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Abstract 

Staphylococcus aureus is a major pathogen causing both community 

and hospital-acquired infections. The diversity of diseases caused by this 

organism can be attributed to its ability to colonize a range of niches and to 

adapt to the stressful environments of the host. As part of this, successful 

utilization of host nutrients is crucial for pathogenesis. 

Sulfur is an essential element required for many cellular components. 

S.aureus can use glutathione as sole sulfur source and as it cannot 

synthesize this molecule, it must acquire it from the host. Glutathione 

utilization is facilitated by gammaglutamyltranspeptidase (GGT) in many 

organisms. To analyse the role of GGT in S.aureus, the putative ggtgene was 

identified and insertionally inactivated. The ggt mutant was still able to grow 

on glutathione, which suggests a novel alternative pathway for catabolism. 

The role of a putative glutathione transporter was also investigated. Mutant 

strains, although still able to grow on glutathione showed a stress defect, in 

particular to tellurite. S.aureus is well known as having high level tellurite 

resistance. Resistance occurs via reduction leading to cytoplasmic deposits of 

tellurium. Purification of tellurite reductase activities resulted in the 

identification of alkylhydroperoxidase subunit F (AhpF) and thioredoxin 

reductase (TrxB). The relative roles of these two enzymes in tellurite reduction 

was examined. 
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1.1 The staphylococci 

CHAPTER ONE 

INTRODUCTION 

The staphylococci are gram-positive cocci measuring approx 1 IJm in diameter 

and because they divide perpendicular to the preceeding plane 

of division they characteristically grow in grape-like clusters. Members of 

the genus Staphylococcus are ubiquitous in the environment, are facultative 

anaerobes which are non-motile, non-spore forming and typically oxidase­

negative and catalase-positive. 

The genus Staphylococcus has a low G + C content (Baba et al., 2008) and is 

separated from the genus Micrococcus based on Hsp60 (heat shock protein) and 

16s RNA sequence analysis (Kwok and Chow, 2003; Kwok et al., 1999; Goh et 

al., 1996). There are 36 species and nine subspecies designated and the 

staphylococci are separated into two main groups based on the presence of 

coagulase, a plasma clotting enzyme. The human pathogens in this genus are 

S.aureus which is coagulase-positive while S.epidermidis, S.saprophyticus and 

others are coagulase-negative (Kloos and Schleifer, 1975; Kloos and Wolfshohl, 

1982). 

1.2 Staphylococcus aureus 

S.aureus characteristically produces pigmented golden yellow colonies thus its 

given name which originates from the Latin word "aureus" meaning golden. The 

pigment staphyloxanthin that is derived from caroteinoids is responsible for its 

coloration and has been implicated as a virulent factor (Liu et al., 2005). S.aureus 
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was first isolated in pus from surgical abscesses by the surgeon Sir Alexander 

Ogston in 1880 and is differentiated from other staphylococci on the basis of 

positive results of coagulase, mannitol fermentation and deoxyribonuclase test 

(Forsgren, 1970). 

1.2.1 Diseases and pathogenesis of S.aureus 

S.aureus is a successful human pathogen that is a cause of both community and 

hospital-acquired infections. Its ability to survive within the host as well as the 

emergence of multi-drug resistant strains makes it an increasing problem thus 

qualifying it as one of the major medical pathogens. S.aureus is an opportunist 

pathogen which can be found commonly in the anterior nares, on the skin, and 

mucus membranes of 11-32% of the population (Tolan, 2007). These healthy 

carriers may potentially be the source of spread of infection especially in hospital 

environments. There is no significant difference in nasal carriage of S.aureus 

between medical and non-medical personnel in the hospital environment. 

However, medical personnel have a higher hand carriage and are more 

colonized with antibiotic resistant strains (Cespedes, 2002). Patients with 

diabetes mellitus are more likely to carry S.aureus as part of the conjunctival flora 

and it is one of the organisms that are more often recovered from postoperative 

endophthalmitis compared to nondiabetic patients (Bilen et al., 2007). 

S.aureus can cause disease either by invasion of tissues or by toxin production. 

Characteristically S.aureus causes abscesses, which are suppurative with 

walled-off lesions encased by fibrin. The organisms exist in the central core of 
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this focus of infection and may spread hematogenously causing bacteremia and 

become disseminated to other areas of the body (Fig 1.2). 

Diseases produced by virulent strains of S.aureus can range from mild 

superficial skin infections of the hair follicles and glands such as bullous 

impetigo, folliculitis, to more severe cutaneous infections such as furuncles and 

carbuncles (Lowy, 1998). Scalded skin syndrome or Ritters disease is a rare 

disease in infants caused by the exfoliative toxins that causes epidermal splitting 

resulting in peeling of the skin. S.aureus is also the causative agent of 

staphylococcal scarlet fever (Jarraud et al., 2001), bone and joint infections 

(osteomyelitis) (Bocchini et al., 2006) and acute septic arthritis (Fihman et al., 

2007). 

The more serious and life-threatening S.aureus infections include sepsis 

(Piechowicz et al., 2007), endocarditis (Myolnakis and Calderwood, 2001; Fowler 

et al., 2006), toxic shock syndrome (Mehrotra et al., 2000) and meningitis (Benca 

et al., 2007). A study of community acquired severe S.aureus sepsis (SAS) 

amongst children in New Zealand showed increased prevalence of methicillin 

resistant S.aureus (MRSA) (Miles et al., 2007). Endocarditis is normally 

associated with long-term indwelling prosthesis such as cathethers in patients 

with preexisting heart disease. It is a complication of staphylococcal bacteremia 

that involves infection of the heart valves and can include both damaged and 

undamaged cardiac valves. S.aureus adheres to cardiac endothelial cells 

possibly by MSC RAM M-mediated mechanisms or adhesin-receptor interactions. 

The MSCRAMMS (microbial §urface ~omponents recognizing §dhesive matrix 
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molecule~) are a class of surface proteins that promote attachment of bacteria to 

all types of extracellular matrices (Projan and Novick, 1997, Foster and Hook, 

1998). Once attached, S.aureus is phagocytized by these endothelial cells 

. causing cellular alterations that promote fibrin deposition and formation of 

vegetations (Lowy, 1998). This contributes to the establishment of metastatic foci 

of infection and the pathogenesis of endocarditis. 

Staphylococcal toxic shock syndrome (TSS) is generally associated with the use 

of superabsorbent tampons during menstruation and is caused by the production 

of the exotoxin TSST-1 (toxic shock syndrome toxin 1). TSST belongs to the 

family of pyrogenic toxin superantigens (Schlievert, 1993) that bind directly to 

MHC 11 receptors on antigen presenting cells and the variable portion of T-cell 

receptor ~-chain (Marrack and Kappler, 1990) causing activation and clonal 

expansion with subsequent release of cytokines that result in symptoms 

mimicking endotoxic shock (Lowy, 1998). Based on serological classification, 

staphylococcal enterotoxin groups are recognized as SEA through SEE and SEG 

through SEJ (Balaban and Rasooly, 2000; Mehrotra et al., 2000). Enterotoxins 

are small proteins which are potent gastrointestinal toxins causing food poisoning 

and diarrhea with rapid onset (2-6 hours) after ingestion. The acute symptoms, 

which include vomiting and watery diarrhea are however self-limiting. SEA (entA) 

is the common toxin causing staphylococcal food poisoning (Balaban et al., 

2000) and is associated with septic shock in patients with S.aureus bloodstream 

infection (Tristan et al., 2007). Enterotoxins are also superantigens. 
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Non-menstrual TSS can also be caused by other superantigens such as 

the staphylococcal enterotoxin serotype B (SEB) or staphylococcal enterotoxin 

serotype C (SEC). S.aureus strains possessing both genes for enterotoxins and 

toxic shock syndrome toxin are associated with phagetype 187 (Piechowicz et 

al., 2007). S.aureus also causes staphylococcal scarlet fever (SSF) which is 

associated with production of TSST-1, SEB and SEC (Jarraud et al., 2001) and is 

an emerging pathogen in causing postsurgical or nosocomial meningitis as well 

as community acquired meningitis (Lesnahova et aI, 2007). 

Other infections caused by S.aureus include necrotizing pneumonia 

commonly seen in infants, children and debilitated patients, thrombophlebitis that 

is associated with infected catheter insertion sites (Lowy, 1998) and purpura 

fulminans (Kravitz et al., 2005). 

1.2.2 Antibiotic resistance and treatment of diseases caused by 
S.aureus 

Infections caused by gram-positive cocci were traditionally treated with penicillin 

G but since the emergence and prevalence of resistant strains, the penicillinase-

resistant penicillins (eg. oxacillin, nafcillin) or cephalosporins (eg cephalexin, 

cefuroxime) are commonly the drugs of choice. Penicillin is inactivated by a beta­

lactamase which hydrolyses the beta-Iactam ring (Lowy, 1998). Over the recent 

years S.aureus has alarmingly evolved multi-drug resistance to the penicillins 

including the 13-lactamase-resistant penicillins, as well as the cephalosporins and 

carbapenems. The challenge of treatment of infections caused by this organism 

is heightened with the increased incidence of methicillin-resistant S.aureus 

(MRSA) in both hospital (HA-M RSA) and 
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community-acquired i.nfections (CA-M RSA) (Johnson and Saravolatz, 2005). 

Resistance to methicillin renders resistance to all penicillinase-resistant 

penicillins and cephalosporins.The drugs of choice for treating MRSA or other 

potentially life-threatening infections or intoxication are intravenous or oral (CA­

MRSA) trimethoprim-sulfamethoxazole (TMP-SMX). In addition, daptomycin, 

Iinezolid and quinopristin-dalfopristin may be used for CA-MRSA (Johnson and 

Saravolatz, 2005). For many multiple resistant strains vancomycin has been the 

drug of last resort. No vancomycin-resistant strains were evident in the first 20 

years of the use of the drug. Naturally the isolation of MRSA strains with 

intermediate-resistance to vancomycin (VISA) in 1996 and vancomycin-resistant 

S.aureus (VRSA) in 2002 (Sievert et al., 2002) generated a great deal of 

attention and concern. Limited treatment alternatives are available for treating 

vancomycin-resistant MRSA infections and these include, rifampin, gentamicin, 

imipenem, chloramphenicol, TMP-SMX and tetracycline (Cinel and Dellinger, 

2007). Superficial localized skin infections such as impetigo are generally treated 

with muciprocin. To prevent spread of this organism, strict isolation procedures 

and stringent control measures must be observed. 

1.3 Virulence factors of S.aureus 

Attributes of S.aureus that contribute to its pathogenecity include 

production of virulence factors such as host-binding adhesins, pyrogenic toxins, 

enterotoxins and enzymes such as hemolysins, catalase, superoxide dismutase 

and peroxidase that circumvent the host phagocytic mechanism and enable it to 

flourish. Virulence factors are produced during the growth cycle only when 
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needed and their production is coordinately controlled in response to cell density, 

energy availability, environmental signals and superantigens (Fig. 1.1, Novick, 

2003). 
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Virulence determinant Gene Growth phase of expression 

Clumping factor A & B c/fA & clfB Early-exponential 

Fibrinogen-binding protein jbpA Early-exponential 

Fibronectin-binding protein A fnbA Early-exponential 

Fibronectin-binding protein B fnbB Early-exponential 

Collagen-binding protein cna Post-exponential 

Catalase kalA 

Coagulase cga / coa Log phase 

Polysaccharide/adhesin (PS/A) - -
Polysaccharide intracellular adhesin - -

Enterotoxin A sea Constitutive 

Enterotoxins B, CI-3, D, E, H seb-h Post-exponential 

Toxic shock syndrome toxin-l (TSST-l) tst Post-exponential 

Staphylococcal exotoxin-like proteins set 1-5 -
Exfoliative toxins A, B eta, etb Post -exponential 

Protein A spa Early-exponential 

Lipase lip Post-exponential 

vs protease (serine protease) sspA Post-exponential 

Fatty acid modifying enzyme (FAME) fme Post-exponential 

Panton-Valentine leukocidin lukPV. lukS-PV Post-exponential 

Capsular polysaccharide types I cap I locus Post-exponential 

Capsular polysaccharide type 5 cap510clls Post-exponential 

Capsular polysaccharide type S cap8/ocus Post-exponential 

Staphylokinase sak Post-exponential 

Glycerol ester hydrolase geh Post-exponential 

a-haemolysin (a-toxin) hla Post-exponential 

J3-haemolysin (J3-toxin) hlb Post-exponential 

o-haemolysin (o-toxin) hid Log-phase 

y-haemolysin (y-toxin) hlgA, B, C Post-exponential 

Metalloprotease (aureolysin) allrA Post-exponential 

Cysteine protease ssp8 Post-exponential 

Phospholipase C plc Post-exponential 

Hyaluronidase (hyaluronate lyase) hysA Log-phase 

Table 1.1 

Virulence factors of S.aureus. Adapted from Novick 2003. 
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Known virulence factors of S.aureus are listed in Table 1.1 and can generally be 

categorized into three groups, that is those that have roles in 1) attachment of 

S. aureus to the host; 2) evasion of the host immune system; and 3) invasion and 

tissue penetration of the host cell (Projan and Novick, 1997). The cause and 

development of pathogenesis of S.aureus is not solely attributed to a single 

virulence determinant but is rather multifactorial whereby the interplay of the 

virulent factors as well as the host response generally determines the severity 

and outcome of the disease. 

1.3.1 Cell surface adhesins· Attachment 

Before S.aureus is able to colonize and initiate an infection it must first 

successfully attach to the host cell surface. Several surface proteins, collectively 

called adhesins or MSCRAMMs, aid in this attachment process. Several of these 

adhesive proteins are as shown in Table 1.1. They all share structural similarities 

in having the common LPXTG motif in their amino acids sequence, in the C­

terminal region between the cell-wall spanning domain and just before the 

membrane spanning domain. This conserved LPXTG motif is anchored at a 

conserved pentaglycine residue in the peptidoglycan (Foster and Hook, 1998, 

Schneewind et al., 1995). Protein A (SpA) is an MSCRAMM and a constituent of 

the cell wall as well as an extracellular product (Forsgren, 1970). It is present in 

approximately 95% of all pathogenic strains of S.aureus. (Greenberg et al., 

1990). 
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Other virulence factors that are involved in attachment include the collagen 

binding protein (Cna) and the enzyme coagulase (Cga/Coa). Cna binds with 

collagenous tissues and may play a role in mediating attachment to cartilage 

(Patti et al., 1994). The role of coagulase in virulence is unclear although its 

ability to bind fibrinogen and cause the formation of a fibrin clot in host plasma 

may facilitate in the evasion of the immune system by S.aureus (Foster, 2005). 

S.aureus strains possessing the most prevalent coagulase genotypes (A 1 and 

A4) were found to be refractory to phagocytosis and/or killing by bovine 

neutrophils (Aarestrup et al., 1994). The fibronectin-binding proteins (FNBPs) 

FnBPA and FnBPB bind immobilized fibronectin in vitro and mediate adherence 

of S. aureus to plasma clots and are factors that contribute to the initiation 

infections associated with foreign implants (Foster and Hook, 1998). FNBPs also 

mediates bacterial invasion through formation of a fibronectin bridge to integrin 

(fibronectin-binding protein) that is present on the host cell surface (Palmqvist et 

al., 2005). The elf A and clfB genes also encode for fibrinogen binding protein 

called the clumping factors (McOevitt et al., 1994, Ni Edhin et al., 1998). Cif A and 

the related ClfB facilitate fibrinogen-mediated adhesion and promote clumping of 

S. aureus cells (Palmqvist et al., 2005) and adherence to plastic biomaterials 

(Foster and Hook, 1998). IsdA is produced by S. aureus under iron-limiting 

conditions and was shown to bind fibronectin, fibrinogen, promote cell clumping 

and be involved in evasion of host innate defences (Clarke et al., 2004, 2007). It 

was also shown to be involved in nasal cell binding and colonization by S.aureus 

(Clarke 2004, 2006). In addition, the S.aureus surface protein G (SasG) is an 
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adhesin that is also involved in colonization of the anterior nares. Expression of 

SasG was shown to mask the binding of S.aureus MSCRAMMs to their ligands 

and promote biofilm formation (Corrigan et al., 2007). 

1.3.2 Toxins and invasins - How S.aureus overcomes the immune 

system 

Once attachment has ensued, S.aureus has to overcome the host 

immune system before it can establish itself. S.aureus produces many cell wall­

associated proteins and several extracellular proteins including hemolysins, 

toxins, and proteases that enable it evade and overcome the host immune 

system (Uziel et al., 2004). Phagocytosis is the major mode of elimination of 

. S.aureus in the host and this organism possesses several anti phagocytic 

mechanisms to resist phagolysosome killing. The ability of S.Bureus to survive 

within polymorphonuclear neutrophils (PMN) is a virulence mechanism regulated 

by the global regulator, sar, that aids in the pathogenesis the organism (Gresham 

et al., 2000). 

The dlt operon which encodes OltA, 0lt8, OltC and OltO confers 

resistance to antimicrobial peptides (defensins) that are stored in PMN granules. 

The Olt proteins catalyze the introduction of O-alanine into teichoic acids 

(staphylococcal cell wall polymers) (Collins et al., 2002) and the dlt- strain was 

more efficiently killed by neutrophils compared to the wildtype strain. Protein A 

(spa), a protein found on the surface of S.aureus allows nonspecific attachment 

to the Fc portion of IgG (Oossett et al., 1969) thereby preventing opsonization 

and phagocytosis (Oossett et al., 1969, Peterson et al., 1977). 
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S.aureus also produces pore forming toxins (PFT) consisting of 2 

families, the single-component a-hemolysin and the bicomponent leukocidins 

and y-hemolysins. These toxins act to damage target cells by forming oligomeric 

pores in their plasma membrane, thus killing leukocytes and weakening the hosts 

immune defense (Menestrina et al., 2003). The a-hemolysin (hla) is secreted as 

a monomer and associates to form a heptamer on the membrane of target cells. 

The a-toxin is a major virulence factor during S.aureus keratitis causing corneal 

epithelial erosions and iritis (O'Callaghan et al., 1997). The y-hemolysins 

comprise of three proteins HlgA, Hlg8 and HlgC that combine to generate two 

toxins HlgA + Hlg8 and HlgC + Hlg8 (Menestrina et al., 2003). Panton-Valentine 

leukocidin (PVL) is directly lethal to polymorphonuclear neutrophils (PMN) and is 

found in approximately 50% of S.aureus isolated from abscesses. Leukocidins 

are the products of genes designated lukS-PV, lukF-PV, hlgA, hlgB and hlgC 

which form different combinations with the y-hemolysin to generate different 

toxins. The LukF-PV/LukS-PV combination is most leukocytolytic, the LukF/LukS 

and LukF/HlgA combinations are dermonecrotic while the two y-hemolysin 

combinations and the LukF/HlgA combinations are hemolytic (Projan and Novick, 

1997). Labadeira-Rey et al. (2007) found that PVL-positive S.aureus strains were 

more virulent than PVL-negative strains and cause necrotizing pneumonia in a 

mouse model with manifestations similar to that seen in human disease. In 

addition, the PVL-positive S.aureus strains showed an altered transcription 

profile with repression of agrtranscripts (agr A-C) and the exoproteins, hla (alpha 

toxin), hlg (gamma toxin), ssp (serine protease), spl (spIA-F protease). Genes 
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encoding for cell wall-anchored proteins (sdrC, sdrD and cif B) and sarS as well 

as spA (Protein A) was upregulated (Labadeira-Rey et al., 2007). The 

development of multiple furuncle with intense erythema in healthy young adults is 

associated with PVL positive strains (Yamasaki et al., 2005). In addition, PVL 

positive strains from osteomyelitis in children presented a more severe local 

disease with higher systemic inflammatory response (Bocchini et al., 2006). 

A majority of the clinical strains of S.aureus produce capsular 

polysaccharides which possibly have a role in virulence by preventing attachment 

of the organism to antibodies. There are eleven capsular polysaccharide types in 

S.aureus of which types 5 and 8 have been shown to cause the majority of 

human infections (Roghmann et al., 2005). Capsular polysaccharide type 5 

predominates among methicillin-resistant S.aureus (M RSA) strains whereas 

MSSA isolates possessed mostly type 8 (Verdier et al., 2007). Type 5 was shown 

to be more virulent and possesses a higher resistance to in vitro 

opsonophagocytic killing by neutrophils than type 8 (Watts et al., 2005). 

S.aureus produces several extracellular proteolytic enzymes or proteinases that 

degrade human protease inhibitors and modulate the activity of other proteins 

that are secreted by the pathogen (Shaw et al., 2004). SspA (sspA) is a serine 

protease (serine glutamyl endopeptidase; V8 protease) that cleaves fibrinogen­

binding protein and surface protein A (Spa) (Karlsson et al., 2001). It also 

cleaves the heavy chains of all classes of human immunoglobulins (Prokesova et 

al., 1992). Mutations in both the sspA and ssp8 (SspB, cysteine protease) 

showed attenuation in a mouse abscess model of infection (Shaw et al., 2004). It 
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was shown that sspB but not sspA is important in infection by S.aureus (Rice et 

al., 2001) and that the maturation of SspB requires SspA. SspA is secreted in an 

inactive precursor form and is processed by the metalloprotease aureolysin (Aur) 

to the mature serine protease form. Aur cleaves the surface-associated clumping 

factor ClfB (McAleese et al., 2001) and modulates immunogenic reactions by 

stimulating T and B Iymphocytes and inhibiting immunoglobulin production 

(Prokesova et aI, 1992). Staphopain (ScpA) is a cysteine proteinase that also 

possesses elastinolytic activity and may possibly be involved in tissue invasion 

and destruction that is associated with staphylococcal ulceration (Shaw et al., 

2004). Proteases may also protect against neutrophil defensins or platelet 

microbiocidal proteins (PMPs) which are antimicrobial peptides (Projan and 

Novick, 1997). In addition, proteases may have housekeeping roles in 

scavenging of usable nutrients from their environment (Lowy, 1998). 

Staphylococci produce superantigens such as enterotoxins A to E, TSST-1 and 

the exfoliative toxins A and 8 that bind directly and activate a subpopulation of T­

cells resulting in the release of cytokines/lymphokines and ultimately resulting in 

T-cell death. Enterotoxin causes staphylococcal food pOisoning by binding to 

specific receptors in the gut. It has also been suggested that the staphylococcal 

superantigens may act in synergy with peptidoglycan and lipoteichoic acids to 

produce septic shock through release of cytokines from T-cells (Projan and 

Novick, 1997). Peptidoglycan (PG), lipoteichoic acid (LTA) and TSST-1 from 

S.aureus are found to induce the TF (tissue factor) in human umbilical vein 

endothelial cells in the presence of monocytes. This results in a proinflammatory 
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endothelial cells in the presence of monocytes. This results in a proinflammatory 

and procoagulant state and increased vascular leakage (Mattson et al., 2007) 

which causes TF dependent fibrin formation in intravascular S.aureus infection. 

Three exfoliative toxins ETA (eta), ETB (etb) and ETC (ete) cause loosening of 

the skin as observed in staphylococcal scalded skin syndrome (SSSS) that is 

often associated with neonates (Gemmell et al., 1995). These exfoliative toxins 

act as epidermolytic proteases that cleave desmoglein 1, a protein that connects 

epidermal cells in the granular layer of epidermis. They are also serine proteases 

and show 25% similarity with the V8 protease (Dancer et al., 1990) and have 

been associated with community-acquired MRSA strains causing bullous 

impetigo and impetigo (Tristan et al., 2007). A higher percentage of S.aureus 

isolated from infected skin lesions are found to produce ETA and/or ETB and 

Panton-Valentine leukocidin (Mertz et al., 2007). 

The host produces several bactericidal fatty acids and other lipid 

molecules in response to infection. Staphylococcallipases and FAME (fatty acid 

metabolizing enzymes) may metabolize these fatty acids and lipids and harvest 

them as nutrients (Gortz et al., 1985, Mortensen et al., 1992). 

Biofilm formation in S.aureus and S.epidermidis is another factor 

which enables the bacteria to resist the host immune responses as well as 

antimicrobial agents (Chuard et al., 1991, Rohde et al., 2005). Biofilm formation 

begins with adherence to the cell surface followed by formation of glycocalyx 

(Mack et al., 2004), which in S.aureus is supported by the polysaccharide 

intercellular adhesion. (PIA) (Mack, 1999) encoded by the icaADBC locus. 
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Bacterial communities within this biofilm are generally protected from the effects 

of antibiotics and host immune reponses. 

IsdA is a surface protein that decreases the hydrophobicity of 

S.aureus thus making it resistant to the bactericidal effect of skin fatty-acids and 

sebum (Clarke et al., 2007). In addition it was shown that the presence of IsdA 

enhances survival of S.aureus on live human skin (Clarke et al., 2007). 

1.3.3 Enzymes involved in tissue invasion and penetration 

In order to establish an infection it is necessary for S.aureus to invade and 

penetrate cells. This it accomplishes in part by the production of hemolysins 

which are cytotoxic agents that basically act on and disrupt the components in 

the host cell membrane. The a-toxin (hla) forms pores in cell membranes 

resulting in cell lysis (Bhakdi and Tranum-Jensen, 1991) and has been 

suggested to cause apoptosis in Iymphocytes (Jonas et al., 1994). J3-toxin (hlb) is 

a sphingomyelinase and is thus potentially cytolytic to cell membranes containing 

sphingomyelin for instance in red blood cells resulting in the observed hemolytic 

effects and in corneal and scleral tissues resulting in inflammation, edema and 

ocular damage in the rabbit eyes model of infection (O'Callaghan et al., 1997). 

The v-toxin expresses three proteins, two class S components (HlgA and HlgC) 

and one class F component (HlgB). Both the a-toxin and v-toxin together are 

shown to promote virulence in a murine septic arthritis model (Nilsson et al., 

1999). In addition, v-toxin was suggested to play a role in the pathogenesis of 

toxic shock syndrome together with TSST-1 (Clyne et al., 1988). The B-hemolysin 
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was found to enhance the hemolytic action of J3-hemolysin and lyses bacteria that 

lack cell walls (Bernheimer and Rudy, 1986). 

Hyaluronic acid is found in connective tissues and acts as biological 

cement that holds tissues together. It is digested by hyaluronate lyase that is 

produced by staphylococci causing tissue degradation and thus aiding in the 

spread of the organism. Hyaluronate lyase (hysA) is a virulent factor that is 

important in the early stage of subcutaneous infections and is regulated by both 

agr and sar (Makris et al., 2004). Introduction of the hysA gene into the non­

pathogenic S. cornosus resulted in production and secretion of hyaluronate lyase 

as evident by a large zone of clearing in media containing hyaluronic acid 

(Williams et al., 2002). Metalloproteases also degrade connective tissues thereby 

contributing to the invasiveness of the organism. 

1.4 Regulation of virulence determinant production 

Pathogenecityof S.aureus is largely determined by the coordinated 

production and action of virulence factors that are controlled by genes referred to 

as global regulators (Tegmark et al., 2000). Expression of the genes for these 

virulence factors are temporally controlled and geared to the demands of the 

infection and whose transcription is either stimulated or repressed by several 

gene regulators (Fig. 1.1). Novick (2003) categorized these gene regulators into 

three groups; the two component systems (TCS) (which includes the Agr system, 

Sae, ArRLS and SrrAB), alternative sigma factors, and transcription factors (such 

as the SarA family and superantigens). Expression of target genes is controlled 
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by virulence gene regulators that bind directly to their promoters or indirectly to 

their regulators (Said-Salim et al., 2003). 

The temporal controlled expression of virulence factors is illustrated in a 

hypothetical model of infection in Figure 1.2 (Projan and Novick, 1997). Infection 

is initiated by bacteria in the lag phase followed by entry into the exponential 

phase which is accompanied by logarithmic multiplication and synthesis of 

surface proteins. In the post-exponential phase (PXP), crowding activates a 

density dependent sensing mechanism which triggers the production of 

exoproteins such as cytotoxins, superantigens, enzymes and capsular 

polysaccharides (Novick 2003). These facilitate escape of the organism during 

stationary phase (ST A) from the localized site of infection to spread to and 

colonize new niches in the host where the cycle is repeated. Cell wall associated 

proteins that mediate attachment processes are generally produced during early 
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Regulatory systems of S.aureus. A, agr, B, sae, C, arlRS (adapted from Fournier 

et al., 2001); D, srrAB (adapted from Yarwood et al., 2001); E and F, sarA and 

sarS (adapted from Manna and Cheung, 1998 and Tegmark et al. 2000). SarHI 

(Tegmark et al., 2000) is redesignated as sarS (Arvidson and Tegmark, 2001). 
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Transcripts are indicated by wavy lines, terminators by stem-loops; P, promoter; 

T, terminator; LP, leader peptide. Adapted from Novick (2003). 
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Control of virulence determinant production in S.aureus. 

The temporal control of surface-associated and extracellular virulence 

determinants. Adapted from Projan and Novick (1997). 
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exponential phase followed by the production of most exoproteins in the post­

exponential phase. Enterotoxin A (sea), o-hemolysin (hId) and hyaluronidase 

(hys) are produced throughout the exponential phase (Novick, 2003). 

1.4.1 The two-component gene regulatory systems 

One of the most well characterized two-component gene regulatory 

system is the agr locus which controls genes that encode for most extracellular 

staphylococcal proteins and is conserved in all the staphylococci (Novick, 

2003b). It is a two-component signal transduction system that is divergently 

transcribed from two promoters (Novick 2003a). Promoter 2 (P2) directs 

transcription of RNAII, which encodes the AgrBDCA structural proteins while 

Promoter 3 (P3) directs transcription of RNAIII, which is the effector of the agr­

regulon (Pragman et al., 2004). The agr locus responds to concentrations of the 

autoinducing protein, AlP, which is produced by AgrB as pro-AlP and then 

processed and secreted by AgrD (Novick, 2003a). AlP binds and activates AgrC 

which in turn activates AgrA and together with SarA enhances expression of the 

agr locus via P2 and P3 (Novick et al., 1995, Ji et al., 1997). Activation of P3 

leads to the production of RNA III which has a direct effect on transcription of 

target genes via one or more intracellular regulatory mediators including SaeRS 

(Novick, 2003b). RNAIII upregulates transcription of extracellular gene products 

and down regulates the expression of genes encoding surface-associated 

virulence factors (Janson and Arvidson, 1990; Novick, 1993) although the precise 

mechanism of action at target promoters is unclear. RNAIII has been shown to 
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activate transcription of hla (alpha toxin), and ssp (serine protease) and inhibit 

transcription of spa (Protein A) and coa (coagulase). 

The sas (S.aureus exoprotein expression) locus (Novick, 2003a & b) 

consists of two genes saeR and saeS and encodes a second major two­

component signal transduction system that consists of four ORFs, SaeP, SaeQ, 

SaeR and SaeS. The sae locus is transcribed from three promoters to produce 

three major transcripts and disruption of the sae locus results in decreased 

expression of alpha-toxin (hla), beta-hemolysin (h/~), and coagulase(coa) 

(Giraudo et al., 1997). It also upregulates DNase and Protein A (Pragman and 

Schlievert, 2004). Transcription of sas is affected byagr, aB and sarA but it 

however does not affect transcription of any of these genes (Novick, 2003b). In 

addition, its transcription is affected by environmental stimuli such as 1 M NaCl, 

pH below 6 or subinhibitory concentrations of clindamycin. 

Another two-component signal transduction system is ArlRS that controls 

autolysis, adhesion and extracellular proteolytic activity in S.aureus (Fournier et 

al., 2000). The arlRS locus encodes a receptor-HPK (arlS) and a response 

regulator (arIR). It acts as a global transcriptional regulator and directly and/or 

indirectly modulates the expression of genes involved in autolysis, cell growth 

and pathogenesis (Liang et al., 2005). ArlRS downregulates the expression of 

hla, ssp and spa. (Pragman and Schlievert, 2004). 

SrrAB (or SrhSR) is a two-component system that controls expression of 

staphylococcal virulence genes under microaerobic conditions (Novick, 2003). 

The srrAB (~taphylococcal respiratory response) locus encodes a receptor-HPK 
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(srrB) and a response regulator (srrA) and is driven by a single promoter that 

generates two transcripts. It functions to regulate many genes that are involved in 

energy metabolism under anaerobic conditions (Yarwood et aI, 2001). Disruption 

of srrB results in increased levels of RNAIII and decreased production of TSST-1 

in microaerobic conditions. Conversely, expression of srrAB represses 

transcription of both RNA"I and TSST-1 under microaerobic conditions (Yarwood 

et al., 2001). srrAB therefore inhibits agr activation and is in turn downregulated 

byagr. 

1.4.2 Alternative sigma factors (aB) 

The alternative sigma factors are activated directly within the cell and not 

through signal transduction (Novick, 2003). S.aureus possesses cl' and aB 

(Clements and Foster, 1999) but only aB is involved in stress resistance. It is 

involved in the recovery from heat shock at 54°C and in acid and hydrogen 

peroxide resistance but not in resistance to ethanol and osmotic shock or 

starvation-survival (Chan et al., 1998c). RsbU is a positive regulator of aB and is 

required for its activation (Giachino et ai, 2001). Activity of aB is also regulated by 

RsbW, RsbV and RsbP (Novick, 2003). SarA upregulates expression of aB (Chan 

et al., 1998a) which in turn upregulates the expression of exoprotein genes such 

as eoa and fnbB in the early stages of growth (Nicholas et al., 1999). aB 

represses transcription of aur and sep operons (Shaw et al., 2004) as well as the 

ssp (Horsburgh et al., 2002). a A is involved in the transcription of sepA, sspABC 

and aur which is positively regulated by agr and negatively regulated by sarA 

(Shaw et al., 2004). 
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1.4.3 Transcription factors 

Intracellular transcription factors regulate target genes by transmission of 

environmental signals that are recognized by transmembrane and intracellular 

receptors (Novick, 2003). An example of this is the sar (§.taphylococcal Eccessory 

regulator) locus which encodes the 14.7kDa DNA-binding protein SarA that 

regulates several exoproteins as well as cell surface protein genes (Pragman 

and Schlievert, 2004; Bayer et al., 1996; Morfeldt, 1996; Cheung and Projan, 

1994). S.aureus possesses a family of proteins that are homologous to SarA 

which are classified into three subfamilies based on their domain structures 

(Cheung et al., 2004) Le. 1. the single domain structure, SarA, SarR, SarT, SarV 

and SarX; 2. the two-domain structures, SarS, SarU and SarY; and 3. single­

domain structures that are highly homologous to the MarR family {gram-negative 

bacteria}, SarZ, MrgAlRat and two other homologs. SarA is necessary for the full 

transcription of agr RNAII and RNAIII (Heinrichs et al., 1996) and is expressed 

from three promoters (P1, P2 and P3) that direct synthesis of three overlapping 

transcripts (Novick, 2003). The three sarA promoters are regulated as follows: 

sarP1 is positively regulated by SarA itself, sarP2 is silent and sarP3 is a B
_ 

dependent (Pragman et al., 2004). sarA transcription from the sarP2 promoter is 

inhibited by another homolog, SarR {Manna and Cheung, 2001} which binds to 

all three promoters. Transcription of the sar locus is dependent on both the ~ 

and aB -dependent promoters (Deora et al., 1997; Manna et al., 1998). The 

expression of sarA from the ~ dependent promoter is growth phase dependent 

(8ayer et al., 1996) and that from the aB is shown to be higher in the presence of 

25 



RsbU (anti anti-sigma factor) (Wolz et al., 2000). sarA stimulates the transcription 

of agr (Lindsay and Foster, 1999; Cheung et al., 1997a) and downregulates the 

expression of hla (alpha-toxin) by downregulating its repressor, SarT (Schmidt et 

al., 2001) via SarU (Manna and Cheung, 2003). It however represses 

transcription of cna (collagen adhesin) and spa (Protein A) as well as several 

genes that encode for extracellular proteases in an agr-independent way 

(Cheung et al., 1997b, Chan and Foster, 1998; Blevins et al., 1999; Cheung et 

al., 1999). An increase in transcription of spa was shown in sarA mutants whilst a 

decrease was shown in the transcription of genes coding for secreted toxins. 

The ability of Agr and SarA to function as both activators and repressors of target 

genes is facilitated by the presence of SarS which is a homolog of SarA. The 

amino acid sequence of SarA shows identity to both the N-terminal and C­

terminal halves of SarS, suggesting possibly a folding of this protein to assume a 

structure similar to that of SarA (Tegmark, 2000). SarS binds to agr P3, hla and 

ssp (serine protease) promoters. Agr downregulates sarS which is an activator 

for spa (Protein A) expression, resulting in downregulation of Protein A. SarS 

binds directly to the spa promoter thus activating transcription of spa with 

maximum levels attained postexponentially suggesting the involvement of other 

factors such as catabolite repression in the regulation of spa (Tegmark et al., 

2000). In contrast, SarS at high concentrations was found to repress transcription 

of hla in the presence of RNA"!. 

MrgA (Rat) is the only member of the mgr (multiple gene regulator) locus 

and is homologous to the MarR family. It is a global regulator of autolysis and 
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virulence (Cheung et al., 2004). It activates type 8 capsular polysaccharide and 

nuclease and represses a-hemolysin, coagulase, protease and protein A 

(Pragman and Schlievert, 2004). 

Other transcription factors that are also global repressors of the exoprotein 

genes in S.aureus are TSST-1 and SEB which are superantigens. These 

proteins directly bind and inhibit the promoters of target genes via an 

intermediate transcription factor (Novick, 2003). TSST-1 affects production of 

cytokines and the synthesis of some exoproteins ego lipase which is possibly 

inhibited by this protein. 

Rot (repressor of toxins), a SarA homolog (Cheung et al., 2004) is a 

repressor and a global regulator with both positive and negative effects on 

S.aureus gene expression (Said-Salim et al., 2003). It positively regulates the 

expression of sarS (Cheung et aI, 2001, Tegmark et al., 2000) and acts together 

with SarS to activate spa (Protein A). Other factors that are positively modulated 

by Rot include clfB (clumping factor B) and sdrC which are cell surface 

adhesions, dltD, a member of the dlt operon that encodes proteins involved in 0-

alanine incorporation into teichoic acid in the S.aureus cell wall (Said-Salim et al., 

2003). Rot negatively regulates proteases and represses synthesis of hla (d­

hemolysin) and hlb (p-hemolysin). Rot and agr have opposing effects on the 

expression of virulence genes and Rot is likely inhibited by RNA I 11 

posttranscri ptionally. 
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1.4.4 Regulation by environmental/host signals 

Studies performed by Chan and Foster (1998b) demonstrate that environmental 

conditions impact the regulation of virulence determinants. The presence of 1 M 

NaCI and 20mM sucrose were shown to strongly repress the expression of hla, 

tst and spa but had no effect on sarA expression. aB was also repressed by 1 M 

NaCI during stationary phase (Chan et al., 1998). Neither salt nor sucrose 

repression was demonstrated to be due to the agr global regulator. Low 

concentrations of divalent cations such as Ca2+ and Mg2+ significantly stimulated 

expression of tst in an agr-independent manner but no effect was observed with 

novobiocin, a DNA gyrase inhibitor. The expression of spa was significantly 

reduced by EGTA. 

1.5 Stress resistance in S.aureus 

The host naturally presents a stressful, even hostile, environment to which 

S.aureus has developed and demonstrates a high level of resistance. S.aureus 

possesses several components that make it highly adaptable to the stress 

presented by the host both intracellularly and outside cells. 

Upon entry into the host, S.aureus encounters the first line of attack from the host 

that is the non-immune defense mechanism involving phagocytes especially 

neutrophils (PMNs) and macrophages (Ocana et al., 2007). This initial 

phagocytiC killing is essential to prevent spread and colonization of the organism 

in the host. Clements and Foster (1999) described the putative resistance 

mechanisms of S aureus to host attack within the phagolysosome where it is 

confronted by several degradative components and enzymes that eventually lead 
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to its demise. Reactive oxygen species such as the superoxide anion (0£), 

hydrogen peroxide (H202), peroxynitrite (OONO-) and hypochlorous acid (HOCI) 

that are generated by the host can damage DNA, proteins, and Iipids (Clements 

and Foster, 1999, Farr and Kogoma, 1991). 

S.aureus has developed several resistance mechanisms in order to survive in 

the phagolysosome. It possesses two superoxide dismutases, SodA and SodM 

(encoded for by sodA and sodM respectively) that convert superoxide to 

hydrogen peroxide. The presence of 02" (both intra and extracellular) increases 

transcription of both sodA and sodM although SodA is mainly responsible for the 

elimination of internally generated O2 (Karavolos et al., 2003), which is growth 

phase and Mn-dependent. H202 damages proteins by oxidizing cysteine and 

methionine residues and is especially toxic to DNA when reduced to the hydroxyl 

radical by Fe (11) via the Fenton reaction (Imlay, 2003). Catalase (KatA) detoxifies 

H20 2 and katA together with ahpC are members of the regulon which consists of 

genes that encode antioxidants and whose expression is controlled by PerR. 

Cosgrove et al. (2007) showed that a mutation in ahpC relieves the repression of 

PerR on katA thereby increasing its expression resulting in increased H202 

resistance. In addition AhpC was shown to provide residual catalase activity in 

the katA mutant indicating their compensatory roles in peroxide stress resistance 

(Cosgrove et al., 2007). 

The formation of hypochlorous acid (HOCI) by myeloperoxidase within the 

phagolysosome maintains an acidic environment that is necessary for 

bactericidal activity. Although S.Bureus is killed at pH2, it portrays an adaptive 
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response whereby it acquires' acid resistance if first exposed to a higher non­

lethal pH (Chan and Foster, 1998b). This acid adaptation response in S.aureus 

induces sodA suggesting a connection between acid and oxidative stress 

(Clements and Foster, 1999). 

Both AhpC and KatA are required for nasal colonization and 

resistance to dessication (Cosgrove et al., 2007). The ability of S.aureus to 

withstand dessication over a prolonged period allows survival and persistence in 

the hospital setting. Although the mechanism of tolerance dessication in 

S.aureus has not been established, it is correlated with pigmentation (Clements 

and Foster, 1999). Upon aging S.aureus produces the classic golden yellow 

coloration due to accumulation of staphyloxanthin which has been implicated as 

a virulent factor associated with reduced killing by neutrophils (Liu et al., 2005) 

and protection against oxidative stress (Clauditz et al., 2006). 

S.aureus also exhibits a high tolerance for osmotic stress whereby at 

high NaCI concentrations its cell-wall peptidoglycan forms shorter interpeptide 

bridges for increased mechanical strength to resist implosion caused by the 

turgor pressure (Vijarankul et al., 1995). In addition, since osmotic stress induces 

expression of ahpC (Armstrong-Buisserat, 1995) a connection between oxidative 

and osmotic stress is suggested. 

In response to nutrient limiting conditions (outside the host), S.aureus 

enters the starvation-survival response mode and produces smaller colonies, 

divides infrequently and show increased resistance to acid and oxidative stress 

and lytic enzyme challenge (Watson et al., 1998a). Several loci are important in 
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the starvation-survival state including sodA, heme A synthase (ctaA) and umuC 

which is a component of the SOS response (Watson et al., 1995b). A rapid 

recovery response is observed in the starved cells upon availability of nutrients 

which trigger immediate RNA and protein synthesis (Clements and Foster, 1995). 

1.6 S.aureus metabolism during pathogenesis 

The virulence factors discussed previously are mainly those that enable S.aureus 

to colonize, invade and initiate infection within the host. Several regulatory 

mechanisms that control expression of the virulence factors that are involved in 

adhesion and the production of toxins were also discussed. These regulatory 

systems comprise of not only the interactions between Agr, SarA, SaeR and 

sigma B but also other regulators that are encoded in the genome (Becker et al., 

2007). A genomic comparison study of S.carnosus (non-pathogenic) against 

different strains S.aureus and S.epidermidis revealed that approximately 25% of 

the conserved gene products in staphylococci belong to proteins involved in 

basic metabolic pathways such as substrate transport and metabolism, 

coenzymes, energy production, transcription, translation or replication (Becker et 

al., 2007). 

Pathogenesis requires a complex interaction between the invading 

organism and its host. To exert a pathogenic effect, S.aureus like other 

pathogens must persist in significant numbers within the host and be continually 

producing different virulent factors which is energetically demanding. Metabolism 

of the pathogen must therefore be highly tuned to efficiently use the available 

nutrients. 

31 



Two global screens for genes required for infection by S.aureus both 

identified multiple metabolic components. Signature tagged mutagenesis (STM) 

using transposon Tn917 identified several mutants that were attenuated in a 

mouse model of bacteremia (Mei et al., 1997). DNA sequence analysis of these 

mutants showed that apart from those associated with genes of unknown 

function, a majority of them represent genes involved in nutrient biosynthesis, cell 

surface metabolism, cellular repair processes, and genes encoding the TCA 

cycle. Similarly, a study conducted by Coulter et al. {1997} using STM in three 

different in vivo mouse model of infection (abscess, bacteremia and wound) 

identified highly attenuated mutants in genes that encode for, amongst others, 

transport binding proteins (Opp and dtp (di-tripeptide transporter», cell wall 

metabolism (femA and femB), amino acid uptake (alsT-alanine) and biosynthesis 

(trp- tryptophan, putP-amino acid permease) and DNA replication. Proline is an 

essential amino acid and S.aureus relies on transporters to acquire proline for 

survival in the host. Two transporters for proline uptake have been identified Le. 

PutP, a high affinity proline permease encoded by putP (Wengender and Miller, 

1995) and ProP, a low affinity proline transporters encoded by a proP gene 

homolog (E.eo") (Schwan et al., 2006). The low affinity proline transporters may 

be the same as the low-affinity glycine betaine transporter which in S.aureus is 

possibly involved in osmoregulation (Pourkomailian and Booth, 1992). The 

expression of putP was increased at low concentrations of proline (as low as 

17.4 J.lM) and high NaCI (up to 2M) concentrations which occur at the 

transcriptional level both in growth medium and in animal models of infection 
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(Schwan et al., 2006). In addition, putP expression was shown to be decreased 

in the presence of the alternative factor sigma B. Mutation of putP in S. aureus 

was found to be significantly attenuating in mouse models bacteremia, 

endocarditis and wound infections suggesting a role of the gene in virulence of 

the organism (Schwan et al., 1998, 8ayer et al., 1999,). Another amino-acid gene 

component which has been shown to be involved in pathogenesis of S.aureus is 

PheP, a putative amino acid permease in S.aureus which was shown to be 

involved in growth and starvation survival (Horsburgh et al., 2004). A mutation in 

pheP in S.aureus resulted in poor growth under microaerobic or anaerobic 

conditions on pig serum agar and reduced virulence in a murine abscess model 

of infection (Horsburgh et al., 2004). Further, the pheP mutant was found to be 

less pathogenic in the Drosophila melanogaster model of infection with three 

times more death observed compared to the flies infected with the wild-type 

strain (Need ham et al., 2004). 

1.6.1 Sulfur source uptake and utilization in S.aureus 

1.6.1.1 Sulfur 

Cysteine is an essential amino acid component of proteins and is the major 

source for the synthesis of most sulfur-containing compounds in bacteria. 

(Wilkinson,1997). Lithgow et al. (2004) showed that S.aureus is able to utilize 

various sulfur sources such as thiosulphate, glutathione, sulfite, cysteine and 

cystine. 
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1.6.1.2 Genes involved in sulfur source utilization in S.aureus 

In addition to being a sulfur source, cysteine is also found in catalytic sites in 

redox proteins for formation, isomerization, and reduction of disulfide bonds and 

for other redox functions (Fomenko and Gladvshev, 2003). Cysteine is 

synthesized in two pathways; the first by incorporation of thiosulfate or sulfide 

into serine which occurs in bacteria and by the transsulfuration pathway in 

animals which produces cysteine from methionine and serine (Borup and Ferry, 

2000, Kitabatake et a/., 2000). 

The cysE, cysK, and eysM genes in E.eoli encode for the serine transacetylase, 

O-acetylserine(thiol)-Iyase-A and O-acetylserine (thiol)-Iyase-B respectively 

which catalyze the production of cysteine from serine (Kitabatake et aI, 2000). In 

this assimilation pathway. serine and acetyl-CoA is first converted to 0-

acetylserine by serine transacetylase (eysE). The sulfide or thiosulphate is 

incorporated into O-acetylserine by either O-acetylserine (thiol)-Iyase-A (cysK) or 

O-acetylserine (thiol)-Iyase-B (eysM) to produce cysteine. 

Lithgow et al (2004) developed a flow diagram (Fig.1.3) that shows the genes 

involved in the uptake and utilization of different sulfur sources for cysteine (Cys) 

biosynthesis in S.aureus. As indicated on the diagram, S.aureus possesses gene 

homologues for uptake of cysteine, cystine and glutathione but not for sulphate 

and sulfite. The gene eysM in S.aureus encodes a cysteine synthase that is 

functionally homologous to E.eoli CysM (Lithgow et al., 2004) and is the 0-

acetylserine (thiol) lyase B type protein. In addition, S.aureus possesses 

homologs of eysE, eysK and eysM that allows for the utilization of sulfide and 
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permease together with CysP, a thiosulphate binding protein whereas sulfate 

uptake is enabled by cysT (Hryniewicz, 1990). Utilization of thiosulphate by 

S.aureus is dependant on cysM but as there are no cysP homologs in S.aureus, 

thiosulphate uptake probably occurs by a different mechanism. The gene cysT or 

its homolog is absent in S.aureus which is unable to use sulfate as a sole sulfur 

source. Lithgow et al., (2004) showed that chemically defined media containing 

only methionine and sulfate as the sulfur source does not support growth of 

S.aureus SH1000. The trans-sulfuration reaction therefore does not occur in this 

organism. S.aureus is able to acquire extracellular cysteine and cystine for use 

as sulfur sources although the mechanism(s) for their uptake is not established. 

The presence of a ggt homolog in S.aureus presumably enables the utilization of 

glutathione. 
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Figure 1.3 

S.aureus sulfur sources. Homologues in S.aureus of genes involved in uptake 

and utilization of different sulfur source for cysteine biosynthesis in E.eoli and 

B.subtilis are shown. Shaded region shows genes in which no homologues are 

present in S. aureus. Adapted from Lithgow et al., 2004. 
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1.6.2 Gene involved in glutathione uptake and utilization- ggt (GGT). 

S.aureus is unable to synthesize glutathione as evident by the lack of 

gene homologs within its genome coding for the enzymes y-glutamyl cysteine 

synthetase and glutathione synthase and its low intracellular glutathione content 

(Fahey et al., 1978) . However, it possesses the gene ggt, which codes for the 

gammaglutamyltransferase (GGT) which is an important enzyme in glutathione 

degradation and metabolism. 

Meister and Anderson (1983) categorized the GGT catalytic functions into 

three groups i.e. 1) transpeptidation which involves transfer of the y-glutamyl 

mOiety to an acceptor; 2) autotranspeptidation which involves transfer of the y­

glutamyl moiety to GSH to form y-glutamyl-GSH; and 3) hydrolysis where the y­

glutamyl moiety is tranferred to water. 

The GGT from Ecoli is subject to many studies and is similar to 

mammalian GGTs in its primary structure and enzyme characteristics except for 

two main differences. GGT from Ecoli possesses a signal peptide at its N­

terminus suggesting that it is a soluble periplasmic enzyme whereas the 

mammalian GGTs are membrane bound enzymes. A signal peptide sequence is 

also present at the N-terminus of the B.subtilis GGT (Xu et aI, 1996).The 

presumed y-glutamyl binding site in the highly conserved putative active site is 

threonine in B.subtilis (Xu et al., 1996), serine in Ecoli and other bacterial GGTs 

(Suzuki et aI, 1989) and cysteine in mammalian GGTs (Sakamuro et al., 1988). 

In addition, Ecoli GGT is nonglycosylated whereas mammalian GGT are 

heterologously glycosylated (Suzuki et al., 2002). GGT, in Ecoli is a periplasmic 
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enzyme which is approximately 59kD and like the human GGT consists of one 

large subunit and one small subunit (Suzuki, 1989). It is produced as a single 

inactive precursor unit which undergoes autocatalytic processing to form a large 

(<X) subunit (MW approx. 40,000) and a small (13) subunit (MW approx. 20000) 

(Suzuki and Kumagai, 2002). The human kidney GGT is also a dimer comprising 

of a large peptide subunit (MW 65,000) and a small peptide subunit (MW 25,000) 

(Tate and Meister, 1976). In the Ecoli GGT, the threonine (Thr391) residue in the 

small subunit acts as a nucleophile in this autocatalytic cleavage (Suzuki and 

Kumagai,2002). 

Bacillus subtilis GGT shows a high degree of amino acid homology with 

that of E.coli, is expressed after onset of stationary phase and its expression is 

not temperature dependent (Xu et al., 1996). The Ecoli GGT however is 

expressed during logarithmic growth with greater expression at 20 than 37°C 

(Suzuki et al., 1986). Glutathione content was found to be significantly higher in 

the transition between exponential and stationary phase (Fahey et al., 1978). 

Other proteins that show sequence identities with GGT have been 

identified but their involvement in glutathione metabolism have not been 

elucidated. The YwrD protein in Bacillus subtilis is predicted to have GGT-like 

activity based on its sequence identity with the amino acid sequence of E.coli 

GGT (31%) (Suzuki et al., 1989) and Bacillus subtilis GGT (27%) but was 

reportedly not involved in glutathione utilization in the organism (Minami et al., 

2004). A structurally related but distinct mouse enzyme, y-glutamylleukotrienase, 
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showed y-glutamyltranspeptidase-like activities but was unable to hydrolyse 

glutathione (Ikeda and Tanaguchi, 2005). 

1.7 Glutathione and thiol metabolism 

Glutathione is a tripeptide (N-L-y-glutamyl-L-cysteinylglycine) consisting of 

glutamic acid, cysteine and glycine and is the most abundant intracellular low 

molecular non-protein thiol antioxidant in most living cells (Penninckx, 2000). The 

glutamic acid moiety is attached to cysteine via the carboxyl group on the side 

chain of the glutamic acid thereby creating the y-glutamyl bond (Hanigan and 

Ricketts, 1993). This bond is resistant to most proteases but can be cleaved by 

GGT. The sulfhydryl group on the cysteinyl component confers on glutathione a 

strong electron-donating ability. 

Glutathione synthesis occurs by consecutive actions of two ATP requiring 

enzymes, y-glutamyl cysteinyl synthetase and GSH synthetase (Meister and 

Anderson, 1983). The former initiates glutathione synthesis by conjugating 

cysteine with glutamate to form y-glutamyl cysteine which is then added to 

glycine to produce glutathione by the latter enzyme (Ikeda and Taniguchi, 2005). 

Glutathione synthesis is more predominant amongst the gram-negative bacteria 

including Ecoli but is only present in Lactococcus /actis and Streptococcus 

aga/actiae, Streptococcus thermophi/us and Enterococcus fecalis amongst the 

gram positives (Fahey et a/., 1978; Newton et al., 1996). Other gram-positive 

bacteria including S.aureus, Baci/us subtilis and S.epidermidis do not synthesize 

glutathione. 
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Meister and Anderson, 1983 summarizes glutathione metabolism in a 

pathway refered to as the y-glutamyl cycle. In the transpeptidation reaction the y­

glutamyl moiety of glutathione is tranferred to an acceptor amino acid resulting in 

cysteinyl-glycine (cys-gly) dipeptide. A peptidase (aminopeptidase Nand 

cysteinylglycine dipeptidase) then cleaves the cys-gly thereby releasing the 

glycine and cysteine moieties for use as a sulfur source as well as other cellular 

functions (Hanigan and Ricketts, 1993). The GGT enzyme, in Ecoli, hydrolyzes 

the y-glutamyllinkage of the y-glutamyl amino acid which releases the amino-acid 

for utilization by the organism (Suzuki, 1993). Shibayama et al., (2007) report a 

pathological role of GGT in the metabolism of extracellular glutamine and 

glutathione to glutamate in Helicobacter pylori. The resulting depletion of the two 

components and the production of NH3 are suggested to contribute toward the 

demise of infected mammalian cells. 

In a highly reduced environment within the cell, glutathione exists mostly 

in the reduced form, GSH, and undergoes oxidation to form disulphide bonds 

with either another glutathione to form glutathione disulphide (GSSG, oxidized 

form) or with sulfhydryl groups on cysteine moieties in proteins or other low 

molecular weight thiols. Glutathione is regenerated by reduction of GSSG with 

NADPH through the glutathione reductase reaction (Rieber et al., 1968) and de 

novo synthesis (Dickinson and Forman, 2002). 

In mammalian tissues reduced glutathione (GSH) is the metabolically active form 

with concentrations ranging from 0.5 to 10mM (Meister and Anderson, 1983) .. 

Glutathione concentration is highest in the liver (up to 1 OmM) where it is exported 
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and transported to the intestine via the bile duct. It is present in the spleen, 

kidney, lens, erythrocytes and leukocytes and lower concentrations of 

approximately 4.5 IJM, are found in the plasma. 

1.7.1 Role of glutathione as a sulfur source 

Glutathione is a transport and storage source for cysteine (Meister and 

Anderson, 1983) and glutamate (Shibayama et al., 2007). The cysteine moiety 

liberated from hydrolysis of extracellular glutathone was utilized by glutathione 

depleted GGT-positive mouse fibroblasts cells for growth and to replenish 

intracellular glutathione (Hanigan and Ricketts, 1993). Utilization of extracellular 

glutathione has also been demonstrated in Streptococcus mutans (Sherrill et al., 

1998), Bacillus subtilis (Minami et al., 2004) and Lactococcus lactis (Li et al., 

2003). Suzuki et al. (1993) showed that E.coli could utilize exogenous glutathione 

as a cysteine source and a glycine source. Haemophilus influenzae does not 

synthesize glutathione but is able to import it from the growth medium 

(Vergauwen et al., 2003). In addition, export of intracellular glutathione was 

reported in strains of Salmonella typhimurium and E.coli (Owens et al., 1986). 

S.aureus is also able to use glutathione as the sole sulfur source as suggested 

by the presence of the ggt gene homolog (Lithgow et al., 2004). It however does 

not possess the genes for glutathione synthesis therefore glutathione has to be 

acquired from an external source that is the host. The exact mechanism of 

glutathione uptake and utilization in S.aureus remains to be elucidated. 

41 



1.7.2 Protective roles of glutathione 

In addition to being a sulfur source, glutathione also possesses multiple 

protective roles within the cell which include maintaining a reducing environment, 

involvement in detoxification processes and redox signaling (Sen, 1998). 

Aerobic repiration generates harmful reactive oxygen species (ROS) such as 

superoxide (02 "), hydrogen peroxide (H202). hydroxyl ("OH), and 

organoperoxide radicals in bacteria. These reactive oxygen species are 

biological oxidants that bind to cellular elements (DNA, proteins, and lipids) and 

cause damage. Many bacteria including S.aureus have antioxidant enzymes 

such as catalases , peroxidases and superoxide dismutases and antioxidants 

such as cysteine, glutathione and other thiols that detoxify and eliminate these 

toxic oxygen species.(Karavalos et al., 2003; Izawa 1996). Both thioredoxin and 

glutathione maintain a reducing environment intracellularly and provide 

overlapping protection against oxidative stress (Penninckx, 1993, Uziel et al., 

2003). 

Numerous protein and genomic sequencing studies have revealed that 

S.aureus possesses survival mechanisms against toxic oxygen species 

generated in aerobic environments that may contribute to its virulence 

(elements et al., 1999, Horsburgh et al., 2002). Studies suggest that in 

many microorganisms including S.aureus, glutathione may possess direct 

roles as an antioxidant and plays an important role in the reductive 

elimination of H20 2 and organoperoxides that result from activation of 
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oxygen during respiration. Gluthathione (GSH) is used as a substrate for 

glutathione peroxidase (GSHPx) and peroxiredoxins for reduction of H20 2 and 

lipid hydroperoxides (Dickinson, 2002). It acts together with superoxide 

dismutase by reacting with carbon-centered radicals, R, to prevent oxidative 

damage. (Dickinson 2002). Studies by Vergauwen et al., (2003) showed that 

glutathione is able to overcome the toxic effects of hydrogen peroxide (H202) 

generated in catalase deficient mutants of Haemophilus influenzae. In addition, 

the authors showed that the presence of imported gluthathione conferred 

protection against methylglyoxal, tert-butyl hydroperoxide (t-BuOOH) and S­

nitrosoglutathione toxicity. Glutathione is also suggested to be involved in 

regulation of catalase and its activity against H202 in Ecoli (Oktyabrsky, et al. 

2001). Cellular glutathione was shown to protect Streptococcus mutans against 

growth inhibition by the thiol-oxidizing agent diamide (Sherill and Fahey, 1998). 

In Ecoli glutathione has a role in reversing the growth inhibiting effect of this thiol 

oxidant (Hibberd, 1978). Within the cell, glutathione exists mainly in the reduced 

form (GSH) and the GSH:GSSG ratio is an indicator of the level of oxidative 

stress (Hurd et al., 2005). Reduction in the GSH:GSSG ratio in Ecoli may 

possibly activate the transcription factor OxyR leading to the induction and 

activation of antioxidant genes trxA (thioredoxin), grxA (glutaredoxin1), gorA 

(glutathione reductase), gshA (glutathione synthethase) and trxB (thioredoxin 

reductase) (Zheng, 1998). Furthermore glutathione may have roles in resistance 

to stress agents such as methyl viologen (oxidative stress) and tellurite. 
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1.8 Aims of the project 

The overall aim of the research project was to determine the role of glutathione 

as a sulfur source and in stress resistance in S.aureus. Glutathione utilization in 

other organisms has been previously shown to be facilitated by 

gammaglutamyltranspeptidase (ggt). The S.aureus GGT homolog and a putative 

glutathione transporter were characterized. The role of glutathione in tellurite 

resistance was also studied and the major proteins involved in the tellurite 

resistance were identified. 
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CHAPTER TWO 

MATERIALS AND METHODS 

2.1 Media and antibiotics 

2.1.1 Media 

Unless otherwise stated all media were prepared using distilled water (dH20) 

and were sterilised by autoclaving for 20 min at 121°C (15 pounds per square 

inch). 

2.1.1.1 B2 

Casein acid hydrolysate (Oxoid) 

Yeast extract (Oxoid) 

K2HP04 

NaCI 

10 g 1'1 

25 g 1'1 

1 9 1'1 

5 g 1'1 

The pH was adjusted to 7.5. Once autoclaved and cooled, sterile glucose was 

added to 1 mM (final concentration). 

2.1.1.2 Brain heart infusion (BHI) (Oxoid) 

Brain heart infusion (BHI) 37 9 1'1 

Oxoid agar No. 1 (1 % (w/v)) was used for BHI agar. 

2.1.1.3 Chemically Defined Media (CDM) - without cysteine. 

CDM, which consists of five components (CDM1-5) as shown was mixed in the 

following quantities to form the CDM liquid media with 0.1 % glucose (w/v). For 

CDM agar media, 7.5g of bacteriological agar was added for every 600 rnl of 

CDM liquid media. 
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CDM 1(10X) 

CDM 2(5X) 

CDM3 

CDM 4(1 OX) 

140 ml 

40ml 

100ml 

2ml 

To this mixture, 1518 ml of distilled water was added and then autoclaved. When 

cooled, 200 ml of sterile CDM 5 was added for every 1800 ml of CDM liquid 

media. 

CDM-1 (10X) Made up to 1.4 L with dH20 and autocJaved to dissolve. 

Chemical Weight (g) Chemical Weight (g) 

L-aspartic acid 3 L-phenylalanine 2 

L-alanine 2 L-proline 3 

L-arginine 2 L-serine 2 

Glycine 2 L-threonine 3 

L-glutamic acid 3 L-tryptophan 2 

L-histidine 2 L-tyrosine 2 

L-isoleucine 3 L-valine 3 

L-Iysine HCI 2 Na2HP04 140 

L-Ieucine 3 KH2P04 60 

L-methionine 2 

CDM-2 (5X) Made up to 400 ml with dH20, filter sterilized. 

Chemical Weight (mg) Chemical Weight (mg) 

Biotin 2 Riboflavin 40 

D-panthotheni c 40 Nicotinic acid 40 

acid 

Pyridoxal 80 Thiamine HCI 40 

Pyridoxamine 80 
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CDM3 Made up to 2 L with 0.1 M HCI, and autoclaved. 

Chemical Weight (mg) Chemical Weight (mg) 

Adenine 800 Guanine HCI 800 

sulphate 

CDM4 Made up to 100 ml with 0.1 M HCL. 

Chemical Weight Chemical Weight 

CaCI26H2O 1 9 MnCI2 500mg 

Ferric 600mg 

ammonium 

sulphate 

CDM-5 Made up to 2 L with dH20 and autoclaved. 

Chemical Weight (g) Chemical Weight (g) 

Glucose 200 MnS047H2O 10 

The appropriate sulfur source (Chapter 2.2.13.1-2.2.13.4) was added as required 

for growth of bacterial cultures. 

2.1.1.4 Glucose- yeast extract-tryptone medium (GYT) 

Glucose 10 % v/v 

Yeast extract 0.125 % w/v 

Tryptone 0.25 % w/v 

2.1.1.5 Luria-Bertani (LB) (Miller, 1972) 

Tryptone (Oxoid) 10 9 1'1 

Yeast extract (Oxoid) 

NaCI 
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The pH was adjusted to 7.2 using NaOH. Oxoid Agar No. 1 (1.0 % w/v) was 

added for LB agar. 

2.1.1.6 LK 

Tryptone (Oxoid) 10 g 1"1 

Yeast extract (Oxoid) 

KCI 

Oxoid Agar No. 1 (1.0 % w/v) was added for LK bottom agar. 

Oxoid Agar No. 1 (0.7 % w/v) was added for LK top agar. 

2.1.1.7 Phage agar 

Casamino acids (Oxoid) 

Yeast extract (Oxoid) 

NaCI 

3 g 1"1 

3 g 1"1 

5.9 9 r1 

Oxoid Agar No. 1 (1.0 % w/v) was added for phage bottom agar. 

Oxoid Agar No. 1 (0.33 % w/v) was added for phage top agar. 

2.1.1.8 Super optimal broth (SOB)(Sambrook et al., 1989) 

Tryptone (Oxoid) 2 % w/v 

Yeast extract (Oxoid) 0.5 % w/v 

NaCI 10 mM 

KCI 2.5mM 

Once autoclaved and cooled, sterile supplements of MgCI2 and MgS04 were 

added, each to 10 mM (final concentration). 
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2.1.1.9 Super optimal broth with catabolite repression (SaC) 

(Sambrook et al., 1989) 

. 2.1.1.9.1 SOC. Medium (TOPO TA Cloning Kit -Invitrogen) 

Tryptone 2% w/v 

Yeast extract 

NaCI 

KCI 

MgCI2 

MgS04 

Glucose 

0.5% w/v 

10mM 

2.5mM 

10mM 

10mM 

10mM 

2.1.1.9.2 

to SOB 

SCC was prepared by the addition of sterile glucose (20 mM) 

2.1.1.10 

Tryptone 

Yeast 

Glycerol 

Terrific Broth (TB) 

Made up to 900 ml and autoclaved. 

Salts 

KH2P04 

K2HP04 

12 9 1"1 

24 9 r1 
4ml 

2.31 9 

12.54g 

Salts were dissolved in 100 ml distilled water and autoclaved. 

The media and salts were combined when cooled after autoclaving. 

2.1.1.11 Tryptic Soya Broth (Oxoid) 

Tryptic soya broth (TS8) 
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2.1.2 Antibiotics 

All antibiotics used in this study are listed in Table 2.1 The stock solutions were 

filter-sterilised (0.2 J,tm pore size) and stored at -20°C. For use in agar plates, 

the antibiotic stock solutions were added to the media once they had cooled to 

below 55°C. For use in liquid media, the antibiotic stock solutions were added 

just before use. Concentrations of antibiotics used for selection were as in Table 

2.1, unless otherwise stated. 

Antibiotic Stock Working Working 
Concentration Concentration Concentration 
(mg mr1) in S. aureus in E. coli 

(JJQ mr1) Jpllmr1) 
Ampicillin (Amp) 50a - 50 

Erythromycin (Ery) 5 or 75° 5 300 

Lincomycin (Lin) 25c 25 -
Kanamycin (Kan) 50a 50 50 

Tetracycline (Tet) 5c 5 12.5 

Chloramphenicol 5° 5 -
(Cm) 

Cadmium chloride 100a 250 -
(CdCb) 

Table 2.1 Antibiotics used in this study 

Stock concentrations of antibiotics were dissolved in dH20a, 95% v/v ethanolb, or 

50 % v/v ethanol c, filter-sterilised and stored at -20°C. The inducing 

concentration of Ery was 0.15 JJg mr1. 

2.2 Buffers and stock solutions 

All buffers were prepared in dH20 and stored at room temperature. Solutions 

for use in microbiological work and in vitro DNA manipulations were sterilised 
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by autoclavin9. All of the methods in this chapter are as in Sambrook et al. 

(1989), unless otherwise stated. 

2.2.1 (l-galactosidase assay solutions 

2.2.1.1 ABT 
NaCI 5.884 9 

K2HP04 10.51 9 

KH2P04 

TritonX-100 

dH20 

2.2.1.2 
Na2C03 

dH20 

2.2.1.3 
ABT 

Na2C03 

Stopping solution 

ABTN 

5.449 

1 ml 

1 litre 

42 9 

1 L 

2.2.2 (l-mercaptoethanol (100 mM) 

~-mercaptoethanol 

dH20 

, 

2.2.3 DNA loading buffer (6X) 

Bromophenol blue 

Xylene cyanol FF 

Glycerol 

2.2.4 Frozen storage buffer (FSB) 

KCI 

MnC12.4H20 

CaC12.2H20 

Co(NH3)CI3 

51 

500ml 

500ml 

0.25 % w/v 

0.25 % w/v 

30 % v/v 

7.4 9 

8.9 9 

1.59 

0.89 

701-11 

9.93 ml 



Potassium acetate (1 M, pH 7.5) 

Glycerol 

10ml 

100ml 

The constituents were made up to 1 I with sterile dH20 and the pH adjusted to 6.4 

using 0.1 M Hel. The solution was divided into 100 ml aliquots and stored at -

20°C. Aliquots were defrosted as required and filter-sterilized (0.45 J.lM pore size) 

before use. 

2.2.5 GGT assay (Diagnostics Chemicals) 

2.2.5.1 Assay reagent 

Glycylglycine 

L-y-glutamyl-p-nitroanilide (GPNA) 

Buffer pH 8.0 at 25°C 

125mM 

4.2 mM 

Stabilizer (supplied in the reagent, details not provided) 

Preservative (supplied in the reagent, details not provided) 

2.2.5.2 DC-TROL (Diagnostic Chemicals) 

DC-TROL is a control serum prepared from human serum containing human and 

nonhuman enzymes, nonprotein constituents and bacteriostatic agents. 

2.2.6 

NaCI 

Na2HP04 

KCI 

KH2P04 

Phosphate buffered saline (PBS) 

8 g r1 
1.4 9 r1 
0.2 g r1 
0.29 r1 

The pH of PBS was adjusted to 7.4 using NaOH. 
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2.2.7 

MgS04 

CaCI2 

Phage buffer 

Tris-HCI pH 7.8 

NaCI 

Gelatin 

1 mM 

4mM 

50mM 

0.59% w/v 

0.1% w/v 

2.2.8 

K2Te03 

dH20 

Potassium tellurite (K2 Te03) (50 mM) 

0.127 9 

10 ml 

2.2.9 QIAGEN buffers 

The composition of QIAGEN buffers is detailed in the manufacturer's 

instructions provided with the kits. 

2.2.9.1 QIAGEN Buffer P1 

Tris-HCI, pH 8 

EOTA 

RNase A 

2.2.9.2 

NaOH 

SOS 

2.2.9.3 

QIAGEN Buffer P2 

QIAGEN Buffer P3 

Potassium acetate, pH 5.5 

2.2.9.4 QIAGEN Buffer EB 

Tris-Hel, pH 8.5 

50 mM 

10mM 

100 ug mr1 

200 mM 

1%w/v 

3.0M 

10mM 

2.2.9.5 QIAGEN Buffer QG, PB and PE 
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Supplied in the QIAquick kit, details not provided 

2.2.10 Alkaline phosphatase (AP) buffer 
Tris-HCI (pH 9.5) 100 rnl 1'1 

NaCI 5.8 9 r1 
MgCI2.6H20 10.2 g 1'1 

2.2.10.1 Colour substrate solution 

10 ml AP buffer containing 200 IJI NBT/BCIP solution (Roche). 

2.2.11 SOS-PAGE solutions 

2.2.11.1 5x Laemmll SOS-PAGE sample buffer 

1 M Tris-HCI (ph 6.8) 2.5 rnl 

SOS 1.0 g 

Glycerol (100% v/v) 

Bromophenol blue 

5.0ml 

0.05g 

The components were made up to 10 ml with dH20. 5% v/v p-mercaptoethanol 

was added just before use. 1x sample buffer was made by diluting the 5x stock 

solution with dH20. 

2.2.11.2 SOS-PAGE gel formulations and construction of gel 

The following components were added together in a 30 ml plastic universal; 

12.5 % w/v Resolving gel (2X) 

30 % w/v Acrylamide/Bis (37.5:1) 4.1 ml 

1.5M Tris-HCI (pH 8.8) 2.5 ml 

dH20 3.4 ml 

10 % w/v SOS 100 JJI 

10 % w/v Ammonium persulphate 100 III 

TEMED (N,N,N'N'-tetramethyl-ethylenediamine) 10 ul 
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The components were mixed by gentle swirling so as not to introduce air 

bubbles and loaded into the gel casting apparatus using a plastic 10 ml 

syringe. A layer of isopropanol was carefully pippeted on top of the gel to 

isolate it from the air. After the gel has solidified, the stacking gel was made up 

as follows; 

4 % w/v stacking gel (2X) 

30 % w/v Acrylamide/Bis (37.S:1) 

O.SM Tris-HCI (pH 6.8) 

dH20 

10 %w/v SOS 

10 % w/v Ammonium persulphate 

TEMEO (N, N, N'N'-tetramethyl-ethylenediamine) 

0.7Sml 

1.2S ml 

3.0ml 

100 ~I 

SO JlI 

5 ~I 

The components were mixed by gentle swirling and dispensed on top of the 

resolving gel. A plastic comb was inserted into the gel to create wells and to 

separate the gel from air. After the gel had solidified, it was transferred to the 

gel-running tank and submerged in 1x SOS-PAGE electrophoresis buffer. 

2.2.11.3 10x SOS·PAGE electrophoresis buffer 

Glycine 

Tris base 

SOS 

144 g r1 
30.3 9 r1 
10 g r1 

1x SOS-PAGE buffer was made by diluting 10x SOS-PAGE buffer 1:10 with 

dH20. 

2.2.11.4 Coomassie Blue staining solutions 

Coomassie Blue R-2S0 

Acetic acid 

Methanol 
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SO % w/v 



Coomassie stain is light sensitive and was stored in a foil-wrapped Duran 

bottle. 

2.2.11.5 Destain solution 

Acetic acid 10 % w/v 

Methanol 5 % w/v 

2.2.12 Southern blotting buffers and solutions 

2.2.12.1 Depurination solution 

HCI 250 mM 

2.2.12.2 Denaturing buffer 

NaOH O.5M 

NaCI 1.5 M 

2.2.12.3 Neutralising buffer 

Tris-HCI (pH 7.5) 0.5M 

NaCI 3M 

2.2.12.4 SSC (20X) 

NaCI 3M 

Tri-sodium citrate·2H2O 300 mM 

The pH was adjusted to 7.0 with 1 M NaOH. 20X SSC was diluted with water 

to make 10X, 5X, 2X and O.5X SSC. 

2.2.12.5 

SSC 

Pre-hybridisation solution 

5X 

Blocking reagent (Roche) 

N-Iauroylsarcosine, Na salt 
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1 % w/v 

0.1 %w/v 



SDS 0.02 %w/v 

2.2.12.6 Hybridisation solution 

Digoxigenin-Iabelled DNA probes were diluted in prehybridisation buffer to 5 -

25 ng mr1. 

2.2.12.7 

SSC 

SOS 

2.2.12.8 

SSC 

SDS 

2.2.12.9 

Maleic acid 

NaCI 

Wash solution (2X) 

Wash solution (O.SX) 

Maleic acid buffer 

The pH was adjusted to 7.5 with solid NaOH. 

2.2.12.10 Washing buffer 

2X 

0.1 % w/v 

0.5X 

0.1 % w/v 

0.1 M 

0.15 M 

Maleic acid buffer containing 3 % v/v Tween® 20. 

2.2.12.11 Blocking solution 

Maleic acid buffer containing 1 % w/v blocking reagent (Roche). 

Blocking reagent was dissolved in maleic acid buffer by microwaving and 

stored at -20 °C. 

2.2.12.12 Antibody solution 

Blocking solution containing 0.2 J,Jg mr1 anti-digoxigenin-AP conjugate (Roche). 

2.2.12.13 Detection buffer 
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Tris-HCI (pH 9.5) 

NaCI 

MgCI2·6H20 

The pH was adjusted to 7.5 using 1 M NaOH. 

2.2.12.14 Colour substrata solution 

100mM 

100mM 

50mM 

Detection buffer containing 2 % v/v NBT/BCIP (Roche). 

2.2.12.15 Tris/Acetate/EDTA (TAE) buffer (SOX) 

Trisma base 242 g r1 

Glacial acetic acid 

Na2EDT A (0.5 M pH B.O) 

57.1 mlr1 
100 ml r1 

Before use the buffer was diluted 1 :50 to produce TAE. 

2.2.12.16 Tris/EDT A (TE) buffer 

Tris-HCI 1 mM 

EDTA 0.1 mM 

The pH was adjusted to 7.5 using 1 M Hel before autoclaving. 

2.2.13 Sulfur sources 

The following sulfur stock solutions were prepared in sterile dH20 at a final 

concentration of 50 mM, filter sterilized (0.2 IJm) and stored in 4°C. 

2.2.13.1 Cysteine 

2.2.13.2 Glutathione 

2.2.13.3 Sulphate 

2.2.13.4 Thiosulphate 
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2.2.14 Tris HCI buffer 

Tris 

dH20 

pH to 7.5 using 5M HCI 

0.485 g 

200ml 

2.2.15 Western Blotting for N-terminal sequencing solutions 

2.2.15.1 CAPS buffer (100 mM) 

CAPS (3-(cyclohexylamino)-1-propanesulphonic acid) 

dH20 

Adjusted to pH 11 with 2M NaOH and made up to 1 I. 

2.2.15.2 Transfer buffer 

100mM CAPS buffer 

methanol 

Add dH20 to 250 ml. 

22.13 9 

BOOml 

25ml 

25ml 

2.2.15.3 Coomassie blue staining solution for N-terminal sequencing 

Coomassie blue R-250 1 9 

Methanol 400 ml 

Acetic acid 10 ml 

Coomassie blue was dissolved in methanol by stirring for 30 min. Acetic acid 

and dH20 was added to 1 I and stirred for a further 30 min. The solution was 

filtered through a 0.45 J.Jm filter. 

2.2.16 

2.2.16.1 

Protein analysis buffers and reagents 

Ammonium sulphate precipitation solution 

Ammonium sulphate was added to cell free extracts accordingly to obtain a 55 % 

cut and a 75 % cut final concentration. 
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2.2.16.2 Cell free extract preparation buffers and stock solutions 

2.2.16.2.1 Resuspension and dialysis buffer (pH 7.5) 

Tris base 10 mM 

2-mercaptoethanol 

pH to 7.S with SM HCI 

1 mM 

2.2.17 Buffers for protein overexpression analysis 

2.2.17.1 0.1 M sodium phosphate buffer (SPB) 

1 M Na2HP04 68.4 ml per liter 

1M NaH2P04 

Add 900 ml dH20. 

2.2.17.2 

0.1M SPB 

NaCI 

Buffer A 

dH20 added to 1 I. 

2.2.17.3 Buffer A with urea (8 M) 

31.6 ml per liter 

200ml 

29.22 9 r1 

0.1M SPB 200 ml 

NaCI 29.22 9 1'1 

dH20 added to 1 liter. 

Urea 480.48 9 r1 
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2.2.18 FPLC buffers and solutions 

2.2.18.1 

Start Buffer 

Elution Buffer 

Ion exchange chromatography (Mono Q column) 

Tris-HCI pH 8.0 

Tris-HCI pH 8.0 + 

NaCI 

Buffers were degassed and vacuum filtered (0.45uM) before use. 

20mM 

20 mM 

1.0 M 

2.2.18.2 Gel exclusion chromatography (Superdex 200 10/300GL) 

Eluent Sodium phosphate buffer pH 7.0 SO mM 

NaCI O.1SM 

Buffers were degassed and vacuum filtered (0.45 JJM) before use. 

2.2.19 Native-PAGE stock solutions 

2.2.19.1 Resolving gel buffer (Solution 1) 

1.5 M Tris-HCI, pH B.B. 

2.2.19.2 Stacking buffer (Solution 2) 

O.S M Tris-HCI. pH 6.8 

2.2.19.3 2X sample buffer (Solution 3) 

Solution 2 2.S ml 

Glycerol 

Distilled water 

2ml 

S.Sml 

2.2.19.4 Native-PAGE gel formulations and construction of gel 

The following components were added together in a 30 rnl plastic universal; 

7.5 % w/v Resolving gel (2X) 

dH20 
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Solution 2 2.5ml 

30 % (w/v) Acrylamide/Bis (37.5: 1) (BioRad) 2.5 ml 

10 % (w/v) Ammonium persulphate 100 IJI 

TEMED 10 IJI 

The components were mixed by gentle swirling, so as not to introduce air 

bubbles, and loaded into the gel casting apparatus using a plastic 10 ml syringe. 

A layer of water-saturated isopropanol was carefully pipetted on top of the gel to 

isolate it from the air. After the gel had solidified, the stacking gel was made up 

as follows: 

4% w/v Stacking gel (2X) 

dH20 

Solution 3 

30 % w/v Acrylamide/Bis (37.5 : 1) (BioRad) 

10 % w/v Ammonium persulphate 

TEMED 

3.0ml 

1.25 ml 

0.75ml 

50 IJI 

5 IJI 

The contents were mixed by gentle swirling and pipetted .on top of the resolving 

gel. A plastic comb was inserted into the gel to create wells and to separate the 

gel from the air. After the gel had solidified, it was transferred to the gel-running 

tank and submerged in 1X Native-PAGE buffer. 

2.2.19.5 

Glycine 

Tris Hel pH 

10X Native-PAGE electrophoresis buffer 

140 g r1 
30 g r1 

A 1X Native-PAGE buffer was used for protein gel electrophoresis and was 

made by diluting 10X Native-PAGE buffer 1:10 with dH20. 
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2.2.19.6 Coomassie Blue stain 

Coomassie Blue R-250 0.25% w/v 

Acetic acid 10 % v/v 

Methanol 50 % v/v 

Coomassie stain is light-sensitive and was stored in a foil-wrapped Duran. 

2.2.19.7 

Acetic acid 

Methanol 

Destain solution 

2.3 Enzymes and chemicals 

10 % v/v 

5 % v/v 

All chemicals and enzymes were of analytical grade and purchased from Sigma, 

Merck (BDH) or Fisons unless otherwise stated. All restriction enzymes, RNase 

A, DNase, T4 ligase, polymerases and buffers for the modification of DNA were 

purchased from ABI Perkin-Elmer, Life Technologies (formally Gibco BRL), 

Northumbria Biologicals Limited (NBL), Promega, MBI Fermentas or Roche 

(formally Boehringer Mannheim). 

Lysostaphin (Sigma) was dissolved in 20 mM sodium acetate to 5 mg mr1 and 

stored at -20°C. MUG (4-methylumbelliferyl-I3-D-galactopyranoside) (Sigma) 

was dissolved in dimethyl sulfoxide to 4 mg mr1 and stored at -20°C. 4-MU (4-

methylumbelliferone) (Sigma) was dissolved in DMSO to 1 mM and stored at -

20°C. Phenylmethylsulphonyl fluoride (PMSF) was dissolved to 0.25 M in 100 

% v/v ethanol and stored at -20°C. RNase A (DNase-free) (Sigma) was 

~issolved in dH20 to 10 mg mr1 and stored at -20°C. DNase (Sigma) was 

dissolved in dH20 to 2 mg mr1 and stored at -20°C. Proteinase K was dissolved 

in 50 mM Tris HCI pH 7.5 to 10 mg mr1 and stored at -20°C. X-Gal (Sigma) was 

dissolved in DMF to 20 - 100 mg mr1 and stored at -20°C in a foil-wrapped 30 

ml universal tube. IPTG was dissolved in dj-hO to 100mM and stored at -20°C. 

NADH (Sigma) was dissolved in dH20 to 20mM and stored at 4°C. Methyl 

viologen (Sigma) was dissolved in dH20 to 1 M and stored at 4°C. 
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2.4 Bacterial strains, plasmids and bacteriophage 

2.4.1 Bacterial maintenance, culture and storage conditions 

Bacterial strains used in this study are listed in Table 2.2 - 2.3. 

2.4.1.1 Staphylococcus aureus strains 

Staphylococcus aureus strains (Table 2.2) were taken from glycerol stocks and 

grown on BHI agar plates containing antibiotics where appropriate to maintain 

selection of resistance markers. Plate cultures were stored for up to two weeks 

at 4°C, after being re-streaked from glycerol stocks. For long-term storage, a 

single colony was spread onto a BHI agar plate containing relevant antibiotics 

and grown overnight at 37°C. A loopful of cells was resuspended in 2 X 1 ml 

BHI containing 15 % v/v glycerol in a sterile 1.5 ml microfuge tube. These 

glycerol stocks were then snap-frozen in liquid nitrogen and stored at -20°C and 

-70 QC. 

Liquid cultures were normally prepared by inoculation of culture medium with a 

single isolated colony. Unless otherwise stated, cultures were grown overnight in 

conical flasks (culture:f1ask volume ratio 1:2.5), and were aerated on a rotary 

shaker at 250 rpm. All S. aureus plates or liquid medium cultures were grown at 

37°C unless otherwise stated. These conditions are referred to as standard 

conditions. For additional information on growth conditions for reporter gene 

fusion analysis and/or growth experiments (Chapter 2.7). 

2.4.1.2 Escherichia coli strains 

Escherichia coli strains (Table 2.3) were cultured, at 37 QC, using LB broth or LB 

agar containing antibiotics where necessary to ensure selection of plasmids. 

Plate cultures were stored at 4 °c for up to two weeks before re-streaking from 

glycerol stocks. Liquid cultures were prepared as for S.aureus (Chapter 2.4.1.1) 

using LB medium in place of BHI. For long-term storage, glycerol stocks of 
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E. coli strains were prepared as for S. aureus (Chapter 2.4.1.1), using LB 

medium rather than BHI. 

Strain Relevant Genotype I Markers Source I Reference 
8325-4 8325 cured of known prophages Novick, 1963 
SH1000 Functional rsbU+ derivative of 8325-4 Horsburgh et al., 

2002 
RN4220 Restriction deficient transformation recipient Kreiswirth et al., 

1983 
RMHggt SH1000 ggt::tet (TetK) This study 
RMHggt3 RN4220 ggt::tet (TetK, EryK) This study 
RMHcol11 SH1000 SACOL0185:: lacZ (EryK) This study 
RMHcol8 RN4220 SACOL0185:: lacZ (EryK) This study 
RMH25 SH1000 ggt::tet SACOL0185::lacZ (TetK, This study 

EryR) 
RMH10 RN4220 ggt::tet SACOL0185::lacZ (TetK, This study 

EryR) 

Table 2.2 

S. aureus strains used in this study. 

EryR, erythromycin resistant; TetR, tetracycline resistant; KanR, kanamycin 

resistant; CdR
, Cadmium resistant. 

Strain Relevant Genotype I Markers Source I 

Reference 

Top 10 F mcrA ~(mrr-hsdRMS-mcrBC) Cl> 80 Invitrogen 

electrocompetent lacZ ~M15 ~lacX74 re cA 1 deoR 

cells araD139 ~(ara-leu)7697 galU galK rpsL 

(Str'") endA 1 nupG 

Relevant Genotype I Markers 

TOP10 One F mcrA ~(mrr-hsdRMS-mcrBC) Cl> 80 Invitrogen 

Shot™ lacZ ~M15 ~lacX74 recA1 deoR 

chemically araD139 ~(ara-leu)7697 galK rpsL (Str'") 

competent cells endA1 nupG 
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TOP10F' One F' (laclQ Tn10 (TetR» mcrA ~ (mrr- Invitrogen 

Shot hsd RMS-mcrBC) <p80IacZ~M 15 

electrocompetent ~lacX74 recA1 araD139 ~(ara-leu)7697 
cells galU galK rspL(StrR) endA 1 nupG 

RMHt7 trxB in Tuner(DE3) placl This study 

RMHt7 col10 trxB in petBlue-1 in Tuner (E.coli Top This study 

10) 

Table 2.3 

E. coli strains used in this study. 

2.4.2 Plasmids 

The plasmids used in this study are listed in Table 2.4. Plasmid DNA was 

purified using QIAGEN plasmid kits (Chapters 2.12.2 and 2.12.3) according to 

the manufacturer's instructions. Purified plasmid DNA was stored in TE buffer at 

-20°C. 

Plasmid Relevant Genotype I Markers Source I Reference 
pLTV1 Vector carryin~ Tn917 (promoterless 

lacZ) (EryR, Cm , TetR) 
Camilli et al., 1990 

pAZtet pAZ106 vector containing tet cassette Ramlan Mohamad, 
personal 
communication 

pMUTIN4 Promoterless transcriptional lacZ fusion 
vector (AmpR, EryR) 

Vagner et al., 1998 

peR 2.1 - Vector for cloning using TOPO TA Invitrogen 
TOPO cloning method (AmpR, KanR) 
pMUTggt 2.9kB fragment from SH 1 000 containing This study 

the coding region of ggt in Hindlll site of 
pMUTIN4 

pRMH01 1.5 kB tet cassette insertion in Kpnl site 
of pMUTggt (TetR, AmpR, EryR) 

This study 

pTopoRMH 866 bp fragment from SH1000 This study 
containing coding region of SACOL0185 
in Hindlll site of PCR 2.1 TOPO vector 
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pTopoRMH 866 bp fragment from SH1000 This study 
containing coding region of SACOL0185 
in Hindlll site of peR 2.1 TOPO vector 

pRMH02 866 bp fragment from SH1000 This study 
containing coding region of SACOL0185 
in Hindlll site of pMUTIN4 

Table 2.4 

Plasmids used in this project. 

2.4.3 Bacteriophage 

Bacteriophage cp11 (M ani et al., 1993) was used for phage transduction of 

S. aureus (Chapter 2.10.3). This phage is a S.aureus-specific, temperate, 

transducing phage of serological group B, and requires Ca2
+ ions for 

maintenance of infection in bacterial cells. cp11 has an approximate genome size 

of 45 kb (Novick, 1991). 

2.5 Centrifugation 

Different types of centrifuges were used for harvesting cells and precipitating 

materials and these were: 1. Eppendorf microfuge 54150; maximum volume - 2 

ml, maximum speed 13,200 rpm (10,000 g); 2. Centaur 2 centrifuge (Sanyo); 

maximum volume - 50 ml, maximum speed 5,000 rpm; 3. Avanti™ J251 

(Beckman), maximum volumes and speeds dependent on the rotor used: JA-20; 

maximum volume - 50 ml, maximum speed 20,000 rpm (48,384 g); 4. JA-14; 

maximum volume - 250 ml, maximum speed 14,000 rpm (30,074 g); and 5. JA-

10.5; maximum volume - 500 ml, maximum speed 10,000 rpm (18,480 g). 

All centrifugation was carried out at room temperature unless stated otherwise. 

2.6 Determination of bacterial cell density 

2.6.1 Spectrophotometric measurement (00600) 
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A Jenway 6100 spectrophotometer was used to perform spectrophotometric 

measurements at 600 nm (00600) to quantify the bacterial yield of a culture. 

When the 00600 of a culture exceeded the linearity limit of the 

spectrophotometer (0.8) the cultures were diluted 1:10 in unused sterile culture 

medium to give a reading below 0.8. The final bacterial yield was calculated by 

multiplying the 00600 of the the diluted culture with the dilution factor. 

2.6.2 Direct cell counts (cfu) 

An alternative method for the quantification of cell numbers involved direct cell 

counts. Bacterial samples were serially diluted 1: 1 0 in PBS in duplicate. 100 J.l1 

samples of each dilution were spread using sterile glass beads onto duplicate 

BHI agar plates containing antibiotics where necessary. After overnight 

incubation at 37 oC, the number of colony forming units (cfu) were determined. 

2.7 Growth experiments 

2.7.1 Sulfur source utilization 

Strains were streaked from glycerol stocks onto chemically defined media 

(COM) plates containing suitable antibiotics and sulfur sources (Chapters 2.1.2 

and 2.2.14). After overnight incubation at 37°C, a single colony was inoculated 

into 5 ml COM (no antibiotics) supplemented with the suitable sulfur source in a 

sterile 30 ml universal tube and grown overnight at 37°C, with aeration on a 

rotary shaker at 250 rpm. The overnight preculture was used to inoculate 100 ml 

pre-warmed COM (no antibiotics) in a 250 ml conical flask to an 00600 of 0.01. 

The 100 ml culture was grown at 37°C in a Grant OLS 200 water-bath with 

linear shaking (equivalent to 250 rpm). For growth experiments without lacZ 

fusion analysis, culture 00600 was determined in duplicate over a period of 8-10 

hours. For growth experiments with lacZ fusion analysis, the 100 ml culture was 

grown to an OD600 of approximately 1.0 and used to inoCUlate a second 250 ml 

conical flask containing 100 ml COM (no antibiotics) to an 00600 of 0.01. The 

use of exponential-phase precultures prevented carry-over of preformed 13-
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galactosidase from stationary phase cultures, as this would affect laeZ fusion 

analysis results. The second 100 ml culture was then grown under the same 

conditions as the 100 ml preculture. At appropriate intervals over a 24 h period, 

culture 00600 was determined in duplicate and samples for ~-galactosidase 

assays were taken (Chapter 2.8). 

2.8 J3-galactosidase assays using MUG as a substrate 

Liquid culture samples were assayed for ~-galactosidase (/aeZ) production with 

MUG as substrate, using a method based on that developed by Youngman 

(1990). 100 ~I culture samples were collected in 1.5 ml microfuge tubes at 

regular intervals from cultures grown as in Chapter 2.7. Following 

centrifugation (11,000 g, 3 min), supernatants were discarded, and cell-pellets 

were snap-frozen in liquid nitrogen and stored at -70 °C for later analysis. The 

cell pellets were thawed at room temperature for 5 min and resuspended in 0.5 

ml ABT buffer. 50 ul of freshly prepared MUG (4 mg mr1) was added and the 

reactions were mixed by gently inverting the tubes. The reactions were 

immediately incubated at 25°C in a water-bath for exactly 60 min. During the 

reaction, MUG is hydrolysed to p-O-galactopyranoside and 4-

methylumbelliferone (MU) by the action of p-galactosidase. MU is a fluorescent 

compound and is therefore a quantifiable indicator of p-galactosidase activity. 

The reaction between J3-galactosidase and MUG was stopped by adding 0.5 ml 

0.4 M Na2C03, and gently inverting the tubes to mix. 

250 ~I of each sample was pi petted into the top wells of a 96-well microtitre 

plate (Nunc). 225 ~I of ABTN was added to each of the remaining wells to be 

used. 25 ~I was removed from the 250 ul sample and diluted 1:10 by mixing 

with 225 ~I ABTN. Serial 1 :100 and 1:1,000 dilutions were then performed. 25 

1-11 was removed from the 1:1,000 dilution well to allow a consistent well volume 

of 225 ul. 

A fluorimeter (Victo,2"" Wallac) was used to measure the fluorescence of each 

sample (355 I 460 nm, 0.1 sec). The relationship between fluorescence and 

amount of MU was determined using a calibration curve (Chapter 2.8.1; Figure 
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using the equation shown in Chapter 2.8.1. The amount of MU was then 

related to J3-galactosidase activity using the equation shown below and 

expressed in MUG units of J3-galactosidase activity. 1 MUG unit of 13-
galactosidase activity is defined as the amount of enzyme that catalyzes the 

hydrolysis of 1 pmol of MUG per min, per rnl of culture, per unit of optical 

density at 600nm (00600). The background level of J3-galactosidase activity 

measured from 8325-4 and SH1000 control samples was deducted from the 

f3-galactosidase activity of lacZ fusion strains.and the f3-galactosidase activity 

(MUG units) was calculated as follows; 

pmoles X (A I B) I (60 X 00600 X 0.1) = Il-galactosidase activity, min-1 mr1 

00600-1 (MUG Units) 

Where; 

pmoles = pmoles MU (see Chapter 2.8.1 and Fig 2.1 for equation to determine 

amount of MU from calibration curve) 

A = Volume of assay (1.05, where cell pellets were resuspended in 0.5 ml ABT 

buffer and had 50 ul MUG and 0.5 ml Na2C03 added) 

B = Volume of sample read in plate (ie. 0.225 where 225 IJI sample read) 

60 = No. rnin incubated at 25°C 

00600 = 00600 of culture at given time-point 

0.1 = Volume of culture sampled (ie. 0.1 ml) 

2.8.1 (3-galactosidase assay calibration curve 

A calibration curve was prepared each time f3-galactosidase assays were 

performed. These were created with the fluorescent product (MU) diluted to a 

range of concentrations such that the final amount of MU in the 225 1-11 samples 

was 625, 250, 125, 62.5, 25, 12.5 and 2.5 pmoles. An example of such a 

calibration curve is shown in Figure 2.1, for which the equation of the straight 
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line was y = 1494.4 + 111.7 4x. For this example, the following equation was 

used to convert fluorescence readings into pmoles MU. 

[(Fluorescence*D) - Background f1uorescencel-1494.4 = pmoles MU 

111.74 

0= dilution of samples in microtitre plate wells (eg. 10 for 1:10 dilution) 
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Figure 2.1 

Calibration curve of amount of MU against units of fluorescence. 

2.9 GGT activity assay using L-v-glutamyl-p-nitroanilide (GPNA)-

Diagnostic Chemicals 

. GPNA is used as a substrate for measurement of GGT activity because it allows 

a direct reaction rate measurement without deproteinization or any chemical 

treatment of the cleavage product, p-nitroaniline. The principle of the reaction is 
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conversion of GPNA and glycylglycine by the action of GGT to p-nitroaniline and 

L-y-glutamylglycylglycine (Szasz, 1976). The rate of increase in absorbance at 

405nm is due to the release of p-nitroaniline which is directly proportional to the 

GGT activity. 

2.9.1 Preparation of cell free extract - small batch culture 

One colony of the S.aureus strains was inoculated in 5 ml of COM with 50 IJM 

glutathione. Cells were harvested by centrifugation at 4,000 rpm, 10min, 4°C and 

supernatant was discarded. The pellet was washed twice in PBS and 

resuspended in 500 IJI of PBS and transferred into 50 ml fresh COM containing 

50 IJM glutathione and incubated at 37°C overnight with shaking (250rpm). Cells 

were harvested by centrifugation at 4000 rpm, 10min, 4°C and the supernatant 

was transferred to a sterile tube and frozen at -20°C. The pellet was washed 

twice in PBS and resuspended to 500 IJI in PBS and the bacterial density was 

measured at 600 nm (00600). Cultures from all S.aureus strains were 

standardized to the same 00600 with PBS. 400 IJI culture was transferred to an 

Eppendorf tube and 100 IJI lysostaphin was added and the mixture incubated at 

37°C for 2 hours. The mixture was centrifuged at 13 OOOrpm, 15 min., 40C and 

the supernatant (CFE) removed and frozen at -20°C. 

2.9.2 GGT activity assay 

200 IJI of thawed sample was added to 2 ml reagent, mixed and incubated for 3-5 

min at 37°C. Absorbance readings were taken at 405nm every minute for the first 

5 min. and the change in absorbance per minute was determined (~min). GGT 
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activity was calculated using the following equation and is expressed as U/L. In 

this study GGT activity is expressed as GGT Units (U/L x 100). The DC - TROL 

Level 1 (Diagnostic Chemicals) was included as a control. 

GGT(U/L) =(l\AImin sample - f1A1min control) x 2.2 ml (assay volume) x 1000 

9.9 x 1 cm (lightpath) x 0.2 ml (sample volume) 

= l\AImin x 1111 (factor derived from constants in the equation) 

GGT Units = GGT (U/L) x 100 

2.10 Phage techniques 

2.10.1 Preparation of phage Iysates 

S. aureus strains were used to inoculate 5 ml BHI (containing relevant 

antibiotics) in a 30 ml universal tube, and grown at 37°C (unless otherwise 

stated) with 250 rpm rotary shaking until in log phase (00600 0.2 - 0.5). 2-5 ml of 

cells were recovered by centrifugation (4 000 rpm, 3 min) and resuspended in 5 

ml sterile BH!. 5 ml phage buffer and 100 J.lI phage ~11 or ~85 stock lysate 

(propagated using S. aureus 8325-4 or SH1000 cells) were added to give a 

cell:phage ratio of approximately 20:1). The tubes were then incubated at 30°C 

shaking slowly (50 rpm) for 2 - 4 h, until clear. If cells failed to lyse in this time, 

they were left overnight (static) at 25°C. Lysates were filter sterilised (0.2 J.lm 

pore size) and stored at 4°C. The resulting Iysates contained between 109 and 

1010 pfu mr1. 

2.10.2 Determination of phage titres 

S. aureus 8325-4 or SH1000 was grown in 5 ml BHI at 37°C with 250 rpm 

rotary shaking until log phase (00600 - 0.5). Phage Iysates were diluted in 

phage buffer to 10-7• 100 J.lI of diluted phage was mixed with 50 J.lI of 1 M CaCI2 

and 400 J.lI of culture, and were incubated for 10 min at room temperature. 5 ml 
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of phage top agar (cooled to 50 °C), was added to the phage mixture and used 

to overlay a pre-warmed (- 60 °C) phage bottom agar plate. After setting (10 

min), plates were incubated overnight at 37 °C, after which time the number of 

pfu ml"1 was determined. 

2.10.3 Phage transduction 

The recipient S. aureus strain was inoculated into 100 ml LK broth and 

incubated overnight at 37 °C with shaking (250 rpm). The cells were harvested 

by centrifugation (4,000 rpm, 10 min), and resuspended in 5 ml sterile unused 

LK. 500 JlI of cell culture was transferred to a sterile 30 ml universal tube. 500 

JlI of phage lysate and 1 ml LK (containing 10 mM CaCI2) were then added. 

After gentle mixing the lysate/cell mixture was incubated statically for 25 min, 

followed by 15 min with shaking (250 rpm). The temperature used for incubation 

steps following addition of the lysate was 37°C unless otherwise stated. 1 ml 

ice-cold 0.02 M sodium citrate was added and cells were harvested (5000 rpm, 

10 min) and resuspended in 1 ml 0.02 M sodium citrate before being left on ice 

for 2 h. 

Using sterile glass beads, 50 IJI and 100 IJI aliquots of the lysate/cell mixture 

were spread onto 25 ml LK bottom agar plates containing 0.05 % v/v sodium 

citrate and inducing levels of Ery (0.15 Jlg mr1) where necessary. Plates were 

incubated for 90 min, and overlaid with 5 ml LK top agar containing relevant 

antibiotics at 6X their normal selective concentration. After setting (10 min), 

plates were incubated for 24-72 h. Any resulting colonies were considered 

putative phage transductants, and were patched onto separate BHI plates 

containing relevant selective antibiotics to ensure that they possessed the 

correct resistance profile. 
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2.11 

2.11.1 

2.11.1.1 

Transformation techniques 

Transformation of E. coli 

Preparation of E. coli Top 10 competent cells (Hanahan, 1983) 

A single colony of E. coli Top 10 cells from an overnight LB agar plate was 

inoculated into 1 ml of SOB and the cells were dispersed by vortexing. This was 

used to inoculate 100 ml of pre-warmed SOB in a 1 I conical flask. The culture 

was incubated at 37°C, with shaking (250 rpm), until an 00600 of 0.5 - 0.6 was 

reached. The culture was divided into 2 X 50 ml centrifuge tubes and chilled on 

ice for 15 min. The cells were then harvested by centrifugation (5,000 rpm), 15 

min, 4°C), and the pellet was drained (removing all traces of supernatant with a 

pipette). After resuspension in 33 ml of FSB (16.5 ml per pellet), the two cell 

suspensions were pooled and incubated on ice for 15 min. The cells were 

pelleted and drained as before and resuspended in 8 ml FSB and placed on Ice. 

280 IJI of OMSO was added and the sample was mixed by swirling and the tube 

was incubated on ice for 5 min. A second 280 volume of OMSO was added as 

before and the tube was incubated on ice for a further 15 min. 200 IJI aliquots 

were pipetted into microfuge tubes, used immediately or snap-frozen using 

liquid nitrogen and stored at -70°C. The level of competence of the cells was 

determined by transformation with a suitable control plasmid (Chapter 2.11.1.3). 

2.11.1.2 Preparation of electrocompetent E.coli cells 

A single colony of E.eoll Top 10 from an overnight LB agar plate was inoculated 

into 25 ml LB medium. The culture was incubated overnight at 37°C with 

shaking (250 rpm). This was used to inoculate 500 ml of prewarmed LB in a 21 

conical flask. The culture was incubated at 37°C with shaking (250 rpm) until an 

00600 0.4 was reached. The culture was then chilled on ice for 15-30 min and 

the cells were harvested by centrifugation (2 000 rpm, 15 min, 4°C). The pellet 

was drained (removing all traces of supernatant with a pipette) and 

resuspended in 500 ml of cold sterile deionised water. The cells were recovered 

by centrifugation (2 000 rpm, 15 min, 4°C) and resuspended in 250 ml cold 

sterile 10% v/v glycerol. The cells were washed in cold sterile 10% v/v glycerol 
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for at least two more times. Finally pelleted cells were resuspended in 1 ml of 

cold GYT medium and the 00600 was measured at a 1:100 dilution (1 00600 = 

- 3.5 X 108 cells/ml). The suspension was diluted to 3x1010 cells/ml with GYT 

medium and 100 IJI volumes were aliquoted in 1.5 ml microcentrifuge tubes. The 

competent cells were used immediately or snap frozen using liquid nitrogen and 

stored at -70°C. The level of competence of the cells was determined by 

electrotransformation with a suitable control plasmid. 

2.11.1.3 Transformation of Hanahan competent E. coli cells by heat-

shock 

An aliquot of frozen Hanahan competent cells (200 ul) (Chapter 2.10.1.1) was 

thawed on ice in a pre-chilled microfuge tube. Up to 50 ng of DNA (in a volume 

of up to 20 IJI) was added, and the mixture was incubated on ice for 45 min. The 

tube was then incubated at 42°C for 90 sec and immediately returned to the ice 

for a further 2 min. 800 IJI SOC was added to the cells, which were incubated for 

1 hr at 37°C with shaking at 250 rpm to allow expression of plasmid encoded 

antibiotic resistance markers. A 200 IJI aliquot of transformed cells were spread 

using sterile glass beads onto an LB agar plate containing appropriate 

antibiotics. The remainder of the cells were recovered by centifugation at 4 000, 

5 seconds and most of the supernatant was removed so that only approximately 

200 IJI remained. The pellet was then resuspended in the residual volume of 

supernatant and the whole of the sample was spread onto an LB agar plate as 

before. The plates were then incubated at 37 QC for 18 - 48 h. 

2.11.1.4 Transformation of electrocompetent E.coli cells 

An aliquot of electrocompetent cells (100 IJI) (Chapter 2.11.1.2) was thawed on 

ice in a pre-chilled microcentrifuge tube. Up to 50 ng of DNA (in a volume of up 

to 20 IJI) was added, mixed and transferred to a 0.1 cm gap cuvette (BioRad). 

The plasmid/cell mixture was electroporated at 100 ohms, 25 IJF and 1.25kV 

using a BioRad Gene Pulser. The cells were recovered by adding to the cuvette 

1 ml ~f prewarmed LB and transferred to a microcentrifuge tube before being 

incubated at 37°C with shaking for 1 hour. A 200 IJI aliquot of recovered cells 
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was spread using sterile glass beads onto an LB plate containing appropriate 

antibiotics. The plate was then incubated at 37°C overnight. 

2.11.2 Transformation of S. aureus 

2.11.2.1 Preparation of S. aureus electrocompetent cells 

A single colony of S. aureus RN4220 was used to inoculate 10 ml BHI medium 

and incubated overnight at 37 cC with shaking (250 rpm). 2 ml of culture was 

used to inoculate 1 I of fresh BHI in a 2 I conical flask and grown at 37 cC with 

shaking (250 rpm) until late log phase (00600 0.5 - 1.0). Cells were harvested by 

centrifugation at 5 000 rpm, 10 min, 4cC and washed on ice 3X with 300 ml 

prechilled sterile distilled water (4°C). Cells were then concentrated in a series 

of harvesting 5 000 rpm 10 min, 4 cC, and gentle resuspension steps using the 

following volumes of 10 % v/v ice-cold glycerol: i) 100 ml; ii) 50 ml; and iii) 25 ml. 

A" of the supernatant was removed after each spin. The cells were finally 

resuspended in 1.25 ml 10 % v/v ice-cold sterile glycerol. Cells were snap­

frozen in liquid nitrogen and stored at -70 cC. The level of competence of the 

cells was determined by electroporation with a suitable control plasmid (Chapter 

2.10.2.2). 

2.11.2.2 Transformation of S. aureus by electroporation 

5-20 J.1g of plasmid DNA was precipitated by isopropanol precipitation (Chapter 

2.11.4), and washed twice with 70 % v/v ice-cold (-20 CC) ethanol, ensuring the 

complete removal of salt. The DNA was then resuspended in 100 J.11 of sterile 

dH20 and transferred to a 0.1 cm gap cuvette (BioRad). 2 x 1010 - 2 X 1011 

competent cells, which had been thawed for 5 min at room temperature were 

then added to the cuvette. The plasmid/cell mix was electroporated at room 

temperature at 100 ohms, 25 J.1F and 1.25 kV using a BioRad Gene Pulser. 

Cells were recovered by adding 1 ml of pre-warmed B2 (containing an inducing 

concentration of Ery, ie. 0.15 J.1g mr1, where appropriate) to the cuvette. Cells 

were then transferred to a sterile 2 ml microfuge tube and incubated at 37 cC 
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with shaking (250 rpm) for 2 h. A 200 IJI aliquot of recovered cells was spread 

using sterile glass beads onto a BHI plate containing appropriate antibiotics. 

The remainder of the cells were recovered by centifugation at 4 000, 5 seconds 

and most of the supernatant was removed so that only approximately 200 IJI 

remained. The pellet was then resuspended in the residual volume of 

supernatant and the whole of the sample was spread onto a BHI plate as 

before. The plates were then incubated at 37°C for 18 - 48 h. 

2.12 DNA purification techniques 

2.12.1 Genomic DNA preparation 

Genomic DNA was isolated and purified from S. aureus using a QIAGEN 

DNeaslM kit using a method based on the manufacturer's instructions. A 

single colony of S. aureus was used to inoculate 5 ml of BHI in a 30 ml sterile 

universal tube and grown overnight at 37°C with shaking at 250 rpm. 1.25 ml of 

cells was harvested by centrifugation 4,000 rpm, 15 min. 180 ul QIAGEN Buffer 

B1, 10 IJI RNAse A (10 mg mr1) and 5 IJI lysostaphin (5 mg mr1) were added 

and used to resuspend the cell pellet. After incubation at 37°C for 30 min, the 

protocol was continued as per the manufacturer's instructions. Genomic DNA 

was eluted into clean 1.5 ml microfuge tubes using two 200 IJI aliquots of buffer 

AE, and the two eluates were pooled. Genomic DNA was concentrated by 

isopropanol precipitation (Chapter 2.12.4). The DNA was dissolved in 20 IJI 

QIAGEN Buffer EB overnight at 4 cC, and stored at this temperature. 

2.12.2 Small scale plasmid preparation from E. coli 

A single colony of the E.coliTop 10 plasmid-bearing cells was used to inoculate 

5 ml LB containing appropriate antibiotics. The culture was incubated overnight 

at 37°C with shaking at 250 rpm, and the cells were harvested (4 000 rpm, 5 

min). Plasmid DNA (up to 20 IJg) was isolated and purified using a QIAprep 

Spin Miniprep kit DNA purification system (QIAGEN) according to the 

manufacturer's instructions. Plasmid DNA was eluted using 50 ~I of Buffer EB 

into a clean 1.5 ml microfuge tube and stored at -20°C. 
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2.12.3 Large scale plasmid preparation from E. coli 

Large amounts of plasmid DNA (up to 500 ~g) were isolated from E. coli using a 

Plasmid Maxi kit DNA purification system (QIAGEN). A single colony of plasmid­

containing cells of E. coli Top 10 from an overnight LB agar plate containing 

appropriate antibiotics was used to inoculate 5 ml LB broth containing antibiotics 

where necessary. The culture was grown for 8 h at 37°C with shaking at 250 

rpm. The whole culture was used to inoculate 500 ml LB (containing 

appropriate antibiotics), and grown overnight at 37°C with shaking at 250 rpm. 
The cells were harvested by centrifugation at 6,000 g, 15 min, 4°C. The 

protocol was then continued as per the manufacturer's instructions. Purified 

plasmid DNA was resuspended in an appropriate volume of TE and stored at -

20°C. 

2.12.4 Isopropanol precipitation of DNA 

DNA was precipitated by the addition of an equal volume of isopropanol and a 

1/10 volume of 3 M sodium acetate (pH 5.2). The mixture was vortexed and 

incubated at room temperature for 2 min. The precipitated DNA was recovered 

by centrifugation at 11,000 g, 10 min and the pellet was washed with 500 ~I ice­

cold 70 % v/v ethanol. The DNA was harvested by centrifugation 11,000 g, 5 

min, and the 70 % v/v ethanol wash step was repeated. The pellet was air­

dried, and the DNA was dissolved in an appropriate volume of TE and stored at 

-20°C. 

2.12.5 Gel extraction of DNA using a QIAquick spin column 

The DNA was excised from the 1 % w/v agarose gel with a clean, sharp scalpel. 

The gel slice was weighed and 3x volume of Buffer QG (Qiogen kit) was added. 

The suspension was incubated at 50°C for 10 min (or until the gel had 

completely dissolved). The solution was applied to a QIAquick column and 

centrifuged (13 000 x g, 1 min). The flow through was discarded, and the 

column washed with 0.75 ml Buffer PE (Qiagen kit). The column was 

centrifuged as before, and the flow through discarded, and the column was 
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centrifuged again as before. The QIAquick column was placed in a clean 1.5 ml 

micro-centrifuge tube and the DNA was eluted with 30 IJI buffer EB (Qiagen kit). 

The column was left to stand at RT for 1 min, and then centrifuged as before 

and the recovered DNA was stored at -20°C. 

2.12.6 Purification of peR products using a QIAquick spin column 

5x volume of Buffer PB (Qiagen kit) was added to 1 x volume of the PCR 

reaction, and mixed. A QIAquick spin column was placed in the provided 2 ml 

collection tube. The Buffer PB and PCR mixture was applied to the column and 

centrifuged at 13 000 rpm for 30 - 60 sec. The flow through was discarded and 

the column placed back in the same collection tube. The column was washed 

with 0.75 ml Buffer PE (Qiagen kit) by centrifugation (as before). The flow­

through was discarded and the column placed back in the same collection tube 

and centrifuged (13 000 rpm) for 2 min. The QIAquick column was placed in a 

1.5 ml clean microcentrifuge tube to elute the DNA by adding 30 IJI buffer EB 

(Qiagen kit). The column was left to stand at RT for 1 min, and then centrifuged 

as before, and the eluate was stored at -20°C. 

2.13 Quantification of DNA 

To quantify the concentration of DNA in a solution, spectrophotometric 

measurements were performed at 260 nm. An 00260 of 1 corresponds to 

approximately 50 IJg mr1 for double stranded DNA, and approximately 20 IJg mr 

1 for single stranded oligonucleotides. 00260 measurements were taken using a 

Shimadzu UV-2401 PC spectophotometer. Alternatively, the concentration of 

DNA could be estimated by agarose gel electrophoresis (Chapter 2.14.5). This 

involved comparing the intensity of ethidium bromide stained bands to bands of 

molecular weight markers containing known amounts of DNA (Table 2.5). 
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Standard mDNA size markers (bp) 

1 kb DNA ladder A. HindllllEcoRI 

10,000 21,226 

8,000 5,148 

6,000 4,973 

5,000 4,268 

4,000 3,530 

3,500 2,027 

3,000* 1,904 

2,500 1,584 

2,000 1,375 

1,500 947 

1,000 831 

750 564 

500 

250 

Table 2.5 
The size of DNA fragments used as size markers for agarose gel 

electrophoresis. 

*The 3,000 bp band of 1kb generuler contains - 147 ng DNA per 10 ul marker. 

2.14 In vitro DNA manipulation techniques 

2.14.1 Polymerase chain reaction (peR) techniques 

2.14.1.1 Primer design 

The primers used for peR amplification were short synthetic oligonucleotides 

(19 - 32 bp) that were based on DNA sequences from published studies or 

obtained from cloning vector information and S. aureus databases 

(http://www.ncbLnlm.nih.gov/ and http://www.genome.ou.edu/staph.html). 

Suitable restriction sites were introduced where necessary at the 5' ends of 

primers to enable subsequent cloning. The primers used in this study are shown 
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2.6. Oligonucleotide primers for PCR and sequencing reactions were all 

synthesized at Sheffield University coordinated by Dr. Athur Moir. 

Primer Primer sequence (5' ~ 3') Source I Reference 

BAC ACT TGT CGA CGA TAC TGG T M CG Garcia-Lara, J 

RMHF Personal 

BAC TAC TAC ACT CM GCA TCA CTC communication 

RMHR 

loch A 1F TGG CM CGC CAT GGA TGC CGT GAT This study 

TGC M T TCA ACT GGC A TT GM TTA CAT 

CCTATTCACAATCG 

loch A2R nc CCT CGT ATC ATC AGC ACC TCC This study 

CGA CGC GTC ACG TGT A TT TTA GAA 

ATC CCT nG AGA ATG 

loch A 3F TGG CM CGC CAT GGA TGC CGT GAT 

TGC AAT TCA ACT GGC An GAA TTT TAT 

GAC CGA TGA AC 

loch 4 F AGT ATA AGe TTG ATC CGA ATA ATG This study 

with CAT TGT C 

HINDIII 

loch 5F AGT TAG GTA CCC ATG TCG ATT TAC 

with Kpn I CATCTATG 

loch 6R TAT AAG GAT CCC AGT AAT GCA TCA This study 

with ACAAAGG 

BamHI 

loch 7R GAT ATG GTA CCC ATA GAT GGT AAA 

with Kpn I TCGACATG 

loch 8F AGT ATG AAT TCG ATC CGA ATA ATG This study 

with EcoRI CATTGTC 

site 
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loch 9F TTG TAT CAC AAG GCA TIT TAC AAG TIT This study 

G 

loch 10R ATA TAG GAT CCT CTG GCA TAT AAG 

with ATGG 

BamHI 

loch 11F AA T TGT GAG CCG CTC ACA A TT AAG This study 

CTTGCC 

loch 12F TIT TTT CCA TGG CGA TGA CTG AAA This study 

TAG ATT TTG AT 

loch 13R TIT TIT CTC GAG AGC TTG ATC GTT TAA This study 

ATGTTC 

lochpB1(F) ATGACTGAAAATAGATTTTGATATAGC This study 

lochpB1(R) TTAAGCTTGATCGTTTAAATGTTC This study 

Table 2.6 
Synthetic oligonucleotides used as primers for PCR amplification of DNA 

fragments in this project. 

Relevant restriction sites are underlined. 

2.14.1.2 DNA amplification 

2.14.1.2.1 Taq polymerase 

Where accurate amplification was not required, standard PCR amplification 

reactions were performed using Taq polymerase (Promega). The following 

components were added, on ice, to a 0.5 ml thin-walled PCR tube. 

Template DNA 

Forward primer 

Reverse primer 

1 OX Taq PCR buffer (Promega) 

MgCI2 

dNTPs 
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100 - 500 ng 

300 nM* 

300 nM* 

10 ~I 

1.5- 4.5 mM* 

0.2 mM* 



Taq DNA polymerase 

dH20 

*final concentration. 

0.5 ~I (2.5 Units) 

to 100 ~I 

PCR amplification was carried out using an Eppendorf 5330 Mastercycler. The 

lid was heated to 106°C for the duration of the PCR amplification, and the block 

was pre-heated to 95°C. The following thermal cycling programme of 30 cycles 

of steps 2 - 4 was used: 

1) Denature 

2) Denature 

3) Anneal 

4) Extension 

5) Extension 

peR products were stored at -20°C. 

2.14.1.2.2 Pwo polymerase 

95°C; 5 min 

95°C; 30 sec 

50-55°C; 30 sec 

72°C; t min (t=1 min kb-1 + 10 %) 

72°C, 20 min 

DNA amplifications of < 3 kb that required 3'-5' proof-reading activity were 

performed with Pwo polymerase (Roche). 

The following Master mixes were made on ice: 

Master mix 1: 

Template DNA 

dNTPs 

Forward primer 

Reverse primer 

dH20 

Master mix 2: 
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0.1 - 0.75 Jl9 

0.2 mM* 

300 nM * 

300 nM * 

to 50 ~I 



10X PCR buffer with 20 mM MgS04 

Pwo polymerase 

10 ~I 

0.5 ~I (2.5 Units) 

to 50 ~I dH20 

*final concentration 

Master mix 1 and 2 were combined on ice in a 0.5 ml thin-walled PCR tube and 

cycling immediately commenced. 

PCR amplification was performed using an Eppendorf 5330 Mastercycler. The 

lid was heated to 106°C for the duration of the PCR amplification, and the block 

was pre-heated to 94°C. Once the tubes were added, the DNA was denatured 

at 94 °C for 2 min, followed by 10 cycles of programme A, then 20 cycles of 

programme B: 

Programme A : 

Denature 

Anneal 

Extension 

Programme B : 

Denature 

Anneal 

Extension 

94°C; 15 sec 

45-65 °C; 30 sec 

72°C; t min (t = 45 sec kb-1
) 

94°C; 15 sec 

45-65 DC; 30 sec 

72°C; t min (t = (45 sec kb-1
) + 5 sec per cycle) 

Once all the cycles were complete a final step of 72°C for 7 min was added to 

allow complete extension of the primers. The PCR products were stored at -20 

DC. 
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2.14.1.2.3 Expand™ Long Template peR system 

DNA amplifications of >3 kb. that required 3'-5' proof-reading activity were 

performed with the Expand™ Long Template PCR system (Roche). This system 

is composed of a unique enzyme mix containing the thermostable Taq and Pwo 

polymerases, and is optimised for amplifying fragments of up to 27 kb in length. 

The following Master mixes were made on ice: 

Master mix 1: 

Template DNA 

dNTPs 

ForWard primer 

Reverse primer 

dH20 

Master mix 2: 

10X PCR buffer with 1.75 mM MgCI2 

Expand™ polymerase 

dH20 

*final concentration 

10 - 500 ng 

350 uM* 

300 nM* 

300 nM* 

to 25 ~I 

5 ~I 

0.75 ~I 

to 25 ~I 

Master mix 1 and 2 were combined on ice in a 0.5 ml thin-walled PCR tube and 

cycling immediately commenced. 

PCR amplification was carried out using an Eppendorf 5330 Mastercycler. The 

lid was heated to 106°C for the duration of the PCR amplification. and the block 

was pre-heated to 94°C. Once the tubes were added, the DNA was denatured 

at 94 °c for 2 min, followed by 10 cycles of programme A. then 20 cycles of 

programme B: 
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Programme A : 

Denature 

Anneal 

Extension 

Programme B: 

Denature 

Anneal 

Extension 

94°C; 10 sec 

65 °C; 30 sec 

68°C; t min (t = 40 sec kb"1) 

94°C; 10 sec 

50-55°C; 30 sec 

68°C; t min (t = (40 sec kb"1) + 20 sec per cycle) 

Once all cycles were complete a final step of 68°C for 7 min was added to allow 

complete extension of the primers. The PCR products were stored at -20°C. 

2.14.1.2.4 peR screening of E. coli cells 

Putative E. coli transform ants were patched using sterile toothpicks onto LB 

agar plates containing appropriate antibiotics and grown overnight at 37°C. A 

small amount of each patched positive clone was transferred to a PCR tube 

containing the PCR mix as in Chapter 2.14.1.2.1 (minus the DNA). The PCR 

programm~ followed was as in Chapter 2.14.1.2.1 with the tubes heated to 95 
, , 

°C initially for 10 min to ensure lysis of the cells and release of DNA. The PCR 

products were visualised by agarose gel electrophoresis (Chapter 2.14.5) and 

putative positive clones were chosen for further screening using small scale 

plasmid preparations (Chapter 2.12.2) and restriction digestions (Chapter 

2.14.2). 

2.14.2 DNA restriction 

DNA restriction digests were performed in volumes from 20 - 100 J.ll. They were 

prepared as follows: 

Restriction enzyme buffer 10 % v/v 
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Restriction enzyme(s) 

DNA 

up to 10 % v/v 

up to 80 % v/v 

Where appropriate the reaction volume was made up with dH20. The restriction 

digests were incubated at 37°C for between 2 hand 16 h. Before digested DNA 

was used for further manipulation, it was purified using a QIAGEN PCR 

purification kit (Chapter 2.12.6) or separated using agarose gel electrophoresis 

(Chapter 2.14.5) and purified using a QIAquick gel extraction kit (Chapter 

2.12.5). 

2.14.3 

plasmids 

Alkaline phosphatase treatment of restriction-digested 

The 5' ends of plasmids digested with only one restriction enzyme were 

dephosphorylated using Calf Intestinal Alkaline Phosphatase (ClAP) (Promega) 

to reduce vector re-ligation in subsequent cloning steps. The following were 

added on ice: 

Digested plasmid DNA 

1 OX reaction buffer (Promega) 

up to 51..1g 

101..11 

0.01 U per pmol of ends* 

to 100 1..11 

*the number of picomoles of ends for a given sample of digested plasmid was 

calculated using the following equation; 

(j.Jg DNA / kb size of DNA) X 3.04 = pmol of ends 

The mixture was incubated for 30 mins at 37°C. A second aliquot of ClAP 

(0.01 U per pmol of ends) was added and the sample was incubated for an 

additional 30 mins at 37 aC. To stop the reaction, 21..11 of 0.5 M EDTA was added 

and the mixture incubated at 65°C for 20 min. The DNA was purified and 
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concentrated using a QIAquick PCR purification kit (Chapter 2.12.6) prior to use 

in a ligation reaction. 

2.14.4 DNA ligation 

The following were added on ice: 

Digested plasmid DNA 

Digested DNA insert 

10X DNA ligase buffer (Promega) 

T4 DNA ligase (Promega) 

100 ng 

x ng* 

2 tJl 

1 tJl 

*the amount of insert added was calculated using the following equation to allow 

a 1:1 and 1:3 molar ratio of vector:insert to be used; 

100 n9 of plasmid X kb size of insert X molar ratio of insert = ng of insert 

kb size of plasmid plasmid 

The reaction was made up to 20 J.l1 with dH20 and incubated overnight at 14 DC. 

The completed ligation mix was then used to transform E. coli (Chapter 

2.11.1.4 ). 

2.14.5 Agarose gel electrophoresis 

DNA fragments were separated by horizontal gel electrophoresis using various 

size electrophoresis tanks (Life Technologies). Appropriate volumes of agarose 

gel (0.8 - 4 % w/v dissolved in TAE by microwaving) were submerged in suitable 

volumes of TAE electrophoresis buffer. The gel contained 0.2 tJg mr1 ethidium 

bromide. DNA samples were mixed with 1/5th their volume of 6X DNA loading 

buffer and loaded into wells in the gel. The gel was run at 80 - 120 V for 1 - 2 h 

and visualised by means of a UV transilluminator at 260 nm. To estimate the 

sizes of DNA fragments, DNA markers were also loaded into the gel. These 

included pUC mix markers (MSI Fermentas), Generuler™ 1 kb DNA ladder (MSI 
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Fermentas), or genomic DNA digested with Hindlll and EcoRI (MSI Fermentas) 

(Table 2.6). 

2.14.5.1 Agarose gel photography 

A permanent record of agarose gels was obtained by photographing the 

. ethidium bromide-stained gels illuminated from below with UV light at 260 nm. A 

Kodak 203 red-orange filter, and Polaroid 667 (ASA 3000) film were used. In 

addition, photographs were scanned using a UMAX Powerlook 1100 for a 

permanent electronic record. 

2.15 DNA Hybridisation techniques 

2.15.1 Labelling of DNA probes with digoxigenin 

DNA fragments were labelled by a random priming method using a 

commercially available digoxigenin (DIG) DNA labelling and detection kit 

(Roche). DNA to be labelled (up to 3 J,lg in a maximum of 15 IJI EB in a 

microfuge tube) was denatured at 100°C for 10 min, then immediately chilled 

on ice for 10 min. The following components were added on ice; 

Random hexanucleotide mixture 2 IJI 

dNTP labelling mixture (containing DIG-dUTP) 2 IJI 

Klenow enzyme (2 units) 1 J-l1 

The volume of the reaction was made up to 20 IJI with dH20. The reaction was 

incubated overnight at 37°C, followed by purification using a QIAquick PCR 

purification kit (Chapter 2.12.6). The purified probe was then quantified 

(Chapter 2.15.2). 

2.15.2 Quantification of DIG-labelled DNA probes 

The amount of DIG-labelled material in a volume of labelled DNA was 

determined by comparison to labelled control DNA of known concentration 

supplied in the DIG DNA labelling and detection kit (Roche). The sample DNA 
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and the control DNA were diluted according to the manufacturer's instructions, 

using a single pre-dilution step to obtain an estimated concentration of 1 ng ur\ 

followed by five serial 10-fold dilutions. 1 J.tl of each 10-fold dilution was spotted 

onto Hybond-N+ Extra (positively charged) nylon membrane (Amersham Life 

Sciences). The DNA was permanently bound to the membrane using a UV 

crosslinker (Chapter 2.15.3.1) and DIG-labelled DNA was then detected 

immunologically, using AP-Iinked anti-dioxygenin antibody (Chapter 2.15.3). The 

spot intensities of the control and probe dilutions were compared visually to 

estimate the concentration of the probe. 

2.15.3 Southern blotting 

Agarose gel electrophoresis of - 1 ug samples of digested genomic DNA was 

performed and photographed as described in Chapters 2.13.5 and 2.13.5.1 with 

a 0.8 % (w/v) agarose gel. DIG-labelled" HindlllEcoRI markers were loaded 

into the gel to estimate the size of DNA bands following development of the blot 

using AP-conjugated anti-DIG antibody. The gel was soaked in Southern 

depurination solution for 10 min and washed in dH20. The gel was soaked in 

Southern denaturation buffer twice for 15 min and rinsed in dH20. The gel was 

neutralised by soaking in Southern neutralisation buffer twice for 15 mins. The 

DNA was transferred from the gel to a Hybond-N+ Extra membrane by vacuum 

blotting at 60 mbar for 90 mins using transfer buffer. 

2.15.3.1' Fixing the DNA to the membrane 

DNA was fixed to the Hybond-N+ Extra nylon membrane with the use of a UV 

crosslinker (Amersham Life Sciences RPN 2500). 70 mJ I cm2
; 15 sec). 

2.15.3.2 Prehybridisation and hybridisation 

Membranes to be probed with the DIG-labelled DNA were prehybridised for 2 h 

at 68°C in pre-hybridisation solution (20 ml per 100 cm2 of membrane). Just 

prior to use, the labelled probe (Chapter 2.15.1) was denatured in a microfuge 

tube by placing the tube in a boiling water bath for 10 min. The labelled probe 
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was immediately chilled on ice for 10 min and added to pre-heated hybridisation 

solution to give a final probe concentration of 5 - 25 ng mr1. The membrane 

was then hybridised with the labelled probe overnight at 68°C. After 

hybridisation the solution was retained for future use and stored at -20 cC. 

Unbound probe was removed by washing the membrane twice in 2X wash 

solution for 5 min at room temperature. The membrane was then washed twice 

in 0.5X wash solution for 5 min at 68 cC. 

2.15.3.3 Colorimetric detection of DIG-labelled DNA 

The hybridised and washed membranes were equilibrated with washing buffer for 

1 min and then blocked for 30 min with gentle rocking in blocking solution. The 

membrane was then transferred to antibody solution containing a 1 :5,000 dilution 

of stock anti-DIG-AP antibody (Roche). After 30 min incubation with gentle 

rocking, the membrane was washed twice for 15 min with washing buffer. The 

membrane was equilibrated for 2 min with detection buffer before 10 ml colour 

substrate solution was applied to the membrane. This was then incubated in the 

dark to allow the membrane to develop. The presence of anti-DIG-AP bound to 

DIG-labelled DNA was visualised by the appearance of purple bands or spots. 

After the colour had developed sufficiently, the membrane was washed in 1X TE 

for 5 min to stop the reaction. The membrane was then air-dried, scanned using 

a UMAX Powerlook 1100 and stored in the dark. 

2.16 

2.16.1 

Analysis of lacZ fusion expression 

lacZ expression on X-Gal plates 

p-galactosidase activity was detected directly on solid media using the substrate 

X-Gal. X-Gal is hydrolysed by p-galactosidase resulting in P-D­

galactopyranoside and 5-bromo-4-chloro-3-indolyl. The latter has a blue 

colouration and is thus a visible indicator of p-galactosidase activity. Unless 
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otherwise stated, 100 J.l1 20 mg mr1 X-Gal solution was pi petted onto agar plates 

and spread across the surface with sterile beads. The beads were then 

removed and the plates were dried at 50°C for 20 min. Plates were used 

immediately or stored at -4 °C for up to one week. 

2.17 Sequence and database analysis 

2.17.1 Sequence for cloning 

DNA sequences for cloning were obtained from the National Centre for 

Biotechnology Information (NeBI) database (http://ncbLnlm.nih.gov/), or from 

manufacturer's instructions (ie. supplied by Invitrogen and Epicentre for use of 

PCR-II-TOPO and pMOD(MCS) respectively). Putative open reading frames 

(ORFs) and restriction sites were identified in DNA sequences using the Gene 

Jockey " program (Biosoft) or the program Visual Cloning 2000 (Redasoft). 

Diagrammatic representations of DNA fragments and plasmids were prepared 

using Visual Cloning 2000 (Redasoft). 

2.18 Microscopy 

2.18.1 Transmission ele'ctron microscopy (Robards et al., 1999) 

S. aureus SH1000 were grown in 10 ml CDM with and without 50 IJM K2Te03 

and incubated at 3rC with shaking (250rpm) overnight. Cells were harvested at 

4 000 rpm for 15 min at 4°C, washed twice in PBS and cell pellets were fixed in 

Karnovsky's fixative in 100 mM sodium cacodylate buffer for 3 h at 4°C. The 

specimens were then washed 3 times (30 min intervals each) in 100 mM sodium 

cacodylate buffer containing 10 % w/v sucrose at 4°C. Secondary fixation was 

performed in 2 % w/v osmium tetroxide for 1 h at room temperature (Hayat, 

1981). The specimens were then dehydrated through a graded series of ethanol 

(75 % v/v, 15 min; 95 % v/v, 15 min; 100 % vlv, 15 min; 100 % v/v, 15 min; 100 

% v/v, 15 min), and dried over anhydrous copper sulphate for 15 min at room 

temperature. They were then placed in 2 changes (15 min each) of an 

intermediate solvent, propylene oxide followed by infiltration with propylene­

oxide-Spurr resin (50:50) overnight at room 'temperature. The specimens were 

then placed in Spurr resin for 6-8 h at room temperature after which they were 
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embedded in fresh Spurr resin for 8 h at 70°C (Glauert, 1974). Ultrathin sections 

(approx. 70-90nm) were cut on a Reichert Ultracut E ultramicotome and stained 

for 15 min with 3 % w/v uranyl-acetate-50 % ethanol v/v ethanol followed by 

staining with Reynold's lead citrate for 2 min. The sections were examined using 

a Phillips CM10 Transmission Electron Microscope at an accelerating voltage of 

80 kV. Electron micrographs were recorded on Kodak 4489 Electron 

Microscope Film. 

2.19 Purification and identification of tellurite reductase protein. 

2.19.1 Growth of cultures for protein production 

S. aureus SH1000 was grown in 3 sterile 2 liter flasks each containing 500 ml 

TSB at 37°C with rotary shaking (250 rpm) overnight. Cells were harvested by 

centrifugation using the Beckman (JA 10.5) at 5000 g for 10min at 4°C. The 

pellets were combined and resuspended in 15 ml of 20mM Tris HCI pH 7.5. 

2.19.1.1 Preparation of cell free extract 

2.19.1.2 Cell lysis using lysostaphin 

30 IJI of lysostaphin was added to 3 ml of the sample and incubated at RT for 15 

min. 60 IJI PMSF was added and the mixture was centrifuged at 20 000 x g, 20 

min, 4°C. The supernatant (CFE) was carefully transferred to a clean tube, 

filtered through a 0.2 IJm (Millipore) filter into a clean sterile tube and stored in -

20°C. 

2.19.1.3 Cell breakage using the Braun Homogenizer 

7. ml aliquots of the sample were the placed in Braun Homogenizer bottles each 

containing 50 g microglass beads« 106 IJm) which were precooled at 4°C. Cell 

breakage was performed using a Braun Homogenizer where each bottle was 

shaken 6 times at 30 seconds per bottle. Liquid C02 was used to cool the system 

during cell breakage and bottles were kept immersed in ice after cell breakage. 

Small aliquots of (1-2 ml) of 20mM Tris HCI were added to the microglass beads 

in a vacuum filter to remove the extract. RNase, DNase and PMSF were each 
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added to the extract to a final concentration of 1 mM and the mixture was 

incubated at 37°C for 30 minutes. The suspension was then centrifuged at 20 

000 g for 1Smin at 4°C and the supernatant was then removed, filtered through a 

0.2 ~m filter and an aliquot was saved (uCFE). The remaining sample was 

dialyzed in 4 liters 10 mM Tris HCI pH 7.S with 1 mM 2-mercaptoethanol at 4°C 

overnight. This dialysed crude cell free extract (CFE) was the frozen at -20°C. 

2.19.2 Determination of tellurite reductase (TR) activity 

2.19.2.1 Spectrophotometric assay 

Reaction mixture 

20mM Tris-HCI, pH 7.S 

20mM NADH 

100mM 2-mercaptoethanol 

SOmM K2Te03 

Cell free extract 

12S ~I 

SO ~I 

2.S ~I 

5 ~I 

200 ~I 

Reaction mixture was incubated at 37°C for 1Sminutes. The reaction was 

stopped with 382.S ~I 2M NaCL and 382.S ~I distilled water and absorbance read 

at SOOnm against dH20. A500 reading was multipled by 3 (dilution factor). The 

NADH in the reaction mixture was replaced with equal volume of dH20 in the 

control for each sample. 

2.19.3 

2.19.3.1 

Protein determination 

Bovine serum albumin standard (1.44mg/ml) 

A protein standard curve using the protein standard (BSA) was performed with 

each sample analysis. Protein standards were prepared as in Table 2.7 
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Protein standard concentration Volume of BSA (IJI) + Volume of 

(1J9) dH20 (IJI) 

o (Blank) 0+100 

2 1.4 + 98.6 

5 3.5 + 96.5 

10 7.0 + 93.0 

20 14.0 + 86.0 

Table 2.7 
Protein standards used in BioRad/Bradford assay. Bovine serum albumin (1.44 

mg/ml) was diluted in dH20 to final concentrations of 2, 5, 10 and 20 I-Ig/1-l1 and 

the absorbance measured at 595 nm (AS9S). A standard protein curve was plotted 

using the readings and used to determine the protein concentration in sample. 

2.19.3.2 BioRad protein assay 

2.19.3.2.1 Protein determination 

10 1-11 of sample was made up to 100 1-11 with dH20. 700 1-11 dH20 was added to aI/ 

tubes including the protein standards. This was gently mixed and 200 1-11 of 

BioRad reagent mix was added to all tubes and mixed gently. Absorbance 

measurements were taken at 595 nm (AS9S) after 2 minutes incubation at room 

temperature against the blank. A standard protein graph was plotted and used to 

determine the protein concentration of the sample in the assay mixture that was 

multiplied by 10 (dilution factor) to obtain the final protein concentration in the 

sample (l-Ig/1-l1). 

2.19.3.3 Bradford protein assay 

2.19.3.3.1 Protein determination 

10 1-11 of sample was made up to 100 J,JI with dH20. 1.5 ml Bradford reagent was 

added to each 50 1-11 sample and 50 ul of each protein standard, mixed and 

absorbance measurements were taken at 595 nm (AS9S) after 5 minutes 

incubation at room temperature against the blank. A standard protein graph was 

plotted and used to determine the protein concentration of the sample in the 
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assay mixture that was multiplied by 10 (dilution factor) to obtain the final protein 
. . 

concentration in the sample (~g/~I). 

2.19.3.4 Calculation of specific activity (U/L) 

The Asoo and As9S readings obtained in 2.19.2.1 and 2.19.3. were used to 

calculate the specific tellurite reductase (TR) activity (Units) as follows: 

1. f:.Asoo = Asoosample - Asoocontrol 

2. f:.Asool15min = A min-1 

3. Protein concentration in 1 ~I sample = B ug x 200 (sample yolume) 

1000 

=Cmg 

4. Specific Activity (U) = A I C 

= D min·1 mgo1
/ 0.001a 

=E 

a 1 Unit (U) of specific TR activity is defined as a 0.001 change in absorbance at 

500 nm (Asoo) per min per mg protein. 

2.19.4 Gel submersion assay 

2.19.4.1 TR reaction mixture 

10mM Tris-HCI, pH 7.5 

2-mercaptoethanol 

NADH 

K2Te03 

100 ml 

7.0 ~I 

0.071 9 

0.254 9 

2.19.4.2 7.5% Native-PAGE protein analysis 

Protein samples prepared from S. aureus strains were visualized using 7.5% 

native polyacrylamide gel electrophoresis (native-PAGE). The gels were cast 

using the BioRad Mini-Protean 3® cell system according to the manufacturer's 

instructions. 7.5 % v/v polyacrylamide gels were used for the resolving portion of 
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the gel and 4 % v/v polyacrylamide gels were used for the stacking portion of the 

gel (Chapter 2.2.19.4). 

Protein samples were mixed with equal volume of native-PAGE sample buffer 

(1:2 ratio) and applied to the wells in the gel in duplicate using a micropipette as 

depicted in Figure 2.1. The gels were electrophoresed at 150 V for 50-60 min, or 

until the blue dye front of the sample buffer was at the base of the gel plates. The 

gels were carefully removed from the apparatus and cut in half for staining. 

2.19.4.2.1 Coomassie Blue stain for protein identification 

One half of the gel (Portion A) was placed in 30 ml Coomassie stain for 30 min at 

room temperature with gentle rocking. The Coomassie stain was then removed 

and the gel was washed 3X, 5 min with 50 ml of destaining solution at room 

temperature with gentle rocking. After the third wash the gels were left in 50 ml 

destaining solution until the blue bands of the proteins were apparent and the gel 

background was colourless. The destaining solution was discarded and the gels 

were washed twice (10 min) with dH20 at room temperature with gentle rocking. 

The gel was then removed from the solution and placed between two DryEase ™ 

minice"ophane (Invitrogen) sheets which had been pre-soaked in 20 ml Gel­

DryTM gel. drying solution (Invitrogen) for 5 min. The sandwich was then fastened 

into a gel drying frame (Novex) and left to stand on the bench overnight to dry. 

For a permanent electronic record, protein gels were scanned using an Epson 

Scanner. 

2.19.4.2.2 Gel submersion assay for te"urite reductase (TR) activity 

The other half of the gel (Portion B) was immersed in 100mL of tellurite 

reductase mixture (2.19.4.1) for the Gel Submersion Assay for 30 - 45 minutes 

at 37°C without rocking. The gel was then removed and placed between two 

DryEase™ minice"ophane (Invitrogen) sheets which had been pre-soaked in gel 

drying solution for 5 min and then fastened into a gel drying frame (Novex), dried 

overnight and scanned as previously described. 
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2.19.5 Treatment of CFE 

2.19.5.1 Heat 

1 ml aliquots of the CFE was heated at 100°C for 15 min, cooled and centrifuged 

at 13 000 rpm for 5 min. The supernatant was transferred to a clean micro­

centrifuge tube and used to perform the tellurite reduction (Chapter 2.19.2.1), 

protein (BioRad) (Chapter 2.19.3.2) and gel submersion assays (Chapter 2.19.4). 

Specific activity was calculated as described in Chapter 2.19.3.4. 

2.19.5.2 Proteinase K 

3ml of CFE was mixed with 30 JJI of Proteinase K and incubated at 37°C for 15 

min. A control tube containing 3 ml CFE with dH20 was also included. The tubes 

were cooled and centrifuged at 13 000 rpm for 5 min. 5upernatant from each 

tube was transferred to a clean micro-centrifuge tube and used to perform the 

tellurite reduction (Chapter 2.19.2.1), protein (BioRad) (Chapter 2.19.3.2) and gel 

submersion assays (Chapter 2.19.4). 5pecific activity was calculated as 

described in Chapter 2.19.3.4. 

2.19.6 Protein purification 

2.19.6.1 Ammonium sulphate precipitation 

12.23g of ammonium sulphate was added to 37.5 ml of CFE to a final 

concentration of 55 % w/v in a 1 Iiter flask that was immersed in ice slurry. After 

thorough mixing, the mixture was kept in the ice slurry for 30 minutes and then 

centrifuged at 10 000 rpm, 30 minutes, 4° C. The supernatant (51) was 

transferred to another 1 liter flask and kept in the ice slurry and the pellet (P1) 

was resuspended in 3 mL 10 mM Tris HCI pH 7.5. An aliquot of 51 was saved for 

the tellurite reductase spectrophotometric and gel submersion assays. 

4.45g of ammonium sulphate was then added to 35 mL of 51 to a final 

concentration of 75% w/v, mixed and kept on ice for 30 minutes. The mixture was 

then centrifuged at 10 000 rpm, 30 minutes, 4° C. The supernatant (52) was then 
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transferred to a centrifuge tube and the pellet (P2) was resuspended in 7 ml 10 

mM Tris HCI pH 7.5. 

The crude cell free extract (CFE). 51. P1. 52 and P2 were transferred into 

separate dialysis tubing and dialysed against 8 Iiters (4 liters x 2) of 10 mM Tris 

HCI pH 7.5 overnight at 4°C. All samples were then filtered through a 0.2 IJm filter 

and aliquots were used to perform the TR activity gel submersion assays. The 

remaining samples were frozen at -20°C. 

2.19.6.2 Purification by ion exchange chromatography (MonoQ) column. 

The MonoQ column was prepared by washing with 10 ml sterile and filtered 

distilled water and equilibrated with 10 ml 10 mM Tris HCI buffer. pH 7. 5. 2 ml of 

sample was applied to the MonoQ column and proteins were separated in a 

gradient (0-100 %) of 10 mM Tris HCI containing 1 M NaCI at a rate of 0.5 

ml/min. 1 ml fractions were collected in sterile Eppendorf tubes and kept on ice. 

An FPLC trace was obtained and fractions corresponding to protein peaks on the 

trace were concentrated in the YM-10 (Centricon) and used for the TR gel 

assays. The remaining samples were frozen at -20°C. 

2.19.6.3 Purification by gel exclusion chromatography (Superdex 200 

10/300GL) 

The 5uperdex 200 column was prepared by washing with 30 ml sterile and 

filtered distilled water and equilibrated with 50 mM sodium phosphate buffer. 200 

IJI of sample was applied to the 5uperdex 200 column and eluted with 50 mM 

sodium phosphate buffer containing 0.15 M NaCI at a rate of 0.5 ml/min. 1 ml 

fractions were collected in sterile Eppendorf tubes and kept on ice. Fractions 

corresponding to protein peaks on the FPLC trace were concentrated in using a 

YM-10 (Centricon) and used for the TR gel assays. The remaining samples were 

frozen at -20°C. 
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2.19.6.4 Protein concentration using Centricon YM10 

500 1-11 of sample was loaded into a YM-10(Centricon) column and centrifuged at 

14000 g for 12 minutes at room temperature. The filtrate (F) was saved and the 

column was then turned over and spun at 1000 g for 3 minutes which yielded 

approximately 5 1-11 retentate (R) that was collected In an Eppendorf tube. Aliquots 

of the filtrate and retentate were used to perform the TR gel assays and the 

remaining samples were frozen at -20°C and used in the TR assays. 

2.19.6.5 N-terminal sequencing for protein Identification 

2.19.6.5.1 Electrophoresis and blotting 

Identical samples were loaded in triplicate on 7.5 % w/v native-PAGE and 

separated by electrophoresis. After separation, the gel was cut into 3 identical 

pieces, each having the same samples. A piece of a gel was used for Coomassie 

Blue stain, TR activity and electroblotting. As the gel was running, a gel-sized 

piece of polyvinylidene diflouride PVDF (BioRad Immun-Blot ) membrane was 

placed in 100 % v/v methanol for 1 - 3 seconds. The PVDF membrane was then 

transferred to dH20 for 1 - 2 mins and to CAPS transfer buffer (2.2.15.2) for 5 -

10 mins. Gel-sized pieces of Whatman 3 mm filter paper were also pre­

equilibrated in transfer buffer for 10 mins. One piece of the gel was used to 

transfer the proteins to the PVDF membrane which was carried out using Bio­

Rad Transfer Apparatus. The electroblotting sandwich was assembled according 

to the manufacturer's instructions as follows: 

Top electrode BLACK sandwich plate (cathode) 

One white sponge (soaked in transfer buffer) 

Three pieces of filter paper (same size as gel soaked in transfer buffer) 

Gel 

PVDF membrane (wetted with transfer buffer) 

Three pieces of filter paper 

One white sponge (soaked in transfer buffer) 

Bottom electrode WHITE sandwich plate (anode) 
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The electroblotting apparatus was connected to the power pack and transfer of 

the polypeptides onto the PVDF membrane of pore size 0.2um (Bio-Rad) was 

performed in CAPS transfer buffer at 1 OOV for 60 minutes. 

After the transfer procedure the PVDF membrane was soaked in dH20 for 5 min, 

followed by 5 min soaking in methanol at room temperature. The membrane 

was stained with 30 ml Coomassie blue stain for 1 min and then destained for 3 

x 5 min in 50 % v/v methanol (for 1 min each). The blot was then dried protein 

side up on clean blotting paper for 1 h at room temperature. 

2.19.6.5.2 N-terminal sequencing 

Proteins of interest were marked clearly and the corresponding protein band on 

the membrane was carefully excised and sequenced using an ABI 476A 

sequencer by Or Arthur Moir (Department of Molecular Biology and 

Biotechnology, Sheffield University). 

2.19.7 Protein overexpression 

Clones were made in petBlue-1 in Tuner (DE3}pLacl cells. 

2.19.7.1 Large scale growth and induction of expression 

A starter culture of Tuner (DE3}pLacl containing recombinant petBlue-1 plasmid 

was prepared by inoculating 10 ml of TB containing ampicillin (100 jJg/ml) in a 

universal tube. The culture was incubated at 37°C with shaking (250rpm) 

overnight. 2.5 mL of the starter culture was added to 250 ml fresh TB in a 2 liter 

flask and incubated with shaking (250rpm) until 00600 1.0 (2-3 hours). A 1ml 

aliquot of the culture was removed and cells were harvested by centrifugation at 

5000 rpm for 10 min. at room temperature. The supernatant was discarded and 

the pellet (uninduced sample) was frozen at -20°C. The remaining culture was 

then induced with 1 mM IPTG and incubation continued for 2.5 hours and cells 

were harvested by centrifugation at 6000 g for 15 min. at 4°C. The supernatant 

was discarded and the pellet (induced sample) was frozen at -20°C. 
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were harvested by centrifugation at 6000 g for 15 min. at 4°C. The supernatant 

was discarded and the pellet (induced sample) was frozen at -20°C. 

2.19.7.2 Determination of overexpression - total protein analysis 

Both the uninduced and induced cells were thawed and resuspended with 100 IJI 

PBS and the 00600 of each sample was determined. The samples were then 

mixed with 2x SOS sample buffer containing 5.6 % w/v 2-mercaptoethanol to 

equal final concentrations (00600). The mixtures were then sonicated, heated for 

3 min. at 70°C, cooled for 5 minutes and then centrifuged at 13 000 g for 5min at 

room temperature. The supernatant was retained for analysis by SOS-PAGE. 

2.19.7.3 Analysis of recombinant protein solubility 

Induced cells were resuspended in 500 ul Buffer A and 1 IJg/ml (final 

concentration) lysozyme was added. The mixture was incubated for 1 hour at 

room temperature and sonicated on ice using Sanyo soniprep 150 at setting 10, 

3 times (10s on, 10s rest). The suspension was centrifuged at 13 000 rpm for 10 

min. at 4°C to remove unbroken cells and the supernatant (soluble fraction) was 

transferred to a separate tube and filter sterilised (0.45 IJM filter). The pellet 

(insoluble fraction) was resuspended in 500 ul Buffer A containing 8 M urea and 

vortexed hard. 250 IJI sodium phosphate buffer (0.1 M, pH7.2) was added to both 

the soluble and insoluble fractions. Samples were then mixed with SOS sample 

buffer and analysed by SOS-PAGE. 

2.19.7.4 Protein purification using MonoQ and Superdex 200 columns 

The Mono Q and Superdex 200 columns were prepared as in Chapters 2.19.5.2 

and 2.19.5.3. An overnight preculture of the clone containing the recombinant 

plasmid of interest in Tuner cells (E.coli Top 10) was prepared and induction with 

1mM IPTG was performed (Chapter 2.19.6.1). A cell free extract of the culture 

was prepared (Chapter 2.19.1.2) and the sample was applied to a MonoQ 

column and the protein eluted (Chapter 2.19.5.2). Fractions corresponding to 

protein peaks were collected and aliquots were analysed for TR activity 
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(Chapters 2.19.4)." The fraction with observed TR activity was then applied to a 

Superdex 200 column and the protein eluted (Chapter 2.19.5.3). Fractions were 

collected and analysed for TR activity (Chapters 2.19.4). 

2.19.7.5 Protein identification by N-terminal sequence 

The Superdex fraction showing TR activity (Chapter 2.19.4) was prepared for 

identification (Chapter 2.19.5.5) using N-terminal sequence. 

2.20 Sensitivity assays 

2.20.1 Disc diffusion 

A 15 mm disc (Whatman) was placed on appropriate agar plates and seeded 

with S.Bureus. The stress compound was added immediately to the center of the 

disc: 

1 M methyl viologen 

1 M H202 

1 M tel/urite 

1 M diamide 

251-11 

251-11 

251-11 

251-11 

Plates were incubated at 37°C overnight and inhibition zones measured in mm 

from the edge of the disc. 

2.20.2 H202 sensitivity liquid assay 

Strains were grown in 5 ml chemically defined media (CDM) with the appropriate 

antibiotic(s) and sulfur source overnight at 37°C with shaking (250 rpm), then 

pre-cultured in 5 ml fresh COM to log phase. Cells were diluted to 00600 0.1 in 1 

ml COM (no antibiotics) and centrifuged at 10,000 rpm for 10 min. Cells were 

washed twice with PBS and resuspended in 1 ml PBS and 7.5 mM H202 added. 

Cells were placed in a heating block set at 37°C and 50 JlI samples were taken 

at appropriate time points and immediately diluted into 450 JlI PBS with 10mg mr 

1 catalase. 25 JlI of 10.1 to 10-6 dilutions of each strain at each time point were 
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spotted onto BHI agar plates and incubated at 37°C overnight. The percentage 

survival rate was calculated based on the starting CFU mr1. 
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CHAPTER THREE 

ANALYSIS OF THE ROLE OF GLUTATHIONE IN 

STAPHYLOCOCCUS AUREUS 

3.1 Introduction 

Sulfur is an essential element for life that is required for some amino acids 

(methionine and cysteine), low mass thiols and other cellular components. A 

previous study by Lithgow et al. (2004) showed that S.aureus is able to utilize a 

variety of compounds as the sole sulfur source including cysteine, cystine, 

glutathione and thiosulphate. It was also shown that S.aureus is not able to use 

sulphate and sulfite and in fact lacks the gene homologues that are required for 

the uptake and utilization of these sulfur compounds. Conversely, S.aureus 

possesses genes homologous to those of B.subtilis and E.coli for the uptake and 

utilization of various sulfur sources such as cystine, cysteine, thiosulphate and 

glutathione (Chapter 1.5.2). However, the mechanisms of uptake are as yet 

undetermined. 

Gh.;tathione, the tripeptide r-glutamylcysteinylglycine, is one of the most 

common occurring low molecular weight thiols in living organisms (Fuchs and 

Warner, 1975). In humans, glutathione is synthesized through two ATP­

dependent enzymatic reactions catalyzed by y-glutamylcysteine synthase and 

glutathione synthethase (Meister and Anderson, 1983). In bacteria, glutathione 

synthesis is more prevalent amongst gram-negatives but is less common in 

gram-positive organisms (Fahey et al., 1978). Escherichia coli and Proteus 
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vulgaris are able to synthesize glutathione in significant amounts whilst its 

synthesis in gram-positives is' found only in Streptococcus agalactiae and 

Lactococcus lactis (Fahey et al 1978). Other organisms such as Streptococcus 

mutans (Sherrill et al., 1998), B.subtilis, and B.cereus (Fahey, 1978) and 

S.aureus are not able to synthesize glutathione but acquire it from the 

environment. 

Utilization of glutathione in Escherichia coli and Proteus vulgaris is 

facilitated by gammaglutamyltranspeptidase (GGT) that performs both hydrolytic 

and transpeptidation functions (Meister and Anderson, 1983). The GGT from 

E.coli is similar to mammalian GGTs apart from two main differences (Suzuki et 

al., 2002). It possesses a signal peptide resulting in it being a soluble periplasmic 

enzyme whereas the mammalian GGts are membrane bound enzymes. In 

addition, E.coli GGT is nonglycosylated whereas mammalian GGT are 

heterologously glycosylated (Suzuki et al., 2002). The biological roles of GGT 

include both hydrolysis and transfer of y-glutamyl amino acids (Chapter 1.5.4; 

Meister and Anderson, 1983). Glutathione is a substrate for GGT and is 

degraded to glutamate and y-cysteinylglycine via hydrolysis of the y-glutamyl 

linkage, thereby releasing the amino acids that are taken up and used by the 

bacterial cell (Suzuki et al., 1993). GGT from E.coli K12 can utilize a variety of y­

glutamyl peptides as substrates for the hydrolysis reaction and as donors for the 

transpeptidation reaction. Inhibition of the enzyme by sulfoxamine, 6-Diazo-5-

oxonorleucine (DON) or L-serine-borate in P.mirabilis (Nakayama et al., 1984) or 
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E.coli (Suzuki and Kumagai, 2002) causes leakage of glutathione into the 

medium. 

Immunocytochemical studies and Iyzozyme treatment suggest that GGT in 

P mirabilis is localized in the periplasmic space (Nakayama et al., 1984), 

however, the GGT from Bacillus species is extracellular and can be purified from 

the culture broth (Minami et al., 2003). 

The roles of glutathione in mammalian tissues have been widely studied 

and include maintenance of the redox environment, combating oxidative and thiol 

stress inducing agents, and detoxification of heavy metals and xenobiotics 

(Meister and Anderson, 1983). In addition, glutathione serves as a major storage 

form of cysteine for use as a sulfur source. Extracellular GGT from Bacillus 

subtilis was found to hydrolyse exogenous glutathione resulting in formation of 

cysteinylglycine that was used as a sulfur source (Minami et al., 2004). E.coli 

utilizes exogenous glutathione, 'Y-Qlutamylcysteine and 'Y-glutamylglycine as a 

cysteine source and a glycine source (Suzuki et al., 1993). GGT -deficient 

mutants of E. coli were unable to utilize 'Y-glutamyl peptides as amino acid 

sources. Glutathione was also shown to be a source of cysteine for growth in 

Lactococcus /actis (U et al., 2003). However, the authors suggest that the 

absence of this tripeptide in a wide variety of bacteria indicates that glutathione is 

not likely to be involved in protein synthesis, amino acid synthesis or amino acid 

transport. 

Glutathione is also involved in the protection of mammalian cells against 

the oxidative stress that results from oxygen metabolism (Meister and Anderson, 
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1983). In Haemophilus influenzae, glutathione and catalase provide overlapping 

defence against endogenously generated H20 2 (Vergauwen et al., 2003a,b). 

Glutathione has also been shown to protect cells against thiol stress and other 

cell damaging agents. In Streptococcus mutans, cellular glutathione has been 

shown to resist diamide, a thiol oxidant (Sherrill and Fahey, 1998). Chesney et al. 

(1996) report the role of bacterial glutathione used as a sacrificial defense 

against chlorine compounds in E.coli. In addition, the absence of glutathione 

together with trehalose has been shown to increase sensitivity of E.coli K12 to 

the toxicity of mercury and arsenite (Latinwo, 1998). The role of glutathione in 

many gram-positives however remains elusive, especially in those that do not 

synthesize glutathione but can transport and concentrate it intracellularly from the 

environment. 

Glutathione uptake and utilization in S.aureus is likely facilitated by the 

presence of genes that encode for the gammaglutamyltranspeptidase (ggt, 

SACOL0188). which has 50% homology with E.coli GGT. In this chapter. the 

putative GGT of S.aureus was identified and characterized. The ggt gene was 

found in a locus also encoding a potential glutathione transporter. Mutagenesis 

studies were used to determine the role of GGT in the use of glutathione as a 

sulfur source. The role of glutathione in stress resistance in S.aureus was also 

studied. 
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3.2 Results 

3.2.1. Sulfur utilization by S.aureus SH1 000 

3.2.1.1 Utilization of glutathione as sole sulfur source 

To verify that S.aureus is able to utilize glutathione as sole sulfur source SH1000 

was grown in liquid chemically defined media (lacking cysteine) and 

supplemented with different sulfur sources. S.aureus SH1000 was shown to use 

cysteine, glutathione and thiosulphate but not sulphate as a sole sulfur source 

(Fig 3.1). All cultures reached stationary phase after approximately 10 hours. 

Glutathione and cysteine proved the best sulfur sources with yields of 2.43 and 

1.7 00600 respectively after 10 hours. Initial apparent growth in the no addition 

culture was most likely due to residual sulfur within the inoculum. 

3.2.1.2 Glutathione requirements for growth of S.aureus SH1 000 

Growth of SH1000 was glutathione concentration dependent when it was 

supplied as sole sulfur source (Fig. 3.2). A non-limiting concentration was 

reached at an addition of 50 J,JM. Possible toxicity was measured by addition of 

10 mM glutathione. Even at 10 mM no growth defect was observed (Fig. 3.3). 
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Figure 3.1 

Growth curve (OD600) of S.aureus SH1000 in chemically defined media (CDM) 

with 200 IJM sulphate ( ). cysteine ( b.). thiosulphate ( .0) and glutathione ( .) 

or no addition (+ ). 
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3.2.2 Identification of a putative gammaglutamyltranspeptidase in S.aureus 

3.2.2.1 Bioinformatic analysis 

The GGT enzyme is a member of the N-terminal nucleophile hydrolase 

superfamily (Suzuki and Kumagai, 2002). It consists of two subunits, a large 

subunit with a molecular weight of approximately 40 kD (365 amino acids) and a 

small subunit of about 20 kD (190 amino acids) (Suzuki et al., 2002, Suzuki et al., 

1989). It is originally synthesized as an inactive common precursor (pro-GGT) 

that undergoes intramolecular autocatalytic processing to produce the active 

GGT. 

Using the B.subtilis GGT amino acid sequence as query, a BLAST search 

was carried out against the S.aureus COL genome (www.tigr.org/tigr­

scripts/CMR2/CMRGenomes.spl). This revealed a single protein with 36% 

identity over 545 amino acids to that of Bacillus subtilis (Table 3.2). The putative 

ggt gene is present in a possible operon with 3 other genes of which ggt is the 

last (Fig 3.4). The initial 2 genes in this operon (SACOL0185, and SACOL0186) 

and that running divergently from SACOL0185 (SACOL0184) all encode putative 

ABC transporter ATP-binding and permease proteins. A gene (SACOL0187) 

immediately upstream from ggt encodes a hypothethical protein (Table 3.1). 
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Figure 3.4 

Organization of the ggt locus in S.aureus COL 
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TIGR Locus Putative Identification Gene Gene Protein Molecular pi % 
Name symbol length length weight (kDa) GC 

(b~) (aa) 
SACOL0184 Peptide ABC transporter, ATP 1593 530 59.18 6.25 35.65 

binding protein 

SACOL0185 Peptide ABC transporter, 1308 435 48.9 9.95 33.5 
permease protein 

SACOL0186 Peptide ABC transporter, 1164 387 43.0 9.72 34.6 
permease protein 

SACOL0187 Hypothetical protein 1176 591 67.0 9.43 33.3 

SACOL0188 gammaglutamyltranspeptidase ggt 2006 668 74.69 4.9 37.61 

Table 3.1 

Physical information on the five proteins of the putative ggt locus of S.aureus COL 
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Comprehensive bioinformatics were carried out to determine the relationship of 

the GGT and the neighboring gene products in the ggt locus from S.aureus COL 

with those from other representative gram-positive bacteria. The SIB BLAST 

Network Service (http://au.expasy.org/cgi-bin/blast.pl) of the Swiss Institute of 

Bioinformatics was used with the amino acid sequences from Staphylococcus 

epidermidis (ATCC 12228), and Bacillus subtilis as query sequences (Table 3.2, 

Fig 3.5). The GGT from S.aureus COL showed significant identity with B.subtilis 

(36% over 545 amino acids) and lower identity with S.epidermidis (25% identity 

over 535 amino acids). Of the three ABC transporter proteins, SACOL0184 

showed significantly high identity with both S.epidermidis (52% over 259 amino 

acids) and B.subtilis (50% over 265 amino acids). SACOL0185 and SACOL0186 

showed higher identity with B.subtilis (30-32 identity% over 252-280 amino acids) 

compared to S.epidermidis (25-29% identity over 274-359 amino acids). 

SACOL0187 showed relatively low identities to both B.subtilis (19% identity over 

314 amino acids) and S.epidermidis (23% over 110 amino acids). 

117 



B.subtilis S.epidermidis 
ATCC 12228 

SACOL0184 BSU1139 SE0678 

500/0 (265) 52% (259) 

SACOL0185 BSU1140 SE0680 
30% (252) 25% (359) 

SACOL0186 BSU1141 SE0681 

32% (280) 29% (274) 

SACOL0187 BSU1142 SE2093 

19% (314) 23% (110) 

SACOL0188 BSU1841 SE2089 

36% (545) 25% (535) 

Table 3.2 

Homology of ggt locus encoded proteins from S. aureus with other gram-positive 

bacteria. Data are presented as percentage of identities over number of amino 

acids (shown in brackets). 
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Figure 3.5 

Physical map of ggt region in S.aureus COL (SACOL), S.epidermidis (SE), B. subtilis 168 (8SU) showing regions of 

identity for ggt ( ~) and SACOL0185 ( ~). 
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The putative subcellular location of the members of the GGT locus was 

determined. The TmHMM Server 2.0 (http://www.cbs.dtu.dklservicesrrMHMM-

2.0/) program provided topological information of the proteins including 

transmembrane helices, as well as cytoplasmic and non-cytoplasmic loops (Fig 

3.6). Topological analysis showed that SACOL0184 possesses no 

transmembrane helices and is likely to be cytoplasmic in location while 

SACOL0187 has a low probability of a transmembrane domain. Both 

SACOL0185 and SACOL0186 were found to be membrane proteins, possessing 

eight or nine transmembrane helices respectively. GGT showed a low probability 

of a transmembrane domain with no transmembrane helix. 

The SignalP 3.0 Server (http://www.cbs.dtu.dklservices/SignaIP/) using the 

SignaIP-HMM prediction for gram-positive models was used to investigate if any 

of the putative proteins had signal sequences and are thus possibly secreted. 

Results from the analysis (Fig 3.7) showed GGT, SACOL0184, and SACOL0186 

to be non-secreted proteins as evident by the absence of a putative signal 

peptide sequence. SACOL0185 showed a low probability of having a signal 

peptide with a most likely cleavage site occurring between amino acids 30-31 

(FSA-KR). SACOL0187 was found to be a secreted protein as suggested by the 

presence of a signal peptide with a most likely cleavage site between amino 

acids 27-28 (SEV-AQ). 
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Figure 3.7 

Signal peptide sequence prediction of the putative GGT locus proteins 

(SACOL0184-SACOL0188) S.aureus putative cleavage sites are indicated by the 

tallest red line. X axis of all profiles shows the amino acid residues. 
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The hydrophobicity of GGT, the ABC transporter proteins and the hypothetical 

solute binding protein was analysed using TopPred 11 Server at 

http://bioweb.pasteur.frlseganallinterfaces/toppred.html. Results from this 

analysis (Fig 3.8), in agreement with the TmHMM analysis, show that 

SACOL0184 is hydrophilic and SACOL0187 to possess one hydrophobic 

segment early in the amino acid sequence probably due to the presence of a 

signal peptide. Both the ABC transporter permease proteins, SACOL0185 and 

SACOL0186, showed 8 hydrophobic segments each that correlates with the 

transmembrane helices (Fig 3.6). GGT is mainly hydrophilic possessing 4 

possible hydrophobic segments which occur primarily in the central region of the 

protein. 
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Figure 3.8 

Hydrophobicity profiles of the putative GGT locus proteins (SACOL0184-

SACOL0188). Hydrophobicity values that cross the upper cutoff (red line) 

designate a putative membrane spanning region. X axis of all profiles shows the 

amino acid residues of the proteins. 

124 



3.2.3 Identification of components involved in glutathione utilization. 

3.2.3.1 Isolation of a ggt mutant 

To facilitate studies on the mechanism of glutathione uptake and utilization in 

S.aureus and to determine their putative role in stress resistance, genes 

putatively involved in its utilization/uptake were characterized. This included both 

random mutagenesis and targeted inactivation approaches. 

3.2.3.2 Random mutagenesis method 

3.2.3.2.1. Transposon mutagenesis 

In order to identify genes involved in glutathione utilization a Tn917 mutant 

screen was developed (Fig 3.9). Firstly multiple insertion libraries were produced 

using pL TV1 (Camilli et al., 1990) as the delivery vector. One gave a 94% 

insertion rate suitable for screening. Tn insertion mutants were screened to 

identify clones unable to utilize glutathione as sole sulfur source. The replica 

plating method was used to screen for clones that were not able to utilize 

glutathione as depicted in Fig.3.9. Putative mutants would be isolated as those 

showing reduced growth on media with glutathione compared to cysteine. More 

than 10,000 colonies were screened to no avail. All clones screened showed 

comparable growth to SH1000 on CDM agar plates supplemented with only 

glutathione as the sole sulfur source. Thus this approach did not yield any 

putative mutants. 
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Figure 3.9 

Replica plating scheme to identify Tn917 mutants altered in glutathione 

utilization. Clones were grown on CDM with 20 IJM cysteine before replica plating 

onto three different media. Clones showing reduced growth specifically on 

glutathione were expected. 
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3.2.3.3 Construction of a mutation in S.aureus ggt 

As the random approach was unsuccessful a targeted inactivation of ggt was 

designed. 

3.2.3.3.1 Preparation of the ggt insert 

The ggt gene (2007 bp) was to be inactivated by insertion of a tetracycline 

resistance cassette as depicted in Fig. 3.10. Initially two DNA fragments 

spanning the ggt locus were amplified by PCR using primer pairs loch8F/loch7R 

and loch5F/loch6R using SABAC 134 as the template. SABAC 134 (AC025591) 

is a BAC clone containing a 58 kb insert which includes the entire ggt locus 

(http://w3.ouhsc:edu/Mllfaculty/iandolo.html). The PCR generated 2 DNA 

fragments called A and 8 of the predicted sizes of 1249 bp and 1659 bp 

(Fig.3.11 B). The PCR primers had been designed to create novel restriction sites 

(Ioch8F: EcoRI. loch6R: 8amHI. loch5F and loch7R: Kpnl). Fragments A and B 

were separately digested with appropriate restriction enzymes (A EcoRIIKpnl. B 

BamHIIKpnl). cleaned and ligated together. The Iigated product was then 

amplified by PCR using the primers loch8(F) and loch6(R) which yielded 

fragment AB of 2.9 kb (Fig. 3.11 C). AB was then digested with Kpnl and 

separated on a 1 % w/v agarose gel. Two bands were observed at the expected 

band sizes of 1249 bp (A) and 1659 bp (B) thereby verifying the presence of a 

Kpnl site in the middle of the fragment (Fig.3.11 D). AB was then digested 

separately with EcoRI and BamHI and each digestion yielded one band when 

resolved on a 1 % w/v agarose gel at approximately 2.9 kb. The double digested 
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AB fragment was then gel extracted and ligated with pMUTIN4 (Vagner et al., 

1998) (Fig. 3.12) linearized with EcoRI and BamHI to create pMUTggt (Fig.3.13). 

Plasmid pMUTggt was verified by restriction digest with Kpnl revealing a single 

fragment of 11.5 kb (Fig. 3.13). Plasmid pAZtet which was obtained from Ramlan 

Mohamad (personal communication) was digested with Kpnl to reveal a 1.5 kb 

tet cassette. Gel extracted fet cassette was ligated with Kpnl cut pMUTggt to give 

pRMH01. Plasmid pRMH01 was digested with Kpnl which gave bands of 1.5 kb 

(tet cassette) and 11.5 kb (vector + ggt insert). (Fig 3.14A). BamHI and EcoRI 

digestions gave 2 fragments of 4.4 kb (ggt locus plasmid insert) and 8.6 kb 

(linearized pMUTIN4) (Fig.3.14B). 
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Figure 3.10 

Inactivation protocol for ggt of S.aureus. The ggt containing region was amplified 

from SABAC 134 using primer pairs loch8Flloch6R and loch5Flloch7F to 

produce fragments A (1249 bp) and B (1659 bp) which introduced the 

engineered sites EcoRlIKpnl and Kpnl/8amHI respectively. Fragments A and B 

were digested with Kpnl and ligated to produce fragment AB which has a Kpnl 

site in the middle. Fragment AB was PCR amplified using loch8Flloch6R to 

produce the ggt insert which was double digested with EcoRV8amHI and cloned 

into pMUTIN4 (pre-digested with EcoRlI8amHI) to create pMUTggt. A tet (1.5 kb) 

resistance cassette flanked by Kpnl sites (5' and 3') was then cloned into 

pMUTggt (digested with Kpnl) to create pRMH01. 
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Figure 3.11 

Preparation of a ggt insert for inactivation of the GGT region. Panel A, Physical 

map of the GGT region showing primer sites. Panel B, PCR and restriction digest 

analysis of the ggt insert. PCR analysis of upstream fragment A (Lane1) and 

downstream fragment B (Lane 2). Panel C. PCR product of ligated upstream and 

downstream fragments; fragment AB (Lane1). Panel 0, Kpnl digestion of PCR 

product of fragment AB producing 2 bands corresponding to fragment A (1249 

bp) and fragment B (1659 bp) (Lane 1). Panel E, Kpnl digestion of pAZtet 

yielding 1 band at 1.5 kb (lane 1). M, 1 kB DNA ladder marker with appropriate 

sizes shown. 
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Preparation of pMUTIN4 for cloning with ggt insert. Panel A, Physical map of 

pMUTIN4 used for mutagenesis in S.aureus (adapted from Vagner et al., 1998). 

This plasmid vector cannot replicate in S.aureus but contains the CoIE1 

replication sequence (on) and an ampicillin resistance gene (amp) for selection in 

E.coli. The erythromycin resistance gene (erm) allows for selection in S.aureus. 

The promoterless lacZ gene is located downstream from the multiple cloning 

sites. Panel B, pMUTIN4 was digested with BamHI and EcoRI. Lane 1 shows the 

expected band size of 8.6 kb. M, 1 kB DNA ladder marker with appropriate sizes 

is shown. 
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with Kpnl ( lanes 1,2,3,4,5) . Lane 2 shows the expected band size of 11.5 kb and 

this clone was further used. M, 1 kb DNA ladder marker with appropriate sizes is 
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3.2.3.3.2 Construction of a ggt mutation in S.aureus RN4220 

Plasmid pRMH01 was prepared and transformed into S.aureus RN4220 by 

electroporation and selection on tetracycline (5 J.jg/ml). Three transformants 

appeared which were also found to be erythromycin (5 IJg/ml) resistant. Genomic 

DNA was prepared from each transformant and used as a template for PCR 

using primer pair loch8Fand loch6R. RN4220 and SH1000 would be expected to 

yield a single band of 2.7 kb and the merodiploid transformant 2 bands of 2.7 and 

4.3 kb (Fig. 3.18). Clone 3a gave the 2 expected bands and was chosen for 

further analysis. A phage lysate using 885 (Chapter 2.10.1) was prepared from 

3a and used to transduce SH1000. Clones were selected on tetracycline (5 

IJg/ml). After 48 hours incubation, 215 colonies were patched onto BHI containing 

5 IJg/ml tetracycline or BHI containing 5 IJg/ml erythromycin and 25 IJg/ml 

lincomycin and incubated at 37oC. After overnight incubation, 15 yellow colonies 

grew only on the BHI plate containing tetraCYCline but not containing 

erythromycin and lincomycin. Transductants were picked for isolation of genomic 

DNA for verification of the ggt mutation by PCR and Southern Blot. 

PCR using the primer pair loch8F and loch6R gave a single predicted band of 

4.3kB as expected for transductant RMH12(ggt) in the SH1000 background 

indicating the presence of the tet cassette in ggt (Fig 3.16). 
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Figure 3.15 

Verification of pRMH01 transformants in S.aureus RN4220. The ggt locus 

showing the position of the generated peR products without (Panel A) and with 

(Panel B) tet insertion on genomic DNA using primer pair loch8Flloch6R. peR 

products were separated by 1% w/v agarose gel electrophoresis (Panel e) . Lane 

1, SH1000; lane 2, RN4220; lane 3, transformant 3; lane 4, transformant 3b; lane 

5, transformant 3a. M, 1kB DNA ladder marker showing appropriate sizes is 

shown. 
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Xbal and Hindlll, were found to have restriction sites within the ggt locus but not 

the tet cassette. These enzymes were used to digest the genomic DNA extracted 

from RMH12(ggt), 3a, SH1000 and RN4220. A Southern Blot was probed with a 

1.25 kb labeled peR probe spanning the ggt gene that was produced using the 

primer pair loch8F and loch7R and SH1000 genomic DNA as template. SH1000 

and RN4220 gave 2 bands of 1.04 kb and 1.3 kb, 3a bands of 1.04 kb and 2.8 kb 

and RMH12(ggt) an intense band of 2.8 kb and a faint band of 1.04 kb (Fig 

3.17C). These are all as expected and so the ggt has been inactivated in 

RMH12(ggt). 
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PCR verification of the ggt mutation in S.aureus SH1000 by PCR with primers 

loch8F and loch6R. Lanes M, DNA markers of sizes shown; 1, SH1000; and 2, 

RMH12(ggt). 
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Figure 3.17 

Southern Blot analysis to verify the ggt inactivation in S.aureus. Physical maps of 

RMH12(ggt) showing insertion of a 1.5 kb tet cassette (Panel A) and wildtype ggt 

gene (Panel B) with Xbal and Hindlll restriction sites indicated.The sizes of 

bands hybridizing with the Southern Blot probe are also shown. Panel C, 

Southern Blot analysis of genomic DNA of S.aureus RN4220 (lane 1), 

RMH12(ggt) (lane 2), transformant 3a in RN4220 (lane 3), and SH1000 (lane 4) 

were digested with Xbal and Hindlll and probed with a 1.25 kb labeled peR 

product spanning the ggt gene that was produced using the primer pair loch8F 

and loch7R (Panel A Fragment A, Figure 3.10) and SH1000 genomic DNA as 

template . Lane M is digoxygenin labeled DNA markers with appropriate sizes 

shown. Hybridizing bands are shown by pink arrows. 

141 



3.2.3.4 Role of 99t in glutathione utilization 

To test the role of ggt in glutathione utilization as sole sulfur source RMH12(ggt) 

was grown in liquid chemically defined media (CDM) (Fig 3.18) lacking cysteine 

and CDM supplemented with cysteine at concentrations of up to 200 IJM and 

glutathione up to 200 IJM. Surprisingly, RMH12(ggt) is still able to grow with 

glutathione as sole sulfur source. 

The role of ggt was also tested on the ability to form colonies on CDM agar 

plates (Table 3.3). There was no apparent visible difference in colony size 

between RMH12(ggt) and SH1000 on any of the media. Both strains did not grow 

without a sulfur source. 

CDM agar supplement SH1000 RMH12(ggt) 
Cys50 IJM 4mm 4mm 
Glut50 IJM 1mm 1mm 

Glut100 ~M 2mm 2mm 
Glut150 ~M 4mm 4mm 

Table 3.3 

Role of ggt in growth on solid media. RMH12(ggt) and S.aureus SH1000 were 

grown on CDM agar plates supplemented with sulfur source as indicated. Colony 

size (mm) was measured after 24 hours. 
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Figure 3.18 

Role of ggt in utilization of glutathione. S.aureus strains SH1000 (closed 

symbols) and RMH12(ggt) (open symbols) were grown in liquid chemically 

defined media (CDM) with 50 ~M cysteine ( D ) or 50 ~M glutathione ( I::. 1::.). 

Control is liquid CDM with no sulfur source (+ 0 ). 
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3.2.4.Construction of a mutation in SACOL0185 

As ggt was found not to be necessary for glutathione utilization it is likely an 

alternative system is available. The genome organization of the ggt locus (Fig 

3.4) led to the hypothesis that the locus might also encode a glutathione uptake 

mechanism. To test the role of the putative transporter a mutation was made in 

the gene encoding SACOL0185. 

3.2.4.1 Preparation of SACOL 0185 insert 

SACOL0185 is predicted to be 1307 bp (Fig 3.4) and encode part of an ABC 

transporter. SACOL0185 was inactivated by insertional duplication using 

pMUTIN4. Two primers, loch9F and loch10R, were designed to amplify an 

internal part of the SACOL0185 gene (Fig.3.19) with engineered Hindlll and 

BamHI sites respectively using SH1000 genomic DNA as template. An 886 bp 

DNA fragment was PCR amplified using Taq polymerase and cloned into the 

pCR 2.1-TOPO vector (Fig 3.20) (Materials and Methods) and transformed into 

One Shot Top1 0 chemically competent E.coli (Materials and Methods). 

Transformants were selected on ampicillin (50 ug/ml) agar with X-gal. White 

colonies were picked and presence of the 846 bp insert verified by restriction 

digestion with Hindlll and BamHI (Fig 3.21A). The insert was prepared by large 

scale digestion of the recombinant plasmid with Hindlll and BamHI and gel 

purification of the insert. Similarly pMUTIN4 was Hindlll and BamHI digested and 

gel purified. Insert and vector were ligated and transformed into Ecoli Top 10 
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Figure 3.19 

8 \ 

HindllllBamHI 
digestion 

Hindlll/BamHI 
digestion 

Amp 

BamHI 

lacZ 

SACOL0188 
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Construction of pRMH02. A. PCR of the SACOL0185 gene insert from SH1000 

using primer pairs loch9F/loch10R to produce an 886 bp fragment; B. Cloning 

into TopO Vector C. Digestion with BamHI and Hind"l and cloning of the 

fragment into pMUTIN4 (predigested with Hindll/BamHI) creating pRMH02. 
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Hmd III Kpn I Sac I BamH I Spe I 
I I I 

ATG AT'[ ACG eCA AGe 11'G GTA eCG AGe 'J'CG GAl' eCA erA 
<.;::..:.~::.=~-=-=-.....::.::..:..:-.-=..:...:.=--==r TAC 1'AA TGC GGT TCG AAC CAT GGC TCG AGe CT" GGT GilT 

BSIX I EcoR I EcoR I 
I 

GTA IiCG Gce Gce AG'I' GTG CTG GM T're Gce CG J:i43t,iMM4P'11,Gc GGC GAA T'lC TGC 
CAT TGC CGG CGG TeA CAC GAC cn i\AG CGG r ...... ___ • CCG Cl' AAG ACG 

EcoR V BsfX. I Not I Xho I Ns/l Xba I Apa I 
I I I I I 

AGA TAT CCA TCA CAC rGG eGC CeG eTC Gl\G CAT GCA TCT l\GI\ GGG cce AAT TCG 'ecc TAT 
Te: I\T1\ GGT AGT GTG ACC GeC GGe GAG cre GTA CGT AGA TeT eec GGG TTA AGC GGG ATI 

... 

CG CG'r GAC GG GM MC 
1"1' GCA GCA C l'G ACC CT TTG 

\~------------------------------ ~----------------------~/ 

·TOPO® 

Figure 3.20 

pCR®2.1-TOPO® 
3.9 kb 

Map of pCR 2.1-TOPO showing the features and sequence surrounding the 

TOPO cloning site. The plasmid contains a lacZa fragment and carries both the 

kanamycin and ampicillin resistance markers. Adapted from TOPO TA Cloning 

User Manual, Invitrogen. 
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with selection on ampicillin (50 !-Ig/ml). The presence of the cloned insert in 

pMUTIN4 was verified by BamHI and Hindlll digestion revealing the 846bp insert 

and 8.6kb backbone (Fig. 3.21 B). The recombinant plasmid was named 

pRMH02. Plasmid pRMH02 was transformed into S.aureus RN4220 by 

electroporation and selection on BHI ery lin. Transformants were patched onto 

BHI ery lin containing X-gal and colonies were found to be blue after overnight 

growth verifying the presence of lacZ on pMUTIN4 as a transcriptional fusion with 

SACOL0185. One transformant was picked and called RMHcoI8. 

3.2.4.2 Transduction by 9S5 phage into SH1 000 

Phage transduction using 985 was used to transfer the pMUTIN4 chromosomal 

insertion from RMHcol8 to SH1000 using ery/lin selection. Transductants were 

not blue on X-gal. Genomic DNA from transductant RMHcoI11(SACOL0185) was 

purified and the presence of the pMUTIN4 insertion verified by PCR using primer 

pair loch11 F and loch10R (Fig. 3.22). The correct insertion in 

RMHcoI11(SACOL0185) was verified by Southern Blot analysis. Genomic DNA 

was digested Hindlll or BamHI. Agarose gel separated DNA fragments were' 

blotted and hybridized with the 846bp pRMH02 insert as probe. The expected 

sizes of hybridizing bands are shown in Fig. 3.23. These are 2.8kB for SH1 000 

and 2.SkB and 12.7kB for the mutant with Hincflll digestion and 6.7kB for SH1000 

and 4.4kB and 11.3kB for the mutant with BamHI digestion. Bands were all of the 

expected (Fig 3.24) sizes thus verifying the inactivation of SACOL0185. 
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Figure 3.21 

Verification of SACOL0185 clones. Lane 1 Hindlll and BamHI digestions of 

pTOPOSACOL0185 (Panel A) and pRMH02 (Panel B). M, 1kB DNA ladder 

marker with appropriate sizes is shown. 
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Figure 3.22 

• loch10R 

SACOL0189 

c 

Verification by PCR analysis of SACOL0185 inactivation using genomic DNA 

from RMHcol8, RMHcol7 and RMHcol11 with primers loch11F/loch 10R. Panel 

A, Physical map of SACOL0185 gene in wildtype genomic DNA (SH1000 and 
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RN4220) and mutant genomic DNA produced by single homologous crossover of 

pRMH02 with RN4220 genomic DNA. Products were separated by 1 % (w/v) 

agarose gel electrophoresis. Panel B, SH 1 000 (lane 1); RN4220 (lane 2); 

RMHcol11 (lane3) and RMHcol8 (lane 4). Panel C, RMHcol7 (lane 1); RMHcol10 

(Lane 2) and RMHcol11 (lane 3). M, 1 kB DNA ladder marker with appropriate 

sizes is shown. Thick arrows indicate insert of expected size of 886bp. 
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Southern Blot verification of SACOL0185 inactivation. Genomic DNA of S.aureus 

SH1000, (lanes 1 and 4), RMHcol7 (lanes 2 and 5), and RMHcol11 (lanes 3 and 

6) were digested with Hindlll (lanes 1-3) or BamHI (lanes 4-6). The probe was 

the 886bp insert which is a PCR product the internal part of the SACOL0185 

gene using primers loch9F and loch 1 OR (Figure 3.19). Lane M is digoxigenin 

labeled DNA markers with appropriate sizes shown. Hybridizing bands are 

indicated by black dots on the left of each band. 
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Figure 3.24 

Physical map showing SACOL0185 region with restriction sites indicated. 

Expected hybridizing band fragment sizes from SH1000 (Panel A) digested with 

BamHI and Hind" I are 6.7kB and 2.8kB respectively. RMHcol11(SACOL0185) 

(Panel B) digestion with BamHI is expected to produce fragments of 4.4kB and 

11 .3kB and with Hind"I 12.7kB and 2.5kB.Probe binding region is shown. 
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3.2.4.3 Expression analysis of SACOL0185 

Insertional inactivation of SACOL0185 resulted in a transcriptional fusion with the 

promoterless lael gene from pMUTIN4. Thus this provided an assay for 

SACOL0185 expression in the mutant. RMHcoI11(SACOL0185) was not blue 

when plated on BHI Xgal agar indicating at most a low level of expression. 

Similarly a quantitative assay during growth revealed no significant expression 

compared to SH1000 without a fusion (Fig 3.25). 
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Figure 3.25 

Expression of the SACOL0185::/acZ fusion in RMHcoI11(SACOL0185). LacZ 

activity( 6 0 ) and 00600 ( £ • ) were measured for SH 1 000 (D • ) and 

RMHcol11 ( 6 £ ). 
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3.2.4.4 Role of SACOL0185 

The role of SACOL0185 in growth of S.aureus using glutathione as sole sulfur 

source was tested. This revealed no growth defect for RMHcol11 (SACOL0185) 

compared to SH1 000 (Fig 3.26). 

3.2.5 Analysis of the combined role of ggt and SACOL0185 

A double mutant was constructed to study the combined roles of ggt and 

SACOL0185. Phage transduction using 985 was used to transfer the ggt 

mutation from RMH12(ggt) to RMHcoI11(SACOL0185) as the recipient. This 

gave clones resistant to tet and ery. PCR was used to verify presence of both 

mutations in one such clone RMH25 (ggt SACOL0185). Primer pair loch8F and 

loch6R was used to amplify the ggt insert in the cloned DNA. The expected size 

for the correct mutation would be 4.3kb (ggt insert). Gel electrophoresis of the 

PCR product revealed a band of the expected size and thus verification of the 

mutation (Fig 3.27). 

3.2.5.1 Combined role of ggt and SACOL0185 

3.2.5.1.1 Role in glutathione utilization 

The combined roles of ggt and SACOL0185 in growth of S.aureus using 

glutathione as sole sulfur source were tested. This revealed no growth defect for 

RMH25 (ggt SACOL0185) compared to SH1000 (Fig.3.28). 
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Figure 3.26 

Role of ggt and SACOL0185 in growth. Growth curve (00600) in liquid chemically 

defined media (COM) with 50 IJM glutathione (filled) and without glutathione 

(open) of S.aureus SH1000 ( o ), RMH12(ggt) ( 6. ) and 

RMHcoI11(SACOL185) ( . 0 ). 
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Verification of S.aureus RMH25. Panel A, Physical map of ggt and SACOL0185 

gene region in RN4220. RMH12(ggt) with tet insertion in ggt, 

RMHcol11 (SACOL0185) with pMUTIN4 insertion in SACOL0185, and 
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RMH25(ggt SACOL0185) with both tet insertion in ggt and pMUTIN4 insertion in 

SACOL0185. Panel B, peR was performed using primer pair loch8Flloch6R on 

genomic DNA from SH1000 as template (lane1-2), RMHcoI11(SACOL0185) 

(Jane3) and double mutants RMH25 (ggt SACOL0185) (lane4). Products were 

separated by 1% w/v agarose gel electrophoresis. M, 1kB DNA ladder marker 

with appropriate sizes is shown. Arrows indicate size of PCR fragments. 
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Figure 3.28 

Role of ggt and SACOL0185 in growth on glutathione. Growth curve (00600) in 

liquid chemically defined media (CDM) of S.8ureus SH1000 (filled symbol) and 

RMH25 (ggt SACOL0185) (open symbol) in 50 ~M cysteine ( 0 ), 50 ~M 

glutathione ( ~), a combination of 50 ~M cysteine and 

50 ~M glutathione (0 0 ), and no addition ( . I) . 0 are hidden behind 6-

and 0 0. 
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3.2.5. Role of ggt and SACOL0185 in glutathione associated stress 
resistance 

Previous studies have suggested that low molecular weight thiols such as 

glutathione may protect against stress induced by various agents (Vergauwen et 

al., 2003, Uziel et al., 2003, Sherrill and Fahey, 1998, and Hibberd, 1978). Disc 

diffusion inhibition assays were performed using CDM plates supplemented with 

glutathione (50 IJM) alone or in combination with cysteine (50 IJM). Strains 

SH1000, RMH12(ggt), RMHcoI11(SACOL0185) and RMH25 (ggt SACOL0185) 

were tested. 

3.2.6.1 Diamide 

The presence of cysteine or glutathione as sulfur source did not significantly 

affect diamide resistance for any strain. RMH12(ggt) showed a significant 

increase in sensitivity to diamide compared to SH1000 in the presence of 

glutathione and combination of cysteine and glutathione (Fig 3.29, P = 0.02 and p 

= 0.005 respectively). RMHcoI11(SACOL0185) and RMH25 (ggt SACOL0185) 

showed comparable levels of resistance to SH1000. 

3.2.6.2 Methyl viologen 

RMH 12(ggt) showed significant increase in sensitivity against 1 M methyl 

viologen in the presence of cysteine or glutathione (p = 0.007, P = 0.03) 

compared to SH1000 (Fig. 3.30). A slight increase in sensitivity was observed in 

the presence of a combination of cysteine and glutathione (p = 0.06). RMH25 

(ggt SACOL0185) showed significant increase in sensitivity in the presence of 

glutathione and a combination of cysteine and glutathione (p = 0.009, P = 0.01) 

while RMHcol11 (SACOL0185) was only significantly more sensitive in the 
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presence of a combination of cysteine and glutathione (p = 0.04) compared to 

SH1000. 

3.2.6.3 H202 

Resistance to H20 2 was tested using the disc diffusion assay and RMH12(ggt) 

showed a significant increase in sensitivity against 0.1 M H202 in the presence of 

cysteine (p=0.04) compared to SH1000 (Fig 3.31). RMHcoI11(SACOL0185) 

showed significant increase in sensitivity against 0.1 M H202 in the presence of 

both cysteine and glutathione (p<0.01 »). 

A liquid H202 kill assay was also carried out (Fig 3.32). Growth in CDM with 

glutathione or cysteine did not make a significant difference to H202 resistance 

for SH1000. When grown in CDM with glutathione RMH12(ggt), 

RMHcoI11(SACOL0185) and RMH25(ggt SACOL0185) all showed similar H202 

sensitivity with approximately 100-fold drop in viability after 45 minutes. Similar 

sensitivity was seen for RMHcoI11(SACOL0185) when grown in CDM with 

cysteine. However RMH12(ggt) and RMH25(ggt SACOL0185) were more 

resistant than SH1000 with 10.3% and 1.4% survivors respectively compared to 

0.2% for SH1000 at 45 minutes. 
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Figure 3.29 

SH1000 

* ** 

RMH12(ggt) RMHcol11 RMH25 

Strains 

Diamide resistance of S.Bureus SH1000, RMH12(ggt), RMHcoI11(SACOL0185) 

and RMH25(ggt SACOL0185) grown on chemically defined media (CDM) 

supplemented with 50 J.JM cysteine (blue bar), 50 J.JM glutathione (maroon bar) or 

50 J.JM cysteine plus 50 J.JM glutathione (cream bar) and tested against 1 M 

diamide. Values shown are means of three separate experiments with standard 

deviations shown. 
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Figure 3.30 
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SH1000 RMH12(ggt) RMHcol11 RMH25 

Strains 

Methyl viologen resistance of S.aureus SH1000, RMH12(ggt), 

RMHcoI11(SACOL0185) and RMH25(ggt SACOL0185) were grown on 

chemically defined media (CDM) supplemented with 50 IJM cysteine (blue bar), 

50 IJM glutathione (maroon bar), or 50 IJM cysteine plus 50 IJM glutathione 

(cream bar) and tested against 1 M methyl viologen. Values are means of three 

separate experiments with standard deviations shown. 
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Figure 3.31 
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H20 2 resistance of S.aureus SH1000, RMH12(ggt), RMHcol11 (SACOL0185) and 

RMH25(ggt SACOL0185) were grown on chemically defined media (CDM) 

supplemented with 50 IJM cysteine (blue bar), 50 IJM glutathione (maroon bar), or 

50 IJM cysteine plus 50 IJM glutathione (cream bar) and tested against 0.1 M 

H20 2. Values are means of three separate experiments with standard deviations 

shown. 

164 



A 
1000 ~ 

100 
~ 
> 
.~ 

10 :l 
1/1 

~ 0 

• 

0.1 -1-----.----~~=======~ 
o 20 45 65 

Time (minutes) 

B 1000 

100 
~ 
> 

.~ 
10 

:I 
1/1 

~ 0 

0.1 +------,-------,---------, 

o 20 45 65 

Time (minutes) 

Figure 3.32 

Liquid H20 2 kill curve S.aureus SH1000 ( . ), RMH12(ggt) ( ), 

RMHcol11 (SACOL0185) ( ) and RMH25 (ggt SACOL0185) (0 ) grown in CDM 

with cysteine (Panel A) and glutathione (Panel 8) washed and treated with 0.1 M 

H20 2. Values are the means of three independent experiments with standard 

deviation shown. 
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3.2.6.4 Potassium tellurite 

Increasing concentrations of glutathione (0.625-10mM) showed a protective 

effect on SH1000 against 1M K2Te03 (Fig 3.33, 5mM p=0.16; 10mM p =0.03). 

Protection was greatest at 10 mM and no significant protection was observed at 

0.625 mM, 1.25 mM, 2.5 mM, and 5mM with p values of 1. 1, 0.7 and 0.16 

respectively. 

A 1 M potassium tellurite disc diffusion inhibition assay revealed that SH1000 

grown on CDM with cysteine was not significantly more sensitive than that on 

CDM with glutathione (p=0.29) (Fig 3.34). Both RMH12(ggt) and 

RMHcol11 (SA COL0185) were no more sensitive to tellurite when grown on CDM 

glutathione compared to CDM cysteine. (p=0.25) and (p=0.27). Both RMH12(ggt) 

and RMHcoI11(SACOL0185) were significantly more sensitive than SH1000 to 

1 M tellurite when grown on CDM with glutathione with p values of 0.04 and 0.02 

respectively. 
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Tel/urite resistance of S.aureus SH1000 on chemically defined media (CDM) 

supplemented with glutathione (0.625 mM - 10 mM) and tested against 1 M 

K2Te03. Values shown are the means of two separate experiments. 
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Tellurite resistance disc inhibition assay for S.aureus SH1000, RMH12(ggt) and 

RMHcol11 (SACOL0185) grown on chemically defined media (CDM) 

supplemented with 50 j.JM cysteine, 50 j.JM glutathione.and 50 j.JM cysteine plus 

glutathione and tested against 1 M K2 Te03. Values shown are mean values of 

three separate experiments. 
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3.2.7 y-glutamyltranspeptidase assay (GGT assay). 

The GGT assay measures the transfer the y-glutamyl group from the substrate L­

y-glutamyl-p-nitroanilide (yGPNA) to the acceptor glycylglycine to form p­

nitroaniline and L-y-glutamylglycylglycine. GPNA is used as a substrate instead 

of glutathione as it allows a direct reaction rate measurement without 

deproteinization or any chemical treatment of the cleavage product, p­

nitroaniline. The rate increase in absorbance at 405nm is due to the release of p­

nitroaniline and is directly proportional to the y-GT activity. The DC-TROL control 

serum was used to monitor accuracy of the assay. 

The GGT assay revealed activity only in the cell free extract prepared from the 

pellet but not in the culture supernatant (Fig 3.35). However both RMH12(ggt) 

and RMHcoI11(SACOL0185) had undiminished activity. This suggests a 

mechanism other than y-GT activity enables utilization of the substrate and 

possibly an alternative novel mechanism for the metabolism of glutathione in 

S.aureus. 
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Figure 3.35 

GGT specific activity assay of cell free extracts (cfe) and supernatants (sup) from 

S.aureus SH1000, RMH12(ggt) and RMHcoI11(SACOL0185) grown in 

chemically defined media (CDM) supplemented with 50 IJM glutathione. Values 

shown are mean values of three independent assays with standard deviation 

shown. 
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3.3 Discussion 

This chapter describes a molecular genetic approach to study the role of 

glutathione as a sulfur source and in stress resistance. Two mutations were 

created in the putative ggt gene and in a putative ABC transporter encoding 

genes (SACOL0185) respectively. The aim was to elucidate the mechanism of 

glutathione transport and utilization as well as to determine its physiological 

function(s) against oxidative, tellurite and thiol stresses. 

Glutathione is an abundant low-molecular weight thiol that is commonly 

found in most living organisms. It is more prevalent in gram-negative compared 

to gram-positive bacteria (Fahey et al., 1978) and amongst the gram-positives 

only Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecalis 

and Lactococcus lactis synthesize glutathione (Sherrill et al., 1998, Fahey et al 

.,1998, Newton, 1996). Synthesis of glutathione in these organisms is not only 

species specific but also strain dependent (Sherrill et al., 1998). Glutathione 

possesses manifold roles, from being a cysteine storage reserve to maintaining 

cellular redox potential, as well as protective functions against oxidative and thiol 

stress (Dickinson et al., 2002, Storey, 1996, Meister et al., 1983). S.aureus is not 

able to synthesize glutathione and it does not possess the gene homologues for 

y-cysteinylglycine synthetase or gluthathione synthase. However, Lithgow et al., 

2004 reported the existence of the gene homologue for ggt in S.aureus that 

codes for a putative gammaglutamyltranspeptidase (GGT). GGT catalyzes the 

transfer of y-glutamyl residues from y-glutamyl compounds to amino acids and 

peptides, as well as the hydrolysis of y-glutamyl compounds (Kumagai et al., 
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1989, Meister et al., 1983). GGT has been shown to be involved in the utilization 

of glutathione as a sulfur source in E.coli K12 (Suzuki et al., 1993), Helicobacter 

pylori (Shibayama et al., 2007) and Haemophilus influenzae (Vergauwen et al., 

2003). 

The role of glutathione in S.aureus has not been determined and as it is 

unable to synthesize glutathione (Fahey et al., 1978), it must acquire it from the 

host environment. S.aureus has been previously shown to be able to utilize 

glutathione as the sole sulfur source (Lithgow et al., 2004). In this study it was 

verified that the S.aureus strain SH1000 was able to catabolize glutathione or 

thiosulphate as sole sulfur source. Similarly, S.mutans does not synthesize 

glutathione but is able to import and accumulate significant levels that it rapidly 

metabolizes indicating that it may serve as a nutrient source (Sherrill et al., 

1998). As expected SH1000 was unable to utilize sulphate as a sulfur source and 

it does not possess gene homologues for utilization of sulphate (Lithgow et al., 

2004). 

Although the mechanism of glutathione utilization in S.aureus is unknown, 

the presence of a ggt homolog in S.aureus SH1000 suggests a possible 

involvement of the GGT enzyme. The ggt mutant (RMH12(ggt» was made by 

insertional inactivation using a tetracycline resistance cassette and a glutathione 

utilization study was performed. Surprisingly, RMH12(ggt) was repeateadly found 

to be able to utilize glutathione as the sole sulfur source in both the liquid and 

plate assays (Fig 3.2 and Table 3.1 respectively). This finding is in contrast with 

other studies performed that have shown GGT to be essential in gluthathione 
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utilization. Suzuki et al., 1993 reported that a ggt derivative of the cysteine 

auxotroph of E.coli K12 was unable to grow on minimal media supplemented with 

glutathione. In contrast, glutathione was shown to be dispensable for growth in 

gshA mutants that were defective in y-glutamylcysteine synthethase (Apontoweil, 

1975). 

RMH12(ggt) however did not show the expected phenotype and instead it 

thrived in minimal media containing only glutathione. Although GGT is deemed 

responsible for glutathione degradation, it is proposed that in enteric bacteria in 

addition to degradation by GGT an alternative mechanism for glutathione 

breakdown and uptake may exist (Suzuki et al., 1984). When GGT of P.mirabilis 

was inhibited by serine-borate, accumulation of cellular gluthathione content was 

observed before leakage occurred which suggests the intracellular presence of a 

GSH degradation system like GGT (Nakayama, 1984). Minami et al., 2004 

reported that the YwrD protein that shows identity with the amino acid sequence 

of the GGTs of E.coli K12 (31 %) and B.subtilis (27%) may play a similar role as 

GGT. However, the authors found that in Bacillus subtilis utilization of 

extracellular glutathione as a sulfur source is mediated by y­

glutamyltranspeptidase and not YwrD. The role of YwrD in glutathione 

metabolism has not been elucidated. 

Similarly, transposon mutagenesis using the Tn917 transposon did not 

allow isolation of any mutants that failed to grow in the presence of glutathione as 

the sole sulfur source. This is likely due to more than one mechanism of 

glutathione utilization in S.aureus. 
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As RMH12(ggt) did not show the expected phenotype, the role of other 

genes in glutathione metabolism was studied. Since S.aureus does not 

synthesize glutathione (Fahey et al., 1975) and is known to acquire it from the 

environment (Lithgow et al., 2004), a transport system for glutathione uptake 

must exist. Similarly, import and accumulation of glutathione from the media has 

been demonstrated in other gram-positive bacteria that do not synthesize 

glutathione such as S.mutans (Sherrill et al., 1998) and S.pneumoniae. 

(Kumaresan et al., 1995). 

The uptake of nutrients in bacteria has been often shown to be mediated 

by solute binding protein-dependent permeases (Higgins, 1992). The bacterial 

peptide transport systems most characterized generally belong to the large family 

of ABC transporters (Hagting et al., 1993) of which the oligopeptide transport 

system (Opp) is a member (Picon et al., 2000). It constitutes one of the most 

versatile substrate binding transports proteins. OppA for instance is shown to 

transport peptides of varying residues in E.coli and Lactococcus lactis (Picon et 

al., 1999). Glutathione transporters have been identified in bacteria, plants, and 

in humans (Zhang et al., 2004, Green et al., 1999, Dringen et al., 1998). The glt 

gene which codes for a permease was identified as the transporter for 

glutathione and GSSG in S.pneumoniae (Kumaresan et al., 1995). HGT1 

encodes for Hgt1 p that is a high affinity glutathione transporter identified in 

Saccharomyces cerevisiae (Bourbouloux et al., 2000). It is a member of novel 

class of transporters that however does not have a homologue in E.coli. 
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Study of the ggt region reveals that three genes directly upstream of ggt 

encode for a putative ABC transporter that was hypothesized to be involved in 

glutathione uptake. One of the ABC transporter genes, SACOL0185 was 

targeted for inactivation by pMUTIN4. As well as SACOL0185 inactivation the 

construct created a lacZ transcriptional fusion. The SACOL0185 mutant and a 

double mutant (ggt SACOL0185) were both also able to utilize glutathione as the 

sole sulfur source. This suggests that neither the ABC transporter permease 

protein nor GGT are responsible for the utilization of glutathione and that 

probably in SH1000 an alternative mechanism may exist by which glutathione is 

utilized. Involvement of YwrD, the GGT homologue, in glutathione utilization is 

unlikely as S.aureus has no direct homologue. 

The possible existence of novel mechanism in SH 1000 is further 

emphasized by the findings from the ggt activity assay. Both the RMH12(ggt) and 

RMHcoI11(SACOL0185) were able to hydrolyse the substrate y-GPNA, an 

analog of glutathione, indicating the presence of a GGT-like activity. The activity 

is found in the cytoplasm. Other studies have shown that GGT mediates 

glutathione utilization by a mechanism other than making its cysteine residue 

accessible as a sulfur source through hydrolysis. In Helicobacter pylori a recent 

study reports a role of GGT in glutathione metabolism that facilitates glutathione 

utilization by converting glutathione to glutamate (Shibayama et al., 2007). This is 

suggested to contribute to the demise of the host cells through depletion of 

glutathione and glutamine and production of ammonia. 
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Since accumulation of glutathione has been shown to be unnecessary for 

growth in standard medium in S.mutans (Sherrill, 1998) and E.coli (Apontoweil, 

1975), it is suggested that the physiological role of glutathione may possibly be 

as a protectant against oxidative and thiol stress agents. The protective role of 

glutathione in stress resistance has been documented in many studies involving 

different stress agents that induce thiol or oxidative stress (Li et al., 2003, 

Chesney et al., 1996, Riccillo et al., 2000, Hibberd et al., 1978). Diamide is a 

thiol-oxidizing agent that is reported to rapidly oxidize glutathione (GSH) to 

GSSG, the oxidized form (Kosower et al., 1969). In addition diamide was shown 

to oxidize a variety of electron carriers such as reduced lipoate, reduced 

Coenzyme A, reduced flavin nucleotides (FMNH2 and FADH2) and ferrodoxin as 

well as NADH c:rnd NADPH (O'Brien et al., 1970). The authors suggest that 

diamide exerts its bacteriostatic effect through formation of mixed disulphides 

with proteins which may possibly inactivate sulfhydryls that are essential for the 

activity of key enzymes. In this study, growth of the ggt mutant RMH 12(ggt) was 

significantly inhibited by the presence of 1 M diamide. However, it is less able to 

overcome the thiol stress caused by the diamide even in the presence of 

glutathione. In E.coli in addition to glutathione, an alternate pathway of diamide 

reduction is the thioredoxin-thioredoxin reductase system that like glutathione 

reductase utilizes NADP as a reductant (Hibberd et al., 1978). Growth of the ABe 

transporter mutant RMHcol11 (SACOL0185) was not Significantly impaired 

compared to SH1000 indicating that it is still able to acquire glutathione from the 

media. This further emphasizes that the transporter may not be involved in the 
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acquisition of glutathione from the environment in S.aureus or that glutathione 

transport in S.aureus is accomplished in synergy with other modes of transport 

yet to be determined. 

Glutathione has been shown to be protective against oxidative stress in 

yeast (Grant et al., 1996, Penninck et al., 2000) and mammalian cells (Storey, 

1996). Vergauwen et al., 2003 report that the glutathione-based H202 removal 

and catalase provide overlapping defenses against the toxicity of H20 2 in 

Hemophilus influenzae, where glutathione was shown to provide primary defence 

against low micromolar levels of H202. In addition, glutathione may also be 

involved in the regulation of catalase activity and is influenced by intracellular 

concentrations of H20 2 (Oktyabrsky et al., 2001). 

In this study resistance to methyl viologen (1 M) and H20 2 (1 M), both 

oxidative stress agents, showed conflicting results. Both RMH12(ggt) and 

RMH25(ggt SACOL0185) were more sensitive to stress induced by methyl 

viologen in the presence of cysteine. However, surprisingly both strains 

recovered in the presence of glutathione suggesting that S.aureus is able to 

utilize glutathione by a mechanism other than GGT. Both RMH12(ggt) and 

RMH25(ggt SACOL0185) showed increased resistance to H20 2 in the liquid 

assay with cysteine but did not exhibit significant growth inhibition in the disc 

assay. This could possibly be accounted for by the difference in the metabolic 

states of the cell in the liquid assay and the disc assay. Protection by glutathione 

against the oxidative stress caused by hydrogen peroxide in Lactococcus lactis is 

shown to be growth dependent as greater protection is observed in cells in 
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stationary rather than logarithmic phase cells (Li et al., 2003) .. The authors 

suggest that this growth dependent protection may be attributed to the significant 

levels of pyruvate that are present in fast-growing and anaerobically grown cells 

but is depleted in stationary phase cells. Glutathione depleted cells were found to 

be more susceptible to hydrogen peroxide during stationary phase when the 

concentration of pyruvate is lowered. Further, the authors suggest that 

glutathione uptake triggers the glutathione-glutathione peroxidase-glutathione 

reductase system which protects the cells during stationary phase (Li et al., 

2003). Similarly, gluthathione deficient growing cells of Ecoli exhibited normal 

resistance to H202 whereas non-growing cells showed increased susceptibility to 

H20 2 (Oktyabrysky et al., 2001, Chesney et al., 1996, Greenberg et al., 1986). 

Interestingly, in S.pyogenes the GpoA (glutathione peroxidase) mutant exhibited 

'heightened sensitivity to methyl viologen but not to hydrogen peroxide (Brenot et 

al., 2004). This phenomenon the authors suggest may be attributed to the 

existence of a complex defense mechanism against oxidative stress involving 

several overlapping antioxidant systems. Although, S.aureus possesses gene 

homologues of glutathione peroxidase, their role in conjunction with glutathione 

in response to oxidative stress has not been determined. 

The findings from a previous study on tellurite reduction showed that the 

cysteine synthase homolog (CysM) in S.aureus is involved in tellurite resistance 

(Lithgow et al., 2004). The cysM gene conferred higher tellurite resistance and 

increased glutathione accumulation when transformed into Ecoli DH5a. In this 

study a concentration of glutathione of 10 mM was found to significantly protect 
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SH1000 against tellurite (Fig. 3.33). This suggests that a link exists between 

glutathione and tellurite resistance in S.aureus SH1000 and that protection 

against tellurite toxicity is glutathione concentration dependent. It further 

emphasizes the involvement of thiol groups in tellurite resistance as reported by 

Turner et al. (1999). However, as S.aureus does not synthesize glutathione it is 

highly unlikely that it is solely responsible for tellurite resistance. In human 

tissues, glutathione concentration ranges from 0.1 to 10 mM and it is most 

concentrated in the liver (up to 10 mM), whereas plasma concentration is 

approximately 4.5 JJM. The high glutathione concentrations in the liver and other 

tissues may possibly confer some form of protection towards S.aureus against 

other forms of stress as well such as diamide and oxidative stress. 

In the disc inhibition assay both RMH12(ggt) and RMHcoI11(SACOL0185) 

showed comparable sensitivity to tellurite (1 M) with the wildtype when grown in 

the presence of cysteine and black colonies are formed in all three strains. 

Replacement of cysteine (50 JJM) with glutathione (50 JJM) as the sulfur source 

significantly impaired growth of RMH12(ggt) (p=0.05) and 

RMHcoI11(SACOL0185) (p=0.02) compared to SH1000 in the presence of 1M 

tellurite. 

Glutathione utilization has been shown to be facilitated by the presence of 

gammaglutamyltranspeptidase (GGT) in many different organisms. S.aureus is 

able to use glutathione as sole sulfur source. However despite inactivation of the 

gene encoding for GGT and a hypothesized glutathione transporter, glutathione 

utilization continues and is apparently unaffected. This suggests possibly a novel 
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mechanism of glutathione uptake and utilization in S.Bureus which remains to be 

elucidated. In addition, although a link between glutathione and tellurite 

resistance is established, the exact mechanism by which this occurs is unknown. 

Elucidation of this mechanism may possibly provide insights on the mechanisms 

of stress resistance and will require further study. 

Summary 
• Two insertional mutations were made in genes encoding a putative 

gammaglutamyltranspeptidase (SACOL0188) and ABC transporter 

(SACOL0185) to create strains RMH12(ggt) and RMHcoI11(SACOL0185) 

respectively. 

• The two mutations were combined to create RMH25(ggt SACOL0185). 

• Inactivation of ggt and SACOL0185 did not affect the ability to utilize 

glutathione as sulfur source. 

• Glutathione was protective against stress induced by 1 M tellurite. 
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CHAPTER FOUR 

ANALYSIS OF THE MOLECULAR BASIS OF TELLURITE RESISTANCE IN 
STAPHYLOCOCCUS AUREUS 

4.1 Introduction 

In Chapter 3 it was found that the presence of glutathione affected 

resistance to stress induced by tellurite. Tellurite (Te03-2
) is a water-soluble 

oxyanion belonging to the same group on the periodic table as sulfur and 

selenium. It occurs rarely in the terrestrial environment and is normally found in 

copper ores and industrial slimes (Taylor, 1999). 

Toxicity of the potassium tellurite oxyanion (Te03-2
) is attributed to its 

strong oxidizing ability that interferes with cellular processes thus making it 

potentially able to cause cellular damage resulting in death. In addition, the high 

toxicity of tellurite may be due to the formation of toxic by-products such as toxic 

reactive species during tellurite reduction (Taylor, 1999; Trutko et al., 2000). Most 

bacteria are intrinsically sensitive to tellurite however resistance to tellurite has 

been demonstrated in several pathogens including Corynebacterium diphtheriae, 

Staphylococcus aureus, Enterococcus (ecalis, Vibrio cholerae and 

verocytotoxigenic E.coli 0157 (Zadik et al., 1993). S.aureus is naturally resistant 

to high levels of tellurite (K2Te03) with an MIC of 7mM (Lithgow et al., 2004 ) . 

Resistance occurs via tellurite reduction resulting in black colonies when grown 

in the presence of this oxyanion· This characteristic is exploited in Baird Parker 

medium that is used for selective isolation of S.aureus (Baird-Parker, 1984). 
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The exact chemistry of tellurite reduction has yet to be established 

although several studies have linked tellurite detoxification with intracellular thiol 

containing groups (Ramirez et al., 2006; Lithgow et al., 2004; Vasquez et al., 

2001; Turner et al., 1999). Taylor (1999) suggests that tellurite reduction may 

occur at the expense of the reduced forms of cellular glutathione and other thiols. 

Oxidation of these cellular thiols may result in disruption of vital biosynthetic 

processes resulting in cell death. In addition, tellurite upon reduction to telluride 

may be incorporated in amino acids in place of sulfur (Toptchieva et al., 2003). 

Latinwo (1998) states that heavy metal resistance in most microorganisms is 

afforded by one of several mechanisms comprising efflux mechanisms, 

transformation to non-toxic forms and sequestration from target molecules. 

Detoxification of tellurite occurs by reduction to elemental tellurium that in 

Natronococcus occultus appears as black crystallites within the cytoplasm 

(Pearion, 1999). Trutko et al. (2000) studied tellurite reduction in several species 

of gram-negative bacteria and found that tellurium crystallites were deposited in 

either the periplasmic space, on the outer or inner membrane surface or on both 

surfaces. Studies on tellurite reduction mechanisms reveal that they occur 

enzymatically (Moscoso et al., 1998; Chiong et al., 1998) via an enzyme that is 

commonly referred to as tellurite reductase. Interestingly different bacteria have 

been shown to have varying enzymes responsible for the tellurite-reducing 

activity and a single species can possess more than one type of activity. In E.coli 

the basal level of tellurite resistance can in part be attributed to inducible 

membrane associated nitrate reductases (Avazeri et al., 1997) while tellurite 
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reduction is also correlated with terminal oxidases in strains of Pseudomonas 

aeruginosa, Agrobacterium tumefaciens, Erwinia carotovara and also Ecoli 

(Trutko 2000). However, periplasmic nitrate reductases are not responsible for 

tellurite resistance in Rhodobacter sphaeroides (Sabaty 2001). An unidentified 

membrane-associated flavin-dependent reductase may be responsible for 

tellurite reduction in Rhodobacter sphaeroides 2.4.1. (Moore 1992). Chiong et al. 

(1988) identified three different enzymes in Thermus thermophilus that 

demonstrated tellurite-reducing activity. Similarly, tellurite reduction occurred in 

cell free extracts of Bacillus stearothermophilus V (Moscoso et al., 1998) and 

Mycobacterium avium (Terai et al., 1958). Terminal oxidases (cytochrome c) in 

the plasma membrane of gram-negative bacteria are shown to reduce tellurite 

where the location of tellurium crystallite deposits is determined by the active 

centers of the terminal oxidases (Trutko, 2000). Unlike in Ecoli where tellurium 

deposits are periplasmic, tellurium crystals in N.occultus are found deposited 

within the cytoplasm. In this organism, methylation of tellurium is the proposed 

mechanism of detoxification as evidence by a garlic odour when it is grown in the 

presence of potassium tellurite (Pearion, 1999). 

Tellurite resistance is observed in both gram-positive and gram-negative 

bacteria. In gram-negative bacteria tellurite resistance is usually encoded by 

genes that are found on the chromosome or by conjugative plasmids (Sanchez­

Romero, 1998). At least 5 tellurite resistance (TeR
) determinants have been 

identified in gram-negative bacteria that are either plasmid mediated or 

chromosomally located (Taylor, 1999). 
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Tellurite resistance determinants (TeR
) chromosomally located are tehAB in 

E.co/i; tmp in P.syringae; trgAB and cysK in R.sphaeroides. Plasmid-associated 

mechanisms are kilAtelAtelB in RP4 (IncP) and terZ terA-F in R478 (IncH12) 

(Taylor,1999). The tellurite-resistance determinants tehAtehB require a reducing 

environment or electron-reducing equivalents for high levels of tellurite resistance 

in E.coli (Turner, 1995). 

Tellurite is found naturally in the terrestrial environment but not in the 

human host. Thus the high level of resistance seen for S.aureus is unlikely to be 

a virulence determinant per se but may be an indicator of resistance to other 

forms of stress. Taylor (1999) suggests that tellurite reduction may be a 

secondary effect of a metabolic process. Unveiling the mechanism of tellurite 

reduction may possibly provide an insight into other mechanisms involved in 

enabling S.aureus to resist and overcome stress in the human host. 

In this chapter, two major tellurite reductases in S.aureus were identified 

as thioredoxin reductase (TrxB) and alkylhydroperoxidase subunit F (AhpF). The 

TrxB protein was overexpressed and purified to facilitate further determination of 

its potential role in tellurite reduction. 
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4.2 Results 

4.2.1 Tellurite resistance in S.aureus 

4.2.1.1 Effect of tellurite on colony and culture morphology of S.aureus 

SH1000 

As tellurite is reduced to tellurium a gray/black precipitate is formed. This is 

clearly visualized as black colonies on agar plates or coloration of liquid cultures 

(Fig.4.1 ). 

A B 

.' . 
. . 

• "0 " .. 

Figure 4.1 

Effect of tellurite on culture morphology. S. aureus SH 1 000 grown overnight in 

BHI broth (A) or BHI plates (B) with (righthand) and without (Iefthand) 1 mM 
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4.2.1.2 Minimum inhibitory concentration (MIC) of tellurite for SH1 000 

4.2.1.2.1 MIC on solid media 

. S.aureus SH 1 000 was grown on TSB agar containing different concentrations of 

potassium tellurite (1-20mM). Serial dilutions of cells from an overnight culture 

were spotted onto the plates. Figure 4.2 shows the number of colonies at 

different tellurite dilutions. From this the MIC can be calculated as 5mM. 

4.2.1.2.2 MIC on liquid media 

SH1000 was inoculated into TSB broth containing potassium tellurite over a 

range of concentrations (1-20mM). After overnight incubation cells were 

removed, washed, serial dilutions made and plated to determine viable numbers. 

In the liquid assay the MIC is 20mM (Fig. 4.3). 

4.2.2 Effect of growth in tellurite on S.aureus cellular morphology 

4.2.2.1 Cytoplasmic location of tellurium deposits in S.aureus SH1 000 

S.aureus SH1000 was grown overnight at 37°C in BHI with and without 1mM 

tellurite. Without tellurite the culture appeared yellow whilst that grown with 1 mM 

K2Te03 was black. Cells were harvested and processed for electron microscopy 

as described in Materials and Methods (Chapter 2.18.1). Electron micrographs 

(Fig 4.4A) of cells grown without tellurite showed a generally homogenous 

cytoplasmic appearance compared the cells grown in 1 mM tellurite (Fig 4.4B) 

which appeared grainy. Tellurium deposits (pink arrows, Fig 4.4B) were clearly 
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visible within the cytoplasm. In addition, more cell debris was observed reflecting 

the presence of dead cells. 
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Figure 4.2 

MIC of S.8ureus SH1000 grown on TSB plates containing K2Te03 
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Figure 4.3 

MIC of S.8ureus SH1000 grown in TSB broth containing different concentrations 
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Figure 4.4 

Electron micrographs of sections of S.aureus SH1000 grown in 8HI without (A) 

or with 1 mM K2Te03 (8). Pink arrows indicate tellurium deposits. 
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4.2.3 Analysis of tellurite reductase (TR) activity. 

S.aureus is highly resistant to tellurite and apparently reduces it to tellurium 

resulting in cytoplasmic crystals. The tellurite reductase (TR) activity is likely 

found in the cytoplasm. Previous studies (Pearion and Jablonskl, 1999; Moscoso 

et al., 1998; Chiong et al., 1998) have indicated that TR activity requires NADH 

as a cofactor. 

4.2.3.1 Development of a tellurite reductase assay 

The assay used was spectrophotometric and was based on that of delCardayre 

et al., 1998. The assay measures the production of tellurium as an increase in 

A500. The dependence of activity on NADH as a cofactor was measured (Fig. 

4.5). Specific activity (U) was defined as a 0.001 increment in A500 per min per 

mg protein. Freshly prepared cell free extract of SH1000 was incubated at 37°C 

with 1 mM K2 Te03 in the presence and absence of 1 mM NADH. Aliquots were 

removed and tellurite reduction measured spectrophotometrically at 500nm. 

Tellurite reduction rate in the presence of NADH was highest in the first 30 

minutes. In the absence of NADH, tellurite reduction was almost non-existent. 

For practical reasons, a 15 minutes incubation time was chosen for the tellurite 

reduction assay since the rate of tellurite reduction at this time is within the linear 

range. 
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Figure 4.5 

Kinetics of tellurite reduction by cell free extract of S.Bureus SH1000 (0.4 mg 

protein) with 1 mM NADH ( + ) and without 1 mM NADH (0 ). 
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4.2.3.2 Effect of boiling and treatment with Proteinase K on tellurite 
reduction 

It was important to establish that the tellurite reduction process is enzymatic and 

not due to the presence of low molecular weight thiols. Cell free extract of 

S.aureus SH1000 that was dialyzed against 10mM TrisHCI buffer to remove the 

low molecular weight thiols, retained tellurite reduction activity (Table 4.1). This 

activity however, was lost after boiling for 15 minutes or treatment with 

proteinase K (0.1 mg/ml). Moreover activity shows a requirement for NADH for 

the reduction of tellurite (Table 4.1; Fig 4.5). The rate of tellurite reduction is also 

dependent on the concentration of 2-mercaptoethanol to maintain a reducing 

environment. This suggests that tellurite reductase activity in cell free extracts of 

S.aureus SH1000 is enzymatic and not due to low molecular weight thiols. 

Sample % Original Specific Activity (Units) 
Undialysed Cell free extract (CFE) 100 
Dialysed Cell free extract (dCFE) 79.5 
dCFE boiled, 100°C, 15min. 0 
dCFE + proteinase K, 37°C, 15min 0 
NoNADH 0 
NoCFE 0 

Table 4.1 

Effect of treatments on tellurite reductase activity of S.aureus SH 1 000. 

4.2.3.3 Effect of growth phase on tellurite reductase activity 

Tellurite activity was determined in CFE of S.aureus SH1000 during growth in 

TSB. Samples were removed during growth in TSB and speCific activity of CFE 

measured after lysostaphin lysis (Fig. 4.6). There was no detectable activity until 
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4 hours after inoculation, which equates to postexponential phase. Activity 

remains into late stationary phase (27 hours; 22.25 ± 6.83 units). 

4.2.3.4 Stability of tellurite reductase activity 

4.2.3.4.1 Effect of temperatures on activity 

The stability of tellurite reductase was tested by incubating the cell free extract at 

4, 25, and 37°C (Fig.4.7). The specific activity of tellurite reduction of the CFE at 

time zero was used as the benchmark (100% activity). The enzyme activity 

showed a temperature dependence for stability. At 4°C after 17.5 hours activity 

had actually increased slightly. However after 24 hours at 37°C all activity had 

been lost. At 25°C an intermediate loss of activity was observed with 60% activity 

after 17.5 hours. The tellurite reductase activity is sufficiently stable to allow 

protein purification to be attempted. 

4.2.3.4.2 Effect of NaCI on tellurite reductase activity. 

Tellurite reduction was performed on the crude cell free extract from S.aureus 

SH100a in the presence of NaCI (O.1-0.9M) (Fig 4.8). The specific activity of the 

CFE without NaCI was used as the benchmark (100% activity). Tellurite 

reductase was inhibited by increasing NaCI concentration with a >80% inhibition 

at a.9M. 
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Figure 4.6 

Tellurite reductase activity during growth of S.aureus SH1000. Cell growth 

(00600; + ) and tellurite reductase activity were measured ( ). 

195 



180 ' 

- 160 
~ 
c:: 140 :::> -?:' 120 
.:; 

100 .:; 
0 
ns 80 
0 
~ 60 0 
Q) 
c. 40 en 
~ 0 20 

0 
0 2 4 8 17.5 24 

Time (hours) 

Figure 4.7 

Effect of temperature on tellurite reductase activity. CFE of S.8ureus was stored 

) and specific activity measured compared 

to the T=O control. 
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Figure 4.8 

Effect of NaCI on tellurite reductase activity. The activity was measured in the 

presence of increasing concentrations of NaCI. 
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4.2.4 Molecular analysis of tellurite reductase activity 

4.2.4.1 Genetic screen to identify mutants with reduced tellurite reductase 
activity. 

A mariner transposon insertio~ library was previously constructed (Howard 

Crossley, personal communication) using the minimariner transposon Bursa 

aurealis that was derived from the Himar1 (mariner) element and carries the 

ermB resistance marker (Sae et al., 2004). Bursa aurealis was cloned into pTS2, 

with a temperature-sensitive plasmid replicon (repts) and chloramphenicol 

resistance gene (cat) to generate pBursa (Sae et al., 2004) that was used for 

transposon mutagenesis in S.aureus. Dilutions of the transposon insertion library 

were made in PBS and plated on tryptic soy agar containing 10 ~M of K2Te03 

and 5~g/ml erythromycin. The concentration of tellurite used in this screening 

process was determined by plating the transposon library on tryptic soy agar 

plates containing different concentrations of K2Te03 ranging from 5 ~M to 1mM. 

The lowest concentration of K2Te03 with which S.aureus colonies are colored 

was determined to be 1 0 ~M. At this concentration S.aureus produced gray 

colonies with a darker center compared to those growing on tryptic soy plates 

without K2 Te03 (control). If a mutant lacked tellurite reductase activity the colony 

would likely show reduced darkening. Only 10 ~M K2Te03 was used to prevent 

any growth inhibition. Approximately 11,600 colonies were screened by this 

method but no colonies with altered coloration were detected. The lack of 

success could be due to multiple activities or essentiality of the enzyme. 
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4.2.5 Purification of tellurite reductase 

A flow diagram explaining the various steps used to identify tellurite reductase 

activity is shown in Fig.4.9. This used both the spectrophotometric assay for 

overall activity and zymography using native gels to separate and determine the 

number of different activities. 

4.2.5.1 Native PAGE tellurite reductase gel submersion assay 

In order to visualize the TR activity a zymography assay was used based on that 

of Avazeri et al. (1997). If TR activity occurred in situ in a gel in the presence of 

the substrate, insoluble tellurium will be produced resulting in a dark precipitated 

band. The dialysed crude cell free extract was separated on 7.5% w/v native 

PAGE after which the gel submersion assay was performed (Fig 4.10). Two main 

activity bands were observed in close proximity, the upper band (Band 1) that 

appears brown while the bottom band (Band 2) appears gray suggesting that at 

least two major tellurite reductases are operative in S.aureus SH1000. Both 

bands were due to tellurite reduction as without the NADH cofactor no bands 

were seen. 

4.2.5.2 Ammonium sulphate precipitation 

In order to concentrate the dialysed CFE, ammonium sulphate precipitation was 

used. The crude CFE was subjected to ammonium sulphate (AS) precipitation at 

55% w/v. S1 was precipitated using 75% w/v AS to give pellet P2 and 

supernatant S2. P1 and P2 were resuspended in 10 Mm Tris HCI Ph 7.5. S1, S2, 

P1 and P2 were a" dialysed against 10Mm Tris HCI Ph 7.5. A" TR activity was 

found in the 55% w/v P1 and 75% w/v P2 samples respectively (Fig. 4.11, Table 
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4.2). P1 and P2 had 2270 and 1840 (Units) of total TR activity respectively (Table 

4.2). P2 was chosen for further use. Little or no activity was observed in the 

supernatants S2 (75% w/v AS). 
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Figure 4.9 

CRUDE CELL FREE EXTRACT 

55% w/v ammonium sulphate 
(AS) precipitation 

PELLET (P1) SUPERNATANT (S1) 

75% w/v ammonium sulphate 
(AS) precipitation 

~ 
SUPERNATANT (S2) PELLET (P2) 

Ion exchange chromatography 
(MonoQ) 

l 
Size exclusion chromatography 

(Superdex 200) 

l 
N-tennlnaJ sequence 

Flow diagram illustrating purification steps of tellurite reductase from S.aureus 

SH1000. 
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A 

Band 2 
(gray) 

Figure 4.10 

Band 1 
(brown) 

B 

Zymography analysis (7.5% w/v native PAGE) of crude cell free extract from 

S.aureus SH1000 (0.13 mg). 7.5% w/v native PAGE activity gels showing tellurite 

reductase (TR) activities in (Panel A) and corresponding Coomassie Blue stained 

native PAGE gel (B). Arrows indicate apparent tellurium deposits. 
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B 
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Figure 4.11 

Zymography analysis (7.5% w/v native PAGE) of tellurite reductase activity in 

fractionated cell free extract from S.aureus SH1000. Samples were 5 1-11 each of 

supernatants (S1, 0.008mg, S2, 0.004mg) or pellets (P1, 0.06 mg; P2, 0.17 mg) 

of 55% w/v (S1 and P1) and 75% w/v (S2 and P2) ammonium sulphate (AS) 

precipitation of dialyzed cell free extracts from S.aureus SH1000. Panel A, 

zymogram; Panel B, Coomassie stained protein gel. Arrows indicate tellurium 

deposits and corresponding regions on Coomassie stained gel. 
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4.2.5.3 Purification of TR by Ion Exchange Chromatography 

The pellet from 75% w/v AS precipitation (P2) was resuspended in 6 ml 10mM 

TrisHCI buffer (Ph 7.5) and dialysed against 4 liters of 10mM TrisHCI Ph 7.5 

containing 1 mM 2-mercaptoethanol. Initia"y, 2 ml of the dialysate was loaded 

onto a MonoS column and separated by FPLC using a gradient of 0-1 M NaCI in 

starting buffer. However, none of the proteins attached to the MonoS column as 

a" were eluted at the void volume (results not shown). The dialysate was then 

loaded onto a MonoQ column (2 ml) and separated by FPLC using a gradient of 

0-1 M NaCI (Fig 4.12). Eluted fractions were resolved on 7.5% w/v native PAGE 

as in Chapter 2.19.5.2 and analyzed for TR activity (Chapter 2.19.5.4). TR 

activity was observed in fractions 20, 21 and 22 (Fig.4.12A). The TR activity in 

fraction 22 is associated with Band 1 (brown band, Fig.4.12A) and fraction 20 

with Band 2 (gray band, Fig.4.12B) and thus these can be separated from each 

other. However the corresponding Coomassie Blue stained gel revealed they are 

not pure enough to allow identification. 
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Figure 4.12 

Ion exchange chromatogram of AS 75% w/v P2 from S.aureus strain SH1000 

(66.4 mg loaded). Panel A, Chromatogram of separated proteins. Dashed line 

shows 0-1 M NaCI gradient. Panel B, Zymogram using 7.5% w/v native PAGE 

showing tellurite reductase activities in eluted fractions 20, 21 and 22 and Panel 

C, corresponding Coomassie stained protein gel. Arrows indicate tellurium 

deposits and corresponding regions on Coomassie stained gel. Dark arrows on 

FPLC trace show fractions containing tellurite reductase activity in Band 1 (22) 

and Band 2 (20). 
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4.2.5.4 Purification of TR Band 1 (Brown) 

4.2.5.4.1 Size exclusion chromatography 

To furthur purify TR Band 1. fraction 22 from the MonoQ separation was loaded 

onto a Superdex 200 column and separated by FPLC. Fractions 13. 14, 17. 18, 

20, 21 and 22 were collected. concentrated using a YM-30 Centricon column, 

and analyzed by 7.5% w/v native PAGE for TR activity. Fractions 21 and 22 

eluted from the Superdex 200 column showed tellurite reduction activities (Fig 

4.13A) which corresponded to a single Coomassie Blue stained protein (Fig 

4.138). 

4.2.5.4.2 Identification of TR Band 1 

Fractions 21 and 22 eluted from the Superdex 200 column were pooled and 

loaded in triplicate onto a 7.5% w/v native PAGE and separated. The gel was 

excised into three for TR assay, Commassie Blue staining and electroblot for N­

terminal sequence (Fig 4.14). The Band corresponding to Band 1 TR activity was 

N-terminal sequenced as MLNADLKQQL. A BLAST search of the sequence 

revealed the TR activity to have 100% identity to alkylhydroperoxidase subunit F 

(Fig 4.15). 
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Figure 4.13 

Gel filtration purification of tellurite reductase activity Band 1. Panel A, 

chromatogram of Superdex 200 fractionation; Panel B, zymogram using 7.5% 

w/v native PAGE showing tellurite reductase activity (arrow), and Panel C 

corresponding regions on Coomassie stained gel (band corresponding to TR 

activity highlighted). Dark arrows on FPLC trace show fractions containing 

tellurite reductase activity. 
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20 21 20 

A B 

Figure 4.14 

Identification of TR activity Band 1. Panel A, Superdex 200 fractions 20 and 21 

were pooled and separated by 7.5% w/v native PAGE and stained for tellurite 

reductase (TR) activity;and Panel B, corresponding regions on Coomassie 

stained gel (band corresponding to TR activity highlighted). Arrows indicate 

tellurium deposits and Coomassie stained band identified as 

alkylhydroperoxidase subunit F (AhpF). 
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AhpF 
(SACOL0451 ) 

MLNADLKQQLKQLLELMEGNVEFYASLGSDDKSKELKDLLTEITDMSPRLSLSEKSLKRT 

MLNADLKQQL + Band 1 

PSFSYNRPGEETGYTFAGIPLGHEFNSLYLAILQYSGRAPKEKQSIIDQIKKLEGSFHFE 

TFISL TCQKCPDVYQALNLMSYlNPNITHSMIDGA YFREESENIMA YPA YFLNGEEFGNG 

RMTIQDILSKLGSTADASEFENKEPYDVLIYGGGPASGSAAIYTARKGLRTGIYADRIGG 

QVNDTAGlENFITYKETTGSEFSSNLAAHIDQYDIDAMTGIRATDIEKTDEAIKVTLENG 

A YLESKTVIIATGAGWRKLNIPGEEQLINKGY AFCPHCDGPLFENKDVA VIGGGNSGVEA 

AIDLAGIYNHYTLFEFASELKADNVLQDRLRSLSNYDIKTNAKTTEYYGEDHVTGIRYED 

Figure 4.15 

Identification of TR activity Band 1. The Band 1 N-terminal sequence (blue) is 

aligned with AhpF of S.aureus COL (red). 

209 



4.2.5.5 Purification of TR Band 2 (gray) 

4.2.5.5.1 Ion exchange chromatography 

After storage at 20°C, the TR activity in fraction 20 eluted from the MonoQ 

column was lost. A new extract was prepared and a 75% wlv AS cut taken. The 

resuspended and dialyzed pellet material was separated by MonoQ (as 

described in Materials and Methods). The separation (Fig 4.16) revealed activity 

to be in eluted fraction 14 and 15 as shown by zymogram analysis (Fig 4.16). 

4.2.5.5.2 Size exclusion chromatography 

To furthur purify TR Band 2, fractions 14 and 15 from the MonoQ were pooled 

and loaded onto a Superdex 200 column and separated by FPLC. Fractions 

corresponding to the eluted proteins (25, 26, 27, 28, and 29) were collected, 

concentrated using YM-10 Centricon columns and TR activity determined by 

zymography. Fractions 26 and 27 from the Superdex 200 elution had TR activity 

(Fig 4.17 A). The corresponding Coomassie stained protein gel (Fig 4.17B) 

revealed a single prominent band. 

4.2.5.5.3 Identification of TR Band 2 

Fractions 26 and 27 from the Superdex 200 column were combined and loaded 

in triplicate onto 7.5% w/v native PAGE and separated. The gel was excised into 

three for TR assay, Coomassie Blue staining and electroblot for N-terminal 

sequencing (Fig 4.18). The band corresponding to TR Band 2 had the sequence 

EIDFDIAIIG. A BLAST search of the sequence revealed 100% identity to 

thioredoxin reductase (TrxB) (Fig. 4.29). 
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Figure 4.16 

Ion exchange chromatography of 75% w/v AS P2 from S.aureus strain SH1000 

(66.4 'mg loaded). Panel A, Chromatogram of separated proteins. Dashed line 

shows 0-1M NaCI gradient. Panel B, Zymogram using 7.5% w/v native PAGE 

showing tellurite reductase activities in eluted fractions 14 and 15 and Panel C, 

corresponding regions on Coomassie stained gel (band corresponding to TR 

activity highlighted). Arrows indicate tellurium deposits and corresponding 

regions on Coomassie stained gel. Dark arrows on FPLC trace show fractions 

containing tellurite reductase activity. 
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Figure 4.17 

Gel filtration purification of tellurite reductase activity Band 2. Panel A, 

chromatogram of Superdex 200 fractionation; Panel 8 , zymogram using 7.5% 

(w/v) native PAGE showing tellurite reductase activity and Panel C 

corresponding regions on Coomassie stained gel (band corresponding to TR 

activity highlighted). Arrows indicate tellurium deposits. and corresponding 

regions on Coomassie stained gel. Dark arrows on FPLC trace show fractions 

containing tellurite reductase activity. 
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A B 

Figure 4.18 

Identification of TR activity Band 2. Panel A, Superdex 200 fractions 27 and 28 

were pooled and separated by 7.5%(w/v) native PAGE and stained for tellurite 

reductase (TR) activity;and Panel B, Coomassie stained protein gel showing 

corresponding protein that was used to identify the tellurite reductase band by N­

terminal sequence. Arrows indicate tellurium deposits on TR gel that were 

identified as thioredoxin reductase (TrxB). 
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TrxB 
(SACOL0829) 

MTEIDFDIAIIGAGPAGMTAA VY ASRANLKTVMIERGIPGGQMANTEEVENFPGFEMITG 

---- EIDFDIAIIG ~ Band 2 

PDLSTKMFEHAKKFGA VYQYGDIKSVEDKGEYKVINFGNKEL TAKA VHA TGAEYKKIG 

v 

PGEQELGGRGVSYCA VCDGAFFKNKRLFVIGGGDSA VEEGTFLTKFADKVTrVHRRDEL 

R 

Figure 4.19 

Identification of TR activity Band 2. The Band 2 N-terminal sequence (blue) is 

aligned with the partial sequence of TrxB of S.aureus COL (red). 
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4.2.6 Efficiency of TR purification 

Table 4.3 shows the overall purification of TR. At each step of the purification 

stage, the spectrophotometric tellurite reduction assay and the BioRad protein 

assay were performed. Both these values were used to calculate the specific 

tellurite reduction activity (units) (Table 4.2). Although fractions 26 and 27 

showed visible TR activity bands on the gel assay, activity was not measurable 

on the spectrophotometric assay. 

4.2.7 Verification of TR identity 

The ahpF gene is the second in an operon with ahpC (Bsat et al., 1996). The two 

gene products encode subunits of alkylhydroperoxidase reductase. The ahpc 

gene has previously been inactivated (Cosgrove et al., 2007), which would not 

only result in the loss of an essential subunit but the mutation would be polar on 

ahpF. The ahpCF operon is under negative regulation by PerR. Thus in a perR 

background there is an increase in expression of the operon. In order to verify 

that Band 1 of TR activity is due to AhpCF activity, KC041 (ahpC) and 

MHK1 (perR) mutants were analyzed for TR activity. 

4.2.7.1 Preparation of fresh cell free extract of SH1000, KC041 (ahpC) and 
MHK1(perR) mutants. 

Cell free extracts were prepared and analyzed by 7.5% w/v zymography (Fig 

4.20). As can be seen SH 1 000 has both the brown Band 1 and the gray Band 2. 

Strain KC041 (ahpC) has only Band 2 whereas MHK1 (perR) has increased Band 

1. This verifies the TR Band 1 as being alkylhydroperoxidase reductase as 

expected. 
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Separation Sample Total Total Total Specific Activitya % 
Volume protein Units (Units) Yield 
(m I) (m g) 

Crude CFE 460 2,875 220,800 76.8 100 
55% AS P1 10 110 2270 20.6 1.03 
75% AS P2 6 198 1840 9.29 0.83 
MonoQ Band 2 2 13.6 51 3.75 0.02 

14 + 15 
Band 1 2 12.1 487 40.25 0.22 
17+18 

Superdex 26 1 - - TR activity not -
200 measurable by 

spectrophotometric 
assay 

27 1 - - TR activity not -
measurable by 
spectrophotometric 
assay 

Table 4.2 

Purification of tellurite reductase from S.8ureus SH1000. CFE was subjected to 

55% followed by 75% w/v AS precipitation. Samples were dialysed against 

10mM Tris Hel ph 7.5 followed by purification through ion exchange (MonoQ) 

and gel filtration columns (Superdex 200). After each purification step, 200 ~I of 

samples were used to perform the TR activity and protein assays (BioRad). The 

data obtained were used to calculate the specific activity (Units) of each sample. 
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Figure 4.20 
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Zymography analysis (7.5% w/v native PAGE) of tellurite reductase activity in 

crude cell free extracts of S.aureus SH1000 (Lanes 1 and 2), KC041 (ahpC) 

(Lanes 3 and 4) , MHK1 (perR) (Lanes 5 and 6) . Dark crosses indicate tellurium 

deposits from tellurite reductase activities. 
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4.2.7.2 Contribution of the alkylhydroperoxidase to total TR activity 

The spectrophometric TR assay was used on crude extracts from SH1000, 

KC041(ahpC) and MHK1(perR) mutants and the specific activities (Units) were 

calculated (Materials and Methods). There was no significant difference observed 

in the tellurite reduction activity in all three strains (SH1000, 18.2 Units; 

KC041 (ahpC), 20.3 Units; MHK1(perR), 17.5 Units). This suggests that 

alkylhydroperoxidase reductase is not the major TR activity in S.aureus. 

4.2.10.4.4 Verification of TrxB as the major TR activity in S.aureus 

In order to verify the activity of TrxB the TR activity of KC041 (ahpC) was 

analyzed. A CFE was concentrated by 75% w/v ammonium sulphate precipitation 

and separated by MonoQ chromatography (Fig 4.21). Fraction 14 and 15 were 

pooled and separated by Superdex 200 and concentrated using Y30 columns 

(Fig 4.22). Eluted fractions 24 and 25 were found to possess TR activity (Fig 

4.23) which corresponds to a protein with the N-terminal sequence TEIDFDIA. 

This matches that found previously (Fig. 4.19) and verified the major TR activity 

as TrxB. 
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Ion exchange chromatography of AS 75% w/v cut P2 from KC041 (ahpC). Panel 

A, Chromatogram of separated proteins. Dashed line shows 0-1M NaCI gradient. 

Panel B, Zymogram using 7.5% w/v native PAGE showing tellurite reductase 

activities (arrows) in eluted fractions 14,15,16,17 and 18 and Panel C, 

corresponding Coomassie stained protein gel with arrows showing region of TR 

activity. Dark arrows on FPLC trace show fractions containing tellurite reductase 

activity. 

2 19 



rnAU 

500 

A 
400 

300 

200 

100 

0 

0.0 

22 23 24 25 26 22 23 24 25 26 
B c 

Figure 4.22 

Gel filtration purification of tellurite reductase activity from KC041 (ahpC). Panel 

A. chromatography of Superdex 200 fractionation; Panel B. zymogram using 

7.5% w/v native PAGE showing tellurite reductase activity and Panel C 

corresponding Coomassie stained protein gel. Arrows indicate tellurium deposits 

and corresponding region on Coomassie stained gel. Dark arrows on FPLC trace 

show fractions containing tellurite reductase activity. 
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A B 

Figure 4.23 

Identification of TR activity from KC041 (ahpC) . Panel A, Superdex 200 fractions 

25 and 26 separated by 7.5% w/v native PAGE and stained for tellurite reductase 

(TR) activity; and Panel S, Coomassie stained protein gel showing corresponding 

protein that was used to identify the tellurite reductase band by N-terminal 

sequence. Arrows indicate tellurium deposits on TR gel that were identified as 

thioredoxin reductase (TrxS). 
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4.2.8 Role of alkylhydroperoxidase reductase in tellurite resistance 

The MIC of SH1000 was compared to KC041(ahpC) in both the liquid and plate 

assay of tellurite resistance. 80th strains had identical MICs of 5 and 3mm in the 

plate and liquid assay respectively. Thus ahpC does not have a significant role in 

tellurite resistance. 

4.2.9 Production of recombinant TrxB for activity analysis. 

The trxB gene has previously been reported as being essential (Uziel et al., 

2004). Therefore it was proposed to determine the TR activity of recombinant 

protein. The petBlue vector system (Fig. 4.24) was used for production of 

recombinant Trx8. 

4.2.9.1 Primer design and peR of the trxB gene 

The trxB gene (936bp) was PCR amplified from SH1000 genomic DNA with Taq 

polymerase using the Extensor Reddymix with primers lochp81 (F) and lochp81I. 

The PCR product was resolved on a 1 % w/v agarose gel and resulted in one 

band at the expected size of 936bp (Fig 4.258). This was then ligated to the 

pet8lue-1 acceptor vector (Materials and Methods) to produce the construct 

Pbr02 (Fig. 4.25A). 
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pETBlue·l cloning/expression region 

Figure 4.24 

Physical map of the pETBLUE-1 vector. The insert is cloned into the EcoR V 

cloning site located downstream from the E.eoli ribosome binding site. The E.eol; 

promoter mediates blue/white screening, whilst the T7 lac promoter that is in the 

opposed orientation allowing expression of target genes. 
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4.2.9.2 Confirmation of construct with double digestions using Xball 
BstBI and XbaJEcoRI. 

The correct insert in petBlue-1 (pBR02) was verified by PCR with primer 

10chpB 1 (F)/lochp8 1 (R) which showed a band at the expected size of 936bp (Fig. 

4.25C). Restriction digestions of Xbal/BstBI cut pBR02 (Fig. 4.250) producing 

two fragments of 293bp and 4.1 kb and Xbal/£coRI cut pBR02 (Fig 4.25E) 

producing fragments of 1.2 kb and 3.1 kb. These digests revealed insert and 

vector backbone as expected (Fig 4.25 0 and E). 

4.2.9.3 Transformation into Tuner(DE3) ™ pLacl electrocompetent cells 

For overexpression of the TrxB protein, the construct pBR02 was transformed 

into Tuner cells (Materials and Methods) and transformants were selected on LB 

agar containing ampicillin (50 jJg/ml) and chloramphenicol (34 jJg/ml) to give 

clone RMHt7. 

4.2.10 Overexpression of TrxB 

4.2.10.1 Overexpression of RMHTrx7 (RMHt7) 

Cultures of RMHt7 were grown in Terrific Broth at 37°C until they reached an 

00600 of 0.08. Then 1mM IPTG was added and incubated for a further 4 hours. 

1 ml of each of the cultures post induction was sampled, proteins extracted and 

analyzed by 12.5% w/v SOS PAGE {Fig 4.26}. The induced RMHt7 sample 

produced an intense protein band of approximately 36kDa that corresponds to 

the size of thioredoxin reductase (TrxB) that is 35.3kOa. This indicates that 

recombinant thioredoxin reductase (rTrxB) was likely overexpressed. 
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Figure 4.25 

peR and restriction digest analysis of pBR02. Panel A, Construction of pBR02 

showing physical map; Panel B, peR amplification of trxB insert from SH1000 . 

using primer pair lochpB1F/lochpB1R separated by 1% w/v agarose gel 

electrophoresis; Panel C, peR amplification of trxB insert from pBR02 using 

primer pair lochpB1FllochpB1R separated by 1% w/v agarose gel 

electrophoresis; Panel D, 1% w/v agarose gel of Xbal/BstBI cut pBR02 (Lanes 1 

and 2) producing two fragments of 293bp and 4.1 kB; and Panel E, Xbal/EcoRI 

cut pBR02 producing fragments of 1.2kB and 3.1 kB. Lane M is DNA ladder with 

its appropriate sizes shown. 
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4.2.10.2 Solubility of rTrxB 

To determine the solubility of the recombinant TrxB, the cells were fractionated 

and separated by 12.5% w/v SOS PAGE (Chapter 2.14.5). The TrxB protein 

appears to be approximately 50% soluble and can be seen in almost equal 

amounts in lanes 3 and 4 at the expected size of "" 36 kOa (Fig. 4.26). 

4.2.10.3 Confirmation of rTrxB activity 

Extracts of Ecoli pBR02 and S.Bureus were compared by zymography for TR 

activity (Fig.4.27B). The Coomassie Blue stained gel (Fig. 4.27 A) showed the 

presence of TrxB in the Ecoli pBR02 induced sample (lane 1) but not in the 

uninduced (lane 2) or empty vector (lane 3). The zymogram analysis revealed an 

identical band corresponding to TR activity in SH1000 and the induced E.coli 

pBR02. The Ecoli containing the empty vector had no activity. The uninduced 

Ecoli pBR02 has slight activity likely due to low level production of TrxB. 
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M 1 2 3 4 

36 kDa 

Figure 4.26 

Solubility analysis of r-TrxB. Sample from 1.2 00600 units were separated by 

12% w/v SOS PAGE. Lane M, low molecular mass marker with the 36 kOa band 

highlighted; lane 1, uninduced RMHt 7; lane 2, induced RMHt 7; lane 3, soluble 

material; lane 4, insoluble material. The TrxB protein appears at about 36 kOa. 
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19.3kDa 

Figure 4.27 

TR activity of rTrxB. 12% w/v SOS PAGE gel (Panel A) and corresponding 

zymography analysis (7.5% w/v native PAGE, Panel B) for tellurite reductase 

activity. Total protein were analysed at 2.5 hours post IPTG (in induced culture). 

Lane 1, induced RMHt7; lane 2, uninduced pRMHt7; lane 3, vector (no insert); 

lane 4, SH1000. Lane M (Panel A) shows low molecular mass protein marker 

with the corresponding sizes shown on the right. The pink arrows indicates rTrxB 

protein at - 36kOa (Panel A) and TR activity (Panel B). 
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4.2.10.4 Purification of recombinant TrxB (r-TrxB) from RMHt 7. 

4.2.10.4.1 Preparation of fresh cell free extract and induction with 1 mm 
IPTG. 

500ml of Ecoli pBR02 induced culture was used for production of r-TrxB. Cells 

were harvested and lysed (Chapter 2.19.1.3) and CFE separated by MonoQ. 

Protein was eluted with a 0-1 M gradient of NaCI and fractions analysed by 

zymography and SDS PAGE. This revealed fractions 20-24 to have the most 

rTrxB (Fig. 4.28). Fraction 21 was then further separated by Superdex 200 

chromatography (Fig 4.29). Eluted fractions 25 and 26 corresponded to both TR 

activity and a protein of the expected size of 36kDa (Fig 4.30). 

4.2.10.4.2 Verification of r-TrxB TR activity. 

Fractions 25 and 26 from the Superdex 200 column were pooled and loaded in 

triplicate onto 7.5% w/v native PAGE and separated (Fig 4.30). The gel was 

excised into three for zymogram analysis, Coomassie Blue staining and N-

terminal sequencing. This revealed a sequence of MTEIDFDIA, which exactly 

corresponds to that predicted for rTrxB sequence. This identified the tellurite 

reductase enzyme that is associated with the activity band on 7.5% w/v native 

PAGE as thioredoxin reductase (TrxB). 
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1000 
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Figure 4.28 

M 19 20 21 22 23 24 25 28 

Ion exchange chromatography of recombinant TrxB from RMHt7 (74.8 mg 

loaded). Panel A, Chromatogram of separated proteins. Dashed line shows 0-1 M 

NaCI gradient. Panel B, 12% w/v SOS PAGE gel analysis showing rTrxB eluted 

in fractions 21 , 22, 23 and 24. Lane M (Panel A) shows low molecular mass 

protein marker with the corresponding sizes shown on the right. The pink arrow 

indicates rTrxB protein at - 36kDa (Panel A). Dark arrows on FPLC trace show 

fractions containing tellurite reductase activity. 
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Figure 4.29 

Gel filtration purification of recombinant TrxB from RMHt7. Panel A, 

Chromatogram of Superdex 200 fractionation; Panel B, Zymogram using 7.5% 

w/v native PAGE showing tellurite reductase activity; Panel C corresponding 

Coomassie stained protein gel; and Panel D; 12% w/v SOS PAGE gel analysis 

showing rTrxB eluted in fractions 25 and 26. Lane M (Panel A) shows low 

molecular mass protein marker with the corresponding sizes shown on the right. 

The pink arrow indicates rTrxB protein at ~ 36kDa (Panel A) . Dark arrows on 

FPLC trace show fractions containing tellurite reductase activity. Arrows indicate 

tellurium deposits and corresponding region on Coomassie stained gel. Dark 

arrows on FPLC trace show fractions containing tellurite reductase activity. 
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25/26 

A 
25/26 

B 

Figure 4.30 

Identification of TR activity of r-TrxS. Panel A, Superdex 200 fractions 25 and 26 

were pooled and separated by 7.5% w/v native PAGE and stained for tellurite 

reductase (TR) activity and Panel S, Coomassie stained protein gel showing 

corresponding protein that was used to identify the tellurite reductase band by N­

terminal sequence. Arrows indicate tellurium deposits and Coomassie stained 

band identified as thioredoxin reductase (trxB) . 
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Efficiency of purification 

The specific TR activity of rTrxB was determined using the spectrophotometric 

assay (Table 4.3). Pooled fraction 25 and 26 showed specific activity and yield of 

231.2 (Units) and 3.1 (%) respectively. 

Sample Total Total Total Units Specific Yield (0/0) 

volume protein Activity 

(m I) (mg) (U) 

RMHt7 25 868 24,250 27.9 100 

(crude) 

Superdex 2 3.2 740 231.2 3.1 

200 

fractions 

25 and 26 

Table 4.3 

Purification of r-TrxB from RMHt7. r-TrxB was purified through a gel filtration 

(Superdex 200) column. Pooled fractions 25 and 26 from the Superdex 200 were 

used to perform the TR activity and protein assays (Bradford). The data obtained 

were used to calculate the specific activity (Units) of each sample. 
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4.2.15 Enzyme Kinetic Analysis 

Purified rTrxB was stored at -20°C. However upon thawing, the protein was 

found to have lost >80% of activity. The entire purification process was repeated. 

However the purified enzyme could not be stored in an active state even at -

80°C. This prevented in depth kinetic analysis of rTrxB activity. 
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4.3 Discussion 

In this chapter, two tellurite reductases, thioredoxin reductase (TrxB) and 

alkylhydroperoxidase subunit F (AhpF) were identified in S.aureus. TrxB was 

overexpressed and purified and was shown to be the primary protein involved in 

tellurite reduction in SH1000. AhpF is a component of the alkylhydroperoxidase 

AhpCF that shows homology with both thioredoxin (TrxA) and TrxB (Chapter 1 

Introduction ). 

Tellurite is toxic to most microorganisms and before the advent of 

antibiotics, tellurite was used as an antibacterial agent in the treatment of many 

diseases (Taylor, 1999). Tellurite resistance is well documented amongst the 

gram-positive bacteria, a criterion used for isolation of several species including 

S.aureus, Corynebacterium diphtheriae, and Enterococcus faecalis (Tucker et 

al., 1961; Tucker et al., 1966). Tellurite is also used in the isolation of several 

gram-negative pathogens including E.coli 0157 (Zadik et al., 1993), Shigella spp. 

(Mujibur Rahaman et al., 1986) and Vibrio cholerae (Shimada et al., 1990). 

Several tellurite resistance determinants (TeR
) have been identified. The 

presence of these TeR are well documented in gram negatives as exemplified by 

E.coli (Taylor, 1999) and are either plasmid mediated or coded on the 

chromosome. S.aureus that is reportedly naturally resistant to high levels of 

tellurite have not been shown to possess any of these known determinants 

(Taylor 1999). Taylor et al. 1994 reported that the tehAB genes that code for 

tellurite resistance in E.coli K12 are not present in S.aureus. In this study 

S.aureus SH1000, as expected, showed a high MIC of 5mM. 
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Tellurite toxicity may be overcomed either by decreasing its uptake, 

increased efflux or by reducing it to less toxic elemental tellurium (Teo). However, 

tellurite is not detoxified by any of of the known mechanisms of heavy metal 

detoxification such as reduced uptake or increased efflux (Turner, 1994) although 

the ars operon (arsABC) which codes for the arsenical ATPase efflux pump may 

contribute to moderate tellurite resistance in E.coli (Turner et al., 1992). 

Deposited elemental tellurium manifests phenotypically as black colonies when 

organisms are grown on agar containing tellurite (Taylor, 1999). Most studies 

show that detoxification of tellurite occurs by its reduction to the non-toxic form 

tellurium which is commonly seen as black "needlelike" crystals. Tellurium 

deposits are commonly seen deposited either in the cytoplasm as in 

Natronococcus occultus (Pearion et al., 1999), in the intracytoplasmic membrane 

as in Rhodobacter capsulatus 8100 (Borsetti et al., 2003), in the periplasmic 

space as in Rhodobacter sphaeroides (Sabaty 2001) or on membrane surfaces 

as in E.coli (Trutko et al., 2000). In SH1000, cells that are grown in the presence 

of tellurite turned black and tellurium inclusions were found clearly deposited 

within its cytoplasm (Fig 4.4). This suggests that the mechanism by which it 

attains high resistance to tellurite SH1000 is by reducing the damaging effect of 

tellurite by converting it to the less toxic form, tellurium (Teo). 

In addition, tellurite reduction in SH1000 was found to occur enzymatically 

with absolute requirement for the reducing power provided by NADH. This 

tellurite reduction activity is sensitive to boiling and treatment with proteinase K 

which further emphasizes its enzymatic nature. Also as the cell free extracts 
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tested for the tellurite reduction activity were exhaustively dialysed, it is highly 

unlikely that the observed activity was caused by low molecular weight thiols. 

The activity was also facilitated by the presence of 2-mercaptoethanol that 

provides a reducing environment for the thiol groups. Similarly, previously studied 

tellurite reduction in other organisms such as Baeillus stearothermophilus V 

(Moscoso et al., 1998) and Thermus thermophilus HB8 (Chiong et al., 1988) 

have been found to be enzymatic and NAOH I NAOPH dependent. In the 

archeon N.oeeultus, tellurite reduction of cell free extracts was shown to be 

dependent on NAOH as well as a reducing environment (Pearion and Jablonski, 

1999). Thiol groups are often i!l1plicated in this tellurite reduction process (Albeck 

et al., 1998). Although tellurite is known to be thiol reactive the chemistry 

involved is unclear. Turner et al. (1999) reported that exposure of tellurite­

susceptible cells of Eeol; to tellurite caused a marked reduction in the reduced 

thiols (RSH) content. In addition, reduced glutathione was shown to be the major 

initial target of tellurite activity in Eeol; (Turner et al., 2001). Also Eeol; with 

mutations in the genes for· disulfide-bond formation (dsbA and dsbB) are 

hypersensitive to K2 Te03. The presence of tellurite resistance, TeR
, determinants 

(IncH I, IncHII, IncPu, and teh) has been shown to protect Eeoli from thiol 

oxidation (loss of RSH content) upon exposure to Te032- (Turner, 1995). In 

addition, cysteine residues in TehB a tellurite resistance determinant on the 

Eeol; chromosome are involved in tellurite substrate recognition and binding 

which oxidizes the cysteines (Oyllick-Brenzinger, 2000). Further, mutations in the 
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cysteine, glutathione or thioredoxin biosynthetic pathways were shown to 

decrease tellurite resistance in the Ecoli tehAB system. 

The cysK gene that codes for the enzyme cysteine synthase was found to be a 

tellurite resistance determinant of Bacillus stearothermophilus which conferred 

tellurite resistance in Ecoli and Salmonella typhimurium L T2 (Vasquez et al., 

2001). Disruption of the cysK gene in R.sphaeroides 2.4.1 resulted in reduced 

tellurite resistance levels suggesting a link between cysteine biosynthesis and 

tellurite resistance (O'Gara, 1997). 

A study on a cysteine auxotrophic mutant (cysM) demonstrated increased 

sensitivity to tellurite and that tellurite resistance can be linked to survival from 

oxidative and thiol stress (Lithgow et al., 2004). The S.aureus cysM locus 

increases tellurite resistance in Ecoli and is involved in stress resistance. 

However, unlike in B.subtilis, cysM in S.aureus is involved in resistance to 

diamide and te"urite but not to other stresses such as methyl viologen or 

hydrogen peroxide. Taylor (1999) suggests that tellurite reduction occurs at the 

expense of thiol groups, such as glutathione and cysteine. The glutathione 

studies in this thesis (Chapter 3) suggest that a correlation exists between 

glutathione and tellurite reduction. 

Although the exact chemistry of tellurite reduction is yet unknown, it is 

apparent from previous studies that it involves some form of oxidation-reduction 

i.e. electron transfer reaction (Albeck et al., 1998). It is therefore not surprising 

that the major tellurite reductases characterized from SH1000 in this study were 

identified as thioredoxin reductase (TrxB) and a related homolog, 
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alkylhydroperoxidase subunit F, AhpF. Both TrxB and AhpF are oxidoreductases 

that function to shuttle electrons from NADHI NADPH to a substrate and possess 

a redox active disulfide in addition to FAD in their respective active redox centers 

(Williams, 1995). 

The thiol groups (from cysteine residues) of cytoplasmic proteins are kept 

in the reduced state by specific proteins that maintain a reducing environment. 

These proteins maintain the oxidation state of the cysteine residues and are 

therefore responsible in determining the formation of disulphide bonds (Aslund 

and Beckwith, 1999). Members of the thioredoxin family are oxidoreductases that 

play a major role in maintenance of the reduced thiol states and include the 

thioredoxin subfamily and the glutaredoxin subfamily {Ritz and Beckwith, 2001}. 

The disulfide bond oxidoreductases share a common structural characteristic in 

having the typical active site motif Cys-X-X-Cys {Aslund and Beckwith, 1999} 

which in thioredoxin is Trp-Cys-Gly-Pro-Cys (Holmgren, 1985). The conserved 

active site cysteine of S.aureus thioredoxin is the key residue for substrate 

reduction {Roos et al., 200?}. In E.co/i, the thioredoxin subfamily comprises of 

thioredoxins 1 and 2 {TrxA and TrxC respectively} and thioredoxin reductase 

{TrxB}. The glutaredoxin subfamily is composed of glutaredoxins 1,2 and 3 

{GrxA, GrxB and GrxC respectively}. 

The thioredoxin system is ubiquitous in living organisms and consists of 

thioredoxin and thioredoxin reductase which are thiol-disulfide oxidoreductases 

that uses NADPH as reducing power {Arner and Holmgren, 2000}. The general 

enzymatic reactions of this system involves oxidation of thioredoxin {Trx-{SH}2 to 
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a dithiol form (Trx-S2) upon reduction of disulfides (proteins) (Holmgren, 1985). 

Trx-S2 is in turn reduced by thioredoxin reductase (TxR) to regenerate reduced 

thioredoxin in the presence of NADPH. In addition, thioredoxin reductase is able 

to reduce other substrates in the same manner., 

Thioredoxin is a thiol-disulfide oxidoreductase that is encoded by trxA. The 

thioredoxin from Ecoli consists of 108 residues with a molecular weight of 

approximately 12kD (Holmgren, 1968) and is one the major proteins involved in 

maintainence of intracellular sulfhydryl status. Being one of the major 

oxidoreductases, thioredoxin possesses many enzymatic roles associated with 

maintenance of the thiol redox balance within the cell. Although it has been 

implicated in several physiological functions, its main roles are in the involvement 

of protein disulfide reduction and DNA synthesis. In general the main 

oxidoreductase activity of this enzyme can be categorized into two main roles Le 

as electron carriers for important biosynthetic enzymes such as ribonucleotide 

reductases, methionine sulfoxide reductases and sui fate reductases and as a 

protectant of cytosolic proteins from aggregation or inactivation via oxidative 

formation of intra- or inter-molecular disulfide (Arner and Holmgren, 2000). In 

addition, it plays an important role in cell signaling and defense against oxidative 

damage and stress by being an electron donor for thioredoxin peroxidases 

(peroxiredoxins) which catalyzes the reduction of H202 (Arner and Holmgren, 

2000). In E.coli, the thioredoxin and thioredoxin reductase were shown to have 

chaperone properties by their involvement in protein folding and protein 

renaturation after stress (Kern et al., 2003). 
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Thioredoxin reductase (TrxB) is a f1avoenzyme that catalyzes the 

reduction of thioredoxin using the reducing power of NADPH (Lennon et al., 

2000). It belongs in the family of pyridine nucleotide-disulfide oxidoreductases 

which includes glutathione reductase, lipoamide dehydrogenase and other 

members that characteristically possess a redox active disulfide/dithiol (Arscott et 

al., 1997). Two classes of thioredoxin reductase exist i.e. the low Mr type (Mr = 

35 000 per subunit) that is found in bacteria like Ecoli and the high Mr type (Mr = 

55 000 per subunit) found in higher eukaryotes. In eukaryotic organisms the 

enzyme is more related to glutathione reductase (Williams et al., 2000). 

Thioredoxin reductase contains a redox active disulfide in addition to the FAD 

and the reduction process involves electron transfer from NADPH to the FAD 

which then transfer the electrons to the disulfide of the active site of the enzyme 

and finally from the reduced thiols to the disulfide of thioredoxin (Williams, 1995). 

. The TrxB recombinant protein purified in this study has a molecular mass 

of less than 35.8 kDa that is consistent with the thioredoxin reductase with a 

subunit MR of approximately 35kDa that is isolated from prokaryotes (Uziel et al., 

2004). In contrast, human thioredoxin reductase possesses a subunit MR of 

55kDa. In addition, the redox active centre in thioredoxin reductase from 

S.aureus and other prokaryotes is reported to possess the CAT/NC motif 

whereas that in humans is a hexapeptide with the CVNVGC motif (Uziel et al., 

2004). Further, the authors show that exposure to oxidative stress agents such 

as diamide, menadione and 't-butyl hydoperoxide causes increased transcription 

of both the trxA and trxB genes in S.aureus resulting in increased disulphide 
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bond formation. Treatment of Bacteroides fragilis, an anaerobe, with diamide, 

H20 2 or exposure to oxygen induced the expression of trxB gene (Rocha et al., 

2007). In S.aureus the thioredoxin system, especially thioredoxin reductase 

(TrxB) is essential because of the absence of an alternative thiol-redox system 

(Uziel et al., 2004). 

The second tellurite reductase enzyme indentified in this study is AhpF, a 

member of the peroxiredoxin or alkyl hydroperoxidoreductase (AhpR) family 

which is closely related to the thioredoxin-thioredoxin reductase system. 

Together with AhpC, the peroxiredoxins catalyzes an NADH dependent reduction 

of alkylhydroperoxides. AhpF is a flavoprotein that shows structural similarity to 

both thioredoxin and thioredoxin reductase (Poole et ai., 2000). The C-terminal 

60% is similar to the low Mr thioredoxin reductase including the redox-active 

disulfide located just inside the pyridine nucleotide binding and the N-terminal 

40% is a tandem repeat of two thioredoxin-Iike folds with the redox-active 

disulfide retained in only one of them (Williams, 2000, Poole et al., 2000). 

Basically, AhpF shuttles reducing equivalents from NAO(P}H (with a strong 

preference for NADH) to AhpC, the actual peroxidase and a member of the 

peroxiredoxin family of thiol peroxidases. The ahpC and ahpF genes are 

organized in a two-gene operon, and transcription is PerR controlled (Bsat et al., 

1996). The AhpR (AhpCF) system in E.coli together with catalases constitute a 

two-enzyme H20 2 scavenging system (Tartaglia et al., 1989). 

Although AhpF and TrxB were identified as the major TRs, interestingly, 

several other minor tellurite activity bands were also observed. These could be 
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due to other independent activity or modification of TrxB. Previous studies in 

tellurite sensitive organisms have implicated other oxidoreductases such as the 

catalase in Staphylococcus epidermidis (Calderon et al., 2006) as being the 

primary enzyme responsible for the tellurite reduction activity. S.aureus 

reportedly (delCardayre et al., 1998) also possesses other oxidoreductases like 

the Coenzyme A disulfide reductase (CoADR), a Dimmer with identical subunits 

of Mr 49,000 each. It belongs to the family of the flavin containing pyridine 

nucleotide-disulfide oxidoreductases and catalyzes the specific reduction of CoA 

using NADPH. However, it differs from other members of the family in having 

only a single cysteine in the SFXXC motif in the active site region (delCardayre et 

al., 1998), instead of the conserved CXXC motif as is present in thioredoxin 

reductase. It is unknown at this juncture if CoADR is also involved in tellurite 

reduction although its structure and function is suggestive of its ability to do so. In 

this study however, it was shown that the major tellurite reductase identified was 

approximately 35.8 kDa (Fig 4.29) which corresponded to the Mr subunit of 

thioredoxin reductase (Williams et al., 2000) and not to CoADR. 

Tellurite resistance is not a primary characteristic but appears to be 

product or secondary effect of normal cell functions (Taylor, 1999). Therefore, it 

may be an effective indicator for resistance to other stressful conditions that may 

pose a threat to the metabolism and overall survival of the organism in the 

human host. Taylor (1999) suggests that tellurite can be detoxified through 

interaction with cellular thiols such as reduced glutathione. The mechanism of 

interaction between the TrxB, tellurite and glutathione is unknown although the 
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involvement of thiol groups in the tellurite reduction process is strongly 

suggested. A previous study showed that thioredoxin and thioredoxin reductase 

from E.coli was able to oxidize NADPH in the presence of selenoglutathione (GS­

Se-SG) (Bjornnstedt, 1992). Similarly, tellurium dioxide (Te02) has been found to 

interact rapidly with cysteine (Albeck et al., 1998). The exact role of glutathione in 

tellurite reduction is unclear, although the presence of the strong electron 

donating sulfhydryl group on its cysteine moiety suggests a possible involvement 

in the tellurite reduction process. However, since S.aureus does not synthesize 

glutathione, this compound cannot be solely responsible for tellurite reduction 

and the high level resistance to tellurite observed in this organism (Lithgow et al., 

2004). Thioredoxin/thioredoxin reductase, CoenzymeA reductase and the alkyl 

hydroperoxidoreductase (AhpCF) are sulfhydryl stabilizing enzymes that 

constitute the electron-donating components in S.aureus. The presence of thiol 

reactive centers in the thioredoxin and peroxidoreductase proteins is strongly 

suggestive of their possible involvement in the tellurite reduction process and 

may perhaps play a role in the high level of tellurite resistance observed in 

S.aureus. The nature of tellurite resistance in S.aureus and the possible 

involvement of glutathione in the tellurite reduction process remains to be 

elucidated. 

Summary 

• Two tellurite reductases were identified in S.aureus as thioredoxin 

reductase B (TrxB) and alkylhydroperoxidase subunit F (AhpF). 
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• TrxB was purified and shown to be the major protein involved in tellurite 

reduction 

• Inactivation of ahpC or perR did not affect tellurite reductase activity. 
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CHAPTER FIVE 

GENERAL DISCUSSION 

S.aureus is a highly versatile and adaptable pathogen that is 

capable of causing a wide variety of diseases ranging from mild skin infections to 

serious life threatening bacteremias and endocarditis. It produces several 

virulence factors such as cell surface proteins that mediate attachment (Foster 

and Hook, 1998), and extracellular toxins and enzymes (Novick, 2003) that 

overcome the host defences and allow invasion and persistence. Clearly these 

flexible and highly adaptive characteristics confer the ability to inhabit a diverse 

range of niches in the host. The host naturally represents a stressful environment 

in which in order to survive and proliferate S.aureus has developed multiple 

mechanisms that enable colonization in both an infective (pathogenic) and non­

infective (commensal) state. In addition, S.aureus has an ability to acquire and 

exhibit resistance to multiple antibiotics as evidenced by the emergence of 

vancomycin-resistant MRSA strains. 

Both its high adaptive ability and multidrug resistance makes S.aureus a 

successful pathogen that is a problem both as hospital and community acquired 

infections, in addition to being an economic burden on healthcare systems 

(Goossens 2005, Um and Webb, 2005). The emergence of strains that are highly 

refractive to antibiotics has spurred research into developing novel therapies for 

prophylactic treatment (vaccine production) and eradication of this organism. The 

identification of the metabolic functions and their roles in the pathogenicity of 
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S.aureus may reveal novel targets that can be used to effectively design 

strategies aimed at combating this organism. 

Previous studies (Lithgow et al., 2004) as well as my work established the 

role of glutathione as a sulfur source for S.aureus. As S.aureus does not 

synthesize glutathione and acquires it from the host, it was hypothesized that the 

mechanism of utilization of glutathione involved GGT. However, the presence of 

a novel glutathione utilization mechanism in S.aureus is suggested as the 

organism continues to grow despite disruption of the ggt gene (Chapter 3). The 

mechanism of glutathione utilization in S.aureus remains to be elucidated in 

future work. 

The role of glutathione in stress resistance in S.aureus remains somewhat 

obscure. The protective nature of glutathione (GSH) is enabled by the strong 

electron donating capacity of the thiols that reside on its cysteine moiety. Both 

the thioredoxin system and glutathione are responsible for maintaining a reduced 

environment intracellularly to keep protein thiols in their free sulfhydryl state. 

S.aureus however does not synthesize glutathione and relies mostly on the 

thioredoxin system for maintenance of intracellular thiol balance (Uziel et al., 

2004). My work shows that glutathione is associated with stress resistance in 

S.aureus. This has important implications as many in vitro experiments are done 

under conditions without glutathione being present. It is important to measure the 

role of particular components under conditions that mimic those in vivo. 

Taylor (1999) suggests that tellurite resistance is a secondary effect of a 

metabolic function and different tellurite resistance mechanisms are associated 
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with different organisms (Chapter 4). Elucidation of the tellurite resistance 

mechanism therefore may provide insight and better understanding of the 

resistance mechanism(s) in this organism for design of novel antistaphyloccoccal 

prophylaxis. Previous studies (Avazeri et al., 1997; Chiong et al., 1988; Moscoso 

et al.; 1998; Sabaty, 2001; and Trutko et al., 2000) coupled with my work 

demonstrate that despite the diverse mechanisms of tellurite resistance, it is 

commonly associated with the process of electron-transfer with probable 

involvement of thiol groups. Here I identified both AhpF and TrxB as being 

capable of tellurite reduction. AhpF and TrxB possess structural homology and 

both proteins are associated with redox processes. In addition TrxB which is an 

essential protein in S.aureus (Uziel et al., 2004) belongs to the thioredoxin 

system which is presumably one of the main regulators of thiol-balance in 

S.aureus. 

My studies have highlighted the complex interplay between different 

aspects of S.aureus physiology. The interactive web of stress resistance and 

metabolic capabilities of this organism are a testament to the complex 

mechanisms that allow S.aureus to be such a successful pathogen. 

Future Work 

The presence of a novel alternative pathway for glutathione utilization in 

S.aureus was suggested in this study. To elucidate the mechanism of this 

pathway it is necessary to create a mutant that is not able to utilize glutathione 

and this can hypothethically be achieved by transposon mutagenesis in the ggt 

background. The fate of glutathione in S.aureus can also be determined by 
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analysis of the catabolic products involved in its metabolism. Alternatively 

protein(s) involved in the utilization of glutathione can be purified, identified and 

characterized using similar approaches to the tellurite reductase study. In 

addition, in vivo studies will shed light on the roles of ggt and putative glutathione 

ABe transporter in pathogenicity. 

In order to determine the role of TrxB in stress resistance it will be 

necessary to create a conditional lethal mutant. This requires trxB to be placed 

under the control of an inducible promoter. As the level of TrxB is diminished the 

cells may become specifically more susceptible to tellurite. Tellurite stress might 

also elicit the expression of genes involved in resistance. This could be followed 

by transcriptome and proteome studies to identify specific components for further 

analysis. Genes that are turned on by tellurite at the translational level can be 

identified along with proteome studies of the modified (oxidized) proteins 

resulting from tellurite exposure. 
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