
THE EFFECTS OF AMORPHOUS PHASE SEPARATION 

ON CRYSTAL NUCLEATION IN BARIA-SILICA 

AND LITHIA-SILICA GLASSES 

Edgar Dutra Zanotto, M.Sc. 

Thesis Presented for the Degree of 

Doctor of Philosophy of 

The University of Sheffield 

Department of Ceramics, Glasses and polymers 

The University of Sheffield March, 1982 



ACKNOWLEDGEMENTS 

I am indebted to Dr P.F. James for very helpful suggestions, 

critical appraisal of the manuscript and encouragement given during the 

course of this work. Thanks are due to Dr A.F. Craievich of Universidade 

de Sao Paulo (Brazil) for his interest, for performing the SAXS measurements 

and for many helpful discussions. I would also like to thank 

Professor H. Rawson for providing the research facilities in the Department. 

I am immensely grateful to Luciana for constant encouragement, patience 

and for valuable help with the photographic printing. 

Many thanks are due to Mrs M. Hodgins for typing this thesis. I 

wish also to thank Ernest Crossland, Jim Smedley, Sonya Saxby, Roy Bacon, 

Mike Wilson, David Priestley, Lawrence Toothill, Robin Coope~ and many 

others for their friendship and assistance during my years in the 

Department. 

The author acknowledges the help of Dr J.R. Gonyalves da Silva and 

Mr Ubirajara Raymundo in taking care of his personal interests in Brazil 

during his absence. Acknowledgements are, also due to Universidade Federal 

de Sao Carlos and CAPES (Brazil) for financial support. 



TO 

LUCIANA, DIVA AND JOVIANO 



SUMMARY 

The kinetics and morphology of amorphous phase separation in BaO-Si02 

glasses with well characterized impurity contents were studied by small angle 

X-ray scattering (SAXS) and transmission electron microscopy (TEM). The 

kinetics and morphology of crystal nucleation and growth in phase-separated 

and non phase-separated glasses were determined by quantitative optical 

microscopy and TEM. 

Amorphous phase separation caused a marked increase in crystal nucleation 

and growth rates due to compositional changes in the baria-rich matrix. 

However, the highest nucleation rates were observed in the stoichiometric 

BaO.2SiOz glass, which did not phase separate. 

The compositional effect of phase separation on crystal nucleation rates 

was also found in the Li20-Si02 system. The nucleation rates in phase 

separated Liza-SiOz glasses with widely differing LizO contents were equal, 

but higher than in the stoichiometric LizO.2Si02 glass. This was attributed 

to the crystallization of a solid solution phase in the phase separated glasses. 

No correlation was found between crystal nucleation and phase separation 

morphology in these systems. However, there was some evidence of a small 

additional nucleation, possibly in the diffusion zones around the droplets. 

A quantitative test of classical nucleation theory was performed for 

Li20.2Si02 and BaO.2Si02 glasses using measured crystal nucleation rates (I) 

and viscosities, and available thermodynamic data. The temperature depen-

dence of I was well described by theory but the experimental rates were 

20-30 orders of magnitude higher than expected. Reasons for this discrepancy 

are discussed. 

A theoretical analysis of errors using quantitative microscopy is given. 



Typically, underestimates of 3-14% are expected in the determination of 

nucleation rates. These predictions were confirmed experimentally. 

Experimental crystallinity versus time curves for the BaO.2Si02 

glass did not agree with those calculated from the Johnson-Mehl-Avrami 

equation. Explanations are given for the discrepancy. 
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l~l Introduction 

CHAPTER 1 

THEORY 

Glass-ceramics are polycrystalline solids prepared by the controlled 

crystallization of glasses. About 200 years after the work of Reaumur, 

who converted glass bottles into opaque porcelain-like objects, research 

carried out by S.D. Stookey [1.1] at Corning Glass Works (USA) led to the 

development of glass-ceramics. Glass-ceramics can be regarded as a most 

valuable addition to the materials available to the design engineer. 

Their unique combination of properties is likely to make them attractive 

for a number of specialized engineering applications, e.g. machinable 

glass-ceramics, fibrous and bulk glass-ceramics having oriented micro­

structures, vacuum tube envelopes, telescope mirror blanks, radomes for 

the aerospace industry, protective coatings for metals, etc. 

wide range of consumer goods is becoming available [1.2]. 

Also a 

The development of practical glass-ceramics is closely related to 

studies of nucleation and crystal growth in supercooled liquids which are 

1. 

of great scientific interest. Glass is a very convenient medium for 

fundamental studies of this type because glass-like liquids have high vis­

cosities so that the diffusion processes and atomic rearrangements which 

control nucleation and crystal growth occur relatively slowly. Because 

of the rapid increase of viscosity which occurs when the temperature 

falls, it is possible to arrest the crystallization process by rapid COOling. 

Thus various stages of development can be "frozen in" permitting the use 

of convenient methods of examination. 

Closely related to crystal nucleation and growth studies are investi-

gations of amorphous phase separation. This subject is also of fundamental 

interest. Furthermore, the influence of prior phase separation upon 

crystallization processes is of prime importance both with regard to 



glass-ceramic formation and in relation to the stability of glasses. 

The main objectives of this work were to study quantitatively the 

kinetics of crystal nucleation and its correlation with amorphous phase 

separation (APS) kinetics in silicate glasses. An experimental test of 

2. 

the classical nucleation theory and of the validity of the Johnson-Mehl­

Avrami (JMA) theory of phase transformations, were also attempted for 

glasses having compositions close to the stoichiometric crystalline phases. 

The glasses chosen for this study were from the Li20-Si02 and BaO-Si02 

systems, because in both systems amorphous phase separation and internal 

crystal nucleation occur without deliberate addition of nucleating agents. 

1.2 Kinetics of Liquid-Liquid Immiscibility in Glass 

Glass-in-glass phase separation has been known for 40 years. The 

inventors of Vycor glass [1.3] observed a phenomenon that could only be 

explained in terms of a heterogeneous glass structure. The heterogeneous 

glass structure had also been suggested [1.4,1.5] from various property 

investigations of glasses. Yet, only after the application of suitable 

experimental techniques, such as electron microscopy or small angle X-ray 

scattering, and the realization that phase separation is related to the 

metastable immiscibility boundary did clear understanding of the phenomenon 

emerge. Thus, since the early 1960's, there was an intense activity in 

this field and over 500 papers were published on phase separation. 

Several review articles and textbooks on the subject have appeared 

in the past few years. These include articles by Rawson [1.6], 

Zarzycki [2.26], Porai-Koshits [1.7], Charles [1.8], Doremus [1.9], 

James [1.10], Uhlmann and Kolbeck [1.11], Pye [1.12], Vogel [1.13], 

Craievich [1.14] and Tomozawa [1.15]. The origin of immiscibility, kinetics 



3. 

of phase separation, influence on the properties, etc., have been discussed 

in detail in these reviews. Therefore, only a short development of the 

theories of nucleation, growth, coarsening and spinodal decomposition, 

which are important for the understanding of this thesis, will be given. 

When a homogeneous glass is held at a temperature inside the immisci­

bility boundary, the glass gradually transforms into a two-phase structure. 

Theoretically there are two types of transformation mechanisms by which the 

final structure is attained. One is the nucleation and growth mechanism, 

and the other is the spinodal decomposition. The mechanisms are closely 

related to the curvature of the free energy of mixing and, consequently, to 

the position of the spinodal line, which in a two-component system is 

defined by the condition that the second derivative of the free energy of 

mixing (~Gm) with respect to composition (mole fraction c of one of the 

components) is zero:, d2~Gm/dC2 = o. The region between the immiscibility 

boundary and the spinodal line is called the metastable region and corre~­

ponds to a positive value of the second derivative d2~Gm/dC2; while the 

region inside the spinodal is called the unstable region and corresponds to 

a negative value of the second derivative. In the metastable region, the 

nucleation and growth mechanism is expected to be operating while in the 

unstable region spinodal decomposition is expected (see section 1.3.l.3b). 

A brief review of these mechanisms is given below. 

1.2.1 Nucleation and growth 

After a particle is formed by nucleation (the nucleation theory will be 

discussed in section 1.3) it begins to grow. The case of diffusion con-

trolled growth for isolated spherical particl~s in an infinite matrix has 

been treated rigorously by Zener [1.16], Frank [1.17] and Cars1aw and 

Jaeger [1.18] and exact solutions are available. The theory of diffusion 



4. 

controlled growth leads to a parabolic growth of the particles radius, r, 

with time 

r = (1.1) 

where y is a function of particle composition and mean composition of the 

material. If the diffusion coefficient, D, is constant for a given tempera­

ture and composition, r a t'l2. 

In a polydisperse assembly, the growth law can still be written in 

- 'l: terms of an average ~article size as rat 2. If, however, the growth is 

interface controlled (where the rate of transfer of the diffusing species 

across the interface is slower than the rate of their arrival at the inter-

face), the growth law is linear with time. wert and Zener [1.19] and 

Ham [1.20] have carried out these calculations for non-spherical geometry, 

and their results show that with particles shaped as thin rods, the length 

of the rod varies linearly with time. Ham also shows that non-spherical 

particles will have a shape eccentricity which does not change with time. 

Spinodal decomposition, on the other hand, predicts that, in the initial 

stages at least, a selective amplification of a narrow band of wavelengths 

in the Fourier components of the composition fluctuation occurs, and these 

wavelengths predominate in the microstructure. Thus, the characteristic 

microstructure size is independent of time in the early stages. This fact 

has been demonstrated by Zarzycki and Naudin for a lead borate system 

[1.21]. 

1.2.2 Coarsening 

At the end of the primary growth stage, the reaction proceeds to reduce 

the total interfacial energy in the assembly, the larger,particles growing 

at the expense of the smaller ones which redissolve. 



5. 

Following an earlier treatment by Greenwood [1.22] the theory 

developed by Lifshits, Slyozov and Wagner [1.23,1.24] (LSW theory) describes 

the kinetics of diffusion controlled particle coarsening when the volume 

fraction of the minor phase is small « 0.1), so that the mean distance 

between particle centres is large compared with particle dimensions. 

Using the Gibbs-Thomson relation for the increase in solubility of a par-

ticle as its radius decreases, the time dependence of the average particle 

radius, r, may be expressed as 

-3 - 3 BODCOVm2 
r - ro = • t (1.2) 

9RT 

where B = BODCOVm2/9RT is the rate constant, ro is the average particle 

size at the beginning of the coarsening stage, a is the interfacial energy, 

D is the diffusion coefficient of solute in the matrix, Co is the concentra-

tion of solute· in the matrix (mol.m- 3
) and Vm is the molar volume of the 

dispersed phase. 

The activation energy for the process can be obtained by determining S 

for various temperatures. If studied within the temperature range where 

the equilibrium solubility does not vary significantly, one can obtain the 

activation energy for interdiffusion from growth studies at different 

temperatures. 

Although the above theory has been verified in various systems, its 

formulation is valid only for small volume fractions of the minor phase. 

If the volume fraction is constant and the amorphous phase separation (APS) 

is in the coarsening stage, the number of particles is inversely proportional 

to the time of isothermal treatment, i.e. N a t_l. If the growth of the 
3 

particles is limited by a surface reaction rate, r2 a t and N a t-~ [1.24]. 

Such a process can occur, for example, when an impurity layer exists at the 

interface between the two phases. 



6. 

Haller [1.25] has considered the coarsening kinetics for microstructures 

which show extensive interconnectivity. His treatment does not consider 

the solubility changes to be due to dispersion in the size of the particles 

but rather to local changes in curvature of the interface when intersecting 

growth occurs. He found that if the mechanism of transport is volume 

diffusion, the decrease in interfacial area varies as t_'l3 for diffusion con­

trolled growth, and t_'l2 for interface controlled growth. However, his 

growth equation contains several temperature dependent terms which need not 

necessarily be Arrhenian, and it is not feasible to identify the mass trans-

fer steps on the basis of an Arrhenian plot of growth rate versus temperature. 

Most investigators have observed a diffusion controlled mechanism in 

the coarsening process. References will be given in Chapter 4 where the 

SAXS results for phase separation in BaO-Si02 glasses are shown. A recent 

review of coarsening in solids was published by Jain and Hughes [1.26]. 

1.2.3 Spinodal decomposition theory 

The spinodal decomposition mechanism differs from the nucleation and 

growth mechanism in that there is no nucleation of the second-phase composi-

tion. Instead, fluctuations with a small extent of composition variation 

appear. The dimensions of fluctuations are determined by the interfacial 

energy and transport process. The interfacial energy between two phases 

is smaller the more diffuse the interface. Therefore, the extremely large 

dimension is energetically favoured for a given extent of composition varia-

tion. The sharp interface would increase the interfacial energy and this 

type of fluctuation would be unfavourable. Among those fluctuations that 

are energetically favourable, the transport process would be easier for 

small-scale fluctuations. Because of these two opposing tendencies, there 

is an optimum scale (wavelength) of the composition fluctuation. 



Hillert [1.27] and Cahn [1.28] developed the quantitative theory of 

spinodal decomposition in 1961. Cahn's theory will be described briefly 

assuming zero strain energy. The free energy of the inhomogeneous system 

is given by 

G = J [g(c) + K(Vc)2]dv 
V 

(1. 3) 

where g(c) is the free energy of a unit volume of homogeneous material of 

7. 

composition c and K(VC) 2 is the first term of an expansion representing the 

increase in free energy due to a gradient of composition. K(>O) is called 

the gradient energy coefficient and the integral is performed over volume v. 

The composition fluctuation is given by the summation of sinusoidal waves 

c - Co = A cos B X (1.4) 

with various values of ~ where Co is the average composition, A an ampli-

tude, B = 2TI/A the wavenumber, A the wavelength, and X the distance. The 

free energy difference per unit volume between the solution with a small 

extent of composition variation and the homogeneous solution is given by 

(1.5) 

If this is negative, then the solutiori is unstable with respect to sinusoi-

dal fluctuations of wavelength 2TI/ B • With a2g/dC 2 > 0, the solution 

is stable with respect to infinitesimal sinusoidal fluctuations of all 

wavelengths. With a2g/oc 2 < 0, the solution is unstable with respect to 

infinitesimal sinusoidal fluctuations of wavelengths greater than 2TI/Bc 

which is given by 

(1.6) 



8. 

A kinetic expression for spinodal decomposition is obtained by solving 

a diffusion equation in which the thermodynamic factors are included. By 

using the approximation that is valid only for initial stages of spinodal 

decomposition, the time dependence of the amplitude A(S,t) of composition 

fluctuation with wavenumber S is given by 

OA(S,t)/ot = R(S)A(S,t) (1. 7) 

then 

A(S,t) = A(S,O) exp(R(S)t] (1.8) 

where 

(1. 9) 

M is a mobility related to the interdiffusion coefficient 5 by 

(1.10) 

and A(S,O) is the amplitude of the initial (t=o) composition fluctuation. 

Equation (1.8) states that an amplitude of composition fluctuation with 

wavenumber S changes exponentially with time, the rate of change being 

determined by the factor R(S). The kinetic amplification factor R(S) is 

negative when the solution is stable to that fluctuation, and is shown in 

Figure 1.1 for inside the spinodal, o2g/oc 2 < 0, as a function of S. 

R(S) is zero for S = Sc' positive for longer wavelengths and has a maximum 

at 12 times the critical wavelength. 

Cook [1.29] later suggested a modification to Equation (1.7) by adding 

a therma+ fluctuation term due to Brownian motion. Thus 



Fig. 1.1 

Fig. 1.2 

Fig. 1.3 

Theoretical amplification factor for early 

stage of spinodal decomposition (upper left) 

Free energy of formation of a spherical 

crystal nucleus with 0 = 200 mJ.m- 2 for a 

Li20.2Si02 glass (bottom) 

Distribution function for embryos of different 

sizes according to Volmer and Becker-DOring 

theories of nucleation (upper right) 
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dA(S,t)/dt = R(S)A(S,t) - S2B(S,t) (1.11) 

where B(S,t) is the Fourier transform of the fluctuating field. With 

the addition of this term, the ratio of the wavelength with maximum 

amplification factor to the critical wavelength becomes larger than 12. 

One important feature of spinodal decomposition is that there is a 

particular wavelength that grows at the fastest rate. 

unique microstructural morphology. 

This leads to the 

Although the theory of Hillert and Cahn is often identified with the 

9. 

spinodal decomposition, their theory is actually applicable to both spinodal 

decomposition and nucleation and growth. According to their theory, 

nucleation and growth is the special case observable only at 

the immiscibility boundary. As the original composition approaches the 

spinodal boundary the interface between the critical nuclei and the matrix 

gradually becomes more diffuse, and finally at the spinodal line it 

disappears. 

1.2.3.1 Experimental observations of spinodal decomposition 

Since the development of Cahn's theory numerous attempts were made to 

confirm it experimentally in glass systems. The earliest attempts were 

centred around the morphological studies of phase-separated microstructureS. 

The morphological similarity between the theoretical predictions (computer 

simulations predicted an interconnected morphology) and the experimental 

observations was considered as the evidence for spinodal decomposition by 

Cahn [1.30] and Hammel [1.31]. However, several investigators postulated 

processes by which independent particles can join together, e.g. Haller 

and Macedo [1.32] and Hopper and Uhlmann [1.33}. 

The kinetics of phase separation were studied by small angle X-ray 

scattering by Rundman and Hilliard [1.34] on metals, followed by Zarzycki 
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and Naudin [1.21,1.35], Tomozawa [1.36,1.37], Neilson [1.38] and others. 

However, careful investigation shows a clear discrepancy between the early 

stage theory of spinodal decomposition and the SAXS data. 

Several attempts were made to explain the discrepancy; e.g. using 

the later stage theory developed by De Fontaine [1.39]; using the modified 

equation by Cook or taking into account the fact that the diffusion co­

efficient itself is a function of time at a constant heat-treatment tempera­

ture, similar to the case of viscosity of a glass at temperatures in the 

transformation range. 

Srinivasan et ale [1.40] suggested that measurements of the evolution 

of the volume fraction of the minor phase can be used to distinguish between 

spinodal decomposition and nucleation and growth. 

Tomozawa [1.41] demonstrated that both the viscosity and chemical dura­

bility of a commercial borosilicate glass changed gradually with heat treat­

ment time, at low temperatures, indicating the simultaneous gradual composi-

tion variation of both phases. This was taken as an indication that phase 

separation was occurring by spinodal decomposition. 

1.3 Nucleation in Glass-forming Systems 

Depending on thermodynamic conditions, if concentration fluctations 

small in amplitude but large in extent occur spontaneously, the reaction 

may proceed by spinodal decomposition with a continuous fall in free energy. 

If, however, small fluctuations tend to decay, there is a nuaZeation barrier. 

Although unstable, such fluctuations exist and occasionally one becomes so 

large that it is stable and grows to microscopic dimensions. It is the 

purpose of this section to discuss the kinetics of this latter process of 

nucleation. 
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The derivations given below have been summarized from several references 

where a more complete coverage on the subject can be found, e.g. Fine [1.42], 

Burke [1.43], Christian [1.44], Zettlemoyer [1.45] and Russell [1.46]. 

1.3.1 Homogeneous nucleation at constant composition 

The problem to be considered is the "birth" of a clump of phase i3 in a 

matrix of phase a of identical composition to B. If the process is carried 

out at constant temperature and external pressure and the difference in 

Gibb's free energies per mole between phases a and B, 6G (= GB - ~), is 

negative, then the process would proceed spontaneously except that a surface 

between a and B must be created. There are also strain energy considera-

tions, but it will be assumed that viscous flow of the glass matrix removes 

elastic strains induced during the transformation. If the surface energy 

per unit area cr is isotropia and no stresses are exerted on the clump from 

the matrix, the clump will be spherical. The energy change on forming 

a spherical clump of radius r ,.W , is 

(1.12) 

where 6Gv = 6G/vm is the free energy difference between phases B and a per 

unit volume of nucleating phase or ther.modynamia driving force. 

Figure 1.2 is a plot of W vs. r calculated for the lithium disilicate 

(LS 2) glass, with t.G given by ['1.51] and assuming cr = 200 mJ.m- 2
• For 

r-small the surface term predominates. For r-large the volume term pre-

dominates. The coordinates of the maximum, r* and w*, may be determined 

by setting dW/dr ~ 0, solving for r* and substituting into equation (1.12): 

W* (1.13) 
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-20 
r* = D.G

v 
(1.14) 

Particles of radius smaller than the critical radius r* (embryos) 

tend to dissolve since an increase in size leads to an increase in W, 

whilst particles of r > r* (nuclei) will tend to grow since an increase 

in radius decreases W. W* is often called the thermodynamic barrier. 

W* and r* increase with temperature. 

More generally for non-spherical nuclei it can be shown that [1.47] 

(1.15) 

where X* is a dimension of the critical nucleus, a an average interfacial 

energy and K4 and Ks are shape factors. These equations were fully dis-

cussed by Rowlands [1.47]. 

The process of nucleation can therefore be considered in terms of the 

rate at which critical nuclei are able to form and how quickly they 

subsequently grow. Embryos are assumed to grow by unimolecular steps. 

1.3.1.1 The Volmer and Weber theory of nucleation 

This theory was developed in 1926 for the condensation of a vapour 

[1.48]. The formation of a nucleus was envisaged as a step process where 

individual molecules or "formula units" can add on to the embryo, 

i*3 .. 3i* 

Where i* is the smallest entity that can be recognised as a new phase. 
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There is a certain probability per unit time that a "formula unity" 

or molecule will add onto the surface of the embryo 8n converting it into 

a 8 n+l embryo. The number of molecules crossing the barrier per second 

is given by: 

di/dt = sV exp (- ~~~ ) (1.16) 

where V is the atomic vibration frequency, ~GD is the activation energy per 

"molecule" or formula unit to cross the surface between a. and 8, that is, 

to disconnect itself from a and attach itself to p, and s the number of 

formula units facing the embryos of B across the interface. 

Volmer and Weber neglected the reverse reaction, that is, once over the 

hump an atom does not return to a and assumed that the growth process is 

sufficiently slow so that the number of clumps of critical size is the 

equilibrium number. A steady state is set up in which the number of 

critical nuclei forming per unit time equals the number disappearing through 

growth. Volmer and Weber also assumed the steady-state number to be the 

equilibrium number and the rate of growth to be given by Equation (1.16). 

Accordingly, the number of clumps of critical size, i.e. nUClei per unit 

volume is given by the well-known equation: 

N* = n exp(- W*/kT) (l.17) 

where n is the total number of "molecules" of nucleating phase per unit 

volume of the liquid. 

The rate of nucleation, I, is given by multiplying the number of 

critical nuclei by the rate of growth of a clump of critical size. 

I = ns*v exp~ (~GD + W*)/kT] 

where s * is· the value of 5 if the clump is of critical size. 

(l.18) 
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1.3.1.2 The Becker and Doring theory 

The Volmer and Weber theory was improved in 1935 by Becker and oO~ing 

[1.49] • First the reverse reaction was allowed, that is, Si* - S 1 ~ ei*-l. 

The top of the W vs. r (Figure 1.2) curve is almost symmetrical and the 

probability of adding or subtracting a molecule is about equal. Thus the 

rate given by Equation (1.18) should approximately be divided by two. 

Second, the steady state number of nuclei per unit volume N* may not be 

equal to the equilibrium number given by Equation (1.17). 

tion rate is given by 

I = 
nkTA*Vm 

47Tr*3 

The net nuclea-

(1.19 ) 

where A* is the surface area of the critically sized embryo. 

The distribution function does not fall to zero at the critical radius 

but approaches zero when r is very large (Figure 1.3). The main effect is 

to modify the term in the pre-exponential factor by about a hundred. This 

is not a large factor because values of W* in the exponential term are 

extremely sensitive to small changes in temperature. 

Turnbull and Fischer in 1949 ~.50] used the formalism of absolute rate 

theory to derive a complete expression for homogeneous steady-state nuclea-

tion in solids. The final equati9n is given by 

I = A exp [- (W* + ~GD) /kT] (1. 20) 

The pre-exponential factor A can be expressed as 

(1.21) 

where V is the volume per formula unit. To a good approximation {one or 
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two orders of magnitude) 

A = n(kT/h) (1. 22) 

where n ~ 1028 
- 10~ m- 3 and kT/h ~ 10 13 sec- l at ordinary temperatures. 

Usually A may be treated as a constant in the temperature range used for 

nucleation measurements. 

Equation (1.20) was derived for nucleation in a one component liquid. 

A similar approach can also be used for nucleation in multicomponent liquids. 

However, the probability of finding a critical sized nucleus will be reduced 

in proportion to the mole fraction of the nucleating component. Thus in 

general Equation (1.20) is multiplied by the mole fraction of the crystal-

lizing component. cr, the energy associated with unit area of the inter-

face, now depends not only on the change in molecular order which occurs 

in the region of the interface, but also on the chemical composition gradient 

which must be present at the crystal-liquid interface. The kinetic barrier 

to nucleation, ~GD' is also more complex. In addition to the molecular 

reorientations required to form an ordered crystal, "unmixing" also has to 

occur whereby the remaining crystallized liquid becomes slightly depleted 

in the nucleating component. Thus the kinetic barrier is now determined 

by relatively long range diffusion processes, in which ~GD may probably be 

identified with the activation energy for diffusion of the most slowly 

moving component. 

The Analysis of Experimental Nucleation Data 

1.3.l.3a The thermodynamic driving force ~G - One component system 

In order to analyse the nucleation data the values of ~G, cr and ~GD 

are required. The thermodynamic driving force ~G, depends not only on 
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the temperature of the supercooled liquid, but also on its composition if 

more than one component is present. Consider first a one component 

system. ~G can be expressed as 

~G = ~H - T ~S (1. 23) 

where ~H and 6S refer to the enthalpy difference and entropy difference 

respectively between the solid and liquid phases per mole of solid phase 

at temperature T. Thus below the melting point, Tm, 6G is given by 

~C 
--.E. aT 

T 
(1. 24) 

where 6Cp « 0) is the difference in specific heats between the crystalline 

and liquid phases at constant pressure. 

in terms of an interpolation formula; 

In general 6Cp can be expressed 

~C = A + BT + CT 2
• However it is p 

often found that 6G vs.T is linear over temperatures ranges as large as 

This occurs when 6Cp is small., 

range 6G is given by 

Thus over a specified temperature 

(1. 25) 

where ~Hx and ~Sx are two numerically derived factors. A further approxi-

mation can be made if ~C ~ O. 
P 

~G is then given by the well known 

expression: ~G= - ~Hf + T ~Sf. 

(1.26) 

A similar expression can be obtained from Equation (1.25) viz., 
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6.G = -6.Hx (Tx - T) /Tx (1. 27) 

The error in neglecting ~Cp can be estimated for the Li2Si20S 

compound. Table 1.1 compares the values of 6.G calculated from the JANAF 

Thermochemical Tables ~.5l] with those calculated from Equation (1.26). 

At a supercooling of 600°C, the error in ~G is only about 6%. Obviously 

the magnitude of the error depends on the value of 6.Cp • 

If 6.Cp is a constant from Tm to the temperature of interest, equation 

(1.24) can be integrated to give: 

(1. 28) 

neglecting terms of the order (Tm - T/Tm + T)3 and higher in In(Tm/T) 

(1. 29) 

For those cases where ~Cp is an unknown constant, Hoffman [1.52] found: 

Equations (1.26), 

a, b, c and ~ in Figure 1.4. 

6.Hf T(Tm - T) 
T 2 m 

(1.30) 

(1.28) and (1.30) were used to plot curves 

It can be seen that all 

expressions give similar values for 6.G at high temperatures (low undercoolings) 

irrespective of ,whether 6.cp is zero or not. At much lower temperatures the 

differences between the cases ~c = 0 and ~C = -10 or -20 J.mol-
1 

K- 1 is p P 

significant. It can also be seen that the Hoffman expression 

(Equation 1.30) gives values which are far away from the measured ~G 

(curve d). 
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Table 1.1 

AG FOR LS2 (GLASS ~ CRYSTAL) 

AT(K) 

507 

607 

707 

AG (kJ mol - 1 ) 

Eq. (1.26) Eq. (1.27) 

-20.04 -20.88 

-23.51 -24.98 

-26.99 -29.12 

Tm = 1307K , AHf = 53.97 k.J mol-I, ACp = 0 

Tx =-1377K, AHx = 47.82 kJ mol-I, ACp ~ 0 (JANAF) 

18. 



Fig. 1.4 Thermodynamic driving force for glass ~ crystal 

transformation in LS2 glass. CUrves !!.., !? and 

c were calculated from Eq. (1.28) with ~Cp = 0, 

-10 and -20 J.mol-1.K- 1 respectively. Curve d 

was calculated from Eq. (1.30). The other curves 

represent the measured values of ~G from JANAF 

tables [1.51] and Takahashi and Yoshio [1.73]. 
The temperature range of Observable internal 

nucleation in LS2 glass is also shown. 
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1.3.1.1b Two component systems 

The thermodynamic driving force for binary or higher order systems 

have been discussed in ~.47, 1.53, 1.63, 2.54] and other references. 

Consider a schematic free energy-composition diagram for a two-phase system, 

e.g. a phase separating system, at a temperature where the equilibrium 

compositions of the phases are a and b (Figure l.Sa). First consider the 

case where the initial composition is at x and a small region of the 

equilibrium composition b separates out. It can be shown [1.44] that, 

neglecting interfacial effects, the free energy decrease per mole of 

preCipitating phase is given graphically by the distance DE, which is the 

height above the free energy curve at composition b of the tangent drawn 

to the curve at the initial composition x. This is the overall driving 

force for separation of the equilibrium phase. For a small region (or 

fluctuation) of composition d to separate, the driving force is again the 

difference between the tangent and the free ener~l curve at d. However, 

now there is an increase in free energy (~G). Clearly a fluctuation must 

exceed the composition e before the free energy will decrease and the 

driving force is favourable. There is thus a thermodynamic barrier to over-

come before precipitation (or phase separation) will occur. If x lies 

between a and the point of inflexion on the curve the system is metastabte 

to infinitesimal compositional fluctuations. This corresponds to the 

region between the binodal and spinodal curves (Figure 1.Sb) often referred 

to as the region of nucleation and growth. If x lies just to the right 

of the inflexion point (at d for example) for a small fluctuation,~G is 

negative and there is no barrier for separation other than that of diffusion. 

This process is spinodal decomposition (see section 1.2.3). Although the 

above discussion refers to phase separation, the same principle applies 

for crystallization and will be shown below. 



Fig. l.Sa 

Fig. l.Sb 

Fig. 1.6 

Schematic free energy-composition diagram 

for T < Tc showing graphical method of 

determining the thermodynamic driving force 

for amorphous phase separation. 

Schematic miscibility gap with the nuclea­

tion and growth (shaded area) and spinodal 

regions. 

Schematic free energy-composition diagram 

for a simple binary system at a temperature 

below the melting points of the crystalline 

phases a andS, showing graphical determina­

tion of the thermodynamic driving force 

~G(=DE) for crystallization of the equili­

brium phase a from the liquid (L) composi­

tion at X. 
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Figure 1.6 shows a schematic free energy composition diagram for a 

simple system A-B at a temperature below the melting points of the 
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crystalline phases a and i3. Suppose the initial composition of the liquid 

is at x and a small region of the equilibrium phase a is formed. As for 

phase separation,the free energy decrease per mole of the precipitating 

phase is given graphically by the distance DE. A tangent is drawn to 

the liquid-free energy curve at the initial composition x and DE is the 

height of this tangent above the free energy curve for the crystal phase a 

at the equilibrium composition of a. Clearly this driving force ~G (=DE) 

will have a maximum value for an initial liquid composition at or near the 

equilibrium composition of the phase a, for the simple case shown in 

Figure 1.6. The situation will be more complex when the solubility of 

component B in the solid phase a is much greater than shown in the diagram. 

Then, depending on the shapes of the liquid and crystalline free energy 

curves it is possible in principle to find situations when the driving 

force would be greater for the precipitation of a small region of a some­

what different composition from that of the final equilibrium phase. 

However, the composition of the phase that first precipitates in practice 

will probably also be governed by other factors including the interfacial 

energy a (W* depends on both ~G and a), and the kinetic barrier ~GD' 

Probably a will tend to be lower the closer are the compositions of 

the initial liquid and of the precipitating phase (although this may not 

be always the case). If in this situation ~G is also a maximum as in 

Figure 1.6, then w* will be a minimum and the nucleation rate I for a 

given temperature, will tend to have a maximum value. On the other hand, 

the variation of ~Go (or ~HD) with composition must be considered and this 

may also influence the composition of the liquid giving the highest 
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nucleation rates. The driving force for a crystal phase precipitating 

out of a phase-separated system is discussed in Chapter 2. 

1.3.1.4 The interfacial energy 0 

The classical nucleation theory assumes the presence of homogeneous 

phases, the existence of a sharp interface between the phases and a constant 

value of ° that is identified as 000' the macroscopic surface energy. The 

latter assumption may not be justified since ° may vary with the size of 

the droplet. The theory of Benson and Shuttleworth [1.54] indicates that 

in the extreme case of a close packed cluster of 13 atoms, ° is 15% less 

than 000. 

A more rigorous treatment of diffuse interfaces by Cahn and Hilliard 

[1.55,1.56] for nucleation in a two-component system leads to results that 

are comparable with the classical theory if the supersaturation is small. 

It is reasonable to assume that during the crystallization of a glass, 

surface energy will depend on the crystal plane in contact with the liquid. 

The faceting of a crystal will be controlled to a large extent by the sur­

face energies of the various planes in contact with the liquid and as a 

result the shape of the crystal will deviate from a sphere to favour facets 

of low surface energy. Also, there is no consensus yet about the tempera-

ture dependence of 0, although a decrease with temperature was postulated 

by some authors. This will be fully discussed in Chapter 5. 

Up to now, no measurements independent of nucleation studies have been 

reported for 0, for glass-like liquid/crystal transformations, and one has 

to accept the existing semi-empirical equations in order to estimate a. 

Values of ° were inferred from nucleation experiments with non-ionic liquids 

and correlated with the heat of fusion by Turnbull [1.57] 



(1.31) 

where No is Avogadro's number'Vrn is the molar volume of the crystal and 

ex is a constant being equal to about 1/2 for metals and 113 for semi-

conductors, water and organic substances. On the other hand, Skapski 

[1.58] has proposed a method for calculating ct. which is based on the 

nearest neighbour model of intermolecular forces. This model gives 

ct. ~ 0.4 to 0.5 for simple liquids. 

1.3.1.5 The kinetic barrier ~GD 

~GD ·can be expressed in terms of an effective diffusion coefficient 

in the liquid given by D = Do exp(- ~GD/k.T) where Do = kTA 2 /h, A being a 

quantity of the order of the atomic dimensions (jump distance). A 

number of authors have related D to the viscosity n of the liquid by the 

Stokes-Einstein relation D = kT/3TIAn, obtaining 

(1.32) 

The uncertainty of the Stokes-Einstein relation is estimated to be, at 

least, an order of magnitude in absolute terms. 

It might be supposed that ~GD for nucleation and for growth (~G~ ) 

would be equivalent. However this need not be so, and Turnbull and 

Cohen ~.59] have pointed out conditions under which D for nucleation 

should be much smaZZer than that for growth (D~). In particular this 
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should be so for reconstructive crystallization processes in which nuclei 

must form by changes in first coordination effected by the breaking of 

covalent bonds. In this case bonds would have to be broken during crystal-

lization, but there are possibilities for catalysis of growth ~.s9] 
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which do not exist for nucleation, so that D' » D. When 0' greatly 

exceeds 0, the period during which the nucleation frequency is below its 

steady-state value can be a substantial part of the transformation time. 

On the other hand, it is reasonable to suppose that in non-reconstructive 

crystallization processes both D and 0' are near the self-diffusion constant 

of the undercooled liquid. 

1. 3.2 Non steady-state nucleation 

According to later developments in the theory, the steady-state crystal 

. nucleation rate in a supercooled liquid is not achieved immediately at a 

constant temperature but only after the elapse of a certain period of 

time. This period is required to create a equilibrium size distribution 

of embryos. Most theoretical treatments involve solving the so-called 

Zeldovich-Frenkel equation. References are given by Gutzow [1.60]. An 

approximate solution for the transient nucleation rate r' valid for small 

time t only is 

I' = I exp(- ~/t) (1.33) 

where ~ is an induction time and I the steady-state nucleation rate. 

Another approximate, but more accurate analytical solution to the problem 

has been given by Kashchiev [1.61] in the form of an infinite series 

(1.34 ) 

where n is an integer. An often more convenient form for comparison with 

experiment is 
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where N(t) is the number of nuclei at time t. 

to the simple equation 

(1.35) 

For t > 5t this reduces 

(1. 36) 

According to Kashchievl. [1.61] the induction time for homogeneous 

nucleation L is given by 

(1.37) 

, 
where S* = (d 2

t.Gn /dn 2 ) n=n*" t.Gn being the Gibbs free energy required to 

form a cluster of n formula units (* refers to the critical nucleus); 

S* is the surface area of the critical nucleus, and Z is the number of 

formula units that join the critical nucleus per unit time per unit area 

and can be obtained from 

Z = ~~2 exp(- t.GD/kt) (1. 38) 

Here t.Go is the activation energy for self-diffusion in the liquid and, 

for simplicity, is assumed to be the same as the kinetic barrier defined 

before. It can be shown that [1.62] 

(1. 39) 

Furthermore, assuming the Stokes-Einstein relation 

48 - (1.40) 
7T 

24. 
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1.3.3 Heterogeneous nucleation 

In the case of heterogeneous nucleation the probability of nucleation 

at certain preferred sites in the assembly is much greater than at other 

sites. Nucleation can occur on inclusions or solid impurity particles, 

on the surface of the supercooled liquid, etc. Assuming the existence 

of p flat rigid substrates per unit volume in the supercooled liquid, let 

us consider the formation of a spherical cap of radius r of the solid (s) 

on the substrate (f). At equilibrium the contact angle satisfies; 

cos 8 = ('O.U-Osf)/Ots'. where 0R,f, Osf and OR,s are the interfacial free 

energies per unit area between liquid-substrate, solid-substrate and 

liquid-solid respectively. The free energy involved in forming such a 

cap can be written as 

(1.41) 

3 [ 2-3 cos 8 + cos
38]. where Vis = TIr 3 ' Ais = 2TIr2(1 - cosS) and 

The free energy of formation of the critical size 

nucleus can be calculated by solving (dWf/dr ) r=r* = o. The critical 

radius obtained is 

(1.42) 

and the work of formation is 

3 
16rr OR,s [2-3 cos e + cos 3e] 

Wi! = -3- !::.G
v

2. 4 
(1.43) 

The function of e varies from 0 to 1 when e varies from 0 to TI. 

Therefore, the thermodynamic barrier for nucleation can be much smaller 
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in the heterogeneous nucleation case. The critical radius remains the 

same. For e = 0 there is no thermodynamic barrier to nucleation. 

The interfacial energy between sand f can be approximately described 

as asf = asfq + asfst ~.42]; where asf
q 

arises from the chemical inter-

action between sand f molecules across the interface, and asfst corres-

ponds to the elastic strains in sand f and the dislocations at the inter-

face necessary to accommodate the mismatch 5, between them. 
l. 

disr.egistry" is defined as 8i = o 0 where af and as 

The "ideal 

are the 

equilibrium atomic spacings of the free substrate (f) and free solid (s) 

respectively. 

The equilibrium number of embryos of radius r is given by 

(1.44) 

where Nh is the total number of "molecules" of liquid in contact with sub-

strate particles. The number of nuclei produced per unit time is [1.44] 

NhkT 
-h- exp [- (Wh * + ~GD) /kT] • The nucleation rate per unit volume of 

liquid is obtained if we replace Nh by nh' where nh is the total number of 

"formula units" of liquid in contact with the substrate particles per unit 

volume of liquid. This number is given by 

where nf is the number of "formula units" of liquid in contact with one 

substrate particle. 
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1.3.4 EXperimental observations of nucleation in glasses 

Since the late 1950s hundreds of papers have been published on crystal 

nucleation in glasses. The predictions of the nucleation theory have 

been verified, at least in qualitative terms, e.g. the nucleation rate 

curves are hump shaped and induction periods are observed. A few authors 

attempted to test in a quantitative way the classical theory and their 

work will be briefly summarized below. References and information con-

cerning several different aspects of crystal nucleation in glasses can be 

found in the review papers of Tashiro [2.22], Hannnel [2.23,1.64], Hinz 

[1.65] and James [2.27]. 

Evidence supporting the view that volume nucleation in lithium disili­

cate glasses is predominantly homogeneous has been obtained by James et ale 

[1..66] • No major differences in nucleation kinetics were observed in 

glasses melted under platinum-free conditions and glasses melted in normal 

conditions. Glasses prepared from ordinary purity batch materials and 

~rom very high purity materials also yielded similar results. Burnett and 

Douglas [1.67] found similar behaviour.when studying the nucleation of 

BaO.2Si02 crystals in Bao-Na2o-Si02 glasses melted in different conditions. 

The methods of analysing the experimental steady-state nucleation 

rates were first applied in glass systems by Filipovich·' and Kalinina [1.68] 

and Matusita and Tashiro [1.69]. The last authors measured nucleation 

ra tes in a Li 20. 2Si02 glass employing the two stage tre.atment method. 

Using equation (1.32), a plot of Log(In) vs. 1/~G2T was linear. From the 

slope the crystal liquid interfacial energy cr was found to be 196 mJ.m- 2• 

These authors, however, took no ac:::count of non-steady state effects. 

Also they used a rather high development temperature (700°C) which mi9ht 

account for the low values of I obtained when compared with other workers 

U.62,1.66,1.70]. 
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Klein et al ~.71] studied the kinetics of crystal nucleation in a 

Assuming the Johnson-Mehl-Avrami equation, from the 

times required to reach a volume fraction of 10-~ and knowing the crystal 

growth rates, they deduced the nucleationrates. From a plot based essen­

tially on equation (1.32) they found a cr value of 55 rnJ.m- z and a pre-

exponential factor of 10 31 m- 3 .pa. According to the authors this is in 

good agreement with that predicted by the classical theory. In their 

analysis the Hoffman expression (Equation 1.30) was used since ~Cp data 

were not available. However, Matusita and Tashiro ~.69] were only able 

to observe sUPfaae crystallization in their NazO.2SiOz glass over a wide 

range of temperatures. Also in this study, two Nazo-SiOz glasses, close 

to the NSz composition, have been melted and given several different 

double-stage heat treatments. Again, only surfaae nucleation was observed 

indicating that the results of Klein et aL are probably fortuitous.and 

do not serve as a test of the classical theory. 

Rowlands and James ~.72] have discussed various ways of determining 

the parameters A, ~GD and cr in the theory from experimental data. 

Expressing ~GD as ~GD = ~D - T~SD ' where ~HD and ~SD are the activation 

enthalpy and activation entropy respectively, Equation (1.20) can be 

written 

I A exp (~SD/kT) exp [- (~'l* + t..HD) /kT] (1.45) 

Assuming that ~HD' ~SD and cr were constants over the temperature range 

studied, Equation (1.45) was fitted to the nucleation data of James ~.62] 

for a LSz glass, using published thermodynamic data for ~G [1.51,1.73]. 

For one method of analysis the values for ~HD and cr were 900 kJ.mol- l and 

222 rnJ.m- z • The pre-exponential factor A cannot be determined using 



Equation (1.45) since fiSD is unknown. However, A may be estimated by 

another method in which ~GD is derived from viscosity data through 

Equation (1.32). Using the viscosity data of Matusita and Tashiro 

~.69], a plot of In(In/T) vs. 1/T~Tx2, where fiTx is related to fiG (see 

Equation (1.27», gave a straight line for higher temperatures (above 
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the nucleation maximum Tmax). The slope yielded cr = 190 mJ.m- 2 in good 

agreement with a value of 220 mJ.m- 2 calculated from a model of the solid 

liquid interface developed by Skapski (Equation (1.31». The temperature 

variation of I is well described by Equation (1.32) above Tmax but not as 

well at lower temperatures. Furthermore, the experimental value of A, 

determined from the intercept of the above plot was about 20 orders of 

magnitude higher than the theoretical value of 6.3 x 1041 m_3 s_1 for 

the Li20.2Si02 glass. 

Rowlands and James ~.72] discussed various possible reasons for the 

above discrepancy, but show that the possibility of heterogeneous nuclea-

tion could not explain it. However, the discrepancy could be explained 

by postulating,atemperature dependent interfacial free energy with a small 

negative interfacial entropy. In this case, it was necessary to express cr 

in the form cr = 64.0 + 0.109T (mJ.m- 2). 

Neilson and Weinberg ~.74] have. independently carried out a very 

similar analysis for LS2 (using the same experimental data as Rowlands and 

James) and have reached almost identical conclusions. It should be 

stressed, however, that the viscosity data and the nucleation data used 

were obtained from different melts (of same nominal composition, LS2) and 

differences in "water" levels or other impurities could have a marked 

effect in these data. 

Nucleation rates for the barium disilicate crystal phase in a glass 

of the same composition have been measured by Rowlands and James ~.47,1.7S]. 
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Analysis of the I vs. T curve using Equation (1.45) gave a 0 of 132 mJ .m- 2 , 

assuming a spherical nucleus. Unlike LS2, detailed thermodynamic data 

were not available and ~G was estimated from the approximate Equation 

(1.26), using the heat of fusion measured by DTA [1.47]. 

data were available to allow an estimate of A to be made. 

No viscosity 

Steady-state nucleation rates have been analysed in the Na20.2CaO. 

3Si02 (NC2S3) composition by GonzaleZ-Oliver and James ~.53,1.76], using 

measured viscosity and thermodynamic data (~Hf and ~Cp ). A plot of 

log(In/T) vs. 1/T~G2 gave a straight line, the slope indicating a cr of 

180 mJ.m- 2 in g~od agreement with a value of 193 mJ.m- 2 obtained from the 

empirical formula given by Matusita and Tashiro ~.69]. In the analysis, 

~G was calculated from the more accurate Equat~on (1.28) using the measured 

values of ~Hf and ~cp. From the intercept of the plot the pre-exponential 

factor A was 49 orders of magnitude highep than the theoretical value. 

The authors observed that this discrepancy should be viewed as tentative 

since the ~G for NC2S3 was obtained using an average ~Cp over the tempera­

ture range studied. Even a small error in ~G could produce a large change 

in A, although the value of 0 would be altered only slightly. 

Recently, Cranmer et al. [1. 77] determined the nucleation frequency 

of anorthite from the JMA equation (in the same way as Klein et al. 

~.71]). The times required to reach a volume fraction of crystallized 

material of 0.001 were used together with previously measured crystal 

growth rates in order to obtain I. From the measured viscosity values and 

by employing the Hoffman expression (Equation 1.30) for ~G,a test of the 

classical theory could be made. 

straight line indicating a value of 190 mJ.m- 2 for 0. The intercept gave 

an A value of 2 x 10 33 m- 3 .pa, which was considered by the authors to be 

in good agreement with the value of 10 30 m- 3 .Pa expected from classical 
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nucleation theory. It was concluded that classical theory can be used to 

describe nucleation in glass-forming silicate systems, and suggested that 

the nucleation data of James [1.62] on LizO.2SiOz be re-examined. 

Although the authors mentioned that the presence of many small crystals 

distributed randomly throughout the bulk of the material was revealed by 

optical examination (the same statement was given in Klein's paper ~.7l]) 

no experimental evidence was given. 

Hammel ~.l08] selected a 76SiOz.13NazO.llCaO glass composition near 

the edge of the miscibility gap. Particle size distributions of amorphous 

droplets were obtained from electron micrographs of heat-treated glass 

samples. Knowing the number and size of particles in a given size inter-

val and their growth rate, he was able to determine the steady-state 

nucleation rates between 601 0 e and 640°C. 6Gv was estimated at various 

undercoolings by fitting the Lumsden solution model ~.78] to experimental 

miscibility gap data. A value of 4.6 mJ.m- 2 was obtained for 0 by measur­

ing the variation of solubility temperature with particle radius. 6GD 

was found from measured particle growth and miscibility gap data, assuming 

that the diffusion mechanisms involved in nucleation and growth are the 

same. Fitting these values into Equation (1.20), the calculated nucleation 

rates were within an order of magnitude of the experimental results. This 

is a remarkably good agreement but, as pointed out by Hammel, it depends 

strongly on the assumptions made in calculating 6G, and does not constitute 

a definitive test of nucleation theory •. 

1.3.4.1 Experimental observations in organic liquids and metals 

Heady and Cahn ~.79] made a thorough experimental test of classical 

theory in the C7Hl~-e7F~ liquid-liquid miscibility gap system. The 

observed undercoolings for detectable nucleation were much greater than 
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predicted by theory (- 4 times) confirming earlier work of Sundquist 

and Oriani ~.80]. They were unable to explain the discrepancy by simple 

modifications of the theory or by considering the diffuse nucleus theory 

of Cahn and Hilliard ~.56] and concluded that their result challenged 

the basis of the classical theory. 

Huang et ale ~.8l] studied the homogeneous nucleation in a binary 

fluid mixture of cyclohexane-methanol. The measured critical super-

coolings were in good agreement with the predictions of the Cahn and 

Hilliard theory, as modified by Sarkies and Frankel ~.82]. 

Nucleation in metals has also been analyzed in terms of the critical 

nucleation temperature, e.g. Turnbull ~.57,l.83],by the droplet technique. 

This is one successful technique used in studying the homogeneous 

nucleation in a liquid/solid transformation and consists in separating the 

liquid into small droplets until the number of droplets is greater than 

the number of impurities present in the total liquid volume. 

way, some of the droplets can nucleate homogeneously. 

In this 

Turnbull [1.83] studied the solidification of mercury droplets coated 

with various mercuric salts. Once nucleation had occurred, the droplet 

solidified almost instantaneously and volume change measurements followed 

the nucleation process quite accurately. Mercury acetate acted as a 

substrate for heterogeneous nucleation and droplets given this coating 

solidified at rates proportional to their surface area, and in good agree-

ment with heterogeneous nucleation theory. However droplets coated with 

mercuric laurate-nucleated homogeneously at rates proportional to the 

droplet volume. The data obtained gave a value of 1048 m- 3 s-l for A 

(107 Zarger than predicted) • Explanations for this discrepancy included 

the possibility that the surface energy is temperature dependent and that 
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the nucleus has a structure which is distorted from the equilibrium 

structure. Lethe and Pound [1.86] have attributed the 107 factor to 

the free rotation of the crystal nuclei in the liquid. Such rotation 

would be impossible when the nuclei are attached to a substrate and so 

the heterogeneous nucleation results of the droplets should give good 

agreement with theory. 

Earlier experiments by Turnbull ~.S7] had given good agreement with 

homogeneous nucleation' theory. The results for cr for several metals were 

of the right magnitude when compared with the few independent values of a 

available [1.84] • 

An quantitative test of solid-solid nucleation theory was performed 

by Servi and Turnbull [1.85] on a series of Cu-based alloys containing 

from 1.0-2.7 wt% Co. The temperature dependence of the experimental 

results were well described by the theory. The surface energy calculated 

from the slope was 200 mJ.m- 2 and agreed well with the value calculated by 

a semi-empirical equation. The 10 38 intercept was in good agreement with 

the theoretical estimate of 1041 • These results constitute impressive 

quantitative agreement between'theory and experiment. Howeve r, the 

crystal nucleation densities were calculated from a JMA equation and not 

obtained directly by experiment. 

Kirkwood ~.87] conducted an electron microscopic investigation of the 

homogeneous nucleation of a coherent ordered phase (yl = Ni3Al) from a 

disordered Ni-6.SS wt% Al alloy. A minimum supercooling of 65°c was needed 

for copious homogeneous nucleation. ~G was ~alculated from a regular 

solution model and measured heats of solution, ~G (the strain term) was e: 

determined by a method described in ~.46]. A value of a = 30 mJ.m- 2 was 

obtained from particle coarsening experiments. The calculated undercool-

ing was 63°C, in good agreement with the measured value. 
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Miyazawa and Pound ~.88] found an A factor 106 greater than the 

theoretical value for the homogeneous nucleation of supercooled gallium. 

This was explained in terms of a temperature dependent interfacial energy. 

Another interesting study was carried out by West ~.89] who 

repeated Kirkwood's work using improved techniques. Precipitate number 

density of the y phase in two Ni-Al alloys, containing 6.55 wt% Al and 

6.05 wt% Al, was measured as a function of time after direct quenching to 

different transformation temperatures. Precipitate densities were also 

measured in specimens up-quenched to the transformation temperature and 

in specimens held at different solution heat-treatment temperatures before 

down-quenching to the reaction temperature. In all the specimens, the 

precipitate densities were measured directly using dark field electron 

microscopy. Measurements of the nucleation rate at the different trans-

formation temperatures were calculated from the experimental results and 

compared with the predictions of classical nucleation theory. A large 

discrepancy was found between the experimental values and theory (A was 

10
7 Lower than predicted) which could not be attributed entirely to 

inaccuracies in the thermodynamic data. 

In conclusion, it is clear that direct measurements of nucleation 

rates are important if quantitative comparison with theory is to be made. 

These are most easily done in glass systems due to their high viscosities. 

On the other hand, there is much controversy about the validity of the 

classical theory and more work is needed to clarify the subject. The 

assumption in theory that the properties of embryos are the same as those 

of the bulk phase, however, is extremely unlikely because (a) even in a 

stable phase the energy of small groups of atoms deviates considerably 

from the mean, (b) atomic configurations that minimize the interfacial 

energy probably exist in embryos, whereas in the bulk phase surface effects 



are negligible and the surface energy plays no part in determining the 

atomic configuration, (c) the interfacial energies derived from bulk 

samples generally refer to interfaces that are plane or nearly so, and 

in using these values for nucleation calculations it is assumed that cr 

is independent of the radius of curvature, an assumption that is not 

expected to hold at small radii. 

1.4 Crystal Growth in Supercooled Liquids 

Once a stable nucleus has formed the growth of the crystal proceeds 

by incorporating atomic species from the supercooled liquid. Again the 

free energy difference between liquid and crystal drives the transforma­

tion. Also an activation energy ~G~ (in general different from ~Go for 

nucleation) for an atom or growth unit to cross the liquid/solid inter-

face has to be considered. As no specific experiment to test crystal 

growth mechanisms and theories has been undertaken in this thesis and 

excellent reviews are available, e.g. Uhlmann ~~90], Kirkpatrick [1.91] 

and Gutzow [1.92], only a brief summary of the present theories will be 

given. 
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The rate-controlling process may be diffusion in the melt, heat flow, 

or the reaction at the crystal melt interface. Diffusion or heat flow 

controlled growth generally lea~s to a cellular morphology. For most 

silicates, interface-controlled growth leads to a faceted morphology. 

If the rate-controlling process is interface reaction, the mechanisms at 

the interface may be either continuous, with molecular attachment occurring 

at all points on the crystal surface, or lateral, with attachment occurring 

only on steps of the surface. The mechanism actually occurring can be 

determined by the dependence upon undercoo1ing of the growth rate corrected 

for the viscosity of the melt. The nature of the interface can be 
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described in terms of the interface roughness, which may be considered to 

be the topographic relief of the surface. Materials with small latent 

heats of fusion, such as quartz, should have molecularly rough interfaces 

and grow with a non-faceted morphology, while materials with large latent 

heats, such as most other silicates, should have smooth interfaces and 

grow with a faceted morphology. 

1.4.1 Rate-controlling processes for crystal growth 

The rate at which crystals grow can be controlled by any of the three 

factors: diffusion in the melt (either long or short range), flow of 

latent heat away from the growing crystal surface or reactions at the 

crystal-melt interface. 

If controlled by long-range diffusion, the growth rate U of a flat 

interface is given by Christian ~.44] as 

U = K(D/t) Ih (1.46) 

where K is a constant involving concentration terms and D the diffusion 

coefficient of the rate-controlling species in the liquid. 

Short-range diffusion can affect growth by causing the crystal to 

break up into a cellular morphology. 

time ~.94]. 

In this case U is independent of 

The interface generally has a cellular morphology if flow of latent 

heat is the rate-controlling process. As with diffusion-induced 

instability, the rates are generally independent of time ~.9S]. 

If the reaction at the crystal-liquid interface is the slowest ,step 

in the growth process, U is also independent of time ~.96,1.97]. 
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1.4.1.1 Theory of interface-controlled growth 

The general theory for the rate of interface-controlled growth was 

developed by Volmer and Marder in 1931 ~.98] and Turnbull and Cohen in 

1960 [1. 99] • Jhe final equation can be written as 

u f ao V exp (- flGO/kT) [1 - exp (- flG/kT)] (1.47) 

where the activation energy for diffusion across the boundary ~G~ is 

generally different from flGD for nucleation, f is the fraction of sites 

of the crystal surface available for attachment, V the vibrational fre-

quency and ao the thickness per molecular layer. 

At small undercoolings, Equation (1.47) may be expanded to give 

U = f ao V ~G/kT exp(- flGo/kT) (1.48) 

At greater undercoolings ~G » kT, and Equation (1.47) may be approximated 

by 

U = f ao V exp(- ~GD/kT) (1.49) 

Neglecting pressure effects 

(1.50) 

where ~H~ is the activation enthalpy and ~s~ the activation entropy. 

Substituting this into Equation (1.49) gives 

U = f ao V exp(~SD/kT) [exp(- flHO/kT)] (1.51) 

This formalism appears to describe very well the rates of crystal 
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growth in most systems. It can be made more predictive by approximating 

~GD by ~Gn (activation energy for viscous flow) by means of the Stokes-

Einstein relation (see section 1.3.1.5). 

be written 

Therefore Equation (1.47) can 

U = f kT/3rrao 2n ~ - exp(- ~G/kt)] (1.52) 

In studying crystal growth it is useful to rewrite Equation (1.52) and 

to define the reduced growth rate Ur , as 

Ur = un/~ - exp(- ~G/kT)] = kT/3rrao~f (1.53) 

Ur is primarily a measure of the fraction of sites on the crystal surface 

available for molecular attachment. 

This relationship is used to distinguish which mechanism controls the 

interface reaction, because f has a different temperature dependence for 

each mechanism. 

Mechanisms of interface-controlled growth 

The mechanism of growth may be defined as the manner in which atoms 

or "formula units" attach to the growing crystal surface. Two broad 

categories can be dis tinguished according to Jackson et ale [1.100] ; 

lateral and continuous. The continuous mechanism operates when molecules 

can attach at essentially any site, allowing the interface to advance 

uniformly. Lateral growth occurs by movement of one-molecule-high step 

across the crystal surface. Molecules can attach only at that step. 
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1.4.2 Continuous (or normal) growth 

According 'to [1.101] and [1.102] f is assumed to 

be temperature independent and large. Therefore plots of Ur vs. fJ.T should 

be straight lines with zero slope, especially at smaLL underoooLings where 

fJ.G ~ fJ.H£?T/Tm (Equation 0..26» and fJ.Hf fJ.T/Tm « kT (valid for many materials). 

Therefore Equation (1.52) yields 

(1.54) 

and 

un = B t:.T (1.55) 

where B is a constant. 

Thus, at small undercoolings,plots of un vs. fJ.T should be straight lines 

with positive slopes. 

1.4.3 Surface-nucleation mechanism 

In the surface-nucleation mechanism (Hillig in 1966 ~.103]; Calvert 

and Uhlmann in 1972 ~.l04]) it is assumed that molecules can attach only 

at the edges of one-molecule-thick layers on the crystal surface. The 

growth rate is given by 

U = Bin exp(- B~/TfJ.T) ( 1.56) 

where B and B~ are constants. Thus the reduced growth rate increases 
, 

approximately exponentially with undercooling. In addition, plots of 

In(un) vs. l/TfJ.T are straight lines with negative slopes. 
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1.4.4 Screw dislocation mechanism 

The screw dislocation model described by Billig and Turnbull in 1956 

~.105] assumes that screw dislocations emerge from the growing crystal 

face and cause a perpetual repeating step in the shape of an Archimedean 

spiral. 

given by 

The fraction of sites available for molecular attachment is 

(1.57) 

Incorporating Equation (1.57) into the small undercooling approximation 

for the growth rate, Equation (1.55) yields 

(1.58) 

where B is a constant. Thus near the liquidus, plots of un vs. 6T2 

should be straight lines with positive slopes. 

TPere are experimental results for various systems confirming all 

these crystal growth mechanisms. Also, the crystal morphology of all 

materials so far investigated is that predicted by Jackson's theory 

~.l06], i.e. materials with small entropies of fusion have a non-faceted 

morphology, and materials with large ~ntropies of fusion have faceted 

morphology. Full lists of references are given in the reviews mentioned 

above [1. 90 , 1. 91 , 1. 92] • 

Of special interest is the fact that the experimental growth rates 

for Si02 and Ge02 are larger by about an order of magnitude than those 

predicted by the normal growth model using the Stokes-Einstein relation 

tq evaluate 6Go from 6cn ~.90]. The similarity of the temperature 

dependence for the observed and calculated rates, however, is encouraging 

and indicates that, at least for these "simpler" systems, the processes 

controlling viscous flow and crystal growth are similar. 
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Recently, Shkol'nikov ~.l07] carried out an analysis of the published 

data on the growth kinetics of crystals in M20.2Si02 glasses (M = Li, Na 

and K) and confirmed the screw dislocation model of growth at a wide range 

of supercooling. The maximum rate of crystal growth occurs at approxi-

mately 0.92 Tm and the experimental values for U were shown to be about 

two orders of magnitude higher than the theoretical values, which in his 

view was a result of the approximation involved in using the Stokes-

Einstein relation. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 !he Phase Diagram of BaO-Si02 

The phase diagram of the baria-silica system is given by Roth and 

Levin [2.1]. They also discovered the polymorphic transformation of 

BaO.2Si02 (BS2) taking place at 13S0oC. The orthorhombic structure of 

the low temperature form ~-BS2 was deduced by Douglass [2.2]. The high 

temperature monoclinic form h-BS2 is described by Katscher et al [2.3]. 
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Full crystal data of all BaO-Si02 compounds are given by Oehlschlegal [2.4]. 

Calculations by Charles [2.5] of thermodynamic activities in the 

BaO-Si02 system indicated a critical point at 8 molt BaO and l600 oC. 

Seward et ale [2.6] determined experimentally the binodal curve with a 

critical point of 1~60oC and 10 molt BaO, the accuracy being ±l molt BaO 

and SO-lOOoc. The model of Haller et ale [2.7], assuming regular mixing 

between BaO.2Si02 and (Si02)s "multimers", can be fitted to the data of 

Seward et ale very successfully. 

In Figure 2.1 the phase diagram with the metastable miscibility gap 

is shown together with the experimental points of Ramsden [2.54] who used 

the "clearing" technique, and the experimental results obtained by SAXS 

in this work (,~). The spinodal region calculated by Haller et ale [2.7] 

is also depicted. 

2.2 Crystallization of Baria-Silica Glasses 

MacDowell [2.8] has shown that for glasses in the composition range 

BaO.2Si02 to 2BaO.3SiOz internal crystal nucleation occurs without deliberate 

addition of nucleating agents. A spherulite to lath transformation was 



Fig. 2.1 Phase diagram of the Bao-Si02 system showing the 

metastable miscibility gap. The solid line 

represents the binodal boundary and the dash­

dotted line represents the spinodal calculated 

by Haller al. [2.7]. The experimental points 

for the binodal are from: 0 Seward et ale [2.6]; 
o Ramsden [2.54] and this work. The 

filled circles indicate the heat treatments used 

here. 
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detected at 975°C by DTA, although X-ray diffraction (XRD) did not indicate 

any change in phase. 

Rowlands [1.47] confirmed the observations of MacDowell. Rowlands 

also measured crystal nucleation rates for a BS2 composition and showed that 

internal nucleation of Li20.2Si02(LS2) or BS2 occurred in several composi-

tions of the Li20.2Si02-BaO.2Si02 eutectic subsystem. Crystal growth 

kinetics (at high undercoolings) in this subsystem were adequately described 

by Arrhenius plots. Only slight variations of activation enthalpy were 

found as a function of composition, except near BaO.2Si02 where a marked 

increase occurred. This was reflected in a decrease in the growth rates. 

Burnett and Douglas [1.67] described the growth of BaO.2Si02 spherulites 

in a 70Si02.20BaO.lONa20 glass at 600~C. Small spheres of h-BS2 were first 

to appear. These nucleated needles of i-BS2 and the characteristic 

spherulitic forms began to appear. After a long heating period the 

spherulite· transformed to laths and the remaining h-BS2 reverted to i-BS2. 

Freiman et ale [2.9] observed similar changes in microstructure from 

spherulites to laths in a 3BaO.SSi02 glass. The transformation was accom-

panied by sharp changes in the electrical resistivity and heat evolution. 

A review of spherulitic crystallization was also given. 

Oehlschlegal [2.4] reported a four stage crystallization process con-

sisting of: 1) classical nucleation, 2) spherulitic growth, 3) crystal-

lization of h-BS2 and 4) 3BaO.SSi02 decomposes to i-BS2 and i-BsSe. For 

BaO.2Si02 glass, stage 3 represented the conversion of high to low BS2. 

Lewis and Smith [2.10] studied the spherulitic growth in BaO-Si02 

glasses in detail by electron microscopy and electron diffraction. They 

demonstrated that spherulites formed at 700°C (close to Tg) consisted of 

° fibrilar (- 100 A in diameter) monoclinic crystals (h-BS2) in confocal 

arrangement with preferred crystallographic growth axes. High temperature 
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(900~) spherulites were composites of radially oriented plate-shaped 

orthorhombic crystals (~-B82) with lateral growth of epitaxially nucleated 

fibrillar monoclinic crystals. At intermediate temperatures "axialites" 

consisting of a single orthorhombic crystal with monoclinic fibrillar side­

growths, grew in competition with the low temperature morphology. 

Ramsden [2.54] reached very similar conclusions in his independent study. 

Ramsden has also studied the kinetics of crystal nucleation in several glasses 

inside and outside the miscibility gap of the system. His experiments and 

conclusions will be thoroughly discussed in sections 2.5.1 and 2.6. 

James and Rowlands [1.75] determined the nucleation rates of a BaO.2SiOz 

glass from 662 to 780°C. Equation 1.45 was fitted to the experimental 

data, and assuming a spherical nucleus and the known heat of fusion, a was 

found to be 132 m J. m- 2 and AHD was 741 kJ.mol- 1 

As far as this author is aware these are the only studies on crystalliza-

tion in BaO-Si02 glasses made so far. In Table 2.1 several physical 

properties, collected from the literature, are presented. 

2.3 ~he Phase Diagram of Li20-Si02 

The phase diagram of the lithia-silica system was determined by Kracek 

[2.11] . The miscibility gap was determined by several authors [2.7,2.12,2.13], 

and there is a good agreement between the different determinations. 

Figure 2.2 shows the SiOz-rich side of the equilibrium phase diagram and the 

miscibility gap. The model of Haller et al.[2.7] also fits the existing 

data very well, assuming regular mixing between Li20.2Si02 and (8i02)6 

"multimers". Crystallographic data for lithium disilicate have been reported 

by Liebau [2.20] who also described a polymorphic transformation at 936°C. 



Fig. 2.2 Phase diagram for the Lizo-Si02 system showing 

the metastable miscibility gap. The solid line 

represents the binodal and the dash-dotted line 

represents the spinodal calculated by Haller et 

al, [2.7].' The experimental points for the 

binodal are from: • Andreev et al. [2.12]; 

/}. Moriya et al. [2.13] and Haller et al. [2. 7] • 

The smaller filled circles indicate the heat 

treatments used here. The shaded area represents 

the range of solid solution formation [2.21]. 
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2.4 ~rysta11ization of Li20-Si02 Glasses 

In contrast to BaO-Si02 glasses, the crystal nucleation and growth of 

Li20-Si02 glasses have been extensively studied. Of particular interest 

to the present work are the quantitative stud~es of crystal nucleation 

kinetics, especially the attempts to test the e1assica1 nucleation theory 

and the attempts to correlate the amorphous phase separation with crystal 

nucleation behaviour. References have already been given in section 1.3.4 

and others will be given when discussing the previous work on the relation­

ship between phase separation and crystallization (sections 2.5.1 and 2.6) • 

The morphological aspects of the growth units have been studied in 

detail by Tomozawa [2.56], James and Keown [2.1] and Lewis et a1. [2.15]. 

It was conclusively shown that the lithium disi1icate (LS2) crystals 

consisted of faceted single crystal plates containing a high defect concen-

tration. New branches formed on most of the crystals, probably by a 

twinning mechanism. The regular nature of the branching explained the mor­

phology of crystallization after prolonged growth (clusters of single 

crystals). It was also shown [2.16,2.33,2.55] that the liquid droplets 

did not interfere with the growing crystals, the unchanged droplets remain-

ing embedded within the crystals. Thus evidence for the similarity of the 

LS2 clusters to the more complex spherulites in BaO-SiOz glasses is lacking. 

Kinser and Hench [2.17] studied a 30Li20.70Si02 glass during isothermal 

heat treatment at 500°C with electron microscopy, XRD, and dc and ac 

electrical measurements and concluded that metastable, crystalline lithium 

metasi1icate (LS) precipitates first and subsequently redissolves (t > 5 h) 

prior to the appearance of the equilibrium LSz crystals. 

Hench et a1. [2.18] also indicated that the LS crystal precedes the 

equilibrium crystallization in a glass with nominally 33 mol% Li20. 

Kalinina [2.19] has demonstrated the existence of a enantiotropic 



polymorphic transformation of lithium disi1icate at about 930°C. The 

system and unit-cell constants of both low and high-LS2 were also 

determined. 
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West and Glasser [2.21] have made a comprehensive study of crystalliza­

tion in this system. They demonstrated that the first crystallization 

product of Li20-Si02 glasses is a metastable Zithium disiliaate solid 

solution; its composition ranging from 28 to 38 mol% Li20. (Figure 2.2>. 

The solid solution containing 28 to 33.3% Li20 was formed at temperatures 

as high as 930°C, although it decomposed rapidly at these temperatures. 

At lower temperatures, between 500°C and 700°C, the solid solutions persisted 

indefinitely, but their extent was limited by the binoda1 boundary. Several 

structural variants of the silica-rich disilicate solid solutions have been 

characterized by their X-ray powder diffraction patterns, which exhibit 

systematic variations in intensities and sharpness of some reflections. 

Therefore, these results challenged the earlier work of Kinser and Hench 

[2.17]. 

Table 2.2 shows several physical properties of LS2 . _ - . glass and 

crystal. 

2.5 The Effects of Liquid-Liquid Phase Separation on Crystal Nucleation 

It has long been known from phase diagrams that prior liquid-

liquid phase separation can have a marked influence on the course of crystal­

lization in a system. Thus liquid unmixing may produce two compositions, 

one of which has a greater tendency to crystallize than the initial non-

separated glass~ However, it is also known that liquid phase separation is 

not always essential to produce internal crystal nucleation in glasses; 

e.g. BaO.2Si02, Li20.2Si02, Na20.2CaO.3Si02 and other glass compositions do 



Table 2.1 

PHYSICAL PROPERTIES OF GLASSY AND CRYSTALLINE BS2 

P (kg.m- 1 ) 

a. (oC- 1) 

Vm (m 3 .mol- 1
) 

M.W (kg .mol- 1) 

TIll (OC) 

l.Hf (kJ .mol- 1) 

illIc (kJ. mol -1) 

Glass 

3740 

91. 7 x 10- 7 

73.14 X 10- 6 

R,-BS2 (ort.) 

3770 

126.3 x 10- 7 

72 .56 X 10-6 

273.54 x 10. 3 

Table 2.2 

h-BS2 (mon.) 

3730 

73.34 X 10-6 

3 
273.54 x 10 

1420 

37.0 ±l.0 

32.0 ±2.0 

PHYSICAL PROPERTIES OF GLASSY AND CRYSTALLINE LS2 

Glass R,-LSz (ort. ) h-LS2 (ort. ) 

P (kg .m- 3) 2325 2445 

a. (oC- 1) 120 X 10- 7 

Vm (m 3 .mol- 1) 64.55 x 10-6 61.38 X 10- 6 

M.W (kg .mol- 1) 150.08 x 10 3 
150.08 x 10 

Tm (OC) 1034 

illIf (kJ .mol- 1) 57.3 

illIc (kJ .mol- 1) 61 ±4 

47. 

.3 
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not show phase separation and still crystallize internally. Also, several 

glass compositions in the Na20-Si02,alkali-B203 and other systems show 

extensive liquid unmixing and do not crystallize internally. Theoretically, 

amorphous phase separation (APS) could influence crystal nucleation in 

several ways but most of the possibilities fall into two main categories 

associated either with i) the different oompositions of the separating 

liquid phases, or with ii) the interfaoes between the glassy phase. These 

points have been fully discussed by several authors, including Tashiro 

[2.22] and Hammel [2.23]. Extensive arguments were presented at a meeting 

on "The Vitreous State" in 1970, University of Bristol, by Scholes [2.24] 

Uhlmann [2.2~ and Zarzycki [2.26]. Recently, James [2.27] summarized the 

present state-of-art on the subject. Thus the compositionaL ohanges 

resulting from liquid phase separation may affect W* (through ~G ora) and ~GD. 

Figure 2.3 illustrates schematically how the thermodynamic driving force ~G 

for orystaZLization may depend on whether prior metastable immiscibility 

occurs or not. In the example shown, which represents the situation at 

high undercooling below the melting point o~ the crystal phase a, the driving 

force for crystal nucleation is increased after the occurrence of liquid 

phase separation for initial parent compositions between a and b, but it is 

Lowered after phase separation for initial compositions between band c. 

In the parent non-phase separated glass, ~G exhibits either a maximum or 

minimum at the spinodal compositions (e and f). The phase separated glass 

(compositions a and c) has a constant ~G. (Refer also to section 1.3.1.3) • 

The situation presented in Figure 2.3 is quite likely to be met in practice 

for glass ceramic systems at high undercoolings below the liquidus. 

Liquid phase separation could also result in one of the liquid phases having 

a lower ~GD' i.e. an appreciably higher atomic mobility at large under­

coolings than the parent liquid phase, which also could result in an increase 



Fig. 2,3 (a) Schematic diagram for the thermodynamic driving 

force for crystal nucleation as a function of 

composition, in a system undergoing metastable 

phase separation 

(b) Variation of thermodynamic driving force ~G 

with composition for parent non-phase separated 

glass (solid curve) and for phase separated 

glass (dotted line). 
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in the homogeneous crystal nucleation rate. Also,the crystal-liquid 

interfacial energy cr could be lower for one of the liquid phases than for 

the parent liquid phase, having an important effect on the nucleation rate 

of crystals. 

The mechanisms for the enhancement of crystal nucleation associated 

. t .tJ with the ~n erJaaes between the amorphous phases could be of various types: 

i) "Direct" heterogeneous crystal nucleation at the interfaces; ii) an 

enrichment of some component, perhaps a "nucleating agent", at the boun-

daries between the amorphous phases causing a locally higher bG or atomic 

mobility or even a lower interfacial energy. It has been further 

suggested that a sparingly soluble component might crystallize out at the 

interface and promote heterogeneous nucleation in the bulk of the glass 

[2.24]~ (iii) Another possible mechanism suggested by Tomozawa [2.28] is 

preferential nucleation in the diffusion zones around liquid phase droplets. 

This will be discussed later. 

2.5.1 Experimental observations of the effects of amorphous phase 

separation on crystal nucleation 

There is a plethora of experimental studies on the relationships between 

phase separation and crystallization (especially on nucleation) but only a 

number of the most important will be discussed. 

In earlier studies some authors have suggested that the heat treatment 

for crystal nucleation was principally a treatment to induce phase separa-

tion, and that "nucleating" agents such as Ti02, Zr02 and P20S were compon-

ents to enhance the phase separation tendency [1.15]. 

In a review on catalyzed crystallization of glass in 1959, Stookey 

. [2.29] suggested that liquid phase separation could help subsequent crystal-
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lization because homogeneous nucleation could occur in one of the separated 

amorphous phases. 

The work of Vogel and co-authors [2.30,2.31,2.32,2.33] has included 

qualitative studies of crystallization in phase separating glasses of the 

following systems: Li20-Si02, LiF-BeF2, MgO-P20S and more complex 

compositions. 

Excellent electron micrographs showed crystals growing in the amorphous 

matrix or within the droplets (Figures 9 and 10 in [2.32] and Figures 182, 

183, 184 and 185 in [2.33]). Vogel 12.33] also stated that Figures 110 and 

111 in his paper "show clearly that crystallization begins with the granular 

formations (Li2Si20S spherulites) at the periphe~J of the larger (amorphous) 

droplet zones". It should be stressed, however, that in Figures 110 and 111 

(TEM micrographs of a 20Li20.80Si02 (mol%) glass heated for 1 hour at 580°C 

and 1 hour at 650°C, respectively) the crystallization front just advances 

into the two-phase glass by-passing the undisturbed amorphous droplets. 

Therefore there is no evidence that crystal nucleation started on the inter-

faces of the droplets. 

They concluded that internal crystal 

nucleation was the result of amorphous phase separation in the three cases. 

In the first glass, the amorphous droplets formed spontaneously on cooling 

° and, on heating, they reached 500 A before crystallization occurred. In 

o 
the second glass droplets having 2000 to 4000 A in diameter also formed on 

cooling. During heat treatment, crystal growth in the matrix was apparently 

initiated at the droplet-matrix interface. In the third system, droplets 

as large as 60 ~m were formed by heat treatment. Again, crystal growth 

could be detected at the amorphous droplets-matrix interface. 
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Maurer [2.35,2.36] made light scattering studies on a Si02-MgO-Al203-

Ti02 glass heat treated at different temperatures and found that the 

scattering centres became increasingly anisotropic. 

as a crystallization of amorphous droplets. 

This was interpreted 

Kalinina et ale [2.37] studied the crystallization of Li20-Si02 glasses 

within the composition range 20.0-30.3 molt Li20 by DTA and XRD. A small 

amount of lithium metasilicate, and lithium disilicate were detected at 

480-630oc. At 900-960oC,cristobalite and one strong trydimite line 

appeared. It was suggested that crystal nucleation started in the amorphous 

phase, although no specific experiment to test this hypothesis was undertaken. 

Buzhinskii et ale [2.38], in a study of physical properties of glasses 

in the Li20-AI203-Si02 (Ti02,Fe203) syste~suggested that the glasses 

separated into two amorphous phases with formation of minute droplets 

having the composition of the crystals which subsequently deposited. Again, 

no direct experiment was performed to test this hypothesis. 

The results of Doherty et ale [2.39], who studied the crystallization 

of Li20-Al203-Si02 glasses with and without Ti02,indicated 

that Ti02 was responsible for internal nucleation of B-eucryptite rather 

than the liquid-liquid immiscibility. 

Burnett and Douglas [2.40] in a TEM study of crystallization in Na20-

BaO-Si02 glasses said "the main effect of the liquid unmixing appears to be 

that of producing'two compositions, one of which is more prone to crystal-

lize. In this system no crystallization was observed to be initiated 

from the liquid-liquid interface; nucleation of the crystallites occurred 

within the baria-rich phase and at a much lower nucleation density than that 

of the liquid separation." 

Bayer and Hoffmann [2.41], in their study of Na20-Ti02-Si02 glasses, 
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show replica micrographs of needle-shaped crystals on the borders of drop-

lets (Figure 6 in 12.41]), and concluded that in glasses with an unmixing 

tendency heterogeneous nucleation takes place at the internal interfaces 

of the droplets. However, it was also mentioned that the droplets showed 

single crystal patterns of the same phase as the needle-shaped crystals. 

Therefore, they were not amorphous. 

Other systems for which it has been suggested that droplet interfaces 

initiate crystallization include: fluor-richterite (Na2.Ca.Mgs.Sie.022.F2) 

[2.42]; Si02-A1203-CaO-MgO-Ti02 [2.43], for which it was said "Tout se 

passe comme si les interfaces des phases vitreauses separees agissaient 

comme nucleateurs de la cristallisation du rutile a partir de la phase 

vitreuse la plus rich en Ti02. Ce rutile servirait ensuit de nucleateur 

heterogene pour la precipitation des alunino-silicats."; and CaO-MgO-

However, conclusive evidence for the effects 

of phase separation was not presented. 

McMillan and co-workers 12.45,2.46,2.47] have studied glasses of the 

They observed that the finest crystals were 

produced in glasses which contained both P20S and a phase separated micro-

structure. 

In a later work McMillan [2.48] studied the crystallization of a 

Specimens were nucleated at 550°C from 0.1 to 

6 hours and "developed" at 750°C for 1 hour. Maximum nucleation efficiency 

was achieved with a duration of 20 minutes at 550°C. There was no simple 

correlation between this observation and the phase separated microstructure 

since the number density of phase separated particles and their interfacial 

area continued to decrease throughout the heat treatment period. This 

result did not support the idea that phase separated particles (interfaces) ,. 
provide nucleation sites for subsequent crystallization. To reconcile 



these findings with the fact that APS enhance crystal nucleation rates 

(from earlier work), McMillan [2.48] proposed that after a initial period 

at the nucleation temperature the number of crystal nuclei decreases 
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because of a coarsening process. Thus, in his opinion, the occurrence of 

APS in the glass could hinder the coarsening process through an increase 

of the activation energy of diffusion. Therefore, the beneficial effect 

of prior phase separation on nucleation density was seen as an indirect 

one, rather than the direct provision of nucleation sites. 

Studying a Li20,2.5Si02 glass, Nakagawa and Izumitani [2.49] observed 

that the difference in the number of crystals formed in a previously phase 

separated specimen and in a quenched sample of the same overall composition 

was negligible. They also found that the maximum nucleation rate of LS2 

crystals was at 480°C while that of amorphous droplets was at 450°C. 

It was concluded that amorphous phase separation did not influence crystal 

nucleation. However, later work [1.62,1.68,1.70] has shown that the maximum 

in crystal nucleation also occurs at about 450-455°C. For a 68Si02, 

22.5Ti02,9.5Li20 glass, micrographs were published (Figures 16b and c in 

[2.49])showing crystals of Li20.Ti02 around the liquid droplets. These 

crystals acted as nucleation sites for the main crystal phase. 

A very detailed study was carried out by Tomozawa [2.28] who compared 

the kinetics of amorphous separation for Li20-Si02 glasses with the nuclea-

tion of crystals as a function of temperature and time. The nucleation 

rate of crystals, I, in a glass outside the immiscibility gap was constant 

with time, but for glasses that underwent phase separation simultaneously, 

a temporary but marked increase in I was observed. This increase was 

attributed to the presence of a diffusion zone (depleted in silica), 

surrounding the silica-rich droplets, which acted as a favourable site for 

crystal nucleation by lowering the effective surface energy. Tomozawa 
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rightly pointed out that these observations could not be explained in terms 

of the compositional shift of the matrix phase during phase separation. 

Also, straightforward heterogeneous nucleation did not provide a complete 

answer since the period of enhanced crystal nucleation at a given tempera­

ture did not correspond to the time for a maximum in the interfacial area 

of the liquid droplets. 

A similar study was made recently by Zanotto and Craievich [2.50] 

using splat cooled glasses and a more rigorous technique for measuring 

crystal nucleation densities. Although the general conclusions were in 

agreement with Tomozawa's work, the observed temporary increase in I was 

much smaller. It was also shown that the crystal nucleation density (Nv) 

vs. time curve for glass specimens previously phase separated at 500°C and 

then nucleated at 475°c was different from that for as-quenched specimens 

nucleated at 475°C. These results, therefore, did not agree with those of 

Nakagawa and Izumitani [2.49]. As the crystal nucleation rates in phase 

separating glasses were about 2 times higher than that in a stoichiometric 

LS2 glass, the effect of APS on crystal .nucleation could not be explained in 

terms of compositional shifts and nucleation associated to the amorphous 

droplet-matrix interfaces was assumed. The increase in crystal nucleation 

rates, however, was very small if compared with the 5-6 orders of magnitude 

increase reported for the incorp~ration of 3 molt P20S in a LS2 glass [2.51]. 

Matusita and Tashiro [2.51] determined the effect of a series of oxide 

additives on the crystal nucleation and growth of a Li20-2Si02 glass. They 

showed that changes (decrease) in nucleation rate caused by the additives 

(except P20S and V20S) were due to changes (increase) in viscosity. They 

also suggested that P20S and V20S influenced the nucleation kinetics by 

inducing liquid phase separation. 

Matusita et al. [2.52] have also examined the effect of oxide additions 
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(ROn) on the crystal nucleation and growth kinetics of LizO.2SiOz crystals 

in LizO.3Si02.ROn glasses. The ratios of the number of nuclei between 

glasses Li20.3Si02.ROn and Li20.2Si02.ROn and also the ratios of the crystal 

growth rates where shown to increase with Tb, the immiscibility temperatures 

of Li20.3Si02.ROn glasses. The results were partly explainable on the basis 

that liquid immiscibility in the higher Tb glasses produced a liquid phase 

closer to the Li20.2Si02 composition. However, the ratios of the growth 

rates between the two glasses were always less than the nucleation rate 

ratios. From the classical nucleation and growth theories they showed that 

nucleation rates were more sensitive than the growth rates for composition 

shifts in the matrix produced by phase separation. Thus, the nucleation 

ratios should be less than the growth ratios. It was suggested that the 

nucleation ratios in the phase separated glasses were higher than expected 

because crystals nucleated at or near the interfaces between the two glassy 

phases. 

. Hautojarvi et a1. 12.53] studied Li20-Si02 glasses with positron life-

time, annihilation line-shape and electron microscopy. They showed t~at 

phase separation increased the numbers of crystals and the rate of volume 

crystallization. 

Another very extensive study was carried out by Ramsden 12.54]. He 

studied the nucleation kinetics of the barium disilicate crystal phase (BS2) 

for glass compositions in the range 25 to 34 mo1% baria. Although he could 

not readily compare the nucleation kinetics of the several glass composi­

tions because his glasses had different degrees of the main impurities, i.e. 

Al203 (0.02 to 0.48 mo1%) and up to 1 mo1i SrO, an elegant experiment was 

devised. Three sets of specimens from a glass with 25.3 mol% BaO were 

prepared as follows: Glass A was rapidly cooled in air. Glass B was heated 
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at 800°C for 1 hour. Glass C was heated at 900°C for 10 min (the number 

and size of the Si02-rich droplets were completely different in the three 

glasses). Then, all the glasses were nucleated at 700°C (Tg ~ 695°C for 

the BS2 glass) for various times and grown at 840°C, so the crystals could 

be observed in an optical microscope. The effects of the different heat 

treatments prior to the crystal nucleation treatments were striking (any 

nucleation produced in the prior treatments was negligible in comparison 

to crystal nucleation at 700°C (where the maximum in crystal nucleation 

rate is observed for the stoichiometric BS2 glass). 

was higher in glass B when compared with C (and A) • 

Crystal nucleation 

This was attributed 

to the greater degree of phase separation initially present in °B, and 

hence to the significant shift in matrix composition that had already 

occurred in this glass. Estimations of the interfacial area per unit 

volume of the phase separated glass using replica electron microscopy 

showed that this quantity changed only very slowly at 700°C for A, Band C. 

However, the crystal nucleation rates changed considerably with time at 

700°C indicating that the interfacial area was not affecting crystal nuclea-

tion directly. Also the number of droplets per unit volume in glass A 

was about ten times greater than in glass 4 but initially A had a crystal 

nucleation rate less than (but similar to) C. It was concluded that the 

morphology of the phase separation had little or no influence on crystal 

nucleation and that the effects observed were due predominantly to the 

progressive shift in composition of the matrix (baria-rich) phase as 

result of phase separation. 

To conclude this section, it seems that the use of complex compositions, 

espeCially when "nucleating agents" are present, can lead to great difficul­

ties in interpreting relationships between APS and crystal nucleation. 

The use of "simpler" systems such as Li20-Si02 and BaO-Si02 allow more 



reliable conclusions to be made. At present, there is growing evidence 

that enhanced crystal nucleation can be obtained for glasses undergoing 

phase separation. In the Li20-Si02 system the phenomenon can be 
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tentatively explained by nucleation related to the interfaces of the amor-

phous phases. 

shifts. 

In the BaO-Si02 system it can be explained by compositional 

Therefore, one of the main objectives of this thesis is to study in a 

quantitative way the kinetics of amorphous phase separation and crystal nu­

,cleation in'BaO-Si02 glasses, with well characterized impurity contents, 

over a wide range of temperatures. This would complement the only work 

carried out so far by Ramsden [2.54] at one nucleation temperature (700°C). 

Also, a limited number of experiments (due to the great number of studies 

already done in this system) on the nucleation kinetics of very pure 

Li20-Si02 glasses with compositions inside and outside the miscibility gap 

could complement the previous studies, especially those of Tomozawa [2.28], 

Hautojarvi et ale [2.53] and Zanotto and Craievich [2.50]. This study 

might explain why interfaces are apparently only important in Li20-SiO,2 

glasses and compositional shifts are important in BaO-Si02 glasses. ' 

One further point should be made. The apparent observation, in some 

cases, of heterogeneous nucleation of crystals on the surface of droplets 

could imply that crystals prefer to form there. However, there is a 

possibility that interfaces may migrate during heat treatment, and any 

relation between the interface and the crystals they nucleate may be lost. 

Nevertheless, the dependence of the nucleation rate on the parameters 

describing phase separation morphology would still be retained, and hence 

it should be possible to study experimentally the importance of interfaces 

in nucleating crystals. 
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2.6 The Effects of Liquid-Liquid Phase Separation on Crystal Growth 

Phase separation can also affect crystal growth rates. However, 

experimental studies on the subject have yielded conflicting results. 

Some authors suggested that "mechanical interference" could occur between 

the growing crystals and amorphous droplets resulting in an overall 

decrease in growth rates [1.67,2.47]. 

Ogura et ale [2.55] determined the growth rates of surface crystals 

and activation enthalpies (~HD) of a series of Li20-Si02 glasses 

(22-40 mol% Li20) between 520-640oC. Within the immiscibility dome 

(glasses having 22-28 mol% Li20) the growth rates and activation enthalpies 

were essentially identical (~ 265 kJ.mol- 1), but increased with Li20 con­

tent outside the immiscibility dome (~HD ~ 298 kJ.mol- 1 for a glass with 

33.2 mol% Li20) . It was also shown that DTA crystallization peaks 

appeared at the same temperature for the phase separating glasses and that 

crystal growth proceeded in the matrix, independently of the existence of 

dispersed droplets. These results indicate that the liquid immiscibility 

effect was mainly compositional rather than morphological. 

The results of Tomozawa [2.56] for the Li20-Si02 system showed that 

as the LS2 composition was approached ~D increased. Phase separated 

glasses had a similar ~D (z 226 kJ.mol- 1 ) which was lower than the value 

of 345 kJ.mol- 1 found for a glass with 32.5 mol% Li20 (outside the gap). 

It was concluded that the shift in matrix composition due to amorphous 

phase separation had a significant effect on crystal growth behaviour. 

Kommpa [2.57] also measured crystal growth rates in two Li20-Si02 

glasses inside the miscibility gap and in one glass just outside the gap. 

The crystal growth rates were very similar for the three compositions 

showing that the compositional shifts caused by phase separation have a 
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marked influence on the growth behaviour of LS2 crystals. Otherwise, the 

growth rates would be different due to differences in initial compositions 

(and viscosity) of the parent glasse5. Therefore, the results of [2.55] 

[2.56] and [2.57] are in agreement, although the absolute values of U and 

~D vary somewhat among the three studies. 

Ramsden [2.54] made a detailed study of crystal growth behaviour in 

phase separated and "homogeneous" BaO-Si02 glasses. He showed 

that induction periods were caused by a change in growth morphology and 

crystal form, from spheres (h-BS2) to rapidly growing needles (t-BS2) 

nucleated at the sphere-glass interfaces. The induction time decreased 

with rise in temperature. Phase separation increased the growth rates 

due to accompanying shift in composition of the baria-rich phase during 

heat treatment. This shift also caused an apparent reduction in the 

measured activation enthalpies for growth in the phase separated glasses. 

The morphology of the two liquid phases had no influence on crystal growth 

rates. 

Scherer and Uhlmann [2.58],in a detailed study of the surface crystal­

lization kinetics of the metastable phase crystobalite in Na20-Si02 glasses 

with 1.5, 10.0 and 15.0 molt Na20,found no significant effect of phase 

separation on crystal growth kinetics. They suggested that "In this case, 

the scale of phase separation was smaller than that of the growing crystals 

and their associated diffusion fields. Under these conditions, the lack of 

a significant effect of phase separation is not surprising. In other 

cases, where the scale of phase separation exceeds that of the crystals, 

a significant effect might be anticipated". This work was later criticized 

by Tomozawa [1.15],who replotted the data of Scherrer and Uhlmann for the 

glass containing 10.0 molt Na20 as log U vs. liT. A kink at 845°C, 

approximately the same temperature as the immiscibility temperature for that 



glass, was clearly observed. Thus, the phase separation did appear to 

influence the crystal growth rate. 

In conclusion, it seems that liquid-liquid immiscibility affects 

crystal growth mainly by means of compositional shifts in the amorphous 

matrix. 

60. 



CHAPTER 3 

EXPERIMENTAL TECHNIQUES 

3.1 Preparation of Glasses 
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A wide range (27.0-34.7 molt BaO) of BaO-Si02 glasses were prepared 

from Si1quartz Si02, Ana1ar grade BaC03 (Fisons and BDH) and Ultrapure grade 

Glass 33.3p was made from Optipur Si02 (Merck) and Puratronic 

BaC0 3 (Ventron). Batches of 150-250 g were melted in Pt-Rh crucibles in 

electric furnaces at 1550o C. The melts were poured into water and remelted 

from four (33.3 and 34.7 mo1% BaO) to eight times (27.0 and 28.3 mo1% BaO) 

to ensure homogeneity. A sintering treatment in Pt dishes at 13000 C for 

24 hours was given to the batches before the melting procedure. This was 

necessary to encourage the chemical reaction and to aid melting. Otherwise 

these glasses were very difficult to homogenize. The melts were finally 

cast and pressed between two steel plates. Clear samples of 1-2 mm in thick-

ness were obtained in this way. Most of them contained a few small bubbles. 

The Li20-Si02 glasses ranging from 17.7 to 33.7 mol% Li20 were prepared 

from Optipur Si02 (Merck) and 99.999% Li2C03 (Aldrich). Batches of 70-200 g 

were melted in new Pt-Rh crucibles at temperatures ranging from l5500C 

(17.7 ~l% Li20) t~ 13000 C (33.7' molt Li20). The crushing remelting technique 

was employed to ensure homogeneity. Clear samples of the 17.7 molt Li20 

glass, approximately 1 mm thick, were obtained by splat cooling the melt 

using the spring loaded metal piston arrangement shown in Figure 3.1. 

Melts of the other compositions were pressed in the same way as the Bao-Si02 

glasses. 

Specimens for viscosity determinations were cast in graphite cylinders 

with diameters of 20-30 mm and subsequently transferred to an annealing 

furnace maintained at 640°C for the BaO.2Si02 glass and at 400°C for the 



Fig. 3.1 Photograph of the splat-cooling device used in 

this work. The spring loaded piston was 

released by the trigger while the melt was 

being poured between the metal plates. 





The furnace was then switched off and the specimens 

allowed to cool overnight. 

these glasses. 

No internal crystallization was observed in 

The Na20.2Si02 glass was melted at 13500 C for 7 hours, being stirred 

mechanically with a Pt blade at 50 rev/min during 4 hours. 

was then pressed between two steel plates. 

3.2 Chemical Analysis 

3.2.1 Bao-Si02 glasses 

The melt 

The following elements were analysed in the BaO-Si02 glasses: Si, 
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Ba, Sr,.Ca, Na, K, Li, Fe, AI, Pt and Ti. Different methods were used for 

each element and some of them were analysed by more than one technique in 

order to estimate the accuracy of the experimental results. 

carbonates and silquartz were also analyzed. 

Estimates of BaO 

The barium 

Approximately 0.1 g of finely crushed glass was weighed and dissolved 

in Pt dishes, with 5 ml of 40% HF and 2 ml of 72% HCI04 in a steam bath. 

After dissolution, the HCl04 was evaporated away on a hot plate and the 

chemical treatment repeated to remove all traces of Si as SiF4. The residue 

(barium perchlorate and impurities) was dissolved in water and transferred to 

a 250 ml beaker. Barium was precipitated as BaS04 with 1.5 ml of 2.5% 

The precipitate was digested overnight, filtrated in porcelain 

filters (grade 4) and ignited at 600°C. The BaO content in the residue was 

calculated as 0.69659 times the weight of preCipitate. The analysis was 

repeated from four to six times for each glass, and the average and 95% 

confidence limits calculated. As will be shown later, approximately 2h 

of the Sr, the main impurity present, precipitated together with Ba. 



However, this affected the present results hardly at all because the 

statistical error in most cases was higher than the Sr level. As can be 

seen in Table 3.1, the agreement of the present results with the nominal 

content of BaO in the glasses is very good and, in most cases, they also 

agree with the BaO determinations done at the Federal University of 

Sao Carlos (UFSCar) and with Electron Probe Micro Analysis (EPMA) results. 

Estimates of Si02 
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The percentage of Si02 in most glasses was determined gravimetrically 

at UFSCar and the experimental results are 0-1.5 mol% lower than the nominal 

contents. The EPMA results for Si02 in glasses 33.3A, 28.3A, 33.1U and 

29.7H are close to the nominal percentages. 

Determination of impurities 

The impurity elements were determined by Flame Emission Spectroscopy 

(FES) and/or Atomic Absorption Spectroscopy (AAS) in dissolved glass solu-

tions which were obtained in the way described above. Some determinations 

of strontium were made on the filtrate solutions, i.e. after the elimination 

of the barium ions from the solutions. Glasses 33.3A and 33.1U were also 

analyzed by EPMA. The Sr and Pt levels in glasses 28.3A and 29.7H were 

also determined by EPMA. 

Estimates of SrO 

The SrO level in the glasses and barium carbonates was determined by 

FES with a digital Pye Unicam SP191 Spectrometer at 460.73 nm, using a 

nitrous Oxide/acetylene flame. An Aldrich 1,006 ppm Sr++ standard solution 

was used as a source for the calibration solutions, which contained from 

0.5 to 2 ppm of Sr. In order to eliminate the strong ionization of Sr in 

the hot flame and inherent instability of the equipment, it was necessary to 

add to samples and calibration solutions 2,000 ppm of 99.999% CsCl. As 

Figure 3.2 shows, up to 78% of the Sr atoms can be ionized in the hot flame 



Glass 

Oxide 

Si0 2 

BaO 

SrO 

CaO 

Na20 

K20 

Ab03 

Fe203 

Table 3.1 

CHEMICAL ANALYSIS OF Bao-Si02 GLASSES 

Glass 27.0 (Fisons BaC03 - A.R. Grade) 

OXide 

Si02 

BaO 

SrO 

CaO 

Na20 

K2 0 

A1203 

Fe203 

Mole % 

Nominal 

72.308 

27.433 

0.237 

0.0068 

0.0065 

0.0070 

0.0008 

0.0003 

28.3A (Fisons BaC03 -

Mole % 
Nominal Nominal 

71.407 49.544 

28.326 50.144 

0.244 0.292 

0.007 0.0045 

Weight % 

Nominal Analyzed 

50.66 

49.04 

0.286 

0.0045 

0.004 7 

0.0077 

0.0010 

0.0006 

48.5 ±0.3 

0.26 

0.015 

0.027 

A. R. Grade) 

Weight % 
Analyzed 

48.0 FU 49.25 

50.1 ±0.2 49.9 

0.27 0.33 

0.034 

0.0066 0.0047 0.011 

0.0072 0.0078 0.023 

0.0008 0.0009 

0.0003 0.0006 0.0045 

EP = Electron Probe Microanalysis 

FU = Federal University of Sao Carlos 
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Glass 28.3B (Fisons BaC03 - A.R. Grade) 

Mole % Weight % 

Oxide Nominal Nominal Analyzed 

Si02 71.407 49.544 48.5 FU 

BaO 28.326 50.144 50.1 ±0.5 50.2 FU 

SrO 0.244 0.292 0.27 

CaO 0.007 0.0045 0.023 

Na20 0.0066 0.0047 0.013 

K20 0.0072 0.0078 0.014 

A120S 0.0008 0.0009 

FeZ03 0.0003 0.0006 0.0004 0.068 FU 

Glass 29.9 (Fisons BaC03 - A. R. Grade) 

Mole % Weight % 
Oxide Nominal Nominal Analyzed 

SiOz 69.794 47.603 

BaO 29.925 52.075 52.1 ±0.3 

SrO 0.258 0.303 0.28 

CaO 0.0073 0.0046 0.023 

Na20 0.0067 0.0047 

K20 0.0075 0.0080 0.024 

A1203 0.0008 0.0009 

Fe203 0.0003 0.0007 

Glass 33.3A (Fisons BaC03 - A.R. Grade) 

Mole % Weight % 
Oxide Nominal Nominal Analyzed 

SiOz 66.286 43.599 44.7-44.1 EP 43.12 FU 

BaO 33.402 56.054 56.0 ±0.3 56.15 EP 56.07 FU 

SrO 0.288 0.327 0.29 0.33 EP 

CaO 0.0079 0.0048 0.038 0.034 EP 

Na20 0.0069 0.0047 0.007 0.12 EP 

K2 0 0.0083 0.0085 0.026 0.021 EP 

A1203 0.0007 0.0008 0.056 EP 

Fe203 0.0004 0.0007 0.0007 <0.035 EP 



Glass 

Oxide 

Si02 

BaO 

SrO 

CaO 

Na20 

K20 

A1203 

Fe203 

Glass 

Oxide 

Si02 

BaO 

SrO 

CaO 

Na20 

K20 

Ah03 

Fe203 

33.2B (Fisons BaC03 - A.R. Grade) 

Mole % Weight % 
Nominal Nominal Analyzed 

66.286 43.599 43.51 FU 

33.402 56.054 55.8 ±0.2 56.07 FU 

0.288 0.327 0.30 

0.0079 0.0048 0.038 

0.0069 0.0047 

0.0083 0.0085 0.025 

0.0007 0.0008 

0.0004 0.0007 0.05 

Glass 33.2C (Fisons BaC03 - A.R. Grade 

Mole % Weight % 
Oxide Nominal Nominal Analyzed 

Si02 66.286 43.599 

BaO 33.402 56.054 55.8 ±0.4 

SrO 0.288 0.3 

Glass 33.3p (Ventron BaC03 - Puratronic 
Grade) 

Mole % 
Oxide Nominal 

BaO 33.33 

SrO 

Nominal 

56.06 

0.0050 

56.02 ±0.2 

0.0043 

33.1U (Ventron BaC03 - Ultrapure Grade) 

Mole % Weight % 

Nominal Nominal Analyzed 

66.454 43.755 43.87 

FU 

EP 

33.385 56.085 55.8 ±0.2 55.2 ±0.8 

0.112 0.127 0.13 0.20 EP 

0.0326 0.020 0.022 0.028 EP 

0.0110 0.0074 0.012 0.142 EP 

0.0037 0.0038 0.0094 <0.019 EP 

0.0007 0.0008 <0.018 EP 

0.0004 0.0007 0.010 <0.021 EP 

66. 
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Glass 29.7H (BDH BaC03 - A.R. Grade) 

Mole % Weight % 
Oxide Nominal Nominal Analyzed 

Si02 69.762 47.607 47.54 EP 47.0 FU 

BaO 29.806 51.897 51.8 ±0.2 51.43 EP 51.40 FU 

SrO 0.409 0.481 0.54 0.61 EP 0.45 FU 

CaO 0.0103 0.0066 0.014 

Na20 0.0079 0.0056 0.013 

K20 0.003 0.0033 0.012 

A1203 0.0008 0.0009 

Fe203 0.0004 0.0007 0.0094 0.068 FU 

Glass 34.7H (BDH BaC03 - A.R. Grade) 

Mole % Weight % 
Oxide Nominal Nominal Analyzed 

Si02 64.895 42.13:.:! 

BaO 34.605 57.322 57.4 ±0.2 58.9 FU 

SrO 0.474 0.531 0.62 

CaO 0.0127 0.007 0.030 

NalO 0.0084 0.0056 

K20 0.0033 0.0034 0.013 

A120a 0.0007 0.0008 

Fe20a 0.004 0.007 0.055 FU 



if no CsCI is added. The same figure also shows some results for the 

ionization of Ca and Ba atoms. 

It was rather surprising that all the barium carbonates except one 

contained more Sr than advertised by the suppliers (Table 3.3b). This 

could imply that the technique used (FES) overestimated the Sr levels. 

However, the good agreement with the EPMA determinations for the glasses 

eliminates this hypothesis. Reproducibility experiments show that the 

accuracy of the Sr determinations was approximately 10%. The analysis 

of the filtrate solutions gave much lower percentages of strontium in the 

glasses (Table 3.2), implying that most of the strontium precipitates 

together with barium. 

Estimates of CaO 

68. 

The calcium content in the glasses and barium carbonates was determined 

by FES and AAS, both at 422.67 nm with a N20/acetylene flame. The standard 

1,000 ppm Ca++ solution was supplied by Aldrich Chemical Company. As 

Figure 3.2 shows, there could be up to 42% ionization in the flame, but 

2,000 ppm of CsCI was added to all samples and calibration solutions to 

eliminate this possibility. According to ~.2] HCI could have some influ­

ence on the CaO determination but no effect was found. 

The differences between the FES and AAS determinations varied from 60 to 

20% and the average of the two determinations is quoted in Table 3.1. 

The experimental weight percentages of CaO in the glasses are about five 

times higher than the nominal values. 

Estimates of Na20 

The sodium content of the glasses and carbonates was determined by AAS 

at 589.0 nm using an air/acetylene flame. '!'he standard 1,000 ppm Na+ was 

supplied by Aldrich Chemical Company. The nominal percentages of Na20 in 

the glasses are about three times smaller than the AAS results which, in 
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Table 3.2 

STRONTIUM OXIDE LEVELS IN Bao-Si02 GLASSES (wt%) 

Specimen AAS EPMA Filtrate Solution 

27.0 0.26 0.09 

2H.3A 0.27 0.33 0.08 

29.9 0.28 0.10 

33.1U 0.13 0.20 0.03 

33.3p 0.004 0.000 

G26* 0.86 1.00 0.30 

G30* 0.89 1.03 0.21 

* G26and G30 were used by Ramsden [2.54] 
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turn, are about ten times smaller than the EPMA results. The determined 

percentages of Na20 in the analar grade barium carbonates (Fisons and BDH) 

are close to the nominal percentages. They are, however, five to ten times 

higher than the nominal contents of Na20 in the Ventron barium carbonates. 

Estimates of K20 

Potassium was determined by AAS at 766.49 nm using an air/acetylene 

flame. Calibration solutions prepared from an Aldrich 1,000 ppm K+ 

standard solution were used to set the equipment. 2,000 ppm of CsCl was 

added to the solution as an ionization supressor. The experimental results 

of Table 3.1 show that the calculated (nominal) contents of K20 in the 

glasses are two to three times less than the real percentages. 

ment between the AAS and EPMA results is good. 

Estimates of Fe203 

The agree-

Iron oxide was determined by AAS at 248.33 nm using an air/acetylene 

flame. The standard solution was prepared by dissolving 1.0000 g of iron 

granules in a solution of 20 cm 3 of 5 M HCl and 5 cm3 of HN03 (s.g. 1.42) 

and diluting to 1 litre. The experimental results agree well with the 

nominal Fe203 content in the barium carbonates (Table 3.3b). 

percentage in the glasses is zero to fifteen times higher than the calculated 

percentages; however, the AAS results agree with the EPMA results. The 

UFSCar determinations of Fe203 are systematically higher than the AAS 

and EPMA results. 

Other Elements 

The Al203 and Li20 contents in the glasses were below the AAS detection 

limits, i.e. 0.05 and 0.002 wt% respectively. Platinum and Ti02 were also 

found to be below the EPMA limits, i.e. approximately 0.05 and 0.07 wt% 

respectively. 



Chemical analysis of batch materials 

The level of impurities in the silquartz was determined by X-ray 

Fluorescence Analysis at the British Ceramic Research Association (aCRA). 

The results are in excellent agreement with the suppliers analysis 

(Table 3.3a). 

The four different barium carbonates used were dissolved in HCl and 

analysed by AAS and/or FES. The experimental results are compared with 

the suppliers analysis in Table 3.3b. The analysed impurity content of 
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the Analar grade barium carbonates (Fisons and BDH) is very close to the 

suppliers quotation; however the ventron barium carbonates (Ultrapure and 

Puratronic grades) are more impure than expected from the suppliers 

certificate of analysis. The highest quotation for each oxide was used 

for the calculation of the nominal composition of the glasses. 

Conclusions 

The main impurity in the BaO-Si02 glasses is strontium. It comes 

from the barium carbonates and its content is very low in the Ventron 

Puratronic grade barium carbonate (0.0072 wt%) , and very high in the Analar 

BDH barium carbonate (0.71 wt%). The levels of Ca, Na, K and Fe in the 

glasses are low, although they are generally two to fifteen times higher 

than expected from the chemical analysis of the batch materials. This 

implies that contamination of the glasses occurs probably during the 

melting procedure. The Na20 and Fe203 contents in the glasses, determined 

by AAS, are lower than the results of EPMA and UFSCar respectively, but 

the AAS determinations are closer to the nominal contents. The e~eri-

mental BaO and Si02 contents are very close to the nominal values. 



Table 3.3a 

CHEMICAL ANALYSIS OF SILQUARTZ 

wt% ON IGNITED BASIS 

Suppliers BCRA 

Si02 99.99 

A1203 0.0015 0.002 

Fe203 0.0001 <0.001 

cao 0.002 <0.001 

MgO 0.001 <0.002 

K20 0.002 0.001 

Na20 0.005 0.005 

Ignition (1025°C) 0.12 

Table 3.3b 

CHEMICAL ANALYSIS OF BARIUM CARBONATES (wt%) 

Oxide AR Fisons ARBDII 
Analyzed Nominal Analyzed Nominal 

SrO 0.450 0.713 <1.8 

CaO 0.055 0.0084 <0.14 

Na2"0 0.0035 <0.014 0.0048 <0.007 

K2 0 0.0106 .<0.005 0.0035 <0.005 

Fe203 0.0008 <0.0014 0.0008 <0.0014 

BaC03* 99.480 >99.5 99.269 >99.5 

Untrapure Vent,ron Puratronic Ventron 
Analyzed Nominal Analyzed Nominal 

SrO 0.175 <0.006 72 ppm 6 ppm 

CaO 0.027 <0.003 77 7 

Na20 0.011 <0.001 57 1.3 

le20 0.004 <0.001 62 

Fe203 . <().OO14 <0.001 <4 1.4 

BaC03* 99.782 >99.988 99.972 >99.998 

* BaC03 by difference 
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3.2.2 Li2a-Si02 glasses 

The Li2a-Si02 glasses were dissolved in the same way as described for 

BaO-Si02 glasses. The residue (lithium perchlorate and impurities) was 

dissolved in distilled water and stored in polyethylene flasks. 

Estimates of Li20 and Na20 

The Li20 content in the glasses was determined by Flame Photometry 

(FP) in an Evans EEL instrument. FES was also employed, using a Na201 

acetylene flame at 670.8 nm. The calibration solutions were prepared from 

an Aldrich 1,000 ppm Li+ standard solution. The NazO content was analyzed 

as described in section 3.2.1. The experimental results including EPMA 

determinations are shown in Table 3.4. The results quoted for Li20 are 

the average of two determinations. The agreement among the three methods 

is goo~but the FP results are somewhat higher than the FES and EPMA 

results. There was little loss of Li during the melting procedure. The 

Fe203 and A1203 contents were below the detection limits, i.e. 0.0004 and 

0.05 wt% respectively. 

Conclusions 

The Li2a-Si02 glasses are quite pure. The main impurity is Na20 

(0.01,' .... 0.02) and the levels of FeZ03 and A1203 are very low. 

3.2.3 Electron Probe Microanalysis (EPMA): BaO-Si02 glasses 

Apart from the analysis of the main constituents and impurities in the 

glasses, it was of interest to analyse the crystals growing in the Baa-Si02 

glasses in order to detect whether the impurities were being rejected by, 

or incorporated in, the crystalline phase. The behaviour of strontium 

was of particular interest because its content was relatively high in all 

glasses, except in glass 33.3p (obtained from a Ventron Puratronic Grade 

BaC03) . 
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Table 3.4 

CHEMICAL ANALYSIS OF Li2o-Si02 GLASSES 

Glass Mole % Li20 Wt% Li20 Wt% Na20 
Nominal Nominal FES FP EPMA AAS 

17.7 18.0 9.84 9.67 9.69 9.67 0.012 

31.0 31.0 18.28 18.30 18.49 18.00 0.017 

33.2A 33.3 19.91 19.85 19.63 0.011 

33.2B 33.3 19.91 19.82 

33.7 33.7 20.17 20.16 20.34 0.025 
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The following glasses were heat treated, polished and etched in the 

usual way and analyzed: Glass 28.3A heated for 24 h at 743°C, Glass 

29.7H heated for ISh at 760°C and Glass 33.3B heated at 760°C for 4.25 h. 

These heat treatments were chosen in order to produce a relatively low 

density of crystals having a reasonable size (5-10 ~m) • The approximate 

'size' of the electron beam was dependent on the accelerating potential, 

i.e. 3.5 ~m for 5r, 2.5 ~ for Ba and 1-2 ~m for 51. 

The equipment used was an AEI-5EM 2 and the polished specimens were 

° coated with a 300 A layer of carbon. The analysis was carried out using 

standards of Al203, Fe, KCl, Pt, CaC03, NaF, Ti, 5rC03, 5i02 and BaC03. 

5i, Al and Na were determined at an electron accelerating potential of 

15 KV; K, Ca, Ti and Ba at 20 KV; Fe at 25 KV and 5r at 35 KV using 

5rKa as the analysis line, since at low concentrations the 5i signal 

interfered with the 5rLa line. X-ray intensity ratios (equal to approxi-

mate weight concentrations) were corrected for X-ray absorption, electron 

scattering effects and secondary X-ray fluorescence to give the final con-

centration figures. Counts were recorded at 8-10 points for each element 

in the samples. A detailed account of EPMA theory is given in 

reference 3.4. 

Table 3.5 shows the average of two EPMA determinations for 5i, Ba 

and 5r in the glassy and crystalline phases in the heat treated glasses 

already mentioned. It can be seen that there is no appreciable difference 

in the composition of the glassy and crystalline phases and, at first 

sight, one could conclude that the crystals are solid solutions with compo-

sitions close to the parent glass. On the other hand, taking into account 

the fact that the "crystalline phase" is composed of spherulites which are 

only 64% crystalline (see volume fraction of crystallinity versus time 

curves in Chapter 4), one realizes that, if the crystalline domains of the 



Table 3.5 

EPMA RESULTS FOR Si02, BaO AND SrO IN SOME HEAT 

TREATED GLASSES. GLASSY AND I CRYSTALLINE PHASES i 

(wt%) 

Glass 28.3A - 24 h at 743°c 

Oxide Nominal Glass Crystal --
Si02 49.55 49.15 49.35 

BaO 50.14 50.13 49.59 

SrO 0.29 0.31 0.32 

99.98 99.59 99.26 

Glass 29.7H - 15 h at 760°C 

Oxide Nominal Glass Crxstal 

Si02 47.61 47.51 47.56 

BaO 51.90 51.70 51.15 

SrO 0.48 0.47 0.43 

99.99 99.68 99.14 

Glass 33.3A - 4.25 h at 760°C 

Oxide Nominal Glass Crxstal 

Si02 43.60 43.93 44.24 

BaO 56.05 56.1S 56.12 

SrO 0.33 0.50 0.46 

~9.9S 100.61 100.S2 
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spherulites have stoichiometric composition (56.06BaO-43.94Si02 by weight) 

and the glassy part is depleted in barium and has all the strontium, the 

EPMA still would give the same results as above. 

3.2.4 EPMA: Li2o-Si02 glasses 

In the case of Li20-Si02 glasses the crystalline clusters are not as 

complex as the Bao-Si02 spherulites. They are formed by branching of 

single crystals ~.14] and the degree of crystallinity is expected to be 

much higher. Therefore, it is possible, in principle, to analyse the 

chemical composition of the crystal clusters in the glassy matrix. This 

was attempted for glasses 17.7, 31.0, 33.2A and 33.2B nucleated at 481°C 

for 1 h and developed at 570°C. Large crystals (- 30 ~ in diameter) were 

grown in the glassy matrix. 

Analysis for Si02 was carried out at an electron accelerating potential 

of 15 kV using pure Si02 as standard. Li is outside the element range of 

the instrument, but the presence of Li20 in the samples was taken into 

account when performing matrix corrections. The crystals were large enough 

to allow X-ray intensities to be measured using a defocused probe, but only 

relatively short count-times could be employed before surface damage and 

composition changes occurred. 

Measurements were made in 10 different crystals and the surrounding 

glass in each sample, but no significant differences in the compositions of 

crystals and glass were detected in any of the four samples. 

obtained and estimates of precision are given in Table 3.6. 

The results 
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Table 3.6 

Si02 CONCENTRATIONS (WEIGHT %) 

Glass Crystals Matrix 

Si02 95% confidence Si02 95% confidence 
range range 

17.7 90.12 ±0.50 90.54 ±0.39 

31.0 82.03 0.25 81.95 O.l~ 

33.2A 80.23 0.33 80.51 0.51 

33.2B 80.11 0.40 80.26 0.22 
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It should be realized, however, that for glasses 17.7 and 31.0 

the presence of amorphous Si02-rich droplets within the crystal clusters 

~oes not allow an unbiased determination of this component by EPMA. 

On the other hand, West and Glasser [2.21] showed by XRD that crystalline 

lithium disilicate metastable solid soZutions,with compositions ranging 

from - 28 to 38mal% Li20 are formed and persist indefinitely between 

- 500°C and 700°C. Russian authors Q.5] also demonstrated the existence 

of solid solutions in Li20-Si02 glasses by refractive index measurements. 

All the analytical methods employed in this work can be found in 

Vogel [3.1], Price [3.2], Wise et al. [3.3] and Sweatman and Long [3.4]. 

3.3 Infra-red Spectroscopy (IR) 

It is well established that trace amounts of "water" can affect 

several properties of glasses [3.6,3.7,3.8] including the viscosity and 

the nucleation and growth of second phases[3.9]. Therefore, it is necess­

ary to know the level of water if comparison of any kind of phase trans­

formation is to be made among glasses of different compositions. 

The glass specimens for IR (transmission) spectroscopy were ground 

to about 20 x 7 x 0.6 rom and polished with cerirouge. Then they were 

"dried" at 400°C for several hours, transferred to a desiccator and 

analyzed in a Perkin-Elmer 683 spectrometer. 

The IR traces of several BaO-Si02 glasses electrically melted for 

this study are shown in Figure 3.3a. The extinction coefficients are not 

available for the quantitative determination of water in these glasses, 

but it can be seen that the amount of water (proportional to the area 

under the peaks) is much lower than in the BaO-Si02 glass melted in a 

gas furnace by Ramsden [2.54]. This behaviour was also verified for other 

glasses melted in gas furnaces by Ramsden ~.54] and Rowlands ~.47]. 
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Fig. 3.3b I.R. transmission curves for LizO-SiOz glasses: 

a) glass 17.7 - 0.68 mm thick 

b) glass 31.0 - 0.64 mm thick 

c) glass 33.2A - 0.66 mm thick 
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Fig. 3.4 Part of the phase diagram for the BaO-Si02 system 

showing the crystallization and melting peaks 

obtained by DTA. 

(X) beginning and (.) peak of melting endotherms. 
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However, more important, is the fact that all glasses used in the present 

work have very simiZar water contents. 

Figure 3.3b shows the IR spectra for Li20-Si02 glasses 17.7, 31.0 

and 33.2A. The characteristic curves for the last two glasses are very 

similar. The IR trace for glass 17.7 has a different shape (probably 

due to its highly interconnected phase separated structure), but the 

overall area under the curve, and total amount of water are also very 

simi tar for the three glasses. 

3.4 Differential Thermal Analysis (DTA) 

80. 

Small monoZithia pieces (about 100 mg) of all glass compositions were 

analyzed in a Standata 6-25 DTA apparatus with lODe/min as heating rate. 

The glass transition temperatures (Tg) determined for all BaO-Si02 glasses 

were between 690 and 700 0 e showing no systematic variation with composition. 

These values are in good agreement with the dilatometric determinations of 

Shelby [3.10], i.e. 695°e for compositions between 27.0 and 34.7 mol' BaO. 

A viscosity of 1012 Pa.s corresponds to 689°e for the 33.2C glass 

(section 4.5) • The crystallization peaks (Tc) show a strong dependence on 

the chemical composition of the base glass, increasing as the Si02 content 

increases (Figure 3.4). Ramsden ~.54] has not observed systematic varia-

tions in Tc with composition, but he used finely powdered samples in which 

the surface crystal1i~ation probably had a predominant effect. 

In principle, the liquidus curve could be determined by DTA if a very 

slow heating rate was employed allowing equilibrium to be attained. In 

this condition, the beginning of the melting endotherm would correspond to 

the melting temperature for a stoichiometric compound (e.g. BaO.2Si02) or 

a eutectic composition, and the peak of the endotherm should be near. the 

liquidus temperature (TL) for a non-stoichiometric composition because, 
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in this case, the beginning of the endotherm should be near the solidus 

line. Figure 3.4 shows that the beginning of the melting endotherm of 

glass 33.3A is, indeed, very near to the published melting point of the 

BSz compound, demonstrating the accuracy of the chemical analysis (33.3 

molt BaO) and the validity of the DTA test. For the other compositions, 

except for glass ~4.7H, the peak temperatures are systematically o-lOoC 

lower than the published liquidus temperatures (although they are within 

the 95% confidence limits). There is also a second peak at lower tempera-

tures probably due to the transformation of the low-temperature form of 

BS2. This phase should tranform to h-BS2 at l3500 C under equilibrium 

conditions. In conclusion, we suggest that DTA can be used as a mean of 

estimating liquidus temperatures, at least for comparative purposes, among 

different glass compositions. 

3.5 Optical Microscopy 

To study the nucleation behaviour of crystals in glasses the most 

"direct" and quantitative method is to subject the specimens first to a 

nucleation heat :·treatment and then to a development (growth) heat treatment 

at a higher temperature. The nuclei then grow to dimensions resolvable in 

the optical microscope. The development temperature must be chosen with 

the requirements that: i) the nucleation of new crystals is negligible, 

ii) there is no appreciable dissolution of the existing nuclei. Both 

conditions can be tested experimentally and, in practice, they are met it 

careful precautions are taken [3.11]. After the heat treatment the speci-

mens must be polished and etched to improve the contrast between crystal 

and glass. Micrographs are then taken and the size distribution of crys-

tals, shape and number per unit area of crystals are obtained. A precise 
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stereo1ogica1 equation is applied to give the number of crystals per unit 

volume. 

In this study, glass specimens of about 3 x 3 x 1 mm were nucleated at 

680-770oC (BaO-Si02) and at 440-S00oC (Li20-Si02) for different periods, 

air quenched and subsequently developed at 800-830oc for 10-30 min (BaO-SiOz) 

and 570-600oC for 30-70 min (Li20-Si02) respectively. The electric tubular 

furnaces employed were maintained within ~oc with proportional controllers. 

The furnaces were found to have a "plateau" around the hot spot, in which 

the temperature varied by less than lOC over 2 cm. The glass specimens 

were kept inside a small mullite boat being touched by the tip of a Pt/13Rh 

thermocouple during the treatment. The thermocouple readings were found to 

be within 1°C of a standard thermocouple. The furnaces usually attained 

the equilibrium temperatures 10-20 min after the insertion of the specimens, 

the maximum Variation being 7°c in the first minutes (depending on how fast 

and careful the operation was performed). Therefore, some uncertainty in 

the heat treatments is expected for samples treated for short periods 

(t < 30 min) • 

The heat treated specimens were mounted in glass plates with Canada 

balsam, ground with SiC (400 and 600 grit) and polished with colloidal Ce203. 

An etching of 10-15 sec in a 0.6% HF 0.2% HCl solution was enough to reveal 

the microstructure of BaO-Si02 glasses. LizO-Si02 glasses required from 

2 min (33.2 mo1% Li20 and 17.7 mol% Li20) to 4 min (31.0 mo1% Li20) to 

reveal the microstructure. Photographs were taken with a Zeiss Ultraphot 2 

microscope with l6x or 40x objectives, depending on the size of the crystals. 

The total magnification on the final prints was obtained by means of a 

calibrated graticu1e which was photographed in the same microscope. 



3.5.1 Stereo logical Analysis 

De Hoff and Rhines [3.12] developed an exact theory which allows the 

number of particles per unit volume, Nv ' to be related to the number of 

such particles intersecting a planar section per unit area, Ns ' i.e. 

2 -Nv = --:--:- N s Z 1TK(q) 
(3.1) 
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where Z is the average of the reciprocal of minor axis of the planar inter-

sections on the micrograph and K(q) is a function of the shape of the 

particles. For spherical particles K(q) = 1, whereas for prolate ellip-

soidal particles [3.12] 

K(q) 
= 1:. + qln[l +q~) 

q v'l-q 2 
(3.2) 

where q is the ratio minimum/maximum diameter. These equations allow the 

number of particles (crystals) per unit volume to be determined from 

reflection optical micrographs. 

These equations are rigorous, and if the shape of the particles is 

known the accuracy of the determination depends on the statistics, i.e. 

on the number of crystals measured and counted for the calculation of Ns 

and z. In this study, from 200 to 800 crystalline particles were counted 

and from 100 to 400 particles were measured in each sample. The determina-

tion of the ratio q (minimum/maximum diamter of the ellipsoidal crystals) 

was performed by searching out the planar intersection on the micrographs 

that had the greatest deviation from an equiaxial shape and measuring their 

axial ratios. Only the particles with the largest two-dimensional inter-

sections were considered in this determination. Typical values of q for 

glasses 17.7, 31.0 and 33.2B, nucleated at 48loC for different periods and 
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developed at 570°C, were 0.86, 0.82 and 0.74 respectively. The statistical 

error in NV was ±lo-20% (95% confidence limits), depending on the size 

distribution of crystals and number of crystals counted and measured. 

There is however another source of error, which has not been considered 

in the past but can be quite appreciable. The resolution of optical micro-

scopes are usually around 1-3 ~, the sectioning of the particles always 

producing a certain percentage of intersections below the resolution limit, 

which will not be taken into account in the calculation of Ns and z. This 

will cause NV to be underestimated by a value which depends on the resolu-

tion of the microscope, the size distribution of particles and the maximum 

size and shape of particles. A complete mathematical derivation of these 

errors for several size distributions and resolutions is given in Appendix 1. 

For usual cases, i.e. a size distribution due to a double stage heat treat-

men~ I and U being constant, an underestimation of 3 to 14% can be expected 

for the measured values of Nv and nucleation rates I. If the crystals 

are too small on the prints « 2-3 mm) measurement errors can be significant 

also and increase the uncertainty in NV and I. Hence only print magnifica-

tions giving a large majority of crystals greater than 3 rom in size were 

used in the analysis. It was found experimentally that nucleation densities 

up to 106 mm- 3 can be measured quite well in optical micrographs, electron 

microscope techniques being required for larger densities. Other complica-

tions arise in this case. 

All the above arguments are valid if the glass specimen under study 

is chemically homogeneous, variations in chemical compositions causing 

variations in Ns and Nv • Figure 3.5 shows the number of crystals per unit 

area in a glass with 32 mol% Baa, heat treated at 7lSoC and 820°C, as a 

function of the size of field of view under the optical microscope. About 

400 crystals were measured in each case and both N and the variance, S2, s 
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are constants showing· that the crushing/remelting technique gives homogeneous 

glasses, at least within the size domain studied. The "smoothness" of the 

Nv vs. time curves (see Results) also support this suggestion. 

3.6 Viscosity Measurements 

Viscosity data are useful in interpreting the kinetics of phase trans-

formations in glasses. For the BaG-Si02 and Li2a-Si02 glasses, which 

crystallize easily, it is difficult to obtain viscosities in the range 

2 7 10 -10 Pa.s. However, it is often possible to obtain data at high tempera-

tures (108 _10 12 Pa.s) by the penetration, parallel plate, fibre extension 

or beam bending methods. In this section the theory, operation and results 

obtained with penetration viscometers are described. 

3.6.1 Penetration viscometer 

Apparatus 

The technique consists in measuring, at a given temperature, the pene-

tration into the. glass of a rigid indentor under the action of a load as 

described in [1.53]. 

Briefly the apparatus used consisted of: 

(i) A tube furnace (Kanthal wound) which could be vertically moved. 

(ii) A silica column on which the sample was placed. It was 

separated from the column by a platinum (or mica) foil. 

(iii) A silica tube clamped to a saddle on which the weights were placed. 

The indentor was inserted into the lower end of the tube as shown 

in ~igure 3.6. After several trials it was decided to use a 

total load of 2.256 Kg. To obtain deformations corresponding to 

viscosities in the 108_10 12 Pa.s range, cylindrical indentors with 



with diameters of 1, 2 and 3.85 mm,and spherical indentors with 

diameters of 3.18 mm were used. 

(iv) A measuring device - a capacitance sensor with accessories. 

The calibration was such that a penetration of I mID corresponded 

to 140 rom in the y axis on'therecbrder.· 

(v) An hydraulic system allowing the saddle to be released. 

The furnace temperature was controlled to ±O.SoC and the measuring 

thermocouple (Pt/Pt-Rh) was placed touching the sample (Figure 3.6). 

The glass specimens were cylinders of approximately 20-30 mm diameter and 

8.0-10.0 mm thickness. They were ground flat and parallel with several 
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grades of SiC and polished with Cerirouge. The polishing was necessary in 

order to inspect the samples for visible cracks, cords, etc. 

Op,eration 

With the sample and furnace in position, a stabilisation period of 

20 40 minutes was required. Although 30 minutes stabilisation was 

usually employed, a time of only 20 minutes was allowed for samples tested 

at high temperatures where the danger of crystallization was greater. 

During the holding time the y axis magnification was checked and the x 

axis pen speed set according to the total deformation expected. Then the 

saddle was loaded and simultaneously both the recorder and the stop watch 

started. The sample temperature was measured at regular intervals during 

the course of the experiment. At the end of the experiment the time on 

the stop watch was recorded, the saddle lifted and the sample taken out. 

The specimens were examined for crystals after the viscosity measurements. 

The accurate measurement of temperature is an important step and for 

this reason the Pt/Pt-13 Rh thermocouple was calibrated against a standard 

thermocouple and positioned in order to touch the glass samples, passing 

through the perforated indentor. 
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Indentors 

The indentors can be spherical, cylindrical (flat circular base) and 

conical. In this work two spherical and three cylindrical indentors were 

used. A Nimonic 105 spherical indentor was machined in our Department. 

Its closeness to a perfect sphere was tested by measuring the viscosity 

curve of a low temperature glass (NBS 711) with a perfect ball-bearing 

steel indentor, and comparing it with the values obtained with the Nimonic 

indentor. Closeagreemen t was found. The cylindrical Nimonic 105 

indentors were made with 1.0, 2.0 and 3.85 mm diameters. In this way a 

wider range of viscosity could be measured, i.e. 101Z_108 Pa.s. 

Determination of the viscosity by indentation of a glass plate 

3.6.2 Cylindrical indentors 

This derivation follows that presented by Nemilov' [3.13]. In the 

framework of Buerger's model (Figure 3.7), which;i.s one among the several 

rheological models of glass, the viscous (nl) and elastic (Gl) elements are 

connected in series with the Kelvin model, which is a parallel combination 

of the viscous (nz) and elastic (G2) elements. This model reflects the 

delayed elastic properties of glass. The rate of total deformation, with 

a constant shear stress a and zero initial deformation, is made up from the 

rate of Newton's viscous deformation, dEN/dt = a/nl, and the rate of 

deformation of Kelvin's solid dEK/dt = 

EK = (a/Gz) ~ - exp(-~~ t}] [3.13], for 

we obtain 

Since 

any moment in time (with a constant a) 

(3.3) 
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The external stress a and the established equilibrium elastic deforma-

tion of the whole solid Eel are associated by the relationship a = GEel, 

where G is the shear modulus of the glass. When t ~ ro (in practice when 

t » n2/G2), corresponding to Newtonian flow, Equation (3.3) becomes 

ds GEel -=--dt n (3.4) 

The equilibrium elastic deformation Eel produced in a semi-infinite 

• 
plate by an absolutely rigid flat indentor (cylindrical or parallelepiped) 

is determined from the equation obtained by Streicher D.lS] on the basis 

of the solution of the corresponding contact problems in elasticity theory 

= m (l - lJ 2 ) Mg 

Ev'S 
(3.5) 

where S is the area of the base of the indentor, lJ the poisson coefficient, 

E is the Young's modulus, M the mass of the load, g the acceleration due to 

gravity and m is a coefficient. ~or a cylinder, m = 16/3 TI'l2 = ,0.96 • 
. 

This factor is the numerical value of the integral which takes into account 

that stresses equal to infinity arise along the edge of the indentor but, 

as a result of irreversible deformations (plastic or viscous), are smoothed 

out under the base in accordance with specific laws. The total deformation 

is the result of the action of compressive, shear and extensive stresses. 

The tangential stresses reach a maximum at a depth of the order of the 

radius of the indentor and then fade away [3.13]. 

Using Equations (3.4) and (3.5), and E = 3G(lJ = 0.5), we obtain an 

expression for the viscosity 

n = m 2!.g_ 
4vS v 

(3.6) 
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in which v = de/dt is the steady state rate of penetration of the indentor 

and n is the viscosity. 

3.6.3 Spherical indentors 

If two elastic spheres are pressed into contact, it may be shown [3.l6J 

that the displacement e at a distance r from the centre of the area of 

contact (Figure 3.8) is given by 

e: (r) (3.7) 

1 - 'Ill 2 1 2 where Kl = K2 = - ~2 , E is Young's modulus, ~ Poisson's 
TIEl TIE 2 

ratio and go = maximum pressure = 3P/2TIa2 , P(=Mg) the applied force and ~ 

the radius of the circle of contact. If the spheres are incompressible 

(~ = 0.5) and one has infinite rigidity, Kl = 0 and K2 = 3/(4TIE2) • Thus, 

for r = 0, e: = 9P/l6aE2. This equation is true for a viscous body if, 

based on the analogy between the elastic and viscous deformations [3.17 J , 

dE/dt is substituted for e:, and the viscosity, n, for E2/3. Thus 

de: 3p 
-= 
dt l6an 

(3.8) 

If e: is the depth of penetration (at r = p), then e:(2R - e:) = a 2, 

where R is the radi us of the rigid sphere. The viscosity coefficient can 

be calculated by using the following change of variables 

e: = R - R sin 9 and de: = - R cos e de e: o e = TI/2 

Then a = R cos 9. Hence Equation (3.8) can be integrated to give 

9p 3 3/; 
---'rr.-- t = 32 (2R) 2 ITI - 29 - sin 6] 
32n (2R/2 

(3.9) 
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if the function on the right-hand side of Equation (3.9) is denoted F(E) , 

when E.« 2R, F(E) .. E % and 

9p 
Tl = ---, t 

32 (2R) l/~ E % 
(3.10) 

This equation was used by Douglas et al. [3.18] and Bruckner et al. 

[3.19] for viscosity determinations. In this study the more exact 

Equation (3.9) was employed. 

3.7 X-ray Diffraction (XRD) 

For the determination of crystallinity during studies of the kinetics 

of crystallization of glasses different methods can be used, i.e. density 

measurements, quantitative DTA, dilatometry, I.R. spectroscopy, quantitative 

stereology, etc. Quantitative X-ray diffraction (measurements of maxima 

of peaks from crystals) is also widely used. However, when the crystals are 

too small or imperfect the broadening of the peaks renders the analysis 

difficult and also it is always necessary to have a standard sample, usually 

the pure crystalline species. 

Ohlberg and Strickler [3.20] applied an X-ray diffraction method, 

similar to one used in the determination of the crystallinity of stretched 

rubber, to partially crystallized glass. The volume fraction crystallinity, 

a, was equated to 

(3.11) 

where I g , Ix and Ib are respectively the non-crystalline scattering inten­

sities;rneasured at a single value of 26, for the parent glass (zero 

crystallinity), the partially crystallized glass, and a mechanical mixture 
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of crystalline compounds chemically equivalent to the parent glass. The 

value of 28 must be selected such that the non-crystalline scattering is 

high for the parent glass and at the same time is free of crystalline 

scattering in the case of the partly devitrified glass and of the mechanical 

mixture. 

The assumptions inherent in the method are the following: 

(i) no changes in volume take place during crystallization, 

(ii) there are no chemical changes inside the different crystalline 

and/or glassy phases during crystallization, 

(iii) a supplementary demand must be added to these assumptions, namely, 

that a plateau in the (Ig - lx)/(Ig - Ib) vs. 28 curve must be 

found. 

These assumptions have been fully discussed by Cervinka and Dusil 

p.21] who successfully measured the crystallinity of a glass ceramic from 

the Si02-A120a-Mgo-Zr02-Ti02 system. Ohlberg and Strickler p.20] also 

found that the determined percent crystallinities were within 5% of the 

calculated values (from mechanical mixtures) for both silica and a Ti02-

cordierite glass. 

In this thesis,a study was undertaken of the volume fraction of 

crystallinity versus time of heat treatment for glass 33.2B at 743°C and 

760°C. For this purpose, specimens measuring about 20 x 15 x 1.5 rom were 

heat treated, the crystallized surface layer removed, and subsequently 

polished with Cerirouge. The intensity diffracted at 28 = lSo was 

recorded for 20 min,the average of, at least, four measurements being taken. 

An 'as quenched specimen of BS2 glass (33.2B) was used for the determination 

of I g , and a specimen previously heated at 743°c for 12 h and at 10000C 

(above the spherulite-lath transformation) for 5 hours, was used for the 

determination of lb. At 28 = ISO, the X-rays cross-section was less than 
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2 
1 cm and a layer of only about 5 ~m of glass was responsible for most of 

the diffracted intensity (Figure 3.9). Under these conditions, the volume 

of diffracting material was kept constant. Furthermore, assumption (i) 

was nearly fulfilled because the difference in density between glass and 

crystal is very small (Table 2.1). Assumption (ii) was satisfied because 

the chemical composition of the spherulites and parent glass were the same. 

The third assumption was tested by measuring the diffracted intensities at 

28 = 36° as well. No difference was found in the values of a determined 

from Equation (3.11). 

The same heat treated and polished glass specimens were etched and 

photographed as explained in section 3.5. The volume fraction of spherulites 

was also measured in optical micrographs by the point-counting method des-

scribed by Hilliard and Cahn p.22] as a check of the X-ray measurements. 

3.8 Transmission Electron Microscopy (TEM) 

Thin foils and replicas were examined with TEM in a Hitachi HUllA 

microscope at 75 or 100 KV. The morphology of the internally nucleated 

crystals in the early stages and of the amorphous droplets in phase 

separated glasses were studied in this way. 

Thin glass sections were prepared by the ion beam thinning technique. 

The glass sample was first cemented to a glass slide together with six other 

pieces of glass surrounding the first sample. They were ground flat with 

600 grade SiC and polished with Cerirouge. Next the sample was turned over 

and cemented toa new slide together with 100 ~m thick glass pieces as before. 

Grinding was carried out until the edges of the 100 ~m pieces started to 

disappear. Grinding was then continued with 3 ~m diamond until a thickness 

of about 15 ~ was obtained. 



1·00 __ --------~----------o ____ o~---~~~-~=~V----v 

0·75 

a-50 

0·25 

fl~ A:::::::=' 
. ~. 

6 #/ 
v ~. 

• 2 e 
0 Fe(Metal) 20° 

fl 33·3 800 20° 

V 28·5 Baa 20° 

0 33'3 Li20 20° 

• 33-3 Baa 40° 

• 28·5 Baa 40° 
° • 33·3 Li

2
0 40 

~o 

____ D 
____ 0 

D~D ______ .----. 

~ .--------~D • ____ 
o .---. ..........:::-- .----

2·5 5-0 
3 

X · 10 (mm) 

7·5 

Fig. 3.9 Fraction of intensity (Gx) diffracted by a layer of 

thickness x for various silicate glasses and metalic iron. 

(Copper Ka radiation). Gx is given in [3.40]. 



93. 

The foil was removed with methanol and cemented to a copper grid which 

was placed in a vacuum chamber on a rotating plate in an Edwards IBMA2 

machine. After a vacuum of 10-~ torr was reached the specimen was bombarded 

with Ar ions at 12° until a small hole appeared in the glass. 

Replicas were prepared by evaporating carbon to previously polished 

and etched glass samples, at angles of 30-40 degrees. The specimens were 

then soaked in a 2% HF solution until the replicas became detached and 

floated on the liquid surface, and could be collected on copper grids. 

The microscope magnifications used were checked with a 2160 lines/mm 

standard diffraction grating replica. 

3.9 Small Angle X-ray Scattering (SAXS) 

3.9.1 Monodispersed systems 

The intensity I(s), of X-rays scattered at small angles by an isotropic 

system of identical and widely dispersed particles of volume v, and uniform 

electronic density Po, can be represented by the following expansion [3.23] 

(3.12) 

where f1p = (p-Po), P is-the electronic density of the matrix, s = 

(2 sin 8)/A the modulus of the scattering vector in reciprocal space, Ie 

the intensity scattered by a free electron and N the number of particles 

in the irradiated volume. At small angles s ~ £/A where 28 = £, the 

scattering angle, and A is the wavelength of the X-rays. 

'electronic radius of gyration' of the particle given by 

Rg2 = j r 2p(r)dv/ j p(r)dv 

where r represents the coordinates in real space. 

Rg is the 
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In the case of a spherical homogeneous particle (p{r) = p) becomes 

Rg = 13/20 D 

where D is the particle diameter. 

3.9.2 Guinier's Law 

Guinier [3.23] has shown that the following approximation is valid for 

very small angles 

(3.13) 

Equation (3.13) is known as Guinier's law. The region of validity of this 

equation depends on the shape of the particles. For spherical particles 

it is valid up to about D.s = 0.6. 

The plot of log I(s) vs. s2 (or £2) is a straight line in the Guinier 

region, the slope of which is proportional to - Rg2, and from this, D may 

be determined. 

The extrapolated value 1(0) is proportional to the square of the volume 

of the particle and to the number of particles 

3.9.3 Integrated intensity 

If the sample is isotropic (contains identical particles of random 

~ 

orientation) the observed intensity is the average value of I(s) for a 

given value of s. Thus 

(3.14) 
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(3.15) 

Although I(s) is not known experimentally up to s = 0, the extrapolation 

of s2 I (s) can be made with accuracy. It can be shown that the integral 

Equation (3.15), usually denoted as Qo, is proportional to the total 

volume of the precipitated phase (N.v) 

(3.16) 

Absolute measurements of I(s) allow the determination of v if (p-Po) is 

known or, conversely, of (p-Po) if v is known. Equations (3.14) and 

(3.16) give the volume of the particle in terms of relative measurements 

only: 

3.9.4 

I e!:::.P2Nv2 
1(0) 
--Q-o- = Ie!:::.p2NV = v 

Porod's Law 

(3.17) 

The solid line in Figure 3.10 shows the intensity diffracted by a 

dilute assembly of spheres of diameter D. For the wings (high angle end) 

of the scattering curve, Porod [3.24] has shown that if the particles are 

not strictly monodisperse the oscillations shown in Figure 3.10 disappear 

from the curve and 

Ie!:::.P 2S 
I(s) = 8'TT3~ 

s-'oo 

where S is the total surface of the particles. 

(3.18) 

Scattering from nearly 

identical particles show the Porod behaviour because small fluctuations in 
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size are enough to supress the oscillations. This equation is valid for 

any shape of particle, so long as the orientations are random and none of 

the particle dimensions approach zero (needle or plate shaped). It is 

also valid for dissimilar particles and for a close-packed system of 

particles. Positive deviation from Porod's law can occur due to electron 

density fluctuations within the phases whilst diffuse inter-phase boundar-

ies cause negative deviations [3.25]. The triangles in Figure 3.10 

represent the Guinier equation and the dotted line shows the asymptotic 

function 9/2 TI4 (Ds)4 of Equation (3.18), in terms of the scattering angle, E. 

The equations of the preceding sections are valid if the X-ray beam 

has an infinitely small cross-section (point collimation). In practice, 

most of the experiments are carried out with flat beams (uniform intensity), 

obtained with a system of slits or with crystal monochromators, in order to 

achieve higher intensities. The scattering pattern is then distorted. 

The experimental intensity J(s) can be used in two ways: 

(a) It is possible to deduce the true scattering function I(s) from 

J(s) ~.26,3.27]. 

(b) The different laws established for I(s) may be adapted to the case 

of a flat beam. 

It can be shown that for an 'infinitely high' flat beam of constant 

'. 1ntensity and negligible width, Equations (3.13), (3.15) and (3.18) become 

[3.28] (Appendix 2). 

where J{O) = I3TI I(O) 
2TIRg 

(3.19) 
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00 00 

f 4TIs 2I{s)ds = f 2TIsJ{s)ds (3.20) 
o o 

(3.2l) 

respectively. 

3.9.5 Debye's approach 

Debye et ale [3.29] have shown that a completely random two phase 

system has an exponential correlation function. For slit-smeared in-

tensities p.30] (See Appendix 2 for definition of Jl (s» 

(3.22) 

where A is a constant and I is related to surface area per unit volume of 

glass, Sv' by 

Sv = 
4~1 (l - <1>1) (3.23) -

R, 

~here ~l is the volume fraction of the dispersed phase. 

A plot of J{£)-'l3 vs. £2 , £ (degrees), is thus linear and I may be 

derived from the relationship 

[ 
slope ] 

intercept 
(3.24) 

The advantage of the Debye method is that experimentally and computa-

tionally it is much more rapid than the Porod method, since it is not 

necessary to collect data over the whole angular range and no graphical 
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integrations or extrapolations are required. However, it must be emphasised 

that the method is confined to completely random systems. 

Brown et al. [3.31] have measured the surface areas of silica fillers 

in silicone rubber. Longman et al. [3.32] have determined the pore diameters 

and surface areas of a range of porous silicas used in gel permeation 

chromatography. Agreement between various techniques and the Debye method 

was satisfactory in both cases. 

3.9.6 Polydispersed system of particles 

When dealing with a system of particles of various shapes and sizes, 

the Guinier plot deviates from linearity, while the limiting tangent as 

s ~ 0 gives a weighted gyration radius, defined by 

where Ri,'vi and ¢i are respectively, gyration radius, volume and fraction 

of particles of species i. If the particles are spherical, differing 

only in size 

(3.25) 

which defines an average diameter 

heavily weighted towards the larger particles of the population. 

For a polydispersed system Equation (3.17) may be written in terms 

of average values 
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I (0) = < V 2 >/< V > 
Qo 

(3.26) 

From equations (3.25) and (3.26), the following are obtained 

(3.27) 

D 3 
v 

6 I(O} =---= 
'If Qo 

(3.28) 

where Dv is an average diameter calculated from the average volume of the 

particles. For a polydispersed system D is, in general, different from 

Dv' In practice it is not possible to obtain the limiting tangent for 

s ~ O. From an experimental curve, the maximum tangent gives information 

about the size of particles producing the scattering. However, larger 

particles can also be present. 

3.9.7 Dense systems of identical particles 

If the particles are close to each other the observed intensity is 

not the sum of the intensities scattered by the individual particles, since 

interference enters into play. If the particles are identical, distri-

buted uniformly, and the orientations are completely random, the distribu-

tion is given bya function per}, such that 4nr 2p(r)dr is the number of 

particles whose centres are be~ween rand r + dr of the origin chosen. 

For particles with spherical symmetry, the scattering power per particle, 

I (s), is [3.33] 

I (s) == F2 (s) [ 1 + 2/SV l [00 [p (r) - 1] sin (2nsr) dr ] (3.29) 

where F2(s} is the scattering power per particle when there is no inter-
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ference and Vl is the average volume available for each particle. 

As the concentration increases (Vl decreases), the second term in the 

bracket reduces the intensity scattered at the centre, since it is negative 

when s is very small. The curve then has a hump which becomes a maximum 

at high concentrations. There is no significant interference when s 

increases; thus the Porod formula (Equation (3.18» is valid even for close-

packed particles. 

An approximation of Equation (3.29) for the scattering by spherically 

symmetrical particles is [3.34] 

1 (s) = l eNF 2 (5) vd (Vl - (27T) % Eo S (s» (3.30) 

where EO ~ 1 and the interparticle interferences which modify the curve F2 (s) 

are taken into account in the function S(s), where 

s8 (s) = K 
J 

co 

ra.(r) sin(sr)dr (3.31) 

o 

with a.(r) = e-¢(r)/kT - 1; ¢(r) being the potential energy function of a . 

pair of particles whose centres are separated by a distance 4 and K a 

constant. . '. 

If the concentration of the particles is not too high, the function 6(s) 

only slightly modifies the curve of F 2 (s). We can again trace the usual 

log l(s) vs. S2 curve and verify that it still has a linear portion at small 

angles. The apparent radius of gyration Rl determined in this way is not 

the true radius of gyration Rg • 

leads to [3.35] 

R 2 g 
3 

2 

Mathematical manipulation of Equation (3.30) 

S" (0) :-:-'----
V 1 (27T) - % - S (0) 

(3.32) 
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where 6"(0), is the value of the second derivative of B(S) for s = o. 

Rl approached Rg as the concentration decreases, i.e. the average volume 

VI increases. Furthermore, the experimentally observable decrease of the 

intensity 1(0) with increasing concentration, together with certain theore­

tical considerations D.36], have shown that, if Equation (3.30) is to be 

used, it is necessary to adopt a function B(s), which is negative for small 

values of s. Now, when 16(s)lis a maximum at s =: 0, B"(o) is of the 

opposite sign to that of a" (0), so in our case a" (0) must be positive. 

Therefore, Rl is Zess than Rg and becomes even smaller, the greater the 

concentration of particles. 

When considering a fluid of hard spheres showing no interactions other 

than impenetrability, B(s) can be calculated D.34], and Equation (3.30) 

becomes 

2 1 
I(s) = Ie N~ (sR) 1 + (SV/Vl)Eo¢(2sR) (3.33) 

The corresponding curves are given in Figure 3.11 for various values 

of concentration c = V/Vl, where v is the volume of each particle. The 

intensity maxima are produced at larger and larger angles, the greater the 

concentration of scattering matter. 

The curves of log I(s) VS. 52 for c equal to: 0.00, 1/32 and 1/16 

are plotted in Figure 3.12. These curves verify not only that the slope 

at the origin varies with concentration in the manner indicated before, but 

also that the curves depart more and more from linearity as the concentration 

increases. 

Rothwell D.37] has measured the scattering produced by a colloidal 

dispersion of uniform silica spheres in water (Ludox AS) • voluroo concen­

trations of 0.16, O.OS. 0.04, 0.02 and 0.01 were prepared. The diameter 
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of the particles was measured from the Guinier plots for the different • 

concentrations. The experimental results shown in Table 3.7 are in 

Table 3.7 

SAXS DIAMETERS FOR DIFFERENT CONCENTRATIONS [3.3 7] 

$1 0.0 0.01 0.02 0.04 0.08 0.16 
(vol. fraction) 

o 
D{A) 216 211 202 175 163 151 

qualitative agreement with the preceding theory, showing that the Guinier 

diameter is Zess than the real diameter of the particles when dealing with 

concentrated systems, the discrepancy increasing with concentration. 

The incipient peak observed in the scattering curves at about 

s = 0.0091 corresponds to the first subsidiary maximum in the theoretical 

scattering function for uniform spheres at D.s = 1.84. This gives 

o 
D = 202 A in good agreement with the Guinier plot values for low concentra-

tions [3.37]. 

A complicated expression based on the prece,ding arguments was derived 

by Fournet D.35] and applied to mixtures of homogeneous spheres of radii 

R and 2R~ The curves representing the variation of scattered intensity as 

a function of angle are given in Figure 3.13. Two pa~ameters were included 

in the calculation: $1, the ratio of the volume occupied by the particles 
..,. ~' .•.. 

to the total volume available; and x, the ratio of the mass of smaller 

particles to the total mass of the particles. Short-dashed curves correspond 

to $1 = 0.5, long dashed curves to $1 = 0.125 and full-line curves to the 

case of infinitely separated particles ($1 ~ 0). One feature of the 



Fig. 3.13 Scattered intensity from mixtures of spheres 

of radii R and 2R. The parameter x denotes 

the ratio of the mass of the small spheres 

to the total mass of the mixture, and ~1 

represents the ratio of the effective volume 

of the spheres to the total volume. 

--- <P1 -+ 0; -- <P1 = 0.125; <P1 == 0.50. 

, 
-
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intensi ty curves is that for constant <I> 1, the more homogeneous the mixture 

the more they tend to show maxima. For example, the curve for 

~1 = 0.5 possesses a maximum only if the mass of smaller particles represents 

more than 95 or less than 25 per cent of the total mass. 

Based on this work Guinier and Fournet D.38] concluded that 

"In a mixture of non-identical particles of arbitrary forms and with ranoom 

distribution (no l~ng-range order) it is improbable that the packing of 

particles will lead to large changes·in the scattering curves and that thus 

the laws for widely separated particles can furnish the orders of magnitUde 

of the scattering phenomena. It 

3.9.8 Experimental 

The X-ray i'ntensity versus scattering angle (€:) curves were obtained 

with Rigaku-Denki equipment using the CuKa. radiation, a graphite monochromator 

and a scintillator detector. A schematic diagram of the experimental set up 

is shown in Figure 3.14. G is the X-ray source, fl, f2, f3, f4 and f5 slits 

used to collimate the beam and to decrease the parasitic (air and slits) 

scattering, S the specimen, M a graphite monochromator and D the scintillator 

detector. .' ' 

Absorption of X-rays 

The scattered intensity depen~ on the volume V of irradiated material 

and also on its absorption characteristics. This may be expressed in the 

following way: 

I = KIoV exp(- ~px) (3.34) 

where K is a constant, Io the intensity of the incident radiation and I the 
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Schematic diagram of the SAXS equipment. 

11 80; 12 = 220; 13 = 95; 1~ = 30; 15 = 500 and 16 = 40 mm 

f1 = 0.1; f2 = 0.05; f3 = 0.05; f~ = 0.3 and fs a 0.1 mm 
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intensity of the transmitted radiation at € = 0, p the mass density of the 

specimen, ~ the mass absorption coefficient and x the effective thickness 

of the sample. From Equation (3.34) it can be easily shown that for 

x = l/~p the ratio 1/10 is a maximum. For a glass with 28.3 molt Baa; 

p = 3.40 g cm- 3 and ~ = 179.8 cm2 /g (calculated from international tables 

of crystallography) • Therefore, the optimum thickness of the specimens 
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for SAXS is 0.016 mm. The actual samples used were ground and polished to 

apprOximately 20 x 6 x 0.03 rom, because it was difficult to obtain specimens 

thinner than 0.03 rom having such a relatively large area. 

The attenuation coefficient (A) of each sample was calculated by means 

of the equation A = In(Io/I), where 10 and I were measured experimentally 

For this, 20 KV and 35 rnA were applied to the X-rays generator 

and Ni filters were placed in front of the detector. 

Measurement of the scattered intensities by the air and by 

the glass specimens 

40 KV and 35 rnA were applied to the X-rays generator. The samples 

(IS) and air (IA) scattering intensities were measured independently, by 

step scanning from 0.10 to 1.2~ in 0.025° intervals. The 'counting' times 

varied from 400 to 2000 sec at each angle, depending on the scattering 

intensity of the specimen. All the measurements were automatically recorded. 

Also, the intensity of the scattered radiation of a standard porous 

vitreous carbon (IVC) sample was measured twice (IVCl and IVC2~ at a fixed 

angle EI.in order to correct the experimental curves for variations in the 

intensity of the primary beam. The background intensity BK was measured 

at the end. The overall sequence of measurements was: 



105. 

Corrections and normalization of the experimental curves 

The results were normalized to a constant sample thickness, and 

corrected for absorption, fluctuations in the intensity of the primary beam, 

and parasitic (air and slits) and background intensity (cosmic rays and 

electronic noise) by means of the following equation 

. J(e:) = _1_ [IS(e:)A _ IA(£) 
In.A IVCl IVC2 

_BK (A_I)] (a.u.) 
IVC 

(3.35) 

where J(£) is the normalized and corrected intensity used to compute the 

results, BK is the background intensity, which was much smaller than IS and 

lA, and IVC is the average of IVCl and IVC2. 

Infinitely high X-ray beam 

For the primary beam to be of 'infinite' length, the radiation at the 

ends of the beam cross-section must not be able to send radiation into the 

counter slit [3. 39] • This can be expressed in terms of the following 

relation 

£0 (degrees) = (L - t) 180 
2R 'IT 

(3.36) 

where L is the length of the homogeneous part of the X-rays bean, R. is the 

length of the measuring slit and R is the distance sample-detector. For 

the experimental set up used, Eo ~ 0.8°, i.e. the beam could be considered 

'infinite' if the intensity J(£) was negligible at E = 0.8°. This 

condition was verified for most specimens studied. 



CHAPTER 4 

EXPERIMENTAL RESULTS 

The preparation of the glasses and chemical analysis were described 

106. 

in Chapter 3. The designation of each glass indicates the molar percentage 

of BaO or Li 20, e.g. glass l7.7Li20 contains 17.7 molt Li20 by analysis. 

4.1 Crystal Nucleation in BaO-Si02 Glasses 

4.1.1 Crystal nucleation in glasses undergoing phase separation 

Having heat-treated and prepared the specimens, as described in 

section 3.5, micrographs were obtained and the size distributions and number 

of crystals per unit area were measured. The numbers of crystals per unit 

volume of glass were then calculated by means of Equation (3.1). Typical 

micrographs of the several glasses studied are shown in Figures 4.1a, band c. 

The heterogeneous nucleation of BaO.2SiOz spherulites was observed to 

occur on the surface of bubbles, cracks and external surfaces of the heat-

treated glasses. Some examples are shown in Figure 4.2. It should be 

emphaSized, however, that the number of heterogeneously nucleated crystals 

was negligible compared with the number of crystals in the bulk of the glass. 

It is considered probable that these crystals in the bulk were nucleated 

homogeneousLy due to the very high undercoolings necessary to observe internal 

nUCleation. 

Figures 4.la and b show that the BaO.2Si02(BS2) spherulites in glasses 

27.0, 28.3A, 28.3B, 29.7H and 29.0 are very similar in shape, being approxi-

mate1y spherical. The stoichiometric glasses 33.1U, 33.2B, 33.2C, 33.3A 

and 33. 3p have more "spiky" crystals, especially when the "development" heat­

treatment was short, i.e. for specimens nucleated at temperatures close to 



Fig. 4.1a 

Fig. 4.1b 

Fig. 4.lc 

Fig. 4.2 

Optical micrographs (reflected light) of BaO-Si0
2 

glasses. From left to right and from top to bottom: 

Glass 27.0: 7 h at 752°e + 22 min at 81S oe 

Glass 28.3B: 7 h at 752°e + 22 min at 81S oe 

Glass 28.3B: 9.5 h at 752°e + 22 min at 81S o e 

Glass 33.2e: 40 min at 76S oe + 14 min at 8lS o C 

~ = 20 l1m 

Optical micrographs (reflected light) of BaO-Si0
2 

glasses. From left to right and from top to bottom: 

Glass 28.3A: 6.5 h at 760 0 e + 22 min at 81S o e 

} 

) 

Glass 28.3A: 8.0 h at 760 0 e + 22 min at 81S o e ; 

Glass 28. 3A: 15.3 h at 760 0 e 

Glass 33.3A: 8.0 h at 760 0 e 
~ = 10 l1m 

Optical micrographs (transmitted light) of BaO-Si0
2 

glasses. From top to bottom: 

Glass 28.3B: 1.5 h at BOOoe 

Glass 29.9: 1.5 h at BOOoe 

Glass 33.3p: 30 min at BOOoe 

t---l = 40 l1m 

Heterogeneous nucleation of BS2 spherulites in 

Bao-Si02 glasses 

1---1 = 10 l1m 
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the maximum rate of nucleation (- 700°C). The spherulitic character of 

the BS2 crystals can be clearly seen in the transmission micrographs of 

Figure 4.lc. 
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At this stage, it must be stressed that the objective of the nucleation 

studies described below was the establishment of possible relationships 

between amorphous phase separation (APS) and the nucleation and growth of 

crystals. For that purpose, the nucleation behaviour of several glasses 

with compositions inside the miscibility gap (glasses 27.0, 28.3A, 28.3B, 

29.7H and 29.9), and some glasses close to the barium disilicate composition, 

Le'. outside the gap (33.3A, 33.2C and 33.3P), was studied at several tempera-

tures above the transformation range. These studies were correlated with 

SAXS and TEM studies of the liquid-liquid immiscibility in the same system. 

In Figure 4.3, crystal nucleation density (Nv) versus time curves are 

plotted for glasses 28.3A and 29.7H nucleated at 7l8°C. The nucleation rate, 

dNv/dt, is constant for glass 29.7H and increases continuously with time for 

glass 28.3A. 

Figure 4.4 showsa similar trend for both glasses nucleated at 745°C. 

The nucleation rate of glass 28.3A increases gradually up to about 7 hours, 

overcomes dNv/dt of glass 29.78, and becomes constant. The experimental 

points obtained with a single stage heat-treatment (e) are also shown, and 

are lower than the values obtained with a double stage treatment. Detailed 

explanations for this apparent discrepancy were discussed in section 3.5 and 

are given in Appendix 1. The same figure shows that the nucleation rate of 

the stoichiometric glass 33. 3A is about 20 times higher than the maximum 

dNv/dt of glass 28.3A, and 40 times higher than dNv/dt of glass 29.78. As 

will be shown later, the nUcleation rate of glasses having compositions close 

to the stoichiometric composition of the crystals, BS2, are much higher than 

dNv/dt of other compositions at all temperatures. 
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Glasses 28.3A and 29. 7H were also nucleated at 760°C, and the Nv versus 

time curves are shown in Figure 4.5. The nucleation rate of glass 28.3A is 

initially lower, reaches a maximum value at about 2.S hours, overcoming the 

constant rate of glass 29.7H, and levels off after 3 hours approaching a 

constant value. Even at this stage, dNv/dt for glass 28.3A is higher than 

the steady state rate of glass 29.7H. With the exception of the inflexion, 

which gives a maximum value for dNv/dt of glass 28.3A at 760°C, the general 

behaviour is similar at 718°C, 74SoC and 760°C. 

In order to check the reproducibility of the experimental data, and to 

test the possibility that the observed inflexion in the nucleation curve of 

glass 28. 3A was caused by the "development" heat treatment, a further "growth" 

treatment of 8 min at 81Soc was given to the same specimens used before. 

The new values of Nv are compared with the old ones in Figure 4.6. 

The agreement is excellent. 

Figure 4.7 shows· the nucleation curve for glass 28.3B first heat-treated 

at 82loC for 22 min to caUSe a pronounced development of the amorphous phase 

separation. The blUeish appearance of the glass samples and the rather 

large size of the Silica-rich droplets (Figure 4.14a) after this treatment 

was an indication that the APS had reached an advanced stage. These 

specimens will be called 28. 3BPS. Then, the same specimens were subjected 

to the common double-stage heat-treatment at 743°C and 820°C. A few 

crystals, much bigger than the average size, could be seen in the micrographs. 

These were formed during the first heat treatment and were neglected. The 

nucleation rate. in glass 28.3BPS is constant and higher than the constant 

dNv/dt of glass 29.7H. The nucleation rates of glasses 28.3A and 28.3B (two 

different melts of the same chemical composition) are equal, showing the 

reproducibility of the present experiments, and increase continuously up to 

about 7 hours, when they approach a constant value which is higher than 

dNv/dt for glasses 28.3BPS and 29.7H. 
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The nucleation curve of glass 27.0 heated at 743°c is shown in 

Figure 4.8 together with the curve for glasses 28.3A and 28.3B. The 

nucleation rate of glass 27.0 incpeases up to about 2 hours, which is much 

shorter than the 7 hours period required for glasses 28.3A and 28.3B to 

reach an equilibrium rate. After these periods, the crystal nucleation 

rates of the three glasses are constant and equaZ. 
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Figure 4.9 shows the crystal nucleation density (Nv) versus time curves 

for glasses 27.0, 28.3B and 29.9 nucleated at 752°C. dNv/dt of glass 28.3B 

inapeases up to about 3 hours passing through a maximum, decrease and becomes 

constant after about 5 hours of heat treatment. The nucleation rate of 

glass 27.0 incpeases up to about 2 hours, when it approaches a constant 

value equaZ to the nucleation rate of glass 28.3B,and higher than the 

constant rate of glass 29.9. 

Comments 

It is clear that the crystal nucleation rates of glasses 27.0, 28.3A 

and 28.3B, which are undergoing amorphous phase separation, incpease with 

time, in some cases paSSing through a maximum, and approach a constant value. 

The nucleation rates of glasses 29.7H and 29.9, which do not phase separate 

as will be shown later, are constant from the beginning, being higher than 

dNv/dt of the phase separating glasses only in the initial parts of the 

nucleation curves (for short nucleation treatments). 

4.1.2 Crystal nucleation in stoichiometric BaO.2Si02 (BS2) glasses 

It was of interest to study the nucleation behaviour of spherulites in 

BS2 glasses for comparison with glasses inside the miscibility gap, and also 

for a quantitative test of the classical nucleation theory ,to be described 

later. In these glasses, the shape of the spherulitic crystals departs 

from the spherical symmetry making the determination of the shape factor, 
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K(q), in Equation (3.1) very difficult. Therefore, only the minor axis of 

the ~rgest crystal, DM, on the micrographs was measured, and the following 

relation was used for the calculation of Nv : 

(4.1) 

This equation is strictly applicable only if all crystals are spheres 

of equal size. However, it can be shown by mathematical manipulation of 

Equations (3.1) and (3. 2), that the errors in neglecting the factors 2z/n 

and K(q) are in opposition, which can lead to a substantial decrease in the 

error in using Equation (4.1). For the case under study, i.e. a size 

distribution of elongated crystals, this is particularly true. Hence, 

equation (4.1) is a reasonably good approximation. It should also be 

mentioned that due to the very high nucleation rates in BS2 glasses, the 

times of heat-treatment were limited to two hours, causing the values of 

nucleation rates to be underestimated, especially at temperatures close and 

below the transformation range, due to non-steady state effects. 

Figure 4.10 shows the crystal nucleation densities versus time curves 

of glasses 33.2C and 33.3A from 685°C to 765°C. Pronounced induction periods 

are observed below 718°~steady state conditions being rapidly established for 

higher temperatures. Table 4.1 shows the crystal nucleation rates calculated 

from the slopes of these curves, together with the values obtained by 

Rowlands U.47] for a glass very close in composition to 33.2C and 33.3A, 

but with 0.33 wt% A1203 and a higher water content. The general agreement is 

good. These nucleation rates are much higher than that in glasses 27.0, 

28.3A, 28.3B, 29.7H and 29.9. 



Table 4.1 

CRYSTAL NUCLEATION RATES IN BARIUM DISILICATE 

GLASSES (mm- 3 .s- 1) 

, 

BS2 [1.47] 33.3A 33.2C 

T(oC) I T (oC) I T( °C) I 

662 42* - - - -
680 206* - - 685 125* 

700 1870* -. - 706 1490* 

718 1450 718 1042 - -
729 798 ..,. - 731 644 

740 459 - - - -
748 280 745 461 749 415 

760 134 760 222 - -
"I" - 765 163 765 163 

780 27 - - - -
* underestimated due to induction periods 
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4.1. 3 Effect of impurities on the nucleation rates 

It is well established that most impurities reduce the nucleation rate 

of crystals in glasses [2.51,2.52]. For instance, in Li2a-SiOz glasses, 

only nucleating agents like P20S [2.45,2.52], water ~.53] and possibly a 

few others, increase the nucleation rate of crystals. Ramsden [2.54] has 

demonstrated that Ti02 and Al203 dramatically decrease the crystal nucleation 

rates in Bao-SiOz glasses. Water has probably a catalyzing effect on the 

nucleation rates but its level, and the level of other impurities, is low 

~d simi~r in all glasses used in this study (sections 3.2 and 3.3). As 

the main impurity in the Bao-Si02 glasses melted in this work was SrO, an 

. 
experiment was devised to test the effect of this oxide on the nucleation of 

crystals. 

Figure 4.11 clearly shows that the nucleation rate of glass 33.3p 

(0.004 wt% SrO) is about 1.5 times higher than dNv/dt of glasses 33.2C and 

This effect should therefore be 

taken into account when comparing nucleation rates of Bao-SiOz glasses having 

different SrO contents. Among the glasses actually used in this study, only 

glass 29.7H (0.54 wt% SrO) had a sUbstantially higher SrO level than the 

others. 

4.2 Crystal Growth in Bao-Si02 Glasses 

The early stages of crystal growth in BaO-Si02 glasses have been studied 

in detail by other authors and discussed in chapter 2. As in this work the 

relationship between APS and crystal growth was of particular interest, a 

simple experiment was devised and will be described below. 
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4.2.1 Effect of amorphous phase separation 

Specimens of glasses 2B.3A and 29.7H, which have been nucleated for 

increasingly longer periods of time at 71BoC, 745°C and 760°C and then 

"developed" at a higher temperature (the same temperature and time of 

development were employed for each particular glass composition and nuclea-

tion temperature), show larger crystal diameters with increasing nucleation 

periods. Therefore, by measuring the maximum diameters of the spherulites 

shown in optical micrographs and assuming that: (i) the growth rate of the 

orystalline nucleus is independent of its size and (ii) the "development" 

heat treatment brings an equal additional growth to each nucleus~ it was 

possible to estimate the g~wth rates of the nuclei in the nuaLeation range 

of temperatures. 

Figure 4.12a shows the maximum spherulite diameters as a function of 

nucleation time at 71SoC, 745°C and 760°C for glasses 2B.3A and 29.7H. 

The plots are straight lines and the growth rates, ~dDM/dt, clearly increase 

with temperature. The growth rate of glass 2S.3A is higher at 760°C and 

745°C than in 29.7H,and approximately equal at 71SoC to the growth rate in 
i 

glass 29.7H (Table 4.2a). These observations suggest that APS has the 

remarkable effect of increasing the growth rate of glass 2S.3A,so that it is 

greater than the growth rate of the non-phase separating glass 29.7H, which 

in overall composition is higher in BaO. The APS at 7lSoC (as will be 

discussed later) takes a long time to proceed towards the final stage, and 

the effect on crystal growth is not detected. 
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Table 4.2a 

CRYSTAL GROWTH RATES IN GLASSES 28.3A AND 29.7H (m.s- 1) 

Glass 

28.3A 

29.7H 

0.40 X 10- 10 

0.45 x 10- 10 

1.0 X 10- 10 1.8 x 10- 10 

0.61 x 10- 10 0.95 x 10- 10 

4.2.2 Crystal growth in the stoichiometric glass 33.3A 
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The crystals growing in glass 33.3A do'not have a spherical morphology 

and the growth rate is much higher than for glasses 28.3A and 29.7H. In 

this case, the largest crystalline spikes were measured after a single stage 

heat treatment at 745°C and 760°C. 

The growth rates, ~dDM/dt, and induction times measured in the plots of 

Figure 4.12b were used in the analysis of the fraction crystallinity versus 

time curves (Figure 4.13) discussed below. 

4.3 OVerall Crystallization - the Johnson-Mehl-Avrami (JMA) Theory 

The JMA theory [4.1,4.2] predicts the evolution with time of the frac­

tion of crystallized material, a, as a function of the steady state nuclea­

tion rate, I, and constant growth rate, U, as follows: 

(4.2) 

where g is a shape factor, p and n depend on.the dimensionality of the 

crystals and growth process (diffusion or interface controlled) and t is 

the time of isothermal heat treatment. 
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The JMA theory is often used to access the factor n, which can partially 

describe the transformation under study, through In In(l - a)-l versus log t 

plots. Recently the JMA theory has been extensively employed in the formula-

tion of theories of glass formation by Uhlmann and co-authors ~.3,4.4,4.5, 

4.6,4.7]. It also provides an alternative and more rapid way of calculating 

crystal nucleation rates from measured values of U and a, and has been used 

recently in an attempt to test the classical nucleation theory ~.7l,1.77]. 

As far as this author is aware, however, no quantitative test of the JMA 

theory has so far been made. Therefore, the experimental crystal nucleation 

and growth rates of glass 33.3A at 745°C and 760°C (Table 4.2b) were used to 

calculate the curves a versus time,· which could then be compared with the 

measured a versus time curves plotted in Figure 4.13. 

Table 4.2b 

EXPERIMENTAL PARAMETERS USED TO TEST THE JMA THEORY 

(GLASS 33.3A) 

745°C 760°C 

I (nnn- 3 • s- 1 ) 461 222 

U (mm'.s-l) 3.24 x 10- 7 4.63 x 10- 7 

to (s) 16500 5400 

No (mm- 3 >- 7.6 X 106 1.2 X 106 

It can be shown ~.8] that in the case of a fixed number of nuclei, No, 

. growing with a constant rate U, Equation (4.2) is modified to give 

E 
' __ 0 n-l] 

a = 1 - exp - g NoU" t (4.3) 
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For the crystallization of glass 33.3A at 745°C and 760°C, there are 

appreciable induction periods (to) before detectable growth occurs (Figure 

4.12b). Hence (t - to) should be substituted for t in Equations (4.2) and 

(4.3) • For spherically growing crystals, the factors p and n are equal to 

3 and 4 respectively ~.8]. 

CUrve B in Figure 4.13 is the calculated curve at 760oC,obtained by means 

of Equation (4.2) with the parameters mentioned above, and reflects the 

situation where the rate of nucleation is constant and each nucleus is grow­

ing with a constant rate. It must be realised, however, that for glass 33.3A 

appreciable growth of the nuclei only occurs after a certain induction period, 

to, so a great number of nuclei, No(to), is already formed when crystal growth 

begins. Assuming that no more nucleation occurs after the starting of the 

growth process, a can be calculated by Equation (4.3), and is plotted as 

curve A in Figure 4.13. The real fraction transformed is then given by the 

combination of curves A and B. 

The experimental curves in Figure 4.13 were obtained by XRD, and a point­

counting method described in section 3.7. There is a large discrepancy 

between the Optical Microscopy (point-counting) and XRD curves, but this can 

be explained if We realise that the spherulites are not entirely crystalline, 

some residual, uncrystallised glass remaining inside them. Results similar 

to those obtained by XRD here, have also been found for the spherulitic CIYstal­

lization of polymers ~.8,4.9]. It is also of interest to observe that the 

maximum degree of crystallinity, as measured by XRD at 745°c and 760°C, is 

indicating that each BS2 spherulite is only 64% crystalline. Schultz ~.28] 

also shows that bulk polyethylene crystallizes very slowly after a volume 

fraction of about 60% crystallinity is reached. 
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4.3.1 Comparison of experimental and calculated curves 

Figure 4.13 shows that the calculated and experimental curves at 760°C 

are displaced on the time axis. The discrepancy is even greater if we 

realise that the real calculated curve is the combination of curves A and B. 

At 745°C, the calculated curves (not shown in Figure 4.13 for clarity) nearly 

coincide with the experimental curves for 760°C, being a long way from the 

measured curves .for the' isothermal treatment at 743°C. Some explanations 

for this discrepancy will be given in chapter 5. 

4.3.2 XRD - phase analysis 

Some heat treated speciment of glass 33.3A were analysed in the standard 

way by XRD to reveal the crystalline phases. For all heat treatments given 

at temperatures below about 970°C, the XRD patterns consisted of very broad 

peaks, characteristic of the small size of the crystals. These were probably 

the fine spikes of the spherulites. Above 970°C, when the spherulites trans­

form to lath-shaped crystals, sharp peaks corresponding to the low form of 

BaO.2Si02 (~-BS2) were clearly identified. These observations are very 

similar to those of Rowlands [1.47]. 

4.4 Amorphous Phase Separation (APS) in BaO-Si02 Glasses 

The quantitative study of APS involves techniques capable of high resolu-

tion such as TEM and SAXS. In this work, both techniques'were used for the 

characterization of the structural parameters which describe phase separated 

glasses and their evolution with heat treatment. 

4.4.1 Transmission Electron Microscopy (TEM) 

The morphology of APS in several BaO-Si02 glasses was studied by TEM of 

thin foils by Seward et al. ~.6], who also determined the miscibility gap 
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at high temperatures. Ramsden ~.s4] made some semi-quantitative estima-

tions of volume fractions, number of droplets and surface areas of phase-

separated BaD-Si02 glasses using surface carbon replicas. The TEM 

techniques employed in this work were described in section 3.8 and micro-

graphs of several BaD-Si02 glasses melted in this study are shown in 

Figures 4.14ci-4;14e. 

Figure 4.l4a shows thin foil TEM micrographs of glass 28.35 heat 

treated for up to 14.4 h at 743°C. The as-quenched specimen shows no 

detectable phase separation. The nearly spherical droplets shown in the 

heat treated glasses clearly increase in size with time. The last micro-

graph is for glass 28.3B heated at 821°C for 22 minutes (glass 28.3BPS). 

° The size of the droplets (- 400 A) is much larger while the number of drop-

lets is smaller. This specimen was slightly blue while the others, heat 

treated at 743°C, were clear and transparent. 

Figure 4.l4b shows that no phase separation could be detected by TEM 

in glass 29.7H even after a treatment of 5.5 h at 743°C + 4.2 h at 690°C 

+ 1.0 h at 750°C. Specimens of this glass heated for 23 hours at 7l0oC or 

71SoC for 48 hours were also free of submicroscopic structural features, 

suggesting that this glass does not phase separate even when heated inside 

the miscibility gap. A similar observation was made by Burnett and Douglas 

~.lO] in their study of APS in Na2o-Cao-Si02 glasses. They suggested 

that this behaviour is due to a lack of thermodynamic driving forc!,,! for 

compositions and temperatures which lie near to the binodal curve. 

Ramsden ~.54] also observed no trace of immiscibility in a glass with 

30.4 mol% BaO heated inside the miscibility gap. For a glass with 2S.7 

mol% BaO phase separation could be detected only for undercoolings larger 

than about SOoC. Therefore, it can be concluded that temperatures lower 

than 690°C (higher undercollings) would be required before nucleation of 
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Fig. 4.14c 

Fig. 4.14d 

Fig. 4.14e 

TEM micrographs of glass 28.3B phase separated at 

743°C. From top to bottom on the first page and 

from bottom to top on the 'second page: 0, 3, 5, 

10 and 14.4 hours, respectively. On the top of 

the second page a micrograph of glass 28.3BPS, 

i.e. glass 28.3B heated at 821°C for 22 minutes, 

is shown. 
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TEM micrographs of BaQ--Si02 glasses. From left 

to right and top to bottom respectively: 

glass 29.7H: 5.5 h at 743°c + 4.2 h at 690°C 

+ 1.0 h at 750°C 

glass 27.0: 4.1 h at 743°c 

glass 28.3B: 17 h at 743°C + 15 min at 821°C 

glass 28.3BPS: 6 h at 743°c 

The bar on the first figure indicates the magnification 

of the first three figures. 
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TEM micrographs of glass 28.3B at 760°C. From left 
to right and top to bottom: 1.0, 3.7, 8.4 and 

8.4 hours respectively. 

The bar on the third figure (~) indicates the 

magnification of the first three figures (0.1 llm) • 

The bar on the fourth figure indicates 0.5 llm. 

Replica micrographs of glass 28.3A,at 760°C. From 

top to bottom: 1.0, 5.8 and 8.0 hours respectively. 
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TEM micrographs of glass 28.3B heated for 30.2 hours 

at 743°C (top figures) and glass 29.9 heated for 

13.1 and 17 hours at 752°C (bottom figures). The 
bar on the first figure indicates the magnification 

on the first three figures. 
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amorphous droplets could occur in glass 29.7H. 

Supporting this conclusion is the observation that the development of 

APS occurs more rapidly as the Si02 content of the base glass is increased 

(moving towards the centre of the gap), as observed by Ramsden [2.54], and 

in section 4.4.2, i.e. the attainment of the equilibrium composition of the 

baria-rich matrix is much faster for glass 27.0 (72.6 molt Si02) than for 

glass 28.3B (7l.3 molt Si02). Quantitative studies of APS in Li2o-Si02 

glasses also show the same pattern (section 4.8) • This means that nuclea-

tion can begin at much higher temperatures (due to higher undercoolings below 

~e gap) allowing growth to proceed at a much faster rate in high 5i02 glasses. 

Figure 4.14b also shows a fine scale phase separation in glass 27.0 . 
heated for 4.1 hours at '743°C. Glass 28.3B nucleated at 743°c and "developeld" 

at 82loC for 15 minutes (for crystal nucleation studies) still retains the 

amorphous droplets apparently undisturbed by the growing crystalline spikes. 

The same behaviour was shown by other phase separated glasses nucleated and 

"developed" at different temperatures. Finally, there is no evidence 

for secondary phase separation in glass 28.3BPS after further treatment at 

743°c for 6 hours (Figure 4.14b). Micrographs obtained with higher magnifi-

cations confirm this observation, which is in agreement with the previous 

discussion concerning the absence of phase separation in glass 29.7H. In 

the case of glass 28.3 BPS, the initial treatment at 821°C caused the baria-

rich matrix to shift to about 30.1 mol% BaO (given by the binodal boundary) 

rendering difficult the nucleation of droplets in the amorphous matrix. 

Figure 4.14c shows the increase in size of the Si02-rich droplets in 

glass 28.3B heated at 760°C for 1.0, 3.7 and 8.4 hours. Some crystalline 

spikes can be seen in the 8.4 hours specimen. 

Some replica micrographs of glass 28.3A heated at 760°C are shown in 

Figure 4.l4d. The droplet diameters estimated in the thin foil and replica 
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micrographs of Figures 4.l4e and 4.14d are compared with the diameters 

measured by SAXS in Figure 4.22. 

Figure 4.l4e shows crystalline BS2 spikes growing through the phase 

separated matrix in glass 28.3B heated at 743°C for 30.2 hours. In glass 

29.9 heated at 752°c for 13.1 and 17 hours the crystalline spikes grow in a 

homogeneous (non-phase separated) matrix. 

Conclusions from TEM study 

These TEM studies of BaO-SiOz glasses allow the following conclusions 

to be drawn: 

The as-quenched glasses show no detectable phase separation. Particles 

smaller than the resolution limit of the Hitachi H'U IlA electron microscope 

° (20-30 A) may, however, be present. 

Glasses with compositions close to the inuniscibility boundary (29.7H 

and 29.9) showed no sign of phase separation even when heated inside the 

gap. This observation is in agreement with other authors, but does not 

exclude the possibility of phase separation occurring when lower temperatures 

(higher undercoolings) are employed. Also, no secondary separation was 

detected in glass 28.3BPS heated at 743°c. 

Glasses 27.0, 28.3A and 28.3B show extensive phase separation at 743°C, 

760°C and higher temperatures. The silica-rich droplets are nearly spherical. 

BS2 crystalline spikes can be detected for samples subjected to long 

heat treatments, growing through the amorphous matrix in phase separated 

glasses and leaving the silica-rich droplets undisturbed. 

4.4.2 Small Angle X-ray Scattering (SAXS) 

In section 3.9 the theory and experimental part of SAXS were described. 

It was also shown how the structural parameters (D, N, Sv' v, etc.) which 

characterize phase separated glasses can be obtained from experiment. The 



quantitative results for phase separation in Bao-Si02 glasses are now 

presented. 

The amorphous phase separation in glass 27.0 heated at 743°C from 0 

to 17 h, and glass 28.3B heated at 743°c from 0 to 30 h and at 760°C from 
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o to 8 h,was studied by SAXS. From the normalised J(E) versus E curves 

Guinier [log J(E) vs. E 2l plots and Porod plots [J(E) .E 3 vs. E] were made. 

From these plots the following parameters were calculated: average diameter 

of the amorphous particles D, surface area of the particles per unit volume 

SV' relative number of particles per unit volume N, integrated intensity in 

reciprocal space Q, and average volume of particles v. 

From the analysis of these data and based on the existing theories of 

nucleation, growth and coarsening of liquid-liquid immiscibility, the kinetics 

of the phase separation in these glasses was defined and correlated with the 

nucleation and growth behaviour of the BaO.2Si02 spherulites in the same 

glasses. 

Scattering curves 

The normalised SAXS curves" J(E) vs. E, in arbitrary units, for glass 

27.0 heated at 743°C from 0 to 17 h,and glass 28.3B heated at 743°c from 

o to 14 h and at 760°C from 0 to 8 h are plotted in Figures 4.15, 4.16 and 

4.17 respectively. All curves, except the ones for very short heat treat-

ments, show a hump which is associated with interparticle interferences, as 

discussed in section 3 .9.7. This phenomenon is to be expected because the 

volume fraction of tl1'e amorphous (Si02) scattering particles, calculated from 

the binodal boundary, approached 0.19, 0.15 and 0.11 respectively as the 

equilibrium composition of the amorphous phase separation was reached in the 

above glasses. 
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4.4.2.1 Growth kinetics of the amorphous droplets -

Guinier's Law 

The Guinier plots, log J(E) vs. E2, corresponding to the SAXS curves 

of Figures 4.15, 4.16 and 4.17 are shown in Figures 4.18, 4.19 and 4.20 

respectively. The linearity is maintained in a large angular range, 

extending over the limit of validity of Guinier's Law, i.e. E.D = 50 

° (Degrees A) • This behaviour was also observed by Neilson ~.ll] and 

Gerold ~.12] for different glasses and metallic alloys. 

The average diameters of the scattering particles, D, calculated from 

the Guinier curves by means of Equation (8A) (Appendix 2) are shown in 
~ 

Table 4.3. 

Figure 4.21 shows the plots of log D vs. log (time) for glass 27.0 heated 

The slopes d(log D)/ 

d(log t), for glass 28.3B heat treated at 760°C is 0.32 ±0.02 with a 

correlation coe~ficient r = 0.991. At 743°C, the slope is 0.J4 ±O.OJ with 

r = 0.975, whereas for short periods of heat treatment the slope is approxi-

mate1y 0.5. 

If the growth of the particles· is controlled by diffusion, the value of 

0.33 is predicted for d(logD)/d(log t) in the final stage of phase separa-

tion. In the nucleation and growth stage the slope should be 0.50 (chapter 1) • 

Similar behaviour has been verified experimentally in different glass systems 

by a number of authors, among them, McCurrie and Douglas ~.13] Burnett 

and Douglas ~.10] and James and McMillan [4.14] using TEM,and Zarzycki 

and Naudin ~.15]; Neilson ~.16] and Craievich ~.17] using SAXS. 

For glass 27.0 heated at 743°C the slope is 0.43 ±0.03 with r = 0.994 

or 0.48 ±0.05 with r= 0.988 if the first point (t = 2.5 h) is disregarded. 

Therefore, in this case, the slope is close to 0.5, implying that the 
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amorphous phase separation is either in the nucleation and growth stage 

(diffusion controlled growth) or, according to Wagner ~.24], in the 

coarsening stage for interface controlled growth. 

The first possibility is ruled out because the APS in glass 27.0 is 

not in the nucleation and growth stage (Q is constant for this glass), as 

will be shown later. The second possibility is more likely to occur if, 

for example, there is an impurity layer at the interfaces between the two 
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phases. However, more measurements would be necessary if a more definitive 

conclusion is to be taken. 

It should be emphasized that the average diameter, D, determined from 

the Guinier plots is: a) strongly biased towards the Zarge particles if 

the phase separated system consists of a wide range of particle sizes; 

b) Zess than the real diameter for a concentrated system of particles. 

Zarzycki and Naudin [4.15] have shown theoretically that for case a) 

D = 1.17 x average diameter of the distribution (assuming a Lifshits and 

Slyozov distrioution which normally fits well in the coarsening stage). 

For case b) as shown .in section 3.9.7, the magnitude of the underestimation 

depends only on the volume fraction of the particles, which is constant after 

the matrix reaches its equilibrium composition. Therefore;we can conclude 

that the Guinier diameters are subject to two opposite effects in the case 

under study (close-packe"d size distribution of particles), but both effects 

have a constant magnitude if the APS is in the final stage. In this case, 

the growth kinetics of the droplets can still be followed through the evolu-

tion of the SAXS diameters. If the APS is in the nucleation and growth 

stage, the correlation of the measured Guinier diameter with the real average 

diameter of the distribution changes with time, rendering the interpretation 

very difficult. 

For glass 28. 3B heated at 760°C, the diameter. of the droplets \;las large 
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enough to be estimated in electron micrographs of replicas and thin foils. 

The results of such measurements are compared with the Guinier diameters in 

Figure 4.22. It can be seen that the diameters measured in replica micro-

graphs are much larger than both SAXS and thin foil diameters. The 

magnitude of this discrepancy was shown by Burnett and Douglas ~.10] to 

depend on the etching conditions of the glass specimens. The diameters 

determined in the thin foil rnicrographp are slightly higher than the SAXS 

dianeters, and give an idea of the width of the size distribution of amozphous 

particles. This difference can be attributed to the underestimation of the 

SAXS diameters due to interparticle interferences as discussed above. 

A set of experiments was performed employing slightly modified experi-

mental conditions, with some repolished specimens of glass 28.3B heated at 

743°c to check the reproducibility of the SAXS technique. The newly 
II 

measured values of D given in Table 4.3b compare well with the old values. 

Table 4.3b 

DROPLET DIAMETERS IN GLASS 28.3B AT 743°C 

t(h) 8 14 19 30 5.4 (760°C) 

° new D(A) 129 164 166 228 171 

° old D(A) 120 159 165 238 163 

% Error 7.5 3.1 0.6 -4.4 4.9 

4.4.2.2 Porod's Law 

Figures 4.23 and 4.24 show the curves J(£) .£3 vs. £ for glass 27.0 

heated at 743°c and glass 28.3B heated at 760°C. According to Equations 

(3.18) and (3.21) such curves, at large angles, should approach a constant 
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value proportional to the total surface area of the particles. It can be 

seen that a constant value is observed only within a relatively narrow 

angular range. Similar observations were made by Gerold 14.12], Neilson 

14.11] and Tomozawa 12.28]. Reasons for this behaviour are given by 

Guinier 13.23]. 

If Porod's law IJ(e:) .e:3 = const.] holds, it implies that the conditions 

stated in section 3.9.4, i.e. sharp droplet-glass matrix interfaces and no 

appreciable compositional fluctuations within each phase, are satisfied. 

Unfortunately in the very earZy stages of phase separation, when the existence 

of compositional profiles around the droplets is most probable, the size of 

the droplets is very small and, in this case, the condition of "infinite" 

X-ray beam was not completely fulfilled. Thus, the information obtained 

from the SAXS experiment gives only an estimate of the structural parameters 

involved. 

Therefore, the decrease in the value of the constant J(e:) .e: 3, for larger 

e:, observed for glass 28.3B heated for 0.67 h at 760°C, and glass 27.0 heated 

for 2.5 h at 743°C, cannot be seen unambiguously as being purely due to diffuse 

interfaces. However, the same decrease was also observed for glass 28.3B for 

1.75 and 3.0 h at 760°C and, in this case, the condition of negligible 

scattering at 0.8° (~ection 3.9.8) was nearly achieved. This observation 

could suggest the existence of diffuse interfaces in these glasses; however, 

SAXS experiments employing an intense point-like X-ray beam (e.g. from a 

Synchrotron source) could be needed to verify quantitatively this suggestion. 

It should also be emphasized that the observed angular range of validity 

for Porod's law begins at e:.D _ 70-120, values which are lower than the theore-

° tical lower limit of validity, i.e. E.D - 180 (Degrees A). 
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4.4.2.3 Integrated SAXS intensity 

It was shown in section 3.9.3 that the scattered intensity integrated 

over all reciprocal (Fourier) space Qa, is related only to the volume frac-

tions and chemical compositions of the separated phases (Equation 3.16) • 

If Qa becomes constant after a certain period of isothermal treatment, the 

APS is in the final stage since, in that case, the compositions and volume 

fractions of the droplets and matrix are constant. 

It is demonstrated in Appendix 2 that, for a linear and "infini te" beam, 

Qa = const. Q; Q = f 0:1 J(e:) .e:.de:. However, it is experimentally impossible 

. o 
to determine the scattering curve over all the extent of reciprocal space, 

the limits being imposed by a very high parasitic scattering at e: < e:m 

(e:m = 0.10° for the SAXS collimation system utilized) and too low scattering 

intensity for e: > Ef (e:f depending on the specimen being studied). To 

obtain the integral Q, the intensity J(E) was determined for e: < e:m by linear 

extrapolation of the curves J(e:).E (Figure 4.25), and for e: > e: f by means of 

Porod's equation. 

expression 

Therefore, the final value of Q was obtained by the 

e: . 
Q = J P J(e:) .e:.de: + J(e:p ) .e:p

2 

o 
(4.4) 

where e:p and J(e:p ) are values within the range of validity of Porod's law. 

The integral in the expression was evaluated numerically, and by choosing 

several values of e:p and J(e:p ) an estimate of the error in Q was obtained. 

The values of Q for glass 27.0 heated at 743°C and glass 28.3B heated 

at 743°C arid 760°C, as a function of time, are plotted in Figure 4.26. 

It can be seen that a constant value of Q (equilibrium composition of the 

matrix) is approached after approximately 3-4 h at 760°C and 7 h at 743°C 

for glass 28.3B. For glass 27.0 at 743°C, Q is constant from 

;! 

! 
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Table 4.3 

SAXS PARAMETERS FOR PHASE SEPARATED 

Bao-Si02 GLASSES 

° ° J(Ep) .Ep
3 t(h) J(O) D(A) Dv** (A) Q (a. u) 

27.0 - 743°C 

2.50* 58 83 73 10.8 23.7-24.5 

6.67 125 121 107 6.8 23.1-23.6 

9.33 186 145 129 5.0 23.7-24.1 

13.33 225 162 144 4.4 22.6-23.2 

17.00 347 195 176 3.4 22.6-23.5 

28.3B - 743°C 

1.0* 10 56 47 >6.3 9.7 

3.0* 58 102 87 6.3 16.6-17.2 

5.0* 67 108 93 5.3 17.0-17.3 

7.0 105 121 107 5.5 17.8-19.4 

8.0 96 120 104 6.1 19.4-19.8 

10.0 133 138 119 5.3 20.5-20.8 

14.0 178 159 140 4.1 18.9-19.4 

19.0 173 165 141 4.1 18.6-19.2 

30.2 480 238' 209 3.0 23.4-24.0 

28.3B - 760°C 

0.67* 32 90 77 5.4 12.1-12.5 

1. 75 81 119 103 5.0 16.6 

3.00 129 142 124 4.5 17.7-17.9 

5.40 182 163 145 3.6 18.3 

8.00 316 207 188 2.2 18.5 

* The condition of linear and "infinite" X-ray beam 

was not completely fulfilled. 

** D = (6v /'rr) 1/3 . v = average volume (Equation 9A) v , 
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t < 2.5 h of heat treatment. The increase in Q observed for glass 28.3B 

heated at 743°C for 30.2 hours could be associated with the advanced stage 

of crystallization in this specimen (Figure 4.l4e). Tomozawa [2.28] made 

a similar observation when studying the APS in LizO-SiOz glasses by SAXS. 

4.4.2.4 Structural parameters of the phase separated 

glasses 

Having obtained the average diameter of the Si02-rich droplets D, the 

constant of Porod ~(~p) .~p3], the intensity at ~ = O,J(O), extrapolated 

from Guinier plots,and the Q values (Table 4.3), it was possible to calculate 

the relative number of particles per unit volume of glass N, the surface area 

per unit volume of glass Sv' the average volume of the particles v, and the 

position of the binodal boundary. 

a) Relative number of droplets (N) 

According to the Appendix 2 (Equation llA), N = KJ(0)/~p2D5. If we 

assume that the difference in electronic densities of the two phases, ~p, is 

constant (this assumption is strictly valid only for the final stage of the 

APS), it is possible to follow the variation of N as the isothermal treatment· 

time increases. The N values are listed in Table 4.4. 

In Figure 4.27 the inverse of the relative number of droplets vs. time 

of heat treatment, is plotted. It can be seen that straight lines fit the 

experimental data :r;easonably well for glass 27.0 heated at 743°c and 28.3B 

heated at 760°C. For glass 28.3B heated at 743°c there is a change in the 

slope after 8 h, when N begins to decrease more rapidly. Of particular 

interest is the observation that the number of droplets decreases from the 

first heat treatment time given, suggesting that most of the nualeation of 

amorphous particles occurs either during cooling from the melt or within a 

very short time of heat treatment. The highest rate of dissolution of 
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particles, however, occurs when the composition of the matrix reaches its 

equilibrium composition. This point becomes clearer if we compare the 

. 1 
evolution of Q (Figure 4.26) and N- (Figure 4.27) for glass 28.3B heated 

It should be stressed that the N- 1 values for different glasses, or the 

same glass heated at different temperatures, are not directly comparable 

because ~p2 is not the same in each case. Also, the N- 1 values would be 

smaller for glasses in which the phase separation was in the early stages, 

as in this case, ~p2 would be smaller. This observation reinforces the 

c'onclusion that N begins to decrease well before the attainment of the 

~quilibrium composition by the matrix. 

(b) Specific surface area of particles (Sv) 

Equation (3.18) shows that the surface area of the particles is propor-

4 tional to Porod's constant I(s).s • In Appendix 2 (Equation lOA) it is 

shown that the specific surface, Sv' can be calculated even for the case of 

scattering curves obtained in an arbitrary scale with a linear and "infinite" 

X-ray beam. 

An independent method was given by Debye, as shown in section 3.9.5 •. 

In Figure 4.28,J(E)_2h is plotted as a function of E2 for glass 28.3B heated 

for increasing periods of time at 743°C and 760°C. The slopes and intercepts 

of the straight lines give the correlation distance ~ (Equation 3.24) • 

The specific surface can then be calculated by means of ~quation (3.23) 

The volume fraction of the droplets, ~l' was estimated from the position 

of the co-existence boundary (binodal) at 760°C and 743°C, and the values of 

Sv calculated by the Porod and Debye methods are given in Table 4.4. It 

can be seen that there is a reasonable agreement between the two methods, 

the Porod values being approximately 1.2-2.0 times smaller than Debye values. 
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A similar result was obtained by Brown et ale [3.31] when measuring surface 

areas of fillers in polymers. It can be also seen that, as shown in 

chapter 1, for the coarsening stage of APS the specific surface area 

deareases with the time of heat treatment. 

c) Average volume of the particles (v) 

It is shown in Appendix 2 that the volume of the particles can be obtained 

if the extrapolated intensity J(O), and the integrated intensity Q are avail-

able, even for scattering curves obtained in a relative scale (Equation 9A) • 

Equations (3.26) and (3.28) also show that if there is a size distribution of 

particles, the average volume determined by Equation (9A) gives an average 
1 

~ameter Dv = (6v/7T) 13, which is slightly different from the Guinier 

diameter D (Table 4.3). 

The ratio OviD (Equations (3.27) and (3.28) vs. time of heat treatment is 

plotted in Figure 4.29. It can be seen that there is a narrow size distribu-

tion of particles, and the magnitude of the departure from a monodispersed 

system decreases only slightly with heat treatment time. It can also be 

concluded that the shape of the size distribution is similar for glass 27.0 

heated at 743°c and glass 28.3B heated at 743°c and 760°C. 

Table 4.4 shows the various structural parameters of the phase separated 

glasses determined by SAXS. 

4.4.2.5 Determination of the binodal boundary 

According to Guinier [3.23], the integrated intensity, Q, is proportional 

to the compositional difference between the scattering particles and matrix 

and volume fractions of the two phases 

(4.5) 
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Table 4.4 

STRUcrURAL PARAMETERS CALCULATED BY MEANS OF SAXS 

t(h) N(a.u.) Sv· 1O- S (mm2/mm 3
) v.10- 6 (A 3) 

Debye Porod 

27.0 - 743°c «h - 0.19) 

2.50* 1.460 26.9<h<1>2 12.6-13.0<h 0.200 

6.67 0.480 11.8 8.2-8.4 0.632 

9.33 0.287 10.6 5.9-6.0 1.113 

13.33 0.202 10.4 5.4-5.5 1.556 

17.00 0.124 9.4 4.1-4.3 2.856 

28.3B - 743°c «1>1 - 0.15) 

1.0* 1.700 

3.0* 0.534 20.24>14>2 10.4-10.84>1 0.055 

5.0* 0.455 20.0 8.7-9.4 0.342 

7.0 0.405 17.1 8.1-8.8 0.417 

8.0 0.380 8.8-9.0 0.585 

10.0 0.270 13.9 7.0-7.3 0.880 

14.0 0.175 12.1 6.0-6.2 1.431 

19.0 0.144 6.0-6.2 1.471 

30.2. 0.063 3.6-3.7 4.80 

28.3B - 760°C (¢1 - 0.11) 

0.67* 0.550 22.8¢i4>2 12.5<1>1 0.237 

1. 75 0.347 16.9 8.6 0.572 

3.00 0.227 13.3 7.2 1.001 

5.40 0.161 12.1 5.6 1.587 

8.00 0.084 8.8 3.4 3.464 

* The condition of linear and "infinite" X-ray beam 

was not completely fulfilled. 
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where CI and em are the compositions of the dispersed phase and matrix 

respectively. Thus, from the ratio of Q for two compositions (glass a 

and b) which were heat treated at the same temperature, em the composition 

of the matrix phase can be determined using the relation 

(ha (1 - <PIa) 

<P1b(1 - <P1b) 
(4.6) 

where <PIa and <Plb represent the volume fractions of the dispersed phases in 

glasses a and b respectively, and 

1 - <Pl 

In this equation, compositions Cl, em and Cg (glass composition) are expressed 

in wt.%, and PI and Pm are the densities of the two phases. A similar 

expression can be used to find Cm(T2) when em(TI) is known, by comparing Q 

at these two temperatures for the same glass composition. 

For the present calculation, the constant value for Q for glasses 27.0 

and 28.3B heated at 743°c and glass 28.3B heated at 760°C were used. 

Assuming CI = 0 - 1 mo1% BaO, PI = 2.21 - 2.26 g/cm3
, Pm = 3.5 3.6 g/cm2 , 

and considering the variations of all the parameters involved in the calcula-

tion (within experimental error), the composition of the binoda1 at 743°c 

and 760°c were obtained. These values are shown in Table 4.5 together with 

the values calculated by Haller et a1. ~.7] by fitting thermodynamic 

parameters to the high temperature data of Seward et a1. [2.6]. There is a 

1 - 2 mol% BaO discrepanc~ but it should be emphasized that Seward et a1. 

estimated the determined binoda1 to be within ±5O-l00oC and ±l mol% BaO. 

Different levels of SrO, the main impurity present in Bao-Si02 glasses,cou1d 

also account for the observed discrepancy. 
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Table 4.5 

EXPERIMENTAL AND CALCULATED COMPOSITIONS 

OF THE BINODAL 

T(OC) Experimental Calculated [2.7] 

743 32.0 - 33.0 30.8 

760 31.5 - 32.0 30.5 

4.4.2.6 Samples with a very weak scattering 

As-quenched glasses 

It was of interest to test the scattering produced by as-quenched 
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samples having compositions inside and outside the miscibility gap. The 

SAXS curves for as-quenched specimens of glasses 27.0 and 28.3B and the 

stoichiometric 33.1U (Figure 4.30), show that there is a very weak scatter-

ing (compare the values with the scattering curves of glasses 27.0 and 28.3B; 

Figures 4.15, 4.16 and 4.17) which is similar for the three compositions. 

The relatively high scattering for E. < 0.3° could be due to surface imper-

fections, as observed experimentally by Zanotto [4.18]. According to 

Williams et ale [4.19] a glass surface needs to be perfectly polished, under 

lOOx magnification, if one needs to eliminate completely the-surface scatter-

ing. The residual, almost angle independent, scattering observed for E > 0.3° 

could be associated with atomic scale compositional fluctuations. Guinier 

° plots for these curves give equivalent spherical diameters of 20-30 A. 

This could imply an incipient phase separation for glasses 27.0 and 28.3B but 

it would be difficult to explain this phenomenon for glass 33.1U (outside 

the miscibility gap) on the same basis. 
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Glasses-heat' treated at 743°C 

Glass 28.3B heated for 1 h shows an increased but still weak scattering. 

TEM shows that this scattering is produced by a fine scale phase separation. 

Glass 33.1U heated for 5 h, shows a weak scattering which could be produced 

~ an incipient spherulitic crystallization of BS2 crystals or by the surface 

of the specimen. Glass 29.9 heated for 17 h, shows a weak detectable 

scattering which could be associated with the presence of the BS2 crystalline 

spikes (Figure 4.14e). The absence of amorphous droplets in glass 29.9 is 

very clear if this micrograph is compared with that for glass 28.3B heated 

for 30.2 h. 

Conclusions from SAXS study 

The SAXS curves of glass 27.0 heated at 743°c and glass 28.3B heated at 

743°C and 760°C show that after a few hours of heat treatment they contain 

closely spaced distributions of amorphous particles. 

Guinier's law is followed over a large angular range for all heat treat-

ments. The average particle diameters D, obtained from the Guinier plots, 

indicate that the growth kinetics of the amorphous Si02-rich droplets are 

well described by the existing theories for the early and advanced stages. 

The error in D is estimated to be smaller than 7.0%. Porod's law is valid 

in narrow angular ranges, in agreement with observations made by other authors. 

The droplet diameters determined directly in TEM micrographs are in reasonably 

good agreement with the SAXS diameters. 

The evolution of the integrated intensity Q, with heat treatment time 

indicates that the final stage of liquid-liquid immiscibility (equilibrium 

composition of the matrix) is approached after about 3-4 h for glass 28.3B 

heated at. 760°C; 7 h for glass 28.3B heated at 743°c and t < 2.5 h for 

glass heated 27.0 heated at 743°c. The maximum error in the Q values is 

estimated to be 10%, and it is mainly due to the uncertainty in the Porod 

constant [J(E).E 3
]. 
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The number of droplets decreases with time of heat treatment at 743°C 

and 760°C in both glasses, implying that most particles nucleate either during 

cooling from the melt or within a short time of heat treatment. In this 

case, the coarsening stage begins well before the attainment of the equili­

brium composition of the matrix, which is given by a constant value of Q. 

The specific surface areas of the particles, Sv' calculated by the Debye 

and Porod methods are in reasonably good agreement. Sv decreases with time 

as expected for the coarsening stage of amorphous phase separation. 

The average volume of the particles, v, was calculated by means of the 

~atio J(O) DS/Q. The diameter ny, obtained from v, is slightly smaller than 

the Guinier diameter D, suggesting that there is a relatively narrow size 

distribution of particles which changes very little in shape with time of 

heat treatment. 

The binodal boundary on the baria-rich side, determined experimentally, 

is 1-2 mol% BaO wider than given by the calculations of Haller et al. [2.7]. 

4.5 Viscosity 

4.5.1 Testing the penetration technique and indentors 

To test the applicability of the .theories (chapter 3) and the accuracy 

and reproducibility of the viscosity measurements, two standard glasses 

supplied by the National Bureau of Standards were used (NBS 710 and 

NBS 711). 

NBS 710 

Several 3 rom thick samples ~ 1 cm in diameter were ground parallel and 

the surfaces to be indented were polished. The viscosity vs. temperature 

standard curve and the experimental points obtained with different indentors 

are shown in Figure 4.31. A significant discrepancy can be observed, all 
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experimental points lying above the standard curve. It was also noted that 

this discrepancy tends to increase with increasing depth of indentation used. 

In order to clarify this point, and to test the possible influence of sample 

size on the measured viscosity values, a more detailed study was made 

employing glass NBS 711 because our stock of glass 710 was quite low. 

NBS 711 

Figure 4.32 shows the standard viscosity vs. temperature curve and the 

experimental points, obtained with different indentors, for large (8-10 mm 

thick, 20-30 mm in diameter) and small (3 rom thick, 10 rom in diameter) 

samples. For large samples, there is good agreement between the experimental 

curve obtained with all kinds of indentors employed and the standard curve, 

in the range 108_10 11 Pa.s, with some deviation (0.1-0.2 in log n) for higher 

viscosities. For small samples, a pronounced discrepancy is again observed. 

The agreement of the determination employing the spherical Nimonic indentor 

with the standard curve, allowed us to use it in the measurements of viscosity 

of the more refractory BaO-Si02 glass because in this case, strong oxidation 

of the steel indentor would occur. 

Cylindrical indentors 

In order to gain more insight into the problem of sample size, the pene­

tration velocity of cylindrical indentors (v) versus penetration depth (E) is 

plotted in Figure 4.33 for small and large samples. For large samples, it 

can be seen that initially v decreases by a large amount, tending to a 

constant value as the penetration depth increases. For small samples, there 

is a continuous and more pronounced decrease in v with increasing penetration 

depths. This explains why the measured viscosity values tend to depart more 

from the standard curve as the penetration depth increases, a constant value 

not being attained with small specimens. 
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The behaviour of v for Large samples is consistent with the theory 

developed in section 3.6, the initial large v being connected with delayed 

elastic effects. It must be pointed out that delayed elastic effects 

above Tg have also been observed by Visser and Stevels ~.20] and others 

[4.21,4.22]. 

Spherical indentors 

In Figure 4.34 the two functions E'l2 and F(E), of Equations (3.9) and 

(3.10), are plotted as a function of depth of penetration. The agreement 

is very good for small penetrations becoming worse as E increases. In 

Figure 4.35 it can be clearly seen that the plots F(E) vs. time are curved 

for- short times (small E), becoming straight as E increases. Again, this 

behaviour could reflect delayed elastic deformation occurring at the beginning. 

Figure 4.35 also shows that the slope of the F(E) vs. time-curve, which 

determines the viscosity coefficient, is not constant at small times. Thus, 
3 -

any viscosity value calculated from E n curves, will be Larger than the real 

viscosity value the smaller the depth of penetration. 

4.5.2 Viscosity of Bao-Si02 glasses 

The determination of the viscosity of BaO-Si02 glasses in the range of 

high viscosities (log n > B Pa.s) was of great interest because, as far 

as we knew, there was no previous literature data for these glasses. In 

particular, the viscosity curve for the stoichiometric BS2 glass would be 

very helpful in the analysis of the nucleation and growth kinetics of BS2 

crystals. In addition, the viscosity behaviour of phase separated glasses, 

and the comparison of the viscosity values for the various compositions 

utilized in nucleation studies was of importance. 

4.5.2.1 Stoichiometric glass (BS2) 

The viscosity vs. temperature curve for the 33.2C BaO glass is shown in 

Figure 4.36. Large samples (~ 10 mm thick, 20 mm in diameter) were used in 
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Fig. 4.34 
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F(E) and E 2 versus depth of penetration for glass NBS 711 

(spherical steel indentor). 
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the measurements. In the same figure, the viscosity curve obtained by 

Bockris et ale [4.23], for a glass with 33.5 ±0.2 mol% BaO in the melting 

range, using the rotating cylinders method, is shown. The dashed line 

represents the Fulcher curve obtained with the combination of the low and 

high temperature viscosity values. The solid line represents the Fulcher 

equation for the high viscosity range only (Table 4.6). 

between both Fulcher curves is quite good. 

Table 4.6 

FULCHER PARAMETERS* FOR GLASS 33.2C BaO 

* 

High n 

. A 1.83 

B 1701.90 

To 521.60 

Full curve 

-3.47 

4283.80 

411. 77 

Log n = A + B/(T - TO)i 

n [Pa.s]. 

The agreement 

4.5.2.2 Effect of phase separation and composition 

The determination of the viscosity curve for the other BaD-SiOz glasses, 

including those compositions which undergo liquid-liquid phase separation, 

was also of interest. The possible variation of viscosity with the develop-

ment of the amorphous phase separation, would have been of particular import-

ance for.. the interpretation of the crystal nucleation kinetics in these 

glasses, i.e. 27.0, 28.3A and 28.3a. 

unfortunately, it was virtually impossible to obtain thick glass 



Fig. 4.36 Viscosity curve for glass 33.2C obtained with 

different indentors at low temperatures. The 

results of Bockris et al. [4.23] for the melt­

ing range are also shown. The dashed line 

represents the Fulcher equation obtained with 

a combination of the low and high temperature 

data. 
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specimens free of well-deve.loped phase separation. Therefore, thin glass 

specimens 1.60 to 1.75 mID thick and about 12.0 mID in diameter, were used. 

The viscosity values of glasses 27.0, 28.3B, 29.9 and 33.28 at 732.0 ±O.SoC 

are plotted in Figure 4.37. It should be stressed that there is a systematic 

error in these values due to the small sample sizes, but it should be approxi-

mately constant for all samples. The temperature of 732°C was chosen with 

the requirements of a relatively slow development of the amorphous phase 

separation and a reasonable time for the viscosity measurements. However, 

it was necessary to leave the samples for 30-40 minutes in the viscometer 

furnace in order to obtain equilibri~and the amorphous separation could 

?ave developed substantially during that time. Figure 4.37 also shows that 

glass 28.3B, heated for 1 and 5 h before the measurements, does not show any 

appreciable variation in viscosity. Having this discussion in mind, the 

only general conclusion which can be made is that the stoichiometric glass, 

33.2B, has an appreciable lower viscosity than glasses 27.0, 28.3B and 29.9, 

which have similar viscosities at this temperature. It should be emphasized, 

however, that the amorphous separation could have been quite well-developed 

in glasses 27.0 and 28.3B before the measurement was completed. 

4.6 Crystal Nucleation in LizO-SiOz Glasses 

The LizQ-SiOz glasses melted in this study were probably much purer than 

Li20-Si02 glasses utilized by other authors. The major interests were again 

to determine the effects of amorphous phase separation on crystal nucleation 

and to test quantitatively the classical nucleation theory. 

Figure 4.38 shows typical micrographs of glasses 17.7, 31.0 and 33.2B 

nucleated for S hours at 48loC and "developed" at 570°C. The shape of the 

crystals is different in the three glasses, becoming increasingly ellipsoidal 

as the stoichiometric composition (LS2) is approached. Also, the size of 



Fig. 4.38 Optical micrographs (reflected light) of Li20-Si02 

glasses. From left to right and top to bottom: 

glass 17.7: 5 h at 481°C + 55 min at 570°C 

glass 31.0: 5 h at 481°C + 55 min at 570°C 

glass 33.2B: 5 h at 481°C + 40 min at 570°C 

glass 33.2B: 3 h at 481°C + 40 min at 570°C 

(transmitted light) 

r--{ = 30 '\..lIll 
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the crystals in the stoichiometric glass 33.2B is clearly larger (reflecting 

a higher growth rate) than in glasses 17.7 and 31.0. These general features 

were observed for all heat treatments employed. 

4.6.1 Crystal nucleation in phase separated glasses 

The transformation range for these Li20-Si02 glasses is situated around 

450°C and a steady-state nucleation rate is rapidly established for tempera­

tures higher than about 475°C, as shown by Figure 4.41 and in [1.62]. Also, 

it was shown by Zanotto and Craievich [2.50] that the time required for the 

APS to reach the final stage, in a glass with 31.0 molt Li20, was about 

15 hours at 475°C. Therefore, 481°C was the temperature chosen for the study 

of crystal nucleation in the present Li20-Si02 glasses. The amorphous phase 

separation should reach its final stage in a reasonable period at this temr 

perature and non-steady state effects should be negligible. Much higher 

temperatures would cause the nucleation rates to be too low rendering their 

accurate measurement more difficult. 

Figure 4.39 shows the crystal nucleation densities (Nv) of glasses 17.7, 

31.0 and 33.2B at 481°C. The first and most striking observation is that 

the crystal nucleation rates in glasses 17.7 and 31.0, increases with time 

and after about 4 hours, are equaL and about 3.6 times higher than the constant 

rate in glass 33.2B. Another, less obvious observation, is that for glass 

17.7, between 1 and 3 hours, there are a number of experimental points 

systematically higher than the smooth curve drawn. The same phenomenon is 

observed for glass 31.0 between 2 and 4 hours. Very similar inflexions in 

nucleation curves of Li20-Si02 glasses undergoing phase separation have also 

been observed by Tomozawa 12.28] and Zanotto and Craievich [2.50]. 

Furthermore, humps of the same kind were observed earlier on the nucleation 

curves for the BaD-Si02 glass 28.3B in the present work. We therefore 
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tentatively suggest that the small additional effects in glasses 17.7 and 

31.0 are genuine. Reasons for this behaviour will be considered later. 

Most experimental points in Figure 4.39 were obtained after the nucleated 

glasses were subjected to a "development" treatment at 570°C. Some specimens, 

however, were "developed" at 600°C ( II , • ) to test the possible influence 

of the growth treatment on the Nv values. The small differences observed 

for the two development temperatures are within the statistical error. 

A different experiment was devised to test the effects of the advanced 

coarsening stage of APS on crystal nucleation. Specimens of glasses 17.7 

and 31.0 were first heated at 497°c for 5 hours to cause development of APS. 

~amples of glass 33.2B were also subjected to the same treatment for control 

purposes. 

570°C. 

After that, they were all nucleated at 48loC and "developed" at 

Figure 4.40 shows that the crystal nucleation in glasses 17.7 and 31.0 

are equaZ and constant at all times. They are about 2.4 times higher than 

the nucleation rates in glass 33.2B. In the same figure are also plotted 

the steady-state nucleation curves of the as-quenched glasses (dashed lines) 

obtained from Figure 4.39. It can be seen that the previous treatment for 

phase separation at 497°C eliminates the curvature observed for the as­

quenched phase separating glasses (Figure 4.39) and decreases the nuclea-

tion rates. For the non-phase separating glass 33.2B, there is no modifi-

cation in the nucleation rates. The intercept on the Nv axis is due to 

nucleation in the initial heat treatment at 497°C. 

4.6.2 Crystal nucleation in the stoichiometric glass 33.2B 

The composition of glass 33.2B was very close to the stoichiometric 

phase Li20.2Si02, and the establishment of nucleation rates at different 

temperatures, together wi th viscosi ty and thermodynamic data could be used 
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to test the classical nucleation theory, as discussed in the first chapter. 

Figure 4.41 shows the crystal nucleation density (Nv) versus time 

curves for glass 33.2B at several temperatures. Pronounced induction 

periods are observed even above the transformation range (Tg ~ 454°C), i.e. 

up to 464°C, in good agreement with the results of James [1.62]. The 

nucleation rates, calculated from the slopes of the curves in Figure 4.41 

are tabulated in chapter 5 and are discussed there. It should be stressed 

that, in this case, the results are more precise than the values obtained 

for the stoichiometric BS2 glasses, because the nucleation rates are lower 

for the 33.2B Li20 glass, allowing the nucleation curves to be obtained for 

extended periods of time. Also, the ellipsoidal shape of the crystals could 

be very well-defined and measured allowing the accurate Equation (3.1) to 

be used for the calculation of Nv • 

4.7 X-ray Diffraction Study of Li20-Si02 Glasses 

It was shown by west and Glasser [2.21] that the first crystallization 

product of Li20-Si02 glasses is a metastable lithium disilicate soZid 

soZution, its composition ranging"from 38 to 28 mol% Li20. The solid solu-

tions persist indefinitely at T < 700°C and the extent of solution is limited 

by amorphous phase separation. Several structural variants of the silica-

rich solid solutions have been characterized by their X-ray diffraction 

patterns, which exhibited systematic variations in intensities and sharpness 

of some reflections. 

In this thesis, a study was undertaken to characterize the crystalline 

phases in the heat-treated Li2o-Si02 glasses. Such characterization could 

be helpful in the interpretation of the nucleation" behaviour of both phase 

separating and non-phase separating glasses. 



11 

7 

5 

- 3 M 

'E 
E 

<l> 1 
u 
:::J 
z 3 -'" '0 
~ 

> 
z 2 

1 

33·2 B 

I 455°C 
0 

0 

I 
0 

0 

0 / 10--
10 20 30 

1 

c/ 464°C 

• 
497°C 

~.~~-:---:-~~--O 
2 3 4 5 

t (hours) 
6 7 

Fig . 4.41 Number of crystals per unit volume (Nv ) versus time p lots 

for glass 33 . 2B . 



143. 

In order to minimize preferential orientation of crystals, which 

normally occurs when using powders, monolithic pieces of about 2 x 10 x 20 rom 

were nucleated at 464°C for 18 h and "developed" at 570°C for 1.5 hours. 

In this way a large number of randomly oriented crystals were formed in the 

bulk of the specimens. The diffraction experiments were carried out after 

the removal of the crystallized surface layer, in a Philips 1730 PW 1050 

diffractometer fitted with a graphite monochromator. Copper Ka radiation 

was used and the calibration of the goniometer was performed by a Si poly-

crystalline standard. The interplanar spacings (d) and relative intensities 

of the reflections (I r ) for glasses 17.7, 31.0 and 33.2B are given in 

Table 4.7. 

The values of Table 4.7 are shown schematically in Figure 4.42. It 

can be seen that the phases crystallizing in glasses 17.7 and 31.0 give very 

similar diffraction patterns and can be identified as a soZid soZution 

structure given by West and Glasser (Figure 6.c in [2.21]). The di ffrac-

tion pattern 6f glass 33.2B is identified with the low temperature form of 

LS 2 (Figure 6.a in [2.21]). The results for glass 33.2B are also compared 

with literature data for ~-LS2 in Table 4.8. In no instance were the 

° main lines of lithium metasilicate (4.70, 3.31, 2.71, 1.56, 1.57 A) or 

° h-LS2 (3.73, 3.61, 2.40, 1.99 A) detected. 

Table 4.8 shows that the most important lines for the ~-LS2 crystal 

° phase are the 3.72, 3.63, 3.56, 2.38 and 1.97 A lines. The maximum difference 

° between the results of several authors is 0.03 A for these spacings. The 

large discrepancies observed in the relative intensity values of these lines 

are probably due to preferential orientation of the crystals during the 

preparation of the powdered specimens for the X-ray experiments. 
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Table 4.7 

X-RAY DIFFRACTION RESULTS FOR Li20-Si02 GLASSES 

28 (Deg) d 
0 

(A) Ir 

Glass 17.7 

16.55 5.351 4 

24.00 3.704 39 

24.60 3.615 61 

24.95 3.566 100 

30.80 2.900 6 

37.60 2.390 26 

Glass 31.0 

16.45 5.384 7 

23.90 3.720 34 

24.48 3.633 60 

24.89 3.574 100 

30.45 2.933 4 

30.75 2.905 7 

37.60 2.390 24 

Glass 33.2B 

16.50 5.368 12 

23.93 3.715 67 

24.48 3.633 48 

24.98 3.561 100 

30.50 2.928 3 

30.83 2.898 9 

37.73 2.382 62 

38.35 2.345 11 

39.45 2.282 5 
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ASTM [4.29] Roy [4.30] 

7.31 12 7.35 4 

5.41 6 5.39 12 

4.02 2 4.10 4 

3.75 45 3.73 80 

3.66 100 3.64 65 

3.61 30 3.58 100 

2.93 10 

2.91 2 

2.39 4 2.385 30 

2.35 4 2.36 10 

2.295 2 2.30 5 

2.054 2 2.06 7 

2.012 2 2.00 5 

1.966 30 1.96 15 

1.847 2 1.84 4 

Table 4.8 

X-RAY DIFFRACTION DATA OF LOW-LITHIUM DISILICATE 

Rindone [4.31] Gruner 14.32] Noshiro [4.33] 

7.332 4 "Z.38 5 7.37 20 

5.392 8 5.42 5 5.44 7 

4.04 3 

3.75 100 3.72 50 

3.666 52 3.65 95 3.65 100 

3.588 100 3.59 80 3.58 12 

2.950 5 

2.900 12 2.921 5 2.91 5 

2.403 29 2.392 40 2.39 4 

2.352 8 2.356 10 2.36 4 

2.299 14 2.298 7 2.29 6 

2.056 7 2.058 4 2.06 4 

2.010 5 2.014 3 

1.97 12 1.973 30 1.969 20 

1.85 5 1.852 2 1.860 4 

Kalinina [2.19] 

7.26 5 

5.38 20 

3.721 75 

3.640 65 

3.567 100 

2.937 27 

2.902 16 

2.387 62 

2.353 46 

2.284 27 

2.050 24 

2.010 15 

1.980 57 

1.866 5 

Present Work 

5.37 12 

3.72 67 

3.63 48 

3.56 100 

2.93 3 

2.90 9 

2.38 62 

2.35 11 

2.28 5 

I-' 
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4.8 Liquid-liquid Immiscibility in Liza-SiOz Glasses 

The liquid-liquid immiscibility in Li20-Si02 glasses has been studied 

by TEM by several investigators', among them a number of Russian authors 

[4.24,4.25],Vogel [2.33] and James and McMillan [4.14]. Porai-Koshits and 

Goganov [4.26], employing the SAXS technique, found that the maximum inte­

grated SAXS intensity, Q, occurred between 15 and 17 mol% Li20 for samples 

quenched from the melt between two steel plates. For a glass with 23.5 mol% 

Li20 heated at 475°C, they showed that the average radius of the droplets 

increased up to about 10 hours, slowing down and approaching a constant value 

after about 30 hours. The experimental points for Q showed that this para-

meter increased from 0.5 to 1. 0 in 3 hours, and remained constant up to 96 hours 

of heat treatment. It was also suggested that the growth of LS2 crystals 

(detectable by XRD for t > 20 h) retarded the growth of the droplets. 

Tomozawa [2.28] also used SAXS and concluded that the integrated intensity 

approached a constant value (final stage of APS) after about 11 hours at 475°C, 

6 hours at 500°C and 4 hours at 525°C for a glass with 29.5 mol% LizO. For 

a glass with 27.4 mol% Li20 a constant value of Q was achieved within a few 

minutes of heat treatment at these temperatures. For long periods of heat 

treatment the Q values increased due to crystallization of the specimens. 

Zanotto and Craievich [2.50] have shown that the attainment of a constant value 

of Q takes about 15 hours at 475°c for a glass with nominally 31.0 rnol% Li20. 

Although most of the TEM studies were of a qualitative character, James 

and McMil.lan [4.14] were able to determine the true size distribution of the 

particles and values of mean diameter, particle concentration and volume 

fraction, and studied the kinetics of phase separation at 550°C in Li20-Si02 

glasses with and without P20S. At this temperature, the separation was com-

plete within a very short period, the particles growing by diffusion controlled 
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Ostwald ripening thereafter. For a glass with 30 mol% Li20, the average 

1/: 
radius of the particles increased according to the t 3 law and the number 

of particles per unit volume decreased proportionally to t_l. 

Therefore, it is clear that the development of phase separation in 

Li20-Si02 takes a longer time the closer the composition of the glass is 

to the binodal boundary and the lower is the temperature. These data 

from the literature will be used together with the TEM results described 

below in the interpretation of the crystal nucleation behaviour of Li20-Si02 

glasses undergoing phase separation • 

• 4.9 Transmission Electron Microscopy of Li2o-Si02 Glasses 

The TEM micrographs of glasses 17.7, 31.0 and 33.2B heated for 24 h at 

440°C and 15 min at 570°C are shown in Figures 4.43a and 4.43b. A very 

fine scale interconnected phase separation can be seen in glass 17.7. 

The growing crystals (not shown on the micrograph) were nearly spherical. 

Glass 31.0 shows some crystals growing in a phase separated background, i.e., 

some fine droplets can be observed in the micrograph. The crystalline 

particles growing in glasses 33.2c have the well-known [2.14,2.15,2.16] 

rosette morphology, and no phase separation was observed in this glass. For 

the Li20-Si02 glasses, beam damage occurred in a matter of seconds at 100 KV 

making it difficult to obtain well focused photographs. However, it can be 

concluded that the amount of phase separation (volume fraction and interfacial 

area) was much greater in glass 17.7 than in glass 31.0. Also, the shape 

of the crystal particles were different in the three glasses. 



Fig. 4.43a 

Fig. 4.43b 

TEM micrographs of Li20-Si02 glasses nucleated 

for 24 hours at 440°C and developed for 15 minutes 

at 570°C. From left to right and from top to 

bottom: 17.7, 31.0, 31.0 and 33.2B. The magnifica­

tion is identical in the micrographs shown at the 

bottom. 

= 1 ~m 

TEM micrographs of glass 33.2C nucleated for 

24 hours at 440°C and developed for 15 minutes at 

570°C. Typical LS2 crystal clusters are shown. 

~ =l~ 
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4.10 Viscosity of the Stoichiometric Glass LS2 

The nucleation and crystal growth kinetics in glasses can be related 

to the viscosity. On the other hand, small variations in some trace com-

ponents, e.g. "water" can affect the viscosity. Therefore, even when there 

is viscosity data available in the literature for a glass composition, it 

is necessary to measure the viscosity for the particuZar glass being used if 

comparisons with the nucleation and growth rates of crystals are to be made. 

The viscosity Curve of glass 33.2B Li20 was determined by indenting 

large glass specimens with a cylindrical (~ = 1 rom) Nimonic indentor. The 

experimental results are plotted in Figure 4.44 together with some literature 

data. The dashed line represents the Fulcher curve obtained with a combina-

tion of the high temperature data of Bockris et al.[4.2~and Shartsis et al. 

[4.27], and the low temperature data obtained in this work. The solid line 

represents the Fulcher curve through the low temperature data only. The 

actual Fulcher constants are listed in Table 4.9. 

Table 4.9 

FULCHER PARAMETERS FOR GLASS 33.2B 

A 

B 

To (oC) 

High n 

1.81 

1346.62 

321. 82 

Full Curve 

-2.55 

3385.50 

218.05 

The agreement of both 

Fulcher equations is excellent from 100 to 10 11 pa.s, a small underestimation 

wi th the full curve occurring for n > 101 
1 Pa. s. 



Fig. 4.44 Viscosity curves for Li20. 2Si02 glasses obtained l)Y 

different authors. The dashed line represents the 

Fulcher equation obtai~ed with a combination of the 

low and high temperature data. 
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In the same figure it can be seen that the present experimental data 

agree quite well with the data of Gonzalez-Oliver et ale [3.9] for glass 

Ll which contained 0.02 wt% H20, and was studied by James in [1.62]. On 

the other hand, the glass L3 of Gonzalez-Oliver et ale with a higher water 

content (0.136 wt% HzO), and Matusita's glass A [1.69] have a much lower 

viscosity. The nominal content of LizO was 33.3 mol% in these glasses. 

The results of Bockris et ale [4.23] and Shartsis et al.[4.27] for high 

temperatures agree very well. 
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5.1 Effect of Phase Separation on Crystal Nucleation in Bao-SiOz Glasses 

In this section the results of the crystal nucleation studies are 

correlated with the kinetics of amorphous phase separation in the same 

glasses. Some figures of former chapters are reproduced here to facilitate 

the present discussion. 

It was shown in section 4.1 tqat the crystal nucleation rates for the 

phase separating glasses 27.0, 28.3A and 28.3B, increase with time in the 

~ early stages, approaching constant values for longer times. This time 

decreases with increasing temperature. The nucleation density plots for 

the non-phase separating glasses, 29.78, 29.9, 33.2C, 33.3A and 33.3p, are 

straight lines from the beginning. If we look specifically at the curves 

of Figure 4.8, it is clear that the crystal nucleation rates in glasses 

27.0 and 28.3B, heated at 743°C, increase for times up to 2 and 7 hours 

respectively. After these periods they remain constant and equaZ for the 

two glasses. The integrated SAXS intensity at 743°C (Figure 4.26) also 

increases up to t < 2.5 hours for glass 27.0 and up to 7 hours for glass 

28.3B, remaining unchanged after these periods. As discussed previously, 

the increase in Q indicates that the composition of the amorphous matrix is 

changing with time until equilibrium is approached (constant value at Q) • 

Therefore, this is strong experimental evidence that the increase in crystal 

nucleation rates is due to the compositional shift of the amorphous matrix 

(enrichment in BaO) brought about by phase separation. This conclusion is 

further supported by the curves of Figures 4.5 and 4.26 for the glass with 

28.3 mol% BaO at 760°C which show that both the nucleation rate of crystals 
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and integrated intensity increase for times up to about 3 hours. 

The fact that the "equilibrium" nucleation rates, I, of glasses 27.0 

and 28.3B at longer times, are equaL at two temperatures (Figures 4.8 and 

4.9), implies that I is only a function of the chemical composition of the 

phase separated matrix and does not depend on the volume fraction of the 

amorphous droplets. This statement becomes clearer if we refer to the 

miscibility gap shown in Figure 2.1. For a given glass, the composition 

of the amorphous phase (binodal line) is only a function of temperature, 

being therefore equaL for glasses 27.0 and 28.3B when phase separated at 

. the same temperature. On the other hand, the volume fraction ~f droplets 

given by the lever rule, is larger for glass 27.0 than for glass 28.3B. 
i 
I 

Figure 4.7 shows that the crystal nucleation rate in glass 28.3BPS, 

which was fully phase separated at 821°C before the nucleation treatment at 

743°C, is constant from the beginning, and initially higher than the nuclea-

tion rate of the as-quenched glass 28.3B, for which phase separation proceeded 

simultaneously with crystal nucleation. When the matrix reached its equili-

brium composition in glass 28.3B, i.e. after 7 hours at 743°C (Figure 4.26) 

its nucleation rate overtook that of glass 28.3BPS. This is due to the 

asymmetrical shape of the immiscibility boundary, the BaO content in the 

amorphous matrix being lower at 821°C than at 743°C. It should be mentioned 

however that,if secondary phase separation had occurred in glass 28.3BPS 

when nucleated at 743°C, the composition of the matrix would be equal for 

both glasses. However, TEM micrographs (Figure 4.l4b) show no evidence for 

secondary phase separation in this glass. Probably, a very long time is 

required for further phase separation to fully develop at 743°c. 

At this point, the possible influence of interfaces of the phase separated 

structure on the nucleation of crystals must be discussed. According to the 

SAXS results of section 4.4.2, the average size of the droplets increases and 
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the number and specific surface area of the droplets decrease from the very 

beginning of heat treatment. Therefore, the number of crystals which 

could eventually nucleate at the interfaces between the amorphous phases, 

if any, should also decrease with time. However, a decrease in crystal 

nucleation was never observed. 

Finally, the fact that crystal nucleation rates in the phase separating 

glasses, 27.0, 28.3A and 28.3B, increase with time overtaking the constant 

nucleation rates in the non-phase separating glasses, 29.7H and 29.9, which 

are situated just inside the miscibility gap (Figure 2.1), at 718°c, 743°C, 

'745°C, 752°c and 760°C, reinforces the conclusion that the observed increase 

in crystal nucleation rates is due to the enrichment"in BaO (of the matrix) 

caused by phase separation. After the completion of phase separation, the 

matrix in glasses 27.0, 28.3A and 28.3B have the same percentage of BaO, 

which is higher than the BaO content in glasses 29.7H and 29.9. 

Basically the same conclusion was taken by Ramsden 12.54] in his studies 

of Bao-Si02 glasses at 700°C. Although only a semi-quantitative estimate of 

amorphous phase separation was made on replica micrographs, he deduced that 

the morphology of the phase separation had little or no influence on crystal. 

nucleation, and the effects observed were due predominantly to the progres-

sive shift in composition of the matrix phase with time as a result of phase 

separation. 

An additional, smaller effect to that of compositional changes was 

observed in the nucleation curves. Thus, an infZexion was clearly observed 

in the nucleation curve for glass 28.3A nucleated at 760°C (Figures 4.5 and 

4.6), corresponding to a maximum value in dNv/dt higher than the constant 

nucleation rate achieved at longer times. An inflexion was also observed 

for glass 28.3B nucleated at 752°C (Figure 4.9). A similar effect may just 

be detected at 745°C and 743°C (some points are higher than the "soooth" 
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curves in Figures 4.4 and 4.8), but no inflexion can be seen at 718°C 

(Figure 4.3). In all cases, the inflexion in Nv occurred before the 

attainment of the equilibrium composition by the baria-rich amorphous 

phase as given by a constant value of Q (Figure 4.26). A similar effect 

was observed by Tbmozawa [2.28] and Zanotto and Craievich [2.50] in phase-

separating Li20-Si02 glasses. Their results were explained as being due 

to some enhanced heterogeneous nucleation in the diffusion zones, which 

exist around the amorphous droplets when the amorphous phase separation 

was in the early stages. The fact that the maximum in the nucleation rate 

'(inflexion in Nv) is more pronounced as the temperature increases (nuclea­

tion rates decrease) shows that this is a relatively minor effect, being 

masked when the nucleation rates are too high, i.e. for temperatures 

approaching Tg • 

Another important observation is that the stoichiometric glasses 33.2C, 

33.3A and 33.3P have much higher crystal nucleation rates than the other 

compositions (higher in silica) at all temperatures. The classical nuclea-

tion theory would predict this result, because the viscosity is lower and 

the thermodynamic driving force is expected to be higher for the stoichio-

metric composition. Therefore, the enrichment of the amorphous matrix in 

BaO, due to phase separation, render the glasses that phase. separate more 

prone to crystal nucleation, as shown schematically in Figure 2.3. Thus, 

the thermodynamic driving force for crystal nucleation is increased as the 

composition approaches that of the nucleating phase. Also, the viscosity 

decreases when the stoichiometric composition is approached (Figure 4.37). 

Although no data for the crystal-glass interfacial energy are available for 

phase separating glasses, it is reasonable to assume that a is lower the 

closer the compositions of the glass and the nucleating phase because the 

structural similarity between parent glass and crystal is then greater. 
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5.2 Effect of Phase Separation on Crystal Growth in Bao-Si02 Glasses 

It was shown in section 4.2.1, that the growth rate U of BS2 spherulites 

in glass 2S.3A is higher than in glass 29.7H at 74SoC'and 760°C, and is 

approximately equal to that in glass 29.7H at 71SoC. The crystal growth rate 

in the stiochiometric glass 33.3A is the highest, as expected. 

Again, the higher growth rate in glass 2S.3A (lower BaO content than 

glass 29.7H) can be explained if the BS2 spherulites grow in an amorphous 

matrix enriched in BaO due to phase separation. Indeed, the TEM micro-

graphs of Figure 4.14e show that crystal growth proceeds undisturbed through 

the matrix. At 71SoC, the amorphous phase separation takes a long time to 

~ fully develop and longer heat treatments would be required if an increased 

growth rate were to be detected. If the differences in U for the two 

glasses, observed at 74SoC and 760°C, were due to difference in the level of 

SrO impurity, it should also show at 71SoC, but at this temperature the 

growth rates are about the same. 

In view of the precision of these measurements and the assumptions 

involved (section 4.2.1) these results on growth rates are regarded as 

tentative until further experimental work can be done. The general 

conclusion, however, isin agreement with that of other authors [2.54, 2.55, 

2.56]. 

5.3 Effect of Phase Separation on Crystal Nucleation in Li2o-Si02 Glasses 

The nucleation curves of Figure 4.39 show that, for phase separating 

glasses, there is a small inflexion (points higher than the "smooth" curves) 

between 1 and 3 hours for glass 17.7, and between 2 and 4 hours for glass 

31.0. Although these points are within the 95% confidence limits for the 

statistical error in Nv , they were confirmed by repeated measurements. 

. ' 
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Similar inflexions have also been observed by Tomozawa ~.28] and Zanotto 

and Craievich [2.50] and,as discussed previously, it was' suggested that 

the effects are associated with nucleation of crystals in the diffusion 

zones around the droplets because the inflexions occur in the earZy stages 

of the amorphous phase separation. However, this is only a minor effect. 

For longer times, the crystal nucleation rates in glasses 17.7 and 

31.0 are equaZ but higher than the constant nucleation rate of the stioichio-

metric glass 33.2B. The same argument used to explain the nucleation in 

the BaO-Si02 glasses undergoing phase separation can be applied again, i.e., 

the only parameter which is the same for glasses 17.7 arid 31.0, after nuclea-

tion at 481°C, is the composition of the amorphous (lithia-rich) matrix phase. 

The morphology (and probably kinetics also) of the phase separation in the 

two glasses were quite different. Thus isolated silica-rich droplets were 

observed in glass 31.0, which were probably produced by nucleation and growth, 

whereas in glass 17.7 an interconnected microstructure, possibly the result 

of spinodal decomposition, was observed (Figure 4.43a). Therefore, the 

nearly identical crystal nucleation rates observed in these glasses is 

probably because the lithia-rich matrix has the same composition in both 

glasses after the completion of phase separation. 

Figure 4.40 shows that the crystal nucleation rates in the fully 

phase-separated glasses 17.7 and 31.0 (17.7PS and 31.0PS) are equal and 

constant from the beginning, being lower than the nucleation rates of the 

as-quenched glasses (dashed lines in Figure 4.40). This behaviour is very 

similar to that found in the BaD-Si02 glasses, and is probably because in 

the glasses first phase-separated at 497°C the lithia-rich matrix has a 

slightly lower Li20 content than the matrix of glasses only heated at 481°C. 

In principle, further phase separation (nucleation of new droplets and/or 

growth of the e~isting ones) could occur at 481°C for glasses l7.7pS and 

. , , 
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3l.0PS. However, since the matrix compositions after heat treatment at 

497°C would be only just inside the immiscibility boundary corresponding to 

481°C, the kinetics of secondary phase-separation would probably be very 

very slow. Therefore, it is likely that the composition of the matrix phase 

did not reach the equilibrium value at 481°C even after 7 hours (Figure 4.40), 

whereas equilibrium was attained much more quickly in the as-quenched glasses 

at 481°C (Figure 4.39). 

The fact that the almost stoichiometric glass 33.2B has a lower crystal 

nucleation rate than the phase separated glasses, differs strikingly from 

.the observations in the BaO-Si02 glasses, and cannot be explained by the 

same (compositional) arguments if the crystal phase is the stoichiometric 

Li20.2Si02 in all glasses. However, it was shown in section 4.7 that the 

crystalline phases in glasses 17.7 and 31.0 are solid solutions which gave 

nearly identical diffraction patterns. In glass 33.2C, the low-Li20.2Si02 

stoichiometric crystal phase was clearly identified (Figure 4.42). 

Therefore, tne crystalline phase in the stoichiometric glass differs from 

that in the phase-separated glasses. In this case, the thermodynamic 

driving force (and interfacial energy) could be more favourable for crystal 

nucleation in the phase-separated glasses than for the low-LS2 phase in the 

nearly stoichiometric glass, giving higher nucleation rates for the former •. 

The compositional effect is, however, clearly realized because the nuclea­

tion rates in glasses 17.7 and 31.0, which have widely different average 

composition are identical for two heat-treatment conditions. In both cases 

the amorphous matrix has the same LizO content. 
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5.4 Analysis of Nucleation Data for Li20.2Si02 Glasses 

The steady-state crystal nucleation rates in Li20.2Si02 glasses 

obtained by several authors are shown in Table 5.1, and plotted in 

Figure 5.l. 

There are appreciable variations between the various sets of data: 

differences as great as a factor of 2 to 3 times being observed for a 

given temperature. There is, however, good agreement for the temperature 

dependence of the nucleation rates, the maximum being at 450-455°C. 

The technique employed by all authors (except Ito et ale [5.4]) was 

similar, i.e. a double-stage heat treatment followed by stereological 

~ measurements, as described in chapter 3, the development temperatures vary­

ing from 560°C to 630°C. The accuracy of the measurements was not stated 

in most cases (it is 10-20% in this work) • Therefore, this could in part 

account for the observed differences. Chemical analyses of glasses studied 

were given by some authors and are shown in Table 5.2. Significant . 

differences in the levels of various impurities and in the percentages of 

the major components are observed for the three glasses reported, and are 

also expected for the other glasses where no chemical analyses were given. 

In the case of glass Ll used by James [1.62], and glass 33.2B used in this 

work, the water contents (determined by the author) and the Li20 contents 

are very close. The overall level of other impurities is larger in glass 

Ll. Exactly the same stereological technique was used by the two authors. 

Therefore, the observed differences in nucleation rates are apparently 

due to differences in the level of one or more impurities. The glass of 

Tuzzeo [5.2], on the other hand, has a much higher impurity content than 

the other two glasses. Also, the Si02 and Li20 contents are different. 

The nucleation rates reported by Tuzzeo, however, are quite close to the 

nucleation rates of the much purer glass 33.2B. 



158. 

Table 5.1 

CRYSTAL NUCLEATION RATES IN Li20.2Si02 GLASSES 

Ito [5.4] FiUpovich [5.1] James [ 1.62] 

T (oC) I (nun- 3 .s- l ) T (oC) I (mm- 3 .s- l ) T (oC) I (nun- 3 .S_ I ) 

- - - - 425 0.045 

430 0.10 - - 430 0.368 

- - - - 435 1.041 

- - 440 1.28 440 1.147 

450 0.92 450 1.50 445 3.761 

- - - - 454 4.253 

- - 460 1.34 465 2.863 
~ - - - - 476 1.868 

480 2.80 480 0.80 489 0.639 

500 0.80 500 0.25 502 0.149 

520 0.07 - - 516 0.025 

- - - - 527 0.006 

Tuzzeo [5."2 ] Fokin [5.3] This Work 

T (oC) I (mm- 3 .s- I ) T (oC) I (mm- 3 .s- l ) T (oC) I (IIJIl- 3 • s-l) 

. 
430 0.24 430 0.23 - -
- - 440 0.86 440 1.05 

446 1.263 - - - ~ 

455 2.224 451 1. 33 455 2.63 

465 1.967 465 2.43 464 1.90 

475 1.260 485 0.72 481 ~ 0.80 

498 0.126 - - 497 0.19 

528 0.009 - - - -
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Table 5.2 

CHEMICAL ANALYSES OF Li20.2Si02 GLASSES (wt%) 

Oxide Jaroos Tuzzeo This Work Nominally 

EPMA XRF GRA FES EPMA 

Li20 - 19.72 20.20 - 0- 19.91 

Si02 79;84 79.50 78.66 - 80.19 80.09 

AlzOa 0.04 0.07 
[0.79 

<0.05 -
Fe20a 0.02 0.01 <0.0004 -
Na20 0.07 0.05 - 0.01-0.02 -

H2O 0.02 0.02 -
CaO - 0.07 -
H20 * - 0.02 <0.03 0.02 

. 

* IR Spectroscopy 

EPMA = Electron Probe Microanalysis 

XRF = X-ray Fluorescence Analysis 

GRA = Gravimetric Analysis 

FES = Flame Emission Spectroscopy 
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Figure 5.1 shows the experimental data of Table 5.1. Two calculated 

curves are also plotted. They were obtained by means of Equation (1.32) 

assuming log A = 62 m- 3.s- 1 (as described later in section 5.4.1) and 

a = 196.1 and 195.7 mJ.m- 2 respectively. The sensitivity of the nuclea-

tion rates to the values of the interfacial energy a is thus clearly dernon-

strated. Therefore, if minor compositional differences (or impurities) 

affect a by a very small amount this will affect I by a large factor. 

Variations in viscosity are also expected. These arguments could explain 

the differences in the nucleation data of the several authors. 

5.4.1 Experimental tests of the classical nucleation theory 

As discussed previously, if the thermodynamic driving force for the 

glass ~ crystal transformation, ~G, is available from the literature, the 

experimental nucleation rates and viscosity values can be used to test the 

classical nucleation theory. Therefore, using the viscosity results of 

section 4.10 and the nucleation data of Table 5.1 for glass 33.2B, an 

analysis was made according to the method described in section 1.3.4. 

Thermodynamic data for the Li20.2SiOz glass were available from JANAF 

thermochemical tables [1.51] and from Takahashi and Yoshio [1.73]. 

. 2 
Figure 5.2 shows the log(In/T) versus (l/T~G ) curves. ~G values 

from both sources were used. Good straight lines were obtained using the 

measured viscosity data in the nucleation range. When the viscosity 

values were calculated from the Fulcher fit to both high and low tempera-

tures viscosity data (see section 4.10) in the above analysis, a departure 

from linearity was obgerved for one point at low temperatures. However, 

this arose from an underestimation of the viscosity using the Fulcher fit 

at lower temperatures. The measured viscosity values at low temperatures 

were therefore considered more reliable and were used in the subsequent 

analyses. 



20 

~ 

I~ 

/1') . 

IE 1 8 
a 

Q.. -..... 
'-

~ 
'--

0116 
0 

....J 

14 

1 

00 High7] 

• Full curve 

b 
2·3 

2·6 2·7 2·8 2·9 a 

Fig. 5. 2 Lo g (In / rr ) ve r s us 1/TL'.G2 f or g l ass 33 , 2B , TherDX>dynamic data 

"from a) JANAF [i",sf:] " b) · Takahashi and Yoshio l1.73]. 



I 

40 -

. 
o 

a.. 

-
I-

35 ~ 

--

30 

2'5 2·6 2·7 2·8 2·9 LS 2 

o Present work 

• James 

6 Tuzzeo 

• 
\ • \ \ 

1-8 2·0 2·2 2·4 

- 2 - 1 12 - 2 - 1 2 
11 G T 10 (J K mol ) 

Fig. 5.3 1-
Ln (In/T) versus 1/T6G for LS2 glasses. 6G from Equation 1.28 

with: a) 6cp = 0, b) 6cp = -13, c) 6cp = 13 J.mol-1.K- 1• 



Figure 5.3shows the In(In/T) versus (1/T~G2) curves for ~G values 

when calculated from Equation (1.28), assuming ~cp = 0, -13 and +13 

J.mol-l.~_l The value of -13 J.mol- 1 .K- 1 is given by Rowlands for the 

Li20.2Si02 glass [1.47]. The value of +13 J.mol- 1 .K- 1 is an arbitrary 
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(too high) value of ~cp used to test the sensitivity of the as determined 

parameters A and a to the magnitude of the thermodynamic driving force ~G 

used in the analysis. Nucleation data obtained in this work and in other 

studies [1.62,5.2] together with the experimental viscosity values for 

glass 33.2B (section 4.10) were used. 

Table 5.3 shows the values used to plot some of the curves of 

Figure 5.2. The viscosity data were obtained from the Fulcher equation 

which best described the low temperature viscosity values for glass 33.2B. 

The nUcleation rates are those obtained in the present work for the same 

glass, and the thermodynamic driving force for the glass/crystal transforma-

tion were taken from JANAF tables [1.51] and Takahashi and Yoshio [1.73]. 

The results shown 1n Table 5.4 are the pre-exponential factor A, and 

surface energy a, calculated from the intercepts and slopes of the straight 

lines in Figures 5.2 and 5.3. From Table 5.4 it is clear that the value of 

A is strongly dependent on which set of thermodynamic data (measured or 

calculated) is employed. The use of different sets of nucleation data has 

little influence on the value of A. The surface energy is relatively 

insensitive to both the nucleation data and thermodynamic values employed. 

ASSuming a spherical nucleus, the experimentally determined values of cr 

(197-211 mJ.m- 2 ) are in very good agreement with the values of 187-210 mJ.m- 2 

obtained from the equation of Turnbull (Equation 1.31) The values of 

log A obtained,i.e. 61-69 m- 3 .s- 1 for the calculated thermodynamic data, 

and 69-71 m- l .s- 1 for the measured thermodynamic data, are many orders of 

magnitude higher than the theoretical value of 41 _3 -1 m .s • 



Table 5.3 

PARAMETERS FOR ANALYSIS OF NUCLEATION IN GLASS 33.2B 

- /:;G (J.mol- 1) 

T (K) I (m- 3 .s_1) Log n (Pa.s) JANAF Takahashi 

713 1.05 x 109 13.21 23.06 x 10 3 25.2 X 103 

728 2.63 11.92 22.54 24.7 

737 1.90 11.28 22.23 24.3 

757 0.80 10.27 21.64 23.7 

770 0.19 9.50 21.08 23.1 

Table 5.4 

EXPERIMENTAL PARAMETERS FROM THE ANALYSES 

OF NUCLEATION IN LS2 GLASSES 

This Work 

Eq. (1.26) Eq. (1. 28) JANAF Takahashi 

Log A (m- 3. s-1) 61 ±2 69 ±2 70 ±2 71 ±2 
a (mJ .m- 2) 199.3 198.6 197.6 210.7 

Tuzzeo 

Log A (m- 3 .s- 1) 61 ±2 69 ±2 69 ±2 
a (mJ. m- 2) 199.3 199.6 195.8 

James 

Log A (m- 3 .s- 1) 61 ±2 69 ±2 70 ±2 
a (mJ.m- 2) 198.3 198.6 196.9 

Log n = 1.81 + 1346.6/(T - 594.8); n(Pa.s), T (K) 

6G = - 57400 (1307 - T)/1307 (J.mo1- 1) Eq. (1.26) (6Cp = 0) 

/:;Cp = - 13 J.mo1- 1 .K- 1 in Eq. (1.28) 
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When the arbitrary (too high) value of +13 J.mol- 1K- 1 is used for 

6cp ' the value of log A obtained is 57 ±2 for the three different sets of 

nucleation data. The values of a are 201.0, 199.8 and 199.6 mJ.m- 2 for 

the nucleation data of this work, Tuzzeo [5.2] and James [1.62], 

respecti vely. 

If the Hoffman expression (Equation 1.30) is used for 6G, the 

In(In/T) versus 1/T6G2 plots are not straight lines. Indeed, Figure 1.4 

shows that Equation (1.30) is not a good approximation for 6G for the 

Li20.2Si02 glass. 

Rowlands and James [1.72], using the nucleation data of James [1.62] 

and the viscosity data of Matusita and Tashiro [1.69], obtained a value of 

190 mJ.m- 2 for a and log A = 62 m- 3.s- 1 for JANAF thermodynamic data; 

and a = 197 mJ.m-2 and log A = 59 m- 3 .s- 1 for Takahashi and Yoshio's thermo-

dynamic data. From a plot of (T ln I - T' ln I')/(T - T') against 

(T - T')-l (l/6G2 - 1/6Gi2)-1, according to Equation (1 .. 45), Rowlands and 

James [1.72] obtained values of 222 mJ.m- 2 and 900 kJ.mol- 1 for a and 6Ho 

respect! vely. 

Neilson and Weinberg [1.74] in an independent analysis of the same 

nucleation and viscosity data, obtained very similar values for a and log A. 

In both studies, however, a marked departure from linearity was observed in 

the 10g(In/T) vs. 1/T6G2 plots for temperatures lower than the maximum 

crystal nucleation rate temperature (Tmax). It is now clear that this 

effect was due to the USe of the viscosity data of Matusita and Tashiro 

[1.69]. However, when the viscosi ty data obtained in the present work are 
• 

used the linearity is maintained even for T < Tmax' A few experimental 

points lower than the straight lines are due to an experimental under-

estimation of Viscosity values, and probably also some underestimation of 

the nucleation rates, when T < Tg (see curve a in Figure 5.2). 



As discussed previously, the viscosities measured by Matusita and 

Tashiro were lower than in the present work although nominally the glasses 

were both of the same lithium disilicate (LSz) composition. The glass in 
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the present work was close to the exact LSz composition and made from very 

pure starting materials. The glass of Matusita and Tashiro may have 

differed from ours in its base composition or in its impurity levels. One 

possibility is that it had a much higher water content. 

Several explanations readily come to mind which might account for the 

large discrepancy between the theoretical and experimental pre-exponential 

factors. 

(a) Non-steady state nucleation: Transient effects could cause some 

~~derestimation of I at the lowest temperatures used. This would affect 

the linearity of the plot at these temperatures. However, transient 

effects were negligible at higher temperatures above the maximum in the nuclea­

tion rate versus temperature curve. So over most of the temperature range, 

tranSient effects would not affect the slope of the In(In/T) vs. 1/T~G2 plots, 

and the value of the pre-exponential A determined from them. 

(b) Possibility of heterogeneous nucleation: It is unlikely that the dis-

agreement can be attributed to heterogeneous nucleation. The high under-

coolings below the liquidus nec~ssary to observe internal nucleation of 

crystals and the experimental evidence presented by James et al. [1.66] 

strongly suggest that a homogeneous nucleation mechanism is predOminant in 

LSz glasses. Furthermore, even using the experimental nucleation data of 

several investigators made no significant difference in the values of the 

pre-exponential A. 

Let us now consider the possibility of a heterogeneous catalyst distri­

buted throughout the supercooled liquid or glass. Comparison of Equations 

(1.20) and (1.44) shows that the pre-exponential factors are approximately 

in the ratio n:nh , where n represents the nUmber of formula units of the 
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nucleating component per unit volume of liquid (homogeneous nucleation), 

and nh the number of formula units of the nucleating component in contact 

with the catalyst surface per unit volume of liquid (heterogeneous nuclea­

tion). In most cases nh «n. Therefore, according to theory, the pre­

exponential factor for heterogeneous nucleation will be many orders of 

magnitude less than that for homogeneous nucleation. So, there is an even 

greater discrepancy between the heterogeneous nucleation theory and 

experiment. 

(c) EXperimental errors in the nucleation rates: Measurement errors do 

exist and probably in part account for the differences in the results 

obtained by several authors for nominally the same glass composition 

(Table 5.1). One source of errors is the possible dissolution of nuclei 

during the growth (development) treatment mentioned previously. However, 

James [1.62] and Kalinina and Fillpovitch [5.l,S.3,l.70]-have investigated 

nuclei dissolution and have shown that the effects on measured steady state 

nucleation rates are negligible provided the nucleation temperature is 

sufficiently high (i.e. not too far below the maximum nucleation rate tem­

perature where transient nucleation occurs) and the development temperature 

is not too high. These conditions certainly applied in the present study. 

Another source of error is the stereological effect (Appendix 1) also 

discussed earlier. This would cause a small systematic underestimation in 

the nucleation rates. 

It should be stressed, however, that the magnitude of the systematic 

errors introduced from these two sources are very small in relation to the 

large discrepancy in the pre-exponential factor A observed between theory 

and experiIlEnt. Furthermore, the above effects would tend to produce an 

underestimate in the experimental nucleation rates. Thus, if anything, dis­

agreeIlEnt with theory would be inareased if perfectly accurate data were used. 
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5.5 Analysis of the Nucleation Data for BaO.2Si02 Glasses 

Unlike the lithium disilicate glass there are no detailed thermo-

dynamic data available for the stoichiometric BS2 glass, apart from the 

heat of fusion [1.47]. Hence Equations (1.26) and (1.28) were used for 

the calculation of ~G. The specific heat difference between crystal and 

glass ~cp was assumed tote constant and similar to the values of ~Cp for 

Na20.2SiOz and Li20.2Si02 glasses [1.47]. The viscosity values, obtained 

from the Fulcher equation for the low temperature data (section 4.5), and 

the measured crystal nucleation rates in glasses 33.2C and 33.3A (this work) 

and in the BSz glass used by Rowlands [1.47], were utilized to test the 

classical nucleation theory. Table 5.5 shows the parameters employed in the 

construction of the plots of Figure 5.4. 

Figure 5.4 shows the In(In/T) versus 1/T6G2 plots for glasses 33.2C, 

33.3A and BS2. As in the case of Li20.2Si02, a good linearity of the plots 

is obtained, only the points at the lowest temperatures, which are under-

estimated due to transient effects, departing from the straight lines. The 

values of interfacial energy and pre-exponential constant obtained from 

these plots are shown in Table 5.6, 

As for the LS2 glasses, cr does not depend strongly on the nucleation 

data or on the thermodynamic values used in the analysis. The pre-exponential 

constant A depends strongly on ~G but not on the nucleation data used. The 

experimental values of 132-141 mJ.m- 2 for a are slightly higher than the 

value of 97-130 mJ.m- 2 obtained from Turnbull's equation (Equation (I.3l)). 

The experimental values of A are from 14 to 30 orders of magnitude highep 
• 

than the theoretical value of 1041 m- 3 .s- 1 Even when the unrealistic 

(too high) value of +12 J.mol-1.K- 1 is used for ~cp,the value of A obtained, 

10
50 

- 10 53 m- 3 .s- 1
, is 10-13 orders of magnitude higher than the theoretical 

value. 



Table 5.5 

PARAMETERS FOR ANALYSIS OF NUCLEATION IN GLASSES 

33.2C AND 33.3A 

1/T~G2 (J_2 .mo1 2 .K- 1 ) 

T (K) I (m- 3 .s- 1) Log T) (Pa. 5) Eq. (1. 26) Eq. (1. 28) 

958 125 x 10 9 12.25 3.94 x 10- 12 5.32 x 10- 12 

979 1490 11.06 4.08 5.46 

991 1042 10.50 4.17 5.54 

1004 644 9.96 4.28 5.64 

1018 461 9.45 4.39 5.76 

1022 415 9.31 4.43 3.79 

1033 222 8.97 4.53 5.89 

1038 163 8.82 4.58 5.93 

Log n = 1.83 + 1701.9/(T - 794.6); n (Pa.s), T (K) 

~G = - 37500 (1693 - T)/1693 (J.rrol- 1
) ; Eq. (1.26) 

~S> = - 12 J.mo1- 1 .K- 1 in Eq. (1.28) [1.47] 
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Table 5.6 

PARAMETERS OBTAINED FROM THE ANALYSIS 

OF NUCLEATION DATA FOR BS2 GLASSES 

Eq. (1. 26) Eq. (1.28) Eq. (1. 28) 
(t.Cp ::: 0) (t.Cp ::: -12) (t.Cp ::: 12) * 

This work 

Log A(m- 3 .s- l ) 55 ±2 65 ±3 50 ±l 
0 (mJ .m- 2 ) 131.6 133.1 134.0 

Rowlands 

Log A(m- 3 .s-1) 58 ±l 70 ±2 53 ±l 
0 (mJ .m- 2 ) 137.3 139.2 140.5 

The headings "This Work" and "Rowlands" indicate the source 

of nucleation data. 

* The value of +12 J.mol- 1 K- 1 is an arbitrary (too high) value 

chosen to test the sensitivity of A and a on the magnitude of 

the thermodynamic driving force t.G used in the anal,ysis. 
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As in the case of LS2 glasses, when the Hoffman expression (Eq. 1.30) 

is used for t:.G, the 1n(In/T) vs 1/Tt:.G2 plots are not straight lines. 

From a plot of (T In I - T~ In I~)/(T - T~) versus (T - T)~(1/~G2 -

1/AG1o 2) -1 J [ 75] u ames and Rowlands 1. , assuming a spherical nucleus, obtained 

values of 132 mJ.m- 2 for a and 741 kJ.mol- 1 for ~HO between 700°C and 780°C. 

They employed a different method of analysis (see chapter 1), avoiding the 

use of viscosity data by assuming that t:.HO was independent of temperature 

over the range of nucleation measurements. However, this is an approxima-

tion since the viscosity data indicate that t:.HO does vary with temperature 

(see sections 5.6 and 5.8). Hence it would seem preferable to use the 

present method of analysis with viscosity data when available. Nevertheless, 

the result of James and Rowlands [1.75] for a is in good agreement with the 

present results. 

It should be emphasized that for barium disilicate more accurate thermo-

dynamic data are required if the nucleation theory is to be tested with 

greater certainty. This applies in particular to the determination of the 

parameter A and its comparison with theory. However, it should also be 

pointed out that the large discrepancy in A (14-30 orders of magnitude) 

between theory and experiment was very similar for both the Bao-Si02 and 

Li2o-Si02 systems and, in the latter system, reliable thermodynamic data was 

available. In the only other work where viscosity, thermodynamic and 

nucleation data were available for the same glass, carried out by Gonzalez-

Oliver and James [1.76], an even larger discrepancy between theory and 

experiment was observed. 

A more general problem is the uncertainty of the assumption that the 

diffusion process required for nucleation is closely related to the process 

of viscous flow. Turnbull and Cohen [1. 59] suggested that for the crystal-

lization of network liquids, interatomic bonds in the network must be broken. 
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As interatomic bonds must also be broken for viscous flow or self-diffusion, 

the activation energy for these processes must be of the same magnitude. 

One justification for the procedure of identifying ~HO with ~Hn (activation 

enthalpy for viscous flow) is that the diffusion coefficients calculated 

from measured viscosity values using the Stokes-Einstein equation have been 

found to agree with measured values for the diffusion of oxygen in silicate 

glasses to within an order of magnitude [5.5]. Also, the apparent activa-

tion enthalpies ~HD for diffusion of oxygen were close to those of viscous 
ox 

flow for three different silicate glasses, and increased with falling tempera-

ture in the transformation range for a Na2D-CaD-Si02 glass [5.5] 

5.6 Further Test of the Nucleation Theory 

It was shown in chapter 1 that the steady-state nucleation rate is given 

by 

(1. 20) 

where 6GO = ~O - T~SO' Therefore, if the activation enthalpy for molecular 

transport across the nucleus-matrix interface ~HO is independent of tempera-

ture, a plot of (In I + ~Ho/RT) versus l/(T6G2) should yield a straight line. 

However, a very pronounced curvature was observed in such plots when a value 

of 535 kJ.mol- 1 (or other arbitrary values) were used for ~HO' This 

behaviour indicates that 6HO does vary with temperature and gives some support 

for the procedure of substituting 6HO by 6Hn' 
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5.7 Further Discussion of the Classical Theory of Homogeneous Nucleation 

The basic assumptions that embryos and nuclei may be treated as macro­

scopic quantities of bulk material having definite geometrical surfaces, 

and the interfacial energy of the embryo-parent phase boundary does not 

depend on embryo size, deserve attention. As discussed in the first 

chapter, these conditions are probably far from reality and it has been 

shown [1.54] that if a spherical "embryo is assumed to have a well-defined 

geometrical surface, the interfacial energy will decrease with decreasing 

embryo size. Neglect of this effect is often referred to as the capillary 

approximation. Since direct measurements of interfacial energy refer to a 

planar interface, they should give values larger than those obtained from 

nucleation kinetics. This discrepancy is perhaps about 15% for a critical 

nucleus containing 13 atoms [1.54]. Unfortunately, no independent value of 

cr is available for baria-silica or lithia-silica glasses, and since cr was 

derived from nucleation measurements it is difficult to see how such an 

argument could explain the discrepancy in the factors A between theory and 

experiment. 

5.7.1 Statistical mechanical contributions to the free energy of 

formation of embryos 

Lethe and Pound [1.86] concluded that several important contributions 

to the free energy of formation of an embryo are neglected in the classical 

derivation of w*. These arise from a consideration of the translational 

and rotational free energy of the embryo, and the probability of finding a 

critical nucleus per unit volume is increased considerably by these additional 

free energy terms. This causes an increase in the value of the pre­

exponential factor. On the basis of results for supercooled mercury [1.83j 

an approximate value of the pre-exponential factor was calculated to be 



172. 

10" 8 - 3 - 1 d . th h . t 1 1 flO" 1 - 3 - 1 m s compare w~ t e expen.men a va ue 0 m s • wthe 

and Pound [1.86] also suggested that these contributions may be smaller in 

the case of more complex liquids, leading to better agreement with classical 

theory. The discrepancy between classical theory and experiment, found in 

the present study, especially for the Li2a-Si02 glasses for which thermo-

dynamic data were available, is far greater than the correction factor cal-

cu1ated by Lethe and Pound. 

5.7.2 The effect of a temperature dependent interfacial energy 

The experimental results for homogeneous nucleation of supercooled 

gallium [1.88] indicate a pre-exponential factor of 10 .. 5 - 10 .. 7 m- 3 .s- 1 , 

Similar to the value of 10 .. 8 m- 3.s- 1 obtained for supercooled mercury [1.83], 

but 5-7 orders of magnitude greater than the theoretical value of 10 .. 0 m- 3.s- 1 • 

This discrepancy was explained by ass~ng an interfacial free energy which 

decreased with decreasing temperature, according to 0 = 00 - bT, the inter-

facial entropy, b, being negative. An analysis of the results for mercury 

yielded similar results. The authors concluded that classical theory is 

able to explain nucleation data for metals, without recourse to statistical 

mechanical corrections. Rowlands and James [1.72] analysed their results for 

LS2 glass, based on the equations given in [1.88] , and found that the experi-

mentally obtained value of A was reduced to the theoretical value if 0 is 

expressed as: 0 = 64.0 + 0.l09T (mJ.m- 2). The value of b was similar in 

magnitude to the value of -0.055 mJ.m- 2.K- 1 obtained for gallium and also to 

the value of -0.090 mJ.m- 2 .K- 1 obtained for the homogeneous nucleation of 

mercury. 

Many of the above ideas were discussed by Rowlands and James [1.72] who 

also considered the possibility that the nuclei of the LS2 crystal phase were 

non-spherical. 
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Uhlmann and coworkers tested the theory for a Na20.2Si02 glass [1.71] 

and for a CaO.A1203.2Si02 glass [1.77]. In both studies a nearly perfect 

agreement was found with theory. However, three points should be emphasised: 

(i) the crystal nucleation rates were obtained indirectly by means of the 

Johnson-Mehl-Avrarni (JMA) equation, (ii) the Hoffman expressidn was used 

for ~G and (iii) no evidence of internal nucleation of crystals was given 

for these glasses. Let us now discuss these points: (i) no experimental 

test of the JMA has been performed to date and because of the exponential 

form of the JMA equation, small systematic errors in the neasured volume 

fraction of crystalliniaty and/or in the crystal growth rates can lead to 

large errors in I. (ii~ The Hoffman expression is not a good approximation 

for ~G of Li20.2Si02 and Na20.2Si02 glasses, and the pre-exponential factor is 

strongly dependent on the values of ~G. Therefore the use of uncorrect 

values for ~G can lead to serious errors in A. (iii) No internal nucleation 

was detected in a Na20.25i02 glass melted in this work. Also, several 

literature references show clearly that only surface nucleation occurs in 

this glass. The same restrictions are expected to apply for the CaO.A1203. 

25i02 glass. Therefore, the work described in [1.71] and [1.77] did not 

prOvide a test of the classical theory. 

Apart from the possibility of a temperature dependent cr, the explanations 

considered previously do not seem to be adequate to account for the divergence 

between the calculated and experimental pre-exponential factors. Therefore, 

we conclude that either there are some flaws in the classical theory or sane 

unknown difficulties regarding the selection of the paraneters that enter 

into the theory. The application of computer simulations to test new 

atomistic theories could be a very important development [5.7,5.8] in the 

future. 

Finally, it is worth pointing out again that the temperature dependence 

of the nucleation rates appears to be well described by the classical theory. 
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5.8 Analysis of Non-steady State Nucleation in Li20.2Si02 Glasses 

It was demonstrated in the first chapter that the induction period for 

crystal nucleation could be expressed by the following equation: 

L = exp (~GD/kT) (1. 39) 

where the activation free energy for self diffusion ~GD is not necessarily the 

same as the kinetic barrier for nucleation. If ~GD is constant, a plot of 

In(t ~G2) versus liT should give a straight line. The activation enthalpy 

for self diffusion ~D(= ~GD + T~SD) could then be estimated from the slope. 

Figure 5.5 shows the plots of In(L.~G2) and In(n) versus liT for the 

experimental values of T obtained by several authors (Table 5.7), and the 

viscosity data of this work. The thermodynamic driving force ~G was obtained 

from'JANAF tables [LSI]. From Figur~ 5.S, ~HD is estimated to be 535 kJ.IrDl- 1
, 

and the activation enthalpy for viscous flow ~Hn varies from 555 to 1085 

kJ.mol- 1 in the same 'temperature range (485°C - 430°C). It can be concluded, 

therefore, that different mechanisms are responsible for the structural re-

arrangements in the two processes (non-steady state nucleation and viscous flow). 

Gonzalez-Oliver [1.53] made a similar analysis for the nucleation of 

Na20.2CaO.3Si02 crystals in a glass of the same composition. He found a value 

of 327 kJ.mol- 1 
for ~D' and an average value of 820 kJ.mol- 1 for Mn in the 

same temperature range • 

Kalinina et al [5.9] recently carried out a similar study in a 2Na20.CaO. 

3S102 glass. They found that the activation enthalpy for the induction 

The average value of 

~Hn was 824 kJ.IrDl- 1 for temperatures between 462°c and 509°C. 

Therefore, the three studies agree that the activation enthalpy for non-

steady state nucleation is constant and smaller than the activation enthalpy 

for viscous flow, which varies with temperature. 
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Table 5.7 

INDUCTION PERIODS FOR NUCLEATION IN LS2 GLASSES 

James Fokin Tuzzeo This Work 

T ( °C) to (s) * T (oC) to (s) T ( °e) to (s) T (oC) to (s) 

430 214170 430 183600 430 57600 

435 102645 

440 47375 440 56880 440 53280 

445 28425 451 13140 446 21600 

454 13500 457 10980 455 10800 455 10100 

465 3600 465 2880 465 4800 464 2160 

476 1260 473 1020 475 720 

489 690 485 300 481 180 

T = 6
n

;O ; where T is the induction period and to is the intercept 

on the time axis of the nucleation curves. 

The "development" temperatures were: 

Author Td (oC) Ref. 

James 560 1.62 

Fokin 626 5.3 

Tuzzeo 600 5.2 

This Work 570 

• 
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However, it should be stressed that the apparent intercept time to is 

the sum of the true intercept time due to non-steady state nucleation, tn' 

and the time tg at the temperature of nucleation Tn' for nuclei to grow to 

sizes greater than the .critical size at Td (temperature of development). 

The time tg is given approximately by 

r* (Td) - r* (Tn) 

U (Tn) 

where U is the average rate of growth of nuclei at T • n 

(5.1) 

The re fo re, the 
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closer Tn is to Td, i.e. with increasing nucleation temperatures, the smaller 

is tg and the measured intercept time to approaches the true tn. Thus, 

the slope of the In(T.~G2) versus lIT plot in Figure 5.5, would be slightly 

decreased if correction for tg was made. Hence, this would increase the 

observed difference between 6HD and ~Hn. 

5.9 The Johnson-Mehl-Avrami (JMA) Theory 

As discussed in section 4.3, the JMA equation has been extensively 

applied to studies of phase transformations in materials but as far as the 

author is aware no quantitative test of this equation has been carried out. 

Such a test would involve comparison of the percentage crystallinity determined 

experimentally (e.g. by using X-ray diffraction) as a function of time, with 

the percentage crystallinity calculated from the J~m equation using indepen-

dent measurements of crystal nucleation rates and crystal growth rates. In 

the present work a lack of agreement was found between the measured crystallin­

ity vs. time curves and those calculated using the JMA equation for the 

barium discilicate glasses 33.3A and 33.2B heat treated at 743°e and 760oe. 

There are a number of reasons for this lack of agreement. The form of 

equations (4.2) and (4.3) show clearly that very aoaurate experimental values 
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of the shape factor g, nucleation rate I and especially growth rate U are 

needed if comparison between theory and experiment is to be made. As 

discussed previously, however, the shape of the spherulites is very irregular 

(nearly 'star-like') in the BS2 glasses. Further complications are that 

the spherulites are apparently only about 64% crystalline (see chapter 4) 

and the first phase to nucleate (as small spheres) is the high temperature 

form of barium disilicate (h-BS2), the stable low temperature form (t-BS2) 

nucleating on the spheres and growing as needles or "spikes". Also the 

growth rates of the two forms of barium disilicate are quite different. 

The result is that the spherulites grow very slowly in the early stages but 

after a certain period of time when the spikes appear the crystallinity 

develops much more rapidly. 

All these factors make a reliable test of the JMA equation very diffi­

cult in this system. 

It is suggested, therefore, that another glass system be chosen with the 

following requirements: 

i) The shape of the crystals can be clearly defined and determined. 

ii) Crystal nucleation and growth in the volume of the glass pre-

dominates over surface nucleation and growth. 

iii) Both nucleation and growth rates are constant with time. 

iv) The phase precipitating in the supercooled liquid is 100% crystalline. 

Under these circumstances the JMA theory could be compared accurately 

with experiment. Suitable systems might be Li20.2Si02,Na20.CaO.3Si02 or 

2Na20. CaO. 3Si02 • 

\. 



178 

CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

The main objective of this work was to study the effect of amorphous 

phase separation (APS) on crystal nucleation and growth in glasses. A 

second objective was to investigate as far as possible the validity of the 

classical nucleation theory for crystal nucleation in supercooled glass-

fonning liquids. Finally, it was intended to test the applicability of the 

Johnson-Mehl-Avrami theory to the glass/crystal transformation. 

A series of baria-silica and lithia-silica glasses were melted and 

homogenized in electric furnaces. The major components and levels of minor 

impurities in the glasses were thoroughly analysed. The combination of 

several techniques, i.e. Atomic Absorption Spectroscopy, Flame Emission 

Spectroscopy, Flame Photometry, Electron Probe Microanalysis and Gravimetric 

AnalYSis, showed that the overall level of impurities in the Li2o-SiOz 

glasses was very low « 0.05 wt%) • The Bao-Si02 glasses contained from 0.7 

to 0.004 wt% SrO, depending on the BaCO) used. The total level of other 

impurities was about 0.1 wt%. 

The "water" content was very similar in all the BaO-Si02 glasses and 

was much lower than that in glasses melted in gas furnaces by other authors. 

The Li2o-Si02 glasses also contained very similar water contents. The 

homogeneity of the glasses was carefully checked by measuring the number of 

crystals (after heat treatment) in several different glass samples using 

different sizes of the field of view in the optical microscope. The observed 
• 

variations were within the statistical error. 

The Small Angle X-ray Scattering (SAXS) results showed that amorphous 

phase separation developed rapidly in some Bao-Si02 glasses heated at 50-70°C 
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above the transformation range. The number of silica-rich droplets and 

their specific surface area decreased from the earliest stage of heat 

treatment, indicating that most nucleation occurred during quenching from 

the melt or within a short period of heat treatment. The attainment of 

the equilibrium composition of the matrix, however, required 3 to 4 hours 

at 760°C and about 7 hours at 743°c for a glass with 28.3 molt BaO. The 

average droplet diameters determined by SAXS increased according to well 

established laws for the early and more advanced stages of APS, and agreed 

reasonably well with the diameters determined directly from thin foil TEM 

micrographs, giving some support for the approximations involved in the 

SAXS technique. The low temperature binodal boundary determined by SAXS 

was about 1 molt BaO higher than the value given by the equations of 

Haller et al. [2.7]. This could be due to a difference in the levels of 

SrO between the glasses used here and those used in the calculations of 

Haller et al. 

Transmission Electron Microscopy of the BaO-Si02 glasses revealed that 

only glasses with 28.3 mol% (or less) BaO phase separated. Glasses with 

29.7 and 29.9 molt BaO, although clearly situated inside the miscibility 

gap, did not phase separate. This observation is in agreement with other 

authors. For glasses situated close to the binodal line, the absence of 

amorphous phase separation is probably due to a lack of thermodynamic 

driving force for nucleation. TEM studies also showed that the crYstalline 

BaO. 2Si02 needles grew undisturbed by the droplets in the amorphous phase 
, 

separated matrix. 

. 
A remarkable correlation was found at two temperatures between the 

times required for the amorphous (baria-rich) matrix to reach the equilibrium 

composition, revealed by a constant value of the integrated SAXS intensity, 

and the period of increasing crystal nucleation rates in glasses undergoing 
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phase separation. The crystal nucleation rates in non phase separating 

glasses Were constant with time at all temperatures above the transformation 

range. No correlation was found between the nucleation rates of crystals 

and the interfacial area and number of the amorphous droplets determined by 

SAXS. The comparison of nucleation rates in glasses with different per-

centages of BaO revealed that the crystal nucleation rates increased with 

BaO content in the non phase separated glasses. In the phase separated 

glasses, the nucleation rates increased with the BaO content in the matrix 

(baria-rich) phase. The stoichiometric BaO.2Si02 glass gave the highest 

nucleation rates as expected from the classical theory. 

The phase-separated glasses with 27.0 and 28.3 mol% BaO showed nearly 

identical crystal nucleation rates at the same temperature. Again there was 

no direct correlation between the volume fraction and specific surface area 

of the amorphous droplets with the crystal nucleation rates in these glasses. 

These observations indicate that the crystal nucleation rates depend mainly 

on the composition of the baria-rich matrix,because the baria content in the 

matrix was the same for glasses 27.0 and 28.3 after phase separation at the 

same temperature. 

Similarly, the enhanced crystal growth rates observed in phase separating 

glasses were probably due to compositional changes in the matrix resulting 

from amorphous phase separation. 

The viscosities of Bao-Si02 glasses situated inside the miscibility gap 

(27.0, 28.3B and 29.9) were equal within experimental erro~ reflecting the 

similarity of the BaO content in the matrix of the three glasses at a given 

temperature. The stoichiometric glass 33.3A had a lower viscosity. 

Therefore, we conclude that there is no direct relation between the 

morphology of phase separation and crystal nucleation in BaD-Si02 glasses. 

The enhanced crystal nucleation and growth rates, observed for glasses under-
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going phase separation, is mainly due to enrichment in BaO of the matrix 

caused by amorphous phase separation. This causes a decrease in viscosity, 

and increases the thermodynamic driving force for crystal nucleation by 

bringing the composition of the matrix closer to the stoichiometric crystal 

phase BaO. 2Si02. 

The crystal nucleation rates in Li2D-Si02 glasses undergoing phase 

separation also increased initially, approaching a constant value with time 

for isothermal heat treatment. These constant nucleation rates Were nearly 

identical for glasses of widely different Li20 content, situated in the 

unstable (spinodal) and metastable regions of the miscibility gap, showing 

that the composition of the amorphous matrix is the main responsible for 

the nucleation. No correlation was found between crystal nucleation and 

the morphology of amorphous phase separation studied by TEM. In the LizD-Si02 

system, in contrast to the Bao-Si02 system, the nearly stoichiometric glass, 

33.2B, had Zouer crystal nucleation rates than that in the glasses under-

going phase separation. This was probably due to the nucleation of a solid 

solution crystal phase in the phase separated glasses, whereas the stoichio­

metric t-Li20.2SiOz phase crystallized in glass 33.2B. In this case, the 

thermodynamic driving force (and interfacial energy) could be more favourable 

for nucleation in the phase separated glasses, giving higher nucleation rates. 

A minor, additional effect was detected in the nucleation (Nv vs. time) 

plots of both baria-silica and lithia-silica glasses. In some cases, an 

inflexion was observed in the Nv vs. time plots, corresponding to a temporary 

maximum in the nucleation rate I, the effect disappearing at longer times. 

These inflexions occurred when the amorphous phase separation was in the 

early stages (before attainment of the equilibrium composition of the matrix). 

Therefore, they may be related to the diffusion zones (silica-depleted regions) 

which exist around the amorphous droplets when the phase separation is in 
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the early stages. Some preferential nucleation (perhaps heterogeneous) 

may occur in these zones. This is a minor effect because these inflexions 

are more pronounced at high temperatures (lower nucleation rates), being 

undetectable in the region of higher nucleation rates. 

Generalizing, we can say that the enhancement in crystal nucleation and 

growth rates, caused by amorphous phase separation, is mainly due to the 

compositionaL shift of the matrix. The observed increase in nucleation 

rates, however, are relatively small (less than one order of magnitude) when 

compared with the effect of nucleating agents which, in some cases, can 

increase the nucleation rates by 6-7 orders of magnitude. 

An experimental test of the classical nucleation the?ry was performed 

with Li20.25i02 and BaO.2Si02 glasses. Apart from the present results, 

several authors have measured the crystal nucleation rates' in Li20.2Si02 

glasses, and thermodynamic data were available from the literature. The 

test was carried out with a combination of different nucleation and thermo­

dynamic data; and the viscosity results obtained in this work. The 

experimentally determined values of interfacial energy a were not strongly 

dependent on which combination of data was used. The pre-exponential 

factor A, however, was strongly dependent on the thermodynamic data, i.e. 

10
61 

m- 3.s- 1 and 1070 m- 3 .s- 1 for calculated and measured values of thermo-

dynamic driving force, respectively. These values are much higher than the 

theoretical value of 1041 m- 3 .s- 1
• The experimentally determined values of 

a, 197-211 rnJ.m- 2, agree well with the values calculated from the Turnbull 

equation (187-210 rnJ.m- 2) • 

F~r tr.e 3aO.2SiOz glass, crystal nucleation rates obtained in this work 

and those obtained by Rowlands, were used in conjunction with the viscosity 

data obtained here. For this glass, no thermodynamic data are available in 
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the literature apart from the measured heat of fusion. Therefore, calculated 

free energies were used. Again, the experimental values of the pre-exponen-

tial constant depended strongly on the thermodynamic data used and varied 

from lOSS to 1070 m- 3 .s-l. The experimental values of interfacial energy, 

132-139 mJ.m- 2, were slightly higher than the values expected from Turnbull's 

equation, i.e. 97-130 mJ.m- 2 • 

For both Li20.2Si02 and BaO.2Si02 glasses the temperature dependence of 

nucleation rates was weLL described by the classical theory. 

Several possible reasons for the discrepancy in the pre-exponential con-

stants between theory and experiment were discussed including transient 

nucleation effects, experimental errors in the nucleation rates, the possi-

bility of heterogeneous nucleation and statistical mechanical contributions to 

the free energy of formation of a nucleus. It was concluded that none of 

these could account for the observed discrepancy in the values of A. 

A possible explanation for the discrepancy may be the non-validity of 

the Stokes-Einstein relation between diffusion coefficient and viscosity, 

i.e. the assumption in the analysis that the kinetic barrier to nucleation is 

identical to that for viscosity may be incorrect. Another possible explana-

tion is some error in the free energy values used in the analysis of nuc1ea-

tion rates. However, this seems unlikely since the discrepancy occurred 

even for Li20.2Si02 glases, where apparently accurate thermodynamic data were 

available from direct experimental measurements. 

If the thermodynamic data are accurate and the Stokes-Einstein relation 

is also accepted as correct, then it seems that the classical theory and the 

assumptions therein are not valid. One assumption usually made is that the 

interfacial energy cr is independent of temperature. However, a temperature 

dependent interfacial energy, as discussed by other authors, is one possible 

way of accounting for the discrepancy in the pre-exponential factors. 
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An analysis of the induction periods for steady-state nucleation in 

Li20.2Si02 glasses, measured by several authors, yielded a aonstant value 

of 535 kJ.mol- 1 for the activation enthalpy for molecular diffusion. The 

activation enthalpy for viscous flow, on the other hand, varied from 555 to 

1085 kJ.mol- 1 in the Same temperature range (485°C to 430°C). Therefore, 

it is concluded that different mechanisms are responsible for the structural 

rearrangements involved in the two processes. 

The attempt to experimentally test the Johnson-Mehl-Avrami (JMA) theory 

was not successful because the various assumptions of the theory were not 

obeyed for the glass chosen, i.e. barium disilicate. The difficulties 

included the irregular shape of the BS2 spherulites, the high to low poly­

morphic transformation, the differing growth rates of the two crystalline 

forms of BS2 and the fact that the spherulites were not 100% crystalline. 

For these reasons, the agreement between the calculated and measured crystal­

linity versus time curves was poor for this system. 

Mathematical equations were derived to estimate the systematical errors 

involved when optical microscopy is used for the determination of nucleation 

rates of spherical particles. For typical cases, i.e., when a double stage 

heat treatment is given to glasses which have constant crystal nucleation and 

growth rates these equations predict underestimates of 3 to 14% for the 

nucleation rates. These predictions were verified experimentally. 

Finally, the results of this work for the "simpler" binary systems have 

demonstrated that the idea that nucleating agents, such as Ti02, P20S, Zr02 

etc., were primarily components to cause amorphous phase separation, which 

was a necessary step tn the formation of fine-grained crystalline materials 

[1.15,6.1], is not necessarily true. Nucleating agents are much more 

effective than amorphous phase separation in increasing the crystal nuclea­

tion rates, although the roles of many non-metallic nucleating agents are 

still imperfectly understood. These findings may also apply for complex 

commerCial glass-ceramic compositions. 
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6.1 Suggestions for Further Work 

The SAXS study of the amorphous phase separation in Baa-Si02 glasses 

has shown an interesting feature, i.e. the number of droplets decreased 

from the earliest heat treatment times, while the equilibrium composition 

of the amorphous matrix was only reached after several hours of heat treat­

ment. The coarsening stage, therefore, began weZZ before the amorphous 

matrix reached the composition given by the binodal boundary. This result 

is at variance with a classical TEM study of phase separation in soda-1ime­

silica glasses [4.10]. This and other conclusions drawn from the SAXS 

studies, however, are subject to some uncertainty due to the corrections 

made for the Zinear X-ray beam. Thus, the use of a point-Zike beam, e.g. 

from a synchrotron source, for SAXS studies of BaO-Si02 glasses of similar 

compositions to those used here, could be very useful in confirming (or 

rejecting) the present conclusions. It would also be extremely interesting 

from the point of view of checking the SAXS technique for the linear beams 

which are normally used. 

Due to the large electronic density difference between the silica-rich 

droplets and the baria-rich amorphous matrix, high quality thin foil TEM 

micrographs (and SAXS curves) can be obtained for these glasses. Therefore, 

a careful check of the structural parameters obtained by SAXS, e.g. number 

of droplets, volume fraction, specific surface area, average diameter, etc. 

could be made in prinCiple by TEM using the stereo pair technique of James 

and McMillan ~.l4]. Glasses with 28.5-29.0 mol' BaS heated at 75O-800oC 

would be ideal for this study. 

SAXS studies of phase separation in glasses with 17.7 and 31.0 mol\ Li20, 

heat treated at 481°C, would be very useful for comparison with the crystal 

nucleation curves obtained in this work, similarly to the study of the Bao­

Si02 glasses. 
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The measurement of the time dependenae of the viscosity, during iso-

thermal heat treatment of glasses undergoing phase separation, would be 

helpful in the interpretation of crystal nucleation and growth kinetics. 

The fibre extension method or a modified beam-bending technique (where very 

fine beams could be used) would be needed, because only very small specimens 

can be successfully quenched free of phase separation from high tempertures. 

There is a great need for accurate thermodynamic data, i.e. enthalpy 

and specific heat measurements for the liquid and crystal phases from the 

melting point to the glass transformation range, from which the free energy 

!::.G can be determined. This is particularly true for "simple" glass forming 

systems which show internal crystal nucleation such as Li20-Si02, BaO-Si02, 

Al20j-Si02, Na20.2CaO.3SiOz, 2Na20.CaO.3Si02, and possibly others. Accurate 

viscosities and nucleation rates in conjunction with thermodynamic data are 

also needed if further progress is to be made in comparing theory and 

experiment. 

Accurate data for the self-diffusion coefficients in the transformation 

range and above for the various rate limiting species, e.g. oxygen and 

silico~ could be used to critically analyse the nucleation rate curves in 

terms of the classical theory. This would avoid the use of the Stokes-

Einstein equation which might be in error. 

If the activation energy for nucleation !::.GD is the same as that for 

growth of a finite crystal !::.GD~' which may be true for non-reconstructive 

transformations, we can write 

(6.1) 

Equation (6.1) isa combination of the nucleation and growth equations 

(1.20) and U.47), when the factor In[l - exp(- !::.G/RT)] is neglected. 
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From a plot of In (i) vs. Tl;~2 , a could be obtained and the experimental 

value of (i1) could be compared with that predicted by theory without requir-

ing knowledge of the diffusion activation entropy, ~SD. However, the crystal 

growth rates at low temperatures (in the nucleation range) are generally very 

low and either electron microscopy techniques or a double stage heat treat-

ment (similar to the heat treatments used here to measure the crystal growth 

rates in phase separating glasses) would be required for their measurement. 

As emphasized by James ~.27], the fundamental problem of determining the 

interfacial energy cr, independently of nucleation measurements, remains 

unresolved. The small value of the critical nucleus size derived from experi-

° ment (for example::: lOA radius for LS2 at 450°C) also questions the validity 

of the use of macroscopic concepts such as cr, and perhaps the assumption in 

the classical theory of a sharp boundary between nucleus and parent phase. 

There may be scope for atomistic theories which avoid the use of macroscopic 

concepts and the use of computer simulations of nucleation are likely to be 

of great importance in the future. 

Already new statistical theories of phase transformations are being 

developed. For example, very recently one statistical theory has been shown 

to describe accurately the later stages of spinodal decomposition in a pbo-

It is hoped that the data presented in this thesis 

will be useful in testing any future theories of nucleation. 

Finally, the Johnson-Mehl-Avrami (JMA) theory has been used for a con-

siderable time in the analysis of phase transformations in many materials. 

Recently, this theory has been intensively used for predictions of the kinetics 

of glass formation, and for the calculation of crystal nucleation rates. 

However, as far as this author is aware, no experimental test of the JMA 



theory has been carried out. Such a test is urgently needed, and glasses 

such as Li20.2Si02 and Na20.2Si02.3Si02 might be ideal systems for this 

purpose. Accurate values of crystal nucleation rates, crystal growth 

rates and volume fraction of crystallinity as a function of isothermal 

heat treatment would be needed. 

188. 
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APPENDIX 1 

A THEORETICAL AND EXPERIMENTAL ASSESSMENT OF SYSTEMATIC 

ERRORS IN STEREOLOGY 

Theory 

According to Toshev and Gutzow [A.I] the number of circular intersections 

in a cross-section, Ns ' through a random assembly of spherical particles is 

given by 

f 
p=l 

P dN -v 
p=o p=cr 

(1) 

where p = D/DM and cr = d/DM i D being the diameter of a spherical particle 

in the assembly, d the 'diameter of a circular intersection and D.M the largest 

diallEter of the distribution.' dNv ' defined by NvCp) dp, is the frequency 

distribution function (volume distribution of particles). 

De Hoff and Rhines lA.2] have shown that the number of particles per 

unit volume, Nv ' is related to the number of sectioned particles, N!, by 

2N O Z s 
N = -~-, v 'IT K(q) 

(2) 

where K(q) depends on the shape of the particles (K(q) = I for spheres), 

and 

-
Z = 

I (nsJ 
i d i 

lens) 
i i 

where ns is the number of circular intersections of diameter d. 

( 3) 



-If we know the functions Ns(O) and Z for a given system of particles 

it is possible to calculate the error in Nv • i.e. the fraction lost due to 

the resolution limit E of the optical microscope or micrograph, normally 

employed in the determination of Nv • 

It can be easily seen that the fraction lost, f, is 

N m 
v (4) 

where N m is the number of particles per unit volume, as determined in the v 

micrographs, Nv is the real value and fN is the fraction of Ns lost, 

given by 

where 01 = E/DM~ and fZ is the fraction of Z lost, given by 

zm 
fZ = 1 -

Z 

(5) 

(6) 

where Zm and Z are the De Hoff's factor obtained from the photographs and 

the real factor, respectively. They are g1 ven by the following equations: 

Z = / 1 
o O~ 

(7) 

(8) 

190. 
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Application to Some Typical Cases of Crystallization in Glasses 

Case 1 

Instantaneous nucleation, i.e., most of the nuclei are already formed 

at the temperature of study, only a linear growth occurring. A monodispersed 

system of crystals is predicted. 

It can be shown that the probability that a sphere with diameter DM upon 

sectioning will reveal a circle whose diameter is equal to or less than a 

given value d is 1 - (1 - d2/DM2) 12. Then,the fraction of circles with 

diameter less or equal than d, Ns (0) /N~, is given by the same expression. 

In terms of 0 

Where N~ is the total number of particles on the cross-section. 

By substituting expression (9) into EquatiOns (7) and (8) 

Z = 

and 

According to Equations (6) and (5), 

(10) 
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and 

(11) 

Therefore, the total fraction lost is given by Equation (4) 

(12) 

Case 2 

Homogeneous nucleation. With constant crystal nucleation and growth 

fates a unifonn size distribution of particle diameters from zero· to DM 

is expected. Therefore, according to [1.1] 

dNv 
Nv dp = 1 

Where Nv is the total number of crystals in the volume considered. 

By Substitution of dNv into Equation (1) we obtain 

In differential form (frequency distribution) 

• 

dNS --= dO [
1 + (12-02 ) Ill] 2N~ 0 1n 

In actual fact the lower limit is the critical nucleus diameter 
instead of zero but, for all practical purposes, this is 3-4 
orders of magnitude smaller than the resolution limit, €1 
and can be set to zero. 

(13) 

(14) 



and 

Combining Equations ( 7), (8) and (14) 

+ sined] + e1 +01 In 01 

1 - Ns (ad /N~ 

Therefore, 

2COS¢1 
f = 1 - TI [1 - 1n(1 + sinel)] + e 1 + 01 In 01- 01 

Case 3 

A uniform size distribution of particles ranging from Om to ~. 
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(15) 

(16) 

(17) 

This is the case when a glass, which behaved in the way described in Case 2, 

has been given a "development" heat treatment to allow observation of the 

growing crystals under an optical microscope. This is the commonest case 

in nucleation studies. 

Employing a similar reasoning, it can be shown that the total fraction 

lost is given by [A.3]: 

f 1 -
2£ {~, cos- l Oi -

1 -1 (tan~ sin- 1 0,' } = - cos 02 + In tan~ sin- l 02J TI(~ - Om) 02 

(18) . 

where O~ = £/om • 



Fig. A.l. Fractional error (underestimation) in Nv as a function 

of the maximum diameter of the distribution (monodis­

persed or uniform) for resolution limits of 1, 2 and 3 

~. The experimental points indicate the measured 

underestimation of crystals in glasses with 29.7'and 

29.9% BaO subjected to single stage heat treatments. 

• l6x objective lens 

o 40x objective lens 
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Comparison with Experiment 

In Figure A.l the total fraction of Nv lost (error in Nv) versus the 

maximum di~ter is plotted for a monodispersed system of spherical particles 

and for a uniform size distribution of spherical particles with diameters 

ranging from zero to DM• For each case there are three curves corresponding 

to typical resolution limits (for optical microscopes) i.e., I, 2 and 3 ~m. 

It can be seen that for a given resolution limit, the fraction lost is smaller 

for a rnonodispersed system (typical of glasses for which the growth rate is 

negligible at the nucleation temperature of study) than for a system having 

a uniform size distribution of spherical particles. 

also smaller for increasingly larger particles. 

The fraction lost is 

The experimental points (.,0) shown in Figure A.I were obtained with 

glasses 29.9 and 29.7H heat treated at 743°c or 760°C for times long enough 

to allow the observation of crystals under an optical microscopy. It is 

known from previous experimental studies that both the nucleation and growth 

rates of crystals in these glasses are constant (Figures 4.3,4.5,4.7.4.9 

and 4.12a). Therefore, a uniform size distribution of spherulites can be 

expected. The Nv ' values obtained with glass specimens which have been given 

long single stage heat treatments were compared with the Nv values obtained 

by extrapolation of the Nv vs. time curves (obtained through a double stage 

treatment for shorter nucleation times). The error in Nv was then calculated 

by the expression f = 1 - Nv'/Nv • It can be seen that the theory is correct 

if the system of crystalline particles can be described by a uniform size 

distributio~and the resolution limit of the microscope (for the objective 

lens employed) is 1-3 ~. Both assumptions are very reasonable. 

In Figure A.2 fraction lost versus ~ curves are plotted for cases 1, 

2 and 3, aSSuming 1 ~ as the resolution limit of the microscope. In the 

same figure there is also a family of curves for case 3, with minimum 



Fig. A.2 Fractional error (underestimation) in Nv'as a function 

of the maximum diameter (DM) of the distribution for 

a resolution limit of 1 ~m. The solid lines represent 

the errors for a distribution of spherical particles 

obtained through a double stage heat treatment, for 

minimum diameters of 2, 4, 8 and 10 ~m. The dot-dash 

(.-.-.-) line indicates the error when the minimum 

diameter of the distribution is 8 ~m and the resolution 

limit is 2~. The dashed curves (---) represent a 

uniform distribution of spheres with diameters from 0 

to OM; and a monodispersed system of spheres of 

diameter OM. 
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diameters om varying from 2 to 10 ~ for E = 1 ~m. The dash-dotted curve 

is for Dm = 8 ~ and resolution limit = 2 ~m. For most practical cases of 

nucleation studies i.e., DM varying from 10 to 30 ~m, it can be concluded 

that there is an underestimation of J to 14% in the Nv (and I) values 

determined for glass samples which have been given a double stage heat 

treatment. 

Finally, it should be mentioned that James [A.3] derived equations which 

give exactly the same results as those presented here, without reference to 

the equations of [A.l] and [A.2]. 
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APPENDIX 2 

Small Angle X-ray Scattering 

1. Correction for the Effect of Beam Height 

Let us define: t the coordinates along the height of the X-ray beam . 

in the y direction , and s the modulus of the scattering vector in the x 

direction for an incident X-ray beam in the z direction. 

i(s) = SAXS intensity of a point like beam in absolute scale 

j(s) = SAXS intensity of a linear and infinite beam in absolute scale 

The relationship between i(s) and j (s) is given by 

00 

j ( s) f i(/s2 + tZ)dt 
(lA) 

_00 

Defining also 

I I (5 ) . l' 1 SAXS intensity of a point like beam ~n a re at~ve sea e 

J1(s) = SAXS intensity of a linear and infinite beam in a relative scale 



1(s) = K Il (s) 

j (s) = K1Jl (s) 

1) Gu1n1er's Law 

00 

j(s) = J 1(0) exp[- k 2 (s2 + t 2)]dt 
_00 

j(s) = 1(0) exp(- k 2s 2) J+OO exp(- k 2t 2)dt 
_00 

Solving the integral we have 

I31T 
j (s) = -- 1 (s) 

21TRg 

(11) Porod's Law 

-tOO 

j(s) = J 
_00 

(S2 + t2) 2 

By making the substitution t = s tan a 

1Th da 
j (s) I (1 + tan2 a) cos 2 a 

o 

j(s) 
o 

or 

'IT = -2 
sit 1(5) j (5) 
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(2A) 

(3A) 

(4A) 



(iii) Integrated Intensity 

00 

In Equation (3.15) the integral J s2 i(s)ds appears. 
o 

In terms of 

the observed intensities (with a linear and infinite beam) this should be 

Joo s replaced by the integral ~ j(s)ds. This can be shown as follows 
o 

00 00 00 

J s j(s)ds = J J 
o o 

By making the change of variables; t = z sin a. and s = z cos a. 

so that 

00 

J s j(s)ds == 
o 

00 

J 
o 

00 +7V2 
J i(z)z2 cos a. dzda. 
-7V2 

00 

J s j(s)ds = 2 J z2 i(z)dz 
o o 

In the sazoo way it can be seen that 

00 00 

J j(s)ds = ~ J s i(s)ds 
o o 

(SA) 

(GA) 
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2. Determination of SAXS Parameters as a Function of the Experimental 

Intensi ties 

Let us define 

J(E) = SAXS intensity of a linear and infinite beam, in a relative scale, 

as a function of the scattering angle E (degrees). 

1 
fOe> dCt 

J(E) = - J i(v'Es
Z + C Z) . dt 

K t dt 
-.f» 

dCt 1 
fOe> 

J(E~ =-- J i(v'Es
Z + Et2)dt dt K 

_f» 

J(e:} 
d~t 

Jl (s) =--dt 

At low anglesl s = lTC/180AI E (degrees) 

J(E) 
l80A 

J(s) (7A) =--
IT 

a) Diameter of the Scattering Particles (D) 

Equation (3.13) can be written for the scattering produced by a linear beam, 

in a relative scale, as 

Substituting s by lTE/180A 1 £ (degrees) and taking logarithm 

log J 
0.4343 X 4lTit 

= log J(o) - 3 x 1802 A2 

Thus if log J is plotted as a function of £2, the curve tends to a straight 

line of slope a for small values of E. Thi s slope gives the radi us of 

o 
gyration of the particles. For A = 1.54 A 



Rg = 36.91 r-a 

For spherical particles of diameter D; R = (3/20)~D and g 

D = 95.3 ;::a o 
(A) 

b) Vol\.lIlE of Particles (v) 

According to Equations (2A) and (7A) 

i(O) = K J(O) 

According to Equation (SA) 

00 00 

J 2Trs j(s)ds = f 4TrS 2 i(s) ds 

0 0 

·00 co 

J 2 'ITs j (s) ds = 2TrK J s Jl (s) ds 

0 0 

co 
2TrltK 

co 

J 2Trs j(s)ds = 1803>..3 f e: J(E)d£ 

0 0 

Referring to Equation (3.17) and combining (bl) and (b2) 

i(O) 18021.. 3 
Rg J(O) 

----oo--~------ = v = ------oo--~---
4Tr J s2 1(s)ds 

o 

v -

~ J EJ(E) de: 

o 

00 

12005 J EJ(e:) dE 
o 

200. 

(8A) 

(bl) 

(b2) 

(9A) 



c) Specific Surface of the Particles (Sv) 

The combination of Equations (4A), (3.17) and (SA) gives 

00 

2rr J s j(s)ds 
o 

S =---
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(cl) 

where ¢l is the volume fraction of dispersed phase and V the total volume 

irradiated: ¢lV = N.v 

At the beginning j(s) was defined as K1Jl(S). If the scattering angle, 

e:, is expressed in degrees: 

(c2) 

and 

co 

f e:J (e:) de: (c3) 
o 

From (cl), (c2)· and (c3) 

S 
Sv = - = 

V 00 
(lOA) 

f e:J(e:)de: 
o 

In this equation, e: 3J(e:) is the constant of Porod (valid for the wings 
00 

of the scattering curve) and J e:J(e:) de: is the integrated intensity in 
o 

reciprocal space. 



d) Number of Scattering Particles (N) 

According to Equation (3.14) 

Referring to Equation (bl) 

j (0) = .!. 18cV31TA i (0) 
K 21T2 Rg 

Combining (d1) and (bl) and introducing v 2 = KD6 
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(d1) 

(bl) 

(llA) 

It is not possible to obtain the true number of particles if the 

scattering curve is in a relative (arbitrary) intensity scale. HoweVer, 

it is possible to follow the relation variation of the number of droplets 

with time of heat treatment if the electronic density difference between 

phases is constant (valid for the final stage of APS) • 

3. Normalization and Correction of the Experimental SAXS Curves 

The true scattered intensity J is proportional to the thickness of 

the sample x, and to the intensity of the X-ray source IVC, and is inversely 

·proportional to its attenuation coefficient, A = loll. So, J d x.lvc/A. 

Also In loll = InA = ~px 

then x = InA/~p 

Where ~ is the mass absorption coefficient and p the density of the glass. 
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Therefore 

J = K • InA • IVC/~pA (a) 

The experimental air scattering (IA) has to be taken into account, and the 

experimental intensity scattered by the specimen (IS) corrected by means 

of the expression 

J = (IS-BK)/A - (IA-BK) (b) 

where BK is the background scattering (electronic noise and cosmic rays) 

and J is the corrected intensity. 

The normalized intensity, J(E), for different glass compositions and 

thicknesses, and variations in the X-ray source intensity, is achieved by 

COmbining Equations (a) and (b) to give, at a scattering angle E 

J(E) = IV~~lnA (IS(£).A - IA(£) - BK(A-l») (l2A) 

The product ~p depends only on the chemical composition of the glass, 

o and it was introduced in the calculation of the binodal boundary at 743 C 

because, in this case, the relation Q(27.0)/Q(28.3B) was used. 

normalization expression used is given by Equation (3.35). 

The actual 
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