao, K.; Kobayashi, K.; Ito, Y. Tetrahedron Lett. 1989,30,6051-4. 

(63) Minami, T.; Nishimoto, A.; Hanaoka, M. Tetrahedron Lett. 1995, 36, 9505-8. 

(64) Shibata, K.; Miyazawa, K.; Goto, Y. Chern. Cornmun. 1997, 1309-1310. 

(65) DeShong, P.; Handy, C. J.; Mowery, M. E. Pure Appl. Chem. 2000, 72, 1655-

1658. 

- 273-



Chapter 7 Bibliographv 

(66) Correia, R.; DeShong, P. 1. Org. Chem. 2001, 66, 7159-7165. 

(67) Mowery, M. E.; DeShong, P. 1. Org. Chem. 1999,64, 1684-1688. 

(68) Mowery, M. E.; DeShong, P. Org. Lett. 1999,1,2137-2140. 

(69) Lee, H. M.; Nolan, S. P. Org. Lett. 2000,2,2053-2055. 

(70) Lee, J.-Y.; Fu, G. C. 1. Am. Chem. Soc. 2003, 125,5616-5617. 

(71) Denmark, S. E.; Wang, Z. 1. Organa met. Chem. 2001,624,372-375. 

(72) Manoso, A. S.; DeShong, P. 1. Org. Chem. 2001,66, 7449-7455. 

(73) Murata, M.; Suzuki, K.; Watanabe, S.; Masuda, Y. 1. Org. Chem. 1997, 62, 

8569-8571. 

(74) Murata, M.; Watanabe, S.; Masuda, Y. Tetrahedron Lett. 1999,40,9255-9257. 

(75) Murata, M.; Ishikura, M.; Nagata, M.; Watanabe, S.; Masuda, Y. Org. Lett. 

2002,4, 1843. 

(76) Denmark, S. E.; Wang, Z. Org. Lett. 2001,3, 1073-1076. 

(77) Denmark, S. E.; Pan, W. Org. Lett. 2001,3,61-64. 

(78) Denmark, S. E.; Pan, W. Org. Lett. 2003,5,1119-1122. 

(79) Denmark, S. E.; Pan, W. Org. Lett. 2002,4,4163-4166. 

(80) Denmark, S. E.; Kobayashi, T. J. Org. Chem. 2003, 68, 5153-5159. 

(81) Denmark, S. E.; Yang, S.-M. Org. Lett. 2001,3,1749-1752. 

(82) Denmark, S. E.; Yang, S.-M. 1. Am. Chem. Soc. 2002, 124,2102-2103. 

(83) Denmark, S. E.; Yang, S.-M. 1. Am. Chem. Soc. 2002, 124, 15196-15197. 

(84) Riggleman, S.; DeShong, P.l. Org. Chem. 2003,68,8106-8109. 

- 274-



Chapter 7 Bibliography 

(85) Denmark, S. E.; Sweis, R. F. Acc. Chem. Res.2002, 35, 835-846. 

(86) Denmark, S. E.; Griedel, B. D.; Coe, D. M.; Schnute, M. E. JAm. Chem. Soc. 

1994, 116, 7026-43. 

(87) Denmark, S. E.; Choi, 1. Y. J Am. Chern. Soc. 1999,121,5821-5822. 

(88) Denmark, S. E.; Wang, Z. Synthesis 2000,999-1003. 

(89) Denmark, S. E.; Wu, Z. Org. Lett. 1999,1, 1495-1498. 

(90) Hirabayashi, K.; Kawashima, 1.; Nishihara, Y.; Mori, A.; Hiyama, T. Org. Lett. 

1999,1,299-301. 

(91) Hirabayashi, K.; Mori, A.; Kawashima, 1.; Suguro, M.; Nishihara, Y.; Hiyama, 

T. J Org. Chern. 2000, 65, 5342-5349. 

(92) Denmark, S. E.; Wehrli, D. Org. Lett. 2000,2,565-568. 

(93) Denmark, S. E.; Pan, W. J Organomet. Chem. 2002, 653,98-104. 

(94) Denmark, S. E.; Neuville, L. Org. Lett. 2000,2,3221-3224. 

(95) Chang, S.; Yang, S. H.; Lee, P. H. Tetrahedron Lett. 2001,42,4833-4835. 

(96) Denmark, S. E.; Wehrli, D.; Choi, 1. Y. Org. Lett. 2000,2,2491-2494. 

(97) Denmark, S. E.; Sweis, R. F. J. Am. Chem. Soc. 2001, 123,6439-6440. 

(98) Denmark, S. E.; Ober, M. H. Org. Lett. 2003,5, 1357-1360. 

(99) Denmark, S., E.; Kallemeyn, 1., M. Org. Lett. 2003,5,3483-3486. 

(100) Fleming, I. Chemtracts: Org. Chem. 1996, 9, 1-64. 

(101) Tamao, K. Adv. Silicon Chem. 1996,3, 1-62. 

(102) ltami, K.; Nokami, T.; Ishimura, Y.; Mitsudo, K.; Kamei, T.; Yoshida, l-i. J. 

Am. Chem. Soc. 2001, 123, 11577-11585. 

- 275-



Chapter 7 Bibliographv 

(103) Itami, K.; Mitsudo, K.; Nokami, T.; Kamei, T.; Koike, T.; Yoshida, J.-i. J. 

Organornet. Chern. 2002,653,105-113. 

(104) Itami, K.; Nokami, T.; Yoshida, J.-i. J. Am. Chem. Soc. 2001, 123,5600-5601. 

(105) Hosoi, K.; Nozaki, K.; Hiyama, T. Chern. Lett. 2002, 138-139. 

(106) Katayama, H.; Taniguchi, K.; Kobayashi, M.; Sagawa, T.; Minami, T.; Ozawa, 

F. J. Organornet. Chern. 2002,645, 192-200. 

(107) Katayama, H.; Nagao, M.; Moriguchi, R.; Ozawa, F. J. Organornet. Chern. 

2003, 676, 49-54. 

(108) Anderson, J. C.; Anguille, S.; Bailey, R. Chem. Cornrnun. 2002,2018-2019. 

(109) Trost, B. M.; Machacek, M. R.; Ball, Z. T. Org. Lett. 2003,5,1895-1898. 

(110) Nakao, Y.; ada, T.; Sahoo, A. K.; Hiyama, T. J. Organomet. Chem. 2003, 687, 

570-573. 

(II I) Grushin, V. V. Chern. Eur. J. 2002,8,1007-14. 

(112) Miyaura, N.; Suzuki, A. Chem. Rev. 1995,95,2457-83. 

(113) Matos, K.; Soderquist, J. A. J. Org. Chern. 1998,63,461-70. 

(114) Denmark, S. E.; Sweis, R. F. Org. Lett. 2002,4,3771-3774. 

(115) Bassindale, A. R.; Borbaruah, M.; Glynn, S. J.; Parker, D. J.; Taylor, P. G. J. 

Organornet. Chern. 2000, 606, 125-131. 

(116) Fleming, I. Compr. Org. Chern. 1979,3, 541-686. 

(117) Mateo, C.; Fernandez-Rivas, C.; Cardenas, D. J.; Echavarren, A. M. 

Organornetallics 1998, 17,3661-3669. 

(118) Dallaire, C.; Brook, M. A. Organornetallics 1993, 12,2332-2338. 

- 276-



Chapter 7 Bibliographv 

(119) Cerveau, G.; Chuit, C.; Corriu, R. 1. P.; Reye, C. J. Organomet. Chem. 1987, 

328, CI7-C20. 

(120) Boyer, J.; Breliere, C.; Corriu, R. J. P.; Kpoton, A.; Poirier, M.; Royo, G. J. 

Organomet. Chern. 1986,311, C39-C43. 

(121) Gordon, M. S.; Carroll, M. T.; Davis, L. P.; Burggraf, L. W. J Phys. Chern. 

1990,94,8125-8. 

(122) Sakurai, H. Synlett 1989, 1-8. 

(123) Kira, M.; Sato, K.; Sakurai, H. J Org. Chem. 1987,52,948-9. 

(124) Denmark, S. E.; Wynn, T.J. Am. Chern. Soc. 2001, 123, 6199-6200. 

(125) Negishi, E. Pure Appl. Chem. 1981,53,2333-56. 

(126) Yoshida, 1.; Tamao, K.; Takahashi, M.; Kumada, M. Tetrahedron Lett. 1978, 

2161-4. 

(127) Chemler, S. R.; Trauner, D.; Danishefsky, S. 1. Angew. Chern., Int. Ed. 2001, 

40, 4544-4568. 

(128) ltami, K.; Kamei, T.; Yoshida, 1.-i. J Am. Chern. Soc. 2001, 123, 8773-8779. 

(129) Kosugi, M.; Tanji, T.; Tanaka, Y.; Yoshida, A.; Fugami, K.; Kameyama, M.; 

Migita, T. J Organomet. Chem. 1996,508,255-257. 

(130) Karlov, S. S.; Zaitseva, G. S. Chern. Heterocyclic Cornp. 2001,37, 1325-57. 

(131) Yang, C.; Jensen, M. S.; Conlon, D. A.; Yasuda, N.; Hughes, D. L. Tetrahedron 

Lett. 2000,41,8677-81. 

(132) Faller, J. W.; Kultyshev, R. G. Organometallics 2002,21,5911-5918. 

(133) Hannah, 1., Post graduate student in the Spivey research group, October 2002 -

present. 

- 277-



Chapter 7 Bibliographv 

(134) lurkschat, K.; Schmid, B.; Dybiona, M.; Baumeister, U.; Hartung, H. A. T. 

Anorg. AUg. Chem. 1988,560, 110-118. 

(135) Nakamura, T.; Kinoshita, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2002, 4, 

3165-3167. 

(136) Han, Y.; Walker, S. D.; Young, R. N. Tetrahedron Lett. 1996,37,2703-2706. 

(137) Uhlig, W. J. Organornet. Chern. 1991,409,377-383. 

(138) Fleming, I.; Henning, R.; Parker, D. C.; Plaut, H. E.; Sanderson, P. E. 1. J. 

Chem. Soc., Perkin. Trans. 1 1995,317-323. 

(139) Chvalovsky, V.; Bazant, V. Helv. Chirn. Acta. 1969,52,2399-2417. 

(140) Eabom, C.; Webster, D. E. J. Chern. Soc., Abstr. 1960, 179-83. 

(141) Stock, L. M.; Spector, A. R. J. Org. Chern. 1963,28,3272-4. 

(142) Lothian, A. P.; Ramsden, C. A. Synlett 1993, 753-755. 

(143) Speranza, M.; Shiue, C.-Y.; Wolf, A. P.; Wilbur, D. S.; Angelini, G. J. Fluorine 

Chem. 1985,30,37-107. 

(144) Prouilhac-Cros, S.; Babin, P.; Bennetau, B.; Dunogues, 1. Bull. Soc. Chirn. Fr. 

1995, 132, 513-516. 

(145) Spialter, L.; Austin, 1. D. J. Am. Chern. Soc. 1966,88, 1828. 

(146) Funk, R. L.; Vollhardt, K. P. C. J. Am. Chern. Soc. 1979,101,215-17. 

(147) Dey, K. J. Indian Chem. Soc. 1971,50,224. 

(148) Bott, R. W.; Eabom, C.; Hashimoto, T. J. Organomet. Chem. 1965,3,442-447. 

(149) Wuts, P. G. M.; Wilson, K. E. Synthesis 1998, 1593-1595. 

- 278-



Chapter 7 Bibliography 

(150) Bennetau, B.; Rajarison, F.; Dunogues, J.; Babin, P. Tetrahedron 1993, 49, 

10843-54. 

(151) Bhattacharya, S. N.; Eabom, C.; Walton, D. R. M. J. Chern. Soc. C 1969, 1367-

9. 

(152) Sharp, M. J.; Cheng, W.; Snieckus, V. Tetrahedron Lett. 1987,28,5093-6. 

(153) Dey, K.; Eabom, C.; Walton, D. R. M. Organornetal. Chern. Syn. 1971,1,151-

60. 

(154) Haebich, D.; Effenberger, F. Synthesis 1979, 841-76. 

(155) Hillard, R. L., III; Vollhardt, K. P. C. J. Arn. Chern. Soc. 1977,99,4058-69. 

(156) Sasaki, T.; Usuki, A.; Ohno, M. J. Org. Chern. 1980,45,3559-64. 

(157) Felix, G.; Laguerre, M.; Dunogues, 1.; Calas, R. J. Org. Chern. 1982, 47, 1423-

7. 

(158) Bennetau, B.; Krempp, M.; Dunogues, 1.; Ratton, S. Tetrahedron Lett. 1990,31, 

6179-82. 

(159) Fleming, I.; Newton, T. W.; Roessler, F. J. Chern. Soc., Perkin Trans. 1 1981, 

2527-32. 

(160) Dauzonne, D.; O'Neil, I. A.; Renaud, A. J. Org. Chern. 1984,49,4409-15. 

(161) Katz, T. 1.; Sudhakar, A.; Teasley, M. F.; Gilbert, A. M.; Geiger, W. E.; 

Robben, M. P.; Wuensch, M.; Ward, M. D. J. Arn. Chern. Soc. 1993, 115, 3182-

98. 

(162)Katz, T. 1.; Liu, L.; Willmore, N. D.; Fox, J. M.; Rheingold, A. L.; Shi, S.; 

Nuckolls, C.; Rickman, B. H. J. Arn. Chern. Soc. 1997,119,10054-10063. 

(163) Sudhakar, A.; Katz, T. 1. J. Arn. Chern. Soc. 1986, J08, 179-81. 

- 279-



Chapter 7 Bibliography 

(164) Yamakawa, T.; Kagechika, H.; Kawachi, E.; Hashimoto, Y.; Shudo, K. J. Med. 

Chern. 1990,33, 1430-7. 

(165) Maire, J.; Marrot, J.; Nabet, R. Bull. Chim. Soc. Fr. 1981,429-434. 

(166) Neumann, W. P.; Hillgaertner, H.; Baines, K. M.; Dicke, R.; Vorspohl, K.; 

Kobs, U.; Nussbeutel, U. Tetrahedron 1989,45,951-60. 

(167) Dallaire, c.; Brook, M. A. Organometallics 1990, 9, 2873-4. 

(168) Dallaire, C.; Brook, M. A. Organometallics 1993,12,2332-8. 

(169) Forman, F. W.; Sucholeiki, I. J. argo Chem. 1995,60,523-528. 

(170) Culbert, P. A; Hunter, D. H. Reactive Polymers 1993,19,247-253. 

(171) Plunkett, M. 1.; Ellman, 1. A. J. Org. Chem. 1995,60,6006-6007. 

(l72)Chenera, B.; Finkelstein, 1. A.; Veber, D. F. JAm. Chem. Soc. 1995, 117, 

11999-12000. 

(173) Plunkett, M. J.; Ellman, J. A. J. argo Chem. 1997,62,2885-2893. 

(174) Plunkett, M. 1.; Ellman, J. A. J. argo Chem. 1997,62,2885-2893. 

(175) Spivey, A c.; Diaper, C. M.; Rudge, A 1. J. Org. Chem. 2000, 65, 5253-5263. 

(176) Spivey, A C.; Diaper, C. M.; Rudge, A. J. Chem. Commun. 1999, 835-836. 

(177) Spivey, A. C.; Sri karan, R.; Diaper, C. M.; Turner, D. 1. argo Biomol. Chem. 

2003, 1, 1638-1640. 

(178) Spivey, A. C.; Turner, D. J.; Turner, M. L.; Yeates, S. Org. Lett. 2002,4,1899-

1902. 

(179) Eaborn, C. J Organomet. Chem. 1975,100,43-57. 

(180) Hunter, D. H.; Zhu, X. J. Labelled Compd. Radiopharm. 1999, 42, 653-661. 

- 280-



Chapter 7 Bibliographv 

(181) Gripton, C. J. G. 4th Yr MChem Project Dissertation, University of Sheffield, 

2000. 

(182) Karimi, B.; Seradj, H.; Ebrahimian, G.-R. Synlett 1999, 1456-1458. 

(183) Marcuccio, S. M.; Svirskaya, P. I.; Greenberg, S.; Lever, A. B. P.; Leznoff, C. 

c.; Tomer, K. B. Can. J Chem. 1985,63,3057-69. 

(184) Wachall, B. G.; Hector, M.; Zhuang, Y.; Hartmann, R. W. Bioorg. Med. Chem. 

1999,7,1913-1924. 

(185) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981,11,513-19. 

(186) Lesbre, M.; Mazerolles, P.; Satge, J. The Organic Compounds of Germanium, 

Wiley-Interscience, Chichester, 1971. 

(187)Riedmiller, F.; Wegner, G. L.; Jockisch, A.; Schmidbaur, H. Organometallics 

1999,18,4317-4324. 

(188) Diaper, C. M. PhD Thesis, University of Sheffield, 2000. 

(189) Sohrin, Y. Bull. Chem. Soc. Jpn. 1991,64,3363-3371. 

(190) Kouvetakis, J.; Haaland, A.; Shorokhov, D. 1.; Volden, H. V.; Girichev, G. V.; 

Sokolov, V. I.; Matsunaga, P. J. Am. Chem. Soc. 1998,120,6738-6744. 

(191) Johnson, O. H.; Fritz, H. E. J Am. Chern. Soc. 1953, 75,718-20. 

(192) Spivey, A. C.; Turner, D. J.; Turner, M. L.; Yeates, S. Synlett 2002,111-115. 

(193) Bardin, V. V.; Rogoza, L. N.; Furin, G. G. Heteroatom Chem. 1994,5,91-5. 

(194) Stork, G. Pure Appl. Chern. 1989,61,439-42. 

(195) Nakamura, T.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Tetrahedron 2001, 

57,9827-9836. 

- 281 -



Chapter 7 Bibliographv 

(196) Nakamura, T.; Tanaka, S.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Cornptes 

Rendus de l'Acadernie des Sciences, Serie lIe: Chimie 2001,4,461-470. 

(197) Kinoshita, H.; Nakamura, T.; Kakiya, H.; Shinokubo, H.; Matsubara, S.; 

Oshima, K. Org. Lett. 2001,3,2521-2524. 

(198) Kinoshita, H.; Shinokubo, H.; Oshima, K. J. Arn. Chern. Soc. 2002, 124, 4220-

4221. 

(199) Kakimoto, N.; Sato, K.; Takada, T.; Akiba, M. Heterocycles 1989, 29, 2115-20. 

(200) Huheey, J. E.; Huheey, C. L. J. Chern. Ed. 1972,49,227-30. 

(201) Winter, M. J. .. www.webelements.com .. University of Sheffield. 

(202) Felix, G.; Laguerre, M.; Dunogues, J.; Calas, R. J. Chern. Res., Synop. 1980, 

236-7. 

(203) Boymond, L.; Rottlander, M.; Cahiez, G.; Knochel, P. Angew. Chem., Int. Ed. 

1998,37,1701-1703. 

(204) Benkeser, R. A.; Krysiak, H. R. J. Am. Chern. Soc. 1954, 76,6353-7. 

(205) Bennetau, B.; Krempp, M.; Dunogues, J. J. Organomet. Chern. 1987,334,263-

7. 

(206) Egorochkin, A. N.; Razuvaev, G. A Uspekhi Khirnii 1987, 56, 1480-503. 

(207) Hansch, C.; Leo, A; Taft, R. W. Chem. Rev. 1991,91,165-95. 

(208) Still, W. C.; Kahn, M.; Mitra, A J. Org. Chem. 1978,43,2923-2924. 

(209) Shcherbinin, I. P.; Shevedov, K. V.; Pavlov, K. V.; Komalenkova, N. G.; 

Chemyshev, E. A. Russ. J. Gen. Chem. 1998,68, 1013-1016. 

(210) Mironov, V. F.; Gar, T. K. J. Gen. Chern. USSR 1975, 45, 94-98. 

(211) Ehrlich, F.; Pistchimuka, P. Chern. Ber. 1912,45,2428-2436. 

- 282-



Chapter 7 Bibliographv 

(212) Schlemper, E. 0.; Britton, D. Acta Cryst. 1965,18,419-24. 

(213) Veda, M.; Saitoh, A.; Oh-Tani, S.; Miyaura, N. Tetrahedron 1998, 54, 13079-

13086. 

(214) Tsuno, Y.; Chong, W.-Y.; Tairaka, Y.; Sawada, M.; Yukawa, Y. Bull. Chern. 

Soc. Jpn. 1978,51,596-600. 

(215) Inada, K.; Miyaura, N. Tetrahedron 2000, 56,8657-8660. 

(216) Chen, Q.; Li, Z. J. Fluorine Chern. 1994,66,59-62. 

(217) Brune, H. A.; Ertl, J. Liebigs Ann. Chern. 1980, 928-37. 

(218) Minisci, F.; Cecere, M. Chimica. e /' Industria. 1967,49, 1333-5. 

(219) Hassan, J.; Hathroubi, c.; Gozzi, C.; Lemaire, M. Tetrahedron 2001, 57, 7845-

7855. 

(220) The Aldrich library of 13C and IH FT-NMR spectra: 1(2), 88C. 

(221) Moerlein, S. M. J. Organornet.Chern. 1987,319,29-39. 

(222) Percec, Y.; Bae, J.-Y.; Zhao, M.; Hill, D. H. J. Org. Chem. 1995,60, 176-85. 

(223) Katz, S. M.; Reichl, 1. A.; Berry, D. H. J. Am. Chern. Soc. 1998, 120, 9844-

9849. 

(224) Lin, H.-S.; Paquette, L. A. Syn. Cornm. 1994,24,2503-6. 

(225) Liepins, E.; Zicmane, I.; Ignatovich, L. M.; Lukevics, E. J. Organomet. Chem. 

1990, 389, 23-8. 

(226) Trost, B. M.; Arndt, H. C. J. Am. Chern. Soc. 1973, 95, 5288-98. 

(227) Brune, H. A.; Hess, R.; Schmidtberg, G. Zeitschrift fuer Naturforschung B: 

Anorg. Chem., Organ. Chem. 1984,39B, 1772-80. 

- 283-



Chapter 7 Bibliographv 

(228) Thompson, N. J.; Gray, G. W.; Goodby, J. W.; Toyne, K. J. Mol. Cryst. Liq. 

Cryst. 1991, 200, 109-31. 

(229) Byron, D. J.; Gray, G. W.; Wilson, R. C. J. Chem. Soc. C 1966, 840-5. 

(230) Nishimura, M.; Veda, M.; Miyaura, N. Tetrahedron 2002, 58, 5779-5787. 

(231) Kobayashi, Y.; William, A. D.; Mizojiri, R. J. Organomet. Chem. 2002, 653, 

91-97. 

(232) Leznoff, C. C.; Hayward Roger, J. Can. J. Chem. 1970,48, 1842-9. 

(233) Darses, S.; Jeffery, T.; Brayer, J.-L.; Demoute, J.-P.; Genet, J.-P. Bull. Soc. 

Chim. France 1996, 133, 1095-1102. 

(234) Mori, Y.; Seki, M. J. Org. Chem. 2003,68, 1571-1574. 

(235) Ishikura, M.; Kamada, M.; Terashima, M. Heterocycles 1984, 22, 265-8. 

(236) Badone, D.; Baroni, M.; Cardamone, R.; Ielmini, A.; Guzzi, V. J Org. Chern. 

1997,62, 7170-7173. 

(237) Bennett, S. W.; Eabom, C.; Jackson, R. A.; Pearce, R. J. Organomet. Chem. 

1971, 28, 59-72. 

(238) Eabom, C.; Pande, C. J Chern. Soc. 1960,3200-3203. 

(239) Moerlein, S. M. J Org. Chern. 1987,52,664-7. 

(240) Anderson, D. G.; Chipperfield, J. R.; Webster, D. E. J. Organomet. Chern. 1968, 

12,323-6. 

(241) Riedmiller, F.; Jockisch, A.; Schmidbaur, H. Zeitschriftfuer Naturforschung, B: 

Chemical Sciences. 1999, 54, 13-17. 

(242) Cacchi, S.; Fabrizi, G.; Gavazza, F.; Goggiamani, A. Org. Lett. 2003, 5, 289-

291. 

- 284-



Chapter 7 Bibliographv 

(243) Friedman, L.; Koca, R. M. J Org. Chern. 1968,33, 1255-7. 

(244) Brook, M. A.; Henry, C. Tetrahedron 1996,52,861-68. 

(245) Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals; 3rd 

ed.; Pergamon Press: Oxford, 1988. 

- 285-



Chapter 8 Appendices 

8 Appendices 

8.1 Appendix 1: Solvents 

All solvents were distilled prior to use. Petrol refers to the fraction of petroleum ether 

boiling between 40°C and 60°C. Cold solvents were pre-cooled to O°C with ice. 

Commercial solvents for work-up and chromatography were distilled before use. 

Anhydrous solvents were either purchased or prepared as follows:
245 

Distilled from CaH2 under nitrogen immediately prior to use. 

1,4-Dioxane Distilled from sodiumlbenzophenone under nitrogen immediately prior 

to use. 

DMF Refluxed with CaH2 under nitrogen, distilled under reduced pressure 

and stored over 4A molecular sieves under nitrogen. 

Et20 Distilled from sodiumlbenzophenone under nitrogen immediately prior 

EtOH 

THF 

Toluene 

to use. 

Distilled from 4A molecular sieves under nitrogen, and stored over 4A 

molecular sieves under nitrogen. 

Distilled from CaH2 under nitrogen immediately prior to use. 

Distilled from sodiumlbenzophenone under nitrogen immediately prior 

to use. 

Distilled from sodium under nitrogen immediately prior to use. 

8.2 Appendix 2: Reagents 

Chemicals were handled in accordance with COSHH regulations, and were used as 

commercially supplied with the following exceptions: 

Acel Refluxed withPCl5. then distilled from quinoline.
245 
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BnTMAF Commercially supplied in anhydrous form, stored over P20S under 

vacuum in a dessicator. Weighed out into sealed vials, under a stream 

ofN2 gas from an inverted funnel. 

CsF Commercially supplied in anhydrous form, stored over P20S under 

vacuum in a dessicator. Weighed out into sealed vials, under a stream 

ofN2 gas from an inverted funnel. 

Distilled from CaH2 under nitrogen and used immediately. 

8.3 Appendix 3: GC/MS methods 

The GCIMS system was a Perkin Elmer AutoSystem XL GC and autosampler, with 

Perkin Elmer Turbomass spectrometer, using the following conditions. 

GCIMS method for sections 6.2.1 and 6.2.2 

Ionisation Mode 
Column 
Carrier Gas 
Carrier gas flow rate 
Injection Volume 
Split ratio 
Injection temperature 
Temperature Gradient 

Run Time 

EI (EIICI combination source) 
BPX-5 
Helium 
ImLlmin 
IfJ.L 
24:1 
260°C 
160°C rising to 260°C at 5°C/min. Hold at 
260°C for 10min. 
30 min 

GCIMS method for sections 6.2.3, 6.2.4 and 6.2.5 

Ionisation Mode 
Column 
Carrier Gas 
Carrier gas flow rate 
Injection Volume 
Split ratio 
Injection Temperature 
Temperature Gradient 

Run Time 

EI (EIICI combination source) 
ZB-5 30m x 0.32mm x 0.25um FT 
Helium 
ImLlmin 
IfJ.L 
24:1 
260°C 
60°C rising to 260°C at 10°C/min. Hold at 
260°C for 10min. 
30 min 
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8.4 Appendix 4: LCIMS methods 

The LCIMS system was an Agilent 1100 HPLC and a Fisons VG Platform mass 

spectrometer, using the following conditions. 

Ionisation Mode 
Column 
Solvent A 
Solvent B 
Gradient 

Flow rate 
Run Time 

ESI +ve and ESI -ve 
Supelcosil LC ABZ+PLUS (3.3cm x 4.6mm) 
0.1 % v/v HC02H and 0.1 M NH40AC in water 
0.05% V/VHC02H and 5% v/v water in MeCN 

Time/min Solvent B % 

3mLlmin 
5.5min 

o 0 
0.7 0 
4.2 100 
5.3 0 
5.5 0 
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