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The relationship of the macrocyclic rust fungus PUccinia poarum with 
its pycnial-aecial host, Tussilago fapfaPa, and its uredial-telial 
host, Poa ppatensis, has been investigated, using light microscopy, 
electron microscopy and micro-autoradiography. Aspects of the morp­
hology and ontogeny of spores and sari, which were previously disputed, 
have been clarified. 

Monokaryotic hyphae grow more densely in the intercellular spaces of 
Tussilago leaves than the dikaryotic intercellular hyphae on Poa. 
Although ultrastructurally sbnilar, monokaryotic hyphae differ from 
dikaryotic hyphae in their interaction with host cell walls, often 
growing embedded in wall material which may project into the host 
cells. 

The frequency of penetration of Poa mesophyll cells by haustoria of 
the dikaryon is greater than that of Tussilago cells by the relatively 
undifferentiated intracellular hyphae of the monokaryon. Intracellular 
hyphae differ from haustoria in their irregular growth, septation, lack 
of a neck-band or markedly constricted neck, the deposition of host 
wall-like material in the external matrix bounded by the invaginated 
host plasmalemma and in the association of callose reactions \vith 
intracellular hyphae and adjacent parts of host walls. Monokaryotic 
and dikaryotic infections differ also in the changes induced in the 
organization and ultrastructure of their respective host cells. 

Intracellular hyphae in bundle sheath, xylem parenchyma, transfer cells 
of phloem parenchyma and companion cells, give the monokaryon of 
P. poaPUm direct access to nutrients translocated in vascular tissue 
of Tussilago. Bundle sheath cells of Poa contain unusually long 
haustoria but· there is no penetration of the endodermis and vascular 
tissue by the dikaryon. 

After uptake of tritiated glycerol by infected tissue, microautoradio­
graphic investigation shows radioactivity to be concentrated in spor­
ulation structures, haustoria and, in the case of Poa, in host nuclei. 
Cells of uninfected tissues differ from those of infected tissue in 
accumulation of label in chloroplasts. These studies contribute to 
an understanding of the physiological interaction of P. poaPUm with 
its alternate hosts. 
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INTRODUCTION 



1 

INTRODUCTION 

Ecologically, rust fungi are obligate parasites of lvi1d plants 

(Cummins 1959; Wilson & Henderson 1966) as well as cultivated crops, 

especially cereals (Johnson et aZ. 1967), although some have recently 

been grown axenical1y in pure culture or tissue culture (Coffey 1975). 

The relationship of rust fungi to their host plants shows the following 

features, which Dickinson & Lucas (1977) have listed as characteristic 

of biotrophic infections: 

1. The host cells are not immediately killed; 2. Few or no toxins 

or extracellular enzymes are produced; 3. The fungi grow partially 

within the host cells by forming special intracellular structures; 

4. Invasion of the host may occur directly or through stomata; 

5. Narrow host range; 

the rust life cycle; 7. 

development. 

6. Dependence upon a living host to complete 

The host may be infected at any stage of 

The macrocyc1ic rust Puccinia poarum, which is readily maintained 

on its alternate hosts in growth-room conditions (McGee et ale 1973), 

has many advantages as a model system for physiological studies (Lewis 

1976). Since large and discrete pycnial-aecial pustules are produced 

on leaves of Tussilago farfara, direct comparisons can be made between 

the healthy and infected tissue of the same leaf. The intracellular 

structures formed by P. poarum on Tussilago and on the alternate host, 

Poa pratensis, are morphologically different (Ltlsel & Lewis 1974; 

LtlseI1978). More detailed investigation of this feature and any 
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associated physiological differences may increase our understanding 

of such biotrophic parasites and their association 'vith the higher 

plants. 

Studies on the physiology (Holligan et aL 1973; Lese1 & Lewis 

1974; Long et aZ. 1975; Lewis 1976; Lesel 1978), development, 

cytology (Blackman & Fraser 1906) and ultrastructure of the aecial 

stage (OrviCal 1968) and aeciospores (Henderson et aZ. 1972) of 

this rust have been reported. Orcival (1968) described ultrastruc­

tural changes in the chloroplast of TussiZago fa~fara during the 

development of the aecial infection by P. poarum, but no detailed, 

comparative investigation of the host-parasite interfaces and of 

changes in the cell organelles in both alternate hosts of this para­

site has been previously reported. Such information is essential 

for a fuller understanding of the physiological relationship between 

the rust fungus and its host. 

1.1 Horphology of sori and spores 

The general features of P. POQ1'U11l at the light microscope level 

were described by Grove (1913), Wilson & Henderson (1966) and Greene 

& Cummins (1967) but the occurrence of uredial and telial paraphyses, 

which are useful taxonomic features, requires more investigation. 

P10wright (1889) and Wilson & Henderson (1966) stated that paraphyses 

were not present in uredia of P. poarum while Greene & Cummins (1967) 

describe uredia as 'mostly adaxial ... , usually without paraphyses 

but occasional specimens have short inconspicuous capitate, thin­

walled paraphyses". The telial paraphyses of this rust were described 
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by Wilson & Henderson (1966) and Buchwald (1972), but Greene & 

Cummins (1967) found these structures variable in their development 

in te1ia of P. poaPUm. 

Apart from the previous light microscope studies, other morpho­

logical features of spores and sori of P. poaPUm, such as flexuous 

hyphae, per iphyses, germ pores (except of uredio-spores), peridia 

and the abundance of sori produced require investigation. No 

previous electron microscopic studies on the general features of 

this rust throughout its life cycle have been recorded. 

The morphology and ontogeny of pycniospores (Rijkenberg & Truter 

1974a; Harder & Chong 1978;. Gold et ale 1979; Gold & Littlefield 

1979), aeciospores (MOore & McAlear 1961; Rijkenberg & Truter 1974b; 

Gold et ale 1979; Gold & Littlefield 1979), urediospores (Little­

field 1971b; Harder 1976b; Hassan & Littlefield 1979) and teliospores 

(Harder 1977; Gold & Littlefield 1979) of other rusts have been 

studied using electron microscopy (see review by Littlefield & Heath 

1979). Further investigation of rust spores and sori, using both 

scanning and transmission electron microscopy, may lead to a better 

understanding of their development and improved taxonomic character­

ization of rust species. 

1.2 Vegetative growth of rust fungi 

1.2.1 Intercellular hyphae 

The growth and structure of the intercellular mycelium of rust 

fungi and its relationship to host tissues have received much less 

attention than the intracellular structures and sporulating stages. 
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a) Cell wall. The hyphal cell wall in rust fungi appears to 

be composed of two fibrillar layers and an additional outer amor­

phous layer, which can be recognized in both monokaryotic (Boyer & 

Isaac 1964; Rijkenberg & Truter 1973; Robb et al. 1973; lValles 1974; 

lVelch & Martin 1975) and dikaryotic hyphae (Rijkenberg & Truter 1973; 

Muller et al. 1974; Rijo & Sargent 1974). It has been suggested that 

the amorphous outer layer may be adhesive in nature (Hardwick et ale 

1971; Rijkenberg & Truter 1973; Muller et al. 1974; Walles 1974) or 

may have a protective property against host toxins (Boyer & Isaac 

1964). 

As in other basidiomycetes, intercellular hyphae of rust fungi 

are septate. However, at the electron microscope level, three basic 

types of septum are recognized in the Uredinales (Littlefield 1971a; 

Littlefield & Bracker 1971; Littlefield and Heath 1979): (i) perforate 

septa; (ii) complete septa and (iii) partial septa. 

(i) The perforate septum, generally considered to be the typical rust 

septum, develops centripetally (Littlefield & Bracker 1971; 

Rijkenberg & Truter 1974b; Harder 1976a). It consists of cross­

wall, septal pore and the organelle-free septal pore apparatus 

(Bracker 1967; Ehrlich et al. 1968; Littlefield & Bracker 1971; 

Jones 1973; Walles 1974). The septal pore is usually less than 

100 nm and may be much less than that (Melampsora lini, Littlefield 

& Bracker 1971). Characteristically, vesicles (Ehrlich et al. 

1968; Jones 1973) and microbodies (Littlefield & Bracker 1971; 

Coffey et al. 1972a; Robb et al. 1973; ~1uller et al. 1974; Rijo 

& Sargent 1974; Walles 1974) are found at the periphery of the 

pore apparatus. The presence of an electron-dense pore plug in 

4 



the septal pore in hyphae of rust fungi has been reported by 

many workers (Longo & Naldini 1970; Littlefield & Bracker 

1971; Jones 1973; Robb et at. 1973; Walles 1974; Harder 1976a; 

Mims & Glidewell 1978). Jones (1973) believed that the pore 

plug originates from the electron-dense peripheral vesicles. 

Walles (1974) suggested that it represented woronin bodies 

which frequently occur in Ascomycetes (Bracker 1967; Wergin 

1973). Physiologically, Ehrlich et al. (1968) suggested that 

the septal pore might maintain the uninucleate or binucleate 

condition in each cell. 

ii) Complete septa, lacking a pore and pore apparatus, are commonly 

seen in pseudoparenchyma of uredial and aecial primordia 

(Moore 1963a; Littlefield & Bracker 1971). 

iii) Partial septa (Littlefield & Bracker 1971), pseudosepta (Ehrlich 

et al. 1968) or infolding walls (Rijkenberg & Truter 1975) 

differ in their morphology and development from the previous 

types, in that they seem to be formed by the infolding of the 

longitudinal walls of the hyphae. No pore apparatus and pore 

plug is present in this type of septum. Partial septa are 

found in primordia of aecia, uredia, and telia ("Moore 1963a; 

Littlefield & Bracker 1971; Muller et al. 1974; Rijkenberg & 

Truter 1974b; Mims & Glidewell 1978) and in other regions of 

the infected tissue (Ehrlich et ale 1968; Muller et ale 1974). 

Manocha & Shaw (1967) reported that partial septa occur in germ 

tubes of MeZampsoroa Zini. Apart from the studies of Moore 

(1963a) and Walles (1974), further ultrastructural investigation 

of septa associated with the pycnial and aecia1 stages of rust 
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fungi is needed. The correlation between septal structures and 

nuclear migration was discussed by Giesy & Day (1965). 

b) Cell contents. Although the ultrastructure of the inter­

cellular hyphae of rust fungi has not been extensively studied, the . 
available evidence suggests that their protoplasm generally resembles 

that of the septate intercellular hyphae of parasitic or non-parasitic 

fungi (Bracker 1967; Littlefield & Heath 1979). Two nuclei per cell 

are observed in dikaryotic hyphae (~tmocha & Shaw 1967; Coffey et aZ. 

1972a; Muller et ale 1974; Rijo & Sargent 1974) while in monokaryotic 

mycelium only one nucleus per cell is seen (Walles 1974). The mito-

chondria are associated with cisternae of endoplasmic reticulum 

0MU11er et al. 1974; Coffey 1975). Coffey et aZ. (1972a) reported 

that the number of cristae in mitochondria of the intercellular 

hyphae of both Puaainia helianthi and Melampso~a Zini was less than 

that in haustoria. Microbodies were located either at the periphery 

of the pore apparatus, as in perforate septa, or dispersed in the 

cytoplasm (Coffey et ale 1972a; Heath & Heath 1975). Unlike the 

microbodies observed in the infection structures (Mendgen 1973b; 

Littlefield & Heath 1979), those in the vegetative mycelium some­

times contain a crystal (Coffey et al. 1972a). Vesicles with 

membranous material and vacuoles are frequently seen in intercellular 

hyphae of rust fungi (Walles 1974; Littlefield & Heath 1979). Micro­

tub1es have been reported only in intercellular hyphae of Puaainia 

helianthi (Coffey et ale 1972a), Melampso~a lini (Coffey 1975) and 
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U~omyaes phaseoli var. vignae (Heath & Heath 1978). The only storage 

materials observed in intercellular mycelium are lipid droplets and 

glycogen particles (Van Dyke & Hooker 1969; Zimmer 1970; Coffey et al.1972a; 



Walles 1974; Coffey 1975; Harder 1978). In addition to these 

structures, endoplasmic, reticulum, ribosomes and lomasomes (e.g. 

Van Dyke & Hooker 1969; Zimmer 1970; Walles 1974) are found in 

intercellular hyphae of rust fungi. Golgi bodies have not been 

detected in the Uredinales, although tubular or membranous structures 

in intercellular hyphae of certain rust species have been interpreted 

as Golgi bodies 0400re 1963b; Pinon et ale 1972) or as structures 

resembling Golgi bodies in their function (Rijo & Sargent 1974). 

1.2.2 Fungal intracellular structures in host cells 

Like many other biotrophic fungi such as powdery mildews and 

downy mildews (Bushnell 1972; Bracker & Littlefield 1973), the 

intercellular hyphae of rusts produce special branches penetrating 

the host cell walls, which appear to serve as the principal nutrit­

ional interface between the autotrophic host and fungal pathogen. 

These branches are referred to as intracellular structures, although 

the host plasma membrane remains unpenetrated. ~1ost studies of 

intracellular structures produced by rust fungi have been confined 

to the dikaryotic phase on uredial-telial hosts. Apart from the 

early light microscope observations (Colley 1918; Rice 1927; Allen 

1935; Buller 1950), relatively little attention has been paid in 

recent years to the host-parasite interfaces of pycnial-aecial 

stages of rust infections (Rijkenberg & Truter 1973; lvalles 1974; 

Harder 1978; Gold et ale 1979; Gold & Littlefield 1979). 

In her classical study, Rice (1927) reported that the haust­

oria of uredia1 and te1ial phases of rusts differ from the inter­

cellular structures of pycnial and aecial stages, which Allen (1935) 
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termed intracellular hyphae. The intracellular structures of macro­

cylic rusts throughout both monokaryotic and dikaryotic phases of 

the life cycle have been investigated at the electron microscope 

level only by Harder (1978) and Gold & Littlefield (1979). Some 

light microscope (Rice 1927; L~sel & Lewis 1974) and electron micro­

scope (Moore & HcAlear 1961; Rijkenberg & Truter 1973; Walles 1974; 

Robb et al. 1975b; Harder 1978; Gold et al. 1979) studies indicate 

that typical haustoria are absent in pycnial and aecial stages of 

rust infections, although Robb et al. (197Sb) considered the haust­

oria in pycnial-aecial stages of Cronartium ribiaola on tissue 

culturesof Pinus montiaola as intermediate between typical uredial 

haustoria and intracellular hyphae but, like previous workers, found 

their occurrence sparse in relation to the extensive growth of the 

intercellular mycelium. In the present work, the term "intra­

cellular hypha" will be used for the fungal structures produced 

within host cells in pycnial-aecial infection. 

a) Haustoria. Studies with light microscope (Rice 1927, Little­

field 1972; Prusky et al. 1980) and scanning electron microscope 

(Pring & Richmond 1975; Gold et al. 1979; Plotnikova et ale 1979) 

show that the typical dikaryotic haustoria are differentiated into 

an expanded body and narrow, tubular neck. The haustorial neck is 

attached to the haustorium mother cell, which is a terminal cell of 

the intercellular mycelium. The thickening of the haustorium-mother 

cell wall at the point of penetration has been reported by many 

workers (e.g. Coffey et al. 1972a; Rijkenberg & Truter 1973; Rijo 

& Sargent 1974; Harder 1978; Borland & M~s 1980). 
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The fungal cytoplasm is continuous between the haustorium­

mother cell and haustorial body (Coffey et ale 1972a) with no 

intervening septum. The contents of the haustorium-mother cell 

have been reported to migrate into the haustorium (Heath & Heath 

1971, 1975, ~~ndgen 1975). Vacuolation of the haustorium-mother 

cell accompanies this process (Coffey 1976). 

The haustorial neck is wider than the penetration peg and 

extends for some distance into the host cell lumen. The neckband 

(or neck ring) is located about halfway along the haustorial neck. 

Generally, neckbands have been observed in all rust haustoria exam­

ined (Van Dyke & Hooker 1969; Hardwick et aZ. 1971; Rijkenberg & 

Truter 1973; Coffey 1976; Harder 1978; Borland & Mims 1980). 

Bossanyi & Olah (1974) suggested that the neckband in Puccinia 

graminis f.s. tritici marks a site of exchange of material between 

the fungus and its host. The neckband of Mplampsora lini appears 

to support this suggestion (Coffey et al. 1972a; Littlefield & 

Bracker 1972; Coffey 1976). The haustorial body is formed by the 

expansion of the distal end of the haustorial neck. Variations in 

haustorial morphology have been reported in several rust studies 

(Rice 1927; Rajenderen 1972). 

The fungal cytoplasm is separated from the host cytoplasm by a 

complex region comprising the fungal plasma membrane, the fungal wall, 

and the host plasma membrane. An additional layer is usually located 

between the haustorial wall and the host plasma membrane. Different 

terminology has been used to describe this layer in various studies 

of obligate parasites (Ehrlich & Ehrlich 1971; Bushnell 1972; 

Littlefield & Heath 1979). It has been termed a sheath (Smith 1900; 
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Fraymouth 1956; Ehrlich & Ehrlich 1963b; Bracker 1968; Chou 1970; 

Zimmer 1970; Littlefield & Bracker 1972; Rijkenberg & Truter 1973; 

Coffey 1975), a sack (Hirata & KOjima 1962), a zone of apposition 

(Peyton & Bowen 1963), an encapsulation (Ehrlich & Ehrlich 1963a, 

1966, 1971), extra-haustorial matrix (Bushnell 1972; Coffey 1976; 

Hickey & Coffey 1977; Littlefield & Heath 1979) and extra-haustorial 

sheath (Harder 1978). 

The origin, nature or composition and the function of the 

matrix surrounding haustoria of the obligate parasites are still 

speculative and this leads to confusion in terminology (see Figure 

1.1), in addition to the misuse of certain terms referring to 

different structures (i.e. sheath used differently by Bracker (1968) 

and Bushnell (1972)). References to the extensive literature con­

cerning the origin of the matrix, the nature of the material which 

it contains and its possible function are summarized in Tables 1.1, 

1.2 and 1.3. 

It has been reported that the thickness (Shaw & Manocha 1965b; 

Manocha & Shaw 1967; Orciva1 1969; Bushnell 1972; Harder 1978) and 

the amount of electron-dense material (Shaw & Manocha 1965b; Manocha 

& Shaw 1967; Orcival 1969; Zinuner 1970; Coffey et al. 1972a; Manocha 

1975; Harder 1978) of the extrahaustoria1 matrix increase with the 

age of the haustorium. However, Kajiwara (1971) found a thick extra­

haustorial matrix around a young haustorium. 

In some studies, it has been claimed that the production of 

extrahaustorial matrix in resistant and susceptible hosts was 

different. Manocha (1966) reported a more rapid development of this 

matrix around haustoria in a resistant than in a susceptible host. 
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Table 1.1 Origin of matrix* (or comparable region) in hiotrophic fungal infections. 

Host in origin 

Author and data 
of publication lklst Parasite 

Smith 19CX) Geranium EJoysiphe 
macul.atum cormrunis 

Hirata 1958 . Barley Powdery 
mildew 

Kohima & Hirata Barley Powdery 
1961 mildew 

Peyton & Bowen Glycine Peronospora 
1963 maz manshurica 

Berlin & Bowen Raphanus AZbugo 
1964 sati11Us candida 

Shaw & Manocha \\heat Puccinia gztam-
1965b inis tritici 

Ca10nge 1969 Hordeum Puccinia 
vulgare hoJ'dei 

Hardwick et at. PhaseoZus Uromyces appen-
1971 vulgaris dicu1.atus 

Heath 1971 Cowpea l/romyaes 
phaseoU 
vignae 

Manocha 1975 Wheat Pucainia gztam-
inis tritici 

Mendgen & Phaseolus Ul'Omyces 
tlei tefuss 1975 vulgaris phaseoli 

Pring & Richmond Phaseolus Uromyaes 
1976 11Ulgaris phaseoli 

Harder 1978 Avena Pu.ccinia 
sativa coronata 

*For definition of matrix see Fig.l.1. 

Fungal in origin 

Author and date 
of publication Host 

Caporali 1960 Rosa 
pouaine 

Ehrlich & Ehrlich Wheat 
1963a 

Boyer & Isaac Pinus 
1964 stl'Obus 

Bracker 1968 Barley 

Chou 1970 Cabbage 

Robb et al. Pinus 
1975b rnontico1.a 

Mims & Glidewell Junipel'UB 
1978 viroginiana 

Glidewell & t.fims Robus 
1979 triv-ialis 

Michx 

Parasite 

Sphael'Otheca 
pannosa 

Puccinia gram-
inis tritici 

Cl'Onartium 
ribicola 

Erysiphe 
graminis 

Pel'Orwspora 
parasitica 

Cl'Onartium 
ribico1.a 

Gymnosporangiwn 
juniperi-
virginianae 
Schw. 

Kunkelia nitens 

Product of host-parasite interaction 

Author and date 
of publication 

~Keen et al. 
1966 

Zinmer 1970 

Host 

Helianthus 
annuus 

Safflower 

Parasite 

Erysiphe 
aichoraaearwn 

Pucainia 
carthami 



Table 1.2 Composition of matrix* in biotrophic fungi parasitic on higher plants. 

Author and date 
of publication 

Caporali 1960 

Ehrlich & Ehrlich 1963a 

Peyton & Bowen 1963 

Berlin & Bowen 1964 

Shaw & ~tmocha 1965b 

Bracker 1968 

Calonge 1969 

Van Dyke & Hooker 1969 

ZiI1Iner 1970 

Hardwick et al. 1971 

Littlefield & Bracker 
1972 

Rijo & Sargent 1974 

Walles 1974 

Manocha 1975 

Coffey 1976 

Perera & Gay 1976 

Harder 1978 

Hickey & Coffey 1978 

Mims & Glidewell 1978 

Glidewell & Mims 1979 

Matrix 
Nature or canposition 

Pectic substances 

Particulate 

Stains darkly but different from host cell wall 

Amorphous and moderately electron-dense 

Granular. electron-dense 

Amorphous and flexible 

Granular 

Amorphous with electron-dense bodies 

Fluid property 

Callose and other fibrillar material 

Electron-transparent with granular and electron­
dense material 

Fibrillar 

Electron-transparent with electron-dense particles 

Electron-transparent with particulate material 

Electron-lucent with fibrillar material 

Granular 

Electron-lucent with fibrillar material 

Electron-dense layer of proteinaceous and 
carbohydrate ccmpounds 

Granular and stains similarly to haustorial wall 

Stains similarly to haustoria I wall but more 
electron-dense 

-For definition of matrix see Fig.I.I. 

Host 

Rosa pou21ine 

Wheat 

Glycine max 

Raphanus sativu8 

Wheat 

Barley 

Hordeum vu 19are 

Zea mays 

Safflower 

PhaseoZus vuZgaris 

Flax 

Coflea arabica 

Pinus sylvestris 

Wheat 

Flax 

Rose 

Avena sativa 

PiSWII sativum 

Juniperus virginiana 

Rubus trivialis 

Parasite 

Sphael'Otheca pannosa 

PUccinia graminis tritici 

Pel'Onospora manshurica 

Albugo candida 

PUccinia graminis tritici 

Erysiphe graminis 

Puccinia hordi 

Puccinia sorghi 

PUccinia carthami 

Uromyces appendiculatus 

Melampsora Zini 

HemiZeia vastatrix 

Peridermium pini 

Puccinia graminis tritici 

Me lampsora lini 

Sphael'Otheca pannosa 

Puccinia coronata avenae 

Peronospora pisi 

GymtIOsEOzoangium juniperi­
virginiana 
KunkeZia nitens 



Table 1.3 Function ofmatrix* in biotrophic fungi parasitic on 
higher plants 

Author and date of publication 

Ehrlich & Ehrlich 1963a,b; Peyton 
& Bowen 1963; Berlin & Bowen 1964; 
Shaw & Manocha 1965b; Ehrlich et at. 
1966; Zimmer 1970; Favali & Marte 
1973; Rijo & Sargent 1974; Coffey 
1975 

Rice 1927; Shaw & Manocha 1965b; 
Manocha 1966, 1975; Manocha & Lee 
1972; Coffey 1976; Manocha & 
Letourneau 1978 

Ca10nge 1969; Hardwick et at. 
1971; Hickey & Coffey 1977 

Davison 1968; Manocha & Lee 
1971 

Heath 1971 

Robb et ale 1975b 

Ehrlich & Ehrlich 1971 

MCKeen et at. 1966 

*For definition of matrix see Fig.1.1 

Function of matrix 

Transfer of substances 
between host and 
parasite 

Associated with host 
resistance 

May be laid down by the 
host to prevent the 
development of haustoria 
or to isolate haustoria 

May reduce or I imi t 
metabolic interchange 
between host and parasite 

Could be a host response 
to the toxic effect of 
the haustorium 

Effective shield against 
host toxic material 

Buffer against toxic effect 
of one entity upon the 
other 

Serve no useful purpose 



Zilnmer (1970) mentioned that the extra~austorial matrix appeared 

SUni1ar in both resistant and susceptible hosts but later it 

appeared more electron-dense in susceptible than in resistant hosts. 

However, Van Dyke & Hooker (1969) found no differences in the extra­

haustorial matrix in resistant and susceptible hosts. 

The boundary of the extrahaustoria1 matrix (or comparable 

structures) is agreed to be the invaginated host plasma membrane 

(Thatcher 1943; Fraymouth 1956; Bracker 1968; Bushnell 1972). Some 

recent studies indicate that the staining properties (Littlefield 

& Bracker 1970, 1972), the thickness (Ehrlich & Ehrlich 1963a; 

Bracker 1968) and the function (Ehrlich & Ehrlich 1971) of the 

extrahaustorial membrane (invaginated plasma membrane) are different 

from that of the non-invaginated host plasma membrane. 

The extrahaustoria1 membrane may be involved in several Unportant 

activities. Ehrlich & Ehrlich (1971) and Littlefield & Bracker (1972) 

suggested that it has a special role in the response of a host to 

infection. Other workers have indicated that the extrahaustorial 

membrane may be engaged in the movement of materials from the host 

cytoplasm to the haustorium or vice versa (reviews by Bracker 1968; 

Ehrlich & Ehrlich 1971; Littlefield & Heath 1979). Observations 

supporting this include the invagination of the extrahaustorial 

membrane (Ehrlich & Ehrlich 1963b; Bracker 1967; Van Dyke & Hooker 

1969), the continuity with tubules of the host (Bracker & Little­

field 1973; Harder et aZ.1978), the pinocytotic-like vesicles 

(Ehrlich & Ehrlich 1963a; Van Dyke & Hooker 1969) and the association 

with the endoplasmic reticulum of the host (reviews by Bracker 1967; 

Littlefield & Heath 1979). 
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Generally, similar cytoplasmic components are present in both 

intercellular hyphae and haustoria. Haustoria are usually reported 

to have two nuclei (Rijkenberg & Truter 1973; Abu-Zinada et al. 

1975; Coffey 1976) but several workers have observed only one nucleus 

in the haustorial body (Zimmer 1970; Hardwick et aL 1971; ~Iims & 

Glidewell 1978). Mitochondria (e.g. Zilnmer 1970; Coffey et al. 

1972a; Abu-Zinada et al. 1975; Coffey 1976), endoplasmic reticulum 

(Zimmer 1970; Littlefield & Bracker 1972), ribosomes (Zilnmer 1970; 

Hardwick et al. 1971; Littlefield & Bracker 1972), lomasomes (Van 

Dyke & Hooker 1969; Zimmer 1970) and multi vesicular bodies (Hard'vick 

et ale 1971; Abu-Zinada et al. 1975) are also observed in haustoria 

of rust fungi. Moreover, microtubules (Hardwick et al. 1971; Coffey 

et al. 1972a), vacuoles (e.g. Hardwick et al. 1971; Rijo & Sargent 

1974; Abu-Zinada et al. 1975), lipid droplets (Van Dyke & Hooker 

1969; Coffey et al. 1972a; Rijo & Sargent 1974) and glycogen (Van 

Dyke & Hooker 1969; Zimmer 1970; Coffey et al. 1972a) have also 

been found in haustoria. ~licrobodies have, however, rarely been 

seen in haustoria of rust fungi (Mendgen 1973a). 

b. Intracellular hyphae. Several light microscopic (Colley 

1918; Rice 1927; Allen 1932; L~sel & Lewis 1974) and electron micro­

scopic (Moore & McAlear 1961; Boyer & Isaac 1964; Rijkenberg & 

Truter 1973; Walles 1974; Robb et al. 1975b; Harder 1978; Gold et al. 

1979; Borland & Mims 1980) studies reveal that the pycnial and 

aecial stages of rust fungi produce intracellular structures desig­

nated P-haustoria by Harder (1978), M-haustoria by Littlefield & 

Heath (1979) and intracellular hyphae by Allen (1936) and Gold et al. 

12 



(1979). These intracellular structures have been described as 

hypha-like or filamentous (Rice 1927; Allen 1932; Rijkenberg & Truter 

1973; Ltlsel & Lewis 1974; Gold et aZ. 1979) and septate (Rijkenberg 

& Truter 1973; Walles 1974; Robb et al. 1975b; Harder 1978; Gold & 

Littlefield 1979). Gold & Littlefield (1979) mention that the 

intracellular hyphae were observed to emerge from one cell to 

another, while most other studies found the intracellular hyphae 

restricted to one host cell (Walles 1974; Robb et al. 1975b; Harder 

1978; Borland & Mims 1980). The typical haustorial neck and neck­

band have not been seen in intracellular hyphae (Rijkenberg & 

Truter 1973; Harder 1978; Gold et aZ.1979) although Robb et aZ. 

(1975b) reported neckband-1ike structures in intracellular hyphae 

of Cronartium ribicola grown in tissue culture. It has been assumed 

that these neckband-like structures are artifacts associated with 

fungal necrosis (Littlefield & Heath 1979). The fungal wall appears 

continuous between the mother cell and the intracellular hypha. No 

localized thickening of the mother cell wall at the point of entD' 

to the host cell has been seen (Rijkenberg & Truter 1973; lValles 

1974; Robb et al. 1975b; Harder 1978; Gold et aZ. 1979). The intra­

cellular hypha-mother cell has been reported to be a terminal cell, 

separated from the rest of the mycelium by a septum (Harder 1978). 

In contrast, other light microscopic observations indicate that the 

intracellular hypha-mother cell need not be terminal (Colley 1918; 

Allen 1935). 

The cytoplasmic contents of the intracellular hyphae resemble 

those of the uredia1 and telial haustoria (Rijkenberg & Truter 1973; 

Walles 1974; Robb et al. 1975b; Harder 1978; Gold et al. 1979). 
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Harder (1978) mentioned that Blycogen occurred in intracellular 

hyphae (P-haustoria) of Puccinia coponata avenae but not in the 

uredia1 haustoria of the parasite. Variations occur in the number 

of nuclei in intracellular hyphae of several rusts (Rijkenberg & 

Truter 1973; Robb et al. 1975b; Kohno et al. 1976, 1977; Borland 

& Mims 1980). However, there appears to be no information on the 

migration of the cytoplasm from the mother cell to the intracellular 

hyphae (Littlefield & Heath 1979). Similarly to uredial haustoria, 

intracellular hyphae are enclosed by the invaginated host plasma 

membrane (Rijkenberg & Truter 1973; Walles 1974; Robb et aZ. 

1975b; Harder 1978) and a matrix of unknown origin, nature and 

function between the fungal wall and this membrane (see review by 

Littlefield & Heath 1979). 

Littlefield & Heath (1979) pointed to the need of more detailed 

studies to answer several questions concerning the intracellular 

hyphae, such as their mode of formation, the presence or absence of 

some structural and morphological features in intracellular hyphae 

and the host-parasite interface. 

The general terminology used by the previous studies (Peyton 

& Bowen 1963; Berlin & Bowen 1964; Calonge 1969; Bushnell 1972; 

Coffey 1976; Hickey & Coffey 1977; Littlefield & Heath 1979) is 

shown in Figure 1.1, which is a diagramatic representation of the 

fungal and host structures associated with the intracellular organs 

of the obligate parasites. The collar (P+S) region is thought to 

be an extension of the host cell wall (Peyton & Bowen 1963; Berlin 

& Bowen 1964; Shaw & Manocha 1965b; Ehrlich & Ehrlich 1966; Hanocha 

& Shaw 1967). In powdery mildews, Luke et al. (1966), Edwards & 
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Allen (1970) and Hanchey & lVhee1er (1971) suggested that a papilla 
Ie 

forms as a result of host cytop1asmfactivity. Buslmell (1972) 

reported that papilla (P) and sheath (S) were distinct from the 

host cell wall. However, these studies suggest that the collar 

(P+S) is deposited by the host as well as the encasement (Ehrlich 

& Ehrlich 1971; Littlefield & Bracker 1972; Pring & Richmond 1976; 

Hickey & Coffey 1977). Other studies suggest that the production 

of sheath material around the necks of haustoria is induced by 

substances (probably enzymes) secreted by the fungus (McKeen 1969; 

Leong et aZ. 1970). 

In Figure 1.1, the intracellular structure and its surrounding 

membrane (PL) is enclosed by the encasement (E) which is surrounded 

by the host plasma membrane (HPL) (Littlefield & Bracker 1972; 

Pring & Richmond 1976; Hickey & Coffey 1977). Vesicular and 

tubular profiles are seen in the encasement (Ehrlich & Ehrlich 

1971; Coffey 1975,1976; Littlefield & Heath 1979). 

The composition of the collar in host-parasite combination is 

unknown, although it was reported to be composed of callose 

(Fraymouth 1956; Davison 1968; Edwards & Allen 1970; Hardwick et aZ. 

1971; Heath & Heath 1971) or cellulose (Colley 1918). However, 

cellulose or callose was not detected in sheaths around the necks 

of haustoria of Erysiphe graminis (Bracker 1968). 
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Figure 1.1 

Diagramatic representation of the terminology used by various 

workers (pp.9 & 10) to describe the fungal and host structures 

associated with the intracellular organs of obligate 

parasites. 

P, papilla; S, sheath; C, collar; E, encasement; ~f, matrix 

between fungal wall and the invaginated part of the host 

plasma membrane (i.e. extrahaustorial matrix or other 

comparable terms) 

HPL, non-invaginated host plasma membrane; PL, invaginated 

host plasma membrane; FW, fungal wall; HI\, host wall; 

~C, mother cell of the intracellular structure; m, membranous 

material in the encasement. 



~--------PL------~~-'~ 
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.------- F W-----~r__~ 

~.....--...--- H P l---------~ 



1.3 Host responses 

1.3.1 Sheath, encasement and other, ~hanges associated with host 

cell wall 

As indicated by Ehrlich & Ehrlich (1971) and Littlefield & 

Bracker (1972), the involvement of the host plasma membrane in the 

host response to infection has been reported in various plant dis­

eases other than rusts (\Vhee1er & Hanchey 1968; Hess & Strobel 1970; 

St~Qbe1 & Mathre 1970; Goodman & Plurad 1971). In response to the 

pathogen, host wall-like material forms in advance of the penetrat­

ing parasite (Hardwick et ala 1971; Bracker & Littlefield 1973; 

Walles 1974) or after the development of haustoria inside the host 

cell (Heath & Heath 1971; Coffey et ala 1972; Littlefield & Bracker 

1972; Mims & Glidewell 1978). Littlefield & Bracker (1972) con-

sidered that the encasement was deposited by the host cell wall. 

Heath & Heath (1971) suggested that the encasement was associated 

with the resistance of certain host-parasite combinations, but that 

it might represent a non-specific host response after penetration 

by the parasite (Coffey 1976). Pring & Richmond (1976) reported 

that treatment with the fungicide, oxycarboxin, induced the formation 

of the encasement around haustoria of Uromyoes phaseoZi. Similar 

deposition was produced by inserting a glass microprobe into a 

living tobacco plant cell (Nims et ala 1967). Encasement formation 

has been reviewed by Ehrlich & Ehrlich (1971), Bushnell (1972) and 

Littlefield & Heath (1979). 
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In addition to tIle formation of papilla, sheath and encasement, 

other changes associated with the host cell wall have been reported 

in rust-infected plants. Thickening of host cell walls between 

infected and uninfected cells was noted in infections by PUaainia 

graminis and PUaainia tritiaina on wheat plants (Allen 1923, 1927 

reviewed by Reynolds 1974). Similarly Heath (1972), using the 

electron microscope, found that electron opaque material was 

deposited on and within the host cell walls of the non-host PhaBeoluB 

vuZgaris in response to infection hyphae of cowpea rust. 

1.3.2 Changes in host cell organelles 

a) Endoplasmic reticulum and Golgi bodies. The rust infection 

of higher plants is characterized by producing remarkable changes in 

the host organelles. The intracellular structures of both mono­

karyon and dikaryon are often observed in close association with 

the host endoplasmic reticulum (Van Dyke & Hooker 1969; Zlimmer 1970; 

Ehrlich & Ehrlich 1971; Heath & Heath 1971; Heath 1972; Littlefield 

& Bracker 1972; Abu-Zinada et ale 1975; Harder 1978). Connections 

between endoplasmic reticulum and the extra]laustorial membrane have 

been reported by Harder et aZ. (1978). This is assumed to be important 

in facilitating the movement of material from the host to the parasite 

(Littlefield & Heath 1979). Rough endoplasmic reticulum has also been 

observed around the haustorium (Hardwick et aZ. 1971; Heath & Heath 

1971; Littlefield & Heath 1979). Heath & Heath (1971) suggested that 

extrahaustorial membrane might arise from vesicles produced by rougll 

endoplasmic reticulum. An increase in endoplasmic reticulum and 
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the number and activity of Golgi bodies in response to infection 

has been detected in the invaded host cells (Shaw & ~Ianocha 1965b; 

Manocha & Shaw 1967; Van Dyke & Hooker 1969; Ehrlich & Ehrlich 

1971; Robb et at. 1975b). Relatively few studies of rust infection 

have reported the presence of cytoplasmic vesicles in the vicinity 

of the haustorium (Ehrlich & Ehrlich 1963a; Shaw & Manocha 1965b; 

Manocha & Shaw 1967; Abu~Zinada et ale 1975). Ehrlich & Ehrlich 

(1971) found little evidence to support the theory that Golgi­

derived vesicles were involved in the transport of material from 

or to the haustorium. 

b) Chloroplasts. The chloroplasts of infected host cells are 

often closely associated with uredial haustoria (Van Dyke & Hooker 

1969; Coffey et ale 1972a,b; Coffey 1976). Such association has not 

been reported for the pycnial infections although some micrographs 

of intracellular hyphae show the close proximity of host chloroplasts 

(Littlefield & Heath 1979). In rust-infected sunflower, Sood & 

Sacks ton (1970) found fewer chloroplasts in infected than uninfected 

mesophyl1 cells. Similarly, Mares (1979) reported that the host 

cells in the chlorotic infected tissue contained reduced numbers of 

chloroplasts. However, both studies showed no statistical evidence. 

A decrease in size of the chloroplasts in the infected zones was 

previously reported (Rothman 1960, Puccinia coronata on oat; lVhitney 

et ale 1962, Puccinia triticina on wheat; Hi1u 1965, Puccinic Borghi 

on Zea mays.). 

Ultrastructural changes in the chloroplasts of rust-infected 

tissue have been primarily studied in uredial and telial stages 
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(Thomas & Isaac 1967; Coffey et al. 1972b; Heath 1974; Abu-Zinada et 

aZ. 1975; M10dzianowski & Siwecki 1975). These changes included 

increased number and/or size of osmiophilic globules (Thomas & Isaac 

1967; Coffey et al. 1972b; Heath 1974; Abu-Zinada et al. 1975; 

M10dzianowski & Siwecki 1975), increased formation of peripheral 

reticulum (Coffey et al. 1972b; Heath 1974; Abu-Zinada et al. 1975), 

the reduction in the number of photosynthetic lamellae (Abu-Zinada 

et aZ. 1975) and the disruption of the membrane system (grana and 

intergrana1 lamellae) (Coffeyet al. 1972b; Heath 1974; ~110dzianowski 

& Siwecki 1975; Mares 1979). Chromop1ast-like changes, particularly 

the formation of the prolamellar bodies, were reported by Orcival 

(1968) in pycnia1-aecia1 stages of infection of TussiZago !ap!apo 

by Puccinia poapum, and also by Coffey et al. (1972b) and Heath (1974). 

It was demonstrated that ethylene gas could be responsible for the 

development of chromoplast-like chlotop1asts (Heath 1974). Dalyet 

aZ. (1972) and Heath (1974) reported that the production of ethylene 

gas was increased during rust infection. The role of this gas in 

regulating fruit ripening (Burg & Burg 1962, 1965), senescence (Burg 

1968; Abeles 1973) and abscission (Burg 1968) 'vas studied previously. 

Starch degradation within chloroplasts in rust infection has 

been observed by Coffey et al. (1972) and Hlodzianowski & Siwecki 

(1975), while Heath's study (1974) showed numerous undegraded starch 

grains within the chloroplast of infected cowpea leaves. Several 

workers (Shaw & Hanocha 1965a, b; Coffey et al. 1972b; Orcival 1972) 

reported that the ultrastructural changes in the chloroplasts of 

rust-infected tissue are generally similar to those observed in 

natural leaf senescence (Ikeda & Ueda 1964; Shaw & ~~nocha 1965a; 
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Ljubesic 1968). In contrast other rust studies (Orciva1 1968; 

Coffey et aZ. 1972b; Heath 1974) indicated that these alterations 

closely resemble chromop1ast development in ripening fruit (Thompson 

1966; Spurr & Harris 1968). However, similar changes in the chloro­

plast have been described in various plants infected by viruses 

(Esau 1968; Matthews 1973; Tomlinson & \Vebb 1978) or bacteria 

(Lallyett 1977) and during chemical treatments (Burg 1968; Butler & 

Simon 1968; Fischer et aZ. 1973; Heath 1974). 

c) ~1itochondria and microbodies. Only one detailed study 

(Coffey et aZ. 1972b) has reported alterations in the mitochondria 

and microbodies of rust-infected tissue. Coffey At aZ. (1972b) 

showed that in sunflower infected by Puccinia heZianthi but not in 

flax infected by MeZwnpsora Zini, the mitochondria contain atypical 

plate-like cristae and occasional crystals while in tissues infected 

by Puccinia heZianthi and MeZampsora Zini, the microbodies frequently 

contain crystalline cores. 

d) Nucleus. The close association of the host nucleus and 

uredial haustoria (Rice 1927; Allen 1928; Zimmer 1965; Manocha & 

Shaw 1966; Shaw 1967; Van Dyke & Hooker 1969; Heath & Heath 1971; 

Coffey et aZ. 1972b; Coffey 1975) or intracellular hyphae of pyenial 

infections (Rijkenberg & Truter 1973; Robb et aZ. 1975a; Gold et oz. 
1979) has been suggested to be the characteristic host response to 

invasion (Littlefield & Heath 1979). 

Increase in size of nuclei in cells of both suscepible and 

resistant hosts was previously reported (Allen 1926, 1927; Sood & 

Sackston 1970). Sood & Sackston (1970) found that the size of nuclei of 
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a susceptible host (sunflower) increased much more than that of the 

resistant host. They concluded that the increase in nuclear size 

was related to susceptibility. 

Changes in the ultrastructure of the host nucleus have been 

studied in some detail during uredial infection where the density of 

the interchromatin material was reported to be increased (~lanocha & 

Shaw 1966; Abu-Zinada et ale 1975). Robb et ale (1975a) mentioned 

that the heterochromatin was notably decreased in nuclei of cultured 

pine cells infected by Cronartium ribiaola. However, the increase 

in nuclear RNA and decrease in nuclear DNA suggested a specific 

action of the parasite on the host metabolism (Whitney et ale 1962). 

No comparative reports on the host nucleus ultrastructure during 

pycnial and uredial stages of a single rust are available. 

1.4 Relationship of rust fungi to host vascular bundle 

There is little information available concerning the association 

of rust fungi with vascular bundles of their hosts. In his classical 

study, Colley (1918) described the penetration of the phloem, cambium, 

medullary ray tissue and even tracheids of pine branches by haustoria 

of pycnial-aecial infections of Cronartium ribiaola. Jackson & 

Parker (1958) reported the invasion of the parenchymatous cells 

associated with the phloem and woody rays of loblolly pine by haust­

oria of Cronartium fusi.forme. More recently, Van der Kamp (1969) 

and Walles (1974) found intracellular structures of Peridermium 

(CronartiumJ pini in the vascular bundles of the stern of woody hosts. 

Walles (1974) reported that haustoria of the monokaryon occur in 
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parenchymatous parts of the vascular bundle, in young sieve cells, 

and in the tracheids of the outermost annual ring, although the 

mycelium was mainly in the cortex. Following infection of needles 

of PinU$ pini by the endocyclic rust, PeY'ideY'm1:um pini (Pers) Lev. 

Van der Kemp (1970) noted growth of fungal hyphae down the length 

of the leaf vascular bundle to intiate stem lesions. 

Apart from Z inuner 's finding (1965) of gametophyt ic hyphae of 

Puccinia caY'thami in protoxylem and metaxylem vessels of safflower 

seedling hypocotyls and Harder's (1978) electron micrographs show-

ing fungal structures in vascular tissues of the pycnial host of 

Puccinia cOY'onata, little attention has been paid to the fungal 

penetration of the vascular bundle of herbaceous hosts. However, 

no reports of inter- and intra-cellular structures of the dikaryon 

infecting vascular tissue of the host have been encountered. Gold 

et aZ. (1979), in their investigation of the haploid thallus of 

Puccinia Y'econdita found no fungal penetration of the host vascular 

bundle. 

1.5 Autoradiographic studies 

Several studies on rusts and other obligate plant parasites 

have demonstrated an accumulation of various substances at the site 

of infection. Shaw & Samborski (1956) reported the accumulation of 

. b (14C 32p 45C ) . 1 h d· 1 d radioactIve su stances , , a In eaves at t e ure la an 

conidial colonies of Puccinia and EY'ysiphe respectively. In wheat 

leaves infected with Puccinia Y'econdita and fed \vith tritiated 

cytidine, the host cells in infected leaf areas contained less label 
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in their nuclei and cytoplasm than cells from the uninfected areas 

(Nielsen & Rohringer 1963). In contrast, Bhattacharya & Shaw (1967) 

found that the mesophy11 cells in infected zones incorporated more 

leucine -~ into protein and more cytidine _3H and uridine _3H into 

RNA than those of the uninfected areas of the same leaf after feeding 

tritium-labelled cytidine, leucine and uridine to wheat leaves infected 

with stem rust fungus (PUaainia graminis var. tritiai). 

Accumulation of photosynthetically assimilated l4C in starch 

(Allen 1942; Inman 1962; Bushnell 1967), fructans and ~-glucans 

(Hol1igan et aZ. 1973; Pung 1975), in tissues infected by obligate 

parasites has been reported. However, few workers have demonstrated 

the changes in lipid metabolism in plant tissues infected with ob1ig­

ate1y biotrophic fungi (Hoppe & Heitefuss 1974a,b,c, 1975a,b; Ltlsel 

& Lewis 1974; Ltlsel 1978). No microautoradiographic studies with 

reference to lipid in rust infection have been previously reported. 

. The movement of material from host tissue to mycelium of obligate 

parasites was studied by several workers. Reisener & Ziegler (1970) 

using 14C, reported that amino acids and carbohydrates were trans­

ferred to rust spores from wheat leaf tissue. Mount & El1ingboe 

(1969) and Slesinski & Ellingboe (1971) found that movement of 32p 

and 35S from wheat to a powdery mildew fungus increased when the prim­

ary haustorium was forming. Mendgen & Heitefuss (1975) infected a 

bean leaf with tritium-labelled urediospores of Uromyaes phaseoZi, 

produced by feeding a bean plant with 3H-orotic acid. In autoradio­

graphs prepared 24 h after inoculation, no transfer of 3H-orotic acid 

fram the parasite to host cells could be detected. On the 

contrary, Ehrlich & Ehrlich (1970) reported the passage of 
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l4C-cornpounds from the pathogen (PUaainia gramini8 f.s. tritiai) 

to host tissue of wheat in the infection center. 

Mendgen (1979) supplied 3H-lysine to bean leaves before 

inoculation with Uromyae8 pha8eoZi and demonstrated the uptake of 

label by mature haustoria but less by developing haustoria. When 

plants were inoculated with labelled urediospores, no transfer of 

tritium from fungal structures to host cells was detected. Favali 

& Marte (1973) fed tritiated glycine to bean plants, six days after 

inoculation with urediospores of Uromyae8 phaseoli, and reported 

dense labelling of the fungus. In general haustoria have been 

found to play an important role in the passage of material from 

host to parasite (MOunt & Ellingboe 1969; Slesinski & El1ingboe 

1971; Fava1i & Marte 1973; Mendgen 1979) or vice ver8a (Ehrlich & 

Ehrlich 1970). There was little evidence that the movement of 

substances between host and parasite may occur via the intercellular 

mycelium (Ehrlich & Ehrlich 1970; Fava1i & Marte 1973; Mendgen 1979). 

However, there is still very little information available concerning 

the path of interchange of metabolites between host and parasite 

and of the relative importance of intracellular hyphae and haustoria 

in this process. 

1.6. Aims of the present study 

Since the fungal haustorium is generally regarded as the 

principal nutritional interface between autotrophic host plants and 

most biotrophic fungi, there have been many structural investigations 

of haustoria in such associations, particularly in the powdery mildews 
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and the dikaryotic phase of rust fungi on their urediospore hosts 

(see reviews by Bushnell 1972; Bracker & Littlefield 1973). At 

the connnencement of the present work no detailed comparison of the 

relationship of a single rust fungus 'vith both its alternate hosts 

had been reported. No comparative physiological characterization 

of intracellular structures of monol,aryon and dikaryon of a rust 

fungus has yet been published. 

The purpose of the present investigation is to study: 

1. The structure and morphology of Puccinia poar>um on 

its alternate hosts; 

2. The changes in tissues of Tussilago farfara during 

pycnia1 and aecial stages of rust infection; 

3. The changes in tissues of Poa pratensis during uredial 

and te1ial stages of infection; 

4. The physiology of the host-parasite interaction 

during monokaryotic and dikaryotic phases of 

infection using microautoradiography to study the 

movement of substrate from host to fungus, 'vi th 

particular reference to lipid metabolism. 
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HATERIALS AND rtETHODS 



2 

MATERIALS AND NETHODS 

2.1 Maintenance of plant and narasite in the groh,th room 

Plants of Tussitago farfara L. (coltsfoot) and Poa pratensis L. 

(smooth meadow grass) were maintained in a controlled growth room 

(day temperature 20oe, night temperature lSoe, light intensity 1100 

lux from fluorescent tubes) and infected by Puccinia poarum Niels. 

as described by McGee et al. (1973). When pycnial pustules appeared, 

about 10 days later, nectar and pycniospores were transferred from 

one pustule to another, in order to induce dikaryotisation and the 

production of aecia. Infection of the aecial host, Tussitago farfara, 

was obtained by inducing the germination of the teliospores of this 

rust by alternate washing and drying. By direct application of the 

aeciospores or urediospores, the infection of the telial host, Poa 

pratensis, was obtained. To represent different stages and substages 

of the parasite's development, the following nomenclature was used: 

PI: pycnial stage, aecia not visible, 7-14 days from 
inoculation, 3-5 mm diam. 

P2: <50% of aecia dehisced, 14 days from inoculation 
4-6 nun diam. 

P3: >50% of aecia dehisced, more than 21 days from 
inoculation, 4-8 mm diam. 

VI: uredial stage, 10 days from inoculation. 

V2: closed uredium, 14 days from inoculation. 

V3: opened uredium, more than 18 days from inoculation. 
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Tl: fungal hyphae under lower epidermis, 18 days 
from inoculation. 

T2: young teliospores; the spores appear as single­
celled, aseptate, about 20 days from inoculation. 

T3: mature telia, with brown pigment, more than 
23 days from inoculation. 

2.2 Preparation of material for light microscopy 

2.2.1 Paraffin method 

Small pieces (3-4 mm length) of infected and uninfected leaves 

of both hosts were fixed in acetic acid:alcohol (1:3 v:v) for 12 

hours and then dehydrated in the following series of alcohol:water 

solutions: 

10% ethanol for 2 hours 

20% " " " " 
30% " " " " 
50% " " " " 
70% " " 3 " 
80% " " " " 
95% " " " " 

The pieces were then placed in absolute alcohol overnight, 

after which they were left in absolute alcohol:xylol with ratios 

of 3:1, 2:2 and 1:3 for! hr in each. Specimens were then embedded 

in paraffin wax and sectioned on a Reichert microtome at 15 ~m 

thickness. Sections were de-waxed in xylol and then taken through 

100%,95%,80%, 70%, 50%,30% and 10% alcohol (1-2 minutes each), 

then rinsed in water and stained with appropriate stain (see below). 
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2.2.2 Cryostat sections 

A small piece (3-4 rum square) of fresh or fixed (as in 2.2.1) 

material was placed in a few drops of water or gum arabic as support-

ing and embedding medium and affixed by freezing it to the tissue 

holder inside the cryostat (Bright). The frozen tissue was sectioned 

at 10-15 ~m thickness. Sections were picked up by touching a micro­

scope slide against them. Usually, the temperature of the freezing 

chamber during sectioning was -300 C. 

2.2.3 Freezing microtome sections 

Sections (25-50 ~m thick) of fresh plant material were cut by 

a freezing microtome using water or glue as embedding medium. The 

sections were removed from the knife with a canlel's hair brush, 

placed in a small dish of water, then stained as belm." and examined. 

2.2.4 Hand-cut sections (fresh material) 

Hand sections of epidermis or upper mesophyll were cut in a 

plane parallel to the leaf surface, stained (see 2.2.6), mounted, 

usually in lactophenol, and examined. 

2.2.5 Epon-embedded tissue (as prepared for transmission electron 

microscopy) 

Semi-thin sections (0.5-1.0 ~m thick) of infected and unin-

fected plant tissues were cut on Huxley (Cambridge) and Reichert ultra­

microtomes from epon-embedded material, which had been prepared for 
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electron microscopy (see 2.3.1). Sections were picked up in a drop 

of water using a small piece of glass or a fine wire loop, trans­

ferred to a microscope slide, dried down using gentle heat, stained 

(see 2.2.6) and examined. 

2.2.6 Staining for light microscopy (see Appendix for details of 
stains) 

Generally, fixed (except in 2.2.5) and unfixed sections were 

stained with cotton blue in 1actophenol (Shipton & Brown 1962). 

1% aqueous safranin and 1% basic fuchsin were applied to stain the 

nucleus in fixed tissue, while Sudan IV in 1actophenol or in lacto­

phenol cotton blue was used to stain oil droplets. The sections 

fram resin-embedded material were stained in 1% toluidine blue in 

1% borax solution where a drop of stain was placed on the sections 

and warmed gently until the solution steamed, then washed off and 

dried with 50% alcohol solution. These sections were covered by a 

cover slip mounted in polymount and studied using a light micro-

scope. 

To detect callose, fresh sections from infected and uninfected 

tissues were used. Sections were stained and mounted in the stain-

ing solution Df 0.005% water soluble aniline blue in O.lS M phosphate 

buffer at pH 8.2 and examined after 30 minutes using a fluorescence 

microscope. In these conditions callose shows a yellow fluorescence 

(Currier 1957). 

2.2.7 Section analysis 

a) dllnensions of the host cells and parasite structures were 

measured using a calibrated ocular micrometer. 
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b) Measurements were made of the number of haustoria and intra­

cellular hyphae per host cell and the number of infected and unin­

fected cells of both hosts, each sample consisting of cells lying 

along a 300 ~m transect line in a section parallel to the leaf 

surface. 

c) Nuclei were measured in healthy cells from infected leaves 

and infected cells of comparable age in both hosts where their 

volumes were estimated using equations appropriate for spheres and 

cylinders. 

d) The volumes of the epidermal cells, bundle sheath cells and 

fungal haustoria in infected Faa and areas of infected Tussilaga 

upper mesophyll cells were calculated using the cylinder formula, 

while the formula for a sphere was used to find the volume of Paa 

mesophyll cells. 

e) The numbers of chloroplasts in infected and uninfected 

mesophyll cells of both hosts were counted in I wm thick sections 

cut parallel to the epidermis from epon-embedded material. In 

sections (O.S-l.O wm thick) from infected material prepared in 

this manner, the frequency of occurrence of septa in fungal intra­

cellular structures was also studied. 

2.3 Electron microscopy 

2.3.1 Transmission electron microscopy (TBI) 

Infected and uninfected tissues of both hosts were processed 

for electron microscopy (T~n by a method based on Perera & Gay (1976). 
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The plant material was cut into pieces (1 mm square) under 2.5% (v:v) 

glutaraldehyde in a 0.1 M sodium cacodylate buffer at pH 7.0 (see 

Appendix) and left to fix at room temperature. After twenty-four 

hours, the specimen was washed in three changes of fresh buffer 

(20 minutes each), and then post-fixed in 1% (v:v) osmium tetroxide 

in 0.1 M sodium cacodylate buffer (Appendix) for one hour. After 

post-fixation, the tissue was washed in 2-3 changes of the same 

buffer (20 minutes each) and then dehydrated in the following series 

of alcohol:water solutions: 

10% ethanol for 5 minutes 

20% " " " " 
30% " " " " 
45% " " 10 " 
60% " " " " 
75% " " " " 
95% " " 30 " 

100% " " " " (2 changes) 

The tissue pieces were then soaked in epoxy propane-absolute 

alcohol solution (50:50) and left for 30 minutes. Then they \~ere 

transferred into pure epoxy propane (100%) and left for another 30 

minutes. The pure epoxy propane was then replaced by a mixture of 

equal parts of epoxy propane and epon (1:1) and left for one hour in 

closed containers (embryo cups). The lids of the embryo cups were 

left slightly open, allowing epoxy propane to evaporate overnight. 

Then, after several changes in fresh resin over 2-3 days, tissue 

fragments were embedded in fresh resin (Appendix) in flat PVC 

embedding dishes or in embedding capsules, with the specimen number, 

written in Indian ink on a small slip of paper, placed in the centre 
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of each dish or capsule, and left in an oyen at 600C for forty­

eight hOUTS to polymerise. 

The usefulness of the semi-thin sections (O.5~1.0 ~m thick) 

and toluidine blue staining technique have been described by 

Mercer and Birbeck (1972). Such techniques were routinely 

used prior to electron microscopy. Under a binocular dissecting 

microscope, the desired area on the block was then trimmed into a 

flat-topped pyramid using a razor-blade. The sides of the pyramid 

were kept parallel. Sections were examined with the light micro­

scope and photographed using a Zeiss Ultraphot microscope. 

Ultra-thin sections were cut by the same ultramicrotomes 

mentioned above. Silver or gold sections were picked up on a dull 

surface of formvar (polyvinyl formaldehyde)-coated copper grids, 

which were prepared by a method outlined by Nunn (1970) and 

Juniper et al. (1970), using 0.6% (w:v) formvar in chloroform. A 

piece of filter paper was slipped between the tips of a pair of 

forceps to remove the film water on the grid. 

Ultra-thin sections were double-stained on a wax plate placed 

in a petri dish. Pellets of sodium hydroxide were placed in the 

petri dish to remove carbon dioxide from the environment. A drop of 

2% aqueous uranyl acetate (Juniper et aL. 1970) was pipetted on the 

wax plate and the mounted grids were gently floated, with the 

sections facing down on the drop of the stain. The dish was immed­

iately covered with a lid. The sections were left for 30 minutes 

in uranyl acetate and then washed in a gentle stream of glass 

distilled water and dried on filter paper. The same method was 

adopted for lead citrate staining, the sections being placed in 
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Reynolds' lead citrate solution (Reynolds 1963, see Appendix) and 

left for 10-20 minutes, then washed and dried as for uranyl acetate 

staining. The sections were examined and photographed using AEl 6B 

Corinth and Phillips electron microscopes. 

2.3.2 Scanning electron microscopy (SEH) 

Leaf segments (3-S mm) of both hosts were prepared for scan­

ning electron microscopy by a method based on Mercer· & Birbeck (1972). 

Segments with cut edges were fixed for two hours in 2.5% v:v glutar­

aldehyde in 0.1 M sodilUll cacodylate (see Appendix) buffer at pH 7.0, 

dehydrated directly through an ethanol series (25, 50, 75, 100% for 

10 minutes each) and then passed through a similarly-graded series 

of acetone solutions (for 10 minutes each). Specimens were dried 

using a Polaron E3000 critical point drying apparatus, then flushed 

with liquid CO2 and left soaking in liquid CO2, after all acetone 

had been flushed off, for 1 hour. The dried specimen was mounted 

on a special specimen holder (SE~1 stubs) with Dag 915 (electrical 

silver paint) and then coated with gold in an Edwards S-150 sputter 

coater, in an atmosphere of Argon 2 x 2 minutes, at 45 mi11i-amps. 

The specimen was then examined and photographed using Phillips 

SEM-SOI. 

Using this method, the morphology of spores and sori, the 

growth of fungal mycelilUll in the host and the presence of certain 

fungal features such as uredial and te1ial paraphyses were studied. 
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2.4 Autoradiographic studies 

2.4.1 L~bel1ing and processing the tissue 

3H-glycerol was obtained from the radiochemical centre, 

Amersham, with specific activity of 2.5 Ci/m Mole. Small portions,2 em x 1.5 em 

from infected Tussilago leaves (with vein passing through infected 

and uninfected parts) at P2 stage of parasite development (14 days 

from inoculation), and from infected Foa leaves showing uredial 

stage (about 18 days from inoculation) were selected. These portions 
3 were fed separately with various doses of H-glycerol, i.e. 50, 100 

and 200 ~Ci/500 ~l distilled water. It was found that the 200 ~Ci/SOO 

~l distilled water gave the most satisfactory results in both plants. 

The bottom 4-5 rnm of the uninfected part of the leaf portion was 

immersed in the feeding solution placed in a small vial. Care was 

taken to avoid any contact between the solution and the areas to be 

sampled. The leaf portion was allowed to take up all the 3H-glycerol 

solution (approximately 7 hours), then distilled water was added to 

the vial and the leaf left in the dark for a chase period overnight. 

To ensure uniform transpiration and photosynthesis during the feed-

ing time, leaves were exposed to natural daylight and a slow stream 

of air was allowed to circulate around the surface of the leaf. 

Aeration continued in darkness. The leaf portion was then placed in 

2.5% (v:v) glutaraldehyde in 0.1 M sodium cacodylate buffer at pH 7.0 

and the infect~ and uninfected parts were cut under the fixative 
I .. square 

into small segment~ 'These segments were fixed in glutaraldehyde 

separately for 24 hours and post-fixed with 1% (v:v) osmium tetroxide 



in 0.1 M sodium cacodylate buffer. The fixed segments were then pro­

cessed for light and electron microscope autoradiography as described 

in 2.3.1. The whole leaf portions which had been fed and fixed as 

above, were prepared for macroautoradiography. 

2.4.2 Macro-autoradiography 

After fixation, leaf portions were pressed flat and dried at 

800C. They were then fastened to hardboard sheet covered with 

chromatography paper using sellotape. They were then covered with 

Melinex film to prevent chemography. In the dark room, supplied with 

safe light, specimens were covered with X-ray film and taped securely. 

A second sheet of hardboard covered with chromatography paper was 

placed over X-ray film. The whole preparation was wrapped with black 

polythene and left to expose for 10 days. At the end of the exposure 

ttffie, the X-ray film was then developed for 5 minutes in PQ developer, 

washed and fixed in the usual way. 

2.4.3 Autoradiographic preparation for light microscopy 

One micron thick, resin sections of infected and uninfected 

tissues were cut with glass-knives on a Huxley (Cambridge) ultra­

microtome. Solvent vapour (acetone or chloroform) was used to expand 

the sections on the water bath. Sections were then transferred to 

clean glass microscope slides (see Appendix) previously coated with 

chromated gelatin (1 g of gelatin and 0.1 g of chrome alum dissolved 

in distilled water and the solution made up to 100 ml). They were 

dipped into a liquid photographic emulsion (Ilford GS) (Williams 1977), 

dried and left to expose for 14 days in sealed light-tight boxes in a 

. 0 refrIgerator at 4 C. 
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Liquid emulsion was prepared by mixing 30 ml of molten G5 

emulsion (previously stirred very slowly, e.g. one revolution per 

second) with 30 ml of distilled water which contained a drop of 

glycerol (to increase the elasticity of the emulsion) in a clean 

dipping jar (e.g. a truncated 250 ml measuring cylinder). The con­

tents of the dipping jar were gently stirred in a thermostatically 

controlled water bath at 430 C and left for 5 minutes to settle. In 

order to get a uniform coating of the emulsion, the slides must be 

withdrawn steadily from the dipping jar, kept for a few seconds 

vertically, standing up against a support to drain, then laid flat 

on a cooled surface to set. The preparations were subsequently 

developed in diluted Ilford phenex developer (60:40 developer: 

distilled water) for 8 minutes, washed in distilled water for 8 

minutes, fixed in sodium thiosulphate (hypo) for 8 minutes, and 

again washed in distilled water for 8 minutes. All operations up to 

this point were done in the dark-room under a recommended safe light. 

Finally, the slides were stained with 0.5% solution of toluidine 

blue in 0.5% borax, differentiated with 50% ethanol, mounted in 

polymount and viewed by bright-field and dark-field microscopes. 

2.4.4 Examination and assessment of auto radiographs 

The distribution of silver grains over tissue, in autoradio­

graphs prepared as above, was examined with the light microscope. 

Photographic records were made using a Vickers M17 metallurgical 

microscope, with dual illumination, allowing an appropriate balance 

of transmitted light and vertical incidence illumination, which is 

reflected by silver grains in the emulsion over the specimen. 
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Quantitative assessment of autoradiography by measurements of 

reflectance was carried out using the system described by Goldstein 

& Williams (1971). This consists of a Leitz 'Ortholux' microscope 

with a vertical incidence illuminator, a Leit z MP\' microscope 

photometer and a 60x oil immersion objective, linked 'vith a photo­

multiplier tube, stabilized high tension power supply and a multi­

range meter, supplied by Evans Electroselen ' ium Ltd. Since reflect­

ance from the specimen and optical system are reduced by the use 

of polarized light, a rotatable polarizer is situated in the 

illuminating beam and a non-rotable analyser in the microscope body, 

just above the beam splitter of the incident illuminator (Goldstein 

& Williams 1974). 

Reflectance measurements on circular areas of about SO wm 

diameter were made on five sections from each of five autoradiograph 

slides, prepared from each of the various regions of healthy and 

infected tissue of both hosts of FAccin:a poarum . ~Iean values of 

five replicate areas per section were recorded for the individual 

features to be compared and corrected for background by subtracting 

the mean of five similar areas adjacent to the tissue. A completely 

fogged specimen of Kodak ARlO stripping film was used as reflectance 

standard. Emulsion-coated sections of unlabelled leaves did not give 

reflectance values above the background level. 

A diagram indicating the positions of tissue sampled, infected 

regions and points of uptake of 3H-glycerol (Fig. 8.1) is included 

with plates of the resulting autoradiographs in Chapter 8. 
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2.5 Abbreviations used in Plates 

Host 

BS, bundle sheath cell; Ca, callose; CC, companion cell; Ch, chloro­
plast; Cr, crystal; E, epidermal cell; Ech, euchromatin; EN, endo­
dermal cell; ER, host endoplasmic reticulum; Fr, fibre; g, Golgi 
bodies; G, grana; Hch, heterochromatin; HN, host hucleus; HPL, host 
plasma membrane; NV, host vacuole; ~v, host cell wall; IG, inter­

granal lamellae; L, lipid drop;, M, host mitochondria; MB, host micro­
body; Me, mesophyll cell; Nu, host nucleolus; OS, osmiophilic globule; 
Pd, plasmodesmata; Ph, phloem; PP, phloem parenchyma; R.E.R., rough 
endoplasmic reticulum; Se, sieve tube; St, starch grain; VS, vascular 
strand; Wi, wall ingrowths; X, xylem treacheary element; XY, xylem; 

XP, xylem parenchyma. 

Fungus 

a, aeciospore; A, adhesive material; AI, aeciospore initial; Ap, 
appiculus; As, aeciosporophore; B, basidiospore; C, collar; D, depres­
sion; er, fungal endoplasmic reticulum; F, flexuous hypha; Fpl, fungal 
plasma membrane; Fs, fungal stroma; FW, fungal wall; gr, germ pore; 
H, haustorium; HB, Haustorial body; HMC, haustorium-mother cell; Hy, 
hymenium; I, intercellular hypha; la, intracellular hypha; IMC, intra­
cellular hypha-mother cell; IP, invaginated host plasma membrane 
(comparable to extrahaustorial membrane); Lo, lomasome; m, mitochondria; 
Mb, fungal microbody; rnx, matrix region (equivalent to extrahaustorial 
matrix, Littlefield & Heath 1979); n, fungal nucleus; N, haustorial neck; 
NB, neckband; nu, fungal nucleolus; P, pore apparatus; Pc, pycniospore; 

Pr, peridium; Ps, pycniosporophore; Py, pycniurn; R, refractive granule; 

S, septum; Sm, sticky matrix; T, localized thickening; TP, telial 
paraphyses; Ts, teliospore; U, urediospore; UP, uredial paraphyses; 
US, urediosorus; V, vacuole; Vrn, vesicle with membranes; Ve, vesicle 

(empty or with dense material). 
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MJRPHOLOGY AND ONTOGENY OF SPORES AI'm SORI 

Measurements of spores and sporulating structures of Puccirzia 

poarum are recorded in Table 3.1. 

3.1 Pycnia and pycniospores 

About one week after infection of TussiZago leaves by basidio­

spores, released after germination of teliospores, a mass of pro­

senchyrnatous tissue (or proto-pycnium) (fig.3.l) is observed in the 

upper mesophyll tissue. This protopycniurn is distinguished from the 

proto-aecium by occupying smaller areas in the mesophyll tissue. In 

the development of the mature pycnium cells, closely packed pycnio­

sporophores, elongated, uninucleate cells, 29 ~m in length, arise 

from a peripheral layer of pseudoparenchyrnatous cells (Figs. 3.2, 

3.3, 3.10) and produce pycniospores which accumulate in a dense mass 

at the centre of the flask-shaped pycniurn. The formation of the 

pycniospore is marked by a swelling of the pycniosporophore apex 

(Figs. 3.2, 3.4). Pycniospores are smooth, pear-shaped (Figs.3.S, 

3.7) and average 4.8 ~m in length. At maturity, thousands of these 

spores are exuded (Figs. 3.6, 3.7, 3.8) through the pycnial ostiole 

in a sticky matrix (Fig. 3.9). The mature pycniurn (Fig. 3.6, 3.10) 

is adaxial, flask-shaped, 137 ~m length, 124 ~ width and surrounded 

by pseudoparenchyrnatous tissue (Figs. 3.2, 3.3, 3.10). The mouth 
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of the pycnium, which penetrates the upper epidermis is lined by 

unbranched pointed hairs, the periphyses (Figs. 3.7, 3.8). Among 

the periphyses are branched hyphae, the flexuous hyphae (Figs. 3.8, 

3.11, 3.12) which, in older pycnia, are mostly longer than the 

periphyses (Figs. 3.11, 3.12). 

Both light microscopy (Fig. 3.13) and scanning electron micro­

scopy (Fig. 3.14) reveal the transformation of periphyses into flex­

uous hyphae in mature pycnia of this rust. Such transformation is 

clearly observed as hyphal growth at the apices of periphyses, where 

differences in morphology are seen between the converted periphyses 

and the newly-formed flexuous hyphae on their tips. 

Lipid, in the form of yellow refractive droplets when stained 

by cotton blue in 1actopheno1 and staining red with Sudan IV in 

lactophenol, was more abundant in cells of the pycnium than any 

other fungal structures in its vicinity. ~easurements of the 

external features of the pycnial stage are recorded in Table 3.1. 

3.2 Aecia and aeciospores 

Aecia of Puccinia poarum originate from a pseudoparenchyrnatous 

tissue (proto-aecium) which develops in the lower mesophyll of 

TussiZago leaves (Figs. 3.15,3.16). Nuclear staining indicates 

that the proto-aecium consists of monokaryotic cells (Fig. 3.15). 

From below this tissue, a hyrnenium of aeciosporophores arises as 

elongated cells (Figs. 3.17, 3.18), which give rise to aeciospore 

initials. The cells of this hyrnenium are of much greater size 

(27.3 ~ in length, 7.1 ~ in diameter) than those of the dense 
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prosenchymatous stroma, which develops below the hymenial layer, and 

similar in diameter to newly formed aeciospores. At various points 

of the junction of this prosenchymatous stroma and the hymenium, 

hypha 1 fusions appear to be present (Figs. 3.17, 3.18). The sporo­

phore and aeciospore initial are separated by a septum (Fig.3.l7). 

These cells as well as the fungal tissue below them are highly 

vacuolated (Figs. 3.17, 3.19). The thickening shown in the wall of 

the aeciosporophores (Fig. 3.17) corresponds to the thickened collar 

described in aeciosporophores of Puccinia Borghi by Rijkenberg & 

Truter (1974b). Aeciospore initials divided to form inunature aecio­

spores and intercalary cells (or disjunctor cells, as used by Kozar 

& Netolitzky 1975) (Figs. 3.17, 3.20). Aecia are mostly abaxial, 

cup-shaped (aecidioid as defined by Littlefield & Heath 1979) and 

average 266 ~m and 404 ~m in width when closed and opened respect­

ively (Figs. 3.22 to 3.26). Aeciospores are oblong or ellipsoid 

and average 20.3 pm x 23.6 vm (Figs. 3.27 to 3.31). Several germ 

pores occur on each aeciospore (Figs. 3.21,3.29, 3.30, 3.31). The 

wall of the aeciospore is colourless (Figs. 3.21, 3.33) and verrucose­

echinulate (Figs. 3.27 to 3.31). Examination by scanning e1ectron­

microcrope shows that coglike ornamentations (Figs. 3.27, 3.28) 

(Littlefield & Heath 1979) and refractive granules (Figs. 3.28, 3.29, 

3,31, 3.33) are present on the surface of the aeciospores. The 

refractive granules appear to lie over germ pores. In Fig. 3.31, some 

germ pores appear to be filled to varying extents by material which 

could represent stages in the development of refractive granules, while 

other pores appear to have lost their plug material. From their 

appearance (Figs. 3.29, 3.30) it is possible that the refractive 
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granule's fUnction may be to enable the spore and germ tube to stick 

to the leaf surface of the host. Those seen adhering to germ tubes 

on the host leaf surface at some distance fram the spore may have 

been carried there on the growing germ tube. 

The aecium and aeciospores are enclosed by the peridiurn (Figs. 

3.22, 3.23, 3.32, 3.34), in which each peridial cell measures 

26.4 ~ x 23.9 ~m (Table 3.1). Same ornamentation of the surface 

of the peridial cell is seen (Figs. 3.32, 3.34). Oil droplets are 

abundant in both aeciospores and peridial cells. A dense layer 

(69.3 ~ thick) of fungal cells is seen around each aeciurn (Fig.3.3S), 

closely in contact with the peridium at its base but separated from 

it by a space in the upper region of the aecium. Scanning EM reveals 

the characteristically rounded outer wall surface of the aecium at 

the time of its dehiscence. Stages in emergence and dehiscence of 

aecia are shown in Figs. 3.24, 3.25, 3.26, 3.32. In Fig. 3.32, the 

peridium has opened, exposing the aeciospores ecf. Fig. 3.23), and 

the margin appears as five teeth, bending outwards. Aecia and pycnia 

also occur on the petioles of Tu8siZago leaves. Measurements of 

external features of the aecial stage are reported in Table 3.1. 

3.3 Uredia and urediospores 

On Poa leaves, uredia are IOOStly adaxial (Fig. 3.36). The 

earliest stage of development shows a mass of dikaryotic pseudo­

parenchymatous tissue (termed 'uredial initial' by Littlefield & 

Heath 1979) which is formed under the host epidermis (Fig. 3.37). 
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Sporogenous cells, stalked urediospores and paraphyses arise fronl 

this sporogenous tissue (Fig. 3.38). Urediospores (mean dimensions 

24.3 ~m x 19.5 ~m) are mostly obovoid, ellipsoid, with colourless, 

echinulate walls (e.g. Figs. 3.36, 3.39-3.44), sholving an average 

of 5 germ pores, which are much more easily seen lvith the light 

microscope than with the scanning electron microscope. This dis­

crepancy could indicate that the germ pores are covered by the 

outermost layer of the urediospore wall and are only detected with 

transmitted light. A section of a urediosorus from resin-embedded 

material (Fig. 3.46) appears to support this suggestion. Such 

covered pores could account for the small depression seen in some 

scanning EM pictures of urediospores (Figs. 3.40, 3.41). The spore 

stalks have a mean length of 25 ~m. Large oil bodies are present in 

urediospores, together with a number of smaller lipid drops (Figs. 

3.43, 3.45-3.47). In fixed and resin-embedded sections, masses of 

small lipid drops are seen in the peripheral cytoplasm of uredio­

spores (Figs. 3.46, 3.50). On germination, urediospores produce 

two or more germ tubes (Figs. 3.43, 3.44) with dense cytoplasm and 

numerous oil drops in their distal regions. During this process 

the spores and proximal regions of the germ tubes become highly 

vacuolated. 

Until maturity, the uredia remain covered by the host epidermis 

(Fig. 3.47) which finally splits open (Figs. 3.40, 3.41) allowing 

the release of the urediospores. The development of urediospores is 

accompanied by the grolrth of elongated, colourless, capitate, non­

septate paraphyses (Figs. 3.48-3.55) which may play some part in 

the rupturing of the epidermis or the release of the spores. All 
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mature uredia examined were found to have paraphyses, these structures 

becoming larger, more prominent and more numerous as the uredium 

expands. The heads of fully grown paraphyses are approximately 

spherical and similar in size to the urediospores (Figs. 3.52-3.55) 

from which they also differ in their smooth, unornamented surface 

and less dense cytoplasm (Figs. 3.48, 3.51). Ornamentations are 

seen on the surface of urediospores (Figs. 3.40-3.56) in the form 

of spines, each situated in a circular depression encircled by an 

annulus (Figs. 3.55, 3.56). Urediospores appear to be readily 

dislodged from their stalks. In favourable views, scanning EM 

pictures show a scar on the urediospore corresponding exactly in 

appearance and size with the exposed ends of urediospore stalks 

which have lost their spores (Figs. 3.41, 3.52). Such scars show 

a thickened rim and a central pore region. Teliospores occasionally 

arise among urediospores (Figs. 3.57, 3.58), indicating the con­

nection between uredial and telial mycelia. Light microscope 

examination reveals that a layer of fungal cells (peridium) covers 

the urediospores (Figs. 3.59, 3.60, 3.61, 3.62), which is frequently 

damaged as the spores rupture the host epidermis. The outline 

of the walls of peridial cells is readily observed in surface view 

of epidermal fragments from infected Paa leaves (Fig. 3.61), but 

not easily detected in transverse sections of the urediosori (Figs. 

3.36, 3.47, 3.59, 3.60). It is suggested that their inner walls 

break down during the maturation of the urediospores leaving their 

thickened, outer tangential walls adhering to the undersurface of 

the host epidermis. 

44 



3.4 Telia and teliospores 

Telia are mostly abaxial, elongated, covered by the host epider­

mis and (Figs. 3.63, 3.54) variable in size. In transverse section 

they show tightly packed groups of two-celled teliospores on very 

short stalks, separated from adjacent groups by non-septate para­

physes (Figs. 3.63, 3.64, 3.68, 3.69) of the same dark brown colour 

as the teliospores. As a result of this very tight packing during 

their growth mature teliospores are somewhat variable in shape 

(Fig. 3.66), often slightly curved and angular in cross section. 

As in urediospore formation, teliospores with their persistent 

pedicels and paraphyses arise from a dense, dikaryotic sporogenous 

tissue (Figs. 3.63, 3.65) lying between the epidermis and mesophyll 

tissue of Faa leaves. The spore is separated from its pedicel by a 

septum (Figs. 3.65, 3.66). A striking accumulation of lipid is 

found in the sporogenous tissue, pedicels, and teliospores (Figs. 

3.65, 3.67). Teliospores (averaged 54.3 ~m x 17.2 ~m) are mostly 

elongated, obovoid or oblong-clavate and either truncate or rounded 

at the apex (Figs. 3.66, 3.68). The young teliospores are initially 

single-celled but, at maturity, the spore is divided into two cells 

by a septum (Figs. 3.66, 3.67). Fig. 3.67 shows movement of material 

between these two cells through a septal pore of an immature telio-

spore. The surface of the teliospores generally appears 

smooth, but at higher magnification, scanning electron microscopy 

reveals a shallow rugulose ornamentation (Fig. 3.68). 
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Paraphyses enclosing groups of spores in telia are easily 

observed with both light microscope (Figs. 3.63, 3.69) and scanning 

electron microscope (Figs. 3.64, 3.68). They are brownish in 

colour, elongated and capitate (Figs. 3.68, 3.69). After germin­

ation of teliospores, basidiospores are released and infect TussiZago 

leaves. Basidiospores are ovate to pyriform, smooth-surfaced and 

attached to a conical apiculus (Fig. 3.70). The measurements of 

the external features of uredial and telial stages are recorded 

in Table 3.1. 
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Table 3.1 Heasurements* of the external features of pycnial, aecial, 
uredial and telial stages of PUccinia poaPUm. 

Features Dimensions (urn) Ntunber of 
samples 

PycniLUn (LxW) 137.0 (±3.5) x 124.0 (±3.4) 25 

Pycniosporophore (L) 28.8 ± 0.7 50 

Pycniospore (L) 4.8 ± 0.3 25 

Flexuous hypha (L) 149.0 ± Q.3 25 

Periphyses (L) 95.0 ± 2.2 25 

Closed aecium (W) 266.0 ± 13.4 10 

Opened aecium (W) 404.0 ± 8.6 15 

Aeciosporophore (LxW) 27.3 (±O.5) x 7.1 (±0.5) 50 

Aeciospore (LxW) 20.3 (:to.2) x 23.6 (±0.4) 25 

Peridial cell (LxW) 26.4 (±0.7) x 23.9 (±1.0) lO 

Fungal layer around 
aecium (T) 69.3 ± 3.3 15 

Urediospore (LxW) 24.3 (±0.9) x 19.5 (±0.3) 25 

Urediospore stalk (L) 25.2 ± 1.3 20 

Germ pores in uredio-
spore (n) 4.5 ± 0.4 15 

Teliospore (LxW) 54.3 (±1.0) x 17.2 (±0.7) 15 

Pedicel (L) 15.3 ± 0.6 15 

*Measurements made using light microscope on sections of fresh 
material, mounted in lactophenol. 

L, length; W, width; T, thickness; n, number; ±, Standard error 
of mean 
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QUANTITATIVE ASSESSMENT OF GROlffi1 OF PUCCINIA POARUM 

IN TISSUES OF THE ALTERNATE HOSTS 

4.1 Growth of P. poarum on TussiZago fapfapa 

The earliest stage of the haploid phase of P. poarum on the 

pycnial-aecial host, TussiZago fapfapa shows an active mycelial growth 

radiating out from a dense fungal mass or proto-pycnium, formed in an 

intercellular space within the upper mesophyll (Fig. 3.1), and rapidly 

colonizing the mesophyll tissue of TussiZago leaves forming proto­

aecia in the lower mesophyll (Figs. 3.15, 3.16). The development of 

these structures into pycnia and aecia has been described in Chapter 

3. Nuclear staining reveals that the bulk of the fungal mycelium 

external to the aecium in pycnial-aecial stages is monokaryotic and 

that dikaryotic cells are only observed in the prosenchymatous fungal 

tissue at the base of the aecium. 

In sections through the margin of the developing pycnial-aecial 

infections, cut parallel to and just below the epidermis,intercellular 

hyphae are seen to radiate freely through the mesophyll (Fig. 4.1). 

These hyphae are septate, of average diameter 3 ~and vary in the 

length of their cells. The tip of a hypha becomes closely appressed 

to the mesophyll cell forming a terminal cell, the intracellular 

hypha-mother cell. At the colony margin, the mother cells give rise 

to intracellular hyphae, which are slightly constricted at the point 

where they penetrate the host cell wall. These intracellular hyphae 
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are designated type X (Fig. 4.2). In the older parts of the pycnial­

aecial pustule (pustule centre), similar sections show intercellular 

hyphae growing along the host cell wall in the vicinity of a maturing 

pycnium, occasionally penetrating host cells \vith an apparently 

unmodified, less specialized intracellular hypha (Type V), which is 

not constricted at the point of penetration (Fig. 4.3). Both X and 

Y types of intracellular hyphae are unbranched, irregular in outline 

and occasionally septate, but are not cut off by a septum at the 

point of entry to the host cell. Semi-thin sections (0.5-1.0 ~m 

thick) from epon-embedded material reveal that more septa occur in 

intracellular hyphae during the later stages (Fig. 4.4) of pycnial­

aecial infections than in younger stages. Lipid accumulates in 

both types of intracellular hyphae (Figs. 4.3, 4.5). In addition 

to those in mesophyll cells, intracellular hyphae are observed in 

epidermal cells of TUssiZago (Fig. 4.6). Features of size and 

morphology of intracellular hyphae at different stages of pycnial­

aecial development are compared with those of haustoria of uredial 

and telial stages in Table 4.1. The length of intracellular hyphae 

in young pycnia1-aecial infections is approximately t\vice that of 

haustoria formed by the young uredial and telial stages. The growth 

of inter-and intracellular hyphae in pycnial-aecial pustules develop­

ing in the petioles of TUssitago leaves is similar to that in the 

lamina of the leaf. 

The intensity of infection of host cells by intracellular hyphae 

at different stages of development of the rnonokaryon on TUssitago is 

compared with that by haustoria of the dikaryon on Poa in Table 4.2. 

This study indicates that approximately 60% of the upper mesophyll 
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cells in infected regions of Tussilag9 leaves are penetrated by one 

or, occasionally, two intracellular hyphae (Fig. 4.7a), but rarely 

by more than two (Fig. 4.7b). 

4.2 Growth of P. paarum on Paa pratensis 

About one week after infection of Paa leaves, the early stages 

of uredia form just below the upper epidermis. The vegetative growth 

of the parasite in the intercellular spaces of Paa leaves is less 

extensive than that of the pycnial-aecial stages in Tussilaga, although 

the hyphae form an increasingly dense intercellular network (Fig. 4.8) 

close to urediosori and te1iosori as infection advances. The diameters 

of the intercellular hyphae and haustoria are similar. 

The morphological features of haustoria formed' .by uredial infec­

tions are recorded in Table 4.1. The haustoria are more limited in 

size than the monokaryotic intracellular hyphae, smooth in outline, 

with a clearly defined matrix (Figs. 4.9, 4.14) (corresponding to the 

term "extrahaustoria1 matrix" used by Littlefield & Heath 1979). The 

wall of the haustorium-mother cell stains more intensively ,~ith cotton 

blue in lactophenol than the rest of the hypha which is tenninates 

and can be recognized before penetration as it comes into contact 

with the host cell wall (Fig. 4.10). Like uredia1 haustoria of 

other rusts (Rice 1927; Coffey et ale 1972) those of P. paarum have 

a characteristically constricted neck region which extends some 

distance within the lumen of the host cell (Figs. 4.10, 4.12). In 

infected regions of Paa leaves, numerous haustoria are observed in 

mesophy11 cells (Figs. 4.9, 4.13, 4.14) and in epidermal cells 
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(Figs. 4.11, 4.12), including the bulliform cells of the adaxial 

epidermis above the midrib region. Multiple infections of epidermal 

cells are common (Fig. 4.11). 

In the vicinity of uredia, more than 70% of cells seen in long­

itudinal sections of the mesophYll of Foa leave~ cut parallel to the 

leaf surface, are penetrated by haustoria (Table 4.2) and about 25% 

of these by two or three haustoria per cell (Figs. 4.9, 4.13, 4.14). 

When telia are present, 75% of the mesophyll cells are invaded by 

haustoria, more than one-third of the infected cells containing two 

or more haustoria. Although the uredial and telial stages form less 

extensive growth of the intercellular mycelium than that of the 

pycnial-aecial infections, Table 4.2 shows that the percentage of 

cells penetrated by haustoria is more than that of TussiZaga cells 

penetrated by intracellular hyphae of the monokaryon. Since the 

host cells of Faa are much smaller than those of TussiZaga, this 

implies a considerably higher number of host cell penetrations per 

unit area of leaf by the dikaryon than by the monokaryon. 

At least three types of haustoria are found in the uredial and 

telial phases of development: a, short and rod-like; b, L-shaped; 

c, C-shaped with the tip lying near the neck (Fig.4.lSa,b,c). The 

rod-like haustoria (Type a) are the most frequent type at all stages 

of development of uredial infections, while b- and c-types are 

occasionally observed in early uredial substages but increase in 

frequency later in infection. Measurements of lengths of each haus­

torial type at successive stages of uredial and telial development 

are compared in Table 4.3 The L-shaped and C-shaped forms of haustoria 

increase consistently in length throughout the growth of uredia. 
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Generally similar results are obtained from measurements of haustoria 

during the development of telia but with some reduction in the number 

of significant differences as infection progresses. Table 4.3 shows 

a close similarity in size of haustoria of corresponding age and 

type between uredial and telial infections. Haustoria also increase 

in width with age of infection (Table 4.4). 

The volumes of haustoria in different types of Paa leaf cells, 

which are penetrated by one or more haustoria,are recorded in Table 

4.5 and related to the volumes of the host cells. A negative cor­

relation appears to exist between haustorium size and host cell 

size. In bundle sheath cells, haustoria occupy a mean 1.5%, 2.6% 

and 3.3% respectively of the mean cell volume of just under 16000 ~m3 

when one, two or three haustoria are present per cell. In upper 

mesophyll cells, with a mean cell volume of 18000 ~m3, haustoria 

occupy 1.2% of the cell volume, in single infections and 1.5% 

where two or three haustoria have penetrated. The much larger 

epidermal cells of Paa have, however, only 0.07% of their volume 

occupied by haustoria, in the case of infection by one or two 

haustoria per cell, and 0.12% where three haustoria are present. 

With the onset of teliospore development, the cell walls of the 

intercellular hyphae show a brown pigmentation, similar to but less 

dense than that of the teliospores and telial paraphyses. Although 

the appearance of the fungus in the vicinity of uredia and telia 

shows some differences in amount and colour of cells, these stages 

are frequently present together in a single section of a leaf of 

Poa and thus appear to develop in parallel rather than in succession. 
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Table 4.1 Structural features of intracellular organs of Puccinia poarum in mesophyll cells of its alternate hosts. 

Age of pustule 

Type of intracellular organ 

Mean length (lJIll) * 

Number of organs counted 

Description 

Pycnial-aecial stages on TussiLaga farfara 

Margin 

Young (PI) Mature (P3) 

x x 

20.9 25.0 

25 25 

Slight constriction 
at point of entry 

Centre 

Mature (P3) 

Y 

32.5 

25 

No constriction 
at point of 
entry 

Irregular outline and growth habit 

Occasionally associated with host cell 
nucleus 

Mother cell not distinguished from rest 
of intercellular mycelium 

Uredial-telial stages on Paa pratensis 

Ymmg (U
l
) Mature (T

3
) 

a b c a b c 

9.4 13.0 14.3 12.818.121.5 

26 20 12 26 26 26 

Constricted, well-defined neck region 

Smooth outline with straight or curved 
booy 

Frequently in close proxllnity to host 
nucleus 

The wall of the mother cell stained more 
intensively than intercellular hypha 

* = Standard errors of means in all cases below 1% (each figure based on measurements of cells from 10 pustules). 



Table 4.2 Quantitative comparison of intensity of infection at successive stages of development of Puccinia poarum on 
leaves of TUssiLago farfara and Poa pratensis. 

Number of intracellular fungal 
structures in each host cell 

T. far>fara 

P. pratensis 

Young pycnial 
stage (PI) 

Mature pycnial 
stage (P3) 

Uredial stage (U3) 

Telial stage (T3) 

Mean number of cells containing each number of intra­
cellular structures 

1 2 3 4 

2.SS ± 0.19 0.2S ± 0.10 o o 

3.05 ± 0.17 0.40 ± 0.15 o 0.05 ± 0.05 

5.10 ± 0.38 1.40 ± 0.18 0.30 ± 0.15 o 

4.60 ± 0.32 2.10 ± 0.39 0.40 ± 0.13 o 

fv1ean number 
of cells per 
sample 

4.70 ± 0.18 

5.65 ± 0.15 

9.40 ± 0.38 

9.40 ± 0.22 

Percentage 
of cells 
infected 

59.58 

61.95 

72.34 

75.53 

Values are means of 20 counts ± standard errors of means, each sample consisting of cells lying along a 300 ~ transect 
line in a section through the upper mesophyll, parallel to epidermis. 



Table 4.3 Lengths (~m) of haustoria of Puccinia poarum at successive stages of development of uredia and te1iat 

Mean 
type length 

....... 
a a 
b I * * 

c I * * 

a 11·3 * * 

b 17·8 *** 
c 22·6 * * 

a 12·7 111*. 

b 19·9 ~.* 

c 25·3 * * 

b 

-

-
*** 
., •. * 

-
*** 

*** 

U 11. 

c 

- a U2 

*. *** b 

.,.,* ** • • •• c 

- - ••• .... a 

**.* •••• •• • *** b 

~* *** **,* * 

U3 

Mean 
type length 

1 a a 

b ~ *-*1* 

l • * 

a 11·0 -
b 17·2 *1*1* 

c 18·2 *'*'* 

a 12·8 • * 

b 18·1 •. *1* 

c 21·5 *** 

b 

-
**.* 

-

*** 

*** 

* * 

*** 

Tl 

c 

* * a Tl 

- *** b 

* *** - c 

- * * *** * * a 

- *** - - **.* 

*** *** *** *** *** 

T3 

b 
I 

** c • ** **,*1 c 
--'- --

t Based on measurements of more than 20 haustoria except where otherwise indicated. cUI and cTl based on measure­
ments of 10-lS haustoria. 

*, * *, * ** indicate differences in length estimated to exceed 0.05, 0.01 and 0.001 levels of significance. 

- indicates below 0.05 level of significance. 



Table 4.4. ~~an width (wm) of haustoria at ~uccessive stages of 
development of uredia and tel ia. -,-

Haustoriun type 

a 3.2 ± 0.1 3.5 ± 0.1 3.7 ± 0.2 

Urediun b 3.5 ± 0.1 3.9 ± 0.1 4.2 ± 0.2 

c *3.3 ± 0.1 3.7 ± 0.2 4.1 ± 0.1 

T1 T2 T3 
a *3.4 ± 0.3 3.4 ± 0.1 3.6 ± 0.2 

Teliun b *3.4 ± 0.1 3.5 ± 0.2 4.3 ± 0.1 

c *3.4 ± 0.2 3.5 ± 0.2 3.9 ± 0.2 

t Mean values (± standard error) based on measurements of more than 
20 haustoria, except where otherwise indicated. 

* Based on measurements of 10-15 haustoria. 



Table 4.5 Relationship of number and size of haustoria of Puccinia poarum at uredial stage to the volume of infected 
host cells of Poa pratensis. 

Volume of haustoria (~3) 

One haust- Two haustoria per host Three haustoria per host cel13 
ce112 orium perl 

host cell 

Epidennis 127.5±12.4 92.0±12.6 46.8±3.5 122.1±33.3 50.1±4.9 

Total volume of haustoria 0 

HOst cell volume '0 
0.07 0.05 0.02 0.06 0.03 

Mesophyll 2l9.7±16.9 l70.0±16.7 108.l±9.6 l12.4±7.8 91. 2±16. 9 

Total volume of haustoria Q 

Host cell volume ~ 1.2 0.9 0.6 0.6 0.5 

Bundle sheath 241.2±17.3 2S2. S±20. 3 lS3.3±9.0 276.3±73.2 151. S±22.0 

Total volume of haustoria 0 1.5 1.6 1.0 1.7 1.0 ~ Host cell volume 

Numbers of host cells on which mean values (± standard errors) are based: 1 = 30 cells; 
2 = 20 cells; 

48.5±5.3 

0.03 

6S.0±17.0 

0.4 

97.S±l3.l 

0.6 

Volume o~ ~ost 
cell (~ ) 

192692.5±l75l8.7 

l8428.7± 1879.4 

lSSS3.9± 1535.3 

3 = 10, 5 and 5 cells in epidermis, mesophyll 
and bundle sheath, respectively 

In all cases mature uredial-telial pustules lvere used (24 days after inoculation) 
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ELECTRON MICROSCOPIC STUDIES OF INTER- AND INTRA­

CELLULAF. STRUCTURES OF FUCCINIA FOARUM 

5.1 Intercellular hyphae 

The pycnial and aecial stages of F. poarum show an extensive 

growth of rnonokaryotic fungal hyphae in the intercellular spaces of 

TU88ilago mesophyll tissue (Fig. 5.1). Hyphae of the haploid 

mycelium are often closely associated with the host cell'wall; they 

frequently penetrate the middle lamella region separating contiguous 

cells and may grow within the host cell wall or parietally(Fig. 5.2), 

becoming embedded in a thick layer of host wall material which pro­

trudes deeply into the lumen of Tussilago cells. In the vascular 

bundles of Tussilagoleaves, where intercellular spaces are absent, 

hyphae frequently grow within the host cell wall (see Fig. 5.7). 

A more limited growth of dikaryotic mycelium develops in the inter­

cellular space system of the mesophyll of Foa leaves during the 

uredial and telial stages of this rust (Fig. 5.3). Unlike hyphae 

of the monokaryon in Tussilago, dikaryotic hyphae do not grow \vithin 

the cell walls of Foa and generally are in less close contact with 

host cells than those of the haploid mycelium (Fig. 5.4). This is 

confirmed by S.E.M. examination, where the monokaryotic hyphae 

(Fig. 5.1) appear more closely appressed to the host cells than 

those of the dikaryon in Foa (Figs.5.3, 5.5). Amorphous material, 

possibly adhesive in function, is frequently deposited between 
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monokaryotic hyphae and host cells (Fig. 5.6) but very little of 

this is associated with the dikaryotic hyphae in Paa. 

In both hosts, intercellular hyphae possess a well-developed 

endoplasmic reticulum, mitochondria, abundant lipid drops and vacuoles, 

which frequently contain vesicles with a membranous inclusion (Figs. 

5.7, 5.8). In infected tissue of Tu8siZaga stained with lead citrate, 

aggregates of electron-lucent areas of granular appearance, unlike 

that of either lipid drops or vesicles,suggest the presence of gly­

cogen throughout the monokaryotic thallus in TussiZaga (Figs. 5.9, 

5.10, 5.26) but further investigation is required to confirm this. 

No such appearance has been found in similarly prepared sections of 

infected Paa leaves and glycogen appears to be absent from the dik-

aryon in Faa. The nuclei of both monokaryotic and dikaryotic 

hyphae are normally spherical or oval and surrounded by a double 

membrane. Dikaryotic nuclei show a somewhat greater proportion of ... 
heterochromatin relative to euchromatin than monokaryotic nuclei; 

they also appear to differ in that none of the sections of nuclei 

from rnonokaryotic cells examined has shown a nucleolus, whereas most 

of those from dikaryotic cells include a nucleolus (Figs. 5.7, 5.8, 

5.10, 5.11). 

Crystal-containing microbodies are observed in both rnonokary­

otic and dikaryotic hyphae. They are frequently in the vicinity of 

the septal pore apparatus (e.g. Figs. 5.14, 5.l5a,b), but are also 

seen dispersed in the cytoplasm (Fig. 5.11, 5.12). In dikaryotic 

but not in monokaryotic hyphae, crystal-containing microbodies are 

occasionally associated with lipid droplets (Fig. 5.11, 5.22). 
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5.1.1 Hyphal septa 

Both mono- and dikaryotic hyphae of PUaainia poarum display a 

similar range of septal types: 

i) Perforate septa, which develop centripetally from the longi­

tudinal walls, consist of two electron-dense layers separated 

by an electron-lucent lamella, and tapering towards the 

central pore (Fig. 5.13). On either side of the pore is a 

characteristic pore apparatus (cf. Littlefield & Heath 1979) 

consisting of a dense organelle-free region of cytoplasm of 

homogenous granular appearance which differs from the 

surrounding hyaloplasm (Fig. 5.14). Crystal-containing 

microbodies, empty vesicles and electron-dense vesicles 

occur around the pore apparatus. Some electron-dense vesicles 

lie within the pore apparatus region (Figs. 5.l5a,b). Exam­

ination of several sections from different samples indicates 

that the number of crystal-containing microbodies at the 

periphery of the septal pore apparatus varies from one to 

three per section (Figs. 5.15, 5.16, 5.17). Septal pores are 

frequently occluded by electron-dense material, which appears 

to be similar to the contents of the vesicles within or 

around the pare apparatus (Figs. 5.14, 5.18). The plasma 
appears 

membrane / con'tinuous over the septum and pore, and lomasome-

like structures frequently occur between the fungal plasma­

lemma and the septum (Figs. 5.l5b, 5.18). Perforate septa 

are frequent in hyphae growing in intercellular spaces of 

the host. 
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ii) Partial septa which appear to be formed by infolding of 

longitudinal walls of hyphae in intercellular mycelium are 

occasionally found within the mseophyl1 (Figs. 5.19, 5.20) 

but are particularly frequent in the pseudoparenchymatous 

tissue of aecia1 primordia and of urediosori (Fig.3.38,CIl.3). 

In monokaryotic hyphae, partial septa most frequently develop 

from one side only of the hypha (unilateral) (Fig. 5.19). 

Both unilateral and bilateral (Fig. 5.20) partial septa 

occur in dikaryotic hyphae. Partial septa are distinguished 

from the perforate septa by the larger diameter of the septal 

pore, the rounded, not tapering margin of the wall around the 

pore, the plasma membrane running around the margin of the 
appearing 

septum, rather than/ continuous over the pore, and the 

absence of a septal 'pore apparatus', so that cellular com-

ponents pass freely between compartments. Crystal-containing 

microbodies are occasionally associated with the unilateral 

partial septa in dikaryotic hyphae (Fig. 5.21) but have not, 

so are, been observed in this position in monokaryotic 

hyphae. 

iii) Complete septa, lacking a pore and pore apparatus, occur only 

in pseudoparenchymatous fungal tissue, both mono- and dikaryotic 

(Fig. 5.22). Besides the absence of a pore, which has been 

confirmed by serial sectioning, they are furtQer distinguished 

from perforate septa by being thinner, but of uniform thick­

ness, not tapering towards the centre, and by lacking a pore 

apparatus. 
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Table 5.1 summarizes differences between intercellular hyphae 

of PUaainia poarum on its alternate hosts and compares features of 

the inter- and intracellular structures of the parasite. 

5.2 Intracellular structures 

In Tussitago leaves, mesophyll cells are penetrated by relat­

ively unmodified hyphae which differ in many ultrastructural features 

from the haustoria produced by the dikaryon in infected mesophyll 

cells of Foa (Table 5.1). Intracellular hyphae arise as terminal 

cells of intercellular hyphae (Figs.s.23,s.24,s.25). The mother cell 

of an intracellular hypha is separated from the rest of the inter­

cellular mycelium by a septum (Fig. s.26a,b). A distinct layer of 

amorphous material surrounding the hyphae and particularly notice­

able between the hypha and the host cell wall, appears to playa 

part in the attachment of the intracellular hypha mother cell to the 

host cell (Fig. 5.26a). There is little such material associated 

with the haustorium-mother cell in Foa (Fig. 5.27). At the point 

of contact with the host cells, the wall of a monokaryotic hypha is 

of uniform thickness and density (Fig. S.26a,b). The intracellular 

hypha mother cell protrudes to form a penetration peg, in which the 

continuity of the fungal wall is unbroken, and host wall-like 

material is deposited in advance of the penetrating hypha (Fig. S.26a). 

The hypha is relatively little constricted where it penetrates the 

host cell wall (Fig. 5.26a,b). These features contrast with the 

localized thickening of the wall of the haustorium mother cell 

adjacent to a mesophyll cell of Foa, the abrupt interruption of the 
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fungal wall where the haustorium passes through the host cell wall 

(Fig. 5.27), the extremely constricted haustorial neck and its dis­

tinctive neck band (Fig. 5.28a,b). It appears unlikely that any 

thin layer of fungal wall material surrounds the plasmalemma of the 

haustorial neck in the region where it passes through the host cell 

wall (Fig. 5.27). 

The filamentous intracellular hyphae of the monokaryon grow 

in an irregular manner (Figs. 5.24, 5.25). Light and electron 

microscopy reveal that intracellular hyphae of Puooinia poarum end 

in the host cells and are not observed to emerge from them. The 

septa, occasionally observed in EM sections of the intracellular 

hyphae (Fig. 5.29), appear similar in structure to those of the 

intercellular mycelium. Examination with the light microscope of 

infected host cells of comparable age in semi-thin sections (0.5-1.0 

~ thick) shows that the frequency of occurrence of septate intra­

cellular hyphae is higher than suggested by electron micrographs. 

The cytoplasm of the intracellular hypha with its nucleus, mito­

chondria, endoplasmic reticulum, vesicles and vacuoles is bounded 

by a well-defined plasma membrane (Fig. 5.30a,b). In comparison with 

the uredial haustoria, more lipid bodies are observed in intra­

cellular hyphae of the monokaryon in TussiZago (Figs. 5.29, 5.30b). 

In contrast to the monokaryotic intracellular structures, the 

haustorium of the dikaryotic thallus is of a well-defined form, con­

sisting of a narrow tubular neck region, which extends into the host 

cell and expands to form the haustorial body (Fig. 5.28a,b). An 

electron-dense neckband is visible near the mid-point of the haustorial 

neck (Fig. S.28a). The fungal plasmalemma is continuous between the 
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mother cell and the haustorium and no intervening septum is formed 

(Fig. 5.27). However, a septum separating the haustorium mother 

cell from the rest of the intercellular hypha is shQ\'ffi in Fig. 5.31 

(see also Fig. 4.10, Chapter 4). The haustorium contains a well­

developed endoplasmic reticulum, numerous mitochondria, vesicles, 

vacuoles and lipid drops (Fig. 5.32a,b). 

Compared with the intercellular hyphae of the dikaryon, uredial 

haustoria appear to have smaller amounts of lipid drops (see Figs. 

5.4, 5.8, 5.32a,b). In all haustoria of P. poarum so far examined, 

by light- or electron-microscopy, only a single nucleus has been 

observed in the body of the haustorium (Figs. 5.32b,c; see also 

Fig. 4.13, Chapter 4) although in Fig. 5.27, one nucleus is observed 

in the narrow neck region. The well-defined plasmalemma of the 

haustorium body is occasionally invaginated by lomasomes (Fig. 5.33). 

In older haustoria, the mother cell becomes highly vacuolated 

(Fig. 5.27). 

The effect on the host wall of penetration by the parasite 

differs considerably in the two hosts. In TussiZago, the intra­

cellular hypha mother cell forms a penetration peg, prOjecting into 

the host cell, encased in a thick layer of host cell wall material 

(Fig. 5.26a). Penetration of Poa cells by the dikaryon involves 

little disturbance or change in the region of the host cell wall 

penetrated by the haustorium (Fig. 5.27). There is no collar of 

host wall-like material around necks of haustoria of the dikaryotic 

thallus of P. poarum whereas this appears to be a normal feature of 

the intracellular hyphae of the monokaryon (Fig. 5.34), clearly 

corresponding to the layer of host wall-like material formed around 
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every penetration peg (Fig. S.26a). By further growth the intra­

cellular hypha penetrates this wall layer and grows l~ithin the 

cell, enclosed by the host plasmalemma. 

Sections of infected leaf tissue stained with saturated recor­

cin blue (lacmoid) in 30% ethyl alcohol (see Appendix) showed a 

blue, callose type of staining on intracellular hyphae and on the 

host wall adjacent to the site of penetration. No such reactions 

were associated with haustoria of the dikaryon nor with eitller mono­

karyotic or dikaryotic intercellular mycelium. In both hosts, 

whether infected or not, positive callose reactions are given by 

vascular tissue of the leaves. In Poa, there was a particularly 

clear reaction by the walls of both xylem and phloem, endodermis and 

the outer walls of epidermal cells. The staining of infected and 

uninfected tissues was compared with that of Vitis phloem which is 

known to contain callose (Currier 1957). In l~ody stems of Vitis~ 

tissues other than phloem fail to show a callose reaction. 

The distribution of fluorescence observed in leaf tissue stained 

with analine blue (see Appendix) confirms these observations. In 

this procedure, unstained tissue is also examined under the fluores­

cence microscope in order to determine the primary fluorescence of 

the tissue. ~nfected leaf tissue of TussiZago stained with analine 

blue shows a strong yellow fluorescence along intracellular hyphae 

of P. poarum and also in the host cell wall around the point of 

penetration. No fluorescence is shown by the monokaryotic inter­

cellular mycelium. Infected Poa leaves show no differences in dis­

tribution of fluorescence between infected and uninfected leaf 

tissue and no association of fluorescence with haustoria or with 
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dikaryotic intercellular hyphae. Fluorescence of the vascular 

tissue of both hosts corresponded with the distribution of callose 

indicated by the resorcinol blue method. 

Both intracellular hypha and haustorium are surrounded by a 

matrix (corresponding to the term 'extrahaustorial matrix' suggested 

by Bushnell 1972), which is bounded by the invaginated host plasma 

membrane (Figs. 5.30b, 5.32, 5.34, 5.35). A frequent general feature 

of this region in the monokaryotic intracellular hypha is the dep­

osition of variable amounts of material closely resembling the host 

cell wall, directly on the more electron-dense fungal wall (Figs. 

5.34, 5.36). Any space between this deposit and the bounding mem­

brane of invaginated host plasmalemma usually contains fibrillar 

material of similar electron density (Figs. 5.30a, 5.36). In 

addition, the plasma membrane surrounding the intracellular hypha 

is observed to form vesicle-like structures enclosing membranous 

materials (Fig. 5.37) or electron-dense granules (Figs. 5.38a,b). 

MOreover, vesicles are observed within the matrix and around its 

bounding membrane (Fig. 5.38c). The deposition of material resemb­

ling the host cell wall is not detected in uredial haustoria. 

Instead, the matrix around the haustorium tends to be occupied by 

fibrillar material of an electron density similar to that of the 

fungal wall and continuous with the haustorium wall material (Fig. 

5.35). 

In both hosts of P. poarum, the plasma membrane (invaginated 

host plasma membrane) surrounding the matrix around the intra­

cellular structure appears to be identical in electron density and 

thickness to the non-invaginated host plasma membrane (Figs. 5.27, 

5.29). 
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The haustorium is very closely associated with the host cell 

nucleus, which is frequently bent around it or deeply invaginated 

by it, separated only by a thin layer of host cytoplasm which 

includes metochondria and microbodies (Fig. 5.39a). The nuclei 

of haustorium and host cell might thus be frequently brought into 

close proximity (Fig. 5.40). On the other hand, neither light­

microscope nor electron-microscope observations show any special 

association of host nucleus and intracellular hyphae in infected 

Tussilago cells, although the host nucleus occasionally lies close 

to an intracellular hypha as in Fig. 7.9. The chloroplasts, mito­

chrondria and endoplasmic reticulum of the host cell, however, are 

frequently found to be associated with the intracellular hyphae 

(Figs. 5.30b, 5.34). 

A recurring feature of both haustoria and intracellular hyphae 

is the formation of concentric aggregations of membranes similar to 

those of the endoplasmic reticulum (Figs. 5.30a,b, 5.2a). In 

intracellular hyphae, some of the cristae of mitochondria show an 

obvious continuity with membranes of the endoplasmic reticulum 

(Fig. 5.41). 

Table 5.1 and Fig. 5.42 summarize the differences between the 

intracellular structures produced by P. poarum on its alternate 

hosts. 
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Table 5.1 Comparison of intercellular and intracellular structures 
of Puccinia poarum on its alternate hosts. 

Nucleolus visible 

Glycogen-like particles 

Crystal-containing 
microbodies 

Growth in wall and 
middle lamella 

Septation 

Adhesive material 
between fungal and 
host cells 

Growth within 
vascular bundle 

Constricted neck 
and neckband 

Collar 

Localized thickening 
at point of 
penetration 

Association with 
host cell nucleus 

Contents of matrix 
region 

Monokaryon on 
Tussilago farfara 

Inter- Intra­
cellular cellular 
hyphae hyphae 

-

+ + 

+ 

+ 

+ + 

Thick 
layer 

+ + 

+ 

occas-
ional 

resemble 
host-wall 

Oikaryon on 
Poa pratensis 

Inter-
cellular 
hyphae Haustoria 

+ 

+ 

+ 

Thin 
layer 

+ 

+ 

frequent 

electron-
dense fib-
rils 
resembling 
fungal wall 

All fungal structures contained endoplasmic reticulum, mitochondria, 
lipid bodies and vacuoles, which frequently included vesicles with 
membranous material. 



CHAPTER 6 

INVASION OF VASCUlJlR WJNDLES 



6 

INVASION OF VASCULAR BUNDLES 

6.1 Light microscopy 

In infected regions of TussiZago leaves, inter- and intracellular 

fungal structures of the monokaryon occur in the vascular bundles 

(Figs. 6.1, 6.2) particularly in the phloem region, in xylem parenchyma 

and in the bundle sheath cells (Figs. 6.1, 6.2, 6.3). Intracellular 

hyphae show dense growth in the vascular tissue, in striking contrast 

to their relatively sparse distribution in the much larger cells of 

the adjacent parts of the mesophyll tissue, where the bulk of the 

monokaryotic thallus is confined to the intercellular spaces (Fig.6.1). 

In earlier stages of development of the fungus, invasion of the xylem 
at 

tracheary elements is not observed but/later phases of infection, 

where opened aecia are present on the lower surface of the leaf, 

intracellular hyphae appear to occur also in the xylem vessels. The 

presence of intracellular hyphae in the xylem vessels of TussiZago 

leaves has been confirmed by serial sections passing through this 

region (Fig. 6.4a,b). 

In Foa leaves where xylem and phloem are enclosed by two layers, 

the sheath of large, longitudinally elongated cells and the heavily 

thickened endodermis, intracellular fungal structures of the dikaryon 

are seen in the bundle sheath cells (Fig. 6.S) but not in cells of 

the endodermis or vascular tissue within this layer. These bundle 
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sheath haustoria tend to be elongated when viewed in longitudinal 

section (Fig. 6.6). 

6.2 Electron microscopy 

6.2.1 TUssiZago farfara 

The vascular bundles of TussiZago leaves are surrounded by a 

layer of compactly arranged parenchymatous cells, the bundle sheath 

(or border parenchyma, Esau 1965). Within this layer lies the 

phloem, with its companion cells, phloem parenchyma, transfer cells 

and sieve tubes, and the xylem, with its parenchyma cells and trac­

heary elements. In infected TUssiZago leaves, invasion of the 

vascular bundles by fungal hyphae is found at all stages of develop­

ment of pycnial-aecial infection. Fig. 6.7 shows a small vascular 

bundle in a young pycnial pustule (PI stage, 4 mm diameter, aecia 

not visible). Intercellular hyphae occur in almost every inter­

cellular space between bundle sheath and mesophyll. Intracellular 

hyphae are also present in bundle sheath cells and in the living 

cells associated with the xylem and phloem. Also, in young pycnial 

pustules, fungal structures occur silnilarly in larger vascular 

bundles (Fig. 6.8). Even more extensive penetration of vascular 

tissue occurs in larger veins at later stages of infection (P2) 

(Fig. 6.9), when aecia are forming on the lower surface in areas 

about 6 mm in diameter. At this time, almost all living cells of 

the vascular bundle contain fungal structures. The more dense growth 

of the monokaryotic hyphae in the vascular bundle than in adjacent 
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regions of the mesophyll, indicated by light microscopy, has been 

confirmed by electron microscopy. Intracellular hyphae are more 

frequent in the bundle sheath cells than in the living cells 

associated with xylem or phloem (Figs. 6.7, 6.9). 

As in certain other members of the Canposi tae (Browning & GLUming 

1977), the phloem of T. faY'faY'a leaves is characterized by the 

development of wall ingrowths of the transfer cell type in phloem 

parenchyma and the companion cells of sieve tubes (Fig. 6.10). ~bst 

of these cells are penetrated at least by one intracellular hypha 

and have rather electron-dense cytoplasm with an enlarged, lobed 

nucleus (Figs. 6.10, 6.11). In healthy phloem an intervening space 

is observed between the wall ingrowths and the plasmalemma but no 

such space exists in the transfer cells of the infected phloem 

(Figs. 6.10,6.11, 6.12). However, lomasome-like structures occas­

ionally occur between the plasmalemma and wall ingrowths in the 

transfer cells of the infected phloem (Figs. 6.11, 6.13). 

Almost all living cells associated with the phloem of healthy 

vascular bundles have wall ingrowths (Figs. 6.12, 6.14). The fre­

quency of such transfer type cells and the complexity of their wall 

proliferations appears lower in the infected phloem region than in 

the healthy phloem of cqrnparable age (compare Figs. 6.7, 6.8, 6.9, 

6.12, 6.14). 

In healthy and infected leaves of Tussilago, no transfer cell 

ingrowths occur in xylem parenchyma. Compared with phloem parenchyma, 

xylem parenchyma cells show a higher degree of vacuolation and less 

dense cytoplasm but, like the phloem parenchyma, are extensively 

invaded by intracellular hyphae (Figs. 6.7, 6.8, 6.9, 6.1Sa,b). 
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Hyphae which occur bebleen the cells of the xylem and phloem (Figs. 

6.9, 6.15, 6.16a) or project into the cell lumen of bundle sheath 

cells (Figs. 6.l5a,b, 6.l6b) are commonly surrounded by a material 

continuous with and similar to the host cell wall. Around intra­

cellular hyphae, this material is often irregular in thickness where 

the hyphae may have been close to their point of entry. Although 

the presence of intracellular hyphae in the tracheary elements is 

indicated by light microscopy, ultrastructural examination has so far 

failed to find fungal structures in these elements but hyphae often 

lie in close contact with them (Figs. 6.7, 6.15b), separated from the 

vessel lumen only by a thin layer of host wall (Fig. 6.16a). Figs. 

6.15 and 6.16b show sign of breakdown of walls of xylem elements 

similar to that described by Harder (1978). The infected vascular 

bundles appear similar in structure to those of healthy parts from 

infected leaves but differ in cytological detail. Nuclei of healthy 

phloem parenchyma are of the normal oval form (Fig. 6.14) whereas 

those of infected calls are enlarged and variable in shape (Fig.6.19b). 

Nucleoli are frequently present in the nuclei of the healthy phloem 

parenchyma (Figs. 6.14, 6.17) but not in the nuclei of the infected 

phloem parenchyma cells (Figs. 6.10, 6.18). 

The generally transverse view of intracellular hyphae seen in 

transverse sections of vascular tissue and bundle sheath cells 

indicates their longitudinal path in the vein. This in in striking 

contrast to the intercellular and intracellular hyphae of the meso­

phyll, which lack any uniform orientation. The previous light micro­

scope observations, mentioned earlier in this chapter, also suggest 

that intracellular hyphae make extensive growth in the vascular 

bundles parallel to the conducting elements. 
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The intracellular hyphae of vascular bundles appear metabol­

ically active, having dense cytoplasm, prominent nuclei and mito­

chondria, lipid and glycogen-like particles, and each is enclosed 

by a clearly-defined, membrane-bound layer, resembling the extra­

haustorial sheath of dikaryotic growth stages (Harder 1978) for 

which Littlefield & Heath (1979) have used the term extrahaustorial 

matrix, suggested by Bushnell (1972). The walls of such intra­

cellular hyphae vary in thickness and electron density but are 

generally less dense than those in bundle sheath cells and those 

of intercellular hyphae. 

Mature intracellular hyphae of bundle sheath cells have a thick, 

electron-dense wall layer (Fig. 6.10, 6.l9a), surrounded by a layer 

of material with a similar staining reaction to the host wall and to 

the material in which hyphae lying adjacent to the cell wall of 

bundle sheath cells (Figs. 6.9, 6.lSa, 6.l9a, 6.20) are embedded. 

Younger intracellular hyphae of bundle sheath cells and those in 

phloem and xylem parenchyma (Figs. 6.9, 6.10, 6.l9b) have a thinner, 

less electron dense \vall layer separated from the external membrane 

by a transparent region which, in some cases, appears to be distended 

and to contain fibrillar material (Fig. 6.l9b). In contrast, as 

already noted, the wall ingrowths of the transfer cells in infected 

vascular bundles are closely surrounded by plasmalemma with no 

visible intervening space. 

6.2.2 Paa ppatensis 

Both scanning and transmission electron microscopes have been 

used to investigate the question of the infection of vascular bundles 
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of Paa leaves. Similar to previous light microscopy, the trans­
electron 

mission/microscopic examination reveals no invasion of endodermis, 

phloem and xylem by the parasite. Although, at the light micro­

scope level, haustoria have been observed in bundle sheath cells, 

no fungal intracellular structures of the dikaryon are obsen'ed in 

these cells using transmission electron microscopy. However, the 

scanning electron microscope shows that uredial haustoria occasion-

ally occur in the bundle sheath cells (Fig. 6.21). In Figs.6.22 

and 6.23, intercellular hyphae are seen growing in the intercellular 

spaces between the bundle sheath and the adjacent mesophyll. Neither 

light nor electron microscope has shown invasion by the parasite of 

fibers associated with the vascular bundles. 

Ultrastructurally, no differences are observed between vascular 

bundles from healthy and infected parts of Paa leaves. The phloem 

parenchyma and companion cells show nuclei, mitochondria, endoplasmic 

reticulum and lipid drops (Figs. 6.24, 6.25a,b). These cells are 

generally rich in free ribosomes (Fig. 6.26). An electron-dense body 

with double-membrane is frequently observed in phloem parenchyma cells 

(Figs. 6.25a, 6.26). Plastids are also seen in both phloem parenchyma 

and companion cells (Fig. 6.25a,b). Fig. 6.27 shows young sieve 

tubes with mitochondria and vacuoles. The protoplasts of phloem cells 

of Paa leaves are connected by separate unbranched plasmadesmata 

(Fig. 6.25a,b) while, in TussiZaga, these structures are dichotomously 

branched and more frequent than in Paa. Fig. 6.28 shows electron-

transparent areas around plasmadesmata connecting two adjacent sieve 

elements. These areas may be sites of callose deposition. 
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Xylem parenchyma cells show nuclei, mitochrondria, endoplasmic 

reticulum, vacuoles and large amounts of ribosomes (Figs. 6.29a,b, 

6.30, 6.31). Fig. 6.31 shows xylem elements with lignified thick­

enings and remnants of the cellulosic primary 'valls. No transfer 

cells are observed in vascular bundles of either healthy or infected 

Poa leaves. 

The endodermis in,Poa leaves consists of cells heavily thick­

ened on their inner and radial walls, and is connected to the abaxial 

epidermis by other fibres (Figs. 6.5, 6.32). Fig. 6.32 shows a 

crystal~containing microbody and cytoplasm in an endodermal cell 

but although they are living cells and only thickened on inner and 

radial walls they are not penetrated by haustoria and clearly form 

a barrier to invasion of the vascular system. The bundle sheath 

cells appear similar in cytology to those of the mesophyll but 

small in size (Fig. 6.33) and less frequently penetrated by haust­

oria, which although seen occasionally in light microscope prepar­

ations, have so far escaped detection with the electron microscope. 
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7 

CHANGES IN TISSUES OF ALTERNATE HOSTS 

7.1 Light microscopy 

7.1.1 Host cell size 

In longitudinal sections through the mesophyll tissue of 

TUssitago leaves, parallel to epidermis, marked differences in size 

are observed between mesophyll cells in the vicinity of pycnia and 

those further away (Fig. 7.1). Measurements recorded in Table 7.1 

demonstrate that host cells adjacent to a pycnial pustule are sig­

nificantly smaller than those at a distance from it or those in 

uninfected mesophyll tissue. No such effect of infection has been 

observed in Poa. 

7.1.2 Host nuclei 

No particular association of nuclei of infected cells of 

TUssiZagowith intracellular hyphae is observed nor any striking 

changes in shape, when compared with the nuclei of uninfected cells. 

However, in both mesophyll and epidermal cells of infected parts of 

a TUssiZago leaf, enlargement of the host nuclei is found. The 

volume of TUssiZago mesophyll nuclei increases by 53%, about half 

as much as in nuclei of infected epidermal cells, which show an 

increase in nuclear size of 100% (Table 7.2). 
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Table 7.1 Comparison of areas of meso!Jhyll cells of Tussilago 
farfara adjacent to and at some distance from pycnium, 
as seen in sections parallel to upper epidermis. 

2 
Host cell area (~m ) 

NLUnber of cells 
measured 

Cell adjacent 
to pycnium 

1442.6±101.1 

45 

Cell > 100 jJm 
distant from 

pycnilIDl 

2149. 3±240. 9 

32 

± Standard error, 10 pycnia from several pycnial-aecial 

postules (P3). 



Table 7.2 Response of host cell nucleus to infection by Puccinia poarum. 

3 Vohnne (\lm ) of nucleust 

Tussilago farfara* 

Healthy Infected ' Increase Healthy 
% 

Me 5 ophy 11 102.6 ± 3.6 157.1 ± 7.0 53.1 93.1 ± 5.3 

EpideI1l1is 101. 7 ± 3.7 215.9 ± 11.4 112.3 107.6 ± 4.8 

t Means of 30 nuclei ± standard error. 

* Pycnia1-aecial pustule (>50% of aecia dehisced, i.e. P3). 

** Uredial-telial pustule (24 days after inoculation). 

Poa pratensis** 

Infected 

194.7 ± 11.8 

149.0 ± 7.2 

Increase 
% 

109.1 

38.5 



The nucleus of infected cells in Poa leaves generally lies 

adjacent to the fungal haustorium (Fig. 7.2), often bent closely 

around it. Host cell nuclei are noticeably larger than those of 

healthy cells (Table 7.2) (Fig. 7.3a,b), their volumes being 

increased by 109% in me sophy 1 1 and 39% in epidermal cells after 

penetration by haustoria. Although multiple infections of epidermal 

cells are observed, the epidermal cell nucleus appears less affected 

than those in infected mesophyll cells. Nuclei of infected cells 

are also more variable in shape, frequently rather elongated com­

pared with the approximately spherical nuclei of healthy mesophyll 

cells. Greatest elongation of the nucleus is seen in infected 

epidermal cells. 

7.1.3 Host chloroplasts 

Comparison at the light microscope level, using resin-embedded 

sections, indicates that infected mesophyll cells of TussiLago leaves 

contain fewer chloroplasts than adjacent uninfected cells (Fig.7.4a,b). 

In Table 7.3, in discs of infected and uninfected leaf tissue from 

leaves of comparable age, the infected TussiZago mesophyll cells 

during PI (pycnial pustule, aecia not visible) and P2 ~50% of aecia 

dehisced) stages of pycnial infections show a significant reduction 

in chloroplast mDnbers, compared with the uninfected cells. Similar 

reduction has been found in mesophyll cells from several pycnial 

pustules at very early stages (1-2 TIm diameter) although the number 

of chloroplasts in comparable uninfected cells appears to increase 

with age (Fig. 7.5a-f). In older uninfected mesophyll cells, one 
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to three starch grains occur in the chloroplasts (Fig. 7.6a). Starch 

grains are also present but fewer, in comparable infected cells 

(Fig. 7.6b). 

The characteristic yellowing of infected sites on leaves of 

TUssiZago during the development of the rust infection is correlated 

with changes in colour and appearance of the chloroplasts, as 'veIl 

as their reduced number compared with uninfected regions of the 

leaves (Table 7.3). 

Association of the host chloroplasts with the monokaryotic 

intracellular hyphae is frequently observed, where the chloroplast 

and cytoplasm appear to be pulled away from the host cell wall 

(Fig. 7.4b). 

Using similar, one micron-thick, resin-embedded sections, 

the number of chloroplasts in both infected and uninfected mesophyll 

cells of Poa has been studied. Chloroplast numbers are significantly 

reduced in mesophyll cells after infection by the dikaryon, when 

compared with uninfected cells (Table 7.3) (Fig. 7.7a,b). Table 7.3 

shows that the infected mesophyll cells lose about 40% of their 

chloroplasts during uredial infection (10-14 days from inoculation). 

Moreover changes are observed in the green colour of the chloroplasts 

in infected cells (Table 7.3). Freezing microtome sections of both 

young and old healthy leaves of Poa show that the number of chloro­

plasts per cell increased with age (compare Fig.7.7 b and c). 
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Table 7.3 Responses of host chloroplasts to infection by Puccinia poarum observed under.light microscope. 
In both hosts, differences between infected and uninfectcd cells exceed the 0.05 level of 
significance. 

Mean number of 
chloroplasts* 
in cell 

% loss in chloroplasts 

Colour of chloroplasts** 

TussiLago farfara 

Uninfected 
cell Infected cell 

HC PI P2 

12.7 ± 0.4 6.7 ± 0.2 5.9 ± 0.2 

47.3 53.5 

green yellowish yellowish 
green green 

Poa pratensis 

Un infected 
cell 

Infected cell 

HC Ul U2 

9.7 ± 0.3 5.9 ± 0.3 5.7 ± 0.2 

39.2 41.2 

green yellowish yellowish 
green green 

* Counts of 100 cells (± standard error of means) in 25 slides from 5 specimens of comparable age, each 
sample consisting of cells lying on the ends of a transect line in section through mesophyll tissue 
parallel to the leaf surface. 

** Detected in freezing microtome sections. 

He: Healthy cell from infected leaf 



7.2 Electron microscopy 

7.2.1 Host nucleus 

In TussiZago, the nucleus of the uninfected mesophyll cells 

(Fig. 7.8a-c) is bounded by a well-defined double membrane and shows 

clear differentiation of heterochromatin and euchromatin. The 

heterochromatin is concentrated in the periphery of the nucleus and 

its amount appears to be less than that of the euchromatin. A 

nucleolus is also present in the nucleus of uninfected cells (Fig. 

7 .8b,c). 

The mesophyll cell nucleus is not always close to an intra­

cellular hyphae in infected TussiZago, where such association is only 

observed during later stages of infection (Fig. 7.9). The nuclei 

appear to be elongated compared to normal nuclei of uninfected tissue 

(compare Figs. 7. 8b and 7 • lOa) . As in the normal nucleus, hetero­

chromatin aggregates in the periphery of the nucleus in infected 

TussiZago cells (Fig. 7.l0a,b) but, as infection progresses, the 

amount of heterochromatin appears to be less than that of the normal 

nucleus (Figs. 7.9, 7.11). Figs. 7.9 and 7.11 show very small 

clumps of het~rochromatin in the nucleus of TussiZago mesophyll 

cells during later stages of infection. 

In nuclei of infected mesophy11 cells, the electron-density of 

euchromatin is increased, ccmpared with nuclei of uninfected cells 

(Figs. 7.8a,b,c, 7.9, 7.l0a,b). 

In infected mesophyll cells of TussiZago, the nucleolus is 

associated with electron-dense material which appears to originate 
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from it (Figs. 7.10, 7.11). Nucleoli are occasionally seen during 

later stages of infection. 

In mesophyll cells from uninfected parts of Poa leaves, the 

nuclei are oval or spherical and show large amounts of heterochrom­

atic material, nucleoli and double unit nuclear membranes (Fig. 7.l2a, 

b,c). Those of older healthy mesophyll cells show nucleoli and a 

balanced ratio of euchromatin and heterochromatin (Fig. 7.13). 

In infected mesophyll tissue of Poa, the fungal haustorium is 

closely associated with the host cell nucleus which is frequently 

bent around or deeply invaginated by it (Figs. 7.14a,b, 7.15, 7.16a, 

b). The section shown in Fig. 7.l6a and b shows a haustorium com­

pletely surrounded by the host nucleus during later stages of 

infection. A marked increasein size of the host nucleus (rec-

orded in Table 7.2), an irregular, lobed form and changes in the 

proportion and density of euchromatin occur in mesophyll cells con­

taining haustoria. ~~re euchromatin than heterochromatin is found 

in nuclei of infected cells during both early (Fig. 7.l4a,b) and 

later stages (Figs. 7.15, 7.l6a,b, 7.17) of uredial infection. In 

addition the electron-density of the euchromatin also increases 

during the development of the uredial and te1ial stages (Fig. 7.l4b, 

7.16a,b, 7.l~). Compared with nuclei of uninfected cells, the amount 

of heterochromatin decreases in those of infected mesophyll cells 

(Figs. 7.l3b, 7.l4a,b, 7.15, 7.l6a,b). After infection, nucleoli 

appear to be absent in nuclei of mesophyll cells of Poa, although 

very occasional sections of nuclei during early stages of infection 

show nucleoli (Fig. 7.l4b). However, fewer nucleoli are observed in 

mesophyll cells of infected Fbathan in infected TussiZago. 
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Table 7.4 summarizes the ultrastructural changes in nuclei of 

Poa and TUssiZago mesophyll cells after infection by FUccinia poaPUm. 

7.2.2 Host chloroplasts 

Compared with the uninfected tissue, changes are observed in 

the ultrastructure of chloroplasts in infected Tussilago mesophyll 

cells (Table 7.S). Chloroplasts from uninfected tissue contain a 

well-developed membrane structure of grana, intergranal lamellae, 

and chloroplast-bounding membranes with few osmiophilic globules 

(Fig. 7.18). In contrast, chloroplasts of comparable tissue during 

early stages of pycnial-aecial infection show elongation of inter­

grana1 lamellae, reduction in number and size of grana, increase in 

number and size of lipid drops and the appearance of starch grains 

(Fig. 7.19). The later stages of infection in TUBsiZago are accom­

panied by degeneration of the chloroplast with the breakdo\vn of 

grana, intergrana1 lamellae and the chloroplast envelope (Fig.7.20a­

d). By this stage, degradation of starch grains and osmiophilic 

globules has occurred (Fig. 7.20c,d). The host chloroplasts are 

frequently in close proximity to fungal intracellular hyphae (Figs. 

7.20a, 7.21), an association which is one of the important features 

distinguishing intracellular hyphae of the monokaryon from uredial 

haustoria. 

In aged healthy cells of TUssiZago the chloroplasts are elong-

ated, containing a well-developed membrane structure with very dense 

stacks of grana and one to three large starch grains (Fig. 7.22a,b). 

In these chloroplasts, osmiophilic globules are very few or absent. 
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Table 7.4 Ultrastructural changes in nuclei of alternate hosts during infection by Pu~ainia poarum. 

Nucleus 

Association with intra­
cellular structure of 
parasite 

Shape 

Nucleolus 

Chromatin material 

Pycnial-aecial infection on 
Tussilago farfaPa 

PI 

Absent 

Elongated, 
enlarged 

Nonnal 

Heterochromatin 
less than 
euthromatin and 
concentrated in 
periphery of 
nucleus 

P2 

Occasional 

Elongated, 
enlarged 

Associated with 
electron-dense 
material 

Euchranatin 
more electron­
dense 

Uredial-telial infection on 
Poa protensis 

UI U2 

Always closely associated with haustoria 

Enlarged, 
irregular, 
slightly curved 
around haustorium 

Occasionally 
present 

Heterochranatin 
less in ammmt 
than euchromatin 

Enlarged, very 
irregular, 
invaginated by 
haustorium and 
elongated 

Absent 

Euchromatin 
more electron­
dense 



Table 7.S Ultrastructural changes in chloroplasts of alternate hosts during infection by Puccinia poarum. 

Chloroplasts 

Grana 

Integranal lamellae 

Envelope membrane 

Starch grains and 
osmiophilic 
globules 

Association with fungal 
intracellular structures 

Pycnial-aecial infection on 
Tussilago fapfapa 

PI 

Reduced in size 

Elongated 

Nonnal 

Increased in size 
and munber 

Present 

P2 

Degenerated 

Not visible 

Degenerated 

Degraded 

Present 

Uredial-telial infection on 
Poa prutensis 

Ul 

Nonnal 

Normal 

Nonnal 

Increased in size 
and number 

Absent 

U2 

Occasionally swollen 

Occasionally swollen 

Occasionally encloses 
vesiculated area, 
frequently associated 
with Golgi bodies, 
R.E.R. and micro­
bodies 

Further increased 

Absent 



The fine structure of chloroplasts from uninfected mesophyll 

tissue of Poa shows well-developed grana, intergranal lamellae and 

bounding membranes with few osmiophilic globules (Fig. 7.23). In 

older healthy cells, the chloroplasts contain an extensively 

developed membrane structure with 1-2 large starch grains while 

osmiophilic globules are either absent or very few (Figs. 7.13, 

7.24). In these chloroplasts vesiculated areas were also observed 

(Fig. 7.25). 

During uredial and telial development in Poa mesophyll tissue, 

the chloroplast membrane structure (Fig. 7.26) resembles that in 

uninfected cells. An increase in number and size of the osmiophilic 

globules and the appearance of starch grains are detected in the 

chloroplast during early stages of infection (Figs. 7.26, 7.27), a 

trend which continues into later stages of uredial and telial develop­

ment (Fig. 7.28a,b), where Golgi bodies, rough endoplasmic reticulum 

and microbodies are frequently associated with the chloroplast 

envelope. In the early stages of uredial infection, swollen grana 

and intergranal lamellae and peripheral vesicles are occasionally 

seen in the chloroplasts (Figs. 7.29, 7.30). Similar swelling of 

grana and intergranal lamellae is occasionally observed in chloro­

plasts of TUssiZago during early stages of pycnial infection 

(Fig. 7.31). 

In contrast to TussiZago cells infected by monokaryotic intra-

cellular hyphae, there appears to be no special association of the 

host chloroplasts with intracellular structures formed by uredial­

telial infections in Poa. Table 7.5 summarizes the ultrastructural 

changes in chloroplasts of the alternate hosts of Puaainia poarum. 
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7.2.3 Host microbodies 

As in other higher plants (Breidenbach 1976; Beevers 1979), 

microbodies occur in both infected and uninfected mesophyll cells 

of TussiZago. These microbodies are bounded by a single membrane 

and contain granular material and frequently a large crystal body. 

In infected mesophyll cells, during P2 stage of rust development in 

TUssiZago «50% of aecia dehisced), crystal-containing microbodies 

are found close to the chloroplast, nucleus, mitochondria, and host 

cell wall (Fig. 7.32a,b,c). A similar association occurs in com­

parable cells from uninfected areas (Figs. 7.8a, 7.33). No micro­

bodies are detected in infected mesophyll cells during later stages 

of monokaryotic infection. Microbodies in corresponding uninfected 

cells generally lack crystals, although traces of crystal (Fig.7.34) 

are found in some. The morphology of the crystals is, however, 

variable in both infected and uninfected mesophyll cells of Tussilago. 

When compared with uninfected cells, frequency of crystal­

containing microbodies in infected Tussilago mesophyll cells is 

remarkably decreased (Table 7.6), the number per cell section being 

reduced by half by the time aecia are opening. 

In Poa mesophyll cells, the microbodies show a similar appear­

ance to that 9bserved in TussiZago, but fibrillar units, resembling 

those reported by Fredrick & Newcomb (1971), are observed in some 

crystal-containing microbodies of uninfected Foa mesophyll cells 

(Fig. 7.35a,b). In both infected and uninfected cells, variations 

occur in the size and morphology of crystals and the amotmt of granular 

material present in microbodies (Figs. 7.35a,b,c, 7.36, 7.37, 7.38). 
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Table 7.6 Responses of host crystal-containing microbodies to infection by PUccinia poarum. 

Microbodies per cell 
profile 

Occurrence 

Number/cell section 

Association with host 
wall 

Association with other 
host organelles 

TussiLago farfara 

lID PZ 

+ + 

1.9 ± 0.3 0.8 ± 0.2 

+ + 

\'lith chloroplast, 
mitochondria and nuc­
leus 

P3 

Poa prot ens is 

lID U2 

+ + 

4.0 ± 0.3 2.6 ± 0.3 

+ + 

With mitochondria, 
chloroplast, nucleus 

U3 

+ 

a 

+ 

Frequently with 
chloroplast, 
and occasionally 
with Golgi 
bodies 

Counts of 20 cells from 20 resin-embedded ultra-thin sections of several specimens of comparable ages. 

± Standard error of means; a, not counted; + = present; - = absent. 



In comparison with uninfected cells, the number of crystal-containing 

microbodies per cell section is significantly decreased in infected 

mesophyll cells of Poa (Table 7.6). In contrast to TussiZago, 

crystal-containing microbodies are observed in mesophyll cells of Poa 

during both early (Fig. 7.39) and later stages (Fig. 7.41) of uredial 

infection. These microbodies are not seen in older healthy meso­

phyll cells of Poa. Crystal-containing microbodies are frequently 

associated with other host organelles (Figs. 7.35, 7.37, 7.38) 

particularly with chloroplasts (Figs. 7.35a,b, 7.36) in both infected 

and uninfected cells. Sections frequently show an association of 

more than one microbody with chloroplasts of the infected cells 

during later stages of infection (Figs. 7.40, 7.41). 

Responses of host microbodies to infection by Puccinia poarum 

are recorded in Table 7.6. More crystal-containing microbodies are 

observed in infected and uninfected mesophyll cells of Poa than in 

those of TUssiLago. 

7.2.4 Other host organelles 

Mitochondria in infected cells of TussiZago tend to lie in 

close association with intracellular structures of the monokaryon 

and show vesiculation and degeneration during later stages of pycnial­

aecial infections in TUssiZago (Figs. 7.20b,d, 7.42). Such vesicul­

ation of host mitochondria is not seen in uninfected mesophyll cells. 

In infected mesophyll cells of Poa, the host mitochondria appear 

unchanged, compared to those of the uninfected cells, although they 

also are associated with the fungal intracellular structures of the 

dikaryon (Figs. 7.l2c, 7.l6b, 7.45a). 
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Golgi bodies have not been detected in either infected or 

uninfected cells of TussiZago. In uninfected mesophyll cells of 

Poa, Golgi bodies are found adjacent to the host cell wall (Fig. 

7.43), while those in infected cells frequently lie close to a 

chloroplast (Figs. 7.44a,b, 7.45). Golgi bodies of the infected 

mesophyll cells appear to increase in number during later stages of 

infection (Fig. 7.44b) and are occasionally seen to be associated 

with other host organelles such as mitochondria (Fig. 7.45a) and 

microbodies (Fig. 7.45b). 

After penetration of mesophyll cells by uredial haustoria, 

the host endoplasmic reticulum is frequently observed near haustoria. 

Fig. 5.32b shows cisternae of endoplasmic reticulum closely assoc­

iated with the invaginated plasma membrane (extrahaustorial membrane). 

However, no continuity was observed between endoplasmic reticulum 

(E. R.) and the extrahaustorial membrane. Similar results were found 

in Tussilago(see Fig. 5.30). Rough E.R. was only seen in infected 

mesophyll cells during later stages of uredial infection (Fig.7.45a) 

and was frequently associated with chloroplasts (Fig. 7.46) but not 

with fungal haustoria. No rough E.R. was observed in either infected 

or uninfected mesophyll cells of Tussitago. 

7.2.5 Host cell wall 

Besides the greater disturbance of the cell wall of TuBsilago 

by the parasite, the involvement of cell wall-like material in the 

host-parasite interface and the presence of adhesive material 

between host and fungal walls (see Chapter 5), another feature in 
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which infected mesophyll cells of Tussilago differ from those of 

Poa is the presence of numerous vesicles containing granular 

material, close to the host cell wall (Fig. 7.47). These vesicles 

are bounded by plasma membrane which appears to be fused with the 

tonoplast and often resemble lomasomes. In Fig. 7.47, the bounding 

plasma membrane of this structure is also in close contact ",ith 

mitochondria. No similar structures have been observed in 

uninfected mesophyll cells of TussiZago. 
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8 

AUTORADIOGRAPHIC STUDIES OF THE ASSOCIATION OF 

PUCCINI A POARUM WITH ITS ALTERNATE HOSTS 

8.1 The effects of infection with P. poarum on the uptake 
of label from 3H-glycerol by the alternate hosts 

In order to compare the physiological relationships of the 

monokaryotic and dikaryotic growth stages of P. poarum with their 

respective hosts, an autoradiographic study of the effects of infec­

tion on the distribution of label from tritiated glycerol has been 

carried out at the light microscope level. The distribution of 

infected and uninfected tissue and the location of tissue blocks 

removed for sectioning and microautoradiography are indicated in 

Fig. 8.1. Macroautoradiographs of excised portions of infected 

leaves of TUssilago and Poa, which have been supplied, via the vas­

cular system, with [1(3)(c)_3H1 glycerol solution, followed by a 

chase period in water, show an accumulation of radioactivity in areas 

colonised by the fungus (Figs. 8.2 and 8.3) as well as in leaf veins. 

In both hosts, microautoradiographs of leaf sections of unin-

fected (Figs. 8.4, 8.11 and 8.19) and infected (Figs. 8.5, 8.6, 8.7 

and 8.12) leaf tissues show an accumulation of radioactivity in veins, 

principally in the phloem and living cells associated with the vas­

cular tissue. MOst of the silver grains in uninfected mesaphyll 

tissue of TUssilago are located over the thin peripheral layer of 

cytoplasm, particularly over the chloroplasts (Fig. 8.8a,b,c). 
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Infected Tussilagotissue shows radioactivity associated with inter-

and intracellular hyphae and host cell wall, rather than with chloro­

plasts (Figs. 8.5, 8.6, 8.7, 8.9 and 8.10). As far as can be deter­

mined at this level of resolution, the silver grains associated with 

intracellular hyphae in host cells lie just outside the fungal wall, 

and not generally within the hypha 1 lumen (Figs. 8.6b, 8.9 and 8.10). 

In some intracellular hyphae within vascular bundles, however, hyphal 

contents appear to be labelled. 

The greatest density of silver grains in autoradiographs of 

infected Tussilago is found over aeciospores, the hymenial cells 

from which they arise and the dense fungal stroma, which underlies 

the hymenium (Figs. 8.13 to 8.17). The cells of the aecia1 peridium 

are strongly labelled, as also is the surrounding tissue, lining the 

cavity in the leaf where the aecium is embedded (Fig. 8.13). The 

aecium shown in Fig. 8.14 may have been at a different stage of 

development from that in Figs. 8.16 and 8.17, at the time of feeding 

with 3H-glycerol, and shows intense labelling of the sub-aecial 

stroma but less radioactivity in the hymenium and aeciospores. 

Figs. 8.16 and 8.17 show a gradient of increasing density of 

silver grains from subaecial stroma to hymenium to aeciospores, 

suggesting th?t the aeciospores are the sink for 3H-labelled sub­

strate. The clear association of silver grains with septa separating 

aeciosporophores and spore initials provide evidence of involvement 

of glycerol or a derivative in fungal wall synthesis. The lack 

of silver grains over the characteristic wall thickenings at the 

upper end of hymenial cells near the septum may indicate that these 

are older, persistent structures, formed before the time of feeding 
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with 3H-glycerol. In autoradiographs from several aecia of P.poarum 

radioactive material is found between the aeciospores (Fig. 8.l6a,b). 

It is suggested that this may be derived from the breakdown of inter­

calary cells, which are formed between aeciospores. 

In uninfected mesophyl1 tissue of Poa, as in TussiZago, most of 

the tritium supplied as glycerol appears in the chloroplasts (Figs. 

8.18 and 8.19). The nucleus and cytoplasm are also labelled and a 

particularly high concentration of radioactivity is found in lipid 

bodies, which frequently occur in uninfected tissue in the vicinity 

of uredia1 infections. 

Infected mesophyl1 cells of Poa are strongly labelled but with 

the highest density of silver grains found over haustoria (Figs. 8.20 

and 8.22). Radioactivity also occurs in the host cytoplasm, partic­

ularly between the haustorium and the host nucleus (Fig. 8.2Ia,b), 

and ~ediately around the host nuclei as well as in the intercellular 

hyphae (Figs. 8.20 to 8.22). Sections cut longitudinally through the 

epidermis at the margin of a developing urediosorus, in a plane parallel 

to the leaf surface, occasionally show narrow zones of heavi1y-

labelled fungal cells, penetrating between adjacent epidermal cells, 

in some of which the host nucleus is covered with a dense deposit of 

silver grains. (Figs. 8.23 and 8.24). The concentration of label 

suggests that such emerging uredia are an important sink for [3H1 -

glycerol. Sections in a similar plane, passing through more mature 

regiOns of uredia (Figs. 8.25 and 8.26) show a high concentration of 

radioactivity in urediospores and to lesser extent in closely assoc­

iated structures. At this stage of development, relatively little 

label is detected in the mature uredial peridium (Fig.8.26a,b) and 
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paraphyses (Fig. 8. 26a-d), which may already have been formed before 

the time of incorporation of label. 

8.2 Quantitative comparison of the distribution of label from 
3H-glycerol" in uninfected and infected leaf tissue 

8.2.1 Tu88ilago 

Photometer measurements of incident light reflected from silver 

grains lying over different areas of tissue in autoradiographs of 

TU88iZago leaf sections are shown in Table 8.1. Since the large meso­

phyll cells of TU88ilago frequently exceed the size of the SO ~m 

reflectance field, on which the data are based, separate mean values 

are recorded for the central vacuolar region and for the cell margin, 

with its extremely thin lining of cytoplasm, cell wall and, where 

present, intercellular hyphae, traversing the field of measurement as 

a narrow band. In the vascular tissue, however, due to the much 

smaller diameter of the cells, reflectance fields include a substantial 

proportion of the components of individual vascular strands. 

Uninfected mesophyll cells are consistently more heavily labelled 

than cells of infected tissue, radioactivity being associated partic­

ularly with t~e chloroplasts and the peripheral cytoplasm, and only a 

low level present in the vacuolar region. Cell margins from the 

infected rnesophyll, on the other hand, show only a low uptake of label 

from glycerol, similar to that retained by the vacuolar regions of 

uninfected tissue. The vacuoles of infected cells consistently give 

reflectance values below the background level. Vascular tissue passing 

through uninfected regions of TU88ilago leaves is also more heavily 

labelled than that of leaf veins of infected tissue. 
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The relatively high density of silver grains over the sub-

hymenial stroma, hymeniurn and aeciospores, already seen in photo­

micrographs of autoradiographs (Figs. 8.13 to 8.17), is borne out 

by reflectance measurements from these regions, which indicate that 

the aecium represents a sink for the labelled substrate supplied to 

the host. Within the aecium, the greatest concentration of radio­

activity is found in the aeciospores and somewhat lower levels in 

the hymenium. 

8.2.2 Poa 

The results of quantitative assessment of the distribution of 

radioactivity in uninfected and infected tissues of P. pratensis, 

after feeding with 3H-glycerol, are summarised in Table 8.2. The 

highest level of labelling of mesophyll cells occurs in infected 

tissue, corresponding particularly with the high density of silver 

grains, already noted over cells which contain haustoria and the 

somewhat lower level of radioactivity associated with intercellular 

hyphae (Figs. 8.20-8.22). In contrast to the uptake of label from 

3H-glycerol by TUssitago, infected mesophyll tissue of Poa accumul­

ates more tritium than uninfected cells, either within the infected 

region (P>O.~I) or at some distance from the infection (P>O.Ol). 

Unlike the situation in TUssiZago, vascular tissue in both 

infected and uninfected regions of Poa leaves is more radioactive 

than mesophyll tissue in its vicinity, whether infected or uninfected. 

Vascular strands passing through infected areas of Poa leaves are 

significantly more radioactive than those passing through uninfected 

tissue. 

84 



The relationship between infected and uninfected mesophyll 

tissue of Poa and the corresponding veins is also illustrated by the 

ratios of their reflectance values, summarised in Table 8.3. Within 

the infected region, infected cells clearly take up a much higher 

proportion of the available label from veins than do the small areas 

of uninfected tissue within this region. On the other hand, the 

ratios of radioactivity in mesophyll cells of infected and uninfected 

regions to that in the corresponding veins do not differ significantly. 
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Table 8.1 Effects of infection with P. poapum on the distribution 
3 of label from H-glycerol in leaf tissue of T. farfara. 

Bean reflectance measurementsa 

Uninfected regionb Infected regionC 

Cell margin 26.82 ± 2.302 3.42 ± O. S11 

Cell centre 3.07 ± 0.449 -0.44 ± 0.41 

Vascular bundle 92.02 ± 15.8Ud 17.16 ± 1.898 

Infected tissue e 3.36 ± 0.440 

Sub-aecial stroma 12.27 ± 1.359 

Hymenium 17.94 ± 1.726 

Aeciospores 43.33 ± 13.489 

a - Mean photometer response from five fields, SO ~ diameter, 
in each of five sections per slide ± standard error. 

b - Mean values from 18 slides from four blocks of tissue. 

c - Mean values from 5 slides from a single block of tissue. 

d - Mean values based on 9 slides from 2 blocks of tissue. 

e - Reflectance field including half of host cell (cell wall, 

peripheral cytoplasm, vacuole) plus intercellular hyphae. 



Table 8.2 Effects of infection with P. poarum on the distribution 

of label from 3H-g1ycero1 in leaf tissue of P. pratensis. 

Mean reflectance measurementsa 

Uninfected region Infected region 

Uninfected 40.01 ± 4.802",,- 53.82 ± 7.048 

Mesophyll ** *** 
cells "'-Infected 78.78 ± 9.764 

*** * 

Vascular strand 62.2 ± 9.589 88.66 ± 9.330 

a - Mean photometer response fram five fields, 50 ~ diameter in each 
of five sections per slide ± standard error, based on 21 slides 

from five blocks of tissue. 

Results of t-tests: 

*** = differences exceeding 0.001 level of probability 

** = differences >0.01 <0.001 level 
* = differences >0.05 level 



Table 8.3 Ratios of reflectance values of rnesophyll tissues to 

veins in uninfected and infected regions of P. pratens7:£: 

leaves. 

Uninfected region Infected region 

Uninfected cells 0.71 ± 0.103 0.55 ± 0.48 

*** 

Infected cells 0.86 ± 0.072 

*** : differences >0.001 level of probability 
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DISruSSION 

9.1 Spore formation and morphology of sori 

This study has investigated in more detail aspects of the mor­

phology and ontogeny of spores and sori of Puccinia poarum that had 

not been fully clarified, despite several studies in this respect 

having been made by Grove (1913), Wilson & Henderson (1966), Greene 

& Cummins (1967) and Henderson et al. (1972). 

On account of their diagnostic importance, pycnia of rust fungi 

have been extensively studied (Craigie 1927; ffunter 1027, 1936; 

Cummins 1959; Hiratsuka & Cummins 1963; Gold et al. 1979; Gold & 

Littlefield 1979). Hiratsuka & Cummins (1963) described eleven 

types of pycnial morphology and other properties such as the growth 

pattern, bounding structures and the location of pycnia in the host 

tissue. According to this description, the rust Puccinia poarunl 

has Type 4 pycnia, the characteristics of which are: (i) subepider­

mal pycnia; (ii) determinate growth; (iii) convex hyrnenia; (iv) well 

developed periphyses; (v) high frequency of occurrence on the Com­

positae. No diagnostic value \Vas reported for flexuous hyphaeby 

I-liratsuka & Cumrnins (1963). However, Burges (1934), as reviewed by 

Payak (1956), found flexuous hyphae in 53 rust species, distributed 

in 8 genera of Melarnpsoraceae and 8 genera of Pucciniaceae. The 

fusion of flexuous hyphae with pycniospores and its role in the 



dikaryotization process have been previously reported (Craigie 1927, 

1933~ Buller 1950, Payak 1956). Although artificial transfer of 

pycniospores among pycnia is routinely used in our laboratory to 

induce the formation of aecia of P. poarum, no fusion of pycnio­

spores with flexuous hyphae has been observed in this study nor 

have dikaryotic cells been found in the mycelium growing in the 

host tissues of aecia1 pustules. This latter point suggests 

that dikaryotization involves nuclear migration (Payak 

1956; Craigie 1959, 1962), rather than the growth of dikaryotic 

hyphae from pycnia to protoaecia, unless the dikaryotic hyphae are 

sufficiently infrequent not to have been observed. 

The transformation of periphyses into flexuous hyphae, which 

was reported by Buller (1950) in pycnia of Puaainia graminis at 

the light microscope level, has been confinned in pycnia of P.poarum 

using both light and scanning electron microscopes. In SaopeZZa 

gentiZis, Payak (1956) reported that the flexuous hyphae formed 

from modified pycniosporophores. Such development has not been 

observed in the present work but the pseudoparenchymatous tissue 

surrounding the pycnium appears to be actively involved in the 

development of both flexuous hyphae and periphyses. The properties 

of the flexuous hyphae were summarized by Buller (1950) who reported 

that they were ephemeral in old pycnia of Puaainia. In this study, 

however, these structures have been observed in both young and 

old pycnia of P. poarum. Moreover, their number and lengths 

appear to increase with the age of the pycnium. Both hand 

sections and scanning electron microscopy are most useful techniques 
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for studying the occurrence and morphology of flexuous hyphae since 

these structures are usually destroyed in microtome sections. Pene­

tration of the host epidermis similar to that shown by pycnia of 

p. poarwn has been reported in other rust studies (Buller 1950; 

Hiratsuka & ClIDUJ1ins 1963; Gold et al. 1979). In general, the form­

ation of pycniospores in P. poarum resembles that described by 

Littlefield & Heath (1979). 

The present observations on the development of aeciospores of 

P. poal'um and the ornamentation over their surface confirnl those 

of Henderson et a l. (1972) on the same rust. In the present study, 

however, both light and scanning electron microscopy show the 

presence of germ pores in aeciospores of P. poapum, features which 

were not observed by Henderson et ale (1972), but which are readily 

detected in light microscope preparations stained with cotton bIm'. 

Henderson et al. (1972) did not publish light micrographs to demon­

strate the ontogeny of aeciospores, although they descrihed, in one 

electron micrograph, the intercalary cells and aeciospores. The 

thickening observed in the wall of the aeciosporophores was not 

reported by Henderson et al. (1972). Similar remnants have been 

found in pycniosporophores and aeciosporophores of Pucc1:n £a BOI'gh1: 

(Rijkenberg & Truter 1974a,b). The presence of the annulations led 

Rijkenberg & Truter (1974b)to conclude that the development of 

aeciospore initials was annellidic rather than arthrosporic as 

described by Hughes (1970). 

Henderson et al. (1972) studied the development of the orna­

mentations and refractive granules in aeciospores of P. pOGI'um and 

demonstrated the taxonomic significance of the morphology of these 
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structures (Holm 1967, reviewed by Henderson et ale 1972) using a 

transmission electron microscope. The evidence of the present study 

suggests that the refractive granules may have formed over germ 

pores, which would support Henderson's intel~retation of these 

structures as pore plugs. It has been suggested that the refracted 

granules may function as spore separators (Dodge 1924; Henderson et 

ale 1972). It appears equally possible, however, that they may 

serve in the attachment of aeciospores or germ tubes to the host. 

Figs. 3.29 and 3.30 show similar structures which appear to be 

involved in such attachment. 

Several authors have mentioned the difficulty of separating 

uredial and telial stages of P. poal'wn, P. poaenemomZis and 

P. l'econdita (Wilson & Henderson 1966; Greene & Cummins 1967; 

Buchwald 1972; Preece, personal conummication) Qwing to the con­

flicting observations which have been recorded. K1ebahn (1914) 

and G~tunann (1959) as reviewed by Buchwald (1972) mentioned that 

no paraphyses were observed in te1iosori of P. poa1'Um. Wilson & 

Henderson (1966) indicated the presence of te1ial paraphyses and 

the absence of uredial paraphyses in P. poal'wn while variable 

development of paraphyses in te1iosori and the usual absence of 

uredia1 parap~yses of this rust were reported by Greene & Cummins 

(1967), 'uredia mostly adaxial .•. , usually without paraphyses but 

occasional specimens have short inconspicuous capitate, thin walled 

paraphyses'. However, on contrast to the above studies, the present 

investigation demonstrates that both uredia1 and te1ial paraphyses are 

frequently seen in uredia and te1ia of P. poa1'Um respectively. 

MOreover, for the first time, the scanning electron miscoscope was 
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used to study the occurrence of the uredial and telial paraphyses 

of this fungus, allowing them to be distinguished easily from the 

spores. 

Paraphyses as a term was first used in discomycetes (BoudiN 

1890) and is still generally used in rust fungi. Buchwalu (1 ~)721 

mentioned Petrak's recommendation of the term urophyses for the 

paraphyses of urediosori and proposed the term teliophyses to 

describe the sterile hyphal elements in telia of P. poal'um. This 

study supports the use of these more precise terms to distinguish 

these characteristic sterile structures in teliosori in rusts from 

other fungi. The paraphyses of the uredial sorus may play some 

part in rupturing the epidermis and the release of urediospores. 

The appearance of the teliophyses in P. poal'um suggests a protective 

function. Changes in their curvature on alternate drying and 

wetting (as used in our laboratory to induce teliospore genninatioJ1, 

see McGee et aZ. 1973) might facilitate the rupturing of the 

epidermis and exposure of the teliospores. 

Since the report by Cummins (1959), of the absence of peridia 

in uredia of Puccinia spp. and Uromyces spp., no further study of 

this aspect has been published. However, this investigation has 

revealed the presence of a peridium-like layer lying beneath the 

host epidermis. This layer, which is most readily seen in surface 

view of urediosori, was observed in both closed and opened uredia. 

Fragments of epidermis from macerated infected tissue show a 

regular network formation of brown fungal cell wall material 

adhering to the inner wall of the epidermis. A similar peridium 

consisting of a single layer of cells was reported in uredia of 

Me~Sol'a Lini (Hassan & Littlefield 1979). 
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As in other studies of rust flUlgi (Walker 1969), some te1io­

spores are frequently present in mature uredia of P. poarrum. Host 

teliospores are formed, however, in special teliosori of the type 

described here (p.45) and remain enclosed by the host epidermis 

for a prolonged period lUltil suitable conditions for germination 

occur. The dormancy of teliospores in the intact teliosorus may be 

important in the life cycle of this macrocyc1ic rust. 

In general the development of the urediospores and teliosnorcs 

in this rust is essentially similar to that described by Harder 

(1976, 1977 respectively) (see also Littlefield & Heath 1979). The 

ornamentation on the surface of urediospores of P. poarum resembles 

that reported in other Puccinia spp. (Amerson & van Dyke 1978) and 

Uromyces spp. (see Littlefield & Heath 1979) where the spines are 

situated in a circular depression, and surrolUlded by annuli. Based 

on ~1urril (1905), Littlefield & Heath (1979) reported a list of 

teliospore ornamentation types. They divided the smooth surfaced 

teliospores into t,\1O categories, those without ornamentation and 

those with few small projections. Teliospores of P. poarum resemble 

the former category at lower magnifications but a shallow rugulose 

ornamentation is detected by scanning EM at higher magnifications. 

The accumulation of lipid droplets in urediospores and te1iospores 

of P. poarum is similar to that reported by Williams & Ledingham 

(1964) and Harder (1977) respectively and clearly constitutes a 

major portion of the nutrient reserves of the spores. 

In the present study, the measurements made on the external 

features of the pycnia1, aecial, uredia1 and te1ial stages of this 

rust are generally in agreement with those reported by Wilson & 

Henderson (1966) and Greene & Cummins (1967). 
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Although monokaryotic pycnia1-aecia1 infections result from 

exposure of Tussilago farfara plants to teliosori on Poa prate11s1:n 

leaves, which have been subjected to drying and soaking (HcGee 

1973), light microscope and scanning electron microscope examin­

ation of such material has, so far, failed to reveal the expected 

metabasidia bearing basidiospores. 

9.2 Intercellular and intracellular structures 
of Puccinia poarum 

During infection with the macrocyclic rust, Puccinia poarum, 

cells of the pycnial-aecial host, TussiZago farfara are penetrated 

by apparently unmodified intracellular hyphae of the monokaryon, 

while typical rust haustoria of the dikaryon enter the cells of 

the uredia1-telia1 host, Poa pratensis. Basically, these obser­

vations agree with the previous light (Rice 1927; L~sel & Lewis 

1974) and electron (Rijkenberg & Truter 1973, 1974; Robb et al. 

1975b;tlarder 1978; Gold et al. 1979; Gold & Littlefield 1979; 

Glidewell & Mims 1979; Borland & Mims 1980) microscopic studies. 

The intracellular structures of the monokaryon, at the light 

microscope level, appear as relatively undifferentiated hyphae 

differing in frequency, growth habit, size and differentiation 

from the normal haustoria of the dikaryon in uredial and te1ia1 

phases of rust fungi. 

In Tussilago farfara infected with P. poarum, the intra-

cellular structures have proved to be more frequent in mesophyll 

tissue than those reported by L~se1 & Lewis (1974), although 
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much less abundant than on the uredial host, Using light micro­

scopy, the present study found two slightly differing types of 

intracellular structures in pycnial-aecial pustules. Those 

recognized at the advancing margin of the colony are constricted 

at the point where they penetrate the host cell wall. The less 

specialized type, in the older parts of the pustule, where host 

tissue appears senescent, enters the mesophyll cells without con­

striction, suggesting a decreased resistance of host cells to 

fungal penetration at this stage. However, both types of intra­

cellular hyphae appear as terminal, frequently septate, unbranched 

portions of the monokaryotic intercellular mycelium and, unlike 

the haustoria of the uredial and telial dikaryon, are not assoc­

iated with a distinct haustorium-mother cell. 

Sections of pycnial-aecial pustules parallel to the host 

epidermis allow an unusually clear view of the monokaryotic 

colony, radiating through the mesophyll tissue, and of its relation­

ship with the pycnia and aecia. This has proved also to be a 

particularly favourable plane for observing the penetration of 

host cells by the fungus. In addition this study indicates the 

usefulness of light microscopic examination of resin embedded 

sections (O.S-l.O ~m thick) for studying the frequency of occur­

rence of septa in intracellular structures of rust fungi. 

The increase in size and complexity of forms of haustoria 

throughout successive sub-stages of uredial and telial development 

of P. poarum on Poa pratensis does not appear to have been prev­

iously reported in other studies on rusts. Clearly there is a 

prolonged period of interaction with the host cell. In the 
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conditions under which the plants used in this work were grown, 

uredia and telia of P. poarum develop more or less in parallel, 

rather than in sequence. It is therefore unlikely that more 

advanced age of host tissue or of the rust infection is alone 

sufficient to account for the differences in morphology, pigment­

ation, density of intercellular fungal tissue and growth of haust­

oria observed between regions adjacent to telia and those adjacent 

to uredia. 

The lower frequency of penetration of host cells hy intra­

cellular fungal structures in TussiZago and much denser inter 

cellular fungal tissue than in Poa suggest that in P. pOQY'um, the 

intracellular hyphae of the monokaryon may be less important in 

nutrition than the haustoria of the dikaryon. Rijkenberg & Truter 

(1973) described the pycnial and aecial stages of various rusts as 

characterized by "a well-developed intercellular thallus and a 

relative dearth of intracellular structures" and concluded that 

the intercellular thallus may be "able to subsist largely on sub­

stances diffusing from host cells". They further conunented: "The 

relatively unspecialized growth habit of pycnial and aecial mycelia 

may point to their potential culturability on axenic media, and may 

explain the w~de host range of some pycnial and aecia1 rusts in 

contrast to the extreme host-specificity of uredial and telial 

stages". 

Both light and scanning electron microscopy has confirmed the 

greater density of fungal growth in the intercellular space system 

of the pycnial.aecia1 host than of the uredial-telia1 host, noted 

in previous studies on P. poarum (Ltlsel & Lewis 1974; Ltlsel 1978) 
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and some other species (Colley 1918; Rice 1927; Gold & Littlefield 

1979; Gold et a"l. 1979). The monokaryotic thallus is seen to grow 

densely and freely through the host mesophyll whereas the dikary­

otic thallus is more limited in extent. 

Light microscopy reveals that the ratio of haustorium volume 

to host cell volume is larger in bundle sheath cells of Poa than in 

mesophyU and epidermal cells. It is likely that this relates to 

physiological differences between these tissues and to their relati.ve 

nutritional importance for the fungus, rather than to the actual 

volume of the cells. 

Although differences in development of successive growth phases 

of P. poarum on its alternate hosts could result from differing 

physiological characteristics of the two hosts, as 'veIl as from 

alterations in pathological behaviour between lnonokaryon and dik­

aryon, there is much to suggest that the latter aspect is more sig­

nificant. Pycnial and aecial growth stages of rusts frequently 

elicit greater disturbance of normal host physiology than the 

uredial and telial phases. In P. poarum, the monokaryon produces a 

relatively massive pustule region, much thicker and denser than the 

rest of the Tussilago leaf, largely due to the mass of fungal tissue 

present, rather than to hypertrophy or hyperplasy. From chitosan 

assays, Ltlsel & Lewis (1974) estimated that fungal tissue accounted 

for as much as 40% of the dry weight of TuBsiZago leaf tissue 

infected with pycnial-aecial stages of P. poarum. 

The present study provides for the first time quantitative data 

on the distribution, frequency, size and development of intra­

cellular structures on both alternate hosts of a macrocyclic 
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heteroecious rust fungus. The magnification and thickness of 

sections used in light microscopy are suitable for this type of 

assessment, since they allow observations on whole cells with their 

full complement of fungal intracellular structures. 

In general, the intercellular hyphae of monokaryotic and dik­

aryotic phases of P. poarum are similar in structure. The sig­

nificance of the absence of nucleoli In intercellular hyphae of 

the monokaryon and their presence in those of the dikaryon is 

uncertain but appears to correspond with observations of some 

other authors (Mendgen 1979; Glidewell & Hims 1979). The differ­

ences in septal structure between intercellular hyphae, with the 

normal perforate septum, and the pseudoparenchyma of uredia and 

aecia, with their partial or complete septa, agree with observat­

ions on other rusts reviewed by Littlefield & Heath (1979) and are 

of interest in relation to the functioning of these different 

regions of the fungal thallus. The present study appears to be the 

first to describe septa in both monokaryotic and dikaryotic hyphae 

of a single rust. Bilateral partial septa seen in dikaryotic 

hyphae of P. poarum have not been reported in other studies revie,,,ed 

by Littlefield & Heath (1979). 

Apart frpm the slight constriction where they cross the host 

wall, the intracellular hyphae of P. poarum resemble the inter­

cellular hyphae in form, width and septation. In all the hau~toria 

of the dikaryotic thallus of P. poaPUmSO far examined by light or 

electron microscopy, only one nucleus has been observed in the 

haustorium body. A similar impression has been gained from electron 

micrographs of Mims & Glidewell (1978), Zimmer (1970), Robb et al. 

(1975b), Walles (1974) and Hardwick et aZ. (1971), although haustoria 

have also been described with two nuclei (Coffey et aZ. 1972a) or with 
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one nucleus in the body andal\Otber(as in Fig. 5.27 here) apparently 

migrating through the neck (Mendgen 1975). It is generally assl~ed 

that at maturity two nuclei are present in the haustoria1 body 

(Littlefield & Heath 1979) at which stage the haustorium-mother cell 

appears vacuolated and devoid of nuclei. It would be of interest to 

determine whether the nuclear arrangements within the haustorium cor­

respond to different phases in nutrition and functioning of the 

structure. This study reveals that intercellular and intracelluLu 

structures of the monokaryon and those of the dikaryon differ in 

their amounts of nuclear materials as indicated by the higher pro­

portion of heterochromatin to euchromatin in the dikaryon. No similar 

comparisons of nuclei of rust fungi during both dikaryotic and mono­

karyotic phases appear to have been reported. 

It substantiated in further investigation, the u1trastnlctural 

evidence of glycogen in the monokaryotic thallus of P. poal"UJn but not 

in the dikaryotic stages would be in agreement with its biochemical 

detection in leaf tissue of T. fa'l'faT'a infected with P. poapum 

(Holligan et aL 1974) and would correspond with the findings of Walles 

(1974) and Harder (1978). Other workers have not, hml'ever, found such 

a correlation (see review by Littlefield & Heath 1979). 

In the present study, particular attention has been paid to 

differences in host wall reaction to penetration by intracellular 

hyphae and haustoria and to the extrahaustoria1 regions of these 

intracellular structures. The very narrow neck of the haustorium 

passing through the otherwise unchanged host cell wall suggests 

enzymic action at the penetration point unless, as found by Mirns & 

Glidewell (1978) in Gymnosp0'l'angium junipe'l'i-vi'l'ginianae, the 

haustorium has entered via the p1asmadesrnata, which is not indicated 

by electron micrographs of this study. The abrupt interruption of 

the fungal wall, where the haustorium neck crosses the host cell 

wall, indicates some interference with fungal wall deposition at 
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this point. In contrast to this, the ingrowth of host wall material 

around intracellular hyphae of the monokaryon points to accelerated 

synthesis of host cell wall components and the continuity of uniform 

wall thickness from subtending intercellular hypha to intracellular 

hyphae excludes any interference with fungal wall synthesis. 

Most sections of intracellular hyphae of P. poarum show depos­

ition directly on the fungal wall, of variable amounts of material of 

moderate electron density (Figs. 5.36, 6.l9a). The close correspon­

dence in the appearance of this layer, the collar of material con­

tinuous with the host wall at the base of an intracellular hypha 

(Fig. 5.34) and the wall material which encloses a penetration peg 

(Fig. 5.26a) or encases hyphae growing parietally in host cells (Figs. 

5.2, 5.41) suggests that it consists of wall material derived from 

the host. This view is consistent with the results of high resolution 

autoradiographic studies on other rusts (Mendgen 1975, 1979). The 

electron lucent region between the intracellular hypha and the host 

plasmalemma contains fibrils of similar electron density which appear 

to be contributing to the layer of host wall-like material. In con­

trast, the extrahaustorial matrix surrounding haustoria of this rust 

contains electron-dense fibrils, similar in density to the fungal wall, 

which seems to be adding to the fungal wall layer. No host wall-like 

material has been seen in the matrix around haustoria (extrahaustorial 

matrix). It thus appears that quite different processes are occurring 

around the haustorium and the intracellular hypha and that these may 

relate to differences in their functioning and interaction with host 

cells. However, in P. POaPUm, the region separating intracellular 

hypha and host plasmalemma is either electron-lucent or contains host 

wall-like material. Its composition is discussed in Section 9.4.5. 
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In their comprehensive review of the intracellular structures 

produced by rust fungi, Littlefield & Heath (1979) have compared 

the specialized haustoria, termed by them D-haustoria, produced by 

the dikaryon of many rusts, with the apparently unspecialized 

structures of the M-haustoria (P-haustoria sensu Harder 1978), 

which are here simply referred to as intracellular hyphae, pro­

duced by the monokaryon. The present observations agree with the 

relatively few records so far available of individual species 

throughout their life cycle (Littlefield & Heath 1979) in indicat­

ing that the change fram monokaryon to dikaryon is characterized 

by the production of specialized haustoria, differing from the 

simpler intracellular hyphae of the monokaryon in their limited 

growth, lack of septa and their characteristic form, with a very 

narrow neck region, bearing an electron-dense neckband in the 

wall. In P. poaPUm there is a greater frequency of penetration 

of cells of the uredial-telial host by such haustoria than of the 

pycnial-aecial host cells by intracellular hyphae. There is also 

a more constant association of the host cell nucleus and other 

organelles with the haustorium of the dikaryon than with the intra­

cellular hypha of the monokaryon. On the other hand, host chloro­

plasts are frequently associated with the intracellular hyphae. 

The intracellular structures of monokaryon and dikaryon of P. poarum 

differ also in the presence of a matrix between the intracellular 

hypha and the invaginated host plasmalemma, of material resembling 

the host cell wall, deposited directly on the wall of the intra­

cellular hyphae, and its absence in the corresponding region around 

haustoria, where fibrils of similar electron density to the fungal 
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wall are observed. In addition, penetration by intracellular hyphae 

involves apparent ingrowth of host wall layers, while entry of the 

haustorium is accompanied by little disturbance of the host wall. 

On the other hand, the haustorium mother cell wall~ Wllike that of 

the intracellular hypha, is thickened at its point of contact with 

the host cell. This study has also shown differences in the nuclear 

components of rnonokaryon and dikaryon. 

From the evidence of other studies on haustoria and intracell­

ular hyphae (Harder 1978; Gold et aL. 1979, Littlefield & Heath 

1979) and from observations of hypha 1 and haustorial penetrations 

of mesophyll cells in TussiLago and Poa respectively, it is likely 

that both the membrane bOlmding the extrahaustorial matrix of the 

haustorium and that boWlding the comparable region of the intra­

cellular hypha, originate from the invagination of the host plasma­

lenuna. The aggregation of membranes within the membrane bourrling 

the intracellular hypha may be analogous to that observed by Harder 

et aL. (1978), while the vesicle-like structure with electron-dense 

granules around intracellular hypha of P. pOaPUm appears similar 

to the glandlike appendage of the sheath of P. oarthami (ZUnmer 

1970). The origin and function of these vesicle-like structures 

could not be qetermined in this study, but it is possible to suggest 

that they may have a role in the exchange of substances between host 

and parasite. 

As far as could be determined from the present investigation, 

intracellular hyphae terminate within the host cell and do not 

normally grow through and re-emerge from the mesophyll cells, as 

is seen in the scanning electron micrographs by Gold et ale (1979) 

of pycnial pustules of PUooinia reaondita. 
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It is difficult to determine whether the embedding of mono­

karyotic hyphae of P. paa~ in host wall material, the growth of 

such wall material around hypha 1 structures, the greater production 

of an apparently adhesive layer between hyphae and cell walls of 

TUssiZagoand the absence of all these features in tissues of Paa 

infected with the dikaryon, reflect special properties of the mono­

karyon or of the interacting host wall. 

9.3 Invasion of vascular bundles 

101 

Cronarti\\! 
Colley's study (1918) of the macrocylic heteroecious rust ribicola --.--.----

(cited by Buller 1950) described the penetration of the vascular 

bundle of the host by hypha-like 'haustoria' of the perennial, 

systemic, monokaryotic mycelium. In other rust studies (Jackson & 

Parker 1958; Jewell et aZ. 1962), changes in the anatomy of host 

vascular tissue have been reported but the association of the rust 

thallus with the host vascular system has attracted little further 

attention. The comprehensive review by Littlefield & Heath (1979) 

does not mention the invasion of vascular bundles by rust fungi. 

The obvious nutritional advantage to the rust fungus of the 

presence of biotrophic hyphae in the vascular bundles does not 

appear to have been previously commented on. The close proximity 

of rust hyphae to conducting elements of xylem and phloem and, in 

particular, the presence of intracellular hyphae in specialized 

transfer cells of the phloem parenchyma of TU88iZaga~ is likely to 

ensure an adequate presence of organic and inorganic nutrients and 

water. Although little is so far known of the permeability of the 



fungal and host structures concerned, it is possible that such 

infection of vascular bundles may make the rnonokaryotic rust thallus 

relatively independent of other intracellular penetration. 

In the case of P. poarum, as in the other rust species in 

which vascular infection has been studied (see Introduction), only 

monokaryotic phases invade the host vascular tissue. Longitudinal 

sections of vascular bundles of Poa p~atensis infected with P.poarum 

show long haustoria in the large bundle sheath cells but no pene­

tration of the heavily thickened endodermis and the vascular tissue 

enclosed by it. These observations have been confirmed by scanning 

electron microscopy. It thus appears that direct access to the 

vascular system is not important in the nutrition of the dikaryon. 

In TU8siZago fa~fara leaves, infection of vascular strands by 

the monokaryon of P. poarum has been observed using both light and 

electron microscopy. The penetration of xylem parenchyma and phloem 

companion cells of a herbaceous host by a rust fungus has been demon­

strated for the first time. Light microscopy appears to show intra· 

cellular hyphae in xylem vessels of TussiZago leaves but electron 

microscope observations have, so far, shown fungal hyphae only in 

close contact with these tracheary elements. It seems that fungal 

hyphae assoc~ated with the walls of xylem elements may produce intra­

cellular structures entering these vessels, as reported by Zilnmer 

(1965) for safflower rust. 

The presence of fungal structures in bundle sheath cells, phloem 

parenchyma and among xylem vessels and phloem elements corresponds 

with the situation in vascular tissue of Rhamuu8 aathartiaa infected 

with p. aoronata, which was described without further comment by 
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Harder (1978). The indication of breakdown of some primary walls 

of xylem vessels is remarkably similar to the evidence of Harder's 

electron micrograph (1978). However, in both TuBBilago and Fb~ the 

breakdown of the primary walls of xylem vessels is observed also in 

vascular bundles from healthy and infected parts of the leaves. 

Similar observations have been reported on the vascular tissues of 

a variety of healthy flowering plants from both monocotyledons and 

dicotyledons (Esau 1965; review by O'Brien 1974). 

In the vascular bundles of TU8silago, the differing wall 

structures associated with intracellular hyphae seen in transverse 

section suggest that the hyphal wall increases in thickness and 

electron density with age and becomes surrounded by a less dense 

layer of material resembling the host wall in texture and staining 

properties (Fig. 6.19a). A similar structure was found by Robb et 

al. (1975b) armmd intracellular hyphae of Cl'onal'tium l'ibicola in 

Pinus tissue cultures and by Harder (1978), forming a collar around 

the neck-like region of "P-haustoria" in the pycnial stage of Puccinia 

cOl'onata avenae on RhamnuB cathal'tica. 

The c10te similarity demonstrated in Fig. 6.19a between the 

membrane-wall association at the interface of the intracellular 

hypha with the host cell and at the host cell wall adjacent to an 

intercellular hypha in the vascular bundle region of infected 

TUssitago suggests that the same processes of wall deposition take 

place at both points. This interpretation is supported by Figs.6.15 

and 6.20, where a similarly textured outer layer armmd inter­

cellular hyphae projecting into the host cell is continuous with 

the host cell wall. The fibrillar material seen in same cases 
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(Fig. 6.l9b) between the surrounding membrane and the wall of the 

intracellular hypha may represent an early stage of deposition of 

host wall-like material. The generally lower electron density of 

walls of intracellular hyphae in phloem parenchyma and xylem paren­

chyma than in bundle sheath cells and those of intercellular hyphae 

may also be physiologically important. 

It has occasionally been suggested that the apparently empty 

sheath region around haustoria may be an artefact of fixation and 

Browning & Gunning (1977) have demonstrated that, while such a 

clear zone was present around wall proliferations of conventionally 

fixed transfer cells, it was absent in freeze-substituted prepar­

ations. In the present study, the absence of such a clear area 

around wall proliferations of transfer cells indicates that the 

region surrounding hyphae within the same cells is not an artefact. 

Similarly, in the host-parasite combination involving the dikaryon 

of the rust Metampso~a tini infecting leaves of flax, Littlefield & 

Bracker (1972) found that the sheath region appeared similar in 

both frozen-etched cells and in those which had been fixed, dehydr­

ated, embedded and sectioned. They also reported that the sheath 

was not an empty zone. However, the occasional distension of the 

region referred to above, suggests that it is not entirely rigid. 

The presence of transfer cells of both type A (modified com­

panion cell) and type B (modified phloem parenchyma) (see review 

by Gunning & Pate 1974) has been previously recognized in Tu88itago 

Both type A and type B transfer cells, as well as unmodified phloem 

parenchyma and companion cells, are penetrated by monokaryotic 

hyphae of P. poar-wn. 
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The development of transfer-type cells has been shown to be 

induced by infection with viruses (Tu & Hiruki 1971), nematodes 

(Jones & Northcote 1972; Gunning & Pate 1974) or parasitic flower­

ing plants (Cuscuta) (Gunning & Pate 1969), and is assumed in such 

cases to be a pathological condition (Gunning & Pate 1974). In 

contrast, the present investigation indicates a lower frequency of 

transfer cells in the vascular bundles from infected parts of 

114ssiZago leaves than in those of healthy parts and the wall in­

growths of infected transfer cells appear fewer and less elaborate 

than in those of healthy vascular tissue. These observations may be 

of special importance in the physiology of the host-parasite 

relationship during the monokaryotic phase of rust development, 

where the involvement of the transfer cells of healthy vascular 

bundles in the absorption and secretion of solutes was suggested 

previously (Gunning & Pate 1974i Cutter 1978). 

The less developed and less elaborate wall ingrowth of trans­

fer cells in infected vascular bundles than in uninfected tissue 

may correspond to the reduced transport across these cells, which 

results from diversion of host assimilate to the fungus. Instead 

of being transferred from phloem parenchyma and companion cells 

into sieve tubes, much of the photosynthate from the leaf may be 

taken up by the intracellular hyphae. In such infected cells, 

the material in the electron-lucent region around the intracellular 

hypha appears very similar to the region between the host plasma­

lemna and wall ingrowths of uninfected transfer cells. It is 

possible that this region surrounding the intracellular hypha may 

be in some respects physiologically similar to that surrounding 
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the wall proliferations. The host cell wall-like material deposited 

on the hypha I wall surface may be comparable to the deposition of 

wall ingrowths and may be a response to transport into the hypha. 

The intracellular hyphae observed in the phloem region appear 

healthy and metabolically active and are generally thin-walled. In 
. in other species 

contrast to this, where dikaryotic haustoria/have been reported to 

be ensheathed in wall-like material, these haustoria are frequently 

senescent or necrotic (Heath & Heath 1971). 

The lomasome-like structures in the transfer cells of TU88itago 

may resemble the "bud vesicles", described by Browning & Gunning 

(1977), or the "multivescular bodies" reported by Pate et aZ. (1969). 

Although,in Pate et at. 's study, the multivesicular bodies appear 

closely associated with the wall ingrowths, it seems that the plane 

of sectioning may remove these bodies from their original poSition 

which may correspond to the lomasame-1ike structure observed here. 

However, vesicles between cell wall and plasmalemma in plant cells 

have been previously reported (Walker & Bisalputra 1967). 

Although P. poarum infects the vascular tissue of both lamina 

and petiole of leaves of TussiZago, no spreading of infection by 

longitudinal passage of the parasite through the vein has been 

observed. Un~ike the fungal wilt infections of vascular tissue 

(such as Fusarium oxysporum and Vertiaittium, Dickinson & Lucas 

1977), invasion of TU88itago leaf veins by monokaryon hyphae of 

p. poarum does not appear to be accompanied by adverse reactions 

of the infected host cells. This Unportant relationship of bio­

trophic infection by pycnial-aecial stages of certain rusts ,~ith 

the vascular system of the host has previously been overlooked 

and has physiological implications which have still to be explored. 
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9.4 Host responses to infection by F. poarum 

9.4.1 Host nuclei 

The significance of the enlargement of the nucleus of infected 

cells and its close contact with the haustorium, which have been 

observed here in Foa and in various previous studies of rust infect­

ions (Hilu 1965; Zilnmer 1965; Shaw 1967; Sood & Sackston 1970) 

remains a matter for speculation and may be of findamental signif­

icance in the host-parasite interaction. Nuclei of infected 

TU8siZago cells do not usually show this obvious association with 

intracellular hyphae and, in mesophyll cells of TussiZago, the host 

nuclei enlarge much less than those in infected cells of Foa. These 

observations support the view that intracellular hyphae of the mono­

karyon differ from the haustoria of the dikaryon in their interaction 

with host cells. It is difficult to explain the reaction of epidermal 

cells to infection, where nuclei of Tu88iZagoincrease in volume to 

a greater extent than those of Foa, although the epidermal nuclei 

of Foa become unusually elongated. 

The enlarged host nucleus of infected cells of Foa is frequently 

bent around or" deeply invaginated by the haustorium (Fig. 7.15, 7.16). 

In their review Littlefield & Heath (1979) suggest that 'close 

association of the haustorium and the host nucleus is a character­

istic response to invasion by M- and D-haustoria'. From certain 

previous studies (Colley 1918; Gold et at. 1979) as well as unpubl­

ished observations of M. D. Coffey and ~1. c. Heath, they conclude 
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that indentation of the nucleus by a haustorial lobe seems partic­

ularly common in cells invaded by M-haustoria. Further quantitative 

observations on a wide range of rust species at the light micro­

scope level, such as have been made with p, poarum (see Chapter 4) 

may be required to clarify this point. The interaction which may 

exist between nuclei of haustoria and host cells is poorly under­

stood. The close proximity of the fungal nucleus in the haustorium 

to the host cell nucleus, occasionally observed in the present study 

(Fig. 5.40), may be important at certain stages of development. 

In addition to the alterations in form and size of nuclei in 

infected mesophyll cells of Poa, the electron micrographs reveal 

that the amounts of nuclear materials (euchromatin and hetero­

chromatin) are markedly changed. Similar changes occur in the 

fine structure of nuclei in infected mesophyll cells of Tussilago 

where there is no close association of intracellular hyphae and 

host nucleus. Ultrastructural changes in nuclei of rust-infected 

tissue have been reported previously (Manocha & Shaw 1966; Robb et 

ala 1975a). Manocha & Shaw (1966) considered the heterochromatin 

regions as repressed DNA while euchromatin regions were active in 

RNA synthesis (Littau et ala 1964, reviewed by Manocha & Shaw 1966). 

However, Manocha & Shaw (1966) reported that the increase in electron 

density of euchromatin (interchramatin) in nuclei of mesophyll 

cells of rust-infected wheat was consistent with the increase in 

RNA and protein found in rust-affected nuclei (Bhattacharya et al. 

1965). They also indicated that the decrease in the aggregation 

of heterochromatin might be equivalent to the decrease in the 

histone content (Bhattacharya et al. 1965). In general, the 
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changes in the structure of host nuclei in rust-infected leaves of 

TUssilago and Poa resemble those in uninfected, detached wheat 

leaves senescing on ,~ter (Shaw & Manocha 1965a; Shaw et ale 1965). 

The haustorium-host· interaction is generally assumed to be mainly 

concerned with nutritional requirements of the parasite but it may 

directly involve the nucleic acid metabolism of the host (Chakravorty 

& Shaw 1977a,b). Further investigations are needed to study the 

changes in nucleic acids of both alternate hosts of P. poa~um. 

9.4.2 Chloroplasts 

The ultrastructural changes observed in the chloroplasts of 

TUssilago and Poa infected by P. poarum essentially resemble those 

reported in various plants infected by other rusts (Shaw & Manocha 

1965b;Orciva1 1968; Coffey et ale 197Zb;Heath 1974; Robb et ale 

1975a;Abu-Zinada et ale 1975; Mlodzianowski & Siwecki 1975; ~~res 

1979), viruses (Esau 1968; Matthews 1973; Tomlinson & Webb 1978) or 

bacteria (La11yett 1977), and during the processes of ripening 

(Thompson 1966; Spurr & Harris 1968), senescence (Ikeda & IJeda 1964; 

Shaw & Manocha 1965a;Ljubesic 1968) or chemical treatments (Butler 

& Simon 1968; Fischer et ale 1973; Heath 1974). 

In TUssilago, the chloroplast ultrastructure during early stages 

of pycnial infection was similar to that observed in aged healthy 

cells, although osmiophilic globules were either absent or very few 

in the aged healthy cells. Robb et ale (1975a) reported an increase 

in the number of osmiophilic globules in chloroplasts of Pinus during 

pycnial infection by C~onartium ~ibiaoZa. A similar increase was 
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clearly seen in chloroplasts of TUsBiZago during early stages of 

pycnial-aecial infection. The present study supports the obser­

vations of Orcival (1968) concerning the state of the chloroplasts 

of TU8siZago in the pustule centre during later stages of infection 

with P. poarum. In the tissue adjacent to the pycnial-aecia1 

pustule, however, there was no evidence of pro1ame1lar bodies 

similar to those observed by Orciva1 (1968) in the corresponding 

red-coloured zone in his leaves. The changes in chloroplasts of 

infected TussiZago described here show a close resemblance to that 

demonstrated for virus-infected plants of other species (Esau 1968; 

Matthews 1973; Tomlinson & Webb 1978). 

The chloroplasts in Poa mesophyl1 cells appear less sensitive 

to infection by this rust than those in TussiZago, where the chloro­

plasts show a relatively normal membrane system with an increase in 

number and size of strach grains and osmiophilic globules. The 

chloroplasts from the older healthy leaves of Poa contained a we11-

developed membrane structure with several, large strach grains. 

Similarly, a relatively unaffected chloroplast membrane structure 

was reported for rust-infected Zea mays (Van Dyke & Hooker 1969) 

and for cabbage plants infected by white blister fungus (Coffey 1975). 

The significant reduction in chloroplast numbers in both alter­

nate hosts of P. poarum after infection is in agreement with the 

observations of Soad & Sackston (1970) and ~~res (1979) on other 

plants infected by rusts. The disappearance of the chloroplasts in 

Poa mesophyll cells infected by this rust was observed by Ltlsel 

(1978). The suggestion that the loss in chloroplast numbers in 

infected Tus8ilago might be attributed to the degeneration of the 
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chloroplasts, which appear to be controlled by both host and para­

site, is supported by the presence of the host chloroplasts in 

close association with the intracellular structures formed by 

pycnia1-aecia1 infections and by the reduction in the number of 

crystal-containing microbodies which have been reported to be a 

site of autolytic enzymes (Fredrick et aZ. 1968; Armentrout & Wilson 

1969; Zimmer 1970; Coffey etaZ~972; Beevers 1979). To explain the 

loss in numbers of chloroplasts in infected Poa, it is assumed t}lat 

chloroplast reproduction decreases after ilLfection (Novikoff & 

Holtzman 1970; Park 1976) whereas they continue to multiply in 

maturing healthy cells. 

The peripheral vesicles observed in chloroplasts of healthy 

and infected mesophy11 cells of Poa appear similar to those reported 

by Toyama (1980) in chloroplasts of Morning Glory leaves exposed to 

ethylene. 

The changes in green colour of the tissue in both hosts of 

p. poarum may be related to the accumulation of carotenoids in the 

chloroplasts (Ikeda & Ueda 1964). However, in both hosts of P.poarum 

the responses of the chloroplasts to early stages of pycnial and 

uredial infections are similar, while the chloroplast responses in 

the alternate hosts differ during later stages of development of 

this rust. This indicates differences in the physiology of host­

parasite interaction during monokaryotic and dikaryotic phases of 

p. poarum. 
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9.4.3 Microbodies in host cells 

Although TussiZago mesophyll cells are larger in diameter than 

those of Poa cells, the number of crystal-containing microbodies 

in infected and uninfected Poa mesophyll cells is more than that 

in Tu8SiLago cells. The reduction in number of microbodies in both 

infected Poa and TussiLago mesophy11 cells after infection appear 

to correspond to the observations of Armentrout & Wilson (1969) and 

Zimmer (1970), who mention the rapid disappearance of microbodies 

from host cells soon after penetration by haustoria. Association 

of chloroplast and microbodies was frequently seen in infected cells 

where one or more crystal-containing microbodies normally lay close 

to the chloroplast. Such an association has been demonstrated for 

grasses and other plants (Fredrick & Newcomb 1969, 1971). However, 

the frequent association of these bodies with the host chloroplasts 

in rust-infected tissues was reported by Coffey et a~.(1972b), who 

suggested here that the proximity of microbodies to the host organ­

elles may be physiologically important. Fabbri & Palandri (1970) 

mentioned that crystals were not commonly seen in microbodies of the 

senescing tissue and their occurrence diminished with age. This 

corresponds with the absence of crystalline inclusions from micro­

bodies of aged healthy cells of Tussi~ago. Microbodies in both 

alternate hosts and parasite resemble one another in general morphology 

but differ in their association with cell organelles. ~ticrobodies 

in both Tu8si~ago cells and monokaryon of P. poaPUm show less 

association with other cell structures than those in Poa. However, 

the occurrence of fungal microbodies near septa in Uredinales 
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(Maxwell et aZ. 1977; Littlefield & Heath 1979) appear equivalent 

to the association of microbodies and cell wall in Poa and TussiZago 

cells. In general, the associations of microbodies (peroxisomes 

or glyoxysomes) with other cell organelles in both host and parasite 

are thought to be functionally important (review by Maxwell et al. 

1977). In P. poarum, no microbodies are observed in either haustoria 

of the dikaryon or intracellular hyphae of the monokaryon although 

microbodies are present in the intercellular hyphae. The present 

observations on fungal microbodies resemble those reviewed by 

Maxwell et aZ. (1977) in biotrophic fungi. 

Several recent studies have indicated that plant microbodies 

contain catalase (Fredrick & Newcomb 1971; Tolbert 1971; Beevers 

1979), and some other studies report an increase in peroxidase in 

rust-infected tissue (Macko et aZ. 1968; Seevers & Daly 1970). As 

suggested by Coffey et aZ. (1972b), it seems that the frequency of 

microbodies and the presence or absence of their crystals in both 

alternate hosts of P. poarum may be correlated with the production 

of the above enzymes which may be affected by the presence of the 

parasite. 

9.4.4 Other host cell organelles 

In spite of their association with intracellular structures of 

P. poarum, host mitochondria appear less affected than other cell 

organelles in the alternate hosts of this rust during early stages 

of infection. Changes in the structure of host mitochondria only 

occur during later stages of rust development in infected cells of 
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TUssilago, where these organelles appear either vesiculated or 

degenerated. It seems that the vesiculation of host mitochondria 

may represent a stage of degeneration of these structures. HOlv­

ever, vesiculate cristae and crystalline inclusions similar to 

those reported by Coffey et al.(1972b) were not observed in mito­

chondria of either Poa or Tussilago cells after infection. 

In infected mesophyll cells of Poa, Golgi bodies and rough 

endoplasmic reticulum are more numerous than in uninfected cells. 

The endoplasmic reticulum associated with haustoria of the dilmr­

yon is ribosome-free. However, Golgi bodies and rough endoplasmic 

reticulum are not observed in infected and uninfected mesophyll 

cells of Tu8silago. In response to rust invasion, an increase in 

the number of Golgi bodies and in the amount of endoplasmic 

reticulum in the infected cells have been previously reported (Van 

Dyke & Hooker 1969; Ehrlich & Ehrlich 1971; Harder et ale 1978; 

Littlefield & Heath 1979). The association of SmoOtll endoplasmic 

reticulum and intracellular structures of P. POQPUm is consistent 

with other previous observations (see Harder et ale 1978). Harder 

et ale (1978) have suggested that the endo~lasmic reticulum of the 

host may be involved in the synthesis of n~l plasmalemma-like 

membrane. However, additional studies concerning the function of 

the association of host cytoplasmic membranes and intracellular 

structures of rust fungi are required. 

9.4.5 Host cell wall 

An additional feature of infected mesophyll cells in Tussilaqo 

which is not found in Poa, is the presence of infoldings of host 

plasmalemma enclosing vesicles which, like the neck region of these 
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invaginations, contain granular material, similar in electron density 

to the host cell wall. These vesicles closely resemble those in 

parenchyma cells of Hetianthus (Walker & Bisalputra 1967) and in 

hyphae of PUaainia graminis tritiai (Thomas & Isaac 1967). Thomas 

& Isaac (1967) suggested that these bodies resemble lomasomes. Walker 

& Bisalputra (1967) reported that these vesicles originated in the 

cytoplasm, moved to the plasmalemma, fused with it, and emptied 

their contents on the cell wall. They indicated that the role of 

formation of these structures is similar to that described by Moore 

& McAlear (1961), and mentioned that the production and deposition 

of wall material may involve these types of vesicles. 

In a number of studies it has been suggested that electron­

lucent material associated with intracellular structures may be 

callose, a (1-3)-p·D-glucan found in characteristic locations in 

certain plant tissues, especially sieve areas of phloem (Currier 1957; 

Cutter 1978). Identification of "callose" has been largely histo­

chemical and its structure and function are poorly understood. 

Recently, Meier et al. (1981) have demonstrated that callose may 

be an intermediate in cellulose biosynthesis at the stage of second­

ary wall formation. Crafts & Currier (1963) (review by Cutter 1978) 

suggested that enzymes located in the plasmalemma are involved in the 

synthesis and degradation of callose; Cronshaw (cited by Robards 1974) 

assumed that callose degradation involves enzymes in the cell wall. 

Currier (1957) reported several possible functional roles for 

callose: a) involvement in sealing and plugging action; b) pre­

vention of leakage of sieve tube sap (or water) into the cell wall; 

c) structural role as a cell wall constituent; d) a possible inter­

mediate in the degeneration and synthesis of the cell wall. 
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In the present investigation, both light microscopic obser­

vations on tissue stained with resorcinol blue and the distribution 

of fluorescence, after staining with analine blue, indicate the 

presence of callose around the monokaryotic intracellular hyphae 

of P. poarum and, at its point of entry, in the Tussilago cell 

wall. Infected and uninfected areas of both hosts show callose 

in their vascular bundles, a particu1arl)T clear reaction being 

found in xylem and phloem regions and in walls of both endodermal 

and epidermal cells. The fluorescence of the endodermal cell wall 

may indicate the presence of callose either as a wall constituent 

or related to cellulose deposition. However, no fungal stnlcture 

of the dikaryon of P. poarum gives a positive reaction for callose 

while in TUssiZago, callose is found around intracellular hyphae 

of the monokaryon and in the host cell walls adjacent to the point 

of penetration by the parasite. This appears to correspond to the 

deposition of host wall-like material around the penetrating h)Thae 

suggested by the present electron microscopy and is supported hy 

the observations of Meier et at. (1981) concerning the involvement 

of callose in the synthesis of cellulose. In certain resistant 

combinations of cowpea rust, Heath (1971) has described a callose 

sheath which gro~s up from the host cell wall around rust haustoria. 

The absence of callose around intercellular hyphae on both hosts 

suggests that the adhesive material between fungal and host walls 

differs in nature from that around intracellular hyphae. 
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9.4.6 Size of host cells 

The only difference in host cell size in infected tissue com­

pared with uninfected regions is the decreased size of mesophyll 

cells of TussiUlgO in the vicinity of pycnia. This effect, which 

is more readily observed in sections through mesophyll tissue, par­

allel to the epidermis, than in conventional transverse sections, 

suggests that, owing to competition with the rust thallus, these 

cells may have experienced less adequate nutrition during their 

development than cells remote from the infection. The absence of 

such an effect in Poa probably reflects the differing growth 

pattern of the grass leaf. Infection in Poa occurs in relatively 

mature regions of the leaf, which have completed their primary 

expansion closer to the basal mer is tern, whereas the dicotyledonous 

leaf probably continues growth and expansion of the lamina at and 

following the time of inoculation. 

From light microcrope observations, it 'vas found that the 

distortion and increased diameter of the infected parts of the 

petiole in TUssiZago was due to the massive gro,~h of the mono­

karyon, rather than to hypertrophy or hyperplasy. 

9.5 Autoradiographic study of the distribution of label from 

3H-glycerol in infected and uninfected tissue 

In both TUssiZago and Poa, infection with P. poaPUm markedly 
3 alters the fate of H-glycerol taken up by host leaves. On account 

of the technical difficulties encountered in a number of preliminary 

experiments in achieving an adequate level of labelling of tissue 
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for quantitative work, the present light microscope study suffers 

from the severe limitation of the quantitative assessments being 

confined to a single leaf of each host, although more specimens 

were available for qualitative observations. The overall agreement 

with the results of macroautoradiographic and biochemical investi-

gations of similar tissues, using photosynthetically assimilated 

l4C (Holligan et aZ. 1973; Fung 1975; L~sel & Lewis 1974; L~sel 

1978) permits same confidence in the present observations. 

As . . t d' . th l4C d' .. f 3 1 1n prev10us s u 1es W1 , ra 10act1v1ty rom H-g ycerol 

accumulates in infected areas of leaves of both hosts of P. poapum 

to a greater extent than in uninfected tissues. Analysis of micro­

autoradiographs has made it possible to compare the effects of 

infection by monokaryotic and dikaryotic stages of P. poaPUTlon the 

distribution of substrate, assimilated by the host, within tissues 

and within cells. Until now, there have been few attempts to apply 

microautoradiographic methods to studying rust infections at the 

greater level of resolution permitted by the use of tritium rather 

than l4C (Bhattacharya & Shaw 1967; Favali & Marte 1973; ~funocha 

1975; Mendgen & Heitefuss 1975; Mendgen 1979) and no such study has 

been encountered in which both monokaryotic and dikaryotic stages of 

a single rus~ can be compared. 

An indication of the profound physiological effects of infection 
i. 

on leaf tissue/seen in the chloroplasts of both hosts of P. poapum. 

Uninfected mesophy1l tissue incorporates radioactivity from 3H_ 

glycerol mainly into chloroplasts, whereas infected tissue, partic­

ularly in TussiZago, shows much lower levels of label in chloroplasts. 

Mlcroautoradiographic comparison of infected and uninfected tissues 
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shows a diversion of labelled substrates to the fungal thallus, 

with spores and spore-bearing structures as the principal sink. 

The more drastic alteration in chloroplast activity in Tussilaga 

corresponds with ultrastructural evidence (Chapter 7) of greater 

disturbance of cells and chloroplasts of this host than of Paa. 

In spite of the less severe effects on chloroplasts of 

infection of Paa leaves by the dikaryon of P. paaPUm, fundamental 

alterations in host metabolism are indicated by the greatly 

increased labelling of nuclei in 3H-g1ycero1-fed tissue of Paa 

mesophy11 and epidermis, paralleling the changes in nuclear size 

and ultrastructure recorded in Chapter 7. The observation by 

Bhattacharyo & Shaw (1967) of increased incorporation of label 

from tritiated cytidine and uridine into RNA of wheat leaves 

following infection with P. graminis var. tritiai may be noted in 

this connection. 

Further evidence of the differences in the relationship of 

monokaryotic and dikaryotic stages of P. paarum with their res­

pective hosts is provided by the much greater intensity of label­

ling associated with haustoria than with intracellular hyphae of 

the monokaryon, which are not more heavily labelled than the inter­

cellular hyph~e. If the present indications of silver grains in 

autoradiographs lying around rather than within intracellular 

structures of the monokaryon of P. paarum are substantiated at the 

higher resolution of electron microscopic autoradiographs, it might 

be concluded that this accumulation of substrate from the host cell 

corresponds to the deposits of host wall-like material seen in 

electron micrographs of intracellular hyphae in rnesophyll and bundle 
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sheath cells. This deposition may represent reaction by an incom­

patible host cell. At this level of resolution, however, it is 

difficult to be certain that the silver grains seen here are not 

associated with hyphal wall synthesis. 

The situation in TussiZago could be comparable to that observed 

by Manocha (1975) in his comparison of resistant and susceptible 

host-parasite combinations involving P. graminis, where transfer 

of label from mesophyll cells of leaves provided with 3H-Ieucine 

was apparently prevented by the deposition of "sheath" material on 

the haustorium wall within the extra-haustoria matrix in resistant 

hosts. 

On present evidence, the monokaryotic hyphae, which invade 

mesophyll and bundle sheath cells of TussiZago, do not appear to 

be as important in the uptake of host assimilate as the haustoria 

of the dikaryon, with their intensive accumulation of radioactivity 

from 3H-glycerol. The autoradiographic observations do not exclude 

the possibility that intercellular hyphae of P. poarum might obtain 

nutrients directly from host cell surfaces within the mesophyll. 

Andrews (1975) demonstrated the uptake by Bremia Zactucae of label 

from lettuce cotyledons supplied with 3H-glucose, even before pene­

tration of the host, although, after infection, uptake was primarily 

via haustoria. In the case of P. poarum, however, it is likely that 

the vascular system, particularly the phloem, which is extensively 

invaded by the rnonokaryo~ is the direct source of label incorporated 

by the fungus in TussiZago. 

As far as can be determined at the present level of resolution, 

the intracellular hyphae within the vascular tissues of TussiZago, 
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which EM studies have generally shown to lack any deposit of host 

wall-like material in the matrix region between the fungal wall 

and the invaginated host plasmalemma, appear to show some radio­

activity within the fungal cells. If this is substantiated by high 

resolution autoradiography, it may be concluded that, in Tussilago, 

the monokaryon obtains host assimilate directly from the vascular 

system and diverts it towards the fungal thallus and sporulating 

structures. 

In Poa, on the other hand, where no vascular infection has 

been encountered, the nutrient requirements of the rust dikaryon 

appear to be supplied via the haustoria in mesophyll cells, which 

may continue both to photosynthesise and to maintain their normal 

supply of materials from the adjacent vascular system. Infection 

provides an additional sink for host assimilate and increases the 

activity of these pathways, as evidenced by the enhanced labelling 

observed in the infected mesophyll of Poa and adjacent vascular 

tissue. The much lower level of radioactivity of Tussilago leaf 

veins in infected than in uninfected parts of leaves may be due 

to direct uptake of translocated materials from the vascular tissue 

by the monokaryon of P. poarwn. 

Mendgen's (1979) observation of increased uptake of radioactivity 

by haustoria of P. graminis with increasing age appears to be 

supported in the present study by the density silver grains lying 

over long, folded haustoria. As in P. graminis, intercellular hyphae 

of the dikaryon of P. poarum are less heavily labelled than adjacent 

haustoria. From this difference in radioactivity and the relatively 

high grain density over host cell structures, Mendgen (1979) concluded 
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that transfer of 3H-Iysine from the host cells occurred via the 

haustorium to intercellular hyphae. He pointed to the contrast 

between this and the very low concentration of label in inter­

cellular hyphae associated with a dead haustorium. 

Surprisingly, although label from glycerol might be expected 

to accumulate preferentially in lipid-containing structures, the 

intercellular and intracellular hyphae of the monokaryon of 

P. poarwn, which contain more lipid drops than the corresponding 

structures of the dikaryon, have been less heavily labelled than 

the dikaryotic structures in the conditions of the experilnents 

described here. Very active accumulation of tritium is found in 

the readily-recognizable oil drops in mesophyll cells of Poa in 

the vicinity of the rust infection. These differences presumably 

reflect the relative rates of synthesis occurring in these various 

lipid bodies during the 3H-glycerol-feeding and chase periods. 

The most remarkable feature of microautoradiographs of sections 

of infected regions of leaves of both hosts of P. POqrum is the 

intense labelling of spores and accessory structures, particularly 

in Tussitago where the increasing density of silver grains from 

the sub-aecial stroma to hymenium and aeciospores is in striking 

contrast to the low level of radioactivity in the infected mesophyll 

and intercellular hyphae. If the accumulation of radioactivity 

between aeciospores in the lower parts of the aecium, noted in 

Chapter 8, can be attributed to the breakdown of intercalary cells 

fram the aeciospore stage one might speculate on whether this is 

functionally analagous to materials derived from the tapetum of 

flowering plant anthers during the development of pollen grains. 
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Autoradiographs of aecia also give clear evidence of involvement of 

tritium from 3H-glycerol in wall synthesis of aeciospores and the 

aecial peridium. 

The active labelling of all fungal structures in young uredia 

and the differentiation of intensely labelled urediospores from 

relatively unlabelled accessory structures such as uredial paraphyses 

and peridium observed in older uredia may correspond to the relative 

rates of development of these structures. In the latter case, the 

peridium and paraphyses must have developed before the period of 
3 exposure to H-glycerol, during which the developing urediospores 

became labelled. 

Seen in the context of the ultrastructural investigation already 

discussed, and previous biochemical studies, this preliminary analysis 

of the uptake of tritium by host and fungal structures goes some 

way towards elucidating the physiology of the association of P.poarum 

with its two hosts and has indicated certain important differences 

in the relationships of the mono- and dikaryotic growth phases with 

the corresponding hosts. The way has been prepared for further 

investigation by high-resolution autoradiography at the electron 

microscope level, which should lead to a better understanding of 

the fundamental processes of transfer of substrates from host tissues 

to the thallus of P. poarum. 
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9.6 Conclusion 

The combined evidence of structural, ultrastructural and auto­

radiographic investigation has revealed several important differ­

ences between the monokaryotic and dikaryotic growth phases of 

Puaainia poarum, both in the structure and activity of host-parasite 

interfaces and in the degree of reaction of tissues of the alternate 

hosts. 

As might be expected from the probable access of the monokaryon 

to nutrients translocated in the host phloem, which is indicated by 

its extensive invasion of the vascular bundles of TussiZago, the 

intracellular hyphae, which penetrate mesophyll cells, appear to be 

less important in the uptake of materials from the host than the 

haustoria of the dikaryon in leaf tissue of Poa. 

A fundamental difference between the relatively unmodified 

intracellular hyphae of the monokaryon in mesophyll cells of Tussilago 

and the structurally specialized haustoria of the dikaryon is seen 

in the deposition of apparently host-derived wall material directly 

on the hypha I wall of the former, within the matrix region bounded 

by the host plasmalemma. This feature, which resembles certain 

resistance reactions by incompatible hosts in other rust infections, 

is absent in the extrahaustorial matrix of P. poarum growing on Foa. 

The severe effects of infection on mesophyll cells of Tussilago 

particularly on the structure and functioning of chloroplasts, con­

trasts with the much lower level of disturbance of Poa mesophyll 

cells, in which chloroplasts remain structurally intact and continue 
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to assimilate nutrients, even when they contain haustoria, actively 

absorbing materials from the host cell. 

It may be concluded that the rnonokaryon of P. paarwn shows a 

less specialized parasitism than the dikaryotic phase of growth. 

The intimate association of haustorium and host nucleus, which is 

a constant characteristic of infection in Paa, may play an important 

role in this relationship. 
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APPENDIX 

1. Lactophenol cotton blue (Shipton & Brown 1962) 

Phenol 10 g 

Glycine 10 rnl 
Lactic acid 10 rnl 
Cotton blue 0.2 g 

Distilled water 20 rnl 

2. Sudan IV 

To stain lipids, a saturated and filtered solution of Sudan IV 

in lactophenol was used. Sudan IV in lactophenol cotton blue, 

similarly prepared, was also used to stain lipids in occasional 
slides. 

3. Preparation of cacodylate buffer 

a) Preparation of 0.4 M solution of Na cacodylate 

Na cacodylate 21.4 g 
Distilled water to make 250 rnl 

b) Preparation of 0.2 M Na cacodylate 

0.4 M Na cacodylate 50 rn1 

0.2 M HCl 8 rnl (approximately for pH 7.2) 
Distilled water to make 100 rnl 

The pH of.this buffer was adjusted to pH 7.0 with Hel. 

4. Preparation of buffered glutaraldehyde 

0.2 M Na cacodylate buffer 

25% glutaraldehyde 

Distilled water 
Final aldehyde concentration (%) 

50 rnl 

10 ml 
40 rn1 

2.S 



r 
5. Preparation of buffered osmium te~ide 

Stock solution (w/v) 10 ml 
0.2 M Na cacodylate 10 ml 
Final concentration (%) 1.0 

6. Preparation of Epoxy resin (medium hard mixture, i.e. lA;3B) 

Epon (Epikote) 812 117.85 g 93.26 ml 
BEMA (accelerator) 3.025 g 3.30 ml 
MNA (hardener) 82.525 g 68.05 ml 
DDSA (softener) 30.900 g 31.00 ml (added last) 

MNA - methyl nadic anhydride; DDSA - dodecyl succinic anhydride; 
BDMA - benzyl dimethylamine 

7. Lead citrate (Reynolds 1963) 

Pb(N03)2 

- Na3(C6H507)·ZH20 

Distilled water 

1.22 g 

1. 76 g 

30 ml 

The mixture is shaken for one minute and then allowed to stand 
for 30 minutes with occasional shaking. 8 ml of 1 N NaoH is 
added and the suspension diluted to SO ml with distilled water. 

8. Cleaning solution 

Potassium bichromate 
Distilled water 

HZSO 4 (conc. ) 

100 g 

850 m1 
100 m1 (added slowly with s1:irring) 

Slides are soaked overnight in the cleaning solution, then washed 
for several hours in running tapwater, followed by Z changes of 
distilled water, for 30 minutes each, and dried in a dust-free 

atmosphere. 



9. Resorcin blue (Cheadle et ale 1953) 

0.25 g lacmoid is dissolved in 100 ml30% ethanol. A 
few milliliters of 1% NaHC03 solution are added to keep 
the tissues slightly alkaline, in order to preserve the 

blue colour of the lacrnoid. 

10. Fluorescence microscope attachments used in the detection 
of callose 

High intensity mercury vapour lamp 
Exciter filter BG3 
Absorption filter BG38 
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