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Abstract

This thesis concentrates on a major problem within audio signal processing, the

separation of source signals from musical mixtures when only a single mixture

channel is available. Source separation is the process by which signals that cor-

respond to distinct sources are identified in a signal mixture and extracted from

it. Producing multiple entities from a single one is an extremely underdetermined

task, so additional prior information can assist in setting appropriate constraints

on the solution set. The approach proposed uses prior information such that:

(1) it can potentially be applied successfully to a large variety of musical mix-

tures, and (2) it requires minimal user intervention and no prior learning/training

procedures (i.e., it is an unsupervised process). This system can be useful for ap-

plications such as remixing, creative effects, restoration and for archiving musical

material for internet delivery, amongst others.

Here, specific priors include that the signal contains detectable musical events,

with characteristic partial structures, often assumed to be harmonic. The har-

monicity cue is incorporated by employing an adapted and extended frame-based

multiF0 estimator for identifying the sources. This acts as a front-end to a source

estimation and extraction stage. Further, an iterative procedure is introduced

between the two stages, enabling improved performance via increased adaptivity

to signal content: this novel approach becomes possible by exploiting a residual

signal.

Experimental results show that the proposed residual-based method achieves bet-

ter average performance compared to alternative methods in terms of source sep-

aration and multiF0 estimation on a range of mixtures of varying complexity. Un-

modelled content of the separated mixture will appear in the residual, which can

be exploited further. In particular, a novel onset detection technique is proposed

that works entirely with the residual. Considering its simplicity, the technique

shows promising results compared to two existing methods that do not use the

residual.
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CHAPTER 1

Introduction

With the advent of the digital age and computers in the last decade of the 20th

century the way we create, acquire and listen to music has changed rapidly. For

example, the very idea of what is music has been put into question. Nowadays, if

an artist intends to include any audible sound as a part of a piece [144], then this

sound can automatically be considered as musical. This creative freedom leads

naturally to the need for processing tools that will enhance expression through

digital musical sound. These tools will, ideally, have to provide flexible ways of

conveying, representing and manipulating information from musical signals.

Moreover, the link between music and technology has been greatly reinforced by

the internet. It is now extremely easy for the internet user to listen to and/or

download music or, generally, audio recordings. Ever-expanding databases of

speech and audio recordings are being created, offering a wide variety of choices

for every need. Also, a large number of today’s music recordings are produced

employing only digital means, and digital music players (such as the MP3 player)

are now becoming as common as the mobile phone. For this reason, there is a

growing demand for techniques that will enhance usability, fidelity and the ways

that audio and music content are being archived, classified and delivered.
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In this framework, physical science, psychology, music theory, computing and

engineering have all contributed to the exploration of the possible ways that we

can listen to and create music by:

• Increasing our understanding of the physical properties of sound itself and

its production from physical musical instruments.

• Providing mathematical tools for representing and modelling sound in such

a way that its musical properties are evident and that they provide many

possibilities for content manipulation.

• Exploring the way that humans perceive and understand sounds.

Audio and, in particular, musical source separation is one of these multi-disciplinary

areas of research that makes use of these findings in order to provide methods

for enhancing the above applications. Musical recordings are in most cases poly-

phonic, i.e. containing audio coming simultaneously from different musical instru-

ments or, more generally, sources1). Source separation techniques aim to estimate

and, most often, extract and isolate from the recording the signals corresponding

to each one of these sources.

1.1 Potential applications

If the audio source signals can be made available through separation algorithms,

a number of advanced processing operations can be performed by operating on

these individual signals, rather than the whole mixture. If the separation is car-

ried out with sufficiently good results, the access to the extracted source signals

provides more ‘freedom’ for manipulation and analysis. For example, it has been

reported [5] that certain music and speech feature extraction methods for Music

Information Retrieval (MIR) applications have reached a “glass ceiling” in terms

of performance level. When these methods are applied to polyphonic segments,

they most often use the original signal mixtures, which are typically a lot more
1For a discussion regarding polyphony and the concept of ‘sources’, see §4.1.4.
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complex and challenging than their constituent source signals. Source separation

could, thus, be a way forward from there, and a number of important applica-

tions (particularly related to music) could become possible or, rather, significantly

enhanced.

Vincent et al. [162] have proposed a distinction between source separation appli-

cations according to whether the estimated and/or separated signals are supposed

to be listened to or not: these are the Audio Quality Oriented (AQO) applications

and the Significance Oriented (SO) applications, respectively. Examples of AQO

applications are:

• Upmixing and remixing. This includes a variety of situations where (a)

one or all of the sources are extracted from the mixture, or (b) one or more

sources are suppressed beforehand. The upmixing is usually carried out in

order for the sources to be remixed afterwards, after performing some kind of

‘creative’ manipulation: addition of audio effects, change of instrumentation

or arrangement, phase and gain adjustment for creating artificial spatial

source images (e.g., mono to stereo [101], stereo to stereo [180] or stereo

to multichannel [31]). Karaoke applications, where the suppression of main

vocal melody in the mixture is required, can fall under the category of

creative remixing (e.g., [143]).

• Restoration and denoising of mixtures. At least during the last 20 years

(and with the rise of the digital format), the need for higher quality au-

dio has been increasing. At the same time, there is still a large amount of

recorded material which, for nostalgic or historical/preservation purposes,

needs to be restored appropriately before being transferred into digital for-

mat [65, 57, 62]. Denoising also includes enhancing the quality of hearing

aids (e.g., [126]) and noise reduction in communication devices.

In general, the AQO applications are expected to require extracted signals of

a reasonably high quality, although this can be debatable to some degree. For
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example, in the case of remixing, the previously extracted signals are expected to

be masked by others to some degree, obscuring some of the separation artefacts.

Representative examples of SO applications include:

• Automatic Music Transcription (AMT). The automatic extraction of the

musical score corresponding to a piece of musical audio is often a highly

desirable feature for an audio content processing system [96], a key part

of which is often a multiple fundamental frequency (or multiF0) estimation

stage [40]. Source separation can potentially simplify the complexity of this

problem by allowing the AMT algorithms to be applied to the separated

sources rather than on the complete mixture at once.

• MIR. How to automatically annotate a huge amount of highly varied musi-

cal material for the creation of internet-based or private databases and de-

vise methods for effective retrieval of this information is a crucial challenge.

Applications that fall under this category are, e.g., query-by-humming, mu-

sic recommendation, musical instrument recognition and genre classifica-

tion.2

• Audio compression. Compression approaches that fall under the term

Structured Audio Coding [160] and can potentially achieve much lower bit

rates than the widely used MP3 (for example) with comparable perceptual

quality, have started to emerge recently. If high-level parameters can be

extracted from the audio (such as, e.g., spectral envelopes, amplitudes of si-

nusoids), they can be used to represent the signal as a collection of “objects”

(hence the related term, Object-based Audio Coding). What is encoded and

transmitted are the parameters of those objects, which allows resynthesis at

the receiver end (see, e.g., [166, 36]). If it was possible for complex audio

mixtures to be replaced with their constituent parts, it would be expected

that the effectiveness of these coding strategies would be enhanced.
2The International Society for Music Information Retrieval (ISMIR) website [84] is a useful

resource for MIR-related topics.
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The next section describes the main challenges that the design of a separation

system poses, outlines the context of the work in this thesis, and presents its

basic contributions.

1.2 Context and thesis contributions

The fact that human beings are capable of distinguishing sounds, and are able

to make sense of them despite the presence of others, has long been considered

as an engineering problem in the form of the cocktail party problem [29, 72].

Thus, a very important and constant inspiration in the course of development of

the area of source separation has been the exploration of the Human Auditory

System (HAS) and, in particular, the field of Auditory Scene Analysis (ASA) –

the way humans infer meaning from the auditory environment through perceptual

organisation mechanisms. The book by Bregman of the same name [16], was

seminal also by helping to lay the foundations for computational attempts to

imitate the way humans ‘separate’ distinct sounds; in other words to help the

field of Computational Auditory Scene Analysis (CASA) emerge.

Around the same time as the first CASA systems were proposed (the early 1990’s),

a parallel line of work saw the problem of source separation from a more math-

ematically rigourous point of view. No matter what the nature of the source

signals was (i.e., they did not particularly concentrate on audio), as long as the

sources satisfied a number of statistical assumptions, techniques such as Indepen-

dent Component Analysis (ICA) could be applied to them. This group of work

usually falls under the term Blind Source Separation (BSS). The word ‘blind’ is

used to signify that the prior information used is minimal.

The prior information is one of the most important factors that has to be taken

into account when designing a source separation system. Even if we disregard

any additional factors, single-channel mixtures pose considerable challenges for

source separation approaches just because of the sheer lack of initial information

– in a perfectly blind approach only a single version of the signal mixture is
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available. Unless some kind of appropriate information is employed a priori , this

is a problem with an infinite number of solutions. Prior information can take the

form of application-specific assumptions and models for the source signals and

the mixing process. These assumptions and models can be incorporated directly

into the processing algorithm and/or inserted within it beforehand by the user or

through learning/training procedures. In contrast to the blind approaches, others

that employ some additional, sufficiently generic information (such as, instrument

models or psychoacoustic cues) can be called semi-blind, while the ones involving

user-inserted information (such as, e.g., the MIDI score of the mixture), non-blind.

1.2.1 Between ‘understanding’ and ‘separation’

The degree of blindness in separation methods is inextricably tied to their re-

spective applications. For example, the outputs of some SO applications (such

as the estimates of F0 contours, or the note onset timings) can be used as prior

information for a separation system because they provide assistance with the

identification of source structures. A further insight in the relationship between

prior information, separation and intended application can be acquired if the sep-

aration methods are described with the use of the combination of two terms:

‘understanding’ and ‘separation’.

Scheirer [145] introduced the term Understanding Without Separation (UWS), to

emphasise that his work on constructing music listening systems did not require

the separation of sources beforehand. The word ‘understanding’ is used to de-

scribe a number of SO applications of source separation, such as AMT and other

MIR-related ones. As mentioned, these applications do not usually require ex-

plicit source separation; however, as is argued here and by others, separation could

lead to their improvement, if employed appropriately. All the separation meth-

ods which can potentially aid SO applications can be described as Separation For

Understanding (SFU) methods. This different kind of taxonomy is completed by

referring to the Understanding For Separation (UFS) methods (these include, ba-
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Primary process-
ing goal

No connection
Monodirectional
connection

Bidirectional
connection

Separation SWU UFS SAU
(UFSFUFS. . . )Understanding UWS SFU

Table 1.1: A taxonomy of audio processing systems, where the ‘understanding’ and
‘separation’ elements and the ways that are connected to each other are highlighted.
The method proposed in this thesis belongs to the 3rd column, where UFSFUFS. . . is an
alternative to the SAU term, which gives emphasis on the iterative process between SFU
and UFS. (See text for an explanation of the acronyms.)

sically, the semi-blind and non-blind ones) and Separation Without Understanding

(SWU) methods (these are the blind methods).3

The approach presented here attempts to close the circle between understanding

and separation by making their connection operate in both ways (i.e., bidirection-

ally), so that the one feeds the other. This can be realised through an iterative

process between UFS and SFU. It can, thus, be characterised as a Separation

And Understanding (SAU) method (see Table 1.14).

More specifically, the work concentrates on the design of a system that would

be able to extract the source signals from a musical mixture without necessarily

trying to emulate human-inspired music scene analysis. In other words, a number

of characteristics of the HAS capabilities are taken into account (those concerned

with the nature of the musical sounds and mixtures), while others which could

be limiting for SO applications (such as the fact that human listeners show dif-

ficulty recognising the correct number of sources if there are more than three

sources [81]5) are not.

To do this, a shift is made, first, from a non-blind to a semi-blind system. Since

semi-blindness implies the use of advanced generic models – in the sense that a

blind system would not, in theory, use any explicit signal model, while a non-blind

system would use very restricting models – it provides the flexibility required for
3This taxonomy was first introduced by Burred [23].
4An extended classification framework (also involving the separation/understanding relation-

ship) particularly for separation systems is presented in §4.3.2.
5Huron uses the term ‘voice’ to refer to what is essentially called a ‘source’ in this thesis.

(See also §4.1.4.)
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an SAU system. The harmonicity psychoacoustic cue, along with the assumption

that the source signals contain music events with well localised onsets and offsets

are considered to satisfy the need for generality. Harmonicity is applied by using

an automatic multiF0 estimator. This is combined with a particular source ex-

traction method that can deliver (apart from the sources) a residual signal which

will contain all the unmodelled content. It is then shown that the use of the

residual channel in an iterative framework can improve the robustness of both the

multiF0 estimation and the separation.

Specifically, the key contributions of the work presented in this thesis are sum-

marised below:

• Removal of the need for significant user input (shift from a non-blind to a

semi-blind system) by replacing the score-informed front-end of an existing

separation system with a more automatic, while still accurate, alternative

that is based on a multiF0 estimation algorithm.

• Proposal of a method that carries out multiF0 error correction as part of a

F0 track disentangling stage.

• Establishment of the residual channel as a central concept in the proposed

iterative framework for single-channel separation and multiF0 estimation.

Confirmation that the iterative use of the residual can improve the robust-

ness of both processes.

• Comparative analysis and discussion on the effectiveness of two widely used

separation performance evaluation measures, using both a theoretical and

a practical framework.

• Use of the proposed system to improve the performance of specific appli-

cations, such as note onset detection. To be specific, a novel note onset

detection algorithm that operates on the residual channel is introduced.

It is worth mentioning that, alongside the above contributions, there are also a

number of subsidiary ones. These have to do with a number of modifications that
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led to improvement in the harmonic parameter estimation stage of the existing

separation system, and the extension of the frame-based multiF0 estimation pro-

cess to a note-based estimation one through the F0 track disentangling process.

1.3 Thesis overview

In Ch. 2 an overview is given of the basic concepts related to the analysis of

musical audio signals. The nature of musical audio is discussed and then some

important ideas from music theory, auditory perception and cognition are intro-

duced, together with a brief introduction on sound spectra.

Ch. 3 discusses a number of different transformations and models that are fre-

quently used for representing musical audio signals. In particular, the principles

of additive modelling, along with parametric and nonparametric methods, are

briefly discussed.

Ch. 4 gives an introduction to the problem of single-channel source separation.

The factors that define the complexity and the challenges of the problem are

discussed, and a thorough review of the various ways it has been approached so

far with regards to musical audio is carried out. The chapter continues by referring

to a few of the measures most usually employed for analysing the performance of

source separation systems.

Furthermore, the proposed approach for an unsupervised system for single-channel

source separation is presented in Ch. 5. After giving an overview of the complete

system and going through a few additional definitions, the chapter continues by

explaining the different stages of its basic one-way infrastructure. The differ-

ences, modifications and improvements compared to an existing non-blind sys-

tem, are shown. This includes a detailed account on the choice and adaptation of

the multiF0 estimation algorithm, along with a description of the supplementary

stage of F0 track disentangling which provides a method for an initial multiF0

error correction. Next, a performance comparison is carried out between the

one-pass proposed approach and its non-blind version for a variety of mixtures.
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Additionally, in order to choose the appropriate means for analysing separation

performance, the same section discusses the effectiveness of two widely used mea-

sures by comparing them using a theoretical and a practical framework.

The idea of the residual channel is introduced next in Ch. 6, along with an explo-

ration of the multiple functions that it can fulfil. This is followed by the proposal

for the iterative framework that uses the residual. Evaluation results are presented

that show improvement of both separation and multiF0 estimation when the feed-

back loop is incorporated in the system and, in addition, a performance that is

better on average in comparison with other alternative methods. Lastly, a novel,

residual-based note onset detection algorithm is introduced, and a brief proposal

for an extension to stereo mixtures is made. In particular, promising results are

shown through performance comparisons of the onset detection algorithm with

two other methods, one of which could be considered as current state-of-the-art.

The audio results of the source separation experiments can be listened to on the

web at [150].

Finally, Ch. 7 gives a summary of all the material presented in the thesis, and a

structured outline for future work is proposed.



CHAPTER 2

Analysis of musical audio signals

The separation approach that is the central part of this thesis is designed to be

applied to musical sounds. This chapter reviews some important concepts around

the analysis of musical sounds, which will help in clarifying the decisions behind

the design of the particular system. Firstly, a number of definitions are made,

paying particular attention to discussing the musical character of sounds. This is

followed by an overview of musical theoretic concepts, the physical attributes of

musical sounds and how these are perceived, understood and mentally organised

by humans.

2.1 Defining the character of musical audio

We begin this section by emphasising first two statements that will be explained

below:

→ Not all musical signals are audio signals.

→ Not all audio signals are musical signals.

The first statement can be explained by the following definition, proposed here,

of a musical signal: The representation of a varying quantity or any other medium
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Signals

Sound

Audio

Musical

Figure 2.1: The relations between sound, musical and audio signals.

that can carry information ( any kind of 1), when this information is a function

of time and it has a musical nature (it can be interpreted using musical terms).

According to this definition, a series of musical notes appearing on the staff or

even the sequence of letters G, E, and D written on paper (representing a melody

made of the succession of musical chords G, E and D, respectively) could well be

considered as musical signals.

Now, a particular case of musical signals are musical audio signals. These signals

represent vibrations of physical media (i.e. sounds [140]) that are within the range

of the audible frequencies, and hence they can be perceived as sound waves by the

human listener. In Fig. 2.1 the relations of sound, audio and musical signals are

depicted graphically with the help of a simple Venn diagram.2 It is worth noting,

also, that the above definition helps to distinguish between the kind of analysis

that will be dealt with here, from traditional musical analysis (that is, primarily

the analysis of non-audio musical signals such as the score of musical notes and

timings).
1Although the term ‘information’ can have different meanings depending on the context, it is

safe to attempt a general definition for the context of this research: assuming the existence of a
general type of a communication system (transmitter-channel-receiver), we regard information
as any sort of knowledge that possesses a specific meaning and importance, because it acts by
adding to the knowledge of the receiver.

2Hereafter and for the sake of simplicity, the words sound and audio will be used interchange-
ably. The same will hold for the terms musical signals and musical audio signals.
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The second statement refers to the fact that arguments for distinguishing musical

from non-musical sound could easily end up trying to distinguish music and non-

music. Clearly, this is not a way to tackle this, since after the birth of electronic

and computer music any sort of audible vibration can exist (or be allowed to

exist) in a musical piece. So, although defining music is still nowadays a difficult

but interesting problem, there exists a relatively accepted idea (at least among

researchers) about which sounds are considered musical and which are not, some-

thing that we will try to show through this thesis. This is an interesting paradox

within contemporary music: in its context, any kind of sound can exist, no matter

if it can be considered to be musical or not.

One obvious and important remark that we could make is that music is the

sound coming from one or more musical acoustic instruments (including the hu-

man voice). This is definitely true but it does not constitute a complete definition

of musical sound. For example, what about sounds generated by other sources,

or artificially made ones? There are certainly sounds of this sort that do not re-

semble common instrument sounds, although they still retain a musical character.

Hence, rather than searching for a clear definition of the ‘musicality’ of a piece of

sound, it is more appropriate to understand well known musical sounds/signals.

Towards understanding musical signals, researchers have devised suitable repre-

sentations or models by using a variety of analytical tools. These models help to

describe the sound wave by employing terms that relate to perceptual properties

such as pitch, loudness and timbre, even though some of these measures are really

only intended to describe the properties of an isolated instrument, and may be

of limited value when applied to a typical mixture. Furthermore, other models

relate music theoretic concepts such as harmony or melody to mental structures

in the brain. So, research has been progressing along two main parallel paths

that, quite frequently, happen to merge together:

• Investigating the physical aspects of traditional instrument sounds and what

is involved during their generation. This is what the areas of physics, math-

ematics, computing and engineering have been contributing to.
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• Finding out how humans perceive sounds and their musical features, and

infer meaning from higher-level musical structures, and finding correspon-

dences of these perceptual attributes with the physical properties of the

sound. Music and its evolution, in general, has relied on the capabilities

and limitations of the human auditory system (HAS) and if the HAS can-

not tell the difference in pitch or timbre between two sounds, it does not

matter musically.3 This what the areas of music theory, psychology, cogni-

tive psychology and neuroscience have been contributing to.

The following sections will examine briefly the ways in which these areas have

contributed to the understanding and analysis of musical signals. In particular, we

will focus here more on those concepts which are most relevant to the discussions

later in this report. Unfortunately, due to the multidisciplinary nature of these

areas, it is difficult to avoid using some terms before explaining them fully.

Fig. 2.2 outlines the relationships between the main concepts that are discussed

in this chapter. The conceptual formulation carried out by Scheirer in his the-

sis [145] (as well as some of the associated terminology) was employed here as a

useful starting point. Vibrating sources (the auditory objects, or sound objects)

produce sounds that can be characterised as auditory events, which all together

are presented to the listener’s ear as a single auditory stimulus. In order to reach

the listener, though, the sound often goes through a number of ‘communication’

processes: the audible part is transduced by microphones into electrical signals

(audio signals) and then it may be digitised, compressed, coded, etc. before it is

converted back to sound vibrations. From the listener’s side, this complex stimu-

lus is believed to be disentangled into auditory images [145]. An auditory image

is the perception of a sound as coming from a single source. The rest of the fig-

ure represents the highest-level mental classification of these auditory images into
3Here we refer, mainly, to the limitations of the HAS in perceiving melodies (see §2.2.1) of

isolated sounds and distinguishing differences between these sounds, based on their timbral fea-
tures: there are certain limits beyond which we cannot observe pitch fluctuations in time when
we listen to a single sound; the same holds for observing differences between two sounds. It is
important to note, though, that if two sounds with the same (or very similar) pitch and tim-
bral properties are played simultaneously, there will be harmonic reinforcement and amplitude
changes, which will still be perceived (corresponding, for example, to the sense of harmony).
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musical and non-musical, including some other concepts related to the perception

of sound that will be mentioned throughout this thesis.

2.2 Musical properties and perception

2.2.1 Music theoretic concepts

This research work, in line with the majority of research in music signal analysis

and understanding, will concentrate on musical pieces based on Western musical

theory. Although many other systems of music exist, the vast majority of popular

and classical music content is based on the Western musical tradition. According

to this tradition the musical works are structured around elementary elements,

which are notes. These are symbols for representing a number of the salient

characteristics of the sound: primarily its pitch and duration, and to a lesser

degree, its intensity, timbre and tempo [121]. Pitch is a perceptual attribute which

allows us to order sounds from high to low on a frequency scale. A more exact

definition would be ‘the frequency of a sine wave that is matched to the target

sound by human listeners’ [71]. For ideally harmonic or near-harmonic sounds

the pitch is definite and is normally equivalent to the fundamental frequency (F0)

of these sounds. This is assumed when we talk about a note’s pitch, or the

musical pitch. The notes are often arranged in the equal-tempered tuning scale

that divides each octave into 12 logarithmically spaced semitones. Each note’s

pitch can be calculated as 440 × 2n/12 Hz where n varies from −48 to 39 on a

standard piano keyboard [94]. A melody is the sequence of notes in time and

can itself be thought of as a single entity. On the other hand, a chord is a set

of notes sounding simultaneously. Chords can be consonant or dissonant . These

last terms are perceptual attributes of chords related to the field of music theory

called harmony. A common explanation of consonance (originally proposed by

L.M.F. Helmholtz [74]) is the fact that the combined notes have shared harmonics

(see §2.2.3). This leads to a fusion effect that makes consonant chords sound

pleasing to the listener, with the dissonant ones having the opposite effect. As a
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Figure 2.2: From physical auditory events (vibrations) to a classification of sounds in
terms of their physical properties and their perception by humans.
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result, consonant intervals are favoured, as opposed to dissonant ones. We will

see later on that this very common characteristic of musical sounds, that they are

‘fused’ together when they have shared harmonics and played simultaneously, is

an important one when we want to separate them.

2.2.2 Limitations of the auditory system

The HAS is generally sensitive to sounds within the range from 20 Hz to around

20 kHz. However, frequencies up to 10 kHz are more significant than the rest of

the audible spectrum. Due to the particular way the sound is transduced into

neural impulses in the basilar membrane, it is hard to distinguish two different

notes when played simultaneously and their frequencies are separated by less than

a certain frequency range called the critical band . The range of this band, called

the critical bandwidth, has a constant value for centre frequencies up until 1 kHz.

After 1 kHz the critical bandwidth increases logarithmically with the frequency.

So, for example, at frequencies 100 Hz and 200 Hz the critical bandwidth is 90

Hz, while for a frequency of 5 kHz it increases to 700 Hz [140]. Another important

parameter (which appears to be the result of the same mechanism in the ear that

is responsible for the critical band) is the Just-Noticeable Difference (JND) with

regards to pitch: this is the smallest frequency change that has to take place in a

tone in order for it to become noticeable by the average ear. The JND depends

on the frequency, sound level, duration and suddenness of the frequency change,

and corresponds roughly to 1/30 of a critical band [140]. This means that while

it is possible to detect very small differences in the frequency of a single tone,

a much larger frequency difference is needed to discern between two tones when

they are played simultaneously.

Some additional important limitations of the HAS are related to time. Exper-

iments have shown, for example, that in order to tell reliably the order of the

onsets of two 0.5 s tones (a duration appropriate for a short musical sound seg-

ment), they have to be at least 20 ms apart [129]. These properties of the auditory
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system are exploited for creating reliable signal representations (as we will see in

Ch. 3) as well as for effective compression and coding algorithms.

2.2.3 Sound spectra

The HAS (as well as the auditory systems of all mammalian animals) in effect per-

forms a kind of analysis of the sound similar to that of ‘Fourier analysis’. Musical

sounds, as with all sounds, can be represented as the sum of a number of different

sine waves (also called tones, or sinusoids). The amplitudes of these sinusoids

characterise the sound’s spectrum, which is, generally, changing over time. This

idea was inspired by J.B.J. Fourier who first showed that periodic functions can

be decomposed into a sum of sinusoidal components (the Fourier series). Peri-

odic sounds, hence, are represented by a number of discrete sinusoidal components

whose frequency and amplitude remain constant over time (theoretically, for ever).

These sinusoidal components are the harmonics (integer multiples) or harmonic

partials of a F0. Thus, if m is the partial index, the harmonic frequencies will be:

fm = mF0, m = 1, 2, . . . . (2.1)

The components that are placed in non-integer multiples of the F0 are called

inharmonic partials, and these partials dominate in aperiodic or nonharmonic

sounds.

Of course, sounds coming from real acoustic instruments are not strictly periodic

and they don’t have infinite duration. As a consequence, they cannot be decom-

posed using the Fourier series. However, for time-limited relatively stationary

portions of the sound, that can be characterised as quasi-periodic, other tools ex-

ist for analysing its frequency content (see Ch. 3). The spectral analysis of these

sounds shows many more frequency components than just the expected harmon-

ics, although the harmonics still remain the dominant components. This is what

we usually call a harmonic sound.4 In general, most Western non-percussive mu-
4In real musical sounds the harmonics may not appear in exact integer multiples, as will

be shown below. For this case, where the sinusoidal components are placed in nearly integer
multiples of the F0, the term ‘harmonic’ will still be used for characterising the sound.
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sical instruments produce harmonic sounds (at least during the sustained part of

the sound). We have to make two notes, though:

• Their spectra are not always perfectly harmonic.

This is evident for plucked and struck string instruments (a common example is

the piano) for which the partials deviate to a certain degree from perfect har-

monicity. In fact, they are placed according to the approximate formula5

fm = mF0
√

1 +B (m2 − 1), (2.2)

where m = 1, 2, . . . is the partial index and B the inharmonicity coefficient [63].

• Most of the harmonic instruments produce sounds also with both transient

and noise content. This is due both to the way an instrument is played

(e.g. repeated plucking of strings) and nonlinearities introduced by the

instrument’s body.

The transients occur during note attacks (the beginning of a note) and decays

(the end of a note), in other words, during the non-steady part of the note. They

have a very rich spectral content, almost noise-like6 at the attacks, in contrast

to the steady-state portion of the note (sustain) where the harmonics dominate.

However, transients are not entirely random signals in that their sound does reveal

a sense of structure, although this is difficult to model effectively. Finally, by ‘noise

content’ we mean any other residual content in the sound that does not reveal

any sort of clear spectral structure (an example is the ‘breathiness’ of a flute). To

conclude, these features which are responsible for the nonharmonic content of the

sound play an important role in characterising its ‘naturalness’.
5It is important to note that, in theory, all the partials deviate from the positions predicted

by perfect harmonicity, even the fundamental. So, in this formula F0 is really the measured value
of the fundamental frequency, rather than the predicted one. Practically though, the difference
between the two is often not perceptually significant. This is why the majority of authors do
not make this distinction, assuming no deviation of the fundamental from its predicted value.

6A ‘noisy’ signal’s spectrum is a distribution of frequency components that resembles the
white or coloured noise spectrum.
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The rest of the chapter will highlight how the physical properties of sounds are

believed to be perceived and understood by a human being, and how they are

used for building high-level cognitive structures.

2.2.4 Basic perceptual attributes of sound

The perception of sounds by humans is thought to be carried out by employing

a number of basic perceptual attributes. These attributes are part of a subjective

experience, as opposed to physical phenomena, which are objective and can be

described in terms of quantifiable parameters [140]. The most commonly-studied

perceived attributes are pitch, loudness, timbre and duration. These attributes

depend in some ways on a set of well known physical parameters such as frequency,

pressure, spectrum, envelope and duration. The parameters could be seen as

dimensions defining a space on which the perceptual attributes could be projected.

Table 2.1 (taken from [140]) shows the ‘dimensionality’ of each of the attributes.

What we can see from this table is that all the attributes depend to a certain

degree on all the physical parameters. Apart from timbre, though, the rest of them

can be broadly characterised as ‘one-dimensional’ (e.g. pitch depending mostly

on frequency and loudness mostly on pressure). Timbre, on the other hand, is

a multi-dimensional attribute, and thus difficult to describe and quantify. We

will continue, here, by focusing only on the attributes of pitch and timbre, which

are considered important to this research. For a discussion on the perceptual

attributes of loudness and duration, the reader is referred to key texts such as [46]

and [140].

Pitch

As mentioned in the previous section, there are sounds for which a person can

make a definite decision about how high or low in a frequency scale they are,

compared to other sounds. This decision is based on the sense of a perceptual

attribute called pitch. Quantifying this attribute and relating it to measurable

properties of the sound, though, is not necessarily straightforward when we are
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Subjective Quality
Physical Parameter Loudness Pitch Timbre Duration

Pressure +++ + + +
Frequency + +++ ++ +
Spectrum + + +++ +
Duration + + + +++
Envelope + + ++ +

Table 2.1: The dependence of subjective qualities of sound on physical parameters
(from [140]). The quantity of ‘+’s indicates the degree of dependence, from weak depen-
dence (‘+’) to strong dependence (‘+++’).

dealing with very complex signals. The brain is capable of assigning pitch even to

sounds composed just of inharmonic partials or some types of wideband noise [140,

Ch. 7]. As shown in Fig. 2.2 there is no clear boundary between unpitched and

near-harmonic (pitched) sounds. Although a tremendous amount of work has been

published representing attempts at finding a reliable pitch model, none of them

has been able to deal with all the different cases in matching humans’ decisions

regarding complex sounds (for a review see [71]). We are not going into deep

analysis here, instead we will present some results that have been extensively

verified and can hence be applied with confidence to musical instrument sounds.

If the target sound is another sinusoid or a periodic sound, the pitch would almost

definitely match the frequency of that sinusoid or the F0 of the sound, respectively,

as experiments show. However, the F0 does not necessarily have to be present.

There are cases, for example, where the F0 or the first few partials are absent

from a signal, and yet the sense of pitch evoked to the listener corresponds to

the (missing) F0 [146]. Examples of such instrumental sounds include that of

the bassoon or the organ, when playing very low notes. This has become known

as residue pitch or virtual pitch (a term coined by Terhardt [157]). What is

known is that the pitch is determined by the most prominent harmonics. The

prominence of the harmonics depends on the frequency range: for high pitches it

is the lower harmonics which have greater effect, while for low pitches the higher

harmonics are more important. Generally, it can safely be said that the perception

of pitch depends on the position and amplitude of the lowest six harmonics in

some fashion [129]. Finally, another important observation concerns sounds in



2.2 Musical properties and perception 23

which the odd harmonics are dominant: the sense of pitch in this case may not

correspond to the F0 [128].

Timbre

Various definitions have been presented in the literature for the perceptual at-

tribute of timbre. Following Scheirer [145] a definition with a broad sense will be

adopted: “[The timbre of a sound is] the quality or set of qualities that allows a

listener to identify the physical source of a sound.” As Plomp [130] notes though,

this is a ‘negative’ description, i.e. it states that timbre is neither pitch nor loud-

ness, but does not give any more information about it. Which are these qualities,

then, that make a sound distinguishable from one other sound? Table 2.1 shows

clearly that these qualities depend considerably on more than one physical prop-

erty, such as the spectrum, the envelope and the frequency. How exactly these

dependencies are formed is the difficult part.

Firstly, it is generally true that the ear is largely insensitive to phase alterations.

By ‘phase’ we refer here to phase relationships between harmonic partials of peri-

odic tones [137]. This can be observed, for example, from the fact that reverberant

environments (generally causing large phase changes to the sound) do not appear

to alter the sound’s perceived timbre. Thus, the waveform shape is not the only

factor affecting timbre.

However, it does appear that the timbre is greatly affected by how the sound

energy is distributed among the partials: in other words, the spectral shape.

One interesting point, however, is that we are able to distinguish the difference

between the words ‘we’ and ‘you’ when we hear them, although it can be shown

that they have approximately the same spectrum [129]7. Thus, the importance of

transitions (time domain variations) also has to be acknowledged. Moreover, by

filtering we can change the ‘colour’ of a sound (make it brighter, or more dull), but
7This could be also shown (with regards to the magnitude spectrum) by listening to a piano

note played backwards in time: though the magnitude spectrum would be the same, it may not
be recognised as a piano sound.
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we can still easily recognise it. These facts raise questions about the significance

of purely spectral information in timbre discrimination.

Among other approaches towards understanding timbre perception, some have

employed sound analysis and synthesis [137]. According to this process, a suitable

model or representation (see Ch. 3) is chosen for the sound in question, and its

parameters are calculated. These parameters are used to create a synthetic version

of this sound. By elaborate auditory comparisons between the original and the

synthesized sound, useful insight can be gained into the relevance of a sound’s

physical parameters to the resulting timbre.

Finally, it is worth noting that instrument recognition and classification [76, 75]

is a field of research closely related to timbre discrimination. Work on this field

tries to find sets of quantitative features that can best describe timbre and then

use them to build algorithms that will automatically recognise or classify musical

sounds into different classes of instruments. Examples of features may include

harmonic irregularity, vibrato, Amplitude Modulation (AM) frequency, spectral

centroid, or the zero-crossing rate of the waveform [127].

2.2.5 Grouping and segmentation mechanisms

The human brain has the ability to recognise or build structures out of highly

complex musical sounds. A usual case in music is when we are ‘hearing out’

a melody played from a certain instrument in a mixture. This is caused by

some kind of mechanism that deconstructs the sound into auditory streams (or

perceptual units). The tendency to form perceptual organisations from sound is

innate, and of course this does not hold only for music. Humans try to infer

meaning from their overall sound environment; in other words, they perform an

auditory scene analysis [16].

The basic models of grouping mechanisms were proposed by the Gestalt psycholo-

gists [16, p. 18]. According to them, we can group elements together by employing

a number of simple rules, or cues. Examples of these cues are proximity, common
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fate, similarity and continuity. Especially for musical sounds, two of the most

important cues are harmonicity and common onset. Grouping by harmonicity

can be seen in pitch perception: what we perceive as the pitch of a sound, is

due in part to the grouping of those sinusoids with harmonic or near-harmonic

relationships.8 According to the common onset cue, when a set of frequency com-

ponents start simultaneously, it is likely to have originated from the same source.

Some other cues used in musical signals are common Frequency Modulation (FM)

or AM. AM is not a very popular cue, though, since an instrument’s harmonics

often evolve in a different way and decay in different times [45].

If we consider grouping in terms of notes (and not sinusoids), the same Gestalt

principles can be applied. In this case, two main dimensions of grouping are

generally encountered: horizontal grouping (or sequential integration) and vertical

grouping (or simultaneous integration). Horizontal grouping is responsible for the

perception of melody, while vertical grouping is responsible for the perception of

harmony.

All these cues that have been found to be good models for the brain’s grouping

mechanisms appear to be very useful in musical signal processing. By including

computational versions of them within the analysis framework of a musical signal

the process of separation of musical structures can be enhanced.

2.3 Summary

This chapter presented the basic principles of musical audio analysis and intro-

duced a number of definitions, outlining the broad framework of this research

work. In order to analyse musical audio it is important to understand the physi-

cal properties of sound, its perception by the HAS and how sound is employed to

make music, according to the Western musical tradition. So firstly, a number of

basic music theoretic concepts are mentioned. Next, some important limitations

of the HAS (related to its time and frequency resolution) are discussed, since
8As it was mentioned in §2.2.4, perfect harmonicity is not required for the perception of

pitch.
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these limitations can help to define useful musical audio characteristics. This is

followed by briefly describing how the spectrum of the sound provides important

information that can be used for further analysis. Depending on their spectral

properties, musical sounds contain harmonic or near-harmonic frequency compo-

nents and nonharmonic (transient or noise) content. Although this classification

is not always straightforward, identifying these different types of content in a

musical signal is valuable: analysis methods can be more effective when they are

designed specifically for a certain type of content.

Furthermore, we discussed research findings related to basic perceptual attributes,

which are thought to be employed by the HAS for perceiving sounds. In partic-

ular, pitch and timbre are mentioned here. Quantifying these attributes is not

something straightforward, since they depend on more than one physical param-

eter. Finally, a number of auditory cues were presented, which are believed to

be employed by the brain in order to recognise structures out of highly complex

sounds. For musical signals consisting of notes, common structures recognised by

the brain are melodies (largely due to sequential integration of frequency com-

ponents) or chords (largely due to simultaneous integration of frequency compo-

nents). The next chapter will discuss the ways in which musical signal structures

can be represented so that they can be processed by computers.



CHAPTER 3

Representations of musical audio signals

This chapter describes some of the important contributions of signal processing

techniques for representing musical audio signals. The audio waveform is consid-

ered to be a low level source of information on a scale of abstraction, as opposed to

the high-level structures of information encountered in music theory (e.g. notes,

melodies, chords, motifs). This hierarchy, of course, is an artificial one, corre-

sponding to a human point of view,1 because for computers there is nothing ab-

stract (in the sense of a high-level representation) about a series of numbers (i.e.

a digital signal). On the other hand, a sequence of 44100 numbers2 does not mean

anything to humans, unless they can relate it to some kind of ‘real-world’ infor-

mation. This situation (which is depicted in Fig. 3.1) is directly related to one of

the purposes of musical signal processing: we want to make machines understand

musical information and structures the way we do, so that with their help we can

solve problems like source separation. But this has to be done through abstract

representations of the waveform which best describe the underlying properties of

these signals in the way that corresponds to our perception of these properties.

All the information that we need is hidden in the time signal (waveform amplitude

vs. time). As we have seen so far, though, our auditory system performs an
1or, more correctly, point of hearing !
2This many numbers can represent one second of digital audio signal, sampled at a rate of

44.1 kHz.
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Figure 3.1: Levels of representation for humans and computers. The human world and
its constructed ideas is abstract to the computer, and vice versa.

approximate Fourier analysis and then makes an effective use of the spectral

information in order to build mental representations of the sound environment.

Hence, it makes sense to try to find representations that will ‘translate’ the time

signal into its corresponding spectrum. Moreover, since our goal is to separate

musical structures, it makes sense to try to project them into a domain where

these structures are evident, i.e., the frequency domain.3 These representations

are called time-frequency (TF) representations or distributions, and they fall into

the category of mid-level representations. This last concept, originally related to

computer vision [111], appears to be equally useful for devising computational

models of auditory perception [16, 56]. They form a representational area that

can be ‘located’ between the low level (basically the waveform before it reaches

the cochlea) and the high level (cognitive processes in the brain, related to the

recognition of events or objects) in human auditory perception (see Fig. 3.1) and

they are usually grouped into parametric and non-parametric methods. Although

the division between these two classes can often be ill-defined, the general situation

is as follows:

Non-parametric methods These approaches are usually based on signal trans-

formations between the time and frequency domains and they do not require

any assumptions or prior information about the signal. In other words, they

do not offer an interpretation of the representation [113].
3Of course, source separation approaches that operate in the time domain do exist (e.g., [77,

86, 14]). However, emphasis is given here on the ability of mid-level representations to highlight
signal structures in ways that bear similarity to the way the HAS operates.
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Parametric methods These approaches construct models by parameterising

physically meaningful features of the signal. This means that some kind

of prior knowledge is implied about the signal under question and thus,

they implicitly offer some kind of interpretation.

Before starting with the description of the methods, an introduction to signal ex-

pansions, a concept that encompasses both non-parametric and parametric meth-

ods, will be given.

3.1 Signal expansion

A signal expansion is basically an additive model that represents a signal as the

linear weighted sum of basic components. In its most general form, an observed

discrete-time signal x(n) can be expressed as:

x(n) =
K∑
k=1

gk bk(n), ∀n ∈ Z, (3.1)

where {bk(n)}Kk=1 is the set of basic components called expansion functions which

are summed using the set of linear weighting coefficients {gk}Kk=1. The family of

the selected expansion functions is called a dictionary. If T is the length of x in

samples, Eq. 3.1 can be written in vector notation as

x =
K∑
k=1

gk bk, (3.2)

where x = [x(0)x(1) . . . x(T − 1)]T and b = [b(0) b(1) . . . b(T − 1)]T. If we now

organise the expansion functions in a T ×K matrix B = [b1 b2 . . . bK ] and the

coefficients in a vector g = [g1 g2 . . . gK ]T, we end up with:

x = B g. (3.3)

Eq. 3.3 represents a linear system of equations, where the expansion coefficient

vector g is the unknown. When T = K and {bk}Kk=1 are linearly independent, the
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expansion functions are called basis functions and the transformation (or, in other

words, the representation) is said to be complete [67].4 A complete representation

is invertible, so the expansion coefficients can be calculated using:

g = B−1 x. (3.4)

In this particular context, Eq. 3.4 is called the analysis equation, while Eq. 3.3 is

the synthesis equation. A common restriction on a set of basis functions that is

particularly useful is to use orthogonal functions. If the orthogonality constraint

〈gi,gj〉 = δij is satisfied, it follows that B−1 = BH. This means that the cal-

culation of the coefficients is simplified as there is no need for matrix inversion;

projecting x onto each of the basis functions can give us the desired result:

gk = bH
k x =

〈bk,x〉
〈bk,bk〉 , k = 1, 2, . . . ,K. (3.5)

If the norm 〈bk,bk〉 is equal to unity, the basis functions can be said to be

orthonormal to each other. This is often the case in signal modelling appli-

cations, which is why the terms ‘orthogonal’ and ‘orthonormal’ (incorrectly)

tend to be used interchangeably in the literature. Well-known and used ex-

amples of complete representations include, for example, the Discrete Fourier

Transform (DFT), the Short-time Fourier Transform (STFT) and the Discrete

Wavelet Transform (DWT). In fact, it has to be noted that the last two, since

they are linear TF representations, are generalisations of the additive model of

Eq. 3.1, that have the form:

x(n) =
R∑
r=1

K∑
k=1

gkr bkr(n), ∀n ∈ Z. (3.6)

where r = 1, 2, . . . , R is the time-frame number. In this case, the functions {bkr}
are localised both in the time and frequency domain and they are called TF atoms.

Henceforth, the TF or frequency-domain representation of a time-domain signal

will be denoted by its corresponding capital calligraphic symbol. For example, X
4The dictionary associated with the representation is also said to be complete.
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corresponds to x, where

X (k, r) := gkr,
k = 1, 2, . . . ,K,

r = 1, 2, . . . , R,
(3.7)

is the TF representation of x(n).

3.2 Non-parametric methods

Non-parametric methods generally involve some sort of reversible transformation,

using a fixed set of basis functions. Because of this, they are broadly applicable

to any kind of signal, and their calculation is usually highly optimised. For the

case of musical signals (which have an evident structure in the frequency domain)

complex exponentials are a common type of basis function, because of their ability

to explicitly describe time and frequency information.

3.2.1 Fourier-related methods

The standard non-parametric method for decomposing a time-limited signal into

a distribution of sinusoidal components (i.e. using complex exponentials as the

basis functions) is the Fourier Transform (FT). For a continuous-time signal x(t)

the continuous FT (i.e., the analysis equation CFT) and its inverse (i.e., the

synthesis equation ICFT) are defined as follows:

CFTx(ω) : X (ω) =
∫ ∞
−∞

x(t) e−jωt dt (3.8)

ICFTX (t) : x(t) =
1

2π

∫ ∞
−∞
X (ω) e jωt dω. (3.9)
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For a discrete-time real signal x(n) of length N , it can be shown [133] that the

DFT and its inverse are

DFTx(k) : X (k) =
N−1∑
n=0

x(n) e−j2πkn/N , k = 0, 1, . . . , N − 1 (3.10)

IDFTX (n) : x(n) =
1
N

N−1∑
k=0

X (k) e j2πkn/N , n = 0, 1, . . . , N − 1.(3.11)

X (k) is the (complex) value of the k-th frequency coefficient. The frequency axis

is sampled in N (called the length of the transform) uniformly spaced frequencies

centred at fk = (k/N)Fs, where Fs is the sampling frequency. Thus, the frequency

resolution is proportional to N (assuming that Fs remains constant). What we

can see from Eq. 3.11 is that the Inverse DFT (IDFT) decomposes the signal x(n)

into a weighted sum of complex exponentials e j2πkn/N which, for this case, are the

basis functions. The complex exponentials are also orthonormal: if sk ≡ e j2πkn/N ,

then

〈sk, sm〉 =
N−1∑
n=0

sk(n) sm(n) =
N−1∑
n=0

e j2πkn/Ne−j2πmn/N

=
N−1∑
n=0

e j2π(k−m)n/N =

 1, for k = m

1−e j2π(k−m)

1−e j2π(k−m)/N = 0, for k 6= m.

The fraction is the closed form expression of a geometric series, and the end result

is equivalent to 〈sk, sm〉 = δkm, i.e. the complex sinusoids are orthonormal. This

leads to a general reduction of calculation complexity, as explained above.

One of the advantages of using this transformation is that it is linear (as are the

majority of the non-parametric methods). The advantage of the linearity can be

shown with an example: suppose we have 3 audio signals summed into a mixture

signal that has been transformed through the DFT into the frequency domain and

we subtract from the spectrum the frequency components corresponding to one of

the signals. If we then inverse-transform (reconstruct) the residual onto the time

domain, we get exactly what we had before, minus the extracted signal. In other

words, removal of content via the frequency domain does not introduce additional

artefacts, i.e., components that were not there before the transformation. This
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is something that is highly important for any realistic approach towards source

separation.5 Nevertheless, the DFT is not totally suitable for signals such as

those encountered in music. Musical signals must generally be considered to be

nonstationary signals: assuming that they contain sinusoidal components and

some stochastic content, the number and amplitude of the sinusoids is potentially

changing quickly, as are the statistical properties of the stochastic content.6 The

result is a time-varying spectrum. For a situation like this a spectrum analysis

method using the DFT would not be adequate, since this transform tells us which

frequencies existed for the total duration of the signal, and not the frequencies

that existed at any particular time. Hence, a method that would give a description

of the energy density of the signal simultaneously in time and frequency (resulting

in a TF distribution) would be more appropriate. A common method used for

this purpose is the STFT. This method segments the signal into a number of

short-duration frames and performs a DFT separately for each of these frames.

Mathematically, it is a joint function of time and frequency and for the discrete-

time case is

STFThx(k,m) : X (k,m) =
∞∑

n=−∞
x(n)h(n−m) e−j2πkn/N . (3.12)

m ∈ N is the time instant defining the starting point of the frame over which the

transform is calculated. h(n) is a window function that is applied before the cal-

culation of the transform. Various kinds of window functions have been designed

so far for this purpose. Many of them have a shape that approaches zero at its

boundaries. This is in order to prevent spurious spectral components (spectral

‘leakage’) arising from discontinuities in the signal amplitude between opposite

window boundaries. The discontinuities are due to the fact that the STFT ef-

fectively assumes that it is creating a Fourier series expansion of a periodically

extended version of the analysis frame. Common examples are the Hamming,

Hanning and Blackman-Harris windows [70, 123]. The main considerations af-
5§4.2.3 and §4.12.2 include further discussions regarding the relation between linearity of the

mixture model and the representation in the context of examining existing methods.
6By contrast, we can define a signal as stationary during a specified amount of time when

this signal is comprised of sinusoidal components whose statistical properties do not change over
that specified duration.
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fecting its selection are its main spectral lobe width and the energy of its side

lobes.

The window is non-zero only within the interval [0,M − 1], where M ≤ N is the

size of the window. This changes the limits of the above sum accordingly. Also,

in order for the calculation of the STFT to be done efficiently, we introduce one

more term in Eq. 3.12, the hop size L. In this way, instead of doing the calculation

after each step m, it will be done after every L samples of x(n). Let us define,

now, a windowed segment of x(n) as:

xr(n) ≡ x(n)h(n− rL) (3.13)

and the fixed-time-origin sequence:

x̌r(n) ≡ x(n+ rL)h(n), for n = 0, 1, . . . ,M − 1 (3.14)

where r = 0, 1, . . . , R− 1 is the index of the calculation frame. The STFT can be

written now as:

STFThx(k, r) : X (k, r) =
rL+M−1∑
n=rL

x(n)h(n− rL) e−j2πkn/N (3.15)

=
M−1∑
n=0

x(n+ rL)h(n) e−j2πk(n+rL)/N (3.16)

= DFTx̌r(k) e−j2πkrL/N , (3.17)

Eq. 3.17 shows that the STFT can be directly implemented by calculating the

DFT of each of the blocks ofM samples x̌r(n). Regarding the choice of the length

L, it has to be done so that it is reasonable to expect no significant variation of

the parameters within that interval. When L < M (which is the most common

practice), the frames are overlapping. Also, the transform length N is often taken

to be larger than M , in order to increase the apparent spectral resolution. The

additional samples forM ≤ |n| ≤ N−1 have zero value, thus this method is called

zero-padding. It is worth noting that while zero-padding can, indeed, increase the

frequency resolution, it does not provide any extra spectral information (such
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as revealing hidden partials). Rather, it provides an interpolated viewpoint for

improving the localisation of all the spectral information, including the maximum

on a partial’s main lobe.

The visualisation of the STFT analysis is a 2-D image, called the spectrogram. It

displays the magnitude of the coefficients, displayed on a logarithmic scale. For a

particular TF point (k, r) the spectrogram is defined as:

spectrogramh
x(k, r) ≡ 20 log10 |X (k, r)|. (3.18)

So far, we have seen how the TF analysis is performed using the STFT. After this

step and any processing operations on the TF content, the signal will have to be

reconstructed in the time domain. This is the synthesis step and it is performed in

a similar manner to the analysis. If X ′(k, r) ≡ X ′ is the modified frame spectrum,

then the transformed signal can be obtained by a weighted overlap-add procedure

[37, 132]

x′(n) =
R−1∑
r=0

v(n− rL) · IDFTX ′(n)

=
R−1∑
r=0

v(n− rL) x̌′r(n− rL)

=
R−1∑
r=0

v(n− rL)x′r(n),

where v(n) is a synthesis window and x′r(n) a potentially modified version of

xr(n). If x′(n) = x(n) (i.e., no modifications have been performed on the original

signal) perfect reconstruction is achieved when the windows v(n) and h(n) satisfy

the constraint
R−1∑
r=0

v(n− rL)h(n− rL) = 1, ∀n. (3.19)

This can be achieved when perfect reconstruction windows (i.e., the windows the

shifted copies of which overlap and add to 1) are employed. The window functions

mentioned above fulfil this requirement. In practice, the choice of v(n) depends

on whether the STFT has been modified or not before reconstruction. If it has,
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then possibly erroneous phase estimations or inadequate parameter interpolation

before synthesis could lead to frame-edge discontinuities that could be audible.

A suitable synthesis window would be one which, while still achieving perfect

reconstruction, it would try to minimise those discontinuities. The use of the

triangular window is one sensible choice for this purpose [67, p. 74]. In fact, it

is used as a part of a hybrid synthesis window: if t(n) is the triangular window,

then the synthesis window will be

v(n) =
t(n)
h(n)

. (3.20)

The use of a hybrid-type increases flexibility, because now h(n) does not nec-

essarily have to fulfil the perfect reconstruction constraint as long as t(n) does.

However, h(n) still needs to be nonzero within the width of t(n), otherwise un-

wanted discontinuities arise at the edges of the frame.

Finally, applying a DFT with N chosen to be a power of 2 or 4 enables us to use

the Fast Fourier Transform (FFT), a well-established algorithm which is known

for its high computational efficiency [17].

Time-Frequency localisation

The negative effect of using a window function is that the spectral peaks appear

broadened. This is due to the fact that a multiplication operation between a win-

dow h(n) with x(n) in the time domain is a convolution of DFTh(k) with X (k) in

the frequency domain. Hence, although a spectral peak corresponding to a single

frequency value should have the shape of a delta function7 placed at that fre-

quency value, it ends up having the shape of the Fourier transform of the window

function (the observed bandwidth is the bandwidth of the window). Increasing

the length of the window in the time domain could result in a better localisation
7The Dirac delta is often described as the ‘function’ or, more correctly, the distribution

that satisfies δ(t) =


∞, for t = 0
0, otherwise, and

R∞
−∞ δ(t) dt = 1. This leads to the propertyR∞

−∞ f(t)δ(t − t0) dt = f(t0), for any t0. It is the continuous equivalent of the Kronecker delta
(see p. 200).
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in the frequency domain. However, as well as the stationarity issues discussed

above, this comes with an additional price: the localisation in time worsens, and

so any information about rapid temporal signal changes is averaged. This is a

general problem of TF representations, known as the uncertainty principle, which

gives a lower bound on the product of the time duration ∆t and the frequency

bandwidth ∆ω of the window function:8

∆t ∆ω ≥ 1
2
. (3.21)

The localisation of TF components can be depicted by tiles in a TF plane. A tile is

rectangular with dimensions ∆t and ∆ω centred at a point (t0, ω0). Furthermore,

the actual lower bound in Eq. 3.21 is achieved by using Gaussian window func-

tions. Eq. 3.21 clearly shows that there is a trade-off between time and frequency

resolution. In musical signal processing the decision about the window length

is often difficult to make: slowly time-varying partials are ideally represented

by long windows, while quickly time-varying segments (like note attacks) require

short windows. These two extremes appear very often in the same mixture. Prac-

tically, this can cause problems when it comes to calculating the parameters of

frequency components using the STFT representation. Also, when two or more

frequencies are very close together their spectral peaks will overlap. Often, this

makes it hard to tell (by just observing the spectrogram) whether a peak corre-

sponds to a single frequency component or several. As has already been said, the

case of overlapping partials (or partials that are very close together) is something

common in musical signals. For source separation purposes this is a crucial issue

that has to be dealt with, as we will see in the following chapters.

It is important to stress that the present discussion about TF localisation is carried

out under the assumption that the signal remains stationary for the duration of the

window. However, as mentioned on p. 33, musical signals are realistically expected
8∆t and ∆ω are in fact the time domain standard deviation and the frequency domain

standard deviation respectively, satisfying the equations ∆2
t = 1

E

R∞
−∞(t − 〈t〉)2|s(t)|2 dt and

∆2
ω = 1

2πE

R∞
−∞(ω−〈ω〉)2|S(ω)|2 dω, where: s(t) is the analytic form of the continuous-time sig-

nal x(t); E is the energy of s(t); 〈t〉 and 〈ω〉 are the mean values of time and angular frequency,
respectively [134].
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to exhibit nonstationary behaviour. This behaviour often causes the shape of the

spectral peaks to be different, and more importantly, wider than the shape of

the Fourier transform of the window function. In other words, the blurring of

frequency content in STFT is a result of three factors: the non-conformity of the

signal to the bin frequencies, the windowing process and any nonstationarity of

the signal.

3.2.2 Multiresolution approaches

In order to address the TF trade-off, various multiresolution approaches have

been investigated. In these representations ∆t and ∆ω vary with time and/or

frequency, corresponding to different tilings in the TF plain. One common mul-

tiresolution representation is provided using wavelet basis functions [110]. This

can be done, for example, by using the DWT or an optimised version of it, the

Wavelet Packet Transform (WPT). The tilings produced by the DWT constitute

a dyadic sampling grid in such a way that good frequency localisation is achieved

at low frequencies and good time localisation at high frequencies. In other words,

the window length is inversely proportional to frequency. Kisilev et al. reported

an increase in sparsity9 through the use of wavelets and, as a result, in separation

performance in the context of Blind Source Separation (BSS) on a few simple

audio mixtures [93].

A similar multiresolution transform is the Constant-Q (CQ) transform (Q =

f/∆f , where ∆f is the resolution bandwidth and f the centre frequency in a

TF tile) [22]. These CQ representations are similar to the way the HAS dis-

tributes frequency components into critical bands. So, it could be argued that

they would be well suited for musical signals and mixtures.

Finally, frequency-warped representations such as the Bark scale and the Mel

scale [24], as well as auditory representations such as the cochleagram [108] and

the correlogram [152] also belong in this category.
9The sparsity of a representation is defined in §3.2.3.



3.3 Sinusoidal modelling 39

3.2.3 Brief introduction on sparsity and W-disjoint orthogonality

All the above representations have the effect of increasing the sparsity of the

signal, compared to its time-domain representation. This is generally defined as

ζ =

(
K∑
k=1

|gk|p
)1/p

(3.22)

where p ∈ [0, 1]. If ‘sparsified’ (i.e., transformed to a mid-level TF domain where

they appear sparser than in the time domain) signals are mixed together, it would

be expected that they would not overlap significantly in that particular TF do-

main. The condition that is satisfied when two signals are non-overlapping at each

TF point is called W-Disjoint Orthogonality (WDO). Since sparsity and WDO

are employed as assumptions by source separation approaches, their implications

and consequences on the separation performance will be examined in more detail

in the context of reviewing related work (see §4.12).

3.3 Sinusoidal modelling

In contrast to the above methods, the sinusoidal model is a parametric method.

It is one of the most common analysis models in speech and music. It was first

introduced by McAulay and Quatieri [114] and it was originally applied to speech

signals. The deterministic part of the signal is expressed as a time-varying sum

of sinusoids M ≡M(t) with instantaneous amplitude am(t) and phase φm(t):

x(t) =
M∑
m=1

am(t) cos(φm(t)). (3.23)

The sinusoidal representation of a sound in terms of its instantaneous amplitude

and phase is obtained in the following way:

1. Compute the TF representation (usually the STFT) of the sound,
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2. detect the spectral peaks and calculate their parameters (magnitude, fre-

quency and phase), and

3. track the sinusoidal parameters from frame to frame, identifying in this way

the time-varying sinusoidal tracks.

Although the basic sinusoidal model has proven to be very useful for performing

certain basic musical effects (e.g. time-stretching or pitch-shifting) and to a good

fidelity, it still cannot represent transient and noise content, which is usually an

important part of musical sounds. Several popular models have tried to incorpo-

rate a model of the residual part of the sound, along with the sinusoidal model.

One well-known method is Spectral Modeling Synthesis (SMS), otherwise known

as deterministic plus stochastic decomposition [147, 148]. The residual part is

assumed to be the stochastic component, modelled as filtered white noise (where

the filter is time-varying), while the deterministic part is the sum of time-varying

sinusoids. The sinusoidal plus residual model can be seen as a generalisation

of the basic sinusoidal model. Various modifications and extensions have been

proposed for this model. For example, a noise model based on perceptual proper-

ties [66], and the use of hidden Markov models along with the Viterbi algorithm

for harmonic tracking [138].

3.4 Summary

The task of representing musical signals in a way that their underlying mid-

level structure becomes evident is very important. This is because they make it

possible to perform advanced and flexible manipulations on their content (such

as decomposing a mixture into its source signals). The methods for representing

signals are often categorised into non-parametric and parametric, and the selection

of the right method depends strongly on the way the resulting representation will

be exploited.

Non-parametric methods do not generally imply prior knowledge of the signal,

making them applicable to a large range of cases. They usually result in a projec-
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tion of the signal onto the TF plane, and a widely applied method is the STFT.

The STFT is a good solution for displaying simultaneously the time and frequency

structure of the signal. Although what is displayed is a crude approximation of

the ‘real’ situation (due to the inevitable TF trade-off), this representation has the

advantage of allowing for flexible analysis/resynthesis operations on music/speech

signals and a variety of content-altering transformations. Its time and frequency

resolution is constant though, and is directly dependent on the choice of the win-

dow length. Multiresolution approaches, such as the DWT and the CQ transform,

overcome this limitation by offering frequency-dependent resolution. In this way

they provide both a more realistic display of rapidly changing signal energy and

slowly-moving partials. However, it is not always straightforward to extract par-

tial content from these representations.

Parametric methods make use of prior knowledge for the signals, offering in this

way an interpretation of the representation. Because of that, they can be applied

to musical signals for performing advanced operations in an efficient way. For

example, by using the sinusoidal plus residual model and its extensions we can

create musical effects and other manipulations, with a good fidelity.

Both parametric and non-parametric methods are used heavily for identifying and

extracting source structures from mixtures in the context of source separation, as

will be seen in the next chapter.



CHAPTER 4

Single-channel source separation

So far, we have discussed the meaning of the ‘musicality’ of sounds or signals

and its relation to human perception and understanding. We have also reviewed

some of the important ways for representing those signals as a mid-level stage

for designing systems capable of ‘understanding’ them. This chapter considers

the specific problem of single-channel source separation. First, the problem is

introduced, underlining the challenges associated with it. A focus on musical

sources is made, followed by a detailed description of existing methods. This

is carried out with the help of a classification framework, intended to assist the

reader in placing the proposed method within its current context. The chapter

ends with an introduction to the available performance analysis approaches for

separation systems.

4.1 The audio source separation problem

4.1.1 Polyphonic mixtures

It is usual for audio signals originating from different sources to coexist simul-

taneously in the form of a mixture. For the majority of Western musical pieces
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this mixture consists of interweaving melodies1 coming from musical instruments.

Roughly speaking, the pitched (harmonic or near-harmonic) instruments are usu-

ally responsible for the melodies, while the pitched nonharmonic ones are mostly

responsible for the sense of rhythm. We can call this type of mixture signal a

polyphonic signal.

The term “polyphonic” is originally taken from music theory, where it is used in a

more limited sense than it is here. In music theory, polyphonic describes a piece

of music that “combines several distinct melodic lines simultaneously” [135]. This

term contrasts with monophonic: a piece of music consisting of a single melodic

line, and homophonic: a piece of music where several melodic lines are combined,

although instead of being distinct (as in polyphonic music) they move in the

same rhythm, creating a clear succession of chords. One thing to note is that

it is often hard to draw clear distinctions between these terms when we want to

characterise a musical piece [135]. In fact, the area between the formal definitions

of polyphony and homophony is more of a continuum, and the position of a

musical piece in this continuum depends on the degree of independence between

the melodic lines: the higher the inter-melodic independence, the closer a musical

piece is to being classified as polyphonic; the lower the independence, the closer

it is to being classified as homophonic.2 Furthermore, the majority of Western

musical pieces (especially popular music) very often involve both polyphonic and

homophonic characteristics. A musical source separation system should ideally

be able to deal with all those cases, regardless of where they are placed on the

polyphony/homophony continuum, as long as they are mixtures comprised of

different musical source signals. This defines a polyphonic signal for the purposes

of this thesis. A corollary of this is that the source signals will be monophonic

signals (i.e., no chords are assumed for this thesis).
1We note here that the reference to the melody takes us immediately to the mid and high

levels of human perception, mentioned in Ch. 3. We stress again that it is according to humans
that most of the musical signals consist of melodies (and other relevant structures).

2A strict definition or use of independence (an example of which would be to talk about
statistical independence on the melody level) is not needed here, as the word is only used for
making the point of unclear distinctions between polyphony and homophony.
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In addition to the polyphony-related definitions, a few further clarifications are

needed to set up the context for the description of the source separation problem.

As will be seen further below, many of the existing separation methods do not

produce a residual, or if they do, they treat it as undesirable content. The work

presented here treats the residual much differently, since it deliberately expects

a part of the sources (the one not belonging to the current model) to be found

in the residual. The following definitions reflect the particular way the involved

signals are considered in this work.

4.1.2 Signal categorisation in mixing and separation scenarios

Two main sets of entities are involved in any kind of signal mixing or separation

process: the original source signals and themixture channels. In a mixing scenario

we refer to the original source signals as the signals that are the input to the mixing

process, which produces the mixture; they correspond to the sound produced by

a particular source, usually at the point where this sound was produced.3 The

set of J original source signals can be denoted by {sj(n)}Jj=1 (see Fig. 4.1a). In a

separation scenario we also have the estimated or extracted source signals. These

are the output signals of a separation system, and by definition they correspond

to and are expected to match to a certain degree the original source signals. The

set of J extracted source signals can be denoted by {ŝj(n)}Jj=1 (see Fig. 4.1b).

As an aside, it is worth making a few additional remarks regarding definitions

related to separation. Estimation and extraction are distinguished in this thesis as

two different processes appearing in series in a separation system, as will be seen in

§4.3. However, for the purpose of differentiating between the two ‘kinds’ of source

signals (original and estimated/extracted), we can refer to either the estimation

and extraction processes, since they fall into the same category. Furthermore,

it is worth highlighting the contextual difference between the words ‘extraction’

and ‘separation’: the word ‘extraction’ focuses on the idea that a particular source
3This point may not necessarily correspond to a real point (or area) in the recording space;

instead, it can be a simulated one. The mixtures that are created using simulated recording
conditions can be called artificially-created mixtures, in contrast to the naturally-created mix-
tures.
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Figure 4.1: General view of the ASS problem (see §4.1.3 for a definition), for any com-
bination of I and J . (a) shows how the original source signals and the mixture channels
are related through the mixing process, while (b) shows how the mixture channels and
the extracted signals are related through the separation process.

needs to be isolated from a composite signal, which may not contain other intended

sources (see §4.1.4). On the other hand, the word ‘separation’ implies that there

are more than one source signals that constitute a mixture, and that they all

need to be isolated from each other, rather than a background signal. Finally,

with regards to the word ‘separation’, there are other authors who make use of

different words to describe the same process. Common examples are the words

‘unmixing’ and ‘demixing’, ‘segregation’ and ‘decomposition’ (although these last

two can cause confusion, since they are used differently in other signal processing

contexts).

The last set of signals to consider is the mixture channels. Each of them cor-

responds to a different version of the mixture; they constitute the outputs of a

mixing process and the inputs of a separation process. The difference in the mix-

ture channels lies in the point where the mixing process took place. This mixing

point can be one placed in a real acoustic space, or it can be a virtual mixing point.

When the mixing points are placed in the real acoustic space, they correspond

to the sensors (or microphones, the transducers in Fig. 2.2) placed in different

positions in space, with which the sound coming from the sources is observed

and translated into signals (the mixture channels). Virtual mixing points are the
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ones established by an artificial mixing process i.e., a process that simulates the

acoustics of a certain space and the arrangement of the acoustic sources in that

space and it is often carried out in the studio. The set of I mixture channels can

be denoted by {xi(n)}Ii=1.

4.1.3 Definition of the problem

The procedure of extracting, or estimating, the audio signals corresponding to

each source, given the mixture channels, is called the Audio Source Separation

(ASS) problem. This problem can be classified, according to the respective values

of I and J , into three cases:

• The determined case: I = J

• The overdetermined case: I > J

• The underdetermined case: I < J

These terms are borrowed from linear algebra, since the mixing process can be

approximated as a system of linear equations, as will be seen below in Eq. 4.5.

Considering the above cases from the point of view of source separation diffi-

culty, the underdetermined case is generally the hardest one. Indeed, while blind

methods (such as ICA) that do not belong in this category tend to give good

results [83, 26], underdetermined situations (such as the one dealt with in this

thesis) can pose greater challenges, as will be shown below. This is simply be-

cause of the fact that there is less information available for inferring the sources.

In order to construct signal processing techniques for solving the source separation

problem, the relationship between the mixture and the source signals has to be

described mathematically. In other words, a model of the mixing process has to

be defined.4 At this point it is deemed important to give an emphasis on the

interconnections between the various models used in this thesis (some of which

will be introduced below), because it will help understand better the process of
4We are starting from the low-level representation going up, see Fig. 3.1.
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Figure 4.2: Various models used in this thesis, along with their interconnections with
regards to how these models are defined.

designing a musical source separation system. Fig. 4.2 shows the interconnections

of some of the mostly used models made in this thesis.

Before we continue with the model of the mixing process, though, the idea of

what we mean by ‘source’ in source separation has to be clarified.

4.1.4 What is a ‘source’?

First of all, it is worth making clear that by referring to “source separation”, what

authors most often mean is “source signal separation”: the word ‘signal’ is omitted

for the sake of simplicity, when used in this particular phrase. This convention is

used here, as well.

The need for a definition of source or source signal comes from the fact that in

source separation we have to deal already with two different versions of these

entities: the original sources and the extracted sources. Naturally, a successful

separation algorithm would process the mixture in such a way that the extracted

sources match the original ones to a sufficiently high degree. The problem is that,

in the situation where only the mixture is available (and not the original sources),

defining the extracted source signals conceptually is not straightforward. Below,

it will be shown why this is, and how a non-problematic definition can be made.

The extracted source signals have to satisfy two certain characteristics:
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• They have to correspond to an one-to-one relationship with the original

source signals.

• Since the mixtures are assumed to be musical, the extracted signals have to

conform to the definition of what kind of signal is considered musical.

Since musicality is a subjective quality related to the HAS, it appears appropri-

ate to define the sources comprising a mixture using terminology from the field

of auditory psychology and scene analysis. In §2.1 the concepts of auditory ob-

jects, auditory stimulus and auditory images were employed for describing the

perception and mental organisation of sounds by humans. Thus, by attempting

a simple parallelism, the original sources can be said to correspond to the au-

ditory objects which contribute to the overall auditory stimulus (corresponding

to the signal mixture), and the estimated sources to the auditory images which

appear in the mind of the listener. However, this parallelism is inadequate for

describing the sources, since the auditory object/auditory image relationship is

not always one-to-one (i.e., the first desired characteristic for the sources is not

satisfied). Indeed, there is often a nonlinear relationship between how the stimu-

lus is created as the ‘sum of auditory objects’ and how the stimulus is perceived

as the ‘sum of auditory images’. For example, a mixture of seven violins playing

simultaneously would probably be perceived by most listeners as a mixture of less

than seven violins, because of the limitations of the HAS. Also, the notion of the

auditory object can change with the context, depending on the particular focus or

requirements of the listener. An example of this would be the difference between

considering the drums as one object (i.e., when referring to a mixture of “bass,

guitar and drums”), or several (i.e., when referring to a mixture of “bass, guitar,

snare drum, kick drum and hi-hat”). Because of this, the conditions under which

the relationship auditory object/auditory image is always one-to-one have to be

identified.

A sensible way to go about identifying these conditions is to start by consider-

ing the auditory image. This is because the auditory image is more stable as

a descriptor than the auditory object, meaning that the first refers always to a
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Figure 4.3: A definition of original sources and extracted sources as conceptual entities
and how they are related to each other in the context of musical source separation by
drawing parallels from the area of auditory psychology. Straight arrows signify one-
to-one relationship while the dashed arrow signifies a relationship which is not always
one-to-one.

distinct entity. This entity can be called the perceived auditory object. For exam-

ple, when the listener perceives an auditory stimulus as containing 5 saxophone

melodies, the melodies correspond to 5 auditory images and these images are as-

sociated with 5 perceived auditory objects (the saxophones). The latter may not,

in general, correspond to the auditory objects responsible for the overall auditory

stimulus – the number of perceived auditory objects may often be less than the

number of auditory objects [81]. The only time when a perceived auditory ob-

ject is guaranteed to refer exclusively to a distinct auditory object is when the

sound coming from the auditory object is perceived in isolation. The relationship

between these perceptual entities is illustrated in Fig. 4.3. As it can be seen,

the one-to-one relationship required for formulating a complete parallelism is now

conditionally satisfied. This lets us introduce the following definition of the source

in source separation: it is the auditory object (or the group of auditory objects)

which produces auditory stimuli that are expected to be perceived by humans as a

single auditory image when presented in isolation ( i.e., not in a mixture).

The above definition enables us to make sense of the mixture from the point of

view of the creator of the mixture.5 The sources are defined according to how the

creator of the mixture perceives those sources as a listener (the objective view).
5The word ‘creator’ refers, here, to the person who is responsible for the mixing process.
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Obviously, the estimated source signals have to make sense as being parts of the

mixture for the listener, but not only that; they also have to satisfy the intention

of the creator of the mixture. However, the prior information available for the

separation is limited to the degree that it cannot be known with certainty what

the intention of the creator was. This relative uncertainty is highlighted by the

use of the word ‘expected’ in the above definition.

4.2 Models of the mixing process

4.2.1 Multi-channel models

The most general expression of the mixing process between the source signals

{sj(n)}Jj=1 and the mixture channels {xi(n)}Ii=1 can be formulated mathemati-

cally as follows:

xi(n) =
J∑
j=1

∞∑
ν=−∞

aij(n− ν, ν) sj(n− ν) + vi(n), i = 1, 2, . . . , I. (4.1)

aij(n, ν) represents a time-varying filtering process between the j-th source and

the i-th channel. ν denotes delay in samples and vi(n) any background noise

introduced at the i-th channel. This is a model of a mixing process where the

sources and/or the microphones are moving in time inside a reverberant space. If

we remove the time variance of the mixing filters and the noise element we end

up with the following expression:

xi(n) =
J∑
j=1

∞∑
ν=−∞

aij(ν) sj(n− ν), i = 1, 2, . . . , I. (4.2)
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where the impulse response of the filters is:6

ξij(n) =
∞∑

ν=−∞
aij(ν) δ(n− ν). (4.3)

If the mixture is assumed to have been recorded anechoically (i.e., in a non-

reverberant space) the above expression can be simplified further:

xi(n) =
J∑
j=1

aij sj(n− νij), i = 1, 2, . . . , I, (4.4)

where νij is the delay of the signal going from the j-th source to the i-th micro-

phone. This is called an anechoic mixture, as opposed to the mixtures expressed

in Eq. 4.1 and 4.2, which are convolutive ones. If we ignore the delays, Eq. 4.4

becomes:

xi(n) =
J∑
j=1

aij sj(n), i = 1, 2, . . . , I. (4.5)

This equation describes the simplest of all the mixture models, which is the in-

stantaneous mixture. The form of Eq. 4.5, i.e., the fact that it describes a system

of linear equations shows the main characteristic of instantaneous mixtures: they

are the result of a linear process. Linear processes or systems have a partic-

ular significance when constructing models, and this is because of their special

properties. The main property that a linear system satisfies is the superposition

property, which is described as follows: if there are two causes c1 and c2 the effects

of which on a system are e1 and e2 respectively:

c1 −→ e1 and c2 −→ e2, (4.6)

then the system is linear if:

k1 c1 + k2 c2 −→ k1 e1 + k2 e2, (4.7)
6Eq. 4.3 makes use of a general theoretical expression for the filtering process. In practice, a

finite number of filter taps is used (the filters are assumed to be Finite Impulse Response (FIR)
ones). In this case, if the length of the impulse response of the filter between the j-th source and
i-th channel is Zij , the impulse response of the filter will be ξij(n) =

PZij

ζ=1 aij(ζ)δ(n− νijζ).
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for any real or complex constants k1 and k2 [103]. The superposition property is a

combination of the additivity and homogeneity properties, which become apparent

through the addition and multiplication operations in the above equation.

Linearity plays a crucial role in the design of separation strategies, as will also

be discussed in §4.2.3. In particular, the assumption of mixture linearity helps

to simplify the problem and reduce its indeterminacy. Although real musical

recordings are often far from linear mixtures, as long as they do not involve

extremely reverberant spaces, the instantaneous mixing model would be expected

to provide a viable solution (or at least a good starting point) for cases of SO

and AQO applications that do not require particularly high separation fidelity.

For this reason, the separation approach proposed in Ch. 5 will make use of the

instantaneous mixing model.

4.2.2 Single-channel instantaneous mixtures

The case of extreme indeterminacy of the ASS problem is when I = 1, i.e., when

there is just one mixture channel available. In this case, the mixing model of

Eq. 4.5 becomes:

x(n) =
J∑
j=1

aj sj(n), (4.8)

This can be written in vector notation as:

x(n) = sT a, (4.9)

where a = [a1 a2 . . . aJ ]T and s = [s1(n) s2(n) . . . sJ(n)]T. If the length of the

mixture signal in samples is T (i.e., n ∈ [1, T ]) Eq. 4.9 can be written more

compactly as:

x = ST a, (4.10)

where x = [x(1)x(2) . . . x(T )]T and S = [s(1) s(2) . . . s(T )] a matrix of size

J × T . The problem of single-channel ASS in instantaneous mixtures is, thus,

the problem of estimating S and a when the only known quantity is the mixture
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vector x. Strictly speaking, this can be characterised as a Blind Audio Source

Separation (BASS) problem – the term ‘blind’ being used to signify minimal or

(as it is the case here) no a priori information (see §1.2).

In fact, it has to be noted that, when I = 1, a is usually already known in

practice, or at least assumed to be equal to [1 . . . 1]T. An exception to this would

be if a stereo source separation scenario was considered as ‘dual-mono’ separation:

carrying out separation in each channel independently using a method suited for

single-channel mixtures (see §6.5). In that case it would be generally expected

that a 6= [1 . . . 1]T.

4.2.3 Representation of the model in the time-frequency domain

As discussed in Ch. 3, transforming the time-domain audio signal to an equivalent

mid-level representation is a crucial step towards effective analysis and manipula-

tion procedures of that signal. This is because the new representation – assuming

that it has been appropriately chosen – will hopefully highlight the signal fea-

tures that matter for the processing goal. Within the wider context of this thesis,

this goal is the identification and extraction of source signals from one or several

mixtures. The majority of audio source separation methods do, indeed, oper-

ate largely on a mid-level representation domain (or a combination/succession

of multiple domains), thus the use of the chosen representation has to be incor-

porated in the models of the mixing process. Although – as seen in Ch. 3 – TF

non-parametric representations are just one category of mid-level representations,

source separation methods (and, indeed, the approach presented in this thesis)

make wide use of them, if only as the first stage for deriving subsequent paramet-

ric representations. The use of a TF representation implies that the model of the

mixing process includes an explicit consideration of this different representation.

The reason that this consideration has to be explicit in the mixing model is that

in many cases the move from the time domain to a TF representation alters some

properties of the time-domain model. A common property that may not hold in
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the chosen TF domain (while it does in the time domain) is the assumption of

linear summation of the sources.

As will be discussed in more detail in §4.12.2, discarding the phase information

from a TF representation has often proved to be a reasonable simplification prac-

tice for many methods. By choosing not to deal with the phases, the focus is

moved to the absolute values of the expansion coefficients (i.e., the magnitude

values). This results in a loss of the linearity property since, while linearity is

preserved in the mixing model when including the phases of the TF coefficients:7

x(n) = s1(n) + s2(n), ∀n ⇒ X (r, k) = S1(r, k) + S2(r, k), ∀r, k. (4.11)

the same does not generally hold when the magnitudes are used:

x(n) = s1(n) + s2(n), ∀n ; |X (r, k)| = |S1(r, k)|+ |S2(r, k)|, ∀r, k, (4.12)

where r ∈ [1, R] and k ∈ [1,K] are the time and spectral axis indexes, respectively.

In fact, the possibility for nonlinearity appears only at those values of r and k in

the representation where energy for more than one source exists.

If linearity is not preserved, this will have to be taken into account in the estima-

tion and extraction processes: since overlapping energy regions introduce a certain

degree of ambiguity regarding parameter estimation (see §4.12), a judgement has

to be made as to what extent this ambiguity affects the desired result.

The single-channel instantaneous model of Eq. 4.10 is now presented in its equiva-

lent form, where the mixture x and source signals {sj}Jj=1 have been transformed

to a TF domain:

X = [S1 S2 . . . SJ ]T a, (4.13)

where X is the TF representation of the mixture x (such as its STFT), while

{Sj}Jj=1 are the TF representations of the corresponding original source signals

7The first part of Eqs. 4.11 and 4.12 corresponds to the time-domain instantaneous mixture
model of Eq. 4.8, where J = 2 and a1 = a2 = 1.
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Figure 4.4: Illustration of the general form of a single-channel separation process.

{sj}Jj=1, in other words:

Sj =


Sj(1, 1) Sj(1, 2) · · · Sj(1, R)

Sj(2, 1) Sj(2, 2) · · · Sj(2, R)
...

...
. . .

...

Sj(K, 1) Sj(K, 2) · · · Sj(K,R)

 (4.14)

4.3 General remarks on single-channel separation meth-

ods

The very fact that we have such a limited amount of audio data to work with

in comparison with the rest of the cases in §4.2.1 shows the distinctive difficulty

of working with mono. While multi-channel techniques have the advantage of

exploiting the audio coming from different microphones to extract useful informa-

tion, single-channel techniques have to rely only on one version of the mixture.

This, in general, leads to a greater need for prior information to assist the algo-

rithm (see Fig. 4.4).

Because of the high degree of complexity of this one-to-many problem, many

techniques have been proposed from different areas of signal processing and com-

puting. Some of them have focused, for example, on certain types of source

signals, while others have concentrated on certain stages of the separation pro-

cess. In general, though, there is a standard sequence of steps that is followed by

all of the techniques listed below. While each technique may differ from the others

in the way it proceeds at each step or by omitting a certain step completely, the
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sequence remains mainly the same apart from some minor exceptions discussed

further below:

1. Build source models from prior learning procedures on solo recordings, or

manually insert additional information.

2. Transform the mixture signal to a suitable TF representation, if needed,

and incorporate additional models. If the matrix corresponding to the time-

domain estimated sources is:

Ŝ = [ŝ(1) ŝ(2) . . . ŝ(T )], (4.15)

where ŝ = [ŝ1(n) ŝ2(n) . . . ŝJ(n)]T, then a common example of their TF

representation is their STFT:

STFTh
Ŝ

=


STFThŝ1
STFThŝ2

...

STFThŝJ

 (4.16)

where h is the windowing function applied to subsequent frames of the time-

domain signals {ŝj}Jj=1 (see §3.2.1).

3. Recognise structures using supervised or unsupervised techniques. Calculate

the model parameters that describe these structures.

4. Extract structures from the mixture representation, or synthesise them using

the calculated parameters.

5. Group structures into their respective sources using supervised or unsuper-

vised techniques.

6. Transform each of the source signals back to the time domain, if they are

not already (i.e., end up with Ŝ).

It is noted step 6 can precede step 5, or be ignored completely (e.g., in the case

where a separation system targets SO applications). If step 6 is indeed part of
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the algorithm, what we usually end up with is the matrix corresponding to the

estimated time-domain signals Ŝ (if it is assumed that a = [1 . . . 1]T, or already

known). Otherwise, we end up with a TF representation of every row of Ŝ, such

as STFTh
Ŝ
.

We will examine, now, these techniques focusing first more on steps 3 and 4.

4.3.1 Recognising source structures

Possibly the most important part in a source separation process is the identifi-

cation of regions or shapes within the mixture representation which might cor-

respond to a specific source (step 3 in the separation process). In order for this

identification to take place, the observation, followed by the interpretation of these

structures has to be carried out.

The ways source components can be observed and interpreted differs, depending

on which point of view they are examined from, and why. Below is a ‘taxonomy’ of

different ways of carrying out an interpretation of an observed signal component

(which is shown in parenthesis):

• value above a predefined or pre-estimated threshold (TF point);

• peaks of a predefined or pre-estimated shape (groups of TF points) – the

shape includes height (i.e., magnitude);

• waveform of a predefined or pre-estimated shape (time-domain signal por-

tion);

• predefined or pre-estimated peak structures (TF frame);

• predefined or pre-estimated peak structure pattern (peak structure extended

in the time domain) (groups of TF frames).

The use of the phrase ‘predefined or pre-estimated’ is used repeatedly to em-

phasise the fact that either some degree of a priori explicit (i.e., predefined) or



4.3 General remarks on single-channel separation methods 58

model-inferred (i.e., pre-estimated) knowledge is required in order for the search

for source components to give meaningful results. As will be seen below, some

ways of interpreting information (especially for semi-blind and blind methods) are

by making use of auditory cues (AM, FM modulation, common onset/offset of

partials, harmonicity of partials), statistical properties (e.g., statistical indepen-

dence) or more sophisticated spectral and spectrotemporal/timbral models.

4.3.2 Categorisation of source separation methods

A preliminary introduction to the way in which source separation methods can

be categorised (at least broadly) according to some of their basic characteristics

was carried out in §1.2. Here, the categorisation will become more explicit. This

will be useful for navigating through the review of a large number of processing

methods, and drawing the connections between them, necessary for establishing

the current research context, as well as pinpointing where the work presented in

this thesis fits in. Because of the interdisciplinarity of the field of source separation

and its growing variety, it has to be noted that in no way should this categorisation

and relationship between different classification methods be regarded as definitive.

A first way to distinguish between musical source separation methods is to identify

whether they are related more to the field of CASA, or the field of BSS. Although

in recent years these fields have been coming closer to each other more than ever,

it will be seen that there are still quite clear differences in their general philosophy

and it still makes sense to categorise methods in this way. Here, a broad definition

of the CASA-related/inspired methods is used for facilitating categorisation of

methods falling between the two categories: a method can be classified as related

to or inspired by CASA if it employs any processing means that are directly or

indirectly inspired by the way humans are believed to perceive and understand

auditory and musical scenes. In other words, if a method includes any means of

observing, interpreting and identifying source structures that is inspired by the

ways in which humans do it, it will be classified as a CASAmethod. As a result, for
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example, methods that combine the use of psychoacoustic findings with techniques

typically associated with BSS, will be classified as CASA-related/inspired.

The relationship between ‘understanding’ and ‘separation’ – as described in §1.2.1)

– can also be of great use in differentiating between separation methods. To be

specific, it highlights where the priority in a certain method is placed: the separa-

tion process, or processes that seek to infer application-specific information from

the mixture. The difference between BSS-related and CASA-related/inspired

methods in that respect is quite clear. Understanding generally involves the use

of music or psychoacoustically specific models, this is why CASA methods are

classified as UFS and SFU, while BSS ones are classified as SWU.

Another important parameter that helps to differentiate between source separa-

tion methods is the amount and type of prior information that they use. This

parameter is related to the degree of blindness and to the degree/type of super-

vision. With regards to blindness, methods that use minimal prior information

and assumptions about the sources and the mixture are classified as blind;8 pre-

dictably this is where all BSS methods can be grouped.

At the other extreme from BSS are the non-blind methods. It can be said that

these methods use an ‘excessive’ amount of high-level prior information. A com-

mon example of this is the supply of a MIDI-like score or the ground truth F0

tracks for assisting with source identification. In cases like these, the level of

required human intervention and technical or musical expertise is usually high.

All the rest of the methods that do not belong to the two extremes regarding

blindness, are the semi-blind methods. These methods make use of sufficiently

generic advanced models that are ‘hard-wired’ into the algorithms of the system or

provided through training or learning procedures. In addition, the models may or

may not be offered the ability by the system to adapt appropriately to the mixture.

CASA-related/inspired methods span the semi-blind/non-blind continuum: the

use of advanced source/mixture models or explicit high-level information is tied,
8As will be seen in §4.4, blind methods do use some prior information in the form of specific

assumptions about the sources and the mixture, such as such as source independence, sparsity
and non-negativity.
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in one way or another, to the way humans make sense of a musical scene. Finally,

the degree of supervision is another useful way of distinguishing between methods,

because it focuses on the amount of preparation and user intervention involved in

the incorporation of models: at the one end we have supervised methods which

are associated with a high amount of preparation and user intervention, while

unsupervised methods represent the extreme opposite case. According to this,

semi-blind methods can well be supervised or unsupervised: models learnt through

learning/training techniques require a level of preparation and user intervention

that ‘hard-wired’ models do not. Also, non-blind methods are supervised exactly

because the inclusion of a considerable amount of a priori information usually

involves a high degree of user intervention.

It is important to note, here, that a clear consensus does not yet seem to ex-

ist regarding what differentiates ‘supervised’ from ‘unsupervised’ methods in the

context of source separation. In fact, the most common usage of these terms orig-

inates from the fields of machine learning and pattern recognition – fields that

have shaped the directions that source separation research has been taking over

the years. Within this context, some kind of prior training procedure usually

takes place, that tunes the parameters of the system in question. This procedure

can be characterised either as ‘supervised learning’ or ‘unsupervised learning’. In

supervised learning a set of inputs and a set of outputs is available; the learning

process involves learning the mapping function from the inputs to the outputs,

whose correct values are supplied by a ‘teacher’. Because of the mapping pro-

cess, the inputs are characterised as labelled. On the other hand, in unsupervised

learning this ‘teacher’ does not exist and only the input data is available. In

this case, the process of learning consists of finding statistical regularities in that

input data, which, since no mapping to outputs is pre-defined, they are deemed

unlabelled.9

By using the above definition of supervision to describe source separation systems,

one can classify the ones that involve prior learning procedures based on solo

segments (e.g., [141, 124]) as unsupervised systems, since they involve input data
9For a general introduction to machine learning methods, see, e.g., [4].
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S/U relationship Blindness Supervision

BSS-related SWU Blind Unsupervised†

CASA-
related/
inspired

UFS,
SFU

Semi-blind Unsupervised‡

Supervised∗

Non-blind Supervised∗∗

Table 4.1: Relation between the different ways for categorising musical source separa-
tion systems. The superscripts are used for distinguishing between different approaches.
†: Using basis decomposition methods, ‡: Using advanced models, ∗: Using train-
ing/learning procedures, ∗∗: Using explicit high-level prior information.

in their learning process, but not a mapping function from inputs to outputs.10

This thesis, however, describes these systems (all systems that use prior training

processes) as ‘supervised’, because training procedures are deemed to entail a high

level of preparation and a high level of user intervention.

Finally, it is worth noting that a view on supervision that is similar to the one

presented here is also expressed in [52] and [23]. Table 4.1 summarises the var-

ious categories and the ways in which they are related to each other. Following

this categorisation, a review of single-channel audio and primarily musical source

separation methods is carried out in detail. Also, since this thesis concentrates on

pitched harmonic or near-harmonic sounds, most of the methods presented here

are primarily suited for these kinds of sounds.

4.4 Blind source separation-related methods

These methods (which can be also referred to in the literature as ‘unsupervised

learning methods’ or ‘spectral decomposition methods’) generally do not get in-

spiration from auditory models, i.e., they do not try to imitate the HAS, nor use

any other specific signal models. Instead, they employ data-adaptive techniques

based on information-theoretic principles in order to separate meaningful struc-

tures directly from the input data, and usually without the need of any prior
10To the best of the knowledge of the author, no musical source separation system has been

proposed so far which makes use of supervised learning techniques as commonly defined by the
machine learning community.
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information. This is done by factorizing the spectrogram, or some other chosen

representation. The criteria used for this factorization define the main differences

between the methods presented below. In all cases, an additive model is used for

the mixture signal. In matrix notation this is written as:

X ≈ B G, (4.17)

where X = [x1 x2 . . . xR] is the observation matrix, B = [b1 b2 . . . bN ] is the

mixing matrix and G = (gnr)N×R is the gain matrix. N is the number of the

basis functions used, and R is the number of time frames. Although the estima-

tion can be done using various representations, usually X denotes the magnitude

spectrogram. In this context, xr is the short-time DFT magnitude spectrum at

time frame r = 1, 2, . . . , R, and bn are constant basis spectra with time-varying

weights11 gnr.

Time-domain representations have also been used [77, 86, 14] for source separa-

tion. However, working with time-domain basis functions is quite tedious: it is

impossible for a time-domain basis function to represent a single source: because

of the highly nonstationary behaviour of phase, the time waveforms of the source

are often not identical from frame to frame. Besides, as we have already men-

tioned (§2.2.3), a single note is a time-varying structure; hence, it can only be

represented using multiple components. In general, a large number of components

increases the difficulty of separation, especially when there are a relatively large

number of sources to be separated.

4.4.1 Independent subspace analysis

In particular, for single-channel recordings, one of the first approaches by Casey

and Westner [27] used Independent Subspace Analysis (ISA). The term ISA has

been used to refer to techniques which apply ICA to factor the spectrogram (or

any other representation) of a mono signal to separate sound sources [170]. ICA

is a common technique used for blind signal separation. However, this method
11These weights are also called ‘gains’ or just ‘coefficients’.
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normally requires determined or overdetermined mixtures [83]. A way to apply

it to mono mixtures would be to assume that each frequency bin in the DFT

magnitude short-time spectrum (for example) can be considered to be a different

sensor [170]. In effect ISA represents the spectrum as the sum of basis spectra

(which are statistically independent to each other) with time-varying weights.

The separated spectra are then automatically clustered by grouping together the

weight series that show the highest dependencies [27]. Molla and Hirose [117]

proposed recently a method with a similar philosophy which, according to the

authors, avoids some of the limitations of using the STFT, (see p. 36). As an

alternative they decompose the Hilbert spectrum. Indeed, when compared with

an STFT-based method, an improvement of separation performance was demon-

strated in two-source mixes where one of the sources was always a speech signal.

4.4.2 Sparse coding

One other alternative from this family of techniques is sparse coding. Its goal is

to build distributed representations of the mixture signal in which relatively few

elements are active. One could argue that it makes sense to apply this technique

to musical signals, since they appear to have similarly sparse behaviour: if we

consider, for example, the majority of piano musical pieces, only up to around

6 notes are normally played simultaneously, out of the possible 88 notes of the

keyboard [131]. In the model of Eq. 4.17 this restriction is applied to the weights

in G; for each time frame only a small number of weights are allowed to have

a non-zero value. As a consequence, each component (a basis function together

with its corresponding gain) is only active in a small number of frames. Work on

separation using sparse coding has been presented, for example, by Virtanen [168],

who presented some good results for the separation of drum instruments.

4.4.3 Non-negative matrix factorization

In cases where spectral magnitude is used for representing the signal (as, for

example, a spectrogram) it is reasonable to set a restriction for the basis spec-
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tra and their gains to be non-negative. This restriction is used in Non-negative

Matrix Factorization (NMF) algorithms. They were first introduced by Lee and

Seung [104] in image processing and then in music transcription by Smaragdis

and Brown [153]. Promising results have been reported for separating percus-

sion from pitched instruments [73], simple mixtures of pitched sounds [175, 91]12

and random mixtures of pitched and drum sources [171]. In fact, the method

in [171] is probably the current state-of-the-art. NMF has a downside, though:

when two sources appear to be active simultaneously at all times in the mixture

the algorithm will probably associate them with a single component [170]. This,

often, appears in cases where the sources have an ideally static spectrum and

they are perfectly synchronized (as, for example, in MIDI-synthesized mixtures).

However, according to [165], NMF also produces artefacts in real mixtures, where

the sources are not perfectly synchronized. Nevertheless, it is fair to say that, in

general, the use of NMF for audio separation has not been tested enough, and

further developments on this field could lead to more successful results.

4.5 General issues with blind source separation-related

methods

In order for the above techniques to be implemented, two major assumptions are

usually made about the source spectra: that (a) they are statistically indepen-

dent,13 and (b) they are sufficiently sparse. For the case of real musical signals,

however, these assumptions do not often hold. For example, the independence

assumption disregards the fact that it is common in music for instruments to play

at the same tempo or with harmonically related melodies. As for the sparsity as-

sumption, it could be less limiting, but this still depends on the degree of sparsity

that can be accepted by a certain algorithm (see also §4.12.1).
12It is important to add, here, that the technique in [91] requires training based on solo

excerpts for generating the initial basis spectra.
13Two events A and B with respective probabilities Pr(A) and Pr(B) are said to be statistically

independent if and only if Pr(A ∩B) = Pr(A)Pr(B).
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Because they do not often make explicit musical assumptions, these algorithms

can be applied to a wide variety of signals. In this sense, they can deal more

naturally with nonstationarities and nonlinearities, which are an integral part

of real-world musical signals. For example, they do not explicitly assume that

the source signals consist of notes, nor do they assume harmonicities, although

they can converge to note-like or chord-like structures. Despite this flexibility,

though, their performance is still currently limited to some degree for the reasons

given above. As ways forward from this category of methods, alternatives have

been proposed which combine unsupervised learning methods with source-specific

models and techniques usually related to CASA (e.g., [174, 54]).

4.6 Computational auditory scene analysis

The research field of CASA is inspired by psychological research on the way hu-

mans infer meaning from their auditory environment. Working with 2 mixture

channels (originating from 2 spatially separated microphones) with the purpose

of simulating binaural hearing would seem a natural thing to pursue, and this

has indeed stimulated some research towards that end [43, 99, 120]. However,

humans have no difficulty in separating sounds perceived by just one ear. Thus,

the majority of the CASA approaches have worked on the single-channel case.

For the case of music, CASA is basically concerned with the conversion of a musi-

cal signal into higher-level musical information, such as notes, chords and rhythms

using computational algorithms. For this conversion, psycho-acoustical cues are

used [55]. The main ones are harmonicity, common onset and offset, amplitude

and frequency modulation, and temporal and spectral proximity of partials. A

three-dimensional, perceptually-motivated representation, called the correlogram,

is often used [151], while the spectrogram is also used for simplicity of interpreta-

tion. Data-driven (e.g., [115, 34, 21]) and prediction-driven [55] approaches have

also been introduced, with the former being less robust than the latter, because of

their inability to deal with masked auditory objects (i.e., when multiple partials

coexist within the same critical band). The prediction-driven approach, on the
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other hand, employs some advanced object models of the waveform and a black-

board model, where several competing hypotheses are tested about these objects.

This approach is related to Bayesian approaches in CASA. These approaches

employ probabilistic priors about the object models and they estimate how well

these models fit the observed data using a likelihood function. Moreover, some of

them even make effective use of musical knowledge and timbre models [90, 92].

However, while these approaches may lead to good separation results because

they use these advanced timbre models, these models are still based just on solo

segments. For a more detailed account on the issues involved regarding the CASA

systems, the reader is referred to [176].

According to Wang and Brown, the distinction between CASA approaches and

other sound separation approaches is analogous to the subtle distinction between

the terms ‘computer vision’ and ‘computational vision’ in visual processing: while

the former focuses more on applied image processing research, the latter deals

primarily with the modelling of human vision [177, p. 29]. However, because

of its ability to offer great insights into how to model the way humans separate

sounds (or at least their mental representations), there are obvious benefits to

employing aspects of the CASA framework in a wider range of applications. This

has been done, so far, in two main strands of work:

• by regarding CASA from the viewpoint of UWS approaches14 targeting

applications within the AMT and MIR continuum (e.g., [89, 68]);

• by adopting the organisational principles (grouping and segregation cues),

analysis front-ends, mid-level representations, extraction and evaluation

procedures used in CASA for separating audio sources, without necessarily

having the actual goal of accurately describing the audio (or music) scene.

This chapter continues by reviewing source separation work that belongs mainly

to the second strand.
14For a discussion regarding the classification of certain audio processing methods according

to how they approach the interrelated concepts of ‘separation’ and ‘understanding’, see §1.2.1.
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4.7 Non-blind methods

In this category of methods, the user input plays a significant part in assisting

the separation process. In particular, the user is required to supply the MIDI-

type score of the musical mixture as one of the system’s main sources of prior

information.

In an early approach, Shalom et al. [9] used already aligned MIDI score as the

starting point for a predominant/accompaniment separation process that oper-

ates in the time domain. Strict harmonicity is assumed for the pitched part of

the sources, and the accompaniment is modelled as white Gaussian noise, which

although it is not a realistic assumption for a musical mixture, gave relatively

good results for a few specific mixtures.

Itoyama et al. [85] also assume an ideally aligned score for their system that is

designed as a pre-processing stage for a remixing application. Their proposed ap-

proach introduces mixture-adaptive models for both harmonic and nonharmonic

source structures. The models are represented in terms of the power spectrogram

and initially trained using template sounds. One of their limitations, however, is

that a particular source (or notes from the same source) must be active sufficiently

often for the model to be adequately learned.

Raphael [136] uses the score for a separation approach aimed at removing the

dominant melody from its accompaniment. As the approach in [85], it is focused

more on AQO applications (such as karaoke). He casts the problem of associating

each of the TF points to either the dominant melody or the accompaniment as a

classification problem (which involves a prior training procedure) and extracts the

sources using binary TF masking. Some good separation results are presented on

concertos, which means primarily mixtures of instrument sounds with no strongly

percussive elements.

Every [58, 60] combines his method for aligning the MIDI score and the mix-

ture with a subsequent F0 refinement process. The system is not limited to

predominant/accompaniment-type separation, in other words it is more generally
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designed for multi-source separation. The system does not deal with strict har-

monicity, and the source extraction process is carried out using adaptive spectral

filtering, which, as discussed below, can be an effective way to deal with over-

lapping harmonics and produces a residual that is relatively free from extraction

artefacts. Additionally, no prior training procedures are employed. This work

forms the basis of the proposed approach, so its merits and limitations will be

described in more detail below, throughout this and the next chapter.

Finally, Duan and Pardo [50] recently presented a method that uses the MIDI

score to implement a single-frame source separation system. The F0 values ac-

quired by the score (which has been aligned by an algorithm proposed in the

paper) are refined with the help of a multiF0 estimator. After identifying the fre-

quency bins that are believed to be corresponding to overlapping harmonics, their

amplitudes are set to the inverse square of their harmonic number. The extraction

of non-overlapping harmonics is performed assuming that their main lobe has a

specific width affected only by the windowing process, and the nonharmonic part

of the remaining residual is, finally, equally distributed between the sources. It

is also worth noting that, since this system carries out source separation in one

frame at a time, it can be employed as a real-time system.

Issues that may arise with assumptions and limitations associated with the de-

tection and extraction parts of the separation process, such as the assumption of

strict harmonicity, the ideal peak shape and types of TF masking are discussed

more thoroughly in the next sections of this chapter.

4.8 MultiF0 estimation

MultiF0 estimation is a particularly useful means for the structured identification

of source components (it corresponds to Step 3 of the separation process on p. 56),

since what would be considered to be an important a priori knowledge in musical

mixtures – the harmonicity assumption – is already ‘hardwired’ into the process.
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F0 estimation methods (in general, both multi- and single- ones) make use of

specific signal models, all of which include the required assumption of periodicity

for the signal in question. The periodicity assumption is ‘translated’ within the

frequency domain as the harmonicity assumption: if the signal is considered from

the point of view of the frequency spectrum there is energy located in positions

associated with specific frequency values that are integer multiples of a certain

F0. It is, hence, expected that the signal model in question will be parameterised

by the F0 (or, equivalently, the signal period if the method works in the time

domain).

Furthermore, many of the algorithms also include – implicitly or explicitly –

the realistic expectation that the F0 will be a function of time. This implies

an expectation of a certain degree of temporal and spectral continuity in the

signal. It also permits the inclusion of higher-level information in the model,

such as instrument models and note onset/offset timings (for the case of music),

or grammars (for the case of speech/singing), often presented in a probabilistic

context. In this way, more complex situations, such as FM behaviour for example,

can be taken into account.

Nonlinear processing is often used for enhancing cues which could point towards

the correct value of the F0. This can include forcing the F0 to appear (in the

case where the F0 is originally missing), or reintroducing additional harmonics

that are not originally there (in the case where the method relies on inter-partial

spacing for determining the F0).

For a good overview of existing multiF0 estimation approaches, the interested

reader is referred to [40] and Part III of [96]. It is not the purpose of this work to

design a multiF0 estimator, as this is a very difficult problem in itself. Instead,

it would be enough for the separation system to be provided with a method that

calculates automatically and quite reliably multiple F0s in a frame-wise basis. If

the method is adequately robust, the post-processing stage of §5.4 can then hope-

fully correct most of the errors arising from the process. The method proposed
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by Klapuri [98] fits this criterion well. It will be described, along with the way it

is employed by the proposed system, in §5.3.

4.9 Semi-blind unsupervised methods involving F0 es-

timation

Since the majority of the following approaches use varieties of the harmonic model

for the source signals, one could relate them to the multiF0 estimation problem,

i.e., the problem of estimating the F0s of multiple source sounds which appear

simultaneously in polyphonic mixtures. Indeed, many of these techniques employ

(either implicitly or explicitly) a multiF0 estimation process somewhere within

the separation algorithm. The inclusion of such a process is useful because the

knowledge of the location of the F0s at a specific moment allows the correct

identification and grouping of the spectral components (i.e., peaks) belonging to

the same source, through the harmonicity assumption.

However, the problem of accurate multiF0 estimation is still far from solved,

and for this reason is often avoided. This task is either reduced to single-F0

estimation (a process which generally exhibits less errors), or multiF0 estimation

is relied upon only partially, with the capability for refinement.

Since the use of F0 estimation carries the implication of the harmonicity as-

sumption for an observed signal, the sinusoidal harmonic model (§3.3) has been

employed by the majority of the approaches for the identification of source com-

ponents. One of the early attempts of this sort, was the system by Parsons [125].

Its primary target for separation was speech sounds, and especially their harmonic

part. An important feature of this system is that it deals with the problem of

resolving overlapping partials. By using criteria of peak symmetry, inter-peak

distance and phase stability, the peaks are first labelled as overlapping or not;

then, in order to resolve the overlapping ones, it is assumed that there is enough

amplitude and frequency difference between the peaks, so that the estimation of

the strongest will be considered as more reliable. The strongest one is, hence, ex-
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tracted first, with the remainder then extracted separately. Parameter estimation

for unresolved (described as “shared”) peaks is carried out via linear interpola-

tion using information from adjacent harmonics. For the extraction, a spectral

filter is used that has a fixed shape based on the windowing function and the

pre-estimated FM rate of the peaks.

Another early system for the separation of two musical sources was proposed by

Maher [109]. After an initial multiF0 step, a multi-strategy approach is carried

out for resolving the overlapping partials, depending on their TF characteristics:

either by solving a linear system of equations (assuming ‘well behaved’ sinusoids),

by exploiting their beating characteristics (assuming that no significant vibrato

or tremolo is exhibited by the individual sources, and that their duration is more

than their beat period),15 or by applying linear interpolation (similarly to [125]).

The system is still primarily suited best to mixtures of only two sources.

Virtanen [169] proposed a system that is based on sinusoidal modelling for dealing

with mixtures that not only can handle more than two sources, but also does not

require one or more sources to dominate the others. First, the multiF0 estimator

proposed in [97] is used for providing initial sinusoidal parameter estimates. This

is followed by iteratively estimating the amplitudes and phases and refining the

frequencies. The estimation of overlapping harmonics is dealt with using a linear

model for the amplitudes of each harmonic structure. A variety of basis func-

tions is used, such as polynomials, frequency-warped cosines, fixed and adaptive

frequency bands. The choice for the use of a linear model for the amplitudes

is an application of the spectral smoothing principle, (an ASA cue that helps

build mental representations of sound sources) and it guarantees that the sum

of the amplitudes of the resolved partials will equal the amplitudes of their com-

posite peaks. The smoothness principle was also extended in terms of temporal

evolution [167].
15When two sinusoidal components are close in frequency, they exhibit AM in the time domain;

the modulation frequency is equal to their frequency difference, and this is called a beating
phenomenon.
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An alternative to the linear models for resolving the problem of overlapping par-

tials is the nonlinear smoothing method first proposed in [97] and used in source

separation in [173]. It is a post-processing operation (i.e., taking place after iden-

tifying the individual source spectra) that applies an estimated envelope to the

whole amplitude spectrum of a source to smooth out the effects of overlapping.

This, however, compromises the accuracy of all the amplitude estimates; further,

this simple idea of spectral smoothness often does not hold for real instrument

sounds.

More recently, and as will be shown below, the attention has turned to the esti-

mation and extraction of single sources – often assumed as predominant – from

musical mixtures. The interest for this kind of mixture is fuelled by the need

to directly target SO applications (e.g., MIR tasks) or AQO applications (e.g.,

karaoke). A method of this sort was proposed by Ryynänen et al. [143], specifi-

cally for suppressing, rather than extracting, the main (most often vocal) melody

in musical material, so that it can then be used for karaoke. As with Maher

and Virtanen above, sinusoidal modelling is used for both parameter estimation

and resynthesis. The melody extraction method (i.e., the F0 track corresponding

to the melody) by [142] is used as the first step. After that, the amplitudes of

the harmonic components corresponding to the estimated F0s are estimated by

simply cross-correlating the windowed sinusoids at the specified frequencies with

the windowed signal on a frame-by-frame basis. It is showed that their system

can achieve quite significant suppression levels for a variety of accompaniment-

to-vocals ratios.

A different (and more common in the literature) way of handling mixtures con-

taining predominant melody and accompaniment, is to focus on the extraction of

the predominant melody. Li and Wang [105] do that with a particular interest

in the singing voice. They improve and extend a separation method by Hu and

Wang [80] which originally dealt with speech. Their method includes the stages

of singing voice detection (identifying the segments that are believed to contain

the vocals), estimation of the F0 contour, deciding which TF units are singing

dominant and extraction of those TF units. Also, unlike the methods discussed
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above, an auditory representation, the cochleagram [108] is used to identify the

sung segments, and the extraction is carried out via binary TF masking (instead

of additive sinusoidal synthesis), which involves selecting the TF units from the

mixture which have been labelled as being dominated by that source.

A method with a similar philosophy, in terms of the representation and extraction

process, was proposed by Hsu et al. [78], where the estimation of the voice pitch

track is carried out using a multi-resolution STFT method by Dressler [48]. How-

ever, apart from detecting only the voiced (i.e., pitched) part of the vocals, this

method also includes a detection process for the unvoiced part. They report an

improvement of quality in terms of voice/accompaniment separation, compared

to [105], primarily because of the effective extraction of the unvoiced content.

The previous two methods use binary TF masking as the method for source ex-

traction. As will be seen in §4.12, although this technique does not try to resolve

overlapping content, it can be more robust compared to sinusoidal extraction in

terms of the resulting intelligibility of the extracted sources (assuming speech or,

in a stricter musical sense, singing). The work by Virtanen et al. [174] carries out a

comparison between these two methods, in addition to proposing an improvement

from binary TF masking. This improvement becomes possible by estimating and

making use of a model for the accompaniment. The extraction of the melody pro-

posed in [142] provides a binary template that defines the TF regions where the

voice is present. NMF is then used on the spectrogram area that does not belong

to the binary mask, to estimate the overall accompaniment spectral characteris-

tics. When these are estimated, their spectrogram representation is subtracted

from the mixture spectrogram to yield the vocal signal – hopefully isolated from

interference. Thus, robust estimation of the accompaniment spectral characteris-

tics can help to resolve overlapping content. This is one example of how the use

of a spectral magnitude model of a source (here, the accompaniment is considered

as one composite source) can assist in reducing its interference on another source.

As with [174], Durrieu et al. [54] also use pitch-based inference combined with

an NMF-based model of the accompaniment in order to separate the dominant
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source from a musical recording. It is, in this way, an attempt to combine the

framework used by semi-blind supervised methods (see §4.11) with an approach

to source estimation coming from semi-blind unsupervised methods.16 This ap-

proach parameterises the power spectral densities of the main melody and the

accompaniment by using different models: a source-filter parametric model for

the melody (tuned particularly for the spoken and singing voice) and a model

that emphasises temporal repetition of the notes’ spectra for the accompaniment.

The separation involves an iterative, 2-step process: an initial model parameter es-

timation is followed by the estimation of the F0 contour of the dominant source,

i.e., the melody sequence. A second parameter estimation follows where, this

time, the parameter estimation of the dominant source is refined by constraining

it to follow the pre-estimated melody sequence. Finally, Wiener filters are used to

separate the sources, assuming they are statistically independent from each other.

Their experimental results in terms of extracting the main melody are promising:

keeping in mind that this is an unsupervised method, its performance was highly

comparable to a semi-blind supervised system [124]. Also, there were indications

that it can perform better than a sinusoidal modelling system such as [143] which,

according to the authors, is due to the use of Wiener filters. Lastly, one of the

drawbacks of this method is that the F0 tracking of the leading voice is carried

out using only energy cues. This means that the F0 of the dominant instrument is

estimated at every time frame, even if that instrument is not the one responsible

for the dominant melody.

The above five methods concentrated on extracting the predominant instrument

(which is usually, but not always, the voice). In contrast to this set of works, Li

and Wang [106] proposed a system whose target is the separation of two concur-

rent melodies of similar mean energies, played by popular musical instruments. In

this scenario, source overlapping cannot be easily ignored, since it can be a more

perceptually noticeable phenomenon. Also, the fact that the method in [174] can

provide an improvement against binary TF masking does not necessarily mean

that binary TF masking alone cannot be a sensible choice for overlapping source
16The method is an extension and improvement of [53], the goal of which was predominant

melody extraction (an SO application), but not separation.
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separation. If an estimation of the multiple F0 tracks and the spectral models of

the sources from the mix alone have been robust, TF masking based on binary de-

cisions that are informed by contextual information can lead to output signals that

are perceptually acceptable. The system in [106] follows this logic. Ground-truth

pitch is first used for the labelling of TF points as belonging to one of the sources,

or both, and also for segmenting the mixture into note events. The amplitudes

of the overlapping harmonics are estimated using the amplitude information of

the non-overlapping harmonics and the assumption that note events of the same

instrument within a certain time segment in the mix are spectrally similar. The

last assumption can hold provided there is no large variation in pitch or dynamics

taking place within the specified time segment. The final amplitude estimates are

then used to inform the binary masking decisions. It is shown that their system

can yield better separation results compared to the aforementioned methods by

Parsons [125], Virtanen [169] and the spectral smoothing method applied in [167]

(after providing the ground-truth F0 tracks).

Regarding the previous method, its goal is not to resolve the sources to the best

possible degree, but to take the best binary decision for masking, i.e., estimate the

Ideal Binary Mask (IBM) (defined in p. 85). Also, the method cannot be extended

to more than two sources. An alternative was proposed in [107], a method that

seeks to actually resolve the sources and it is not limited to 2-source mixtures.

As will be seen in §4.12.2, although it can be convenient, attempting to resolve

overlapping peaks by working only on their amplitudes does not lead to optimal

results. This is because the phases of the peaks are usually not taken into account.

The method in [107] accounts for both the amplitudes and the phases, which are

estimated within a least-squares framework. It is assumed that the phases of the

peaks can be predicted using the knowledge of the ground-truth F0s associated

with those harmonics; likewise, for the amplitudes, the assumption is that the

amplitude envelopes of the associated partials are correlated with each other, i.e.,

they exhibit common AM (an important ASA cue). As mentioned, the starting

point for the identification of sources and labelling of peaks as overlapped or non-

overlapped is the ground-truth F0 information. The extraction of the identified
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sources is carried out by overlap-add inversion of the STFT representation, after

replacing the amplitudes and phases of the overlapped peaks with the newly

estimated ones (the non-overlapped peaks are extracted directly via binary TF

masking, i.e., keeping the mixture phases).

It can be seen from the above that for predominant source estimation and ex-

traction, usually the estimated F0 contour is enough for grouping the identified

components into sources (i.e., employing the harmonicity cue and the fact that

the desired source usually has higher average energy compared to the accompani-

ment). Any methods that do not concentrate on separating just a single source,

carry out the grouping process either by using simple heuristic F0 continuation

rules (when J = 2), ground-truth F0 information, or performing it manually.

Duan et al. [52] proposed a method that separates and groups sources from a

mixture using only automatic means, while not being explicitly limited on the

number of sources to extract. This method relies on the assumption that each

instrument sound has a relatively constant harmonic structure if it is confined

to a limited pitch range, and that this structure (because of its relation to the

idea of timbre, see §2.2.4) is distinctive for each sound. Based on this, models for

each source are learnt directly from the mixture. After a peak picking process in

the magnitude STFT domain, an initial multiF0 estimation is performed in each

frame. The harmonics corresponding to the detected F0s are then clustered into

sources using the NK algorithm [185]. Next, a model called Average Harmonic

Structure (AHS) is learned for each source. As its name suggests, AHS is the av-

erage of the magnitudes of all the harmonic structures associated with the same

source in the mix. After learning the models, an F0 estimation refinement is car-

ried out, the harmonic source components are re-identified and transformed back

to the time domain. It is worth noting here that, regarding the inference of the

amplitude of an overlapped harmonic, this method follows a similar philosophy

to [107] and [106]: non-overlapped spectral information from different time-frames

in the mix is employed as a model for this purpose. The method in [52] may how-

ever be somewhat limited compared to the other two, because of its implicit need

for a source to have a ‘significant presence’ in the mixture: in order for the AHS
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model of a certain source to be learned effectively, a sufficient pitch variation of

that source (i.e., playing several notes) has to be taking place. Furthermore, it

has to be said that the assumption of relatively constant harmonic structures ex-

cludes sources with highly unstable harmonic spectra (e.g., voice) or structures

that deviate from strict harmonicity (e.g., piano, guitar, percussive instruments).

However, these sources can be separated from the others as a by-product of the

whole process, because they will remain within the residual.

Duan et al. compare their method to the NMF-based method by Wang and

Plumbley [175]. Their separation results for 2-source and 3-source17 mixtures

show that for sources with quite stable harmonic structure, this approach outper-

forms the NMF method.

4.10 Semi-blind unsupervised methods not involving

F0 estimation

Knowing the temporal variation of the F0 of a source in mixtures of harmonic

or near-harmonic sources is very useful for assisting the identification and esti-

mation of components belonging to that source. However, if this needs to be

carried out automatically (i.e., having an unsupervised system in mind), an auto-

matic multiF0 estimation is not always error-free. Primarily for this reason, some

separation methods offer alternative approaches that do not involve multiF0 es-

timation for searching for source structures.

Just as [105, 78, 143, 174] do, Lagrange et al. [100] focus on mixtures with a

predominant melody, which is usually the singing voice. To be specific, their

system involves the extraction of the predominant source from music recordings

as an intermediate stage towards MIR tasks, such as melodic pitch extraction and

voicing detection, i.e., it targets SO applications.
17The 3-source mixtures in that paper include a vocal signal which stays in the residual after

the extraction of the other 2 sources.
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The method uses sinusoidal modelling as a means of mid-level representation and

estimated source resynthesis. Since the F0s are not known beforehand or they

have not been pre-estimated, detecting peaks which are potentially harmonically

related becomes a rather complex problem. Hence, the harmonicity cue is included

by introducing the Harmonically Wrapped Peak Similarity (HWPS) measure; this

measure computes the harmonic similarity between peaks.18 In addition to that,

the ASA-inspired organisational cues of amplitude and frequency proximity are

also used. It is important to note that, unlike the previous automatic meth-

ods (which usually either perform source formation and tracking in a sequential

manner and in different hierarchical levels, or incorporate a predominant melody

estimator to help them out) this method utilises a single stage that combines

both source tracking (using temporal information) and formation (grouping of

the partial tracks). This takes place in a TF region called a “texture window”.

The contribution of each cue to the grouping process is reflected in the different

similarity weights which are estimated between the peaks. The peaks are then

clustered together using the “normalized cuts” criterion, an algorithm previously

used in computer vision for image segmentation [149]. Their results show that the

use of the HWPS measure along with the new clustering algorithm can lead to an

improvement of separation quality when compared with two other techniques us-

ing the sinusoidal model [172, 156]. More importantly, when the system is used as

an intermediate stage for predominant melody extraction and voicing detection,

its performance is very promising.

This approach, however, has the downside that it is computationally intensive. For

this reason Lagrange et al. presented an alternative, more efficient algorithm [102].

This time they consider only the HWPS cue, in conjunction with a method that

selects for synthesis only the first 10 peaks which are most likely to belong to the

dominant source. Although the source separation performance is lower compared

to the original method, the algorithm still shows potential as a pre-processing

step for MIR-related tasks, such as F0 estimation and voicing detection accuracy

in a computationally efficient way.
18See [112] for a detailed discussion on the HWPS cue.
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4.11 Semi-blind supervised methods

The methods that fall within this category make use of statistical source models

that have been trained or pre-stored before source separation takes place. If the

models can provide good representations of the sources that comprise the mixture,

this can usually lead to an improvement in separation performance compared to

unsupervised methods, since a considerable amount of source-specific information

is incorporated.

One type of statistical model used in these cases is the Hidden Markov Model

(HMM). Roweis [141], for example, uses solo segments of speech to train HMMs,

which are combined to form a factorial HMM. This model is then used to predict

the sources in a mixture of two spoken voices, generating in this way the binary

masks required to reconstruct the sources (WDO is assumed). As an alternative

to this approach, Benaroya et al. use an extension of Wiener filtering to locally

stationary, non-gaussian signals [11] and nonstationary signals [10]. Specifically,

for the second case, they use Gaussian Mixture Models (GMMs) for the learning

process, in a Bayesian framework. Their preliminary results indicate improvement

against traditional Wiener filtering.

The methods in [11] and [10] are compared by Blouet et al. [13] together with

two other codebook strategies for speech [155, 154]. Specifically, they are assessed

by their ability to separate a mixture of speech and piano. Their results indicate

that the codebook strategy introduced in [11] appears to be more suitable for

representing music, while the autoregressive-based model [155, 154] can, instead,

capture better the features associated with speech.

In order for GMMs to describe musical signals accurately, a very large number of

Gaussian functions are usually needed. This raises a variety of difficulties, such as,

e.g., trainability and computational complexity issues. As a way to overcome these

difficulties, [124] describes a method for separating the vocals from the musical

background in a statistical framework that involves Bayesian model adaptation.

They propose starting with general models that are then adapted to the properties
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of the sources in the mix, using the mixture segments where the sources appear

isolated. However, model adaptation from the mix has its own drawbacks: for

an acceptable model adaptation, there still have to be long enough non-vocal

segments, and the music in the non-vocal segments has to be adequately similar

to the music in the vocal segments.

Most of the above methods train their models using solo segments of the sources

in the mix. This can be quite restrictive when it comes to generalising a method

to a variety of mixtures. An approach that attempts to challenge this restrictive-

ness was introduced by Vincent and Plumbley [165], and it is based on Bayesian

harmonic models. The main difference of their system from other Bayesian ap-

proaches for the estimation of harmonic components (e.g., [39]) is that this one

employs (1) a perceptually motivated residual and (2) a learning procedure based

on isolated notes. The prior learning is done, however, using a large enough

database of notes so that the resulting model, in conjunction with harmonicity,

can be considered generic. It is reported that their approach performs generally

better than NMF.

In contrast to the philosophy of the above methods, Burred and Sikora [25] (with

extensions in [23]) proposed an approach that uses the sinusoidal model for the

mid-level representation and source extraction. In this sense, it bears similar-

ities to many of the semi-blind unsupervised methods that use the sinusoidal

model, or the semi-blind supervised method in [165]; however, here harmonic-

ity is not assumed, and a priori learned source-specific models are included. In

particular, these models describe the evolution of source spectra more accurately

than, for example, the multiplication of static spectral envelopes with time-varying

gains [165]. Since the assumption of harmonic sounds is not made, mixtures con-

taining nonharmonic sources can be considered. Also, contrary to most of the

other sinusoidal modelling-based methods, it does not rely on the prior knowl-

edge or pre-estimation of the F0 contours. The method results in good separation

quality in a variety of mixtures containing up to 4 notes from up to 5 instruments.

One of its drawbacks, however (which is a result of the omission of the harmonic-
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ity cue), is that it cannot handle the separation of same-onset sources because

they are recognised as a single source.

Since the method proposed in this thesis is not a supervised one, this section does

not attempt to give a full overview of the semi-blind supervised methods. Rather,

the purpose was to show some of the basic points of these methods. While they

can have quite good performance in terms of separation, they still rely on prior

model-learning procedures for the sources. This compromises their ability to be

applied to a wide range of instrument/source types. However, by using more

generic models, or models that are adapted to the mixture, the methods can be

less restricting and closer to an unsupervised philosophy.

4.12 Extraction of the source estimates

Every separation system discussed here – as well as the one proposed in Ch. 5

– includes a stage where the identified structures are isolated from the rest of

the original mixture to form the estimated sources. This stage is often called the

extraction, synthesis, or output generation stage, and is associated with Step 4

in the general source separation framework of p. 56. Having said that, it is worth

noting that there are many cases where this stage is not clearly separated from

the estimation process but, rather, it is a part of it.

4.12.1 Source disjointness and signal representations in musical mix-

tures

The degree to which the sources overlap with each other within a chosen mix-

ture representation is a key feature with regards to their correct estimation and

extraction. Indeed, if the sources were not overlapping at all in the chosen sig-

nal domain of the mixture, then, as long as all the source components had been

identified correctly, their estimation and extraction process would be relatively

straightforward. However, this is an ideal situation, and for the case of typical

musical mixtures is quite rare. Using multi-channel mixtures containing sources
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coming from distinctly different spatial positions can also increase disjointness

(see below for a definition of disjointness); in this work, however, only one mix-

ture channel is considered available, and spatial information does not exist. In

this case, there is another process which can modify and help reduce the amount

of source overlapping to some degree: this is the transformation of the mixture

signal to different kinds of mid-level representations.

As seen in §3.2.3, sparsity is an assumption associated with designing compact

representations for signals. Since signals that appear sparse in a particular domain

can be described with just a few non-zero coefficients, it would be reasonable to

expect that they would not overlap significantly in that domain if they were mixed

together. This expectation, though, assumes that the sources do not have similar

probability distributions; if they do, no matter how sparse they are, they will

still overlap with each other. A (loosely) similar concept to sparsity which in a

sense includes this consideration, while being more suitable for mixtures instead

of monophonic signals, is disjointness.

The strict condition for absolute source disjointness within a mixture representa-

tion is WDO. Initial formulations of this condition were introduced by Jourjine

et al. [87] and Yılmaz and Rickard [183]. In order for the sources (as expressed

in the TF domain19) S1,S2, . . . ,SJ that coexist in a mixture to be W-disjoint

orthogonal to each other, they have to satisfy:

S1(k, r)S2(k, r) . . . SJ(k, r) = 0, ∀k, r, (4.18)

or, equivalently,

S1 ◦ S2 ◦ . . . ◦ SJ = 0. (4.19)

Eqs. 4.18 and 4.19 express the perfect disjointness situation: each point in the TF

representation of the mixture is occupied by just one source. Although real-world

musical mixtures almost never satisfy this equation, it would be very useful to

be able to assess how close a particular mixture is to this ideal case; The validity
19The definition of WDO is made in the TF domain for reasons of generality. WDO can

certainly be defined in the time domain, as well.
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and strength of the disjointness assumption in different mixing conditions and

representations can be assessed by using an appropriate measure associated with

WDO. Burred [23] introduced the measure of approximate WDO for this reason.

For a specific source j, the approximate WDO is defined as:

WDOj =
‖Hj ◦ Sj‖2F − ‖Hj ◦Uj‖2F

‖Sj‖2F
, (4.20)

where Hj is the ideal binary TF mask applied to the instantaneous mixture X

for extracting the source Ŝj (see Eqs. 4.23 and 4.25) and Uj is the sum of all the

source signals in the mix that possibly interfere with source j:

Uj =
∑
ζ 6=j

Sζ , ζ ∈ [1, J ]. (4.21)

Eq. 4.20 expresses the approximate WDO for source j as the normalised difference

between what is called the “preserved energy” and the “interference energy”. Also,

as a more global measure that can characterise the whole mixture, the average

WDO (WDO) can be defined [23]:

WDO = mean
j∈[1,J ]

WDOj . (4.22)

In the ideal situation of absolute inter-source disjointness, it is WDO = 1.

Experiments were then carried out to examine the effect of four different represen-

tations on WDO in music and speech mixtures. For musical mixtures in particular

(and in order to reflect the wide variety in polyphonic music20), the music corpus

was split into two distinct classes: mixtures containing correlated melodies and

uncorrelated ones. The division was carried out according to whether the melodies

were supposed to sound musically coherent when mixed (i.e., note events appear-

ing frequently simultaneously and in consonant pitch intervals) or not, leading to

an expectation of high or low spectral and temporal overlap, respectively.
20It is reminded that the term ‘polyphonic’ is defined, here, in a less strict sense from the

usual one (see §4.1).



4.12 Extraction of the source estimates 84

The representations under test were the pure time domain and three TF repre-

sentations in varying frequency resolutions: the STFT, the Equal Rectangular

Bandwidth (ERB) [119] and the Bark representation [187]. The TF represen-

tations were realised using 50% overlapping Hann windowing. First of all, it

was shown that, as might be expected, a transformation to any of the aforemen-

tioned TF domains increases significantly the WDO, when compared with the

time-domain representation. This is another reason that justifies working in a

TF domain for the purpose of source separation. Secondly, uncorrelated music

showed higher disjointness in all cases, compared with correlated music. This can

justify how in many works the related assumption of statistical independence be-

tween the sources can be connected with WDO, especially when it is considered

in conjunction with source sparsity.

Thirdly, the gain in disjointness achieved by frequency-warped representations

(in other words, the benefit of using them), is higher for the case of correlated

music and low resolutions. At the same time, however, for musical mixtures

(as opposed to speech) WDO increased with the number of frequency bands in

all TF representations. This means that when we move to sufficiently higher

resolutions in order to increase the disjointness in music mixtures, the benefit of

using frequency-warped representations diminishes: the WDO of the STFT and

the auditory representations become statistically equivalent. According to this,

the use of a 8192-point STFT as the mid-level representation of the proposed

separation system (Ch. 5) is a sensible choice as a means of increasing disjointness

(and, hence, reducing overlapping) between the sources.

Methods which use music-inspired assumptions have two basic options for retriev-

ing the estimated source signals: (a) TF masking, and (b) synthesising using the

estimated sinusoidal model parameters and a bank of sinusoidal oscillators.

4.12.2 Time-frequency masking

The alternative to sinusoidal synthesis for retrieving the estimated source signals

is to extract the source estimates from the mixture. This is generally performed
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by what we call TF masking. TF masking is a type of filtering which is performed

in an invertible TF domain (such as the STFT). If the complex STFT represen-

tations of the original source j and the mixture signal in a specific TF point (k, r)

are Sj(k, r) and X (k, r) respectively, then the TF masking process at that point

can be simply defined as:

Ŝj(k, r) = Hj(k, r)X (k, r), (4.23)

where Ŝj(k, r) and Hj(k, r) are the j-th extracted source and the TF mask used

to extract that source, respectively, at a specific TF point (k, r). Eq. 4.23 can

also be written in matrix form as:

Ŝj = Hj ◦ X . (4.24)

The set of masks {Hj}Jj=1 provide weightings on the TF points according to

whether, and to what degree, it is believed that any source is present at those

points. They generally take real values in the interval [0, 1] and they can be

classified into binary (taking either the values 0 or 1) or real-valued ones.

The use of binary masks often assumes that the sources are highly disjoint from

each other in the TF space so that ‘hard’ masking decisions do not result in

estimated sources with a degree of interference that is perceptually significant.

From a perceptual point of view, employing binary decisions for isolating sources

from the mix is driven by the phenomenon of masking encountered in auditory

perception, according to which if a sound is within a critical band from a louder

sound, the first sound is rendered inaudible [118]. In fact, with regards to the

field of CASA, the IBM has been proposed as its computational goal [79, 80]. For

the j-th source at point (k, r), the IBM can be defined as:

Hj(k, r) =

 1, if |Sj(k, r)|2 −
∑

ζ 6=j |Sζ(k, r)|2 > θ

0, otherwise.
(4.25)

θ is a parameter typically chosen to be 0. The problem of binary masking, thus,

equates with obtaining accurate source parameter estimates (the magnitudes in
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particular), with the purpose of optimally allocating the TF points to the sources

according to Eq. 4.25.

A binary-decision masking system is expected to be more robust than sinusoidal

resynthesis against background noise and to show a tolerance against room re-

verberation effects [106]. Also, judging from the results obtained on musical

mixtures, it can also be argued that a successful binary mask – i.e., one that is

close to the IBM – can capture all the important characteristics of the extracted

musical sources (at least from a SO-application point of view). However, unless

strict WDO is assumed, binary masking is still not really capable of recovering the

original sources. As alternatives to binary masking, methods adopting real-valued

masks work on partitioning the TF point energy into more than one sources, thus

providing a ‘soft’ mask. Adaptive Wiener filtering is commonly used as a way

to perform real-valued masking. The Wiener filter is actually the optimal linear

filter in the minimum mean-square sense [178]. However, in order for it to be used

as a ratio mask of the type:

Hj(k, r) =
|Sj(k, r)|2∑J
ζ |Sζ(k, r)|2

, (4.26)

uncorrelatedness between the sources is often assumed. Sources co-existing in mu-

sical mixtures very often do exhibit correlated behaviour with each other; this can

lead to a masking filter that is no longer optimal. In addition, Wiener filter-based

masks work in the magnitude or power domain. If phase reconstruction consid-

erations are not explicitly made, they do not successfully resolve the overlapping

source content.

Indeed, the problem of resolving overlapping spectral peaks is the problem of

estimating both the amplitudes and the phases of all the TF points associated

with those peaks. This is not a straightforward task: even if the amplitude of

one of two overlapping peaks is known beforehand, the amplitude of the other

peak cannot be guaranteed to be estimated correctly [40]. It is the situation

encountered in §4.2.3 regarding the preservation of linearity in the mixture model.
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Overlapping content can potentially lead to nonlinearities during the extraction

process. There are two main ways of going forward from this:

• Assume that the nonlinearities in the extraction process do not affect the

desired results negatively.

• Assume that the nonlinearities in the extraction process do indeed affect

the desired results negatively, but then proceed to reduce those effects.

The first case is employed by binary TF masking. Indeed, allocating a TF point

to only one source means that the phase of the mixture can be used at that point,

thus the mixture model linearity is preserved.21 Real-valued masking can also use

the mixture phases. In a heavy source-overlapping situation this is less justifiable

compared to binary masking.

Methods following the latter approach employ phase generation or reconstruction

techniques for the overlapped content. These techniques can be ‘global’ (working

on the reconstruction of the entire signals from their magnitude or power spectra)

[69, 122, 3], or just focus on specific overlapped regions employing F0 contour

information for inferring the phases [107] and synthesising the rest of the signal

using the mixture phases.

Unitary sum constraint

An aspect of TF masking techniques which is important for this work is whether

they satisfy the unitary sum constraint [164]. In order for a TF masking technique

to satisfy the unitary sum constraint, the following has to be true:

J∑
j=1

Hj(k, r) = 1, ∀r, k. (4.27)

21This can be also seen by Eq. 4.23: the fact that masking is taking place in the complex
domain (and not in the magnitude domain, for example), implies that the original mixture
phases are used for reconstructing the time-domain signal.
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Not all TF masking methods satisfy the unitary sum constraint; its importance

for this work is that for points (k, r) where
∑J

j=1Hj(k, r) < 1 the existence of

the residual is implied.

Adaptive spectral filtering of the harmonics

Spectral filtering can be seen as a special case of TF masking, since estimated

masks are applied on the mixture TF representation to yield the sources. Re-

garding the estimation of the mask, it has a different estimation philosophy than

the general type of TF masks. In all other masking situations, it is a matter of

estimating the values of {Hj(k, r)}Jj=1 for all or specified TF (k, r) points using

a ‘global’ procedure. By ‘global’ it is meant that every TF point where a source

is believed to be present is treated equally in the estimation process. Spectral fil-

tering, on the other hand, moves the focus to the spectral peak maxima and their

shape. In particular, the estimation of the mask is a 2-step process: first only

the points corresponding to the maximum amplitude of the peak are identified;

second, if the peak is believed to be overlapped with another peak, an attempt

to estimate their approximate shape is performed, and the energy in the shared

bins is allocated accordingly to each of the sources [60].22 This difference allows

adaptive spectral filtering to be considered as a possible middle-ground between

TF masking and sinusoidal modelling: while extraction takes place by multiplying

the STFT with a mask, the mask itself takes values according to the estimated

maximum, width and (for the case of overlaps) shape of the sinusoidal peaks.

When no overlapping takes place, spectral filtering reduces to binary TF masking

with no assumption of ideal peak shape.

The system by Parsons [125] is similar to this method in the sense that it uses

spectral filtering for the extraction, although the filters remain fixed. The ability

of the filter to adapt to the peaks is important when highly nonstationary sig-

nals (such as musical ones) are represented using a fixed-resolution representation

(such as the STFT). Indeed, as was shown in [60], adaptive spectral filtering ex-
22Here, we refer particularly to the “Filter a” energy-based approach presented in [60], since

it is the method used in the proposed system.
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hibited higher performance in terms of Signal-to-Residual Ratio (SRR) on mixes

of synchronous notes when compared to Parsons’ method. For more detail on the

adaptive spectral filtering approach, see §5.7.

On the whole, it can be argued that, when compared to conventional TF masking,

adaptive spectral filtering can offer a degree of flexibility that adds to the accuracy

of extraction. In addition, it offers a more robustly estimated residual compared

to sinusoidal resynthesis, as will be explained in §4.12.3. The residual channel

plays a key role in the system proposed in this thesis. This is why this method of

source extraction will be chosen for implementation.

It has to be noted here, that, as with many other TF masking methods, the

mixture phases are used for the transformation to the time domain. Although

this can sometimes lead to perceptually noticeable artefacts in the output signals,

these effects will have less impact if the signals are used in a remixing scenario

or for feature extraction. Also, the use of triangular windows during the overlap-

add reconstruction helps to reduce the effect of sudden phase changes at frame

boundaries (see §3.2.1).

4.12.3 Sinusoidal synthesis and comparison to adaptive spectral fil-

tering

Although techniques based on sinusoidal modelling (e.g., [172, 173, 167, 100]) can

produce fairly realistic results for a limited number of instruments and complexity

of the signal, they are still restricted by the sinusoidal model itself. Using this

model it is difficult to perform perfect subtraction of the partial content from the

mixture. This is because of the nonstationary nature of musical signals and the

inaccuracy in estimating time-varying partial parameters. As a direct consequence

of the non-perfect subtraction of the partial content, the residual produced is not

artefact-free.

Adaptive spectral filtering is a TF masking method that does not satisfy the

unitary sum constraint and hence produces a residual. Instead of subtracting
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Figure 4.5: The residual before (dashed line) and after the extraction of the partial
peak on the right (solid line). The main lobe of the peak has been completely removed
after the application of adaptive spectral filtering.

single sinusoids, adaptive selective filters are constructed in the frequency domain

that filter frequency content around the location of the note harmonics. This

frequency content will correspond to the spectral peaks of a single note, that have

been broadened, not only by the windowing process of the STFT and the non-

conformity of the signal to the bin frequencies, but also due to the time-varying

behaviour of the peaks. Unlike sinusoidal extraction, the filtering process is hence

capable of extracting both a more realistically sounding note content and a resid-

ual which is relatively free from artefacts (see Fig. 4.5). Of course, a possible

downside to this approach to extracting frequency content is that everything else

that falls within the filtered region will be filtered as well (something that is true,

also, for standard TF masking). Indeed, this happens when a high amount of

broadband noise energy is present (i.e., when the Signal-to-Noise Ratio (SNR) is

low), which unavoidably leaks into the extracted harmonic content. As a conse-

quence, it was reported in [58] that sinusoidal extraction leads to better results

when the SNR is sufficiently low (and no overlapping harmonics are present),

while spectral filtering should be preferred for the remaining cases.23 This shows
23This is still subject to favourable STFT settings: the DFT length N and the hop size L have

to be sufficiently small in order for the sinusoidal model to track the nonstationary behaviour
of the peaks.
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the complementary nature of these two approaches, something that could be ex-

ploited for improving the overall separation performance by employing multires-

olution representations. However, it is not of primary concern for the proposed

system to output source signals that are necessarily clean from leaked broadband

noise content. Instead, it currently concentrates on making sure no remnants of

the estimated content (in particular the main lobe of the partials associated with

that content) has remained at the residual.

4.13 General issues with computational auditory scene

analysis-inspired methods

This section summarises the main points of interest regarding the CASA-inspired

methods; in this way, their similarities and differences between them and the

system proposed in Ch. 5 will be highlighted.

Most of the methods, (i.e., all of them apart from the ones using an auditory

front-end [106, 105, 78]) use the STFT as a means of representation.24 Parame-

ter estimation is usually carried out on the amplitude, or magnitude domain. If

overlapping content considerations are made, they are mostly limited to the esti-

mation of the peak amplitudes; the mixture phases are often used for the estimated

source synthesis/extraction, instead of explicitly attempting a phase estimation

procedure (except [107], which addresses that). For reasons outlined in §4.12, the

proposed approach also works on the STFT magnitude domain using the mix-

ture phases, relying on an overlap-add step with triangular frame-windowing for

dealing with abrupt phase changes at the frame boundaries.

Regarding the estimation of amplitudes of overlapping peaks, the use of various

ASA and related cues (and their combination) has been adopted and is certainly

helpful, to varying degrees. Since the proposed system does not have as its current

priority a source extraction performance that is necessarily perceptually optimal,
24The methods using the sinusoidal model are included here, except [143], which works in

time-domain frames.
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a linear amplitude interpolation method from neighbouring harmonics is used.

Despite its simplicity, this has been shown to yield good quality separation, as-

suming the F0s are known [60].

For the majority of methods discussed above, grouping of the estimated com-

ponents into their respected sources is not needed. Since these techniques are

trying either to extract a single predominant source or, broadly, to ‘disentangle’

mixtures of two sources, grouping of the estimated components is equivalent to

source grouping. With the exception of Duan et al. [52], where methods do in-

clude a grouping stage, that stage is not automatic, because it is assisted by a

priori F0 and timing information.

Many of the existing methods that use pitch-based inference are intended to em-

ploy MIDI-like score or ground-truth pitch contour information as a way to focus

on stages of the separation other than F0 estimation. As this information is very

strong, it enables working with considerably complex situations. On the other

hand, the majority of those using an automatic F0 estimation method work pri-

marily on predominant or 2-source separation. This is arguably a more favourable

situation than using multiF0 estimates for the separation of multiple sources, since

the latter is often more prone to error. The separation methods that go the ‘dif-

ficult’ route either reject the erroneous estimates using knowledge of the original

F0s [169], or carry out refinement strategies that, although improving the separa-

tion quality, do not involve significant error checking and correction. The system

presented in this thesis proposes to do that in two different ways.

Furthermore, strict harmonicity is assumed by most systems. Because of this,

the partial peak energy is expected to be located near the predicted harmonic

frequency locations, without always needing to verify whether the predicted fre-

quency values correspond to observed energy peaks. Even if a search among

observed peaks is being carried out, if the F0 contour information is not the

ground-truth, the possibility that an observed peak may potentially be associated

with more than one predicted harmonic components has to be taken into account.
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The parameter estimation stage of the system of [60] makes this consideration,

and this approach is also used in the system proposed here.

In addition, the existing methods concentrate, for the most part, on the separation

from a musical mixture of the predominant melody, which is generally louder than

the rest of the sources. Although this can often be a sensible assumption, such an

amplitude difference between sources does not always hold in musical mixtures;

even when it does, though, the proposed system is, in theory, not limited to the

isolation of just the main melody. Dominant source extraction – a process that is

part of an iterative extraction framework – is used as an option in the proposed

system of Ch. 5, but is certainly not a requirement: the system still has the goal

of multiple source separation, which can well be carried out jointly for all the

sources.

Finally, although the systems discussed above – and in particular the semi-blind

unsupervised ones – produce a residual, this is not exploited further in significant

ways except from it being the channel containing an unmodelled source [52] or

generally the background/accompaniment [143]. This work (Ch. 5) explores some

of the various additional ways in which the residual can be exploited further.

4.14 Performance measurement and evaluation

The purpose of engineering is, in general, to propose solutions to problems under

specified conditions. These solutions are considered to have, generally speaking,

the form of a system, which produces an output, given a number of inputs. Anal-

ysis of the performance of such a system has to be carried out at various stages of

its design, both in order to gain insight into its effectiveness in solving a certain

problem25 and to assist with decisions about further possible improvements and

alterations. In order for this analysis to be carried out via the comparison of a
25Performance analysis is usually carried out also for gaining insight about the effectiveness

of the constitutive parts of that system (assuming that the system can be broken into separate,
quite autonomous sub-system elements, i.e., it is based on a modular architecture).
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corpus of results (which are usually the outputs of the system) with some sort of

reference data, there are several basic requirements:

• Define the system, part of a system, or the process that we want to evaluate.

• Set the reference data.

• Choose the signal domain in which the measurement and evaluation will be

carried out. (It may be required that the data have to be transformed to

an appropriate domain, where comparison is deemed more useful.)

• Define a way to compare reference and output data.

• Decide on how to come to a conclusion about the effectiveness of the sys-

tem/process by judging from the evaluation results.

It is important to clarify the distinction between the processes of measurement

and evaluation. Within the context of performance analysis, they constitute two

successive steps:

1. Measurement: Calculation of a value that indicates how close the output

data is to the reference data;

2. Evaluation: Examination of the meaning and the significance of the mea-

sured result. This can be done by comparing it with another measured

result that plays the role of the reference.

Further, there are three main kinds of reference that can be used within the

evaluation step:

• Oracle estimates; these results set the upper bound for a certain class of

algorithms that includes the system under consideration [164].

• Results from another specific, state-of-the-art system, defined as the ‘refer-

ence system’;
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• Results from the ‘best possible’ performance of the system under evaluation.

This provides the upper bound of the system itself.

The first problem is how to define the reference data. First of all, they will have

to be of the same nature as the corpus of output data for the measurement step.

The output of a system is related to the tasks this system is expected to carry

out. In the case of source separation systems, examples of these tasks can vary

from straightforward ones (e.g., counting the number of sources in the mix) to

more complex ones (e.g., generating the musical score or a remixed version of the

original recording).26 The complexity of the task in the context of performance

analysis is defined in terms of the number of parameters associated with it (the

dimensionality of the task) and the way these parameters are associated with

the success of this task. The lower the dimensionality, usually the easier it is

to evaluate the performance of these tasks; for instance, if the task is to count

the number of sources in the mix, the evaluation of its success would involve the

comparison of an output scalar value with a reference value, most probably by

calculating the scalar difference (i.e., a one-dimensional operation).

The system tasks are obviously dictated by the current application that we want

our system to be used for. From this point of view, it could be said that tasks

dictated by SO applications exhibit lower dimensionality than the ones dictated

by AQO applications (see §1.1). Also, following this type of distinction, a per-

formance comparison of a large number of systems under a common evaluation

framework could be established more easily. Towards this end, public evaluation

initiatives, such as the Signal Separation Evaluation Campaign (SiSEC) [1, 161]

and the Music Information Retrieval Evaluation eXchange (MIREX) [2, 47], have

been introduced during the past few years; the SiSEC has been concentrating more

on the AQO side of source separation, whereas the MIREX on MIR-oriented al-

gorithms, most of which fall naturally within the category of SO applications for

source separation.
26To be more precise, a task is also related to the a priori information involved and, as

a consequence, the degree of system blindness [162]. However, if one can assume that this
information remains the same across all systems under evaluation, a more direct connection can
be drawn between the complexity of a task and the difficulty of evaluating its success.
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The SiSEC, in particular, has carried out some promising steps towards establish-

ing evaluation strategies for blind underdetermined separation systems. However,

an agreed evaluation framework has not been proposed yet for single-channel audio

separation, specifically regarding the task more closely related to AQO applica-

tions: the estimation of the signals {ŝj}Jj=1.
27 As this task is a highly challenging

one to evaluate, this section will concentrate on offering further insights into some

of the current tools and strategies used for this purpose.

There are two main approaches to carrying out performance analysis. The first

one assumes that the ground-truth is known. For the specific task of estimating

{ŝj}Jj=1, the ground-truth are the original source signals {sj}Jj=1. Since in ‘real-

world’ practical situations these signals are not available, this type of performance

analysis will be called theoretically-based, while the second case, where the ground-

truth is not known, will be called non-theoretically-based analysis.

4.14.1 Theoretically-based performance analysis

Measurement

As discussed above, the measurement step carries out a calculation of the ‘close-

ness’ of the output data to the reference data with the help of a comparison

measure. This measure can be quantitative (based on mathematical tools) or

qualitative (based on perceptual notions of audio distortion and similarity). Since

the quantitative measures have so far been more popular within the source sepa-

ration community, the focus here will be primarily on them; the use of qualitative

measures will be briefly discussed in §4.14.2.

The comparison measure typically involves the output data (the estimated source

signals ŝj or a specified function of them) and the reference data (the original

source signals sj or a specified function of them). Sometimes additional contextual

information may be utilised (such as the mixture x), but ŝj and sj are the two
27Finding the correct order of the estimated signals (i.e., the correct map from sj to ŝj) is not

considered here as part of the task. In other words, the estimation of source signals is considered
to be correct up to a permutation.
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core entities always involved in some way within the measurement and evaluation

processes. For this reason, and for the purpose of presenting the general framework

of the theoretically-based performance analysis, the comparison measure will be

denoted as measureref (out), where ref is the reference data and out is the output

data. There are two main forms in which it appears in the literature:

• measuresj (ŝj): ŝj is compared with sj . This is the most basic way to use a

comparison measure; in this case no distortions are allowed for the estimated

signals.

• measures̃j (ŝj): ŝj is compared with s̃j , where

s̃j = dist(sj) (4.28)

and dist(·) is the function that represents the allowed distortions. An exam-

ple of allowed distortion is the one potentially introduced by the transforma-

tion from the time domain to the TF domain and back. Li and Wang [106]

account for this distortion by applying an “all-one” mask to sj . This involves

the transformation of sj to the TF domain, followed by multiplying all the

TF unit values with 1 and resynthesis (transformation back to the time

domain). Another kind of allowed distortion that is employed in this way

is the class of simpler, linear distortions. For example, Vincent et al. took

into account the distortions caused by time-invariant gain, time-invariant

filters, time-varying gain and time-varying filters [163].

Evaluation

• measuresj (ŝj) with measuresj (s̆j). s̆j has been obtained either by an oracle

estimator (making measuresj (s̆j) correspond to the upper bound of a certain

class of algorithms), of by a reference system. The use of oracle estimators

for BSS-related systems was presented in [164], while for CASA-related sys-

tems the optimal Wiener filter (e.g., [54]) or the IBM (e.g., [106]) have been

used as an oracle: s̆j are the original signals after the optimal Wiener filter
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or the IBM has been applied to them and they have been transformed back

to the time domain.

• measuresj (ŝj) with measuresj (s̃j). s̃j is the ‘best possible’ extraction, mean-

ing that measuresj (s̃j) corresponds to the upper bound performance of the

system. This is useful in cases where the absolute recovery of the original

source signals is not the main goal of the system and some kind of distortion

is allowed. Indeed, note that s̃j is of the same type of signal as the ones sub-

jected to allowed distortions according to Eq. 4.28 during the measurement

step. The difference is that in this case the introduced distortion can often

be characterised as rather more complex and nonlinear. This is because it

involves the actual separation process (or parts of it) of the system under

evaluation.

This kind of evaluation is applicable especially in systems with a modular

architecture (because the performance analysis can be focused on different

parts of the system) and which produce a residual. The proposed system

belongs to this category.

Defining the signal domain

This section considers only the use of the time-domain data for measuring and

evaluating separation performance. Because of the difficulty in determining ac-

curately the phase information in overlapping content (which could lead to a

more distorted signal), it could be argued that carrying out performance analysis

in, say, the spectral or TF magnitude domain would be more desirable because

the phase indeterminacy errors would not be included. However, it is still not

clear how significant the effect of partly erroneous phase information would be for

analysing separation performance. Furthermore, AQO applications do expect to

receive time-domain extracted signals, which means that their extraction quality

should be studied in that particular domain. Finally, performance analysis in the

time domain makes the comparison with previously reported results easier, since

the vast majority have been carried out in the time domain.
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Measures used in separation performance analysis

A number of basic measures that are frequently employed when analysing the

performance of single-channel source separation systems will be presented below.

It should be noted that in some cases the names and notation may vary between

authors.

Perhaps the most common of the quantitative measures used for the analysis of

single-channel source separation performance is the SRR (e.g., [58, 169, 100, 107]).

This is expressed as the energy ratio in dB between sj and the difference between

sj and ŝj :

SRRsj (ŝj) = SNRoutj = 10 log10

∑
n

(
sj(n)

)2∑
n

(
sj(n)− ŝj(n)

)2 dB (4.29)

= 10 log10

‖sj‖2
‖sj − ŝj‖2 dB. (4.30)

As Eq. 4.29 shows, the SRRsj (ŝj) can also be interpreted as the SNR measured at

the output of the system, SNRout. This is a sensible way of measuring extraction

performance, since the “noise” in this case is the difference between the original

and extracted signals. The smaller this difference is, compared to the original

signal, the better extraction performance it will indicate. The measure does not

provide us, though, with an idea of the difficulty of the problem, i.e., something

that would help us make a judgement about the extraction quality in proportion

to the difficulty of the extraction. In order to do that, contextual information

can be incorporated by employing the mixture signal x; the SNRin can, thus, be

calculated:

SRRsj (x) = SNRinj = 10 log10

∑
n

(
sj(n)

)2∑
n

(
x(n)− sj(n)

)2 dB (4.31)

= 10 log10

‖sj‖2
‖x− sj‖2 dB (4.32)

and a new measure can be defined by taking the difference of the SNRs in Eqs. 4.29

and 4.31:

∆SNR = SNRout − SNRin. (4.33)
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∆SNR compares the output not just with the original source, but also with the

mixture as well (SNRin). This is an important consideration when dealing with

mixtures in which the sources are mixed with different energy ratios. Intuitively,

the lower the interference compared to a particular source, the easier the extrac-

tion of that source would be. Using SNRin is a way of incorporating in the measure

the degree of difficulty that the mixture poses on the extraction of a particular

source.

It is worth noting that what is referred to as the ‘residual’ here is in some ways

different from the usage of the word elsewhere within this thesis. In this section

the residual is defined for the purpose of performance analysis and can take the

forms of sj − ŝj or x− sj ; this implies that sj is available. Throughout the thesis,

however, sj is not considered to be available, and the residual has a somewhat

different purpose: it is generally defined as the remainder after the extraction of

ŝj from the mixture x, in other words, x− ŝj (while an alternative, more enhanced

version of it is introduced in §6.1).

The SRRsj (ŝj) is a measure that takes into account all the possible distortions

and errors introduced into ŝj (for example, inter-source interference, sensor noise,

artefacts due to the extraction process, or the transformation back to the time

domain). A more educated study of the performance would involve a closer look at

each of the different types of errors or distortions and their role in the separation

performance. Vincent et al. [163] proposed a number of alternative measures with

that aim in mind. They decompose ŝj as

ŝj = starget + einterf + eartef︸ ︷︷ ︸
e

(4.34)

where starget is the reference signal calculated as the orthogonal projection of ŝj

onto sj , i.e.,

starget =
〈ŝj , sj〉
‖sj‖2 sj , (4.35)
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and e is the total ‘residual’, which is broken into two parts: einterf and eartef are,

respectively, the results of source interference and extraction artefacts.28 einterf is

calculated using

einterf = ST c − starget (4.36)

where

c = G−1 [〈ŝj , s1〉 〈ŝj , s2〉 . . . 〈ŝj , sJ〉]T (4.37)

and G = (gjζ)J×J is the Gram matrix of the source signals with elements:

gjζ = 〈sj , sζ〉. (4.38)

From Eqs. 4.34 and 4.36, eartef can then be obtained:

eartef = ŝj − ST c. (4.39)

Using the quantities starget, einterf and eartef, three measures can be defined. The

SDR is the ‘global’ measure, taking into account all possible kinds of distortion:

SDRj = 10 log10

‖starget‖2
‖einterf + eartef‖2 dB, (4.40)

while the Signal-to-Interference Ratio (SIR) concentrates on the effect of source

interference:

SIRj = 10 log10

‖starget‖2
‖einterf‖2 dB, (4.41)

and the Signal-to-Artifacts Ratio (SAR) on the effect of the estimation and ex-

traction artefacts:

SARj = 10 log10

‖starget + einterf‖2
‖eartef‖2 dB. (4.42)

The SIR and the SAR provide the means of acquiring additional insight into the

performance of a particular system in terms of source separation. Further, the

SDR has a particular importance because it involves the overall distortion, hence
28A third part, enoise, corresponding to the additive sensor noise, is also included in [163].

In this thesis, however, the employed mixing model is the instantaneous one of Eq. 4.5 which
ignores this noise element.
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offering a ‘summary’ of the ability of that system to extract a source signal from a

mixture to an acceptable degree. In this sense, it belongs in the same ‘category’ as

the SRRsj (ŝj). However, there does not seem to be a clear agreement, particularly

within the single-channel musical source separation community, regarding the use

of any one particular measure. For example, the SiSEC [1, 161], which is a

positive step towards a community-based agreement for an evaluation framework,

has not yet introduced proposals for the single-channel case. Hence, one priority

is to study the differences between these measures in terms of their behaviour

with various forms and amounts of distortion, so that a stronger judgement can

be made about their effectiveness. A contribution to this study is offered in

§5.8.1, via a combination of two analysis frameworks, a theoretical one and a

practical one. It is noted that the practical framework does not belong to the non-

theoretically-based performance analysis discussed next. This is because, unlike

the non-theoretically-based type of analysis, the original sources are considered

available in the practical framework.

4.14.2 Non-theoretically-based performance analysis

This type of analysis does not assume the availability of the original sources, so

the reference data will have to be obtained using a reference system. (In a sense,

the fact that the system is regarded as ‘reference’ automatically renders its output

as reference data.) This system has to share a common framework (i.e., common

or similar assumptions and conditions of operation) with the system under test.

The measurement stage involves the calculation of measures′j (ŝj), where s
′
j is the

reference data. Because of the unavailability of sj , this type of analysis does not

include an evaluation stage. Separation systems can still be compared, though,

through a direct comparison of their respective measures′j (ŝj). Having said that,

it does not seem that this method of performance analysis has been preferred by

researchers so far.

A different way of comparing signals is by carrying it out qualitatively: the com-

parison measure is a perceptual one (i.e., related to human perception). This can
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be particularly useful when the original sources are not available. Although per-

ceptual measures have been proposed for the quality assessment of coded audio

and speech (see, e.g., [6, 7]) they have specifically focused on types of distortion

errors of a different nature to those often encountered in ASS; using such percep-

tual measures as a way to evaluate separation quality could, hence, potentially

give misleading results. However, Fox et al. [64] showed that the linear combi-

nation of four quantitative measures (including the SIR and the SAR discussed

above) could correlate highly with similarity assessments carried out by humans,

at least when tested on woodwind instrument 2-channel mixtures processed by

BSS-related algorithms. Further study of this type of comparison on a wider va-

riety of separated music and/or speech signals would be needed in order to devise

more robust measures that correlate well with assessment by humans.

4.15 Summary

This chapter introduced the problem of single-channel source separation from

mixtures of music sounds and carried out a review of the methods that have

addressed this problem so far. After clarifying a few of the related terms often

used in the literature and describing the variety of mixing models, we focus on

the instantaneous mixtures. This is followed by outlining the main stages of

a separation system and introducing a classification framework for the existing

methods.

The methods can be generally classified as BSS-related or CASA-related/inspired

ones. Their general difference lies in the use of human perception-associated

models: the first category does not use them, while the second one does. This

is why CASA-related/inspired methods are not blind, while the BSS-related ones

obviously are. Also, an additional way to classify them is by the degree of super-

vision (i.e., the degree of human intervention). The BSS-related methods have

the advantage of being always unsupervised and they are usually not restricted

on the type of mixtures. However, their often-applied assumptions of statistical

independence and high sparsity can be unrealistic for real-world musical mixtures.
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On the other hand, the methods related to or inspired by CASA can incorporate

advanced models for the sources, or models of the hearing and scene analysis

processes. This enables more flexibility but also increased challenges, such as how

to combine those models and processes effectively. The methods belonging to

this category can be supervised or unsupervised. The supervised methods make

use of learning procedures before the separation in order to construct statistical

source models. While satisfactory results are reported, the models are usually

quite restricted in the type of musical sources they can accommodate; in addition,

most of the time, appropriate training material encompassing a variety of musical

sounds is not readily available.

Unsupervised CASA-inspired methods do not involve restrictive training proce-

dures. Instead, they are based on more generic models (such as the harmonic

model) and psychoacoustic cues. Most of the current methods use pitch-based

inference for the extraction of two sources or the predominant one. They usually

assume strict harmonicity and ideal peak shape. The proposed method does not

make those assumptions and is not limited to the extraction of just one or two

sources.

Also, with regards to non-blind supervised methods, because of their MIDI front-

end, they rely heavily on user intervention and expertise. These can be very

restricting characteristics for a system, and that is why it was chosen to replace

the MIDI front-end in Every’s system with an automatic stage in Ch. 5.

The chapter continues with a discussion on source overlapping, its relation to spar-

sity and disjointness, and how this is dealt with by various extraction methods.

It is concluded that for the case of musical mixtures, the choice of a 8192-point

STFT (assuming a sampling frequency of 44.1 kHz) is a reasonable one. A variety

of TF masking methods is then discussed, ending with the adaptive spectral filter-

ing technique that is used in the proposed system, amongst other reasons because

it is a balanced alternative between binary TF masking and sinusoidal modelling.

Particularly when compared to sinusoidal modelling, the spectral filtering method

is less likely to produce a residual with considerable extraction artefacts, since no
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ideal peak shape is assumed, and can tolerate estimation inaccuracies that the

sinusoidal model would not. Finally, there is no method that uses the residual as

an enhanced source of information in the way it is used in this thesis.

The final part of the chapter gave an introduction on the different ways available

for carrying out performance analysis for source separation systems. Normally this

analysis takes place in two stages, measurement and evaluation. The first stage

uses an available measure for comparing the extracted signals with some reference

(the original signals or a function of them). The evaluation stage compares the

measured value with a measurement made for a reference system or a best-case

scenario of the system under question.

The next chapter describes the proposed source separation approach in detail.



CHAPTER 5

One-pass proposed approach

The previous chapter reviewed a variety of approaches towards the separation

of musical sources from single-channel polyphonic recordings, and established a

context for the proposed approach to this problem. This chapter provides an

overview of the whole system and introduces some of the definitions needed for

the purposes of description and analysis. Then a one-pass implementation of the

proposed approach is discussed in detail.

The extensions, and improvements relating to the move to a more automatic

front-end are described and experiments involving mixtures of varying complexity

are carried out. The analysis of the performance results reveals the viability of

employing the automatic front-end versus its MIDI-based alternative.

5.1 Overview of the complete proposed approach

One of the main goals of this work is the design of a system that performs source

separation from single-channel musical mixtures. Although being a highly under-

determined task that would require significant prior information, depending on

its intended application, it would still be desirable for such a system to be au-

tomatic. Musicality constraints imposed on the sounds and mixtures have been

helpful in such cases, while retaining a useful degree of generality. Here, the basic
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musicality constraints are the assumptions that the signals to be identified and

extracted can be characterised adequately by a sinusoidal harmonic model, along

with the fact that the mixtures contain detectable musical events. It should be

emphasised, however, that no strict harmonicity assumption is imposed.

The proposed system uses an existing one [60, 58] as its starting point. The

particular system was selected for two primary reasons:

• it showed higher separation performance compared to other methods on a

variety of musical mixes containing synchronous single-note sources [60, 58];

• because of its particular extraction stage (an adaptive spectral filtering

method applied to the harmonic or near-harmonic content), it produces a

residual that can be relatively free from extraction artefacts (i.e., no main-

lobe spectral energy of previously estimated content is expected to be found

in the residual, see Fig. 4.5). This opens up a number of possibilities for the

use of the residual, as will be also explained below.

The previous system made use of prior pitch and timing information in the form of

of a user-supplied MIDI-type score as a first basic step for identifying the source

structures. However, this implies the need of a trained musician, the medium

through which this information will be inserted. By replacing the MIDI front-

end with an automatic method of providing the F0 tracks (and in some cases

the timings as well) the need for a trained musician is removed. At the same

time, the proposed work offers an improved accessibility for the end user – in

a sense it provides an advancement towards a new tool which people from the

wider music technology community (engineers/scientists, but also people with a

stronger emphasis on the music/creative side) can experiment with and enjoy the

benefit of.

The approach presented here pays particular attention to the residual channel

and its potential in providing information within an iterative framework, with the

purpose of realising a SAU system. One of the assumptions related to this idea

is that, if the identification and extraction step are robust enough and relatively
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Figure 5.1: Single-channel source separation that produces a residual channel.

artefact-free, the combination of a multiF0 estimator with a residual feedback

loop can lead to a robust source separation system (see §6.1 and §6.2).

The residual signal can take multiple forms, according to its different roles. In

fact, the very concept of the residual allows for the partitioning of the single-

channel mixture into rather more signals than there are sources. For example, in

the most common case, if the number of original sources is J , the basic separation

system can produce J + 1 signals: J extracted source signals, and a residual (see

Fig. 5.1). But since the initial residual contains the unmodelled content belonging

potentially to all of the source signals, this content may be further separated –

potentially into J separate attacks and the remaining unmodelled content. Hence,

most generally, there can potentially be up to 2J signals associated with note

events, resulting in 2J + 1 output channels, including the ‘final residual’ (see

Fig. 5.2).

The focus of this thesis is primarily in the separation of pitched (harmonic and

near-harmonic) content. Also, because of the use of the multiF0 estimator, the

system shows its strong reliance on the harmonicity psychoacoustic cue; this is the

main reason why it can be classified as a CASA-inspired approach. Having said

that, nonharmonic content will still be considered here but mainly as a source

of information. Specifically, nonharmonic energy existing in the residual and

associated with the note onsets will be used for devising a residual-based note

onset detector (see §6.4).

There is no actual restriction regarding the number of sources. In addition, al-

though parts of the presented algorithms might benefit by the predominance of
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(a)

(b)

(c)

(d)

Figure 5.2: An explanation/illustration of the fact that the proposed system can pro-
duce up to 2J + 1 output signals. The original mixture contains three notes (J = 3),
appearing in 0.5 s intervals with the following order: soprano saxophone A3, cello F4 and
violin E4. (a)-(c) show the J extracted harmonic parts (in black) and J nonharmonic
parts (in grey); (d) shows the remaining signal, the ‘final residual’.
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System by Every Proposed approach
Degree of blindness Non-blind Semi-blind

Improved accesibility # !

Iterative use of the residual # !

Iterative extraction # !

Spectral peak picking and estimation as in [60, 58] same

Source parameter estimation as in [60, 58] improved

Extraction as in [60, 58] same

Residual-based onset detection method # !

Near real-time # #

Table 5.1: A summary of the main differences of the proposed approach to, and com-
monalities with Every’s approach [60, 58]. The distinction “same/improved” refers to the
proposed approach as compared to Every’s system.

certain sources over others, they are certainly not limited to this particular case.

Finally, because of the multi-goal nature of this system, an implementation that

is fast, or even close to real-time, is not of a primary concern here. Of course, by

choosing to focus on more restrictive goals, a faster system is certainly possible.

Table 5.1 provides a summary of the main differences of the proposed approach

to, and commonalities with Every’s approach [60, 58].

5.2 Some additional definitions

As discussed in §4.3.1, every source separation method incorporates its own way(s)

of identifying, organising and allocating mixture energy that may belong to dis-

tinct sources. This organisation is often carried out in a number of steps, effec-

tively in a hierarchical manner. Hierarchical considerations that are imposed on

a signal are useful in two ways:

• By enabling a breakdown of the problem into distinct processing steps re-

lated to the hierarchical levels. In this manner, a systematic examination of

the variety of challenges related to different types of mixtures can be carried

out.
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• By enabling a methodical comparison between methods that use similar

hierarchical organisations.

In source separation, the chosen hierarchical organisation depends on the way the

mixtures that we are interested in separating vary from each other. Here, the

difference between the types of mixtures lies in the place that they occupy in the

homophony/polyphony continuum.

Since the focus of this thesis is on the treatment of mainly Western-type musical

signals, the use of a MIDI description can be convenient for describing levels in

the grouping process of already identified musical structures. Although the MIDI

description is probably not the only way to do this, it fits with the philosophy of

the proposed approach and its popularity permits a more general consideration

of other methods as well. Fig. 5.3a shows a ‘pianoroll-like’ representation of a

musical piece where three interweaving melodies are played simultaneously by

three instruments. The musical structures are MIDI note events with associated

pitch values which vary with time, and time is divided into STFT frames. The

grouping of these structures is expressed in this thesis in terms of three factors:

• J , the number of source signals, as they are defined in §4.1.4.

• P , the total number of note events appearing in the total mixture. It can

be defined as:

P =
J∑
j=1

|Pj |, (5.1)

where Pj is the set of indices {pj ∈ [1, P ]} that show which of the notes

belong to source j.

• O, a quantity which can be called the polyphony. It is generally a function

of time, because it corresponds to the number of different identifiable struc-

tures in each time instant, and since these structures belong to different

note events, O cannot be larger than P .
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When time is expressed in terms of the STFT frames, the relationship between

the three quantities can be expressed as:

0 6 Or 6 J 6 P, ∀r, (5.2)

where r = 1, 2, . . . , R is the index of the STFT frames. The above equation makes

clear that the present work does not deal with synchronous notes coming from

the same source, i.e., chords are not assumed here. Fig. 5.3b shows the variation

of Or for the mixture in Fig. 5.3a. There are four cases of particular interest,

with regards to the relationship between J, P and Or, shown here in order of

complexity from low to high:

Case 1: Or = J , ∀r and P = J . In this case every source contains a single note

event, i.e.,

|Pj | = 1, ∀j, (5.3)

and these note events are synchronous and of the same duration (see the

time-frame intervals [240, 270] and [870, 900] in Fig. 5.3).

Case 2: Or = J , ∀r and P > J . This happens when we have all the melodies

that exist simultaneously in every time instant (see the time-frame interval

[800, 900] in Fig. 5.3).

Case 3: Or is not constant and P = J . As with the first case, every source

contains a single note event, but these note events are not necessarily syn-

chronous or of the same duration (see the time-frame interval [70, 100] in

Fig. 5.3, supposing that J = 2).

Case 4: Or is not constant and P > J . This is when there is no restriction

regarding the duration and quantity of note events in relation to J , as well

as their evolution in time and whether they appear in every time instant or

not (see Fig. 5.3).

Fig. 5.4 shows the assumed hierarchical organisation. The formation of complete

sources – which, because of the particular hierarchical organisation, is achieved by
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Figure 5.3: (a): A pianoroll representation of a musical piece excerpt, where three
distinct melodies coexist (shown in white, grey and black colour). The melodies appear
as sequences of note events. (b): the polyphony O of the piece shown in (a) as a function
of the time.
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Figure 5.4: The hierarchical organisation of source structures moving from the lowest
(TF points) to the highest (melodies) level. In this sense, peaks are considered as groups
of TF points, the frames as groups of peaks, the notes as groups of frames and the
melodies as groups of notes. Here, the melody represents a complete high-level source
representation.

the grouping of extracted note events – will have to be preceded by the formation

of note events (see Fig. 5.4).

This work operates at a level between the frames and the notes which can be called

sustained note interval. These kinds of intervals are expected to be containing only

sustained parts of notes. For Case 1, the sustained note interval is the same as the

length of the synchronous notes (and the whole mixture); for the rest of the cases,

the mixture is segmented into a series of sustained note intervals, using the note

onset/offset timing information, and each interval is processed individually. No

automatic tracking or grouping process is included in this system when melodies

are concerned, so the final step is to ideally group the extracted sources. By

ideal grouping in this thesis is meant that the extracted signals are compared on

a windowed frame-by-frame basis with the original sources, and thus rearranged

according to the best-possible matches of these comparisons.

The rest of this chapter goes through a detailed analysis and discussion of the

one-pass version of the proposed separation system.
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5.3 MultiF0 estimation stage

The multiF0 estimation algorithm used in the proposed method was proposed by

Klapuri, originally in [98] and in an extended version that employs an auditory

model as a front-end in [95]. This frame-based method is employed here because

its good performance with multiple sources makes it a pretty solid starting point

for an automatic separation system that separates accurately multiple sources.

Provided the note event timings can be known and the method is correct for

the majority of the time frames, the F0 track disentangling operation can help

to correct any possible errors. The rest of this section will summarise Klapuri’s

multiF0 estimation algorithm. The parameter values are the ones suggested by

Klapuri.

All of the processes outlined below take place in a single Hamming-windowed

frame r. First of all, the DFT of the frame is taken, followed by an application of

a bandpass filterbank. This is carried out through the use of C filters with centre

frequencies of the form:

fc = 229 ·
(

10
0.39c+2.3

21.4 − 1
)
, (5.4)

where c = 0, 1, . . . , C − 1 and C = 70. Each subband has a triangular power

responseHc(k) extending from fc−1 to fc+1 and zero elsewhere. After applying the

subband response to the power spectrum of the mixture, the standard deviations

σc are calculated:

σc =

(
1
N

∑
k

Hc(k) |X (k)|2
)1/2

, (5.5)

where N is the length of the DFT. The compression coefficients can be then

defined as:

γc = σν−1
c , (5.6)

where ν controls the amount of spectral whitening. Here, we use ν = 0.33.

Finally, a compression function γ(k) is derived for all the frequency bins by linearly

interpolating between the values {γc}C−1
c=0 . The whitened mixture spectrum can
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be then estimated as:

Y(k) = γ(k)X (k). (5.7)

Source detection is carried out by either an ‘iterative detection and cancellation’

technique, or joint estimation. Here, the iterative method has been used. Klapuri

showed that both of them perform equally well in multiF0 estimation, with the

iterative method being favoured because of its lower computational complexity.

The iteration procedure operates by first detecting the most prominent period,

cancelling it (i.e., subtracting the peaks corresponding to this period from the

overall magnitude spectrum), and proceeding to detect the next prominent period.

In order to determine the prominence of a certain period, the measure of salience

λ(τ) is defined:

λ(τ) =
M∑
m=1

w(τ,m) max
k∈κτ,m

|Y(k)|, (5.8)

where w(τ,m) is a weighting function and κτ,m is the set of frequency bins around

the m-th partial of the F0 candidate that has frequency Fs/τ . (Fs is the sampling

rate.) Finally, w(τ,m) has to be optimised for minimising the multiF0 estimation

error rate. The behaviour of two factorised forms of the function was studied on a

database of training material consisting of random mixtures of sounds and vary-

ing polyphony. According to the observations it was decided that the weighting

function should take the following form (see [98] for more details on the proce-

dure):

w(τ,m) =
Fs/τ + α

mFs/τ + β
, (5.9)

where α = 52 Hz and β = 320 Hz for a 93 ms frame.1

Regarding the use of this method in the proposed system, two final points need

to be made: (1) the polyphony value Or has to be provided as prior information;

(2) the method assumes that the sounds we are dealing with have F0s between

40 Hz and 2.1 kHz. These frequency limits correspond to the lowest and highest

detectable musical notes of the total separation system, E1 and C7 respectively.
1The same values where also used for the current implementation that uses 186 ms frames.
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5.4 F0 track disentangling

Since the F0 estimates are produced in a frame-by-frame basis by the multiF0 esti-

mator of the previous stage, no tracking or sorting process is involved. Assuming

synchronous single-note sources of the same length (Case 1-type mixtures), or

that the note timings are known (for the rest of the mixture cases), the stage of

F0 track disentangling receives as input the frame-wise F0 values and sorts them

into separate tracks; at the same time an error correction process is carried out.

For each Hamming-windowed frame r ∈ [1, R], the multiF0 algorithm calculates

two quantities: the F0s in Hz {f (p)
0 }Pp=1 and the salience function {λ(f (p)

0 )}Pp=1.

These quantities correspond to the two R× P matrices:

F = [f (1) f (2) . . . f (P )] (5.10)

and

Λ = [λ(f (1)) λ(f (2)) . . . λ(f (P ))], (5.11)

respectively, where

f (p) = [f (p)
01 f

(p)
02 . . . f

(p)
0R ]T, (5.12)

and it represents the p-th F0 track. For every frame r, the row elements {λ(f (p)
0r ) ≡

λ
(p)
r }Pp=1 are arranged from left to right in decreasing order of salience. In this way,

the F0s are allocated to their respective sources; this, however, operates under a

best case scenario.

The best case scenario regarding the estimation of the F0 tracks is when the F0s

have been estimated correctly, and have also been grouped into tracks using only

λ as a distinguishing feature. As can be seen in Eq. 5.8, the magnitudes of the

harmonic partials are directly proportional to λ. An effective use of λ can thus

be enabled for F0 tracking in cases where there is a sufficient difference between

source energies in the mix. This can be quite safely assumed when one of the

sources is expected to always be the predominant one in the mix, particularly in

a 2-source scenario (predominant melody/background, see Fig. 5.5a). Also, since
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(a) (b)

Figure 5.5: Examining the possibility of distinguishing between sources using λ as a
distinguishing feature. Both figures display λ for each source before the disentangling
process.(a) a mixture of two interweaving melodies; (b) a mixture of 3 synchronous notes
of the same length. Lines of different type correspond to different sources. (Note the
scale change at the axes.)

the only requirement for using λ as a feature for F0 tracking is the predominance

of one of the sources (or a clear energy difference between the sources if there are

more than 2) it can be applied to all cases, not just Case 1 (with Cases 3 and 4

needing supplementary timing information).

However, when the sources are mixed with equal or similar energies, or with

energies that change over time, salience cannot be used reliably as a feature for F0

grouping. Fig. 5.5b shows such an example. In this situation, a heuristic grouping

rule can be used instead. For example, the use of a rule that is based on research

in music perception and composition and states that pitch tracks coming from

different instruments should not cross each other [82] can be a quite reasonable

choice for a variety of musical mixtures [107]. This rule, nonetheless, assumes

correct multiF0 estimation, or knowledge of the ground-truth F0 contours. When

automatic multiF0 estimation is employed, it is often not error-free – there will be

time instances where it will fail for one or more sources. For this reason, a different

approach is adopted and described below. It is a two-part process and deals with

both the issues of track disentangling and correction of multiF0 estimates.
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5.4.1 Identification of mis-labelled silences

There are times where silence segments exist in the beginning and/or the end of a

note event. While for those particular frames the polyphony value that drives the

multiF0 estimator should be O = 0, there are cases where this may not be true

(for example, because of wrong timing information). In those cases the multiF0

estimator will be misled and will produce obviously erroneous estimates {f (p)
0r }Pp=1

for all the sources that were supposedly present in the mixture.

For this reason, a correction stage seeks to identify those time-frames and set all

their associated F0 values to zero. It was found that the salience measure λ can

be used effectively for this purpose, since it is directly related to the magnitude of

the STFT spectrum: the frames r where λ(p)
r is below a certain threshold ρ and

Or 6= 0 are re-labelled as silenced and the F0s associated with those frames are

set to zero. More formally:

{f (p)
0r }Pp=1 ← 0, ∀p, ∀r ∈ [1, R] : Or 6= 0 ∧ λ(p)

r < ρ. (5.13)

The value of ρ = 1 was found to be satisfactory after considerable experimenta-

tion. As with λ (which is derived from the weighted sum of spectral magnitude

values), ρ signifies a spectral magnitude threshold.

5.4.2 F0 swapping/correcting process

This process relies on the assumption that the multiF0 estimation stage has de-

livered correct estimates for each of the sources in at least 51% of all the frames.

Using this assumption, the P most probable F0s in the whole of F (in other words,

in the whole mix) can be found.

First of all, its columns are concatenated in a single vector f conc of size RP × 1.

The concatenation operation on F is equivalent to:

f conc = [f (1)T f (2)T . . . f (P )T]
T
. (5.14)
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begin1

Input f conc2

h← hist(f conc)3

for p← 1 to P do4

f
(p)
pitch ← argmax(h)5

h
f
(p)
pitch
← 06

f
(p)
0 best ← mean of all values {f conc

m }m∈[1,RP ] that satisfy7

|f conc
m − f (p)

pitch| < cf
(p)
pitch.

end8

Figure 5.6: Algorithm for finding the P most probable F0s in the mix, {f (p)
0 best}Pp=1.

Next, a 69-bin histogram of f conc is calculated. Fig. 5.6 shows the algorithm for

the calculation of the P most probable F0s. The histogram is denoted by a

69-element vector h:

h = [h1 h2 . . . h69]T, (5.15)

and its bins are centred at the frequencies corresponding to the pitch of notes

E1 to C7. The P largest values of h are then identified – these are the P most

probable pitches, {f (p)
pitch}Pp=1. From this, a ‘best’ F0 value f (p)

0 best is derived for each

p by searching f conc for frequencies that are less than half a semitone apart from

{f (p)
pitch}Pp=1 and taking their mean. This is why the value of c = 0.03 ' 21/12−1

2 ,

corresponding to the half semitone frequency ratio (see §2.2.1), is used in the

algorithm.

The f (p)
0 best values are used, next, for disentangling and correcting the F0s. Fig. 5.7

shows the algorithm of this process. For each r, the value of f (p′)
0r that is closest

to f (p)
0 best is placed at the p-th track. However, it is not allowed for f (p′)

0r to be

the closest frequency for another f (q′)
0 best; if this happens, f

(p′)
0r is set to zero as an

erroneous multiF0 estimate to be inferred at the F0 correction stage that follows.

A simple approach is taken for the correction of the F0 estimates that have been

labelled as erroneous. Using the values that have been labelled as correct, i.e.,
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begin1

Input {f (p)
0r }Pp=12

{f̃ (p)
0r }Pp=1 ← {f (p)

0r }Pp=13

for r ← 1 to R do4

for p← 1 to O do5

q ← argminp′∈[1,P ](|f (p)
0 best − f (p′)

0r |)6

if q 6= p then7

f̃
(p)
0r ← f

(q)
0r8

if ∃q′ ∈ [1, P ] : |f (q′)
0 best − f̃ (p)

0r | < |f (p)
0 best − f̃ (p)

0r | then9

f̃
(p)
0r ← 010

{f (p)
0r }Pp=1 ← {f̃ (p)

0r }Pp=111

end12

Figure 5.7: Algorithm for swapping the F0 estimates between the F0 tracks, in
order to disentangle them.

the ones satisfying the inequality:

|f (p)
0 best − f (p)

0r | < c f
(p)
0 best, r ∈ [1, R], (5.16)

nearest neighbour interpolation across r is performed for calculating the rest of

the values. Also, note that FM modulation of more than 3% is not allowed here,

since the maximum allowed deviation is c = 0.03, corresponding to a half semitone

frequency difference. Fig. 5.8 shows the frequencies before and after the swapping

and correcting processes, compared with the ground-truth values, along with a

graph of the histogram for the particular mix (in this case, mix 2 from Table 5.2).

In order to compare the error rates before and after the F0 track disentangling

stage, the F0 estimates were obtained for 11 different mixtures. Each of the

mixtures consists of three synchronously played notes having equal RMS energy.

The audio samples for this case (as well as in every other case where non-synthetic

audio has been used in this thesis) were acquired from the University of Iowa

Musical Instrument Samples database [159]. The mixtures were created so as to

enable a variety of mixing situations to be tested:
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(a) (b)

(c) (d)

(e)

Figure 5.8: The disentangling process for mix 2 of Table 5.2. (a): before disentangling;
(b): after track swapping; (c): after correction; (d): ground-truth F0s; (e): the histogram
associated with this mix. The three highest values correspond to the most probable F0
values in the mix.
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Mix
number s1 s2 s3f

1 Piano A1 Cello C2 Violin E4

2 Piano C2 Cello E3 Sax G4

3 Flute D6 Bassoon A4 Cello F4

4 Flute G6 Cello E4 Sax B5

5 Piano D[3 Bassoon F3 Sax A[3

6 Flute G[4 Cello B[3 Violin D[4

7 Piano C6 Flute B[6 Bassoon A[4

8 Piano G[5 Flute E5 Cello E[4

9 Bassoon B2 Cello B[3 Violin A[4

10 Flute F6 Bassoon G4 Sax E[6

11 Cello B3 Violin B[4 Sax A3

Table 5.2: The musical notes corresponding to the original sources contained in each of
the 11 mixtures used here. In particular, the instrument and pitch associated with the
notes are shown.

• harmonically-related notes (resulting in low mixture disjointness) versus

non-harmonically-related ones (resulting in high mixture disjointness);

• variety of pitch combinations ranging from very low to very high frequencies;

• variety in types of harmonic instruments (brass and woodwind instruments,

bowed string instruments and percussive instruments);

• inclusion of a source that exhibits inharmonicity (the piano).

Table 5.2 lists the instrument and pitch associated with these notes.

A comparison of the F0 estimation accuracy before and after F0 track disentan-

gling is presented in Fig. 5.9. Two sets of references were used, the MIDI-pitch

frequencies and the single-F0 estimates of the original sources using the same al-

gorithm. An estimated F0 was labelled as erroneous if it deviated more than 3%

from the reference. It can be seen that in both cases, and for all mixtures, the use

of the F0 track disentangling stage led to an improvement of the F0 estimation

accuracy. The fact that the improvement appears somewhat lower in Fig. 5.9b
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(a)

(b)

Figure 5.9: Average accuracy of the multiF0 estimation for 11 3-source mixes before
(black bars) and after the F0 track disentangling process (white bars). The accuracy is
measured in comparison to (a) the MIDI pitch; and (b) the single-F0 estimates using the
isolated sources.
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Figure 5.10: The histogram calculated in the F0 track disentangling process for mixture
8. The ground-truth MIDI pitch values are indicated with a diamond. In particular, the
one corresponding to the undetected piano source (see text) corresponds to the ground-
truth pitch with the lowest histogram count (at MIDI note number 78).

when compared to Fig. 5.9a is because the error correction method does not allow

F0 deviations of more than 3%. This results in a relatively unchanging F0 contour

that naturally matches the MIDI reference better.

Furthermore, the low performance observed for mixture 8 is a result of a complete

failure of the multiF0 estimator to detect one of the sources (the piano). This is

a case where the F0 track disentangling stage cannot improve the F0 estimates,

since there are not enough correct estimates to work with for the duration of

the note. The situation can be illustrated by the histogram calculated during

the disentangling stage (Fig. 5.10). Its maximum value does not correspond to

any of the ground-truth pitches. Since the algorithm selects only the J highest

histogram values for further processing, the one corresponding to the piano is not

selected.

5.5 Mixture pre-processing

Once the F0s have been estimated, the mixture is fed to the mixture pre-processing

stage. Here, the harmonic (or near-harmonic) components associated with each
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source are modelled prior to separation of each source. A sinusoidal model anal-

ysis is carried out that will be used for the identification of source components

corresponding to the estimated F0 tracks. The analysis is the same as in [60] and

it is summarised below.

All the audio involved (sources which are going to be mixed, or the already avail-

able mono mixture) are sampled at Fs = 44.1 kHz. The STFT is employed as

the selected TF representation. The FFTs are calculated on N = 8192-sample

Hamming-windowed frames, with 87.5% overlapping.2 The amplitude spectrum

is denoted as A = |X |. First of all, the spectral peaks that are likely to have

been produced by source partials are located. Peak selection is performed using

a frequency-dependent threshold ηE(k), where

E(k) = (Ã(k))c, ∀k ∈ [0, N/2] (5.17)

is the shape of the threshold, η a frequency-independent amplitude threshold

height, and Ã is the smoothed amplitude envelope produced by the convolution

of A with a normalised Hamming window of length 1 +N/64 samples. A suitable

range for c is [0.5, 1[ and for this case the value c = 0.8 is used. Also, for making

sure the envelope is adaptable to fixed-gain scaling, η ∝ (mean(A))1−c.

The next step is to identify all the local maxima. A frequency bin k corresponds

to a local maximum if

A(k) > b(|k − j|)A(j), ∀j ∈ [k − d, . . . , k + d] ∧ j 6= k, (5.18)

where b(|k− j|) takes values in the range of ]0, 1] and d is the length of vector b.

This vector helps construct an adaptive threshold on j bins at either side of the

k-th bin with the purpose of deciding whether it corresponds to a local maximum

or not. For the specific case of N = 8192, b has been empirically chosen to be

equal to [1 1 0.5]T. Finally, the DFT1 method is used [44] for refining the frequency
2A justification for the use of a 8192-point STFT as a suitable mid-level representation for

work was given in §4.12.1.
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and amplitude estimates of the peak maxima, and a zero-padded version of the

window’s spectrum was used for calculating the amplitude refinements.

5.6 Source parameter estimation

This stage locates the harmonic partials associated with the estimated F0s and

calculates their amplitudes. The search for the partials is made amongst the

spectral peaks selected in the mixture pre-processing stage (§5.5). It is based

on the method described by Every [58] and is basically a way of matching the

observed spectral peaks with the predicted positions of the harmonics. One im-

portant distinction of this stage from other source identification techniques that

use F0-inferred information is that here strict harmonicity is not implied.

We define as m(p)
r the index of the m-th harmonic of source p which will be ideally

matched with its predicted frequency value during the r-th time frame. These

will belong to the set of all the matched harmonics M (p)
r ⊂ N0, the cardinality of

which is set to be:

|M (p)
r | ≤ min(b0.5Fs/min

p
mean f (p)c, 50), ∀p, (5.19)

i.e., |M (p)
r | is determined to be the maximum possible number of harmonics up

to Fs/2 (the Nyquist frequency) corresponding to the minimum mean F0 in the

mixture or 50, whichever is the smaller. (f (p) is the p-th F0 track from Eq. 5.12.)

The frame index can be now dropped, since the following are frame-by-frame

operations. The method is an iterative process. During each iteration, the note

corresponding to minpmean f̂ (p)

m(p)+1
is selected, where f̂ (p)

m(p)+1
is the predicted cen-

tre frequency of the (m+ 1)-th harmonic of source p. The algorithm is initialised

with m(p) = 0, ∀p, with m(p) being incremented with every iteration of note p.3

The predictions of frequencies are made either using the harmonic model

f̂ (p)
m = mf

(p)
0 (5.20)

3From now on, and for the sake of readability, we set m(p) ≡ m.
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or a model of inharmonicity, such as the one used for piano notes (Eq. 2.2).

According to the method, we first find the largest peak v whose centre frequency

fv is within a range of δf (p)
0 from f̂

(p)
m (satisfying the inequality |f̂ (p)

m −fv| < δf
(p)
0 ),

where δ = 0.03. Next, we examine if v is within the range of another predicted

frequency, f̂ (q)
n . If that is true, we search for a second largest peak u with frequency

fu that is within the matching range of f̂ (p)
m . If u can be found, we have two

options:

• If f̂ (p)
m < f̂

(q)
n , f̂ (p)

m is matched to the peak with the lower frequency and f̂ (p)
m

is matched to the remaining peak.

• If f̂ (p)
m > f̂

(q)
n , f̂ (p)

m is matched to the peak with the higher frequency and

f̂
(p)
m is matched to the remaining peak.

If a peak u cannot be found, then f̂
(p)
m is matched to fv only if the following

inequalities hold:

|f̂ (p)
m − fv| < 0.5 |f̂ (q)

n − fv| and |f̂ (p)
m − f̂ (q)

n | >
wFs
N

. (5.21)

For the case of the Hamming window, w is set to 2 bins. If the harmonic in ques-

tion is matched to one of the peaks, say u, then f (p)
m ← fu and A(p)

m ← Au (where

A
(p)
m and Au are the respective amplitudes of peaks m(p) and u). Furthermore,

whenever a matching is successful, f (p)
m is used to refine the F0 estimate asso-

ciated with that peak by minimising the least-squares error fit to the harmonic

frequencies.

In the case when the harmonic in question cannot be matched to any peak, its pre-

dicted value is assigned to it: f (p)
m ← f̂

(p)
m . The unmatched peaks normally occur

because of peak overlapping. For these peaks, the amplitude estimation is car-

ried out via linear interpolation using the parameters of the nearest-neighbouring

peaks in the time and frequency domain. Although this way of parameter correc-

tion is quite adequate for the type of system that is the goal of this thesis, it was

found that the process can be enhanced by adding the ability to perform linear
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extrapolation of the amplitudes. Indeed, there are cases where the fundamental

(and maybe subsequent lower harmonics) of a note can be overlapped with other

peaks throughout the total duration of the note. If extrapolation using the higher

harmonics is not included in the algorithm, the unmatched harmonics will ac-

quire zero amplitudes. Additionally, since this enhancement stops some of the F0

peaks from being rejected, it can lead to a significant improvement in separation

performance. Fig. 5.11 illustrates the effect of linear amplitude extrapolation for

the sax note G4 of mix 2.

5.7 Source extraction

The previous stage provided the central frequencies {f (p)
m } and amplitudes {A(p)

m }
of the identified source partials. These partials will be now extracted from the

mixture using the process described below. It is an adaptive filtering method ac-

cording to which a spectral filter provides the mask which will be multiplied with

the DFT spectrum of each frame, for isolating the desired partials. In particu-

lar, it is the “Filter a” energy-based approach presented in [60], and was chosen

among the other extraction approaches presented there because it showed the

most satisfying separation performance in terms of SRR (as was shown in [60]).

Let H(p)(k) be the frequency response of the filter for source p. First, we initialise

it to 0 for every k ∈ [0, N/2]. The amplitude of this filter has the form:

H̃(p)(k) = A(p)
m exp

(
− |fk − f

(p)
m |

σ

)
, m = 1, 2, . . . ,M (p). (5.22)

This is followed by the normalisation:

H(p)(k) =
H̃(p)(k)∑
p′ H̃

(p′)(k)
,

p = 1, 2, . . . , P

k
(p)
mL ≤ k ≤ k(p)

mR

, (5.23)

where k(p)
mL and k(p)

mR are the first minima in A below [k(p)
m −3] and above [k(p)

m +3],

respectively. A suitable value for σ is 0.25Fs/N . According to Eqs. 5.22 and 5.23,
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(a)

(b)

(c)

Figure 5.11: The effect of linear extrapolation on the spectrum of the sax G4 of mix
2 at frame r = 30. (a): The original mix (thin line) with the original source (thick
line); (b): the extracted sax before amplitude extrapolation; (c): the extracted sax after
amplitude extrapolation.
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if a harmonic overlaps with, e.g., two harmonics in any bin k, the spectral energy

is split into three parts depending on the values of f (p)
m and A

(p)
m . Thus, the

filtering masks are real-valued with gains 0 6 H(p)(k) 6 1, as opposed to binary

time-frequency masks which assign the energy of each time-frequency point to

only one source. With a help from the above we can define:

H(k) :=


∑P

p=1H
(p)(k) = 1, for k ∈ [k(p)

mL, k
(p)
mR]

0, otherwise.
(5.24)

The part of the original spectrum which is filtered out corresponds to the frequency

bin numbers of the set {k ∈ [0, N − 1] : H(k) = 1}.4 Any amount of energy

located in all the remaining frequency bins will not be filtered, and consequently

end up in the residual signal. Provided, however, that the peak parameters have

been estimated correctly, and since the filters operate within the specified regions

[k(p)
mL, k

(p)
mR], no main-lobe harmonic content will be left in the residual after the

filtering operation (see Fig. 4.5 for an illustration of this). Also, since, as Eq. 5.24

shows, H(k) is not unity for all k, the unitary sum constraint [164] is not satisfied.

The resynthesis of the separated source p is achieved by first obtaining its filtered

spectrum:

Ŝ(p)(k) = H(p)(k)X (k), k = 0, 1, . . . , N − 1. (5.25)

The time-domain frame-level source signals ŝ(p) are produced by applying the

Inverse FFT (IFFT) on Ŝ(p). The algorithm preserves the mixture phases at the

frame level. Thus, the frame-level residual can be simply defined as:

xres(n) := x(n) −
P∑
p=1

ŝ(p)(n). (5.26)

Using an overlap-add method with triangular windows (see §3.2.1) the complete

signals xres and ŝ(p) are finally acquired.
4The filter values at the interval [N/2+1, N−1] are symmetric to the values at [0, N/2] with

regards to the Nyquist frequency.
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Further discussion regarding the use of xres will be carried out in the following

sections. Before we do that, though, a performance comparison will be presented

first between the proposed system so far and its MIDI-informed version.

5.8 Performance comparison to the previous system

A comparison is now carried out between the system by Every [60, 58] and the

modified implementation of that system as it has been presented in this chap-

ter. The comparison will be in terms of both separation and multiF0 estimation

performance. First, however, the relative merits of using the SRR and the SDR

is explored, in order to make an educated choice of a separation performance

measure.

5.8.1 Comparing the signal-to-residual ratio and the signal-to-distortion

ratio

Theoretical analysis

We can start the comparison analysis between the SRR5 and SDR by rewriting

Eq. 4.40: because of Eq. 4.34, it can be written as:

SDRj = 10 log10

‖starget‖2
‖ŝj − starget‖2 dB. (5.27)

As can be easily seen by comparing the above equation with Eq. 4.30, the dif-

ference between the two measures lies in the definition of the reference signal:

the SRR uses sj for this purpose, while the SDR uses starget. Additionally, from

Eqs. 4.34 and 4.35, it can be seen that (1) by employing starget, the SDR allows

for time-invariant gain distortion, i.e., if ŝj = asj for a ∈ R then starget = sj ; and

(2) that e = ŝj−starget is orthogonal to sj . This relationship between the involved

quantities can usefully be visualised in vector form, as shown in Fig. 5.12. The

distortion is expressed as the magnitude of vectors e (for the SDR) and e′ (for
5In this section, the use of the acronym ‘SRR’ refers to SRRsj (ŝj) (see p. 99).
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sj

starget

e
e′ŝj

∠(ŝj , sj)

Figure 5.12: Figure illustrating the difference between the calculation processes of the
SRR and the SDR: the SDR involves the ratio starget/e, while the SRR involves the ratio
sj/e

′.

the SRR). It can be observed that e′ depends on the angle between ŝj and sj and

the ratio of their magnitudes, while e depends only on the angle. In order to gain

a better understanding of the way these characteristics influence the behaviour

of the two measures, it is chosen here to compare them as functions of the angle

∠(ŝj , sj) (measured in rad) and the ratio

∆E(ŝj , sj) = 10 log10

‖ŝj‖2
‖sj‖2 (5.28)

(measured in dB). The cosine similarity function

cossim(ŝj , sj) =
〈ŝj , sj〉
‖ŝj‖‖sj‖ (5.29)

will also be employed. This is just the cosine of ∠(ŝj , sj), but since this measure

is a commonly used tool for measuring the similarity between vectors, it will be

used to provide an additional viewpoint.

Since this analysis is carried out in a theoretical framework, we begin by a 2-

element vector of the type sj = [α 0]T as the reference, where α is a positive

scalar (its value does not matter – in this analysis α = 10 is chosen); from this,

a variety of signals ŝj can be then easily obtained according to different angles

and energy differences, compared to sj . Also, if it is assumed that the extracted

sources have been ideally sorted based on a comparison to the original ones and

the extraction/resynthesis process is linear, situations where ∆E > 0 (i.e., when

the extracted source has higher energy than the original source) do not need to

be considered here.
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Fig. 5.13a shows the variation of the two measures with ∠(ŝj , sj) when ∆E =

0, and this is compared with their cosine similarity (Fig. 5.13b). First of all,

it can be seen that the SRR follows the SDR when ∠(ŝj , sj) is roughly in the

range [−0.4, 0.4]; For the rest of the angles, the SRR does not deviate much

from 0. On the other hand, the SDR is more consistently affected by ∠(ŝj , sj),

exhibiting a periodic behaviour: as expected, it reaches a maximum when ∠(ŝj , sj)

is around the values 0 (ŝj is identical to sj) or −π (there is a π rad phase difference

between ŝj and sj), while reaching a minimum when ∠(ŝj , sj) = −π
2 (ŝj and sj

are orthogonal to each other). A particularly interesting case is the maximisation

of the SDR when ∠(ŝj , sj) is around −π, effectively mirroring the behaviour of

the SDR around π. This means that the SDR does not consider a |π| phase shift

as distortion, whereas the SRR does. This is an advantage for the SDR since it

makes sense for a performance measure in source separation to indicate successful

separation when ŝj and sj are otherwise identical, apart from having opposite

phases.

Next, it is worth focusing on a smaller angular range, in particular the range where

the SRR and the SDR appear to behave similarly. Fig. 5.14 displays them in the

angle interval [ π
103 ,

3π
4 − π

103 ], and on a set of ∆E = {−20,−10,−5,−2,−1,−0.5, 0} dB.
It is shown that the SRR follows the SDR only within the small angle range from

0 to 0.4 rad and when ∆E > −0.5 dB. It is also seen clearly, here, that the SDR

has no dependence on ∆E, while this is not true for the SRR. These observations

can also be made from an additional point of view: Fig. 5.15 shows that SRR in-

creases in an almost linear fashion for ∆E up to around −10 dB. After that point

it starts increasing at a higher rate, reaching the SDR values, as ∆E is tending

to 0 dB (but only for the angles no higher than 0.4 rad { π
200 ,

5π
200 ,

10π
200 ,

15π
200 }).

Comparison in a practical scenario

Finally, a comparison of the two measures for ‘real’ signal separation is carried

out. The measures in question are used for analysing the separation performance

of the one-pass system on the set of mixtures of Table 5.2.
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(a)

(b)

Figure 5.13: Variation of SRR and SDR when ∠(ŝj , sj) ∈ [−3π
2 , π2 ] (shown in (a)) and

∆E(ŝj , sj) = 0 dB. This is compared with the cosine similarity between the two vectors,
which is shown in (b).
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Figure 5.14: Variation of SRR and SDR when ∆E(ŝj , sj) takes the set of values −20,
−10, −5, −2, −1, −0.5 and 0 dB and ∠(ŝj , sj) ∈ [ π

103 ,
3π
4 − π

103 ]. Curves placed lower
correspond to smaller ∆E.

Figure 5.15: Variation of SRR and SDR with ∆E(ŝj , sj) when ∠(ŝj , sj) takes the values
π

200 ,
5π
200 ,

10π
200 ,

15π
200 ,

40π
200 ,

60π
200 and 95π

200 . Curves placed higher correspond to smaller angles.
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As Fig. 5.16 shows, the SRR and the SDR are practically identical to each other

for almost all the extracted sources and mixtures apart from s1 in mixture 8. Ac-

cording to the figures above, this means that for all the extractions in this group

of mixtures apart from s1 in mixture 8, ∆E(ŝj , sj) and ∠(ŝj , sj) are roughly in

the regions [0.5, 0] dB and [−0.4, 0.4] rad, respectively (this region of angles is

also confirmed by Fig. 5.16a), where the SRR and the SDR show a practically

identical behaviour. However, for the case where the system failed to extract

the source, the SDR shows superiority. The measure indicates clearly that the

system has failed in that particular situation. This is in contrast to the SRR

which, although it has the lowest value in Fig. 5.16b (−0.1 dB), it is not very

clearly differentiated from other extractions, such as the extraction of s1 in mix-

tures 2 and 7; in those mixtures, while a large part of the source was identified

and extracted correctly (the multiF0 estimator did not fail), the assumed source

model was still not entirely appropriate for those sources (the sources were piano

notes and inharmonicity was not incorporated into the model for those particular

separations).

In conclusion, allowing a fixed-gain distortion is a sensible assumption for this

group of mixtures and the particular separation system. It could be argued that

this could be possibly extended to the a lot of the CASA-related systems because

of their use of similar processing stages. Furthermore, ∠(ŝj , sj) is of a greater

importance in terms of offering an insight on the amount of distortion. The SDR is

totally insensitive to ∆E(ŝj , sj) while being highly dependent on ∠(ŝj , sj). At the

same time, the SRR depends on both, while being more sensitive to ∆E. These

observations make the SDR a better overall choice as a measure for separation

performance analysis compared to the SRR. Because of this, the SDR will be

used for analysing the performance of the proposed system.

5.8.2 Performance comparison

A comparison between the two systems will be now made, in terms of their sep-

aration and multiF0 estimation performance. For validation purposes, this com-
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(a)

(b)

(c)

Figure 5.16: (a) shows the cosine similarity between ŝj and sj in the 11 3-source
mixtures of Table 5.2. This is compared with (b) the SRR and (c) the SDR, after having
separated the source signals using the proposed system in its one-pass version. The black,
grey and white colours correspond to s1, s2 and s3, respectively.
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parison is restricted to comparing Every’s system [60, 58] with the assumption of

harmonic peaks to the one-pass version of the proposed approach that uses the

same assumption. (This assumption still allows for deviations from absolutely

strict harmonicity in both methods, as shown in §5.6.) In order to explore a va-

riety of situations, mixtures belonging to cases 1 (single notes) and 3 (melodies)

will be used.

Case 1-type mixtures

The 11 3-source mixtures of Table 5.2 are used here. As a way of comparing 66

SDR measures in pairs within the same figure, a difference ∆SDR is introduced:

∆SDR = SDRprop − SDRmidi, (5.30)

where SDRprop are the SDR values of the proposed system and SDRmidi are the

SDR values of the MIDI-informed system. Fig. 5.17a shows SDRmidi for the 11

mixes, while Fig. 5.17b shows ∆SDR. (Note, also, that SDRprop has already been

already been presented in Fig. 5.16c.)

It can be observed that the proposed system exhibits a more robust overall perfor-

mance, compared to the MIDI-informed system, for this group of mixtures. Apart

from mixture 8, where s1 fails completely to be detected by the multiF0 estima-

tion front-end (followed by a degradation in s2 because a part of it was leaked

to s1), the system performs equally well, or even better than its MIDI-informed

version. At first, this might seem surprising, given that the knowledge of the

MIDI note pitch and timings is quite a powerful means for correctly identifying

and separating source structures. Since the basic difference of the two systems

is in the way the pitch and timing information is obtained, these results show

that the use of initial estimates of this information has its limitations. Indeed,

user-improvised MIDI information can often be misleading; most often it is as-

sumed that this information is roughly correct, but because it is based on the

capability of the user, it can deviate unpredictably from the ground-truth. Be-

cause of this, the overall success of the separation system depends largely on the
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(a)

(b)

Figure 5.17: (a) SDR performance of the MIDI-informed system by Every. A com-
parison of this to the performance of the proposed system by using ∆SDR is shown in
(b). The 3-source mixtures of Table 5.2 are used here. Positive ∆SDR values indicate
superiority of the proposed system. The black, grey and white colours correspond to
s1, s2 and s3, respectively. (Note, also, the vertical axis scale change between the two
figures.)
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Figure 5.18: Separation performance for a mixture of J = 7 synchronous violin notes
of the same duration (F5, A[5, A5, B5, D[6, E6 and G[6). The following five cases
are compared: no F0 track disentangling/no ideal grouping (first column, in black); no
F0 track disentangling/ideal grouping; F0 track disentangling/ideal grouping; F0 track
disentangling/no ideal grouping; MIDI-informed separation (final column, in white).

stage that provides further refinement of this information[58, Ch. 3]. In the case

of Every’s system, this stage does not fulfil this need to an adequate degree. The

automatic, unsupervised alternative presented in this thesis, shows a relatively

more consistent behaviour.

This previous comparisons showed how F0 track disentangling as a composite

process has an effect on the separation performance. A way to examine the

degree to which the swapping and correction of F0s contribute separately to the

performance is to include a case where frame-wise ideal grouping is included

after the source extraction stage: a process of sorting the extracted frames in

their respected sources according to how well they match with the original source

frames. A separation example is carried out, next, that employs ideal grouping.

This time a larger number of sources is used, for providing a different challenge

to the system because of the increased mixture complexity; the mixture contains

7 anechoically recorded violin notes mixed with equal RMS energies. With as-

cending order from j = 1 to 7, the notes are F5, A[5, A5, B5, D[6, E6 and G[6.

The separation performance for this mixture in various situations is shown in

Fig. 5.18 and the related audio can be listened to on the web at [150]. First of
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all, it can be seen that the automatic version of the separation system exhibits

similar, or in most cases, better performance than the MIDI-informed version

(i.e., Every’s system). This is shown more starkly for the last two notes where,

while the MIDI-informed version fails to detect them completely, the automatic

system detects and extracts them adequately. Secondly, the improvement of ‘no

F0 track disentangling/ideal grouping’ compared to ‘no F0 track disentangling/no

ideal grouping’, along with the performance similarity between ‘F0 track disen-

tangling/ideal grouping’ and ‘F0 track disentangling/no ideal grouping’ shows

that the F0 swapping part of the F0 disentangling process vastly contributes to a

good separation performance. Thirdly, the improvement of the ‘F0 track disentan-

gling/ideal grouping’ case compared to ‘no F0 track disentangling/ideal grouping’

shows that the F0 correction part of the disentangling stage also contributes to

an increase in SDR.

Case 2-type mixtures

There are 6 mixtures used here that fall into the category of Case 2 (as defined

in §5.2): 3 versions of melody_mix1 (Fig. 5.19a) and 3 versions of melody_mix2

(Fig. 5.19b). The difference between mixture versions has to do with the inter-

source energy ratio. The sources in melody_mix1 are made out of MIDI-triggered

anechoically recorded samples, whereas melody_mix2 contains synthesised audio

instead. In this way, this group of melody mixtures can cover a variety of cases:

a combination of different pitches, note lengths, types of sources (different in-

struments, and real/synthetic) and different energies. The instruments used in

melody_mix1 are E[ clarinet (s1), piano (s2) and French horn (s3), while for

melody_mix2, the instruments are alto saxophone (s1), flute (s2) and tenor sax-

ophone (s3). Finally, it should be pointed out that the difference in RMS energy

(as measured in dB) between source j and source j+1 in a mixture will be referred

to as:

∆E ≡ ∆E(sj , sj+1) = 10 log10

‖sj‖2
‖sj+1‖2 , j = 1, 2, . . . , J − 1. (5.31)
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(a)

(b)

Figure 5.19: The ‘pianoroll’ representations of (a) melody_mix1 and (b) melody_mix2.
Different colours represent different sources: black, grey and white coloured bars corre-
spond to s1, s2 and s3, respectively.
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It is acknowledged that the polyphony is not absolutely constant in melody_mix1:

in the short interval between 16 s and 18 s it is O = 2, whereas for the rest of

the mixture it is O = 3. Because of this, the particular mixture does not strictly

belong to Case 2; however, it will be assumed by the system in this thesis that

it does. The first reason for this is that melody_mix1 is based on an excerpt of

Cavatina, a quite popular music piece. As such, it would be a helpful example

to use it as it stands for the evaluation of the system. The second reason for

assuming constant polyphony for this mixture is to see how the system copes

with small errors in this kind of prior information.

The F0 track disentangling process operates at a level which can be called ‘sus-

tained note interval’ (i.e., intervals that are expected to be containing only sus-

tained parts of notes). The way to move from the ability to process Case 1-type

mixtures to further cases is achieved by also providing the note onset and off-

set timings as additional prior information, apart from the polyphony. A simple

process then segments the time-domain mixture into sustained note intervals in

which all the subsequent processing will take place individually. Additionally, a

process is included for the purpose of further improving F0 estimates: for a single

note that exists within more than one interval, there is the chance that more than

one different F0 value has been estimated. When this situation arises, the F0

value corresponding to the longest interval is then selected as the most reliable

one to represent the whole note. The decision for this is based on the assumption

that the longer an interval is, the higher the success of the disentangling stage

will be in providing reliable F0 estimates for a particular note.

Ideal frame-by-frame grouping will be used in all cases involving melody mixtures.

This is because the current system does not provide a method for clustering the

extracted structures into sources. What will be examined primarily in the sepa-

ration evaluations for these mixtures is the ability for the system to successfully

identify and extract all existing source structures in them. The use of ideal group-

ing means, however, that only the F0 correcting process will be assessed within

the F0 disentangling stage, and not the F0 swapping one.
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Figs. 5.20 and 5.21 present performance evaluation comparisons for the 6 melody

mixtures in terms of separation and multiF0 estimation, respectively. The multiF0

estimates were compared this time with ground-truth estimates provided by the

YIN algorithm [41]. This allows for a more meaningful and independent basis for

comparison. The audio results referring to these comparisons can be listened to

on the web at [150].

First of all, it can be seen that, on the whole, the performance in multiF0 estima-

tion reflects the relative SDR levels – something that shows the importance of a

reliable multiF0 estimation stage in producing high separation performance. It is

also clear by observing the results for different ∆E that a lower RMS energy for

a certain source (compared to the other sources) leads to deterioration of both its

separation and multiF0 estimation performances.

Further, it can be seen that lower performance is exhibited on average for melody_mix1

compared to melody_mix2. This is to be expected as melody_mix1 is a much more

complex mixture, containing a multitude of short piano notes, the attacks of which

add a considerable noise element to the processed segment. In this type of com-

plexity, the F0 track disentangling stage does not provide improvement; in fact,

there are cases where it contributes to slight performance deteriorations. A first

factor contributing to this is the use of highly-overlapped long windows, which

can lower performance when fast percussive instruments (like the piano, here) are

included.

Secondly, because of the short note durations, the intervals in which the disen-

tangling stage operates are very short: specifically for melody_mix2, their length

ranged from just 3 to 54 frames. In comparison to the 200 frames of the mix in

Fig. 5.18 and the 70 to 100 frames of the mixes in 5.17 the intervals of melody_mix2

are much shorter. This combination of very short intervals with long window

frames not only compromises the accuracy of the system in correcting the esti-

mated F0s, but also leads to more errors. A way forward from this can be to use

shorter windows – provided that the detection and identification of source struc-
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(a) (b)

(c) (d)

(e) (f)

Figure 5.20: Separation performance of the system presented in this chapter (‘auto’,
‘disent.’) compared to its previous version by Every (‘MIDI’) in terms of the SDR. ‘auto’
and ‘disent.’ refer to an automatic multiF0 estimation front-end, without and with F0
track disentangling, respectively. The comparisons are presented individually for every
source j ∈ [1, 3]. (a): melody_mix1, ∆E = 0 dB; (b): melody_mix1, ∆E = −5 dB; (c):
melody_mix1, ∆E = 5 dB; (d): melody_mix2, ∆E = 0 dB; (e): melody_mix2, ∆E = 6
dB; (f): melody_mix2, ∆E = 10 dB.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.21: Performance of the system presented in this chapter (‘auto’, ‘disent.’)
compared to its previous version by Every (‘MIDI’) in terms of its MultiF0 estimation
accuracy. ‘auto’ and ‘disent.’ refer to an automatic multiF0 estimation front-end, without
and with F0 track disentangling, respectively. The comparisons are presented individ-
ually for every source j ∈ [1, 3]. (a): melody_mix1, ∆E = 0 dB; (b): melody_mix1,
∆E = −5 dB; (c): melody_mix1, ∆E = 5 dB; (d): melody_mix2, ∆E = 0 dB; (e):
melody_mix2, ∆E = 6 dB; (f): melody_mix2, ∆E = 10 dB.
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tures can be adequately robust even with shorter windows, the F0 disentangling

could prove to be a valuable addition.

Finally, for the case of melody_mix1 the proposed system shows comparable per-

formance to Every’s MIDI version, in contrast to melody_mix2 where Every’s

system is superior. This is unsurprising, since the MIDI-informed version is ex-

pected to perform very well with steady, synthesised sounds. However, when real

sounds are involved in a much more complex context (such as in melody_mix1), the

MIDI-informed version does not show significant superiority against the proposed

system that uses the automatic front-end. Additionally, although the automatic

system operates with a slightly erroneous prior information, it still shows quite

a comparable performance to Every’s system. This illustrates that although the

basic automatic approach and the previous MIDI-informed approach both have

their limitations, their overall performance on real mixtures is similar. This not

only allows the removal of a human operator from the front-end of the process,

but also, with possible further enhancements arising from the use of the residual

signal (discussed in Ch. 6), the automatic approach offers increased potential for

separation of real mixtures.

5.9 Summary

This chapter presented a study of the proposed separation approach for single-

channel musical mixtures. As a starting point, the new approach is based on

an existing non-blind method that makes use of a MIDI front-end for identifying

source structures. Because one of the main limitations of non-blind methods is

the high degree of user intervention (which itself may require a significant degree

of expertise and/or specialist knowledge from that user), in the new method the

MIDI front-end is removed and replaced by an automatic multiF0 estimator. This

estimator has been chosen because of its sufficiently low-error performance in a

variety of polyphonies [98]. A further modification to the previous system was

introduced at the source parameter estimation stage; the new system includes

the ability to estimate the amplitudes of F0 peaks that might overlap with others
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during the total duration of a note, through linear extrapolation from the adjacent

higher harmonics.

Possible F0 estimation errors arising from the new, automatic front-end to the sys-

tem were dealt with through the use of a F0 track disentangling stage. This stage

is designed to sort the F0 estimates into F0 tracks, with each track corresponding

to an individual source. In the process, it is also intended to refine, and improve

upon, the initial F0 estimate for each source. Assuming that the note timings

are known (or that the mixture consists of synchronous notes and of the same

duration) and that the multiF0 estimator gives correct estimates for the majority

of frames for the duration of the note, it was shown that most of the erroneous

estimates were improved, at least for the case of mixtures containing synchronous

single-note sources. Although there was evidence that the corrected estimates

could potentially be improved further, they were still within a half-semitone of

their reference MIDI pitch.

When applied to mixtures of melodies (Case 2 mixtures) the F0 track disen-

tangling stage appeared, however, to cause a slight lowering of performance in

most cases. This was attributed to the combination of the long, highly overlap-

ping, frames used in this system, the fast non-harmonic spectral content around

note transitions, and the relatively short processing intervals. For interweaving

melodies, the processing is carried out separately within sustained note intervals

which are the result of time-segmenting the mixture. The intervals in the par-

ticular examples used here were much shorter compared to those for the Case

1 mixtures, which were essentially equal to whole note lengths, with an average

duration of 2 s. Shorter intervals mean that less information is available to work

with and if, at the same time, this information has already been compromised, as

can happen when transitory note energy appears within with long frames, this is

not a favourable situation for the F0 track disentangling stage.

Furthermore, in order to choose the most suitable performance measure, a com-

parison was carried out between two quite popular measures, the SDR and SRR;

this was made in both a theoretical and practical framework, and it confirmed
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the superiority of the SDR. However, this does not mean that it is the most

appropriate metric for the evaluation of this system. Although its development

is beyond the scope of this thesis, an alternative metric which might reveal more

consistent performance could, for example, take into account only the parts of the

mixture that are known to be consistent with the system’s assumptions.

The results of the comparison between the old system and new systems indicate

that the use of a good-quality automatic multiF0 estimation stage (coupled with

an F0 track correction and refinement process) can lead to a highly comparable

(if not better) separation performance, than that obtained using a MIDI-based

front-end. In fact, especially for the case of single-note sources, the proposed

approach showed a somewhat more consistent behaviour, revealing some of the

problems of a MIDI-based front-end. In particular, the automatic system is not

susceptible to user error, in the form of misleading or inaccurate pitch information.

That is not to say that the automatic approach would not benefit further from

additional user-input however; even approximate additional information would be

helpful in situations where the melodic structure is too complicated for reliable F0

estimation to be carried out. The key point, however, is that if user intervention

is not an option for the application at hand, the proposed automatic front-end

provides a viable approach.

There is room for performance improvement and achieving less reliance of the

system to prior information. The next chapter will look at further extending the

capability and flexibility of the automatic approach through exploiting the resid-

ual channel as an extra source of information and, simultaneously, introducing a

feedback loop which passes system-derived information back to inform the sepa-

ration process, hence moving towards a system that offers both separation and

understanding (i.e., a SAU system) via an iterative framework.



CHAPTER 6

Residual-based system extension and
improvement

One of the primary goals of this thesis is to propose a SAU system: a system

where the processes of mixture separation and understanding support each other

in an iterative framework, with the purpose of providing possible solutions and

outputs for a range of post-processing applications, while relying rather less on

user intervention than earlier approaches. The previous chapter described how

an automatic one-pass version of such a system can be realised. This chapter

describes the introduction of a feedback loop between separation and understand-

ing, and in this sense establishes the structure of a system based on iterative

improvement. A basic component of the feedback loop is the use of the residual

channel.

After an introduction describing how to interpret the residual in new ways, two

specific tasks are presented where it could be of particular use: multiF0 estimation

correction (and consequently improvement of separation) and note onset detec-

tion. System evaluation results, as well as comparisons with alternative existing

methods are presented and discussed for both cases and for a variety of mixtures.

The results indicate the strong potential of the residual as a source of information

for improving a system of this kind. Finally, a brief discussion is given of an

additional possible use of the residual when handling stereo mixtures.
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6.1 The residual channel

The residual, after the first separation pass can be simply defined as the subtrac-

tion of the synthesised signal from the original mixture in the time domain:

xres(n) = x(n) −
J∑
j=1

ŝj(n). (6.1)

Very little work has looked at the residual signal resulting from a separation pro-

cess as a means of useful information. For example, Every [59] used the residual for

separating overlapping broadband noise content expected to be found there (as-

suming that all the pitched part of the original mixture has been extracted), while

others have used it in somewhat more trivial ways: for example, re-distributing its

content to the extracted sources based on a measure that indicates the likelihood

of a source to be the only active source at a certain TF point, or considering it

as one of the sources [52]. These are indeed viable ways to consider the residual

for the purpose of improving the performance of a separation system. Additional

ways, however, also exist. The rest of this section will re-establish the idea of the

residual as a means of providing various types of information about the mixture

– in a sense considering it as a more ‘active’ channel in the separation process.

6.1.1 Re-interpreting the content of the residual

We will see that the residual is a channel that can provide useful information

which can improve the performance of the system, in terms of both separation and

understanding processes – thus realising a SAU separation system. Especially for

an unsupervised semi-blind separation system (such as the one presented here)

this information can be crucial for constraining the solution set. Indeed, in a

considerable number of cases, its role is not just to provide the information for the

refinement of some largely satisfying results, but actually preventing the system

from almost completely failing in certain tasks. It could be said that it enhances

a number of existing signal features, while enabling the existence of others. These

features can potentially provide clues for the quality of the multiF0 estimation
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and the adequacy of the underlying models and assumptions, enhance processes

such as the automatic onset detection of the extracted sources, or enable novel

methods for the extension of this system to stereo mixtures.

In order to make effective use of the residual channel, it is required to have a

knowledge about the kind of content one would expect in there. The shift from a

non-blind to a semi-blind approach – as it is described in this thesis – demands a

reconsideration of how to interpret the content of the residual channel: its content

is not ‘unwanted’ any more. The first step in order to do this will be to focus

on the extraction process – the way in which the residual is actually created.

Because of the particular extraction method used here, any identified (harmonic

or near-harmonic) source content is expected to be reliably extracted from the

mixture, leaving no remnants of its main-lobe part at the residual. This has the

result that any harmonic or near-harmonic energy detected in the residual will

most probably not be the result of erroneous extraction, but of the identification

process. Having that in mind, the following cases can be distinguished regarding

the content of xres, mentioned in order of importance for the present approach:

• Harmonic content as a result of erroneous multiF0 and/or parameter es-

timation of the harmonics. (The last one occurs, e.g., when overlapping

occurs for the whole duration of the note.)

• Harmonic content that is in a sense the γ-th version of the original mixture,

containing J − γ + 1 sources (see the residual-using algorithms in §6.2).

• Nonharmonic content of a fast, impulsive nature (onset transients of har-

monic notes, and percussive nonharmonic sources).

• Nonharmonic content of structured broadband-noise nature. Examples of

this content is structured noise that signifies, e.g., breathiness (in the flute),

or the scratch of the bow (bowed string instruments, such as the cello).

It has to be noted here, though, that the fact that the existence of this

particular content in the residual depends a lot on the recording conditions:

e.g., the further the microphone is placed from the source of the sound, the
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‘purer’ the recorded sound will be, in the sense that the broadband noise

content will not be picked up.

• Harmonic content that belongs to a source that does not fit the existing

source models; this means that its existence as part of the residual channel

is to be expected.

• Unassigned harmonic content (content that was not intended to be in the

mix, and as a result does not fit the definition of a source; for example,

the sound of a squeaking door closing during the live recording of a musical

piece).

The degree of importance attached to the above cases is related to the size of

their effect on the performance of the system as a SAU one and the opportunity

for improvement of this performance. In particular, errors in the multiF0 estima-

tion and disentangling stage can have the most severe effect on the performance;

this is because errors of this sort will lead to a source being partially or wholly

undetected, hence not extracted from the mixture, in one or several time frames.

It is important to understand that, in this work, the residual is a channel with

a ‘shifting identity’; because it is used in an iterative fashion, it is in a sense a

‘live channel’ whose functionality changes according to the current processing goal

and what it contains. For example, as it will be seen in §6.2, the residual can be

re-inserted at the input of the system as a different version of the original mixture

(2nd, 3rd, . . . , γ-th version of the original mixture). These different versions can

act as supplementary information for the mixture or a separated source, depending

on the iteration step and processing goal of the system.

6.1.2 Exploiting the residual channel as source of information

When observing the original mixture signal in order to identify the sources in it,

a structure-recognising process has to be applied, as §4.3.1 explains. In the case

where the residual is the observed signal, one might search for structured energy

in similar ways as it is done with the original mixture. Since consideration of the
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residual in the way it is proposed in this thesis is largely unexplored, we will look

at simple energy-based identification and feature extraction in the time domain.

There are three basic situations that we can come across and make a decision

regarding the energy of the residual:

• It is below a certain threshold (no significant residual energy exists for ex-

ploiting it further);

• It is above a certain threshold and should be a part of one of the extracted

sources;

• It is above a certain threshold and the energy is supposed to belong to the

residual (for example, energy associated with note attacks).

The last two cases can make possible the further use of the residual. Two examples

of this use is multiF0 error correction and note onset detection, and will be studied

next.

6.2 MultiF0 error correction

In this section a method is presented that uses the residual channel as a means

for performing multiF0 error correction.

6.2.1 Description of the algorithm

This method operates on mixtures containing synchronous single-note sources

(Case 1-type mixtures) only with the knowledge ofOr, or on melody mixtures after

they have been time-segmented into sustained note intervals using the additional

knowledge of note onset/offset timings.

The assumption used here is that F0 estimation errors after the first pass lead

to the existence of harmonic or near-harmonic content in the residual that is

associated with those erroneously estimated F0s. According to this, two simple
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conditions have to be satisfied at the same time in order for the residual to be

used in this way:

1. ‘something is missing’ in one or more of the extracted source channels;

2. there is significant harmonic or near-harmonic energy in the residual.

The residual and the extracted source channels can be observed and searched at

different levels, in the same way as the original mixture signal is searched for

individual source elements. Thus, the search can be frame-based, note-based, or

it can involve the whole signal at once. The search can also take place in different

domains: it can be a time-domain, frequency-domain, or TF-domain process.

Here, examination of the whole time-domain signal at once is chosen because of

its simplicity. In particular, the RMS total energy is used as a feature for deciding

whether content that should be at one of the extracted source channels ended up

in the residual. According to this, the first condition above is satisfied when:

U ≡ {j ∈ [1, J ] : ŝrms
j < κs} 6= ∅, (6.2)

In other words, the first condition is satisfied when there is at least one extracted

source channel with RMS energy that is lower than a specified threshold κs. The

second condition is satisfied when:

xrms
res > κr, (6.3)

i.e., the RMS energy of the residual has to be higher than a threshold κr in order

to consider the possibility for it to carry un-extracted harmonic or near-harmonic

source content.

Before continuing with the description of the proposed algorithm, the additional

parameter of the residual polyphony, O, is introduced here. As its name implies,

O is the polyphony value associated with the residual. Because of this, it is not

a quantity that can be defined beforehand (e.g., as prior information); O is a

product of the iterative procedure that employs the residual, and it changes in
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parallel with it. Thus, apart from generally being a function of r (as O can be in

a general mixture case), it is also a function of another index, the iteration index

γ. Oγr takes values in the following interval:

0 6 Oγr 6 Or, ∀γ, r. (6.4)

Like O, O is employed as an input to the multiF0 estimator. The difference is

that the value of O is not determined by the user, but by the algorithm presented

here.

Two alternative versions of the algorithm, the ‘multi-single’ and the ‘iterative

multi-single’ one are illustrated in Figs. 6.1 and 6.2, respectively. Both algorithms

share the same philosophy: in each pass, provided that the above two conditions

are satisfied, the residual is fed back to the input of the system along with the

updated O. O however is updated differently in the two cases. In the case of the

‘multi-single’ algorithm, O is set to 1 and follows a one-by-one extraction process

of all the previously erroneously estimated sources; the implication is that the

multiF0 estimation has failed for one or more sources so it is replaced by an

iterative single F0 estimation, leading to the extraction of the most salient source

each time. In the case of ‘iterative multi-single’ algorithm there is an additional

option: O is set to 1 only when the multiF0 estimation has failed for all the

sources, otherwise O is set to |U |. This adaptability of the ‘iterative multi-single’

version of the algorithm can potentially render it faster than the ‘multi-single’

one (i.e., it can lead to fewer iterations); this is the reason it is offered as an

alternative.

The present method for multiF0 error correction relies on the assumptions that

• the factor mostly responsible for a source to be largely undetectable (and,

thus, largely not extracted from the mixture) is the failure of the multiF0

estimation stage; and
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Input O and x.1

Set O← O and ι← O.2

Extract signals {ŝ1, ŝ2, . . . , ŝO, xres} from mix x. If O = 1 go to step 3;3

otherwise, go to step 4.
If ι = 1, stop; otherwise set ι← ι− 1 and go to step 5.4

Calculate {ŝrms
o }Oo=1 and xrms

res . If both conditions 6.2 and 6.3 are satisfied,5

set O← 1 and ι← |U |; otherwise stop.
Set x← xres and iterate to step 2.6

Figure 6.1: The ‘multi-single’ algorithm that uses the residual for multiF0 error
correction.

Input O and x.1

Set O← O and ι← O.2

Extract signals {ŝ1, ŝ2, . . . , ŝO, xres} from mix x. If O = 1 go to step 3;3

otherwise, go to step 4.
If ι = 1, stop; otherwise set ι← ι− 1 and go to step 6.4

Calculate {ŝrms
o }Oo=1 and xrms

res . If both conditions 6.2 and 6.3 are satisfied,5

continue to next step; otherwise stop.
If |U | < O, set O← |U | and ι← 1; otherwise set O← 1 and ι← |U |6

(transition to one-by-one extraction).
Set x← xres and iterate to step 2.7

Figure 6.2: The ‘iterative multi-single’ algorithm that uses the residual for
multiF0 error correction.
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• the error rate of the multiF0 estimator decreases with the decrease of O.1

The first assumption has been confirmed in the analysis of various results above

(such as the results of Fig. 5.16). The second assumption will be examined to

some degree and confirmed through the analysis of the experimental results in the

next section.

6.2.2 Initial experimental results

The effectiveness of the algorithm described above will be explored here through a

set of experiments. One of the ways to produce challenging situations for both the

multiF0 estimation and the extraction stage is to experiment with energy ratios.

This can be effectively carried out using ∆E.

The following results involve the comparison of the separation performance of

several 2-note mixes, with and without employing the residual in different energy

ratio scenarios. In this case ∆E is equivalent to ∆E(s1, s2). It is also noted

that, since J = 2, the two versions of the algorithm shown in Figs. 6.1 and 6.2

are equivalent. What is examined here, instead, is the viability of the general

philosophy underlying both of them and some of the implications associated with

the use of the conditions stated in Eqs. 6.2 and 6.3.

The values of κr = −60 dB and κs = −34 dB were set after considerable experi-

mentation with a large number of mixtures, made up of two simultaneous notes

of equal length, whereas the value of κs = −41 dB was set for melody mixtures.

Figs. 6.3-6.5 show the SDR values for separating the sources in 7 different mix-

tures of Case 1. The first observation, looking at the left-hand plots, is that if a

source is below a particular energy level compared to the interference, the multiF0

estimator simply fails to detect it. (It was found that, for this set of mixtures, the

SDR values for a certain source that are below −30 dB correspond to a failure

of the multiF0 estimator to detect that source.) This critical value appears to be
1It is reminded here that O represents the number of sources as the input information to the

system. This does not mean that it always reflects the true number of sources existing in the
mixture.
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when ∆E is around −10 dB (s1 is 10 dB quieter compared to s2) and 10 dB (s2

is 10 dB quieter compared to s1) for all the cases, apart from the bassoon sounds

in Figs. 6.3a and 6.3c. The reason for not failing for these sounds is that their

pitch is a lot lower than the pitch of the other source. For these cases, this has

the effect that their lower two partials (the fundamental and its first harmonic)

appear with absolutely no interference in their vicinity, rendering them enough

to provide a strong detection cue, even if they are very faint. This is, in other

words, a particularly favourable situation for the multiF0 estimator.

If we now compare the left-hand plots with the right-hand ones it can be seen

that in most cases the proposed method for employing the residual extends signif-

icantly the range of ∆E over which the two sources can be reliably detected. In

other words, the robustness of the multiF0 estimator and the separation system

is improved.

Having said that, there are situations where undesired behaviour occurs. This is

due to two factors: the robustness of the conditions for deciding whether successful

separation has taken place, and the absence of a sophisticated model for the partial

amplitudes. The first factor can have two effects:

• False-positive errors. These errors occur when one of the sources is identi-

fied as unresolved, while in reality both of the sources have been correctly

separated. This leads to feeding back the residual, forcing the multiF0 es-

timator to apply the harmonicity assumption on the nonharmonic content.

An arbitrary harmonic structure is then extracted from the residual and re-

places the (falsely identified as unresolved) source. Examples of these errors

can be observed in Figs. 6.3f, 6.4b and 6.4d when ∆E is roughly between

−22 dB and −6 dB.

• False-negative errors. These errors occur when an extracted signal is falsely

identified as an actual resolved source signal. Examples of this type of error

can be observed, e.g., in the extraction of the flute in Fig. 6.3d (when ∆E

is between −50 dB and −41 dB), or in the extraction of the saxophone in

Fig. 6.4f (when ∆E is between 18 dB and 50 dB). What is mainly responsible
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Variation of the SDRs at different energy ratios in a mix of flute (F6) and
bassoon (G4) (a) when the residual is not used and (b) when the residual is used; flute
(D6) and bassoon (A4) (c) when the residual is not used and (d) when the residual is
used; flute (G[4) and bassoon (D[4) (e) when the residual is not used and (f) when the
residual is used. The energy ratio between s1 and s2 is ∆E(s1, s2) = 10 log10

‖s1‖2
‖s2‖2 .
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Variation of the SDRs at different energy ratios in a mix of cello (B3) and
violin (B[4) (a) when the residual is not used and (b) when the residual is used; cello
(B[3) and violin (D[4) (c) when the residual is not used; and (d) when the residual is
used; cello (B3) and soprano sax (A3) (e) when the residual is not used and (f) when the
residual is used. The energy ratio between s1 and s2 is ∆E(s1, s2 = 10 log10

‖s1‖2
‖s2‖2 ).
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(a) (b)

Figure 6.5: Variation of the SDRs at different energy ratios in a mix of bassoon (F3)
and soprano sax (A[3) (a) when the residual is not used and (b) when the residual is
used. The energy ratio between s1 and s2 is ∆E(s1, s2) = 10 log10

‖s1‖2
‖s2‖2 .

for this type of error is the high energy difference between the nonharmonic

content of the louder source and the other signal. This has the effect of the

loud signal masking heavily the other, much quieter signal, with the result

the second signal is undetectable.

A solution to this problems should focus on devising more intelligent conditions

for deciding about the content and further use of the residual.

The second factor for degradation of performance is not related to multiF0 esti-

mation error. In this situation the sources have been correctly detected. However,

when their energy is starting to be comparable to the nonharmonic broadband

energy floor of the other source, artefacts associated with poor spectral ampli-

tude estimation become more noticeable. In fact, the amplitudes of the higher

frequency partials are below the noise content of the previously extracted dom-

inant source. Since no knowledge of timbral structure is provided and no other

source is considered to be there during the second pass (O is 1), the interference

is leaked on the extracted quieter source. The results of the bassoon sounds on

the left-hand side of the Figs. 6.3b and 6.3d or the cello sounds on the right-hand

side of the Figs. 6.4d and 6.4f are examples of this type of degradation. A solution

to this problem for this mixture case would be to provide more advanced spectral

source models as prior information.
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6.3 Performance comparison

In this section, the residual-based extension of the system is applied to melody

mixtures, and compared not only to its one-pass version, but also some alterna-

tive approaches. The comparison is carried out in terms of its separation and

multiF0 estimation performance on the set of 6 mixtures comprising variations of

melody_mix1 and melody_mix2 (the same mixtures used in §5.8.2).

The alternative systems chosen for comparing the separation performance are

by Duan and Pardo [50] (in which the MIDI front-end has been replaced by a

multiF0 estimation and tracking system) and Li et al. [107]. Both of them were

chosen because they are recent and belong to the same category with the proposed

system: they perform semi-blind unsupervised separation and they operate using

frame-wise F0 estimates. The researchers were provided with the mixtures and

sent back the extracted source signals.

For the case of [50], the extracted signals were ideally grouped on a frame-by-frame

basis and this has also been done for the proposed system. This step was taken

since they employ an F0 tracking process, while the proposed system does not.

Hence, using ideally grouped signals enables a consistent comparison between the

systems concentrating on their relative ability for identification and extraction of

source structures. As with the proposed system, [50] employ the prior assumption

of constant polyphony.

For the case of [107], the authors were provided with additional information in

the form of the frame-wise F0 values as they came out of the proposed system’s

multiF0 estimation stage (before F0 track disentangling), but ideally tracked: the

F0s were compared to the ground-truths in order to create F0 tracks that are

as close to the original source tracks as possible. For this reason the extracted

signals did not need to be ideally grouped in the same way as for [50]. Hence,

since the system in [107] is using the same F0 values as the proposed system as

its starting point, in this case what is being compared is the relative performance
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of the systems in terms of F0 refinement/correction, and source identification and

extraction.

The multiF0 estimation comparison was carried out using two multiF0 estima-

tion systems which have shown high performances in terms of accuracy at the

Fundamental Frequency Estimation & Tracking task of the MIREX 2010 evalu-

ation campaigns. The systems are by Yeh and Roebel [181, 182] and Duan et

al. [49, 51]. The authors were provided with the mixtures and sent back the

frame-wise F0 estimates in steps of 1024 samples. While [51] accepts the frame-

wise polyphony as prior additional input, [182] does not; Instead, it automatically

infers the polyphony. This has the effect of producing a variable number of F0s

for each frame and, since only the accuracy of the F0 estimation is being evalu-

ated here, the ground-truth is compared (in a frame-wise fashion) with all of the

estimated F0 values until matches are found.

Figs. 6.6 and 6.7 show the source separation and multiF0 estimation results,

respectively. Additionally, the related audio files can be listened to on the web

at [150].

It can be observed that the use of the residual (column three in these graphs)

increases both the SDR and multiF0 estimation accuracy in most of the cases

compared to the performance of the system after the F0 track disentangling stage.

This indicates that the residual feedback contributes in counterbalancing the er-

rors caused by that stage (mostly in melody_mix1) and in some cases leads to

overall improvement (certain cases in melody_mix2).

Looking specifically at the cases of overall improvement, the tenor saxophone (s3)

part of melody_mix2 consists of three notes, two of which are the longest ones

in the mixture (Fig. 5.19b). This is an easier situation for the proposed system,

as it has more frames to operate on. On the other hand, melody_mix1 is a more

complex mixture containing real sounds with fast percussive elements, such as the

short piano notes, making it a more challenging case for the system, as can be

seen from its performance both in SDR and multiF0 estimation accuracy.



6.3 Performance comparison 166

(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Performance of the residual-based system compared to [50] and [107] in
terms of its separation performance. Different cases of the proposed system are compared
with two other methods: proposed system without F0 track disentangling (first column,
in black); proposed system with F0 track disentangling; proposed system with residual
loop; Duan and Pardo [50]; Li et al. [107] (final column, in white). The comparisons are
presented individually for every source j ∈ [1, 3]. (a): melody_mix1, ∆E = 0 dB; (b):
melody_mix1, ∆E = −5 dB; (c): melody_mix1, ∆E = 5 dB; (d): melody_mix2, ∆E = 0
dB; (e): melody_mix2, ∆E = 6 dB; (f): melody_mix2, ∆E = 10 dB.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Performance of the residual-based system compared to [51] and [182] in
terms of its multiF0 estimation accuracy. Different cases of the proposed system are
compared with two other methods: proposed system without F0 track disentangling (first
column, in black); proposed system with F0 track disentangling; proposed system with
residual loop; Duan et al. [51]; Yeh et al. [182] (final column, in white). The comparisons
are presented individually for every source j ∈ [1, 3]. (a): melody_mix1, ∆E = 0 dB;
(b): melody_mix1, ∆E = −5 dB; (c): melody_mix1, ∆E = 5 dB; (d): melody_mix2,
∆E = 0 dB; (e): melody_mix2, ∆E = 6 dB; (f): melody_mix2, ∆E = 10 dB.
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It is important to note that the proposed system shows consistently competitive

and, in most of the cases, better performance compared to the other systems, both

in terms of separation and multiF0 estimation accuracy. Particularly in compari-

son to the system by Li et al. (white bars in Fig. 6.6), in the vast majority of the

cases the proposed system performs better. Since the same F0 values have been

employed as a starting point, this difference in separation performance indicates

that the proposed system employs a more effective process for F0 correction and

identification/extraction of source components (although it is not clear here how

each of these parts contributes to a better performance). One further comment,

with regard to the comparison with the system by Yeh and Roebel [182], is that

because their method provides a lot more than three F0 estimates to be compared

with the ground-truths, the chances for it to have a better accuracy and appear

less sensitive to low ∆E are increased. For all the rest of the cases shown in

Fig. 6.7, three F0 estimates are consistently provided per frame.

Finally, one important difference between the proposed system and the others is

that it makes use of the note onset/offset timings as additional prior information

when F0 track disentangling and the residual feedback are used. As a further step,

this information might be provided in an automatic manner using an iterative

residual-based philosophy such as the one described in §6.4.

A further note on the use of the SDR

It should be emphasised that there is no reliable way to assess separation quality,

and that the SDR is still just one possible statistic that can be used to provide

some insights. Although the SDR is used within this work to as a tool for assessing

the relative performance of several approaches when applied to the same mixture,

it may be misleading when used to compare results obtained from different signals.

This is due to the fact that each signal potentially contains different melodies with

different instruments and different rhythmic structures. In short, one signal may

be intrinsically more “difficult” than another in terms of its complexities – such

as the number, rate, strength and duration of note attacks. The SDR measure,
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however, merely provides a statistic integrated over the entire signal length –

there is no normalisation process which takes into account what proportion of

each signal is going to contribute to reducing the overall SDR.

One possible approach to obtaining a statistic which better represents the “av-

erage quality of separation, where separation was reasonably possible” might be

to only consider contributions to the SDR from frames that are identified as not

containing a note attack. This, and the development of other separation perfor-

mance measures, are beyond the scope of this thesis, but are considered to be a

priority area for further work.

6.4 Enhanced onset detection

A different way to make use of the residual is to exploit the fact that it is the

channel where the unmodelled content of the mixture ends up naturally. If har-

monicity or near-harmonicity is used as the primary part of the source model

and the mixture consists of discrete musical note events (preferably no voice), the

signal content that ends up in the residual channel can provide access to valuable

timing information. Fig. 6.8 shows what is contained in xres after passing three

isolated notes through the separation system, and how this content is compared

with its original version. Among the observations that can be made about these,

there are three particular ones to point out:

• The remaining energy in xres is generally very small compared to the energy

of the original signal, except from well-defined time segments associated with

nonlinear sound generation processes taking place during the beginning of

the note. These segments are largely related to the nonharmonic attack

portion of the note.

• The attacks of the three instruments exhibit different behaviour in terms of

their amplitudes, durations and envelopes.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.8: The residual channel after extraction of the harmonic part of 3 signals: (a)
cello F4, (c) soprano saxophone A3, and (e) violin E4. The same signals also appear
in the context of the original notes in (b), (d) and (f), respectively. (Note the scale
difference in the amplitude axis.)
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• In every case there is poor correlation between the duration of the separated

attack temporal envelope and the parameters estimated using the commonly

used Attack-Decay-Sustain-Release (ADSR) approximation.

Note onset detection – which is used in automatic musical beat/metre analysis, as

well as other MIR-oriented applications – involves the often significant problem

of detecting multiple attacks in the presence of other sounds. Indeed, for such

purposes, the fast nonharmonic elements of the musical mixture are actually the

ideal signals to begin with, because they contain all that is needed for obtaining

note-onset information (in the same way that signals containing only harmonic

elements are the ideal signals to begin with when performing multiF0 estimation).

Through the availability and the particular use of the residual, the system pre-

sented here addresses this problem by delivering considerably pronounced attacks

compared to the original mixture signal.

Figs. 6.9 and 6.10 show the residual signal after separation of three non-synchronous

notes of equal RMS energy from a mixture, while Figs. 6.11 and 6.12 show the

residuals in comparison with their respective original mixtures. (The notes are the

same ones whose residuals appear isolated in Fig. 6.8.) All the different combina-

tions are tried in terms of order of appearance for the notes, in order to observe

how the context might affect the extraction2 of the residual each time and, as a

consequence, how the accuracy in note onset detection might be affected.

In Figs. 6.9 and 6.10 it can be seen that for this set of mixtures the broadband

noise content of the cello note is responsible for the highest level of interference on

the attacks of the other notes when it precedes them; in those cases, the attacks of

the saxophone and the violin appear less accentuated. Having said this, though,

and as Figs. 6.11 and 6.12 can reveal, the residual channel can still provide on the

whole substantially improved time-domain information compared to the original

mixtures.
2Note, here, that the retrieval of the residual is referred to as ‘extraction’. The use of this

term, again, highlights that the residual is something desirable: we want to identify and extract
these structures.
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(a)

(b)

(c)

(d)

Figure 6.9: The residual after source separation from a mixture containing three musical
notes played in 0.5 s intervals. The notes are cello F4, soprano sax A3 and violin E4, and
they appear in four different orders in the mixture: (a) cello-sax-violin, (b) cello-violin-
sax, (c) sax-cello-violin and (d) sax-violin-cello. The identification of the observable note
attacks can be used for estimating the note onset timings at 0.5 s intervals.
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(a)

(b)

Figure 6.10: The residual after source separation from a mixture containing three
musical notes played in 0.5 s intervals. The notes are cello F4, soprano sax A3 and
violin E4, and they appear in two different orders in the mixture: (a) violin-cello-sax
and (b) violin-sax-cello. The identification of the observable note attacks can be used for
estimating the note onset timings at 0.5 s intervals.
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(a)

(b)

(c)

(d)

Figure 6.11: Comparison between the original mixture containing three musical notes
played in 0.5 s intervals (shown in black) and the residual signal (shown in grey) after
extracting the sources. The notes are cello F4, soprano sax A3 and violin E4 and they
appear in four different orders in the mixture: (a) cello-sax-violin, (b) cello-violin-sax,
(c) sax-cello-violin and (d) sax-violin-cello. Note the amplitude scale difference between
these figures and Fig. 6.9.
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(a)

(b)

Figure 6.12: Comparison between the original mixture containing three different mu-
sical notes played in 0.5 s intervals (shown in black) and the residual signal (shown in
grey) after extracting the sources. The notes are cello F4, soprano sax A3 and violin
E4 and they appear in two different orders in the mixture: (a) violin-cello-sax and (b)
violin-sax-cello. Note the amplitude scale difference between these figures and Fig. 6.10.
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6.4.1 Onset detection method

Onset detection algorithms (i.e., algorithms for locating the instances when note

events begin) [8, 32] often define a type of an Onset Detection Function (ODF)

and then peak picking has to be applied on that function, in order to determine the

timings of the onsets (e.g., [158, 186, 42, 12, 61, 15]). However, to the knowledge

of the author, there has not been a method that operates with the residual. Also,

transient/steady-state extraction methods do exist and can be used for onset

detection [38], but they have been mostly applied to monophonic signals. An

onset detection method that operates entirely on the residual (resulting from

extracting three sources from a mixture) is presented next.

The majority of the current onset detection methods would not be particularly

suitable for operating on the residual, since the input audio is expected to have a

quite different overall structure compared to the residual. However, the residual

has a clear temporal structure, which is closer to an ODF rather than a time-

domain musical signal or mixture. One can easily estimate where the onsets are

located just by observing the evolution of the signal in time. Thus, the task is to

make this process automatic.

It is worth noting that the proposed method bears similarities with parts of the

onset detection method carried out by Every [58, p. 53]. That method, however,

works on the original mixture signal using a complex-domain ODF; the philosophy

of the method presented here is different: an ODF-like function is derived from

the time-domain residual signal.

As a first step, it would make sense to derive a simplified version of the residual,

one that preserves the shape of the energy peaks associated with the note attacks,

while smoothing out other spurious peaks. To do that, the amplitude envelope of

xres is calculated first. The use of the Hilbert transform for acquiring the envelope

proved to be adequate. This transformation is followed by taking the absolute

value, low-pass filtering and normalisation to unity, resulting in the envelope func-

tion E. The locations of the attacks are identified using a thresholding operation
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assisted by a weighted median-filtered version of the envelope (which provides the

base threshold); this is followed by a gradient-based onset position identification

process.

For computationally simplifying the median-filtering operation, E is downsampled

by a factor of 100. For a filter with an even order H, the weighted median-filtered

envelope can be estimated as:

Emed(n) = v + r median
(
E
(
n− H

2

)
,E
(
n− H

2
+ 1
)
, . . . ,E

(
n+

H

2
−1
))
. (6.5)

Here, the values of H = 150, v = 0 and r = 1.2 were selected for mixtures

containing single notes (Case 3), whereas for cases of melody mixtures the value

of r = 2.0 deemed sufficient. The algorithm then seeks the following set of samples

M:

M = {m : E(m) > Emed(m) ∧ E(m− 1) < Emed(m− 1)} (6.6)

Each note attack should correspond exclusively to a different value of m; this

means that |M| should be equal to the number of note events. If this is true, the

actual onset location can be identified for each m ∈M. This is performed by first

finding the position n in an interval [m− d,m] so that

n = arg min
p∈[m−d,m]

E(p) (6.7)

and then, with the help of the gradient of the envelope, the onset location corre-

sponding to m can be derived as:

p
(m)
ons = arg max

p∈[n,m]
(gradE(p) < z), (6.8)

where the constants z = 0.001 and d = 40 were chosen after preliminary experi-

mentation. Furthermore, an additional minimum constant threshold a is used for

E, where a = 0.005. Fig. 6.13 depicts the relationship between E and Emed, along

with the identified onset locations for the cello-violin-sax mixture of Fig. 6.9b.

Finally, the set of values {p(m)
ons}m∈M is multiplied with the previously used down-

sampling factor in order to reflect the timings in the original time-domain signal.
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Figure 6.13: The downsampled envelope E (solid line) of the cello-violin-sax mixture of
Fig. 6.9b, along with its median-filtered version Emed(dotted line). The estimated onset
positions are indicated by the squares.

6.4.2 Initial experimental results

The results of the proposed onset detection algorithm were compared to the re-

sults obtained using the Aubio Onset Detector (AOD) plugin3 within the Sonic

Visualiser software [28]. More information about the particular onset detection

method can be found in [19, 20]. The 3-note mixtures of Figs. 6.11 and 6.12 were

used for the comparison, which means that the ground-truth onset timings are

0.5 s, 1.0 s and 1.5 s. The AOD was initially applied multiple times on each

mixture in order for an ‘optimal’ value (i.e., the value that would lead to the best

overall results) to be set for the ODF peak picker threshold. This value was then

fixed for all the mixtures for the purpose of the actual comparison. Lastly, the

choice of the complex-domain ODF was made for the AOD.

Figs. 6.14 and 6.15 show the onset detection results for the two methods. It can

be seen that the proposed method located all the onset locations correctly, while

it did not produce any false positives. On the other hand, although the AOD had

success in detecting the majority of the true onsets, it did also produce a number

of false positives. It is worth noting that that the majority of the false positives

occurs in monophonic audio segments. For example, regarding the mixtures of

Figs. 6.15a and 6.15b, the AOD produces a false positive during an isolated violin

segment (around 0.7 s). This is not the case, however, when the violin is masked

by another instrument. The same applies for the false positives at around 3 s in
3This plugin belongs to the aubio library – a collection of audio annotation tools [18].
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(a)

(b)

(c)

(d)

Figure 6.14: Comparison in onset detection accuracy between the proposed method
(squares) and the AOD (triangles) for the mixtures of Fig. 6.11: (a) cello-sax-violin,
(b) cello-violin-sax, (c) sax-cello-violin and (d) sax-violin-cello. The ground-truth onset
timings are located at 0.5 s, 1.0 s and 1.5 s.
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(a)

(b)

Figure 6.15: Comparison in onset detection accuracy between the proposed method
(squares) and the AOD (triangles) for the mixtures of Fig. 6.12: (a) violin-cello-sax and
(b) violin-sax-cello. The ground-truth onset timings are located at 0.5 s, 1.0 s and 1.5 s.

Figs. 6.14a and 6.14c. This is an indication that the presence of a note within

a mixture can play a role in reducing false positives. Furthermore, it was found

that increasing the peak picker threshold would eliminate the false positives, but

this would be at the expense of the true positives. Overall, the proposed method

was more robust compared to the AOD for this set of mixtures. It could be

argued that, since this method is working with the residual, it is quite unlikely to

produce any false positives for the non-attack segments of isolated sounds. The

assumption here is that the harmonic part has been extracted correctly during

the previous stages and the residual contains observable energy associated with

all the note attacks.

6.4.3 Evaluation on melodies

In this section the proposed onset detection algorithm is evaluated with regard

to its performance on much more complex and realistic music audio, compared
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to the 3-note examples of the previous subsection. The corpus of 6 mixtures that

comprises different variations of melody_mix1 and melody_mix2 (Fig. 5.19) is

chosen for this reason. It is expected that they will present a variety of challenges

for onset detection: the different inter-source energy ratios (as defined in Eq. 5.31)

can offer a variety of types of “interference” between the sources, in the sense that

the same attacks will occur in different contexts, and will be masked to varying

degrees.

As described above, the proposed algorithm operates on the residual channel after

the harmonic or near-harmonic content has been extracted. It is important that

this extraction is successful so that the residual is of a form which will allow

the onset detection algorithm to operate most effectively. However, as shown

previously in this thesis, cases can exist where the separation system is not able to

extract all the expected content because of errors in detecting the existing source

structures and inadequate corrective use of the residual loop. For this reason, and

for the purpose of carrying out a more valuable analysis of the results, the method

proposed here will be applied to a pre-constructed ideal form of residuals.

Every original source signal corresponding to each one of the mixtures is passed

through the separation system (which in this case simply acts as a harmonic/non-

harmonic energy separator), generating in this way its own individual residual.

The individual residuals are then summed together to form the composite residual

signals that correspond to the initial mixtures. These composite residuals can be

called the ideal residuals, simply because they are expected to contain only non-

harmonic energy corresponding to the original sources in the mix.

The evaluation of performance will be carried out using the F-measure, as it can

provide an overall view of how well the system can do, and it has already been

used at the Audio Onset Detection task of the MIREX evaluation campaign [116]:

F-measure =
2× precision× recall
precision + recall

, (6.9)
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where

precision =
TP

TP + FP
, recall =

TP
TP + FN

, (6.10)

and “TP” are the number of true positives (correctly detected onsets); “FP” the

number of the false positive onsets; and “FN” the number of false negatives (missed

onsets). The algorithm’s performance will also be compared with results obtained

with the method described by Böck et al. [15], a recent onset detection system

which performed best in terms of the average F-measure against other methods

at the Audio Onset Detection task of the MIREX 2010 campaign. The authors

were provided with the original mixture audio and sent back the onset timings

obtained with their system.

Different frame lengths used for the extraction of the harmonic part of the sources,

and hence the production of the residual, can potentially have an influence on the

performance of the proposed onset detection algorithm. As can be seen from

Fig. 6.16, the 4096-sample version generally produces sharper energy rises com-

pared to the 8192-sample version, which is a result of the reduced amount of

overlapping between frames and the increased resolution in the time domain.

This can potentially lead to a higher accuracy in determining the location of the

onsets, and a reduction of the number of missed onsets especially for onsets that

are very close together.

The hand-corrected MIDI onset timings associated with the mixtures were used

as a reference, and missed onsets were defined if no matches were found within

50 ms. Fig. 6.17 shows the comparison between the performance of the proposed

algorithm and the system in [15] in terms of the F-measure. (The “precision”

and “recall” measures are not shown, as they follow the same pattern.) As a first

observation, melody_mix1 displays lower performance in all cases, as might be ex-

pected, since it is a much more complicated mixture. Secondly, the system in [15]

(white bars) performs better, and more consistently, in all cases. Thirdly, we can

see that there is a clear performance improvement for the proposed algorithm

when the shorter frames are used. This is in agreement with the expectations

above regarding the relationship between smaller frames, fast energy changes at
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(a)

(b)

Figure 6.16: Two versions of an excerpt from the ideal residual corresponding to
melody_mix1, corresponding to different frame lengths used for the production of the
residual: (a) 8192 samples, and (b) 4096 samples. The sources in this example are mixed
with equal RMS energies (∆E = 0dB).
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(a)

(b)

Figure 6.17: Evaluation of the proposed onset detection algorithm using the F-measure,
in comparison with the system by Böck et al. [15] (white bars) on (a) melody_mix1 and
(b) melody_mix2, for different relative source energies. Two alternatives are presented
for the proposed algorithm according to the frame length used for the production of the
residual: 8192 samples (black bars) and 4096 samples (gray bars).
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the residual and an increased detectability of onsets. Unfortunately, there is an

inevitable compromise here, in that decreasing the frame length further will result

in a loss of accuracy in the frequency domain, and hence degrading the quality of

the overall separation, including the residual channel.

The lowering of the performance of the proposed algorithm in melody_mix2 can

be attributed mainly to the flute (s2 in Fig. 5.19b): when ∆E is 6 dB or 10 dB,

it means that the flute is 6 dB or 10 dB quieter than the alto saxophone. At

the same time it was observed that the flute notes used here contained relatively

weak attacks, compared to the alto and tenor saxophone notes of equal energy

(the other sources in the mix). Because, also, of the large number of flute events,

the inability to detect it led to a larger drop in the F-measure. The performance

in melody_mix1 appears more stable. This is partly because of the fact that the

largest part of the onset data comes from the piano notes (s2 in Fig. 5.19a), which

have strong, detectable attacks. This means that the majority of the errors are

caused by the other sources (with weaker attacks than the piano) which, because

they contribute less to the onset data, result in a smaller performance drop than

in melody_mix2.

The development of an onset detection algorithm was not one of the primary

aims of this work but, overall, the results show that even a very simple detector

applied to the residual signal can perform fairly well, even when compared to a

highly developed system such as that from Böck et al. [15]. More importantly,

because it operates on a by-product of a separation process (the residual channel),

it can potentially be integrated more effectively with the separation, correction

and extraction processes presented in this thesis, towards a SAU system. Further

work is required to establish the extent to which improvements can be achieved

if a more sophisticated onset detector can be developed which is optimised to

operate on the residual signal rather than the full audio signal.
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6.5 Extension to stereo mixtures

The residual as a means of supplementary information can also be exploited in

combination with the other output channels within a scenario that involves a

stereo, rather than just a single-channel mixture. Instead of estimating the gain

and phase differences associated with the stereo set-up before the separation takes

place (and, thus, often assuming strict disjointness criteria for the sources), this

information can be estimated after source separation has taken place. By apply-

ing the current proposed system on each of the stereo channels individually, the

onset locations (estimated using the algorithm of §6.4.1) can be used along with

the envelope characteristics of the extracted sources to estimate the stereo-related

information. This information can be used (for example) as a feature for subse-

quent automatic clustering of the extracted notes, or inferring the location of the

sources in the acoustic space. See Ch. 7 for further comments on the potential of

this approach.

6.6 Summary

This chapter concentrated on exploring the potential of the residual signal as a

means of further extending and enhancing the existing one-pass automatic system

presented in Ch. 5. Having in mind that a SAU system is an additional goal of

this thesis, the residual offers a way to realise this. Two main ways are proposed

for its use. The first way is to use it iteratively for the purpose of multiF0 error

correction and improvement of source separation. Two algorithms were presented

and the results showed that the use of the residual increased the range of the

accepted relative energies between two synchronous notes in a mixture so that

they are both detectable for differences up to a level of 40 dB.

Experiments on a corpus of realistic melody mixtures were then presented, where

the performance of the one-pass approach was compared with the system exten-

sion that includes the residual loop and two recent alternative separation meth-

ods that employ similar separation philosophies. The extended residual-aided
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proposed system exhibited consistently better separation performance when com-

pared to the other methods.

With regards to the ability of the iterative residual loop to further improve the

estimation of the F0 tracks, evaluation results were shown in terms of the multiF0

estimation accuracy, where the extended system was compared to its one-pass

version, as well as two other recent alternative multi|F0 estimation systems. Based

on the already strong performance of the multiF0 estimation stage by Klapuri,

the proposed way for exploiting the residual information led a to further increase

in the accuracy of the F0 estimates, which in most of the cases was comparable

or higher than the accuracy achieved with the alternative systems.

As a further step towards developing an understanding mechanism via a separa-

tion process (in the spirit of a SAU system), the use of the residual as a way for

correctly detecting the onsets of note events was also examined. An algorithm for

automatic onset detection based entirely on the residual signal was proposed, and

was then compared with an existing algorithm. The proposed method outper-

formed this algorithm in a group of mixtures with three asynchronously-played

notes.

This was followed by additional experiments carried out on melody mixtures,

where the onset detection algorithm was applied to ideal forms of residuals, i.e.,

residuals that contain only non-harmonic energy which has not been filtered out

by the separation system. The effect of using shorter processing frames for the

production of the residual on the accuracy of onset detection was also consid-

ered. It was found that the use of a 4096-sample processing frame leads to higher

performance compared to the use of a 8192-sample one, as the energy spikes corre-

sponding to the note attacks are better localised and less ‘blurred’. The proposed

algorithm was finally compared to the results obtained by another alternative

method that has been assessed in open competition as current state-of-the art.

While the residual-based detection approach was not better in this case, its aver-

age performance can be characterised as fairly good, considering the simplicity of

the algorithm and the sophistication of the competitor. In addition, it provided a
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complementary indication for the potential of the residual as a means for feature

extraction. This potential can also be extended to stereo mixtures, as was briefly

mentioned.

Plans for work concerning the further development of the onset detection algo-

rithm, as well as the other parts of the system proposed in this thesis are presented

in the next chapter.



CHAPTER 7

Conclusions and further work

Source separation from musical recordings is a hard, multi-disciplinary problem

that has been attracting growing interest in recent years. This thesis addresses

this problem through the use of an iterative framework that enables the integra-

tion of UFS and SFU paradigms towards an SAU approach, i.e., an approach

that can deliver both extracted musical sources and audio/music content-related

information (such as F0 contours and note onset timing information), depending

on the target application. It is a semi-blind unsupervised system falling under

the category of CASA-inspired methods.

More specifically, the system is based on work previously reported by Every [58]

which, through its particular estimation and extraction stages, produces a residual

signal which has the advantage of being relatively free from extraction artefacts:

no remnants of the estimated content (at least its main-lobe energy) are to be

found there. By taking advantage of this, this thesis extends and formalises the

idea of the residual channel as a key concept for the realisation of a SAU-type

system.

An additional goal of this work was to design a system that would ideally not need

significant user intervention in order for it to operate. The MIDI front-end of the

previous system was, therefore, replaced by an automatic multiF0 estimator that

provides the basic cue for the identification of the individual source structures.
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Since the use of the residual later assumes that the estimation of those structures

has been carried out with acceptable accuracy, and the reliability of the F0-track

information is crucial to this, a post-processing stage for improving the robustness

of the F0 estimates was introduced. Provided that the multiF0 estimator was

correct > 50% of the time, it was shown that the introduction of the F0 correction

stage led to an improvement of the multiF0 estimation performance in the mixes

containing synchronous single-note sources.

A further modification to the system by Every was also carried out on the pa-

rameter estimation stage. Originally, the cases of overlapping harmonics were

dealt with by linear amplitude interpolation in the frequency and time domains,

using information from adjacent partials and time frames. It was found that the

inclusion of the ability of the algorithm to extrapolate was also important. In

this way, it was possible to estimate the amplitudes of lower harmonics (including

the fundamental) that happened to be masked by other sources throughout the

whole duration of a certain note. Although these estimates were not guaranteed

to be correct, they were better than totally rejecting those harmonics.

In order to test the performance of the proposed system, a performance measure

had to be chosen. Since the SRR and the SDR have been very popular as measures

within the source separation community it was deemed important to compare their

relative merits. The analysis that was carried out using both a theoretically-based

and a practically-based framework indicated that the SDR is superior to SRR

because of its insensitivity to fixed-gain distortion, while being more sensitive

than SRR to the angle between estimated and extracted signal.

The one-pass version of the proposed system was compared to the MIDI-based

system by Every in terms of separation and multiF0 estimation on a variety of

mixture cases comprising synchronous single-note sources, as well as interweav-

ing melodies. The findings for the case of single-note sources showed that the

alternative of using an automatic front-end was not only possible but that the

performance of the proposed system was better in a large number of cases. For

the particular examples of interweaving melodies chosen here, the automatic ver-
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sion also performed well, with the F0 track disentangling process sometimes being

responsible for a lowering of the performance. This was firstly due to the fact that,

for these examples, the sustained note intervals that the disentangling stage op-

erated within were much shorter compared to the ones used for the single-note

source mixtures, thus leading to a less reliable F0 swapping and correction process.

Secondly, the use of highly overlapping windows led to a high amount of fast non-

harmonic energy content (which the system is not designed to work with) around

the beginning and the end of notes, which compromised the initial F0 estimates.

Finally, as a further comment on the comparison with Every’s MIDI-based ver-

sion, the new automatic system is more consistent in the sense that the human

element of the MIDI front-end can sometimes be unpredictable and, if the pitch

refinement/correcting processes are not robust enough, will lead to a deterioration

in performance.

The residual channel was explored as a source of information in two ways: pro-

viding a means of further correcting multiF0 estimates and, as a consequence,

improving the separation performance through an iterative process, and enabling

the estimation of note onset locations. For the multiF0 error correction, the

iterative use of the residual increased the range of relative energies between the

two single-note sources in a mixture whereby these sources can be detected by the

multiF0 estimator (and consequently extracted from the mixture) to up to around

40 dB. Experiments were also carried out on a group of melody mixtures and the

performance of the system was compared to the performance of two other alter-

native techniques. The separation results showed that the residual-based system

provided an improvement against the one-pass version, and performed consis-

tently better than the other methods. With regards to the multiF0 estimation

results, improvement against the previous stages was shown, as well as a better

average F0 estimation accuracy compared to two other methods.

The note onset detection process presented here was achieved by identifying the

energy remaining in the residual signal that could be associated with the note

attacks. The proposed onset detection method appeared to be more robust than
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the AOD when applied to six different mixtures containing three asynchronous

notes starting at 0.5 s time intervals, in the sense that it detected all the true

onsets and no false positives. The AOD, on the other hand, did not detect all

true onsets and did also produce a number of false positives. With regards to the

algorithm’s performance in melody mixtures, it was observed that the ability to

locate onsets could be improved consistently bys reducing the frame size – the

energy bursts corresponding to the note attacks were in this way better defined.

Finally, although it did not perform as well and consistently compared to a more

sophisticated algorithm, considering the simplicity of the proposed onset detection

method, the results were promising and indicated a potential for an intelligent use

of the residual as a means of feature extraction via separation.

7.1 Further work

This section outlines the possible future directions that the present system could

follow. First of all, a specific modification can be carried out at the mixture pre-

processing stage, which may possibly lead to the improvement of source detection.

At the moment the spectral peak picking process is independent of the multiF0

estimation stage. An alternative, which might be beneficial for the purpose of

enhanced source detection, would be to make use of the knowledge of the estimated

F0s for every time-frame as an additional source of information for deciding which

spectral peaks to select for further processing. It can be guaranteed, in this

way, that any detectable energy component located at and around the predicted

locations of the harmonics will not be neglected from further processing. Mixture

cases with a very high energy difference between the sources, as well as cases

where desired high-frequency content is buried under the noise floor of another

source could benefit from this modification. Of course, this assumes a certain

degree of belief in the reliability of the F0 estimates. It needs to be tested how

strong this belief should be so that it does not affect the results negatively.

The F0-track estimation and correction stage can also be further improved. In

particular, for the mixture cases 2 and 4 (see the mixture classifications on p. 112),
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i.e., mixtures containing melodies, the rule that F0 tracks do not usually cross

each other in Western music [82] could be employed. This assumption has been

made by other workers as well (e.g., [107]). Additionally, the use of models which

have been learned prior to the separation could also enhance the performance of

the F0-track estimation and correction. By this we mean a learning process of

statistical models for the calculated features, such as the saliences, RMS values or

onset timings on sufficiently large databases of isolated and mixed audio samples.

For example, Ryynänen and Klapuri [142] have followed this route in the context

of AMT.

Furthermore, additional experimentation with a larger corpus of musical mixtures

is needed in order to increase the robustness and extend the range of applications

regarding the use of the residual channel. This will also allow the exploration

of the differences between the algorithms of Figs. 6.1 and 6.2. As part of the

further work that involves the residual, it would be crucial to come up with more

intelligent criteria for dictating its iterative use. Extensions of the applications of

the residual feedback loop as a correcting/refining device can then be examined

in more complex situations, such as errors in the parameter estimation stage and

inter-source leaking.

Similar considerations hold for the residual-based onset detection method. A num-

ber of the parameters have been heuristically set, and they may not be applicable

to more complex mixtures, or to a different combination of types of instruments

and volumes. A modification to a more data-adaptive approach can be beneficial

in this case: for instance, the thresholding parameters can be a function of the

frequency of high energy spikes in the envelope. Also, a second set of (slightly

delayed) delayed “onsets” is available, associated with each of the harmonic note

portions – combining the timings from these with those obtained separately from

the residual might be another useful way ahead.

The SDR has been a useful metric for measuring and evaluating separation per-

formance in this thesis. However, it does not offer a way to normalise its estimates

according to whether certain parts of the mixture comply or not with specific as-
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sumptions of the separation system. For example, the proposed system only deals

with harmonic or near-harmonic sounds. A way to realise an overall metric that

offers a more valuable analysis of the separation performance would be to weigh

differently, or even ignore completely, parts of the audio that do not comply with

this assumption.

A variable frame size will need to be considered for the TF representation and

subsequent processing of the mixture (paying attention to the degree of compro-

mise for spectral analysis in smaller frame sizes). This can be designed within

an iterative framework: a note onset detection process can be followed by an

alteration of the frame size around the onset locations and then fed back for a re-

peated separation. This will potentially lead to a more reliable source separation

and production of residual.

The system could additionally benefit from a prior learning process where the

behaviour of specific features could be modelled. Any learning process, however,

has to be kept sufficiently general, if the goal is to retain the unsupervised nature

of the system.

Finally, the various ways to exploit the residual lead naturally to an additional

extension of the proposed approach: a system that can be applied to stereo mix-

tures. Most of the systems performing stereo source separation carry out source

estimation by taking advantage of the common inter-channel amplitude and delay

differences for every source as a form of grouping cues. In order for this infor-

mation to be reliable, it has to be assumed that the use of an appropriate TF

representation of the mixture will lead to an adequate disjointness between the

sources. In fact, a well-known method of this sort is the Degenerate Unmixing

Estimation Technique (DUET) algorithm [87, 183] which is based on strict WDO.

As discussed in §4.12.1, this assumption is probably not as appropriate in music

as it may be in speech signals, for example. Extensions of this algorithm deal-

ing particularly with music mixtures have kept the WDO assumption (e.g., [30])

or tried to move beyond its limitations by introducing methods for resolving the

overlapping content (e.g., [179]). An entirely different approach would be to carry
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out source separation individually for each of the two channels (in other words,

treating them as individual mono signals) by using the system presented here,

and then deriving the inter-channel information as a post-processing step. A

‘dual mono’ approach can make use of the residuals and estimated source chan-

nels for retrieving enhanced amplitude and onset timing information for each of

the sources. If it can be assumed that the sources are at specific static positions

in space, this information can be useful for note grouping purposes (i.e., grouping

the notes belonging to the same source), as well as calculating the spatial loca-

tions of distinct sources (the relative timing of the onsets and, potentially, the

harmonic content of each note can provide the inter-channel delays). A prelim-

inary exploration of this possibility (using a rather simpler separation method)

was carried out in [139], where it was shown that there is potential in employing

the particular ‘dual mono’ post-separation philosophy.



Acronyms

ADSR Attack-Decay-Sustain-Release

AHS Average Harmonic Structure

AOD Aubio Onset Detector

AM Amplitude Modulation

AMT Automatic Music Transcription

AQO Audio Quality Oriented

ASA Auditory Scene Analysis

ASS Audio Source Separation

BSS Blind Source Separation

CASA Computational Auditory Scene Analysis

CQ Constant-Q

DFT Discrete Fourier Transform

DUET Degenerate Unmixing Estimation Technique

DWT Discrete Wavelet Transform

ERB Equal Rectangular Bandwidth

F0 Fundamental frequency

FIR Finite Impulse Response

FM Frequency Modulation
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FFT Fast Fourier Transform

FT Fourier Transform

GMM Gaussian Mixture Model

HAS Human Auditory System

HMM Hidden Markov Model

HWPS Harmonically Wrapped Peak Similarity

IBM Ideal Binary Mask

ICA Independent Component Analysis

IDFT Inverse DFT

IFFT Inverse FFT

ISA Independent Subspace Analysis

JND Just-Noticeable Difference

MIDI Musical Instrument Digital Interface

MIR Music Information Retrieval

MIREX Music Information Retrieval Evaluation eXchange

NMF Non-negative Matrix Factorization

ODF Onset Detection Function

RMS root-mean-square

SAR Signal-to-Artifacts Ratio

SAU Separation And Understanding

SDR Signal-to-Distortion Ratio

SFU Separation For Understanding
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SIR Signal-to-Interference Ratio

SMS Spectral Modeling Synthesis

SNR Signal-to-Noise Ratio

SO Significance Oriented

SRR Signal-to-Residual Ratio

SiSEC Signal Separation Evaluation Campaign

STFT Short-time Fourier Transform

SWU Separation Without Understanding

TF time-frequency

UFS Understanding For Separation

UWS Understanding Without Separation

WDO W-Disjoint Orthogonality

WPT Wavelet Packet Transform



Notation and conventions

{a, b, c} Unordered set of elements a, b and c.

(a, b, c) Ordered set of elements a, b and c.

[a, b] {x ∈ R : a 6 x 6 b}
]a, b] {x ∈ R : a < x 6 b}
]a, b[ {x ∈ R : a < x < b}
[a, b[ {x ∈ R : a 6 x < b}
A := (ajk)J×K Matrix A of size J ×K with elements ajk.

a := (aj)Jj=1 ≡ (aj)J×1

= [a1 a2 . . . aJ ]T
Column vector a of length J , with elements aj .

〈a,b〉 Inner product of vectors a and b.

∠(a,b) Angle between vectors a and b.

‖a‖ :=
√〈a,a〉 `2-norm of vector a. If a is a discrete time signal,

‖a‖2 represents its energy.

‖A‖F Frobenius norm of A.

arms RMS energy of a.

A ◦B Hadamard (element-wise) product of A and B

that are of the same size.

AT, aT Transpose of A and a.

AH, aH Hermitian (complex conjugate) transpose of A

and a.

grad(a) Gradient of a.

mean(a) Arithmetic mean of the elements in a.
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δij :=

 1, for i = j

0, otherwise
The Kronecker delta.

x(t) Continuous time signal, −∞ < t <∞.

x(n) ≡ xn ≡ x(nTs) Discrete time signal, where n ∈ Z. Also, only for this

kind of signal the notations x and x are equivalent

(where x is a column vector with elements {xn : n ∈
Z}).

X , X TF or frequency-domain representation of a time-

domain signal x, and its matrix notation.

z̄ Complex conjugate of z ∈ C.

bac The nearest integer that is smaller than a ∈ R (a

flooring operation on a).

[a] Rounding to the nearest integer of a ∈ R.

|a| Absolute value of a ∈ C, or its cardinality if a is a

set.

A note on musical note naming

The method of scientific pitch notation [184] is used for the naming of Western

musical notes. According to this, the note A4 corresponds to 440 Hz.
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