
THE COMPUTER STORAGE, RETRIEVAL AND SEARCHING 

OF GENERIC STRUCTURES IN CHEMICAL PATENTS: 

THE MACHINE-READABLE REPRESENTATION 

OF GENERIC STRUCTURES 

A Study Submitted in Fulfilment of the Requirements 

for the Degree of 

DOCTOR OF PHILOSOPHY 

by 

JOHN MORDAUNT BARNARD 

December 1982 

Department of Information Studies 

University of Sheffield 



CONTENTS 

CHAPTER 1 GENERIC STRUCTURES IN PATENTS •••••••••••••••••••• 1 

1.1. THE NATURE OF GENERIC STRUCTURES •••••••••••••••••••••••• 3 
1.1.1. Patent Claims •••••••••••••••••••••••••••••••••••• 3 
1.1.2. Types of Generic Structure ••••••••••••••••••••••• 5 
1.1.3. Generic Structures Outside Patents ••••••••••••••• 7 

1.2. GENERIC STRUCTURE DESCRIPTIONS IN PATENTS ••••••••••••••• 8 
1.2.1. The Constant Part •••••••••••••••••••••••••••••••• 8 
1.2.2. The Variable Parts ••••••••••••••••••••••••••••••• 9 
1.2.3. Conditional Expressions •••••••••••••••••••••••••• 13 

1.3. THE "MARKUSH PROBLEM" ••••••••••••••••••••••••••••••••••• 13 

1.4. GENERIC STRUCTURE REPRESENTATIONS ••••••••••••••••••••••• 15 
1.4.1. Derwent Publications Ltd ••••••••••••••••••••••••• 16 
1.4.2. IFI/Plenum Data Co ••••••••••••••••••••••••••••••• 19 
1.4.3. InternationaL Documentation in Chem;stry ••••••••• 21 
1.4.4. Chemical Abstracts Serv;ce ••••••••••••••••••••••• 25 
1.4.5. Systeme DARC ••••••••••••••••••••••••••••••••••••• 27 
1.4.6. Line Notations ••••••••••••••••••••••••••••••••••• 28 
1.4.7. The COUSIN system •••••••••••••••••••••••••••••••• 32 

1.5. REQUIREMENTS FOR A SEARCH SYSTEM REPRESENTATION ••••••••• 33 

CHAPTER 2 FORMAL LANGUAGES ••••••••••••••••••••••••••••••••• 37 

2.1. DEFINITION AND CLASSIFICATION OF FORMAL LANGUAGES ••••••• 38 
2.1.1. The Chomsky Hierarchy •••••••••••••••••••••••••••• 41 

2.2. PARSING OF CONTEXT-FREE LANGUAGES ••••••••••••••••••••••• 43 
2.2.1. LR Parsing ••••••••••••••••••••••••••••••••••••••• 45 
2.2.2. LL Parsing ••••••••••••••••••••••••••••••••••••••• 46 
2.2.3. Top-Down vs. Bottom-Up Parsing ••••••••••••••••••• 47 

2.3. PROGRAMMING LANGUAGES ••••••••••••••••••••••••••••••••••• 48 
2.3.1. Syntax Specification ••••••••••••••••••••••••••••• 49 
2.3.2. Syntactic Analysis ••••••••••••••••••••••••••••••• 51 
2.3.3. The Pascal Language •••••••••••••••••••••••••••••• 52 
2.3.4. The Ada Language ••••••••••••••••••••••••••••••••• 54 
2.3.5. Choice of Language for Software Development •••••• 55 

2.4. FORMAL LANGUAGE SEMANTICS ••••••••••••••••••••••••••••••• 56 



CONTENTS 

2.5. INTERACTIVE LANGUAGES ••••••••••••••••••••••••••••••••••• 58 

2.6. FORMAL LANGUAGES IN CHEMISTRY AND INFORMATION WORK •••••• 60 

CHAPTER 3 THE INPUT LANGUAGE ••••••••••••••••••••••••••••••• 64 

3.1. GENERIC STRUCTURE DESCRIPTION USING GENSAL •••••••••••••• 65 

3.2. STRUCTURE DIAGRAM INPUT ••••••••••••••••••••••••••••••••• 68 

3.3. SIMPLE ASSIGNMENT STATEMENTS •••••••••••••••••••••••••••• 71 
3.3.1. Substituent Assignments •••••••••••••••••••••••••• 72 

3.3.1.1 Unknown Value ••••••••••••••••••••••••• 73 
3.3.1.2 Structure Diagram ••••••••••••••••••••• 73 
3.3.1.3 Nomenclatural Terms and Expressions ••• 73 

3.3.2. Multiplier Assignments ••••••••••••••••••••••••••• 75 

3.4. MORE COMPLEX ASSIGNMENTS •••••••••••••••••••••••••••••••• 76 
3.4.1. Combined Substituents •••••••••••••••••••••••••••• 77 
3.4.2. Group Assignment Statements •••••••••••••••••••••• 78 

3.4.2.1 Assignment Operators •••••••••••••••••• 79 
3.4.2.2 Selected Group Assignments •••••••••••• 82 

3.5. HOMOLOGOUS SERIES IDENTIFIERS AND GRAMMARS •••••••••••••• 82 

3.6. POSITION SETS ••••••••••••••••••••••••••••••••••••••••••• 86 

3.7. NESTED SUBSTITUTION ••••••••••••••••••••••••••••••••••••• 89 
3.7.1. Selectors in Definition Expressions •••••••••••••• 91 
3.7.2. Position Sets in Definition Expressions •••••••••• 92 
3.7.3. Substituents as Substituent Values ••••••••••••••• 92 
3.7.4. Further Substitution on Parenthesised Expressions94 

3.8. SPECIAL RESTRICTIONS IN GENERIC STRUCTURES •••••••••••••• 96 
3.8.1. Conditions ••••••••••••••••••••••••••••••••••••••• 97 
"3.B.2. Definition Relations ••••••••••••••••••••••••••••• 98 
3.B.3. Integer Relations •••••••••••••••••••••••••••••••• 99 
3.B.4. Group ReLations •••••••••••••••••••••••••••••••••• 101 
3.B.5. IF Statements •••••••••••••••••••••••••••••••••••• 102 
3.B.6. RESTRICT Statements •••••••••••••••••••••••••••••• 104 

3.9. SCOPE OF DEFINITIONS •••••••••••••••••••••••••••••••••••• 105 

3.10. LIMITATIONS OF GENSAL •••••••••••••••••••••••••••••••••• 105 

3.11. THE DESIGN OF GENSAL ••••••••••••••••••••••••••••••••••• 10B 
3.11.1. Formal Grammar •••••••••••••••••••••••••••••••••• 108 
3.11.2. Non-Determinacy ••••••••••••••••••••••••••••••••• 109 
3.11.3. Security vs. FlexibiLity •••••••••••••••••••••••• 111 



CONTENTS 

CHAPTER 4 THE INTERNAL REPRESENTATION •••••••••••••••••••••• 114 

4.1. REQUIREMENTS FOR THE REPRESENTATION ••••••••••••••••••••• 115 

4.2. THE PARTIAL STRUCTURE RECORD •••••••••••••••••••••••••••• 119 
4.2.1. Specific PartiaL Structures •••••••••••••••••••••• 120 
4.2.2. Generic PartiaL Structures ••••••••••••••••••••••• 120 
4.2.3. Unknown PartiaL Structures ••••••••••••••••••••••• 121 
4.2.4. Other PartiaL Structures ••••••••••••••••••••••••• 121 

4.3. CONNECTION TABLE FORMAT ••••••••••••••••••••••••••••••••• 122 
4.3.1. Congener Record •••••••••••••••••••••••••••••••••• 123 
4.3.2. Bond Orders •••••••••••••••••••••••••••••••••••••• 124 

4.4. PARAMETER LIST FORMAT ••••••••••••••••••••••••••••••••••• 125 

4.5. CHILD GATE FORMAT ••••••••••••••••••••••••••••••••••••••• 126 
4.5.1. Combination Bars ••••••••••••••••••••••••••••••••• 128 
4.5.2. Alternative Bars ••••••••••••••••••••••••••••••••• 130 

4.6. PARENT GATE FORMAT •••••••••••••••••••••••••••••••••••••• 130 

4.7. REPRESENTATION OF CONDITIONS AND RESTRICTIONS ••••••••••• 132 

4.8. THE ECTR AND OTHER REPRESENTATIONS •••••••••••••••••••••• 134 

4.9. IMPLEMENTATION OF THE ECTR •••••••••••••••••••••••••••••• 136 
4.9.1. The PartiaL Structure Record ••••••••••••••••••••• 136 

4.9.1.1 Connection TabLes ••••••••••••••••••••• 137 
4.9.1.2 Parameter Lists ••••••••••••••••••••••• 139 
4.9.1.3 Other Terms ••••••••••••••••••••••••••• 140 

4.9.2. ChiLd Gate Record •••••••••••••••••••••••••••••••• 140 
4.9.3. Parent Gate Record ••••••••••••••••••••••••••••••• 142 
4.9.4. Space Requirements ••••••••••••••••••••••••••••••• 143 

CHAPTER 5 AN INTERPRETER FOR GENSAL •••••••••••••••••••••••• 145 

5.1. INVOCATION OF THE INTERPRETER ••••••••••••••••••••••••••• 147 

5.2. LEXICAL ANALYSIS •••••••••••••••••••••••••••••••••••••••• 148 

5.3. SYNTAX ANALYSIS ••••••••••••••••••••••••••••••••••••••••• 149 

5.4. ERROR HANDLING •••••••••••••••••••••••••••••••••••••••••• 150 
5.4.1. Program Errors ••••••••••••••••••••••••••••••••••• 151 



CONTENTS 

5.4.2. Structure Diagram Errors ••••••••••••••••••••••••• 151 
5.4.3. "Immediate" Errors ••••••••••••••••••••••••••••••• 151 
5.4.4. "Delayed" Errors ("Failures") •••••••••••••••••••• 152 

5.5. STRUCTURE DIAGRAM PROCESSING •••••••••••••••••••••••••••• 152 
5.5.1. The Feldmann Program ••••••••••••••••••••••••••••• 153 
5.5.2. Procedure PROCESSCT •••••••••••••••••••••••••••••• 154 
5.5.3. Storage of GENSAL Structure Diagrams ••••••••••••• 155 

5.6. SUBSTITUENT DECLARATIONS •••••••••••••••••••••••••••••••• 156 

5.7. SUBSTITUENT DEFINITIONS AND ECTR GENERATION ••••••••••••• 158 
5.7.1. Syntactic and Semantic Analysis in ELEMENT ••••••• 159 
5.7.2. Substituent Values ••••••••••••••••••••••••••••••• 160 
5.7.3. Nomenclatural Terms •••••••••••••••••••••••••••••• 161 
5.7.4. Parameter Lists •••••••••••••••••••••••••••••••••• 165 
5.7.5. ECTR Generation •••••••••••••••••••••••••••••••••• 166 

5.8. MULTIPLIER DECLARATIONS AND DEFINITIONS ••••••••••••••••• 167 

5.9. TIDYING THE ECTR •••••••••••••••••••••••••••••••••••••••• 168 

CHAPTER 6 CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK ••••• 169 

6.1. DEVELOPMENT OF A PATENT DOCUMENTATION SYSTEM •••••••••••• 169 

6.2. OTHER POTENTIAL APPLICATIONS OF GENSAL •••••••••••••••••• 172 
6.2.1. Non-Computer Description of Generic Structures ••• 172 
6.2.2. Generic Structures in the Journal Literature ••••• 173 
6.2.3. Chemical Reaction Documentation •••••••••••••••••• 173 
6.2.4. Specific Structure Search Queries •••••••••••••••• 174 

6.3. CONCLUSIONS ••••••••••••••••••••••••••••••••••••••••••••• 175 

APPENDIX 1. GENSAL Syntax Diagrams ••••••••••••••••••••••••••• 177 

APPENDIX 2. BNF Syntax for GENSAL •••••••••••••••••••••••••••• 182 

APPENDIX 3. GENSAL Interpreter Program ••••••••••••••••••••••• 186 

APPENDIX 4. Program Index •••••••••••••••••••••••••••••••••••• 335 

APPENDIX 5. Global Declarations in GENPROG ••••••••••••••••••• 339 



CONTENTS 

APPENDIX 6. Sample Interpreter Session ••••••••••••••••••••••• 357 

APPENDIX 7. Interpreter Error Messages ••••••••••••••••••••••• 363 

BI8LIOGRAPHY ••••••••••••••••••••••••••••••••••••••••••••••••• 367 



THE COMPUTER STORAGE, RETRIEVAL AND SEARCHING 

OF GENERIC STRUCTURES IN CHEMICAL PATENTS: 

THE MACHINE-READABLE REPRESENTATION OF GENERIC STRUCTURES 

Thesis submitted for the Degree of Ph.D. by J.M. Barnard 

ABSTRACT 

The nature of the generic chemical structures found in patents is 

described, with a discussion of the types of statement commonly 

found in them. The available representations for such structures 

are reviewed, with particular note being given to the suitability 

of the representation for searching files of such structures. 

Requirements for the unambiguous representation of generic 

structures in an "ideal" storage and retrieval system are 

discussed. 

The basic principles of the theory of formal languages are 

reviewed, with particular consideration being given to parsing 

methods for context-free languages. The Grammar and parsing of 

computer programming languages, as an example of artificial 

formal languages, is discussed. Applications of formal language 

theory to chemistry and information work are briefly reviewed. 

GENSAL, a formal language for the unambiguous description of 

generic structures from patents, is presented. It is designed to 

be intelligible to a chemist or patent agent, yet sufficiently 



ABSTRACT 

formaLised to be amenabLe to computer anaLysis. DetaiLed 

description is given of the facilities it provides for generic 

structure representation, and there is discussion of its 

Limitations and the principLes behind its design. 

A connection-tabLe-based internaL representation for generic 

structures, caLLed an ECTR <Extended Connection TabLe 

Representation) is presented. It is designed to represent generic 

structures unambiguousLy, and to be generated automatically from 

structures encoded in GENSAL. It is compared to other proposed 

representations, and its impLementation using data types of the 

programming Language PascaL described. 

An interpreter program which generates an ECTR from structures 

encoded in a subset of the GENSAL Language is presented. The 

principles of its operation are described. 

Possible appLications of GENSAL outside the area of patent 

documentation are discussed, and suggestions made for further 

work on the development of a generic structure storage and 

retrieval system based on GENSAL and ECTRs. 



NOTE 

The work described in this Thesis has been undertaken as part of 

a more comprehensive project on the computer storage and 

retrieval of generic chemical structures in patents. Whilst this 

has involved close liason with the other research worker on the 

project, S.M. Welford, the work described in this Thesis is 

entirely that of the author. 

A number of publications have appeared describing work on the 

174-177 project; the substance of Chapter 3 appeared in the 

second of these 176 and the substance of Chapter 4 in the third. 

177 

In addition, presentations have been given at the following 

meetings: 

1. Chemical Notation Association (UK) Seminar on "Structure 

Searching in the Published Literature", Daresbury, March 1980. 

2. Chemical Notation Association (UK) Seminar on "The Future of 

Chemical Documentation", Exeter, September 1982. 



ACKNOWLEDGEMENTS 

I shouLd Like to thank my supervisor, Professor M.F. Lynch for 

his constant support and encouragement during the course of this 

research, and for inviting me to participate in it. 

One of the satisfactions of this project has been the 

opportunities it has afforded to discuss my work with a wide 

range of individuaLs from different organisations, especiaLLy in 

the chemicaL and pharmaceuticaL industries. I shouLd particuLarLy 

Like to thank the foLLowing for their many heLpfuL comments and 

advice: John Silk (EUSIDIC, formerLy ICI PPD), Peter SteeLe 

(Glaxo), Clive Tomlin, Richard Waterman, and David Pearson (alL 

of ICI PPD), Frank Jackson (Pfizer), CharLes Oppenheim and Peter 

Norton (Derwent), George Adamson (ICI PharmaceuticaLs), BiLL Town 

and OLe Norager (ISPRA), Todd Wipke (University of CaLifornia), 

CLaus Suhr (BASF) and Or G.PBtscher (Fachinformatationszentrum 

Chemie, BerLin). 

In addition, from my own Department I shouLd Like to thank Peter 

WiLLett, and Annette von ScholLey who has stiLL not managed to 

send my program down. 

I shouLd Like to thank Mike Elder and Steve HulL (SERC, 

Daresbury) for providing the software for the FeLdmann chemical 

structure graphics system, and for helping me to get it working. 



ACKNOWLEDGEMENTS , 

None of the programming work in this project would have been 

possible without the dedication to duty of the staff of the 

University Computing Services Department, and I should especially 

thank Richard Gilbert and Chris Martin for so efficiently 

removing all the bugs I found in their Pascal compiler. Also, 

from the Computer Science Department, I would like to thank 

Siobhan North for setting me along the right road in the matter 

of syntax analysis. 

Finally, and most importantly, I should like to express my 

gratitude and appreciation to my friend and colleague Stephen 

Welford, who has spent countless hours discussing this project 

with me, and who also put up with sharing an office with me for 

two and a half years. 



CHAPTER 1 

GENERIC STRUCTURES IN PATENTS 

"Bloody instructions, which, being taught 

return to plague the inventor" 

Maebeth, Act I, Se. vii 

On the basis of those words, it might well be supposed that 

Macbeth was an information scientist in the chemical or 

pharmaceutical industries. Those industries are not only prolific 

generators of patent documents, but are also major users of 

patent information, and the efforts made to protect a company's 

invention in drafting a patent return to cause many problems for 

information searchers in the patent literature. 

The in~rease in the number of chemical patent documents published 

in recent years has been prodigious, and the increase has 

continued in spite of a slight fall-off in the number of journal 

Page 1 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

articles published. In 1981 more than 71 000 patents were 

abstracted in ChemicaL Abstracts, as compared with fewer than 

62 000 the previous year, 1 and this continues a trend which can 

be traced back many decades 2 though at least part of the 

increase can be explained by improvements in the range of 

countries covered by ChemicaL Abstracts; its relatively poor 

coverage compared to other indexing systems had previously 

d 
... 3 attracte crltlclsm. 

A further factor in the increase in published patent documents is 

the change in patent legislation in a number of countries, 

incLuding Britain, during the 1970's. 4, 5 This has resuLted in a 

move from the pubLication of examined and accepted patents onLy 

to the publication of unexamined applications. InitiaLly this Led 

to the sudden pubLication of backLogs of appLications, increasing 

the figures for patent documents published, but it has also led 

to a change in the actuaL substance of patent cLaims, especiaLLy 

in the chemicaL area, which has itself caused problems for patent 

documentation systems. 6 

This is because patents for chemicals and pharmaceuticals 

frequently do not lay claim to the single compound which the 

company taking out the patent intends to market, but rather lays 

claim to a whole class of compounds having broadly the same 

properties. In the initial application for a patent, a company 

may attempt to claim as wide a range of compounds as possible, 

partly to cover anything which might conceivably have the desired 

activity (patent appLication normally takes place well before 

Page 2 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

testing and development of "lead compounds" has been completed), 

partly to intimidate rival companies who may be working in the 

same area, and partly to disguise the true nature of the 

invention. It is very possible that the initial application may 

have to be modified before it can be accepted and a patent 

granted, but under the early publication system now adopted by 

most countries, it is the initial application which is published 

first. This retains its significance after examination - and many 

patent applications are in fact abandoned, no examination taking 

place and no patent being granted - as the information contained 

in it may affect the validity of future patents. 

The class of compounds claimed in a patent is described by means 

of a generic structure which contains both fixed and variable 

parts, the extent of the variation defining the size of the class 

of structures. 

~ THE NATURE ~ GENERIC STRUCTURES 

1.1.1. Patent Claims 

In 1924 an American chemist, Eugene A. Markush, applied for a 

patent for a class of novel pyrazolone dyes, 7 but his 

application was rejected on the grounds that it claimed 

alternatives. After making suitable changes to the wording of his 

Page 3 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

application in order to leave out the word "or", it was accepted, 

and since then the term "Markush" has been applied to this type 

of generic structure. Rosa 8 has discussed the legal wrangles 

over this and other applications, and outlined the type of 

generic structure which may be claimed under the precedent set by 

Markush, though the rigid "Rule Against Or", 9 which never 

applied in other countries, has now been abolished in the United 

States too. 

The expression "Markush Structure" is now used rather loosely to 

refer to a wide variety of types of generic structure, though 

U.S. patent attorneys use it to refer specifically to patents 

granted under the precedent established by Markush's pyrazolone 

dyes application. On account of this special legal meaning the 

expression has generally been avoided in the present work 

following advice from Silk 10 and despite its use by many other 

authors in the field, and the expression "generic structure" is 

used throughout this Thesis. 

A single generic structure may cover an enormous, and in some 

cases infinite, number of specific compounds, 11 
only a tiny 

fraction of which have actually been tested for the claimed 

. . 12. h l f actlvlty. Beton cltes t e ex amp e 0 a patent application on 

sulphathiazole which was rejected because, of the at least 93 

million specific compounds covered, only two had been shown to 

have the claimed activity. In the same paper however, he refers 

to the original patent on the Ziegler process for ethylene 

polymerisation in which aluminium trialkyl is claimed as 

Page 4 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

catalyst. Following grant of this patent, Ziegler found that 

alkyl aluminium halides and organomagnesium compounds could also 

be used, and was obliged to make further appLications to cover 

them also. However, this stiLL left him with no patent protection 

for the use of such catalysts in the polymerisation of other 

aLkenes. 

These examples illustrate the need to formulate a patent 

specification sufficientLy wideLy to cover alL the compounds with 

the required activity, yet sufficientLy narrowly not to claim 

untested compounds which are actualLy inactive. 

1.1.2. Types ~ Generic Structure 

Valance 13 has discussed the variety of different types of 

statement that may be found in generic structures, with a survey 

of their relative frequencies. Sneed, Turnipseed and Turpin 14 

have attempted a rudimentary cLassification of generic 

structures, dividing them into deter.inate and indeter.inate 

structures, the former having variable substructure groups Call 

defined) occurring with variable frequency at fully-defined 

positions of attachment, and the latter comprising aLL other 

generic structures, including those involving verbal expressions, 

undefined substructures and undefined positions of attachment. 

Concentrating on deter.inate structures, they give examples of 

the different types of expression that may be found. 

Page 5 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

A similar classification has been given by Krishnamurthy and 

Lynch 15, 16 dividing generic structures into deLimited and 

undeLimited structures, though these classes are not identical 

with Sneed et al.ls determinate and indeterminate structures. 

DeLimited structures are essentially those which cover a finite 

(even if very large) number of specific compounds; undelimited 

those which cover an infinite number of specific compounds. 

In the present work these classifications have not been found 

helpful, and anaLysis of generic structures has been based on an 

approach given by Geivandov 17 which views such a structure as a 

(possibly vestigial) constant part to which are attached variable 

parts that can vary in their chemical nature, in their position 

of attachment to the constant part, and in their multiplicity of 

occurrence. This concept may be extended to encompass the idea of 

a "Markush within a Markush" so that each variable part can have 

further variable parts attached to it, continuing to any level. 

On this basis, two opposite "extremes" of generic structures may 

be identified: that where the "variable" parts are fully defined 

in terms of nature, position and multiplicity, in which case the 

structure is a specific structure identifying a unique chemical 

substance, and that where the variable parts are totally 

undefined, in which case the structure is a substructure which 

may be found embedded in any of a potentially infinite variety of 

specific structures. 

Between these extremes lie generic structures with incompletely-

Page 6 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

defined variable parts. Any variable part may still have an 

infinite number of different possible values, but it is none the 

less restricted in some way. For example, the term "alkyl" 

strictly covers the infinite variety of radicals containing 

carbon and hydrogen only, with no double or triple bonds and no 

rings, but it nonetheless restricts the variety of values a group 

defined as "alkyl" can take. 

1.1.3. Generic Structures Outside Patents 

Generic structures are also found outside patents. They appear in 

the journal literature, where a large number of related compounds 

have been tested for a particular property or activity, and in 

this case a generic structure is essentially a shorthand way of 

listing the compounds tested. Figure 1.1 shows an example of a 

generic structure from the Journal of Medicinal Chemistry. 

Generic structures may be used as queries in some chemical 

structure search systems, with databases of specific structures. 

Generally, onLy very simpLe generic structures can be used, but 

the recentLy-deveLoped COUSIN system aLLows more compLicated 

queries. This is discussed more fulLy in Section 1.4.7. 

The description of generaLised chemicaL reactions can involve the 

use of generic structures for the generalised reactants and 

products, though no reaction indexing system has yet been 

developed using such reactant and product descriptions. 

Page 7 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

~-~,--,--,-----, .... _-_.- ~.----.. -------.--.---.-----.- -

/ Hallucinogenic Amphetamine. Journal of Medicillal Chemutr)", 19i7, \'01.20, No. l2 1633 

Table I. Sub;;lituted Amphetamin~" and PrcdicLed Hallucinogenic Activity 

Rin« position and group 
ExpU· Col.A· No. 2 3 • 6 6 'x. ·x. ·xpcv log. IOl;JI 

1 OCIl, 3.348 1.034 0.469 0.59 0.5~ 2 OCH, OCH, 4.124 1.508 0.G42 0.67 0.81 3 OCH, OCH, 4.124 1.683 0.G31! 0.87 1.06 4 QCH, OCH, OCH, 4.80r. 1.830 0.739 0.37 0.55 11 OCH, OCH, OCH, 4.830 2.083 o.ns 0.63 1.01 6 OCH, OCH, OCH, 4.853 2.031 0 .• 98 1.03 1.12 7 OCH, OCH, OCII, 4.1133 2.045 0.810 1.14 1.06 8 OCH, OCH, OCH, 4.892 2.058 0.785 1.26 1.00 9 OCH, OCH, OCH, OCH, 6.629 2.363 0.917 0.86 0.(12 10 -OCH,O- 4.203 1. 705 0.576 0.41 0.21 11 OCH, -OCH,O- 4.925 2.252 0.707 0.43 0.C2 12 -OCH,O- OCH, 6.043 2.272 0.7:;6 0.48 O.SO 13 QCII, -OCH,O- 6.027 2.197 0.753 1.00 0.71 14 OCH, -QCH,O- 4.993 2.317 0.751 1.08 0.71 15 OCH, OCH, -OCH,O- 6.746 2.749 0.&85 0.75 1.09 18 OCII, -OCH,O- OCH, 6.761 2.906 0.887 1.13 1.29 17 OCH, oC,n, OCH, 6.027 '2.285 0.76!! 1.22 (\.93 
18 OCH, 8r ocn, 4.674 1.762 1.157 2.71 2.92 19 OCH, CH, OCH, 4.674 1.762 0.8~8 1.89 1.85 20 OCH, C,II, OCH, 4.892 2.058 0.910 2.01 1.70 21 OCH, n·C,H., OCH, 6.027 2.285 0.850 1.94 1.60 22 OCH, n-C"H. OCH, 6.296 2.436 0.880 1.63 1.3·1 23 OCH, n-C,HII OCH, 6.646 2.548 0.880 1.09 1.09 

Cl Molar basis, ret 1 anu 5, converLed by lnult.ijJlying by the rp.t.io oC molecular weights oC amphetamine to mcs.:-aJine. 

Figure 1.1: A generic structure from the journal literature 

1.2. GENERIC STRUCTURE DESCRIPTIONS 1! PATENT~ 

The manner of description of generic structures in patents from 

different countries is basically equivalent, and an example of 

such a description from a recent British patent is shown in 

Figure 1.2. 

1.2.1. The Constant Part 

In a typical patent specification, or abstract, there is a 

structure diagram for the constant part, in which the attached 

variable parts are indicated by symbols such as R, X, R", R2 etc. 

There is little or no standardisation of the symbols used, and 

Page 8 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

occasionally valid atomic symbols (such as B or C) appear as 

structural variables, which can cause ambiguity and confusion. 

The variables may be attached to the constant part at fixed or 

variable positions, the latter normally being indicated by the 

convention of a bond going into the centre of a ring, or 

sometimes, where the attachment is to a chain, by means of a 

brace over the possible atoms of attachment. The variables may 

have one or two connections to the constant part, with any bond 

orders, or infrequently three or more. 

Multiplicity of occurrence of certain portions (normally 

structural variables) of the structure diagram is often indicated 

by a subscript to a symbol, or to parentheses around a multiplied 

portion. The subscript may be a single integer, a range of 

integers, or an alphabetical or other symbol that is defined 

elsewhere. Examples are: 

(R') 
3 

(-CONH-) 
p 

1.2.2. The Variable Parts 

Following the constant part, the variables introduced in it are 

defined, usually by listing the alternative values for each 

structural variable. However, several different types of 

Page 9 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

--~-----------------~--------------------------;~~;~~~-----~---I 

SPECIFICA nON 

Improvements In or relating to or!lanic compounds 

5 The presen t invention concerns industri al 7namels 
containing u.v. iJbsorblng compounds, whl~h 
enamels afford coatings with improved resistance to 
weathering. 

M ore particularly. the present invention provides 
10 on indus trial enamel having incorporal.ed th erein 

(."a or m t}re U.V. absorbinG oxam tdes, I.e. U.\I. . 

llbsorbing compounds featll ring the structural un it 
-NHCOCOtIH- . 

The prefarred u.V. absorbing oxamides in the 
15 industrial enamels of th~ present invention ara those 

of fo rmulJ I. 

20 

25 

30 

in which ellch R,. independently. is hydroa en. 
halogen. hydroxyl. C('- '8)alkyl. 
(C ,- ,,)alkoxy. phenyl or 
phenoxy. 

each R~. incependently. is hydrog~n. 
halogen. hydroxyl. (C, ... )alkyl 
or (C,-.)a lkoxy. 

and each n. indeIJendently. is 1. 2 or 3. 
In the above definition of formula I. halogen 

mellns fluorine. chlorine or bromine. Preierably 
halogen is chlorine or bromin e. more preferably 

35 chlorine. 
When any R, is alkyl. this is preferat,ly (C'-8)alkyl. 

more preferably (C, -,,)~ Ikyl. and most preferabl '{ 
ethyl. 

When any R, is alkoxy, this is preferabl y (C,-
1\0 u)alkoxy. more preferably (C'-8)alkoxy. even more 

pre ferably (C' -'I)alkoxy. and most preferably (Cl or 
C.)a !koxy. 

Each fl, . independen tly, when signifying a sub­
stituen! o:h&r than hydrogen, is preferJuly in an 

45 ortho·position to the oxamide li llking moiety 
-NHCOCONH-. 

Of all the significa llep.s of A,. hydrogon. hydroxyl, 
alkyl or alkoxy, especially R;. as hereinafter defined. 
are preferred. and alkyl or Jlkoxy, especially (C, -

50 . !al'<yl or (C'-8)a lkoxy, respectively. are mure prp- fer­
red. Most prefera:) I'!. one of the two H,', is alf.yl and 
the other is alkoxy. 

When any R, is alkyl, th l, is preferably (C'-'l l alkyl. 
more preferably (C , or C.)alkyl, ~nd most preferably 

55 lcrt.-butyl. 
When any RI i~ alkoxy, thi s is preferably (C, . 

• )olkoxy, Clnd more preforably m etho"y or cthoxy . 
When any RI is hydroxyl, this is preferably in th e 

para-posit ion 10 th e oxa mide linkinn m oiety 
60 - NHCOCONH-. Furthermore, if A, is alkoxy in an 

onho'position to the oxamide linking moioty 
-NHCOCONH- and allY AI on the same phenyl ring 
a" this RI is alkyl. any such alkyl group A, is prefer­
abl'l in the para-position to RI. It R, is a l~yl in an 

/,1, ~"t lltl lhYjt tio ll to t: .. ~~ nxam'dp. : i nl<i ll~ m()i~ry 

-NHCOCONH- alld Jny RI on the same phenyl ring 
as th is R, is alkyl. any such alkyl group RI is prefer­
ably ill the meta-po,ition to R,. 

Of all tha signi ficances of R,. hydrogen. hydroxyl, 
70 alkyl or alkoxy are pr~ ferred. hydrugen, al~y l or 

alkoxy, especially R;, or A;'. as hereinafter defined in 
formula lb. Jre more preferred. and hydrogen or 
(C'-'I)alkyl are most preferred. 

It any R, is phenyl or phenoxy. n on the same 
75 pheny l ring as the phenyl or phelloxy substituent is 

prefer3uly 1. 

80 

1)5 

90 

In gcneral n is preie rably 1 or 2, more preferably 1. 
A preferred class of compounds of formula I is 

constituted by the compounds of formulJ la. 

2'''' .. .. . (11.'1 . 0 0 rp(Ri'"' 
~". -c-c - > .. -0 

.' I 

., 
I 

in which each R;, independently. is hydrogen. 
hydroxyl. (C'-<I)olkyl or 
(C,-n)alkoxy. 

each A; independen:ly. is hydrogen. 
hydroxyl, (C '-<I)alkil or 
C' .... )alkoxy. 

and each n; inJependP.ntly, is 1 or 2. 
A preferred class of comIJounds of iormula la is 

95 consti tuted by Ihe compou nds of formula lb. 

100 

105 

110 

115 

" 

in which R; is (C , .... )'lkoxy. 
R;' is (C, -)alkyl. 

each R; independently. is hydrogen. 
(C'-'I)alkyl or (C ' .... )alkoxy. 

and either both R;' 's are hydroa en. or one of the 
two is hydrog en and the other 
is (C'-4)alkyl. 

The comnounds of formula I are either known Or 
can be produced in analo!1ous mJnn er to th e know n 
comnound s from avail:t b! a sta rt ing nlalerials. 

The industrial enamels of the presen t inv~ntion are 
prcferJbly those for enamelling vehicles. £speciaUy 
suitable industri al enaln e l ~ are Ihosp. which contain. 
as J binder. combinations of oil·'noditieG po:y'?s tor 
r esi ~s (oil ·modified alkyd reslnsl alld m clam",c 
resins, combinations of addition cross- lilli(my 
polY.Jcrylate resis:ls ~Ifld melamine rllsin s, corn bin a-

120 tinns of sa turated pOly e3tp. rs and m clJmine resi ns 
cross·linking poll'acrylale resins, t"o-.:omoollpllt • 
polyacryla te resins consisting of hydrox\,.containing 
poly acrylate resin 2nd aliphatic or arOlnalic i ~ocy :m. 
~Ies. thermoplastic po lv"cryla:e resins. or two-

125 component polyureth3ne resins consistin!] of 
hydroxy-containing pol yest~' anriior polyether 
resins hardened with ~Iiph"tic or aromatic isocyan­
ates. Of these. thermoplastic polyacrylatc resins. 
combinations of addition cross-linking pol'{Jcrylate 

130 :'t'l si lls i;nd but ) lIol'lJ t h~:; ;ficc1 rnplJrn ine re:s;ns. ~nd 

Figure 1.2: Part of a British Patent Specification 

expression may be used for these vaLues. 

I 
I 
I 
I 
I 

There may be simpLe nomencLaturaL terms (e.g. "methyL", 

Page 10 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

"cyclohexyl", "pyridyl", "amino", etc.) that represent single 

chemical entities, or terms or expressions that represent a 

limited group of such entities (e.g. "halogen", "alkali metal", 

etc.). 

Alternatively, there may be further structure diagrams, perhaps 

introducing new symbols for structural variables, or further 

citing structural variables that have already been introduced. 

Such structure diagrams will normally have an indication of which 

atom or atoms is/are attached back to the constant part. 

There may be linear formulae, which can represent single entities 

(e.g. "OH", "COOH", "COOCH" t ) 3 e c. , or include symbols for 

structural or multiplicative variables, or represent classes of 

structural entities (e.g. "C6H13"). 

There may be nomenclatural terms or expressions describing 

classes of structural entities, such as homologous series (e.g. 

"alkyl", "alkylcycloalkyl", "alkenyl" etc.). Frequently these are 

qualified by indications of the number of atoms, the degree of 

branching, or other factors (e.g. "straight-chain 1-6C alkyl"). 

Alternatively, the class described may be less well-defined (e.g. 

"heterocyclic ring system", "aryl" etc.). 

Finally, there may be expressions describing groups in terms of 

their properties (e.g. "electron-withdrawing group", 

"photographically-useful group", "easily-hydrolysed group", 

"group known in the art" etc.>. 

Page 11 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

In addition, all these types 

qualified by indications of 

of expression may be further 

position or multiplicity, or the 

statement that they are 

substituted by" a further 

epithet "substituted" or 

"substituted by" or "optionally 

list of values. Occasionally the 

"opti onally substituted" may occur 

without any indication of the nature of the further substitution. 

Furthermore, certain of the alternatives listed may be indicated 

as preferred, possibly ranging over a hierarchy of preferability; 

expressions involving "preferably ••• more preferably even 

more preferably ••• most preferably" are not uncommon. 

In some examples, two structural variables may be combined to 

form a ring which can be described by any of the methods given 

above; such combination may be a value for the two variables 

alternative to those given for each individually, if any. The 

structural entity specified as a value for the combination of the 

variables may consist only of the atoms added to those present in 

the constant part, or (more commonly) may also include those 

atoms of the 'constant part which are part of the ring formed. 

Occasionally two structural variables are combined to form an 

extra bond between the (adjacent) atoms to which they are each 

attached. 

Page 12 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

1.2.3. Conditional Expressions 

Frequently, certain of the alternative values for structural and 

multiplicative variables are dependent upon the values of others, 

and this is indicated in patent specifications and abstracts in a 

variety of ways. 

If there are several occurrences of a structural variable in the 

constant part, then the definition of it may specify that all its 

occurrences should have the same value, or different values etc. 

Alternatively, it may be specified that certain values for a 

variable are only possible when another variable has a particular 

value or values, or the possible values may be limited to a 

subset of the alternatives given originally when another variable 

has a particular value. There may be stipulations that a certain 

proportion of the occurrences of a variable should have a 

particular value etc. Sometimes these conditions and restrictions 

can become very complicated. 

~ THE "MARKUSH PROBLEM" 

In recent years chemical information scientists have tended to 

talk about the "Markush problem", and the possibilities for its 

solution. By this they refer to the problem of developing a 

computer system capable of storing and searching files of generic 

structures, especially those found in patents. 

Page 13 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

During the past two decades a great deal of work has been done on 

the developement of storage and retrieval systems for specific 

structures, and Warr 18 has recently reviewed the available 

software. Many excellent systems have appeared, for use both with 

a company's files of internally-developed compounds, and with 

"public" databases such as the Chemical Abstracts Registry file. 

Amongst the former group are the CROSSBOW system (Computerised 

Retrieval of StructureS Based On Wiswesser) 19 in which 

structures are encoded in the Wiswesser Line Notation, 20 and 

recently MACCS (Molecular ACCess System) 21 which has more 

sophisticated facilities for graphical input of structure 

diagrams. The two main systems supporting the Chemical Abstracts 

Registry file are CAS ONLINE 22 which was developed by the 

Chemical Abstracts Service itself, and the French Systeme DARC 

( ° to A ° ·t· Rt· l Correlat1·on) 23-25 wh1·ch 1·S Descr1p 10n, CqU1S1 10n, e r1eva , 

also now available for in-house use. Although these systems 

support limited facilities for generic structure queries, none of 

them, as yet, has any facilities for generic file structures. 

Jackson 26 has outlined the essential features of an "ideal" 

system for generic structures in patents, and achievement of 

these objectives could be regarded as a solution of the "Markush 

problem": 

1. Total recall with minimum noise. 

2. Include both generic structure and specific compounds. 

3. Easy to use for encoding and retrievaL. 

Page 14 

" 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

4. Automatic input with error checks. 

5. Available online. 

6. Abstract and structure as output. 

In his paper Jackson also surveys the existing systems available, 

and discusses the ways in which they fall short of the ideal. 

Existing chemical patent documentation systems have also been 

reviewed by a Japanese Study Team 27 and in a number of other 

publications. 28-30 The storage and retrieval of Markush 

structures was identified as a priority area for research by the 

British Library's Chemical Information Review Panel, which 

. 31 32 
reported 1n 1978. ' 

1.4. GENERIC STRUCTURE REPRESENTATIONS 

An essential prerequisite for a satisfactory storage and 

retrieval system for generic structures is a satisfactory means 

of representing them for computer manipulation. A number of 

different forms of representation are used in existing systems 

and have been proposed for new systems, and these are discussed 

in this Section with some comments on the efficacy of the systems 

which use them. 

Like those for specific structures, the forms of representation 

may broadly be divided into ambiguous and unambiguous; the former 

allow the same representation to stand for different structures, 

whereas in the latter each representation stands for only a 

Page 15 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

single structure. All operational computer storage and retrieval 

systems for generic structures are based on ambiguous 

representations of the structure, and this is one reason for the 

unsatisfactory performance of existing systems. 

1.4.1. DerwentPubLications Ltd. 

Derwent PubLications Ltd. is a British company, owned by the 

Thompson Organisation, and it produces a variety of current 

awareness and retrospective search services, both for patents and 

in other areas, though patent documentation represents the major 

part of its business. The chemical area is well covered, and 

Derwent's services have been discussed recently by Kaback. 33-34, 

6 

In general, non-chemical patents are included in the World Patent 

Index (WPI), and chemically-related ones in the Central Patent 

Index (CPI), of which three sections (Section B on 

pharmaceuticals ("FARMDOC"), Section C on-agrochemicals ("AGDOC") 

and Section E on general chemistry ("CHEMDOC"» use a complex 

fragmentation code, the CPI code, to represent the chemical 

structures, 

question. 

generic and specific, shown in the patent in 

Both WPI and CPI are available for searching online via the SOC 

Search Service, using the ORBIT software. 

Page 16 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

The CPI code has undergone a large number of revisions during its 

history, which goes back to 1963 when the FARMDOC service began. 

It is a manually-assigned fragment code, and was originally based 

on the 960 punch positions available on an BD-column punched 

card, the cards being sorted mechanically. 35 The code has been 

substantially revised over the years, and the database made 

available on magnetic tape as well as punched cards, and the 

revisions introduced in 1982 removed the restriction to punched-

card format. 

Each punch position, or fragment number, represents a functional 

group, ring system, or other feature of chemical significance, 

and coding is carried out manually by highly-trained and 

experienced encoders; there is no automatic error checking of 

input. The generic structure as a whole is encoded, but this 

involves assigning fragment numbers for all chemical features 

present in the generic structure, irrespective of the logical 

relationships between them. Thus, in effect, all the alternative 

specific structures covered by a generic structure are over-coded 

on the same representation. 

Searching is carried out by combining fragment numbers with 

800lean opera~~, and the results are characterised by high 

recall and low relevance, a figure of 5X for the latter being not 
26 uncommon. 

Whilst the improvements in the code over the past two decades 

have been substantial, it remains less than fully satisfactory. 

Page 17 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

Up to 1977 the Pharma Dokumentation Ring (PDR), an association of 

European pharmaceutical companies, found it necessary to recode 

the generic structures from patents in Ringcode, another 

fragmentation code also used for Derwent's RINGDOC and Chemical 

Reactions Documentation Service (CRDS) services. A semi-automatic 

36 coding system, COR A, was developed for this purpose, but in 

1977 the recoding was discontinued as improvements in the CPI 

code had meant that Ringcode no longer gave a better retrieval 

performance. 26 

-~------------------------------------------------------------.-
I ___ ~----~~~-----..~~"'~~>.Q,nmn.n,~~rr_------~~ 
, 024978/02 El4 A82 G02 SANO 27.06.n I-'A;.;:(c.:8_-::.:A.:.3.:...=1~ .-c.:B::.:ic.:....::E::.;( ... i.:.0..:-D..,3c..:A;::.:....G"'(:.:Z:...-.;.A:;:...;clll.'-______ .:..' ..:4:...':..j 

SANDOZ LTD 'G82000-S12 Q ';{ '! V 27.D6.n.CH-D078S3 (10.01.79) C09d.()7/12 NH _ ~ _ e _ NH 
Industrial enamel. cont~. UV absorbing oxa~id. cpds •• to Improve 
their wealhering prOperties; used esp. for vehicles 

oe.Ho (I) e.H. 

I 

uv absorbinl oxamide. are incorporated in indu.trial. 

.na~~~~·ox.mid •• are of formula (I) 

o 0 
) "'t.~ 11 d ~(R.) 

(R, n y NH - e - e - NH V Il 

R, P) R, 
R, I. H. halogen. OH. I-lac alkyl or alkoxy, Ph or phenoxy 
Rz i. Ht halogen. OH. i-SC alkyl. or alkoxy. D. h ' .. 3. 

USE 
.-...--:rho enamel. are metallic or .toving enamel •• Ip. for 
vehicle. and are liven improved weathering propertiea. 

.$<.LAIMED CPDS. 

tert.C,H9 0 0 ri NH - ~ -! -NH-)J 

OC.H. e,K. ~,';!~ 
DETAILS 
~namel. contain, al binder., a melamine resin 
combined with (a) an oil-modified polyelter re.in. (b) 
an addn. cro •• -linking polyacrylate or (c) a •• td. polyester: 
a polyacrylate relin with an aliphatic or aromatic hocy.n­
ate; a cro •• -linking polyacrylate re.in. a thermoplaltic 
polyacrylate re.inj or a two component polyurethane relln 
con.ilting of an OH contg. polyelter and/or pOlyetber relD 
hardened with an aliphat ie or aromatic hoeyanate. The 
oxamide. are added in an amt. of 0.02-5 wt.,. • 

EXAMPLE 

GBZ00051H 

I------------------------~--------------------~ 
Metal plate. are coated"';' th a pigmented bal. coat 

! 
.toving enamel layer lO )lm thick. Thi. t. overeoated with 
a clear lop coat .toving enamel of cornpln.: polyacrylate 

I resin (80 pu.). butanol-etheruied metamine resin (13.75 
I pto.). butyl glycolate (4.5 pta.) and aolvent (13.50) to which 
1~ of the oxamide (I) had been added. The coating wa. 
hardened at 140·C for 30 mina. The plat. displayed impr­
oved reai.tance to weatherinl OV. I' a plate coated with an 
enamel without the oxamide.(5ppIl55). 

, 

------------------------------------------____________________ 1-
Figure 1.3: Derwent Basic Abstract for a patent. 

Page 18 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

In addition to their fragment-code indexing of chemical 

. structures in patents, Derwent produce a compact and highly 

informative abstract of the patent, which was originally designed 

to appear on the back of the punched card used for coding. Where 

a generic structure appears in the patent, this is reproduced in 

the abstract,· in which it is slightly reformatted to conform to 

Derwent's house style. Figure 1.3 shows the Derwent Basic 

Abstract for the British patent part of which was illustrated in 

Figure 1.2; other examples of Derwent abstracts appear in Figures 

3.2 to 3.11 in Chapter 3. 

1.4.2. IFI/Plenum Data Co. 

The patent documentation services provided by this American 

company have their origins in systems developed by a number of 

different organisations. The chemical coding system was developed 

37-39 by E.I. Du Pont de Nemours & Co. and like Derwent's CPI 

code it is a manually-assigned fragment code. 

Its unique aspect is that a distinction is made between fragments 

derived from the constant and variable parts of the structure. 

Figure 1.4 illustrates the assignment of such fragments for a 

simple generic structure, and it can be seen that those fragments 

deriving from either the constant or variable parts are 

designated possible, but only those deriving from the constant 

part are designated must. 

Page 19 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

In searching, the possible fragments are searched using positive 

logic, and the must fragments using negative logic, the latter 

excluding particular fragment combinations not wanted, thus 

improving precision. 

Whilst this approach is likely to improve retrieval performance 

over systems such as Derwent's, which effectively use only the 

possible fragments, it does not soLve the problem of indicating 

possible fragments that are mutually exclusive (e.g. halo and 

nitro in Figure 1.4). 

---------------------------------------------------------------
o 
U . x-o-C

-
O

-
R 

Possible Terms 

ester 

halogen 

nitro 

(R is an alkyl group, 
X is a halogen or nitro 
group). 

Must Terms 

ester 

carbon ring compound carbon ring compound 

---------------------------------------------------------------
Figure 1.4: Fragments in the IFI/Plenum System 

In addition to the fragment descriptors, "link" and "role" 

indicators are used, the former linking fragments from the same 

structure (where there is more than one in a patent) and the 

latter designating the structure as reactant, product etc. 

Searching can be carried out using a "weighted-term" query 40 in 

which each query term is given a "weight", retrieved documents 

Page 20 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

being those whose total score of weights exceeds a specified 

value. 

The IFI/Plenum system, which is available online as the CLAIMS 

database on the Lockheed system, is restricted to United States 

patents, which severely limits is usefulness to patent searchers 

in other countries. 

1.4.3. International Documentation in Chemistry 

Internationale Dokumentationsgesellschaft fUr Chemie mbH (IDC) is 

a German company set up by a consortium of mainly German 

pharmaceutical companies, the principaL members being BASF, Bayer 

and Hoechst. It is now part of the German National Information 

Centre for Chemistry. 

So far as chemical structures are concerned, the core of the IDC 

system is the GREMAS (Genealogical REtrieval by MAgnetic tape 

Storage) code, originally developed at Hoechst. 41-43 This is an 

open-ended fragment code containing two different types of 

fragment, respectively called se.antic and syntactic terms, and 

certain aspects of its design make it especially well-suited to 

the encoding of generic structures. 44 In fact Mullen 45 has gone 

as far as to claim that "the problem with Markush formulae ... 
[has been] solved by the GREMAS system developed by Hoechst". 

The semantic terms describe the functional groups present by 

Page 21 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

means of three-Letter codes, in which each successive Letter 

indicates more precisely the nature of the group. Figure 1.5 

shows some exampLes of the Letters used to represent some common 

functionaL groups. 

Genus Species 

(Kind of (Kind of 
functional hetero atom 
group) or group) 

Examples 

B Amines A Primary 
B Secondary 

I C Tertiary 
D Quaternary 

H Halogen A Fluorine 

I 
compounds B Chlorine 

I C Bromine 

I 
D Iodine 

I G Sulphur A Sulphonic 
compounds acids 

B Sulphones 

I C Sulphoxides 
D Sulphinic 

acids 

----------------------------------------

Sub-species 

(Chemical 
environment 
of functional 
group) 

I 
A Aliphatic 

chain 

D Substituent to 
aromatic ring 

F Olefinic chain I 
Q Alicyclic ring I 
R Aromatic ring I 
S Hetoercycle I 

I 
I 

----------------______ 1 

27 Figure 1.5: Some GREMAS semantic terms (from ) 

For generic structures, the numeral 0 can be used to give a 

generalised fragment, e.g. HOR represents a halogen substituent 

on an aromatic ring, but does not specify the particular halogen. 

Page 22 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

The syntactic terms in the code indicate the reLationships 

between the semantic terms, and they normaLLy begin with a Y. 

Each one represents one of four regions of the structure, and 

this is indicated by the second Letter: YR ••• for carbon chains, 

YS... for aLicycLes, YT... for aromatic rings and VU ••• for 

heterocycLes. These two Letters are foLLowed by the initiaL 

Letters from the semantic terms represented in the region in 

question, with the resuLt that these terms can be of any Length. 

Numeric Locants can aLso be used to indicate substitution 

patterns on rings. 

In generic structures, where there is a List of alternatives for 

a structuraL variabLe, the appropriate initiaL Letters of the 

semantic terms are shown aLL together in the syntactic term, 

following a slash, which indicates that only one of them may be 

present. An example of this appears in Figure 1.6. 

Specific structures can be encoded automatically in GREMAS terms, 

but generic structures are encoded manually. 

The use of an open-ended code of syntactic descriptors in the 

GREMAS system, able to handle alternatives in a generic 

structure, makes GREMAS far more effective for storage and 

retrieval of generic structures than other fragment-based 

systems. It has, however, severe Limitations in that a maximum of 

nine alternatives can be catered for in each of a maximum of 

three structural variabLes; its ability to handle generic 

expressions such as "alkyl" is also slight. 

Page 23 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

R ~ N1I2' 0/11. r r:~: N 
EAR (= hydroxy group on 

an aromatic ring) 

SAF (= benzene ring) 
Genus H 

Genus E 

Genus B 

Beginning of a region descriptor (y)-y J E 4 I n E H ~ 

On an aromatic ring (T) ~ t / 
an o'ygen funetion ;, p,,«nt (E)-=-----=--:"" 

and the para position (4) ---' _____ -.J. 

is occupied alternatively (I) ---------' 

by an amino group (B) ------------' 

or another oxygen function (E) --------..... 

or a halogen atom (11) ____________ ...J 

oracarboxygroup(~)-------------...J 

R 

---------------------------------------------------------------
Figure 1.6: GREMAS coding for a generic structure (from 27) 

Silk 29 has pointed out that the GREMAS code possesses a far more 

precise search capabiLity than other fragment codes in use, even 

for specific structures, since it is abLe to deaL with specified 

positions of substitution on rings or chains, and to distinguish 

between substituents on different ring systems. The incLusion of 

specific structures from the ChemicaL Abstracts Registry fiLe in 

the IDC database, aLong with generic structures from patents, 

aLso gives it an edge of rival systems for many types of enquiry. 

However, SiLk also notes that the system is extremeLy expensive, 

and suggests that there couLd be many probLems in mounting it 

onLine. 

Page 24 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

------------:-------f~-----------------------------------------1 

I ' 1 Il l' 5 I 
CH2 =C-C-NH-RI I 

l 

R ' H. - CH 1 

, I 

R, ' H. - CH ]. -CH I -R I 

o 0 
'11 '11 

RI ' - OH . - M" I ' -C- OH. - C-MH I 

N IKl < H.M > ICYMHKZ < H.M.m > O.I.CYO.m > > 

2. I I 1 ,! I I , 

R-HH-CH 2-C-X-C-CHz-Y 
I 

R ' H. CH] -. - CH I -CHI-OH. 
, I 

1 ' - . ' . ;; • -CH I - . -CHI - ~H-CH I ­

I CH I 
.lH] 

Kl < H.M.CCO. " 6Ll5 . ~ 6RR5 > mm < -. -.;: .c.CCj C[ I] ICM > cm 

< H.CQ.CM.CYO.l > 

I 
I 
I 
I 
I 
I 
I 
I 

---------------------------------------------------------------
Figure 1.7: Hayward Notations for generic structures14 

1.4.4. ChemicaL Abstracts Service 

Abstracts of chemicaL patents appear in ChemicaL Abstracts <CA), 

which aLso includes concordances reLating basic and equivaLent 

patents from different countries. Though in the past the coverage 

of patents was not as comprehensive as in other services, such as 

Derwent's, 3 it has improved recentLy, and CA now abstracts more 

1 than 70 000 patents annually, of which 4Sr. are from Japan alone 

resulting in serious translation difficulties. 

Page 25 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

No attempt is made to represent generic structures in patents for 

indexing or searching purposes, but any specific compounds given 

as examples are included in the CA Registry file, and may thus be 

retrieved using the subject and formula indexes 46 or by 

substructure search on the recently-introduced CAS ONLINE system. 

22 

Other search systems using the CA Registry file as database, such 

as those of IDC (Section 1.4.3), DARC (Section 1.4.5) and the 

47 are thus able to retrieve specific BASIC group in Basel 

compounds exemplified in patents. In the cases of IOC and BASIC, 

the generic structures in the patents are also indexed by using 

manually-assigned fragment descriptors, and these representations 

added to the files for searching, at least at the fragment-

matching level. 

Whilst the effectiveness of such systems clearly depends on the 

relationship between the generic structure in a patent, and the 

specific compounds exemplified in it, 48 a group of searchers 

from ICI have suggested that even with this limitation, retrieval 

performance is at least comparable with that achieved by 

searching in a database such as Oerwent's or IDC's where the 

generic structure is indexed by manually-assigned fragment codes. 

49 

Page 26 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

---------------------------------------------------------------
R2.. 

RI IS H, I-)C ALKYL (OPT. SUBST. BY CN OR PHENYL) 

2-4c ALKOXY CARBONYL, I-)C ACYL (OPT. SUBST. BY OCHJ) OR PHENYL. 

R2 IS OH, 1-3C ALKYL OR PHENYL (OPT. SUBST. BY HALOGEN OR CH) 

N, M •• 1, 2, or ) 

N .. M 4 

PROPOSED WLN 

T c66-NI-BN-XI-NJ I-RI-XI-R2- ·Rl=Q 

-ALKYL (I-JC)-, R, R X J, R Xl; "R2=H, -ALKYL (l-JC)-, 

-ALKYL (l-JC)-XC~, -ALKYL (l-JC) - XR, VO-ALKYL (2-4c) 

-ACYL (I-JC), - ACYL (l-JC) - XOI; "NI (Xl) • 5 (L), 

6L, lol), 7 (L, H, N). 

---------------------------------------------------------------
1 8 . f . t t 26 Figure .: WLN representatlon or a generlc s ruc ure 

1.4.5. Systeme DARC 

systeme DARC (Description, Acquisition, Retrieval, Correlation) 

is a chemical substructure search system developed at the 

University of Paris by Dubois and others, 23-25 and it is 

available online through the French host system, Telesystemes. 

Page 27 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

At present it permits substructure searching in the CA Registry 

file, and thus gives access to the specific compounds exemplified 

in patents. 80is and Chaumier 50 have compared DARC's performance 

to that of IDe (Section 1.4.3), and noted the latter's better 

coverage of patents. 

Facilities for generic query structures are shortly to be 

implemented, though these will still only permit searching in 

files of specific structures. However, some comments on storage 

and retrieval of generic structures have appeared in publications 

on the DARC system 51-52 even if limited to the statement that 

"the treatment of Markush formulae has been studied in Paris by 

Professor Duboi sit, and it was recently clai med that a full 

generic structure search system would be ready in 1984. 53 No 

information has been forthcoming as to its capabilities or method 

of operation. 

1.4.6. Line Notations 

Up untiL a few years ago, line notations predominated as a means 

of unambiguousLy representing specific chemical structures for 

machine processing, and so it was to be expected that 

investigations shouLd be made into the possibility of extending 

such notations to handLe generic structures also. 

The first attempt of this sort was by the late G.M. Dyson 54 who 

showed how generic groups such as "alkyl" could be encoded in a 

Page 28 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

modification of his own IUPAC notation, along with lists of 

specified alternatives for structural variables. A problem ar~he 

identified was that of the definition of expressions like "cyclic 

carbon compound", and he suggested that a data bank might be 

maintained with standard notations for such expressions. This 

problem has also been encountered in the present work, and is 

discussed in Section 5.7.3. 

In the mid to late 1960's work was carried out at the U.S. Patent 

Office on the encoding of generic structures in a form of Hayward 

Notation, 55, 14 though it was only applicable to certain types 

of generic structure (the so-called determinate structures 

identified by Sneed et al. 14 and referred to in Section 1.1.2>. 

Figure 1.7 shows examples of the notations that resulted. 

Associated with this was work on search algorithms for generic 

. bl . 56-58 structures, using a connectlon ta e representat1on. 

The dominant position of Wiswesser Line Notation (WLN) 20 in 

specific structure systems led to a number of efforts by the 

British software house Fraser WilLiams (Scientific Systems) Ltd 

59 and others to adapt it for generic structures; an exampLe of 

the rather unwieldy notations which resulted is shown in Figure 

1.8. 

A more promising approach was suggested by Krishnamurthy and 

15-16 . Lynch and 1S based on Krishnamurthy's own "ALgorithmic 

Wlswesser Notation" (ALWIN) 60-62 which is a modification of the 

original WLN and is designed to be amenable to automatic 

Page 29 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

generation. 

A unique feature of this approach is the use of formaL grammars 

for the representation of members of radicaL cLasses such as 

"aLkyL". Figure 1.9 ilLustrates an ALWIN-based notation for a 

generic structure, with the associated grammar production ruLes. 

None of these notation-based suggestions has been impLemented, 

despite the potentiaL advantages (discussed in Section 1.5 beLow) 

of an unambiguous representation of the generic structure. There 

are a number of reasons for this. In the first pLace the 

notations that resuLt from even quite simpLe generic structures 

are generaLLy-speaking horrendous, and a system using them couLd 

hardLy be described as "user-friendLy". 

SecondLy, many of the existing ruLes in Line notations are 

designed to produce a canonicaL notation for a given specific 

structure. It is difficuLt to see what purpose wouLd be served by 

a canonicaL (as opposed to mereLy unambiguous) notation for 

generic structures, whereas to ignore the canonicaLisation ruLes 

aLtogether wouLd resuLt in wideLy-differing notations for quite 

simiLar structures. 

Furthermore, the fact that many notations (WLN and ALWIN in 

particuLar) emphasise ring systems wouLd Lead to great difficuLty 

in structures with optionaL rings, or with rings of variabLe 

size, on account of probLems in assigning Locants for 

substitution positions etc. Finally, the use of a Line notation 

Page 30 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

for generic structure representation might severely restrict the 

options available for generation of fragments for a first-level 

screening search; it is likely that such fragments would have to 

be closely related to the symbols used in the notation to 

represent functional groups etc. 

---------------------------------------------------------------
iH) iH) I IH2 - R) 

R OCH - C-CHCH CH -C-CH CH -C-C-CH-CH 
12 22 211 2 

R2 R4 

RI = CH3 or C2HS and R2 and R3 are different and each is 
hydrogen or together with R4 is an additional bond between 
the carbon atoms carrying R2 and R4 or R3 and R4 respcc­
tively. 

Let RI = a. R2 = b. RJ = c and R4 = d. 

CH) CH) H CH -c 
I I I I 2 

aOCH 2C-CHCHzCH 2- C- CIICII - C - C - CII-CII 
2 I I 2 

b d 

Notatio1l: aDI TADII T ADI YbXlcdDI 

Productio1l nlles 

or 
c-+1I C, D -+ et> 

YbXlcd-+DTA YbXlcd-+ ITI 

---------------------------------------------------------------
Figure 1.9: ALWIN representation for a generic structure 

Page 31 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

1.4.7. The COUSIN system 

Howe and Hagadone have developed an online structure storage and 

retrieval system at the Upjohn Company in Michigan. 63-64 Called 

COUSIN (CompOUnd Search INformation system), the system is 

particularly interesting on account of the extensive facilities 

it provides for generic query structures, though it uses a 

database of specific structures. 

Generic queries may be input using a special notation, the Rk 

notation, which allows R groups to be introduced in the structure 

diagram for the constant part of the structure, and subsequently 

defined. Figure 1.10 illustrates a generic structure in Rk 

notation, and it can be seen that the system requires every 

possible attachment position for each R-group variable to be 

indicated in the diagram. In the definition of the R-group, each 

possible value is followed by the number of times it can occur in 

the specified positions. 

The query validation program is able to check that there are no 

inconsistencies in the information given, and to calculate 

multiplicities where the user has simply specified "rest". 

From the Rk notation input, the system is able to form a 

connection table based internal representation of the query, 

which is used in searching, though details of this have yet to be 

published. 

Page 32 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

COUSIN is not intended for use outside Upjohn, and the hardware 

configuration it runs on would make it extremely difficult to 

transport, but it is probably the most sophisticated computer 

representation for generic structures <albeit only query 

structures> currently in operation. 

---------------------------------------------------------------

R2 

R2 

RI = Cl(2-4), H(rest) 
o 

R2 =N (1), N{O,I), H(rest) 

Figure 1.10: Rk notation for a generic structure64 

1.5. REQUIREMENTS FOR A SEARCH SYSTEM REPRESENTATION - --

The various forms of generic structure representation described 

in the last section are all unsatisfactory for one reason or 

another, and the work described in this Thesis has had as its aim 

the development of a more effective representation, allowing a 

closer approach to Jackson's concept of an "ideal" generic 

structure information system <Section 1.3>. This has led to the 

idea of a number of different representations for use at 

different stages of such a system. 

Page 33 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

The conventional arrangement of storage and retrieval systems for 

specific structures has involved a number of stages in a search. 

Lynch 65 has discussed the need for a first-level "screening" 

search to remove from consideration those structures in the 

database which, by virtue of their lack of some feature present 

in the query, cannot possibLy satisfy the query. When the fiLe to 

be searched has ben thus reduced, computationally more expensive 

procedures can be used to search those structures which remain 

candidates. A variety of different "screens" have been used for 

first-level searching, including molecuLar formulae and various 

fragment-code representations, often implemented as bit-screens. 

The present work has envisaged an anaLogous approach to generic 

structure searching, and Figure 1.11 illustrates the overall 

process intended. An input notation, called GENSAL (GENeric 

Structure LAnguage), has been designed for the unambiguous 

description of generic structures in a form which is intelligible 

to a chemist or patent agent, yet sufficiently well formalised to 

permit automatic analysis by computer. GENSAL is intended to be 

the representation used for input both of file structures from 

patents and of query structures, and it is described in Chapter 

3. It is a formal language, analogous to a computer programming 

language, and Chapter 2 reviews briefly the theory of such 

languages. 

The GENSAL representation input to the computer will be used to 

generate an internal representation of the structure, and this is 

described in Chapter 4. It is based on connection tabLes 66 and 

Page 34 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

MANUAL ENCODING 

INPUT REPRESENTATION -

GENSAL 

GENSAL INTERPRETER 

EXTENDED CONNECTION TABLE 

REPRESENTATION 1 INCORPORATING 

CHEMICAL GRAMMARS 

AUTOMATIC FRAGMENT GENERATION 

1 
FRAGMENTS W ITU LOG I CAL 

RELATIONS 

SEARCH FILE CREATION 

FRAGMENT SEARCH FRAGMENTS ~IITH 

LOGICAL RELATIONS 

GENSAL AND EXTENDED 

CONNECTION TABLE 

REPRESEtlTA TI ONS 

I--~ 

FILE 

USER SEARCH ROUTINES 

Figure 1.11: Overall process for generic structure system 

like GENSAL is an unambiguous representation of the generic 

structure; it is intended to be transparent to the user. The 

interpreter program which performs the conversion from GENSAL to 

Page 35 



CHAPTER 1: GENERIC STRUCTURES IN PATENTS 

the internaL representation is described in Chapter 5. 

The internaL representation is envisaged as the basis for 

searching. UltimateLy, it should be possible to perform an atom­

by-atom match between query and fiLe structures in the internaL 

representation, but such a match is LikeLy to be extremeLy 

expensive computationaLLy much more so than in specific 

structure search systems, on account of the possibiLity of 

aLternatives at various points. 

Thus it is expected that there will probabLy be at Least two 

fragment-based screening searches to reduce the file of candidate 

database structures. A number of different types of fragment can 

be generated from the internaL representation, and aLgorithms for 

such fragment generation, and the use of fragments in different 

search representations are discussed by WeLford. 67 

Page 36 



CHAPTER 2 

FORMAL LANGUAGES 

"1 conceive you may use any language you choose 

to indulge in without impropriety." 

W.S. Gilbert 

The mathematical theory of languages has been extensively 

developed over the past quarter of a century, and has been the 

b ' f l textbooks. 68-73 Th,' s Ch ' l' su ]ect 0 severa apter g,ves an out ,ne 

of those aspects of the theory of formal languages, and the means 

of parsing them, which have been built upon in the design of the 

GENSAL language described in Chapter 3, and in the programming of 

its interpreter, described in Chapter 5. It will do this with 

particular reference to computer programming languages, which are 

the most commonly encountered class of artificial formaL 

Page 37 



CHAPTER 2: FORMAL LANGUAGES 

languages, and in this context will discuss the choice of 

programming language for the software development described in 

Chapter 5. The Chapter also considers the use of artificial 

formal languages in information work, and in particular in 

chemical information. 

No attempt will be made to give a comprehensive review of the 

subject of formal language theory, as many excellent such reviews 

exist, and will be referred to, and as far as possible the more 

mathematical aspects of the area will be avoided. 

2.1. DEFINITION AND CLASSIFICATION OF FORMAL LANGUAGES - -- --

The earliest work on the mathematical theory of languages, which 

74-was done in the late 1950's, is largely due to Noam Chomsky, 

78 who was attempting to find a means of modeLl ;ng natural 

languages such as English. His aim was to understand the 

mechanism by which it ;s possible to comprehend sentences never 

heard before, and to produce completely novel, but grammaticaLLy 

correct, sentences. 

For the purpose of his analysis Chomsky considered a language as 

being a set (finite or infinite) of sentences, each finite in 

length and constructed by concatenation out of a finite set of 

elements. These elements are termed the "terminal symbols" of the 

language, and might, in the case of English, be identified with 

the set of valid English words. 

Page 38 



CHAPTER 2: FORMAL LANGUAGES 

The grammar of a language he considered as a means for generating 

sentences in such a language. The grammar wilL generate aLL 

possibLe grammaticaLLy correct sentences in the Language, but no 

others. It specifies the symbols of language, and includes a set 

of rules, sometimes called "productions", or "rewriting rules" 

which specify the replacement of one group of symbols by another 

during the generation of a sentence: a grammaticalLy correct, or 

"weLL-formed" sentence in a language is one that can be generated 

by the grammar. 

Whilst a given grammar is only able to generate sentences in a 

single language, several different grammars may all generate the 

same language - such grammars are said to be eguivalent. 

Put more mathematicaLLy, a grammar G may be represented as a "4-

tupLe": 

is the set of "non-terminal symbols" or "variables" 

(descriptive terms or "metasymbols" representing elements of the 

sentence), and VT is the set of "terminal symbols". Both V
N 

and 

VT are called "aLphabets", and they are disjoint. Their union is 

symbolised V • 

. Strings, or "sentences", can be constructed over an aLphabet, and 

consist of concatenated sequences of elements of the alphabet, of 

arbitrary Length. The set of sentences over an alphabet V is 

Page 39 



CHAPTER 2: FORMAL LANGUAGES 

* symboLised V , and may incLude the nuLL string (which is of zero 

Length). The set of sentences over V, excLuding the nuLL string, 

is symboLised V+. 

P is a set of "productions" or "repLacement rules", which are of 

the form 

ex ---> 13 

where ex is a string in V+ and 13 a string in V*. 

If a production in P can be used to rewrite a string 0(1 as 

another string ex 2 then it is said that ex 1 directLy derives ex 2 

in grammar G. If the appLication of a series of productions in P 

enabLe ex 1 to be rewritten as 

derives ex in grammar G. 
m 

<Xm then it is said 

The grammar G is said to generate a language L(G), which 

of the set of sentences over VT (i.e. elements of * VT ). 

* only certain of the sentences in VT are grammatically 

that 

consists 

However, 

correct 

("well-formed"), and these are those of them that can be derived 

from S (which is a distinguished member of VH called the 

"sentence symboL" or "start symboL") in grammar G. 

Page 40 



CHAPTER 2: FORMAL LANGUAGES 

2.1.1. The Chomsky Hierarchy 

Grammars, and hence the languages which they generate, have been 

c lassifi ed by Chomsky 74 by imposing successively tighter 

restrictions on the form of the production rules in P. The above 

grammar, in which no restrictions are imposed is called a Type 0, 

or unrestricted grammar, and the languages it generates are 

called the recursively enumerable languages. 

A Type 1 grammar is obtained if it is required that the number of 

symbols on the right hand side of each production should be 

greater than or equal to the number of symbols on the left hand 

side. An alternative, and equivalent restriction is that the 

rules in P should be of the form 

and in * .. where 0(1 0( 2 are V , J3 1S 1n V+ , and A is in VN• This 

form of the restriction leads to the name context sensit i ve for 

this type of grammar, as it allows A to be replaced by J3 when it 

occurs in the context of 0( 1 and 0(2 • 

In Type 2 grammars, the left hand side of the production must be 

a single non-terminal symbol. The productions are therefore of 

the form 

A ---> J3 

Page 41 
----r 
\ 

~iij f:~lO \ 
UU1VG),SIT'i 

LIBRARY 1-----



CHAPTER 2: FORMAL LANGUAGES 

where A is an element of VN' and ~ a string in V*. Since A may be 

replaced by ~ independently of the context in which it occurs, 

this type of grammar is called context free. 

The most restricted type of grammar, Type 3, requires that all 

productions are of the form 

A ---> a B 

or 

A ---> 8 

where A and B are members of VN and a is a member of VT• Type 3 

grammars are called regular grammars. 

It is clear that these increasingly severe restrictions on the 

form of the productions mean that the types of grammar are 

arranged in a hierarchy: every Type 3 grammar is also Type 2, 

every Type 2 grammar is Type 1, and every Type 1 grammar is Type 

O. This is sometimes referred to as the Chomsky hierarchy. 

Many important and interesting properties can be shown for all 

these grammar types, 68-70, 72, 74, 77, 79-81 but detailed 

coverage of them is beyond the scope of this Thesis. 

Page 42 



CHAPTER 2: FORMAL LANGUAGES 

2.2. PARSING ~ CONTEXT-FREE LANGUAGES 

The relative simplicity of context-free grammars has allowed 

considerabLe progress to be made in the automatic syntactic 

analysis (parsing) of sentences in the Languages generated by 

them, whereas such anaLysis has proved highLy intractabLe for 

context-sensitive and unrestricted grammars. 

Unfortunately, despite initial hopes, context-free grammars have 

not proved adequate for the description of natural languages, but 

they have been extremely usefuL in the definition of artificial 

languages, in particular, programming languages. 

---------------------------------------------------------------
S 

/ \ 
/ \ 

A D 
/ \ \ 

/ \ \ 
a C 

/ \ 
/ \ 

B E 
/1\ \ 
/1\ \ 

b c d e 

---------------------------------------------------------------
Figure 2.1: Derivation tree for the sentence abcde in L(G

1
>. 

A sentence in a context-free language can be analysed in terms of 

a grammar which generates it using a derivation tree or parse 

diagram in which the root vertex of the tree is S, its leaves are 

all elements of VT, and its interior vertices are aLL eLements of 

Page 43 



CHAPTER 2: FORMAL LANGUAGES 

VN• Consider the language L(G1> generated by grammar G1 = (VT, 

VN, P, S> where 

VT = { a, b, c, d, e } 

VN = { A, B, C, D, E } 

P = { S --> AD 

A --> aC 

B --> bcd 

C --> BE 

0 --> 

E --> e } 

The derivation tree for the sentence 

Figure 2.1. 

abcde is shown in 

It will be seen that the symbols of the sentence can be followed 

around the leaves of the tree from left to right, and that each 

branch of the tree corresponds to an appropriate production in P. 

If a sentence has more than one derivation tree, then it is 

ambiguous -- grammars which generate only sentences with unique 

derivation trees are unambiguous grammars, whereas other grammars 

are ambiguous. Since it is likely to be essential for an 

artificial language to have an unambiguous grammar, this point is 

very important. 

Even when there is a unique derivation tree, it is possible to 

obtain it by applying the productions in different sequences. The 

sequence may, however, be standardised by stipulating that at 

Page 44 



CHAPTER 2: FORMAL LANGUAGES 

each derivation the rightmost non-terminaL symboL shouLd be 

repLaced in accordance with an appropriate production. The 

derivation sequence corresponding to Figure 2.1 is therefore: 

S --> AD --> A --> aC --> aBE --> aBe --> abcde 

2.2.1. LR Parsing 

In parsing a sentence, it is necessary to start from the string 

of terminaL symboLs (i.e. the Leaves of the tree), and to 

reconstruct the derivation tree, Leading eventuaLLy back to S, 

its root. This is a process of successiveLy reducing substrings 

of terminaL and non-terminaL symboLs in accordance with the 

productions. 

At each step in the parse, the derivation required is, according 

to the above stipuLation, one in which the rightmost non-terminaL 

symboL is repLaced. This corresponds, in the parsing direction, 

to reducing the Leftmost set of adjacent Leaves of the tree 

(which wiLL onLy aLL be in VT at the start of the parse) that 

form a compLete branch. Since the parsing thus operates from left 

to right along the original string of terminal symbols, it is 

called a left-right parse. 

Knuth 82 has defined a subclass of context-free grammars, called 

LR(k) grammars, for which this parsing method will work, looking 

ahead a maximum of k symbols to identify with certainty each 

Page 45 



CHAPTER 2: FORMAL LANGUAGES 

production in the derivation. It may aLso be shown that aLL LRCk) 

grammars are unambiguous, and that there is an aLgorithm to 

determine whether or not a context-free grammar is LRCk) for a 

given k. 

The derivation tree is reconstructed from the bottom upwards, and 

LR(k) grammars are therefore sometimes caLLed bottom-up grammars, 

and the parsing method bottom-up parsing. 

2.2.2. LL Parsing 

Lewis and Stearns 83 have defined another subcLass of context­

free grammars, the LLCk) grammars, which aLLow an even simpLer 

approach to the parsing of sentences. Each production in the 

derivation can be identified with certainty by inspecting the 

sentence from its beginning (Left) end to the k-th symboL beyond 

the beginning of the production. 

In this type of parse, the derivation tree is being reconstructed 

from the top downwards, and hence LLCk) grammars are called top­

~ grammars, and the parsing method top-down parsing, or 

parsing by recursive descent. 

At the start of a parse based on an LLCk) grammar, it is assumed 

that a production having S as its Left-hand side ;s required. 

Which of the various productions in P having S as left-hand side 

is appropriate can, for an LL(k) grammar, be determined by 

Page 46 



CHAPTER 2: FORMAL LANGUAGES 

looking at a maximum of k symboLs. 

Rosenkrantz and Stearns 84 have shown that it is possible to 

determine if a grammar is LLCk) for a given k, that all LLCk) 

grammars are unambiguous, and that the LLCk) grammars are a 

subset of the LRCk) grammars. In addition they have shown that 

provided there are no productions with an empty string as right-

hand side, it is possible to construct for a language generated 

by an LLCk) grammar an equivalent LLCk) grammar in Greibach 

Normal Form Ci.e. where the right-hand side of each production 

starts with a terminal symbol). 85 Furthermore, if every 

production with a given non-terminal as its left-hand side has a 

different terminal as the first symbol on its right-hand side, 

then the grammar is LL(1), and is a member of the class of simple 

deterministic grammars described by Koranjak and Hopcroft. 86 No 

look-ahead is required in the parsing of sentences in languages 

generated by such grammars, and the production involved can be 

determined at each step simply by examining the next symbol in 

the sentence. Some properties of deterministic context-free 

languages have been discussed by Ginsburg and Greibach. 79 

2.2.3. Top-Down ~ Bottom-Up Parsing 

The properties of LL(1) and LR(1) grammars have recently been 

compared by Beatty 87 88 
and Knuth has compared the particular 

advantages of top-down and bottom up parsers. Because aLL LL(k) 

grammars are also LRCk), any language that can be parsed top-down 

Page 47 



CHAPTER 2: FORMAL LANGUAGES 

can aLso be parsed bottom-up, but the reverse is not true, making 

bottom-up parsing more generaLLy appLicabLe. The chief advantage 

of top-down analysis is that it is known which production is 

being used after examining onLy k terminaL symboLs, and this 

enabLes some degree of prediction on the part of the parser as to 

which symboLs wiLL be encountered next. This is especiaLLy 

helpful for the semantic analysis of the sentence, and the design 

of modern programming languages has taken particular note of the 

advantages of LL(k) grammars with a Low value for k. 

More detaiLed discussion of parsing methods for context-free 

Languages may be found in a number of textbooks and reviews. 71, 

80, 81, 89 

2.3. PROGRAMMING LANGUAGES 

The earliest deveLopments of high-leveL computer programing 

Languages took pLace in isoLation from the work of Chomsky and 

others on formaL Languages, and a comprehensive survey of their 

90 
history has been given by Sammet. Fortran was the first high-

level language to gain wide acceptance, and it is stilL the the 

most commonLy-used Language for scientific appLications. 

Attempts have been made to formalise the grammar of Fortran 91 

but on account of the rigid field format for its statements, and 

the numerous minor restrictions on various constructs, these have 

been of Limited success. The Language was designed for speed of 

Page 48 



CHAPTER 2: FORMAL LANGUAGES 

execution, rather than simpLicity of syntax anaLysis. 

The ALGOrithmic Language Algol 60 was designed by an 

international committee in the Late 1950's and earLy 1960's 92, 

93 and marked a turning point in programming Language design. Its 

importance lies more in the manner of its definition, which has 

had a major infLuence on the design and definition of more recent 

languages incLuding AlgoL 68, 94 PascaL 95 and Ada, 96 than in 

its actual use, which has been comparatively limited, at Least so 

far as computer impLementations are concerned, though it is the 

standard publication language for algorithms. 

2.3.1. Syntax Specification 

The original definition of Algol 60 92 first introduced the so-

caLled Backus-Naur metalanguage for the formal specification of 

its syntax. An example of a grammatical rule of Algol 60 

expression in Backus-Naur Form (BNF) 97 is 

<conditional statement> ::= if <boo lean expression> then 

<statement> else <statement> if <boolean expression> then 

<statement> 

This defines the syntactic category "conditionaL statement" as 

being one of two aLternatives: either the word "u" foLLowed by a 

Page 49 



CHAPTER 2: FORMAL LANGUAGES 

"boolean expression" followed by the word "then" followed by a 

"statement" followed by the word "else" followed by another 

"statement", or alternatively the word "if" followed by a 

"boolean expression", followed by the word "then" followed by a 

"statement". The syntactic categories "boo lean expression" and 

"statement" are defined by other ruLes in the grammar. 

The grammatical rules in a BNF grammar are expressed in a 

"metaLanguage", which uses certain symbols that do not occur in 

the Language being defined. The symboL ::= means "is defined to 

be", and means "or". Angle brackets are used to enclose the 

names of syntactic categories, which thus themselves form symbols 

of the metaLanguage. The words not so enclosed (if, then, etc.) 

are of course, the actual symbols of Algol 60. 

In 1962 Ginsburg and Rice 98 proved that Algol-like languages 

defined using a BNF metalanguage are equivalent to the context­

free Languages (Type 2) defined by Chomsky which aLLowed the 

rigorous mathematical properties of context-free languages to be 

applied to ALgol and other programming languages. In the BNF 

metaLanguage, the syntactic categories can be identified with the 

non-terminal symbols of Chomsky Type 2 grammars and the actuaL 

symboLs of the language being defined with the terminaL symbols. 

For a programming language such as Algol 60, the start symboL is 

identified with the syntactic category "program". The various 

aLternatives separated by the symboL, correspond to the 

different productions having the same Left-hand side. 

Page 50 



CHAPTER 2: FORMAL LANGUAGES 

The only difference between grammar specification using BNF or a 

4-tuple is in the form of its representation. Other methods for 

syntax specification have aLso been suggested, incLuding a 

tabuLar format 99 and the use of "syntax diagrams". 100 These 

latter represent the BNF rules in diagrammatic form, with 

separate branches for each aLternative, and it is normalLy 

possibLe to combine severaL BNF ruLes into a single diagram. 

Wirth 101 has aLso proposed a extended BNF formalism. 

2.3.2. Syntactic Analysis 

The purpose of a high-LeveL programming language is to allow a 

programmer to give instructions to a computer in a form which 

remains reasonabLy intelLigibLe to himself, or to another 

programmer. Before the computer can actuaLly execute the 

instructions, however, it must convert them into a form more 

closely related to its own internaL architecture, and this 

of conversion is called compilation. 80, 81 Three process 

principal operations are involved in compilation: lexical 

analysis (in which the string of characters forming the program 

in the high Level source language is split up to identify the 

separate tokens or terminaL symboLs of the language), syntax 

analysis (in which the grammatical reLationships between the 

tokens are identified, in accordance with the ruLes of the 

grammar) and code generation (in which the machine Level object 

language is generated). 

Page 51 



CHAPTER 2: FORMAL LANGUAGES 

The process of syntax analysis is based on the same principles of 

parsing as are described in general terms in Section 2.2 above, 

and is obviously much simpler for a programming language with an 

appropriately simple grammar. In the design of Algol 60 and the 

languages based on it particular attention has been paid to the 

need for simpLicity of syntax analysis. Not only does this 

simpLify the complexity of the program required to perform the 

syntax analysis, but a simple grammar also makes it much easier 

for the programmer to write elegant and error-free programs. 

Irons 102 described a bottom-up syntax analyser for AlgoL 60 in 

1961, but the first top-down syntax analyzer for a programming 
103 language was written for Cobol, and described by Conway in 

1963. Numerous textbooks and reviews consider the probLems of 

compiler writing and syntax analysis for a variety of programming 

L 
71, 80, 81, 104-110 anguages. 

2.3.3. The PascaL Language 

Pascal is a high LeveL language based on ALgoL 60, and was 

designed by NickLaus Wirth, who pubLished the first description 

of it in 1970, 111 with a revised version in 1975. 95 A committee 

of the InternationaL Standards Organisation convened by A.M. 

Addyman has drafted a Standard definition for the Language, which 

has been published for comments. 112, 113 The language has become 

extremeLy popuLar, particularly in academic circles, and has been 

the subject of many textbooks. 114-117 

Page 52 



CHAPTER 2: FORMAL LANGUAGES 

Pascal was designed especially for compilation using top-down (or 

"recursive descent") syntax analysis, and Wirth described the 

first compiler in 1971. 118 The first version of this was written 

in Pascal itself, and manuaLLy translated into a lower level 

language. Each subsequent version of the compiler could then also 

be written in Pascal, and compiled by the previous version, a 

procedure known as "boot-strapping". 

Pascal has been enthusiastically promoted by many authors 119-122 

and possibly partly as a result of this has also attracted 

considerable criticism, 123-128 some of it quite vitriolic. 123-

126 Other authors, whiLst generally weLcoming the Language, have 

129 130 made suggestions for its enhancement, , and Wirth himself 

has published his own retrospective assessment. 131 

In his paper, Wirth discusses the advantages Pascal has for the 

writing of reliable software, as the design of Pascal permits a 

great deal of checking on the self-consistency of the program to 

be done by the compiler, and thus a high proportion of program 

errors can be detected before execution begins. Its highly 

structured design also makes its suitable as a teaching language, 

and this has been its principal area of application to date. 

Conradi 124 has however pointed out some of its disadvantages as 

a systems programming language, particularly with its lack of 

flexibility in matters such as the absence of dynamic arrays 

(Pascal, unlike for exampLe Algol 68, requires that array bounds 

be specified at compile time), though Wirth's paper points out 

that it is precisely these limitations on fLexibiLity that give 

Page 53 



CHAPTER 2: FORMAL LANGUAGES 

Pascal its enhanced security. 

Despite its acknowledged weaknesses, Welsh, Sneeringer and Hoare 

have expressed 

"the belief that Pascal is at the present 

time the best language in the public domain 

for the purposes of systems programming and 

f 'l '" 126 so tware ,mp ementat,on • 

2.3.4. The Ada Language 

Pascal was used as the basis for all the tenders to the U.S. 

Department of Defence for the design of a new programming 

language to be used for all their software development. 132 

However, the selected language, Ada, 96 has led to fiercer even 

th P l 133-136 Much of the cr,'t,'c,'sm has controversy an asca. 

attacked the increased flexibility of Ada over Pascal, with many 

additional features not present in the older language, which, it 

critics claim, make it less secure, and programs written in it 

unreliable. In view of the likely military applications of Ada, 

echoes of this discussion have reached a public forum. 137 

Page 54 



CHAPTER 2: FORMAL LANGUAGES 

2.3.5. Choice £i Language for Software Development 

In choosing a programming language for the practical work 

described in Chapter 5 of this Thesis a number of factors were 

considered. A modern, structured language was required, with good 

program readability and portability, since the work is of 

substantial interest to the chemical and patent documentation 

industries. In addition, the programs required would operate 

interactively, and would therefore need to be developed on the 

Sheffield University Prime computer system, which restricted the 

choice of language to those for which Prime compilers were 

available. 

Whilst Fortran would have provided the greatest portability, it 

was felt that it was insufficiently weLL-structured, the same 

reservation applying to Basic. ImpLementations of both AlgoL 68 

and Pascal were available, but onLy the latter was actively 

supported by Computing Services staff, and was therefore the 

language chosen. 

Initially a compiler developed at the University of Hull was 

used, but it was Later repLaced by a much more powerful one 

written by staff of Sheffield University Computing Services, 138 

which generates segmented object code, and allows much bigger 

programs and easier interface with routines in other languages, 

and contains faciLities for separate compilation of Procedures 

and Functions. It was also found that the easy availability of 

the compiler's writers was extremely usefuL on encountering 

Page 55 



CHAPTER 2: FORMAL LANGUAGES 

problems in software development; none of these advantages would 

have been available with Algol 68. 

Nevertheless, a number of disadvantages were encountered with 

Pascal, of which the most serious was in the use of external 

files, particularly as Pascal does not permit programs to append 

data to files that already exist, and neither does it implement 

direct-access files. 

2.4. FORMAL LANGUAGE SEMANTICS 

Chomsky 78 has pointed out that there may be sentences in a 

language which, whilst being grammatically correct, make no 

sense. An English example he gives is the sentence 

"Colourless green ideas sleep furiously." 

Similar problems may be encountered in programming and other 

formal languages, and though methods for specifying the syntax of 

a language (at least for certain classes of language) are now 

well-established, comparatively little success has so far been 

achieved in formally specifying the semantics of languages. 

Several approaches have been used, and have been reviewed by a 

139-141. 142 number of authors. Hoare and W,rth have attempted to 

define the semantics of Pascal rigidly, using an axiom-based 

method developed by Hoare. 143 

Page 56 



CHAPTER 2: FORMAL LANGUAGES 

The division between the syntax and semantics of a programming 

language is not a sharp one, and not all authors agree on where 

it lies. Essentially, syntax is concerned only with those matters 

that can generally be defined with reference to the sequence of 

symbols in sentences of the language; semantics is concerned with 

everything else. 

109 Wirth has pointed out that even where the syntax of formal 

languages is context-free, its semantics may be context­

dependent. In programming languages, semantics is concerned with 

such matters as type compatability in expressions and 

assignments. For example the Pascal expression 

5 + 'B' 

is valid syntactically but not semantically as the integer 

constant 5 is not of the same type as the char constant 'B'. had 

this expression been the controlling expression in a while loop, 

then additionally its resultant type would have had to be 

boolean: this exempLifies the context-dependency of formaL 

language semantics - even when the syntax is context-free - which 

is one of the difficulties in the way of the achievement of 

formal semantics. 

Ultimately, it is the implementation of a programming language in 

a compiLer that defines its semantics; in written descriptions of 

the language the semantics is normally defined informaLly. In any 

case, it is often useful to leave certain aspects of the 

Page 57 



CHAPTER 2: FORMAL LANGUAGES 

semantics implementation-dependent as the most appropriate way of 

implementing them may depend on the machine architecture in 

question. The type char and the value of maxint are two aspects 

of Pascal deliberately left undefined for this reason. 

~ INTERACTIVE LANGUAGES 

For most programming languages, the operation of compilation 

requires no interaction with the programmer, and is often carried 

out in batch mode. Once compiled, the object program produced by 

the compiler can be executed repeatedly on different data, 

without recompilation. 

In such a system the compiler reports any error (syntactic or 

semantic) that it encounters, and then attempts to continue to 

process the source program and to report any further errors. 

Obviously it is no longer practicable to continue to generate 

object code. This has the advantage that the programmer has all 

the errors in his program reported together, and can correct them 

all before attempting to recompile it, but has the disadvantage 

that the compiler may not successfully recover from an error it 

encounters, and may then report large numbers of spurious errors. 

During the present work, the author had over two hundred errors 

reported after a compilation, all of which were corrected by the 

addition of a single semicolon near the top of the program. 

For certain applications, compilation may take place 

Page 58 



CHAPTER 2: FORMAL LANGUAGES 

interactively. The programmer types his program into the computer 

line by line, with the compiler reporting each error as soon as 

it is encountered, and the programmer correcting it immediately. 

Languages compiled in this way are usually specially designed for 

the purpose, and have been discussed by Kupka and Wilsing. 144 

The interactive compilers used for such languages are normally 

called "interpreters" to distinguish them from batch-mode 

compilers, and the special problems of writing them have been 

105 discussed by Brown. 

These authors point out that systems based on interactive 

compilation actually require three different languages the 

programming language itself, a Command language which controls 

such matters as the saving of completed programs, execution etc., 

and an Edit language which allows interactive editing of the 

program. This latter is especially useful for correcting errors 

which are only detected by the compiler some time after they have 

occurred. 

Both the Edit and Command languages are normally very simple, 

each "sentence" consisting only of a single terminal symbol (e.g. 

a Command) followed by one or two arguments such as a filename or 

a line number. Their syntactic analysis is trivial. 

The language most commonly implemented in this fashion is Basic 

145, 146 though the approach has also been applied, at least for 

teaching purposes, to Fortran, 147 Algol 148 and Pascal, 149, 150 

in the latter cases only a subset of the language being 

Page 59 



CHAPTER 2: FORMAL LANGUAGES 

implemented. In the case of higher-level programming languages, 

certain problems may be encountered with the need to recompile 

the entire program every time a change is made by the Editor, and 

this could be time-consuming for large programs. It could however 

be avoided by a process of incremental compilation, as discussed 

by Atkinson et al., 151 but for teaching purposes, when the 

programs are normally short, repeated recompilation is probably 

the better approach. 

2.6. FORMAL LANGUAGES IN CHEMISTRY AND INFORMATION WORK - - - --

Formal language theory has been applied in a number of areas in 

chemistry and information work: at the simplest level the 

interactive search languages used in online bibliographic 

l 152, 153 h h' h retrieva systems ave grammars w lC can be described 

by the methods developed by Chomsky. For the most part, they are 

Type 3 (Regular) languages, with trivial syntax analysis. 

Some more sophisticated query Languages have also been deveLoped 

for specific applications, such as MQL (Medical Query Language) 

154 which is designed to aLlow input of queries to a database in 

something approximating to natural language. 

Specialised descriptive languages have been developed for use 

with chemical synthesis planning programs. In these programs the 

computer, upon being presented with a "target" chemical 

structure, ;s able by use of a database of chemical reactions 

Page 60 



CHAPTER 2: FORMAL LANGUAGES 

called transforms to suggest possible synthesis routes leading to 

the target. 

Formal languages have been developed for the description of the 

transforms, two such being CHMTRN 155 used by the LHASA (Logic 

and Heuristics AppLied to Synthetic Analysis) 156, 157 program, 

and ALCHEM (A Language for CHEMistry) 158 used by the SECS 

(Simulation and Evaluation of ChemicaL Synthesis) 159, 160 

program, which is historically an offshoot of LHASA. Figure 2.2 

illustrates the description of a transform using ALCHEM. Each 

transform contains information which enables the computer to 

decide whether or not it is applicable to the synthesis of a 

particular target molecule. 

Both languages have been designed to represent the transform in a 

manner which remains reasonably intelligible to a chemist, yet is 

amenable to computer analysis, and "compiler" programs have been 

written for them. Both have a fairly strict line format, and 

their structure is more akin to that of Fortran than those of 

more modern languages such as ALgol and its descendents; their 

grammars are not formalised by production ruLes or syntax 

diagrams. 

Line notations used for the representation of chemical structures 

as strings of alphanumeric symbols can be regarded as formal 

languages, and some success has been achieved in writing a 

. t . f h W' . 161 L' context-sens1 1ve grammar or t e 1swesser notat10n. 1n 

Page 61 



CHAPTER 2: FORMAL LANGUAGES 

1 TYPE PATTERN 
2 ; PROXIMITY GUIDED EPOXIDATION 
3 ; ALCOHOL GROUP CIS TO EPOXIDE ON RING 
4 ; REF: E. COLVIN, J CHEM SOC PERKIN 11989 (1973) 
5 : CHEM COMM 858 (1971), HOUSE P. 305 
6 EPOX 
7 O-C-C-@,I<I, 3, 2>1 
8 PRIORITY 0 
9 CHARACTER ALTERS GROUP 

10; CHECK IF STEREOCHEMISTRY IS IMPORTANT 
11 IF STEREOCENTER IS CARBON OFFPATH THEN; IT IS IMPORTANT 
12 BEGIN IF ALCOHOL IS WITHIN GAMMA TO ATOM 2 (1) THEN 
13 BEGIN IF BOND 1 AND (1) ARE CIS THEN ADD SO 
14 ELSE KILL ;EPOXIDATION WOULD HAVE WRONG STEREOCHEM 
15 IF (I) IS ON RING OF SIZE 5-6 THEN ADD SO 
16 DONE 
17 IF NITRILE IS EPSILON TO ATOM 2 (2) THEN 
18 BEGIN IF BOND 1 AND (2) ARE TRANS THEN ADD 30 
19 ELSE SUBT 30 ;EPOXIDE TRANS TO NITRILE IS FAVORED 
20 DONE 
21 DONE 
22 CONDITIONS SLIGHTLY OXIDIZING 
23 DELETE ATOM 1 
24 MAKE BOND FROM ATOM 2 TO ATOM 3 
25 END 

26 COMPLETE 

---------------------------------------------------------------
Figure 2.2: ALCHEM description of a chemical transform (from 

Wipke et al. 160) 

et al. have also written a compiler which performs automatic 

162 syntax analysis on their Separate Feature Linear Notation 

(SEFLIN). 163 

Formal language theory has also been appLied in chemistry outside 

the area of artificiaL Language design. Fehder and Barnett 164 

suggested in 1965 that the principLes of syntactic analysis could 

be applied to the anaLysis of moLecuLar formulae, providing a 

means for determining the vaLidity (grammaticaL correctness) of a 

given molecular formula, and other authors have followed up this 

h 165-167 S' 'l l" approac • lml ar app lcatlons have been made in the 
, 168-170 analysls of nomenclature. 

Page 62 



CHAPTER 2: FORMAL LANGUAGES 

Rankin and Tauber 171, 172 have applied formal language theory to 

the full topological representation of chemical structures, 

developing generative grammars based on production rules for 

certain classes of molecule; such grammars are also discussed by 

Whitlock. 173 

In their second paper 171 Tauber and Rankin suggested that sets 

of grammar rules could be used for compact storage of groups of 

related structures, such as leucine esters, different rules being 

used for the generation of the constant and variabLe parts of the 

structure. A simiLar approach to the storage of generic 

structures was later taken by Krishnamurthy and Lynch. 15, 16 

67 174 More recent work by Welford' has extended the range of 

structure types that can be generated and recognised by formaL 

grammars, and has formed a cornerstone of the research on generic 

" Sh ff" ld U" " 174-177 f h" structure representatlon at e le nlverslty 0 w lch 

this Thesis describes a part. 

Page 63 



CHAPTER 3 

THE INPUT LANGUAGE 

"My language is plain." 

Bret Harte (1836-1902) 

Chapter 1 has surveyed the various types of expression found in 

generic structure descriptions in patent specifications and 

abstracts, and has outlined the reasons for the development of a 

special input notation, or language, for the description of such 

structures which will be intelligible to a chemist, information 

scientist or patent agent, yet sufficiently formalised for 

automatic analysis by computer, using the principles discussed in 

Chapter 2. 

The language described in this Chapter, GENSAL, may be used to 

represent a generic structure unambiguously (in order that an 

Page 64 



CHAPTER 3: THE INPUT LANGUAGE 

unambiguous internal representation may be generated from it), 

and it has been designed to conform as far as possible to the 

type of description commonly found in chemical patent 

specifications. It is thus a formalised version of the generic 

structure description of patent specifications and abstracts: 

aspects of its formal grammar are described in Section 3.11., and 

as with many modern programming languages the grammar of GENSAL 

is expressed as a series of syntax diagrams, shown in Appendix 1. 

Throughout the text of this thesis, the syntactic metasymbols of 

GENSAL used as headings for the syntax diagrams are shown 

underlined. 

3.1. GENERIC STRUCTURE DESCRIPTION USING GENSAL 

The basic layout of generic structure descriptions in patent 

specifications and abstracts, as discussed in Section 1.2., is 

retained in GENSAL, one sentence of which describes one generic 

structure. Syntax Diagram 21 shows that the overall description 

of a structure has an introductory heading part, containing a 

reference number, and a structure diagra. for the constant part 

of the structure which is followed by a series of statements, 

separated by semicolons; the sentence ends with a full stop. 

Figure 3.1 shows a simpLe generic structure and its GENSAL 

representation which, as 

inteLLigibLe to a chemist. 

can be seen, remains readily 

The plethora of symbols used for structural and multiplicative 

Page 65 



CHAPTER 3: THE INPUT LANGUAGE 

---------------------------------------------------------------
HFREE-YEXy M GENERIC STRUCTURE 

GENSAL NOTATION 

INPUT 12345 
SD 

WHERE R IS METHYL~ ETHYL OR 
lSOPROPYL~ AND X IS HALOGEN, 

I 
I 
I 
I 
I 
I 
I 
I 

RI = METHYL / ETHYL / ISOPROPYL ; I 
R2 .. HALOGEN. I 

I ¥_--

------------~--------------------------------------------------
Figure 3.1 

variables is reduced to two standard series: R1, R2, R3 etc. for 

structural variables (called substituents in GENSAL), and M1, M2, 

M3 etc. for multiplicative variables (called multipliers), as 

shown in Syntax Diagrams 3 and 4. 

Variables in a GENSAL sentence must be introduced ("declared"), 

normally by appearing in a structure diagram, before being given 

values ("defined") in terms of chemical nature and position for 

substituents, and of selectors (giving integer ranges) for 

multipliers. 

The definition of substituents and multipliers takes place in 

Page 66 



CHAPTER 3: THE INPUT LANGUAGE 

assignment statements, which contain faciLities for assigning the 

same set of aLternatives to groups of substituents or muLtipLiers 

simuLtaneousLy (with both independent and non-independent 

seLection of the aLternative vaLues) or for assigning to 

substituent combinations (forming an extra ring). The substituent 

vaLue may be given in severaL different ways, and there is scope 

for indicating the position at which the substituent is attached, 

and any further substitution on it, down to any LeveL. 

ConditionaL definitions are indicaed by IF and RESTRICT 

statements. The former aLLow the use of one of two aLternative 

subordinate statements according to whether a condition invoLving 

substituents and muLtipLiers aLready defined is TRUE or FALSE. 

The Latter impose such conditions on the aLternatives given in 

earLier assignment statements, aLLowing onLy those combinations 

of alternatives that result in the condition being TRUE. 

The next nine Sections of this Chapter give a detaiLed 

description of the language, allowing a fuLL understanding of the 

GENSAL notations for the actual patent examples shown with the 

Derwent Abstracts of the original specifications in Figures 3.2 

to 3.11. A comprehensive instruction manual for GENSAL, with 

further examples, has been prepared by Hill. 178 

Page 67 



CHAPTER 3: THE INPUT LANGUAGE 

----~~~7:----:~~~--------:;::~i~~~:7.~~;~~~~~-----------------
Bf[CHAM GROUP LTD ~GII20'3--6'" •• 

~SO~;'~.~:j~g:~~.~;OC:>"'2! (/$.017'1 A6lk·311'2 C07d· I::P=-Rf:=P=-=A=-.:-:AT::rO=N:-------------I 
~~~[:;:;,!_~,:::!:~:::::.-clo-Yftdec.7.. efttl ..,..,.. .. ---nrtf-

"-Laetam duly'. of formwa (I) '1" n.w: 

i~coo~. (I) 

Il, 

'(R, h H or I-<le alkyl; 
and RI I. H •• caHoft or an •• t ..... lormlft. IP·). 

USES -nr .,. "_lactama •• lnhtbUor ... p. u •• I",1 for u •• ID con­
junction with p.niclllln. and clphaloapori. •• to .h' •• .!.:L!l!!­
&.!..!l'5 !!'ill.~!!.1 ,Hed. 
SPF:CIF'ICAI4LY C1.AIMED 
·-nr;;-t,;r. RI • H .n~. H. Lt. Na, K. Ca/I. M,/l or 
Nit.. 

INFur 201)676 

SD 

RI • 11 I ALKYL < 1-4> ; 

fty ~:wf.~c:'R .• (t, " ....... IP.) 
(1; Ra. ut ... IP' Hydroly.", 11,: Ra.H) 

(1) 
(11) CH.,e',eHO • 

-;-.1,1:", ~ (I) 

(11) ma, b. obtd. {rom cla.ulule acid by addln. It .lIh N. 
N.dh.,ethyllonnarn,dl dll"ethylacltal to hydroqutnon. ,_ 
DMF. 

6015711 OSlOI )676+ 

R2 • 11 I 'CATION' I 'eSTER-FORMING GROUP: • 

---------------------------------------------------------------
Figure 3.2 

3.2. STRUCTURE DIAGRAM INPUT 

As a whole, GENSAL is intended to be independent of any given 

computer system, and its high degree of readability makes it 

suitable as a means of describing generic structures manualLy, 

just as the programming Language ALgoL is often used for the 

manual description of algorithms. 

NevertheLess, certain aspects of GENSAL are intended to be 

implementation-dependent, and the most important of these are the 

structure diagrams which form an integraL part of the Language. 

Page 68 



CHAPTER 3: THE INPUT LANGUAGE 

Any suitabLy-modified chemicaL structure graphics system might be 

used for their input, with a routine to convert its output into 

the connection tabLe format used in the internaL representation 

of the structure. 

In the implementation described in Chapter 5 a modification of 

179 the program developed by FeLdmann and others and used in the 

CrystaL Structure Search and RetrievaL (CSSR) 180 and NationaL 

Institutes of Health I Environmental Protection Agency (NIH/EPA) 

181 substructure search systems, is being used. This is far from 

ideaL, but has the advantages that it was provided free, and uses 

standard Lineprinter characters in its dispLay routines, and thus 

does not require any special hardware. 

It is possible that an operationaL system might use a micro-

computer as an inteLLigent terminaL for the mainframe on which 

the bulk of the structure processing and searching wouLd be 

carried out, and that the microcomputer wouLd handLe the chemicaL 

structure graphics locaLLy, transmitting and receiving connection 

tabLes for each diagram. 

A structure graphics system used with GENSAL requires certain 

features not found in aLL such systems. There must be a faciLity 

for defining nodes of the diagram as substituents (with the 

correct syntax) as weLL as as atoms of different types, and aLso 

a faciLity for appLying muLtipLiers (with the correct syntax) to 

nodes defined as substituents. 

Page 69 



CHAPTER 3: THE INPUT LANGUAGE 

It must be possible to show that a particular node is connected 

back to a previously-defined part of the structure: in the 

modified Feldmann program used for the present work, this is 

achieved by attaching such an "apical" node to a dummy node, 

whose atomic type is given as "*". 

It must be possible to show that a particular node is attached to 

one of the other nodes in the diagram, without specifying which. 

In patent specifications, and general chemists' usage, this is 

usually achieved by the convention of a bond drawn into the 

centre of a ring, but in the modified Feldmann program it is done 

by attaching the variably-positioned node to a dummy node of 

atomic type "#", which indicates that it may be attached to any 

other node in the diagram with sufficient spare valencies. If it 

is desired to restrict the available positions to, for example, 

those in a particular ring, this should be done by using a GENSAL 

position set (Section 3.6 below) elsewhere in the structure 

description. 

Only nodes defined as substituents may have dummy "variable­

position" nodes attached to them. 

Page 70 



CHAPTER 3: THE INPUT LANGUAGE 

615011/ » -- -.0,------ - 'Nll,".04.n DIS : 81 .... 1-01.11·01. II -rll. 1 
110 

tNT[U Rn COR' ·US " 163·051 
n .04 .n ·U$-79'1Xl17 (" .01,7"1} U,11!. · 31 / ., C07d ·:nln. 1----:--:---- --- -------------4 

5.S-04 :phe"yl.h.,dofltoln thfl.,. , ~ UN"'" _ onllc:on ... vl.,rttt. WID£k DISCLOSU RE 
enll :.,U .. ,Ic •• ndon'lorrhyth",6ca (JJ .n Itahd 10 be n~ .. ' .... hu\ f_l R. I, al.a C CI,. Cllr l' 

Cl, . Ph , Mt.,HeH" . CIlO. PhOC I-!, . PhC II &C It . I.fu,y' . 

I-H-,-.-.-.. -.-,.-.-,-,-,.-.-. -.,:-,:-.-",,-.,:-,"'('", )"'.-... --:-':-h.-,'-, -,-d-'.--.-."'.-.-. '-od--f~b.t ~~l ~~~~ :h~(~r ~ ~I ~ ~.~ I~'n ~:l. I~) 'RI: I~t.! ~ ~DC:?gt~~\.I ; 
b ... Nit., 1.4C alkyl baUd. ql1At . ult, and N,oxld •• Ire and (d) R. i , ahe R, C ,lI t • p ), r idy l . p y r ld v lmt:lh yl . pyridyl N· 
ft'w : odde . , l h, r e . idue of .ny N- I ubll d .- ' ,rd no aCid {thl". . ub. 

ItH ue,,1 bei na I pr ote c:tina RP. r "mav. blt> by hydrolenol.,. i a 
(R is H or . CHR1,XRli or h ydroly. i a ), th e ru ldu.1! Q{ a " N,N-dlp (t -SC)a lkylp or 

~ 'i ~' ~ o~r S~ · 7C alkyl; 1~~;):l~~!~'(C-,~i:~~~i~t, ~~ ::;~ ~~~~:R~~i~7~!'~0~~I . (I) 
R.. h COR.: and 1· le al koxy. P h CH,O. PhO or O(C H,)nNR , R.: _h.,e It i , I · 
R..1I the ae rl r .. idue of 5 and R, and R, a re I -se al kyl or NR,R, 11 a hatarocyclic 
• DaturaUy occurrlftl pro- Ip · 

tal" amino acid : SPECIFlCA LLY CLA !MF.D 
provide d that ona R mut b. olhn th .. H). } -IN,N.bim~'hylg l~lCymelhyt)diphenylhyduloln (11) 
USE/ ADVANTAGE and I u melhanuul phona h and .. licylale . 

ml~~' .• ~:,:.~ta ~::~!~:~t:~n~~~i~P~I:r~~~a~:: c·;:~~~(~{~~:. P R~.)~~~;~0hydantoln (m) I . eithn (iut truted ..... it h 
Ireatel' . olub illly and enha nced I,ablllly ..... ith out unde . irab le R .CHX and then .. crl a l e d with a rea c t i ve der lv . of R. COOH , 
~~~y.t~e:;"~ ~: ." la 100 · 1 0 0 ml· da lly in man, lO-lOO ml · bl;~i8 converted to aNa. , K. CA or MI de r l.-. a nd;::: Ji

o
'
ss 

+ I 

HlPliT 41&3058 

so 

@{/~~ . 
~''C~ 

o 

R5 - 11 / SO 
TH- R3- R2 
RI 

RI H / ALKYL < 1-7> 
R2 SO 

R3 SO 

-C-R4 
11 
o 
-0- / 

\ 

SD -S-
Rq 'ACYL RESIDUE OF NATURALLY OCCURRING 

PROTEIN AMINO ACID' ; 

RESTRICT <1> R5 <> H • 

---------------------------------------------------------------
Figure 3.3 

~ SIMPLE ASSIGNMENT STATEMENTS 

Assignment statements express the definition of a substituent or 

muLtieLier. For both types of variabLe, the substituents or 

muLtieLiers being defined are shown on the Left-hand side of an 

assignment oeerator (normaLLy "="), and the possible values on 

Page 71 



CHAPTER 3: THE INPUT LANGUAGE 

the right-hand side. 

i!Ol~a/ )J .1Il, I{(cnov. all ·P,' ·[ 1I . 1 
IUC~I.MGIOU'I IO 'Cl 2013-66' •• 

,,0 .. ,.·Cl OOJJ10 1+00.11'1 (IS 0I.1f) C01d·fOIIO' 
1..0.. , .•• ., l-or. bI:cy<lo, • . 2 .0IocfO~.nd ... et qrdt, • ,,",vi.. PR~PAi'A.TI ON 
......,-.4 ..... 'Ot IMto.Iec..,...",lbionn {I} .u pre,a . ~, r .... ., • cpd. (U) • .•. by reacU_ wt.U • 

• co""l .. hy"'" • '. ' ,041"", ~.r""r ~ 

!;~~ · ... blcycl. C •. J .OJ KI ... 4.rh •• 01 "'lINla (l~. 

",0 
H~~ C) 

. oJ-:-,J~ 
Ra ., 

(_hu. Jl , and ~, u.> )e alkyl 0 .. tOl.th, (.,m •• pln 
cydopentyl or .plrocycloh.,.l ,la,. U.O coall,luaUn .bwc 
the , . 4uam ,. In, h ua •• : 
and R. it H 0' aa acyl lPo'. 
USES -m: are ••• (t,tlla 01, ,r., •.• r .. Uhctert.l ,·lac •• ", 
qd • • 

WPL:T 20I3G€7 

SO 

R 1·2 ,. ALKYL < 1·3> ; 

H~~ 
(U) 

Jil l R • 

(D) ar, pr., . . .. foUow. 0 

.00 Dlk.'''~ H.CJ.-() 
,x 0 X 

• ,.' RI R. 
(Ill) (lV) 

60n.a 

RI + RL .. SLlryt.fll~ [II~] II'E.NtYlEfI~ (l/~J; 
rJ • H / ACYL • " 

,G!lOIS6". 

---------------------------------------------------------------
Figure 3.4 

3.3.1. Substituent Assignments 

The simplest form of assignment statement for substituents can be 

represented as follows: 

------> substituent -----~-----> substituent value ----------> 
1r:---------[ZJ<-----------1 

<This is a simplified version of the relevant syntax diagrams.) 

It allows a single substituent on the left-hand side to be 

Page 72 



CHAPTER 3: THE INPUT LANGUAGE 

defined as having one of the values separated by the "/" 

delimiters on the right-hand side. Each aLternative vaLue may be 

given in one of five different forms, shown in Syntax Diagram 10, 

which correspond to the different types of expression found in 

specifications and abstracts and discussed in Section 1.2.2. 

3.3.1.1. Unknown VaLue 

A "1" represents a substituent whose nature is compLetely 

unknown. This situation usuaLly occurs with patent 

expressions such as "optionaLly substituted", with no 

indication of the nature of the substitution. In query 

structures it might also be used as a value for variables 

indicating the unspecified parts around a substructure. 

3.3.1.2. Structure Diagram 

The substituent is defined by a structure diagram, which is 

input in exactly the same way as the main structure diagram 

for the constant part of the structure, and may, of course, 

have further substituents declared within it. 

3.3.1.3. Nomenclatural Terms and Expressions 

Specific nomenclatural terms represent a single chemical 

Page 73 



CHAPTER 3: THE INPUT LANGUAGE 

entity, and include terms such as "chloro", "methyl", 

"pyridyl" and "cyclohexyl". Simple linear formulae such as 

"CN", "eOOH", and "NH " 
2 

are also regarded as specific 

nomenclatural terms. 

Essentially this is a shorthand method of inputting a 

structure diagram: an operational system might have 

sophisticated routines for nomenclature translation and 

linear formula analysis, though development of these has not 

formed part of the present work. At a simpler level, when a 

GENSAL sentence is being interpreted by computer, a file may 

be searched for a record of the structure of, e.g. phenyl, 

and if no entry is found a suitable message be printed at 

the terminal. Such a file may also be able to simplify 

compound terms such as "halogen" and "alkali metal". This is 

the approach used in the current implementation. 

Homologous series terms describe classes of structural 

entities, and the parameter list which follows the term may 

impose restrictions on the variety of structures covered. 

Parameter lists are discussed more fully in Section 3.5. 

Verbal expressions that do not correspond to any specific 

structure or structurally-defined class are enclosed in 

quotes to prevent any attempt by the computer to find a 

structure record. 

The following are simple examples of assignment statements: 

Page 74 



CHAPTER 3: THE INPUT LANGUAGE 

R1 = methyl , ethyl , cyclohexyl ; 

R2 = 'electron-withdrawing group' . , 

R3 = SO ,-\ Cl 
-\ ,-

, cyclohexyl . , 

R4 = ? 

and further examples may be found in the GENSAL notations 

for patent examples shown in Figures 3.2 and 3.3. 

3.3.2. Multiplier Assignments 

Simple multiplier assignments are of the form: 

-------> multiplier --------------~-------> selector -------> 

and enable multipliers to be assigned a range of integer values. 

Such a range is defined using the integer range given in Syntax 

Diagram 2 enclosed in angle brackets. It may consist of a single 

integer" or a group of single integers or "range fragments" 

separated by commas. Each range fragment consists of two integers 

separated by a hyphen, and represents all the integers from the 

lower to the upper inclusive. The last integer before the end of 

the selector (immediately before the right angle bracket> may be 

Page 75 



CHAPTER 3: THE INPUT LANGUAGE 

followed by a hyphen without a second integer, in which case all 

the integers from the bound upwards are included. 

Thus the selector <0-6,8,12,15-19,23-25,31,43-> includes the 

integers 0, 1, 2, 3, 4, 5, 6, 8, 12, 15, 16, 17, 18, 19, 23, 24, 

25, 31, 43, 44, 45, 46, etc., potentially up to infinity. 

As can be seen from Syntax Diagram 1, negative integers are not 

allowed in GENSAL, and there is also a requirement that the 

values in an integer range (Syntax Diagram 2) must increase from 

left to right. 

An example of a simple multiplier assignment is 

M1 = <3-5> 

and further examples may be found in Figures 3.5 and 3.10. 

3.4. MORE COMPLEX ASSIGNMENTS --

The full syntax diagram for assignment statement (No. 16), and 

those with which it is defined, allow much more compLicated 

assignments to be concisely represented. 

Page 76 



CHAPTER 3: THE INPUT LANGUAGE 

OJ~~/U1 (llC06R2l DUI'O 2l. II .77 I-'E!:l~J! • .:.·I>I!lJ}ll~Gll.!.:!'~··Il!!f1!.!l~.~'I<!!.I!.:I,!-I:... _-;-:-:-,..,....==~==_.;:..:.:...I 
· 'OUPONrOEN£MOUIlSCO ·us·,,:n ·f67 Whu u .. d'" ( ..... 10" ... ' lOin •• 'or dlyer hlnd".m,,', 
· I 1l. I1.n·tJS·8S4:!62 (16. 11.111 CO),,-OlIl.C03c-05/ )() ,\01\, p,.r. 10'" 1010" ft'\Ol. of ~p4. h adel •• per Ih,.. 
I~i:~vdto .. 't .b~"' imldalol. onli'OQoonts .. Of. IncOfpolO'otd 'n .11.,., EX" t.'PL£ . 
Ihol.J. mo,.,.ob and develop., Jol"... ~"o .. . II.,.r chlo~obrom i d. ,mul. io" ~.fttl •• ,11., ... 

h.lid •• q~.., . to I . ' lTIol •• "aNO, _a ..... "HI .... _hh l.'. 
I Dlhydroxy b.n a imid .... . I •• ot formul. (I' al" '"en'p.' •••• I. 10 · t rnol •• lold ..... hb, .. ,,,4 1. 14.10 ' · ",.h •• od lwlTI 

I Ih •• lIv ... h .did •• m ... hlon or .~JlIII.ry • .11,.'" of photo.r.p lhlo.ulphal • • Tha .muhl.ft." d i ........ '.1' ,. ",h" • •• 
le mat.rl.h 0:' i" d .... ,,1opin, '01".. IlS·C ."d th." l . Zl.IO· · moh.t 4.7 . 4 ih,4roa,benalmhl. 

r . H 1ft (I). A and B au 011 uoleh,drobrom'~e .... add "cl per mole A. h..H ••• All .. t~ 
· G) xO ,..dic~'" I" rh. 4 .10' S.' .. littlo" ot c.o.tln, . l ch an4 "arden.,. the ,,,,,."Ion •• , 
I A;((~ po.Ulo,,; .nd X h Hr , Cl or cu.,.cl.t H·flO rn. AlII re ..... ded ,.".hr. ~ 
r I:CH L (1) ar •• dded at S .. IO·&. The •• mpl".at upo ... for" uc • • lh,oulh. ~l 
. B ~ rI hIO" mol./mole 0' A. optic. I .. ed,. _Ht. udiaUon .,ut ... 10 4410 :n""' ca,,,!le .. 

H ). lid ucoN:t. and d.veloped for lZ .. c.o"d. at ,. C t_ • ph ..... 
a c . dome, h,dro''''''OftI developer. The M;aterla.l h. th. 1011-

owl". ,,.opu,I •• . thl ... 1", •• I. I»uck",. ~t"'llo, • mat.,­
UI con" . the conlalloa" 'otUoI,a"t • • Ilrd,o~-,.",dhrl. 
I . J . h . l - tt,rau.a lnd.ne. Oml,,· 0.0. (0.0.): Dm •••• . n 

USF; 
----rI) Impr •••• the ... ultOrtletrlc prop.rti •• of the _mul· 

p .l.): 'p •• d. U (H); ewe ......... IU . .. ' ... 11 (0 •• 9). 
('ppIlSS). 

I . ton by .ct!". at In anUtou&nl .nd a •• d ..... loimunt .cul 

" 

.... Cor by Inc .. e •• 'n. I,.dl_"t and 1)ma •• 

. DETA1LS 
----n;;cpd •• art ff,O ."cl alcohol loluM. and ca" b •• dd" 
to u •• ,lTIul.io" 1ft '01". or ••• dry .01\d. p .. d . alter Ih • 
• mul.~o" h.,. b •• " ch1'mlcalty •• ~.itl •• d. 

IIIPUT 4131467 

SD 

r.~. 
R2 H 

RI = [ 4-5 J OH; 

IF RI [4] THEN 
[LSE 

R3 BR / CL / I , 

R2 "' (7) Ofl 
R2"'[6] OH 

USU1I4U 

---------------------------------------------------------------
Figure 3.5 

3.4.1. Combined Substituents 

Two substituents can be combined to form a ring: 

R1 + R2 = cycLopentyL / cycLohexyL 

i . e. R1 and R2 combine together, forming with atoms of the 

constant part of the structure, either a cycLopentyL or a 

cycLohexyL ring. A fi rm decision has not yet been made as to 

whether this convention is preferabLe to one where the 

Page 77 



CHAPTER 3: THE INPUT LANGUAGE 

substituent values describe only the atoms that are added to the 

structure, i.e.: 

R1 + R2 = 1,3-propanediyl / 1,4-butanediyl 

The former has the advantage of being more consistent with normal 

patent usage, but the latter is simpler to implement, and has 

been chosen for the present work. 

Only two substituents may be combined in this way, and both must 

be singly connected in their independent existence. 

Figure 3.4 shows an example of substituent combination in a 

patent; in this case the possibility of combining R1 and R2 is 

alternative to their being separate singly-connected radicals. 

3.4.2. Group Assignment Statements 

As a convenient "short-cut" several substituents or multipliers 

can be defined simultaneously: 

R1-2 = phenyl / cyclohexyl / cyclopentyl 

i.e. R1 and R2 are both defined by the three alternatives shown. 

(Note that in this case the three nomenclatural terms are being 

used to represent singly-connected radicals, substituted on the 

constant part of the structure, in contrast to their use above 

Page 78 



CHAPTER 3: THE INPUT LANGUAGE 

-----~;,:;-----~----------:;o~~~;~~:7.~;;~~~;,~;;~;----------------
SANDaZ IN( 'US 41 63.()57 to. 

27.11.n ·US·164380 l'1.01.79} A61k·31142C07d·261114 
' . 'h."ylallt .. I.I.o.o,ol.·. ·co,bo.omld.(.' • UNf",1 01 ,"Inot 
IfonqllUII •• n, ,I •• p Ind"" .... 0"'" """ICI. ,.laKonte 

SPECIFICALLY CLAIMED 
(l) ... hue K •• K. ft • i. R, ..... aNi RI • H or U • . 

k-_--:-_:-:-_-:--;::-________ --:-_-I'p~lt!l~p~,~;'i~'f.:-.;i~~~~"i~.I.oxa.OIIca I'bonyl h.aHd. h ,.aec ...... , .. 
ho ••• ole. 01 formula (I) In "I.: R1NH, ••• p. 1ft 101vA.l a' ZO.J5·C 101' 10.16 h,. , Th, Itart .. 

I\.~ 
~(CH.)~CONHItI 

N ... ~R, 

(Ri h H 0" 1 .. 4C alkyl : 
R. la tI or l.tC ft .. alkyl; 
R," H. r. Cl. CF, or .... e aJkory; .... " 'a t ... ). 
us.:s 

(I) 

-err.re ",lflor t,anquUll .. , • • • l •• p Inch.c ....... musd. 
,ea._'flt • . Do .. h a ·500 m.Ik._ d.ily . 

inl haUd. la obld . by hydrol yah of. c on •• p. 4-ho •• coll_ 
cubo.yUe acid M. 01' Et uter (11) 10 th. tr .. aclel, folio_ad 
by treatml,,1 with h.lo ...... d.' .,Im. Th, llat·Ih,. ""1' 
ma y b, abed • •• lOUD •• : 

(m h 1·5; .od It. It .... 01' Et). 

EXAMPLE 
~ 01 .lhyl ·)·prnolidolM crotonate .. Uh 1· n.Jtro. 

WIDER DISCLOSURE l-phuylp,op,ane In p, .. eau 01 NEts .nd POel, ..... Et J . 
(1) .,. .l.o a i.do .. d la _bleb Rs mar ....... 1 .. 4C alkyl. ph.n.thyl.5 .. m.tbylho .... ol •• 4.U'boxyl.t • • which .. .. 

IrIPUT 4163057 

SD 

R3 r'" \ 
~R4-MI 

RI ~ fl / ALKYL .. 1-4> ; 

6 i·soljj· .&54163051+ 

11 J ~-NH-Rl 
N '-...0 !l2 

R2 " H I ALKYL <1-4> T<O> Q<O,; 

1t3 fj I r- I CL I CF3 I ALKOXY <1-4> ; 

I HI z·d-4> j 
Rt.-= CH).. 

---------------------~-----------------------------------------

with a 

Figure 3.6 

substituent combination.> The integers used to List the 
~~~~~--~~~~~ 

substituents being defined are arranged in the syntax for an 

integer range. 

3.4.2.1. Assignment Operators 

The five available assignment operators shown in Syntax 

Diagram 16 have different meanings, which may be useful when 

several substituents or multipliers are being defined 

together in a group assignment, and their values are not 

necessarily independent. 

Page 79 



CHAPTER 3: THE INPUT LANGUAGE 

= : The substituents or muLtipLiers in the group are 

independentLy selected from the aLternatives in the 

substituent definition or selector on the right-hand 

side of the assignment statement. This is the most 

commonLy-encountered operator. 

s= : All the substituents or multipliers in the group must 

have the same value, which is seLected from the 

substituent definition or seLector on the right hand 

side of the assignment statement. 

D= Each of the substituents or multipLiers in the group 

must have a different value, all the values being 

seLected from those on the right-hand side of the 

statement. 

$= : Not all the substituents or multipliers in the group 

may be the same (which, using u=u, they couLd be), but 

they need not all be different. 

#= : Not alL the substituents or muLtipLiers in the group 

may be different (i.e. at Least two must be the same), 

but they need not all be the same. 

ExampLes of such simultaneous assignments are as follows: 

a) R1-3 = phenyL! cyclohexyl ! cyclopentyl ; 

Page 80 



CHAPTER 3: 

R1, R2 and R3 

cyclohexyl or 

THE INPUT LANGUAGE 

can be independently 

cyclopentyl. There 

either 

are 

phenyl, 

thus 27 

(3 x 3 x 3) possible permutations, assuming that there 

are no symmetry considerations involved. 

b) R4-6 D= phenyl I cyclohexyl / cyclopentyl; 

R4, R5 and R6 must be different, each being selected 

from the possibilities phenyl, cyclohexyl and 

cyclopentyl. There are thus 6 (3 x 2 x 1) possible 

permutations. 

c) R7,9-10 S= phenyl I cyclohexyl /cyclopentyl; 

R7, R9 and R10 must be the same. There are only three 

possible permutations (all phenyl, all cyclohexyl or 

all cyclopentyl). 

d) R11,13,15 $= phenyl /cyclohexyl / cyclopentyli 

R11, R13 and R15 are not all the same, each being 

otherwise selected from the possibilities given. This 

leaves 24 possible permutations, there being three ways 

in which all can be the same. 

e) R16-18 #= phenyl I cyclohexyl / cyclopentyl; 

R16, R17 and R18 are not all different, but are 

Page 81 



CHAPTER 3: THE INPUT LANGUAGE 

otherwise selected from the available possibilities. 

Here there are 21 possible permutations, as there are 

six ways in which the three may be all different. 

3.4.2.2. Selected Group Assignments 

A group assignment statement can begin with a selector which 

allows just some of the substituents or multipliers in the 

group to be assigned values from the substituent definition 

or selector on the right-hand side of the assignment 

statement. e.g.: 

<2-3> R1-5 = phenyl / cyclohexyl / cyclopentyl; 

means that 2 or 3 of the group of substituents R1, R2, R3, 

R4 and R5 are independently selected from the list phenyl, 

cyclohexyl and cyclopentyl, the others remaining undefined 

at this point in the GENSAL structure description. 

3.5. HOMOLOGOUS SERIES IDENTIFIERS AND ~GR~A~MM~A~R~S 

Certain terms used in generic structures cover a range of 

specific substructures all of which are alternative to each other 

at that point. The most common example is the term "alkyl" which 

covers all rooted acyclic substructures containing carbon and 

hydrogen only, without any unsaturations. 

Page 82 



CHAPTER 3: THE INPUT LANGUAGE 

Welford 67, 174 has developed chemical grammars to deal with this 

type of expression, and not onLy are they applicabLe to terms 

such as aLkyL and alkenyL, which are commonLy understood by 

chemists as "homologous series terms", but they may also be 

appLied to many less precise terms which are none the Less 

"structurally recognisable" -- that is, terms which encompass a 

range of substructures that have a particular structural feature 

in common, such as "aryl" and "heterocyclic". Each vaLid 

homologous series identifier is associated with a list of 

parameters to the chemical grammars, the values of each parameter 

being defined by means of a selector. 

As can be seen from the syntax diagram for parameter (No. 7), the 

parameter may be indicated by a Parameter Identifier or a 

substituent encLosed in quotes. The standard Parameter 

Identifiers cover features such as atom count, branch points 

etc., and are shown with their meanings in Table 3.1, though it 

is possible that the list may be modified as the chemical 

grammars are further developed. Non-standard parameters, shown by 

substituents in quotes, cover such features as interruptions in 

the chain, and substitutions on it. Thus for the homologous 

series identifier "alkyl", all the parameters will be zero, 

except for C, T, Q and P, which can take on any (mutually 

consistent) vaLues. 

Syntax Diagram 10 alLows a parameter list to follow a homologous 

series identifier, thus more closely defining any of the standard 

parameters or introducing non-standard ones. This resuLts in 

Page 83 



CHAPTER 3: THE INPUT LANGUAGE 

C Carbon count 

E doubLe bonds (aLkEne) 

Y tripLe bonds (alkYne) 

Q Quaternary branches 

T Ternary branches 

RC number of Rings 

RN Number of Ring atoms 

RS number of Ring Substitutions 

RF number of Ring Fusions 

RA number of Aromatic Rings 

Z number of heteroatoms 
-----------------------------------

TabLe 3.1: Parameter Identifiers and their meanings 

expressions like: 

alkyl C<3-8> T<1-2> 

which indicates alkyl groups containing between 3 and 8 carbon 

atoms, with 1 or 2 ternary branching atoms. The parameters may 

appear in any order, or be absent aLtogether, in which case their 

default values will be the widest possible range compatible with 

those parameters that are present (including any implicit in the 

homologous series identifier itself). In view of the way in which 

the Parameter Identifier "c" (for carbon count) occurs almost 

every time a homologous series identifier is used a shorthand has 

been introduced whereby the C may be omitted, provided this is 

the first parameter in the List. e.g. 

Page 84 



CHAPTER 3: THE INPUT LANGUAGE 

alkyl <1-4> 

alkyl <3-8> T<1-2> 

Further examples of homologous series terms and parameter lists 

are: 

a) cycloalkyl <10-20> RC<2-> 

(Between 10 and 20 carbon atoms, and at least two rings.) 

b) alkyl <3-12> 'RS' <0-1> 

(Between 3 and 12 carbon atoms, and 0 or 1 OCCur~nces of RS.) 

c) carbacyclic <6-10> E <1-> 

(Between 6 and 10 carbon atoms, and at least one double bond 

(number of triple bonds not specified). The term "carbacyclic" is 

used to indicate acyclic hydrocarbons.) 

The assignment statements for R2 and R3 in Figure 3.5 include 

homologous series identifiers and parameter lists; in the case of 

R2 the specification of no ternary or quaternary branching atoms 

is equivalent to the statement in the Derwent Abstract that it is 

an n-alkyl group. 

Page 85 



CHAPTER 3: THE INPUT LANGUAGE 

-------------------------------------~----~~~~~~.~~~-~-.--~--~----
00.848/ 01 l2i MO,o.-(Al31 MHO 22.00.;;' "'( ... El")} £ lll .. e6, r ).or! ).oF.". 1. ~f....!:..C.!J..~ 

car, .... (I).re t ... 10 rublJilll . H,ht • • et ,,.alm,,. •• anlll 
., .... ,,,,,.n dy.lrI ..... ,t,lp" .,.Ioft, When w" ..... h .,h., 
cl y.' th.,. .r. ftol nbju. to cat.lrUe '.dln • . 

J;XA MPLt 

SANDOZLID 'GI2QOO.171 
12 .00.n ·CH-007M4 (01.01 .7'1) C07< CQ9b.,./OO 

Sulphonot.d dla:olo dy •• for polyo",Id •• , l.alh .... k . • pt.pd. "om 
• ulpho-amlno-olobenlln. ond POlO l.n. buryl-9h.noI coupl., 

hO<',-, .. :-::.-=-. -=. -=-,..-:.:--. -=-.',,".-=-,m=.'-=-. ' 1I1"-1.::: ........ ::-.'i":r:-:m::: .. = .. :--. -=-.. ::.~.:::.:::w:---i . u l~~~ln~:: ' :: r:'d! .1.~·1::~ 'in 4;;::,;~:.- ~'~;;: :~b)·;.·:;:C 4('; 11 
RI HO 9 . 10 with ]0," &4 . NaOH) thu ct l .. oti .. d . The ..... 11.1 " •• u 

D-N'No-~ NON-Q (I) penl ion "A' ,dded 0'11,)0 rnln, 10 ... oln. ollt. l pt • . P-\ U 
butyl phenol i n 100 pit , H. to". and l OO pi. , w ..... kupl.a . 
pH a' • . S·' with 10" N.OH, Alter .U"tn. for I ~r. \he 

SOJM R, C(CUJ ), m1at . .... addll1 . d.DIl .. l1ut out t o 1 1'1 ' the .,. 

R • • nd R.I are .. ch H 01' 1· 4C alkyl or alko .. y. ".. H 0' HO 
.qulv. of a non·chromophorlc cadon (pu d cula rly Na). aNI sO tt-Q- q 
the SO,M IP. h In the m· 01' p · puhion. Put. cpd • • have NaO. 'I rh 'I ~ H.N 'I ~ 
R, ,,,d R, • H. CH. , C,l~. CH,O or C,Ii.O . e .p. R I • It 01' 

C UI and. R, • H, CH. or C H,O wHh > 1 01 them H. (I) au (CH'>. 
m a d. c onventionally fro m the appropria t e .. ·a mi"o· •• ob •• -
senl . u lphoni c add '-'y du.ollution and. co~pUI\I to 4· ' 1,.,. TlU. dy.d wool.r .,.lh.Uc polyamWe 11_ pur. y.Ue. aNd , 
bu.tyl phel'lOl. with looci U,ht .. aDd . . ... r .. t.a .... ISppUSI) 

USE / ADVANTAGES 
U ud to r dyeln, or printlnl aatural or .ynthlUc poly. 

I :r; ~~1 1 (::c:!" l~Ute~~~!~~n~~ ::t~t:l~rr·l!i:;·:;r:ti~d pol,- CIUOOOt71 

WPIjT 2000171 

SI) 

RI CII 

<?-N.t!~N-N-q 
R'i CH--C-CH-R3 L )1 ) 

CH3 

R 1-2 H / ALKYL ~ l-q> / ALKOXY <1-q> ; 
R3 .. [ 3-4 ] S03 SB (H / 'ECUIV, OF A NON-

CHROMOPHOR I C CATION' ) • 

---------------------------------------------------------------
Figure 3.7 

3.6. POSITION SETS 

Syntax Diagram 14, for definition element (of which substituent 

value is a simple case), allows the inclusion of some information 

about the position(s) of substituents being defined. A position 

~ at the beginning of a definition element indicates the 
~~~~~~~~~ 

position(s) in the constant structure at which the substituent(s) 

currently being defined may be attached. Thus 

R1 = [2,4] Cl 

Page 86 



CHAPTER 3: THE INPUT LANGUAGE 

means that R1 is a CL group attached in either position 2 or 

position 4 of the constant structure. 

A position set foLLowing a substituent vaLue indicates the 

position(s) in the substituent through which it may be attached 

to the constant structure. The exampLe in Figure 3.12 shows that 

R1 is a nicotinic acid moiety attached through its 2, 4 or 6 

position to the 2, 3, 4, 5 or 6 position of the toLuene moiety. 

In both cases the numbering system refered to is the standard one 

for a nomencLaturaL term, or whatever numbering of the atoms was 

empLoyed in the graphic input of the structure diagram in 
~. 

question. 

The appearance of position sets after the reference to the 

structure to which they appLy aLLows immediate automatic checking 

on the avaiLabiLity of the specified positions in the structure 

in question, which can be vaLuabLe in the machine processing of 

GENSAL. 

Figures 3.6 and 3.7 show patent exampLes invoLving position sets. 

The extent to which position sets need to be used in GENSAL 

notations may depend on the faciLities avaiLable in the graphics 

system being used for indicating aLternative positions of 

attachment (especiaLLy to rings). 

For doubLy-connected substituents, or combinations of singLy-

connected ones, it may be necessary to specify pairs of positions 

in the position set. In this case, the positions in each pair are 

Page 87 



CHAPTER 3: THE INPUT LANGUAGE 

separated by a "I", and the alternative pairs by commas. The 

order of the positions in such pairs is significant, and this may 

be important if the bond orders of the two connections 

different, or if the substituent value is not symmetrical. 

INPUT 4181519 

SD 

RG 

Rl~ >-N~ < )-H~to-~ 
R8 RS 

RI ALKYL d-4 > I CYCLOPROPYL SB 

RI, • H I ALKYL < 1-4 > I F I CL I BR ; 

[1] R4 

n~ .= F / CL I BR / ALKYL d-6> SB < 0-> IIAlO 

R 6,8 = IJ I F / CL / BR I ( ALKYL I AlKOXY ) 

SB < 0-> HALO; 

R7 • 11 / F / CL / BR / ( ALKYL <1-6>/ ALKOXY <1-6> / 

AlKYLTHIO <1-6> / ALKYLSUlPHINYL <1-6> / 

AlKYLSUlPHONYL <1-6» SB <0-> HALO / SD 

_N/R2 
.......... R3 

I! 2-3 -11/ ALKYL <-6) / CYCLOALKYL<-6>; 

Ri = ALKOXY <l-G>; 

IF In "' CYClOPROPYl so [1] R4 THF.N· 

RESTRICT <1-) R &-8 <> I! 

IF rn ALKYL Tl:EN RESTRICT <2-> R 6-B <> H ; 

IF Il7 = IJ TI/EN RESTr.ICl R5<'>ALKYL <1-6> SB <1-> IlAlO • 

Figure 3.8 

Page 88 

are 



CHAPTER 3: THE INPUT LANGUAGE 

3.7. NESTED SU8STITUTION 

As was stated in Chapter 1, the variable parts in a generic 

structure may themselves be further substituted to any level. 

GENSAL is able to show this clearly and concisely by means of the 

mutually recursive Syntax Diagrams 14 and 15 in which parentheses 

are used in expressions involving the four substitution operators 

"I", "&", "S8" and "OS8" to remove any possibLe ambiguity. 

The operators respectively represent "or", "and", "substituted 

by" and "optionally substituted by", and are evaluated in the 

order "&", followed by "58" and "OS8" (ranking equally and 

evaluated from Left to right), followed by "I". Expressions in 

parentheses are evaluated before "&". 

This precedence order has been adopted because it appears to 

provide the most natural form for complex expressions: AND is 

conventionalLy evaLuated before OR in Boolean expressions, and 

the intermediate positioning of S9 and 058 allows severaL 

substitutions to be made on each alternative without the use of 

parentheses. 

The following expression includes examples of the use of all four 

operators: 

Page 89 



CHAPTER 3: 

R1 = phenyL sb (CL / Br / I) & nitro / 

(cycLohexyL / cyclopentyl) 

THE INPUT LANGUAGE 

sb (amino / pyridyl osb methyl & methoxy) / 

naphthyl 

The expression indicates that R1 has three possible basic 

alternatives: 

1. A phenyl group substituted both by 

a) either Cl or Br or I 

and by b) nitro 

2. A cyclohexyl or cyclopentyl group substituted by either 

a) an amino group 

or by b) a pyridyl group, itseLf optionally further 

substituted both by methyl and by methoxy 

(i.e by both or by neither) 

3. A naphthyl group, not further substituted. 

The examples in Figures 3.8 and 3.9 include assignment statements 

.involving parentheses to indicate further substitution, and that 

in Figure 3.9 also shows how it may be necessary to alter the way 

in which the generic structure is expressed in the original 

specification or abstract 

design of GENSAL is intended 

in order to encode it in GENSAL. The 

to minimise the need for such 

alterations, but occasionally they do become necessary. 

Page 90 



CHAPTER 3: THE INPUT LANGUAGE 

~·,~~,7p~~0t. ~.r. (00 M'~! :~}~~~~ 'r" .,. II !. I.'. "4. .~. , ' . ' . ' . ' 
L'!tl.J'''' " ON 1)4 '·0"-"'" ,tU 0' 10' C01( .1] 11 : .. 

!.ubtld pe .. ' ... ,I ·olf ·b."',.t\.d.,. ... " 'IC"·IIlO,u".,ulehorfftO"'-."'" ro_d .. , • . a ~ . f'" ,1 . . .... 10. " • .• • 1 1. '11" , ' , 

~;'~:~;~~~·.; ~ l~;;; -'~ ,:;~~,. ;;; ~.;;~:~ ; .. "--_. -~ ~;:;;~?~':~),ii;~::~: ":.:\';:'/:"~ .-; :::; ~.:::~': ;!~:.;:i:.~~:.:'~;: ... "" 
OR 

V·-C =~(CI~~-O-0 (I) 

T
,

-

( ... hen Y. ,lId Y, .re ,. 0' Cl. 0' 0"_.' y,.d Y, '0'''''. 
C-C bond .... lIh X : 
X It H or ... it .. V. or Y, 'o,nu I bond : 
M h Y,'Y,C-CPC:)(CH,lr. _. Lo .. ".yl op • . n bl" . b y ).1 C .... 
/lnd/o, hll. Ifll ., or P h opt • • "blld . by) I CI\ ,nd/or 
OC H. Ind / o, h.l. If", '. 
!lSE'S 
- C,ld • . (I ) h,n jU\I .. "lh' hormon" actl"ity ... hich la 
p.,llcullrly " "Id"n' on T .. n .. brlo molllor • • nd h . ... .. 
1.! 1~ I.dd.1 .. :. '.:.hy.:. __ T~ .. y .r .. f.,",u!.hd Into COl'l"lp''' . " 

JIlP~T 2023591 

""'.arn .. Inll (I ... , "(' ,1,1 .. · •. l • . , .• ·,I' .. "'I.,.~· ) .•. h •• n .. th" . " .. ,..,.h ... ,,1 Lr"l",.r , 

P14 a::fJA kA TlOS 
-{J~;~. "y , ..... Ullt: ." .. Ia.,!i " .. ,aU ~I hydtl"'4 " '" ' 
en ... ith. (pd . till . f ·. I" ...... ! 1 • " ... ,"'"", . ' 111. a n J4.h.l .. t .. . 

'1.......... ~ 

V,'" 
E"X.Atr.tPI . [' 

C .. C-(C;It,~- CIt, -lIalu,f'n tit) 

-i l~d, oqulnol'. (\ .1.,,11 N.Off (4 . \ ., ...... dh.o .... .-4 '10 
D"'U~ {I no rnl,. , U"rd ID, I h".t 'oom ,rn' f' " ... .. " ' . ' . 
4hc'"o,,,-1 - P,,"I .. ,u' {t ... , ...... tlnr,ot' d 11'1'. Ih .. . oln . ... "ti 
thl!' ""_ •• hut .. 4 10 .. ere tor " hr • . Wo'~ .ur I.' " I, ,. 1. 1 • 
• ,(\ ... (hio ... • .. . p""I .. " .. lo- .. ' - lI .. n. """ . m . pl • • Z· C . ..... " " '-" . 

.I OOU1C PIUU':P'II 

SO 
In -CH2-CH2-CflL-O~O -R2 

RI· SO 

/ 
so 

R3- C=C­

R 3-4 • F / CL ; 
Ri 2 SD 

Rl-{HZ- CH2-CH2- / 

EENZYL OSB < 1- > (METHYL / HALOGEN) / 

PHENYL OSB <1- > ( METHYL / METHOXY / HALOGEII ) • 

---------------------------------------------------------------
Figure 3.9 

3.7.1. Selectors in Definition Expressions 

A selector at the start of a definition element indicates 

multiple occurrences of whatever folLows. Since the main part of 

the definition eLement may be a parenthesised definition 

expression, it is possible to have severaL such seLectors 

applying to the same substituent vaLue: in this case their 

effects are multiplied, with the result that the expression 

Page 91 



CHAPTER 3: THE INPUT LANGUAGE 

<2-4> ( <2> methyl I ethyl ) 

implies the presence of between 4 and 8 methyl groups, or of 

between 2 and 4 ethyl groups. 

3.7.2. Position ~~ Definition Expressions 

Similarly, several position sets may be applied to a single 

substituent value, appearing in different recursions of the 

syntax for definition elements. Here each successive position set 

must be a subset of that specified at the previous recursion. The 

statement 

R1 = (2-6] (methyl I (3,5] hydroxy) 

is therefore valid, whereas 

R1 = (2,4,6] (methyl I (3,5] ethyl) 

is erroneous. 

3.7.3. Substituents ~ Substituent Values 

It may be convenient, and is occasionally found in specifications 

and abstracts, to define one structural variable in terms of 

Page 92 



CHAPTER 3: THE INPUT LANGUAGE 

---------------------------------------------------------------~9 .. 11.IO:J 
OllNCORP 

Ell MOl 

2O.0.5 .n·US-7?S970 (D2.01 .79) elOm-43l46 

OllN!.'O.0.5.n 
'US4l11~ 

,t"draullc of'ld h.a,·rronrl.r flu id ... con'o. al1to."'Jilo'I"G"~') 

"hu ••• ' .. 4; M h aD opt • • ub.tcl. branch •• 0 ... tra tlht ... 
h A\" hydrocarbon .. ad ieal; and R. ."cI R' ..... ac" \ncl.,." ... 
en Uy ,,"chd trom H. alkyl. &lk a"y' •• ryl aDd aralkyl. 
ro vided that u hau t.ha maJothy 01 R.I .1" .t.ricaU, hla4-
r.d ~ le alkyl) la daim.d. 

DVANT-,Cr;S 

INPUT 4132664 

SD 
RI - (R2)Ml \ 

RI CARBACYC LI C SB ? 

R2 S= R3 / R4 

R3 SD 

R4 SD 

s.}; H(8.DSI. 

R 5-6 ·H / ALKYL ' / ALKENYL / ARYL / ARALKYL 

111 ,. < 2-4>; 

112" <3>; 

US4IUH. 

IF R2" R3 THEN IF HI =<2> THEfI RESTRICT < 10-> R5 ALKYL < 3-> 
ELSE IF HI =<3, 

THEN RESTRICT < 14~;,R5 ALKYL <: 3-) 
ELSE P.ESTRICT <19-)R5 ALKYL <3-;> 

ELSE IF . Ml =<2> THEtl RESTRICT <7-> R5 ALKYL<3-> 
ELSE IF Ml =<3> 

'TfIEN RESTRICT <10-> R5 = ALKYL<3-> 
ELSE RESTRICT <13-> RS SI ALKYL<3-> • 

Figure 3.10 

another. This is usuaLLy done where there is further substitution 

invoLved, as in 

R1 = R2 sb (methyL/ethyL) 

or 

Page 93 



CHAPTER 3: THE INPUT LANGUAGE 

R1 = (phenyl/naphthyl) sb R2 

Syntax Diagram 14 permits a substituent in place of a substituent 

value, and the substituent given mayor may not already have been 

defined; the definition eventually given is treated as a 

parenthesised expression. 

GENSAL additionally permits a substituent to be defined in terms 

of itself, as in 

R1 = methyl sb R1 

and it can be seen that this corresponds to an infinite-length 

polymer. 

3.7.4. Further Substitution ~ Parenthesised Expressions 

Where one of the further substitution operators "58" and "058" 

appears immediately after a parenthesised expression, it is 

understood that the substitution is made on the highest level of 

substitution within the parenthesised expression. For example, in 

the expression 

(phenyl / cyclohexyl sb methyl) sb CL 

the phenyl group is substituted by chlorine, and the cyclohexyL 

group by both methyl and chLorine; the methyl group is not 

further substituted. 

Page 94 



CHAPTER 3: THE INPUT LANGUAGE 

-------::::;---~;;-~--------;;;~;;::~7.~~~~~::~--==~==~==~~;:---I 
UP JOfiN co 'US 411'·340 f-:-:,----:--:--::-:--::=--:--:-::-~_:_:_:- _:_-~:_-::_ 

15057.·0S·90641'O f + 146191, (16 .06.", C07c.10l/ '4 aUlo.y ancl .hen Y i , CF) . % h H . _h." Y h I or le .Iko.,. I 
Am'"o-(y<loo',phollc omld.tt) • PO .... 1l eNS , M lld.pte.lOn, and Z h H. th I or le .. lkOIl, h In th. ) - poln . , 'When Yand 
prop.,h •• OM ho .... . 0 bett.r Ih.top.""Uc to"O ,hofl lmfPf'omlne ~ an both )\alo or , or ze _Iko." the, au p,. •• "t in the 

h-,,---,-=:-:-:===-,-;r-... .,-..-;,...,.==rrr ... ,,---jl- ancl .. .. . or l .. an' 5-poanl) . I 
!nturnedl,," prloril l " : IS , l . l1 : q . l . 1S-US.l11~" ; 

l701H . ~ I - ( t) po ..... potlnt eNS anlld.pr.' .. "1 prop. rUe. a"d h ..... 
N.(Z_Amlnocydoplntyq-N.acylanUldu of formula (I) an4 .. bette .. therapeut ic: rat io th." imipramine .ndlon, - act ln, 
th.ir ac id addition Uyh . . .... new ac tivity v.'Mch allow. lonc,r duration. b\llweln adminht ... I- I 

ion • . fI ' l ' once. day . DOl' hi_lOO ml / day . 

Q
RN'i~-" l. (Ih~ wavy line Indlcat .. cle SPE CIF'lCALLY CLAIMED 

., or Iran. c onli luraUon 0' j .<I _Ol chloro_ N -{l·CN .aUyl.N -melhyLamlno)c)'dopent,l/· 
Ihe .ub"iu.ln th •• 0 .. l p .. opionanllldc . l ,4-d ic hJ01'O-N .. {2 -(N .p-phenelhyl . N-

..oN ,Rl po.n • . 01 the cyc1op.nlyl ;,~~:~:;;~;!~:,l::;:~~~~;;~::;:::~iV~; .. o~·,!::!i:I~~:;~·~~i 
(0); 'R, rinl ; their a cid addn . .. h • • 

(1) 

pia 0 0" I ; 
QhOor5 ; 
Rh I . ]C alk),l . vin yl, ,.6C eycloalkyl,ethoxy or meLh._,­
methyl ; 

PH.!: PA RA TJON 
Cpd •. (1 ; 0 h 0 and pit 0) art prepd. by hUIln, a (pd . 0' (ormula (11) and '1'1 .. ,hydride of Ih' appropriate ca .. bo.V. 

:~ :: ~~,C:I'i:,C(~~,~~C.H, . )-6C (a11yHc) .1kenyl ; 
Y and Z. .n each Ht..!:" Cl Br CF I or le alkyl I or le 

JiW~T 4159340 

SD 

nl H I ALKYL <1-3>; 

R2 SD 

SD 
- CH2-CH2-Q 

ALKEIIYL <3-6>; 

lie add 10 'orm the N.acyla'ed prod. 

suus 

I 

I 

R3 .. ALKYL d-3> I VINYL I CVCLOALKVL <3-&> I 
ETI-tOXY I METHOXVI1ETHVL 

n4 0 I S 

n5 (0-1> 0 

_----'J.!li.1.HJJ • 

R 6-7 
IF R6 
IF R6 

III F I CL I BR I Cf31 ALKYL<1-2>1 ALKOXyc-1-2> 

CF3 THEN R7=H; 

ALKOXY <: 1-2;> AND R7 

RESTRICT R6 = t3) 
H THEN 

IF<2>R 6-7 HALO I ALKOXV <' 1-2 > 

THEN BEGIN 
RESl RI CT 
RESTRICT 

END. 

r.6 ,. [3] ; 
R7 '"' (4-S] 

------ ---------------------------------------------------------
Figure 3.11 

Page 95 



CHAPTER 3: THE INPUT LANGUAGE 

Had the expression been written without parentheses, it would 

have indicated an unsubstituted phenyl group, or a cyclohexyl 

group substituted by a methyl group, itself further substituted 

by chlorine. 

This "highest-level" convention defines the level of substitution 

on substituents used as substituent values. In the statements 

R1 = R2 sb Cl; 

R2 = phenyl sb methyl 

it is understood that the chlorine is a substituent on the phenyl 

group. 

3.8. SPECIAL RESTRICTIONS IN GENERIC STRUCTURES 

GENSAL provides two types of statement which allow special 

restrictions to be placed on the variety of specific structures 

covered by a generic structure: "IF" statements and "RESTRICT" 

statements. 

Both employ the syntactic construct, condition, the former using 

the result of the condition (TRUE or FALSE) to determine which of 

two alternative statements should be used, and the latter to 

impose limitations on the definitions already made. 

Page 96 



CHAPTER 3: THE INPUT LANGUAGE 

---------------------------------------------------------------

"FREE-TEXTH GENERIC STRUCTURE: 

GEtlSAL flOTATION: 

INPUT 6789 

SD 

--+11---- RI 

I RI = [<2-6>] SD 

O
~/COOH 

N~ 

COOH 

---------------------------------------------------------------
Figure 3.12 

3.8.1. Conditions 

Complex conditions can be formed, using the Boo Lean operators 

Page 97 



CHAPTER 3: THE INPUT LANGUAGE 

AND, OR and NOT, as shown in Syntax Diagram 19. In executing such 

conditions the unary operator NOT is evaluated first, followed by 

AND, and finally ORi conditions in parentheses are evaluated 

first of all. 

Ultimately, all conditions are composed of simpLe conditions of 

the form shown in Syntax Diagram 18. ALL simpLe conditions have 

two sides, separated by a reLationaL operator ("=" or "<>", 

meaning "is" or "is not" respectiveLy), and there are basically 

three types, which will be discussed separateLy. Each of them 

describes a particular arrangement of possible values for the 

variables in a generic structure, and for this reason only 

substituents and multipliers that have already been defined may 

appear in conditions. 

3.8.2. Definition Relations 

In "definition relations" the right-hand side is a substituent 

definition, of exactly the same form as is used in assignment 

statements, though here it may be abbreviated to a "stand-alone" 

position set, where the chemical nature of the substituent is not 

relevant. The left-hand side consists simply of a substituent or 

substituent combination, as in: 

a) IF R1 = [4] methyl THEN ••• 

(If R1 is a methyl group in the 4 position then ••• ) 

Page 98 



CHAPTER 3: THE INPUT LANGUAGE 

b) IF R2 + R3 = [2/3J THEN ••• 

(If the attachments of the structure formed by the combination of 

R2 and R3 are at positions 2 and 3 then ••• ) 

c) IF R4 = alkyl<1-6> SB (Cl/Br / I) THEN ••• 

(If R4 is an alkyl group of between one and six carbon atoms 

substituted by Cl, Br or I then ••• ) 

3.8.3. Integer Relations 

Integer relations have a selector, identifying an integer range 

on the right-hand side, and the left-hand side can consist of 

various integer terms such as multipliers and substituents with 

parameters combined by arithmetic operators. 

d)IF R1 C = <1-2> THEN ••• 

(If the carbon count of the homologous series identifier defining 

R1 is in the range 1 to 2 then ••• ) 

e) IF R2 E = <2-> THEN ••• 

(If there are two or more double bonds in the homologous series 

identifier defining R2 then ••• ) 

Page 99 



CHAPTER 3: THE INPUT LANGUAGE 

f) IF M1 = <2-3> THEN ••• 

(If M1 is either 2 or 3 then ••• > 

g) IF M1 + M2 + R1 C = <4> THEN ••• 

(If the sum of M1 and M2 and the carbon count of R1 is 4 then ••• ) 

h) IF R1 C + R2 C = <12-> THEN ••• 

CIf the sum of the carbon counts of R1 and R2 is greater than or 

equaL to 12 then ••• ) 

i) IF R1 + R2 C = <0-6> THEN ••• 

(If the carbon count of the combined substituent formed by R1 and 

R2 is Less than or equaL to 6 then ••• ) 

The syntactic and semantic differences between the "+" symboLs in 

exampLes Ch) and (i) above are important. In the former it is an 

arithmetic operator combining separate integer vaLues, whereas in 

the Latter it combines the two substituents in a substituent 

combination. 

Page 100 



CHAPTER 3: THE INPUT LANGUAGE 

3.8.4. Group Relations 

"Group relations" begin with a selector which operates on the 

remainder of the left-hand side of the condition. If this is a 

substituent group, then the right-hand side will be a substituent 

definition, or stand-alone position set, as in the definition 

relations described above: 

j) IF <2-> R1-S <> H THEN ••• 

(If two or more of the substituents R1, R2, R3, R4 and RS are not 

hydrogen, then ••• ) 

On the other hand, if the left-hand side is a multiplier group or 

substituent group and parameter, then the right-hand side will be 

an integer range: 

k) IF <1-3> M1-S = <4> THEN ••• 

(If 1, 2 or 3 or the multipliers M1, M2, M3, M4, and MS is equal 

to 4 then ••• ) 

l) IF <1> R1 + R2 , R3 + R4 C = <3> THEN ••• 

(If the carbon count of the group formed by either R1 and R2 or 

by R3 and R4 (i.e. if the carbon count of 1 of the two 

substituent combinations) is 3, then ••• ) 

Page 101 



CHAPTER 3: THE INPUT LANGUAGE 

3.8.5. IF Statements 

In an IF statement, there are two subordinate statements after 

the condition, one following the delimiter THEN, and the other 

the delimiter ELSE (though this latter may be omitted). The 

statement following the THEN is used in those arrangements of the 

variables that make the condition TRUE, and the following the 

ELSE (if present) in those that make the condition FALSE. 

The statements in the THEN and ELSE parts may be assignment 

statements, RESTRICT statements (described below), nested IF 

statements, "empty statements", or groups of statements enclosed 

within BEGIN and END delimiters (a "compound statement"). 

Examples of IF statements are: 

IF R1 = methyl THEN R4 = methyl; 

IF R1 = H THEN R2 = H 

ELSE R2 = halogen; 

IF R1 = halogen 

THEN IF R1 = [2-3] 

THEN RESTRICT R2 = H; 

ELSE 

ELSE BEGIN 

RESTRICT R2 <> H; 

RESTRICT M1 = <3> 

END 

There is no semicolon between the statement following the THEN 

and the ELSE, though the individual statements in a compound 

Page 102 



CHAPTER 3: THE INPUT LANGUAGE 

statement are separated by semicolons. 

In nested IF statements, each ELSE is paired with the most recent 

unpaired THEN: this can cause problems if there are nested IF 

statements without an ELSE part. In the last example above, an 

empty statement is used to provide an ELSE to pair with the 

second THEN, so that the effect is as intended. This point is 

further discussed in Section 3.11.1 below. 

Clearly, certain IF statements would make semantic nonsense. 

e.g.: 

IF R1 = methyl THEN R1 = ethyl 

Such statements are illegal: if the condition involves a given 

substituent or multiplier then the statements in the THEN and 

ELSE parts may not involve that substituent or multiplier. The 

exception to this rule is that if the condition is concerned with 

the chemical nature of a substituent, then the statements may be 

concerned with its position, and vice versa. Thus the following 

statements are legal: 

IF R1 = methyl THEN RESTRICT R1 = [2]; 

IF R2 = [4] THEN R2 = halogen 

Figures 3.5, 3.8, 3.10 and 3.11 show examples of the use of IF 

statements from actual patent examples. 

Page 103 



CHAPTER 3: THE INPUT LANGUAGE 

3.8.6. RESTRICT Statements 

RESTRICT statements are used directly to reduce the possible 

arrangements of values for the variables in a generic structure. 

Only those arrangements which allow the condition to be TRUE are 

possible. 

The form of the condition is exactly as in the IF statement, and 

thus RESTRICT statements appear as in the following examples: 

a) RESTRICT R1 = H 

H must have been given as a possible value for R1 in its original 

definition, and this statement eliminates all the other 

possibilities. 

b) RESTRICT M1 + M2 <> <6> 

It does not matter what the original definitions of M1 and M2 

were; the RESTRICT removes those combinations of possibilities 

where their sum is 6. 

c) RESTRICT R1 C = <2-3> 

The carbon count of the homologous series term defining R1 is 

limited to 2 or 3 (which must be a subset of the values given in 

the original definition). 

Page 104 



CHAPTER 3: THE INPUT LANGUAGE 

Examples from actual patents in which RESTRICT statements are 

used are shown in Figures 3.3, 3.8, 3.10 and 3.11. 

3.9. SCOPE QI DEFINITIONS 

There is no restriction on the number of different assignment 

statements each substituent or multiplier appears in, and all the 

different definitions given are alternative to each other. 

When an assignment statement appears in the THEN or ELSE part of 

an IF statement, the alternatives given there for a substituent 

or multiplier are added to those given elsewhere (if any) when 

the condition has the appropriate value. If it is desired to 

limit the alternatives already given, then a RESTRICT statement 

should be used. 

3.10. LIMITATIONS OF GENSAL 

GENSAL has been designed to conform as closely as possible to the 

forms of expression commonly encountered in patent specifications 

and abstracts, whilst retaining a sufficient formalism for 

automatic processing to be possible. However it is not completely 

comprehensive, and at least in its present form, it is not 

applicable to certain types of expression found in patents. 

In the majority of cases, the expression in question can be 

Page 105 



CHAPTER 3: THE INPUT LANGUAGE 

reformulated in such a way as to permit encoding in GENSAL: the 

replacement of the different symbols used for structural and 

multiplicative variables by standard GENSAL substituents and 

multipliers is a trivial example of this. Other such limitations 

of GENSAL are the restrictions that structural variables may be 

at most doubly connected (Figure 3.11 shows how a small amount of 

respecifying of structural variables can circumvent this), and 

that only structural variables may have multipliers applied to 

them (again in Figure 3.11, this restriction is avoided by making 

what in the abstract is a multipLied structural constant, a 

structural variable with a selector applied to its single 

alternative value. 

Certain other expressions found in patent specifications and 

abstracts cannot be represented in GENSAL at aLL, however, and 

severaL of the examples in the Figures show this. 

The Derwent Abstract for the generic structure in Figure 3.7 

indicates that certain of the aLternatives are "preferred". At 

present, the only way around this problem is to construct a 

GENSAL notation for the structure in which onLy the preferred 

alternatives are shown; this could be stored alongside the more 

general notation. A fairLy simpLe extension to GENSAL might allow 

the sequence of alternatives in a substituent definition 

expression to be interrupted by the delimiter PREFERABLY, those 

alternatives following it being the preferred ones. However, this 

couLd cause complications in a search system for generic 

structures encoded in GENSAL. 

Page 106 



CHAPTER 3: THE INPUT LANGUAGE 

In the structure shown in Figure 3.10 it is not possible to show 

the Limitations on R5 adequately using GENSAL. The requirement 

that it be "sterically hindered" cannot be shown at all (unless 

it be by indicating some branch points in the parameters), and 

that the majority of the occurrences of R5 must be aLkyl<3-> can 

only be shown by exhaustively enumerating all the possible 

combinations of R2 and M1 in separate IF statements. This is 

reasonably satisfactory here, but would not be were there a much 

larger number of possibiLities. 

Figure 3.11 illustrates the lack of facilities to show 

stereochemistry, which is Largely a consequence of the absence of 

stereochemicaL indicators in the two-dimensional structure 

representation used by the Feldmann graphics system. If GENSAL 

were to be used with a graphics system incorporating 

stereochemistry the syntax of GENSAL could be modified to include 

stereochemicaL descriptors in definition elements, treating them 

in a similar way to position sets. 

Whilst GENSAL is not comprehensive, experience in encoding 

generic structures from patents suggests that in its present form 

it is capable of representing adequately the vast majority. 

However, the possibility is discussed in Chapter 6 that some 

modifications and extensions may need to be made to it. 

Page 107 



CHAPTER 3: THE INPUT LANGUAGE 

3.11. THE DESIGN Q[ GENSAL 

3.11.1. FormaL Grammar 

The initiaL attempts at the design of GENSAL were based on 

anaLogy with PascaL, rather than on a rigorous approach using the 

formaL grammar theory described in Chapter 2. No attempt has been 

made at formaL proof of particuLar properties of the Grammar, but 

a number of such properties can be identified by intuitive 

inspection of the syntax diagrams shown in Appendix 1, or the 

equivaLent Backus-Naur Form production ruLes shown in Appendix 2. 

The Grammar of GENSAL is context-free, the production ruLes 

conforming to the requirements of Chomsky Type 2 Grammars 

(Section 2.1.1). It is unambiguous, and is a member of the cLass 

of LL(k) Grammars defined by Lewis and Stearns 83 (Section 

2.2.2), which means that it can be parsed "top-down" as weLL as 

"bottom-up" (Section 2.2.3). 

The syntax for IF statements in GENSAL is similar to that of 

Pascal and Algol 60, and as was pointed out in Section 3.8.5 can 

Lead to difficulties with nested IF statements where not all have 

an ELSE part. This is one aspect of the design of Pascal which 

has been criticised. 128 Algol 68 and certain other languages 

have explicit terminators for IF statements ("FI" in Algol 68) 

which help to avoid this problem; this is an aspect of GENSAL 

Page 108 



CHAPTER 3: THE INPUT LANGUAGE 

syntax which could perhaps usefully be modified. 

3.11.2. Non-Determinacy 

In most cases, inspection of the next symbol of a sentence in 

GENSAL is adequate to decide which production is being used: were 

this always the case the Grammar would be LL(1), and would be 

deterministic according to the definition of Koranjak and 

86 Hopcroft. [The Grammar of Pascal is of this type.] However 

there are three places in the Grammar of GENSAL where lookahead 

is required for parsing. 

In integer ranges (Syntax Diagram 2) there are three possible 

productions starting with integer: 

<integer> 

<integer> - <integer> 

and <integer> -

and which of these is being used cannot be decided until up to 

two further symbols have been examined. 

In position sets (Syntax Diagram 6) it is not possibLe to decide 

whether or not a position combination is being read until a plus 

sign is or is not encountered after the first integer. 

In substituent groups (Syntax Diagram 12), both productions start 

with an R delimiter, followed by an integer, and only when the 

symbol after the integer is examined is it possible to decide 

Page 109 



CHAPTER 3: THE INPUT LANGUAGE 

which is being used. 

In simple conditions (Syntax Diagram 18) the situation is more 

complex. The possibility of a stand-alone position set instead of 

a full substituent definition expression on the right hand side 

of group definition relations and definition relations (Sections 

3.8.2 and 3.8.4) means that which of the two is being used may 

not be decidable until the symbol following a position set is 

inspected, and as the position set may be of arbitrary length, no 

limit can be set on the amount of lookahead required. 

Wirth 109 has suggested that where there are only a few examples 

of non-determinacy in the Grammar of a language, these should be 

handled on an ad hoc basis in the writing of a parser, and this 

approach has been adopted in the programming of the GENSAL 

interpreter, described in Chapter 5, where no particular 

difficulties were encountered with integer ranges and substituent 

groups. 

The programming of the analysis of conditions has not formed part 

of the present work, and so the problem of arbitrary lookahead 

has not been considered in detail. However, there appears to be 

no need to know which path is being followed when a position set 

is encountered at the start of the right-hand side of a simple 

condition, and lookahead is therefore unnecessary. There is no 

reason to suppose that the semantic analysis of simple conditions 

would require this knowledge at the outset, and so it has been 

considered that the syntax for simple conditions is satisfactory 

Page 110 



CHAPTER 3: THE INPUT LANGUAGE 

in its present form. In fact, though strictly speaking lookahead 

is required in the anaLysis of integer ranges, the interpreter 

program that has been written for GENSAL does not actuaLly Look 

ahead at all in performing their anaLysis~ since it records the 

vaLue of the first integer encountered, and later decides what to 

do with it. 

3.11.3. Security ~ FLexibiLity 

The relationship between the security and the flexibility of 

formaL Languages was discussed with reference to the programming 

languages Ada and Pascal in Sections 2.3.3 and 2.3.4. It was 

pointed out that the more redundant information is included in 

sentences in a Language, the greater are the possibilities for 

the checking of self-consistency etc. The requirement in Pascal 

that aLL variables be decLared with an indication of their type 

before they are used is an example of this; the type could in 

many cases be perfectly well deduced from the type of expression 

used in assignments to the variable in question. 

GENSAL has however been designed to conform as closely as 

possible to the types of expression commonly found in patent 

specifications, and flexibility rather than security has been the 

principaL aim. This is not to say that interpreter and compiler 

programs for GENSAL are likely to allow large numbers of errors 

to pass through undetected, but it makes the task of detecting 

and reporting such errors much more difficuLt. 

Page 111 



CHAPTER 3: THE INPUT LANGUAGE 

A more secure language for the description of generic structures 

might require all structural variables to be listed at the 

outset, with information on the number of connections and the 

bond orders for each. This information could then be used to 

check every occurrence of each variable. However this enhanced 

security would be at the cost of the natural form of expression 

currently found in GENSAL. 

In GENSAL as it stands, information on the connectivity and bond 

orders of substituents frequently does not become available until 

well after the variable in question has been introduced, and in 

some circumstances may not become available at all, leaving the 

interpreter program to make assumptions about it. For example the 

GENSAL definition expression 

phenyl sb R1 

says nothing about the way R1 ;s connected to the phenyl group, 

or about its bond orders. When R1 is defined, it is possible that 

the information is still not given: 

R1 = SD 
/-1 

/ I 
HN I 

, I 
'_I 

In this case the program should assume that the connection is 

single, and that the bond order is single also, but a subsequent 

position set following the structure diagram in the manner 

described in Section 3.6 might give ~p~o~s~it_,_·o_n ____ c~o_m_b_i_n_a~t_io_n~s. 

indicating that the connection was actually double. 

Page 112 



CHAPTER 3: THE INPUT LANGUAGE 

Chapter 5 describes the approaches that have been used to detect 

incompatibilities in the information provided in a GENSAL 

sentence in the writing of an interpreter for GENSAL. In many 

cases the incompatibility can only be detected some time after an 

error has occur~d, making recovery from the error very difficult 

if not impossible. 

It is believed that the emphasis on flexibility rather than on 

security in GENSAL is justified, since most errors can be 

detected eventually, and it is GENSAL's flexibility, readability 

and similarity to the language of patent specifications and 

abstracts, in relation to alternative coding methods for generic 

structures, that is likeLy to be a major factor in determining 

its acceptability to the chemical and patent documentation 

industries. 

Page 113 



CHAPTER 4 

THE INTERNAL REPRESENTATION 

"Look beneath the surface; let not the several 

quality of a thing nor its worth escape thee" 

Marcus Aurelius Antoninus (121-180) 

The last Chapter gave a description of the formal language 

GENSAL, which has been designed to encode generic chemical 

structures from patents in a form which can be processed by 

computer, yet which remains readily intelligible to a chemist or 

patent agent. The formalism of its Grammar makes it comparable to 

a high-level programming language, and thus the program which 

analyzes it can be thought of as equivalent to a compiler. To 

extend this analogy further, the internal representation of a 

generic structure which this program produces can be thought of 

as being equivalent to the object code produced by a programming 

language compiler, though unlike the object code for a 

Page 114 



CHAPTER 4: THE INTERNAL REPRESENTATION 

programming language, the internal representation is a machine-

level data structure, rather than a set of machine-level 

instructions. Furthermore, as the analysis program is expected to 

operate interactively, it is better described as an interpreter 

than as a compiler. 

In a generic structure information system, this internaL 

representation can be used to generate fragments for use in 

searching, or directly for atom-by-atom tracing in the final 

stage of a search. In order to enabLe it to perform these 

functions satisfactorily, and yet remain in a form which can 

easily be generated from GENSAL input, a number of features have 

been incorporated into its design, and these wiLL be described in 

this chapter. 

4.1. REQUIREMENTS FOR THE REPRESENTATION - ----

Chapter 1 discussed the need for a fuLL and unambiguous 

description of the generic structure, from which fragment screen 

descriptors of various types couLd be generated aLgorithmicaLLy, 

and the reasons for the seLection of connection tabLes as the 

appropriate basis for this representation. 

The purpose of the representation described here is not to store 

explicitly all the possible specific structures covered by a 

given generic structure, but rather to contain suffi ci ent 

Page 115 



CHAPTER 4: THE INTERNAL REPRESENTATION 

information for exhaustive generation of all the specific 

structures to be possible, even though in most cases such an 

operation would be pointless, as well as computationally 

unfeasible where the number of specific structures covered is 

large, or even infinite. 

Since the representation is to 

structure input to the computer 

problems are greatly simplified 

be built up from a generic 

in GENSAL, the conversion 

if certain features of the 

representation mirror features of GENSAL. In particular, as the 

syntax for the definition of substituents in GENSAL is 

essentially recursive, the structure of the internal 

representation should be recursive also. 

GENSAL employs Geivandov's concept 17 of a generic structure as a 

(possibly vestigial) constant part, to which are attached 

variable parts which can vary in their chemical nature, position 

of attachment and multiplicity of occurrence, and which may 

themselves be further substituted by other constant and variable 

parts, down to any level. At each level, certain of the values 

for the variable parts may be alternative or additional to each 

other in complex nested 800lean relationships. This suggests two 

principal components for the internal representation, one 

containing information about the chemical nature of the constant 

and variable parts and the other information about the way in 

which they are connected together in terms of positions and 

multiplicity, and the Boolean relationships between them. 

Page 116 



CHAPTER 4: THE INTERNAL REPRESENTATION 

---------------------------------------------------------------~--~ 

---------------------------------------------------------------
Figure 4.1: A diagrammatic representation of the basic structure 
of the ECTR showing the child gates. Each box represents a 
partial structure, and the lines represent child gates. Each 
hierarchical level of substitution is shown as a separate row of 
partial structures. 

Lines meeting at a point connect together partial structures 
which are alternative to each other (OR relationship), and lines 
meeting at a point that are linked together by an arc connect 
partial structures which are additional to each other (AND 
relationship). 

The GENSAL statements corresponding to this ECTR are shown in 
Figure 4.2. 

The successive levels of further substitution imply a 

hierarchical relationship between the different parts of the 

structure, though the exact nature of the hierarchy depends on 

the way in which the GENSAL description of the structure was 

constructed, which is to a certain extent arbitrary. Where, as is 

illustrated in Section 3.7.4., a GENSAL substituent is defined in 

terms of itself, the hierarchy "loops back" to a higher level and 

there is no lowest level of substitution; the structure in 

Page 117 



CHAPTER 4: THE INTERNAL REPRESENTATION 

question is a polymer. 

This approach to the storage of polymers has certain conceptual 

similarities to that developed by the Du Pont company in the 

1960's. 182 In that system, each monomer unit is shown in a 

connection table connected to a dummy central atom, and path 

tracing procedures are able to pass through this central atom and 

back into the monomer unites). 

---------------------------------------------------------------
1 INPUT 12345 
2 SO 

R3 
\ 

I 
R2 

\ 
A--R1 

I 

3 R1 = B sb K andby LIe I 0 sb ( M IN) ; 
4 R2 = E ; 
5 R3 = ( FIG) sb 0 andby (P IQ) I 
6 H I ( I I J ) sb R • 

---------------------------------------------------------------
Figure 4.2: GENSAL statements corresponding to the ECTR's shown 
in Figures 4.1 and 4.4 

Together the two components of the internal representation can be 

considered as forming a topological graph - the chemical nature 

of the various parts of the generic structure being represented 

in the nodes of the graph, and the information about their 

connections and relationships in its edges. Since information on 

the chemical nature of each part is predominantly based on 

conventional connection tables, the whole is a sort of super-

Page 118 



CHAPTER 4: THE INTERNAL REPRESENTATION 

connection table, or connection table of connection tables, and 

is called an Extended Connection Table Representation (ECTR). 

Within the ECTR each node is called a partial structure (PS), and 

each edge a gate. The gates are divided into child gates and 

parent gates, according to which direction in the hierarchy they 

point; the graph is thus a directed one. The overall layout of 

the ECTR for a generic structure, showing the PSs and the child 

gates, is shown in Figure 4.1. 

The entire ECTR is held in the main computer memory during its 

generation because, as further parts of the structure are defined 

during the course of the GENSAL sentence, it is frequently 

necessary to refer back to previously-defined parts. Similarly, 

as fragments are generated, or an atom-by-atom search performed, 

it is necessary to trace from one PS to another. 

4.2. THE PARTIAL STRUCTURE RECORD --

Syntax Diagram 10 shows five different paths for a substituent 

value in GENSAL, and these were discussed in Section 3.3.1. From 

them it is possible to identify four fundamentally different 

types of partial structure, each requiring a different form of 

representation in the ECTR. 

Page 119 



CHAPTER 4: THE INTERNAL REPRESENTATION 

4.2.1. Specific Partial Structures 

These correspond to a single fully-defined structural entity, and 

are the only type of PS that may be represented by a connection 

table. They appear in GENSAL substituent values as structure 

diagrams (Section 3.3.1.2), or as specific nomenclatural terms 

(Section 3.3.1.3) which the GENSAL interpreter program translates 

into connection tables via a dictionary of standard nomenclatural 

terms. 

4.2.2. Generic Partial Structures 

These appear in GENSAL substituent values as homologous series 

terms (Section 3.5), with associated parameter lists. They are 

shown in PS records as expanded parameter lists, including those 

parameters implied by the homologous series term itself, as well 

as those given explicitly. For example the term "alkenyl" implies 

at least one double bond, that would be indicated by the 

parameter E<1-> in the dictionary. This type of PS is designed to 

be handled for fragment generation and searching using the 

chemical grammars developed by Welford. 67, 174 

Page 120 



CHAPTER 4: THE INTERNAL REPRESENTATION 

4.2.3. Unknown Partial Structures 

These appear in GENSAL substituent values as a "?" (Section 

3.3.1.1.>. Clearly, no further information can be stored about 

their chemical nature, and search algorithms should allow them to 

be matched against any structural entity. 

4.2.4. Other ·Partial Structures 

These cannot be directly associated with any parti cular 

structural characteristics, and include expressions such as 

"electron withdrawing group" or "easily hydrolysed group". They 

are shown in PS records as a character string, taken from the 

other term in the GENSAL substituent value, and could be used for 

some sort of text-based searching. Nomenclatural terms not found 

in the dictionary file used by the GENSAL interpreter program can 

also be stored in this form. 

Table 4.1 summarises the information given in a partial 

structure. 

---------------------------------------------------------------I Chi ld Gate I 
1---------------------------------------------------------------1 1 Parent Gate 1 
1---------------------------------------------------------------1 1 Specific 1 Generic 1 Unknown 1 Other 1 
1-----------------1---------------1-------------1---------------1 
1 Connection 1 Parameter 1 - 1 Character I 
I Table 1 List I I String I 
---------------------------------------------------------------

Table 4.1: Partial Structure Record 

Page 121 



CHAPTER 4: THE INTERNAL REPRESENTATION 

~ CONNECTION TABLE FORMAT 

The connection table used to represent Specific PSs is a simple 

redundant one, each row representing one node, which may be 

either an atom (in which case the atom type is recorded as a two-

letter symbol) or a GENSAL substituent (in which case its name 

the IR1", IR2" etc of GENSAL - ;s recorded, along with the values 

it can take, in the same format as a child gate). The record 

structure for a connection table row is shown in Table 4.2. 

I-----~;~;-;~~~------i-------------;:~;;~;:~~;-~~;~-------------1 

1 1------------------------------------------1 1 1 Substituent Values (Child Gate) 1 
1---------------------------------------------------------------1 
1 Charge 1 

1---------------------------------------------------------------1 
1 Number of Hydrogens 1 

1---------------------------------------------------------------1 
I _________________________ :~~_:~~::~:~: _______________ ----______ 1 

Table 4.2: Connection Table Row 

Normally, substituents attached to a Specific PS are not 

explicitly included in the connection table as information about 

the atoms to which they are connected is stored in the child 

gates. It is only when there is a chain (cyclic or acyclic) of 

such substituents connected together, as shown below, that it is 

necessary in order to indicate the order in which they are 

Page 122 



CHAPTER 4: 

connected to each other. 

C 
I \ 

I \ 
C C----R1 
I I I 
I I I 
C C R2 

\ I \ I 
\ I \ I 
C R3 

THE INTERNAL REPRESENTATION 

The number of attached hydrogen atoms is recorded for each row in 

order to permit the determination of the positions available for 

substitution in each PS. 

4.3.1. Congener Record 

Up to six congeners are possible for each row, this being a 

restriction derived from the Feldmann structure diagram graphics 

system used 179 <Section 3.2) and the record structure for each 

is shown in Table 4.3. Other graphics systems might relax the 

limitation, though it has not been found a particularly 

irritating one. For each is recorded a bond order and information 

about the nature of the connected node. Fraternal connections are 

those to other rows in the same PS: the relevant row number is 

recorded. Filial connections are those to other PSs "lower down" 

in the ECTR, details of the connection being given in the child 

gate. Parental connections are those to other PSs "higher up" in 

the ECTR, and details are given in the parent gate. 

In the present implementation, an arbitrary limit of 32 rows is 

Page 123 



CHAPTER 4: THE INTERNAL REPRESENTATION 

set for each connection table, which is thus the maximum number 

of non-hydrogen atoms permitted in a structure diagram. However, 

because the splitting of a generic structure into separate PSs is 

to a certain extent arbitrary, a large structure diagram can 

always be divided into two or more smaller ones, and the limit 

might be different in other implementations. 

I--~~~;---I---------;~:;;~~:~----------I--;~~~:~---I--;:~;~;:~--I 
1---------1----------------------------1-----------1------------1 1 1 Row number of connected 1 1 1 
1 1 atom or "NOTFIXED" for 1 1 1 
1 1 variable-position 1 I I 
I 1 connection I 1 I 
1---------------------------------------------------------------1 
I __________________________ ~~~~_~~~:~ _________________ ----______ 1 

Table 4.3: Congener Record 

4.3.2. Bond Orders 

In the present implementation, the different bond orders used 

have been derived from the Feldmann system, 179 with some 

modifications. Fifteen bond types are distinguished, and are 

shown in Table 4.4 

Because the environment (chain or ring) of a particular bond may 

alter according to which alternative values for a particular 

structural variable are being considered, and because the 

possibilities for tautomerisation and aromaticity may change 

similarly, the finer distinctions between these bond types are 

Page 124 



CHAPTER 4: THE INTERNAL REPRESENTATION 

not always helpful in generic structures. Ideally, an operational 

system would permit the user only to distinguish between Single, 

Double, Triple and "Any" bonds, and would automatically perceive 

rings, tautomers and aromaticity. Algorithms for such analyses in 

specific structures have been developed for use in synthesis 
183-185 analysis programs. 

----------------------------------------------------------------
Chain Single (CS) Ring Single (RS) Any Single (S) 

Chain Double (CD) Ring Double (RD) Any Double (D) 

Chain Triple (CT) Ring Triple (RT) Any Triple (T) 

Chain Tautomeric (TC) Ring Tautomeric (TR) A"'!1 Bo"J. (11) 

Any Chain (C) Any Ring (R) 

Ring Alternating (RA) 

Table 4.4: Bond Orders in Connection Tables and Gates 

4.4. PARAMETER LIST FORMAT - -

Welford 67, 174 has described a means in which the parameters 

applied to a homologous series term in a GENSAL sentence can be 

used to apply constraints to the chemical grammars used for 

generation and/or recognition of the members of the homologous 

series. The standard parameter identifiers used in GENSAL to 

constrain such features as atom count, branch points and 

unsaturations are shown in TabLe 3.1, and substituents in 

Page 125 



CHAPTER 4: THE INTERNAL REPRESENTATION 

parameter lists can be used to indicate interruptions in a chain 

or ring, or substitutions on it. 

The fuLL set of parameters with their vaLues is sufficient, when 

used to constrain the chemicaL grammars, to define compLeteLy aLL 

the possible structures covered. Consequently, the PS record for 

the generic type of PS can consist simpLy of a List of parameter 

vaLues (as integer ranges) for all the standard parameters. The 

non-standard parameters, represented by GENSAL substituents, are 

treated as substitutions on the generic PS, and information about 

them is given in child gates, as described beLow. However, when 

generating fragments or path tracing within the ECTR, the 

information about children of Generic PSs can used to apply 

constraints to the chemicaL grammars. 

4.5. CHILD GATE FORMAT - -

Child gates indicate the connections from one PS (caLled the 

parent PS) to those lower down in the hierarchy to which it is 

connected. There may be connections to severaL child PSs, which 

can be additional or aLternative to each other. Each child gate 

therefore describes a "one-to-many" reLationship, though over the 

ECTR as a whole the child gates between successive levels of the 

hierarchy describe a "many-to-many" reLationship, as can be seen 

from Figure 4.1. 

In order to show the Boo lean relationships between the various 

Page 126 



CHAPTER 4: THE INTERNAL REPRESENTATION 

child PSs, as well as information on positions of attachment, 

bond orders etc., the internal structure of child gates is quite 

complicated. Each child gate is essentially a tree, with two 

different types of node; the root of the tree is attached to the 

parent PS, and the nodes are arranged in layers called bars. Each 

bar contains only one type of node, and is either a combination 

bar containing combination bar item nodes, which are in AND 

relationship, or is an alternative bar containing alternative bar 

item nodes in OR relationship. The two types of bar follow one 

another alternately. 

For reasons of convenience, based on the precedence of operators 

in GENSAL expressions (Section 3.7), the information on 

positions, multiplicity, bond orders etc. is stored in the 

combination bars, which form the top and bottom bars of each 

child gate. The number of intervening layers depends upon the 

complexity of the Boolean relationships, as indicated by the 

number of pairs of parentheses in the GENSAL expression. It is 

possible for there to be only a single combination bar in a gate. 

Both types of bar are constructed as linked lists of items, which 

are alternative to each other in alternative bars, and additional 

to each other in combination bars. The child gate field of a PS 

record (Table 4.1) is a pointer to the first item in the top 

combination bar, and each bottom combination bar points to a 

child ps. 

Page 127 



CHAPTER 4: THE INTERNAL REPRESENTATION 

---------------------------------------------------------------
Positions in Parent PS 

---------------------------------------------------------------
Multiplicity of Occurrence 

---------------------------------------------------------------
Bottombar 1 Not Bottombar 

----------------------------------1----------------------------
Positions in Child PS 1 Pointer to 

----------------------------------1 
Bond Order 1 Alternative Bar 

----------------------------------1 
Pointer to Child PS 1 (next layer) 

---------------------------------------------------------------
Pointer to next item in Combination Bar list 

---------------------------------------------------------------
Table 4.5 : Item in combination bar of child gate. 

4.5.1. Combination Bars 

The record structure for a combination bar item, shown in Table 

4.5, indicates that it may take one of two possibLe forms, 

according to whether or not it is located in the bottom bar of 

the gate. For both bottombar and non-bottombar forms, information 

is given about the positions of attachment in the parent PS, and 

the multipLicity of occurrence in these positions; there is also 

a pointer to the next item in the combination bar. 

For non-bottombar items, there is a pointer to the first item in 

the alternative bar of the next layer, and the position and 

multiplicity information given applies to all the alternatives in 

this alternative bar. 

For bottombar items, no such alternatives are possible, and a 

Page 128 



CHAPTER 4: THE INTERNAL REPRESENTATION 

pointer is given to the appropriate child PS record, along with 

information about the positions in the child PS at which the 

attachment may be made, and the order of the connecting bond. 

position information can be taken from explicit GENSAL position 

~ (if present) or calculated from those positions available 

for substitution; multiplicity information can be taken from a 

GENSAL selector or from the definition of a multiplier or, if the 

child has been specified in a parameter list for a homologous 

series term (Section 3.5), from the values given for that 

parameter. 

If there are several combination bars in a gate then the position 

information may in each layer more closely specify the positions 

of attachment; the positions specified lowest down the gate are 

those that actually define the point of attachment in the parent 

PS. Not every layer necessarily has a value for the positions of 

attachment in the parent PS, but the top bar will always specify 

positions; others will only do so if there is a position set 

given in the GENSAL expression. 

On the other hand, multiplicity information is given in every 

layer (and is assumed to be 1 if there is no other information), 

and the values in successive layers are multiplied together in 

the manner of Section 3.7.1. 

Page 129 



CHAPTER 4: THE INTERNAL REPRESENTATION 

4.5.2. Alternative Bars 

These have a much simpler structure than combination bars, and 

the record structure for an alternative bar item is shown in 

Table 4.6. All the information about each alternative in the list 

is given in the combination bar pointed to. 

Table 4.6: Item in alternative bar of child gate. 

Figure 4.3 illustrates the internal structure of a single child 

gate for a moderately complicated GENSAL expression. 

4.6. PARENT GATE FORMAT - -

The structure of parent gates is very much simpler than that of 

child gates, as none of the information on the Boolean 

relationships between the various child PSs is stored in them. In 

fact, all the information contained in a parent gate is also 

contained in the corresponding child gates, and the purpose of 

parent gates is simply to allow path tracing within the ECTR to 

Page 130 



CHAPTER 4: THE INTERNAL REPRESENTATION 

I r~: : lI' ~:C! I'lC I . -- ........ _-----_ .... -.. 
i CT : ":YC10hC~(! 
: -:~::~-~~~:-~=j 

li ~~~~~~~~~~~~~~~~~~~~~~~~ I r---~' ---co!iui~~Tio;-u;:ii-iTi:~----: 
---------------------------, I ~.ron. ~0.1 .Ion. : 3-!? I 

I Ir<qoner : I I 
I /lor HOTTO~8AR 
I Alt~rnAt1y"··...:.:===t' ==t------.J , Iln. 10<= :- , ---------------------. 

: -~LTtn"~Tiv£-~~n-iTi~-1 
: ----------------------, 
I Cor:blna.tion Dnr: , 

I_~~~:_::~:_~_~~~: _____ i 
; -~i:TIiiu~Tl~i-i~ii-iii~-! 
.------------------- ... - I 1 Co~blnDtlon Bar : 
,_~_::~:~_-_-__ -_-__ -_-__ -1,--I-...J 

'~~~~~~~~~~~~~~~~~~~~~~~=~,' . 
I Por~nt PosUlone : Nv.,,_ 
I !' Hquency : , f 

I ~~;i~II~~= .. lon. : 1 i I Bond Order: Chain Slncle i 
Ch lId PS : - ____ -+---, I He .. Itc= : /lONE -------------------------, 

',rent '0:::tt10n:. : 2 : 
rrequency : t , 
D01"TU;WAII , 
ChIld Po.ltlon. : I I 
Cond Or~er : Chain SlnCh I 
Child 1'3 : , 
IIcxt Itco : t~O(lE , 

- .. ---.. - _ __ .. __ .. ____ ... ____ _ ~- I 

,-- ... ------ .. --------- t 
, PS : SPEClFIC I ,-------------------, 
I er : fluorine I 
I Child CH. : 110::£ , ---------------- .. _- ' 

---------------------------------------------------------------.... 
Figure 4.3: A diagrammatic representation of the structure of 
the chiLd gate corresponding to the GENSAL expression: 

cyclohexanoL 58 [3-5] «2> methyl/ <3> ethyl) & [2] F 
which means that cyclohex~lis substituted in positions 3, 4, 
and/or 5 by either two methyL groups or three ethyL groups, and 
in addition to these by one fLuorine in position 2. 

take place from child PS to parent PS as weLL in the other 

direction; the redundancy of the information in the parent gates 

is compensated for by the substantiaL enhancements in path 

tracing ability. 

Like the two types of bar in child gates, parent gates are 

impLemented as a Linked List of items, each item referring to a 

different possibLe parent PS for the child in question. The 

record structure is ilLustrated in Table 4.7. For each possible 

parent PS, the possibLe positions for connection in both the 

Page 131 



CHAPTER 4: THE INTERNAL REPRESENTATION 

child and the parent are given, along with a pointer to the 

parent PS, and the order of the connecting bond. 

The parent gate field of a PS record gives a pointer to the first 

item in a linked list of parent gate items. Figure 4.4 

illustrates the overall structure of the parent gates for the 

generic structure shown in Figure 4.2. 

I---------------------;~~~~~~~~-~~-~~~~~-;;---------------------, 

1---------------------------------------------------------------1 1 Positions in Parent PS 1 
1---------------------------------------------------------------1 
1 Bond Order 1 

1---------------------------------------------------------------1 
,--------------~~~~::~-:~-~:~:-~::~-~~-~~~:~:-~~::--------------, 
Table 4.7: Item in parent gate. 

4.7. REPRESENTATION OF CONDITIONS AND RESTRICTIONS - - --

The ECTR described in this chapter makes no provision for 

incorporating the information given in GENSAL "IF" and "RESTRICT" 

statements, nor for distinguishing between the five different 

assignment operators that can be used to indicate independent or 

non-independent values for substituents or mu l tip li e r s in 

selected group assignment statements <Section 3.4.2.>. 

These features of GENSAL, which mirror many of the expressions 

found in chemical patent specifications, are used to limit the 

Page 132 



CHAPTER 4: THE INTERNAL REPRESENTATION 

variety of possible specific compounds covered by a generic 

structure, by restricting the co-occurrence of particular 

alternatives in substituent definitions, etc. The present form of 

the ECTR may thus describe a greater variety of specific 

compounds than is actually warranted, and the limitations imposed 

by "IF" and "RESTRICT" statements could be implemented by 

indicating which of the possibilities in the ECTR should not co-

occur. This might be achieved by applying some sort of selective 

"lock" to the gates, though the way in which this might be 

represented in the computer has yet to be determined. 

---------------------------------------------------------------~. -----, 

--------------------------------------------------------------------, 
Figure 4.4: A diagrammatic representation of the ECTR, showing 
the parent gates, for the generic structure of Figure 4.2. 

Page 133 



CHAPTER 4: THE INTERNAL REPRESENTATION 

4.8. THE ECTR M:!Q. OTHER REPRESENTATIONS 

SiLk 29 has drawn attention to the simiLarity between a Markush 

structure and a nested Boolean expression, and suggested that the 

Boolean relationships could be incorporated into a notation-based 

representation for Generic structures. The ECTR, aLso expLoits 

this similarity with the successive Layers of bars in child gates 

representing the nested Boo Lean reLationships, though the PSs are 

represented by connection tabLes, rather than notation strings. 

An approach much cLoser to that described here has been proposed 

by Fugmann et. aL. 186 It is based on an appLication to generic 

structures of the topoLogicaL graphs used to represent concept 

reLationships in the TOSAR (TopoLogicaL Representation of 

Synthetic and AnaLyticaL ReLations of Concepts) system deveLoped 

187 by IDC. Figure 4.5 shows the representation of a generic 

structure as a TOSAR graph which, Like the structure of child 

gates in the ECTR, indicates AND and OR reLationships between the 

different parts of the structure by means of two types of node in 

the graph (shown as open circLes for OR and dots for AND). 

Fugmann et aL. warn however, that the path tracing aLgorithms 

used for TOSAR graphs may be extremeLy expensive where tracing in 

generic structures is concerned. 

The ChemicaL Abstracts Registry III System 188 empLoys a 

mechanism for compiLing severaL partiaL connection tabLes to 

describe a Larger specific structure. This invoLves the 

repLacement of each ring system in a structure by a unique ring 

Page 134 



CHAPTER 4: THE INTERNAL REPRESENTATION 

. 
• 0 , 

• s • ./". [MH' or 

;/[;: :: c l: ~{:Ih=.,.~::t or 
CH. _ S- .. 

.. Pol"hydroJCy-c:,.c1oalkyl 
CH. 

C]8,d,.,t 0]7,. 

V 
.. '­

.. '-
o] •• c •• 

---------------------------------------------------------------
Figure 4.5: A generic structure represented as a TOSAR graph 

(From Fugmann et al. J86 ). 

identifier, which gives access to a separate file of connection 

tables for ring systems. This has the advantage of saving space, 

since only one connection table need be stored for each ring 

system, irrespective of the number of structures in which it 

occurs, and also allows cross-referencing between structures 

having ring systems in common, and acts as an aid to the 

, t' ft' 189, b automatlc genera 10n 0 sys ematlc names WhlCh are ased on 

parent ring systems. The method is not used however as a means of 

describing generic structures. 

Page 135 



CHAPTER 4: THE INTERNAL REPRESENTATION 

4.9. IMPLEMENTATION OF THE ECTR - ------

The ECTR has been implemented using the data structures of the 

programming language Pascal. Because of the variable total size 

of the ECTR, which depends upon both the number and nature of the 

PSs, and its extensive use of linked lists, it is held entirely 

in dynamic storage, and access to its various parts is achieved 

using pointer variables. 

Tenenbaum and Augenstein 121 have discussed the use of dynamic 

variables in Pascal, and more general problems of the 

implementation of recursive data structures have been considered 
190 191 by Hoare and by Burton. 

4.9.1. The Partial Structure Record 

The Pascal TYPE declaration for a single PS record is a variant 

record, the variants corresponding to the four different types of 

PS found in the ECTR: 

Page 136 



CHAPTER 4: THE INTERNAL REPRESENTATION 

PTRPSTYPE = APSTYPE; 

TPSVARIETY =(DUMMY, UNKNOWN, SPECIFIC, GENERIC, OTHER); 

PS TYPE = RECORD 
VISITED 
CHILDGATE 
PARENTGATE 
CASE PSVARIETY 

BOOLEAN; 
PCOMBINLIST; 
PPARENTLIST; 
TPSVARIETY OF 

DUMMY 
UNKNOWN 
SPECIFIC 
GENERIC 
OTHER 

SUBSTNAME SUBSTITUENT); 

END; 

0; 
(CT 
(PARAMLIST 
(TERM 

CHYPE) ; 
TPARAMLIST) ; 
STRING32) 

In this record, the VISITED fieLd can be used as an aid to path 

tracing in the ECTR, and the other two invariant fieLds give 

access to the child and parent gates respectiveLy. Of the variant 

fieLds, that for a DUMMY PS is used onLy for housekeeping 

operations in the GENSAL interpreter program, no information can 

be stored for UNKNOWN PSs and the record TYPEs for the other 

three varieties of PS are given beLow. 

One of the advantages of using a variant record is that it is 

onLy necessary to set aside the amount of computer storage 

actuaLLy required for the particuLar type of PS in question. 

4.9.1.1. Connection TabLes 

The PascaL TYPE decLarations are 

CHYPE = ARRAY[1 •• MAXCTJ OF AROW; 

STRING2 = PACKED ARRAY[1 •• 2J OF CHAR; 

Page 137 



CHAPTER 4: THE INTERNAL REPRESENTATION 

NUMCONGENERS=O •• MAXCONGENERS; 

SUBSTITUENT = O •• MAXVARS; 

ROW = RECORD 
CHARGE : -9 •• 9; 
HYDROGENS : NUMCONGENERS; 
CONGENERS: CONGARRAY; 
CASE ATOMICROW BOOLEAN OF 

TRUE (ATOM STRING2); 
FALSE (NAME SUBSTITUENT; 

VALUES PCOMBINLIST) 
END; 

The connection table consists of an array of pointers to 

individuaL ROWs of the connection tabLe; this is aLso a 

space-saving measure, as it means that there is no 

requirement to set aside large amounts of space to store 

empty connection tabLe ROWs. MAXCT is a CONSTant giving the 

maximum permissible number of ROWs, currentLy 32. 

RELATIVES =(NONE, FRATERNAL, PARENTAL, FILIAL); 

ATOMNUMBER = NOTFIXED •• MAXCT; 

CONGARRAY = ARRAY [1 •• MAXCONGENERSJ OF 
RECORD 

BOND : BONDORDER; 
CASE RELATIONSHIP RELATIVES OF 

NONE, 
PARENTAL, 
FILIAL (); 
FRATERNAL (ROWNUM ATOMNUMBER) 

END; 

In the array of congeners for each ROW in the connection 

tabLe, the number of congeners permitted is controLLed by 

the CONSTant MAXCONGENERS, which is currentLy 6. A variant 

record distinguishes between the different types of 

connection, and in the ROWNUM recorded for FRATERNAL 

connections, a vaLue of NOTFIXED (which is a CONSTant equaL 

to 0) indicates variable-position connection. The available 

Page 138 



CHAPTER 4: THE INTERNAL REPRESENTATION 

bond orders are 

BONDORDER =(NOTSPECIFIED, ANY, CHAIN, RING, SINGLE, DOUBLE, 
TRIPLE, CHAISING, CHAIDOUB, CHAITRIP, CHAITAUT, 
RINGSING, RINGDOU9, RINGTRIP, AROMATIC, RINGTAUT); 

4.9.1.2. Parameter Lists 

This consists an array of integer range records, one for 

each parameter, each consisting of a linked list of pairs of 

integers (being the lower and upper bounds of each sub range) 

plus a singLe integer to indicate the lower end of an 

unbounded top range: 

PDOUBLIST = ADOUBLIST; 

DOUBLIST = RECORD 
FIRST, 
SECOND INTEGER; 
NEXT PDOUBLIST 

END; 

INTRECORD = RECORD 
SUBRANGES PDOUBLIST; 
TOPRANGE INTEGER 

END; 

If there is no unbounded top range, then the TOPRANGE fieLd 

is set to NOTSET, a CONSTant of value -1 

The declarations for the parameter List array are thus 

TPARAMETERS =(ATOMCOUNT, TBRANCH, QBRANCH, EUNSATURATION, 
YUNSATURATION, RINGCOUNT, RINGATOMS, 
RINGSUBSTITUTION, RINGFUSIONS, 
RINGAROMATIC, HETEROATOM); 

TPARAMLIST = ARRAY[TPARAMETERS] OF INTRECORD; 

Page 139 



CHAPTER 4: THE INTERNAL REPRESENTATION 

4.9.1.3. Other Terms 

This is simply a character string, currently of 32 

characters: 

STRING32 = PACKED ARRAY[1 •• 32J OF CHAR; 

4.9.2. Child Gate Record 

The Pascal TYPE declarations for combination and alternative bars 

are: 

PCOMBINLIST = ACOMBINLIST; 

COMBINLIST = RECORD 
PARENTPOSITIONS 
FREQUENCY 
NEXT 

PTGROUPMEMS; 
INTRECORD; 
PCOMBINLIST; 

CASE BOTTOMBAR BOOLEAN OF 
TRUE : (CHILDPS 

CHILDPOSITIONS 
CONNBONDS 

FALSE: (ALTERNATIVES 
END; 

PALTERNLIST = AALTERNLIST; 

ALTERNLIST = RECORD 
COMBINATION PCOMBINLIST; 
NEXT PALTERNLIST 

END; 

PTRPSTYPE; 
TGROUPMEMS; 
TCONNBONDS); 
PALTERNLISn 

and they can be seen to correspond with the record formats shown 

in Tables 4.5 and 4.6. The .F"(2.G6lVE-NC, fields have the same TYPE 

as the elements of the parameter list record shown above, and the 

position set fields are as follows: 

INTEGSET = SET OF O •• MAXVARS; 

Page 140 



CHAPTER 4: 

TGROUPMEMS = RECORD 
CASE COMBINED 

TRUE (COMBMEMS 
FALSE : (MEMBERS 

END; 

PTGROUPMEMS = ATGROUPMEMS; 

THE INTERNAL REPRESENTATION 

BOOLEAN OF 
PDOUBLIST); 
INTEGSET) 

The BOOLEAN tag field for the variant record type TGROUPMEMS 

distinguishes between position sets for singLy-connected 

substitution (COMBINED = FALSE), which are represented simply by 

an integer set, and position sets for doubly-connected 

substitution (COMBINED = TRUE), represented by a linked List of 

pairs of integers. 

The PARENTPOSITIONS field of the combination bar item is a 

pointer to a TGROUPMEMS record, rather than a TGROUPMEMS record 

itseLf because, as was stated in Section 4.5.1., not all 

combination bar items have a record of positions in the parent 

PS, and for those that do not the PARENTPOSITIONS fieLd can be 

set to NIL. Furthermore, the use of a pointer aLlows several 

different combination bar items to share the same 

PARENTPOSITIONS A record. 

In contrast, there will always be information in the 

CHILDPOSITIONS field where BOTTOMBAR is TRUE, and thus this is a 

TGROUPMEMS record, and not a pointer to one. 

The CONNBONDS field, showing the bond orders for the connection, 

is another variant record: 

Page 141 



CHAPTER 4: 

TCONNS = NOTSET •• 2; 

TCONNBONDS = RECORD 
CASE CONNECTIONS 

NOTSET, 
o 
1 
2 

END; 

THE INTERNAL REPRESENTATION 

TCONNS OF 

0; 
(BOND BONDORDER); 
(BONDA, 
BONDB : BONDORDER) 

The tag-field indicates whether the substituent is unconnected 

(CONNECTIONS = 0), singly- or doubly-connected, an appropriate 

number of bond orders being given in each case. The NOTSET vaLue 

for the tag field is used only in the setting up of the ECTR in 

the GENSAL interpreter, when it may not initially be known what 

the connections are. 

4.9.3. Parent Gate Record 

This is implemented as a simple linked list of records, 

corresponding to Table 4.6: 

PPARENTLIST = ~PARENTLIST; 
PARENTLIST = RECORD 

CHILDPOSITIONS, 
PARENTPOSITIONS 
PARENTPS 
CONNBONDS 
NEXT 

END; 

Page 142 

TGROUPMEMS; 
PTRPSTYPE; 
TCONNBONDS; 
PPARENTLIST 



CHAPTER 4: THE INTERNAL REPRESENTATION 

4.9.4. Space Reguirements 

As a complete and unambiguous representation of a generic 

structure, the ECTR is expensive in its storage requirements. For 

this reason, it is not intended that it should be stored 

permanently as a record of the structure. It would in any case be 

difficult to write the ECTR to a file and read it back into the 

computer on account of its complicated nature as a network of 

pointers. 

It is expected that the ECTR would be built up during interactive 

input of a generic structure for a database of such structures, 

and then immediately used for the generation of fragment 

descriptors which would be stored for use in the first stages of 

searching. The ECTR would then be discarded, and could 

subsequently be regenerated from the stored GENSAL statements 

only if required for atom-by-atom matching in the final stage of 

a search. 

The actual amount of core storage occupied by the ECTR depends, 

of course, on the size and complexity of the generic structure it 

represents. One containing a large number of different 

alternative values for a structural variable, all of which would 

have to be stored as separate PSs, would occupy much more space 

than one with only a few alternatives; the number of atoms in 

each connection table is also an important factor. The GENSAL 

interpreter program described in Chapter 5 is able to count up 

the amount of space being used, and the ECTRs for generic 

Page 143 



CHAPTER 4: THE INTERNAL REPRESENTATION 

structures from patents that have been processed by this program 

have ranged in size from 1156 to 10 674 PR1ME 750 16-bit words. 

The Pascal implementation used for the interpreter 138 allows 16 

segments of 64 kwords each for the storage of dynamic variables, 

making a total of over one million 16-bit words available, though 

other implementations might not be so generous. 

Page 144 



CHAPTER 5 

AN INTERPRETER FOR GENSAL 

"This is the interpretation of the thing" 

Daniel, Ch. 5, Vs. 26 

This Chapter describes an interpreter program, written in the 

Pascal language, which implements a subset of the GENSAL generic 

structure description language, and which is upwards compatible 

with the full language, as described in Chapter 3. 

The interpreter program performs syntactic and semantic analysis 

on sentences in GENSAL, and generates an Extended Connection 

Table Representation (ECTR) of the structure described. 

It is implemented as a separately-compiled procedure of a program 

Page 145 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

called GENPROG, which is a prototype generic structure storage 

and retrieval system under joint development by the author and 

Welford. Appendix 3 is a listing of the interpreter, procedure 

INTERPRET, and Appendix 4 contains a line-number index to the 

subordinate procedures and functions within it. Appendix 5 is a 

listing of the const, type and var declarations that are global 

to GENPROG, with the addition of those procedures and functions 

called by INTERPRET which are also called by other parts of 

GENPROG. 

Pascal programs are sufficiently clear to be largely self­

documenting; comments at the start of each procedure and function 

indicate the routine's basic purpose, and list the calls to it. 

This Chapter gives an overall view of the strategies involved in 

the analysis of GENSAL sentences, and the build-up of the ECTR, 

with particuLar notes on the capabilities and limitations of the 

interpreter, and on the error messages given by the program. It 

is not intended by itself to give a complete understanding of the 

workings of the program, for which it should be read in 

conjunction with a thorough study of the program listings in 

Appendices 3 and 5. 

Appendix 6 shows a sample interpreter session, illustrating the 

input of a generic structure from a patent. 

Page 146 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

~ INVOCATION ~~ INTERPRETER 

The main part of GENPROG processes a simple command language 

which aLlows the user to invoke the interpreter, and aLso to 

perform a variety of other functions. These include filing and 

retrieving of structures processed by the interpreter, opening 

and cLosing of files of diagnostic information on the program, 

adding to a dictionary of nomenclatural terms and invoking a 

simpLe interactive editor program for structures encoded in 

GENSAL, which has been written by Kinsella. 192 ULtimately it is 

expected aLso to have facilities for searching a database of 

generic structures, using GENSAL-encoded query structures, and 

printing search results in a variety of formats. 

The interpreter may be invoked in one of two modes: interactive 

mode, in which each new line of GENSAL is typed at the terminal, 

and non-interactive mode in which previously stored lines of 

GENSAL are processed. Such lines might have been stored in a file 

after a previous session, or be the result of editing a 

structure. 

The lines of GENSAL are stored as a linked list of lines, with 

pointers to both the preceding and following lines; connection 

tables, representing structure diagrams within GENSAL, are 

encoded so that they may also be stored as character strings, as 

discussed in Section 5.5.3. beLow. The forward and backward 

pointers in the linked list are intended to facilitate operations 
192 in the editor module of GENPROG. 

Page 147 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

5.2. LEXICAL ANALYSIS 

This is the first stage of analysis in any compiler or 

, t 80, 81 and l'S the b h' h th ' tt' lnterpre er process y w lC e lnpu s rlng 

of characters is divided up into tokens, each representing one 

terminal symbol. In iNTERPRET, the variable TOKEN holds the most 

recently-identified token for examination by the syntax analysis 

routines, and it is updated by the procedures NEXTTOKEN and 

LOOKAHEAD, both of which call procedure GETTOKEN, the lexical 

analyser itself. 

Three different types of token are identified: GENSAL delimiter 

words and symbols, nomenclatural terms, and integers; the 

subordinate procedures and functions in GETTOKEN determine which 

of these is present. This is done by moving the pointer N along 

the global variable BUFFER, which contains an upper-cased version 

of the last line read. 

This arrangement means that lower-case letters may be used in the 

input, but they are treated as if they were upper-case; the user 

may adopt his own conventions as to the use of lower-case letters 

for nomenclatural terms, or delimiter words etc. In addition, 

each line of input may be edited using backspacing etc. before it 

is processed. In the Pascal implementation used 138 a non-

standard extension to the standard procedure RE~DLN allows entire 

pacted arrays of char to be read in a single operation, the 

right-hand end of the array being space-filled if necessary, and 

an extra variable returning the number of characters actually 

Page 148 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

read. 

When the end of the line is reached, procedure READLINE obtains a 

new one from the terminal, adding it to the linked list of lines, 

if the interpreter is operating interactively, or obtains it from 

the existing linked list, if the interpreter is operating non-

interactively. If there are no more lines in the linked list to 

be read, then the interpreter automaticaLly swops to interactive 

mode, and in interactive mode, the user is able to exit from the 

interpreter by entering a blank line. 

5.3. SYNTAX ANALYSIS 

The basic approach used for syntax analysis is that of top-down, 

recursive-descent parsing, as described by Wirth. 118 No singLe 

part of procedure INTERPRET is entirely concerned with syntax 

analysis, since the procedures and functions which carry it out 

are also concerned with semantic analysis and ECTR generation. 

The analysis of structure description (Syntax Diagram 21) takes 

place in the body of procedure INTERPRET, and the analysis of 

statements (Syntax Diagram 20) in procedure STATEMENT. Separate 

procedures exist for the analysis of assignment statements 

(Syntax Diagram 17), RESTRICT statements, IF statements and 

compound statements, the last two being of necessity mutually­

recursive with procedure STATEMENT. 

Page 149 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

A group of nested procedures analyse substituent definition 

expressions (Syntax Diagram 15), these being procedure ALTNVLIST, 

which encloses procedures ALTNTVE and ELEMENT (analysing a 

definition element (Syntax Diagram 14» which recursively calls 

procedure ALTNVLIST. 

Conditions (Syntax Diagram 19) have not been implemented as part 

of the present work, and procedure CONDITION simply accepts any 

sequence of tokens until an appropriate terminator is 

encountered. This means that, whilst IF and RESTRICT statements 

are not actually implemented, no errors are generated by their 

inclusion. A boolean flag, CONDITIONSPRESENT, controls the 

printing of a warning message at the end of structures containing 

conditions. 

A number of other procedures carry out syntax analysis on 

particular syntactic constructs in GENSAL. These are procedures 

INTEGERRANGE, SELECTOR, POSITIONSET, PARAMETERLIST and 

SUBSTGROUP. 

5.4. ERROR HANDLING 

The program detects four different types of error, printing 

appropriate messages at the user terminal. In each case the error 

message required is obtained from an external file, ERRORMSGS and 

is printed by procedure WRITEMESSAGE, with the possible inclusion 

of some information on bond orders, atom numbers etc., if 

Page 150 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

relevant. The available messages are listed in Appendix 7, and 

the sample session shown in Appendix 6 illustrates several of 

them. 

5.4.1. Program Errors 

A limited number of checks are performed by the program on its 

own working, and any error detected causes the user to be ejected 

from the interpreter, with display of a unique error number. 

5.4.2. Structure Diagram Errors 

These are errors detected during the processing of structure 

diagra.s, and relate to such matters as illegal valencies etc. If 

any are detected, the structure diagra. is rejected and the user 

required to correct it before processing can continue. 

Structure diagra. processing is more fully described in Section 

5.5 below. 

5.4.3. "Immediate" Errors 

These are errors relating to invalid tokens in the GENSAL input, 

and they are handled by procedure ERROR. All syntax errors fall 

into this class, as do certain semantic errors. 

Page 151 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

A line of arrows is drawn under the offending token in the GENSAL 

input line currently being processed, followed by the error 

message. The remainder of the input line is ignored, and in 

interactive mode the user is invited to continue the GENSAL input 

starting with a replacement for the erroneous token. In non-

interactive mode the user is ejected from the interpreter. 

5.4.4. "Delayed" Errors ("Failures") 

This type of error is not detected until processing has continued 

for some time after the token which causes it has been obtained 

by the lexical analyser, and it is called a failure. Failures 

relate to such matters as incompatible bond types, and are 

handled by procedure FAILURE. In all circumstances the user ;s 

ejected from the interpreter. 

~ STRUCTURE DIAGRAM PROCESSING 

As was stated in Chapter 3, the graphics system used for the 

input of structure diagra.s in GENSAL is intended to be 

implementation-dependent, and in the present work a modification 

of the structure generation and display program written by 

Feldmann and others 179 is being used. This consists of some 4000 

lines of Fortran, and is implemented as an EXTERNal procedure of 

GENPROG. In order to avoid the complexities of attempting to to 

link the COMMON blocks used by the Feldmann program for storage 

Page 152 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

of the connection table it uses with the global variables of 

GENPROG, the connection table is transferred to and from the 

Feldmann program via a scratch disc file. 

The connectivity and bonding tables in the Feldmann program are 

separate, and are read into the GENPROG global arrays FELDCT and 

FELDBD by procedure READFELDMANN. Procedure PROCESSCT then 

reformats them into the connection table format used by the ECTR 

and described in Section 4.9.1.1. 

5.5.1. The Feldmann Program 

The principal modifications made to the Feldmann program have 

been to allow the identification of a node in the diagram as a 

GENSAL substituent, or as an "apical" connection e*) or as a 

"variable-position" connection efl) as well as as an atom of a 

particular element, and to allow multipliers to be applied to a 

particular node. 

In addition to this, the maximum number of nodes permitted has 

been reduced from 100 to 32, and upon exiting from the Feldmann 

program all "default" bonds are replaced by either chain or ring 

single bonds, depending upon their environment. 

Some slight changes have also been made to the bond types 

permitted, and to the symbols used to represent them in the 

diagrams, and routines have been written to output the 

Page 153 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

connectivity and bonding tables to a scratch file, and to read 

them back again. 

5.5.2. Procedure PROCESSCT 

This procedure is applicable only to the Feldmann graphics 

system, but is virtually the only routine in the interpreter to 

be so, and thus is the only one that would require replacement 

were a different graphics system to be incorporated. 

Since the Feldmann program carries out very few checks on atom 

valencies etc., such checks are done by PROCESSCT, which uses 

procedure REJECT to handle any errors detected. 

The Feldmann connectivity table in FELDCT is examined line by 

line, but only nodes representing atoms (except hydrogen) and 

certain substituents are added to the ECTR-format connection 

table (Section 4.9.1.1). Procedure HNUMBER is abLe to caLcuLate 

the number of hydrogens (equivaLent to positions avaiLabLe for 

further substitution) on each atom for common eLements, obtaining 

the permissible vaLencies from an externaL fiLe, VALENCYFILE. 

The bond orders are represented by an enumerated type which is so 

arranged that the ordinaL values correspond to the integers used 

for the bond types in the FeLdmann program. Since "default" bonds 

are removed from the structure diagram, NOTSPECIFIED bonds cannot 

appear in connection tables. 

Page 154 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

PROCESSCT checks that the connectivity of each substituent is 

compatible with its connectivity in any previous appearances, 

rejecting the structure diagram if it is not. 

If a structure diagram is rejected, the lines of the ECTR 

connection table are DISPOSEd, and in interactive mode the user 

is returned to the Feldmann program to correct it; in non-

interactive mode, the user is ejected 

is used 

from the interpreter. 

to determine the Otherwise, procedure GETPOSNS 

connectivity, bond order(s) and possible position(s) of 

attachment of each substituent in the diagram, removing from the 

connection table those substituents that are attached only to 

atoms. 

5.5.3. Storage of GENSAL Structure Diagrams 

In order to allow the structure diagrams occuring in GENSAL 

sentences to be held in the same format as text lines of GENSAL, 

the Feldmann-format connection table is encoded as a character 

string (using the Pascal CHR function for the integers in the 

connection table). The conversion is carried out by the 

procedures ENCODECT and DECODECT. 

Since it is the Feldmann-format connection table which is used 

for this, the lines of GENSAL stored in files etc. include 

structure diagrams in Feldmann connection table format. A 

possible minor enhancement to the program would be to remove this 

Page 155 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

Feldmann dependency, and thus make it easier to use the 

with other structure graphics systems. This 

problems with graphics systems having 

for the storage of 2-dimensional atomic 

interpreter program 

could however leave 

differing requirements 

co-ordinate data; the Feldmann program retains no such 

information, but recalculates co-ordinates every time the diagram 

is redrawn. 

5.6. SUBSTITUENT DECLARATIONS 

The program maintains a record of the substituents declared 

(introduced) and defined during the course of a GENSAL sentence. 

This allows it to check firstly that all declared substituents 

are defined somewhere (procedure CHECKALLDONE), secondly that 

only declared substituents are defined, and thirdly that all 

declarations of a given substituent are compatible in matters of 

connectivity and bond order(s). GENSAL substituents can be 

declared in one of four ways: 

(a) in structure diagrams 

(b) as a user-defined parameter to a homologous series term 

(c) as a value in the definition of another substituent 

(d) in copying a definition containing a declaration as in (c) 

above. (This last is internal to the program, and not apparent 

to the user.) 

In each case, an entry is made by procedure DECLARESUBST in a 

table of substituent declarations, RDECLARATIONTABLE, which is an 

Page 156 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

array of linked lists, one for each substituent. Each new 

declaration of a substituent is recorded as a new item in the 

appropriate list, which contains information about the 

declaration relating to such matters as the partial structure in 

which it occurs, the position(s) at which the substituent can be 

attached and the order(s) of the connecting bond(s). 

If it is found that a substituent being declared has already been 

defined, then the values with which it was defined are copied 

into the child gate of the partial structure in which the new 

declaration occurs. This is done by the mutually-recursive 

procedures COPYCOMBAR and COPYALTBAR which copy bars of child 

gates. "Absolute" definitions of each substituent are held in the 

elements of an array called RDEFINITIONTABLE, in order that the 

definitions copied are independent of the environment (positions 

of attachment etc.) in which the substituent in question had 

previously appeared. 

Not all of the information for entries in RDECLARATIONTABLE is 

available at the time the declaration is made, and missing items 

are filled in later. 

Where one substituent is defined in terms of another, as in 

R1 = R2 sb methyl 

there may be further substitution to attach to the substituent 

given as a substituent value. Because, if this new substituent 

Page 157 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

has not yet been defined, no partial structure exists to which a 

child gate can be attached, a DUMMY partial structure is created 

to represent the substituent, and the FURTHERSUB field of the 

entry in RDECLARATIONTA8LE points to this DUMMY partial 

structure. When the substituent in question is defined, the 

further substitutions on it can be copied onto the partial 

structures representing its possibLe vaLues. 

5.7. SUBSTITUENT DEFINITIONS AND ECTR GENERATION - ---

When a substituent group has been read, procedure POINTERLIST 

sets up a linked list, each item of which represents one 

RDECLARATIONTA8LE entry for one substituent or substituent 

combination in the substituent group (plus one extra item for 

RDEFINITIONTABLE). This List is passed as a parameter 

(PARENTPSLIST) to procedure ALTNVLIST, which creates alternative 

bars in child gates, one child gate being built up on each of the 

items in PARENTPSLIST. 

Procedure ALTNVLIST contains an iterative repeat Loop which 

cycLes round aLL the aLternatives (separated by "I" delimiters) 

in a GENSAL substituent definition expression, and caLLs 

procedure ALTNTVE to anaLyse the definition eLements separated by 

"&", "OSB" and "58" deLimiters. The PARENTPSLIST linked list is 

slightLy reformatted before being passed as a parameter 

(PARALTLIST) to ALTNTVE, which passes it on to procedure ELEMENT, 

which analyses a single definition element and builds up the bulk 

Page 158 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

of the ECTR. 

5.7.1. Syntactic and Semantic Analysis in ELEMENT 

Procedure GETLIMITPOSITIONS is used to determine the set of 

positions available in the parent partial structures for all the 

items in PARALTLIST, which also contains information on position 

sets given in previous recursions of definition element. Thus 

procedure POSITIONSET is able to give appropriate error messages 

if illegal positions are specified. 

No such checking is performed in the analysis of selectors in 

definition elements. Thus no error would be detected in the 

following expression 

R1 = phenyl sb [2] <5> methyl 

There is no reason in principle why such checking should not be 

done, but it would involve considerable computational effort, and 

it has not been considered worthwhile as the the interpreter is 

not intended to be a teaching program. For similar reasons, no 

error is reported in the analysis of statements such as 

R1 = phenyl sb [2J (F & Cl & Br & I) 

Page 159 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

5.7.2. Substituent Values 

The analysis of substituent values is performed in a case 

statement, with separate procedures to handle each path. 

For parenthesised substituent definition expressions, function 

NEWPARENTPSLIST sets up a new linked list, based on the items in 

PARALTLIST, for passing in a recursive call to procedure 

ALTNVLIST. This function also adds an extra non-BOTTOMBAR 

ca.b;nat;on bar to the various child gates accessed via the items 

of PARALTLIST. 

Since GENSAL treats substituents occurring as substituent values 

as parenthesised expressions (Section 3.7.3), an extra non-

BOTTOMBAR combination bar is incorporated into 

with the DUMMY partial structure created 

substituent (Section 5.6) being included 

ALTERNATIVES leading from it. This is 

EXTRALAYER. 

the 

to 

as 

done 

chUd gates 

represent the 

one of the 

by function 

Structure d;agra.s, always preceded by the delimeter "SO", are 

handled by calls to the Feldmann program and procedure PROCESSCT; 

appropriate partial structure records are also set up for "1" and 

"other term" substituent values. 

Page 160 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

5.7.3. Nomenclatural Terms 

The analysis of nomenclatural terms is quite complicated, and is 

handled by procedure TRANSLATENOMEN. The approach used in this 

implementation of GENSAL has been to maintain a dictionary of 

nomenclatural terms (SPSDICT) which gives access to a file of 

structure records (SPSFILE). The entries in SPSFILE may be of 

three types: a connection table, a set of homologous series term 

parameters, or a GENSAL expression. In order to allow synonyms to 

be handled, several different records in SPSDICT may give access 

to the same record in SPSFIlE. 

Function RECORDHELD determines whether or not a record is held 

for a particular nomenclatural term; if none is, then the term is 

treated as an "other term" and an OTHER partial structure is used 

to store the character string itself. 

If there is a record, function SPSVARIETY determines which of the 

three possible types it is. Both SPECIFIC (connection table) and 

GENERIC (parameter list) entries can be handled quite simply. 

OTHER (GENSAL expression) entries are more complicated. 

This type of SPSFILE record is used for compound nomenclatural 

terms, which can be analysed into simpler terms: examples include 

"halophenyl", "diethylamino" and "N-methyl-2-propionamido". Other 

such terms represent a delimited series of alternatives, such as 

"halogen" or "alkali metal". The SPSFILE entry for halophenyl 

gives the expression "phenyl sb halogen", and that for halogen 

Page 161 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

the expression"F I Cl I Br I I". The entries for phenyl, F, Cl, 

Br and I are all partial connection tables. 

The processing of such an expression involves saving the current 

input BUFFER etc., and then calling ALTNVLIST recursively to 

analyse it; after the return from ALTNVLIST the original input 

BUFFER is restored. Such nesting of expressions can continue to 

any level, and the interpreter effectively treats each expression 

obtained from SPSFILE as if it were in parentheses (in fact the 

expression as it appears in SPSFILE is always terminated by a 

parenthesis). 

The "highest-level" convention for further substitution on 

parenthesised expressions (Section 3.7.4) is of particular 

importance when dealing with compound nomenclatural terms and was 

chosen in preference to the alternative "lowest-level" convention 

on account of the problems that the latter would cause with such 

expressions. 

If the expression "halophenyl sb methyl" were to occur in a 

GENSAL sentence, the dictionary-lookup operation would result in 

its being treated as 

(phenyl sb ( F I Cl I Br I I » sb methyl 

and the highest-level convention means that the methyl group is 

attached to the phenyl group and not to any of the halogens. 

The process of dictionary lookup effectively changes the "right­

rooted tree" of the compound nomenclatural term (where the 

Page 162 



CHAPTER 5: 

rightmost part of the 

structure) to the 

(where the leftmost 

structure). 

AN INTERPRETER FOR GENSAL 

term is connected back to the parent 

"left-rooted tree" of a GENSAL expression 

part is connected back to the parent 

A minor problem remains with compound terms such as "alkoxy" 

which, if interpreted as 

(oxy sb alkyL> 

would imply in the expression 

alkoxy sb chlorine 

that the chlorine was substituted on the oxy group. This is not 

the generally-understood meaning of such expressions, and the 

problem is really a result of the conflict between the use of 

right-rooted and left-rooted trees in standard chemical 

nomenclature and GENSAL expressions (which derives them from the 

forms of statement in patents) respectively. 

The interpreter program gets round the problem by a "fiddle" of 

dubious chemical vaLidity and the SPSFILE entry for "alkoxy" is 

alkyl sb [0/1J oxy 

Thus the oxy group is regarded as being a child of the alkyl 

group rather than vice-versa, and the position combination [0/1J 

is used to indicate that the oxy group is interposed between the 

alkyl group and its parent structure. 

This approach is justified firstly because it avoids a tricky 

problem, and secondly because it will aLlow the SPECIFIC oxy 

group partial structure to be handled along with the GENERIC 

Page 163 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

partial structure for the aLkyL group in fragment generation. 67 

Had the aLkyl group been a child of the oxy, this would have been 

more difficult. In any case, so far as the GENSAL user typing 

"alkyl sb chlorine" is concerned, the whole arrangement is 

hidden, and he need not be aware of the construction of the ECTR. 

It is possible that a compound nomenclaturaL term may be 

converted via SPSFIlE to an expression involving a simple 

homologous series terll; the terms "chloroalkyl" and "alkoxy" are 

examples of this. Any parameter List given after the term will 

thus be used to specify parameters for the simpLe homologous 

series term in the GENSAl expression. However, as this term may 

. be nested in several layers of GENSAl expressions, the variable 

INSERTHSTPS is used to keep a note of any GENERIC partial 

structure in the expressions obtained from SPSFIlE. Should more 

than one homologous series term be encountered during the 

processing of an expression from SPSFIlE, it would not be clear 

which of them should be quaLified by the parameter list; for this 

reason a program error is given in this situation, which should 

not arise if care is taken in the construction of SPSFIlE. 

Routines exist in the main part of GENPROG for adding records to 

SPSDICT and SPSFIlE, though one of the problems in building up 

these files has been deciding how to interpret certain terms. 

This is a matter discussed by Dyson 54 and referred to in Section 

1.4.6. For example, it is not always clear if the term "alkenyl" 

indicates exactly one doubLe bond, or a minimum of one. Clearly, 

a decision of some sort has to be made for the purposes of 

Page 164 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

SPSFILE, but it is possible that an operational system might 

allow the user to redefine certain terms for his/her own use, and 

perhaps to maintain a private dictionary file. 

Ultimately, the real problem is that the meaning of a term may 

differ from patent to patent, and may be left deliberately vague; 

sometimes patents define the meaning of a particular term used, 

but the definitions of a term like "aryl" differ widely from 

patent to patent. There appears to be no simple solution to this 

difficulty, which will only finally be overcome if the drafters 

of patents agree on standard meanings for the terms they use. 

5.7.4. Parameter Lists 

Procedure PARAMETERLIST carries out the analysis of parameter 

lists, and checks that the values given for each parameter are a 

subset of those implied in the homologous series term to which 

the list is being applied. Thus, for example, any value other 

than 0 for the number of rings in a parameter list applied to the 

term "alkyl" would be illegal. 

Since it is possible for an homologous series term to be missing 

from SPSDICT, procedure TRANSLATENOMEN permits terms not found to 

be followed by parameter lists, though the information they give 

is not stored in the ECTR. 

Page 165 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

5.7.5. ~ Generation 

Two procedures handle the creation of child and parent gates, 

respectively SETCOMBARS (which calls funct;on NEWCOMBAR) and 

SETPARENTGATE. 

SETCOMBARS uses procedure GETCHILDPOSITIONS to determine the 

positions available in the child structure for the connection(s) 

to its parent. This procedure additionally checks that the bond 

orders specified are compatible. For each connection the bond 

order may have been specified in both the parent partial 

structure and the child partial structure (though in many cases 

either or both of these will be NOTSPECIFIEO). Procedure 

BONOCHECK uses a table of bond orders, BONDMATCHARRAY, to 

determine a bond order compatible with the two specified: for 

example a CHAIN bond and a SINGLE bond result in a CHAISING bond, 

whereas a CHAISING and a CHAIDOUB bond are recognised as 

incompatible. Two NOTSPECIFIED bonds result in a SINGLE bond, so 

. that no NOTSPECIFIED bonds are left when the ECTR is complete. 

The ch;ld positions determined may be modified if there is a 

position set following the substituent value, this modification 

being achieved by procedure MODIFYCHILDPOSITIONS. 

Where further substitution has been specified on substituents 

given as substituent values, as in 

R1 = R2 sb methyl 

Page 166 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

Procedure ADDFURTHERSUBTN is used to copy the partial structures 

for this further substitution (methyl in the above example) onto 

the partial structures created when the substituent in question 

(R2 in the above example) is defined. This uses function PPOSNS 

to check that any position sets specified are actually available, 

before calling COPYCOMBAR to copy the gates. 

5.8. MULTIPLIER DECLARATIONS AND DEFINITIONS 

Multipliers appear only in structure 

MDECLARATIONTABLE records information about 

diagrams and 

the partial 

structures in which they occur, and also the substituents to 

which they apply. 

As each multiplier is defined, the values for it are placed in 

MDEFINITIONTABLE, and only on completion of the processing of a 

GENSAL sentence does procedure RECORDMULTS actually transfer this 

information to the ECTR, in appropriate FREQUENCY fields in the 

top bars of child gates. 

Page 167 



CHAPTER 5: AN INTERPRETER FOR GENSAL 

5.9. TIDYING THE ECTR 

Before returning to the main part of GENPROG, the interpreter 

calls procedure TIDYINTREP, which DISPOSEs of certain redundant 

parts of the ECTR: these are mainly partial structures and their 

associated gates that were set up as parts of the entries in 

RDEFINITIONTABLE, and which were only required for checking 

purposes during procedure INTERPRET. A few other linked lists 

used for housekeeping purposes are also DISPOSEd by TIDYINTREP. 

Procedure OUTINTREP is used to output a representation of the 

ECTR to a diagnostics file, if desired, but this is intended only 

for programmer checks on the working of INTERPRET. 

Finally, control is passed back to GENPROG, where the ECTR can be 

used for fragment generation and other purposes. 

Page 168 



CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

"Give us the tools, and we will finish the job" 

Churchi II 

6.1. DEVELOPMENT OF A PATENT DOCUMENTATION SYSTEM - --

The input language GENSAL is essentially a means of describing 

generic chemical structures; it is not a means of encoding patent 

specifications as such. Many patents contain several generic 

structures covering, for example, the various components of a 

mixture, or different intermediates in a reaction pathway, and a 

patent documentation system might require all these to be encoded 

separately in GENSAL. 

Page 169 



CHAPTER 6: CONCLUSIONS 

Considerable development work would be needed to take GENSAL, the 

ECTR, the interpreter program, and the work described by Welford 

67 to form a comprehensive onLine patent information system, and 

further research work is also stiLL required to make such a 

system viable. 

From the interpreter point of view, the most immediate task is 

obviously to extend the program as it exists to implement the 

full GENSAL language, including conditions. But more important 

than this is LikeLy to be the deveLopement of fragment-based, and 

possibLy atom-by-atom search algorithms, and approaches to this 
67 are discussed by Welford. 

In order to evaluate such algorithms, a database of at least some 

hundreds of generic structures from patents, and some sample 

queries, will be required. A number of companies in the chemical 

and pharmaceutical industries have expressed interest in 

participating in the encoding of structures in GENSAL for this 

purpose. 

The buiLding up of a database wilL aLso enabLe a fuLL evaLuation 

to be made of the power of GENSAL to encode generic structures in 

patents. Additionally, it will permit an analysis of the effort 

required to encode a generic structure from a patent in GENSAL; 

p~tscher 44 has pointed out that in the encoding of generic 

structures in the GREMAS system, the difficult part of the 

operation is the analysis of the structure as described, rather 

than the selection of GREMAS terms, and this analysis would also 

Page 170 



CHAPTER 6: CONCLUSIONS 

to a large extent at least - need to be carried out for GENSAL 

coding. 

Certainly, GENSAL coding from patents or abstracts is not a 

clerical task, though experience and a basic knowledge of 

elementary chemistry would be adequate qualifications for a 

coder. GENSAL coding is likely to require much less training than 

that required for encoding in a fragment-based system. 

The possibility of automatic generation of GENSAL from patent 

specifications or abstracts is an interesting one; Nishida and 

Takamatsu 193 have recently described a method for extracting 

information from patent claim text, though their work was not 

related to chemical patents. The problem would be likely to be a 

very difficult one in the application of artificial intelligence 

techniques, and any system developed would certainly require 

human interference at points where the specification is 

ambiguous. Such automatic input of generic structures might 

however be essential if a viabLe back fiLe of patents were to be 

built up. 

Associated with the input of a large number of structures in 

GENSAL will be the need to add terms to the dictionary of 

nomenclatural terms, and this will require many decisions to be 

made as to the meanings to be assigned to vague terms, as 

discussed in Section 5.7.3. 

Page 171 



CHAPTER 6: CONCLUSIONS 

6.2. OTHER POTENTIAL APPLICATIONS OF GENSAL 

Whilst GENSAL has been designed for the encoding of the generic 

structures in patents, and thus to form part of an integrated 

patent information system, it has a number of potential 

applications outside the field of computer-based patent 

documentation systems, and these will now be mentioned briefly. 

6.2.1. Non-Computer Description £t Generic Structures 

Since GENSAL is designed to be a complete and unambiguous means 

of describing generic chemical structures, it could well have a 

use in non-computer contexts, just as high-level programming 

languages such as Algol are often used for the non-computer 

description of algorithms. 

GENSAL is intended to be readiLy comprehensible to a chemist or 

patent agent who has had a fairly minimal 

(though rather more training would be 

training 

required 

in its use 

to achieve 

efficiency and accuracy in encoding structures), and it might 

therefore have applications in printed abstracts of patents, or 

in current awareness bulletins. If such a printed publication 

were produced by a computer-typesetting process, then the use of 

GENSAL would give the added advantage of leaving a compLete and 

unambiguous description of the generic structure in machine­

readable form, so that it could, perhaps, be incorporated into a 

computerised storage and retrieval system at a later date. 

Page 172 



CHAPTER 6: CONCLUSIONS 

The clarity and lack of ambiguity of GENSAL would make such 

descriptions much easier to understand than those currently found 

in patent specifications and abstracts. 

It is even possible to speculate that GENSAL might ultimately be 

used for generic structure descriptions in the patent documents 

themselves, though this is likely to remain speculation for some 

time to come. 

6.2.2. Generic Structures in the Journal Literature 

Figure 1.1 

literature, 

illustrated 

and such 

a generic 

series of 

structure 

related 

from the journal 

compounds could 

conveniently be described using a single GENSAL structure, which 

might, if desired, be used for automatic generation of all the 

specific compounds covered, so that these could be registered in 

an appropriate specific-compound registry system. Integration 

with a quantitative structure activity relationship system might 

also allow the automatic identification of the compounds likely 

to be most active. 

6.2.3. Chemical Reaction Documentation 

One of the problems in the documentation of chemical reactions is 

the description of the "generalised" reaction process. Normally 

this is done in terms of substructures for the reactant and the 

Page 173 



CHAPTER 6: CONCLUSIONS 

product, which represent the "reaction centre" - i.e. the atoms 

and bonds actually involved in the reaction. 

However, frequently the reaction is strongly influenced by the 

presence or absence of surrounding groups which do not actually 

participate in the bond changes. The description of the reaction 

centre as a generic structure, using GENSAL, would allow these 

variable surrounding groups to be taken into account, though the 

feasibility and development of a reaction indexing system based 

on this principLe wouLd need substantial research investigation. 

6.2.4. Specific Structure Search Queries 

Many of the chemical structure search systems currently available 

commercially have some features for the use of generic structure 

queries in searches of files of specific structures. For the most 

part these aLlow onLy a very restricted type of generic 

structure, usually the specification of a few alternative atoms 

or groups at particular defined points in the query structure, 

though the COUSIN system at Upjohn, 64 described in Section 

1.4.7, aLlows a greater degree of sophistication with its "R " 
k 

notation. Systeme DARe (Section 1.4.6) is also believed to be 

about to introduce substantial facilities for generic structure 

queries. 

The use of GENSAL would permit much more complex generic 

structures to be input as queries for searches of a file of 

Page 174 



CHAPTER 6: CONCLUSIONS 

specific structures, potentially without any need for 

modification of the search software. A GENSAL interpreter program 

would convert the GENSAL input to the ECTR internal 

representation, and from this a special fragment-generation 

module would produce a set of search fragments compatible with 

those normally used for searching the file, with appropriate 

"AND" and "OR" logic. 

6.3. CONCLUSIONS 

The work described in this Thesis forms a viable basis for an 

improved storage and retrieval system for generic structures in 

patents, and it is the hope of the author that it may be used in 

the development of such a system. 

It is possible that, as discussed in this Chapter, the work may 

have applications in other areas also. Improved patent 

documentation systems may additionally have an effect on the 

processes of drafting and granting patents. In 1966 Frome 194 

discussed the legal problems that could be caused by computer 

programs able to print out all the specific compounds covered by 

B l o k 195 h l a generic structure. lC as a so pointed out a similar 

problem with computer-aided synthesis packages, which could 

affect the patentabiLity of synthesis routes suggested by such 

packages. 

Page 175 



CHAPTER 6: CONCLUSIONS 

Whatever the fate of the present work, it is certain that storage 

and retrieval systems for generic chemical structures will have 

increasing importance in many areas for many years to come. 

Page 176 



APPENDIX 1 

GENSAL SYNTAX DIAGRAMS 

In these syntax diagrams, delimiter words and symbols are shown 

enclosed in boxes, data items are shown in upper case letters, 

and references to other syntax diagrams are shown in lower-case 

letters. A detailed discussion of the formal grammar of GENSAL is 

given in Section 3.13 of the text of this Thesis. 

l!. integer 

----------------------------~------> digit --------T-------------------------> I. 1 ' ______ ----------______ ' 

.£.!. integer range 

----~----> integer ---T---------------------------------------~------------> 
1 1 • 

I 1---> c=:J -----r------------------------>! 
I 1 1 : 
1 I. I 
: : 1 ________ > integer ------>. 
1 1 I 
1 1 1 
:------~<-------~------------------------------------- ___ , 

Page 177 



• 

APPENDIX 1: GENSAL SYNTAX DIAGRAMS 

1...:. substituent 

___________________ > ~ --------> integer ---------------------------------> 

.i:. multiplier 

___________________ > ~ --------> integer ----------------------------------> 

~ position combination 

_____________________ > integer ------> ~ -------> integer -----------------> 

h position set 

----------> -r-------> integer range --------""--> CD ------------------->. 
I--~-> position combination -T--

1 

{I' 0 1 1 . 1 ----------- , <--------

1.:. parameter 

-------T-----------------------> PARAMETER IDENTIFIER ----------"'-----------> 
1----> ~ -----------> substituent ----------> c:J ------1 

?.:- selector 

-------------> ~ ------> integer range -------> ~ -______________________ > 

~ parameter list 

--------r---------------------------r----------------- ----------~-----------> 

1----1.\-----> parameter _____ \V _______ > selector ----T----- 1 
I 1 ---------------------------------------------

10. substituent value --- -------
---r----------------------------> [2J ----------------------------------~---> 

1----------> SD ------------> STRUCTURE DIAGRAM --------------------->: 
1 1 
1 1 

1---> HOMOLOGOUS SBRIES IDENTIFIER --------> parameter list --------->1 
1 1 
1 1 
1 _____________ > SPECIFIC NOMBNCLATURAL TERM ------------------------->1 
1 • 1 
I 1 

1------------>0 --J;\--> OTHER TERI~ ----r----->[J---------------------I 
1 I -------------------

Page 178 



APPENDIX 1: GENSAL SYNTAX DIAGRAMS 

~ substituent combination 

-----------> substituent ----> ~ -----> substituent -----------------------> 

~ substituent ~ 

----------------T--------->~----> integer range ------"'--------------------> 
I-~----> substituent combination ___ ~--I 

I ______ --------~<--------- ______ I 

~ multiplier ~ 

_______________________ >~---> integer range -------------------------~-----> 

~ definition element 

-----T----> position set ---------------------------------------------1 
1 
1 

<--------------------------------------------------------- ______ 1 

----> selector -------------------------------------------------1 
1 
1 <--------------------------------------------------------- ______ 1 

1 
1----> 
1 
1 
1 
1 
1 
1 

l----> 
1 
1 
1 1 ____ > 

substituent value --T-------------------------------------
1 
1 
1---> position set __________________ > 

substituent -------------------------------------- _______ > 

~ ---> substituent definition expression ---> [IJ -----~-----> 

~ substituent definition expression 

--------------~----------> definition element --------------- __ ~-------------> /1 \ • 1 

<--------------- ~<--------------------------! 
1 

<-------------- ~<--------------------------: 
1 

<------------- ~ <--------------------------: 
1 
1 _________________ ~ <--------------------______ 1 

Page 179 



APPENDIX 1: GENSAL SYNTAX DIAGRAMS 

~ assignment operator 

----------------------T-------------->[:] ----------------~-----------------> 
-------------->~ ----------------> 
-------------->~----------------> 

- -- --- ---- ---->~ -- ---- - - ------ --> 

-------------->~ -----------------

~ assignment statement 

--r-> selector -1,\--,--> 1 ______ - ______ 1 1 

substituent 
substituent ----> assignment ----> definition 

group operator expression 
--~---> 

I 
1 1 1 __ > multiplier -----> assignment ----> selector -----1 

group operator 

~ simple condition 

:--> 

selector-T-> 
I 
1 
1 
1 
1 
1 
1 
1 , 
1 
1 
I 

1 1 __ > 

substituent 

--> substituent 
combination 

----> multiplier 

substituent 
group 

-T-> c:J ---)I;----T---> 
1 11' 1 1 1 1 

position set -------'j;\--> 
1 1 1 I 

1 
1 I ~ I I ! __ > ~ ___ I 1 ___ > substituent 

defini tion 
expression -------->1 

1 
I 
1 1 __ > 

parameter -)I;--T-> G --I 
I" 1 1 

-----------1 1->[32] _'if_> selector __ > multiplier group 

--~--T-->c:J ---~-------T-----> position set ----------> 
(,\ I I!' 1 1 I 1 1 

1 1 nil substituent 1 ! __ >~ ___ I 1 ________ > definition 

1 expression 

1 
1--> parameter -.-.-----T-->G ----"'-> selector 

11 \ 1 I"~ ___________________ ?I ! __ >~ 1 

1 

1---> 
1 , -------------------1 

Page 180 

1 
1 1 ___ > 

------------------>1 
<-- parameter <~--substituent 

1- substituent 
combination 

1 
1 

<--I 
1 

<--I 
1 
I 
I 

I 
multiplier <-------------1 



APPENDIX 1: GENSAL SYNTAX DIAGRAMS 

.li!. condition 

-----Ir\----r----------~-----r----> simple condition----------~-------r-------> 

! I-->INOT[--I I---->W---> condition --->[I]---I ! 
1<-----------------------1 ANDI < --------------------------------- i 
1 1 1 ________________________ IORI < _________________________________ l 

20. statement 

---T---------------------> assigment statement -----------------------~-----> 

---> ~ --> condition --> ITHEN[ --> statement ----r------------>! 
1 1 1--------------______ 1 I 

1--> IELSEI --> statement --------> I 
1 

---> IR~STRICTI -----> condition --------------------------------->: 
1 

---> [BEGINI ----"'---> statement ----r-----> I ENDI ---------------> i 
1------- [J <------ 1 I 

______________________________________________________ ------- ______ 1 

~ structure description 

--T--> IINPUTI--",-> REF. NO. --> ~--> STRUCTURE --"'--> statement --r-->[J--> 
1 __ > IQUERyl--1 DIAGRAM I------[!J<------I 

Page 181 



APPENDIX 2 

BNF PRODUCTION RULES FOR GENSAL 

This Appendix shows the Grammar of GENSAL using Backus-Naur Form 

(aNF> production rules. A slight variant of the "Extended BNF" 

metalanguage proposed by Wirth 101 
is used, in which the 

syntactic constructs (non-terminal symbols) are shown enclosed in 

angle brackets, the symbol "::=" means "is replaced by", the 

symbol "'" means "or", curly brackets enclose symbols to be 

repeated zero or more times and square brackets enclose optional 

symbols. Terminal symbols included exactly as they stand are 

shown in bold type and are enclosed in double quote marks. 

1. <arithmetic operator> ::= "+" "-" 

2 < . t operator> •• - "_n "S--" I "0--" I "S-_" I "11--" • ass1gnmen •• - -

3. <assignment statement> ::= [ <selector> J 
<unselected assignment statement> 

4. <character> ::= <letter> I <digit> I <special character> 

5. <compound statement> ::= "BEGIN" <statement> 
{ ";n <statement> } "END" 

6. <condition factor> ::= <simple condition> I 
"(" <condition> ")" I "NOT" <condition factor> 

Page 182 



APPENDIX 2: 

7. <condition term> ::= <condition factor> { "AND" 
<condition factor> } 

BNF FOR GENSAL 

8. <condition> ::= <condition term> { "OR" <condition term> } 

9. <definition alternative> ::= <element combination> { <further 
substitution operator> <element combination> } 

10. <definition element> ::= ( <position set> J ( <selector> J 
<unmodified definition element> 

11. <definition relation> ::= <substituent variable> 
<relational operator> <position set> I 
<substituent variable> <relational operator> 
<substituent definition expression> 

12. <digit> ::= "0" I "1" I "2" I "3" I "4" I "5" I "6" I "7" I 
"S" I "9" 

13. <element combination> ::= <definition element> { "&" 
<definition element> } 

14. <empty> :: = 
15. <further substitution operator> ::= "58" I "058" 

16. <group definition relation> ::= <substituent group> 
<relational operator> <position set> I 
<substituent group> <relational operator> 
<substituent definition> 

17. <group parameter relation> ::= <substituent group> 
<parameter> <relational operator> <selector> 

18. <group relation> ::= <substituent group relation> I 
<multiplier group relation> 

19. <homologous series identifier> ::= <nomenclature> 

20. <IF statement> ::= "IF" <condition> "THEN" <statement> 
( "ELSE" <statement> J 

21. <initial character> ::= <letter> I <digit> 

22. <integer range> ::= { <subrange> "," } <top range> 

23. <integer term> ::= <multiplier> I <substituent variable> 
<parameter> 

24. <integer> ::= <digit> { <digit> } 

25. <letter> ::= "A" I "B" I "e" I "D" I "E" I "F" I "6" I "H" I 
"I" I "J" I "K" I "L" I "M" I "N" I "0" I "P" I "Q" I 

"R" I "5" I "T" I "U" I "V" I """ I "X" I "Y" I "l" 

Page 183 



APPENDIX 2: 

26. <multiplier assignment> ::= <multiplier group> 
<assignment operator> <selector> 

BNF FOR GENSAL 

27. <multiplier group relation> ::= <multiplier group> 
<relational operator> <selector> 

28. <multiplier group> ::= """ <integer range> 

29. <multiplier relation> ::= <multiplier> 
{ <arithmetic operator> <integer term> } 
<relational operator> <selector> 

30. <multiplier> ::= """ <integer> 

31. <nomenclature> ::= <initial character> { <character> } 

32. <other term> ::= <nomenclature> 

33. <parameter identifier> ::= "c" I "T" I "Q" I "E" I "Y" I "RC" 
I "RNli I "RS" I "RA" I "I" 

34. <parameter list> ::= ( <selector> J 
{ <parameter> <selector> } 

35. <parameter relation> ::= <substituent variable> <parameter> 
{ <arithmetic operator> <integer term> } 
<relational operator> <selector> 

36. <parameter> ::= <parameter identifier> 
..... <substituent> ... " 

37. <position combination> ::= <integer> "/" <integer> 

38. <position set> ::= "[" <positions> "]" 

39. <positions> ::= <integer range> I <position combination> 
{ "," <position combination> } 

40. <reference number> ::= <integer> 

41. <relational operator> ::= "=,, I "0" 

42. <restrict statement> ::= "RESTRICT" <condition> 

43. <selector> ::= "<" <integer range> ">" 

44. <simple condition> ::= <selector> <group relation> I 
<substituent relation> I <multiplier relation> 

45. <special character> (Implementation Dependent) 

46. <specific nomenclatural term> ::= <nomenclature> 

47. <statement> ::= <assignment statement> I <if statement> 
<restrict statement> I <compound statement> I <empty> 

Page 184 



APPENDIX 2: BNF FOR GENSAL 

48. <structure description> ::= <structure type> 
<reference number> "SD" <structure diagram> <statement> 
{ "i" <statement>} "." 

49. <structure diagram> (Implementation Dependent) 

50. <structure type> ::= "INPUT" I "QUERY" 

51. <sub range> ::= <integer> I <integer> "-" <integer> 

52. <substituent assignment> ::= <substituent group> 
<assignment operator> 
<substituent definition expression> 

53. <substituent combination> ::= <substituent> "+" <substituent> 

54. <substituent definition expression> ::= 
<definition alternative> 
{ "1" <definHion alternative> } 

55. <substituent group relation> ::= <group definition relation> 
<group parameter relation> 

56. <substituent group> ::= "R" <integer range> 
<substituent combination> 
{ "," <substituent combination> } 

57. <substituent relation> ::= <definition relation> 
<parameter relation> 

58. <substituent value> ::= "?" I "SD" <structure diagram> 
<homologous series identifier> <parameter list> 
<specific nomenclatural term> I "'" <other term> 
{ <other term> } "." 

59. <substituent variable> ::= <substituent> 
<substituent combination> 

60. <substituent> ::= "R" <integer> 

61. <top range> ::= <sub range> I <integer> "-" 

62. <unmodified definition element> ::= <substituent value> I 
<substituent value> <position set> I <substituent> I 
"(" <substituent definition expression>")" 

63. <unselected assignment statement> ::= 
<substituent assignment> I <multiplier assignment> 

Page 185 



APPENDIX 3 

GENSAL INTERPRETER PROGRAM 

Page 186 



"'0 
III 
IQ 
ID 

~ 

00 
.." 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

PROCEDURE PROGERROR(ERRORCODE : INTEGER); 
EXTERN; 

PROCEDURE GOTOCOMMAND; 
EXTERN; 
{ Sends the user to GENESIS command level via a GOTO in the main program} 

PROCEDURE DESTROY(VAR PTR1 : PDOUBLIST); 
EXTERN; 
{ This destroys the elements of a linked list of type PDOUBLIST, starting 

at the element pointed to be the parameter PTR1, returned as NIL. 
Called by INTERPRET\INTSET 

INTERPRET\GROUPRANGE 
INTERPRET\SELECTOR 
INTERPRET\POSITIONSET 
INTERPRET\MODIFYPOSITIONS\TRACEDOWNGATE 
INTERPRET\ALTNVLIST\ELEMENT\SETCOMBARS\CHECKCOMBPOSNS 
INTERPRET\ALTNVLIST\ELEMENT\PARAMETERLIST 
INTERPRET\ASSIGNMENTSTMNT\MULTASSIGNMENT} 

PROCEDURE ADDINTS (VAR PTR1 : PDOUBLIST; 
LOWER, UPPER: INTEGER); 

EXTERN; 
{ Adds LOWER and UPPER to the values already in PTR1 (if they are contiguous), 

or places them in a new DOUBLIST element, returned as PTR1, with the original 
PTR1 as its NEXT field. 

» 
"'0 
"'0 
m z 
o .... 
x 
lA 

G") 
m 
z 
(I) 

» 
r 
.... 
Z 
-4 
m 
:;Q 

"'0 
::0 
m 
-4 
m 
:;Q 



"'tJ 
I» 
IQ 
/11 

-a. 
00 
00 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

Called by INTERPRET\INTEGERRANGE\RANGEFRAGMENT 
INTERPRET\SETINTS} 

PROCEDURE PRINTNOM(NOMENVAL : STRING32); 
EXTERN; 
{ Prints a nomenclatural term up to the last non-space character 

Called by INTERPRET\ALTNVLIST\RECORDHELD} 

PROCEDURE DELETEGENSAL(VAR LINE1 : PLINELIST); 
EXTERN; 
{ Deletes a linked list of GENSAL lines, headed by LINE1, which is returned 

with value NIL. 
Called by INTERPRET\ALTNVLIST\ELEMENT\TRANSLATENOMEN} 

PROCEDURE DECODECT (VAR CTLINE PLINELIST; 
DISPLAYING BOOLEAN); 

EXTERN; 
{ Decodes a connection table from character-string format, beginning in CTLINEA. 

LINE, making entries in FELDCT and FELDBD. CTLINE is left pointing at the last 
line of the connection table string. FELDMN is used to display the structure 
diagram if DISPLAYING. 
Called by INTERPRET\READSD} 

PROCEDURE ENCODECT(VAR CTLINE : PLINELIST); 
EXTERN; 
{ Encodes the contents of FELDCT and FELDBD as a character string, and 

places it in successive lines, starting with CTLINE, which is 
returned pointing to the last line of encoded connection table. 
Called by INTERPRET\READSD} 

» 
"'tJ 
"'tJ 
m 
Z 
0' ..... 
X 

u.a 

G) 
m 
z 
(/) 

» 
r 
..... 
2: 
-i 
m 
:;0 

"'tJ 
:;0 

m 
-i 
m 
;;0 



-v 
Q/ 
to 
CD 

..... 
()I) 
-0 

81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 

fUNCTION NORECORD(NOMEN : STRING32; 
VAR ADDRESS: INTEGER): BOOLEAN; 

EXTERN; 
{ Checks whether or not there is a record held in SPSDICT for NOMEN, 

The ADDRESS from SPSDICT for the term is returned as a side effect. 
Called by INTERPRET\ALTNVLIST\RECORDHELD} 

FUNCTION TERMREAD(VAR TERM : STRING32) : BOOLEAN; 
EXTERN; 
{ Reads a single TERM from the terminal, upper-cases it, and returns FALSE 

if it has no characters. 
Called by INTERPRET\ALTNVLIST\RECORDHELD} 

PROCEDURE LISTPARAMS(VAR OUTFILE TEXT; 
PARAMLIST TPARAMLIST); 

EXTERN; 
{ Lists the parameters in PARAMLIST in file OUTFILE, which must 

already have been RESET. 
Called by INTERPRET\OUTINTREP\WRITEPS} 

FUNCTION SPSVARIETY(ADDRESS INTEGER; 
DISPLAYING: BOOLEAN) TPSVARIETY; 

EXTERN; 
{ Returns the variety of partial structure, whose record begins at ADDRESS in 

SPSFILE,optionally DISPLAYING the structure. SPECIFIC PSs are entered in 
FELDCT/FELDBD, GENERIC PSs in SPSPARAMLIST and OTHER PSs in INSERTGENEX. 
Called by INTERPRET\ALTNVLIST\ELEMENT\TRANSLATENOMEN} 

PROCEDURE READFELDMANN; 
EXTERN; 
{ Reads the Feldmann table from FELDFIL. 

.. ,. 
-v -v 
m 
z 
c 
1-1 
X 

v.I 

en 
m 
z 
Vl ,. 
r 
1-1 
Z 
-t 
m 
;;0 
"'0 
;;0 
m 
-t 
m 
;;0 



." 
QI 
\0 
CD 

~ 

-0 
o 

121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 

Called by INTERPRET\PROCESSCT} 

PROCEDURE INTERPRETCVAR FIRSTLINE : PLINELIST; 
: INTEGER; VAR ECTRSIZE 

INTERACTIVE : BOOLEAN); 

{ This is the GENSAL interpreter routine, and performs syntactic and semantic 
analysis on a GENSAL sentence, creating the ECTR. } 

CONST NOTFIXED 

TYPE DELIMTYPE 

TOKENNATURE 
TINPUTMODE 
TBONDMAG 
DELIMSET 
TOKENTYPE 

PTOKENLIST 
TTOKENLIST 

PPSLIST 
PSLIST 

= 0; 

=CINVALIDTOKEN,GAMPERSAND,GPRIME,GLPAREN,GRPAREN,GPLUS,GCOMMA, 
GHYPHEN,GPERIOD,GSLASH,GSEMI,GOPENANG,GNOTEQ,GEQUALS, 
GCLOSANG,GQUEST,GLSQUARE,GRSQUARE,GAND,GBEGIN,GC,GE,GELSE, 
GEND,GIF,GINPUT,GM,GN,GOR,GORBY,GOSB,GP,GQ,GQUERY,GR,GRA, 
GRC,GRESTRICT,GRF,GRN,GRS,GSB,GSD,GT,GTHEN,GY,GZ,GDEG,GSEG, 
GHASHEG,GDOLEQ); 

=CDELIMITER,INTEGRAL,NOMENCLATURE); 
=CTERMINAL, STOREDGENSAL, INSERTTEXT); 
= 0 •• 3; 
= SET OF DELIMTYPE; 
= RECORD 

CASE NATURE 
DELIMITER 
INTEGRAL 
NOMENCLATURE 

TOKENNATURE OF 
COELIMVAL : DELIMTYPE); 

: CINTEGVAL INTEGER); 
CNOMENVAL : STRING32) 

END; 
= "TTOKENLIST; 
= RECORD 

TOKENVAL : 
NEXT 

END; 
= "PSLIST; 
= RECORD 

PARSTRUCT, 
FURTHERSUB 
COMBINS 
CONNBONDS 

TOKENTYPE; 
PTOKENLIST 

PTRPSTYPE; 
PCOMBINLlST; 

: TCONNBONDS; 

:> 
." 
." 
m z 
Cl ...... 
X 

v.a 

G) 

m 
z 
(/) 

:> 
r-
...... 
Z 
-I 
m 
;0 
." 
;0 
m 
-I 
m 
;0 



'"0 
QI 
IQ 
(1) 

.... 
-0 .... 

161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 

PMDECLIST 
MDECLIST 

VAR TOKEN 
TOKENLIST 
LINENUMBER 
VALIDLENGTH 
OEFNMULT, 
OEFNSUBS, 
OECLMULT, 

PRNTPOSNS : PTGROUPMEMSi 
COPYCHILOPS : BOOLEANi 
NEXT : PPSLIST 

ENOi 
= AMDECLISTi 
= RECORD 

SUBSTOECN PPSLISTi 
NEXT : PMDECLIST 

ENDi 

TOKENTYPEi 
: PTOKENLISTi 
: INTEGERi 
: O •• MAXLENGTHi 

{ substituents so far defined} 

OECLSUBS : INTEGSETi 
CONDITIONSPRESENT : BOOLEAN; 
ROECLARATIONTABLE : ARRAY[SUBSTITUENT] OF PPSLISTi 
ROEFINITIONTABLE : ARRAY[SUBSTITUENT] OF PCOMBINLISTi 
MOECLARATIONTABLE : ARRAY[MULTIPLIER] OF PMOECLISTi 
MDEFINITIONTABLE : ARRAY[MULTIPLIER] OF INTRECORDi 
CURRENTLINE 
SUBST 
ZEROFREG, 
ESSENTFREG, 
OPTFREG 
BONDMATCHARRAY 
BONDSTRING 
INPUTMOOE 
INSERTHSTPS 
IRLISTBOT 

: PLINELISTi 
: SUBSTITUENTi 

: PDOUBLIST i 
: ARRAY[BONOOROER] 
: ARRAY[BONOOROER] 
: TINPUTMOOEi 
: PTRPSTYPEi 
: PIRLISTi 

OF PACKED ARRAY[BONOORDER] OF BONDORDERi 
OF STRING2; 

{----------------------------------------------------------------------------} 
PROCEDURE INITIALISEi 

{ Sets initial values for variables. 

> 
'"0 
iJ 
m 
z 
o 
1-1 
X 

VoI 

G) 
m 
z 
(I) 

> 
r 
1-1 
Z 
-i 
m 
:;:0 

iJ 
:;:0 
m 
-i 
m 
:;:0 



""0 
I» 
IQ 
tII 

..... 
-0 
N 

201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 

Called by Body of INTERPRET} 

VAR SUBST : SUBSTITUENT; 
BOND : BONDORDER; 
MU LT : MULTIPLIER; 
BONDFILE : FILE OF PACKED ARRAY[BONDORDERl OF BONDORDER; 

FUNCTION NEWFREQ(ONE, TWO : INTEGER) : PDOUBLIST; 

VAR NF : PDOUBLIST; 

BEGIN 
NEW(Nf); 
NF-.FIRST := ONE; 
NF-.SECOND := TWO; 
NF- .NEXT : = NIL; 
NEWFREQ := NF 
END; 

BEGIN {Body of INITIALISE} 
ESSENTFREQ := NEWFREQ(1,1); 
OPTFREQ := NEWFREQ(0,1); 
ZEROFREQ := NEWFREQ(O,O); 
ECTRSIZE := 18; 
CONDITIONSPRESENT := FALSE; 
WRITELN; 
WRITELN; 
LINENUMBER := 0; 
DECLSUBS := [l; 
DECLMULT := [l; 
DEFNMULT := [l; 
DEFNSUBS := [J; 
IF INTERACTIVE THEN INPUTMODE := TERMINAL 

ELSE INPUTMODE := STOREDGENSAL; 
INTERNALREP.CONSTANTPART := NIL; 
TOKENLIST := NIL; 

:> 
""0 
""0 
m z 
c .... 
X 

I.H 

Cl 
m 
z 
(I) 

> r 
.... 
Z 
-t 
m 
;;Q 

""0 
;;Q 

m 
-t 
m 
;;Q 



""0 
I» 
IQ 
(1) 

~ 

-0 
UoI 

241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 

N := MAXLENGTH; 
FOR SUBST := 1 TO MAXVARS DO 

BEGIN 
ROECLARATIONTABLE[SUBST] := NIL; 
ROEFINITIONTABLE[SUBST] := NIL 

END; 
FOR MULT := 1 TO MAXVARS DO 

BEGIN 
MOECLARATIONTABLE[MULT] := NIL; 
MOEFINITIONTABLE[MULT].TOPRANGE := NOTSET; 
MOEFINITIONTABLE[MULT].SUBRANGES := NIL 

END; 
CURRENTLINE := NIL; 

RESETCBONDFILE, 'LI2GEN>BONDFILE'); 
FOR BOND := NOTSPECIFIED TO RINGTAUT DO READCBONDFILE, BONDMATCHARRAY[BOND]); 
RESETCBONDFILE, '@TTY'); 

BONDSTRING[NOTSPECIFIEDJ:= 'NS'; 
BONDSTRING[ANY] := 'A '; 
BONDSTRING[CHAIN] := le 'i 
BONDSTRING[RINGJ := 'R '; 
BONDSTRING[SINGLEJ := 's '; 
BONDSTRING[DOUBLEJ := '0 '; 
BONDSTRING[TRIPLE] : = 'T '; 
BONOSTRING[CHAISING] := 'CS'; 
BONDSTRING[CHAIDOUB] := 'CD'; 
BONDSTRING[CHAITRIP] := 'CT'; 
BONDSTRING[CHAITAUT] := 'TC'; 
BONDSTRING[RINGSINGJ := 'RS'; 
BONDSTRING[RINGOOUB] := 'RO'; 
BONDSTRING[RINGTRIP] : = 'RT'; 
BONDSTRING[AROMATICJ := 'RA'; 
BONDSTRING[RINGTAUTJ := 'TR' 

END; { of INITIALISE 
-----------------------------------------------------------------------------} 

:.:­
""0 
""0 
m 
z 
o ..... 
x 
VI 

Gl 
m 
z 
(I) 

:.:-
r 
..... 
z 
~ 
m 
;;0 
""0 
;;0 
m 
~ 
m 
;;0 



"'tJ 
QI 
IQ 
CD 

~ 

-0 
~ 

281 
282 
283 
284 
285 

" 286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 

PROCEDURE WRITEMESSAGE(ERRORCODE, 
NUM DATA : INTEGER; 
STRINGDATA : STRING4); 

{ Obtains an error message from LI2GEN>ERRORMSGS, 
terminal, interposing data where necessary. 
Called by FAILURE 

ERROR 
PROCESSCT\REJECT} 

VAR STRINGPOS 
MSGCHAR 
LINE 

: 1 •• 5; 
: CHAR; 
: INTEGER; 

BEGIN 
RESET(INPUT, 'LI2GEN>ERRORMSGS'); 
FOR LINE := 1 TO (ERRORCODE-1) 00 REAOLN; 
STRINGPOS := 1; 
WHILE NOT EOLN(INPUT) 00 

BEGIN 
READ(MSGCHAR); 
CASE MSGCHAR OF 
'#' : WRITE(NUMDATA : 1); 
'S' : BEGIN 

WRITE(STRINGDATA[STRINGPOS); 
STRINGPOS := STRINGPOS + 1 

END; 
OTHERWISE WRITE(MSGCHAR) 
END 

END; 
WRITELN; 
RESET(INPUT, '@TTY') 
END; 

PROCEDURE FAILURE(ERRORCODE, 
NUMDATA : INTEGER; 
STRINGDATA STRING4); 

and prints it at the 
> 
"'tJ 
"'tJ 
m z 
c .... 
x 

VI 

(j) 
m 
z 
(I) 

> 
r 
.... 
Z 
-t 
m 
;:0 
"'tJ 
;:0 
m 
-t 
m 
;:0 



-0 
~ 
IQ 
CD .... 
-0 
VI 

321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 

{ Called when an irrecoverable error is encountered, and processing cannot 
continue. A message is printed, and the use retruned to GENESIS command 
mode. } 

BEGIN 
WRITELN; 
WRITELNC'**** FAILURE " ERRORCODE : 2); 
WRITEMESSAGECERRORCODE, NUMDATA, STRINGDATA); 
WRITELN; 
WRITELNC'Edit existing GENSAL or start again!'); 
WRITELN; 
GOTOCOMMAND 
END; 

PROCEDURE REDUCEECTRCPTR : PDOUBLIST); 

BEGIN 
WHILE PTR <> NIL DO 

BEGIN 
ECTRSIZE := ECTRSIZE - 6; 
PTR := PTRA.NEXT 

END 
END; 

(-------------------------------------------------------------------------------
PRO C E D U R E GET T 0 KEN 

THE LEX I C A L A N A L Y Z E R 
-------------------------------------------} 

PROCEDURE GETTOKEN; 

{ Places the next token in the GENSAL input stream in TOKEN. 
Called by NEXTTOKEN 

> 
"'0 
-0 
m 
Z 
o .... 
X 

lH 

G') 
m 
z 
(I) 

> 
r-
.... 
Z 
-t 
m 
;;0 
"'0 
;;0 
m 
-t 
m 
;;0 



\J 
III 
IQ 
(1) 

..... 
-0 
0-

361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 

LOOKAHEAD 
ERROR} 

VAR M : 1 •• MAXLENGTH; 
STARTED : BOOLEAN; 

PROCEDURE READLINE; 

{ Reads one line of GENSAL input according to INPUTMODE, checking for TERMINAL 
that it contains no more than 99 characters, and building up the linked list 
of lines. For all INPUTMODE replaces all lower-case alphabetics by upper-case. } 

LABEL 10; 

VAR CH 
M 
NEWLINE 

BEGIN 
CASE INPUTMODE 

TERMINAL 

: CHAR; 
: O •• MAXLENGTH; 

PLlNELIST; 

OF 
BEGIN 

LINENUMBER := LINENUMBER + 1; 
10 : WRITE(LINENUMBER : 3); 
IF DIAGNOSTICS THEN WRITE(ECTRSIZE : 
WRITE(' GENSAL: I); 

READLN(BUFFER : N); 
IF N=O THEN 

BEGIN 
WRITELN; 

7 ); 

WRITELN('GENSAL input terminated by user.'); 
WRITELN; 
GOTOCOMMAND 

END; 
IF N=100 THEN 

BEGIN 
WRITELN; 
WRITELN('**** LINE OVERFLOW! ****'); 
WRITE('Line read as far as " ••• '); 

> 
\J 
""0 
m 
Z 
o .... 
x 
v.I 

G") 
m 
z 
(I) 

> r-
.... 
Z 
-i 
m 
;0 

""0 
;0 
rn 
-i 
m 
;0 



401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 

" '418 III 
IQ 419 CD 

..... 420 
-0 

421 ....., 

422 
423 
424 
425 
426 
427 STOREDGENSAL : 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 

FOR M := (MAXLENGTH-12) TO (MAXLENGTH-1) DO WRITE(BUFFER[M); 
WRITELN (' ... '); 
REPEAT 

WRITE (' 
READLNCCH) 

UNTIL (CH='V') OR (CH='y') OR (CH='N') OR (CH='n'); 
M := MAXLENGTH; 
REPEAT 

BUFFER[M) := , '; 
M := M-1 

OK? 

UNTIL (BUFFER[M)=' ') OR (M=O) OR (CH='V') OR (CH='y'); 

(V IN) > > '); :g 
ITI 
Z 
o 
t-t 
X 

VI 

IF (CH='N') OR (CH='n') THEN WRITELN('Line truncated from last space. l ) 

END; 
NEW(NEWLINE); 
WITH NEWLINE A DO 

BEGIN 
LAST := CURRENTLINE; 
NEXT := NIL; 
LINE := BUFFER 

END; 
IF CURRENTLINE = NIL 

THEN FIRSTLINE := NEWLINE 
ELSE CURRENTLINEA.NEXT := NEWLINE; 

CURRENTLINE := NEWLINE 
END; 

BEGIN 
LINENUMBER := LINENUMBER + 1; 
IF LINENUMBER = 1 

THEN NEWLINE := FIRSTLINE 
ELSE NEWLINE := CURRENTLINEA.NEXT; 

IF NEWLINE = NIL 
THEN BEGIN 

WRITELN; 
WRITELNC'End of stored GENSAL.'); 
WRITELN('Input at the terminal:'); 
WRITELN; 
INPUTMODE := TERMINAL; 
GOTO 10 

END 

Cl 
ITI 
Z 
(Il 

]> 

r 
t-t 
Z 
-t 
ITI 
;;:0 

" ;;:0 
ITI 
-t 
ITI 
;;:0 



-0 
QI 
IQ 
CD 

..... 
'" 00 

441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 
476 
477 
478 
479 
480 

ELSE CURRENTLINE := NEWLINE; 
WRITECLINENUMBER : 3); 
IF DIAGNOSTICS THEN WRITECECTRSIZE : 7); 
WRITEC' GENSAL: I); 

BUFFER := CURRENTLINEA.LINE; 
WHILE (BUFFER[N]=' ') AND (N)1) DO N := N-1; 
IF (N=1) AND (BUFFER[1]=' I) THEN N:= 0; 
FOR M := 1 TO N DO WRITECBUFFER[M]); 
WRITELN 

END; 

INSERTTEXT : BEGIN 

END; 

IF CURRENTLINE = NIL THEN 
PROGERROR(1); {Unterminated GENSAL expression in SPSfile} 

BUFFER := CURRENTLINEA.LINE; 
CURRENTLINE := CURRENTLINEA.NEXT 

END 

FOR M:= 1 TO MAXLENGTH DO 
IF CBUFFER[M] >= lal) AND CBUFFER[M] <= IZI) 

THEN BUFFER[M] := CHRC ORDCBUFFER[M]) - ORDC'a ' ) + ORDC'AI) ); 
N := 1 
END C* Of READLINE *); 

FUNCTION CHECK CTESTDELIM DELIMTYPE) BOOLEAN; 

{ Returns TRUE if the delimiter passed as TESTDELIM is found, correctly 
terminated in BUFFER } 

VAR RESULT 
M 
TERMCHARS 
DELIMSTRING 

BEGIN 
CASE TESTDELIM OF 

(NOTFOUND, PENDING, FOUND); 
O •• MAXLENGTH; 
SET OF CHAR; 
ALFA; 

GAND: DELIMSTRING := lAND I • , 

»> 
-0 
-0 
m 
Z 
o ..... 
X 

lJ\I 

G') 
m 
Z 
Cl) 
):» 

r 
tot 
Z 
-i 
m 
;;0 

-0 
;;0 
m 
-i 
m 
;;0 



481 GBEGIN: DELIMSTRING := 'BEGIN ' . , 
482 GC: DELIMSTRING := 'c ' . , 
483 GE: DELIMSTRING := 'E ' . , 

> 484 GELSE: DELIMSTRING := 'ELSE ' . "'0 , 
"'0 485 GEND: DELIMSTRING := 'END ' . m , 
z 486 GIF: DELIMSTRING := 'IF ' . 0 , .... 487 GINPUT: DELIMSTRING := 'INPUT ' . x , 

488 GM: DELIMSTRING := 'M ' . w , .. 489 GN: DELIMSTRING := 'N ' . , 
490 GOR: DELIMSTRING := 'OR ' . , 
491 GORBY: DELIMSTRING := 'ORBY , . , 
492 GOSB: DELIMSTRING := 'OSB ' . , 
493 GP: DELIMSTRING := 'P , . , 
494 GQ: DELIMSTRING := 'Q ' . , 
495 GQUERY: DELIMSTRING := 'QUERY , . , 
496 GR: DELIMSTRING := 'R ' . , "'0 497 GRA: DELIMSTRING := 'RA ' . I» , IQ 
498 GRC: DELIMSTRING := 'RC ' . 111 , 

~ 499 GRESTRICT: DELIMSTRING := 'RESTRICT'; -0 500 GRF: DELIMSTRING := 'RF ' . -0 , 
501 GRN: DELIMSTRING := 'RN ' . , 
502 GRS: DELIMSTRING := 'RS ' . , 
503 GSB: DELIMSTRING := 'SB ' . , 
504 GSD: DELIMSTRING := 'SD ' . , 
505 GT: DELIMSTRING := 'T ' . , 
506 GTHEN: DELIMSTRING := 'THEN ' . , 
507 GY: DELIMSTRING := 'V ' . G') , 

m 508 GZ: DELIMSTRING := 'z ' . z , 
U) 509 GDEQ: DELIMSTRING := '0= , . 
> , 
r-510 GSEQ: DELIMSTRING := 'S= , . , .... 511 GHASHEQ: DELIMSTRING := '#= , . z , 
-I 512 GDOLEQ: DELIMSTRING := '$= , 
m 
:;0 513 END; "'0 
:;0 514 m 
-I 515 TERMCHARS := [' " '#', '$', "" •• '>', '.' •• '9', ';' •• '?', '[I, 'J'J; m 
:;0 516 M := 0; 

517 RESULT := PENDING; 
518 WHILE RESULT = PENDING DO 
519 IF M=8 
520 THEN IF BUFFER[N+MJ IN TERMCHARS 



"'tI 
I» 
IQ 
111 

N 
o 
o 

521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 
536 
537 
538 
539 
540 
541 
542 
543 
544 
545 
546 
547 
548 
549 
550 
551 
552 
553 
554 
555 
556 
557 
558 
559 
560 

THEN RESULT := FOUND 
ELSE RESULT := NOTFOUND 

ELSE IF <BUFFER[N+M] = DELIMSTRING [M+1]) 
THEN <* match found *) IF BUFFER[N+M] = , , 

THEN RESULT := FOUND <* i.e. match is on the space *) 
ELSE M:=M+1 (* delimiter is still being read *) 

ELSE (* no match *) IF(DELIMSTRING[M+1] <> ' ') 
THEN RESULT := NOT FOUND (* not end of delimiter *) 
ELSE IF BUFFER[N+M] IN TERM CHARS 

THEN RESULT := FOUND (* terminated *) 
ELSE IF TESTDELIM IN [GDEQ •• GDOLEQ] 

IF RESULT = FOUND 
THEN BEGIN 

CHECK := TRUE; 
N := N + M + ORD(M=7) 

END 
ELSE CHECK := FALSE 

END; 

THEN RESULT := FOUND (* no termination needed *> 
ELSE RESULT := NOTFOUND (* not terminated *); 

PROCEDURE FINDNOMEN(VAR NOMENVAL STRING32>; 

(* Extracts characters from BUFFER until nomenclature is correctly terminated. 
If there are less than 32 characters before termination, then NOMENVAL 
is packed with spaces; if more then the excess is discarded. A number of 
of right parentheses equal to the number of left parentheses encountered 
is accepted before a right parenthesis terminates the nomenclature. *> 

VAR TERMINATED 
M 
BRACKETCOUNT 
TERMCHARS 

BEGIN 

BOOLEAN; 
1 •• 32; 

: O •• MAXLENGTH; 
: SET OF CHAR; 

TERMCHARS := [I;', , " 
TERMINATED := FALSE; 
BRACKETCOUNT := 0; 
REPEAT 

'[I, Ill, I I I I , 1<1, 1.1]; 

> 
"'tI 
"'tI 
m 
Z 
Q 
H 
X 

VoI 

(;) 
m 
Z 
(I) 

> 
r 
1-4 
Z 
-t 
m 
;;0 

"'tI 
;;0 
m 
-t 
m 
;;0 



""0 
III 
IQ 
I'D 

N 
o 
~ 

561 
562 
563 
564 
565 
566 
567 
568 
569 
570 
571 
572 
573 
574 
575 
576 
577 
578 
579 
580 
581 
582 
583 
584 
585 
586 
587 
588 
589 
590 
591 
592 
593 
594 
595 
596 
597 
598 
599 
600 

IF BUFFER[N] IN TERM CHARS 
THEN TERMINATED := TRUE 
ELSE IF BUFFER[N]='C' 

THEN BRACKETCOUNT := BRACKETCOUNT+1 
ELSE IF BUFFER[N]=')' 

THEN IF BRACKETCOUNT>O 
THEN BRACKETCOUNT := BRACKETCOUNT-1 
ELSE TERMINATED := TRUE; 

IF NOT TERMINATED THEN N := N+1 
UNTIL TERMINATED; 
FOR M := 1 TO 32 DO 

IF CM+VALIDLENGTH) < N 
THEN NOMENVAL[M] := BUFFER[M+VALIDLENGTH] 
ELSE NOMENVAL[M] := , '; 

TOKEN.NATURE := NOMENCLATURE 
END; 

FUNCTION CHECKINT : BOOLEAN; 

( Returns TRUE if the token beginning at the current position in BUFFER is 
an integer, and not nomenclature beginning with a digit. It checks this 
by seeing if any leading digits, hyphens and commas are followed by an 
alphabetic letter other than an R alone Cas in substituent groups). } 

VAR M : O •• MAXLENGTH; 

BEGIN 
M := 0; 
WHILE BUFFER[N+M] IN [·0· •• ·9·, ._., ','] DO M := M+1; 
IF BUFFER[N+M] IN [·A· •• ·Z·] 

END; 

THEN IF BUFFER[N+M] = 'R' 
THEN CHECKINT := NOT CBUFFER[N+M+1] IN [·A' •• ·Z']) 
ELSE CHECKINT := FALSE 

ELSE CHECKINT := TRUE 

> 
""0 
""0 
m z 
'0 .... 
X 

VoI 

G) 
m 
z 
(I) 

> r 
.... 
Z 
-f 
m 
;:Q 

""0 
;:Q 

m 
-f 
m 
:;0 



\I 
01 
10 
111 

N 
o 
N 

601 
602 
603 
604 
605 
606 
607 
608 
609 
610 
611 
612 
613 
614 
615 
616 
617 
618 
619 
620 
621 
622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632 
633 
634 
635 
636 
637 
638 
639 
640 

FUNCTION EXTRACTINT : INTEGER; 

{ Returns the integer at the current position in BUFFER } 

VAR INTBUFF : ARRAY[1 •• 9] OF CHAR; 
INT,M,J, 
K,MULT : INTEGER; 

BEGIN 
M := 0; 
WHILE (BUFFER[N+M] IN ['0' •• '9']) AND (M<9) DO 

BEGIN 
INTBUFF[M+1] := BUFFER [N+M]; 
M : = M+1 

END; 
INT := 0; 
FOR J := 0 TO (M-1) DO 

BEGIN 
MULT := 1; 
FOR K := 1 TO J DO MULT := MULT*10i 
INT := INT + MULT * ( ORD (INTBUFF[M-J]) -ORD('O'» 

END; 
EXTRACTINT := INT; 
TOKEN. NATURE := INTEGRAL; 
N := N + M 
END; 

BEGIN (* Body of Procedure GETTOKEN *) 

REPEAT 
IF N=MAXLENGTH THEN READLINE; 
WHILE (BUFFER[N]=' ') AND (N<MAXLENGTH) DO N := N+1; 
STARTED := N<MAXLENGTH; 

UNTIL STARTED; 
VALIDLENGTH := N-1; 

.i 
> 
\I 
\I 
m z 
Cl 
1-4 
X 

VoI 

Cil 
m 
z 
(I) 

> 
r 
1-4 
Z 
~ 
m 
;0 

\I 
;0 

m 
~ 
m 
;0 



"'0 
III 
Ul 
Cl) 

N 
o 
VI 

641 
642 
643 
644 
645 
646 
647 
648 
649 
650 
651 
652 
653 
654 
655 
656 
657 
658 
659 
660 
661 
662 
663 
664 
665 
666 
667 
668 
669 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 

WITH TOKEN 00 
IF BUFFER[N] IN [·A· •• ·E·, '1', ·M· •• ·T·, .y., 'Z', .#., ·S·, ••••••• )., .+ •••• ,., 

THEN BEGIN 
CASE BUFFER[N] OF 
'A': DELIMVAL := GANO; 
'B': DELIMVAL := GBEGIN; 
'Cl: DELIMVAL := GC; 
'0': DELIMVAL := GDEQ; 
'E': IF BUFFER[N+1] = 'L' 

THEN OELIMVAL := GELSE 
ELSE IF BUFFER[N+1] = 'N' 

THEN DELIMVAL := GEND 
ELSE DELIMVAL := GE; 

'I': IF BUFFER[N+1] = 'F' THEN DELIMVAL := GIF 
ELSE DELIMVAL := GINPUT; 

'M': DELIMVAL := GM; 
'N': DELIMVAL := GN; 
'0': IF BUFFER[N+1] = 'R' 

THEN IF BUFFER[N+2] = 'B' THEN DELIMVAL := GORBY 
ELSE DELIMVAL := GOR 

ELSE DELIMVAL := GOSB; 
'P': OELIMVAL := GP; 
'Q': IF BUFFER[N+1] = 'U' THEN OELIMVAL := GQUERY 

ELSE DELIMVAL := GQ; 
'R': IF BUFFER[N+1] IN ['A', ·C·, 'E', 'N', 'SI] 

THEN CASE BUFFER[N+1J OF 
'A' : OELIMVAL := GRA; 
'c' : OELIMVAL := GRC; 
'E' OELIMVAL:= GRESTRICT; 
'F' : OELIMVAL := GRF; 
'N' : OELIMVAL := GRN; 
's' : OELIMVAL := GRS 
ENO 

ELSE DELIMVAL := GR; 
'S': IF BUFFER[N+1] = 'B' 

THEN OELIMVAL := GSB 
ELSE IF BUFFER[N+1] = 'D' 

THEN OELIMVAL := GSD 
ELSE OELIMVAL := GSEQ; 

'T': IF BUFFER[N+1J = 'H' THEN OELIMVAL := GTHEN 

';' '1', 'C', .].] 
3» 
"'0 
"'0 
m 
~ 
~ 
~ 

>< 
VI 

en 
m 
~ 
(I) 

3» 
r 
~ 

~ 
~ 
m 
:::0 
"'0 
:::0 
m 
~ 
m 
:::0 



""tJ 
QI 
IQ 
C'D 

N 
o 
~ 

681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
696 
697 
698 
699 
700 
701 
702 
703 
704 
705 
706 
707 
708 
709 
710 
711 
712 
713 
714 
715 
716 
717 
718 
719 
720 

'Y': DELIMVAL := GYi 
'Z': DELIMVAL := GZi 

ELSE DELIMVAL := GTi 

'&': DELIMVAL := GAMPERSANDi 
•••• : DELIMVAL := GPRIMEi 
'C': DELIMVAL := GLPARENi 
')': DELIMVAL := GRPARENi 
'+': DELIMVAL := GPLUSi 
',': DELIMVAL := GCOMMAi 
'-': DELIMVAL := GHYPHENi 
'.': DELIMVAL := GPERIODi 
'/': DELIMVAL := GSLASHi 
'i': DELIMVAL := GSEMIi 
'<': IF BUFFER[N+1] = '>' THEN DELIMVAL := GNOTEQ 

'=': DELIMVAL := GEQUALSi 
'>': DELIMVAL := GCLOSANGi 
'1': DELIMVAL := GQUESTi 
'[': DELIMVAL := GLSQUAREi 
']': DELIMVAL := GRSQUAREi 
'#': DELIMVAL := GHASHEQi 
'$': DELIMVAL := GDOLEQ 
END C* of case *)i 
IF DELIMVAL >= GAND 

ELSE DELIMVAL := GOPENANGi 

THEN IF NOT CHECK(DELIMVAL) THEN FINDNOMEN(NOMENVAL) 
ELSE NATURE := DELIMITER 

ELSE BEGIN 
NATURE := DELIMITERi 
IF DELIMVAL=GNOTEQ THEN N := N + 2 

ELSE N := N + 1 
END 

END C* of IF BUFFER[N] THEN *) 
ELSE IF BUFFER[N] IN ['0' •• '9'] 

ENDi 

THEN IF CHECKINT THEN INTEGVAL := EXTRACTINT 
ELSE FINDNOMEN(NOMENVAL) 

ELSE FINDNOMEN(NOMENVAL) 

{ END OF PROCEDURE GETTOKEN CTHE LEXICAL ANALYZER) 

> 
""tJ 
""tJ 
IT! 
Z 
o .... 
x 
w 

(j) 
IT! 
Z 
(I) 

> r 
.... 
Z 
-t 
IT! 
;:0 
""tJ 
;:0 
IT! 
-t 
IT! 
;:0 



'1J 
QI 
1.0 
ID 

N 
o 
V1 

721 
722 
723 
724 
725 
726 
727 
728 
729 
730 
731 
732 
733 
734 
735 
736 
737 
738 
739 
740 
741 
742 
743 
744 
745 
746 
747 
748 
749 
750 
751 
752 
753 
754 
755 
756 
757 
758 
759 
760 

-------------------------------------------------------------------------------} 

PROCEDURE NEXTTOKEN; 

{ Obtains the next token, either from the queue of tokens already produced 
by LOOKAHEAD, or by a direct call to GETTOKEN. } 

VAR TPTR : PTOKENLIST; 

BEGIN 
IF TOKENLIST = NIL 

THEN GETTOKEN 
ELSE BEGIN 

END; 

TOKEN := TOKENLIST-.TOKENVAL; 
TPTR := TOKENLIST; 
TOKENLIST := TOKENLIST-.NEXT; 
DISPOSE(TPTR) 

END 

PROCEDURE LOOKAHEAD; 

{ If TOKENLIST is NIL (i.e. this is the first lookahead) then the current TOKEN 
is placed at the bottom of a queue of tokens (TOKENLIST). GETTOKEN is used to 
obtain a new token from the input stream, which is·also added to the bottom 
of the queue. The next call to NEXTTOKEN will therefore restore the original 
TOKEN, and the subsequent call will return the following token. 
Called by ALTNVLIST\POSITIONSET 

ASSIGNMENTSTMNT\SUBSTGROUP} 

VAR TOKENPTR : PTOKENLIST; 

BEGIN 
IF TOKENLIST=NIL 

THEN BEGIN 

»> 
'1J 
'1J 
m z 
o 
M 
X 

VI 

Gl 
m 
z 
(I) 

»> 
r 
M 
Z .... 
m 
:;0 

'1J 
:;0 
m .... 
m 
:;0 



""0 
III 
ca 
ID 

IV 
o 
0-

761 
762 
763 
764 
765 
766 
767 
768 
769 
770 
771 
772 
773 
774 
775 
776 
777 
778 
779 
780 
781 
782 
783 
784 
785 
786 
787 
788 
789 
790 
791 
792 
793 
794 
795 
796 
797 
798 
799 
800 

NEWCTOKENLIST); 
TOKENLIST-.TOKENVAL := TOKEN; 
TOKENLIST-.NEXT := NIL 

END; 
TOKENPTR := TOKENLIST; 
WHILE TOKENPTR-.NEXT <> NIL DO TOKENPTR := TOKENPTR-.NEXT; 
NEWCTOKENPTR-.NEXT); 
TOKENPTR := TOKENPTR-.NEXT; 
GETTOKEN; 
TOKENPTR-.TOKENVAL := TOKEN; 
TOKENPTR-.NEXT := NIL 
END; 

PROCEDURE ERROR CERRORCODE, DATA INTEGER); 

{ Outputs an appropriate error message, and either obtains a replacement 
TOKEN, or calls FAILURE. } 

VAR TOKENLENGTH, 
M : INTEGER; 
TOKENPTR : PTOKENLIST; 

BEGIN 
FOR M := 1 TO C13 + 7*ORD(DIAGNOSTICS) + VALIDLENGTH) DO WRITEC' '); 
TOKENLENGTH := N - VALIDLENGTH - 1; 
FOR M := 1 TO TOKENLENGTH DO WRITEC'-'); 
WRITELN; 
WRITELNC'**** ERROR',ERRORCODE : 2); 
WRITEMESSAGECERRORCODE, DATA,' '); 
WRITELN; 
CASE INPUTMODE OF 

STOREDGENSAL : FAILUREC40, 0,' '); 
INSERTTEXT PROGERROR(2); {Error in SPSFILE expression} 
TERMINAL : BEGIN 

WRITELNC'Remainder of input line ignored'); 
WRITELN; 
FOR M := (VALIDLENGTH + 1) TO MAXLENGTH DO CURRENTLINE-.LINE[MJ := 
N := MAXLENGTH; 

, . , 

> 
""0 
""0 
m 
z 
Cl 
1-4 
X 

VI 

G) 
m 
Z 
(I) 

> 
r 
1-4 
Z 
-t 
m 
;:Q 

""0 
;:Q 

m 
-t 
m 
;:Q 



""0 
QI 
to 
(1) 

N 
o ...,. 

801 
802 
803 
804 
805 
806 
807 
808 
809 
810 
811 
812 
813 
814 
815 
816 
817 
818 
819 
820 
821 
822 
823 
824 
825 
826 
827 
828 
829 
830 
831 
832 
833 
834 
835 
836 
837 
838 
839 
840 

GETTOKEN; 
IF TOKENLIST <> NIL THEN 

END 
END; 

END 

BEGIN 
{Need to put this token at the bottom of the list to 
replace the erroneous one. } 
TOKENPTR := TOKENLIST; 
WHILE TOKENPTRA.NEXT <> NIL DO TOKENPTR := TOKENPTRA.NEXT; 
TOKENPTRA.TOKENVAL := TOKEN 

END 

FUNCTION MAGNITUDE(BOND : BONDORDER) : INTEGER; 

{ Returns an integer between 1 and 3 for the magnitude of BOND. 
Called from PROCESSCT\HNUMBER 

GETAVAILABLEPOSITIONS\MINPARENTBOND 
GETAVAILABLEPOSITIONS\SUMFILIALS 
PROCESSCT\GETPOSNS\GETSETPOSNS 
PROCESSCT\GETPOSNS 
ALTNVLIST\ELEMENT\SETCOMBARS\NEEDTOCHECK 
ALTNVLIST\ELEMENT\SETCOMBARS\COMBINEDPOSITIONS 
ALTNVLIST\ELEMENT\SETCOMBARS 
ALTNVLIST\GETCHILDPOSITIONS 
ALTNVLIST\PPOSNS\LMAGNOCHECKS 
ASSIGNMENTSTMNT\POINTERLIST\ADDCOMBSUBS} 

BEGIN 
CASE BOND OF 

NOTSPECIFIED, 
ANY, SINGLE, 
CHAIN, CHAISING, 
RING, RINGSING MAGNITUDE := 1; 
DOUBLE, CHAIDOUB, 
RINGDOUB, AROMATIC, 
RINGTAUT, CHAITAUT : MAGNITUDE := 2; 

,. 
""0 
""0 
m 
z 
o .... 
x 
VI 

(i') 
m 
z 
Cl) ,. 
r 
.... 
Z 
-t 
m 
:;0 

""0 
:;0 
m 
-t 
m 
;;0 



-0 
III 
IQ 
I'D 

N 
o 
00 

841 
842 
843 
844 
845 
846 
847 
848 
849 
850 
851 
852 
853 
854 
855 
856 
857 
858 
859 
860 
861 
862 
863 
864 
865 
866 
867 
868 
869 
870 
871 
872 
873 
874 
875 
876 
877 
878 
879 
880 

TRIPLE, 
CHAITRIP, RINGTRIP : MAGNITUDE := 3 
END 

END; 

{--------------------------------------------------------------------------} 
PROCEDURE GETAVAILABLEPOSITIONS(PTRPS : PTRPSTYPE; 

VAR POSNS : INTEGSET; 
BONDMAG : TBONDMAG)i 

{ Returns in POSNS those positions of PTRPS A wchich are substitutable, having a 
sufficient number of spare valencies to accomodate a bond of magnitude BONDMAG. 
Called by PROCESSCT\GETPOSNS 

ALTNVLIST\ELEMENT\TRANSLATENOMEN\MODIFYGATEPOSIIONS 
ALTNVLIST\ELEMENT\SETCOMBARS\COMBINEDPOSITIONS 
ALTNVLIST\ELEMENT\PARAMETERLIST\FINOCONNECTIONS 
ALTNVLIST\ALTNTVE\ADOPARALT 
ALTNVLIST\PPOSNS 
ASSIGNMENTSTMNT\POINTERLIST\AODCOMBSUBS} 

VAR ROWNO : ATOMNUMBER; 

FUNCTION MIN80NO(OLDMAG, 
NEWMAG : TBONDMAG) : TBONOMAG; 

{ Returns the smaller of the two values passed as parameter} 

BEGIN 
IF NEWMAG < OLDMAG 

THEN MINBOND := NEWMAG 
ELSE MINBOND := OLDMAG 

END; 

FUNCTION MINPARENTBONO(PARENTGATE PPARENTLIST; 

» 
-0 
-0 
m 
Z 
o .... 
x 
V.I .. 

G') 
m 
z 
Cl) 

» 
r 
.... 
Z 
-of 
m 
;:0 
-0 
;:0 
m 
-of 
m 
;:0 



-0 
QI 

IQ 
Cl» 

N 
o 
-0 

881 
882 
883 
884 
885 
886 
887 
888 
889 
890 
891 
892 
893 
894 
895 
896 
897 
898 
899 
900 
901 
902 
903 
904 
905 
906 
907 
908 
909 
910 
911 
912 
913 
914 
915 
916 
917 
918 
919 
920 

ROWNO : ATOMNUMBER): TBONDMAGi 

{ Returns the magnitude of the smallest BOND to a parent if all items in the 
list have ROWNO as the only element of CHILDPOSITIONS (i.e. there are no 
alternatives). Otherwise, or if there is no parent list (PARENTGATE=NIL), returns o.} 

VAR VALID 
COMBPOSNS 
MINPB 

BEGIN 

: BOOLEANi 
: PDOUBLISTi 
: TBONDMAGi 

VALID := PARENTGATE <> NILi {initialisation} 
MINP6 := 3i {initialise to large value} 
WHILE VALID AND (PARENTGATE<>NIL) DO WITH PARENTGATE- DO 

BEGIN 
IF CHILDPOSITIONS.COMBINED 

THEN BEGIN 
VALID := CHILOPOSITIONS.COMBMEMS <> NILi 
COMBPOSNS := CHILDPOSITIONS.COMBMEMSi 
IF CONNBONOS.CONNECTIONS <> 2 

THEN PROGERROR(3)i {Combined childpositions with connections <> 2} 
WHILE VALID AND (COMBPOSNS<>NIL) DO WITH COMBPOSNS- DO 

BEGIN 
WITH CONNBONDS DO 

IF (ROWNO=FIRST) AND (ROWNO=SECOND) 

> 
-0 
-0 
I'T1 
Z 
o 
I-t 
X 

UoI 

THEN MINPB := MINBOND(MINPB, MAGNITUDE(BONOA) + MAGNITUOE(BONDB» 
ELSE IF ROWNO = FIRST m 

ELSE 

~~~~ ~;N:~W~~ ~I~~~~~~MINP8, MAGNITUOE(BONDA» ~ 

END 

COMBPOSNS := NEXT 
END 

THEN MINPB := MINBOND(MINPB, MAGNITUDE(BONDB» 
ELSE VALID := FALSEi 

IF [ROWNOJ = CHILDPOSITIONS.MEMBERS 
THEN BEGIN 

IF CONNBONDS.CONNECTIONS <> 1 

I-t 
Z .... 
I'T1 
:;0 
." 
:;0 
I'T1 .... 
I'T1 
:;0 

THEN PROGERROR(4)i {Uncombined childpositions with 
MINPB := MINBOND(MINPB, MAGNITUDE(CONNBONDS.BOND» 

END 

CONNECTIONS <> 1} 



""0 
Q/ 
IQ 
ro 
N .-
o 

921 
922 
923 
924 
925 
926 
927 
928 
929 
930 
931 
932 
933 
934 
935 
936 
937 
938 
939 
940 
941 
942 
943 
944 
945 
946 
947 
948 
949 
950 
951 
952 
953 
954 
955 
956 
957 
958 
959 
960 

ELSE VALID := FALSE; 
PARENTGATE := NEXT 

END; 
IF VALID THEN MINPARENTBOND := MINPB 

ELSE MINPARENTBOND := 0 
END; 

FUNCTION SUMFILIALS<CONGENERS CONGARRAY) INTEGER; 

{ Returns the sum of the MAGNITUDES of FILIAL bonds } 

VAR CNGNR : 1 •• MAXCONGENERS; 
SF : INTEGER; 

BEGIN 
SF := 0; 
FOR CNGNR := 1 TO MAXCONGENERS DO WITH CONGENERS[CNGNRJ DO 

IF RELATIONSHIP = FILIAL 
THEN SF := SF + MAGNITUDE(BOND); 

SUMFILIALS := SF 
END; 

BEGIN {Body of GETAVAILABLEPOSITIONS} 
CASE PTRPS-.PSVARIETY OF 

DUMMY, 
UNKNOWN, 
OTHER 
GENERIC 

SPECIFIC 

: POSNS := [1 •• MAXCTJ; 
: WITH PTRPS-, PARAMLIST[ATOMCOUNTJ DO 

IF TOPRANGE = NOTSET 

: BEGIN 

THEN IF SUBRANGES = NIL 
THEN POSNS := [] 
ELSE POSNS := [1 •• SUBRANGES-.SECOND] 

ELSE POSNS := [1 •• MAXCT]; 

POSNS := [Ji 
FOR ROWNO := 1 TO MAXCT DO IF PTRPSA.CT[ROWNOJ <> NIL 

> 
""0 
""0 
m z 
c .... 
x 
VI 

Ci) 
m 
z 
(I) 

> 
r 
.... 
Z 
-i 
m 
;;0 

""0 
;;0 

m 
-i 
m 
;;0 



961 
962 
963 
964 
965 
966 
967 
968 
969 
970 
971 
972 
973 
974 
975 

""tJ 
976 

Q/ 977 
IQ 

978 I'll 

N 979 
~ .... 980 

981 
982 
983 
984 
985 
986 
987 
988 
989 
990 
991 
992 
993 
994 
995 
996 
997 
998 
999 

1000 

THEN IF PTRPS-.CT[ROWNO)-.ATO~ICROW 
THEN IF (PTRPS-.CT[ROWNO)-. HYDROGENS 

- MINPARENTBOND(PTRPS-.PARENTGATE, ROWNO) 
- SUMFILIALS(PTRPS-.CT[ROWNO)-.CONGENERS» 
>= BOND~AG 

THEN POSNS := POSNS + [ROWNO) 
END 

END 
END; { of GETAVAILABLEPOSITIONS 
-----------------------------------------------------------------------------} 

PROCEDURE LISTPOSNS(VAR LISTPTR PDOUBLIST; 
POSNSETA, 
POSNSETB, 
CO~BPOSNS : INTEGSET); 

{ Returns a linked list of pairs of positions, being all the possible 
combinations of the positions in POSNSETA and POSNSETB. The values in 
anyone item may only be identical if that value is in COMBPOSNS 
Called by PROCESSCT\GETPOSNS 

VAR POSNA, 

ALTNVLIST\GETCHILDPOSITIONS 
ALTNVLIST\MODIFYCHILDPOSITIONS\GETCOMBPOSNS 
ALTNVLIST\ELEMENT\SETCOMBARS\CO~BINEDPOSITIONS 
ALTNVLIST\ELEMENT\EXTRALAYER 
ALTNVLIST\ELEMENT\GETLIMITPOSITIONS 
ASSIGNMENTST~NT\POINTERLIST\ADDCO~BSUBS 
ALTNVLIST\ELEMENT\PARAMETERLIST\FINDCONNECTIONS} 

POSNB : INTEGER; 
NEWITE~ : PDOUBLIST; 

BEGIN 
FOR POSNA := 0 TO MAXCT DO 

IF POSNA IN POSNSETA 
THEN FOR POSNB := 0 TO MAXCT DO 

IF (POSNB IN POSNSETB) AND «POSNB<>POSNA) OR (POSNB IN COMBPOSNS» 
THEN BEGIN 

»> 
""tJ 
""tJ 
m z 
o .... 
x 
w 

en 
m 
Z 
(/) 

»> 
r 
I-f 
Z 
-I 
m 
:;0 

""tJ 
:;0 
m 
-I 
m 
:;0 



""0 
Q/ 
IQ 
111 

N ..... 
N 

1001 
1002 
1003 
1004 
1005 
1006 
1007 
1008 
1009 
1010 
1011 
1012 
1013 
1014 
1015 
1016 
1017 
1018 
1019 
1020 
1021 
1022 
1023 
1024 
1025 
1026 
1027 
1028 
1029 
1030 
1031 
1032 
1033 
1034 
1035 
1036 
1037 
1038 
1039 
1040 

END; 

NEW(NEWITEM); 
ECTRSIZE := ECTRSIZE + 6; 
NEWITEMA.FIRST := POSNA; 
NEWITEMA.SECOND := POSN8; 
NEWITEMA.NEXT := LISTPTR; 
LISTPTR := NEWITEM 

END 

PROCEDURE ADDTOLIST(NEWPS PTRPSTYPE); 

{ Adds a PS to the bottom of the list of PSs. 
Called by COPYPS 

AlTNVlIST\ElEMENT\SETCOMBARS 
AlTNVlIST\ElEMENT\SUBSTASVALUE} 

VAR NEWIRITEM : PIRLIST; 

BEGIN 
NEW (NEWIRITEM); 
ECTRSIZE := ECTRSIZE + 4; 
NEWIRITEMA.PARSTRUCT := NEWPS; 
NEWIRITEMA.NEXT := NIL; 
IRLISTBOT-.NEXT := NEWIRITEM; 
IRLISTBOT := NEWIRITEM 
END; 

FUNCTION COPYPS<OlDPS : PTRPSTYPE) : PTRPSTYPE; 

{ Copies a ps. 
Called by COPYCOMBAR 

AlTNVLIST\ElEMENT\SUBSTASVALUE 
ALTNVlIST\ElEMENT\SETCOMBARS} 

VAR NEWPS : PTRPSTYPEi 

:J:­
""0 
""0 
ITl 
Z 
o 
I-t 
X 

VoI 

Gl 
ITl 
Z 
(I) 

:J:­
r 
I-t 
Z 
-t 
ITl 
;0 

""0 
;0 

ITl 
-t 
ITl 
;0 



1041 BEGIN 
1042 CASE OLDPS-.PSVARIETY OF 
1043 DUMMY : BEGIN » 
1044 NEW(NEWPS, DUMMY); -0 

-0 

1045 ECTRSIZE := ECTRSIZE + 8; m 
z 

1046 NEWPS-.SUBSTNAME := OLDPSA.SUBSTNAME 0 .... 
1047 END; x 

1048 UNKNOWN : BEGIN lA .. 
1049 NEW(NEWPS, UNKNOWN); 
1050 ECTRSIZE := ECTRSIlE + 6 
1051 END; 
1052 OTHER : BEGIN 
1053 NEW(NEWPS, OTHER); 
1054 ECTRSIZE := ECTRSIZE + 22; 
1055 NEWPSA.TERM := OLDPS-.TERM 

-0 1056 END; QI 
IQ 1057 SPECIFIC : BEGIN ID 

N 1058 NEW(NEWPS, SPECIFIC); 
..... 1059 ECTRSIZE := ECTRSIZE + 70; v.t 

1060 NEWPSA.CT := OLDPS-.CT 
1061 END; 
1062 GENERIC : BEGIN 
1063 NEW(NEWPS, GENERIC); 
1064 ECTRSIZE := ECTRSIZE + 50; 
1065 NEWPSA.PARAMLIST := OLDPSA.PARAMLIST 
1066 END 

Cl 
1067 END; m 

z 
1068 NEWPS-.VISITED := FALSE; (I) 

» 
1069 NEWPS-.PARENTGATE := NIL; r 
1070 NEWPS-.CHILDGATE := NIL; .... 

z 
1071 NEWPS-.PSVARIETY := OLDPS-.PSVARIETYi -t 

m 
1072 ADDTOLIST(NEWPS)i :;0 

"tJ 
1073 COPYPS : = NEWPS :;0 

m 
1074 END; -t 

m 
1075 :;0 

1076 
1077 
1078 PROCEDURE COPYCOMBARCVAR NEWCOMBAR : PCOMBINLIST; 
1079 OLDCOMBAR, 
1080 LASTCOMBLAYER : PCOMBINLIST; 



1081 
1082 
1083 
1084 
1085 
1086 
1087 
1088 
1089 
1090 
1091 
1092 
1093 
1094 
1095 
1096 
1097 

" 1098 III 
IQ 

1099 111 

N 1100 ...... 
~ 1101 

1102 
1103 
1104 
1105 
1106 
1107 
1108 
1109 
1110 
1111 

1112 
1113 
1114 
1115 
1116 
1117 
1118 
1119 

lASTPPOSNS : PTGROUPMEfI1S; 
PRNTPS : PTRPSTYPE; 
FIRSTBAR, 
OMITPG, 
COPYPSS : BOOlEAN); 

FORWARD; 

PROCEDURE COPYAlTBAR(VAR NEWAlTBAR : PAlTERNlIST; 
OlDCOfl1BlIST, 
lASTCOMBlAYER : PCOfl1BINlIST; 
lASTPPOSNS : PTGROUPMEfI1S; 
PRNTPS PTRPSTYPE; 
FIRSTBAR, 
OMITPG, 
COPYPSS : BOOlEAN); 

{ Creates a new alternative bar item, and calls COPYCOMBAR to copy the 
combination bar items in OlDCOMBLIST into its COMBINATION field. 
Called by COPYCOfl1BAR 

AlTNVlIST\ElEMENT\SUBSTASVAlUE} 
VAR NEWAB : PAlTERNlIST; 

BEGIN 
NEW(NEWAB); 
ECTRSIZE := ECTRSIZE + 4; 
NEWAB-.COMBINATION := NIL; 
WHILE OlDCOMBLIST <> NIL DO 

BEGIN 
COPYCOMBAR(NEWABA.COMBINATION, OlDCOMBLIST, lASTCOMBlAYER, lASTPPOSNS, PRNTPS, 

S>; 
OlDCOMBlIST := OlDCOMBLIST-.NEXT 

END; 
NEWABA.NEXT := NEWAlTBAR; 
NEWALTBAR := NEWAB 
END; 

> 
"'0 
"'0 
m 
z 
1:7 ..... 
X 

VoI .. 

en 
m 
z 
(I) 

> r 

FIRSTBA~ OMITPG, COPYP! 
-i ' 
m 
;;0 

"'0 
;;0 
m 
-i 
m 
;;0 



1120 
1121 
1122 
1123 
1124 
1125 
1126 
1127 
1128 
1129 
1130 
1131 
1132 
1133 
1134 
1135 

"'0 1136 
C» 
IQ 1137 
ID 

N 1138 
~ 1139 V1 

1140 
1141 
1142 
1143 
1144 
1145 
1146 
1147 
1148 
1149 
1150 
1151 
1152 
1153 
1154 
1155 
1156 
1157 
1158 
1159 

PROCEDURE SETCONNBONDS(VAR CONNBONDS : TCONNBONDSi 
CONNECTIVITY : TCONNS)i 

{ Returns a TCONNBONDS record with CONNECTIONS set to CONNECTIVITY and all 
bond types to NOTSPECIFIED. 
Called by SUBSTGROUP\CHECKCOMPATIBILITY 

ALTNVLIST\ELEMENT\VALIDSUBST 
ALTNVLIST\ELEMENT 
ASSIGNMENTSTMNT\POINTERLIST\ADDDEFNTABLE 
DECLARESUBST} 

BEGIN 
WITH CONNBONDS DO 

BEGIN 
CONNECTIONS := CONNECTIVITY; 
CASE CONNECTIONS OF 

NOTSET, 
O • • . , 
1 : BOND := NOTSPECIFIED; 
2 : BEGIN 

BONDA := NOTSPECIFIEDi 
BONDB := NOTSPECIFIED 

END 
END 

END 
END; 

PROCEDURE UPDATEPPSCONNS(PARPSLIST : PPSLIST); 

{ Copies the CONNBONDS field of the first item in PARPSLIST right down the 
list. 
Called by SUBSTGROUP\CHECKCOMPATIBILITY 

ALTNVLIST\ELEMENT\VALIDSUBST 
DEClARESUBST} 

VAR NEWCONNBONDS : TCONNBONDS; 

BEGIN 

> 
"'0 
"'0 
m z 
00 
1-4 
X 

VI 

G'l 
m 
Z 
(I) 

> r 
1-4 
Z 
~ 
m 
;;:0 

"'0 
;;:0 

m 
~ 
m 
;0 



""0 
III 
IQ 
I\) 

N .... 
0-. 

1160 
1161 
1162 
1163 
1164 
1165 
1166 
1167 
1168 
1169 
1170 
1171 
1172 
1173 
1174 
1175 
1176 
1177 
1178 
1179 
1180 
1181 
1182 
1183 
1184 
1185 
1186 
1187 
1188 
1189 
1190 
1191 
1192 
1193 
1194 
1195 
1196 
1197 
1198 
1199 

NEWCONNBONDS := PARPSLIST-.CONNBONDS; 
REPEAT 

PARPSLIST-.CONNBONDS := NEWCONNBONDS; 
PARPSLIST := PARPSLISTA.NEXT 

UNTIL PARPSLIST = NIL 
END; 

PROCEDURE DECLARESUBST(SUBST 
PSADDRESS, 
SAVPS 
CONNBONDS 
PRNTPOSNS 

: SUBSTITUENT; 

: PTRPSTYPE; 
: TCONNBONDS; 

PTGROUPMEMS); 

{ Adds declaration of SUBST to RDECLARATIONTABLE, referencing PSADDRESS. 
If this is the first declaration of SUBST to give a value for connectivity, 
then the connectivity is copied into all the other declarations. 
Called by PROCESSCT 

COPYCOMBAR 
ALTNVLIST\ELEMENT\PARAMETERLIST\USERPARAMETER 
ALTNVLIST\ELEMENT\SUBSTASVALUE} 

VAR PTR : PPSLIST; 

BEGIN 
IF RDECLARATIONTABLE[SUBST] <> NIL 

THEN IF (RDECLARATIONTABLE[SUBST]A.CONNBONDS.CONNECTIONS = NOTSET) 
AND (CONNBONDS.CONNECTIONS <> NOTSET) 

> 
""0 
""0 
m 
z 
1;;11 
I-t 
X 

~ 

Cl 
m 
z 
(I) 

> 
r 

THEN BEGIN z 
SETCONNBONDSCRDECLARATIONTABLE[SUBST]-.CONNBONDS, CONNBONDS.CONNECTIONS); ~ 
UPDATEPPSCONNS(RDECLARATIONTABLE[SUBST]) ~ 

END; 

:= PSADDRESS; 
: = NIL; 

NEW(PTR); 
PTR".PARSTRUCT 
PTRA.COMBINS 
PTR".FURTHERSUB 
PTR".CONNBONDS 
PTR".PRNTPOSNS 
PTR".COPYCHILDPS 

:= SAVPS; 
: = CONNBONDS; 
:= PRNTPOSNS; 
: = FALSE; 

;0 
m 
-i 
m 
;0 



""0 
QI 
IQ 
111 

N .... 
"'" 

1200 
1201 
1202 
1203 
1204 
1205 
1206 
1207 
1208 
1209 
1210 
1211 
1212 
1213 
1214 
1215 
1216 
1217 
1218 
1219 
1220 
1221 
1222 
1223 
1224 
1225 
1226 
1227 
1228 
1229 
1230 
1231 
1232 
1233 
1234 
1235 
1236 
1237 
1238 
1239 

PTRA.NEXT := RDECLARATIONTABLE(SUBSTJ; 
RDECLARATIONTABLE[SUBSTJ := PTR; 
DECLSUBS := DECLSUBS + (SUBSTJ 
END; 

PROCEDURE COMPARELISTS(LOWERLIST, 
UPPERLIST : PDOUBLIST); 

{ Calls FAILURE if the items in LOWERLIST are not identical with those 
in UPPERLIST. 
Called by CHECKINCLUDED} 

VAR PTR : POOU8LIST; 
FOUND : BOOLEAN; 

BEGIN 
WHILE LOWERLIST <> NIL 00 

BEGIN 
PTR := UPPERLIST; 
WHILE PTR <> NIL DO 

BEGIN 
FOUND := (LOWERLISTA.FIRST = PTRA.FIRST) AND (LOWERLISTA.SECONO = PTRA.SECOND); 
IF FOUND THEN PTR := NIL 

ELSE PTR := PTRA.NEXT 
END; 

IF FOUND THEN LOWERLIST := LOWERLISTA.NEXT 
ELSE FAILURE(39, 0, 1 I) 

END 
END; 

PROCEDURE CHECKALLWITHIN(COMBMEMS 
AVAILPOSNS 
FAILCODE 

PDOUBLIST; 
: INTEGSET; 

INTEGER); 

{ Checks that all the items in COMBMEMS are within AVAILPOSNS 
Called by ELEMENT\TRANSLATENOMEN\MODIFYGATEPOSITIONS 

> 
""0 
""0 
m z 
Cl 
M 
X 

UoI 

en 
m 
z 
Cl) 

> r 
..... 
z 
~ 
m 
;:0 
""0 
;:0 
m 
~ 
m 
;:0 



"'0 
QI 
IQ 
111 

N ..... 
00 

1240 
1241 
1242 
1243 
1244 
1245 
1246 
1247 
1248 
1249 
1250 
1251 
1252 
1253 
1254 
1255 
1256 
1257 
1258 
1259 
1260 
1261 
1262 
1263 
1264 
1265 
1266 
1267 
1268 
1269 
1270 
1271 
1272 
1273 
1274 
1275 
1276 
1277 
1278 
1279 

BEGIN 

ALTNVLIST\PPOSNS\LMAGCHECKS 
CHECKINCLUDED} 

WHILE COMBMEMS <> NIL DO WITH COMBMEMS- DO 
BEGIN 

IF [FIRST, SECOND] <= AVAILPOSNS 
THEN {OK} 
ELSE IF FIRST IN AVAILPOSNS 

THEN FAILURECFAILCODE, SECOND,' .) 
ELSE FAILURECFAILCODE, FIRST,' .); 

COMBMEMS := NEXT 
END 

END; 

PROCEDURE CHECKINCLUOED(LOWERPOSNS, 
UPPERPOSNS : PTGROUPMEMS); 

{ Checks that all the positions in LOWERPOSNS are also in UPPERPOSNS 
Called by COPYCOMBAR} 

BEGIN 
IF LOWERPOSNS-.COMBINED 

THEN IF UPPERPOSNS-.COMBINED 
THEN COMPARELISTSCLOWERPOSNS-.COMBMEMS, UPPERPOSNS-.COMBMEMS) 
ELSE CHECKALLWITHIN(LOWERPOSNS-.COMBMEMS, UPPERPOSNS-.MEMBERS, 

ELSE IF UPPERPOSNS-.COMBINED 

END; 

THEN PROGERROR(26) {Trying to uncombine a position set} 
ELSE IF LOWERPOSNS-.MEMBERS <= UPPERPOSNS-.MEMBERS 

THEN {OK} 
ELSE FAILURE(39, 0,' .) 

PROCEDURE COPYCOMBAR; {Previous FORWARD declaration} 

39) 

):10 
"'0 
"'0 
IT1 
Z 
'0 .... 
X 

lH 

(i') 
IT1 
Z 
(I) 
):10 
r 
.... 
Z 
-t 
IT1 
;;0 
"'0 
;;0 
IT1 
-t 
IT1 
;;0 



1280 
1281 
1282 
1283 
1284 
1285 
1286 
1287 
1288 
1289 
1290 
1291 
1292 
1293 
1294 
1295 

""0 1296 QI 
IQ 1297 ID 

N 1298 
~ 1299 -0 

1300 
1301 
1302 
1303 
1304 
1305 
1306 
1307 
1308 
1309 
1310 
1311 
1312 
1313 
1314 
1315 
1316 
1317 
1318 
1319 

{ Copies a combination bar item. If FIRSTBAR then the PARENTPOSITIONS field 
is altered to LASTPPOSNS. In other cases LASTPPOSNS is changed to 
OLDCOMBAR-.PARENTPOSITIONS after checking that the specified positions are 
available. For BOTTOMBARs a new parent gate is created on the existing 
Child PS (not done if OMITPG). If COPYPSS is TRUE, then Child PSs 
themselves are copied, otherwise the new Gate is simply made to point to the 
Child Ps. For non-BOTTOMBARs, COPYALTBAR is called to copy the ALTERNATIVES. 
Called by COPYALTBAR 

VAR NEWCB, 

COPYCOMBAR Crecursively) 
ENTERCOMBIN 
ALTNVLIST\ADDFURTHERSUBTN} 

SUBCB : PCOMBINLIST; 
OLDALTBAR : PALTERNLIST; 
NEWPG : PPARENTLIST; 

BEGIN 
IF OLDCOMBAR-.BOTTOMBAR 

THEN NEW(NEWCB, TRUE) 
ELSE NEW(NEWCB, FALSE); 

ECTRSIZE := ECTRSIZE + 11 + OROCOLDCOMBAR-.BOTTOMBAR) * 13; 
IF FIRSTBAR 

THEN NEWCB-.PARENTPOSITIONS := LASTPPOSNS 
ELSE IF OLDCOMBAR-.PARENTPOSITIONS = NIL 

THEN NEWCB-.PARENTPOSITIONS := NIL 
ELSE BEGIN 

NEWCB-.PARENTPOSITIONS := OLDCOMBAR-.PARENTPOSITIONS; 
CHECKINCLUDED(NEWCB-.PARENTPOSITIONS, LASTPPOSNS); 
LASTPPOSNS := NEWCB-.PARENTPOSITIONS 

END; 
NEWCB-.FREQUENCY := OLDCOMBAR-.FREQUENCY; 
NEWCB-.NEXT := NEWCOMBAR; 
NEWCB-.BOTTOMBAR := OLOCOMBAR-.BOTTOMBAR; 
IF NEWCB-.BOTTOMBAR 

THEN BEGIN 
IF COPYPSS 

THEN NEWCBA.CHILDPS := COPYPS(OLDCOMBARA.CHILDPS) 

» 
""0 
""0 
m z 
0;:;1 ..... 
x 
lJo,I 

Gl 
m 
z 
(I) 

» 
r 
..... 
Z 
-t 
m 
;:0 

""0 
;:0 
m 
-t 
m 
;:0 



1320 
1321 
1322 
1323 
1324 
1325 
1326 
1327 
1328 
1329 
1330 
1331 
1332 
1333 
1334 
1335 

"'tI 1336 
III 
c.o 1337 
(1) 

N 
1338 

N 1339 
0 

1340 
1341 
1342 
1343 
1344 
1345 
1346 
1347 
1348 
1349 
1350 
1351 

1352 
1353 
1354 
1355 
1356 
1357 
1358 

TRUE)i 

ELSE NEWCB-.CHILDPS := OLDCOMBAR-.CHILDPSi 
IF NEWCB-.CHILDPSA.PSVARIETY = DUMMY 

THEN BEGIN 
DECLARESUBSTCNEWCBA.CHILDPSA.SUBSTNAME, 

PRNTPS, 
NEWCBA.CHILDPS, 
OLDCOMBAR-.CONNBONDS, 
LASTPPOSNS)i 

»> 
"'tI 
"'tI 
m 
Z 
1:7 ...... 
X 

~ 

RDECLARATIONTABLE[NEWCB".CHILDPSA.SUBSTNAME]".COMBINS := LASTCOMBLAYER 
ENDi 

NEWCBA.CHILDPOSITIONS := OLDCOMBARA.CHILDPOSITIONSi 
NEWCBA.CONNBONDS := OLDCOMBAR".CONNBONDSi 
IF NOT OMITPG 

THEN BEGIN 
NEW(NEWPG)i 
ECTRSIZE := ECTRSIZE + 26; 
WITH NEWPG A DO 

BEGIN 
CHILDPOSITIONS := NEWCB".CHILDPOSITIONSi 
PARENTPOSITIONS := LASTPPOSNS"i 
PARENTPS := PRNTPSi 
CONNBONDS := NEWCBA.CONNBONDSi 
NEXT := NEWCBA.CHILDPSA.PARENTGATE 

ENDi 
NEWCBA.CHILDPSA.PARENTGATE := NEWPG 

ENDi 
IF COPYPSS 

THEN BEGIN 
SUBCB := OLDCOMBARA.CHILDPSA.CHILDGATEi 
WHILE SUBCB <> NIL DO 

END 

BEGIN 
COPYCOMBARCNEWCBA.CHILDPSA.CHILDGATE, 

SUBCB := SUBCBA.NEXT 
END 

G') 
m 
z 
(I) 

»> 
r 
...... 
z 
~ 

SUBCB, NIL, NIL, NEWCBA.CHILDP~ 
~ 
m 
~ 
m 
~ 

END 
ELSE BEGIN 

OLDALTBAR := OLDCOMBAR".ALTERNATIVESi 
NEWCBA.ALTERNATIVES := NILi 

FALSE, OMITPG 



""0 
Qj 

Ul 
III 

N 
N 
~ 

1359 
1360 
1361 
1362 
1363 
1364 
1365 
1366 
1367 
1368 
1369 
1370 
1371 
1372 
1373 
1374 
1375 
1376 
1377 
1378 
1379 
1380 
1381 
1382 
1383 
1384 
1385 
1386 
1387 
1388 
1389 
1390 
1391 
1392 
1393 
1394 
1395 
1396 
1397 
1398 

WHILE OLDALTBAR <> NIL DO 
BEGIN 

COPYALTBAR(NEWCB-.ALTERNATIVES, OLDALTBAR-.COMBINATION, NEWCB, 
LASTPPOSNS, PRNTPS, FALSE, OMITPG, COPYPSS); 

OLDALTBAR := OLDALTBAR-.NEXT 
END 

END; 
NEWCOMBAR := NEWCB 
END; 

PROCEDURE ENTERCOMBIN(SUBST : SUBSTITUENT; 
VAR GATEENTRY : PCOMBINLIST); 

{ If SUBST has been defined, copies the existing definition combination bar 
into GATEENTRY, otherwise creates a new non-BOTTOMBAR combination bar item. 
Called by PROCESSCT 

ALTNVLIST\ELEMENT\PARAMETERLIST\USERPARAMETER} 

BEGIN 
WITH RDECLARATIONTABLE[SUBST]- DO 

IF RDEFINITIONTABlE[SUBST] = NIL 
THEN BEGIN 

NEWCCOMBINS, TRUE); 
ECTRSIZE := ECTRSIZE + 11; 
COM8INS-.BOTTOM8AR := FALSE; 
COMBINS-.PARENTPOSITIONS := PRNTPOSNS; 
COMBINS-.FREQUENCY.TOPRANGE := NOTSET; 
COMBINS-.FREQUENCY.SUBRANGES := ESSENTFREQ; 
COM8INS-.ALTERNATIVES := NIL; 
COMBINS-.NEXT := GATEENTRY; 
GATEENTRY := COMBINS 

END 
ELSE BEGIN 

COPYCOMBAR(GATEENTRY, 
RDEFINITIONTABLE[SUBST], 
NIL, 
PRNTPOSNS, 
PARSTRUCT, 

»> 
""0 
""0 
m 
Z 
c ..... 
x 
VoI 

(j) 
m 
z 
(I) 

»> 
r 
..... 
z ..... 
m 
;;0 

""0 
;;0 
m ..... 
m 
;;0 



"'0 
I» 
IQ 
I'D 

N 
N 
N 

1399 
1400 
1401 
1402 
1403 
1404 
1405 
1406 
1407 
1408 
1409 
1410 
1411 
1412 
1413 
1414 
1415 
1416 
1417 
1418 
1419 
1420 
1421 
1422 
1423 
1424 
1425 
1426 
1427 
1428 
1429 
1430 
1431 
1432 
1433 
1434 
1435 
1436 
1437 
1438 

END; 

TRUE, 
FALSE, 
FALSE) i 

COMBINS := GATEENTRY 
END 

{-------------------------------------------------------------------------------
PROCEDURE PROCESSCT 

-------------------------------------------------------------------------------} 
PROCEDURE PROCESSCT (VAR CT CTTYPE; 

INTERACTIVE BOOLEAN; 
PSADDRESS PTRPSTYPE)i 

{ Carries out the reformatting of FELDCT/FELDBD, putting the result into CT. 
Called by READSD 

ALTNVLIST\ELEMENT\TRANSLATENOMEN} 

TYPE TNODENATURE = (ATOMIC, APICLABEL, VARPOSNLABEL, EXPHYDROGEN, SUBSTNODE)i 

VAR APICCOUNT, { Number of apical labels present } 
ROWNO : ATOMNUMBERi { Row counter for CT and FELDCT } 
M : 1 •• 2; { Counter for characters of atomic symbol} 
REJECTED : BOOLEANi { Set to TRUE if error is found} 
CONNBONDS : TCONNBONDSi 
PRNTPOSNS : PTGROUPMEMS; 

FUNCTION NODENATURE(NODE : ATOMNUMBER) : TNODENATURE; 

{ Returns the nature of the NODE in FELDCT. 
Called by INDEPENDENT 

READCONGNERS 

> 
"'0 
"'0 
m z 
Q ..... 
X 

v.t 

G'l 
m 
Z 
(I) 

> 
r 
..... 
Z 
-i 
m 
;:0 

"'0 
;:0 
m 
-i 
m 
;:0 



""0 
QI 
1.0 
11) 

N 
N 
VI 

1439 
1440 
1441 
1442 
1443 
1444 
1445 
1446 
1447 
1448 
1449 
1450 
1451 
1452 
1453 
1454 
1455 
1456 
1457 
1458 
1459 

. 1460 
, 1461 
1462 
1463 
1464 
1465 
1466 
1467 
1468 
1469 
1470 
1471 
1472 
1473 
1474 
1475 
1476 
1477 
1478 

Body of PROCESSCT} 

BEGIN 
WITH FELDCT[NODE] DO 
IF CHEM = '* 

THEN NODENATURE := APICLABEL 
ELSE IF CHEM = '# 

END; 

THEN NODENATURE := VARPOSNLABEL 
ELSE IF CHEM = 'H ' 

THEN NODENATURE := EXPHYDROGEN 
ELSE IF CHEM[2] IN ['0' •• '9'] 

THEN NODENATURE := SUBSTNODE 
ELSE NODENATURE := ATOMIC 

FUNCTION BONDVAL (NODEA,NODEB ATOMNUMBER): BONDORDER; 

{ Finds the order of the bond between NODEA and NODEB } 

VAR M : O •• MAXCT; 
BNDVAL : BONDORDER; 

BEGIN 
BNDVAL := NOTSPECIFIED; 
M := 0; 
WHILE (M <= NUMOFBONDS) AND (BNDVAL=NOTSPECIFIED) DO 

BEGIN 
M := M+1; 
WITH FELDBD[M] DO 

END; 

IF «NODEA=NODE1) AND (NODEB=NODE2» 
OR «NODEA=NODE2) AND (NODEB=NODE1» 
THEN REPEAT BNDVAL := SUCC(BNDVAL) 

UNTIL ORD(BNDVAL) = BOND 

BONDVAL := BNDVAL 
END; 

> 
""0 
""0 
m z 
1::7 ..... 
X 

VI 

(i') 
m 
z 
(Il 

> 
r 
..... 
Z 
-I 
m 
;:0 

""0 
;:0 
m 
-I 
m 
;:0 



"'Q 
I» 
IQ 
CD 

N 
N 
~ 

1479 
1480 
1481 
1482 
1483 
1484 
1485 
1486 
1487 
1488 
1489 
1490 
1491 
1492 
1493 
1494 
1495 
1496 
1497 
1498 
1499 
1500 
1501 
1502 
1503 
1504 
1505 
1506 
1507 
1508 
1509 
1510 
1511 
1512 
1513 
1514 
1515 
1516 
1517 
1518 

FUNCTION SUBSTNAME(CHEM : STRING4): SUBSTITUENT; 

{ Converts the name of a substituent to integer format from characters. 
Called by Body of PROCESSCT} 

VAR SUBST : SUBSTITUENT; 

BEGIN 
IF CHEM[3] = , , 

THEN SUBST := ORDCCHEM[2]) - ORD('O') 
ELSE SUBST := CORDCCHEM[3]) - ORD('O'» + 10*CORD(CHEM[2]) - ORDC'O') ); 

SUBSTNAME := SUBST 
END; 

FUNCTION INDEPENDENT(NODENO ATOMNUMBER): BOOLEAN; 

{ Returns TRUE if any of the congeners of NODENO are EXPHYDROGEN, APICLABEL 
or SUBSTNODE. 
Called by Body of PROCESSCT} 

VAR CNGNR : 1 •• MAXCONGENERS; 

BEGIN 
INDEPENDENT := FALSE; 
FOR CNGNR := 1 TO MAXCONGENERS DO IF FELDCT[NODENO].AR[CNGNR] <> 0 

THEN IF NODENATURE(FELDCT[NODENO].AR[CNGNR]) IN [EXPHYDROGEN, APICLABEL, SUBSTNODE] 
THEN INDEPENDENT := TRUE 

END; 

PROCEDURE REJECTCERRORCODE : INTEGER; 
NODE : ATOMNUMBER); 

{ Outputs an error message. 
Called by READCONGENERS 

HNUMBER 
NUMOFCONNS 

)00 
"'Q 
"'Q 
m 
z 
o ..... 
X 

I.H 

G'I 
m 
z 
(I) 
)00 

r 
..... 
Z 
-4 
m 
;:0 

"'Q 
;:0 

m 
-4 
m 
;:0 



"'0 
QI 
\0 
I'D 

N 
N 
VI 

1519 
1520 
1521 
1522 
1523 
1524 
1525 
1526 
1527 
1528 
1529 
1530 
1531 
1532 
1533 
1534 
1535 
1536 
1537 
1538 
1539 
1540 
1541 
1542 
1543 
1544 
1545 
1546 
1547 
1548 
1549 
1550 
1551 
1552 
1553 
1554 
1555 
1556 
1557 
1558 

CHECKEARLIERDEFN 
Body of PROCESSCT} 

BEGIN 
WRITEC'SD ERROR: I); 

WRITEMESSAGECERRORCODE, NODE,' I); 

REJECTED := TRUE 
END; 

PROCEDURE READCONGENERS CVAR CONGENERS : CONGARRAY; 
VAR HYDROGENS : NUMCONGENERS; 
ATOMICROW : BOOLEAN; 
ROWNO : ATOMNUMBER); 

{ Sets the values in CONGENERS, and the number 
of explicit attached HYDROGENS, for a single connection table ROW. 
Called by Body of PROCESSCT} 

VAR FELDCONG ARRAY[1 •• MAXCONGENERS] OF ATOMNUMBER; 
CNGNR : 1 •• MAXCONGENERS; 

BEGIN 
HYDROGENS := 0; 
FELDCONG := FELDCT[ROWNO].AR; 
FOR CNGNR := 1 TO MAXCONGENERS DO 

BEGIN 
CONGENERS[CNGNR].RELATIONSHIP := NONE; 
IF FELDCONG[CNGNR] <> 0 THEN WITH CONGENERS[CNGNR-HYDROGENSJ 00 

BEGIN 
BOND := BONDVALCROWNO, FELDCONG[CNGNR]); 
CASE NOOENATURE(FELDCONG[CNGNR]) OF 

ATOMIC : BEGIN 

EXPHYDROGEN 
APICLABEL 
VARPOSNLABEL 

RELATIONSHIP := FRATERNAL; 
ROWNUM := FELDCONG[CNGNR] 

END; 
: HYDROGENS := HYDROGENS + 1; 
: RELATIONSHIP := PARENTAL; 
: IF ATOMICROW 

.~ 

> 
"'0 
"'0 
m 
z 
o 
...... 
x 
VI 

(i) 
m 
z 
(I) 

> 
r 
...... 
Z 
-I 
m 
;;Q 

." 
;;Q 

m 
-I 
m 
;:0 



"'tI 
III 
IQ 
I'D 

N 
N 
0-

1559 
1560 
1561 
1562 
1563 
1564 
1565 
1566 
1567 
1568 
1569 
1570 
1571 
1572 
1573 
1574 
1575 
1576 
1577 
1578 
1579 
1580 
1581 
1582 
1583 
1584 
1585 
1586 
1587 
1588 
1589 
1590 
1591 
1592 
1593 
1594 
1595 
1596 
1597 
1598 

END 
END; 

SUBSTNODE 

END 
END 

THEN REJECT(56, ROWNO) 
ELSE BEGIN 

RELATIONSHIP := FRATERNAL; 
ROWNUM := NOTFIXED 

END; 
: IF INDEPENDENT(FELDCONG[CNGNR]) 

THEN BEGIN 
RELATIONSHIP := FRATERNAL; 
ROWNUM := FELDCONG[CNGNR] 

END 
ELSE RELATIONSHIP := FILIAL 

PROCEDURE HNUMBER (NODE : ATOMNUMBER); 

{ Sets a value for HYDROGENS at atom NODE, checking valencies in VELENCYFILE. 
Called by Body of PROCESSCT} 

CONST MAXSTATES = 5; 

TYPE TELEMVALS = RECORD 
ELEMENT : STRING2; 
VALENCIES PACKED ARRAY[1 •• MAXSTATES] OF NUMCONGENERS 

END; 

VAR BONDCOUNT : 0 •• 18; { Sum of bond orders} 
STATE : INTEGER; 
ARCOUNT, { Number of aromatic bonds} 
TAUTCOUNT, { Number of tautomeric bonds} 
CNGNR : O •• MAXCONGENERS; {Congner counter} 
EXTERNBONDS, { Sum of MAGNITUDEs of external bonds} 
SPAREVALS : INTEGER; { Valency of common atom} 
ELEMVAL : TELEMVALS; { Element valency record } 
VALENCYFILE : FILE OF TELEMVALS; 

> 
"'tI 
"'tI 
I'T1 
Z 
o 
M 
X 

v.I 

(i) 
I'T1 
Z 
(I) 

> 
r 
M 
Z 
-i 
I'T1 
:;0 

"'tI 
:;0 
I'T1 
-i 
I'T1 
:;0 



""0 
III 
IQ 
Cl) 

N 
N 
....... 

1599 
1600 
1601 
1602 
1603 
1604 
1605 
1606 
1607 
1608 
1609 
1610 
1611 
1612 
1613 
1614 
1615 
1616 
1617 
1618 
1619 
1620 
1621 
1622 
1623 
1624 
1625 
1626 
1627 
1628 
1629 
1630 
1631 
1632 
1633 
1634 
1635 
1636 
1637 
1638 

BEGIN 
BONDCOUNT := 0; 
ARCOUNT := 0; 
TAUTCOUNT := 0; 
EXTERNBONDS := 0; 
FOR CNGNR := 1 TO MAXCONGENERS 00 WITH CT[NOOE]A.CONGENERS[CNGNR] DO 

BEGIN 
IF RELATIONSHIP <> NONE THEN 

CASE BOND OF 
NOTSPECIFIED, RINGSING, CHAISING, 

RING, CHAIN, SINGLE, ANY: BONDCOUNT := BONDCOUNT +1; 
RINGDOUB,CHAIDOUB, DOUBLE : BONDCOUNT := BONDCOUNT +2; 
RINGTRIP,CHAITRIP, TRIPLE: BONDCOUNT := BONDCOUNT +3; 
AROMATIC ARCOUNT := ARCOUNT +1; 
RINGTAUT, CHAITAUT TAUTCOUNT := TAUTCOUNT +1 

END; 
IF RELATIONSHIP IN [FILIAL, PARENTAL] 

THEN EXTERNBONDS := EXTERNBONDS + MAGNITUDECBOND) 
END; 

CASE ARCOUNT OF 
O • • . , 
2,3 : BONDCOUNT := BONDCOUNT + ARCOUNT +1; 
1,4,5,6 : REJECTC60, NODE) 

END; 
CASE TAUTCOUNT OF 
0,1 : BONDCOUNT := BONDCOUNT+TAUTCOUNT; 
2,3 : BONDCOUNT := BONDCOUNT + TAUTCOUNT +1; 
4,5,6 : REJECTC61, NODE) 

END; 
RESET(VALENCYFILE, 'LI2GEN>VALENCYFILE'); 
ELEMVAL.ELEMENT :=' '; 
WHILE(ELEMVAL.ELEMENT <> CT[NODE]A.ATOM) AND NOT EOF(VALENCYFILE) DO 

READ(VALENCYFILE, ELEMVAL); 
IF EOF(VALENCYFILE) 

THEN {atom not in file} 
ELSE BEGIN 

STATE := 1; 
WHILE STATE <= MAXSTATES DO 

BEGIN 
SPAREVALS := ELEMVAL.VALENCIES[STATE] + CT[NODE]A.CHARGE - BOND COUNT; 

l> 
""0 
""0 
m 
z 
0' ..... 
X 

VI 

G') 
m 
z 
(/) 

l> 
r 
..... 
Z 
-I 
", 
;;0 

""0 
;;0 
", 
-I 
", 
;;0 



""0 
QI 
10 
111 

N 
N 
00 

1639 
1640 
1641 
1642 
1643 
1644 
1645 
1646 
1647 
1648 
1649 
1650 
1651 
1652 
1653 
1654 
1655 
1656 
1657 
1658 
1659 
1660 
1661 
1662 
1663 
1664 
1665 
1666 
1667 
1668 
1669 
1670 
1671 
1672 
1673 
1674 
1675 
1676 
1677 
1678 

IF SPAREVALS < 0 

END 

THEN IF STATE < MAXSTATES 
THEN STATE := STATE + 1 
ELSE BEGIN 

REJECT(55, NODE); 
STATE := MAXSTATES+1 

END 
ELSE IF SPAREVALS > 6 

THEN PROGERROR(5) {Excessively large valency} 
ELSE BEGIN 

CT[NODEJA.HYDROGENS := SPAREVALS + EXTERNBONDS; 
STATE := MAXSTATES + 1 

END 

END; 
RESET(VALENCYFILE, '@TTY') 
END; 

FUNCTION NUMOFCONNS(CONGENERS 
TOTCONNS : 
NODE 

CONGARRAY; 
NUMCONGENERS; 
ATOMNUMBER) : NUMCONGENERS; 

{ Returns the number of connections specified in CONGENERS, plus the entry 
value of TOTCONNS (which corresponds to the number of HYDROGENS. 
Called by CHECKEARLIERDEFN 

Body of PROCESSCT} 

VAR CNGNR : NUMCONGENERS; 

BEGIN 
FOR CNGNR := 1 TO MAXCONGENERS DO 

IF CONGENERS[CNGNRJ.RELATIONSHIP <> NONE 
THEN TOTCONNS := TOTCONNS + 1; 

IF TOTCONNS > 2 THEN REJECT(54, NODE); 
NUMOFCONNS := TOTCONNS 
END; 

> 
""0 
""0 
m 
z 
0' 
M 
X 

v.I 

Ci1 
m 
z 
(I) 

> r 
M 
Z 
-4 
m 
;:0 
""0 
;:0 
m 
-4 
m 
;:0 



"'Q 
Cl) 
IQ 
11) 

N 
N 
-0 

1679 
1680 
1681 
1682 
1683 
1684 
1685 
1686 
1687 
1688 
1689 
1690 
1691 
1692 
1693 
1694 
1695 
1696 
1697 
1698 
1699 
1700 
1701 
1702 
1703 
1704 
1705 
1706 
1707 
1708 
1709 
1710 
1711 
1712 
1713 
1714 
1715 
1716 
1717 
1718 

PROCEDURE CHECKEARLIERDEFN(SUBST 
CONNS 
ROWSREAD 

: SUBSTITUENT; 
NUMCONGENERS; 
ATOMNUMBER); 

{ Examines the rows of the connection table up as far as ROWSREAD, and if a 
non-ATOMICROW is found with NAME=SUBST then compares the value of CONNS 
with the number of connections of this row. 
Called by Body of PROCESSCT} 

VAR NODENO : ATOMNUMBER; 

BEGIN 
NODENO := 1; 
WHILE NODENO < ROWSREAD DO 

IF CT[NODENO] = NIL 
THEN NODENO := NODENO + 1 
ELSE WITH CT[NODENO]- DO 

IF ATOMICROW 
THEN NODENO := NODENO + 1 
ELSE IF NAME = SUBST 

THEN BEGIN 

END; 

IF CONNS = NUMOFCONNS<CONGENERS, HYDROGENS, NODENO) 
THEN {matches OK} 
ELSE REJECT(53, ROWSREAD); 

NODE NO := ROWSREAD 
END 

ELSE NODENO := NODENO + 1 

{ ..........•....•..•....••..••.........•.•.......................••.•.......... } 
PROCEDURE GETPOSNS<CONGENERS : CONGARRAY; 

VAR CONNBONDS : TCONNBONDS; 
VAR PRNTPOSNS : PTGROUPMEMS); 

{ Sets CONNBONDS, PRNTPOSNS for a substituent, by examining CONGENERS. 
Called by Body of PROCESSCT} 

VAR POSNS1, 

> 
"'Q 
"'Q 
m 
Z 
o ..... 
X 

lH 

(i) 
m 
Z 
(I) 

> 
r 
..... 
Z 
-i 
m 
;;0 

"'Q 
;;0 
m 
-i 
m 
;;0 



-0 
I» 
IQ 
fD 

N 
VI 
o 

1719 
1720 
1721 
1722 
1723 
1724 
1725 
1726 
1727 
1728 
1729 
1730 
1731 
1732 
1733 
1734 
1735 
1736 
1737 
1738 
1739 
1740 
1741 
1742 
1743 
1744 
1745 
1746 
1747 
1748 
1749 
1750 
1751 
1752 
1753 
1754 
1755 
1756 
1757 
1758 

POSNS2, 
COMBPOSNS : INTEGSETi 
MAGSUM : INTEGERi 
REVERSIBLE : BOOLEANi 

PROCEDURE GETSETPOSNS(VAR SETPOSNS : INTEGSETi 

BEGIN 

POSITION 
BOND 

: ATOMNUMBERi 
: BONDORDER); 

IF POSITION = NOTFIXED 
THEN GETAVAILABLEPOSITIONS(PSADDRESS, SETPOSNS, MAGNITUDE(BOND» 
ELSE SETPOSNS := [POSITIONJ 

END; 

BEGIN {Body of GETPOSNS} 
NEW(PRNTPOSNS)i 
ECTRSIZE := ECTRSIZE + 9i 
IF CONGENERS[1J.RELATIONSHIP = NONE 

THEN BEGIN 
{substituent is unconnected} 
PRNTPOSNSA.COMBINED := FALSEi 
PRNTPOSNSA.MEMBERS := [Ji 
CONNBONDS.CONNECTIONS := 0 

END 
ELSE IF CONGENERS[2J.RELATIONSHIP = NONE 

THEN BEGIN 
{substituent is singly connected} 
PRNTPOSNSA.COMBINED := FALSEi 
CONNBONDS.CONNECTIONS := 1i 
CONNBONDS.BOND := CONGENERS[1J.BONDi 
CASE CONGENERS[1J.RELATIONSHIP OF 

FRATERNAL: WITH CONGENERS[1J DO 
GETSETPOSNS(PRNTPOSNSA.MEMBERS, ROWNUM, BOND)i 

FILIAL : PROGERROR(6)i {substituent node with filial congener} 
PARENTAL : PRNTPOSNSA.MEMBERS := [0] 

> 
-0 
-0 
m z 
o ..... 
x 
v.I 

Ci) 
m 
Z 
(I) 

> r 
..... 
Z 
-I 
m 
:;0 

-0 
:;0 

m 
-I 
m 
:;0 



1759 
1760 
1761 
1762 
1763 
1764 
1765 
1766 
1767 
1768 
1769 
1770 
1771 
1772 
1773 
1774 

"'0 1775 w 
\0 1776 (1) 

N 1777 
VoI 1778 ..... 

1779 
1780 
1781 
1782 
1783 
1784 
1785 
1786 
1787 
1788 
1789 
1790 
1791 
1792 
1793 
1794 
1795 
1796 
1797 
1798 

END 
END 

ELSE BEGIN 
{substituent is doubly connected} 
PRNTPOSNSA.COMBINED := TRUE; 
PRNTPOSNSA.COMBMEMS := NIL; 
WITH CONNBONDS DO 

BEGIN 
CONNECTIONS := 2; 
BONDA := CONGENERS[1J.BOND; 
BONDB := CONGENERS[2J.BOND; 

> 
"'0 
"'0 
m z 
o ..... 
x 
VoI 

REVERSIBLE := (BONDMATCHARRAY[BONDA,BONDB] IN [ANY, CHAIN, RING]) OR (BONDA=BONOB) 
END; 

CASE CONGENERSC1].RELATIONSHIP OF 
FRATERNAL : 

CASE CONGENERS[2J.RELATIONSHIP OF 
FRATERNAL : BEGIN 

WITH CONGENERSC1J DO GETSETPOSNS(POSNS1, ROWNUM, BONO); 
WITH CONGENERS[2] DO GETSETPOSNS(POSNS2, ROWNUM, BOND); 
WITH CONNBONDS 00 

MAGSUM := MAGNITUDE(BONDA) + MAGNITUDE(BONDB); 
IF (POSNS1 * POSNS2 = []) OR (MAGSUM > 3) 

THEN COMBPOSNS := C] 
ELSE BEGIN 

GETAVAILABLEPOSITIONS(PSADDRESS, COMBPOSNS, MAGSUM); 
COMBPOSNS := COMBPOSNS * POSNS1 * POSNS2 

FILIAL 
PARENTAL 

END; 

END; Ci'l 
m 

LISTPOSNS(PRNTPOSNS-.COMBMEMS, POSNS1, POSNS2, COMBPOSNS); 
IF REVERSIBLE 

z 
(I) 

> 
r 

THEN LISTPOSNS(PRNTPOSNSA.COMBMEMS, POSNS2, POSNS1, 
END; 
PROGERROR(7); {substituent node with filial congner } 
BEGIN 

WITH CONGENERS[1J DO GETSETPOSNS(POSNS1, ROWNUM, BONO); 
LISTPOSNS(PRNTPOSNS-.COMBMEMS, POSNS1, [0], Cl); 
IF REVERSIBLE THEN 

LISTPOSNS(PRNTPOSNSA.COMBMEMS, [0], POSNS1, []) 
END 

COMBPOSNS-l 
z ..... 
m 
;;0 
"'0 
;;0 
m ..... 
m 
;;0 

FILIAL : PROGERROR(8); {substituent node with filial congener} 



" III 
10 
(1) 

N 
VI 
N 

1799 
1800 
1801 
1802 
1803 
1804 
1805 
1806 
1807 
1808 
1809 
1810 
1811 
1812 
1813 
1814 
1815 
1816 
1817 
1818 
1819 
1820 
1821 
1822 
1823 
1824 
1825 
1826 
1827 
1828 
1829 
1830 
1831 
1832 
1833 
1834 
1835 
1836 
1837 
1838 

PARENTAL : 
CASE CONGENERS(2].RELATIONSHIP OF 

FRATERNAL : BEGIN > 
WITH CONGENERS(2] 00 GETSETPOSNSCPOSNS2, ROWNUM, BOND); ~ 
LISTPOSNSCPRNTPOSNSA.COMBMEMS, [OJ, POSNS2, []); ~ 
IF REVERSIBLE THEN ~ 

LISTPOSNSCPRNTPOSNSA.COMBMEMS, POSNS2, (0], []) x 
VI END; •• 

END; 

END 
END 

FILIAL : PROGERROR(9); {substituent node with filial congner } 
PARENTAL : BEGIN 

END 

NEW(PRNTPOSNSA.COMBMEMS); 
ECTRSIZE := ECTRSIZE + 6; 
WITH PRNTPOSNSA.COMBMEMS A 00 

END 

BEGIN 
FIRST := 0; 
SECOND := 0; 
NEXT := NIL 

END; 

{ ......•••.....••......•••.•......••••..•......•........•..•••....••.•...•.. } 

PROCEDURE DECLAREMULTCMULTIP : MULTIPLIER; 
MULTSUBST SUBSTITUENT); 

{ Adds an entry to MDECLARATIONTABLE for MULTIP. 
Called by Body of PROCESSCT} 

VAR PMPTR : PMDECLIST; 

BEGIN 
NEWCPMPTR); 
WITH PMPTR A DO 

BEGIN 
SUBSTDECN := RDECLARATIONTABLE(MULTSUBST]; 

en 
m 
Z 
(I) 

»> 
r 
.... 
Z 
-t 
m 
;;0 

" ;;0 

m 
-t 
m 
;;0 



-0 
QI 
10 
CD 

N 
VI 
VI 

1839 
1840 
1841 
1842 
1843 
1844 
1845 
1846 
1847 
1848 
1849 
1850 
1851 
1852 
1853 
1854 
1855 
1856 
1857 
1858 
1859 
1860 
1861 
1862 
1863 
1864 
1865 
1866 
1867 
1868 
1869 
1870 
1871 
1872 
1873 
1874 
1875 
1876 
1877 
1878 

NEXT := MDECLARATIONTABLE[MULTIP] 
END; 

MDECLARATIONTABLE[MULTIP] := PMPTR; 
DECLMULT := DECLMULT + [MULTIP] 
END; 

BEGIN (* Body of Procedure PROCESSCT *) 
REPEAT 

IF INTERACTIVE THEN READFELDMANN; 
APICCOUNT := 0; 
REJECTED := FALSE; 
FOR ROWNO := 1 TO MAXCT DO IF ROWNO > NUMOFNODES 

THEN CT[ROWNO] := NIL 
ELSE CASE NOOENATURE(ROWNO) OF 

APICLABEL : BEGIN 
CT[ROWNO] := NIL; 
IF FELDCT[ROWNO].AR[2] <> 0 THEN REJECT(58, ROWNO); 
IF FELDCT[ROWNO].MULT <> 0 THEN REJECT(57, ROWNO); 
IF APICCOUNT = 2 

THEN REJECT(S9, 0) 
ELSE APICCOUNT := APICCOUNT + 1 

END; 
VARPOSNLABEL, 
EXPHYDROGEN : BEGIN 

CT[ROWNO] := NIL; 
IF FELDCT[ROWNO].AR[2] <> 0 THEN REJECT(S8, ROWNO); 
IF FELDCT[ROWNO].MULT <> 0 THEN REJECT(57, ROWNO) 

END; 
ATOMIC : BEGIN 

IF FELDCT[ROWNO].MULT <> 0 THEN REJECT(S7, ROWNO); 
NEW(CT[ROWNO], TRUE); 
ECTRSIZE := ECTRSIZE + 30; 
WITH CT[ROWNO]A DO 

BEGIN 
ATOMICROW := TRUE; 
FOR M := 1 TO 2 DO ATOM[M] := FELOCT[ROWNO].CHEM[M]; 
CHARGE := FELDCT[ROWNO].CHGE; 
READCONGENERS(CONGENERS, HYDROGENS, ATOMICROW, ROWNO); 

):0 

-0 
-0 
m 
z 
Cl ..... 
X 

VI 

G1 
m 
z 
en 
):0 

r 
..... 
z ..... 
m 
;;0 

-0 
;;0 
m ..... 
m 
;;0 



"'tJ 
QI 
IQ 
111 

N 
U. 
~ 

1879 
1880 
1881 
1882 
1883 
1884 
1885 
1886 
1887 
1888 
1889 
1890 
1891 
1892 
1893 
1894 
1895 

~ 1896 
1897 
1898 
1899 
1900 
1901 
1902 
1903 
1904 
1905 
1906 
1907 
1908 
1909 
1910 
1911 
1912 
1913 
1914 
1915 
1916 
1917 
1918 

SUBSTNOOE 

END; 
IF REJECTED 

END; 

IF HYDROGENS=O THEN HNUMBER(ROWNO) 
END 

: BEGIN 
»> 
"'tJ 
"'tJ 
m 
Z 
00 .... 
x 

NEW(CT[ROWNO], FALSE); 
ECTRSIZE := ECTRSIZE + 33; 
WITH CT[ROWNO]A 00 

END 

BEGIN 
ATOMICROW := FALSE; 
NAME := SUBSTNAME(FELDCT[ROWNO].CHEM); 
CHARGE := FELDCT[ROWNO].CHGE; 
VALUES := NIL; 
READCONGENERS(CONGENERS, HYDROGENS, ATOMICROW, ROWNO); 
IF NAME IN DECLSUBS 

THEN WITH RDECLARATIONTABLE[NAME]A.CONNBONDS DO 

u. 

IF (CONNECTIONS = NUMOFCONNS(CONGENERS, HYDROGENS, ROWNO» 
OR (CONNECTIONS = NOTSET) 

THEN {accords with previous declaration} 
ELSE REJECT(53, ROWNO) 

ELSE CHECKEARLIERDEFN(NAME, NUMOFCONNS(CONGENERS, HYDROGENS, ROWNO), ROWNO 
END 

THEN IF INTERACTIVE 
THEN BEGIN 

FOR ROWNO := 1 TO NUMOFNODES DO IF CT[ROWNO] <> NIL THEN 
IF CT[ROWNO]A.ATOMICROW 

THEN BEGIN 
DISPOSE(CT[ROWNO], TRUE); 
ECTRSIZE := ECTRSIZE - 30 

END 
ELSE BEGIN 

DISPOSE(CT[ROWNO], FALSE); 
ECTRSIZE := ECTRSIZE - 33 

END; 
FELDMODE := OLD DIAGRAM; 
FELDMN(FELDMODE, FELDFIL); 
IF FELDMODE = OLDDIAGRAM THEN FAILURE(41, 0,' .) 

END 

G') 
m 
Z 
(I) 

»> 
r 
.... 
Z 
-t 
m 
;0 

""0 
;0 
m 
-t 
m 
;0 



"'Q 
I» 
\0 
~ 

N 
VoI 
VI 

1919 
1920 
1921 
1922 
1923 
1924 
1925 
1926 
1927 
1928 
1929 
1930 
1931 
1932 
1933 
1934 
1935 
1936 
1937 
1938 
1939 
1940 
1941 
1942 
1943 
1944 
1945 
1946 
1947 
1948 
1949 
1950 
1951 
1952 
1953 
1954 
1955 
1956 
1957 
1958 

ELSE FAILURE(41, 0,' .) 
UNTIL NOT REJECTED; 

FOR ROWNO := 1 TO NUMOFNODES DO IF CT[ROWNO] <> NIL THEN WITH CT[ROWNO]A DO 
IF NOT ATOMICROW THEN 

END; 

BEGIN 
GETPOSNS(CONGENERS, CONNBONDS, PRNTPOSNS); 
DECLARESUBST(CT[ROWNO]A.NAME, 

PSADDRESS, 
NIL, 
CONNBONDS, 
PRNTPOSNS); 

IF FELDCT[ROWNO].MULT <> 0 THEN DECLAREMULT(FELDCT[ROWNO].MULT, CT[ROWNO]A.NAME); 
IF INDEPENDENT(ROWNO) 

END 

THEN WITH CT[ROWNO]A DO ENTERCOMBIN(NAME, VALUES) 
ELSE BEGIN 

ENTERCOMBIN(CT[ROWNO]-.NAME, PSADDRESSA.CHILDGATE); 
DISPOSE(CT[ROWNO], FALSE); 
ECTRSIZE := ECTRSIZE - 33 

END 

{ OF PROCEDURE PROCESSCT 
------------------------------------------------------------------------------} 

{----------------------------------------------------------------------------} 
PROCEDURE READSD(VAR PSADDRESS : PTRPSTYPE; 

INTERACTIVE : BOOLEAN); 

{ Sets up a SPECIFIC partial structure in PSADDRESS, uses SPLITLINE and 
DIVIDELINE to handle Gensal lines containing tokens after the SD, and calls 
PROCESSCT to reformat the connection table. If INTERACTIVE is TRUE then 
FELDMN and READFELDMANN are used to produce FELDCT and FELDBD. Otherwise 
they are derived by DECODECT. 
Called by ALTNVLIST\ELEMENT 

Body of INTERPRET} 

> 
"'Q 
"'Q 
m z 
'=' ..... 
x 
VoI 

G') 

m z 
en 
> 
r 
..... 
Z 
-i 
m 
:;0 
"'Q 
:;0 
m 
-i 
m 
:;0 



"'0 
QI 
IQ 
III 

N 
\.101 
0-

1959 
1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 

VAR OLDLINE : LINELISTi 
LINECONTINUED : BOOLEANi 

FUNCTION SPLITLINE : BOOLEANi 

{ GENSAL source line from which READSD was called} 
{ Indicates more GENSAL on line} 

{ TRUE if there is any non-space character beyond the current position (N) in 
CURRENTLINE, which is space-filled from the current position, the original 
version being saved in OLDLINE } 

VAR M : O •• MAXLENGTHi 

BEGIN 
OLDLINE := CURRENTLINEAi 
SPLITLINE := FALSE; 
FOR M := N TO MAXLENGTH DO 

IF CURRENTLINEA.LINE[M] <> I I THEN 
BEGIN 

END; 

SPLITLINE := TRUEi 
CURRENTLINEA.LINE[M] := I I 

END 

PROCEDURE DIVIDELINE(VAR CURRENTLINE PLINELIST)i 

{ Places the second half of OLDLINE.LINE in a new location in the 
linked list of lines} 

VAR M : 1 •• MAXLENGTHi 

BEGIN 
FOR M := 1 TO (N-1) DO OLDLINE.LINEC~] := • 'i 
OLDLINE.LAST := CURRENTLINE; 
OLDLINE.NEXT := CURRENTLINEA.NEXTi 
NEW(CURRENTLINEA.NEXT)i 
CURRENTLINEA.NEXTA := OLDLINEi 
CURRENTLINE := CURRENTLINEA.NEXT 

):00 

"'0 
"'0 
m z 
o 
M 
X 

VoI 

en 
m 
z 
(I) 

):00 

r 
M 
Z 
-i 
m 
::0 
'"U 
::0 
m 
-i 
m 
::0 



\J 
CII 
IQ 
III 

N 
V. 
~ 

1999 
2000 
2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 
2010 
2011 
2012 
2013 
2014 
2015 
2016 
2017 
2018 
2019 
2020 
2021 
2022 
2023 
2024 
2025 
2026 
2027 
2028 
2029 
2030 
2031 
2032 
2033 
2034 
2035 
2036 
2037 
2038 

END; 

BEGIN { body of procedure READSD } 
NEW(PSADDRESS, SPECIFIC); 
ECTRSIIE := ECTRSIZE + 70; 
WITH PSADDRESS- DO 

BEGIN 
PSVARIETY := SPECIFIC; 
VISITED := FALSE; 
CHILDGATE := NIL; 
PARENTGATE := NIL 

END; 
LINECONTINUED := SPLITLINE; 
IF INTERACTIVE 

THEN BEGIN 
FELDMODE := NEWDIAGRAM; 
WRITELN; 
WRITELN('FELDMANN graphics system for structure diagram input and display:'); 
FELDMN(FELDMODE,FELDFIL) 

END 
ELSE BEGIN 

CURRENTLINE := CURRENTLINE-.NEXT; 
DECODECT(CURRENTLINE,TRUE); 
IF LINECONTINUED THEN DIVIDELINE(CURRENTLINE) 

ELSE N := MAXLENGTH 
END; 

PROCESSCT(PSADDRESS-.CT, INTERACTIVE, PSADDRESS); 
IF INTERACTIVE THEN 

BEGIN 
NEW(CURRENTLINE-.NEXT); 
CURRENTLINE-.NEXT-.LAST := CURRENTLINEi 
CURRENTLINE := CURRENTLINE-.NEXT; 
CURRENTLINE-.NEXT := NIL; 
ENCODECT(CURRENTLINE); 
IF LINECONTINUED THEN DIVIDELINECCURRENTLINE) 

ELSE N := MAXLENGTH 
END 

END; 

> 
\J 
\J 
m z ..., 
t-4 
X 

VI 

Gl 
m 
z 
(/) 

> .-
t-4 
Z 
-i 
m 
;;0 

\J 
;;0 
m 
-i 
m 
;;0 



"'0 
III 
IQ 
Cl) 

N 
lH 
00 

2039 
2040 
2041 
2042 
2043 
2044 
2045 
2046 
2047 
2048 
2049 
2050 
2051 
2052 
2053 
2054 
2055 
2056 
2057 
2058 
2059 
2060 
2061 
2062 
2063 
2064 
2065 
2066 
2067 
2068 
2069 
2070 
2071 
2072 
2073 
2074 
2075 
2076 
2077 
2078 

{ of procedure READSD 
------------------------------------------------------------------------------} 

FUNCTION CHECKDELIM (VALIDELIMS : DELIMSET) : DELIMTYPE; 

BEGIN 
IF TOKEN.NATURE = DELIMIT ER 

THEN IF TOKEN.DELIMVAL IN VALIDELIMS 
THEN CHECKDELIM := TOKEN.DELIMVAL 
ELSE CHECKDELIM := INVALIDTOKEN 

ELSE CHECKDELIM :=INVALIDTOKEN 
END; 

{------------------------------------------------------------------------------
PRO C E D U R E I N T E G ERR A N G E 

------------------------------------------------------------------------------} 
PROCEDURE INTEGER RANGE (VAR RANGE VALUES 

LIMITRANGE 
ERROR CODE 

: INTRECORD; 
: INTRECORD; 
: INTEGER); 

{ Carries out syntactic and semantic checking on integer ranges. LIMITRANGE is 
the range of values that all values in RANGEVALUES must fall, and is used for 
the semantic checking (functions INCREASING, WITHINLIMITS and ALLWITHINLIMITS). 
ERRORCODE is the relevant error code for passing to procedure ERROR. 
CalLed by GROUPRANGE 

SELECTOR} 

VAR PTR : PDOUBLIST; 

FUNCTION WITHINLIMITS(TESTVALUE : INTEGER) : BOOLEAN; 

{ Returns TRUE is TESTVALUE is in the range covered by LIMITRANGE 

~ 
"'0 
"'0 
m 
z 
a 
H 
x 
lH 

en 
m z 
(I) 

~ 
r 
H 
Z 
-t 
m 
:;0 

-0 
:;0 
m 
-t 
m 
:;0 



'"0 
11/ 
IQ 
CD 

N 
UoI 
-0 

2079 
2080 
2081 
2082 
2083 
2084 
2085 
2086 
2087 
2088 
2089 
2090 
2091 
2092 
2093 
2094 
2095 
2096 
2097 
2098 
2099 
2100 
2101 
2102 
2103 
2104 
2105 
2106 
2107 
2108 
2109 
2110 
2111 
2112 
2113 
2114 
2115 
2116 
2117 
2118 

Called by ALLWITHINLIMITS 
RANGEFRAGMENT} 

VAR PTR : PDOUBLIST; 

BEGIN 
PTR := LIMITRANGE.SUBRANGES; 
WITHINLIMITS := FALSE; 
IF (TESTVALUE >= LIMITRANGE.TOPRANGE) AND (LIMITRANGE.TOPRANGE >= 0) 

THEN WITHINLIMITS := TRUE 
ELSE WHILE PTR <> NIL DO 

END; 

IF (TESTVALUE > PTRA.SECOND) 
THEN PTR := NIL 
ELSE IF TESTVALUE < PTRA.FIRST 

THEN PTR := PTRA.NEXT 
ELSE BEGIN 

WITHINLIMITS := TRUE; 
PTR := NIL 

END 

FUNCTION INCREASING (TESTVALUE : INTEGER ) : BOOLEAN; 

{ Returns TRUE is TESTVALUE is larger than than the last integer in the range 
Called by RANGEFRAGMENT} 

BEGIN 
IF RANGEVALUES.SUBRANGES = NIL 

THEN INCREASING := TRUE {This is the first integer in the range} 
ELSE INCREASING := TESTVALUE > RANGEVALUES.SUBRANGES·.SECOND 

END; 

FUNCTION ALLWITHINLIMITS(LOWERBOUND, 
UPPERBOUND : INTEGER): BOOLEAN; 

{ Returns TRUE is all the values between LOWERBOUND and UPPERBOUND inclusive 

.J 
> 
'"0 
'"0 
m z 
o 
t-t 
X 

VoI 

en 
m 
z 
(I) 

> r 
t-t 
Z ..... 
m 
;::0 

'"0 
;::0 
m ..... 
m 
;::0 



-0 
I» 
Ul 
111 

N 
~ 
o 

2119 
2120 
2121 
2122 
2123 
2124 
2125 
2126 
2127 
2128 
2129 
2130 
2131 
2132 
2133 
2134 
2135 
2136 
2137 
2138 
2139 
2140 
2141 
2142 
2143 
2144 
2145 
2146 
2147 
2148 
2149 
2150 
2151 
2152 
2153 
2154 
2155 
2156 
2157 
2158 

are covered by LIMITRANGE. 
Called by RANGEFRAGMENT} 

VAR VALID : BOOLEAN; 

BEGIN 
VALID := TRUE; 
WHILE CLOWERBOUND <= UPPERBOUND) AND VALID DO 

IF WITHINLIMITSCLOWERBOUND) 
THEN LOWERBOUND := LOWERBOUND + 1 
ELSE BEGIN 

ERRORCERRORCODE, LOWERBOUND); 
VALID : = FALSE 

END; 
ALLWITHINLIMITS := VALID 
END; 

PROCEDURE RANGE FRAGMENT; 

{ Carries out syntactic/semantic checking on a single range fragment. On 
entry to the procedure TOKEN is the token immediately before the first 
integer of the fragment. On exit, TOKEN is a comma or integer range 
terminating token. 
Called by Body of INTEGERRANGE} 

VAR TERMINATORS 
VALID 
FIRSTINTEGER 
DELIMCHECK 

BEGIN 

: DELIMSET; 
: BOOLEAN; 
: INTEGER; 
: DELIMTYPE; 

{ Tokens that terminate an integer range} 

{ The first integer in N1-N2 type ranges} 

TERMINATORS := [GCLOSANG, GRSQUARE, GEQUALS, GSEQ, GOEQ, GOOLEQ, GHASHEQ]; 
NEXTTOKEN; 
REPEAT 

VALID := FALSE; 
WHILE TOKEN.NATURE <> INTEGRAL DO ERRORC23,0); 
IF NOT INCREASINGCTOKEN.INTEGVAL) 

THEN ERRORC27,0) 

> 
-0 
-0 
m z. 
o .... 
x 
UI 

G'l 
m 
z 
V) 

> r 
.... 
Z 
-t 
m 
:;;tJ 

-0 
:;;tJ 

m 
-t 
m 
:;;tJ 



2159 
2160 
2161 
2162 
2163 
2164 
2165 
2166 
2167 
2168 
2169 
2170 
2171 
2172 
2173 
2174 

""0 2175 
III 2176 IQ 
C1I 2177 
N 2178 ~ ..... 

2179 
2180 
2181 
2182 
2183 
2184 
2185 
2186 
2187 
2188 
2189 
2190 
2191 
2192 
2193 
2194 
2195 
2196 
2197 
2198 

ELSE IF WITHINLIMITS(TOKEN.INTEGVAL) 
THEN VALID := TRUE 
ELSE ERROR(ERRORCODE,TOKEN.INTEGVAL); 

UNTIL VALID; 
FIRSTINTEGER := TOKEN.INTEGVAL; 
NEXTTOKEN; 
REPEAT 

VALID : = FALSE; 
DELIMCHECK := CHECKDELIMC[GCOMMA,GHYPHEN]+TERMINATORS); 
IF DELIMCHECK=INVALIDTOKEN THEN ERRORC24,O) 

ELSE VALID := TRUE 
UNTIL VALID; 
IF DELIMCHECK <> GHYPHEN 

THEN ADDINTS(RANGEVALUES.SUBRANGES, FIRSTINTEGER, FIRSTINTEGER) 
ELSE BEGIN 

NEXTTOKEN; 
REPEAT 

VALID := FALSE; 
WHILE (TOKEN.NATURE <> INTEGRAL) AND (CHECKDELIMCTERMINATORS) = INVALIDTOKEN) 

DO ERROR(24,O); 
IF TOKEN. NATURE = INTEGRAL 

THEN IF TOKEN.INTEGVAL < FIRSTINTEGER 
THEN ERROR(27,O) 
ELSE IF ALLWITHINLIMITS(FIRSTINTEGER, TOKEN.INTEGVAL) 

THEN BEGIN 
VALID : = TRUE; 

> 
""0 
""0 
rn 
Z 
Q .... 
X 

~ 

ADDINTS(RANGEVALUES.SUBRANGES, FIRSTINTEGER, TOKEN.INT~VAL); 
NEXTTOKEN; ~ 
WHILE CHECKDELIM([GCOMMA] + TERMINATORS)= INVALIDTOKEN~O ERROR(24, 0) 

END 
ELSE 

ELSE BEGIN 
IF LIMITRANGE.TOPRANGE = NOTSET 

THEN IF LIMITRANGE.SUBRANGES=NIL 
THEN ERROR(ERRORCODE,O) 

IF 
END 

UNTIL VALID 

ELSE ERROR(ERRORCODE, LIMITRANGE.SUBRANGES-.SECOND + 1) 
ELSE VALID := ALLWITHINLIMITS(FIRSTINTEGER, LIMITRANGE.TOPRANGE); 
VALID THEN RANGEVALUES.TOPRANGE := FIRSTINTEGER 

.... 
Z 
-t 
rn 
;;0 

""0 
;;0 

rn 
-t 
rn 
;;0 



"'0 
QI 
IQ 
ID 

N 
~ 
N 

2199 
2200 
2201 
2202 
2203 
2204 
2205 
2206 
2207 
2208 
2209 
2210 
2211 
2212 
2213 
2214 
2215 
2216 
2217 
2218 
2219 
2220 
2221 
2222 
2223 
2224 
2225 
2226 
2227 
2228 
2229 
2230 
2231 
2232 
2233 
2234 
2235 
2236 
2237 
2238 

END 
END; 

BEGIN {Body of INTEGERRANGE } 
RANGEVALUES.SUBRANGES := NIL; 
RANGEVALUES.TOPRANGE := NOTSET; 
REPEAT RANGEFRAGMENT 
UNTIL TOKEN.DELIMVAL <> GCOMMA; 
PTR := RANGEVALUES.SUBRANGES; 
WHILE PTR <> NIL DO 

BEGIN 
ECTRSIZE := ECTRSIZE + 6; 
PTR := PTR-.NEXT 

END 
END; 

{ of Procedure INTEGER RANGE 

------------------------------------------------------------------------------} 

PROCEDURE SETINTS (VAR RANGE : INTRECORD; 
ONES ET : INTEGSET); 

{ Takes a set of integers, and converts them to integer range format. If 
MAXVARS is a member of the set, then TOPRANGE is set to the member 
of the set above the highest absent member. 
Called from GROUPRANGE 

SELECTOR} 

VAR N NOTSET •• MAXVARS; 

BEGIN 
WITH RANGE DO 

BEGIN 
IF MAXVARS IN ONESET 

THEN BEGIN 
N := MAXVARS; 

:I» 
"'0 

" m 
Z 
o 
I-t 
X 

lJ'I 

en 
m 
z 
en 
:I» 
r 
I-t 
Z ..... 
m 
:;0 
"'0 
:;0 
m ..... 
m 
:;0 



"'0 
QI 
IQ 
111 

N 
~ 
V. 

2239 
2240 
2241 
2242 
2243 
2244 
2245 
2246 
2247 
2248 
2249 
2250 
2251 
2252 
2253 
2254 
2255 
2256 
2257 
2258 
2259 
2260 
2261 
2262 
2263 
2264 
2265 
2266 
2267 
2268 
2269 
2270 
2271 
2272 
2273 
2274 
2275 
2276 
2277 
2278 

WHILE N IN ONESET DO N := N-1; 
TOPRANGE := N + 1; 
ONES ET := ONESET - [TOPRANGE •• MAXVARS] 

END 
ELSE TOPRANGE := NOTSET; 

SUBRANGES := NIL; 
FOR N := 0 TO MAXVARS DO 

IF N IN ONES ET THEN 
ADDINTS(RANGE.SUBRANGES, N,N); 

END 
ENDi 

PROCEDURE INTSET(VAR ONESET INTEGSET; 
RANGE : INTRECORD)i 

{ Converts an integer range into a set of integers, and DESTROYs the SUBRANGES 
of the integer range. 
Called from ALTNVLIST\ELEMENT\PARAMETERLIST} 

VAR PTR PDOUBLISTi 
M : INTEGER; 

BEGIN 
WITH RANGE DO 

BEGIN 
IF TOPRANGE=NOTSET 

THEN ONESET := [J 
ELSE ONES ET := [TOPRANGE •• MAXVARSJ; 

PTR := SUBRANGES; 
WHILE PTR <> NIL DO WITH PTR- DO 

BEGIN 
FOR M := FIRST TO SECOND DO ONES ET := ONESET + C~J; 
PTR := NEXT 

END; 
REDUCEECTR(SUBRANGES); 
DESTROY(SUBRANGES) 

END 
END; 

> 
"'0 
"'0 
rn 
Z 
g 
1-4 
X 

V. 

m 
rn 
z 
(I) 

)00 

r-
1-4 
Z 
-i 
rn 
;;0 
"'0 
;;0 

rn 
-i 
rn 
;;0 



"'0 
III 
10 
CD 

N 
~ 
~ 

2279 
2280 
2281 
2282 
2283 
2284 
2285 
2286 
2287 
2288 
2289 
2290 
2291 
2292 
2293 
2294 
2295 
2296 
2297 
2298 
2299 
2300 
2301 
2302 
2303 
2304 
2305 
2306 
2307 
2308 
2309 
2310 
2311 
2312 
2313 
2314 
2315 
2316 
2317 
2318 

PROCEDURE GROUPRANGE (VAR MEMBERS : INTEGSET; 
: INTEGSET; 
: INTEGER); 

LIMITSET 
ERRORCODE 

{ Converts LIMITSET into a INTRECORD format, and uses this as the limitrange 
for a call to INTEGERRANGE. The RANGE that this returns is converted back 
to a set (MEMBERS). 
Called by ASIGNMENTSTMNT\SUBSTGROUP 

ASSIGNMENTSTMNT\MULTASSIGNMENT 
ALTNVLIST\POSITIONSET} 

VAR RANGE, 
LIMITRANGE 
PTR 
VAL 

BEGIN 

INTRECORD; 
PDOUBLIST; 

: O •• MAXVARS; 

MEMBERS : = []; 
SETINTSCLIMITRANGE,LIMITSET); 
INTEGERRANGE(RANGE,LIMITRANGE,ERRORCODE); 
PTR := RANGE.SUBRANGES; 
WHILE PTR <> NIL DO WITH PTR A DO 

BEGIN 
FOR VAL := FIRST TO SECOND DO 

MEMBERS := MEMBERS + [VAL]; 
PTR : = NEXT 

END; 
REDUCEECTRCLIMITRANGE.SUBRANGES); 
DESTROY(LIMITRANGE.SUBRANGES); 
DESTROY(RANGE.SUBRANGES) 
END; 

PROCEDURE CHECKVALIDINT CLIMITSET INTEGSET; 
ERRORCODE : INTEGER ); 

> 
"'0 
"'0 
m 
z 
a ..... 
x 
~ 

en 
m 
z 
(I) 

> 
r 
..... 
Z 
-i 
m 
:;:0 
"'0 
:;:0 
m 
-i 
m 
:;:0 



""D 
III 
IQ 
11) 

N 
~ 
VI 

2319 
2320 
2321 
2322 
2323 
2324 
2325 
2326 
2327 
2328 
2329 
2330 
2331 
2332 
2333 
2334 
2335 
2336 
2337 
2338 
2339 
2340 
2341 
2342 
2343 
2344 
2345 
2346 
2347 
2348 
2349 
2350 
2351 
2352 
2353 
2354 
2355 
2356 
2357 
2358 

{ Checks that the current TOKEN is an integer within LIMITSET, and obtains 
further tokens from the input stream if it is not. 
Called by ASSIGNMENTSTMNT\SUBSTGROUP\SUBSTCOMBINATION 

ALTNVLIST\POSITIONSET\POSNCOMBINATION 
ALTNVLIST\POSITIONSET} 

VAR VALID : BOOLEAN; 

BEGIN 
VALID := FALSE; 
REPEAT 

WHILE TOKEN. NATURE <> INTEGRAL DO ERROR(23,0); 
IF TOKEN.INTEGVAL > MAXVARS 

THEN ERROR(ERRORCODE, TOKEN.INTEGVAL) 
ELSE IF TOKEN.INTEGVAL IN LIMITSET 

THEN VALID := TRUE 
ELSE ERROR(ERRORCODE, TOKEN.INTEGVAL) 

UNTIL VALID 
END; 

PROCEDURE SELECTOR(VAR VALUERANGE : INTRECORD; 
INTEGSET; 

: INTEGER); 
LIMITSET 
ERRORCODE 

{ Analyses a Gensal selector, returning the values in VALUERANGE. Limited by 
LIMITSET. ERRORCODE is passed to INTEGERRANGE. 
Called from ALTNVLIST\ELEMENT\PARAMETERLIST\USERPARAMETER 

ALTNVLIST\ELEMENT\PARAMETERLIST 
ALTNVLIST\ELEMENT 
ASSIGNMENTSTMNT 
ASSIGNMENTSTMNT\MULTASSIGNMENT} 

VAR LIMITRANGE : INTRECORO; 

BEGIN 
WHILE CHECKDELIM([GOPENANGJ)=INVALIOTOKEN 00 ERRORC21,0); 
SETINTSCLIMITRANGE, LIMITSET); 
INTEGERRANGECVALUERANGE, LIMITRANGE, ERRORCODE); 

> 
""D 
""D 
m z 
c 
~ 

x 
VI 

en 
m 
z 
(n 

> r 
~ 
z ..... 
m 
:;0 
""D 
:;0 
m ..... 
m 
:;0 



." 
C» 
IQ 
I; 

N 
~ 
0-

2359 
2360 
2361 
2362 
2363 
2364 
2365 
2366 
2367 
2368 
2369 
2370 
2371 
2372 
2373 
2374 
2375 
2376 
2377 
2378 
2379 
2380 
2381 
2382 
2383 
2384 
2385 
2386 
2387 
2388 
2389 
2390 
2391 
2392 
2393 
2394 
2395 
2396 
2397 
2398 

DESTROY (LIMITRANGE.SUBRANGES); 
WHILE CHECKDELIM([GCLOSANG])=INVALIDTOKEN DO ERROR(22,0) 
END; 

{****************************************************************************** 

PRO C E D U REA L T N V LIS T 

******************************************************************************} 

PROCEDURE ALTNVLIST(PARENTPSLIST 
OPTIONALSUB 

: PPSLIST; 
: BOOLEAN); 

{ Processes alternatives separated by I delimiters. 
Called by ASSIGNMENTSTMNT\SUBSTASSIGNMENT 

ALTNVLIST\ELEMENT (recursively) 
ALTNVLIST\ELEMENT\TRANSLATENOMEN (recursively) } 

TYPE PPALTBARS = APALTBARS; 
PALTBARS = RECORD 

PARSTRUCT 
ALTBAR 
CONNBONDS 
PRNTPOSNS 
COPYCHILDPS 
NEXT 

END; 

VAR PARAlTLIST, 

PTRPSTYPE; 
: PALTERNLIST; 
: TCONNBONDS; 
: PTGROUPMEMS; 

BOOLEAN; 
PPALTBARS 

WRITEPTR PPAlTBARS; 
NEWAlTERNATIVE : PAlTERNlIST; 
READPTR : PPSlIST; 

PROCEDURE UPDATEPARAlTCONNS(PARAlTlIST : PPAlTBARS); 

{ Copies the CONNBONDS field of the first item in PARAlTlIST into all the 

> 
." 
'"'0 
m 
Z 
c ..... 
X 

IN 

Ci) 
m 
Z 
(I) 

> 
r 
..... 
Z 
-t 
m 
;:Q 

." 
;:Q 

m 
-t 
m 
;;0 



""0 
QI 
10 
Cl) 

N 
~ .... 

2399 
2400 
2401 
2402 
2403 
2404 
2405 
2406 
2407 
2408 
2409 
2410 
2411 
2412 
2413 
2414 
2415 
2416 
2417 
2418 
2419 
2420 
2421 
2422 
2423 
2424 
2425 
2426 
2427 
2428 
2429 
2430 
2431 
2432 
2433 
2434 
2435 
2436 
2437 
2438 

other items in the list. 
Called by ELEMENT\VALIDSUBST 

ELEMENT} 

VAR NEWCONNBONDS : TCONNBONDS; 

BEGIN 
NEWCONNBONDS := PARALTLIST-.CONNBONDS; 
REPEAT 

PARALTLIST-.CONNBONDS := NEWCONNBONDS; 
PARALTLIST := PARALTLIST-.NEXT 

UNTIL PARALTLIST = NIL 
END; 

{------------------------------------------------------------------------------} 
PROCEDURE POSITIONSET(VAR SETMEMS TGROUPMEMS; 

AVAILABLEPOSITIONS : TGROUPMEMS; 
CONNECTIVITY : TCONNS; 
ERRORCODE INTEGER); 

{ Analyses a position set. 
Called from MODIFYCHILDPOSITIONS 

ELEMENT} 

VAR AVAILFIRST INTEGSET; 

PROCEDURE FINDFIRST(VAR POSNSET INTEGSET; 
POSNLIST : PDOUBLIST); 

{ Returns a set consisting of the FIRST fields of all the items in POSNLIST. } 

BEGIN 
POSNSET : = []; 
WHILE POSNLIST <> NIL DO WITH POSNLIST- DO 

BEGIN 
POSNSET := POSNSET + [FIRST]; 

»> 
""0 
""0 
m 
Z 
o ..... 
X 

lH 

G') 
m 
z 
Cl) 

> 
r 
..... 
z 
~ 
m 
;0 
""0 
;0 
m 
~ 
m 
;0 



'"U 
I» 
IQ 
I'll 

N 
~ 
00 

2439 
2440 
2441 
2442 
2443 
2444 
2445 
2446 
2447 
2448 
2449 
2450 
2451 
2452 
2453 
2454 
2455 
2456 
2457 
2458 
2459 
2460 
2461 
2462 
2463 
2464 
2465 
2466 
2467 
2468 
2469 
2470 
2471 
2472 
2473 
2474 
2475 
2476 
2477 
2478 

POSNLIST := NEXT 
END 

END; 

PROCEDURE FINDSECOND(VAR POSNSET : INTEGSET; 
POSNLIST 
FIRSTPOSN 

: PDOUBLI ST ; 
ATOMNUMBER); 

{ Returns a set consisting of the SECOND fields of the items in POSNLIST 
that have FIRSTPOSN as FIRST field. } 

BEGIN 
POSNSET := []; 
WHILE POSNLIST <> NIL DO WITH POSNLIST A DO 

BEGIN 
IF FIRST = FIRSTPOSN THEN POSNSET := POSNSET + [SECOND]; 
POSNLIST := NEXT 

END 
END; 

PROCEDURE POSNCOMBINATION(AVAILPOSNS : INTEGSET; 
VAR COMBMEMS : PDOU8LIST); 

{ Analyses a position combination, checking the validity of each position, 
and inserting it into the front of the list headed by COMBMEMS. } 

VAR POSNPAIR PDOUBLIST; 

BEGIN 
NEW(POSNPAIR); 
ECTRSIZE := ECTRSIZE + 6; 
NEXTTOKEN; 
CHECKVALIDINT(AVAILPOSNS, ERRORCODE); 
POSNPAIRA.FIRST := TOKEN.INTEGVAL; 
NEXTTOKEN; 
WHILE CHECKDELIM([GSLASH]) <> GSLASH DO ERROR(33,0); 

> 
'"U 
'"U 
m 
Z 
o .... 
X 

lH 

c;') 
m 
Z 
(I) 

> 
r 
.... 
Z 
-t 
m 
;;0 

'"U 
;;0 
m 
-t 
m 
;;0 



"'0 
I» 
\0 
(\) 

N 
~ 
-0 

2479 
2480 
2481 
2482 
2483 
2484 
2485 
2486 
2487 
2488 
2489 
2490 
2491 
2492 
2493 
2494 
2495 
2496 
2497 
2498 
2499 
2500 
2501 
2502 
2503 
2504 
2505 
2506 
2507 
2508 
2509 
2510 
2511 
2512 
2513 
2514 
2515 
2516 
2517 
2518 

IF AVAILABLEPOSITIONS.COMBINED 
THEN FINDSECOND(AVAILPOSNS, AVAILABLEPOSITIONS.COMBMEMS, POSNPAIR-.FIRST) 
ELSE {leave AVAILPOSNS the same}i 

NEXTTOKENi 
CHECKVALIDINT(AVAILPOSNS, ERRORCODE); 
POSNPAIR-.SECOND := TOKEN.INTEGVAL; 
POSNPAIR-.NEXT := COMBMEMS; 
COMBMEMS := POSNPAIRi 
NEXTTOKENi 
WHILE CHECKDELIMC[GCOMMA, GRSQUARE]) = INVALIDTOKEN DO ERRORC24,0) 
END; 

BEGIN { Body of Procedure POSITIONSET } 
IF AVAILABLEPOSITIONS.COMBINED 

THEN FINDFIRSTCAVAILFIRST, AVAILABLEPOSITIONS.COMBMEMS) 
ELSE AVAILFIRST := AVAILABLEPOSITIONS.MEMBERSi 

LOOKAHEADi 
CHECKVALIDINTCAVAILFIRST, ERRORCODE); 
LOOKAHEADi 
CASE CONNECTIVITY OF 

> 
"'0 
"'0 
m z 
~ .... 
x 
V4 

NOTSET WHILE CHECKDELIMC[GSLASH, GCOMMA, GHYPHEN, GRSQUARE]) = INVALIDTOKEN DO ERRORC24,0); 
o PROGERROR(10)i {attempting to process position set for unconnected substituent} 
1 WHILE CHECKDELIMC[GCOMMA, GHYPHEN, GRSQUARE]) = INVALIDTOKEN DO 

2 

IF CHECKDELIM([GSLASH])=GSLASH THEN ERRORC34,0) 
ELSE ERRORC24,O); 

WHILE CHECKDELIMC[GSLASH]) <> GSLASH DO ERRORC33,O) 
ENDi 

IF TOKEN.DELIMVAL = GSLASH 
THEN BEGIN 

SETMEMS.COMBINED := TRUEi 
SETMEMS.COMBMEMS := NILi 
NEXTTOKEN; 
REPEAT POSNCOMBINATIONCAVAILFIRST, SETMEMS.COMBMEMS) 
UNTIL CHECKDELIMC[GRSQUARE]) = GRSQUARE 

END 
ELSE BEGIN 

NEXTTOKENi 
SETMEMS.COMBINED := FALSE; 

Cl 
m 
Z 
(I) 

> 
r 
.... 
z ...... 
m 
;0 

"'0 
;0 

m ...... 
m 
;0 



\J 
III 
(Q 
Cl) 

N 
V1 
o 

2519 
2520 
2521 
2522 
2523 
2524 
2525 
2526 
2527 
2528 
2529 
2530 
2531 
2532 
2533 
2534 
2535 
2536 
2537 
2538 
2539 
2540 
2541 
2542 
2543 
2544 
2545 
2546 
2547 
2548 
2549 
2550 
2551 
2552 
2553 
2554 
2555 
2556 
2557 
2558 

GROUPRANGE{SETMEMS.MEMBERS, AVAILFIRST, ERRORCODE) 
END; 

IF AVAILABLEPOSITIONS.COMBINED 
THEN BEGIN 

REDUCEECTR{AVAILABLEPOSITIONS.COMBMEMS); 
DESTROY (AVAILABLEPOSITIONS.COMBMEMS) 

END 
END; 

{ of Procedure POSITIONSET 
------------------------------------------------------------------------------} 

FUNCTION COPYLIST{COMBMEMS : PDOUBLIST) : PDOUBLIST; 

{ Makes a reversed copy of COMBMEMS 
Called by ALTNVLIST\MODIFYCHILDPOSITIONS\TRACEDOWNGATE 

ALTNVLIST\ELEMENT\SETCOMBARS\CHECKCOMBPOSNS 
ALTNVLIST\ELEMENT\GETLIMITPOSITIONS} 

VAR NEWLIST, 
NEWITEM : PDOUBLIST; 

BEGIN 
NEWLIST := NIL; 
WHILE COMBMEMS <> NIL DO WITH COMBMEMS A DO 

BEGIN 
NEW{NEWITEM); 
ECTRSIZE := ECTRSIZE + 6; 
NEWITEMA.FIRST := FIRST; 
NEWITEMA.SECOND := SECOND; 
NEWITEMA.NEXT := NEWLIST; 
NEWLIST := NEWITEM; 
COMBMEMS : = NEXT 

END; 
COPYLIST := NEWLIST 
END; 

> 
\J 
\J 
m z 
Cl' ..... 
X 

lIoI 

G) 

m 
z 
(I) 

> r-
..... 
z 
~ 
m 
;:0 

\J 
;:0 
m 
~ 
m 
;:0 



'"0 
AI 
IQ 
111 

N 
VI 
~ 

2559 
2560 
2561 
2562 
2563 
2564 
2565 
2566 
2567 
2568 
2569 
2570 
2571 
2572 
2573 
2574 
2575 
2576 
2577 
2578 
2579 
2580 
2581 
2582 
2583 
2584 
2585 
2586 
2587 
2588 
2589 
2590 
2591 
2592 
2593 
2594 
2595 
2596 
2597 
2598 

PROCEDURE REDUCE(VAR LIMITLIST : PDOUBLISTi 
COMPSET TGROUPMEMS)i 

{ Removes those items in LIMITLIST that do not appear in COMPSET 
Called by ALTNVLIST\MODIFYCHILDPOSITIONS\TRACEDOWNGATE 

ALTNVLIST\ELEMENT\TRANSLATENOMEN\MODIFYGATEPOSITIONS 
ALTNVLIST\ELEMENT\GETLIMITPOSITIONS} 

VAR LISTPTR, 
LASTPTR, 
COMPPTR PDOUBLISTi 
FOUND : BOOLEANi 

BEGIN 
LISTPTR := LIMITLISTi 
LASTPTR := NILi 
WHILE LISTPTR <> NIL DO 

BEGIN 
IF COMPSET.COMBINED 

THEN BEGIN 
FOUND := FALSEi 
COMPPTR := COMPSET.COMBMEMSi 
WHILE (COMPPTR <> NIL) AND NOT FOUND DO 

BEGIN 

> 
'"0 
'"0 
m 
z 
Q 
1-4 
X 

v.. 

FOUND := (COMPPTR-.FIRST=LISTPTR-.FIRST) 
COMPPTR := COMPPTR-.NEXT 

AND (COMPPTR-.SECOND=LISTPTR-.SECOND); 

END 
END 

ELSE FOUND := [LISTPTR-.FIRST, LISTPTR-.SECOND] <= COMPSET.MEMBERS; 

IF FOUND THEN BEGIN 
LASTPTR := LISTPTR; 
LISTPTR := LASTPTR-.NEXT 

END 
ELSE IF LASTPTR = NIL 

THEN BEGIN 
LIMITLIST := LISTPTR-.NEXTi 
DISPOSE(LISTPTR); 
ECTRSIZE := ECTRSIZE - 6; 
LISTPTR := LIMITLIST 

en 
m 
z 
tn 
> r-
1-4 
Z 
-t 
m 
;0 

'"0 
;0 
m 
-t 
m 
;0 



""0 
Q/ 
cc 
ID 

N 
VI 
N 

2599 
2600 
2601 
2602 
2603 
2604 
2605 
2606 
2607 
2608 
2609 
2610 
2611 
2612 
2613 
2614 
2615 
2616 
2617 
2618 
2619 
2620 
2621 
2622 
2623 
2624 
2625 
2626 
2627 
2628 
2629 
2630 
2631 
2632 
2633 
2634 
2635 
2636 
2637 
2638 

END 
ELSE BEGIN 

LASTPTRA.NEXT := LISTPTRA.NEXTi 
DISPOSE(LISTPTR); 
ECTRSIZE := ECTRSIZE - 6; 
LISTPTR := LASTPTRA.NEXT 

END 
END 

END; 

PROCEDURE CONCATENATETERMS(VAR GATEPS : PTRPSTYPE)i 

{ Sets up a PS of variety OTHER, and concatenates NOMENCLATURE tokens up to a 
maximum of TERMLENGTH chars into it. 
CaLLed from ELEMENT} 

VAR DELIMCHECK 
TERM END 
M, M2 

BEGIN 

: DELIMTYPEi 
BOOLEANi 
O •• TERMLENGTH; 

NEW(GATEPS, OTHER); 
ECTRSIZE := ECTRSIZE + 22; 
WITH GATEPS A DO 

BEGIN 
PSVARIETY := OTHER; 
VISITED := FALSE; 
CHILDGATE := NIL; 
PARENTGATE := NIL; 
FOR M := 1 TO TERMLENGTH DO TERM[M] := • • 

END; 
M := 0; 
NEXTTOKENi 
REPEAT 

DELIMCHECK := CHECKDELIM([GPRIME])i 
IF DELIMCHECK=INVALIDTOKEN 

THEN IF TOKEN. NATURE <> NOMENCLATURE 
THEN ERROR(25,0) 

> 
""0 
"'tI 
m 
z 
Q 

..... 
X 

VoI 

Gl 
m 
z 
(I) 

> 
r 
..... 
z 
~ 
m 
;;0 
"'tI 
;;0 
m 
~ 
m 
;;0 



'1J 
III 
IQ 
111 

N 
VI 
~ 

2639 
2640 
2641 
2642 
2643 
2644 
2645 
2646 
2647 
2648 
2649 
2650 
2651 
2652 
2653 
2654 
2655 
2656 
2657 
2658 
2659 
2660 
2661 
2662 
2663 
2664 
2665 
2666 
2667 
2668 
2669 
2670 
2671 
2672 
2673 
2674 
2675 
2676 
2677 
2678 

ELSE BEGIN 
TERMEND := M = TERMLENGTH; 
M2 := 0; 
WHILE NOT TERMEND DO 

BEGIN 
M := M + 1; 
M2 : = M2 + 1; 
GATEPSA.TERM[MJ := TOKEN.NOMENVAL[M2J; 
TERMEND := CM=TERMLENGTH) OR CTOKEN.NOMENVAL[M2J=' ') 

END; 
NEXTTOKEN 

END 
UNTIL DELIMCHECK=GPRIME 
END; 

FUNCTION RECORDHELDCTERM : STRING32i 
VAR ADDRESS : INTEGER) : BOOLEANi 

{ Determines whether or not a record ;s held for TERM. Requests synonyms 
for the term (using TERMREAD) if initially unsuccessful. 
The search is abandoned if a record is found, or if TERMREAD returns 
FALSE. 
Called by ELEMENT\TRANSLATENOMEN} 

VAR STILLLOOKING, 
SYNONYMREAD BOOLEANi 

BEGIN 
SYNONYMREAD := FALSEi 
REPEAT 

STILLLOOKING := NORECORDCTERM, ADDRESS)i 
RECORDHELD := NOT STILLLOOKING; 
IF STILLLOOKING 

THEN BEGIN 
WRITEC'No record held for "'); 
PRINTNOM(TERM); 
WRITELN('".')i 
STILLLOOKING := FALSE; 

> 
'1J 

" ITI 
Z 
o 
t-t 
X 

VoI 

Cl 
ITI 
Z 
VI 
> r 
t-t 
Z 
-t 
ITI 
;00 

" ;00 
ITI 
-t 
ITI 
;00 



"'0 
III 
10 
CD 

N 
V1 
~ 

2679 
2680 
2681 
2682 
2683 
2684 
2685 
2686 
2687 
2688 
2689 
2690 
2691 
2692 
2693 
2694 
2695 
2696 
2697 
2698 
2699 
2700 
2701 
2702 
2703 
2704 
2705 
2706 
2707 
2708 
2709 
2710 
2711 
2712 
2713 
2714 
2715 
2716 
2717 
2718 

CASE INPUTMODE OF 
TERMINAL : BEGIN 

WRITE('Enter synonym or <CR>: > I); 
STILLLOOKING := TERMREAD(TERM); 
SYNONYMREAD := STILLLOOKING 

END; 
STOREDGENSAL : ; 
INSERTTEXT : WRITELN('(Term in inserted Gensal expression)') 

END 
END 

ELSE IF SYNONYMREAD 
THEN BEGIN 

WRITE('Record found for "I); 
PRINTNOM(TERM); 
WRITELNC'".'); 

END 
UNTIL NOT STILLLOOKING 
END; 

FUNCTION DEFNTABLEENTRY(PARSTRUCT : PTRPSTYPE) : BOOLEAN; 

{ Returns TRUE if PARSTRUCT is NIL or has no PARENTGATE (provided it is not 
INTERNALREP.CONSTANTPART). Since the parameter passed is the PARSTRUCT 
field of a PARALTLIST element, this indicates whether or not it is in the 
chain of structures pointed at by RDEFINITIONTABLE. 
Called by ELEMENT\SETCOMBARS 

BEGIN 

ELEMENT\SUBSTASVALUE 
ADDFURTHERSUBTN} 

IF PARSTRUCT = NIL 
THEN DEFNTABLEENTRY := TRUE 
ELSE IF PARSTRUCT-.PARENTGATE = NIL 

END; 

THEN DEFNTABLEENTRY := PARSTRUCT <> INTERNALREP.CONSTANTPART 
ELSE DEFNTABLEENTRY := FALSE 

> 
"'0 
"'0 
m 
Z 
o 
I-t 
X 

VI 

G) 
m 
z 
(I) 

> 
r 
I-t 
Z 
-t 
m 
;:0 

"'0 
;:0 
m 
-t 
m 
;:0 



"'0 
QI 

1.0 
111 

N 
VI 
VI 

2719 
2720 
2721 
2722 
2723 
2724 
2725 
2726 
2727 
2728 
2729 
2730 
2731 
2732 
2733 
2734 
2735 
2736 
2737 
2738 
2739 
2740 
2741 
2742 
2743 
2744 
2745 
2746 
2747 
2748 
2749 
2750 
2751 
2752 
2753 
2754 
2755 
2756 
2757 
2758 

PROCEDURE FINDPOSITIONSCPTRPS : PTRPSTYPE; 
VAR AVAIlPOSNS : INTEGSET; 
BONDMAG : TBONDMAG); 

{ Returns the positions in PTRPS- which are substitutable by a bond of 
magnitude BONDMAG 
Called by GETCHIlDPOSITIONS 

MODIFYCHIlDPOSITIONS\GETCOMBPOSNS} 

VAR ROWNO : ATOMNUMBER; 

BEGIN 
WITH PTRPS­

DUMMY, 
UNKNOWN, 

DO CASE PSVARIETY OF 

OTHER : AVAIlPOSNS := [1 •• MAXCTJ; 
GENERIC : AVAIlPOSNS := [1]; 
SPECIFIC : BEGIN 

END 
END; 

AVAIlPOSNS := [l; 
FOR ROWNO := 1 TO MAXCT DO IF CT[ROWNOJ <> NIL 

THEN IF CT[ROWNO]-.HYDROGENS >= BONDMAG 
THEN AVAIlPOSNS := AVAILPOSNS + [ROWNOJ 

END 

{ •........••.•............•.••.....••....•.•..••...............••...........•.• } 
PROCEDURE GETCHIlDPOSITIONSCPTRPS : PTRPSTYPE; 

VAR CONNBONDS : TCONNBONDS; 
VAR CHIlDPOSITIONS : TGROUPMEMS); 

{ Makes initial determination of CHILDPOSITIONS for PTRPS Cwhich points to a 
Child PS), also modifying CONNBONDS as necessary. The CHIlDPOSITIONS field 
may be further modified by a post substituent value position set. 
Called by ElEMENT\SETCOMBARS 

ElEMENT\SUBSTASVAlUE} 

" »> 
"'0 
"'0 
m z 
o 
1-4 
X 

VI 

(i) 
m 
z 
(I) 

»> 
r 
1-4 
Z 
-t 
m 
;:0 

"'0 
;:0 
m 
-t 
m 
;:0 



." 
QI 

c.o 
(1) 

N 
VI 
0-

2759 
2760 
2761 
2762 
2763 
2764 
2765 
2766 
2767 
2768 
2769 
2770 
2771 
2772 
2773 
2774 
2775 
2776 
2777 
2778 
2779 
2780 
2781 
2782 
2783 
2784 
2785 
2786 
2787 
2788 
2789 
2790 
2791 
2792 
2793 
2794 
2795 
2796 
2797 
2798 

VAR POSNA, 
POSNB : ATOMNUMBERi 
POSNSETA, 
POSNSETB, 
POSNSETC : INTEGSET; 
MAGSUM : INTEGERi 
NUMMARKERS TCONNSi 
BONDA, 
BONDB BONDORDER; 
FAILSTRING STRING4i 

FUNCTION BONDCHECK(PARENTBOND, 
CHILDBOND : BONDORDER) : BONDORDERi 

{ Checks compatability of the two bonds, ejecting user to the editor if the 
bonds are found to be incompatible. The global variable BONDMATCHARRAY is 
used to check the compatibility. 
Called from THISWAYROUND 

Body of GETCHILDPOSITIONS} 

VAR NEWBOND : BONDORDERi 
FAILDATA : STRING4; 

BEGIN 
NEWBOND := BONDMATCHARRAY[PARENTBOND, CHILDBONDJi 
IF NEWBOND = NOTSPECIFIED 

THEN BEGIN 
FAILDATA[1J := BONDSTRING[PARENTBOND,1Ji 
FAILDATA[2J := BONDSTRING[PARENTBOND,2Ji 
FAILDATA[3J := BONDSTRING[CHILDBOND, 1J; 
FAILDATA[4J := BONDSTRING[CHILDBOND, 2Ji 
FAILURE(42, 0, FAILDATA) 

END 
ELSE BONDCHECK := NEWBOND 

END; 

> 
." 
." 
m 
z 
Q 

I-f 
x 
VoI .. 

Ci) 
m 
z 
Cl) 

> 
r 
I-f 
Z 
-t 
m 
:;0 

-0 
:;0 
m 
-t 
m 
:;0 



"'0 
III 

CO 
~ 

N 
V1 

"" 

2799 
2800 
2801 
2802 
2803 
2804 
2805 
2806 
2807 
2808 
2809 
2810 
2811 
2812 
2813 
2814 
2815 
2816 
2817 
2818 
2819 
2820 
2821 
2822 
2823 
2824 
2825 
2826 
2827 
2828 
2829 
2830 
2831 
2832 
2833 
2834 
2835 
2836 
2837 
2838 

PROCEDURE GETMARKEDPOSNS(CT : CTTYPE; 
VAR POSNA, 

POSNB : ATOMNUMBERi 
VAR BONDA, 

BONDB : BONDORDER)i 

{ Returns those positions in CT which have PARENTAL bonds, with their bond 
orders. On entry the parameters are NPTFIXED or NOTSPECIFIED. PROCESSCT 
will only have permitted a maximum of two marked positions.} 

VAR ROWNO : ATOMNUMBERi 
CNGNR : 1 •• MAXCONGENERSi 

BEGIN 
FOR ROWNO := 1 TO MAXCT DO IF CT[ROWNO] <> NIL 

THEN FOR CNGNR := 1 TO MAXCONGENERS DO 

END; 

WITH CT[ROWNO]A.CONGENERS[CNGNR] DO 
IF RELATIONSHIP = PARENTAL 

THEN IF POSNA = NOTFIXED 
THEN BEGIN 

POSNA := ROWNOi 
BONDA := BOND 

END 
ELSE BEGIN 

POSNB := ROWNOi 
BONDB : = BOND 

END 

FUNCTION HYDROGENPS(PTRPS PTRPSTYPE): BOOLEANi 

{ Returns TRUE if PTRPS represents hydrogen (i.e. has no non-hydrogen atoms).} 

VAR ROWNO : ATOMNUMBERi 

BEGIN 
IF PTRPSA.PSVARIETY = SPECIFIC 

THEN BEGIN 

» 
"'0 
"'0 
m 
z 
Cl 
t-4 
>< 
lH 

Ci1 
m 
z 
(I) 

» 
r 
t-4 
Z 
-t 
m 
;;a 
"'0 
;;a 
m 
-t 
m 
;;a 



2839 
2840 
2841 
2842 
2843 
2844 
2845 
2846 
2847 
2848 
2849 
2850 
2851 
2852 
2853 
2854 

" 2855 
AI 

2856 IQ 
III 

2857 
N 

2858 V1 
00 

2859 
2860 
2861 
2862 

2863 

2864 
2865 
2866 
2867 
2868 
2869 
2870 
2871 
2872 
2873 
2874 
2875 
2876 

HYDROGENPS := TRUE; 
FOR ROWNO := 1 TO MAXCT DO 

IF PTRPS-.CT[ROWNO] <> NIL THEN HYDROGENPS := FALSE 
END 

ELSE HYDROGENPS := FALSE 
END; 

FUNCTION THISWAYROUND(PARENTA, 
CHILDA, 
PARENTB, 
CHILDB : BONDORDER) : BOOLEAN; 

{ Determines whether or not the bonds in a doubly-connected child need to be 
reversed for compatability with the parent. If either way will do, the way 
given is prefered unless the other way round matches identical (as opposed 
to merely compatible) bonds. } 

VAR FITSTHISWAY, 
FITSOTHERWAY BOOLEAN; 

BEGIN 

> 
" " rn 
z 
Cl' 
I-t 
X 

lA 

FITSTHISWAY := (BONDMATCHARRAY[PARENTA,CHILDA] <> NOTSPECIFIED) AND (BONDMATCHARRAY[PARENTB,CHILDB) <> NOT 
PECIFIED); 
FITSOTHERWAY := (BONDMATCHARRAY[PARENTA,CHILDBJ <> NOTSPECIFIED) AND 
SPECIFIED); 

CBONDMATCHARRAY[PARENTB,CHILDAJ 

IF FITSTHISWAY 
THEN IF FITSOTHERWAY 

THEN THISWAYROUND := NOT C(PARENTA = CHILDB) AND (PARENTB = CHILDA» 
ELSE THISWAYROUND := TRUE 

ELSE IF FITSOTHERWAY 

END; 

THEN THISWAYROUND := FALSE 
ELSE {Bond match failure - use BONDCHECK to give error message} 

IF BONDMATCHARRAY[PARENTA, CHILDA] = NOTSPECIFIED 
THEN PARENTA := BONDCHECK(PARENTA, CHILOA) 
ELSE PARENTS := BONDCHECKCPARENTB, CHILDB) 

G) 
rn 
z 
tn 
> 
r-
I-t 
Z 
-i 
rn 
;:0 

" ;:0 
rn 
-i 
rn 
;:0 

<> NO' 



"'tI 
Q/ 
10 
CD 

N 
VI 
-0 

2877 
2878 
2879 
2880 
2881 
2882 
2883 
2884 
2885 
2886 
2887 
2888 
2889 
2890 
2891 
2892 
2893 
2894 
2895 
2896 
2897 
2898 
2899 
2900 
2901 
2902 
2903 
2904 
2905 
2906 
2907 
2908 
2909 
2910 
2911 
2912 
2913 
2914 
2915 
2916 

PROCEDURE FINDNONAPICPOSNS(CPARAM : INTRECORD; 
VAR POSNSET : INTEGSET); 

{ Returns a position set containing the possible "right-hand end" terminal 
positions in a GENERIC PS, based on the possible values for the ATOMCOUNT 
parameter, passed as CPARAM. } 

VAR PTR PDOUBLIST; 

BEGIN 
POSNSET : = []; 
PTR := CPARAM.SUBRANGES; 
WHILE PTR <> NIL DO WITH PTR- DO 

BEGIN 
IF SECOND <= MAXCT 

THEN POSNSET := POSNSET + [FIRST •• SECONDJ 
ELSE IF FIRST <= MAXCT 

THEN POSNSET := POSNSET + [FIRST •• MAXCTJ; 
PTR := NEXT 

END; 
IF CPARAM.TOPRANGE <> NOTSET 

THEN POSNSET := POSNSET + [CPARAM.TOPRANGE •• MAXCTJ 
. END; 

BEGIN {Body of GETCHILDPOSITIONS} 
POSNA := NOTFIXEDi 
POSNB := NOTFIXED; 
BONDA := NOTSPECIFIED; 
BONDB := NOTSPECIFIED; 
IF PTRPS-.PSVARIETY = SPECIFIC 

THEN BEGIN 
GETMARKEDPOSNS(PTRPS-.CT, POSNA, POSNB, BONDA, BONDS); 
NUMMARKERS := ORD(POSNA<>NOTFIXED) + ORD(POSNB<>NOTFIXED) 

END 
ELSE NUMMARKERS := 0; 

CASE CONNBONDS.CONNECTIONS OF 
NOTSET : CASE NUMMARKERS OF 

;,. 
"'tI 
"'tI 
m 
Z 
Cl ..... 
X 

VI 

en 
m 
Z 
(I) 

> 
r 
..... 
Z 
-i 
m 
AJ 
"'tI 
AJ 
m 
-i 
m 
;;Q 



-0 
QI 
IQ 
Cl) 

N 
0-
o 

2917 
2918 
2919 
2920 
2921 
2922 
2923 
2924 
2925 
2926 
2927 
2928 
2929 
2930 
2931 
2932 
2933 
2934 
2935 
2936 
2937 

- 2938 
2939 
2940 
2941 
2942 
2943 
2944 
2945 
2946 
2947 
2948 
2949 
2950 
2951 
2952 
2953 
2954 
2955 
2956 

o 

1 

2 : BEGIN 
CONNBONDS.CONNECTIONS := 2; 
CONNBONDS.BONDA := BONDCHECK(CONNBONDS.BONDA, NOTSPECIFIED); 
CONNBONDS.BONDB := BONDCHECK(CONNBONDS.BONDB, NOTSPECIFIED); 
CHILDPOSITIONS.COMBINED := TRUE; 
CHILDPOSITIONS.COMBMEMS := NIL; 
LISTPOSNS(CHILDPOSITIONS.COMBMEMS, [POSNAJ, [POSNBJ, [POSNA, POSNBJ); 
IF (BONDA=BONDB) OR (BONDMATCHARRAY[BONDA,BONDBJ IN [ANY, CHAIN, RING]) 

THEN LISTPOSNS{CHILDPOSITIONS.COMBMEMS, [POSNBJ, [POSNAJ, []) 
END; 

1 BEGIN 
CONNBONDS.CONNECTIONS := 1; 
CONNBONDS.BOND := BONDA; 
CHILDPOSITIONS.COMBINED := FALSE; 
CHILDPOSITIONS.MEMBERS := [POSNAJ 

END; 
o BEGIN 

END; 
: BEGIN 

CONNBONDS.CONNECTIONS := 1; {assumption} 
CONNBONDS.BOND := CHAISING; {assumption} 
CHILDPOSITIONS.COMBINED := FALSE; 
FINDPOSITIONS(PTRPS, CHILDPOSITIONS.MEMBERS, 1) 

END 

CHILDPOSITIONS.COMBINED := FALSE; 
CHILDPOSITIONS.MEMBERS := [J 

END; 
: BEGIN 

CHILDPOSITIONS.COMBINED := FALSE; 
CASE NUMMARKERS OF 
2 : FAILURE(44, 0,· .); 
1 : BEGIN 

CHILDPOSITIONS.MEMBERS := [POSNAJ; 
CONNBONDS.BOND := BONDCHECK(CONNBONDS.BOND, BONDA); 

END; 
o BEGIN 

END 

FINDPOSITIONS(PTRPS, CHILDPOSITIONS.MEMBERS, MAGNITUDE{CONNBONDS.BOND»; 
CONNBONDS.BOND := BONDCHECKCCONNBONDS.BOND, NOTSPECIFIED) 

END 

):0 

-0 
-0 
m z 
o .... 
x 
~ 

~ 
m 
z 
(I) 
):0 

r 
.... 
z ...... 
m 
;;0 

-0 
;;0 

m 
...... 
m 
;;0 



2957 
2958 2 . . 
2959 
2960 
2961 
2962 
2963 
2964 
2965 
2966 
2967 
2968 
2969 
2970 
2971 
2972 

-0 2973 
III 2974 IQ 
CD 2975 
N 2976 0-.... 2977 

2978 
2979 
2980 
2981 
2982 
2983 
2984 
2985 
2986 
2987 
2988 
2989 
2990 
2991 
2992 
2993 
2994 
2995 
2996 

END; 
BEGIN 

CHILDPOSITIONS.COMBINED := TRUE; 
CHILDPOSITIONS.COMBMEMS := NIL; 
CASE NUMMARKERS OF 

> 
-0 
-0 
m z 
Cl 
~ 

X 

o : BEGIN 
FINDPOSITIONS(PTRPS, POSNSETA, MAGNITUDE(CONNBONDS.BONDA»; 
IF PTRPSA.PSVARIETY = GENERIC 

THEN FINDNONAPICPOSNS(PTRPSA.PARAMLIST[ATOMCOUNT], POSNSETB) 
ELSE FINDPOSITIONS(PTRPS, POSNSETB, MAGNITUDE(CONNBONDS.BONDB»; 

WITH CONNBONDS DO MAGSUM := MAGNITUDE(BONDA)+MAGNITUDE(BONDB); 
IF (MAGSUM <= 3) AND (POSNSETA * POSNSETB <> C]) 

THEN FINDPOSITIONS(PTRPS, POSNSETC, MAGSUM) 
ELSE POSNSETC := []; 

POSNSETC := POSNSETA * POSNSETB * POSNSETC; 
LISTPOSNS(CHILDPOSITIONS.COMBMEMS, POSNSETA, POSNSETB, POSNSETC); 
CONNBONDS.BONDA := BONDCHECK(CONNBONDS.BONDA, BONDA); 
CONNBONDS.BONDB := BONDCHECK(CONNBONDS.BONDB, BONDB) 

END; 
1 : BEGIN 

FINDPOSITIONS(PTRPS, POSNSETB, MAGNITUDE(CONNBONDS.BONDB»; 
POSNSETA := [POSNA]; 
WITH CONNBONDS DO MAGSUM := MAGNITUDE(BONDA)+MAGNITUDE(BONDB); 
IF (MAGSUM <= 3) AND (POSNSETA * POSNSETB <> C]) 

THEN FINDPOSITIONS(PTRPS, POSNSETC, MAGSUM) 
ELSE POSNSETC := C]; 

VI 

POSNSETC := POSNSETA * POSNSETB * POSNSETC; ~ 
IF THISWAYROUND(CONNBONDS.BONDA, BONDA, CONNBONDS.BONDB, BONDB) ~ 

~ THEN BEGIN > 
LISTPOSNS(CHILDPOSITIONS.COMBMEMS, POSNSETA, POSNSETB, POSNSETC); r 

~ 

IF BONDMATCHARRAYCCONNBONDS.BONDB, BONDA] <> NOTSPECIFIED ~ 
THEN LISTPOSNS(CHILDPOSITIONS.COMBMEMS, POSNSETB, POSNSETA, C])~ 

CONNBONDS.BONDA := BONDCHECK(CONNBONDS.BONDA, BONDA); ~ 
CONNBONDS.BONDB := BONDCHECK(CONNBONDS.BONDB, BONDB) ~ 

END ~ 
ELSE BEGIN 

LISTPOSNS(CHILDPOSITIONS.COMBMEMS, POSNSETB, POSNSETA, POSNSETC); 
CONNBONDS.BONDA := BONDCHECK(CONNBONDS.BONDA, BONDB); 

CONNBONDS.BONDB := BONDCHECK(CONNBONDS.BONDB, BONDA) 



" Q/ 
cc 
I'D 

N 
0-
N 

2997 
2998 
2999 
3000 
3001 
3002 
3003 
3004 
3005 
3006 
3007 
3008 
3009 
3010 
3011 
3012 
3013 
3014 
3015 
3016 
3017 
3018 
3019 
3020 
3021 
3022 
3023 
3024 
3025 
3026 
3027 
3028 
3029 
3030 
3031 
3032 
3033 
3034 
3035 
3036 

END 
END" , . 

2 : IF THISWAYROUND(CONNBONDS.BONDA, BONDA, CONNBONDS.BONDB, BONDB) I > 
THEN BEGIN ~ 

LISTPOSNS(CHILDPOSITIONS.COMBMEMS, [POSNAJ, [POSNB], [POSNA, POSNBJ~ 
IF (BONDA=80NDB) OR CBONDMATCHARRAY[BONDA,BONDB] IN [ANY, CHAIN, RI~]) 

THEN BEGIN x 

END 

CONNBONDS.BONDA := BONDCHECK(CONNBONDS.BONDA, BONDCHECK(BO~~A,BONDB»; 
CONNBONDS.BONDB := BONDCHECKCCONNBONDS.BONDB, BONDCHECKCBONDA,BONDB»; 
LISTPOSNSCCHILDPOSITIONS.COMBMEMS, [POSN8], [POSNA], []) 

END 
ELSE BEGIN 

CONNBONDS.BONDA := BONDCHECKCCONNBONDS.BONDA, BONDA); 
CONNBONDS.BONDB := BONDCHECKCCONNBONDS.BONDB, BONDB) 

END 

ELSE BEGIN 
LISTPOSNS(CHILDPOSITIONS.COMBMEMS, [POSNB], [POSNA], [POSNA,POSNB]); 
CONNBONDS.BONDA := BONDCHECK(CONNBONDS.BONDA, BONDS); 
CONNBONDS.BONDB := BONDCHECK(CONNBONDS.BONDB, BONDA) 

END 
END {CASE} 

END 
END; {CASE} 

IF CHILDPOSITIONS.COMBINED 
THEN IF CHILDPOSITIONS.COMBMEMS = NIL 

THEN BEGIN 
FAILSTRING[1] := BONDSTRING[CONNBONDS.BONDA, 1]; 
FAILSTRING[2J := BONDSTRING[CONNBONDS.BONDA, 2]; 
FAILSTRING[3] := BONDSTRING[CONNBONDS.BONDB, 1J; 
FAILSTRING[4J := BONDSTRING[CONNBONDS.BONDB, 2]; 
FAILURE(S2, 0, FAILSTRING) 

END 
ELSE IF (CHILDPOSITIONS.MEMBERS = []) AND NOT HYDROGENPS(PTRPS) 

THEN BEGIN 
FAILSTRING[1J := BONDSTRING[CONNBONDS.BOND, 1]; 
FAILSTRING[2J := BONDSTRING[CONNBONDS.BOND, 2]; 
FAILSTRING[3J := , '; 
FAILSTRING[4J := , '; 
FAILURE(43, 0, FAILSTRING) 

Gl 
m 
z 
(I) 

> 
r 
.... 
Z 
-t 
m 
;0 

" ;0 
m 
-t 
m 
;0 



"0 
I» 
IQ 
(1) 

N 
0-
I.H 

3037 
3038 
3039 
3040 
3041 
3042 
3043 
3044 
3045 
3046 
3047 
3048 
3049 
3050 
3051 
3052 
3053 
3054 
3055 
3056 
3057 
3058 
3059 
3060 
3061 
3062 
3063 
3064 
3065 
3066 
3067 
3068 
3069 
3070 
3071 
3072 
3073 
3074 
3075 
3076 

END 
END; {of GETCHILDPOSITIONS 
......•......•.....................•••..............•...•...•.......•••.•...••• } 

{------------------------------------------------------------------------------} 
PROCEDURE MODIFYCHILDPOSITIONS(PARALTLIST : PPALTBARS)i 

{ This procedure modifies the CHILDPOSITIONS fields of the bottom bars of the 
childgates, and also those of the parentgates, in accordance with the values 
given in the post substituent value position set. 
Called from ELEMENT} 

TYPE PGBLIST = -TBGLISTi 
TBGLIST = RECORD 

GBOTTOM : PCOMBINLIST; 
NEXT PG8LIST 

END; 

VAR PTR, 
GATEBOTTOMS : PGBLIST; 
PG : PPARENTLISTi 
CHILDGATEPOSITIONS, 
LIMITPOSITIONS : TGROUPMEMS; 
LIMITINITIALISED BOOLEANi 
CONNECTIVITY : TCONNS; 

PROCEDURE GETCOMBPOSNS(CHILDPS 
POSNSA 
VAR COMBAVAILPOSNS 

: PTRPSTYPEi 
INTEGSET; 

: TGROUPMEMS); 

{ Returns COMBAVAILPOSNS with a COMBINED position set of all possible position 
pairs in CHILDPS having members of POSNSA as their first member.} 

VAR POSNSB, 
POSNSC : INTEGSETi 

> 
"0 
"0 
m z 
a 
~ 

x 
I.H 

(i) 
m 
z 
(I) 

> r 
~ 

Z 
-t 
m 
;;g 
"0 
;;g 
m 
-t 
m 
;;g 



"'0 
QI 
IQ 
III 

N 
0-
-'='" 

3077 
3078 
3079 
3080 
3081 
3082 
3083 
3084 
3085 
3086 
3087 
3088 
3089 
3090 
3091 
3092 
3093 
3094 
3095 
3096 
3097 
3098 
3099 
3100 
3101 
3102 
3103 
3104 
3105 
3106 
3107 
3108 
3109 
3110 
3111 
3112 
3113 
3114 
3115 
3116 

BEGIN 
FINDPOSITIONS(CHILDPS, POSNSB, 1); 
FINDPOSITIONS(CHILDPS, POSNSC, 2); 
COMBAVAILPOSNS.COMBINED := TRUE; 
COMBAVAILPOSNS.COMBMEMS := NIL; 
LISTPOSNS(COMBAVAILPOSNS.COMBMEMS, POSNSA, POSNSB, POSNSC) 
END; 

PROCEDURE TRACEDOWNGATECCOMBINBAR : PCOMBINLISTi 
CONNSFIXED : BOOLEAN); 

{ Traces down a child gate, adding the BOTTOMBARs to the GATEBOTTOMS list. 
LIMITPOSITIONS (in MODIFYCHILDPOSITIONS) is also initialised or updated 
appropriately. If CONNSFIXED is FALSE, then the connectivity of 1 recorded 
in COMBINBARA.CONNBONDS is only an assumption, and could be modified by the 
position set about to be read. Therefore LIMITPOSITIONS must be COMBINED, 
GETCOMBPOSNS identifying all the possible second positions for the first 
positions identified by GETCHILDPOSITIONS. } 

VAR NEWGB 
ALTERNBAR 
SUBCB 
COMBAVAILPOSNS 

PGBLIST; 
PALTERNLIST; 

: PCOMBINLIST; 
: TGROUPMEMS; 

BEGIN 
IF COMBINBARA.BOTTOMBAR 

THEN BEGIN 
NEWCNEWGB); 
NEWGBA.NEXT := GATEBOTTOMSi 
NEWGBA.GBOTTOM := COMBINBAR; 
GATEBOTTOMS := NEWG8; 
WITH COMBINBAR- DO IF LIMIT INITIALISED 

THEN IF LIMITPOSITIONS.COMBINED 
THEN IF CHILDPOSITIONS.COMBINED 

THEN REDUCECLIMITPOSITIONS.COMBMEMS, CHILDPOSITIONS) 
ELSE IF CONNSFIXED 

THEN PROGERROR(11) {mismatched combined fields} 
ELSE BEGIN 

> 
"'0 
"'0 
m 
z 
o .... 
x 
VI 

Cl 
m 
z 
(I) 

> r 
.... 
z 
~ 
m 
;0 
"'0 
;0 
m 
~ 
m 
;0 



"'0 
QI 
10 
I'D 

N 
0-
VI 

3117 
3118 
3119 
3120 
3121 
3122 
3123 
3124 
3125 
3126 
3127 
3128 
3129 
3130 
3131 
3132 
3133 
3134 
3135 
3136 
3137 
3138 
3139 
3140 
3141 
3142 
3143 
3144 
3145 
3146 
3147 
3148 
3149 
3150 
3151 
3152 
3153 
3154 
3155 
3156 

GETCOMBPOSNS(CHILDPS, CHILDPOSITIONS.MEMBERS, COMBAVAILPOSNS); 
REDUCE(LIMITPOSITIONS.COMBMEMS, COMBAVAILPOSNS); 

ELSE IF 

REDUCEECTR(COMBAVAILPOSNS.COMBMEMS); 
DESTROY (COMBAVAILPOSNS.COMBMEMS) 

END 
CHILDPOSITIONS.COMBINED 
THEN PROGERROR(12) {mismatched combined fields} 

» 

" "'0 
m 
z 
~ 
~ 

>< 
ELSE LIMITPOSITIONS.MEMBERS := LIMITPOSITIONS.MEM8ERS * CHILDPOStJIONS.MEMBERS 

ELSE BEGIN 
IF CHILDPOSITIONS.COMBINED 

THEN BEGIN 
LIMITPOSITIONS.COM8INED := TRUE; 
LIMITPOSITIONS.COMBMEMS := COPYLIST(CHILDPOSITIONS.COMBMEMS) 

END 
ELSE IF CONNSFIXED 

THEN LIMITPOSITIONS := CHILDPOSITIONS 
ELSE GETCOMBPOSNS(CHILDPS, CHILDPOSITIONS.MEMBERS, LIMITPOSITIONS); 

LIMITINITIALISED := TRUE 
END 

END 
ELSE BEGIN 

END; 

ALTERNBAR := COMBINBARA.ALTERNATIVES; 
WHILE ALTERNBAR <> NIL DO 

END 

BEGIN 
SUBCB := ALTERNBARA.COMBINATION; 
WHILE SU8CB <> NIL DO 

BEGIN 
TRACEDOWNGATE(ALTERNBARA.COMBINATION, CONNSFIXED); 
SUBCB := SUBCBA.NEXT 

END; 
ALTERNBAR := ALTERNBARA.NEXT 

END 

Cl 
m 
z 
(I) 

» 
r 
~ 

Z 
-i 
m 
;:0 
"'0 
;:0 
m 
-i 
m 
;:0 

PROCEDURE ALTERCONN80NDS(VAR CONNBONDS : TCONNBONDS); 

{ Adds a second bond to CONNBONDS, changing CONNECTIONS to 2 } 



-v 
III 
IQ 
ID 

N 
0-
0. 

3157 
3158 
3159 
3160 
3161 
3162 
3163 
3164 
3165 
3166 
3167 
3168 
3169 
3170 
3171 
3172 
3173 
3174 
3175 
3176 
3177 
3178 
3179 
3180 
3181 
3182 
3183 
3184 
3185 
3186 
3187 
3188 
3189 
3190 
3191 
3192 
3193 
3194 
3195 
3196 

VAR NEWCONNBONDS : TCONNBONDS; 

BEGIN 
WITH NEWCONNBONDS DO 

BEGIN 
CONNECTIONS := 2; 
BONDA := CONNBONDS.BOND; 
BONDB := CHAISING 

END; 
CONNBONDS := NEWCONNBONDS 
END; 

BEGIN {Body of MODIFYCHILDPOSITIONS} 
LIMITINITIALISED := FALSE; 
CONNECTIVITY := PARALTLIST-.CONNBONDS.CONNECTIONS; 
GATEBOTTOMS := NIL; 
WHILE PARALTLIST <> NIL DO WITH PARALTLIST- DO 

BEGIN 
IF ALTBAR = NIL 

THEN TRACEDOWNGATE(PARSTRUCT-.CHILDGATE, (CONNECTIVITY<>NOTSET» 
ELSE TRACEDOWNGATE(ALTBAR-.COMBINATION, (CONNECTIVITY<>NOTSET»; 

PARALTLIST := NEXT 
END; 

POSITIONSET(CHILDGATEPOSITIONS, LIMITPOSITIONS, CONNECTIVITY, 6); 
WHILE GATEBOTTOMS <> NIL DO 

BEGIN 
WITH GATEBOTTOMS-.GBOTTOM- DO 

BEGIN 
CHILDPOSITIONS := CHILDGATEPOSITIONS; 
IF CHILDPOSITIONS.COMBINED AND (CONNBONDS.CONNECTIONS = 1) 

THEN ALTERCONNBONDS(CONN90NDS); 
PG:= CHILDPS-.PARENTGATE 

END; 
WHILE PG <> NIL DO WITH PGA DO 

BEGIN 
CHILDPOSITIONS := CHILDGATEPOSITIONS; 

> 
-v 
-v 
m z 
a 
I-t 
x 
VI 

Ci) 
m 
z 
(I) 

> r 
I-t 
Z 
-t 
m 
:;0 
-v 
:;0 
m 
-t 
m 
:;0 



""0 
III 
IQ 
Cl) 

N 
0-
...... 

3197 
3198 
3199 
3200 
3201 
3202 
3203 
3204 
3205 
3206 
3207 
3208 
3209 
3210 
3211 
3212 
3213 
3214 
3215 
3216 
3217 
3218 
3219 
3220 
3221 
3222 
3223 
3224 
3225 
3226 
3227 
3228 
3229 
3230 
3231 
3232 
3233 
3234 
3235 
3236 

IF CHILDPOSITIONS.COMBINED AND (CONNBONDS.CONNECTIONS=1) 
THEN ALTERCONNBONDS(CONNBONDS); 

PG := NEXT 
END; 

PTR := GATEBOTTOMSA.NEXT; 
DISPOSE (GATEBOTTOMS); 
GATEBOTTOMS := PTR 

END; 
NEXTTOKEN 
END; { of MODIFYCHILDPOSITIONS 
-------------------------------------------------------------------------------} 

{-------------------------------------------------------------------------------
PROCEDURE ELEMENT } 

PROCEDURE ELEMENT(PARALTLIST 
OPTIONALSUB 

PPALTBARS; 
BOOLEAN); 

{ Analyses a substituent definition element, building up the ECTR. 
Called by ALTNTVE} 

VAR OPENERS, 
TERMINATORS : DELIMSET; 
VALID BOOLEAN; 
DELIMCHECK DELIMTYPE; 
LIMITPOSITIONS : TGROUPMEMS; 
GATEPARENTPOSITIONS : PTGROUPMEMS; 
GATE FREQUENCY INTRECORD; 
GATEPS PTRPSTYPE; 

{Valid tokens to begin an element} 
{Valid tokens to end an element} 

{Position set for inclusion in the gate} 
{Frequencies for inclusion in the gate} 
{The child partial structure} 

PROCEDURE SETPARENTGATECCOMBIN PCOMBINLIST; 
PARALT : PPALTBARS); 

{ Sets up a single new parent gate at the head of the list on COMBINA.CHILDPS A• 
Called by SETCOMBARS 

SUBSTASVALUE} 

,. 
:zoo 
""0 
""0 
rn z 
o ..... 
x 
VI 

G) 
rn 
z 
(I) 

:zoo 
r 
..... 
z 
~ 
rn 
;0 

""0 
;0 

rn 
~ 
rn 
;:0 



." 
III 
\0 
111 

N 
0-
00 

3237 
3238 
3239 
3240 
3241 
3242 
3243 
3244 
3245 
3246 
3247 
3248 
3249 
3250 
3251 
3252 
3253 
3254 
3255 
3256 
3257 
3258 
3259 
3260 
3261 
3262 
3263 
3264 
3265 
3266 
3267 
3268 
3269 
3270 
3271 
3272 
3273 
3274 
3275 
3276 

VAR NEWPG : PPARENTLIST; 

BEGIN 
NEW(NEWPG); 
ECTRSIZE := ECTRSIZE + 26; 
NEWPG~.CHILDPOSITIONS := COMBIN~.CHILDPOSITIONS; 
IF GATEPARENTPOSITIONS=NIL 

THEN NEWPG~.PARENTPOSITIONS := PARALT~.PRNTPOSNS~ 
ELSE NEWPG~.PARENTPOSITIONS := GATEPARENTPOSITIONS~; 

NEWPG~.PARENTPS := PARALT~.PARSTRUCT; 
NEWPG~.CONNBONDS := COMBIN~.CONNBONDS; 
NEWPG~.NEXT := COMBIN~.CHILDPS~.PARENTGATE; 
COMBIN-.CHILDPS-.PARENTGATE := NEWPG 
END; 

FUNCTION NEWCOMBAR(PARALT : PPALTBARS; 
BARBOTTOM BOOLEAN): PCOMBINLIST; 

{ Creates a combination bar, variant BARBOTTOM, and sets the non-variant fields, 
returning the bar as the result of the function. 
Called by SETCOMBARS 

EXTRALAYER 
NEWPARENTPSLIST} 

VAR NEWCB : PCOMBINLIST; 

BEGIN 
IF BARBOTTOM THEN NEW(NEWCB, TRUE) 

ELSE NEW(NEWCB, FALSE); 
ECTRSIZE := ECTRSIZE + 11 + (ORD(BARBOTTOM) * 13); 
WITH NEWCB- DO 

BEGIN 
PARENTPOSITIONS := GATEPARENTPOSITIONS; 
FREQUENCY := GATEFREQUENCY; 
IF PARALT-.ALTBAR = NIL 

THEN BEGIN 

> 
." 
." 
m 
z 
o ...... 
x 
v.t 

en 
m 
z 
(I) 

> 
r 
1-1 
Z 
-I 
m 
;:0 

"'0 
;:0 
m 
-I 
m 
;:0 



"'0 
III 
IQ 
I'D 

N 
0-
'0 

3277 
3278 
3279 
3280 
3281 
3282 
3283 
3284 
3285 
3286 
3287 
3288 
3289 
3290 
3291 
3292 
3293 

, 3294 
3295 
3296 
3297 
3298 
3299 
3300 
3301 
3302 
3303 
3304 
3305 
3306 
3307 
3308 
3309 
3310 
3311 
3312 
3313 
3314 
3315 
3316 

{There is no alternative bar. The combination list needs to be 
attached directly to the PS record, and PARENTPOSITIONS 
needs to be taken from PARALTA.PRNTPOSNS if none has been obtained 
from GATEPARENTPOSITIONS} 

NEXT := PARALTA.PARSTRUCTA.CHILDGATE; 
PARALTA.PARSTRUCTA.CHILDGATE := NEWCB; 
IF PARENTPOSITIONS = NIL THEN PARENTPOSITIONS := PARALTA.PRNTPOSNS 

END 
ELSE BEGIN 

{The combination list needs to be attached to the alternative bar} 
NEXT := PARALTA.ALTBARA.COMBINATION; 
PARALTA.ALTBARA.COMBINATION := NEWCB 

END; 
BOTTOMBAR := BARBOTTOM 

END; 
NEWCOMBAR := NEWCB 
END; 

{-----------------------------------------------------------------------------} 
PROCEDURE SETCOMBARS(PARALTLIST : PPALTBARS; 

GATE PS : PTRPSTYPE); 

{ Sets up the child and parent gates for all the items in PARALTLIST 
Called by Body of ELEMENT} 

VAR NEWCOMBIN : PCOMBINLIST; 

FUNCTION NEEDTOCHECK(PARENTPS PTRPSTYPE; 
NEWCONNBONDS, 
OLDCONNBONDS : TCONNBONDS) : BOOLEAN; 

BEGIN 
IF PARENTPS = NIL 

THEN NEEDTOCHECK := FALSE 
ELSE IF PARENTPSA.PSVARIETY = SPECIFIC 

THEN CASE NEWCONNBONDS.CONNECTIONS OF 

> 
"'0 
"'0 
m 
z 
o 
M 
X 

VI 

G") 
m 
z 
(/) 

> 
r 
M 
Z ..... 
m 
;;0 
-0 
;;0 
m ..... 
m 
;;0 



3317 
3318 
3319 
3320 
3321 
3322 

3323 
3324 
3325 
3326 
3327 
3328 

3329 
3330 

"lJ 
3331 

I» 3332 
IQ 
ID 3333 
N 3334 
"" 0 3335 

3336 
3337 
3338 
3339 
3340 
3341 
3342 
3343 
3344 
3345 
3346 
3347 
3348 
3349 
3350 
3351 
3352 
3353 
3354 

NOTSET, 
o : PROGERROR(13); 
1 : CASE OLDCONNBONDS.CONNECTIONS OF 

> 1- :> , "lJ 
"lJ 

NOTSET : NEEDTOCHECK := MAGNITUDECNEWCONNBONDS.BOND) 
0, 2 : PROGERROR(14); 
1 : NEEDTOCHECK := MAGNITUDECNEWCONNBONDS.BOND) > MAGNITUD~OLDCONNBONDs.Bl 

ND) 

2 

BONDA» 

END; 
: CASE OLDCONNBONDS.CONNECTIONS OF 

NOTSET : NEEDTOCHECK := CMAGNITUDE(NEWCONNBONDS.BONDA) 
OR CMAGNITUDECNEWCONNBONDS.BONDB) > 1); 

0, 1 : PROGERROR(15); 
2 : NEEDTOCHECK := (MAGNITUDE(NEWCONNBONDS.BONDA) 

> 1) 

M 
X 

VI 

I 
> MAGNITUDECOLDCONNBONDSi 

OR CMAGNITUDECNEWCONNBONDS.BONDB) > MAGNITUDECOLDCONNBONDS.BOND3» 

END 
END 

ELSE NEEDTOCHECK := FALSE 
END; 

FUNCTION ORIGINALPOSNSCPARENTPS : PTRPSTYPE; 
LASTPARPOSNS : PTGROUPMEMS) : BOOLEAN; 

{ Returns TRUE if LASTPARPOSNS is the PRNTPOSNS field of any of the child gates 
leading from PARENTPS} 

VAR CGPTR : PCOMBINLIST; 
ROWNO : ATOMNUMBER; 
FOUND : BOOLEAN; 

BEGIN 
FOUND := FALSE; 
CGPTR := PARENTPS-.CHILDGATE; 
WHILE CCGPTR <> NIL) AND NOT FOUND DO WITH CGPTR- DO 

BEGIN 
FOUND := CPARENTPOSITIONS = LASTPARPOSNS); 
CGPTR := NEXT 

G) 
m 
:z 
(/) 

:> 
r 
M 
:z 
~ 
m 
:;0 

"lJ 
:;0 
m 
~ 
m 
:;0 



""0 
QI 
IQ 
ell 

N 
...... 
~ 

3355 
3356 
3357 
3358 
3359 
3360 
3361 
3362 
3363 
3364 
3365 
3366 
3367 
3368 
3369 
3370 
3371 
3372 
3373 
3374 
3375 
3376 
3377 
3378 
3379 
3380 
3381 
3382 
3383 
3384 
3385 
3386 
3387 
3388 
3389 
3390 
3391 
3392 
3393 
3394 

END; 
IF NOT FOUND THEN WITH PARENTPS- DO 

FOR ROWNO := 1 TO MAXCT DO IF CT[ROWNO] <> NIL 
THEN WITH CT[ROWNO]- DO IF NOT ATOMICROW 

THEN BEGIN 
CGPTR := VALUES; 
WHILE (CGPTR <> NIL) AND NOT FOUND DO WITH CGPTR- DO 

BEGIN 
FOUND := (PARENTPOSITIONS = LASTPARPOSNS); 
CGPTR : = NEXT 

END 
END; 

ORIGINALPOSNS := FOUND 
END; 

PROCEDURE CHECKPOSNS(VAR BOTPARPOSNS : PTGROUPMEMS; 
: PTGROUPMEMS; 
: PTRPSTYPE; 

LASTPARPOSNS 
PARENTPS 
BONDMAG : TBONDMAG); 

{ Checks that any positions given in position sets are actually available for 
a bond of the MAGNITUDE in question, as this was not previously known. } 

VAR NOPOSNSGIVEN 
GIVENPOSNS 
POSN 

BOOLEANi 
INTEGSETi 

: ATOMNUMBER; 

BEGIN 
IF BOTPARPOSNS = NIL 

THEN BEGIN 
NOPOSNSGIVEN := ORIGINALPOSNS(PARENTPS, LASTPARPOSNS); 
IF NOPOSNSGIVEN 

THEN BEGIN 
NEW(BOTPARPOSNS); 
ECTRSIZE := ECTRSIZE + 9; 
BOTPARPOSNS- := LASTPARPOSNS-

END; 
GIVENPOSNS := LASTPARPOSNS-.MEMBERS 

»> 
""0 
""0 
m 
z 
o 
1-4 
X 

VI 

G1 
m 
z 
(I) 

»> 
r 
1-4 
Z 
-i 
m 
;:0 
""0 
;:0 
m 
-i 
m 
;:0 



'"0 
QI 
10 
flI 

N 
...... 
N 

3395 
3396 
3397 
3398 
3399 
3400 
3401 
3402 
3403 
3404 
3405 
3406 
3407 
3408 
3409 
3410 
3411 
3412 
3413 
3414 
3415 
3416 
3417 
3418 
3419 
3420 
3421 
3422 
3423 
3424 
3425 
3426 
3427 
3428 
3429 
3430 
3431 
3432 
3433 
3434 

END 
ELSE BEGIN 

NOPOSNSGIVEN := FALSE; 
GIVENPOSNS := BOTPARPOSNS-.MEMBERS 

END; 
FOR POSN := 1 TO MAXCT DO IF POSN IN GIVENPOSNS 

THEN WITH PARENTPS-.CT[POSNJ- DO IF ATOMICROW 
THEN IF HYDROGENS < BONDMAG 

THEN IF NOPOSNSGIVEN 
THEN WITH BOTPARPOSNS- DO MEMBERS := MEMBERS - [POSN] 
ELSE FAILURE(45, POSN,' .); 

IF BOTPARPOSNSA.MEMBERS = [] THEN FAILURE(46, 0,' .) 
END; 

FUNCTION COMBINEDPOSITIONS(CONNBONDS : TCONNBONDS; 
LIMITPOSNS : INTEGSET; 
PARENTPS PTRPSTYPE): PTGROUPMEMS; 

{ Returns a COMBINED position set based on the available positions in PARENTPS. 
If the bond magnitudes are 1, then the previously-determined LIMITPOSNS can 
be used instead of calling GETAVAILABLEPOSITIONS.} 

VAR COMBPOSNS PTGROUPMEMS; 
MAGNIT INTEGER; 
POSNSETA, 
POSNSETB, 
POSNSETC : INTEGSET; 

BEGIN 
NEW(COMBPOSNS); 
ECTRSIZE := ECTRSIZE + 9; 
COMBPOSNS-.COMBINED := TRUE; 
COMBPOSNS-.COMBMEMS := NIL; 
MAGNIT := MAGNITUDECCONNBONDS.BONDA); 
IF MAGNIT > 1 THEN GETAVAILABLEPOSITIONSCPARENTPS, POSNSETA, MAGNIT) 

ELSE POSNSETA := LIMITPOSNS; 
MAGNIT := MAGNITUDE(CONNBONDS.BONDB); 
IF MAGNIT > 1 THEN GETAVAILABLEPOSITIONSCPARENTPS, POSNSETB, MAGNIT) 

> 
'"0 
'"0 
m z 
o 
1-4 
X 

VI 

en 
m 
z 
(I) 

> r 
1-4 
Z 
-4 
m 
;;0 
'"0 
;;0 
m 
-4 
m 
;;0 



." 
I» 
IQ 
111 

N ...., 
UoI 

3435 
3436 
3437 
3438 
3439 
3440 
3441 
3442 
3443 
3444 
3445 
3446 
3447 
3448 
3449 
3450 
3451 
3452 
3453 
3454 
3455 
3456 
3457 
3458 
3459 
3460 
3461 
3462 
3463 
3464 
3465 
3466 
3467 
3468 
3469 
3470 
3471 
3472 
3473 
3474 

ELSE POSNSETB := LI~ITPOSNS; 
~AGNIT := ~AGNIT + ~AGNITUDE(CONNBONDS.BONDA); 
IF ~AGNIT <= 3 THEN GETAVAILABLEPOSITIONS(PARENTPS, POSNSETC, ~AGNIT) 

ELSE POSNSETC := [J; 
POSNSETC := POSNSETA * POSNSETB * POSNSETC; 
LISTPOSNS(CO~BPOSNS-.CO~B~E~S, POSNSETA, POSNSETB, POSNSETC); 
IF COMBPOSNS-.COMBMEMS = NIL THEN FAILURE(47, 0,' '); 
COMBINEDPOSITIONS := COMBPOSNS 
END; 

PROCEDURE CHECKCOMBPOSNS(VAR BOTPARPOSNS 
LASTPARPOSNS 
PARENTPS 
MAGA, 
MAGB 

PTGROUPMEMS; 
PTGROUPMEMS; 
PTRPSTYPE; 

T80NDMAG); 

{ Checks that any positions specified in position sets are actually available 
for bonds of the MAGNITUDEs in question, which were not previously known.} 

VAR REMOVEA, 
REMOVEB INTEGSET; 
NOPOSNSGIVEN : BOOLEANi 
GIVENPOSNS, 
LISTPTR, 
DELPTR : PDOUBLIST; 

BEGIN 
IF BOTPARPOSNS= NIL 

THEN BEGIN 
NOPOSNSGIVEN := ORIGINALPOSNS(PARENTPS, LASTPARPOSNS); 
GIVENPOSNS := COPYLIST(LASTPARPOSNS-.COMBMEMS) 

END 
ELSE BEGIN 

NOPOSNSGIVEN := FALSE; 
GIVENPOSNS:= COPYLIST(BOTPARPOSNS·.CO~BMEMS) 

END; 
REMOVEA := (]; 
REMOVEB := (]; 

> 
." 

" m 
z 
a 
1-1 
x 
lH 

G'l 
m 
z 
(I) 

> 
r 
1-1 
Z ..... 
m 
;;0 

" ;;0 
m ..... 
m 
;;0 



\J 
III 
IQ 
111 

N 

"" ~ 

3475 
3476 
3477 
3478 
3479 
3480 
3481 
3482 
3483 
3484 
3485 
3486 
3487 
3488 
3489 
3490 
3491 
3492 
3493 
3494 
3495 
3496 
3497 
3498 
3499 
3500 
3501 
3502 
3503 
3504 
3505 
3506 
3507 
3508 
3509 
3510 
3511 
3512 
3513 
3514 

LISTPTR := GIVENPOSNS; 
WHILE LISTPTR <> NIL DO 

BEGIN 
WITH PARENTPS-.CT[LISTPTR-.FIRST]- DO IF ATOMICROW 

THEN IF HYDROGENS < MAGA 
THEN IF NOPOSNSGIVEN 

THEN REMOVEA := REMOVEA + [LISTPTR-.FIRST] 
ELSE FAILUREC45, LISTPTR-.FIRST,' '); 

WITH PARENTPS-.CT[LISTPTR-.SECOND]- DO IF ATOMICROW 
THEN IF HYDROGENS < MAGB 

THEN IF NOPOSNSGIVEN 
THEN REMOVEB := REMOVEB + [LISTPTR-.SECOND] 
ELSE FAILUREC45, LISTPTRA.SECOND,· '); 

LISTPTR := LISTPTRA.NEXT 
END; 

IF REMOVEA + REMOVEB = [] 
THEN BEGIN 

REDUCEECTRCGIVENPOSNS)i 
DESTROYCGIVENPOSNS) 

END 
ELSE BEGIN 

LISTPTR := GIVENPOSNS; 

» 
\J 
\J 
m 
z 
Q .... 
x 

lH 

WHILE LISTPTR <> NIL DO IF (LISTPTR-.FIRST IN REMOVEA) OR CLISTPTRA.SECOND IN REMOVEB) 
THEN BEGIN 

IF LISTPTR = GIVENPOSNS 
THEN GIVENPOSNS := LISTPTRA.NEXT; 

DELPTR := LISTPTR; 
LISTPTR := LISTPTRA.NEXT; 
DISPOSECDELPTR); 
ECTRSIZE := ECTRSIZE - 6 

END 
ELSE LISTPTR := LISTPTRA.NEXTi 

IF GIVENPOSNS = NIL THEN FAILURE(48, 0, • 
IF BOTPARPOSNS = NIL 

THEN BEGIN 
NEW(BOTPARPOSNS); 
ECTRSIZE := ECTRSIZE + 9; 
BOTPARPOSNS-.COMBINED := TRUE 

END; 
BOTPARPOSNS-.COMBMEMS := GIVENPOSNS 

') i 

Ci) 
m 
Z 
(/) 

» 
r 
.... 
z 
~ 
m 
::0 
-0 
::0 
m 
~ 
m 
::0 



" III 
IQ 
CD 

N 

"'" VI 

3515 
3516 
3517 
3518 
3519 
3520 
3521 
3522 
3523 
3524 
3525 
3526 
3527 
3528 
3529 
3530 
3531 
3532 
3533 
3534 
3535 
3536 
3537 
3538 
3539 
3540 
3541 
3542 
3543 
3544 
3545 
3546 
3547 
3548 
3549 
3550 
3551 
3552 
3553 
3554 

END 
END; 

> 
" -0 

BEGIN {Body of SETCOMBARS} 
ADDTOLIST(GATEPS); 

m 
z 
o 
I-t 
X 

WHILE PARALTLIST <> NIL DO 
BEGIN 

NEWCOMBIN := NEWCOMBAR(PARALTLIST, FALSE); 
IF PARALTLISTA.COPYCHILDPS 

THEN NEWCOMBINA.CHILDPS := COPYPS(GATEPS) 
ELSE NEWCOMBINA.CHILDPS := GATEPS; 

NEWCOMBINA.CONNBONDS := PARALTLISTA.CONNBONDS; 
GETCHILDPOSITIONS(GATEPS,NEWCOMBIN A• CONNBONDS, 
CASE NEWCOMBINA.CONNBONDS.CONNECTIONS OF 

NOTSET : PROGERROR(16); 
o ; 

lH 

NEWCOMBINA.CHILDPOSITIONS); 

1 : IF NEEDTOCHECK(PARALTLISTA.PARSTRUCT, NEWCOMBINA.CONNBONDS, PARALTLISTA.CONNBONDS) 
THEN CHECKPOSNS(NEWCOMBINA.PARENTPOSITIONS, 

2 

PARALTLISTA.PRNTPOSNS, 
PARALTLISTA.PARSTRUCT, 
MAGNITUDE(NEWCOMBINA.CONNBONDS.BOND»; 

: IF (NEWCOMBINA.PARENTPOSITIONS = NIL) AND NOT PARALTLISTA.PRNTPOSNSA.COMBINED 
THEN {no position set can have been given, as it would have had to have been 

COMBINED. Consequently we can reestablish PARENTPOSITIONS from scratch} 

ELSE 

IF PARALTLISTA.PARSTRUCT <> NIL THEN ~ 
NEWCOMBINA.PARENTPOSITIONS := COMBINEDPOSITIONS(NEWCOMBINA.CONNBO~S, 

PARALTLISTA.PRNT~NSA.MEM8ERS, 
P~RALTLISTA.PARSrRUCT) 

I-t 
z {any position sets we have must be COMBINED} 

IF NEEDTOCHECK(PARALTLISTA.PARSTRUCT, NEWCOMBINA.CONNBONDS, PARALTLI~A.CONNBONDS) 
-0 THEN CHECKCOMBPOSNSCNEWCOMBINA.PARENTPOSITIONS, 

PARALTLISTA.PRNTPOSNS, 
PARALTLISTA.PARSTRUCT, 
MAGNITUDECNEWCOMBINA.CONNBONDS.BONDA), 
MAGNITUDECNEWCOMBINA.CONNBONDS.BONDB»; 

AJ 
m 
-1 
m 
AJ 

END; 
IF NOT DEFNTABLEENTRY(PARALTLISTA.PARSTRUCT) 

THEN SETPARENTGATE(NEWCOMBIN, PARALTLIST); 



-0 
III 
IQ 
/1) 

N 
~ 
0. 

3555 
3556 
3557 
3558 
3559 
3560 
3561 
3562 
3563 
3564 
3565 
3566 
3567 
3568 
3569 
3570 
3571 
3572 
3573 
3574 
3575 
3576 
3577 
3578 
3579 
3580 
3581 
3582 
3583 
3584 
3585 
3586 
3587 
3588 
3589 
3590 
3591 
3592 
3593 
3594 

PARALTLIST := PARALTLIST-.NEXT 
END 

END; {of SETCOMBARS 
-------------------------------------------------------------------------------} 

FUNCTION NEWPARENTPSLIST(PARALTLIST : PPALTBARS): PPSLIST; 

{ Sets up a new PPSLIST based on the items in PARALTLIST, which can be passed 
in a recursive call to ALTNVLIST. This procedure also establishes non-BOTTOMBAR 
combination bars in the gates for all items in PARALTLIST. 
Called from TRANSLATENOMEN 

Body of ELEMENT} 

{ Points to the top of the growing list} VAR LlSTPTR, 
WRITEPTR 
NEWCOMBIN 

: PPSLIST; { New addition to the list} 
PCOMBINLIST; { New combination gate} 

BEGIN 
LISTPTR := NIL; 
WHILE PARALTLIST <> NIL DO 

BEGIN 
NEWCOMBIN := NEWCOMBAR(PARALTLIST, TRUE); 
NEWCOMBIN-.ALTERNATIVES := NIL; 
NEW(WRITEPTR); 
WRITEPTR-.NEXT := LISTPTR; 
WRITEPTR-.PARSTRUCT := PARALTLIST-.PARSTRUCT; 
WRITEPTR-.CONNBONDS := PARALTLIST-.CONNBONDS; 
IF GATEPARENTPOSITIONS = NIL 

THEN WRITEPTR-.PRNTPOSNS := PARALTLIST-.PRNTPOSNS 
ELSE WRITEPTR-.PRNTPOSNS := GATEPARENTPOSITIONS; 

WRITEPTR-.COMBINS := NEWCOMBIN; 
WRITEPTR-.COPYCHILDPS := PARALTLIST-.COPYCHILDPS; 
WRITEPTR-.FURTHERSUB := NIL; 
LISTPTR := WRITEPTR; 
PARALTLIST := PARALTLIST-.NEXT 

END; 
NEWPARENTPSLIST := LISTPTR 
END; 

> 
-0 
-0 
m 
Z 
o ...... 
X 

VIi 

en 
m 
z 
(I) 

> r 
.... 
Z 
-I 
m 
;:0 

" ;:0 
m 
-I 
m 
;:0 



\J 
QI 
IQ 
III 

N .... .... 

3595 
3596 
3597 
3598 
3599 
3600 
3601 
3602 
3603 
3604 
3605 
3606 
3607 
3608 
3609 
3610 
3611 
3612 
3613 
3614 
3615 
3616 
3617 
3618 
3619 
3620 
3621 
3622 
3623 
3624 
3625 
3626 
3627 
3628 
3629 
3630 
3631 
3632 
3633 
3634 

PROCEDURE GETSPSPARAMS(VAR GATEPS : PTRPSTYPE); 

{ Sets up a GENERIC PS, and initialises the PARAMLIST with the global 
SPSPARAMLIST, which has been set up by SPSVARIETY. 
Called by TRANSLATENOMEN} 

VAR PARAM : TPARAMETERS; 
PTR PDOUBLISTi 

BEGIN 
NEW(GATEPS, GENERIC); 
ECTRSIZE := ECTRSIZE + 50; 
WITH GATEPS A DO 

BEGIN 
PSVARIETY := GENERIC; 
VISITED := FALSE; 
PARENTGATE := NIL; 
CHILDGATE := NILi 
PARAMLIST := SPSPARAMLISTi 
FOR PARAM := ATOMCOUNT TO HETEROATOM DO 

BEGIN 

END 
END; 

PTR := PARAMLIST(PARAM].SUBRANGES; 
WHILE PTR <> NIL DO 

END 

BEGIN 
ECTRSIIE := ECTRSIZE + 6; 
PTR := PTRA.NEXT 

END 

{------------------------------------------------------------------------------} 
PROCEDURE PARAMETERLIST(GATEPS : PTRPSTYPE)i 

{ Analyses a Gensal parameter list. For standard parameters, the information 
is stored in the appropriate element of PARAMLIST, this being determined 

> 
\J 
\J 
m 
Z 
o .... 
X 

lH 

en 
m 
Z 
(I) 

> 
r 
.... 
Z 
-t 
m 
;0 

-0 
;0 
m 
-t 
m 
;0 



""0 
III 
IQ 
C'lI 

N ..... 
00 

3635 
3636 
3637 
3638 
3639 
3640 
3641 
3642 
3643 
3644 
3645 
3646 
3647 
3648 
3649 
3650 
3651 
3652 
3653 
3654 
3655 
3656 
3657 
3658 
3659 
3660 
3661 
3662 
3663 
3664 
3665 
3666 
3667 
3668 
3669 
3670 
3671 
3672 
3673 
3674 

by the function PARAMETER. The existing parameter values are used 
to limit those analysed, by creating LIMITSET, to be passed to SELECTOR. 
In SELECTOR this is converted back to an INTRECORD for passing to 
INTEGERRANGE, but this is not as silly as it seems, as otherwise 
INTEGERRANGE would be using the same INTRECORD linked list both as 
LIMITRANGE and RANGEVALUES. If GATE PS is not GENERIC then the values for 
each parameter are placed in DUMMYPARAM, and any PDOUBLIST linked list 
immediately DESTROYed. Non-standard parameters are handled by USERPARAMETER. 
Called by TRANSLATENOMEN} 

VAR PARAMIDS 
DELIMCHECK 
DUMMYPARAM 
LIMITSET 

: DELIMSET; 
: DELIMTYPE; 

INTRECORD; 
: INTEGSET; 

FUNCTION PARAMETER(PARAMDELIM : DELIMTYPE) : TPARAMETERS; 

{ Returns the PARAMETER that is equivalent to the delimiter passed as PARAMDELIM} 

BEGIN 
CASE PARAMDELIM OF 

GC : PARAMETER := ATOMCOUNT; 
GT : PARAMETER := TBRANCH; 
GQ : PARAMETER := QBRANCH; 
GE : PARAMETER := EUNSATURATION; 
GY : PARAMETER := YUNSATURATION; 
GRC : PARAMETER := RINGCOUNT; 
GRN : PARAMETER := RINGATOMS; 
GRS : PARAMETER := RINGSUBSTITUTION; 
GRF : PARAMETER := RINGFUSIONS; 
GRA PARAMETER:= RINGAROMATIC; 
GZ PARAMETER:= HETEROATOM 
END; 

END; 

PROCEDURE FINDCONNECTIONSCVAR CONNBONDS : TCONNBONDS; 

» 
""0 
""0 
m 
z 
o .... 
x 
l,.j 

UI 
m 
z 
U) 

» 
r 
.... 
Z 
-t 
m 
;;0 
""0 
;;0 
m 
-t 
m 
;;0 



""0 
QI 
IQ 
11) 

N 

"'" -.0 

3675 
3676 
3677 
3678 
3679 
3680 
3681 
3682 
3683 
3684 
3685 
3686 
3687 
3688 
3689 
3690 
3691 
3692 
3693 
3694 
3695 
3696 
3697 
3698 
3699 
3700 
3701 
3702 
3703 
3704 
3705 
3706 
3707 
3708 
3709 
3710 
3711 
3712 
3713 
3714 

VAR PRNTPOSNS : PTGROUPMEMS; 
: PTRPSTYPE; PSADDRESS 

SU8ST : SU8STITUENT); 

{ Sets CONN80NDS and PRNTPOSNS for the declaration of SUBST referencing 
PSADDRESS. Any previous declaration of SUBST will give a value for 
CONN80NDS - otherwise CONNBONDS.CONNECTIONS is set to NOTSET. 
Since PSADDRESSA.PSVARIETY is GENERIC or OTHER, the bond magnitude is 
irrelevant to the determination of the available positions - hence a 
dummy value of 1 is passed to GETAVAILABLEPOSITIONS. 
Called by USER PARAMETER} 

VAR AVAILPOSNS : INTEGSET; 

BEGIN 
IF SUBST IN DECLSUBS THEN CONNBONDS := RDECLARATIONTABLE[SUBST]A.CONNBONDS 

ELSE CONN80NDS.CONNECTIONS := NOTSET; 
NEW(PRNTPOSNS); 
ECTRSIZE := ECTRSIZE + 9; 
PRNTPOSNSA.COMBINED := CONNBONDS.CONNECTIONS = 2; 
CASE CONNBONDS.CONNECTIONS OF 
o : PRNTPOSNSA.MEMBERS := []; 
NOTSET, 
1 : GETAVAILABLEPOSITIONS(PSADDRESS, PRNTPOSNSA.MEMBERS, 1); 
2 : 8EGIN 

END 
END; 

GETAVAILABLEPOSITIONS(PSADDRESS, AVAILPOSNS, 1); 
PRNTPOSNS A .COM8MEMS := NIL; 
LISTPOSNS(PRNTPOSNSA.COMBMEMS, AVAILPOSNS+[O], AVAILPOSNS+[O], AVAILPOSNS) 

END 

PROCEDURE USERPARAMETER(GATEPS PTRPSTYPE); 

{ Analyses a user-defined parameter. FIND CONNECTIONS is used to determine 
CONN80NDS and PARENTPOSITIONS, for passing to DECLARESUBST.} 

VAR NEWCOMBIN : PCOMBINLIST; 

> 
""0 
""0 
m 
z 
o ...... 
x 
l..! 

Ci'l 
m 
z 
Vl 
> 
r 
...... 
Z 
-t 
m 
;;0 
""0 
;;0 
m 
-t 
m 
;;0 



"'0 
Q/ 
IQ 
f\l 

N 
00 
o 

3715 
3716 
3717 
3718 
3719 
3720 
3721 
3722 
3723 
3724 
3725 
3726 
3727 
3728 
3729 
3730 
3731 
3732 
3733 
3734 
3735 
3736 
3737 
3738 
3739 
3740 
3741 
3742 
3743 
3744 
3745 
3746 
3747 
3748 
3749 
3750 
3751 
3752 
3753 
3754 

CONNBONDS : TCONNBONDS; 
PARENTPOSITIONS : PTGROUPMEMS; 

BEGIN 
NEXTTOKENi 
WHILE CHECKDELIMC[GR])=INVALIDTOKEN DO ERRORC26,O); 
NEXTTOKEN; 
REPEAT 

WHILE TOKEN.NATURE<>INTEGRAL DO ERROR(23,O); 
IF NOT (TOKEN.INTEGVAL IN [1 •• MAXVARS]) THEN ERROR(28,O) 

UNTIL TOKEN.INTEGVAL IN [1 •• MAXVARS]i 
FINDCONNECTIONS(CONNBONDS, PARENTPOSITIONS, GATEPS, TOKEN.INTEGVAL)i 
DECLARESUBST(TOKEN.INTEGVAL, {subst} 

GATEPS, {psaddress} 
NIL, {savps} 
CONNBONDS, {connbonds} 
PARENTPOSITIONS)i {prntposns} 

ENTERCOMBINCTOKEN.INTEGVAL, GATEPSA.CHILDGATE); 
NEXTTOKENi 
WHILE CHECKDELIM([GPRIME]) = INVALIDTOKEN DO ERROR(29,O)i 
NEXTTOKENi 
SELECTOR(GATEPSA.CHILDGATEA.FREQUENCY, [O •• MAXVARS], 5) 
END; 

BEGIN {Body of PARAMETERLIST} 
PARAMIDS := [GC, GT, GQ, GE, GY, GRC, GRN, GRS, GRF, GRA, GZ]; 
REPEAT 

DELIMCHECK := CHECKDELIM([GOPENANG,GLSQUARE,GPRIME]+PARAMIDS+TERMINATORS); 
IF DELIMCHECK=INVALIDTOKEN THEN ERROR(24,O) 

UNTIL DELIMCHECK <> INVALIDTOKENi 
IF DELIMCHECK = GOPENANG 

THEN DELIMCHECK := GC {Parameter identifier not needed} 
ELSE IF DELIMCHECK IN PARAMIDS THEN NEXTTOKEN; 

WHILE DELIMCHECK IN PARAMIDS+[GPRIME] DO 
BEGIN 

IF DELIMCHECK = GPRIME 
THEN USERPARAMETER(GATEPS) 
ELSE IF GATEPSA.PSVARIETY = GENERIC 

la 
"'0 
"'0 
m z 
0' .... 
X 

v.I 

en 
m 
z 
V) 

la 
r 
.... 
z ..... 
m 
:;:0 

"'0 
:;:0 
m ..... 
m 
:;:0 



""0 
Cl! 
IQ 

111 

N 
00 
~ 

3755 
3756 
3757 
3758 
3759 
3760 
3761 
3762 
3763 
3764 
3765 
3766 
3767 
3768 
3769 
3770 
3771 
3772 
3773 
3774 
3775 
3776 
3777 
3778 
3779 
3780 
3781 
3782 
3783 
3784 
3785 
3786 
3787 
3788 
3789 
3790 
3791 
3792 
3793 
3794 

THEN BEGIN 
INTSET(LIMITSET, GATEPS-.PARAMLIST[PARAMETER(OELIMCHECK)]); 
SELECTOR(GATEPS-.PARAMLIST[PARAMETER(DELIMCHECK)J, LIMITSET, 5) 

END 
ELSE BEGIN 

NEXTTOKEN; 
REPEAT 

SELECTOR(DUMMYPARAM, [O •• MAXVARS], 5); 
REDUCEECTR(DUMMYPARAM.SUBRANGES); 
DESTROY (DUMMYPARAM.SUBRANGES) 

END; 

DELIMCHECK := CHECKDELIM([GPRIME,GLSQUAREJ+PARAMIDS+TERMINATORS); 
IF DELIMCHECK=INVALIDTOKEN THEN ERROR(24,O) 

UNTIL DELIMCHECK <> INVALIDTOKEN; 
IF DELIMCHECK IN PARAMIDS THEN NEXTTOKEN 

END 
END; 

{ of PARAMETERLIST 
---------------------------------------------------------------------------} 

{---------------------------------------------------------------------------} 
PROCEDURE TRANSLATENOMEN(VAR GATE PS : PTRPSTYPE); 

{ Determines whether or not a record is held for the current TOKEN.NOMENVAL 
(taking synonyms in RECORDHELD, if terminal input), and sets up an 
appropriate child PS, or pushes down the input environment and makes a 
recursive call to ALTNVLIST. If no record is held, then an OTHER PS is set 
up. 
Called from body of ELEMENT} 

VAR ADDRESS : INTEGER; { SPSfile address for TOKEN.NOMENVAL } 
OLDN : O •• MAXLENGTH; { Saved value of N } 
OLDBUFFER : LlNESTRING; { Saved value of BUFFER } 
INSERTLINES, { Lines being inserted} 
OLDCURRENTLlNE : PLlNELlST; { Saved value of CURRENTLINE } 
OLDMODE : TINPUTMODE; { Saved INPUTMODE } 

>­
""0 
""0 
m z 
o 
1-4 
X 

"'" 

(i') 
m 
z 
Cl) ,. 
r 
1-4 
Z 
-4 
m 
;0 

""0 
;0 
m 
-4 
m 
;0 



"'0 
QI 
10 
~ 

N 
00 
N 

3795 
3796 
3797 
3798 
3799 
3800 
3801 
3802 
3803 
3804 
3805 
3806 
3807 
3808 
3809 
3810 
3811 
3812 
3813 
3814 
3815 
3816 
3817 
3818 
3819 
3820 
3821 
3822 
3823 
3824 
3825 
3826 
3827 
3828 
3829 
3830 
3831 
3832 
3833 
3834 

PROCEDURE MODIFYGATEPOSITIONS(COMBINBAR PCOMBINLIST; 
HSTAVAILPOSNS PTGROUPMEMS); 

{ Traces down a child gate (headed by COMBINBAR), altering the PARENTPOSITIONS 
field in each, to conform to HSTAVAILPOSNS. If the bar is BOTTOMBAR 
then the PARENTPOSITIONS fields of the corresponding parent gates from the 
CHILDPS are altered similarly; otherwise the procedure recurses on itself 
for each COMBINATION in the ALTERNATIVES.} 

VAR ALTERNBAR 
PARENTGATE 
TOPBAR 
POSN 

PALTERNLlST; 
PPARENTLlST; 

: BOOLEAN; 
: ATOMNUMBER; 

BEGIN 
TOPBAR := (HSTAVAILPOSNS = NIL); 
IF TOPBAR THEN 

BEGIN 
NEW(HSTAVAILPOSNS); 
WITH HSTAVAILPOSNS~ DO 

END; 

BEGIN 
COMBINED := FALSE; 
GETAVAILABLEPOSITIONS(INSERTHSTPS, MEMBERS, 1); 
MEMBERS := MEMBERS + [0] 

END 

WHILE COMBINBAR <> NIL DO WITH COM9INaAR~ DO 
BEGIN 

IF PARENTPOSITIONS <> NIL THEN WITH PARENTPOSITIONS~ DO 
IF TOPBAR 

THEN IF COMBINED 
THEN BEGIN 

REDUCE(COMBMEMS, HSTAVAILPOSNS~); 
IF COMBMEMS=NIL THEN FAILURE(4, 0,' .) 

END 
ELSE BEGIN 

MEMBERS := MEM8ERS * HSTAVAILPOSNS~.MEMBERS; 
IF MEMBERS = (J THEN FAILURE(4, 0,' .) 

END 

> 
"'0 
"'0 
m z 
a .... 
x 
v.I 

G) 
m 
z 
(J) 

> r 
.... 
Z 
-t 
m 
;;0 

"'0 
;;0 
m 
-t 
m 
;;0 



3835 
3836 
3837 
3838 
3839 
3840 
3841 
3842 
3843 
3844 
3845 
3846 
3847 
3848 
3849 
3850 

""0 
III 
IQ 3851 ID 

N 3852 
00 

3853 VoI 

3854 
3855 
3856 
3857 
3858 
3859 
3860 
3861 
3862 
3863 
3864 
3865 
3866 
3867 
3868 
3869 
3870 
3871 
3872 
3873 

ELSE IF COMBINED 
THEN CHECKALLWITHIN(COMBMEMS, HSTAVAILPOSNS-.MEMBERS, 3) 
ELSE IF MEMBERS <= HSTAVAILPOSNS-.MEMBERS 

THEN {OK} 
ELSE FOR POSN := 1 TO MAXCT DO 

> 
""0 
""0 
m 

IF (POSN IN MEMBERS) AND NOT 
THEN FAILURE(3, POSN, I 

(POSN IN HSTAVAILPOSNS-.MEMalRS) 

IF BOTTOMBAR 
THEN BEGIN 

PARENTGATE := CHILDPS-.PARENTGATE; 
WHILE PARENTGATE <> NIL DO WITH PARENTGATE- DO 

BEGIN 
IF PARENTPS = INSERTHSTPS 

THEN WITH PARENTPOSITIONS DO 
IF COMBINED 

I); t-t 
>< 
VoI 

THEN {no need to do anything - pointers point to same PDOUBLIST in parent a 
d child gates} 

ELSE MEMBERS := MEMBERS * HSTAVAILPOSNS-.MEMBERS; 
PARENT GATE := NEXT 

END 
END 

ELSE BEGIN 
ALTERNBAR := ALTERNATIVES; 
WHILE ALTERNBAR <> NIL DO WITH ALTERNBAR- DO 

BEGIN 
MODIFYGATEPOSITIONS(COMBINATION, HSTAVAILPOSNS); 
ALTERNBAR := NEXT 

END 
END; 

COMBINBAR := NEXT 
END; 

IF TOPBAR THEN DISPOSE(HSTAVAILPOSNS) 

END; 

BEGIN {Body of Procedure TRANSLATENOMEN } 
IF RECORDHELD(TOKEN.NOMENV~L, ADDRESS) 

THEN CASE SPSVARIETY(ADDRESS, FALSE) OF 

Cil 
m 
z 
(I) 

> r 
t-t 
Z 
-i 
m 
:;:0 
""0 
:;:0 
m 
-i 
m 
:;:0 



3874 SPECIFIC : BEGIN 
3875 NEW(GATEPS, SPECIFIC); 
3876 ECTRSIlE := ECTRSIlE + 70; > 
3877 WITH GATEPS" DO ""0 

""0 

3878 BEGIN m 
Z 

3879 PSVARIETY := SPECIFIC; 0 
1-4 

3880 VISITED := FALSE; x 

3881 PARENTGATE := NIL; v.. .. 
3882 CHILDGATE := NIL; 
3883 PROCESSCT(CT,FALSE, GATEPS) 
3884 END; 
3885 NEXTTOKEN 
3886 END; 
3887 
3888 GENERIC : BEGIN 

""0 3889 GETSPSPARAMS(GATEPS); QI 
IQ 3890 NEXTTOKEN; ID 

N 3891 IF CHECKDELIM([GLSQUARE]+TERMINATORS)=INVALIDTOKEN 
00 3892 THEN PARAMETERLIST(GATEPS); 
~ 

3893 IF INPUTMODE = INSERTTEXT 
3894 THEN IF INSERTHSTPS = NIL 
3895 THEN INSERTHSTPS := GATEPS 
3896 ELSE PROGERROR(17) { multiple HSTs in SPSfile expression} 
3897 END; 
3898 
3899 OTHER : BEGIN en 
3900 GATEPS := NIL; m 

z 
3901 { Save current environment} V) 

> 3902 OLDCURRENTLINE := CURRENTLINE; r 

3903 CURRENTLINE := INSERTGENEX; 1-4 
z 

3904 OLDMODE := INPUTMODE; -t 
m 

3905 INPUTMODE := INSERTTEXT; ;;0 

""0 
3906 OLDBUFFER := BUFFER; ;;0 

m 
3907 OLDN := N; -t 

m 
3908 N := MAXLENGTH; ;;0 

3909 IF OLDMODE <> INSERTTEXT THEN INSERTHSTPS := NIL; 
3910 INSERTLINES := INSERTGENEX; 
3911 ALTNVLIST(NEWPARENTPSLIST(PARALTLIST), FALSE) ; 
3912 IF CHECKDELIM( [GRPAREN])=INVALIDTOKEN THEN 
3913 PROGERROR(18); {missing H)" in SPSfile expression} 



""0 
QI 

IQ 
I'D 

N 
00 
VI 

3914 
3915 
3916 
3917 
3918 
3919 
3920 
3921 
3922 
3923 
3924 
3925 
3926 
3927 
3928 
3929 
3930 
3931 
3932 
3933 
3934 
3935 
3936 
3937 
,3938 
3939 
3940 
3941 
3942 
3943 
3944 
3945 
3946 
3947 
3948 
3949 
3950 
3951 
3952 
3953 

END 

{ Restore former environment} 
CURRENTLINE := OLDCURRENTLINE; 
BUFFER := OLDBUFFER; 
INPUTMODE := OLDMODE; 
N := OLDN; 

DELETEGENSALCINSERTLINES); 
NEXTTOKEN; 
IF CINPUTMODE <> INSERTTEXT) AND CINSERTHSTPS <> NIL) 

END 

THEN IF CHECKDELIMC[GLSQUARE]+TERMINATORS)=INVALIDTOKEN 
THEN BEGIN 

PARAMETERLISTCINSERTHSTPS); 
IF INSERTHSTPS-.CHILDGATE <> NIL THEN 

MODIFYGATEPOSITIONSCINSERTHSTPS-.CHILDGATE, 
END 

ELSE BEGIN 
NEWCGATEPS, OTHER); 
ECTRSIZE := ECTRSIZE + 22; 
WITH GATEPS- DO 

BEGIN 
PSVARIETY := OTHER; 
VISITED := FALSE; 
PARENTGATE := NIL; 
CHILDGATE := NIL; 
TERM := TOKEN.NOMENVAL 

END; 
NEXTTOKEN; 
IF CHECKDELIMC[GLSQUARE]+TERMINATORS)=INVALIDTOKEN 

THEN PARAMETERLISTCGATEPS) 
END 

END; { of TRANSLATENOMEN 
-------------------------------------------------------------------------------} 

FUNCTION EXTRALAYER(PARALT PPALTBARS; 
DUMMYSAVPS : PTRPSTYPE) : PCOM9INLIST; 

{ Creates an extra layer in the gate of which PARALT gives an ALTERNATIVE bar, 

NIL> 

> 
""0 
""0 
m 
Z 
o .... 
x 
VoI 

G) 
m 
z 
Cl) 

> 
r 
.... 
Z 
-t 
m 
;;0 

""0 
;;0 
m 
-t 
m 
;;0 



"'0 
Q/ 
IQ 
111 

N 
00 
0-

3954 
3955 
3956 
3957 
3958 
3959 
3960 
3961 
3962 
3963 
3964 
3965 
3966 
3967 
3968 
3969 
3970 
3971 
3972 
3973 
3974 
3975 
3976 
3977 
3978 
3979 
3980 
3981 
3982 
3983 
3984 
3985 
3986 
3987 
3988 
3989 
3990 
3991 
3992 
3993 

inserts one alternative into it, for DUMMYSAVPS. 
Called by SUBSTASVALUE} 

VAR XLAYER : PCOMBINLIST; 

BEGIN 
XLAYER := NEWCOMBARePARALT, TRUE); 
NEWeXLAYER-.ALTERNATIVES); 
ECTRSIZE := ECTRSIZE + 4; 
WITH XLAYER-, ALTERNATIVES- DO 

BEGIN 
NEXT: = NIL; 
NEWeCOMBINATION, FALSE); 
ECTRSIZE := ECTRSIZE + 24; 
WITH COMBINATION- DO 

END; 

BEGIN 
PARENTPOSITIONS := NIL; 
FREQUENCY.TOPRANGE := NOTSET; 
FREQUENCY.SUBRANGES := ESSENTFREQ; 
NEXT := NIL; 
BOTTOMBAR := TRUE; 
CHILDPS := DUMMYSAVPS; 
CONNBONDS := PARALT-.CONNBONDS; 
WITH CHILDPOSITIONS DO 

END 

BEGIN 
COMBINED := CONNBONDS.CONNECTIONS = 2; 
IF COMBINED 

END 

THEN BEGIN 
COMBMEMS := NIL; 
LISTPOSNS(COMBMEMS, [1 •• MAXCTJ, [1 •• MAXCTJ, [1 •• MAXCTJ) 

END 
ELSE MEMBERS := [1 •• MAXCTJ 

EXTRALAYER := XLAYER 
END; 

> 
"'0 
"'0 
m 
z 
..:7 .... 
X 

VoI 

(i) 
m 
z 
(,I) 

> r 
.... 
Z 
-I 
m 
;;0 

" ;;0 
m 
-I 
m 
;;0 



"'0 
QI 

1.0 
11) 

N 
00 
~ 

3994 
3995 
3996 
3997 
3998 
3999 
4000 
4001 
4002 
4003 
4004 
4005 
4006 
4007 
4008 
4009 
4010 
4011 
4012 
4013 
4014 
4015 
4016 
4017 
4018 
4019 
4020 
4021 
4022 
4023 
4024 
4025 
4026 
4027 
4028 
4029 
4030 
4031 
4032 
4033 

FUNCTION VALIDSUBSTCPARALTLIST : PPALTBARS) : SUBSTITUENT; 

{ Obtains a susbtituent name and checks that it is in the range 1-63, and 
that if it is previousLy decLared, its connectivity is compatibLe with 
that of the items in PARALTLIST. 
CalLed by SUBSTASVALUE} 

LABEL 20; 

BEGIN 
20 : 
WHILE TOKEN.NATURE <> INTEGRAL DO ERRORC23,0); 
IF NOT CTOKEN.INTEGVAL IN [1 •• MAXVARS]) 

THEN BEGIN 
ERRORC28,0); 
GOTO 20 

END 
ELSE IF TOKEN.INTEGVAL IN DECLSUBS 

THEN WITH RDECLARATIONTABLE[TOKEN.INTEGVAL]~ DO 
IF CONNBONDS.CONNECTIONS = NOTSET 

THEN IF PARALTLIST~.CONNBONDS.CONNECTIONS = NOTSET 
THEN {no further information} 
ELSE BEGIN 

> 
"'0 
"'0 
m z 
0' ..... 
X 

VoI 

SETCONNBONDSCCONNBONDS, PARALTLIST-.CONNBONDS.CONNECTIONS); 
UPDATEPPSCONNSCRDECLARATIONTABLE[TOKEN.INTEGVAL]) 

END ~ 
ELSE IF PARALTLIST-.CONNBONDS.CONNECTIONS = NOTSET ~ 

VALIDSUBST := TOKEN.INTEGVAL 
END; 

THEN BEGIN ~ 
SETCONNBONDSCPARALTLIST-.CONNBONDS, CONNBONDS.CONNECTION31; 
UPDATEPARALTCONNSCPARALTLIST) ; 

END 
ELSE IF CONNBONDS.CONNECTIONS 

THEN {compatible} 
ELSE BEGIN 

ERROR (31,0>; 
GOTO 20 

END; 

-i 
m = PARALTLIST~.CONNBONDS.CONNECTI~S 
~ 

m 
-i 
m 
~ 



"'0 
I» 
IQ 
111 

N 
00 
00 

4034 
4035 
4036 
4037 
4038 
4039 
4040 
4041 
4042 
4043 
4044 
4045 
4046 
4047 
'4048 
4049 
4050 
4051 
4052 
4053 
4054 
4055 
4056 
4057 
4058 
4059 
4060 
4061 
4062 
4063 
4064 
4065 
4066 
4067 
4068 
4069 
4070 
4071 
4072 
4073 

PROCEDURE SUBSTASVALUE(PARALTLIST : PPALTBARS)i 

{ Analyses a substituent given as a substituent value, creates a DUMMY PS, and 
declares it using DECLARESUBST for each of the items in PARALTLIST. If 
the substituent has already been defined, copies the definition. 
Called from the body of ELEMENT} 

VAR SUBST : SUBSTITUENT; 
DUMMYCHILD, 
DUMMYSAVPS : PTRPSTYPEi 
DECNPPOSNS : PTGROUPMEMS; 
PREVDEFN : PALTERNLIST; 
OMITPG : BOOLEAN; 
GATECONNBONDS : TCONNBONDS; 
DUMMYPOSNS 

BEGIN 
NEXTTOKEN; 

: TGROUPMEMS; 

SUBST := VALIDSUBST(PARALTLIST)i 
NEW(DUMMYSAVPS, DUMMY); 
ECTRSIZE := ECTRSIZE + 8; 
WITH DUMMYSAVPS A DO 

BEGIN 
PSVARIETY := DUMMY; 
VISITED := FALSE; 
CHILDGATE := NIL; 
PARENTGATE := NIL; 
SUBSTNAME := SUBST 

END; 
ADDTOLIST(DUMMYSAVPS); 
GATECONNBONDS := PARALTLISTA.CONNBONDSi 
GETCHILDPOSITIONS(DUMMYSAVPS, GATECONNBONDS, DUMMYPOSNS); 

WHILE PARALTLIST <> NIL DO WITH PARALTLIST A DO 
BEGIN 

IF GATEPARENTPOSITIONS=NIL 
THEN DECNPPOSNS := PRNTPOSNS 
ELSE DECNPPOSNS := GATEPARENTPOSITIONSi 

> 
"'0 
"'0 
m z 
1:7 .... 
x 
lH 

Cil 
m 
z 
<n 
> ,... 
.... 
Z 
-i 
m 
:;:0 

"'0 
:;:0 
m 
-i 
m 
:;:0 



"'tJ 
III 
Ul 
ID 

N 
00 
-0 

4074 
4075 
4076 
4077 
4078 
4079 
4080 
4081 
4082 
4083 
4084 
4085 
4086 
4087 
4088 
4089 
4090 
4091 
4092 
4093 
4094 
4095 
4096 
4097 
4098 
4099 
4100 
4101 
4102 
4103 
4104 
4105 
4106 
4107 
4108 
4109 
4110 
4111 
4112 
4113 

IF PARALTLISTA.COPYCHILDPS THEN DUMMYCHILD := COPYPS(DUMMYSAVPS) 
ELSE DUMMYCHILD := DUMMYSAVPSi 

DECLARESUBST(SUBST, 
PARSTRUCT, 
DUMMYCHILD, 
CONNBONDS, 
DECNPPOSNS)i 

OMITPG := DEFNTABLEENTRY(PARSTRUCT); 
IF SUBST IN DEFNSUBS 

THEN PREVDEFN := RDEFINITIONTABLE[SUBST]A.ALTERNATIVES 
ELSE PREVDEFN := NILi 

RDECLARATIONTABLE[SUBST]A.COMBINS := EXTRALAYER(PARALTLIST, DUMMYCHILD)i 
IF NOT OMITPG THEN 

SETPARENTGATE(RDECLARATIONTABLE[SUBST]A.COMBINS-.ALTERNATIVES-.COMBINATION, 
WHILE PREVDEFN <> NIL DO WITH RDECLARATIONTABLE[SUBST]- DO 

BEGIN 
COPYALTBARCCOMBINSA.ALTERNATIVES, 

PREVDEFN-.COMBINATION, 
COMBINS, 
PRNTPOSNS, 
PARSTRUCT, 
FALSE, 
OMITPG, 
TRUE); 

PREVDEFN := PREVDEFN-.NEXT 
END; 

PARALTLIST := NEXT 
END 

END; 

{newaltbar} 
{oldcomblist} 
{lastcomblayer} 
{lastpposns} 
{prntps} 
Hi rstbar} 
{omitpg} 
{copypss} 

FUNCTION NOVARIABLESUBTNCLIMITPOSITIONS : TGROUPMEMS) 900LEAN; 

{ True if LIMITPOSITIONS is empty. 
Called by Body of ELEMENT} 

BEGIN 
WITH LIMITPOSITIONS DO 

IF COMBINED THEN NOVARIA8LESUBTN := (COMBMEMS=NIL) 

> 
"'tJ 
"'tJ 
m 
Z 
o ..... 
X 

VI 

PARALTLIST); 

m 
m 
z 
(I) 

> r 
..... 
z ..... 
m 
;Q 

"'tJ 
;Q 

m ..... 
m 
;Q 



"tI 
III 
IQ 
(1) 

N 
-0 
o 

4114 
4115 
4116 
4117 
4118 
4119 
4120 
4121 
4122 
4123 
4124 
4125 
4126 
4127 
4128 
4129 
4130 
4131 
4132 
4133 
4134 
4135 
4136 
4137 
4138 
4139 
4140 
4141 
4142 
4143 
4144 
4145 
4146 
4147 
4148 
4149 
4150 
4151 
4152 
4153 

ELSE NOVARIABLESUBTN := (MEMBERS=[]) 
END; 

PROCEDURE ADDZERO(VAR GATEFREQUENCY INTRECORD); 

{ Adds zero to the integer range in GATEFREQUENCY. 
CaLLed from body of ELEMENT} 

VAR PTR : PDOUBLIST; 

BEGIN 
WITH GATEFREQUENCY DO 

IF TOPRANGE = 0 

END; 

THEN { zero aLready present - no action needed} 
ELSE IF TOPRANGE = 1 

THEN TOPRANGE := 0 
ELSE IF SUBRANGES = NIL 

THEN SUBRANGES := ZEROFREQ 
ELSE BEGIN 

PTR := SUBRANGES; 
WHILE PTRA.NEXT <> NIL DO PTR := PTRA.NEXT; 
IF PTRA.FIRST = 0 

END 

THEN { zero aLready present - no action needed} 
ELSE IF PTRA.FIRST = 1 

THEN PTRA.FIRST := 0 
ELSE PTRA.NEXT := ZEROFREQ 

{-----------------------------------------------------------------------------} 
PROCEDURE GETLIMITPOSITIONS(PARALTLIST : PPALTBARS; 

VAR LIMITPOSITIONS : TGROUPMEMS); 

.. 
> 
"1J 
"1J 
m 
z 
c ...... 
x 
~ 

Cl 
m z 
(I) 

> 
r 
...... 
z 
-; 
m 
;0 
"1J 
;0 
m 
-t 
m 
;0 



." 
01 
c.a 
(1) 

N 
-0 
~ 

4154 
4155 
4156 
4157 
4158 
4159 
4160 
4161 
4162 
4163 
4164 
4165 
4166 
4167 
4168 
4169 
4170 
4171 
4172 
4173 
4174 
4175 
4176 
4177 
4178 
4179 
4180 
4181 
4182 
4183 
4184 
4185 
4186 
4187 
4188 
4189 
4190 
4191 
4192 
4193 

{ Establishes LIMITPOSITIONS from the contents of PARALTLIST. 
Called by Body of ELEMENT} 

VAR ALLGENERIC : BOOLEAN; 

BEGIN 
LIMITPOSITIONS.COMBINED := (PARALTLIST-.CONNBONDS.CONNECTIONS=2); 
WITH PARALTLISTA.PRNTPOSNS A DO 

IF LIMITPOSITIONS.COMBINED 
THEN IF COMBINED 

THEN LIMITPOSITIONS.COMBMEMS := COPYLISTCCOMBMEMS) 
ELSE BEGIN 

LIMITPOSITIONS.COMBMEMS := NIL; 
LISTPOSNS(LIMITPOSITIONS.COMBMEMS, MEMBERS, MEMBERS, MEMBERS) 

END 
ELSE IF COMBINED 

THEN PROGERROR(19) {combined position set with connectivity <> 2} 
ELSE LIMITPOSITIONS.MEMBERS := MEMBERS; 

WITH PARALTLIST A DO 
BEGIN 

IF PARSTRUCT = NIL 
THEN ALLGENERIC := TRUE 
ELSE ALLGENERIC := (PARSTRUCTA.PSVARIETY = GENERIC); 

PARALTLIST := NEXT 
END; 

WHILE PARALTLIST <> NIL DO WITH PARALTLIST A DO 
BEGIN 

IF ALLGENERIC AND (PARSTRUCT <> NIL) 
THEN ALLGENERIC := (PARSTRUCTA.PSVARIETY = GENERIC); 

IF LIMITPOSITIONS.COMBINED 
THEN REDUCE(LIMITPOSITIONS.COMBMEMS, PRNTPOSNS-) 
ELSE WITH PRNTPOSNS A DO 

IF COMBINED 
THEN PROGERROR(20) { combined position set with connectivity <> 2} 
ELSE LIMITPOSITIONS.MEMBERS := LIMITPOSITIONS.MEMBERS * MEMBERS; 

PARALTLIST := NEXT 
END; 

WITH LIMITPOSITIONS DO 
IF ALLGENERIC AND NOT COMBINED 

THEN MEMBERS := MEMBERS + [0] 

> 
." 
"'0 
m z 
1;;1 
I-f 
X 

VoI 

G) 
m 
z 
(I) 

> r 
I-f 
Z .... 
m 
:::0 
"'0 
:::0 
m .... 
m 
:::0 



." 
QI 
IQ 
tD 

N 
-0 
N 

4194 
4195 
4196 
4197 
4198 
4199 
4200 
4201 
4202 
4203 
4204 
4205 
4206 
4207 
4208 
4209 
4210 
4211 
4212 
4213 
4214 
4215 
4216 
4217 
4218 
4219 
4220 
4221 
4222 
4223 
4224 
4225 
4226 
4227 
4228 
4229 
4230 
4231 
4232 
4233 

END; 
{----------------------------------------------------------------------------} 

BEGIN <Body of Procedure ELEMENT } 
OPENERS := [GLSQUARE, GOPENANG, GR, GQUEST, GSD, GPRIME, GLPAREN]; 

3> 
." 
." 
m z 
o 
~ 

x 
TERMINATORS := [GRPAREN, GAMPERSAND, GSB, GOSB, GSLASH, GSEMI, GELSE, GEND, 
NEXTTOKEN; 

GPERIOD, GAND, GDR]; .. 
VALID := FALSE; 
REPEAT 

DELIMCHECK := CHECKDELIMCOPENERS); 
IF CDELIMCHECK=INVALIDTOKEN) AND (TOKEN.NATURE<>NOMENCLATURE) 

THEN ERROR(18,0) 
ELSE VALID := TRUE 

UNTIL VALID; 

GATEPARENTPOSITIONS := NIL; 
IF DELIMCHECK = GLSQUARE THEN 

BEGIN 
GETLIMITPOSITIONS(PARALTLIST, LIMITPOSITIONS); 
IF NOVARIABLESUBT,N(LIMITPOSITIONS) 

THEN WRITELN('Common definition of variable-substitution positions not possible.') 
ELSE BEGIN 

NEW(GATEPARENTPOSITIONS); 
ECTRSIZE := ECTRSIZE + 9; 
POSITIONSET(GATEPARENTPOSITIONS·, LIMITPOSITIONS, 
IF PARALTLISTA.CONNBONDS.CONNECTIONS = NOTSET 

PARALTLISTA.CONNBONDS.CONNE~IONS, 7); 

THEN BEGIN 
IF GATEPARENTPOSITIONS·.COMBINED 

THEN SETCONNBONDSCPARALTLISTA.CONNBONDS, 2) 
ELSE SETCONNBONDS(PARALTLISTA.CONNBONDS, 1); 

UPDATEPARALTCONNSCPARALTLIST) 
END; 

NEXTTOKEN 
END; 

VALID := FALSE; 
REPEAT 

DELIMCHECK := CHECKDELIM( OPENERS-[GLSQUARE]); 
IF (DELIMCHECK=INVALIDTOKEN) AND (TOKEN.NATURE <> NOMENCLATURE) 

z 
~ 
3> 
r-
~ 

z 
~ 
m 
:;0 

"tJ 
:;0 
m 
~ 
m 
:;0 



"'tI 

'" IQ 
CD 

N 
-0 
\oH 

4234 
4235 
4236 
4237 
4238 
4239 
4240 
4241 
4242 
4243 
4244 
4245 
4246 
4247 
4248 
4249 
4250 
4251 
4252 
4253 
4254 
4255 
4256 
4257 
4258 
4259 
4260 
4261 
4262 
4263 
4264 
4265 
4266 
4267 
4268 
4269 
4270 
4271 
4272 
4273 

THEN ERRORC24,0) 
ELSE VALID := TRUE 

UNTIL VALID 
END; 

IF DELIMCHECK=GOPENANG 
THEN BEGIN 

SELECTORCGATEFREQUENCY, [O •• MAXVARSJ, 8); 
IF OPTIONALSUB THEN ADDZERO(GATEFREQUENCY); 
NEXTTOKEN; 
VALID : = FALSE; 
REPEAT 

DELIMCHECK := CHECKDELIM( OPENERS - [GLSQUARE, GOPENANGJ); 
IF (DELIMCHECK=INVALIDTOKEN) AND (TOKEN. NATURE <> NOMENCLATURE) 

THEN ERROR(24,0) 
ELSE VALID := TRUE 

UNTIL VALID 
END 

ELSE WITH GATEFREQUENCY DO 
BEGIN 

TOPRANGE := NOTSET; 
IF OPTIONALSUB THEN SUBRANGES := OPTFREQ 

ELSE SUBRANGES := ESSENTFREQ 
END; 

CASE DELIMCHECK OF 

GPRIME 

GQUEST 

CONCATENATETERMSCGATEPS); 

: BEGIN 
NEW(GATEPS, UNKNOWN); 
ECTRSIZE := ECTRSIZE + 6; 
WITH GATEPS A DO 

END; 

BEGIN 
PSVARIETY := UNKNOWN; 
VISITED := FALSE; 
PARENTGATE := NIL; 
CHILDGATE := NIL 

END 

> 
-0 
-0 
m 
z 
o 
I-f 
X 

\oH 

en 
m 
z 
(I) 

> r 
I-f 
Z 
-t 
m 
;0 

-0 
;0 
m 
-t 
m 
;0 



" QI 
IQ 
111 

N 
-0 
~ 

4274 
4275 
4276 
4277 
4278 
4279 
4280 
4281 
4282 
4283 
4284 
4285 
4286 
4287 
4288 
4289 
4290 
4291 
4292 
4293 
4294 
4295 
4296 
4297 
4298 
4299 
4300 
4301 
4302 
4303 
4304 
4305 
4306 
4307 
4308 
4309 
4310 
4311 
4312 
4313 

GSD 

INVALIDTOKEN 

GR 

GLPAREN 

: READSD(GATEPS, INPUTMODE=TERMINAL); 

: TRANSLATENOMENCGATEPS); 

: BEGIN 
SUBSTASVALUE(PARALTLIST); 
GATE PS := NIL 

END; 

: BEGIN 
ALTNVLIST(NEWPARENTPSLIST(PARALTLIST), FALSE); 
WHILE CHECKDELIM( [GRPAREN]) = INVALIDTOKEN DO ERROR(14,0); 
GATEPS := NIL 

END 

END; {of case } 

IF GATEPS <> NIL THEN SETCOMBARS(PARALTLIST, GATEPS); 
IF DELIMCHECK <> INVALIDTOKEN THEN NEXTTOKEN; { TRANSLATENOMEN has taken NEXTTOKEN } 
WHILE CHECKDELIM( [GLSQUARE]+TERMINATORS)=INVALIDTOKEN DO ERROR(24,0); 
IF TOKEN.DELIMVAL = GLSQUARE THEN MODIFYCHILDPOSITIONS(PARALTLIST); 
WHILE CHECKDELIM(TERMINATORS)=INVALIDTOKEN DO ERROR(24,O) 
END; 

{ of Procedure ELEMENT 
-------------------------------------------------------------------------------} 

{----------------------------------------------------------------------------} 
PROCEDURE ALTNTVE(VAR PARALTLIST : PPALTBARS; 

OPTIONALSUB : BOOLEAN); 

{ Called once for each alternative in a definition expresssion 
and cycles round any number of levels of further substitution. Beyond the 
very first level, the bond type attachment is NOTSPECIFIED until the child 
structure itself is reached (in ELEMENT). 
At the end of each cycle, the former PARALTLIST 
is destroyed as a new one is created. The last one remalnlng is passed back 
(via the VAR parameter) to ALTNVLIST, where it ;s destroyed. 

:I» 

" " m 
z 
0 
t-4 
x 
~ .. 

en 
m 
z 
tI) 

:I» 
r 
...... 
z 
~ 
m 
;:0 

" ;:0 
m 
~ 
m 
;:0 



"'0 
III 
IQ 
ID 

N 
-0 
VI 

4314 
4315 
4316 
4317 
4318 
4319 
4320 
4321 
4322 
4323 
4324 
4325 
4326 
4327 
4328 
4329 
4330 
4331 
4332 
4333 
4334 
4335 
4336 
4337 
4338 
4339 
4340 
4341 
4342 
4343 
4344 
4345 
4346 
4347 
4348 
4349 
4350 
4351 
4352 
4353 

Called by ALTNVLIST} 

VAR DELIMCHECK : DELIMTYPE; 
COMB : PCOMBINLIST; 
NEWPARALTLIST, 
PTR : PPALTBARS; 

FUNCTION ALREADYINLIST(PTRPS PTRPSTYPE; 
PARALTLIST PPALTBARS) BOOLEAN; 

{ Returns TRUE if PTRPS is the PARSTRUCT field of any item in PARALTLIST. 
Called by ADDCOMBINPSS} 

VAR PSFOUND : BOOLEAN; 

BEGIN 
PSFOUND := FALSE; 
WHILE (PARALTLIST <> NIL) AND NOT PSFOUND DO WITH PARALTLIST A DO 

BEGIN 
PS FOUND := PARSTRUCT = PTRPS; 
PARALTLIST := NEXT 

END; 
ALREADYINLIST := PSFOUND 
END; 

PROCEDURE ADDPARALT(VAR NEWPARALTLIST : PPALTBARS; 
NEWPARENT : PTRPSTYPE); 

{ Adds one new item to NEWPARALTLIST, setting the ALTBAR field to NIL (because, 
as SB and OSB have a higher precedence than I, there cannot be any 
alternatives for this level) 
Called by ADDCOMBINPSS} 

VAR NEWPA : PPALTBARS; 

BEGIN 

> 
"'0 
"'0 
m z 
Q 
..... 
X 

VI 

(j) 
m 
z 
(I) 

> 
r 
..... 
Z 
-t 
m 
;;0 
"'0 
;;0 
m 
-t 
m 
;;0 



""0 
QI 
IQ 
I'D 

N 
-0 
0-

4354 
4355 
4356 
4357 
4358 
4359 
4360 
4361 
4362 
4363 
4364 
4365 
4366 
4367 
4368 
4369 
4370 
4371 
4372 
4373 
4374 
4375 
4376 
4377 
4378 
4379 
4380 
4381 
4382 
4383 
4384 
4385 
4386 
4387 
4388 
4389 
4390 
4391 
4392 
4393 

NEW(NEWPA); 
WITH NEWPA" DO 

BEGIN 
PARSTRUCT := NEWPARENT; 
ALTBAR := NIL; 
CONNBONDS.CONNECTIONS := NOTSET; 
COPYCHILDPS := FALSE; 
NEW(PRNTPOSNS); 
ECTRSIZE := ECTRSIZE + 9; 
PRNTPOSNS".COMBINED := FALSE; 
GETAVAILABLEPOSITIONS(PARSTRUCT, PRNTPOSNS-.MEMBERS, 1); 
NEXT := NEWPARALTLIST 

END; 
NEWPARAlTlIST := NEWPA 
END; 

PROCEDURE ADDCOMBINPSS(COMBIN PCOMBINLIST; 
VAR NEWPARAlTlIST PPAlTBARS); 

{ Adds to NEWPARALTLIST the partial structures pointed to by the combination 
in COMBIN. If COMBIN is non-BOTTOMBAR then the procedure calls itself recursively 
for each of the ALTERNATIVES. A check is made (FUNCTION ALREADYINLIST) to 
prevent the same PS being included in the list more than once. 
If COMBIN is BOTTOMBAR, NEWPARALT is used to insert the new item in the 
list. 
Called by Body of ALTNTVE} 

VAR AlTERN : PAL TERNLIST; 

BEGIN 
IF COMBIN-.BOTTOMBAR 

THEN IF ALREADYINlIST(COMBIN".CHIlDPS, NEWPARALTLIST) 
THEN {don't duplicate} 
ELSE ADDPARAlT(NEWPARALTLIST, COMBIN".CHILDPS) 

ELSE BEGIN 
ALTERN := COMBIN".ALTERNATIVES; 
REPEAT 

ADDCOMBINPSS(ALTERN".COMBINATION, NEWPARALTLIST); 

> 
""0 
""0 
m z 
o 
1-4 
X 

lH 

(i') 
m 
z 
Cl) 

> 
r 
1-4 
Z 
-t 
m 
:;;0 

""0 
:;;0 
m 
-t 
m 
:;;0 



""0 
AI 
\Cl 
Cl 

N 
-0 ..... 

4394 
4395 
4396 
4397 
4398 
4399 
4400 
4401 
4402 
4403 
4404 
4405 
4406 
4407 
4408 
4409 
4410 
4411 
4412 
4413 
4414 
4415 
4416 
4417 
4418 
4419 
4420 
4421 
4422 
4423 
4424 
4425 
4426 
4427 
4428 
4429 
4430 
4431 
4432 
4433 

END; 

ALTERN := ALTERN-.NEXT 
UNTIL ALTERN = NIL 

END 

BEGIN {Body of Procedure ALTNTVE} 
REPEAT 

REPEAT ELEMENTCPARALTLIST, OPTIONALSUB) 
UNTIL CHECKDELIMC[GAMPERSAND)=INVALIDTOKEN; 
DELIMCHECK := CHECKDELIMC[GSB,GOSB]); 
IF DELIMCHECK <> INVALIDTOKEN THEN 

BEGIN 
NEWPARALTLIST := NIL; 
WHILE PARALTLIST <> NIL DO 

BEGIN 
IF PARALTLIST-.ALTBAR = NIL 

THEN COMB := PARALTLIST-.PARSTRUCT-.CHILDGATE 
ELSE COMB := PARALTLIST-.ALTBAR-.COMBINATION; 

WHILE COMB <> NIL DO 
BEGIN 

ADDCOMBINPSSCCOMB, NEWPARALTLIST); 
COMB := COMB-.NEXT 

END; 
PTR := PARALTLISTA.NEXT; 
DISPOSECPARALTLIST); 
PARALTLIST := PTR 

END; 
PARALTLIST := NEWPARALTLIST; 
OPTIONALSUB := DELIMCHECK = GOSB 

END 
UNTIL DELIMCHECK=INVALIDTOKEN 
END; 

{ of Procedure ALTNTVE 
------------------------------------------------------------------------------} 

{---------------------------------------------------------------------------} 

> 
""0 
""0 
IT! 
:z 
o ..... 
x 
VoI 

en 
IT! 
:z 
(n 

> r 
..... 
:z 
-t 
m 
;;0 
"tI 
;;0 
IT! 
-t 
IT! 
;;0 



-0 
QI 
IQ 
ID 

N 
-0 
00 

4434 
4435 
4436 
4437 
4438 
4439 
4440 
4441 
4442 
4443 
4444 
4445 
4446 
4447 
4448 
4449 
4450 
4451 
4452 
4453 
4454 
4455 
4456 
4457 
4458 
4459 
4460 
4461 
4462 
4463 
4464 
4465 
4466 
4467 
4468 
4469 
4470 
4471 
4472 
4473 

FUNCTION PPOSNS(DUMMYCOMBIN : PCOMBINLIST; 
: PTRPSTYPE; NEWPARENT 

DUMMYSUBST : SUBSTITUENT) PTGROUPMEMS; 

{ Returns an appropriate parent positions set for NEWPARENT, after considering 
the positions available in it for the appropriate MAGNITUDE, and those 
positions specified for substitution in DUMMYCOMBIN. Outputs appropriate 
error messages if incompatibilities are detected. 
Called by ADDFURTHERSUBTN} 

VAR AVAILPOSNS 
POSNS 

: ARRAY[1 •• 3] OF INTEGSET; 
: PTGROUPMEMS; 

LMAG TBONDMAG; 

FUNCTION FINDBOTTOMCALTERN PALTERNLIST; 
FUNCTION MAG TBONDMAG): TBONDMAG; 

{ Traces down all the aternatives in the list headed by ALTERN using the formal 
function MAG. Returns the largest bond magnitude. 
Called by LMAGNOCHECKS 

VAR LBOND, 
MBOND : 

LMAGCHECKS} 

TBONDMAG; 
COMB : PCOMBINLIST; 

BEGIN 
LBOND := 0; 
WHILE ALTERN <> NIL DO 

BEGIN 
COMB := ALTERN-.COMBINATION; 
WHILE COMB <> NIL DO 

BEGIN 
MBOND := MAGCCOMB); 
IF MBOND > LBOND THEN LBOND := MBOND; 
COMB := COMB-.NEXT 

END; 
ALTERN := ALTERN-.NEXT 

> 
-0 
-0 
m 
z 
o 
I-t 
X 

'"'" 

G'l 
m 
z 
VJ 
> r 
I-t 
Z 
-i 
m 
:;0 
-0 
:;0 
m 
-t 
m 
:;0 



." 
C» 
IQ 
ID 

N 
-0 
-0 

4474 
4475 
4476 
4477 
4478 
4479 
4480 
4481 
4482 
4483 
4484 
4485 
4486 
4487 
4488 
4489 
4490 
4491 
4492 
4493 
4494 
4495 
4496 
4497 
4498 
4499 
4500 
4501 
4502 
4503 
4504 
4505 
4506 
4507 
4508 
4509 
4510 
4511 
4512 
4513 

END; 
FINDBOTTOM := LBOND 
END; 

FUNCTION LMAGNOCHECKS(COMBIN PCOMBINLIST): TBONDMAG; 

{ Traces down COMBIN by calling itself recursively via FINDBOTOM. 
At the bottom bar, returns the largest bond MAGNITUDE. 
Called by LMAGCHECKS 

FINDBOTTOM Cas formal parameter) } 

VAR LMAG TBONDMAG; 

BEGIN 
IF COMBINA.BOTTOMBAR 

THEN WITH COMBINA, CONNBONDS DO 
CASE CONNECTIONS OF 

NOTSET : LMAG := 1; 
o : LMAG := 0; 
1 : LMAG := MAGNITUDE(BOND); 
2 : BEGIN 

END 

LMAG := MAGNITUDE(BONDA); 
IF MAGNITUDE(BONDB) > LMAG 

THEN LMAG := MAGNITUDE(BONDB) 
END 

ELSE LMAG := FINDBOTTOMCCOMBINA.ALTERNATIVES, LMAGNOCHECKS); 
LMAGNOCHECKS := LMAG 
END; 

FUNCTION LMAGCHECKSCCOMBIN : PCOMBINLIST) : TBONDMAGi 

{ Traces down COMBIN, calling itself recursively via FINDBOTTOM, 
until it encounters a bar containing a PARENTPOSITIONS field, 
or reaches the bottom of the gate. In either case, calls LMAGNOCHECKS 
to obtain the largest bond magnitude from the 

:I» 
." 
""0 
m z 
o .... 
x 
lH 

Cil 
m 
z 
(I) 

:I» 
r 
.... 
Z 
-of 
m 
:;0 
""0 
:;0 
m 
-of 
m 
:;0 



"'tI 
QJ 
IQ 
t'\) 

lH o o 

4514 
4515 
4516 
4517 
4518 
4519 
4520 
4521 
4522 
4523 
4524 
4525 
4526 
4527 
4528 
4529 
4530 
4531 
4532 
4533 
4534 
4535 
4536 
4537 
4538 
4539 
4540 
4541 
4542 
4543 
4544 
4545 
4546 
4547 
4548 
4549 
4550 
4551 
4552 
4553 

bottom of the gate, and ensures that the PARENTPOSITIONS field (if given) is 
a subset of the positions available for this magnitude. The value of the 
magnitude is returned. 
Called by PPOSNS 

FINDBOTTOM (as formal parameter)} 

VAR LMAG : TBONDMAG; 

BEGIN 
IF COMBINA.PARENTPOSITIONS <> NIL 

THEN BEGIN 
LMAG := LMAGNOCHECKS(COMBIN); 
WITH COMBINA, PARENTPOSITIONS A DO 

IF COMBINED 

END 

THEN CHECKALLWITHIN(COMBMEMS, AVAILPOSNS[LMAGJ, 3) 
ELSE IF MEMBERS <= AVAILPOSNS[LMAGJ 

THEN { specified positions are all available} 
ELSE FAILURE(49, DUMMYSUBST,' ') 

ELSE IF COMBINA.BOTTOMBAR 
THEN LMAG := LMAGNOCHECKS(COMBIN) 
ELSE LMAG := FINDBOTTOM(COMBINA.ALTERNATIVES, LMAGCHECKS); 

LMAGCHECKS := LMAG 
END; 

BEGIN {Body of PPOSNS} 
FOR LMAG := 1 TO 3 DO GETAVAILABLEPOSITIONS(NEWPARENT, AVAILPOSNS[LMAGJ, LMAG); 
IF AVAILPOSNS[1J = [J 

THEN FAILURE(50, DUMMYSUBST,' ')i 
WITH DUMMYCOMBIN A DO 

IF PARENTPOSITIONSA.COMBINED 
THEN BEGIN 

LMAG := LMAGCHECKS(DUMMYCOMBIN); 
PPOSNS := PARENTPOSITIONS 

END 
ELSE IF PARENTPOSITIONSA.MEMBERS = [1 •• MAXCTJ 

THEN BEGIN 
IF NOT DU~MYCOMBINA.BOTTOMBAR 

>­
"'tI 
"'tI 
m 
Z 
o .... 
X 

lH 

en 
m 
z 
(I) 

>­r-
.... 
z 
~ 
m 
;;0 

"'tI 
;;0 
m 
~ 
m 
;;0 



" '" IQ 
(1) 

I.H 
o 
-10 

4554 
4555 
4556 
4557 
4558 
4559 
4560 
4561 
4562 
4563 
4564 
4565 
4566 
4567 
4568 
4569 
4570 
4571 
4572 
4573 
4574 
4575 
4576 
4577 
4578 
4579 
4580 
4581 
4582 
4583 
4584 
4585 
4586 
4587 
4588 
4589 
4590 
4591 
4592 
4593 

END; 

THEN LMAG := FINDBOTTOMCDUMMYCOMBIN-.ALTERNATIVES, LMAGCHECKS); 
NEWCPOSNS); 
ECTRSIZE := ECTRSIZE + 9; 
POSNS-.COMBINED := FALSE; 
POSNS-.MEMBERS := AVAILPOSNS[LMAG]; 
PPOSNS := POSNS 

END 
ELSE BEGIN 

LMAG := LMAGCHECKSCDUMMYCOMBIN); 
PPOSNS := PARENTPOSITIONS 

END 

{ of PPOSNS 
-----------------------------------------------------------------------------} 

PROCEDURE ADDFURTHERSUBTNCCOMBINBAR : PCOMBINLIST; 
DUMMYPS : PTRPSTYPE); 

{ Copies the further substitution on DUMMYPS onto the PSs at the bottom of 
COMBINBAR. 
Called by Body of ALTNVLIST} 

VAR ALTERNBAR : PALTERNLIST; 
FSUBCOMB : PCOMBINLIST; 

BEGIN 
WHILE COMBINBAR <> NIL DO WITH COMBINBAR- DO 

BEGIN 
IF BOTTOMBAR 

THEN BEGIN 
FSUBCOMB := DUMMYPS-.CHILDGATE; 
REPEAT 

COPYCOMBAR({newcombar} CHILDPS-.CHILDGATE, 
{oldcombar} FSUBCOMB, 
{lastcomblayer} NIL, 
{lastpposns} PPOSNS(FSUBCOMB, CHILDPS, DUMMYPS-.SUBSTNAME), 
{prntps} CHILDPS, 
{firstbar} TRUE, 

> 

" ""0 
m 
z .., 
1-4 
X 

I.H 

Gl 
m 
z 
(I) 

> r 
1-4 
Z 
-t 
m 
;;0 

" ;;0 
m 
-t 
m 
;;0 



""0 
III 
IQ 
111 

v.I 
o 
N 

4594 
4595 
4596 
4597 
4598 
4599 
4600 
4601 
4602 
4603 
4604 
4605 
4606 
4607 
4608 
4609 
4610 
4611 
4612 
4613 
4614 
4615 
4616 
4617 
4618 
4619 
4620 
4621 
4622 
4623 
4624 
4625 
4626 
4627 
4628 
4629 
4630 
4631 
4632 
4633 

{omitpg} DEFNTABLEENTRY(CHILDPS), 
{copypss} FALSE); 

FSUBCOMB := FSUBCOMB-.NEXT 
UNTIL FSUBCOMB = NIL 

END 
ELSE BEGIN 

ALTERNBAR := ALTERNATIVES; 
REPEAT 

ADDFURTHERSUBTN(ALTERNBARA.COMBINATION, DUMMYPS); 
ALTERNBAR := ALTERNBAR-.NEXT 

UNTIL ALTERNBAR = NIL 
END; 

COMBINBAR := NEXT 
END 

END; 

BEGIN { Body of Procedure ALTNVLIST } 
REPEAT 

PARALTLIST := NIL; 
READPTR := PARENTPSLIST; 
WHILE READPTR <> NIL DO 

BEGIN 
NEW (NEWALTERNATIVE); 
ECTRSIZE := ECTRSIZE + 4; 
NEWALTERNATIVE-.COMBINATION := NIL; 
NEWALTERNATIVE-.NEXT := READPTR-.COMBINS-.ALTERNATIVES; 
READPTR-.COMBINS-.ALTERNATIVES := NEWALTERNATIVE; 

NEW(WRITEPTR); 
WRITEPTR-.PARSTRUCT := READPTR-.PARSTRUCT; 
WRITEPTR-.CONNBONDS := READPTR-.CONNBONDS; 
WRITEPTR-.PRNTPOSNS := READPTR-.PRNTPOSNS; 
WRITEPTR-.ALTBAR := NEWALTERNATIVE; 
IF READPTRA.COPYCHILDPS 

THEN WRITEPTRA.COPYCHILDPS := TRUE 
ELSE IF READPTRA.FURTHERSUB = NIL 

THEN WRITEPTRA.COPYCHILDPS := FALSE 
ELSE WRITEPTRA.COPYCHILDPS := READPTR-.FURTHERSUB-.CHILDGATE <> NIL; 

> 
""0 
""0 
m 
Z 
1:7 
I-t 
X 

lJoI 

Ci) 
m 
z 
(I) 

> 
r 
I-t 
Z 
-t 
m 
:;0 
""0 
:;0 
I'T1 
-t 
m 
:;0 



"lJ 
QI 

IQ 
I'D 

v.I 
o 
v.I 

4634 
4635 
4636 
4637 
4638 
4639 
4640 
4641 
4642 
4643 
4644 
4645 
4646 
4647 
4648 
4649 
4650 
4651 
4652 
4653 
4654 
4655 
4656 
4657 
4658 
4659 
4660 
4661 
4662 
4663 
4664 
4665 
4666 
4667 
4668 
4669 
4670 
4671 
4672 
4673 

WRITEPTR-.NEXT := PARALTLISTi 
PARALTLIST := WRITEPTRi 

READPTR := READPTR-.NEXT 
END; 

ALTNTVECPARALTLIST, OPTIONALSUB)i 
WHILE PARALTLIST <> NIL DO 

BEGIN 
WRITEPTR := PARALTLIST-.NEXT; 
DISPOSECPARALTLIST)i 
PARALTLIST := WRITEPTR 

ENDi 

READPTR := PARENTPSLISTi 
WHILE READPTR <> NIL DO WITH READPTR- DO 

BEGIN 
IF FURTHERSUB <> NIL 

THEN IF FURTHERSUB-.CHIlDGATE <> NIL 
THEN ADDFURTHERSUBTNCCOMBINS-.AlTERNATIVES-.COMBINATION, FURTHERSUB)i 

READPTR := NEXT 
END 

UNTIL CHECKDElIMC[GSLASH])=INVALIDTOKENi 
WHILE PARENTPSlIST <> NIL DO 

BEGIN 
READPTR := PARENTPSlIST-.NEXT; 
DISPOSE(PARENTPSlIST); 
PARENTPSlIST := READPTR 

END 
END; 

{ OF PROCEDURE AlTNVlIST 
******************************************************************************} 

{****************************************************************************** 

> 
"lJ 
"lJ 
m 
z 
1;7 
I-t 
X 

lH 

Ci) 
m 
z 
(I) 

> 
r-
I-t 
Z 
-t 
m 
;;Q 
-a 
;;Q 
m 
-t 
m 
;;Q 



"'0 
III 
IQ 
~ 

I.H 
o 
~ 

4674 
4675 
4676 
4677 
4678 
4679 
4680 
4681 
4682 
4683 
4684 
4685 
4686 
4687 
4688 
4689 
4690 
4691 
4692 
4693 
4694 
4695 
4696 
4697 
4698 
4699 
4700 
4701 
4702 
4703 
4704 
4705 
4706 
4707 
4708 
4709 
4710 
4711 
4712 
4713 

PROCEDURE ASSIGNMENTSTMNT 

*******************************************************************************} 
PROCEDURE ASSIGNMENTSTMNT; 

{ Analyses an assignment statement. 
Called by STATEMENT} 

VAR SELECTEDFREQ : INTRECORD; 

FUNCTION ASSGNTOP TSELECTMODE; 

{ Returns the value of an assignment operator. 
Called by SUBSTASSIGNMENT 

MULTASSIGNMENT} 

BEGIN 
WHILE CHECKDELIM([GDEQ,GSEQ,GHASHEQ,GDOLEQ,GEQUALS]) = INVALIDTOKEN 00 ERROR(32,0); 
CASE TOKEN.DELIMVAL OF 

GEQUALS : ASSGNTOP := INDEPENDENT; 
GSEQ : ASSGNTOP := ALLSAME; 
GDEQ : ASSGNTOP := ALLDIFF; 
GDOLEQ : ASSGNTOP := NOTALLSAME; 
GHASHEQ : ASSGNTOP := NOTALLDIFF 
END 

END; 

{-----------------------------------------------------------------------------} 
PROCEDURE SUBSTGROUP(VAR GROUPMEMS 

LIMITSET 
ERROR CODE 

TGROUPMEMS; 
INTEGSET; 
INTEGER); 

{ Analyses a substituent group, all members of which must fall in LIMITSET. 
Called by SUBSTASSIGNMENT} 

> 
"'0 
"'0 
m 
z 
Cl 
1-4 
X 

VoI 

G'I 
m 
z 
(I) 

> r 
1-4 
Z 
~ 
m 
;;0 

"'0 
;;0 

m 
-i 
m 
;;0 



"Q 
QI 
IQ 
111 

~ 
o 
VI 

4714 
4715 
4716 
4717 
4718 
4719 
4720 
4721 
4722 
4723 
4724 
4725 
4726 
4727 
4728 
4729 
4730 
4731 
4732 
4733 
4734 
4735 
4736 
4737 
4738 
4739 
4740 
4741 
4742 
4743 
4744 
4745 
4746 
4747 
4748 
4749 
4750 
4751 
4752 
4753 

LABEL 10; 

VAR TERMINATORS : DELIMSET; 
CONNECTIVITY : TCONNS; 

PROCEDURE REVISELIMITS(VAR LIMITSET : INTEGSET; 
CONNECTIVITY: TCONNS); 

{ Removes those elements in LIMITSET for which the connectivity shown in 
RDECLARATIONTABLE is not compatible with CONNECTIVITY} 

VAR SUBST : SUBSTITUENT; 

BEGIN 
FOR SUBST := 1 TO MAXVARS DO 

IF SUBST IN LIMITS ET 

END; 

THEN WITH RDECLARATIONTABLE[SUBST]A.CONNBONDS DO 
IF (CONNECTIONS=CONNECTIVITY) OR (CONNECTIONS=NOTSET) 

THEN {would be compatible} 
ELSE LIMITSET := LIMITSET - [SUBST] 

PROCEDURE CHECKCOMPATABILITY(GROUP INTEGSET; 
CONNECTIVITY TCONNS); 

{ Checks that the substituents in GROUP have compatible CONNECTIVITY} 

VAR SUBST SUBSTITUENT; 

BEGIN 
IF CONNECTIVITY = NOTSET 

THEN FOR SUBST := 1 TO MAXVARS DO 
IF SUBST IN GROUP 

THEN WITH RDECLARATIONTABLE[SUBST]-, CONNBONDS DO 
IF CONNECTIONS <> NOTSET 

THEN CONNECTIVITY := CONNECTIONS; 

i 
> 
"Q 
"Q 
m 
Z 
0' ..... 
X 

~ 

Cil 
m 
z 
(I) 

> r 
..... 
Z 
-i 
m 
:;c 
"Q 
:;c 
m 
-i 
m 
:;c 



""0 
III 
IQ 
ID 

VI 
o 
0-

-4754 
4755 
4756 
4757 
4758 
4759 
4760 
4761 
4762 
4763 
4764 
4765 
4766 
4767 
4768 
4769 
4770 
4771 
4772 
4773 
4774 
4775 
4776 
4777 
4778 
4779 
4780 
4781 
4782 
4783 
4784 
4785 
4786 
4787 
4788 
4789 
4790 
4791 
4792 
4793 

IF CONNECTIVITY = NOTSET 
THEN {still no information on connectivity. No compatability checking possible} 
ELSE FOR SUBST := 1 TO MAXVARS DO 

END; 

IF SUBST IN GROUP 
THEN WITH RDECLARATIONTABLE[SUBST]- DO 

IF CONNBONDS.CONNECTIONS = NOTSET 
THEN BEGIN 

SETCONNBONOSCCONNBONDS, CONNECTIVITY); 
UPDATEPPSCONNSCRDECLARATIONTABLE[SUBST]) 

END 
ELSE IF CONNBONDS.CONNECTIONS = CONNECTIVITY 

THEN {compatible} 
ELSE FAILUREC51, 0,' ') 

FUNCTION LISTSMATCHCSUBSTA, SUBSTB : SUBSTITUENT) BOOLEAN; 

{ Checks that the declarations for SUBSTA and SUBSTB all refer to the same PSs } 

VAR ADECNS, 
BDECNS : PPSLIST; 
FOUND BOOLEAN; 

BEGIN 
ADECNS := RDECLARATIONTABLE[SUBSTA]i 
REPEAT 

BDECNS := RDECLARATIONTABLE[SUBSTB]; 
REPEAT 

FOUND := CADECNS-.PARSTRUCT = BDECNS-.PARSTRUCT) AND CADECNS <> BDECNS); 
BDECNS := BDECNS-.NEXT 

UNTIL FOUND OR (BDECNS = NIL); 
IF FOUND 

THEN ADECNS := ADECNS-.NEXT 
ELSE BEGIN 

ERROR C37 ,0) i 
ADECNS := NIL 

END 
UNTIL ADECNS = NIL; 

> 
""0 
""0 
m 
z 
01 
1-4 
X 

VI 

en 
m 
z 
Vl 
> 
r 
1-4 
Z 
-f 
m 
;;0 

""0 
;;0 
m 
-f 
m 
;;0 



"'0 
I» 
\Cl 
I'D 

VoI 
o 
~ 

4794 
4795 
4796 
4797 
4798 
4799 
4800 
4801 
4802 
4803 
4804 
4805 
4806 

'4807 
4808 
4809 
4810 
4811 
4812 
4813 
4814 
4815 
4816 
4817 
4818 
4819 
4820 
4821 
4822 
4823 
4824 
4825 
4826 
4827 
4828 
4829 
4830 
4831 
4832 
4833 

LISTSMATCH := FOUND 
END; 

PROCEDURE SUBSTCOMBINATIONCVAR COMBMEMS : PDOU8LIST); 

{ Analyses a substituent combination} 

VAR SUBCOMB PDOUBLIST; 

BEGIN 
NEWCSUBCOMB); 
NEXTTOKEN; 
WHILE CHECKDELIMC[GR]) = INVALIDTOKEN DO ERROR(26,0); 
NEXTTOKEN; 
CHECKVALIOINTCLIMITSET,35); 
SU8COMB A .FIRST := TOKEN.INTEGVAL; 
NEXTTOKEN; 
WHILE CHECKDELIMC[GPLUS]) = INVALIDTOKEN DO ERRORC36, 0); 
NEXTTOKEN; 
WHILE CHECKOELIMC[GR]) = INVALIDTOKEN DO ERRORC26, 0); 
NEXTTOKEN; 
WITH SUBCOMB A DO 

REPEAT 
CHECKVALIOINTCLIMITSET, 35); 
SECOND := TOKEN.INTEGVAL 

UNTIL LISTSMATCHCFIRST, SECOND) AND LISTSMATCHCSECOND, FIRST); 
NEXTTOKEN; 
WHILE CHECKDELIMC[GCOMMAJ + TERMINATORS) = INVALIDTOKEN DO ERRORC24, 0); 
SU9COMB A .NEXT := COMBMEMS; 
COMBMEMS := SUBCOMB 
END; 

BEGIN {Body of Procedure SUBSTGROUP } 
TERMINATORS := [GNOTEQ,GEQUALS,GOEQ, GSEQ, GOOLEQ, GHASHEQ, GPERIOD]; 
LOOKAHEAO; 
CHECKVALIDINTCLIMITSET, ERRORCODE); 

):00 
-0 
"'0 
rn 
z 
c 
1-4 
X 

VoI 

(i) 
rn 
z 
(I) 

> r 
1-4 
Z 
~ 
rn 
;::0 

"'0 
;::0 
rn 
~ 
rn 
;::0 



""0 
III 
IQ 
ID 

1.01 
o 
C» 

4834 
4835 
4836 
4837 
4838 
4839 
4840 
4841 
4842 
4843 
4844 
4845 
4846 
4847 
4848 
4849 
4850 
4851 
4852 
4853 
4854 
4855 
4856 
4857 
4858 
4859 
4860 
4861 
4862 
4863 
4864 
4865 
4866 
4867 
4868 
4869 
4870 
4871 
4872 
4873 

CONNECTIVITY := RDECLARATIONTABLE(TOKEN.INTEGVAL)A.CONN90NDS.CONNECTIONSi 
LOOKAHEADi 
10: 
WHILE CHECKDELIM([GPLUS, GCOMMA, GHYPHEN)+TERMINATORS)=INVALIDTOKEN DO ERROR(24,0)i 
GROUPMEMS.COMBINED := TOKEN.DELIMVAL = GPLUSi 
IF GROUPMEMS.COMBINED 

THEN CASE CONNECTIVITY OF 
0, 2 : BEGIN 

ERROR(30,0); 
GOTO 10 

END; 
NOTSET, 
1 BEGIN 

END 
ELSE BEGIN 

REVISELIMITS(LIMITSET, 1); 
GROUPMEMS.COMBMEMS := NIL; 
REPEAT SUBSTCOMBINATION(GROUPMEMS.COM9MEMS) 
UNTIL CHECKDELIMC[GCOMMA)=INVALIDTOKEN 

END 

IF CONNECTIVITY <> NOTSET THEN REVISELIMITSCLIMITSET, CONNECTIVITY); 
NEXTTOKENi 
GROUPRANGECGROUPMEMS.MEM8ERS, LIMITSET, ERRORCODE)i 
CHECKCOMPATABILITY(GROUPMEMS.MEMBERS, CONNECTIVITY) 

END; 
WHILE CHECKDELIMCTERMINATORS)=INVALIDTOKEN DO ERRORC24,0) 
END; 

{ of Procedure SU8STGROUP 
------------------------------------------------------------------------------} 

{------------------------------------------------------------------------------} 
FUNCTION POINTERLIST(GROUPMEMS : TGROUPMEMS) : PPSLISTi 

VAR READPTR, 
WRITEPTR, 
LISTPTR PPSLISTi 
SUBST : SUBSTITUENTi 

> 
""0 
""0 
rn z 
a 
M 
x 
V.I 

Cl rn 
z 
(I) 

» 
r 
M 
Z 
-i 
rn 
;;:0 

""0 
;;:0 
rn 
-i 
rn 
;;:0 



""0 
I» 
IQ 
111 

VI 
o 
-0 

4874 
4875 
4876 
4877 
4878 
4879 
4880 
4881 
4882 
4883 
4884 
4885 
4886 
4887 
4888 
4889 
4890 
4891 
4892 
4893 
4894 
4895 
4896 
4897 
4898 
4899 
4900 
4901 
4902 
4903 
4904 
4905 
4906 
4907 
4908 
4909 
4910 
4911 
4912 
4913 

{ Sets up a linked list of declarations for use in gate-setting. 
One element in the list represents one declaration of one substituent, 
so the same parent may appear several times in the list. 
The list is built up from the entries in RDECLARATIONTABLE. 
Called by SUBSTASSIGNMENT} 

PROCEDURE GETBINFOCVAR BONDB 
VAR POSNSB 
BPTR 
PARENTPS 

BONDORDER; 
INTEGSET; 
PPSLIST; 
PTRPSTYPE) ; 

{ Obtains bond order and positions from the second substituent of a combination. 
They are compiled from the information given in all the items in the BPTR 
list which reference PARENTPS. 
Called by ADDCOMBSUBS} 

VAR FAILSTRING : STRING4; 

BEGIN 
BONDB := NOTSPECIFIED; 
POSNSB := C]; 
WHILE BPTR <> NIL DO WITH BPTR A DO 

BEGIN 
IF PARSTRUCT = PARENTPS THEN 

BEGIN 
IF PRNTPOSNSA.COMBINED 

THEN PROGERROR(22) {COMBINED position set in combined substituent} 
ELSE POSNSB := POSNSS + PRNTPOSNSA.MEMSERS; 

CASE CONNBONDS.CONNECTIONS OF 
NOTSET : ; 
0, 2 : PROGERROR(26); {Only connectivity of 1 permitted in combined substituents} 
1 : IF CONNBONDS.BOND <> NOTSPECIFIED 

THEN BEGIN 
BONDS := SONDMATCHARRAYCCONNSONDS.SOND, SONDS]; 
IF BONDS = NOTSPECIFIED 

THEN BEGIN 
FAILSTRING[1] := BONDSTRING[CONNBONDS.SOND, 1]; 

» 
""0 
""0 
m 
z 
Q 
1-4 
X 

I.H 

Cl 
m 
z 
(I) 

» 
r 
I-f 
Z 
-I 
m 
;0 

""0 
;0 
m 
-I 
m 
;0 



." 
I» 
IQ 
11» 

I.H ..... 
o 

4914 
4915 
4916 
4917 
4918 
4919 
4920 
4921 
4922 
4923 
4924 
4925 
4926 
4927 
4928 
4929 
4930 
4931 
4932 
4933 
4934 
4935 
4936 
4937 
4938 
4939 
4940 
4941 
4942 
4943 
4944 
4945 
4946 
4947 
4948 
4949 
4950 
4951 
4952 
4953 

END 
END; 

BPTR := NEXT 
END; 

END 

IF POSNSB = (] THEN PROGERROR(25) 
END; 

PROCEDURE ADDCOMBSUBSCAPTR, 

FAIlSTRING(2] := BONDSTRING(CONNBONDS.BOND, 2]; 
FAIlSTRING(3] := BONDSTRING(BONDB, 1]; 
FAIlSTRING(4] := BONDSTRING(BONDB, 2]; 
FAIlURE(42, 0, FAIlSTRING) 

END 

BPTR PPSlIST; 
VAR lISTPTR : PPSlIST)i 

{ Adds a substituent combination to the PPSlIST. 
Called by Body of POINTERlIST} 

VAR WRITEPTR : PPSlIST; 
POSNSA, 
POSNSB, 
POSNSC INTEGSET; 
MAGSUM INTEGER; 

BEGIN 
NEW(WRITEPTR); 
WITH WRITEPTR~ DO 

BEGIN 
PARSTRUCT := APTRA.PARSTRUCT; 
FURTHERSUB := NIL; 
WITH CONNBONDS DO 

BEGIN 
CONNECTIONS := 2; 
CASE APTRA.CONNBONDS.CONNECTIONS OF 

NOTSET : BONDA := NOTSPECIFIED; 
0, 2 : PROGERROR(23); {connectivity must be 1 for combined substituents} 
1 : BONDA := APTRA.CONNBONDS.BOND 

):» 

." 

." 
m z 
o 
1-4 
X 

I.H 

G) 
m 
z 
(I) 
):» .-
1-4 
Z 
-i 
m 
;:0 
-0 
;:0 
m 
-i 
m 
;:0 



" QI 
IQ 
C1I 

1.1'1 
~ 

--

4954 
4955 
4956 
4957 
4958 
4959 
4960 
4961 
4962 
4963 
4964 
4965 
4966 
4967 
4968 
4969 
4970 
4971 
4972 
4973 
4974 
4975 
4976 
4977 
4978 
4979 
4980 
4981 
4982 
4983 
4984 
4985 
4986 
4987 
4988 
4989 
4990 
4991 
4992 
4993 

END; 
GETBINFOCBONDB, POSNSB, BPTR, PARSTRUCT) 

END; 
WITH APTRA.PRNTPOSNS A DO 

IF COMBINED 
THEN PROGERROR(24) {COMBINED position set with combined substituents} 
ELSE POSNSA := MEMBERS; 

IF POSNSA * POSNSB = [] 
THEN POSNSC := [] 
ELSE BEGIN 

WITH CONNBONDS DO MAGSUM := MAGNITUDECBONDA) + MAGNITUOECBONOB); 
IF MAGSUM <= 3 

THEN GETAVAILABLEPOSITIONSCPARSTRUCT, POSNSC, MAGSUM) 
ELSE POSNSC := []; 

POSNSC := POSNSA * POSNSB * POSNSC 
END; 

NEWCPRNTPOSNS); 
ECTRSIZE := ECTRSIZE + 9; 
WITH PRNTPOSNS A DO 

BEGIN 
COMBINED := TRUE; 
COMBMEMS := NIL; 
LISTPOSNSCCOMBMEMS, POSNSA, POSNSB, POSNSC) 

END; 
NEWCCOMBINS, TRUE); 
ECTRSIZE := ECTRSIZE + 11; 
WITH COMBINS A DO 

BEGIN 
PARENTPOSITIONS := PRNTPOSNS; 
FREQUENCY.TOPRANGE := NOTSET; 
FR,EQUENCY. SUBRANGES : = ESSENTFREQ; 
BOTTOMBAR := FALSE; 
ALTERNATIVES := NIL; 
NEXT := PARSTRUCTA.CHllDGATE 

END; 
PARSTRUCTA.CHILDGATE := WRITEPTRA.COMBINS; 
COPYCHILDPS := FALSE; 
NEXT : = LISTPTR 

END; 
LISTPTR := WRITEPTR 

> 
" " rn z 
Q .... 
x 

1.1'1 

c:i) 
rn 
z 
(I) 

> r 
.... 
Z 
-i 
rn 
;;0 
-0 
;;0 
rn 
-i 
rn 
;;0 



" QI 
IQ 
111 

\oH 
~ 

N 

4994 
4995 
4996 
4997 
4998 
4999 
5000 
5001 
5002 
5003 
5004 
5005 
5006 
5007 
5008 
5009 
5010 
5011 
5012 
5013 
5014 
5015 
5016 
5017 
5018 
5019 
5020 
5021 
5022 
5023 
5024 
5025 
5026 
5027 
5028 
5029 
5030 
5031 
5032 
5033 

END; 

PROCEDURE ADDDEFNTABLE(VAR LISTPTR PPSLIST; 
SUBST : SUBSTITUENT); 

{ Adds the RDEFINITIONTABLE for SUBST to the PPSLIST in LISTPTR. If the SUBST 
has already been defined then the COMBINS is taken from RDEFINITIONTABLE, 
otherwise a new one is created and entered into RDEFINITIONTABLE. 
Called by Body of POINTERLIST} 

VAR WRITEPTR : PPSLIST; 

BEGIN 
NEW(WRITEPTR); 
WITH WRITEPTR A DO 

BEGIN 
PARSTRUCT := NIL; 
FURTHERSUB := NIL; 
NEW(PRNTPOSNS>; 
ECTRSIZE := ECTRSIZE + 9; 
PRNTPOSNSA.COMBINED := FALSE; 
PRNTPOSNSA.MEMBERS := [1 •• MAXCTJ; 
SETCONNBONDS(CONNBONDS, LISTPTRA.CONNBONDS.CONNECTIONS); 
COPYCHILDPS := FALSE; 
NEXT := LISTPTR; 
IF RDEFINITIONTABLE[SUBSTJ = NIL 

THEN BEGIN 
NEW(COMBINS, TRUE); 
WITH COMBINS A DO 

BEGIN 
BOTTOMBAR := FALSE; 
ALTERNATIVES := NIL; 
NEXT : = NIL; 
PARENTPOSITIONS := PRNTPOSNS; 
FREQUENCY.TOPRANGE := NOTSET; 
FREQUENCY.SUBRANGES := NIL 

END; 
RDEFINITIONTABLE[SUBST] := COMBINS 

:> 

" " m z 
00 
M 

>< 
\oH 

en 
m 
z 
(IJ 

:> 
r 
M 
Z 
~ 
m 
;Q 

" ;Q 
m 
-i 
m 
;Q 



"'tJ 
III 
IQ 
I'D 

I.H ...... 
I.H 

5034 
5035 
5036 
5037 
5038 
5039 
5040 
5041 
5042 
5043 
5044 
5045 
5046 
5047 
5048 
5049 
5050 
5051 
5052 
5053 
5054 
5055 
5056 
5057 
5058 
5059 
5060 
5061 
5062 
5063 
5064 
5065 
5066 
5067 
5068 
5069 
5070 
5071 
5072 
5073 

END 
ELSE COMBINS := RDEFINITIONT~8LE[SU8ST] 

END; 
LISTPTR := WRITEPTR 
END; 

8EGIN {8ody of POINTERLIST} 
LISTPTR := NIL; 
IF GROUPMEMS.COMBINEO 

THEN WHILE GROUPME~S.COMBMEMS <> NIL DO WITH GROUPMEMS DO 
BEGIN 

REAOPTR := RDECLARATIONTABLE[COMBMEMSA.FIRSTJ; 
WHILE REAOPTR <> NIL DO 

BEGIN 
ADDCOMBSU8S(READPTR, RDECLARATIONTA8LE[COM8MEMS A.SECONDJ, LISTPTR); 
READPTR := READPTRA.NEXT 

END; 
COMBMEMS := COMBMEMSA.NEXT 

END 
ELSE FOR SU8ST := 1 TO MAXVARS DO IF SUBST IN GROUPMEMS.MEM8ERS 

THEN BEGIN 
REAOPTR := RDECLARATIONTABLE[SU8STJ; 
WHILE REAOPTR <> NIL DO 

BEGIN 
NEW(WRITEPTR); 
WRITEPTR A := READPTR A; 
IF WRITEPTRA.COMBINS = NIL 

THEN PROGERROR(21); {Declaration without combination bar} 
WRITEPTRA.NEXT := LISTPTR; 
LISTPTR := WRITEPTR; 
READPTR := READPTRA.NEXT 

END; 
AODDEFNTABLE(LISTPTR, SU9ST) 

END; 
POINTERLIST := LISTPTR 
END; 

{of FUNCTION POINTERLIST 
-------------------------------------------------------------------------------} 

> 
"'tJ 
"'tJ 
m z 
er .... 
x 
I.H 

en 
m 
z 
(I) 

> 
r 
.... 
z 
~ 
m 
;:0 

"'tJ 
;:0 
m 
~ 
m 
;:0 



5074 
5075 
5076 
5077 
5078 
5079 
5080 
5081 
5082 
5083 
5084 
5085 
5086 
5087 
5088 
5089 

-0 5090 
01 5091 le 
ID 5092 
lH 5093 ..... 
-I:'- 5094 

5095 
5096 
5097 
5098 
5099 
5100 
5101 
5102 
5103 
5104 
5105 
5106 
5107 
5108 
5109 
5110 
5111 
5112 
5113 

PROCEDURE SUBSTASSIGNMENT; 

{ Analyses a substituent assignment. 
Called by body of ASSIGNMENTSTMNT} 

VAR GROUPMEMS 
PARENTPSLIST 
DELPTR 

TGROUPMEMS; 
PPSLIST; 
PDOUBLIST; 

BEGIN 
SUBSTGROUPCGROUPMEMS, DECLSUBS, 1); 
IF ASSGNTOP <> INDEPENDENT THEN 

WRITELNC'Non-independent assignment not yet implemented'); 
PARENTPSLIST := POINTERLISTCGROUPMEMS); 
ALTNVLISTCPARENTPSLIST, FALSE); 
WITH GROUPMEMS DO IF COMBINED 

THEN WHILE COMSMEMS <> NIL DO 
BEGIN 

DEFNSUBS := DEFNSUBS + [COMBMEMS-.FIRST, COMBMEMS-.SECONDJ; 
DELPTR := COMBMEMS; 
COMBMEMS := COMBMEMS-.NEXT; 
DISPOSECDELPTR) 

END 
ELSE DEFNSUBS := DEFNSUBS + MEM8ERS 

END; 

{-----------------------------------------------------------------------------} 
PROCEDURE MULTASSIGNMENT; 

{ Analyses a multiplier assignment. 
Called by Body of ASSIGNMENTSTMNT} 

VAR MULT MULTIPLIER; 
DEFINEDMULTS : INTEGSET; 
MULTVALUES, 

> 
""'0 
""'0 
m 
z 
I:' ..... 
X 

lH 

G) 

m 
z 
Cl) 

> r 
..... 
Z 
-t 
m 
;0 

""'0 
;0 
m 
-t 
m 
;0 



"'tI 
I» 
IQ 
111 

lH 
~ 

VI 

5114 
5115 
5116 
5117 
5118 
5119 
5120 
5121 
5122 
5123 
5124 
5125 
5126 
5127 
5128 
5129 
5130 
5131 
5132 
5133 
5134 
5135 
5136 
5137 
5138 
5139 
5140 
5141 
5142 
5143 
5144 
5145 
5146 
5147 
5148 
5149 
5150 
5151 
5152 
5153 

MULTVALCOPY : INTRECORDi 

PROCEDURE COPYLIST(MULTVALUES INTRECORDi 
VAR MULTVALCOPY INTRECORD)i 

{ Copies a list of values for a multiplier. 
Called by body of MULTASSIGNMENT} 

VAR NEW ITEM, 
LASTITEM : PDOUBLISTi 

BEGIN 
MULTVALCOPY.TOPRANGE := MULTVALUES.TOPRANGE; 
MULTVALCOPY.SUBRANGES := NIL; 
WHILE MULTVALUES.SUBRANGES <> NIL DO 

BEGIN 
NEW(NEWITEM); 
ECTRSIZE := ECTRSIZE + 6; 
WITH NEWITEM A DO 

BEGIN 
FIRST := MULTVALUES.SUBRANGESA.FIRST; 
SECOND := MULTVALUES.SUBRANGESA.SECOND; 
NEXT := NIL 

END; 
IF MULTVALCOPY.SUBRANGES = NIL 

THEN MULTVALCOPY.SUBRANGES := NEWITEM 
ELSE LASTITEMA.NEXT := NEWITEM; 

LASTITEM := NEWITEM; 
MULTVALUES.SUBRANGES := MULTVALUES.SUBRANGESA.NEXT 

END 
END; 

PROCEDURE ADOITEM(VAR NEWITEM, 
NEWLIST : POOUBLIST); 

{ Inserts NEW ITEM into NEWLIST. 

> 
"'tI 
"'tI 
m 
z 
o ..... 
X 

lH 

G'l 
m 
z 
(I) 

> r 
..... 
Z 
-i 
m 
;;0 

"'tI 
;;0 
m 
-i 
m 
;;0 



5154 
5155 
5156 
5157 
5158 
5159 
5160 
5161 
5162 
5163 
5164 
5165 
5166 
5167 
5168 
5169 

\J 5170 
III 

5171 IQ 
I'D 

5172 
VI 

5173 ~ 

0-
5174 
5175 
5176 
5177 
5178 
5179 
5180 
5181 
5182 
5183 
5184 
5185 
5186 
5187 
5188 
5189 
5190 
5191 
5192 
5193 

Called by COMBINEVALUES} 

VAR NEWLISTITEM : PDOUBLIST; 

BEGIN 
NEWLISTITEM := NEWITEM; 
NEWITEM := NEWITEM-.NEXT; 
NEWLISTITEM-.NEXT := NEWLIST; 
NEWLIST := NEWLISTITEM 
END; 

PROCEDURE COMBINEVALUESCVAR TABLEVALUES : INTRECORD; 
NEWVALUES INTRECORD); 

{ Combines the NEWVALUES just obtained with those already in TABLEVALUES. 
Called by Body of MULTASSIGNMENT } 

VAR NEWLIST, 
NEWITEM : PDOUBLIST; 
FINISHED : BOOLEAN; 

BEGIN 
IF CTABLEVALUES.TOPRANGE) = NOTSET 

THEN TABLEVALUES.TOPRANGE := NEWVALUES.TOPRANGE 
ELSE IF NEWVALUES.TOPRANGE = NOTSET 

THEN { leave TABLEVALUES.TOPRANGE as it is } 
ELSE IF NEWVALUES.TOPRANGE < TABLEVALUES.TOPRANGE 

THEN TABLEVALUES.TOPRANGE := NEWVALUES.TOPRANGE; 
NEWLIST := NIL; 
WHILE NOT CCTABLEVALUES.SUBRANGES = NIL) AND CNEWVALUES.SUBRANGES = NIL» DO 

IF TABLEVALUES.SUBRANGES = NIL 
THEN ADDITEMCNEWVALUES.SUBRANGES, NEWLIST) 
ELSE IF NEWVALUES.SUBRANGES = NIL 

THEN ADDITEMCTABLEVALUES.SUBRANGES, NEWLIST) 
ELSE IF TABLEVALUES.SUBRANGES-.FIRST > NEWVALUES.SU9RANGES-.FIRST 

THEN ADDITEMCTABLEVALUES.SUBRANGES, NEWLIST) 
ELSE ADDITEMCNEWVALUES.SUBRANGES, NEWLIST); 

IF NEWLIST <> NIL 

> 
\J 
\J 
m z 
o ..... 
X 

IN 

(i) 
m 
z 
(/) 

> r 
..... 
Z 
-t 
m 
;0 

\J 
;0 
m 
-t 
m 
;0 



5194 
5195 
5196 
5197 
5198 
5199 
5200 
5201 
5202 
5203 
5204 
5205 
5206 
5207 
5208 
5209 

"'0 5210 QI 
\C 5211 Cl) 

v. 5212 ..... 5213 ..... 
5214 
5215 
5216 
5217 
5218 
5219 
5220 
5221 
5222 
5223 
5224 
5225 
5226 
5227 
5228 
5229 
5230 
5231 
5232 
5233 

THEN BEGIN 
TABLEVALUES.SUBRANGES := NEWLISTi 
NEWLIST := NEWLISTA.NEXTi 
TA8LEVALUES.SUBRANGES A.NEXT := NIL 

END 
ELSE TABLEVALUES.SUBRANGES := NILi 

WHILE NEWLIST <> NIL DO 
BEGIN 

NEWITEM := NEWLISTi 
NEWLIST := NEWLISTA.NEXTi 
IF NEWITEMA.FIRST > TABLEVALUES.SUBRANGESA.SECOND + 1 

THEN BEGIN 
NEWITEMA.NEXT := TABLEVALUES.SUBRANGESi 
TABLEVALUES.SUBRANGES := NEWITEM 

END 
ELSE BEGIN 

IF NEWITEMA.SECOND > TABLEVALUES.SUBRANGESA.SECOND 
THEN TABLEVALUES.SUBRANGESA.SECOND := NEWITEMA.SECONDi 

DISPOSE(NEWITEM)i 
ECTRSIZE := ECTRSIZE - 6 
END 

ENDi 
FINISHED := (TABLEVALUES.SUBRANGES = NIL) OR (TABLEVALUES.TOPRANGE = NOTSET)i 
WHILE NOT FINISHED DO WITH TABLEVALUES DO 

IF SUBRANGES-.SECOND >= TOPRANGE - 1 

ENDi 

THEN BEGIN 
IF SUBRANGES-.FIRST < TOPRANGE 

THEN TOPRANGE := SUBRANGES-.FIRSTi 
NEW ITEM := SU9RANGESi 
SU8RANGES := SU8RANGES-.NEXTi 
DISPOSE(NEWITEM)i 
ECTRSIZE := ECTRSIZE - 6; 
FINISHED := (SUBRANGES = NIL) 

END 
ELSE FINISHED := TRUE 

BEGIN {Body of MULTASSIGNMENT} 

> 
"'0 
"'0 
m 
z .., 
H 
X 

V. 

G) 
m 
z 
(I) 

> r-
H 
Z ..... 
m 
;:0 

"'0 
;:0 

m ..... 
m 
;:0 



5234 
5235 
5236 
5237 
5238 
5239 
5240 
5241 
5242 
5243 
5244 
5245 
5246 
5247 
5248 
5249 
5250 

" 5251 
'" 5252 IQ 
iD 

5253 v. 
~ 5254 
00 

5255 
5256 
5257 
5258 
5259 
5260 
5261 
5262 
5263 
5264 
5265 
5266 
5267 
5268 
5269 
5270 
5271 
5272 
5273 

GROUPRANGE(DEFINEDMULTS, DECLMULT, 2); 
WHILE CHECKDELIM([GDEQ,GSEQ,GHASHEQ,GDOLEQ,GNOTEQ,GEQUALS,GPERIOD]) = INVALIDTOKEN DO ERROR(24,O); 
IF ASSGNTOP <> INDEPENDENT 

THEN WRITELN('Non-independent assignment not yet implemented'); 
NEXTTOKEN; 
SELECTOR(MULTVALUES,[O •• MAXVARS],10); 
NEXTTOKEN; 
FOR MULT := 1 TO MAXVARS DO IF MULT IN DEFINEDMULTS THEN 

BEGIN 
COPYLIST(MULTVALUES, MULTVALCOPY); 
IF MULT IN DEFNMULT 

THEN COMBINEVALUES(MDEFINITIONTABLE[MULT], MULTVALCOPY) 
ELSE MDEFINITIONTABLE[MULT] := MULTVALCOPY 

END; 
REDUCEECTR(MULTVALUES.SU3RANGES); 
DESTROY (MULTVALUES.SUBRANGES); 
DEFNMULT := DEFNMULT + DEFINEDMULTS 
END; {of MULTASSIGNMENT 
-----------------------------------------------------------------------------} 

BEGIN { Body of ASSIGNMENTSTMNT } 
IF CHECKDELIM([GR,GM])=INVALIDTOKEN THEN SELECTOR(SELECTEDFREQ, [O •• MAXVARS],9); 
WHILE CHECKDELIM([GR,GM]) = INVALIDTOKEN DO ERROR(20,O); 
IF TOKEN.DELIMVAL = GR 

THEN SUBSTASSIGNMENT 
ELSE MULTASSIGNMENT 

END; 
{of PROCEDURE ASSIGNMENTSTMNT 

*******************************************************************************} 

PROCEDURE CONDITION; 

{ Analyses a condition. 
Called by IFSTATEMENT 

RESTRICTSTMNT} 

> 

" " m 
z 
Cl' 
I-t 
X 

V. 

Cil 
m z 
(I) 

> r 
I-t 
Z 
-t 
m 
;:0 
-0 
;:0 
m 
-t 
m 
;:0 



." 
Q/ 
IQ 
/11 

U. ...... 
-0 

5274 
5275 
5276 
5277 
5278 
5279 
5280 
5281 
5282 
5283 
5284 
5285 
5286 
5287 
5288 
5289 
5290 
5291 
5292 
5293 
5294 
5295 
5296 
5297 
5298 
5299 
5300 
5301 
5302 
5303 
5304 
5305 
5306 
5307 
5308 
5309 
5310 
5311 
5312 
5313 

BEGIN 
CONDITIONSPRESENT := TRUE; 
REPEAT NEXTTOKEN 
UNTIL CHECKDELIM([GTHEN,GEND,GELSE,GSEMI,GPERIOD]) <> INVALIDTOKEN 
END; 

PROCEDURE RESTRICTSTMNT; 

{ Analyses a RESTRICT statement. 
Called by STATEMENT} 

BEGIN 
CONDITION; 
WHILE CHECKDELIM([GELSE,GEND,GSEMI,GPERIOD]) = INVALIDTOKEN DO ERROR(24,0) 
END; 

PROCEDURE STATEMENT; 
FORWARD; 

PROCEDURE IFSTATEMENT; 

{ Analyses an IF statement. 
Called by STATEMENT} 

BEGIN 
CONDITION; 
WHILE CHECKDELIM ([GTHEN]) <> GTHEN DO ERROR(17,0); 
STATEMENT; 
WHILE CHECKDELIM ([GELSE,GEND,GSEMI,GPERIOD]) = INVALIDTOKEN DO ERROR(24,0); 
IF CHECKDELIM([GELSE]) = GELSE THEN 

BEGIN 
STATEMENT; 
WHILE CHECKDELIM ([GELSE,GEND,GSEMI,GPERIOO]) = INVALIDTOKEN DO ERROR(24,0) 

> 
." 
." 
m 
Z 
o 
1-1 
X 

U. 

en 
m 
z 
(I) 

> r-
1-1 
Z 
-i 
m 
:;0 
""0 
:;0 
m 
-i 
m 
:;0 



"'0 
I» 
c.o 
I'D 

V. 
N 
o 

5314 
5315 
5316 
5317 
5318 
5319 
5320 
5321 
5322 
5323 
5324 
5325 
5326 
5327 
5328 
5329 
5330 
5331 
5332 
5333 
5334 
5335 
5336 
5337 
5338 
5339 
5340 
5341 
5342 
5343 
5344 
5345 
5346 
5347 
5348 
5349 
5350 
5351 
5352 
5353 

END 
END; 

PROCEDURE CMPDSTMNT; 

{ AnaLyses a compound statement. 
Called by STATEMENT} 

BEGIN 
REPEAT 

STATEMENT; 
WHILE CHECKDElIM([GSEMI,GEND]) = INVAlIDTOKEN DO ERROR(15,0) 

UNTIL TOKEN.DElIMVAl = GEND; 
NEXTTOKEN 
END; 

PROCEDURE STATEMENT; 

{ AnaLyses a STATEMENT, calling the appropriate procedure. 
CalLed by IFSTATEMENT 

RESTRICTSTMNT 
CMPDSTMNT 
Body of INTERPRET} 

VAR DELIMCHECK : DELIMTYPE; 

BEGIN 
NEXTTOKENi 
REPEAT 

DELIMCHECK := CHECKDELIM([G8EGIN,GIF,GRESTRICT,GR,GM,GOPENANG,GEND,GSEMI,GPERIOD])i 
IF DElIMCHECK=INVALIDTOKEN THEN ERROR(19,0) 

UNTIL DElIMCHECK<>INVALIDTOKEN; 
CASE DElIMCHECK OF 

GR, GM, 
GOPENANG, 
INVAlIDTOKEN : ASSIGNMENTSTMNTi 

". 
"'0 
"'0 
m 
Z 
0' 
M 
X 

V. .. 

en 
m 
z 
~ 
". 
r-
M 
Z 
-i 
m 
;;0 
." 
;;0 
m 
-i 
m 
;;0 



5354 
'5355 
5356 
5357 
5358 
5359 
5360 
5361 
5362 
5363 
5364 
5365 
5366 
5367 
5368 
5369 
5370 

"'0 5371 QI 
co 5372 ID 

VI 5373 
N 5374 ...... 

5375 
5376 
5377 
5378 
5379 
5380 

·5381 
5382 
5383 
5384 
5385 
5386 
5387 
5388 
5389 
5390 
5391 
5392 
5393 

GBEGIN 
GIF 
GRESTRICT 
GPERIOD, 
GEND, GSEMI 

END 
END; 

: CMPDSTMNT; 
: lFSTATEMENT; 
: RESTRICTSTMNT; 

: (* empty statement *) 

PROCEDURE CHECKALLDONE; 

{ Checks that all declared substituents and multipliers have been defined 
Called by Body of INTERPRET} 

VAR M : 1 •• MAXVARS; 

BEGIN 
IF (DECLSU9S - DEFNSU9S) <> [] THEN 

BEGIN 
WRITELN('The following substituents',' remain undefined:'); 
FOR M := 1 TO MAXVARS DO 

IF M IN (DECLSUBS-DEFNSUBS) THEN WRITE(' R', M:1); 
WRITELN; 
TOKEN.DELIMVAL := INVALIDTOKEN 

END; 
IF (DECLMULT - DEFNMULT) <> [] THEN 

BEGIN 
WRITELN('The following multipliers',' remain undefined:'); 
FOR M := 1 TO MAXVARS DO 

IF M IN (DECLMULT-DEFNMULT) THEN WRITE(' M', M:1); 
WRITELN; 
TOKEN.DELIMVAL := INVALIDTOKEN 

END; 
IF TOKEN.DELIMVAL = INVALIDTOKEN THEN 

WHILE CHECKDELIM([GSEMI])=INVALIDTOKEN DO ERROR(13,O) 
END; 

:> 
"'0 
"'0 
m z 
01 .... 
X 

VI 

G') 

m 
z 
(I) 

:> 
r 
1-4 
Z 
~ 
m 
:;0 
"0 
:;0 
m 
~ 
m 
:;0 



"'0 
QI 
10 
(1) 

VI 
N 
N 

5394 
5395 
5396 
5397 
5398 
5399 
5400 
5401 
5402 
5403 
5404 
5405 
5406 
5407 
5408 
5409 
5410 
5411 
5412 
5413 
5414 
5415 
5416 
5417 
5418 
5419 
5420 
5421 
5422 
5423 
5424 
5425 
5426 
5427 
5428 
5429 
5430 
5431 
5432 
5433 

PROCEDURE RECORDMULTS; 

{ Adds the values for multipliers to the appropriate FREQUENCY fields in the ECTR. 
Called by Body of INTERPRET} 

VAR MULT MULTIPLIER; 
PMPTR PMDECLIST; 

BEGIN 
FOR MULT := 1 TO MAXVARS 00 IF MULT IN DEFNMULT THEN 

BEGIN 
PMPTR := MDECLARATIONTABLE[MULT]; 
REPEAT 
P~PTR~.SUBSTDECN~.COMBINS~.FREQUENCY := MDEFINITIONTA8LE[MULT]; 
PMPTR := PMPTRA.NEXT 

UNTIL PMPTR = NIL 
END 

END; 

{***************************************************************************} 
PROCEDURE OUTINTREP; 

{ Outputs a reprsentation of the ECTR to a diagnostics file} 

VAR SUBST 
MULT 
READPTR 

: SUBSTITUENT; 
: MULTIPLIER; 
: PIRLIST; 

FUNCTION PSNO(PTRPS : PTRPSTYPE) : INTEGER; 

VAR PTR 
NUM 
FOUND 

BEGIN 
NUM := 0; 

: PIRLIST; 
: INTEGER; 

BOOLEAN; 

,~! 

> 
"'0 
-0 
m 
:z 
'0 .... 
X 

VI 

en 
m 
:z 
(I) 

> 
r 
.... 
:z 
-I 
m 
;0 
-0 
;0 
m 
-I 
m 
;0 



-0 
QI 
(Q 
ID 

VI 
N 
VI 

5434 
5435 
5436 
5437 
5438 
5439 
5440 
5441 
5442 
5443 
5444 
5445 
5446 
5447 
5448 
5449 
5450 
5451 
5452 
5453 
5454 
5455 
5456 
5457 
5458 
5459 
5460 
5461 
5462 
5463 
5464 
5465 
5466 
5467 
5468 
5469 
5470 
5471 
5472 
5473 

PTR := INTERNALREP.PSLIST; 
FOUND := FALSE; 
WHILE (PTR<>NIL) AND NOT FOUND DO 

BEGIN 
NUM := NUM + 1; 
IF PTRA.PARSTRUCT = PTRPS 

THEN FOUND := TRUE 
ELSE PTR := PTRA.NEXT 

END; 
IF FOUND THEN PSNO := NUM 

ELSE PSNO := 0 
END; 

PROCEDURE WRITEFREQ(FREQUENCY : INTRECORD); 

VAR PTR : PDOUBLIST; 

BEGIN 
WRITE(DIAGFILE, 1<1); 
WITH FREQUENCY DO 

BEGIN 
IF TOPRANGE <> NOTSET THEN WRITE(DIAGFILE, TOPRANGE:1, 1_,1); 
PTR := SU8RANGES; 
WHILE PTR <> NIL DO WITH PTR A DO 

BEGIN 
WRITE(DIAGFILE, FIRST:1, I_I, SECOND:1, 1,1); 
PTR := NEXT 

END 
END; 

WRITE(DIAGFILE, 1>1) 
END; 

PROCEDURE WRITEPOSNS(POSNSET : TGROUPMEMS); 

VAR POSN : ATOMNUMBER; 
PTR : PDOUBLIST; 

):» 

-0 
-0 
m 
z 
o 
I-t 
X 

VI 

G1 
m 
z 
(I) 
):» 

r 
.... 
z ..... 
m 
;0 
-0 
;0 
m ..... 
m 
;0 



"'0 
QI 
10 
CD 

~ 
N 
~ 

5474 
5475 
5476 
5477 
5478 
5479 
5480 
5481 
5482 

, 5483 
5484 
5485 
5486 
5487 
5488 
5489 
5490 
5491 
5492 
5493 
5494 
5495 
5496 
5497 
5498 
5499 
5500 
5501 
5502 
5503 
5504 
5505 
5506 
5507 
5508 
5509 
5510 
5511 
5512 
5513 

BEGIN 
WRITECDIAGFILE, '[I); 

IF POSNSET.COMBINED 
THEN BEGIN 

PTR := POSNSET.COMBMEMS; 
WHILE PTR <> NIL DO WITH PTR A DO 

BEGIN 

END 

WRITECDIAGFILE, FIRST:1, 'I', SECOND:1, I,'); 
PTR := NEXT; 

END 

ELSE FOR POSN := 1 TO MAXCT DO IF POSN IN POSNSET.MEMBERS 
THEN WRITECDIAGFILE, POSN:1, I,'); 

WRITECDIAGFILE, I]') 

END; 

PROCEDURE WRITECONNSCCONN80NDS : TCONN80NDS); 

{ Writes out the bond orders in CONNBONDS. 
Called by WRITEPGS 

WRITECOMBIN 
WRITEDECN} 

BEGIN 
WITH CONNBONDS DO 

CASE CONNECTIONS OF 
NOTSET : WRITELNCDIAGFILE, ' __ I); 
O • • . , 
1 : WRITELNCDIAGFILE, BONDSTRING[30ND]); 
2 : BEGIN 

END 
END; 

WRITECDIAGFILE, BONDSTRING[BONDA]); 
WRITELNCDIAGFILE, BONDSTRING[BOND3]) 

END 

:> 
"'0 
"'0 
m z 
c 
I-t 
X 

~ 

en 
m z 
(I) 

:> 
r 
I-t 
Z 
~ 
m 
;;0 

" ;;0 
m 
-I 
m 
;;0 



" Q/ 
IQ 
~ 

lH 
N 
V1 

5514 
5515 
5516 
5517 
5518 
5519 
5520 
5521 
5522 
5523 
5524 
5525 
5526 
5527 
5528 
5529 
5530 
5531 
5532 
5533 
5534 
5535 
5536 
5537 
5538 
5539 
5540 
5541 
5542 
5543 
5544 
5545 
5546 
5547 
5548 
5549 
5550 
5551 
5552 
5553 

PROCEDURE WRITEPGSCPARENTS : PPARENTLIST); 

{ Writes a series of Parent Gates, headed by PARENTS, to DIAGFILE } 

BEGIN 
WRITELNCDIAGFILE); 
WRITELNCDIAGFILE, 'PARENT GATES: '); 
WHILE PARENTS <> NIL DO WITH PARENTS~ DO 

BEGIN 
WRITEPOSNSCCHILDPOSITIONS); 
WRITECDIAGFILE, , PS:', PSNO(PARENTPS) : 1, , '); 
WRITEPOSNSCPARENTPOSITIONS); 
WRITECONNSCCONNBONDS); 
PARENTS := NEXT 

END 
END; 

PROCEDURE WRITECG(COMBINLIST : PCOMBINLIST; 
INDENT INTEGER); 

FORWARD; 

PROCEDURE WRITEALTERNSCALTERNATIVES : PALTERNLIST; 

VAR ALTNO,. INTEGER; 
I . 

BEGIN 
ALTNO := 0; 

INDENT : INTEGER); 

WHILE ALTERNATIVES <> NIL DO 
BEGIN 

FOR I := 1 TO INDENT DO WRITE(DIAGFILE, , '); 
ALTNO := ALTNO + 1; 
WRITELNCDIAGFILE, , ALT " ALTNO : 2); 

;»> 

" " m 
z 
co 
M 
X 

VoI 

(i") 

m z 
(I) 

;»> 
r 
M 
Z 
-t 
m 
;g 

" ;g 
m 
-t 
m 
;g 



~ 
III 
IQ 
Cl! 

~ 
N 
0. 

5554 
5555 
5556 
5557 
5558 
5559 
5560 
5561 
5562 
5563 
5564 
5565 
5566 
5567 
5568 
5569 
5570 
5571 
5572 
5573 
5574 
5575 
5576 
5577 
5578 
5579 
5580 
5581 
5582 
5583 
5584 
5585 
5586 
5587 
5588 
5589 
5590 
5591 
5592 
5593 

WRITECG(ALTERNATIVESA.COMBINATION, INDENT + 4); 
ALTERNATIVES := ALTERNATIVESA.NEXT 

END 
END; 

PROCEDURE WRITECOMBIN(COMBINPTR : PCOMBINLIST; 
ITEMNO, 
INDENT INTEGER); 

{ Outputs the information in the single combination gate pointed to by COMBINPTR. } 

VAR 1 INTEGER; 

BEGIN 
WITH COMBINPTR A DO 

BEGIN 
FOR I := 1 TO INDENT DO WRITE(DIAGFILE, , I); 

WRITE(DIAGFILE,'Item. No.', ITEMNO : 3 ); 
IF COMBINPTRA.PARENTPOSITIONS = NIL 

THEN WRITE(DIAGFILE, '[NIL]') 
ELSE WRITEPOSNS(PARENTPOSITIONS A); 

WRITEFREQ(FREQUENCY); 
IF BOTTOMBAR 

END 
END; 

THEN BEGIN 
WRITE(DIAGFILE, 'PS:', PSNO(COMBINPTRA.CHILDPS) 1); 
WRITEPOSNS(CHILDPOSITIONS); 
WRITECONNS(CONNBONDS) 

END 
ELSE BEGIN 

WRITELN(DIAGFILE, 'ALTERNATIVES:'); 
WRITEALTERNS(ALTERNATIVES, INDENT); 
FOR I := 1 TO INDENT DO WRITE(DIAGFILE, , I); 
WRITELN(DIAGFILE,'End of Item " ITEMNO : 1, , alternatives') 

END 

,. 
." 
." 
m z 
o 
1-4 
X 

~ 

en 
m 
z 
V) ,. 
r 
1-4 
Z 
-i 
m 
;;:0 
." 
;;:0 
m 
-i 
m 
;;:0 



'1J 
11/ 
10 
111 

v.I 
N ...., 

5594 
5595 
5596 
5597 
5598 
5599 
5600 
5601 
5602 
5603 
5604 

, 5605 
5606 
5607 
5608 
5609 
5610 
5611 
5612 
5613 
5614 
5615 
5616 
5617 
5618 
5619 
5620 
5621 
5622 
5623 
5624 
5625 
5626 
5627 
5628 
5629 
5630 

·5631 
5632 
5633 

PROCEDURE WRITECG; {FORWARD declaration above WRITEALTERNS} 

VAR ITEMNO : INTEGER; 

BEGIN 
ITEMNO := 0; 
WHILE COMBINLIST <> NIL DO 

BEGIN 
ITEMNO := ITEMNO + 1; 
WRITECOMBINCCOMBINLIST, ITEMNO, INDENT); 
COMBINLIST := COMBINLISTA.NEXT 

END 
END; 

PROCEDURE WRITECTCVAR CT : CTTYPE); 

VAR ROWNO : ATOMNUMBER; 
CNGNR : 1 •• MAXCONGENERS; 

BEGIN 
WRITELNCDIAGFILE, 'SPECIFIC': 10); 
FOR ROWNO := 1 TO MAXCT DO IF CT[ROWNO] <> NIL THEN WITH CT[ROWNO]A DO 

BEGIN 
WRITECOIAGFILE, ROWNO :2); 
IF ATOMICROW THEN WRITECOIAGFILE, ATOM : 3) 

ELSE WRITECOIAGFILE, 'R', NAME:1,' I); 

WRITECOIAGFILE, CHARGE: 3, HYDROGENS : 2); 
FOR CNGNR := 1 TO MAXCONGENERS DO WITH CONGENERS(CNGNRJ DO 

IF RELATIONSHIP = FRATERNAL THEN 
BEGIN 

WRITECDIAGFILE, OROCBONO) : 3); 
WRITECOIAGFILE, ROWNUM : 3); 

END; 
IF NOT ATOMICROW AND CVALUES <> NIL) 

THEN BEGIN 
WRITELN(OIAGFILE, , VALUES:'); 
WRITECGCVALUES, 0); 

> 

" " m 
z 
o .... 
x 
v.a 

~ 
m 
z 
(I) 

> 
r 
.... 
Z 
-i 
m 
;:0 
'1J 
;:0 
m 
-4 
m 
;:0 



"'0 
QI 
IQ 
ID 

I.H 
N 
00 

5634 
5635 
5636 
5637 
5638 
5639 
5640 
5641 
5642 
5643 
5644 
5645 
5646 
5647 
5648 
5649 
5650 
5651 
5652 
5653 
5654 
5655 
5656 
5657 
5658 
5659 
5660 
5661 
5662 
5663 
5664 
5665 
5666 
5667 
5668 
5669 
5670 
5671 
5672 
5673 

END 
ELSE WRITELN(DIAGFILE) 

END 
END; 

PROCEDURE WRITEPS(PTRPS PTRPSTYPE); 

BEGIN 
WRITE(DIAGFILE, PSNO(PTRPS):2 ,':'); 
CASE PTRPSA.PSVARIETY OF 

DUMMY : WRITElN(DIAGFILE,' DUMMY R', PTRPS A.SU8STNAME: 1); 
UNKNOWN WRITELN(DIAGFILE,' UNKNOWN' ); 
SPECIFIC: WRITECT(PTRPSA.CT); 
GENERIC : BEGIN 

WRITElN(DIAGFIlE,' GENERIC'); 
lISTPARAMS(DIAGFIlE,PTRPSA.PARAMlIST) 

END; 
OTHER BEGIN 

END; 

WRITELN(DIAGFIlE,'OTHER':7); 
WRITElN(DIAGFIlE,PTRPSA.TERM) 

END 

IF PTRPSA.PARENTGATE <> NIL THEN WRITEPGS(PTRPSA.PARENTGATE); 
WRITElN(DIAGFILE); 
IF PTRPSA.CHIlDGATE <> NIL THEN 

BEGIN 
WRITELN(DIAGFIlE, 'CHILD GATES:'); 
WRITECG(PTRPSA.CHILDGATE, 0) 

END; 
WRITElN(DIAGFILE, '-----------------------------------------'); 
WRITElN(DIAGFIlE) 
END; 

PROCEDURE WRITEDECN(DECLPTR : PPSlIST); 

> 
"'0 
"'0 
m z 
Q .... 
X 

I.H 

Cl 
m 
z 
(I) 

> r 
.... 
Z 
-i 
m 
;:0 

"'0 
;:0 
m 
-i 
m 
;;0 



" QI 
IQ 
I'D 

"" N 
-0 

5674 
5675 
5676 
5677 
5678 
5679 
5680 
5681 
5682 
5683 
5684 
5685 
5686 
5687 
5688 
5689 
5690 
5691 
5692 
5693 
5694 
5695 
5696 
5697 
5698 
5699 
5700 
5701 
5702 
5703 
5704 
5705 
5706 
5707 
5708 
5709 
5710 
5711 

. 5712 
5713 

{ Writes out the information in DECLPTR. } 

BEGIN 
WHILE DECLPTR <> NIL DO WITH DECLPTR- DO 

BEGIN 
WRITELN(DIAGFILE); 
WRITELN(DIAGFILE, 'Declared in " PSNO(PARSTRUCT) 
IF PRNTPOSNS = NIL THEN WRITECDIAGFILE, '[NIL]') 

ELSE WRITEPOSNS(PRNTPOSNS-); 
WRITECONNS(CONNBONDS); 
IF FURTHERSUB <> NIL 

. 2); . 

THEN WRITELN(DIAGFILE, 'Further substitution on PS " PSNO(FURTHERSUB):2); 
IF COPYCHILDPS THEN WRITELNC'COPYCHILDPS'); 
DECLPTR := NEXT 

END 
END; 

BEGIN { Body of OUTINTREP } 
WRITELN(DIAGFILE); 
WRITELN(DIAGFILE, '***************** GENERIC STRUCTURE " INTERNALREP.REFNUMBER : 3); 
WRITELN(DIAGFILE); 
WRITELN(DIAGFILE, 'Partial Structures: I); 

READPTR := INTERNALREP.PSLIST; 
WHILE READPTR <> NIL DO WITH READPTR- DO 

BEGIN 
WRITEPSCPARSTRUCT); 
READPTR := NEXT 

END; 
WRITELN(DIAGFILE); 
WRITELN(DIAGFILE); 
WRITELN(DIAGFILE, 'Declarations: I); 

WRITELN(DIAGFILE); 
FOR SUBST := 1 TO MAXVARS DO IF SUBST IN DECLSUBS THEN 

BEGIN 
WRITELN(DIAGFILE, '**** R', SUBST : 1,' ****'); 
WRITEDECN(RDECLARATIONTABLE[SUBST]); 
WRITELN(DIAGFILE) 

END; 

> 
" " m z 
co .... 
x 

"" 

G') 
m 
z 
(I) 

> .-
.... 
Z 
-t 
m 
:;0 

-0 
:;0 

m 
-t 
m 
:;0 



"tJ 
III 
ca 
ID 

U. 
VI 
o 

5714 
5715 
5716 
5717 
5718 
5719 
5720 
5721 
5722 
5723 
5724 
5725 
5726 
5727 
5728 
5729 
5730 
5731 
5732 
5733 
5734 
5735 
5736 
5737 
5738 
5739 
5740 
5741 
5742 
5743 
5744 
5745 
5746 
5747 
5748 
5749 
5750 
5751 
5752 
5753 

WRITELNCDIAGFILE)i 
WRITELNCDIAGFILE)i 
WRITELNCDIAGFILE, 'Definitions: ')i 
WRITELNCDIAGFILE)i 
FOR SUBST := 1 TO MAXVARS DO IF SUBST IN DEFNSUBS THEN 

BEGIN 
WRITELNCDIAGFILE)i 
WRITELNCDIAGFILE, '++++ R', SUBST : 1,' ++++')i 
WRITECGCRDEFINITIONTABLE[SUBST], 0) 

ENDi 
WRITELNCDIAGFILE)i 
WRITELNCDIAGFILE)i 
WRITELNCDIAGFILE, 'Multipliers:')i 
FOR MULT := 1 TO MAXVARS DO IF MULT IN DECLMULT THEN 

BEGIN 
WRITELNCDIAGFILE)i 
WRITELNCDIAGFILE, I:::: M', MULT:1, , :::: ')i 
WRITECDIAGFILE, 'Values :')i 
WRITEFREQCMDEFINITIONTABLE[MULT])i 
WRITELN(DIAGFILE)i 
WRITELN(DIAGFILE) 

END; 
WRITELNCDIAGFILE)i 
WRITELN(DIAGFILE) 
END; 

{ of Procedure OUTINTREP 
******************************************************************************} 

{------------------------------------------------------------------------------} 
PROCEDURE TIDYINTREP; 

{ Deletes RDECLARATIONTABLE and RDEFINITIONTA9LE, along with the latter's 
pendant gates. Then runs down from IRLISTTOP, deleting those PSs without 
parent gates, their child gates. If DIAGNOSTICS is TRUE, then a list 
of PSs is output, with their PSNOs, and an indication of whether or 
not they have been deleted. } 

VAR DECLPTR : PPSLISTi 

> 
"tJ 
"'0 
m z 
co 
1-4 
X 

U. 

G) 
m 
z 
(I) 

> r 
1-4 
Z 
-i 
m 
;;0 

"'0 
;;0 
m 
-i 
m 
;;0 



5754 
5755 
5756 
5757 
5758 
5759 
5760 
5761 
5762 
5763 
5764 
5765 
5766 
5767 
5768 
5769 
5770 
5771 
5772 

""0 5773 I» 
cc 5774 
I'D 

5775 
I.H 5776 I.H ..... 5777 

5778 
5779 
5780 
5781 
5782 
5783 
5784 
5785 
5786 
5787 
5788 
5789 
5790 
5791 
5792 
5793 

PMPTR : PMDECLIST; 
MULT : MULTIPLIER; 
SUBST : SUBSTITUENT; 
OLDECTR, 
NUMPSS, 
NUM DESTROYED : INTEGER; 

PROCEDURE DESTROYCG(VAR COMBINBAR PCOMBINLIST); 

VAR COMBINPTR : PCOMBINLIST; 
ALTERNPTR : PALTERNLIST; 

BEGIN 
WHILE COMBINBAR <> NIL DO 

BEGIN 
COMBINPTR := COMBINBAR~.NEXT; 
IF COMBINBAR~.BOTTOM8AR 

THEN BEGIN 
DISPOSE(COMBINBAR, FALSE); 
ECTRSIZE := ECTRSIZE - 24 

END 
ELSE BEGIN 

WHILE COMBINBAR~.ALTERNATIVES <> NIL DO 
BEGIN 
DESTROYCG(COMBINBARA.ALTERNATIVES~.COMBINATION); 
ALTERNPTR := COMBINBAR~.ALTERNATIVES~.NEXT; 
DISPOSE(COMBINBAR~.ALTERNATIVES); 
ECTRSIZE := ECTRSIZE - 4; 
COMBINBARA.ALTERNATIVES := ALTERNPTR 

END; 
DISPOSE(COMBINBAR, TRUE); 
ECTRSIZE := ECTRSIZE - 11 

END; 
COMBINBAR := COMBINPTR 

END 
END; 

> 
""0 
""0 
rn 
z 
0' 
1-1 

X 

I.H .. 

Cl 
rn 
z 
(I) 

> .-
1-1 
Z 
-4 
rn 
;Q 

""0 
;Q 

rn 
-4 
rn 
;Q 



'"tJ 
1\1 
IQ 
III 

VI 
VI 
N 

5794 
5795 
5796 
5797 
5798 
5799 
5800 . 
5801 
5802 
5803 
5804 
5805 
5806 
5807 
5808 
5809 
5810 
5811 
5812 
5813 
5814 
5815 
5816 
5817 
5818 
5819 
5820 
5821 
5822 
5823 
5824 
5825 
5826 
5827 
5828 
5829 
5830 
5831 
5832 
5833 

BEGIN {Body of TIDYINTREP} 
OLDECTR := ECTRSIZEi 
FOR SUBST := 1 TO MAXVARS DO IF SUBST IN DEFNSUBS THEN 

BEGIN 
REPEAT 

DECLPTR := RDECLARATIONTABLE(SUBST]A.NEXTi 
DISPOSE(RDECLARATIONTABLE(SUBST])i 
RDECLARATIONTABLE(SUBST] := DECLPTR 

UNTIL RDECLARATIONTABLE[SUBST] = NIL; 

DESTROYCG(RDEFINITIONTABLE[SUBST]) 
END; 

FOR MULT := 1 TO MAXVARS DO IF MULT IN DEFNMULT THEN 
REPEAT 

PMPTR := MDECLARATIONTABLE[MULT]A.NEXT; 
DISPOSE (MDECLARATIONTABLE[MULT])i 
MDECLARATIONTABLE[MULT] := PMPTR 

UNTIL MDECLARATIONTABLE[MULT] = NILi 

NUMPSS := 0; 
NUM DESTROYED := 0; 
IRLISTBOT := INTERNALREP.PSLIST; 
WHILE IRLISTBOT <> NIL DO WITH IRLISTBOT A DO 

BEGIN 
NUMPSS := NUMPSS + 1; 
IF DIAGNOSTICS 

THEN WRITE(DIAGFILE, NUMPSS:6, ADDRESSOF(PARSTRUCT A): 12); 
IF (PARSTRUCTA.PARENTGATE = NIL) AND (PARSTRUCT <> INTERNALREP.CONSTANTPART) 

THEN BEGIN 
DESTROYCG(PARSTRUCT-.CHILDGATE); 
CASE PARSTRUCTA.PSVARIETY OF 

UNKNOWN : BEGIN 

DUMMY 

DISPOSE(PARSTRUCT, UNKNO~N); 
ECTRSIZE := ECTRSIZE - 6 

END; 
: BEGIN 

DISPOSE(PARSTRUCT, DUMMY); 
ECTRSIZE := ECTRSIZE - 8 

~ 
'"tJ 
'"tJ 
m z 
o ..... 
x 
~ 

en 
m 
z 
(I) 

~ 
r-
..... 
Z 
-i 
m 
:;0 
'"tJ 
:;0 
m 
-i 
m 
:;0 



"'0 
Q/ 
\0 
<D 

u.I 
Vi 
u.I 

5834 
5835 
5836 
5837 
5838 
5839 
5840 
5841 
5842 
5843 
5844 
5845 
5846 
5847 
5848 
5849 
5850 
5851 
5852 
5853 
5854 
5855 
5856 
5857 
5858 
5859 
5860 
5861 
5862 
5863 
5864 
5865 
5866 
5867 
5868 
5869 
5870 
5871 
5872 
5873 

END; 
SPECIFIC : BEGIN 

DISPOSE(PARSTRUCT, SPECIFIC); 
ECTRSIZE := ECTRSIZE - 70 

END; 
GENERIC : BEGIN 

DISPOSECPARSTRUCT, GENERIC); 
ECTRSIZE := ECTRSIZE - 50 

END; 
OTHER : BEGIN 

END; 

DISPOSECPARSTRUCT, OTHER); 
ECTRSIZE := ECTRSIZE - 22 

END 

NUMDESTROYED := NUMDESTROYED + 1; 
IF DIAGNOSTICS THEN WRITELNCDIAGFILE,' DESTROYED') 

END 
ELSE IF DIAGNOSTICS THEN WRITELNCDIAGFILE); 

IRLISTBOT := NEXT 
END; 

NUMPSS := NUMPSS - NUMDESTROYED; 

» 
"'0 
"'0 
m 
Z 
I:' 
~ 

X 

VoI 

WRITElN('ECTR occupies " ECTRSIZE : 5, , words, in " NUMPSS : 3, , partial structures.'); 
WRITELNCNUMDESTROYED : 2, , partial structures C', OLDECTR - ECTRSIZE : 5, , words) were reclaimed.'); 
IF DIAGNOSTICS THEN 

BEGIN 
WRITELN(DIAGFILE); 
WRITELN(DIAGFILE); 
WRITELNCDIAGFILE); 
WRITELN(DIAGFILE) 

END 
END; { of TIDYINTREP 
------------------------------------------------------------------------------} 

BEGIN 
INITIALISE; 
NEXTTOKEN; 

(* Body of Procedure INTERPRET *) 

G) 
m 
z 
(I) 

» 
r 
.... 
Z 
-i 
m 
:;0 

-0 
:;0 
m 
-i 
m 
:;0 



-0 
QI 
IQ 
111 

l.oI 
l.oI 
~ 

5874 
5875 
5876 
5877 
5878 
5879 
5880 
5881 
5882 
5883 
5884 
5885 
5886 
5887 
5888 
5889 
5890 
5891 
5892 
5893 
5894 
5895 
5896 
5897 
5898 
5899 
5900 
5901 
5902 
5903 

WHILE CHECKDELI~([GINPUT, GQUERY]) = INVALIDTOKEN DO ERROR(11,0); 
INTERNALREP.QUERYSTRUCTURE := TOKEN.DELI~VAL = GQUERY; 
NEXTTOKEN; 
WHILE TOKEN.NATURE <> INTEGRAL DO ERROR(16,O); 
INTERNALREP.REFNUMBER := TOKEN.INTEGVAL; 
NEXTTOKEN; 
WHILE CHECKDELIM([GSD]) <> GSD DO ERROR(12,0); 
WITH INTERNALREP DO 

BEGIN 
READSD(CONSTANTPART, INPUTMODE=TERMINAL); 
NEW (PSLIST>; 
ECTRSIZE := ECTRSIZE + 4; 
PSLISTA.PARSTRUCT := CONSTANTPART; 
PSLISTA.NEXT := NIL; 
IRLISTBOT := PSLIST 

END; 
REPEAT 

STATEMENT; 
WHILE CHECKDELIM([GSEMI,GPERIOD]) = INVALIDTOKEN DO ERROR(24,0); 
IF TOKEN.DELIMVAL = GPERIOD THEN CHECKALLDONE 

UNTIL TOKEN.DELIMVAL = GPERIOD; 
RECORDMULTS; 
WRITELN; 
IF CONDITIONSPRESENT THEN WRITELN('CConditions not yet implemented)'); 
WRITELN; 
WRITELNC'Generic Structure ',INTERNALREP.REFNUMBER : 6,' accepted.'); 
IF DIAGNOSTICS THEN OUTINTREP; 
TIDYINTREP; 
WRITELN 
END; 

> 
-0 
-0 
m 
z 
co .... 
X 

I.N 

Cil 
m 
z 
(I) 

> 
r 
.... 
Z 
-t 
m 
;:0 
"'0 
;:0 
m 
-t 
m 
;;0 



APPENDIX 4 

Line Number Index to Routines in the 

GENSAL Interpreter Program (Appendix 3) 

PROCEDURE ADDCOM3INPSS 
PROCEDURE ADDCOMBSU8S 
PROCEDURE ADDDEFNTA8LE 
PROCEDURE ADDFURTHERSUBTN 
PROCEDURE ADDINTS 
PROCEDURE ADD ITEM 
PROCEDURE ADDPARALT 
PROCEDURE ADDTOLIST 
PROCEDURE ADDZERO 
FUNCTION ALLWITHINLIMITS 
FUNCTION ALREADYINLIST 
PROCEDURE ALTERCONNBONDS 
PROCEDURE ALTNTVE 
PROCEDURE ALTNVLIST 
FUNCTION ASSGNTOP 
PROCEDURE ASSIGNMENTSTMNT 
FUNCTION BONDCHECK 
FUNCTION BONDVAL 
FUNCTION CHECK 
PROCEDURE CHECKALLDONE 
PROCEDURE CHECKALLWITHIN 
PROCEDURE CHECKCOMBPOSNS 
PROCEDURE CHECKCOMPATABILITY 
FUNCTION CHECKDELIM 
PROCEDURE CHECKEARLIERDEFN 
PROCEDURE CHECKINCLUDED 
FUNCTION CHECKINT 
PROCEDURE CHECKPOSNS 
PROCEDURE CHECKVALIDINT 
PROCEDURE CMPDSTMNT 
FUNCTION COMBINEDPOSITIONS 
PROCEDURE COMBINEVALUES 
PROCEDURE COMPARELISTS 
PROCEDURE CONCATENATETERMS 
PROCEDURE CONDITION 
PROCEDURE COPYALTBAR 
PROCEDURE COPYCOMBAR 
PROCEDURE COPYCOMBAR 
PROCEDURE COPYLIST 
FUNCTION COPYLIST 
FUNCTION COPYPS 
PROCEDURE DECLAREMULT 
PROCEDURE DECLARESUBST 
PROCEDURE DECODECT 
FUNCTION DEFNTABLEENTRY 
PROCEDURE DELETEGENSAL 

Page 335 

4372 
4928 
4998 
4571 

35 
5150 
4343 
1012 
4119 
2115 
4323 
3154 
4304 
2371 
4687 
4678 
2772 
1456 

468 
5364 
1234 
3447 
4740 
2044 
1680 

: 1257 
581 

3372 
2316 
5319 
3411 
5167 
1207 
2611 

: 5269 
1090 
1078 
1278 
5118 
2532 
1032 
1826 
1169 . . 61 
2700 

53 



APPENDIX 4: 

PROCEDURE DESTROY 
PROCEDURE DESTROYCG 
PROCEDURE DIVIDELINE 
PROCEDURE ELEMENT 
PROCEDURE ENCODECT 
PROCEDURE ENTERCOMBIN 
PROCEDURE ERROR 
FUNCTION EXTRACTINT 
FUNCTION EXTRALAYER 
PROCEDURE FAILURE 
FUNCTION FINDBOTTOM 
PROCEDURE FINDCONNECTIONS 
PROCEDURE FINDFIRST 
PROCEDURE FINDNOMEN 
PROCEDURE FINDNONAPICPOSNS 
PROCEDURE FINDPOSITIONS 
PROCEDURE FINDSECOND 
PROCEDURE GETAVAIlABlEPOSITIONS 
PROCEDURE GETBINFO 
PROCEDURE GETCHILDPOSITIONS 
PROCEDURE GETCOMBPOSNS 
PROCEDURE GETLIMITPOSITIONS 
PROCEDURE GETMARKEDPOSNS 
PROCEDURE GETPOSNS 
PROCEDURE GETSETPOSNS 
PROCEDURE GETSPSPARAMS 
PROCEDURE GETTOKEN 
PROCEDURE GOTOCOMMAND 
PROCEDURE GROUPRANGE 
PROCEDURE HNUMBER 
FUNCTION HYDROGENPS 
PROCEDURE IFSTATEMENT 
FUNCTION INCREASING 
FUNCTION INDEPENDENT 
PROCEDURE INITIALISE 
PROCEDURE INTEGER RANGE 
PROCEDURE INTERPRET 
PROCEDURE INTSET 
PROCEDURE lISTPARAMS 
PROCEDURE LISTPOSNS 
FUNCTION lISTSMATCH 
FUNCTION LMAGCHECKS 
FUNCTION lMAGNOCHECKS 
PROCEDURE lOOKAHEAD 
FUNCTION MAGNITUDE 
FUNCTION MINBOND 
FUNCTION MINPARENTBOND 
PROCEDURE MODIFYCHILDPOSITIONS 
PROCEDURE MODIFYGATEPOSITIONS 
PROCEDURE MULTASSIGNMENT 
FUNCTION NEEDTOCHECK 
FUNCTION NEWCOMBAR 
FUNCTION NEWFREQ 
FUNCTION NEWPARENTPSLIST 
PROCEDURE NEXTTOKEN 

Page 336 

PROGRAM INDEX 

19 
5763 
1985 
3214 

72 
1371 

776 
601 

3950 
317 

4450 
3674 
2429 

543 
2878 
2720 
2445 
849 

4883 
2749 
3067 
4151 
2799 
1711 
1726 
3597 
357 
13 

2282 
1577 
2830 
5300 
2102 
1496 

· 198 · 2062 
125 

2253 
99 

974 
4771 
4508 
4480 

746 
816 

· 867 · 880 
3045 
3796 
5106 

· 3308 · 3256 
· 210 · 3561 
· 726 · 



APPENDIX 4: 

FUNCTION NODENATURE 
FUNCTION NORECORD 
FUNCTION NOVARIABLESUBTN 
FUNCTION NUMOFCONNS 
FUNCTION ORIGINALPOSNS 
PROCEDURE OUTINTREP 
FUNCTION PARAMETER 
PROCEDURE PARAMETERLIST 
FUNCTION POINTERLIST 
PROCEDURE POSITIONSET 
PROCEDURE POSNCOM8INATION 
FUNCTION PPOSNS 
PROCEDURE PRINTNOM 
PROCEDURE PROCESSCT 
PROCEDURE PROGERROR 
FUNCTION PSNO 
PROCEDURE RANGEFRAGMENT 
PROCEDURE READCONGENERS 
PROCEDURE READFELDMANN 
PROCEDURE READLINE 
PROCEDURE READSD 
FUNCTION RECORDHELD 
PROCEDURE RECORDMULTS 
PROCEDURE REDUCE 
PROCEDURE REDUCEECTR 
PROCEDURE REJECT 
PROCEDURE RESTRICTSTMNT 
PROCEDURE REVISELIMITS 
PROCEDURE SELECTOR 
PROCEDURE SETCOMBARS 
PROCEDURE SETCONNBONDS 
PROCEDURE SETINTS 
PROCEDURE SETPARENTGATE 
FUNCTION SPLITLINE 
FUNCTION SPSVARIETY 
PROCEDURE STATEMENT 
PROCEDURE STATEMENT 
PROCEDURE SUBSTASSIGNMENT 
PROCEDURE SUBSTASVALUE 
PROCEDURE SUBSTCOMBINATION 
PROCEDURE SUBSTGROUP 
FUNCTION SUBSTNAME 
FUNCTION SUMFILIALS 
FUNCTION TERMREAD 
FUNCTION THISWAYROUND 
PROCEDURE TIDYINTREP 
PROCEDURE TRACED OWN GATE 
PROCEDURE TRANSLATENOMEN 
PROCEDURE UPDATEPARALTCONNS 
PROCEDURE UPDATEPPSCONNS 
PROCEDURE USER PARAMETER 
FUNCTION VALIDSUBST 
FUNCTION WITHINLIMITS 
PROCEDURE WRITEALTERNS 
PROCEDURE WRITECG 

Page 337 

1434 
81 

4106 
1659 
3338 
5416 
3652 
3631 
4868 
2416 
2463 
4434 

: 46 
1415 

9 
5426 
2138 
1530 
118 
369 

1948 
2656 
5394 
2559 
337 

1512 
5283 
4721 
2341 
3298 
1120 
2222 
3231 
1964 
108 

5295 
5334 
5077 
4036 
4799 
4707 
1480 

930 
90 

2848 
5745 
3087 
3778 
2396 
1149 
3709 
3994 
2076 
5541 
5535 

PROGRAM INDEX 



APPENDIX 4: 

PROCEDURE WRITECG 
PROCEDURE WRITECOMBIN 
PROCEDURE WRITECONNS 
PROCEDURE WRITECT 
PROCEDURE WRITEDECN 
PROCEDURE WRITEFREQ 
PROCEDURE WRITEMESSAGE 
PROCEDURE WRITEPGS 
PROCEDURE WRITEPOSNS 
PROCEDURE WRITEPS 

Page 338 

5595 
5561 
5493 
5611 
5672 
5449 

281 
5515 
5470 
5641 

PROGRAM INDEX 



APPENDIX 5 

GLOBAL DECLARATIONS FOR GENPROG 

Page 339 



"1J 
III 
co 
1'0 

\M 
~ 
o 

CONST MAXCT = 32; 
TERMLENGTH = 32; 
MAXVARS = 63; 
MAXCONGENERS = 6; 
MAXPACKETS = 32; 
MAXBITS = 32; 
MAXSCREENS = 1024; 
MAXLENGTH = 100; 
CTFLAG = '{'; 
GENEXFLAG = 'I'; 
HSTFLAG = '}'; 
CONTNFLAG = '\'; 
ENDGENFLAG = '.'; 
NOTSET = -1; 

{ Size of singLe connection tabLe} 
{ Length of nomencLaturaL terms} 
{ Number of substituents or muLtipLiers} 
{ Number of congeners } 

{ Length of GENESIS command Line, or GensaL Line} 

{ Indicator for INTRECORD.TOPRANGE } 

TYPE TCOMMAND =(CGENSAL, CFILE, CSAVE, CLIST, CSEARCH, CPRINT, CEDIT, CDRAW, 
CDIAGNOSE, CDICT, CNEWTERM, CSYNONYM, CSTOP, CRUN,CCURRENT, 
CFORWARD, CBACK,CTOP,CEND,CDELETE,CINSERT,CLOCATE,CHELPEDIT, 
CQUIT); 

STRING14 
LINESTRING 
PLINELIST 
LINELIST 

STRING4 

USER TYPE 

PDOUBLIST 

= PACKED ARRAY[1 •• 14J OF CHAR; 
= PACKED ARRAY[1 •• MAXLENGTH] OF CHAR; 
= ALINELIST; 
= RECORD 

LINE : LINESTRING; 
NEXT, 
LAST : PLINELIST 

END; 

= PACKED ARRAY[1 •• 4] OF CHAR; 

= PACKED RECORD 
FSAUTH, 
UPDAUTH, 
SWEEP : BOOLEAN; 
NAME : STRING4 

END; 

= ADOUBLIST; 

> 
"1J 
"1J 
m z 
Cl 
H 
X 

V1 

en 
r 
0 
CD 
> r 
Cl 
m 
n 
r 
> 
;;0 

> 
-i 
H 
0 z 
Cl) 



" QI 
IQ 
t'D 

VI 
.".. .... 

DOUBLIST = RECORD 
FIRST, 
SECOND : INTEGER; 
NEXT : PDOUBLIST 

END; 
INTRECORD = RECORD 

PINTEGSET 
INTEGSET 
PTGROUPMEMS 
TGROUPMEMS 

SONDORDER 

TCONNS 
TCONNBONDS 

SUBRANGES : PDOUBLIST; 
TOPRANGE : INTEGER 

END; 
= AINTEGSET; 
= SET OF O •• MAXVARS; 
= ATGROUPMEMS; 
= RECORD 

CASE COMBINED 
TRUE (COMBMEMS 
FALSE : (MEMBERS 

END; 

BOO LEAN OF 
PDOUBLIST) ; 

: INTEGSET> 

=(NOTSPECIFIED, ANY, CHAIN, RING, SINGLE, 
CHAISING, CHAIDOUB, CHAITRIP, CHAITAUT, 
RINGTRIP, AROMATIC, RINGTAUT); 

= NOTSET •• 2; 
= RECORD 

CASE CONNECTIONS : TCONNS OF 
NOTSET, 
o 
1 
2 

: 0; 
: (BOND : 

(BONDA, 
BONDS : 

BONDORDER); 

BONDORDER) 

DOUBLE, TRIPLE, 
RINGSING, RINGDOUB, 

END; 
TSELECTMODE =(INDEPENDENT, ALLSAME, ALLOIFF, NOTALLSAME, NOTALLDIFF); 

PTRPSTYPE = APSTYPE; 

PCOMBINLIST = ACOMBINLIST; 
PALTERNLIST = AALTERNLIST; 

COMBINLIST = RECORD 
PARENTPOSITIONS : PTGROUPMEMS; 
FREQUENCY : INTRECORD; 

»> 
-0 

" rn z 
o 
H 
X 

Ut 

G') 
r 
o 
OJ 
»> 
r 
o 
rn 
n 
r 
»> 
;:Q 

»> ..... 
H 
o 
Z. 
Vl 



.." 
QI 
IQ 
tD 

VoI .... 
N 

NEXT 
CASE BOTTOM9AR 

TRUE 

FALSE 
END; 

ALTERNLIST = RECORD 

PCOMBINLIST; 
: BOOLEAN OF 

(CHILDPS : PTRPSTYPE; 
CHILDPOSITIONS : TGROUPMEMS; 
CONNBONDS : TCONNBONDS); 

(ALTERNATIVES : PALTERNLIST) 

COMBINATION PCOMBINLIST; 
NEXT PALTERNLIST 

END; 

PPARENTLIST = APARENTLIST; 
PARENTLIST = RECORD 

CHILDPOSITIONS, 
PARENTPOSITlONS 
PARENTPS 
CONNBONDS 
NEXT 

END; 

TGROUPMEMS; 
PTRPSTYPE; 
TCONNBONDS; 
PPARENTLIST 

RELATIVES =(NONE, FRATERNAL, PARENTAL, FILIAL); 
ATOMNUM8ER = O •• MAXCT; 
SUBSTITUENT = O •• MAXVARS; 

CONGARRAY = ARRAY [1 •• MAXCONGENERSJ OF 
RECORD 

BOND : BONDORDER; 
CASE RELATIONSHIP : RELATIVES OF 

NONE, 
PARENTAL, 
FILIAL 0; 
FRATERNAL (ROWNUM : ATOMNUMBER) 

END; 

STRING2 = PACKED ARRAY[1 •• 2J OF CHAR; 
NUMCONGENERS=O •• MAXCONGENERS; 

ROW = RECORD 

:Po 
.." 
.." 
rn 
z 
Q 
~ 

X 

Ut 

G') 
r 
o 
IlJ 
:Po 
r 
Q 

rn 
n 
r 
:Po 
;0 

:Po 
~ 
~ 

o 
z 
(,I) 



'"'0 
I» 
IQ 
/11 

VoI 
~ 
VI 

CTTYPE 

CHARGE : -9 •• 9; 
HYDROGENS : NUMCONGENERS; 
CONGENERS : CONGARRAY; 
CASE ATOMICROW : BOO LEAN OF 

TRUE : (ATOM STRING2); 
FALSE : (NAME : SUBSTITUENT; 

VALUES : PCOMBINLIST) 
END; 

= ARRAY[1 •• MAXCTJ OF AROW; 

TPARAMETERS =(ATOMCOUNT, TBRANCH, QBRANCH, EUNSATURATION, YUNSATURATION, 
RINGCOUNT, RINGATOMS, RINGSUBSTITUTION, RINGFUSIONS, 
RINGAROMATIC, HETEROATOM); 

TPARAMLIST = ARRAY[TPARAMETERSJ OF INTRECORD; 

TPSVARIETY =(DUMMY, UNKNOWN, SPECIFIC, GENERIC, OTHER); 
STRING32 = PACKED ARRAY[1 •• 32J OF CHAR; 

PSTYPE = RECORD 
VISITED : BOOLEAN; 
CHILDGATE : PCOMBINLIST; 
PARENTGATE PPARENTLIST; 
CASE PSVARIETY : TPSVARIETY OF 

DUMMY (SUBSTNAME SUBSTITUENT> ; 
UNKNOWN : 0; 
SPECIFIC (CT CTTYPE); 
GENERIC : (PARAMLIST TPARAMLIST> ; 
OTHER : (TERM STRING32) 

END; 

MULTIPLIER = O •• MAXVARS; 

FELDROW = RECORD 
CHEM : 
CHGE : 
MULT : 
AR . . 

END; 

STRING4 (* the atomic symbol, R group or * *); 
-9 •• 9; 
MULTIPLIER; 
ARRAY [1 •• MAXCONGENERSJ OF ATOMNUMBER (* the congeners *) 

»> 
'"'0 
'"'0 
m 
z 
o .... 
x 
V1 

G') 
r o 
CD 
»> 
r 
o 
m 
n 
r 
:I» 
;;;0 
:I» 
~ .... 
o 
z 
(I) 



" 11/ 
IQ 
ID 

v.I 
~ 
~ VAR 

BONDROW = RECORD 
NODE1, 
NODE2 : ATOMNUMBER; 
BOND 1 •• 16 

END; 
TFELDMODE =(NEWDIAGRAM, OLDDIAGRAM, NUMBERDRAW, NUM8ERLESSDRAW); 

PIRLIST = -TIRLIST; 
TIRLIST = RECORD 

PARSTRUCT PTRPSTYPE; 
NEXT PIRLIST 

END; 

TINTERNALREP= RECORD 

DIAGFILE 
TOPOGMFILE 
USER FILE 
USER 
DIAGFIL 

REFNUM8ER 
QUERYSTRUCTURE 
CONSTANTPART 
PSLIST 

END; 

INTEGER; 
BOOLEAN; 

: PTRPSTYPE; 
: PIRLIST; 

TEXT; { Diagnostics file variable} 
: TEXT; { Grammar file variable} 
: FILE OF USERTYPE; 
: USERTYPE; 
: ALFA; { Diagnostics file name} 

DIAGNOSTICS, 
STRUCTURECOMPLETED : BOOLEAN; 

{ Diagnostics file indicator} 

BUFFER 
N 
WORKSPACE 
INTERNALREP 
INSERTGENEX 
SPSPARAMLIST 
FELDCT 
FELDBD 
FELDMODE 
NUMOFNODES, 

LINESTRING; 
: O •• MAXLENGTH; 
: PLINELIST; 

{ GENESIS or EDITOR command line or Gensal line} 
{ Character counter for BUFFER } 
{ Static pointer to held GENSAL } 

: TINTERNALREP; 
PLINELIST; 

: TPARAMLIST; 
ARRAY [1 •• MAXCT] 

: ARRAY [1 •• MAXCTJ 
TFELDMODE; 

OF FELDROW; 
OF BONDROW; 

{ Lines of SPSfile Gensal expression} 
{ SPSfile parameter list} 
{ The Feldmann connection table} 
{ The Feldmann bonding table} 
{ Calling mode for FELDMN } 
{ Number of nodes in the Feldmann connection table } 

> 

" " rn z 
e ...... 
x 
U1 

G) 
r­
e 
OJ 
> r-
e 
rn 
n 
r­
> 
;;0 

> 
-t ...... 
e 
z 
(I) 



"lJ 
I» 
Ul 
III 

~ 
~ 
VI 

NUMOFBONDS 
FELDFlL 

: ATOMNUMBERi 
: ALFA; 

{ Number of bonds in the Feldmann bonding table} 
{ Feldmann transfer file} 

{-------------------------------------------------------------------------------
PRIME APPLICATIONS LIBRARY ROUTINES 

FUNCTION CLOS$A(UNIT SHORTINT): BOOLEAN; 
EXTERN; 

FUNCTION OPNV$A(OPNKEY : SHORTINTi 
NAME : STRING14; 
NAMLEN, 
UNIT, 
VERKEY, 
WTIME, 
RETRYS : SHORTINT): BOOLEAN; 

EXTERN; 

FUNCTION POSN$A(POSKEY, { 1=A$ABS } 
UNIT : SHORTINT; 
POS : INTEGER) : BOOLEAN; 

EXTERN; 

{-----------------------------------------------------------------------------
EXTERNAL FORTRAN SUBROUTINES 

loaded in INOUTSUBS} 

} 

> 
"lJ 
"lJ 
m z 
o .... 
x 
VI 

Cil 
r 
o 
OJ 
> r 
o 
m 
n 
r 
> 
;;;0 

> 
~ .... 
o 
z 
(I) 



""0 
III 
IQ 
I» 

VI 
~ 
0-

PROCEDURE GETLIN(VAR LINE: LINESTRING); 
EXTERN; 
{ FORTRAN subroutine to obtain a single line from the file already open on 

unit 1 and positioned at the correct place. } 

PROCEDURE FELDMN(VAR FELDMODE : 
VAR FELDFIL 

TFELDMODE; 
ALFA); 

EXTERN; 
{ Displays a structure diagram, for which the connection 

table is in the file FELDFIL } 

PROCEDURE GETNOM(VAR TERM 
VAR ADDR 

STRING32; 
INTEGER); 

EXTERN; 
{ FORTRAN subroutine to obtain the next TERM and ADDR from the file 

SPSDICT, which is already open on unit 1. } 

{****************************************************************************} 

PROCEDURE ADDINTS (VAR PTR1 
LOWER, UPPER 

VAR PTR2 : PDOUBLIST; 

BEGIN 
IF PTR1 = NIL 

THEN PTR2 := NIL 
ELSE WITH PTR1 A DO 

IF (SECOND = LOWER-1) OR 
THEN SECOND := UPPER 
ELSE BEGIN 

PDOUBLlST; 
INTEGER); 

(SECOND = LOWER) 

:.­
""0 
""0 
rn z 
o .... 
x 
VI 

G'l 
r 
o 
QJ 
:.­
r 
o 
rn 
n 
r 
» 
;0 
» 
-i .... 
o 
z 
(I) 



"'tI 
I» 
IQ 
I'D 

\oH 
~ 

"'" 

IF PTR1 = NIL 

PTR2 := PTR1; 
PTR1 := NIL 

END; 

THEN BEGIN 
NEW(PTR1); 
WITH PTR1 A DO 
BEGIN 

END; 

FIRST 
SECOND 
NEXT 

END 
END 

:= LOWER; 
:= UPPER; 
:= PTR2 

PROCEDURE PRINTNOM(NOMENVAL : STRING32); 

VAR M : 1 •• 32; 

BEGIN 
FOR M := 1 TO 32 DO 

IF NOMENVAL[M] <> I I THEN WRITE(NOMENVAL[M]) 
END; 

PROCEDURE DELETEGENSAL(VAR LINE1 

VAR LINE2 PLINELIST; 

BEGIN 
WHILE LINE1 <> NIL DO 

BEGIN 
LINE2 := LINE1 A .NEXT; 
DISPOSE(LINE1); 
LINE1 := LINE2 

END 
END; 

PLINELISr> ; 

:> 
"'tI 
"'tI 
m 
z 
e .... 
x 
V1 

en 
r­
o 
CD 
:> 
r-
e 
m 
~ 

r­
:> 
;:0 
:> ..... 
t-4 
o 
Z 
(I) 



"'0 
III 
IQ 
111 

VI 
~ 
00 

{------------------------------------------------------------------------------} 
PROCEDURE DECODECT (VAR CTLINE PLINELIST; 

DISPLAYING: BOOLEAN); 

VAR CHPOSN 
NODE 
M, 
SPACE 

: O •• MAXLENGTH; 
ATOMNUMBER; 

INTEGER; 

FUNCTION NEXTCH : CHAR; 

{ Character position in LINE} 
{ Loop counter } 
{ Miscellaneous counter} 
{ Ordinal value offset } 

{ Returns the next character in the string, taking new lines when necessary} 

BEGIN 
IF CHPOSN=MAXLENGTH 

THEN BEGIN 
CTLINE := CTLINEA.NEXT; 
CHPOSN := 2 {First character in each line is omitted (CONTNFLAG) } 

END 
ELSE CHPOSN := CHPOSN + 1; 

NEXTCH := CTLINEA.LINE [CHPOSN] 
END; 

BEGIN { Body of DECODECT } 
SPACE := ORD(I I); 
CHPOSN := 1; { first character in string is omitted} 
NUMOFNODES := ORO(NEXTCH) - SPACE; 
FOR NODE := 1 TO NUMOFNODES DO WITH FELDCT[NODE] DO 

9EGIN 
FOR M := 1 TO 4 DO CHEM[M] := NEXTCH; 
CHGE := ORO(NEXTCH) - SPACE - 9; 
MULT := ORO(NEXTCH) - SPACE; 
FOR M := 1 TO MAXCONGENERS DO AR[M] := ORO(NEXTCH) - SPACE 

> 
-0 
-0 
m 
z 
00 
1-4 
X 

VI 

Cl 
r­
e 
CD 
> r-
00 
m 
n 
r­
> 
;;0 

> .... 
1-4 
e 
z 
(I) 



." 
Ell 
10 
(1) 

V. 
~ 
-0 

END; 
NUMOFBONDS 
FOR M : = 1 

BEGIN 
NODE1 
NODE2 
BOND 

END; 

:= ORD(NEXTCH) - SPACE; 
TO NUMOFBONDS DO WITH FELDBD[M] DO 

:= ORD(NEXTCH) - SPACE; 
:= ORD(NEXTCH) - SPACE; 
:= ORD(NEXTCH) - SPACE 

IF DISPLAYING THEN 
BEGIN 

REWRITE(OUTPUT,FELDFIL); 
WRITELN(NUMOFNODES : 3); 
FOR NODE := 1 TO NUMOFNODES DO WITH FELDCT[NODE] DO 

BEGIN 
WRITE (CHEM, CHGE: 2,' '); 
IF MULT=O THEN WRITE (' .) 

ELSE WRITE('M',MULT:3); 
FOR M := 1 TO MAXCONGENERS DO IF AR[M] <> 0 THEN WRITE(AR[M] 
WRITELN 

END; 
WRITELN(NUMOFBONDS : 3); 
FOR M := 1 TO NUMOFBONDS DO WITH FELDBD[M] DO 

WRITELN(NODE1 : 3, NODE2 : 3, BOND : 3); 
REWRITE(OUTPUT,'@TTY'); 
FELDMODE := NUMBER DRAW; 
FELDMNCFELDMODE,FELDFIL) 

END 
END; 

3); 

{-----------------------------------------------------------------------------} 

{------------------------------------------------------------------------------} 
PROCEDURE ENCODECT(VAR CTLINE : PLINELIST); 

VAR CHPOSN 
NODE 
M, 
SPACE 

O •• MAXLENGTH; 
ATOMNUMBER; 

INTEGER; 

{ Charcter position in line} 
{ Loop counter } 
{ Miscellaneous counter} 
{ Ordinal value offset} 

> 
." 
." 
ITI 
Z 
o 
t-t 
X 

VI 

en 
r 
o 
OJ 
> r 
o 
ITI 
n 
r 
> 
;;0 

> 
-t 
t-t 
o 
Z 
(IJ 



""0 
QI 
10 
ID 

VoI 
V1 
o 

PROCEDURE STORECHAR (CH: CHAR); 

{ Stores CH in the next position in the charcter string, taking new lines when 
necessary } 

VAR NEWLINE PLINELIST; 

BEGIN 
IF CHPOSN=MAXLENGTH 

THEN BEGIN 
NEW(NEWLlNE); 
NEWLINEA.NEXT := NIL; 
NEWLINEA.LAST := CTLINE; 
CTLINEA.NEXT := NEWLINE; 
CTLINE := NEWLINE; 
CTLINE A.LINE[1] := CONTNFLAG; 
CHPOSN := 2 

END 
ELSE CHPOSN := CHPOSN+1; 

CTLINEA.LINE [CHPOSN] := CH 
END; 

BEGIN {Body of ENCODECT} 
SPACE := ORD(' I); 

CHPOSN := 0; 
STORECHAR(CTFLAG); {Connection table indicator flag} 
STORECHAR(CHR(NUMOFNODES + SPACE»; 
FOR NODE := 1 TO NUMOFNODES DO WITH FELDCT[NODE] DO 

BEGIN 
FOR M := 1 TO 4 DO STORECHAR(CHEM[M]); 
STORECHAR(CHR(CHGE+9+SPACE»; 
STORECHAR(CHR(MULT+SPACE»; 
FOR M := 1 TO MAXCONGENERS DO STORECHAR(CHR(AR[M]+SPACE» 

END; 
STORECHAR(CHR(NUMOFBONDS + SPACE»; 
FOR M := 1 TO NUMOFBONDS DO WITH FELOBD[M] DO 

:la 
""0 
""0 
IT1 
Z 
a .... 
x 
V1 

Ci) 
r o 
CD 
:la 
r 
a 
IT1 
n 
r 
:la 
;;0 
:la 
-t .... 
o 
z 
(I) 



"'tJ 
I» 
IQ 
I'D 

VoI 
VI ..... 

BEGIN 
STORECHAR(CHR(NODE1+SPACE»; 
STORECHAR(CHR(NODE2+SPACE»; 
STORECHAR(CHR(80ND+SPACE» 

END; 
WHILE CHPOSN < MAXLENGTH DO STORECHAR(I I) 
END; 
{----------------------------------------------------------------------------} 

{------------------------------------------------------------------------------} 
PROCEDURE READSPSPARAMS(SPSTRING : PLINELIST); 

VAR CH 
PTR 
CHPOSN 
PARAMETER 

CHAR; 
PDOUBLIST; 
O •• MAXLENGTH; 
TPARAMETERS; 

FUNCTION NEXTCH CHAR; 

{ Returns the next character in the string, taking new lines when necessary} 

BEGIN 
IF CHPOSN=MAXLENGTH 

THEN 8EGIN 
SPSTRING := SPSTRINGA.NEXT; 
CHPOSN : = 1 

END 
ELSE CHPOSN := CHPOSN + 1; 

NEXTCH := SPSTRINGA.LINE [CHPOSNJ 
END; 

BEGIN {Body of READSPSPARAMS} 
CHPOSN := 1; {first character in string is ommitted (HSTFLAG) } 
FOR PARAMETER:= ATOMCOUNT TO HETEROATOM DO WITH SPSPARAMLIST[PARAMETERJ DO 

> 
"'tJ 
"'tJ 
rn z 
o 
1-1 
X 

VI 

G'I r­
o 
CD 
> r-
o 
rn 
n 
r­
> 
;0 

> 
-t ..... 
o z 
(I) 



""0 
III 

(,Q 

CD 

v.I 
VI 
N 

BEGIN 
SUBRANGES := NIL; 
TOPRANGE := ORD(NEXTCH) - ORD('O'); 
CH := NEXTCH; 
WHILE CH <> ' , DO 

END 
END; 

BEGIN 
NEWCPTR); 
PTR~.NEXT := SUBRANGES; 
PTR~.FIRST := ORD(CH)- ORDC'O'); 
PTR~.SECOND := ORD(NEXTCH) - ORD('O'); 
SUBRANGES := PTR; 
CH := NEXTCH 

END 

{------------------------------------------------------------------------------} 

FUNCTION NORECORD(NOMEN STRING32; 
VAR ADDRESS INTEGER): BOOLEAN; 

VAR SPSNOM STRING32; 

BEGIN 
IF NOT OPNV$A(SHORT(1), 'LI2GEN>SPSDICT', SHORT(14), SHORT(1), SHORT(1), SHORT(1), SHORT(100» 

THEN PROGERROR(101); {File error - cannot open SPSDICT} 
REPEAT GETNOMCSPSNOM, ADDRESS) 
UNTIL (SPSNOM=NOMEN) OR CSPSNOM[1J=' I); 
IF NOT CLOS$A(SHORTC1» THEN PROGERROR(102); {cannot close SPSDICT} 
NORECORD := SPSNOM[1J=' , 
END; 

FUNCTION TERMREAD(VAR TERM STRING32): BOOLEAN; 

VAR M, MM : O •• TERMLENGTH; 

BEGIN 

> 
""0 
""0 
m z 
o .... 
X 

VI 

Ci) 
r 
o 
CD 
> r 
o 
m 
n 
r 
> 
;;0 

> .... .... 
o 
z 
(I) 



"'tJ 
Q/ 
IQ 
I'D 

v.. 
\It 
v.. 

REAOLN(TERM : M); 
FOR MM := 1 TO M DO IF TERM[MM] IN [·a· •• ·z·] 

THEN TERM[MM] := CHRCORDCTERM[MM]) - ORD('a') + ORD('A'»; 
TERMREAD := M>O 
END; 

PROCEDURE LISTPARAMS(VAR OUTFILE TEXT; 
PARAMLIST TPARAMLIST); 

VAR PARAMETER : TPARAMETERS; 
PTR PDOUBLIST; 

BEGIN 
FOR PARAMETER := ATOM COUNT TO HETEROATOM DO WITH PARAMLIST[PARAMETER] DO 

IF TOPRANGE <> 0 THEN 
BEGIN 

CASE PARAMETER OF 
ATOMCOUNT WRITE(OUTFILE,'C'); 
TBRANCH WRITE(OUTFILE,IT')i 
QBRANCH WRITE(OUTFILE,'Q'); 
EUNSATURATION WRITE(OUTFILE,'E'); 
YUNSATURATION WRITE(OUTFILE,'Y'); 
RINGCOUNT WRITE(OUTFILE,'RC'); 
RINGATOMS WRITE(OUTFILE,'RN'); 
RINGSUBSTITUTION : WRITE(OUTFILE,'RS'); 
RINGFUSIONS : WRITE(OUTFILE,'RF'); 
RINGAROMATIC : WRITE(OUTFILE,'RA'); 
HETEROATOM WRITE(OUTFILE,'Z') 

END; 
PTR := SU9RANGES; 
WRITE(OUTFILE, '<1); 
WHILE PTR <> NIL DO WITH PTR

A 

DO 
BEGIN 
WRITE(OUTFILE, FIRST: 1); 
IF FIRST <> SECOND THEN WRITE(OUTFILE, '_1, SECOND: 1); 
PTR := NEXT; 
IF (PTR <> NIL) OR (TOPRANGE <> NOTSET) THEN WRITE(OUTFILE, .,.) 

END; 

> 
"'tJ 
"'tJ 
m z 
o 
M 
X 

\It 

en 
r 
o 
QJ 
> r 
o 
m 
n 
r 
> 
;;:g 

> 
~ 
M 
(.) 

Z 
(/) 



"tI 
III 
IQ 
ID 

VI 
V1 
~ 

IF TOPRANGE <> NOTSET 
THEN WRITE(OUTFILE, TOPRANGE:1, ,-> ') 
ELSE WRITE(OUTFILE, ,> I) 

END; 
WRITELN(OUTFILE); 
WRITELN(OUTFILE) 
END; 

FUNCTION SPSVARIETY(ADDRESS INTEGER; 
DISPLAYING BOOLEAN) TPSVARIETY; 

{ Returns the variety of partial structure, whose record begins at ADDRESS in 
SPSFILE. The Lines of the record in SPSFILE are in reverse order, and as they 
are read into a Linked List of Lines, the order is automaticaLLy put right. 
The first character of the first (in correct order) Line indicates the nature 
of the partiaL structure. DECODECT is caLLed to deaL with connection tables 
(with DISPLAYING as its parameter); homologous series terms are handLed by 
READSPSPARAMS, and listed by LISPARAMS if DISPLAYING is TRUE; GensaL 
expressions are stored in INSETGENEX, and Listed by LISTGENEX if DISPLAYING 
is TRUE. } 

VAR SPSTRING PLINELISTi {Lines of partial structure record} 
PARAMETER : TPARAMETERSi 

BEGIN 
IF NOT (OPNV$A(SHORT(1), 'LI2GEN>SPSFILE', SHORT(14), SHORT(1), SHORT(1), SHORT(1), SHORT(100» 

AND POSN$A(SHORT(1), SHORT(1), ADDRESS» THEN 
PROGERROR(103); {File error - opening/positioning SPSFILE} 

NEW(SPSTRING); 
SPSTRINGA.LAST := NIL; 
SPSTRINGA.NEXT := NIL; 
GETLIN(SPSTRINGA.LINE); 
WHILE NOT (SPSTRING A.LINE[1J IN [CTFLAG, HSTFLAG, GENEXFLAGJ) DO 

BEGIN 
NEW(SPSTRINGA.LAST); 
SPSTRINGA.LASTA.NEXT := SPSTRING; 
SPSTRING := SPSTRINGA.LAST; 
SPSTRINGA.LAST := NIL; 

> 
"tI 
"tI 
rn z .., 
1-4 
X 

V1 

Gl 
r­
o 
CD 
> 
r .., 
rn 
n 
r 
> 
;;0 

> ..... 
1-4 
o 
Z 
VJ 



"'0 
QI 
10 
111 

V. 
V1 
V1 

GETLIN(SPSTRING-.LINE) 
END; 

IF NOT CLOS$A(SHORT(1» THEN PROGERROR(104); {File error (SPSVARIETY) - closing SPSFILE} 
CASE SPSTRING-.LINE[1) OF 

CTFLAG: 
BEGIN 

SPSVARIETY := SPECIFIC; 
DECODECT(SPSTRING, DISPLAYING); 
DELETEGENSAL(SPSTRING) 

END; 
GENEXFLAG: 

BEGIN 
SPSVARIETY := OTHER; 
INSERTGENEX := SPSTRING-.NEXT; 
IF DISPLAYING THEN LISTGENEX(SPSTRING-.NEXT) 

END; 
HSTFLAG: 

BEGIN 
SPSVARIETY := GENERIC; 
READSPSPARAMS(SPSTRING); 
DELETEGENSAL(SPSTRING); 
IF DISPLAYING 

THEN BEGIN 

END 

LISTPARAMS(OUTPUT, SPSPARAMLIST); 
FOR PARAMETER := ATOMCOUNT TO HETEROATOM DO 

DESTROY(SPSPARAMLIST[PARAMETER).SUBRANGES) 
END 

END { of case } 
END; 

PROCEDURE READFELDMANN; 

{ Reads the Feldmann table from FELDFIL. } 

VAR CH 
NODE 
M 

: CHAR; 
ATOMNUMBER; 

: INTEGER; 

> 
"'0 
"'0 
m z 
o 
1-4 
X 

V1 

Cil 
r 
e 
CD 
> 
r 
o 
m 
n 
r­
> 
:;:0 

> 
-4 
1-4 
e z 
(I) 



." 
11/ 
IQ 
III 

lH 
VI 
0-

BEGIN 
RESET(INPUT,FELDFIL); 
READLN(NUMOFNODES); 
FOR NODE := 1 TO NUMOFNODES DO WITH FELDCT[NODE] DO 

BEGIN 
FOR M := 1 TO 4 DO READ(CHEM[M]); 
READ(CHGE,CH,CH,CH); 
IF CH = 'M' THEN READ(MULT) 

ELSE MULT := 0; 
FOR M := 1 TO MAXCONGENERS DO 

IF EOLN(INPUT) THEN AR[M] := 0 
ELSE READ(AR[M]); 

READLN 
END; 

READLNCNUMOFBONDS); 
FOR M := 1 TO NUMOFBONDS DO WITH FELDBD[M] DO 

READLN(NODE1,NODE2,BOND); 
RESET(INPUT,'@TTY') 
END; 

:> 
." 
." 
m z 
Q 
I-f 
X 

VI 

Ci) 
r 
o 
CD 
:> 
r 
Q 
m 
n 
r 
:> 
;:0 
:> 
~ 
I-f 
o 
Z 
(I) 



APPENDIX 6 

SAMPLE INTERPRETER SESSION 

In this sampLe interpreter session the structure shown in Figure 

3.3 is entered, with various errors being indicated by the 

program, and corrected by the user. After a "faiLure", a session 

using the editor corrects an erroneous structure diagram, and the 

whole structure is then reprocessed in non-interactive mode, 

before the user continues to input GENSAL statements. 

Enter Command : GENSAL 

1 18 GENSAL: INPUT 4163058 
2 18 GENSAL: SD 

FELDMANN graphics system for structure diagram input and display: 

11 
RING 5 

11 
ABRAN 1 1 2 1 3 1 4 1 

11 
SATOM 1 3 
ATOM TYPE = 
N 

11 
SATOM 6 8 
ATOM TYPE = 
R5 

11 
SATOM 7 9 
ATOM TYPE = 
0 

Page 357 



APPENDIX 6: 

# 
SSOND 2 7 4 9 
BOND TYPE= 
CD 

# 
RING 6 

# 
RING 6 

# 
ABOND 5 10 

# 
A90ND 5 16 

# 
ALTBD 10 11 

# 
ALTBD 16 17 

# 
D 

19.20 12.13 

18 21 11 
• 

17.16 10.15 
/ 

# 
END 

\ 
\ 
\ 

\ 
\ / 

90 5 

/ 

+ I \ 
+ / \ 

/ 
/ 

4 1N-6RS 

3N----2 
/ + 

I + 
8RS 70 

3 702 GENSAL: R = H / SD 

**** ERROR 23 
Integer expected. 

Page 358 

14 
• 

INTERPRETER SESSION 



APPENDIX 6: INTERPRETER SESSION 

Remainder of input line ignored 

4 702 GENSAL: 5 = H I SD 

FELDMANN graphics system for structure diagram input and display: 

11 
CHAIN 3 

11 
ABRAN 1 1 1 1 

11 
SATOM 2 
ATOM TYPE = 
R3 

11 
SATOM 3 
ATOM TYPE = 
R2 

11 
SATOM 4 
ATOM TYPE 
R1 

11 
SATOM 5 
ATOM TYPE 

* 
11 
D 

# 
END 

= 

= 

5* 
\ 

I 

\ 
1--2R3-3R2 

I 

4R1 

5 1299 GENSAL: R! = H I alkyl <1-7> ; 

**** ERROR 24 
Unexpected symbol. 

Remainder of input line ignored 

6 1299 GENSAL: ; 
7 1299 GENSAL: R1 = H I alkyl <1-7> ; 

Page 359 



APPENDIX 6: INTERPRETER SESSION 

8 1648 GENSAL: R2 = SD 

FELDMANN graphics system for structure diagram input and display: 

11 
CHAIN 2 

11 
ABRAN 1 1 1 1 

11 
SATOM 2 
ATOM TYPE 
0 

11 
SATOM 3 
ATOM TYPE 
R4 

11 
SATOM 4 
ATOM TYPE 

* 
11 
SBOND 1 4 
BOND TYPE= 

11 
D 

CD 

11 
END 

= 

= 

= 

4* 
+ 

I 

+ 
1--20 

I 

3R4 

**** FAILURE 42 
Bond types CS and CD are incompatible. 

Edit e~isting GENSAL or start again! 

Enter Command : EDIT 

(The editor session is not shown here. It involves the 
replacement of the erroneous double bond in the last 

Page 360 



APPENDIX 6: 

structure diagram by a single bond] 

> RUN 

1 18 GENSAL: INPUT 4163058 
2 18 GENSAL: SD 

19.20 12.13 
• 

• • 
18 21 

• • 
17 .16 

\ 
\ 
\ 

I 
I 

\ I 
\ I 

• 
11 

. 
10.15 
I 

90 5 
+ I \ 

+ I \ 
4 1N-6R5 

3N----2 
I + 

I + 
8R5 70 

. 
14 

3 702 GENSAL: R 
4 702 GENSAL: 5 = H I SD 

5 
6 
7 
8 

1299 
1299 
1299 
1648 

5* 
\ 

\ 
1--2R33R2 

I 
I 

4R1 

GENSAL: 
GENSAL: . , 
GENSAL: 
GENSAL: 

R1 = H I alkyl <1-7> ; 
R2 = SD 

4* 
\ 

\ 
1tt20 

/ 
/ 

3R4 

Page 361 

INTERPRETER SESSION 



APPENDIX 6: 

End of stored GENSAL. 
Input at the terminal: 

9 1887 GENSAL: i 
10 1887 GENSAL: R3 = 0 I Si 
11 2292 GENSAL: RESTRICT <1> R5 <> H. 

The following substituents remain undefined: 
R4 

**** ERROR13 
"i" expected. 

Remainder of input line ignored 

12 2292 GENSAL: i 

INTERPRETER SESSION 

13 2292 GENSAL: R4 = 'acyl residue of naturally-
14 2325 GENSAL: occurring protein amino acid'. 

(Conditions not yet implemented) 

Generic Structure 4163058 accepted. 
ECTR occupies 2124 words, in 9 partial structures. 
o partial structures ( 279 words) were reclaimed. 

Used 5.734 seconds. Fragment generation begins. 

Page 362 



APPENDIX 7 

INTERPRETER ERROR MESSAGES 

In these error messages the symbol # is replaced by an integer, 

and the symbol $ by a character (normally part of a bond type 

abbreviation). 

1) Substituent R# has not been declared. 

2) Multiplier M# has not been declared. 

3) position # which is implicit in nomenclatural term is not 

available. 

4) No positions available for the further substitution implicit 

in nomenclatural term. 

5) # is not a valid value for this parameter. 

6) Position # is not available for attachment in all child 

structures. 

7) Substitution is not possible in position #. 

8) Insufficient substitutable positions for # substitutions. 

9) Not enough substituent declations for # selective definitions. 

10) # is too big a value for a multiplier. 

11) "INPUT" or "QUERY" expected. 

Page 363 



APPENDIX 7: ERROR MESSAGES 

12) "SO" expected. 

13) ..... expected • , 

14) ")" expected. 

15) 11.11 or "END" expected. , 

16) Patent number expected. 

17> "THEN" expected. 

18) Substituent definition element expected. 

19) Statement expected. 

20) Substituent or multiplier group expected. 

21) "<" expected. 

22) ">" expected. 

23) Integer expected. 

24) Unexpected symbol. 

25) Nomenclatural term or "." expected. 

26) Substituent expected. 

27) Integer range must have increasing values left to right. 

28) Substituent values must be in the range 1 to 63. 

29) "." expected. 

30) Combination of doubly-connected substituents not permitted. 

31) Connectivity incompatible with substituent<s) being defined. 

32) Assignment operator expected. 

33) 11,11 expected. 

34) Position combination not permitted for singly-connected 

subst itut ion. 

35) No appropriate declaration for R#. 

36) 11+11 expected. 

37) Substituents in combination not declared in same partial 

structures. 

Page 364 



APPENDIX 7: ERROR MESSAGES 

38) 

39) Positions specified previously are not available. 

40) Error in stored GENSAL. 

41) Structure Diagram rejected. 

42) Bond types S$ and SS are incompatible. 

43) No available position in child structure for SS bond. 

44) Doubly-connected vaLue for singly-connected substituent. 

45) Bond size cannot be accomodated in parent structure at 

specified position #. 

46) Bond size cannot be accomodated in parent structure at any 

position. 

47) No positions available in parent structure for combined 

substitution. 

48) Bond sizes cannot be accomodated at any pair of positions in 

parent structure. 

49) Positions specified for further substitution on R# are not 

available. 

50) No avaiLable positions for further substitution on R#. 

51) Incompatible connectivities for substituents in this group. 

52) No available positions in child structure for SS and SS 

bonds. 

53) Number of bonds on substituent at node # does not agree with 

previous declaration. 

54) More than two bonds on substituent at node #. 

55) ILLegaL vaLency on atom at node #. 

56) VariabLe-position label applied to atom at node #. 

57) Multiplier appplied to node #, which is not a substituent. 

Page 365 



APPENDIX 7: ERROR MESSAGES 

58) Multivalent label or hydrogen at node #. 

59) Maximum of two apical bond labels exceeded. 

60) Illegal pattern of AROMATIC bonds at node #. 

61) Illegal pattern of TAUTOMERIC bonds at node #. 

Page 366 



BIBLIOGRAPHY 

"When you steal from one author, it's plagiarism 

if you steal from many, it's research" 

William Mizner (1876-1933) 

1. Anon., "No growth in chemical literature in 1981" CAS ,-
Report (12) 10 (1982) 

2. RowLett, R.J., "GLeaning patents with ChemicaL 
Abstracts", ChemTech 9 (6) 348-9 (1979) 

3. Oppenheim, C., "The patents coverage of ChemicaL 
Abstracts", Information Scientist 8 (3) 133-8 (1974) 

4. Oppenheim, C., "Recent changes in patent Law and their 
impLications for information services and information 
scientists", JournaL of Documentation 34 (3) 217-229 
(1978) 

5. Dodd, V.S., "DeveLopments in patent documentation", 
AsLib Proceedings 31 (4) 180-190 (1979) 

6. Kaback, S.M., "ChemicaL structure searching in 
Derwent's World Patent Index", JournaL of ChemicaL 
Information and Computer Sciences 20 (1) 1-6 (1980) 

7. Markush, E.A., "PyrazoLone dyes", U.S. Patent No. 
1506316, Aug 26th 1924 

8. Rosa, M.C., "Outline of practice reLative to 'Markush' 
cLaims", JournaL of the Patent Office Society 34 (5) 
324-345 (1952) 

9. Coulter, R.I., "Comments on 'aLternativeness' in claims 
(The RuLe Against Or) Journal of the Patent Office 
Society 33 (11) 819-831 (1951) 

10. SiLk, J.A., PersonaL Communication to M.F. Lynch, 
Letter dated 19 October 1979 

11. Bouman, H., "Too prolific Markush", JournaL of 
Documentation 26 (2) 161-163 (1970) 

12. Beton, J.L., "The nature and grant of chemicaL 
patents", Chemistry and Industry 298-301 (5 April 1975) 

Page 367 



BIBLIOGRAPHY 

13. Valance, E.H., "Understanding the Markush claim in 
chemical patents", Journal of Chemical Documentation 1 
(2) 87-92 (1961) 

14. Sneed, H.M.S., Turnipseed, J.H., Turpin, R.A., "A 
line-formula notation system for Markush structures", 
Journal of Chemical Documentation 8 (3) 173-178 (1968) 

15. Krishnamurthy, E.V., Lynch, M.F., "Analysis and coding 
of generic chemical formulae in chemical patents", 
Journal of Information Science 3 75-79 (1981) 

16. Krishnamurthy, E.V., Lynch, M.F., "Formal description, 
coding and computer handling of generic formulae in 
chemical patents. Report on tenure of a British Library 
Senior Visiting Fellowship by Prof. E.V. Krishnamurthy 
at the Postgraduate School of Librarianship and 
Information Studies, University of Sheffield, February 
1979." BLR&D Report No 5490, British Library (1979) 

17. Geivandov, E.A., ["Language for notation of 

18. 

generalised structures of organic compounds containing 
alternative delocalised fragments (Markush 
Structures)"], Nauchno-tekhnicheskiya Informatsiya 
Seriya 2 (10)21-24, 46 (1972) [IN RUSSIAN] 

Warr, W.A., "Software 
chemical structures", 
the Future of Chemical 
1982. 

for storage and retrieval of 
presented at CNA(UK) Seminar on 

Documentation, Exeter, September 

19. Eakin, D.R., "The ICI CROSSBOW system", in "Chemical 
Information Systems", eds. Ash, J.E., Hyde, E. Ellis 
Horwood (1975) 

20. Smith, E.G., Baker, P.A., "The Wiswesser Line-FormuLa 
Chemical Notation", 3rd edition, Chemical Information 
Management Inc. (1972) 

21. Polton, D., "Installation and experience with MACCS 
(Molecular Access System)", Online Review, 6 (3) 235-
242 (1982) 

22. Farmer, N.A., O'Hara, M.P., "CAS ONLINE: a new source 
of substance information from Chemical Abstracts 
Service", Database 3 10-25 (1980) 

23. Dubois, J.E., "French national policy for chemical 
information and the DARC system as a potential tool of 
this policy", Journal of Chemical Documentation, 13 (1) 

8-13 (1973) 

24. Dubois, J.E., "The DARC system in chemistry", in 
"Computer Representation and Manipulation of Chemical 
Information", eds. Wipke, W.T., Heller, S.R., Feldmann, 

Page 368 



BIBLIOGRAPHY 

R.J., Hyde, E. Wiley (1974) 

25. Dubois, J.E., "Ordered chromatic graph and limited 

26. 

environment concept", in "Chemical Applications of 
Graph Theory", ed. Balaban, A.T. Academic Press (1976) 

Jackson, F.T., "Markush Structures", Proceedings 
the CNA(UK) Seminar on Integrated Databases 
Chemical Systems, 9-11 April 1979, University of 
at Canterbury, pp. 134-157. CNA(UK) (1981). 

of 
for 

Kent 

27. Japan Patent Association, "Patent Information Study 
Team in Europe and America. Report, 31 August 1975", 
Derwent Publications (1976) 

28. Smith, R.G., Anderson, L.P., Jackson, S.K., "Online 
retrieval of chemical patent information. An overview 
and brief comparison of three major files", Journal of 
Chemical Information and Computer Sciences 17 (3) 148-
157 (1977> 

29. Silk, J.A., "Present and future prospects for 
structural searching of the journal and patent 
literature", Journal of Chemical Information and 
Computer Sciences 19 (4) 195-198 (1979) 

30. Oppenheim, C., "Patent Information Online - a Review", 

31. 

Proceedings of the 5th International Online Information 
Meet Cunard Hotel, London, December 1981, pp. 91-99. 
Learned Information, Oxford (1981). 

Rowland, J.F.B., "Information Transfer 
Chemistry. Final Report of the Chemical 
Review Committee", British Library R&D 
Report 5385 (1978) 

and Use in 
Information 
Department 

32. Rowland, F., "How will chemical information develop?", 
Chemistry in Britain 14 (7) 342-4 (1978) 

33. Kaback, S.M., "A user's experience with the Derwent 
patent files", lournal of Chemical Information and 
Computer Sciences 17 (3) 143-148 (1977) 

34. Kaback, S.M., "Derwent Search Aids", Database, 5 (3) 
19-21 (1982) 

35. Hyams, M., "Chemical patents information", Chemistry 
in Britain 6 416-420 (1968) 

36. Deforeit, H., Caric, A., Combe, H., Leveque, S., 
Malka, A., Valls, J., "CORA - a semiautomatic coding 
system. Application to the coding of Markush 
forM u.las", Journal of Chemical Documentation 12 (4) 
230-232 (1972) 

Page 369 



BIBLIOGRAPHY 

37. Ramussen, L.E., Van Oot, J.G., "Operation of Du Pont's 

38. 

central patent index", Journal of Chemical 
Documentation 9 (4) 201-206 (1969) 

Balent, M.Z., Emberger, J.M., 
fragmentation system for indexing 
Journal of Chemical Information 
15 (2) 100-104 (1975) 

"A unique chemical 
patent literature", 

and Computer Sciences 

39. Balent, M.Z., Lotz, J.W., "Polymers and patents don't 

40. 

mix easily", Journal of Chemical Information and 
Computer Sciences19 (2) 80-83 (1979) 

Cattley, J.M., Rief, T.A., Moore, J.E., 
O'Leary, P.T., "Retrieving patents by 
searching", Chemical Engineering Progress 
(1966) 

Banks, D.G., 
weighted term 
62 (10) 91-96 

41. R~ssler, S., Kolb, A., "The GREMAS system, an integral 
part of the IDC system for chemical documentation", 
Journal of Chemical Documentation 10 (2) 128-134 (1970) 

42. Internationale Dokumentationsgesellschaft fur Chemie 

43. 

m.b.H. Fachinformationszentrum Chemie, "IDC System 
Overview. 2. IDC and its methods of operation", IDC 
(Undated) 

Fugmann, R., "The IDC 
Information Systems", eds. 
195-226, Ellis Horwood (1975) 

System", in "Chemical 
Ash, J.E.,lHyde, E., pp. 

44. P~tzcher, G., "Dokumentation vom Markush-Structuren in 
Organischen Patenten" ["Documentation of Markush 
structures in organic patents"], in "Kleincomputer in 
Information und Dokumentation", Deutcher Dokumentartag 
1981, Mainz, 5-8 Oktober 1981, ed. H. Strohl-GoebeL, 
K.G. Saur, Munich (1982) 

45. Mullen, A., "Informationswesen in der Chemie. Teil 11. 
Neue Tendenzen" [Means of information in chemistry. 
Part 11. New trends], Praxis der Naturwissenschaften 
Chemie 29 (8) 243-247 (1980) [IN GERMAN] 

46. Oppenheim, C., "The performance of the Chemical 
Abstracts subject and formula indexes in retrieving 
compounds disclosed in chemical patent Information 
Scientist 9 (3) 107-111 (1975) 

47. Kaindl, H., "The function of the internal database -
burial ground or intelLigence service", Presented at 
CNA(UK) Seminar on "The Future of Chemical 
Documentation", University of Exeter, September 1982 

48. Schwartz, J.H., "Some observations concerning Chemical 
Abstracts' formula indexes", Journal of Chemical 

Page 370 



BIBLIOGRAPHY 

Documentation 9 (3) 169-171 (1969) 

49. Silk, J.A., Howarth, K.E., Waterman, J.R., Wilkins, 
M., "Substructure searching of the CA Registry file. 
Some implications of a publicly-available system", ICI 
Chemical Structures Task Force Private Circulation 
Document. Unpublished (1980) 

50. Bois, R., Chaumier, J., "A comparative analysis of the 
DARC system and the information and documentation 
system of the IDC", World Patent Information 2 (2) 61-
66 (1980) 

51. Dubois, J.E., Veillard, H., Panaye, A., "Systeme DARC. 
XV. Theorie de generation-description VI. Les 
structures ambigues: description et chainage par un 
graphe fictif documentaire", Bulletin de la Societe 
Chimigue de France. Part 2 1996-2002 (1973) 

52. Berte, M., Delaet, F., "Recherche documentaires 
automatiques dans le domaine des Prostaglandines a 
l'aide du Systeme DARC" [Automatic document search in 
the Prostaglandin field by means of the DARC system], 
Bulletin des Societes Chimigues Belges 88 (3) 175-191 
(1979). [In French, English Abstract]. 

53. Gay, J.-P., "The DARC system", Presented at CNA(UK) 
Seminar on the "Future of Chemical Documentation", 
University of Exeter, September 1982 

54. Dyson, G.M., "Generic (or Markush) groups in notation 
and search programs, with particular reference to 
patents", Information Storage and Retrieval 2 59-71 
(1964) • 

55. Hayward, H.W., Tauber, S.J., "The HAYSTAQ experiment", 
in Proceedings of the Fifth Annual Meeting of the 
COmmit for International Cooperation in Information 
Retrieval Among Examining Patent Offices (ICIREPAT), 
held London, 31 August 10 September 1965, pp 337-50. 
Published Thompson, Washington D.C. (1966) 

56. Tauber, S.J., "Digital handling of chemical structures 
and associated information", in Proceedings of 20th 
National Conference of the Association for Computing 
Machinery, Ohio, August 1965, pp. 206-16 ACM 
Publication P-65, Lewis Winner, New York (1965) 

57. Kirby, C.E.L., Anderson, R.K., Tauber, S.J., 
"Tentative connection table word format for Markush­
type generic chemical structures", Appendix C (Working 
Paper 66-3 (27 January 1966» to "Progress in 
techniques for manipulating and organising chemical 
information", National Bureau of Standards Report 9587 
(January 1967> 

Page 371 



BIBLIOGRAPHY 

58. Tauber, S.J. et al., "Developing computer programs for 
searching specific and generic structures, including 
the formatting of Markush structures", in "Progress in 
techniques for manipulating and organising chemical 
information", pp. 23-34 National Bureau of Standards 
Report 9587 (January 1967) 

59. Fraser Williams (Scientific Systems) Ltd., "Proposals 
for the use of CROSSBOW techniques in the computer 
handling of Markush structures", Unpublhhed internal 
document (1978) 

60. Krishnamurthy, E.V., Sankar, P.V., Krishnan, S., 
"ALWIN - Algorithmic Wiswesser Notation system for 
organic compounds", Journal of Chemical Documentation 
14 (3) 130-141 (1974) 

61. Krishnan, S., Krishnamurthy, E.V., "Compact grammar 
for Algorithmic Wiswesser Notation using Morgan name", 
Information Processing and Management 12 19-34 (1976) 

62. Krishnan, S., "Compact ALWIN grammar and algorithms 

63. 

for computer handling of organic chemical structures", 
Ph.D. Thesis, Molecular Biophysics Unit, Indian 
Institute of Science, Bangalore, India (1975) 

Howe, W.J., Hagadone, T.R., "Progress toward an ontine 
chemical and biological information system at the 
Upjohn company", in "Retrieval of Medicinal Chemical 
Information", eds. Howe, W.J., Milne, M.M., Pennel, 
A.F. ACS Symposium Series 84 107-131 (1978) 

64. Howe, W.J., Hagadone, T.R., "Molecular substructure 
searching: computer graphics and query entry 
methodology", Journal of Chemical Information and 
Computer Sciences in press (1982) 

65. Lynch, M.F., "Screening large chemical files", in 
"Chemical Information Systems", eds. Ash, J.E., Hyde, 
E., pp. 177-194 Ellis Horwood (1974) 

66. Ash, J.E., "Connection Tables and their role in a 
system", .i!:!. "Chemical Information Systems", ed. Ash, 
J.E., Hyde, pp. 156-176, Ellis Horwood (1975) 

67. Welford, S;.M., "Topological Chemical Grammars and the 
Generation of Limited Environment Fragments from 
Generic Chemical Structures", Unpublished Ph.D. Thesis, 
University of Sheffield (1982) 

68. Hopcroft, J.E., Ullman, J.D., "Formal languages and 
their relation to automata", Addison-Wesley (1969) 

69. Ginsburg, S., "The Mathematical Theory of Context-Free 
Languages", McGraw Hill, New York (1966) 

Page 372 



BIBLIOGRAPHY 

70. Hopcroft, J.E., Ullman, J.D., "Introduction to 
Automata Theory, Languages and Computation" Addison­
Wesley, 1979 

71. Backhouse, R.C., "Syntax of Programming Languages. 
Theory and Practice", Prentice Hall <International 
Series in Computer Science) (1979) 

72. Cleaveland, J.C., Uzgalis, R.C., "Grammars for 
Programming Languages", Elsevier North-Holland (1977> 

73. Salomaa, A., "Formal Languages", Academic Press (1973) 

74. Chomsky, N., "On certain formal properties of 
grammars", Information and Control 2 137-167 (1959) 

75. Chomsky, N., "Syntactic Structures", Mouton & Co., 's-
Gravenhage (1957) 

76. Chomsky, N., Miller, G.A., "Introduction to the formal 

77. 

analysis of natural languages", in "Handbook of 
Mathematical Psychology" eds Luce, R.D:; Bush, R.R. and 
Galanter, E., Volume 2, pp. 269-321, Wiley (1963) 

Chomsky, N., 
"Handbook of 
Bush, R.R. and 
WiLey (1963) 

"Formal properties of grammars", in 
Mathematical Psychology", eds Luce, R.D:" 
Galanter E., Volume 2, pp. 323-418, 

78. Chomsky, N., "Aspects of the theory of syntax", MIT 
Press (1965) 

79. Ginsburg, S., Greibach, S.A., "Deterministic context-

80. 

free languages", Information and Control 9 (6) 620-648 
(1966) 

Aho, A.V., 
Translation 
(1972) 

Ullman, J.D., "The 
and Compiling", 2 

Theory of Parsing, 
Vols, Prentice Hall 

81. Aho, A.V., Ullman, J.D., "Principles of Compiler 

82. 

Design", Addison-Wesley (1977> 

Knuth, D.E., 
left to right", 
(1965) 

"On the translation of languages from 
Information and Control, 8 607-639 

83. Lewis, P.M., Stearns, R.E., "Syntax-directed 

84. 

transduction", Journal of the Association for Computing 
Machinery 15 (3) 465-488 (1968) 

Rosenkrantz, D.J., Stearns, R.E., 
deterministic top-down grammars", 
Control 17 226-256 (1970) 

Page 373 

"Properties of 
Information and 



BIBLIOGRAPHY 

85. Greibach, S., "A new Normal-Form theorem for context-
free phrase structure grammars", Journal of the 
Association for Computing Machinery 12 42-52 (1965) 

86. Koranjak, A.J., Hopcroft, J.E., "Simple deterministic 
languages", Proceedings 7th Annual Symposium on 
Switching and Automata Theory, IEEE Conference Record, 
Publication No. 16-C-40 pp. 36-46 (1966) 

87. Beatty, J.C., "On the relationship between LL(1) and 

88. 

LR(1) grammars", Journal of the Association for 
Computing Machinery 29 (4) 1007-1022 (1982) 

Knuth, D.E., "Top-down 
Informatica 1 79-110 (1971) 

syntax analysis", Acta 

89. Foster, J.M., "Automatic Syntax Analysis", Macdonald 
(1970) 

90. Sammet, J.E., "Programming Languages. History and 
Fundamentals", Prentice Hall (1969) 

91. Burkhardt, W.H., "Metalanguage and syntax 
specification", Communications of the Association for 
Computing Machinery 8 (5) 304-5 (1965) 

92. Naur, P., "Report on the algorithmic language 
ALGOL60", Communications of the Association for 
Computing Machinery 3 (5) 299-314 (1960) 

93. Naur, P. (ed.), "Revised report on the algorithmic 

94. 

language ALGOL60", Communications of the Association 
for Machinery 6 (1) 1-20 (1963); Computer Journal 5 
349-367 (1963); Numerische Mathematik 4 420-452 (1963) 

Woodward, 
ALgol68R", 
(1974) 

P.M., Bond, 
Her Majesty's 

S.G., "User's Guide to 
Stationery Office, London 

95. Jensen, K., Wi rth, N., "Pascal User ManuaL and 
Report", Springer Verlag, New York (1975) 

96. PyLe, K., "The Ada Programming Language", Prentice 
Hall (1981) 

97. Knuth, D.E., "Backus Normal Form vs. Backus Naur Form" 
(letter to the editor), Communications of the 
Association for Computing Machinery 7 (12) 735-6 (1964) 

98. Ginsburg, S., Rice, H.G., "Two families of languages 

99. 

related to ALGOL", Journal of the Association for 
Computing Machinery 9 350-371 (1962) 

Iverson, K.E., "A 
Communications of 

method of syntax 
the Association 

Page 374 

specification", 
for Computing 



BIBLIOGRAPHY 

Machinery 7 (10) 588-9 (1964) 

100. Taylor, W., Turner, L., Waychoff, R., "A syntactical 
chart of ALGOL 60", Communications of the Association 
for Computing Machinery 4 393 (1961) 

101. Wirth, N., "What can we do about the unnecessary 
diversity of notations for syntactic definitions'?", 
Communications of the Association for Computing 
Machinery 20 (11) 822-3 (1977) 

102. Irons, E.T., "A syntax directed compiler for ALGOL 
60", Communications of the Association for Computing 
Machinery 4 51-55 (1961) 

103. Conway, M.E., "Design of a separable transition-

104. 

diagram compiler", Communications of the Association 
for Computing Machinery 6 (7) 396-408 (1963) 

Pratt, T.W., "Programming languages: design 
implementati on", Prenti ce Hall, Englewood Cliffs, 
(1975) 

and 
N.J. 

105. Brown, P.J., "Writing Interactive Compilers and 
Interpreters", Wiley (1979) 

106. Nicholls, J.E., "The Structure and Design of 
Programming Languages", Addison-Wesley (1975) 

107. Floyd, R.W., "The syntax of programming languages - a 
survey", IEEE Transacti ons on Elect roni c Computers 13 
(4) 346-53 (1964) 

108. Tennent, R.D., "Principles of Programming Languages", 
Prentice Hall (International Series in Computer 
Sci ence) (1981) 

109. Wirth, N., "Algorithms + Data Structures = Programs", 

110. 

Prentice Hall (1976) 

Welsh, J., McKeag, 
Programming", Prentice Hall 
Computer Science) (1980) 

M., "Structured System 
(International Series in 

111. Wirth, N., "The programming language Pascal", Acta 
Informatica 1 35-63 (1971) 

112. Addyman, A.M., "A draft proposal for Pascal", SIGPLAN 
Notices 15 (4) 1-69 (1980) 

113. Addyman, A.M., et al. "A draft description of 

114. 

Pascal", Software Practice and Experience 9 (5) 381-424 
(1979) 

Wilson, I.R., Addyman, A.M., "A Practical 

Page 375 



BIBLIOGRAPHY 

Introduction to PascaL", MacmilLan, London (1978) 

115. FindLay, W., Watt, D.A., "PascaL: an Introduction to 
MethodicaL Programming", Pitman (1978) 

116. Atkinson, L.V., "Pascal Programming", Wiley (1980) 

117. McGregor, J.J., Watt, A.H., "Simple Pascal", Pitman 
Books (1981) 

118. Wirth, N., "The design of a Pascal compiLer", 
Software Practice and Experience 1 309-333 (1971) 

119. Stevens, R., Graham, I., "Matching the abilities of 
man and computer", Practical Computing pp. 63-7 (August 
1979) 

120. Fletcher, D., "Pascal Power", Datamation 25 (8) 142-5 
(1979) 

121. Tenenbaum, A.M., Augenstein, M.J., "Data Structures 
using Pascal", Prentice Hall (1981> 

122. Lecarme, 0., Desjardins P., "More comments on the 
programming language Pascal", Acta Informatica 4 231-
243 (1975) 

123. Habermann, A.N., "Critical comments on the 
programming language PascaL", Acta Informatica 3 47-57 
(1973) 

124. Conradi R., "Further critical comments on Pascal, 
particularly as a systems programming Language", 
SIGPLAN Notices 11 (11) 8-25 (1976) 

125. Main, A., "Pascal creates some bad habits", Computer 
Weekly (770), p.11 (13 Aug 1981> 

126. Welsh, J., Sneeringer, W.J., Hoare, 
"Ambiguities and insecurities in Pascal" 
Practice and Experience 7 685-696 (1977) , 

C.A.R., 
Software 

127. CoLe, J., Morrison, R., "Linguistic Disfigurement", 
Computing 8 (4) 45 (30 Oct 1980) 

128. Tanenbaum, A.S., "A comparison of Pascal and Algol 
68", Computer Journal 21 (4) 316-323 (1978) 

129. Tennent, R.D., "A note on files in Pascal", BIT 17 
362-6 (1977> 

130. Doty, K.L., "A top-down evaluation of Pascal", 
Computer Design 19 (5) 167-177 (1980) 

131. Wirth, N., "An assessment of the programming language 

Page 376 



BIBLIOGRAPHY 

Pascal", IEEE Transactions on Software Engineering SE-1 
(2) 192-198 (1975) 

132. Glass, R.L., "From Pascal to Pebbleman... and 
beyond", Datamation 25 (8) 146-50 (1979) 

133. Pyle, I., "Ada proves it is equal to 'almost 
impossible' feats", Computing 9 (44) 26-27 (29 October 
1981 ) 

134. Hoare, C.A.R., "The Emperor's Old Clothes" (1981 ACM 
Turing Award Lecture), Communications of the 
Association for Computing Machinery 24 75-83 (1981) 

135. Skelly, P.G., "The ACM position on standardisation of 
the Ada language", Communications of the Association 
for Computing Machinery 25 (2) 118-120 (1982) 

136. Ledgard, H.F., Singer, A., "Scaling down Ada (or, 
Towards a standard Ada subset)", Communications of the 
Association for Computing Machinery 25 (2) 121-125 
(1982) 

137. Ince, D., "Why ADA shouldn't go to war", The Guardian 
p.13 (25th June 1981) 

138. Gilbert, J.R., Martin, C.W., "Sheffield University 

139. 

V-mode Pascal System for PR1ME Computers", Unpublished 
Information File, Computing Services Department, 
University of Sheffield (1981) 

de Bakker, J.W., 
languages", Advances 
173-227 (1969) 

"Semantics of programming 
in Information Systems Science 2 

140. Pagan, F .G., "Forma l Specifi cation of Programmi ng 
Languages", Prentice Hall (1981) 

141. Milne, R., Strachey, C., "A Theory of Programming 
Language Semantics", Chapman and Hall, London (1976) 

142. Hoare, C.A.R., Wirth, N., "An axiomatic definition of 
the programming language Pascal", Acta Informatica 2 
335-355 (1973) 

143. Hoare, C.A.R., "An axiomatic basis for computer 
programming", Communications of the Association for 
Computing Machinery 12 (10) 576-80, 583 (1969) 

144. Kupka, I., Wilsing N., "Conversational Languages", 
Wiley (1980) 

145. "The Interpretive Basic Programmer's Guide", Prime 
Computer Inc., IDR 1813 (1978) 

Page 377 



BIBLIOGRAPHY 

146. Spencer, 0.0., "A Guide to BASIC Programming; a Time-
Sharing Language", Addison-Wesley (1970) 

147. Barron, D.W., "Approaches to conversational Fortran", 
Computer Journal 14 (2) 123-127 (1971) 

148. Atkinson, L.V., McGregor, J.J., "CONA a 
conversational Algol system", Software - Practice and 

----------------------~ Experience 8 699-708 (1978) 

149. Atkinson, L.V., North, S.D., "COPAS a 
conversational Pascal system", Software: Practice and 

----~~----~~~~~ Experience 11 819-829 (1981) 

150. Anon., "Abacus makes Pascal as easy as Basic", 
Computing 8 (17) 6 (24 Apr 1980) 

151. Atkinson, L.V., McGregor, J.J., North, 5.0., "Context 
sensitive editing as an approach to incremental 
compilation", Computer Journal 24 (3) 222-229 (1981> 

152. Henry, W.M., Leigh, J.A., Tedd, L.A., Williams, P.W., 
"Online Searching. An Introduction", Butterworth (1980) 

153. Hall, J.L., "Online Information Retrieval 
Sourcebook", Aslib (1977> 

154. Morgan, M.M., Beaman, P.D., Shusman, D.J., Hupp, 
J.A., Zielstorff, R.D., Barnett, G.O., "Medical query 
language", Proceedings of the Annual Symposium on 
Computer Applications in Medical Care, Fifth Symposium, 
Washington D.C., 1-4 November 1981, 5 322-325 (1981) 

155. Orf, H.V., "CHMTRN - LHASA Data Table Language", 
Unpublished Document, LHASA Project (July 1978) 

156. Corey, E.J., Wipke, W.T., Cramer, R.D., Howe, W.J., 
"Computer-assisted synthetic analysis. Facile man­
machine communication of chemical structure by 
interactive computer graphics", Journal of the American 
Chemical Society 94 421-430 (1972) 

157. Corey, E.J., Cramer, R.D., Howe, W.J., "Computer-
assisted synthetic analysis for complex molecules. 
Methods and procedures for machine generation of 
synthetic intermediates", Journal of the American 
Chemical Society 94 440-459 (1972) 

158. Dyott, T.M., "Utilization of Stereochemistry and 
Other Aspects of Computer-Assisted Synthetic Design", 
Ph.D. Thesis, Princeton University (1973). University 
Microfilms Order No. 74-9677. Abstracted in 
Dissertation Abstracts 34 5382-B 

159. Wipke, W.T., Braun, H., Smith, G., Choplin, F., 

Page 378 



BIBLIOGRAPHY 

160. 

Seiber, W., "SECS - Simulation and Evaluation of 
Chemical Synthesis: strategy and planning", in Computer 
Assisted Organic Synthesis, eds. Wipke, W.T. Howe, 
W.J., ACS Symposium Series 61 97-127 (1977) 

Wipke, W.T., Ouchi, G.I., Krishnan, S., 
and evaluation of chemical synthesis 
application of artificial intelligence 
Artificial Intelligence 11 173-193 (1978) 

"Simulation 
- SECS: an 
techniques", 

161. Elder, M., Unpublished work (1981) 

162. Lin, C.H., Lee, P.L., Lin, J.L., "A SEFLIN compiler -
automatic syntactic analysis of separate feature linear 
notations of chemical compounds", Proceedings of the 
National Science Council of the Republic of China. Part 
A 5 (3) 165-172 (1981) 

163. Li n, C.-H., "SEFLIN separate feature li near 
notation system for chemical compounds", Journal of 
Chemical Information and Computer Sciences 18 (1) 41-7 
(1978) 

164. Fehder, P.L., Burnett, M.P., "Syntactic scanning of 
chemical information", Journal of Chemical 
Documentation 5 8-13 (1965) 

165. Carpenter, N., "Syntax-directed translation of 
organic chemical files into their two-dimensional 
representation", Computers in Chemistry 1 25-28 (1976) 

166. Barker, P.G., "Syntactic definition and parsing of 

167. 

168. 

169. 

molecular formulas", Computer Journal 18 355-359 (1978) 

Kirby, G.H., Morgan, C.H., Rayner, J.D., 
"Microcomputer Formulae", Education in Chemistry 15-16 
(1981 ) 

Garfield, E., "An algorithm for translating 
names to molecular formulas", Journal of 
Documentation 2 177-179 (1962) 

chemical 
Chemical 

Oyson, G.M., "A cluster 
nomenclature of organic 
matrices and ciphers", 
Retrieval 2 159-199 (1964) 

of algorithms relating the 
compounds to their structure 
Information Storage and 

170. Vander Stouw, G.G., Elliott, P.M., Isenberg, A.C., 

171. 

"Automated conversion of chemical substance names to 
atom-bond connection tables", Journal of Chemical 
Documentation 14 185-193 (1974) 

Tauber, S.J., Rankin, K., "Valid structure 
and chemical gibberish", Journal of 
Documentation 12 (1) 30-34 (1972) 

Page 379 

diagrams 
Chemical 



BIBLIOGRAPHY 

172. Rankin, K., Tauber, S.J., "Linguistics as a basis for 
analysing chemical structure diagrams", Journal of 
Chemical Documentation 11 (3) 139-141 (1971) 

173. Whitlock, H.W., "An organic chemist's view of formal 
languages", ACS Symposium No 61 pp. 60-80 (American 
Chemical Society) (1976) 

174. Welford, S.M., Lynch, M.F., Barnard, J.M., "Computer 
storage and retrieval of generic chemical structures in 
patents. 3. Chemical grammars and their role in the 
manipulation of chemical structures", Journal of 
Chemical Information and Computer Sciences 21 (3) 161-
168 (1981) 

175. Lynch, M.F., Barnard, J.M., Welford, S.M., "Computer 
storage and retrieval of generic chemical structures in 
patents. 1. Introduction and general strategy", Journal 
of Chemical Information and Computer Sciences 21 (3) 
148-150 (1981) 

176. Barnard, J.M., Lynch, M.F., Welford, S.M., "Computer 
storage and retrieval of generic chemical structures in 
patents. 2. GENSAL, a formal language for the 
description of generic chemical structures", Journal of 
Chemical Information and Computer Sciences 21 (3) 151-
161 (1981> 

177. Barnard, J.M., Lynch, M.F., Welford, S.M., "Computer 

178. 

storage and retrieval of generic chemical structures in 
patents. 4. An extended connection table representation 
for generic structures", Journal of Chemical 
Information and Computer Sciences 22 (3) 160-164 (1982) 

Hill, S.J., "Coding Manuals 
Systems", Unpublished M.Sc. 
University (1981) 

for Chemical 
Dissertation, 

Structure 
Sheffield 

179. Feldmann, R.J., Milne, G.W.A., Heller, S.R., Fein, 
A., Mi ller, J.A., Koch, B., "An interactive 
substructure search system", Journal of Chemical 
Information and Computer Sciences 17 (3) 157-163 (1977) 

180. Elder, M., Hull, S.E., Machin, P.A., Mills, O.S., 
"CSSR. Crystal Structure Search Retrieval. User 
Manual", 2nd Edition, Daresbury Laboratory, Science and 
Engineering Research Council, (1981) 

181. Milne, G.W.A., Heller, S.R., "NIH/EPA Chemical 
Information System", Journal of Chemical Information 
and Computer Sciences 20 (4) 204-211 (1980) 

182. Gluck, D.J., "A chemical structure storage and search 
system developed at Du Pont", Journal of Chemical 
Documentation 5 43-51 (1965) 

Page 380 



BI8LIOGRAPHY 

183. Roos-Kozel, B.L., Jorgensen, W.L., "Computer-assisted 
mechanistic evaluation of organic reactions. 2. 
Perception of rings, aromaticity and tautomers", 
Journal of Chemical Information and Computer Sciences 
21 (2) 101-111 (1981> 

184. Corey, E.J., Wipke, W.T., Cramer, R.D., Howe, W.J., 
"Techniques for perception by a computer of 
synthetically significant structural features in 
complex molecules", Journal of the American Chemical 
Society 94 431-439 (1972) 

185. Corey, E.J., Petersson, G.A., "An algorithm for 
machine perception of synthetically significant rings 
in complex cyclic organic structures", Journal of the 
American Chemical Society 94 460-465 (1972) 

186. Fugmann, R., Nickelsen, H., Nickelsen, I., Winter, 
J.H., "Representation of concept relations using the 
TOSAR system of the IDC. Treatise III on Information 
Retrieval Theory", Journal of the American Society for 
Information Science 25 (5) 287-307 (1974) 

187. Fugmann, R., Nickelsen, H., Nickelsen, I., Winter, 
J.H., "TOSAR a topoLogicaL method for the 
representation of synthetic and analytical reLations of 
concepts", Angewante Chemie International Edition 9 (8) 
589-95 (1970) 

188. Oittmar, P.G., Stobaugh, R.E., Watson, C.E., "The 
ChemicaL Abstracts registry system. 1. GeneraL design", 
Journal of Chemical Information and Computer Sciences 
16 (2) 111-121 (1976) 

189. Mockus, J., Isenberg, A.C., Vander Stouw, G.G., 

190. 

"ALgorithmic generation of ChemicaL Abstracts index 
names. 1. General design", Journal of ChemicaL 
Information and Computer Sciences 21 (4) 183-95 (1981) 

Hoare, C.A.R., "Recursive data 
International Journal of Computer and 
Studies, 4 (2) 105-132 (1975) 

structures", 
Information 

191. Burton, W., "Generalised recursive data structures", 
Acta Informatica 12 95-108 (1979) 

192. KinseLLa, J.E., "An Interactive Test Editor for 
GENESIS, a Generic ChemicaL Structure Information 
System", Unpublished M.A. Dissertation, University of 
SheffieLd (1982) 

193. Nishida, F., Takamatsu, S., "Structured-information 
extraction from patent-claim sentences", Information 
Processing and Management 18 (1) 1-13 (1982) 

Page 381 



BIBLIOGRAPHY 

194. Frome, E., "Effects of information storage and 
retrieval techniques and computers on problems of 
patentability", Journal of Chemical Documentation 6 (2) 
66-71 (1966) 

195. BLick, A.R., "Computer-assisted chemicaL synthesis 
packages: is this a new problem in patentability?", 
Journal of Information Science 1 227-229 (1979) 

Page 382 


