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Summary 

The thesis investigates the modelling, analysis, design and control of 4th -order LCLC resonant 

power converters. Both voltage-output and current-output variants, are considered. Key research 

outcomes are the derivation of new frequency- and time-domain models of the converters, based on 

normalised component ratios, and including the effects that parasitic elements have on circuit 

behaviour, and a detailed account of multi-resonant characteristics; extensions to the use of cyclic­

mode modelling methods for application to LCLC converters, to provide rapid steady-state analysis, 

thereby facilitating the use of the derived methodologies as part of an interactive design tool; the 

formulation of analytical methods to predict the electrical stresses on tank components-an important 

consideration when designing resonant converters, as they are often higher than for hard-switched 

converter counterparts; the characterisation of both continuous and discontinuous modes of operation 

and the boundary conditions that separate them; and a substantial treatment of the modelling, analysis 

and design of LCLC converters that can provide multiple regulated outputs by the integrated control of 

both excitation frequency and pulse-width-modulation. 

The proposed methodologies are employed, for validation purposes, in the realisation of two proof-of­

concept demonstrator converters. The first, to satisfy the requirements for delivering 65V (rms) to an 

electrode-less, SW, fluorescent lamp, to improve energy efficiency and lifetime, and operating at a 

nominal frequency of 2.65 MHz, is used to demonstrate capacitively-coupled operation through the 

lamp tube, thereby mitigating the normally detrimental effects of excitation via the electrodes. The 

second prototype considers the realization of an LCLC resonant power supply that can provide 

multiple regulated outputs without the need for post-regulation circuitry. The two outputs of the 

supply are independently, closed-loop regulated, to provide asymmetrical output voltage distributions, 

using a combination of frequency- and duty-control. Although, an analysis of the supply shows that 

the behaviour is extremely complex, due, in particular, to the highly non-linear interaction between the 

mUltiple outputs and parasitic inductances, and rectifier, an analysis to provide optimum performance 

characteristics, is proposed. Moreover, a PICIFPGA-based digital controller is developed that allows 

control of the transient performance of both outputs under start-up and steady-state conditions. 
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CHAPTER 1 

Introduction 

With the increased power capability, improved control and reduced cost of modem power 

semiconductor devices, designers of electronic equipment, computers and electronic instrumentation 

are increasingly demanding higher energy-density and efficient power sources to supply their 

equipment, Fig. 1.1. Power supply technologies can be divided into two distinct groups; linear 

regulators and switched-mode power conversion techniques. Over recent decades, a substantial 

movement from simpler linear regulators, to high frequency pulse-width modulated (PWM) converters 

with similar power handling capabilities, but with a reduction of overall size and weight, has emerged. 

Theoretically, at least, using ideal component characteristics, switched-mode power conversion offers 

the possibility of loss-less power transfer, with duty-cycle or frequency control of an idealised 

switching element controlling the flow of energy to achieve regulation. 
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Figure 1.1 Recent trends in power supply technology 

To date, most commercial switch-mode power supplies on the market operate in the frequency range 

10 kHz to 50 kHz [AI], and are found in many commercial products and white-goods viz. computers, 

television receivers, battery chargers etc. For domestic applications, switching frequencies in excess 

of 20 kHz are usually employed to reduce the impact of acoustic noise emissions. However, the trend 

towards miniaturisation of electronic systems [A2], particularly for communication and entertainment 

products, and the emergence of enhanced power switch technologies, is leading to the use of switching 

frequencies in the range of lOO's kHz to several MHz, Fig. 1.2 [A3]. 
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During their infancy, switched-mode converters employed Bipolar Junction Transistors (BJTs), which 

had, by then, been optimized for low power transfer, as a result of requirements to develop digital logic 

circuits, but have been subsequently realized for higher voltage/current applications. However, the 

introduction of power Metal Oxide Semiconductor Field Effect Transistors (MOSFETs), during the 

1970/80s [A4] , provided the power electronics industry with a device capable of much greater 

switching speeds and lower power dissipation. Nevertheless, whilst significant advances have been 

made, MOSFETs remain limited by achievable voltage ratings and greater fabrication cost. 

The Insulated Gate Bipolar Transistor (lGBT) combines the low-power drive advantages of the 

MOSFET with the low conduction losses and high blocking-voltage characteristics of the BIT, thereby 

making it very suitable for high power, high voltage systems. However, since current transport is by 

the same process as the BIT, the maximum switching speed is much lower than can be achieved by 

MOSFETs, and is therefore currently limited to applications requiring switching speeds of typically 

<50kHz. 

The MOS-controlled Thyristor (MCT) is a relatively new device to the commercial market. The MCT 

combines the properties of a Gate-Turn-Off Thyristor, including low on-state voltage drop at high 

current, with the advantage of being a voltage-controlled device like the IGBT and MOSFET. A 

comparison between MCTs and IGBTs of similar ratings show that the MCTs have smaller on-state 

voltages and are now available in voltage ratings up to 1500V, at a few hundred amperes. 

Nevertheless, the MCT remains a relatively new technology, albeit in a state of rapid development, and 

significant improvements in the device capabilities are anticipated in the next few years. A summary of 

the capabilities of recent power devices is shown in Fig. 1.2 [AS]. 

Device 

Figure 1.2 Power semiconductor device capabilities. 
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Although the use of higher switching frequencies allows smaller reactive components to be employed 

in designs, in-turn leading to systems with lower volume envelope and reduced cost, the resulting 

supplies are often more susceptible to the effects of parasitic capacitance and leakage inductance, 

higher peak current stress, and higher switching losses. In conventional PWM converters, such effects 

manifest themselves as high-frequency ringing and large current spikes that are generated by the rapid 

charging and discharging of device capacitances, and unwanted electromagnetic interference (EM!). 

As a consequence, with ever-stringent regulations regarding supply quality and EM!, as well as the 

techno-economic benefits afforded by the use of high power-factor loads, the merits of resonant power 

converters, particularly those which employ high-order tank circuits, are now attracting increased 

attention. This is most apparent in market sectors such as compact fluorescent lamp ballasts [A6], 

plasma televisions [A7], x-ray generators [A8, A9], electric vehicle inductive battery chargers [AIO] 

and electric welding [All] (Fig. 1.3), for instance. 

(a) 

(c) 

(b) 

Figure 1.3 Possible applications for resonant power converter: a) Plasma display panel, b) Fluorescent lamp 

electronic ballast, and c) X-ray medical system. 

The input switching devices of resonant converters, as opposed to hard-switched counterparts, can be 

configured to operate in either 'zero current' (ZCS) or 'zero voltage ' (ZVS) switching modes [A12], 

thereby greatly reducing levels of electrical stresses on devices (see Fig. 1.4) and minimizing switching 

losses. Another advantage is the reduction of EMI normally associated with applying high-bandwidth 

switching transients to internal capacitances of devices. Converters designed to exhibit ZVS, for 

instance, do not generate this type of EMI [A13]. Furthermore, the sine-wave characteristics of 

resonant tank voltages and currents reduce the generation of high frequency harmonics. 
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Although many variants of resonant converter have emerged, they can be broadly categorized into 

those employing series-resonant or parallel-resonant tank networks [AI4-AI7]. Generally, the 

resonant tank is switched above the resonant frequency, thereby imparting ZVS to minimize turn-on 

losses-variable frequency control being used for regulating the output voltage. However, a 

disadvantage with this method is that the transfer characteristic is non-linear and generally changes 

with load. 

~----~ ••••••.••••••••••••••• ,"-----~ ••• t 

Figure 1.4 Switch current and voltage wavefonns when a resonant converter is operated using ZVS. 

Higher-order resonant converters are constructed from tank networks typically employing three or four 

reactive components, contained in two resonant branches (a series branch and a parallel branch), and, 

by appropriate selection of component values, it is possible to obtain converters with the combined 

advantages of both the series- and parallel-tank variants. 

It has previously been reported that 36 x 3rd-order and 182 x 4th-order resonant converter topologies 

have been identified, consisting of three or more energy storage elements, respectively, [A18, AI9], 

not all of which are practically useful. To date, few converter topologies have been fully analyzed with 

experimental verification-with the most common being the Lee series-parallel converter [A20-A25] 

which features desirable properties of both series- and parallel-converter counterparts. The eLL 
counterpart, which is more complex to analyze, has also been considered in [A26-A29]. 

In addition to improving the specific characteristics of converters employing 2nd-order tank circuits, 

high-order converters are also able to usefully 'absorb' circuit parasitic elements, as designed 
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components-an important feature for switching frequencies in the lOO'skHzlMHz range. By contrast, 

parasitic effects stemming from semiconductor junction capacitances, transfonner leakage and 

magnetizing inductance, winding stray capacitance and rectifier diode internal capacitance, are the 

primary reasons hindering the operation of 'hard switched' converter counterparts, at such frequencies. 

1.1. Review of Modelling and Analysis Methodologies 

Whilst resonant power conversion has significant potential to supply the future needs of 

equipment manufacturers, their widespread adoption remains impeded by the higher electrical stresses 

to which individual electronic components are exposed, and a lack of suitable design methodologies 

that can provide accurate and rapid predictions of circuit behaviour at the design stage; particularly 

those that consider the significant effects that parasitic resistances, capacitances and inductances have 

on resonant tank behaviour. 

The properties of the series [A14, A30], parallel [A15], and other 3rd-order resonant converter 

topologies [A31-A33] have been traditionally explored using the Fundamental Mode Approximation 

(FMA), and a systematic design guide has been previously reported for a resonant converter employing 

a 4th-order LCLC tank using a more complex fonn of AC analysis [A34]. Harmonics of the switching 

frequency are neglected, and tank wavefonns are assumed to be purely sinusoid, thereby facilitating 

the generation of simple equivalent circuits to be obtained to describe the behaviour of the resonant 

tank, rectifier, and output filter. 

A consequence of using FMA, is that the dc-input voltage to output-voltage conversion ratio, during 

continuous conduction mode operation, is approximately given by the ac-transfer function of the tank 

circuit, an example being shown in Fig. 1.5. The tank is loaded by an 'effective' output resistance that 

models the interaction between rectifier/output filter networks. It is thereby relatively straightforward 

to detennine how the arrangement of tank components, and their values, affects converter behaviour. 

This intuitive approach is shown to be sufficiently accurate to model converter operation in continuous 

conduction mode with a high quality factor, Q, but becomes very inaccurate when the tank is operated 

at low Q-factors or when operating in the region of discontinuous conduction mode conditions, and 

when parasitic components have significant influence on current/voltage wave-shapes. 
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Figure I.S Example voltage gain curve of an LCC resonant converter. 

6 

This is particularly apparent for converters based on LCLC structures, including the LCC counterpart, 

when a capacitive output filter is employed, and the combined clamping action of the parallel resonant 

capacitor and bridge rectifier creates voltage/current waveforms that are neither sinusoidal nor square­

wave (Fig. 1.6). To date, the most accurate frequency-domain methodology for analysing such 

converters is by recourse to Rectifier-Compensated FMA (RCFMA) [A31], where, in addition to the 

use of an 'equivalent resistor' to model the effects of the rectifier and output filter (as in classical 

FMA), other components, specifically an additional 'equivalent capacitor', is also used to improve 

accuracy. 

v",,(t) =v ........ . 

• <9<1 c 

T,n or 9 = • 

Figure 1.6 Example voltage and current waveforms of the voltage-output converter. 

RCFMA allows the underlying attributes of FMA to be applied to the more complex voltage-output 

converter variants whilst still allowing rapid analysis by virtue of employing the fundamental mode 

principle. The method has been demonstrated to combine low computational overhead with 

significantly enhanced prediction accuracy with respect to classical FMA techniques. Other 
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publications from Forsyth [A25], Ivensky et al. [A23], and Sewell et al. [A36] have directly addressed 

the analysis of LCC resonant converters using such 'describing function' methods, all providing 

incremental modifications to enhance the model of the non-linear interaction between the third-order 

LCC resonant tank and rectifier/output filter. Herein, the underlying principles are further extended to 

accommodate their use for the analysis of 4th -order LCLC converters. 

Although exact time-domain analysis of the resonant converters is more complex than when employing 

FMA principles, such approaches are necessary to obtain a complete understanding of converter 

behaviour when the 'sinusoidal approximation' does not hold. In such cases, the dynamics are more 

readily described by time-domain state-variable differential equations, of the form given in (1.1), 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 
(1.1) 

where A is the state matrix, B is the input matrix, C is the output matrix, D is the direct transmission 

matrix, x(t) is the state vector, u(t) is the input vector, and y(t) is the output vector. The state-variable 

representation allows the 'internal behaviour' of the system to be determined, and hence, the states of 

the system to be represented as a trajectory in n-dimensional state-space ('n' being the number of 

states). 

Candidate transient response equation-based modelling environments have been previously reported, 

most notably for simulating the control of Quasi-resonant converters [A37, A38] using 

MATLAB@/SIMULINK. In such cases, the state-variables, as well as models of the passive and 

active switches, are derived, with less computational overhead being required when compared to 

component based simulation packages, such as SPICE. Once the composite non-linear state-variable 

model is developed, the transient behaviour of the converter can be accurately predicted. 

To reduce complexity, state-space averaging techniques have been widely investigated to estimate the 

mean contribution of the converter voltages and currents [A39, A40, and A42], to the output voltage, 

and rely on the derivation of a number of state matrices, each corresponding to a distinct switching 

mode of the converter, which are then combined into a weighted (as a function of mode duty) averaged 

model. Perturbing and linearizing the resulting large signal model about the operating point 

subsequently allows the production of a small-signal dynamic model. Such methods therefore provide 

a valuable means of analysing both the dc- and ac-behaviour of power converters. However, the 

results are only valid if the averaging is applied over a switching interval (T,) that is small compared to 
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the converter's natural response time-the 'linear ripple assumption'. Unfortunately, operation of 

resonant converters is different from that of hard-switched PWM converters, which have high­

frequency energy storage elements whose natural response time is typically shorter than the switching 

time, T, [A42], thereby rendering classical state-space averaging techniques inapplicable in such cases. 

Other modelling approaches capable of producing basic, yet accurate, closed-form dynamic solutions 

suitable for describing the behaviour of resonant converters, have been reported, particularly to 

describe the many continuous and discontinuous conduction modes of the classical series-resonant 

converter [A43], as well as for the parallel-resonant [A16, Al7, A44, A45], and some high-order 

resonant converter topologies [A46-A48]. One technique reduces the complicated tank waveforms to 

a set of geometric relationships, an example being shown in Fig. 1.7 [A46]. When appropriately 

normalised, the underlying tank waveforms are described by segments of arcs and lines in the state­

plane. Determining the steady-state characteristics then consists of piecing together the appropriate 

segments, and solving. Equally important has been another averaging concept, in which the dc- and 

low-frequency ac-components of the converter waveforms, are obtained, while neglecting high 

frequency switching harmonics, thereby significantly simplifying the analysis. The use of circuit 

averaging, in this instance, is justified, since the switching harmonics are usually negligibly small at 

the load due to sufficient low-pass filtering being incorporated into a well-designed resonant converter. 

",-

" / . t .............. -/-................................ +.... ... .................... ...ft ........... Vn 

I • i 
\ (-1,-/nO) i 
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, ....-+-..... ,.,: 
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I 
Figure 1.7 Typical steady-state state-plane trajectory of a parallel resonant converter [A46]. 

Although state-plane analysis approaches have been successfully applied to analyze 2nd and 3'd-order 

converters, systems based on 41horder tank circuits, with nonlinear output current or voltage sources, 

become difficult to solve using conventional approaches. This is due to the fact that dynamics of the 

higher-order system are tightly coupled, thereby allowing the steady-state behaviour of the converter's 
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operation to be portrayed independently on 2x 2-dimensional state-planes. The required interpolation 

between the two design charts leads to a complex optimisation procedure. Due to its complexity (as 

will be shown) the voltage-output variant of 4th-order resonant converter has yet to be investigated 

using this approach. 

1.2. Outline of Thesis 

The thesis is divided into nine chapters, organized as follows. Chapter 2 presents the 

derivation and application of state-variable models for topologies of resonant converter with higher­

order tank circuits. From basic network theory, the resulting state-variable equations partition the 

converter dynamics into fast- and slow-subsystems, to be used as a basis for proposed analysis 

teclmiques that are derived in later chapters. Both voltage- and current-output converter variants, are 

considered. 

Chapter 3 introduces frequency-domain analysis procedures for the 4th -order current-output LCLC 

converter when operating in continuous conduction mode, with a high-Q response. Harmonics of the 

input excitation voltage are assumed to be sufficiently filtered by the tank so as to allow the tank 

waveforms to be considered purely sinusoidal, thereby allowing basic equivalent circuits to be derived 

for the resonant inverter and rectifier/output filter of the converter, which can be combined and solved 

using standard ac-analysis. However, when operating conditions are such that the 'sinusoidal 

waveform' approximation leads to inaccurate results, as in the case during discontinuous conduction 

modes of operation, for instance, the use of Fundamental Mode Approximation (FMA) teclmiques are 

shown to be inappropriate. 

Chapter 4 therefore develops an alternative analysis methodology for this topology of converter, based 

on the cyclic-mode principle. It is shown that the proposed teclmique provides a mechanism for 

rapidly determining the steady-state characteristics of the converter, and, importantly, provides a route 

for analytically predicting the voltage and current stresses on the electrical components. Chapter 5 

then provides a case-study that applies the teclmiques for the realization of an LCLC resonant inverter 

to meet the requirements for delivering 65V (rms) to a novel, prototype, electrode-less, 8W, 

fluorescent lamp. Improved energy efficiency and lifetime of the fluorescent lamp, beyond that 

normally obtainable by excitation by a 50/60Hz domestic supply, is demonstrated by capacitively­

coupling the output of the LCLC inverter to the fluorescent tube, and using excitation frequencies in 

the MHz range. 
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Chapter 6 develops enhancements to classical FMA analysis techniques, and gIves refinement 

procedures that further improve analysis accuracy. Moreover, the resulting equations lead to the 

derivation of four new design/synthesis procedures for the realisation LCLC converters that are 

subsequently used for the design of voltage-output converters. The analysis technique is then used to 

obtain the switching transition times of the converter. From the knowledge of the mode transition 

times, cyclic-averaging analysis is employed to facilitate high-speed, steady-state analysis. 

Finally, Chapter 8 extends results from the previous chapters to the analysis and design of resonant 

converters to provide multiple regulated outputs. In particular, the characteristics of a dual-load LCLC 

voltage-output resonant converter, is explored for the first time. Two state-variable models are 

derived, one of which incorporates the effects of transformer leakage to improve prediction accuracy. 

It is shown that the two outputs of the converter can be independently regulated to provide 

asymmetrical output voltage distributions using a combination of frequency and duty control. A 

comparison of measurements from a prototype converter, capable of delivering 5V and 3.3V, suitable 

for a standard electronic supply, with those from the derived state-variable models, and SPICE 

simulations, shows that the underlying equations provide accurate predictions of output voltage under 

steady state conditions. Moreover, a digital feedback control scheme is realised that allows control of 

the transient performance of both outputs under start-up conditions, and regulation at steady-state. 
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CHAPTER 2 

State Variable Modelling of Resonant Converters 

Simulation studies are a powerful supplement to conventional design methodologies to 

establish transient behavioural characteristics and sensitivities prior to finalising circuit designs. 

Classically, component-based simulation packages such as SPICE and SABER are often used to obtain 

large-signal dynamic characteristics of power electronic converters. However, there remains a need for 

equation-based simulation models as a result of the prohibitive execution times normally associated 

with component-based simulator kernels. 

Candidate transient response equation-based modelling environments have been explored, most 

notably for simulating feedback control of Fly-back Quasi-resonant converters [B I] in 

MATHWORK@/SIMULINK. In this case, equations for the state-variables, as well as models of the 

passive and active switches, are derived, and with less computational overhead being required 

compared to SPICE. Averaging techniques are used with Fundamental Mode Approximation (FMA) to 

model the time-dependant voltages and currents in the resonant circuit, as behavioural dependant 

sources. Although an average model of the resonant converter is constructed, the core feature when 

deriving the model solution still requires circuit simulators capable of handling behavioural dependant 

sources, namely SPICE-type simulators. 

Another modelling approach for the single-ended quasi resonant Converter, is proposed in [B2], based 

on basic analytical techniques from inductor currents and capacitor voltages. Non-linear differential 

equation models are used to accurately predict the transient behaviour of the targeted converter. 

The objective of this chapter is to present the application of equation-based modelling techniques for 

the rapid analysis of higher-order resonant converters. The half-bridge 4th-order converter, with a 

LCLC resonant tank configuration, as shown in Fig. 2.1, is specifically considered, with full-bridge 

rectification, and both inductor-capacitor (current-output) and capacitor-type (voltage-output) output 

filter configurations. 
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Figure 2.1 Circuit diagram of a 4th-order LCLC resonant converter (optional filter inductor Lr). 

To derive appropriate models, the converter dynamics are first partitioned into fast- and slow­

subsystems, for convenience. The fast sub-system represents the behaviour of the resonant tank and 

power switches, and the 'slow' sub-system, the output filter and load [B3]. Although the rectifier is 

excluded, the interaction between the fast- and slow-subsystems is described by a set of coupling 

equations describing the rectifier's non-linear contribution to the dynamics. 

Here, models of inductive-output converters under both continuous (CCM) and discontinuous modes 

(DCM) of operation, are derived, during light- and heavy-Ioadings. The accuracy of the models is 

verified against cycle-to-cycle SPICE simulations and practical measurements from a prototype 

converter. Moreover, the resulting models provide the basis for 'cyclic-averaging' techniques to be 

employed to facilitate steady state behavioural analysis of resonant converters, described in later 

chapters. 
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2.1. State-variable Modelling of the Current-output Resonant Converter 

Figure 2.2(a) shows a 4th-order LCLC current-output resonant power converter with idealised 

reactive components and associated parasitic resistances. The filter inductor Lr is often used in high­

power converters, and those that require a low output current ripple, and facilitates a reduction in the 

size of the output filter capacitor. In high voltage converters, such as those for TV or monitor CRTs, 

the parallel resonant components, Lp and Cp, can be designed to be the magnetising inductance and 

parasitic capacitance of a step-up transformer (not shown in Fig. 2.2(a) for clarity), whilst the series 

resonant component, Ls, takes advantage of the transformer leakage inductance. 
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Figure 2.2 LCLC resonant converter (a) Current output variant including parasitic resistances (b) Fast· and slow­

subsystems. 

As previously stated, a state-variable model of the converter is derived by partitioning the dynamics 

into fast and slow-subsystems, as shown in Fig. 2.2(b) with coupling equations describing their 

interaction. 
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The fast sub-system describes the dynamics of the resonant tank and power switches, viz.: 

dv Cp i Ls - i Lp - i R 
-- = -=-----="---'..:... 

dt Cp 

dvcs = iLs 

dt Cs 

diLP vcp 
--=-

(2-1) 

dt Lp 

diLs = ~n - VCs - vCp - iLs (r,/s + rep + res + 'is) + repiLp + rcpiR 

dt Ls 

Noting that the voltage across the parallel resonant induct or, Lp is assumed to be identical to voltage 

vCp throughout the analysis. The dynamics of the output filter, i.e. the slow sub-system, are dependent 

on the presence, or otherwise, of filter inductor Le. When Le is included, the output voltage, Vout = 

(Vq+vrcf), and the dynamics of the inductor current and filter capacitor voltage, are given by (2-2): 

dvCf = - vCf + iLfRL 

dt Cf(RL +rcf ) Cf(RL +rcf ) 

(2-2) 

Under light- and moderate-loading, the coupling equations governing the action of the rectifier can be 

derived by considering the voltage across the input and output of the rectifier, and assuming that the 

two-pole low-pass output filter is sufficient so as to assume that ripple components are small compared 

to the de output voltage component. In this case: 

iR = iLf sgn(vcp) 

(2-3) 

where v R = V cp + rep V Ls - i Lp - i R) and v diode is the rectifier diode on-state voltage. 
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A complete state-variable model for continuous conduction mode operation is therefore: 

0 0 0 0 
C p C p 

_!L 
0 0 0 

1 
0 0 

VCp Cs VCp C p 

VCs VCs 0 
0 0 0 0 0 

iLp Lp iLp 0 
+ V repiR 

iLs 1 rep rds + res + rls + rep 
0 0 iLs --.!!!...+--- Ls Ls 

VC[ Ls Ls Ls Ls VC[ 0 
iLf 0 0 0 0 

RL 
iLf 2 Cf(RL+ref) Cf(RL + ref) 

L f 

0 0 0 0 RL lif(RL + ref) + RLref 

Lf(RL + ref) Lf(RL + ref) 

(2-4a) 

with the output voltage being given by, 

RL~f. RL 
VOUl = XILf + xVCf 

RL+rcf RL+rcf 
(2-4b) 

The non-linear model obtained for the current-output converter is readily employed in MA TLAB for 

analysis and design of both the open- and closed-loop configurations. 

Figure 2.3 shows a Simulink model of a current-output resonant converter driven by an equivalent 

square-wave voltage source, V;n. The 'dead-zone' and 'absolute value' blocks are used to model the 

coupling equation relating the fast- and slow-subsystems. The dead-zone is assigned with a 'start' and 

'end' value of 2Vdiode to offset the rectifier input voltage, VR, by the on-state rectifier voltage; meanwhile 

the output from the dead-zone block is the equivalent of the bridge rectifier output voltage, vf 

To investigate the accuracy of the proposed state-variable model for predicting the steady-state output 

voltage, a prototype 4th-order current-output converter, Fig. 2.4, has been commissioned with the 

component values given in Table 2.1. Load resistors of RL = 2.50 and 50 are applied. Boundary 

conditions between CCM and DCM are reserved until Chapter 4. 
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Equa ion 

-

Table 2.1 Current-output converter model parameters. 

Parameters 
DC link input voltage, VDC CV) 
Series resonant inductance, Ls (IlH) 
Stray capacitance of series inductance, CT! (PF) 

Series resonant capacitance, Cs CIlF) 

Parallel resonant inductance, Lp CIlH) 
Stray capacitance of parallel inductance, CT] (pF) 

Parallel resonant capacitance, Cp (IlF) 

Output filter inductance, Lf(mH) 

Output filter capacitance, Cf(IlF) 

Values 
20 
2.7 

12 

2 

5.4 

21.6 

10 

Figure 2.3 MathWorksili Simulink model of the current-output converter. 

Figure 2.4 The experimental current-output LCLC converter. 

20 
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Figure 2.5 shows simulated steady-state operating waveforms from the state-variable model, whilst 

Fig. 2.6 compares the measured output voltage of the converter with that predicted from the proposed 

model, over a range of operating frequencies. A discrepancy in the frequency response, is evident, and 

is indicative of a shift in the resonant frequency-a common feature of this converter topology, in 

which the resonant frequency is highly sensitive to variations in resonant component values. 
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Figure 2.5 Simulated waveforms of the modelled current-output converter (a) RL=2.50 and (b) RL=50. 
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Figure 2.6 Simulation results neglecting the effects of inter-winding capacitance (a) Output voltage and (b) 

Equivalent circuit of resonant inductor with inter-winding capacitance 

Although values of resonant capacitances Cs and Cp can be assumed to be within standard component 

tolerances, the inter-turn capacitance of resonant inductors, L. and Lp, must also be accommodated. 

One method of accomplishing this is to defme inductors Ls and Lp as frequency-dependent components 

that incorporate the effects of inter-winding capacitance, Cr, as illustrated in Fig. 2.6(b). A frequency 

response analysis of the series resonant inductor, using a network analyser, indicates that the 
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transformer self-capacitance, is ::::21.6pF, at resonance. The equivalent inductance, L eq is obtained from 

the equivalent impedance of the associated parallel branch i.e. : 

Z jOJsL r . L 
eq = 2 = )OJs eq 

1- OJ. LTe T (2-5) 

L = LT 
eq 2 e 

I-OJ. Lr T 

When the modified values of inductance are used in the model, the results shown in Fig. 2.7(a) and (b), 

are obtained, when the converter is operated under the two specified load conditions. A comparison 

with results from SPICE simulations confinns that the accuracy of the state-variable model is 

comparable. 
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Figure 2.7 Output'voltage of 4th -order current-output converter: (a) RL=2.50; (b) RL= 50. 
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2.1.1. State-Variable Modelling of Current-output Converter in Discontinuous 

Conduction Mode 

Discontinuous conduction mode occurs during operation of the current-output resonant 

converter when it is subject to heavy loading conditions [B4]. During discontinuous conduction, all 

four bridge rectifier diodes, DI-D4, as shown in Fig. 2.8(a), are forward biased and the parallel 

resonant tank capacitor remains at zero volts i.e. v Cp = O. Such modes occur both above and below the 

resonant frequency. Operation of the converter during discontinuous conduction mode operation, is 

therefore now addressed, and the state variable equations describing the resulting behaviour, derived. 

Ves iLf L t rlr iou! 
r ds Cs r cs iLs L s IL 

tOt 
~ I -) - ~ 

rls iR 
I cb' ~H , ~ 

1 f -I >~~ ~ 

J Vout 
D1 r er l 

~~ ~ 
V1n r" r"f J.ru .. ILp icp 

'R 8~ too,r C l I 

C ' Lp '-3 VCt 'T 
p Ivcp J • r 

-
Ca) 

D3,D4 

D1 .02 D3,D4 

VCP 
0 

I--~--~--------~~~---------+O 

-..;..------ ~f 

... -... -~ .... . ........ ~---- - .. -.. -.... -........ - ... .. . ~r 

~~--~--------~~-4--------~O 

-4---4L-----~---+--~------~~O 

o t~ 

(b) 

Figure 2.8 Current-output resonant converter discontinuous conduction mode operation at heavy load (a) 

simplified circuit (b) Resonant tank waveforms. 
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Figure 2.8(b) shows typical wavefonns of the resonant tank inductor current, ir., parallel resonant 

capacitor voltage, vCP' parallel capacitor current, icp, and rectifier diode current, iR, during 

discontinuous conduction operation. During the interval 0 ~ 1 ~ I), the parallel resonant capacitor 

voltage, VCI" is negative, hence, rectifier diodes D3 and D4 conduct. At the end of this period, vc" 

increases toward zero and the capacitor current, icp, is positive and rises to icp = iL + iLj . At 1 = I), the 

capacitor voltage VCI' approaches zero, and D3 and D4 are reversed biased, and D I and D2 begin 

conducting. The capacitor current is now given by icp = iL - iLj . 

However, during heavy loading, the resonant tank inductor current is less than the output-filter current 

hj, implying that the capacitor voltage should decrease after the diodes commutate. However, since 

diode commutation does not occur until vc" becomes positive, the residual current from the output 

filter/load, hj, must circulate through the rectifier until h rises to the level of hj, therefore, the rectifier 

input current at this stage is iR = iL • Whilst the difference between h and hi is essentially the current 

that flows into parallel capacitor Cp, according to (2-3), in fact, no current actually flows into Cp during 

this interval. A new state of discontinuous conduction occurs in which all four rectifier diodes D1 to 

D4 are fOlward biased. 

Since this mode is only active when current circulates through the bridge rectifier, at the beginning of a 

period where li RI = i L , it complicates the state variable model, making it necessary to switch between 

two modes of operation, namely: 

i) Nonnal conduction: Ivcpl > 0 and liR 1 = iLl' hence the rectifier operates as a nonnal. 

ii) Discontinuous conduction mode (DCM): I VCI' I = 0 andliRI < iLj , hence the rectifier and 

output filter are essentially decoupled from the resonant tank circuit. 

To produce an accurate result, the natural commutation between the two modes needs to occur at times 

that are precisely detennined. The DCM is entered as the capacitor voltage vCp reaches OV, which, in 

turn, only happens whenliLI < iLl' During this mode, voltage VCI' will always equal QV, and the 

boundary time for when nonnal conduction resumes, is taken as the instant when the condition li RI = iLl 

is reached. 
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The previously derived coupling equation model therefore has to be modified, and augmented with an 

additional SR flip-flop, as shown in Fig. 2.9, to ensure that the rectifier commutates correctly and to 

force v cp to zero during clamping. 

(2-6) 

Figure 2.10 shows waveforms obtained from the modified state-variable model, simulated to steady­

state, after incorporating the refined coupling equation relating the fast- and slow-subsystems. The 

converter (see Table 1) is simulated with RL=0.5 {) and 0.10 to provide heavy-loading and near short­

circuit operating conditions, respectively. 

From Fig. 2.l0(b) to (d), the occurrence of discontinuous conduction mode is apparent at all 

frequencies, slightly above resonant frequency, or at very high switching frequencies away from 

resonance under very heavy loading. A comparison of output voltage from the proposed model, and 

results obtained from SPICE simulations when subjected to the two heavy load conditions, is shown in 

Fig. 2.11. Again, a good correlation between SPICE and the state variable model is clearly evident. 

Coupling Equation 

Figure 2.9 Augmented coupling equation including SR flip-flop. 
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Figure 2.10 Voltage and current wavefonns of a current-output converter at (a) heavy load (RL =0.50) at 140 

kHz, (b) near short-circuit condition (RL =0.10) at 140 kH z, (c) RL =0.10 at 105 kHz, and (d) RL =0.10 at 180 

kHz. 

Figure 2.12 shows the maximum current through 1, obtained during steady-state operation. An 

observation from Fig. 2.12 is that the power switches are exposed to progressively lower current 

stresses as the loading changes from light load RL=2.50 to moderate load RL=O.50 conditions. If the 

resonant converter is heavily loaded, the tank: sees a near short-circuit at the output, and the resonant 

components essentially only consists of the series inductor Ls and series capacitor Cs. 

The maximum current stresses seen by the power devices when approaching resonance under these 

conditions can be greater than that seen in cases of lighter loadings, namely RL = 0.5 or 2.50. 

However, since the operating frequency is far away from the series resonant frequency, the peak 

current is limited by the reactive impedance of the tank:. 
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Figure 2.11 Comparison of output voltage as a function of switching frequency from the state-variable model 

and SPICE. 
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Figure 2.12 Simulated maximum input current of the converter. 
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2.2. State-Variable Modelling of the Voltage-Output Converter 

A similar approach for the voltage-output 4th -order resonant converter, is now proposed, 

through which, a converter model is derived using simple analytical teclmiques. The result is a non­

linear model that can be readily used by analytical tools, such as MATLAB, for the purpose of analysis 

and simulation. Omitting the output filter inductor, Lr, however significantly complicates the model of 

the converter, Fig. 2. 13 (a), since, for a specific time interval within the switching cycle, the rectifier 

current ceases conduction and the resonant network is effectively decoupled from the output. 

Nevertheless, the converter can be analysed using a similar procedure to that presented previously, by 

partitioning into fast- and slow- subsystems (see Fig. 2.13(b )), and determining coupling equations to 

describe their dynamic interaction. 

Ca) 

Fast Subsystem 

Cb) 

D1 

Coupling 
Equation 

• C • 
VCI I 

D2 

Vout 

Slow Subsystem 

Figure 2.13 4th-order voltage-output resonant converter Ca) Simplified circuit (b) Fast and slow subsystems. 

The fast sub-system described the dynamics of the resonant tank and power switches is described by: 

dvcp iLs - ilp - iR 
--=-=---""---

dvCs iLs -- = -
dt Cp dt Cs 

dilp vcp 
--=-

dt Lp 
(2-7) 

dils V;I/ - vCs - vCp - iLs(rds + rep + res + r,.) + rcpiLp + repiR 
--= 

dt Ls 
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As discussed, during periods of discontinuous conduction, when the output filter is dynamically 

decoupled from the resonant tank circuit [B3], the voltage across the output filter capacitor is given by, 

dVCj = RL /i
R
/- vCf 

dt Cj(RL+rej ) Cj(RL+rej ) 
(2-8) 

and, by assuming that the current which flows into the parallel resonant capacitor, Cp, is small 

compared to that which flows through L, and Lp, the voltage at the rectifier is dependent on the 

direction of the link-current flowing from the resonant tank circuit (iL = iLs - iLI')' The relevant 

coupling term is, therefore, obtained by equating voltages at either side of the rectifier, i.e.: 

(2-9) 

Neglecting parasitic resistances, and assuming a constant rectifier-diode voltage, the derivative of (2-9) 

simplifies to: 

dvcp . (dVCf) -=Sgn(IL) -
dt dt 

Finally, the rectifier current, iR, is found by substituting (2-7) and (2-8) into (2-10), 

. Cl . . Cl' VC[ 
'R = I L + sgn( I L) -----"'-----

sgn(iL)Cp + Cl sgn(iL)Cp + Cl RL 

This leads to the coupling equation; 

. i + sgn(i ) p ~ 

{

Cl C Vcr 

'R = sgn(idCp + Cf L 0 L sgn(iL)Cp + Cf RL 
for Ivcpl ~ VOU1 + 2vdiode 

for /vcpl < VOU1 + 2vdiode 

The state-variable model for voltage-output converter is therefore given by, 

0 0 0 
_.!L 

Cp Cp 
Cp 

vcp 0 0 0 
1 

0 vcp 0 

vCs Cs VCs 

iLp 0 0 0 0 iLp + 0 

iLs 
Lp 

iLs 1 rep rds + rep + res + 'is V. rcpiR 
Vq 0 Vq 

-2!L+ __ 
Ls Ls Ls Ls Ls Ls 

0 0 0 0 liRIRL 
Cf<RL +rcf ) 

Cf<RL +rcf) 

(2-10) 

(2-11 ) 

(2-12) 

(2-13) 
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To demonstrate the accuracy of the proposed model, a prototype 4th-order LCLC voltage-output 

converter (see Fig. 2.14) has been commissioned with the component parameters given in Table 2.2. 

Figure 2.15 shows a screenshot of a Simulink model implementing the state-equations, driven by an 

equivalent square wave voltage source Vin o The 'zero-crossing' function and 'S-R flip-flop' blocks are 

included to ensure correct commutation of the rectifier current when iR falls to zero (2-12) and to force 

vCp = Vou,+2 Vdiode during the clamping period. 

Table 2.2 Voltage-output converter model parameters. 

Parameters 

DC link input voltage, VDC (V) 

Series resonant inductance, L. (IlH) 

Series resonant capacitance, C. (IlF) 

Parallel resonant inductance, Lp CIlH) 

Parallel resonant capacitance, Cp (IlF) 

Output filter capacitance, Cj (IlF) 

Output load Resistance, RL (0) 

Nominal angular resonant frequency, aJo (rads-I ) 

Values 

30 

12.6 

0.737 

25 

0.141 

100 

5,10 

21tx90x103 

Figure 2.14 Experimental setup for voltage-output 4th-order resonant converter. 

Figure 2.16 shows example steady-state waveforms from the state-variable model for two load 

conditions. For completeness, Fig. 2.17 also provides a comparison of measurements of output voitage 

from the experimental converter, with those predicted from the proposed state-variable model 

(including the 'equivalent' series and parallel resonant inductances) and SPICE simulations, for 

various-operating frequencies. Again, the level of agreement is seen to be excellent. 
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Figure 2.15 SIMULI K model of a 4th-order voltage-output resonant converter. 
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Figure 2.16 Simulated waveforms of a voltage-output resonant converter operating at I \0 kHz: (a) RL =50 and 

(b) RL= IOO. 
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Figure 2.17 Comparison of output voltage of the prototype converter from the state-variable model and SPICE 

simulations: (a) RL=50; (b) RL= 100. 
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2.3. Summary 

State-variable models of current- and voltage-output variants of 4th-order LCLC resonant 

converter, have been derived, with derivation details for dynamically modelling the rectifier and output 

filter under heavy load conditions, being given. Prototype converters have been commissioned to 

investigate the accuracy of the resulting models, which are proven to be commensurate with results 

from SPICE models, whilst requiring lower execution times. Specifically, for the results presented, the 

state variable models typically take 1/lOth of the time to simulate to steady state, compared to 

equivalent SPICE models. The resulting models form the basis of investigations presented in Chapters 

4 and 7, where cyclic averaging is developed as a means of rapidly obtaining steady-state analysis 

solutions for the converters variants. 
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CHAPTER 3 

Frequency Domain Modelling of LCLC Current­

Output Resonant Converters 

34 

Frequency domain analysis techniques, and variants thereof, are often preferred tools when the 

protracted simulation times associated with traditional circuit simulators are considered too lengthy. 

When designing a resonant converter with a high-load quality factor (Q), higher hamlonics of the input 

can be considered to be sufficiently filtered so they present a negligible contribution to the output, 

thereby allowing equivalent sinusoidal voltage and current sources to appear at the input to the tank, 

and pemlit the use ofFtmdamental Mode Approximation (FMA) to be employed to predict the steady­

state behaviour of the converter. Based on FMA, an input-output transfer function is derived that 

enables classical ac-analysis to be applied to analyse the frequency response of the converter. 

Predictions of output voltage and, importantly, estimates of voltage and current stresses on resonant 

components, are also shown to be readily obtainable. 

Key features of this chapter are the derivation of frequency domain analysis techniques that rely on 

ratios of primary reactive components, ratl1er than specific parameter values, and an analysis of 

previously unreported regions of LCLC resonant converter operation that is shown to provide multi­

resonant behaviour. 
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Figure 3.1 4th-order LCLC current-output resonant converter. 
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3.1. Effective Resonant Frequency of LCLC Resonant Circuit 

The resonant frequency of the parallel resonance network Lp-Cp, (W OP2 = ~1/ LpCp ), IS 

designed to be below the effective resonant frequency of the overall circuit. During nominal operation 

above, wop2 ' therefore, the capacitor reactance, Xcp, is greater than the inductor reactance, XLp, and the 

parallel branch components appear capacitive, as shown in Fig. 3.2(a). 

Below resonance ' Above resonance 
X",>x"" x",<x"" 

, .. - i \ - +1 

ro~2 : ~ . . 
NonrnIised Frequency 

Ca) 

-l e ' T eq 

(b) (c) 

1 
r~ 

Figure 3.2 Parallel combination of Cp and Lp: Ca) Impedance curve of parallel Le network; (b) Equivalent 

frequency dependant capacitance, Ceq and Cc) Resulting equivalent 3rd_order resonant circuit. 

To calculate the effective resonant frequency of the complete tank, the combined action of the parallel 

inductor and capacitor can be modelled as an equivalent frequency-dependant capacitance, C.q, as 

shown in Fig. 3.2(b), with a value given by: 

(3-1) 

The undamped effective resonant frequency of the resulting equivalent 3rd-order network (see Fig. 

3.2(c)) is then given by [Cl , C2]: 

(J = o (3-2) 
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Substituting for equivalent parallel branch capacitance, Cq yields: 

W = o 

36 

(3-3) 

By rearranging (3-3), the undamped resonant frequency of the tank, Wo, is obtained from the solution of 

(3-4), 

giving: 

1 

w =[CsLs +CsL" +C"L" +J(CsLs +CsL" + C"L,') 
2 

-4CsLsC"L,,]2 

o 2CsL,C"L" 

(3-4) 

(3-5) 

Consideration of the tank shows that the load quality factor of the series resonant components, Qopl, 

and angular resonant frequencies of the series (Wopl) and parallel (Wop2) resonant tank components, are 

given, respectively, by (note: Cp, and Lp are normally the inter-winding capacitance and magnetizing 

inductance of an isolation transformer, by design): 

1 
W ----

OI'l - f£C 
vl..Js'-'s 

(3-6) 

1 
W ---=== 01'2- ~ 

V l..Jp'-' I' 

where Req is given by the output load resistance of the equivalent circuit. For design purposes, it is 

convenient to re-express (3-3) in terms of the ratio of resonant tank capacitances,Cn = CplCs and the 

ratio of resonant tank inductances Ln = Ls I Lp, as follows: 

(3-7) 

which, after rearrangement, can be solved for Wo from: 

(3-8) 



Chapter 3 37 

The significance of (3-8) is that it provides a means of calculating the resonant frequency of the series 

resonant tank components, wop ), as a function of effective resonant frequency Wo, i.e. 

(3-9) 

Moreover, design values for L. and Cs can be obtained from the ratio of Wo andw op" In particular, re-

arranging (3-9) provides, 

[ )

2 [ ~ =~x 1+_1_+ Cn + 
W opl 2Cn Ln Ln (

I + _I + Cn)2 - 4Cn 1 
Ln Ln Ln 

(3-10) 

The solution of (3-10) also shows that two resonant frequencies are present, thereby demonstrating that 

the converter essentially constitutes a multi-resonant system. The second effective resonant 

frequency, w~ can be solved from (3-10), 

(3-11) 

Simplifying (3-10) and (3-11), the load resonant angular frequencies Wo and w~ can be given in terms 

of resonant component ratios and series tank resonant frequency: 

Wo = Wopl 

with their ratio being given by, 

I+Ln +Cn +~(I+Ln +CJ2 -4LnCn 

2Cn 

I+Ln +Cn -~(I+Ln +CJ2 -4LnCn 
2Cn 

W I+Ln +Cn +~(I+Ln +CJ2 -4LnCn 

Wr = w~ = l+Ln +Cn -~(l+Ln +Cn)2 -4LnCn 

(3-12) 

(3-13) 

(3-14) 
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Now, the characteristic resonant impedance of the un-damped resonant circuit, in Fig. 3.2(c), is defined 

as, 

(Q) (3-15) 

thereafter, from (3-5), Zo can be rewritten as, 

(Q) (3-16) 

where Qo is the load quality factor at the effective angular resonant frequency, WO. 

At resonance, the input impedance of the tank, as seen from the perspective of the power switches, 

approaches zero, thereby forming the boundary between capacitive and inductive loading. From basic 

circuit analysis, the input impedence, Zin, is given by: 

_ s4LsCsLpCpReq +s3LsCsLp +s2Req(LsCs +CpLp + CsLp)+sLp +Req 
Zin - 3 2 

S CsCpLpReq +s CsLp +sCsReq 

(3-17) 

where S -)0 Jws. By recalling wop1 = 1/ ~LsCs in (3-5), the input impedance Zin can be rewritten as: 

(3-18) 

Finally, from (3-5) and (3-17), (3-18) can be re-arranged to give: 

(3-19) 
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at the resonant frequency, i.e. as Ws ~ wo' Consequently, the characteristic impedance, Zo can be 

written as a function ofZ;n' the ratiowo/wol'l' component ratios CII and Ln, and effective load quality 

factor Qo, as follows, 

and design values for series resonant inductance, Ls can be obtained from (3-14), 

L = Zo 
s 

Wo 

and the series resonant capacitance from 

(3-20) 

(3-21) 

(3-22) 

Noting that (3-9), (3-19) and (3-20) are solely dependant on the two ratios Cn and Ln. the remaining 

parallel resonant tank components, Cp and Lp, are subsequently determined from the prior selection of 

Cn and Ln, viz. 

L=!i 
P L 

n 

(3-23) 

and 

(3-24) 

It should be noted, therefore, that whilst four reactive components exist in this converter topology, it is 

their ratios that are important from a design perspective, using the presented methodology, thereby 

eliminating the requirement for specific values early in the design procedure. 
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3.2. Resonant Circuit Analysis in Continuous Conduction Mode (ws ~ wo) 

This mode, with continuous vCp and it" occurs when Ws ~wo and under light load conditions. 

The turn-on losses in the switches are minimised since the switches turn on when iLs is of reverse 

polarity. Although this operating mode results in turn-off switching losses, ultimately, it is possible to 

reduce them by connecting a snubber capacitor in parallel with each power switches [C3]. 

Here then, continuous conduction operation is analyzed based on a Fundamental Mode transfer 

function. Circuit waveforms are shown in Fig. 3.3. The frequency content ofa periodic signalf(t) is 

obtained from a Fourier series expansion: 

where 

T, 

an = 2/T, f f(t) cos{nwf}clf (3-25) 

o 

T, 

bn = 2/T, ff(f)sin{nwf}clf 
o 

The excitation voltage applied to the input of the tank network can be represented in terms of Fourier 

series components over a single switching cycle, of period T,=lij;, where the amplitude and phase of 

the n_th harmonic is given by; 

(3-26a) 

where 

an = sin(2nnD) 

bn = 1-cos(2nnD) 
(3-26a) 

and duty ratio D is the turn-on time, tan of the power switches with respect to the switching period, T,. 

Using FMA, the power switches and diodes are assumed ideal and the effects of the switches' internal 

capacitances, is neglected. The fundamental of a half-bridge square wave input excitation voltage 

(D=O.5) is therefore given by, 

(3-27) 
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A consequence of including an output filter inductor, Le, is that whi lst the voltage appearing at the 

input to the rectifier, VR, is predominantly sinusoidal, the current, iR exhibits a square-wave 

characteristic, see Fig. 3.3. 

,......---.')('( 
V OU! 

I ~:C~J_ ' Ct 

, 

Figure 3.3 Current-output converter with key current and voltage waveforms. 

The voltage across the resonant capacitor Cp is rectified, filtered, and then supplied to the load. To 

develop an equivalent circuit, the fundamental component of the voltage, and square-wave current, at 

the input of the rectifier, is used to derive an equivalent resistance Req. By assuming the resonant 

circuit adequately filters higher harmonics of the input voltage, the load resistance/output filter and 

rectifier can be modelled as an equivalent resistance (Steigerwald [Cl]), 

(3-28) 

where vac( nns) and zac( nns) are the RMS voltage and current at the input of the rectifier, respectively. 

For simplicity, the rectifier diode voltage, Vdiod., can be neglected to give R = 1(2 R , giving the FMA 
eq 8 L 

equivalent circuit shown in Fig. 3.4. 

It is informative to obtain the frequency characteristics of the 4th -order resonant circuit of Fig. 3.4. The 

resonant frequency, Wo, and characteristic impedance, Zo, are defined by (3-13) and (3-16). In the 

presence of an equivalence load resistance, the load quality factor of the parallel resonant tank 

components are defined using standard notation (3-29): 

(3-29) 
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and resonant frequency of the parallel resonant tank component is given by, 

1 ~ wop2 = ~ = wop1 C
n 

'\j.l.Jp'-'p n 

(3-30) 

The ac input-to-output voltage relationship is given by the transfer function, 

vRe _ s2CsLpR eq 

vi(l) s4CsCpLsLpReq +s3CsLsLp +s2(CpLpR eq + C s LsReq + CsLpReq) + sLp +Req 

S2QOP2 Cs 
---x-

= __ ~ __________________ W~OP~2 ____ C~P ____________ ~ ____ ___ 

s4QOP2 s3 2[QOP2 R eq Qop2 C s J R eq -----:::-'--- + --+ S ---- + + -- x - + s +-
WOPl2woP2 WOP l

2 wop2 wOPl
2
Lp wop2 C p Lp 

(3-31 ) 

where s ~ jw,. 

Ls r - - - - - - - - - - - - - - - - - - - - - - - - - -, 

·oTfL-.----...,----~' --, 
iLp 

Cp ~ Lp iVRC .,,-; 

, 
,--------------------------~ 

Figure 3.4 Equivalent circuit of the current-output resonant converter. 
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By deriving the describing function of the square-wave input voltage, V;,,, and the output voltage, VDU/> 

the input-to-output voltage transfer function, Mvm may be written as a function of the angular 

switching frequency, and the definitions given in (3-29), 

M - Vout _ 8 VRe 
vcr - -- - -2 -=--

VDC 1[ Vj(l) 
(3-32) 

where the nns value for the resonant tank input and output voltage are, 

- 1[ V 
vRe = 2../2 out 

(3-33) 

Substituting (3-10) into (3-32) and introducing a design variable f..., to represent the ratio of the 

effective resonant frequency, and the series resonant frequency, the input-to-output voltage transfer 

function for the current output resonant converter, can be rewritten as follows, 

M = Vout 
vcr 

VDC 

where, from (3-10), 

(3-34) 

It can be seen from (3-34) that the input-output characteristic is highly dependant on the choice of Cn, 

Ln, and Qopl. 
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'Table 3.1 Specification of a current-output converter. 

Parameter 
Effective tank resonant frequency,fo (kHz) 

Effective resonant tank load quality factor, Qo 

Resonant capacitance ratio, Cn 

Resonant inductance ratio, Ln 

Value 
130 

2,4,6 

0.5, 1,2 

0,0.5,1 

44 

Figure 3.5 shows the input-to-output voltage conversion ratio obtained from SPICE simulations, with 

those predicted from (3-34), for a converter with the specifications given in Table 3.1. Each 

characteristic is for a different value of effective load quality factor, defined by Qo = QoPt/\, giving 

another key design consideration for the converter. 

The 4
th
-order resonant converter can provide step up, as well as a step down capability. However, it 

can be seen that the maximum gain Voul V;n (Note: V;n= O.5VDC) occurs at approximately the same value 

as the effective quality factor, at resonance, if Ln and Cn are identical. Consequently, the output 

voltage, at resonance, is load dependent, and can rise to very high values under light- or no-load 

conditions. 

0.8 0.9 1.1 1.2 
Normalised frequency ((i) s' (i) 0) 

FMA 
SPICE 

1.3 

Figure 3.5 Frequency response of the example converter for varies Qo (Cn= 0.5, Ln= 0.5) 
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Figure 3,6 shows the converter's output voltage behaviour as a result of different component ratios, 

with the output load quality factor remaining fixed. If Ln and Cn are increased in the same manner, the 

control curves become 'steeper' toward the resonant peak. Figure 3,7 shows a similar characteristic 

when Cn remains constant and Ln is varied; whilst Fig, 3,8 compares the frequency response of the 

current-output converter for various Cn. From the results, it can be seen that if Ln and Cn are unequal, a 

smaller resonant inductance ratio Ln yields a greater voltage boost, close to resonance, and as Ln 

reduces towards zero, the converter begins to take on the characteristics of a 3rd-order converter, 

Moreover, as parallel resonant capacitor Cp becomes larger, relative to the series capacitor Cs, the 

frequency response has improved selectivity-therefore a smaller range of frequencies is required for 

controlled voltage regulation, 
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Figure 3.7 Frequency sweep of converter at constant Cn=O,5 and Qo=2: (a) SPICE and (b) FMA, 



Frequency Domain M odelling of LCLC Current-Output Resonant Converters 46 

3r-~--~--~--~-r==~~ 
- FMA 

"" SPICE 

~ 2.5 

?-o 

3r---~~--~--~--~==~~ 
- Cn= 0.5 

--- en= 1 
..... en= 2 
_ . - Ln= 0.25 

., 
2 Cl 

~ 
(5 
> 

., 
2 00 

~ 
0 
> :; 

1.5 g. 
8 

~ 1.5 
8 

"0 
Cl 

1 z 
0.5 

"0 
Cl 
In 

II 
E 
0 
z 

0.5 

0.8 0 .9 1.1 1.2 0.8 0 .9 1.1 1.2 1.3 1.4 
Normalised frequency (m/ m

n
) Normali sed frequency (m.' m 0) 

(a) (b) 

Figure 3.8 Frequency sweep of LCLC current-output converter with varying en ratio (Qo=2): (a) SPICE and (b) 

FMA. 

4 

I 
3.5 .. 

~ 3 

<D 
Cl 2.5 ~ 
(5 
> 

~ 
2 

8 1.5 "0 

.ill 
0; 
E 
0 z 0.5 

~ .5 

4 

~ 3.5 

?-o 
lll. 
l!l o 
> 
'5 
~ 
o 
"0 
<D 
In 

II 1.5 
E 
o 
z 

0.5'::-.9 --=-0 9!:-::5-~-:--=-:0 :--:-'-:--:-':-:5:--:"::-2---:-~5:--::-'::--~ 5 O . 1. 5 1.1 1.1 1. 1.2 1.3 
Normalised frequency (m/ mo) 

(a) 

3r-~--~~~--~~~~~~ 
- °0=4 ..... 00= 0.8 

_ . - 0=1 
o 

-_. °0=2 
- ° 0= 4 

, ................ . 
••••••••••••••••••• •• • ••• • ••• •••• • 0 . 

0.6 0.7 0.8 0.9 1.1 1.2 1.3 
NormaUsed frequency (<1J.' mo) 

(b) 

1.4 

- .. 2.5 
C; 
~o 

Cl 2 

f 
> 
~ 1.5 

8 
"0 

.~ -_.- . _ -- --

--- °0=2 
_ . - °0=1 
..... 00= 0.8 

g .;.::: .................. ... ...................... . 
z 0.5 ........ :.: .:.:-.: 

~ .5 0.6 0.7 0.8 0.9 1.1 1.2 1.3 
Normali sed frequency ( m/ <1J 0) 

(c) 

1.4 

Figure 3.9 Output voltage characteristics curves: (a) SPICE, (b) LCC topology under constant Qo and (c) LLC 

topology under constant Qo. 



Chapter 3 47 

It is notable that (3-30) through to (3-33) can be constrained, and used, to describe the characteristics 

of other resonant converter topologies, such as the 3rd-order LCC and LLC resonant converter variants, 

which posses a single effective resonant frequency. 

By way of example, when the parallel resonant inductance, Lp, is selected to be sufficiently large 

compared to series resonant inductance, Ls. then Ln~O, and the converter behaves like a 3rd-order LCC 

converter with the un-damped resonant frequency depending on Cm and the effective tank frequency in 

(3-9) simplifies to (3-35a). As Lp ~ 00, Ln ~ 0, 

p+Cn 
Wo =wopl --

Cn 

(3-35a) 

Similarly if the series capacitance is excluded, Cs is selected to be sufficiently large compared to Cp, 

thereby Cs ~ 00, Cn ~ 0 and the effective resonant frequency simplifies to, 

Wo = WOP2~1 + Ln 
Ln 

(3-35b) 

Numerical verification of (3-35) is obtained through a comparison with results obtained from SPICE 

simulations ofLLC and LCC converters, in Fig. 3.9. In both cases, the second resonant frequency w~ 

equates to zero. 

At low operating frequencies, the additional resonant peak of the LCLC resonant converter influences 

behaviour. Although the use of FMA assumes that the input current is sinusoidal, which still holds for 

regions around the second resonant frequency, W ~ , the output voltage can potentially be greater than 

expected (depending on values of Co and Ln), with the tank components being subjected to higher 

electrical stresses. The characteristics of the converter about the secondary resonance are also 

governed by the relationship between the two effective resonant frequencies, wr = wo/w~ . 

Figure 3.10 shows the input-output characteristics of the converter as Qo, Ln> Co, are varied, with the 

switching frequency normalised to that of wo' It can be seen from Fig. 3.10(a) that the normalised 

output voltage Mvcr is equal to the effective load factor Qo, at both resonant peaks, if Ln and Cn are 

varied together. In addition, the curves are narrower, and the two resonant frequencies are closer, if 
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both Ln and Cn are increased together. Conversely, if Ls is much smaller than Lp, a wider frequency 

bandwidth is required for output voltage regulation. 

From Fig. 3.l0(b), if the inductance and capacitance ratios are unequal, a higher Ln yields steeper 

curves with greater gain in the region of the secondary resonance, thereby allowing a higher voltage 

output to be obtained than can be achieved by operating about the 'effective resonance' of the whole 

circuit. Conversely, the maximum output voltage that can be obtained in the region of w~ , is lower, if 

Ln < Cn. 
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Figure 3.1 0 Output voltage characteristic curves of 4th-order resonant converter (a) at constant load factor Qo=4 

and, (b) with unequally varied Cn and Ln (Qo=4) 
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3.3. Discontinuous Conduction Mode of Operation (DCM) 

In this mode of operation, the parallel resonant capacitor voltage vCp remains at OV for a 

period of time. Example steady state waveforms are given in Fig. 3.11. During steady state operation, 

the resonant tank inductor current iL(= hs- hp) is initially zero and SWI is turned on at I = 10' So long as 

Ihl < ioul! the output current circulates through the rectifier bridge, which appears as a short circuit 

across Cp, and keeps its voltage at OV, as shown in Fig. 3.11. Therefore, vCp stays at zero for an interval 

that varies according the level of loading on the converter's output. When h exceeds ioul! the difference 

ir-ioul flows into Cp causing vCp to increase. The boundary between CCM and the DCM can therefore be 

analytically determined. 

Typical steady state waveforms used to find the boundary condition, are shown in Fig. 3.11 (a), in 

which a i [C4] is the phase difference between it and vCp. It can be observed from Fig. 3.II(a) that vCp 

is clamped at zero for a very short period of time under this condition. The fact that ai is positive 

implies that the current leads the capacitor voltage. The boundary between CCM and DCM is governed 

by the state of vCp and iOUI > iL • Consequently, the condition required to provide continuous mode 

conduction, is given byiout < iL sin(ai ). The equations used to find the boundary between CCM and 

DCM, have been given in [C4], 

2 
tan(ai ) >-

1r 
(3-36) 

(3-37) 

(3-38) 

Substituting (3-37) and (3-38) into (3-36), the boundary condition for continuous conduction can be 

obtained as a function of resonant capacitance ratio, Cn, and angular frequency, w" 

21r2fsCpVout iL 2 
----'---x -->-

iL moUl 1r (3-39) 

and substituting for Qopl gives, 

(3-40) 
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Figure 3.11 Boundary of DC M operational mode: (a) simulated key voltage and current waveforms and (b) 

minimum angular frequency, W s min for CCM_ 

Finally, (3-40) can be written in terms of the effective tank load quality factor, Q o and angular resonant 

frequency, Wo, 

(3-41) 

When the angular switching frequency w, is reduced to a certain level, dictated by Q o, Cn and Wo, the 

parallel resonant capacitor voltage becomes discontinuous. Similarly, VCp has clamping intervals if the 

load quality factor Qo is decreased to a particular level, dependant on w., Cn and Wo. Using (3-40) and 
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(3-41) to detennine the minimum angular switching frequency, and minimum load quality factor, for 

continuous conduction, gives 

7UVo OJ . >-----"--
smm 4Q C 

o n 
(3-42) 

As can be seen from Fig. 3.1l(b), for a constant capacitance ratio CII e.g. 0.4, the converter can be 

operated around its effective resonant frequency to sustain continuous conduction if Qo= 2, whilst the 

converter has to be operated further away from resonance when Qo is reduced to I. In the case of high 

C., the converter is essentially always operating in continuous conduction mode if the switching 

frequency is above the resonant frequency. 

3.4. Component Stresses Analysis 

Here, the analysis results of previous sections are extended to include resonant component 

stresses. It is useful to know the relationship between the peak and average values of the circuit 

voltages and currents, and operating conditions (VDC, VOU1 , WO, etc.). As previously discussed, the output 

characteristics of the converter are sensitive to the choice of Cn and Ln, implying that the electrical 

stresses on the tank components are also affected. 

Electrical stresses can be analysed by consideration of the input impedance of the tank (re-written from 

(3-17) below, for clarity): 

(3-43) 

Noting that the amplitude of the fundamental of the input voltage, when operating close to resonance, 

is Vj(l) = {2/ Jr }vDC from (3-27), for the half-bridge converter configuration, the current through the 

tank consists mainly of the fundamental, and is approximately sinusoidal-hence, the peak switch 

current is equivalent to the peak series inductor current. 
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Having calculated the input impedance, the peak stress on Ls can be readily found from, 

(3-44) 

and the peak voltage across the series resonant capacitor, Cs, is consequently obtained from (3-45), 

(3-45) 

The absolute value for the peak parallel resonant capacitor voltage vCp is equal to the output voltage of 

the equivalent circuit given in Fig. 3.4, which, from (3-34), is given by, 

s2Ar2 ~CnQ 
2 L opl 

V = 1nJDC x,-_________ W~o_:__.!...-.:..:.n---------~ (3-46) 
Cp 2 4 A 4C 1.5Q 3, 3 ft 

Srn opl S I\r n - +-- ~ 
Wo 

4 .JL: Wo
3 

Ln 

s2Ar2 ~C (Q Qopl QoPICn ) SAr ~Cn Q """-;:;-L C 
2 'J un'--n opl + + + + opl 'J un'--n 

Wo Ln Ln Wo Ln 

whilst the peak current amplitude flowing through the parallel resonant inductor, Lp is [CS], 

and the magnitude of the dc-output current of the converter is given by, 

. 2vcp 
Iou I =--

trRL 

(3-47) 

(3-48) 

Here, all analytical terms are now given in per-unit normalised form without change in notation. The 

following quantities are chosen as the bases for normalisation: 

Voltage stress 
Current stress 
Angular frequency 
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A iLsZ Vc vCp irpz o comparison of the normalised peak component stresses---o , _ s_, -- and --, that are 
voc voc Voc voc 

obtained from (3-44) to (3-48), with those from SPICE simulations, is given in Figs. 3.12 and 3.13, 

respectively. The prediction accuracy deteriorates for frequencies below resonance, or far away from 

resonance, due to the input current not exhibiting a dominant sinusoidal characteristic. As shown in 

Fig. 3.l2(b), the waveform of the series resonant inductor current iLs becomes increasing triangular 

when the converter is operated at frequencies away from the effective resonant frequency. The overall 

results indicate that prediction accuracy comparable with SPICE, is possible, particularly around the 

resonant frequency, and above resonance. Furthermore, the magnitude of normalised peak iLs is shown 

in Fig. 3.12(c) when the load quality factor Qo is varied. Similarly, Fig. 3.1 3 (b) shows the magnitude of 

normalised peak voltage vCp for various load conditions. 
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Figure 3.13 Resonant component current stresses (C. =0.5 and L.=0.5): (a) SPICE and (b) FMA 
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From Fig. 3.14, the maximum normalised series inductor (1$) current can be seen to increase as Ln 

decreases, indicating that current stresses on 1.. can be reduced by either having large Ls or by 

decreasing Lp. The effect of increasing the parallel resonant capacitor, Cp, is also given in Fig. 3.15, 

from where it can be seen that an increase in C. increases the voltage stress on Cp. For completeness, a 

comparison of maximum normalised peak switch current imposed on 3rd-order and 4th-order resonant 

converter variants, is shown in Fig. 3.16. 
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Figure 3.14 Characteristic curves of the series inductor current (C. =0.5 and Qo=2). 
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Figure 3.17 shows the normalised output current iou/Zo/VDC versus nonnalised switching frequency, 

for C.==O.S and L.==O.S. At resonance (wslwo = 1), the output current of the resonant converter is seen 

to be independent of the output voltage, and the magnitude of the current is determined by the input 

voltage--the con erter therefore exhibits a current source characteristic, and theoretically possesses 

infinite voltage gain for a constant output current [C2]. 
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Figure 3.18 Frequency sweep ofnonnalised series inductor/power switches input current for various Ln and Cn 

The influence of Ln and Cn on the normalised inductor current magnitude, at the two resonant 

frequencies, is shown in Fig. 3.18. The normalised series inductor current iuZ)VDC is seen to be 

higher at Ws = wo' Conversely, if Ln » Cn, operation about the secondary resonant peak develops 

higher current stresses on Ls. A compromise is, therefore, required between high inductor current 
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stress levels, and the maximum output voltage magnitude, when operating in the region of the 

secondary resonant frequency. 

When operating at the effective resonant frequency, the stresses imposed on the power switches SWI 

and SW2 can be reduced by either decreasing the value of Ls, or increasing value of Lp, thereby 

lowering the Ln ratio. Similarly, a smaller inductance ratio Ln is essential for minimising the overall 

electrical stress if the system is operated at secondary resonant frequency. By way of example, a 

comparison between the predicted output voltage of the converter, Voul Vin from (3.34), and those 

resulting from SPICE simulations, at steady state, is given in Fig. 3.19, with Cn=1 and Ln=0.5, thereby 

allowing an asymmetrical resonant component ratio (Cn>Ln) to facilitate a 'wider' frequency-controlled 

characteristic with higher gain at the effective resonant frequency. 

For this example, a voltage gain of Mvc,=2.5 is obtained through operation above resonance at 

W s / Wo = 1.1 (inductive conduction for ZVS), or by switching at w ~. At W s = W ~ , the series resonant 

inductor current is in-phase with the input excitation voltage, and high power factor operation ensues. 

Furthermore, the associated current stress imposed on the series inductor is significantly lower at the 

secondary resonant frequency (i.e. trsZ)VDC =1.8 at w~ compared to 3.5 at effective resonance), with 

a consequential reduction in electrical stresses on power switches and resonant capacitor. 
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3.5. Summary 

The derivation and verification of frequency domain models for the steady-state analysis of 

the 4th-order current-output resonant converter, has been presented. Results demonstrate the accuracy 

of the model to predict the dc output voltage from the converters, and to estimate voltage and current 

stresses on the resonant components. Morever, characteristics associated with mutli-resonance 

behaviour, for the two identified resonant frequencies, is considered, and operation of the resonant 

converter around the secondary resonant peak, is proposed, to faciltate a reduction in switching losses 

and operation at improved power factor. 
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CHAPTER 4 

Cyclic Averaging Analysis of Current-Output Resonant 

Converters 

Classically, resonant converters are analysed through the use of Fundamental Mode 

Approximation, as described in Chapter 3, or variants thereof, which can predict the steady-state 

behaviour of the converter to a degree of accuracy dictated by assumptions made during modelling. 

Large-signal state-variable modelling, introduced in Chapter 2, has been shown to provide very 

accurate transient time domain solutions, although the computational overhead (due to its reliance on 

integration) is often prohibitive, and impedes the use of such techniques in an interactive design 

environment. 

These limitation can be accommodated to some degree by considering only steady-state solutions to 

the state-variable equations, which, as will be shown, provide analytical solutions for investigative and 

design validation purposes. Here then, the development and application of cyclic averaging techniques 

[DI, D2], based on derived state-variable dynamic models of the current-output LCLC converter, for 

determining the steady-state behaviour, is proposed. By comparison with previously published 

techniques, the method has the advantage of allowing any piecewise-linear state-space model 

describing the operation of a power converter, to be analytical solved without the pre-requisite of a 

transient-based simulation. Cyclic averaging therefore provides a rapid design and analysis aid. 

Although the application of such techniques requires a-priori knowledge of the resonant converter's 

behaviour (operation in either continuous or discontinuous conduction modes, for instance), they are 

demonstrated to provide an attractive alternative to traditional FMA-based analysis for evaluating 

performance, and provide results of higher accuracy with commensurate computation overhead. 

Comparisons between results of cyclic averaging and those obtained from SPICE simulations and 

experimental measurements from a prototype converter, are included, to show that accuracy 

comparable to SPICE is readily achievable whilst requiring only a fraction of the computation 

overhead. 
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Further, it is shown that, by suitable manipulation, the resulting models can be directly employed to 

analytically predict the voltage and current stresses on the resonant components, which is a key feature 

in the design of resonant converters since they tend to be higher compared to their hard-switched 

counterparts. 

4.1. The Cyclic Modes 

A power converter is considered to operate in a cyclic-mode when the state vector x(t), at any 

time t, is equal to x(t+nT), where T is the switching period of the converter and n is a positive integer, 

i.e. x(t+nT)=x(t). For resonant converters, each cycle is comprised of multiple operating modes, Mj , 

each dependent on the state of the input voltage and the rectifier input/output voltages and currents. 

When considering operation in a cyclic-mode, a system of piece wise linear (state-space) equations that 

describe the converter's behaviour, in each of the modes, during a cycle, can be derived, viz.: 

(4-1) 

where Xi is the state vector, Ai represents the dynamics and Bi is the excitation matrix during the i 'h 

operating mode. 

For the i'h mode, (4-1) can be solved analytically to give: 

(4-2) 

I 

where<I>j = <1>(t,to) = eA", Tj = JeA,(I-r)B; dr , and x;(to) are the initial conditions for the i'h mode. 
o 

By noting that the time during which the circuit operates in the i'h mode is djT, where dj is the duty, the 

complete solution for the converter can be obtained by employing the state vector at time djT as the 

initial condition for the subsequent dynamics of the (i+ 1 )'h mode. 

The need to evaluate the integral in (4-2) is a key cause of computational overhead when analysing the 

system in this manner. However, by combining Aj and Bj to form an augmented dynamics matrix, (4-

3), the integration overhead can be eliminated at the expense of obtaining only the 'cyclic' steady-state 

solution [D I ]: 

(4-3) 
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Now, if mode I corresponds to the time period between to and tJ, and mode 2 corresponds to the time 

period between I] and 12, the solution for the state vector at the transition time between modes 1 & 2. tJ, 

is given by: 

(4-4) 

Similarly, the state vector at the transition time between modes 2 and 3,12, is, 

(4-5) 

In general, for the i'h mode: 

(4-6) 

where<i>tol =(cl>~01 Tt} and x(t;) is the state-vector at time t; for an initial conditionx(to), and, 

therefore, by definition of the cyclic mode, is equivalent to the initial condition for the cyclic solution. 

Since behaviour in the cyclic mode necessarily presumes periodic steady-state operation, the initial 

condition for operation in a cyclic mode is given by, 

x per (to) = (r - <l> tot t Ttot 
(4-7) 

and the state-variables at any subsequent time are obtained from (4-6). 

4.1.1. Averaged Steady State Solutions 

The mean output voltage of the converter is obtained by averaging the state-variables over a 

complete cycle: 

110+T 
Xav =- f x(t) dt 

T 10 

(4-8) 

Again, the requirement for evaluating the integral is prohibitive to rapid analysis. However, by 

augmenting the state-vector with xav (t ) = x{t )/T, the solution of the resulting system can be 

simplified. Consider, for example, the dynamics of the converter during the lh mode of a cycle, 

and 

__ d j x· x,. 
av T I 

(4-9) 

(4-10) 
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The resulting dynamic description is: 

(4-11 ) 

or 

(4-12) 

and the initial condition for the cyclic mode is: 

(4-13) 

In a similar manner to that presented in the previous section, the averaged state-vector is obtained as: 

(4-14) 

from which the average output voltage (or current) of the converter, together with the average voltages 

(or currents) across (through) the reactive components in the circuit, can be determined. 

4.2. Cyclic Mode Analysis of Current-Output Converter in Continuous Conduction 

Mode 

Classically, to obtain time-domain descriptions of the resonant converter, the non-linear 

differential equations have had to be solved numerically to find the cyclic-mode initial conditions. 

However, if the transition times between modes are known, initial conditions can be successfully 

obtained using cyclic analysis without the necessity of performing complex integration. Subsequently, 

the initial conditions are applied to determine average steady-state solution of the converter output 

voltage. 

However, due to the complexity of operation, involving different numbers of modes associated with 

low and high loading, the model matrices, and related duty times, are derived separately for each case. 
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Figure 4.1 Dominant operating modes of a 4th -order current-output resonant converter under light load (operated 

above resonance). 

Since Zero Voltage Switching (ZVS) is necessary for efficient operation, cyclic averaging is only 

considered here for frequencies above the system resonance (which is the norm). For operation above 

resonance, then, the current-output LCLC converter exhibits six modes of operation within each 

switching period, for light load conditions. 

The modes are defined with respect to the polarity of the input voltage, V;n, and the state of the series 

resonant inductor current iLs and the parallel resonant capacitor voltage vCr These are: 

I Mode I (M!) I Vin>O I Vrn<O I i,_,<O 

I Mode 2 (M2) I Vin>O I vCp<O I iLs>O 

I Mode 3 (M3) I Vin>O I vCp>O I iLs>O 

I Mode 4 (M4) I Vin=O I Vcp> 0 I iw>O 

I Mode 5 (M5) I Vin=O I vCp>O I iLs<O 

i--MOde-Cr(M6f---- r--V;:;"O ----. r---;~p-<O------- r-----iZ<O-----

As previously described (Chapter 2), a state-variable description of the circuit can be obtained by 

separating the dynamics into fast- and slow- sub-systems. 
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The combined state-variable model and coupling equations are ultimately given by (4-15). 

0 0 0 0 
C p Cp 

_ilL 
0 0 0 

I 
0 0 vcp Cs vcp cl' 

vCs VCs 0 
0 0 0 0 0 

iLp Lp iLl' 0 
+ V rciR 

iLs I rep rds + rcs + rls + rep 
0 0 iLs 

--'!L + __ 
- Ls Ls 

vCf Ls Ls Ls Ls vCf 0 
iLf 0 0 0 0 

RL 
iLf 2 Cf(RL +ref) Cf(RL +ref) 

Lf 
0 0 0 0 

RL rlf(RL + ref) + RLref 

Lf(RL + rcf) Lf(RL + rc/) 

(4-15a) 

(4-15b) 

and the output voltage equation is given by, 

(4-16) 

There is no clamping action on the parallel capacitor voltage so the input voltage to the rectifier 

simplifies to: 

(4-17) 

During each mode, the dynamics matrices Ai and the input excitation matrices, Bi, are obtained by 

substituting the appropriate elements of the coupling equation into the state-variable dynamic model, 

and considering the polarity of the input voltage and the direction of the rectifier current [D3]. 

For instance, during mode Ml, Vin > 0, iLs < ° and vcp < 0, and consequently, the rectifier current is 

negative. The coupling equations in (4-15b) therefore reduce to: 

(4-18) 



Chapter 4 65 

Substituting (4-18) into (4-15), the particular piecewise linear state-equation for mode M 1 is given by 

the matrices, 

0 0 0 
Cp Cl' Cl' 

0 0 0 
1 

0 0 0 
Cs 0 

0 0 0 0 0 0 

AI= 
Lp 

~= "in 
1 rep "<Is + res + 'is + rep 

0 
_rep Ls 

Ls Ls Ls Ls Ls 0 

0 0 0 0 
RL _ 2v(/iode 

Cf(RL +ref} Cf(RL +ref} Lf 

0 
_ rep _rep RL rlf(RL +rcf)+rep(RL +rcf)+RLrcf 

Lf Lf Lf Lf(RL +rcf) Lf(RL +rcf} 

(4-19) 

Similarly, the dynamics matrix, A2, and the input matrix, B2, for mode M2 (V;. > 0, iLs > 0, vCp < 0) are 

given by, 

0 0 0 
Cl' cl' cl' 

0 0 0 
1 

0 0 0 
Cs 0 

0 0 0 0 0 0 

A2 = 
Lp 

~= "in 
I rep "<Is + res + 'is + rep 

0 
_rep Ls 

Ls Ls Ls Ls Ls 0 

0 0 0 0 
RL _ 2vtliOiJe 

Cf(RL +ref} Cf(RL +rif} Lf 

0 
rep rep RL rlf{RL +ref)+reiRL +rif)+RL'cf 

Lf Lf Lf Lf(RL +ref} Lf(RL +rif) 

(4-20) 

whilst the modal equations describing operation during M3 (Vi. > 0, iLs > 0, vCp> 0) are: 

0 0 0 
Cl' Cl' Cl' 

0 0 0 
1 

0 0 0 
Cs 0 

0 0 0 0 0 0 (4-21) Lp Vin A3= 1 1 rep rds +res +'is +rep rep ~= 
£. -- 0 

£. £. Ls £. Ls 0 

0 0 0 0 
RL 2vdiode 

CjCRL +ref) Cf(RL +rcf) Lf 

0 
rep rep RL reJRL +ref)-rciRL +ref)+RLrcf 

Lf Lf Lf Lf{RL +rcf) Lf{RL +rcf) 
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Due to symmetry, the modal and excitation matrices for converter operation in M4 (17;" = 0, iLs > 0, vCp 

> 0) and MS (17;n = 0, iLs < 0, vcp> 0) and M6 (Vin = 0, iLs < 0, vCp < 0) are given by: 

A4 = A3 

0 0 

0 0 

0 

As= 
Lp 

1 

Ls Ls 

0 0 

0 
Lf 

Cp Cp 

0 
1 

Cs 

0 0 

rep rds + res + rls + rep 
-

Ls Ls 

0 0 

_ rep _ rep 

Lf Lf 

2VdiOde]T _ B _ B 
--- - 6- 5 

Lf 

0 
Cp 

0 0 

0 0 

0 
rep 

Ls 
RL 

CfCRL + ref) CfCRL +rcf) 

RL r!fCRL +ref)-repCRL +ref)+RLrcf 

LfCRL + ref) LfCRL + ref) 

(4-22) 

Initial conditions xper(tO) can be obtained by substituting (4-19) through to (4-22) into (4-11), (4-13) 

and (4-14) along with the transition times associated with each mode. 

4.2.1. Detennining the Duty-times of Each Mode 

To describe the steady-state behaviour of the converter operating in a cyclic mode, the cyclic 

modal matrices, together with their corresponding time periods, are substituted into (4-11) and (4-13). 

Although accurate determination of the duty-times is critical for correct determination of initial 

conditions, FMA is now initially considered sufficient for the purpose when the converter is operating 

in continuous conduction mode, and when the output-filter inductance is considered sufficient to 

provide a ripple-free output. In this case, the voltage waveform presented to the rectifier bridge is 

considered sinusoidal, and the rectifier input current is considered to be square-wave. Since, using 

FMA, the rectifier and output filter of the resonant converter are modelled by an equivalent 

resistance Req = 7r 2 Rj8 , a simplified equivalent circuit of the resonant converter is shown in Fig. 4.2. 

When operating above the system resonance, the impedance of the resonant tank appears high to the 

input-voltage harmonics if the load quality factor Q is high, and the series resonant inductor current, 

which coincides with the input switch current, is approximately sinusoidal. 



Chapter 4 

- /....-" .. 
Vi( lY ; . 

f--, 
Ye 

67 

: T , ~ 

./ " 

Figure 4.2 An FMA equivalent circuit modelling the fundamental components of the resonant tank waveforms. 

The input impedance, Z;,,, of the resonant circuit in Fig. 4.2 is given by, 

where normalised parameters are employed for brevity, as given below: 

lllopl = 1/ ~LsCs 

lllop2 =1/ ~LpCp 

(4-23) 

(4-24) 

Making the substitution s -4 j llls , the phase angle between the fundamental of the input voltage Vn and 

the fundamental of series inductor current iLs is, 

f3 - I 
ill = tan 

(4-25) 
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At t = t" defined as the time at which the series resonant inductor current passes through zero (end of 

MI), duty dl is obtained from the phase angle (4-25) and is normalised by dividing by 21t: 

d - Pin 
1 - 2lC 

(4-26) 

The duty for M2, d2, is derived by fmding the phase difference, Ye' between the fundamental of the 

input voltage and that of the parallel capacitor voltage, from the equivalent circuit of Fig. 4.2. 

Neglecting parasitic resistances for the moment, the parallel capacitor voltage vcp(s) is described, in the 

Laplace domain, by: 

vcp (s)=2 
~n lC 

(4-27) 

Again making the substitution s-tjw., Ye in polar representation (4-27) is sufficient to determine the 

mode length for M2 (normalised to angles between 0 and 21t), as follows: 

4[ QOP2: 2[ Req Qop2 QOP2] + Req (0 +(0 ---+--+-- --
s 2 s 2 C(O (0 L 

(Oopl mop2 (Oopl Lp n op2 op2 p 1 -I --x tan 
2lC 

4[ QOP2] 2 [Req Qop2 + QOP2] + Req m + (0 --- + -- -- --
s 2 s 2L Cm m L 1 1 -I mopl mop2 (Oopl p n op2 op2 p - - + - x tan _~"':'::"':'_~~_~""::::"':'-~-=;---,:'-_-'-...c:-__ 

2 2n m.H ~,J'] 

(4-28) 

The remaining duty times are found through symmetry. 

d3 =O.5-d\ -d2 

d4 =d\ 
(4-29) 

ds =d2 

d6 =d3 
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Equations (4-25) and (4-28) are therefore sufficient for analysing the behaviour of the converter when 

only the fundamental makes a significant contribution, and the load quality factor is high, and the 

circuit is operated in the region of the system resonant frequency. For higher operating frequencies, 

however, the parallel capacitor voltage becomes increasingly distorted (non-sinusoidal), and errors 

when calculating the duty-times (due to the existence of higher hannonic components) can have a 

significant effect on the accuracy of the calculated initial conditions, and hence, output voltage 

predictions. 

The contribution of additional hannonics in the analysis, can significantly enhance the accuracy, at the 

expense of much greater complexity. However, simulation studies show that hannonics beyond the 5th 

do not make any significant contribution. By way of example, denoting Vjn as the amplitude of the 

input square-wave excitation voltage, and the n_th frequency component of V;n, a frequency-based 

summation can be employed to describe vCp (assuming linearity), (note jw is replaced by s for 

convenience ): 

2V <Xl 
Vc =--llLx I 

P 1r - n n-1,3,5 ... 

(4-30) 

Furthennore, it is known that omitting parasitic resistances can have a significant effect on the 

accuracy of the predictions obtained from cyclic averaging (when comparing with experimental 

measurements), due primarily to the sensitivity on the predicted phase angles Pjn and re' 
Improvement in the accuracy of duty-time calculations can be made by the inclusion of components 

associated series parasitic resistances, giving: 

vCp (s) 

(4-31 ) 

where the total parasitic resistance related to the series resonant tank, Rtot = rds + 'is + res' 
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The phase-angles, and hence, the mode duties, are again found after substituting s -+ j{j)s. The steady­

state behaviour of the converter is determined from the averaging of cyclic modal matrices for each 

operating mode along with their corresponding duties. 

4.2.2. Component Stresses Analysis 

As previously discussed, whilst the soft-switching characteristics of resonant converters serves 

to enhance efficiency compared to equivalent hard-switched converters, the electrical stresses to which 

the resonant components are exposed can be much higher than those found in traditional hard-switched 

counterparts. An assessment of electrical stresses is, therefore, of significant importance during the 

design of resonant power supplies [D4]. 

Conveniently, the cyclic-averaging method provides a ready means of calculating steady state values 

of voltage and current stress on the resonant components. Although the stress level imposed on the 

resonant components and switching devices are higher in transient operation, e.g. during start-up and 

output load change, the transient voltage and current only flows through the resonant converter for a 

short period of time, as shown in Fig. 4.3 . Although higher start-up current caused thermal 'hot-spot' 

to build up on the centre of inductor core that leads to increased core loss, forced cooling can be 

achieved using fan mounted on the inductor itself to mitigate the thermal effect. Therefore, steady state 

current stress values are considered sufficient for establishing the required inductor rating during 

design stage. It is observed from Fig. 4.3 that, the maximum start-up voltage stress can rise up to 1.8 

times the normal stress levels in steady state. The higher voltage stress on the dielectric material can 

reduce capacitor life-time, and significantly compromise the reliability of resonant capacitors, thus 

additional safety margin is necessary to ensure reliable operation of a resonant power supply. 

· . · . · . . .......................................... ..... --......... ..... . · . . · . . · . . 
0.5 2 

Time lms) 

(a) (b) 

Figure 4.3 Current and voltage wavefonns at/.= 140 kHz and RL=50 (a) vCp and, (b) iLs• 
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The following analysis considers excitation of the converter above resonance (the nonnal operating 

condition). 

I· v~ ~. 
• Ls. l1'8x : ~ 

: ........ . . t · ····· ··\.. ·· ·· i···· .. -'-:==~:::::::=-__ --l. .~ 0 . . . 
Yes { . ... . .. . . . . j ............. --: 

Figure 4.4 Cyclic mode analysis current and voltage waveforms. 

Referring to simulated steady-state current and voltage waveforms in Fig. 4.4, and ignoring parasitic 

resistances, the resonant inductor current, iLs and the resonant capacitor voltage, Vcs are displaced in 

phase by 7il2 rads. Hence, the maximum voltage across capacitor Cs occurs when iLs=O. 

Taking the input voltage vs. current phase lag Pin in (4-25) and nonnalising through division by 21t, 

the time at which h.=O, and the time at which Vc. is a maximum, is in mode M4, i.e. 

t Pin 
vCs _ max = 27if (4-32) 

From (4-6), the maximum series capacitor voltage is given by: 

v = rO 1 0 0 0 0 O]eA.I,c,_ .... eA,d,T,eAldlT,eAtdtT, x (t) w t ~r 0 

(4-33) 

where T. is the switching period. 
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The maximum series inductor current is phase-shifted by rr/2 from vCs ' hence, iLs is a maximum at time 

tiLs_max= tYCs_max-(T/4) and can occur in either M2 or M3 (depending on operating frequency). The time 

at which iLs is a maximum (tLs ) is therefore given by, 

X(tiLs _ max) 

{

X(t. )=eAl(liLs_max-dlTs)eAldlTsx (t) 
ILs _ max _ mode 1 per 0 

= x(t. )- A3(tiLs_max-(dl+d2)Ts )A2d2Ts AldlTs- (t) 
ILs_max_mode2 - e e e xper 0 

and 

fi Ts 
or tiLs max:-S::-- 2 

(4-34) 

(4-35) 

{Note: with increasing switching frequency the series inductor current becomes increasingly triangular, 

and the time required for the current waveform to reach its maximum value ultimately increases to 

{;Ls_max= (d,+d2+d3) Ts}. Referring to Fig. 4.4, the maximum voltage across the parallel resonant 

capacitor ( v Cp ) is phase-shifted from d2 by 1[/2 rads. 

Hence, the maximum parallel capacitor voltage v Cp occurs in either M3 (Vi. > 0, Vcp> 0) or M4 (Vi. = 0, 

VCp> 0) depending on the switching frequency, and, using FMA, occurs at time: 

(ycp _ max 

t _ Ts Ts -, 
vCp max mode3 - -4 --2 tan - - n 

(4-36) 
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Substituting (4-36) into (4-6), the peak stress across the parallel capacitor, vCp ' is given by, 

(4-37) 

and 

(4-38) 

With reference to Fig. 4.4, the maximum current iLp flows through parallel resonant inductor Lp, at 

time tiLp_max=d5T, and occurs in MS. The state at which hp is a maximum (iLl') is therefore given by, 

(4-39) 

and 

(4-40) 

As previously discussed, the calculated initial conditions are sensitive to the accuracy of duty-times, 

implying that the electrical stresses on the tank components are also affected. Higher harmonics 

component of the input voltage can be added into the analysis in a similar manner to (4-30), to enhance 

the accuracy, at the expense of much greater complexity. 
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4.3. Cyclic Mode Analysis of Current-Output Converter In Discontinuous 

Conduction Mode (DCM) 

Discontinuous conduction operation occurs when the current-output converter is heavily 

loaded. Ultimately, when the load on the converter is high, the resonant network cannot supply 

sufficient current to maintain conduction to the load when the rectifier commutates, and results in 

distorted rectifier currents when the tank current flows through the rectifier diodes, until iLs - hp > IoU/' 

Under such circumstances, the input voltage across the bridge rectifier VR becomes discontinuous, and, 

for a short period of time, parallel capacitor voltage vCp is clamped to ~OV. 

Two additional modes of operation, see Fig. 4.5, are therefore included to account for this 

discontinuous behaviour, when vCp =0. Again, the variables in the cyclic modal matrices are the states 

of the input voltage V;n and parallel capacitor voltage. Whilst there are two states for the input voltage, 

the parallel capacitor voltage now has three states to describe the discontinuous conduction mode. 

M1 

. . 
~---t'!'::- -- - - - - - -~ - - - - - - -- - - - -l- ---_ ....... ;:.: 

, , , , 

M5 
, , 
M6: M7 M8 

Figure 4.5 Dominant operating modes in discontinuous conduction mode. 
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Consequently, by assuming a positive input voltage transition marks the start of a cycle, the convention 

for mode description becomes, 

1- -ModeJ(MT)---- V;n>O---- -r- - ~;.~-<O- -- ;---i,,«f-

r---- Mode-i(M2) r-- V;n>O I vCp<O ~ - i/.,>O 

1~3(M3)-- -I--V;;:>O--- r--- --;~;~O-- --- -i~>6--- -
r--- Mode 4 (M4) -T ---Vn>O---T-~;>O-- r---i~;O -- -­

r-- Mode 5 (M5)----- r--V1n=0 ----- r----~~~>o---- r---i~6---

IM0de6 (M6) - r---V;~-~O----r----~~;O----- iLr<O 

I 
I 

Mode 7 (M7)-I-- V;n=O- r--~cp=O----I-iLr<o -
Mode 8 (M8) --- r ---V~~-:-O-- r--~cp<o-l--iLr<o----

As before, the dynamics and input excitation matrices are found by substituting the coupling equations 

into the state-variable dynamic model, and considering the state of the two variables. Accounting for 

the behaviour of the distorted capacitor voltage, the coupling equation simplifies to, 

. {iLl sgn(vcp) for liLI ~ iLl 
'R = 

iL for liLI < iLl (4-41 ) 

During Mt, V;n > 0, vCp < ° and iLs < 0, and consequently, the rectifier current is negative, and the 

particular piecewise linear state-equation is dictated by the matrices, 

0 0 0 cp cp cp 

0 0 0 
I 

0 0 0 
Cs 0 

0 0 0 0 0 0 
A,= 

Lp 
B, = Vin 

I rep rds + res + 'is + rep _ rep 
- 0 Ls 

Ls Ls Ls Ls Ls 0 

0 0 0 0 
RL _ 2vt/iode 

Cf(RL+ref) Cf{RL +ref) Lf 

0 
_ rep _ rep RL _ rlf{RL + ref) + rep{RL +reL ) + RLrcf 

Lf Lf Lf Lf{RL+ref) Lf{RL +ref) 

(4-42) 
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During M2, ~n > 0, VCI' < 0 and hs > 0 giving, 

0 0 
1 1 

0 
1 -- - -

Cl' Cl' Cl' 

0 0 0 
1 

0 0 0 
Cs 0 

1 
- 0 0 0 0 0 0 

A2 = 
LI' 

B2 = 
ViII 

1 rep r,ls + res + r,s + rep _ rep Ls - 0 
Ls Ls Ls Ls Ls 0 

0 0 0 0 
RL _ 2vdiodc 

Cf(RL+ref) Cf(RL +rcf) Lf 

1 
0 

rep -- rep RL rlf(RL + ref) + rel'(RL + ref) + RLref 

Lf Lf Lf Lf{RL+ref} Lf{RL +ref} 

(4-43) 

In M3, ~n > 0 and it < iLl, hence, VCI' = O. The excess current from the output filter/load now circulates 

through the rectifier bridge, and the coupling equation reduces to: 

(4-44) 
VR =0 

The particular piecewise linear state-equation for M3 is therefore given by, 

0 0 0 0 0 0 

0 0 0 
1 

0 0 
Cs 0 

0 0 0 0 0 
0 

Lp 0 (4-45) 
A3= 1 

0 rds + res + rls 0 0 ,82 = 
Vin 

Ls Ls Ls Ls 

RL 0 
0 0 0 0 _ 2vdimle 

C/(RL +ref) Cf(RL + rei) 
LI 

0 0 0 0 RL rlf{RL + ref) + RLref 

LI{RL +rif) Lf(RL + ref) 

and the dynamics matrix, ~, and the input matrix, B4, for M4 (Vin > O. VCI' > 0, iLs > 0) are given by: 

0 0 0 
cl' cl' cl' 

0 0 0 
1 

0 0 0 
Cs 0 

0 0 0 0 0 0 
A4= 

Lp 
8 4 = 

Vin 
I rep rds + res + 'is + rep rep 

- 0 Ls 
Ls Ls Ls Ls Ls 0 

0 0 0 0 
RL _ 2Vdio<Ie 

Cf{RL +rcf} Cf{RL +rcf} Lf 

I 
0 

rep rep RL ref(RL +ref}-rep(RL +ref}+RLrcf 
-
Lf Lf Lf Lf(RL+ref} Lf{RL+ref} 

(4-46) 
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Again, using symmetry, the modal and excitation matrices for converter operation in the subsequent 

half switching cycle, are given by, 

0 0 0 
Cp Cp Cp 

0 0 0 
1 

0 0 
Cs 

0 0 0 0 0 

A6= 
Lp 

1 rep rds + res + 'is + rep 
0 

rep 

Ls Ls Ls Ls Ls 

0 0 0 0 RL 

Cf(RL + ref) Cf(RL + ref) 

0 
_ rep _ rep RL ref(RL + ref) - rep(RL + ref) + RLref 

Lf Lf Lf Lf(RL + ref) Lf(RL + ref) 

A7 = A3,Ag = AI 

8 5 = 8 6 = 8 7 = 8 g = [ 0 o 0 0 0 - 2, diM, J 
Lf 

(4-47) 

As before, the cyclic-mode initial condition, xpe,(to), for the converter subjected to heavy load 

conditions is obtained through substitution of the piecewise linear equations from (4-42) through to (4-

47), into (4-11) to (4-14), along with the switching transition times associated with each operating 

mode. 

4.3.1. Determination of Mode Duty-times during Discontinuous Operation 

Fundamentally, when the converter is subjected to high loads the resonant network cannot 

supply sufficient current to maintain conduction to Cp when the rectifier commutates, and results in 

distortion of the rectifier voltage, and VR ~o. Whilst the transition time in continuous conduction mode 

operation can be approximated through FMA, or similar frequency-domain techniques, significant 

errors are incurred when estimating the duty times during heavy loading. In an effort to overcome such 

deficiencies, the 'Extended Fundamental Frequency Analysis' reported by Forsyth et al. in [D5] for 

3
rd
-order LCC resonant converter, is modified and extended here, for the more complex LCLC 

converter counterpart. 

In [D5], the non-conduction phase angle Ocond is introduced as a measure of the interval when vCp 

remains at zero, and where, at the end angle 0 = Ocond, the rectifier resumes normal conduction. aj now 
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denotes the phase-angle between the input current iLs and capacitor voltage vCp . Using basic network 

theory, vcp can be expressed as a function of the two key angles OCO/l{J and aj. Having obtained a 

suitable description of v CP' the fundamental impedance Z Cp( )} of the parallel combination of Cp and 

rectifier, can be derived from Ohms law. 

An equivalent circuit for the converter is obtained by replacing the bridge rectifier, output filter and 

load with Z cP( )} as shown in Fig. 4.6, and the impedance of the resulting equivalent circuit is used to 

calculate the input voltage vs. current phase angle (3jn and all the remaining duties. 

Figure 4.6 Equivalent circuit modelling the fundamental components of converter waveforms in DCM . 

At the beginning of a cycle, when vCp commutates to zero at t = to, the resonant network cannot supply 

sufficient current to maintain conduction at the output, and the current waveform into the rectifier 

bridge iR is equal to that of current flowing out of the inductor L.-Lp network. Since the difference 

between the currents flows into Cp, vCp remains at zero within the interval Ocond until the current h 

exceeds the output current hI' At the end of the interval 0 ~ fJ < 0 cond , the rectifier resumes normal 

conduction. The parallel capacitor voltage, vCP' can be expressed as a function of angle fJ by 

considering the positive half cycle of the waveform shown in Fig. 4.7. 

During the normal conduction interval 0cond ~ fJ < 1r , vCp is given by, 

(4-48) 

where ~ sin(fJ + a j ) = iLs - iLp is the resonant tank link current. 
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v -------"~ 
Cp 

.-----_--------------------------~o 

~------_;_---~--__;r_ ilf 

iR -- -------!--------------------------- ----------------------------------~O 

'-------- -Ilf 

9= 0 6=1t 

Figure 4.7 Waveforms during DCM operation_ 

Employing trigonometric functions, cos{a+ p}=cos{a}cos(p}-sin{a}sin(p} and evaluating the 

integral in (4-48) yields, 

(4-49) 

Exploiting symmetry between the positive- and negative-half cycles of operation, the parallel capacitor 

voltage can be expressed as a function of angle, 

o 
- iL cos{e + a j )+ iL cOS{Ocond + a j )+ iou/(ocond -1r) 

2tifsCp 

o 
iL cos{e + a;}- iL cOS(Ocond + aj )- ioU/(Ocond -1r) 

2tifsCp 

for 

for 

for 

for 

0< e s; 0cond 

0cond < () ::; 1r 

1r < () ::; 1r + ocond 

1r + ocond < () ::; 21r 

(4-50) 

To determine the boundary defining the capacitor-charging period, it is noted that vcp(to) = a 

and vCp (1r) = 0, and expressions for the parallel capacitor vCp when it tends to av, can be obtained, 

(4-51 ) 

and 

(4-52) 
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Under steady state conditions, the output voltage (VOUI ) from the converter, can be determined, by 

calculating the average voltage across the bridge rectifier during a complete cycle. Since the resonant 

current charges the parallel capacitor during intervals Scond :c:; B < 7r and 7r + Scand :c:; B < 27r , the output 

voltage can be determined from, 

(4-53) 

Again, exploiting symmetry over half a switching cycle, substituting (4-52) into (4-53) and evaluating 

the integral allows the solution for Vaull as follows: 

V = -.!.. f -iL cos(O + a;} + iL COS(Dcond + a;} + iOUI (Dcond - Jl' )dO 
oul Jl' 5"m,d 21ifs C p 

(4-54) 

By noting that the output current is described by iou, = iL sin(aj + Dcon")' and the output voltage by 

VDU' = iou,RL , (4-54) can be rearranged to give, 

i, 'in(a,)+(g - o,~, lxi, co,(o-, +a,)+ i, ,in (a, +o~,)x (1 uo~ (".' +:~,' )] 
i R =----------------------------.-----------~--------------~ 
oul L 2Jl'2 fsC p 

(4-55) 

The key step in determining the three mode transition-times is to obtain the phase-angles ocon" and aj. 

Equations (4-52) and (4-55) can be solved numerically for these angles, 

,in (a, ) + (". - 8""", )co,(o _, + a,) + (1 + ".0_ - (".' +:"""" l_ 2".' /, R, C, ] = 0 

(4-56) 
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Having established satisfactory values of 0cond andai , from (4-49) the fundamental frequency 

component of the parallel capacitor voltage, VCp(l) is given by, 

VCp(l) = ~ fVcp(B)e-JOdB 
°rfJnJ 

( 4-57) 

The 'extended fundamental frequency analysis' equivalent impedance, modelling the non-linear 

behaviour of the parallel capacitor voltage and filter, is therefore given by, 

ZCP(I) 

1 [ 2sin(ain +ocond)sin(a;n)-cos
2
(a;n)-cos\a;n +ocond)+2 1 

= 2lr
2

f.Cp + jsin(a;n +ocond)(2cos(a;n)+cos(a;n +ocond»)+sin(a;n)cos(a;n)+ocond-lr 

(4-58) 

The overall system impedance Z;n of the equivalent circuit is, 

1 ![ 1 I] Z;n=jwsLs+--+I --+--
jwsCs jWsLp ZCp(l) 

(4-59) 

The MI transition duty (d,), is defined as the time when input current iLs =0, and can be derived from 

knowledge of Zin' Taking the input voltage vs. current phase angle Pin' and subsequently 

normalising by 2n, yields: 

Exploiting symmetry over a half switching cycle, the remaining duties are found to be: 

d -.!!L 
2 - 2lr 

d - Ocond 
3 - 2lr 

d4 = O.5-d l -d2 - d3 

d5 =d\ 

d6 = d 2 

d 7=d3 

dg =d4 

(4-60) 

(4-61 ) 
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4.4. Accuracy of Cyclic Averaging Analysis 

The accuracy of the cyclic-analysis, and the related averaging method, for predicting the 

steady-state behaviour of 4th-order inductor-Ioaded converter, is now demonstrated by comparison with 

measurements from a prototype converter, Fig. 4.8, with components given in Table 2.1 , over a range 

of operating conditions. 

Figure 4.8 Experimental setup for current-output 4th-order resonant converter. 

Table 2.1 Voltage-output converter model parameters. 

Parameters 
DC link input voltage, VDC (V) 

Series resonant inductance, L. (JlH) 

Series resonant capacitance, Cs (JlF) 

Parallel resonant inductance, Lp (JlH) 

Parallel resonant capacitance, Cp (JlF) 

Switching devices internal on resistance, r ds (0) 

Inductor L. series resistance, r ls (0) 

[nductor Lp series resistance, rip (0) 

Instantaneous diode forward voltage drop, Vdiode (V) 

Output filter inductance, Lf(mH) 

Output filter capacitance, <1- (Il F) 

Output load Resistance, RL (0) 

Nominal operating frequency,!. (kHz) 

Values 
20,25,30 

2.7 

2 

5.4 

0.04 

0.1 

0.15 

0.85 

33 

2.5, 5 

140 
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By way of example, Fig. 4.9 compares predictions and measured output voltages, for two light load 

conditions, whilst Fig. 4.10 shows the resulting electrical stresses on tank components. For 

comparison purposes, Fig. 4.1 O( c) shows experimental waveforms of measured voltage/current 

across/through the resonant capacitors and inductors, whilst operating in the region of the resonant 

frequency. 
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Figure 4.9 Output voltage of current-output LCLC converter (a) RL= 50 and (b) RL = 2.50 . 
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Also, for completeness, the variation of output voltage, with excitation frequency, derived using cyclic 

averaging, is compared with practical measurements from the experimental converter, loaded with RL = 

50 for two input voltage levels, in Fig. 4.11. In each case it can be seen that a good correlation 

between predictions and measurements exists. 
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Figure 4.10 Currents and voltages of current-output LCLC converter: (a) Predicted and measured current stresses 

(b) Voltage stresses and (c) Experimental waveforms of the current-output LCLC converter. 

An example state-space portrait showing the converter's behaviour (during continuous conduction 

operation), from cyclic analysis, is given in Fig. 4. 11 (c). From an execution speed perspective, the 

cyclic-based averaging predictions take ~10ms in MATHWORKS® MATLAB to analyze the current-
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output converter at one frequency point, compared to an execution time of 73s for the SPICE transient 

analysis (Sms to steady state with maximum step size of 1/101.). 

In general, it is notable that the overall calculation time for generating a frequency sweep of the output 

voltage using cyclic averaging, is typically 1I10,OOOth of that for the generation of similar results using 

SPICE. Likewise, the execution time is at least 1I1000th of that for the integration-based state-variable 

model simulations. 
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Figure 4.11 Predicted output voltage from cyclic averaging: (a) Vi. = 25V, Cb) Vi. = 30V and Cc) State plane 

trajectory predicted by the cyclic averaging. 
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For completeness, Fig. 4.12 gives a demonstration of accuracy of cyclic-analysis for predicting the 

output voltage of the converter when it is subjected to heavy loading conditions. The output voltages 

determined from state-space model simulations are compared with those obtained from cyclic-analysis, 

and confinn the accuracy of the proposed methodology. 

As a matter of interest, Fig. 4.l2(c) shows an example state-plane portrait of the series resonant 

inductor current, h. against the parallel capacitor voltage vCp during discontinuous conduction mode. 
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Figure 4.12 Cyclic averaging analysis estimated output voltage (a) RL = 0.10 and (b) RL = 0.50 and (c) State 

plane trajectory of the resonant converter. 

200 



Chapter 4 87 

4.5. Summary 

A methodology based on cyclic-averaging techniques to facilitate the high-speed, steady-state 

analysis of current-output resonant power converters, has been presented, and its virtues have been 

demonstrated by comparing predictions with measurements from a 4th -order converter. State-variable 

dynamic descriptions for each operating mode, have been derived, and analytical formulae have been 

employed to estimate the mode duties for converters operating in both continuous (CCM) and 

discontinuous conduction modes (DCM). 

The subsequent peak electrical stresses have also been estimated using an extension to the cyclic­

analysis methods. The accuracy of the proposed analysis methodologies has also been demonstrated 

by comparisons with practical measurements, SPICE simulations, and the results from the non-linear 

state variable model, and are shown to require significantly less computation overhead at the expense 

of only obtaining steady-state solutions. 
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88 

Features of the 4th-order LCLC resonant converter, have been considered in Chapter 3. From 

the input-to-output voltage transfer function, in Fig. 3.5, it can be seen that for w/ Wo = 0.85 to 1.3, 

load regulation is relatively poor, especially near resonant, at w/ Wo = 1. If good load regulation is 

desired, then the converter has to be operated above w/ Wo = 1.3. Operation far below resonance also 

leads to the influence of the secondary resonance, or discontinuous mode operation. 

Although such features can make LCLC converters ill-suited for some classical power supply 

applications, they can be employed to particular advantage in specialized applications. One such use, 

is for fluorescent lamp ballasts, and, here, a prototype 12V:300V ballast is considered as a case-study 

example. The electronic ballast normally requires a very high no-load voltage, prior to lamp ignition, 

and subsequently, a lower converter output voltage at full load. 

Methodologies for analyzing and designing an LCLC resonant ballast, operating at 2.63MHz, are 

given, with the high operating frequency being shown to facilitate capacitive discharge and appropriate 

filtering for EMI, with near-resonance switching, at high load quality factor, promoting high efficiency 

operation. 

State-variable dynamic descriptions of the converter, are derived, and subsequently employed to 

rapidly determine the steady-state cyclic behavior of the ballast during nominal operation, and, 

importantly, provide estimates of the voltage and current stresses on resonant tank components. 

Furthermore, from the frequency domain analysis equations, a structured design procedure to realize 

4
th
-order electronic ballasts, is given. Simulation and experimental measurements from a prototype 

ballast circuit driving a 60cm, 8W T5 fluorescent lamp, are included, to demonstrate the accuracy of 

the mode ling and design methodologies. 
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5.1. Fluorescent Lighting- Background 

Fluorescent illumination takes a major role in today's lighting requirements (with around 1.2 

billion units being produced per annum) due to benefits afforded by crisp white light output compared 

to traditional incandescent and high intensity discharge lamps. Fluorescent lamps also provide a higher 

LumensiWatt output, and higher efficiency, particularly when excited at high frequencies, typically 30-

50kHz, by virtue of there being insufficient time between each half cycle of the supply for a significant 

number of mercury ions in the discharge to re-combine (and thereby necessitating a re-strike), as 

occurs with standard mains frequency excitation, for instance. 

The affect of this non-linear frequency dependence of lamp voltage and current can be seen from a 

comparison of Figs. 5.l(a) & 5.1(b), which show the voltage vs. current relationship for an 8W, 60cm, 

T5 fluorescent tube excited by 50Hz and 50kHz input voltage, respectively. The relative 'loop area' 

shows that less re-combination occurs within the lamp between each half cycle of the input voltage 

when high frequency excitation is employed. 
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Figure 5.1 Lamp voltage vs_ current: (a) 50Hz excitation; (b) 50 kHz excitation. 

Typically, fluorescent lamps are constructed with an oxide coated, tungsten filament electrode_ 

Passing current through the electrode prior to striking, to heat it (termed pre-heating), lowers the 

electrode work function, thereby allowing electrons to be emitted more readily. This consequently 

allows the lamp to strike at a lower voltage than would normally be required, which in-turn reduces 

damage to the electrode from ion bombardment during the ignition event. Despite electrode pre­

heating, however, the most common lamp failure mechanism is due to breakdown of the coating on the 

electrodes, giving rise to a blackening at one end of the tube, and the lamp subsequently acting with 

similar characteristics to that of a gas diode. 
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To circumvent this problem, and ultimately increase lamp lifetime, electrode-less lamps have been 

developed with various techniques being employed to sustain the arc viz. RF induction and capacitive 

discharge, by Whannby [El], that usually require excitation frequencies in the MHz range. Bakker et 

al. [E2] also demonstrate the use of impedance measurements to understand the non-linear effects of 

stray impedances associated with RF discharge. Along with increasing lifetime, electrode-less 

excitation also removes the loss associated with electrode heating, and, therefore, encourages higher 

operating efficiency. Although RF discharges are extremely stable, the lack of inexpensive, efficient 

electronic ballasts has impeded the development of commercially viable capacitive discharge lamps. 

Nevertheless, such lamps (for example the 2.5MHz GE Lighting Genura 23W, and 2.65MHz Philips 

QL 85W commercially available induction coupled lamps) are increasingly becoming preferred 

candidates for use in inaccessible environments (high-ceiling sports halls, for instance) and where low 

maintenance is a requirement. 
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Figure S.2 Lamp characteristics (a) Measured voltage and current characteristics and (b). 

To provide ignition and sustained light output from the lamp, an electronic ballast must develop 

sufficiently high voltage, typically between 400V and lOOOV, for striking, and subsequently provide 

current limiting to promote stable operation. The latter issue is a key motivator for adopting resonant 

converters for lamp ballasts, since, after striking, the lamp exhibits a negative incremental impedance 

characteristic, as shown in Fig. 5.2(a) for an 8W lamp. The output impedance of resonant converter 

naturally acts to counter this destabilizing characteristic and encourages steady continuous operation. 

For example, Fig. 5.2(b) shows the effect of output impedance of resonant converter in stabilizing the 

lamp current. Before the lamp is ignited, the resistance of fluorescent tube presented to the output of 

the ballast, is infinite i.e. the output stage is essentially an open-circuit. A very high voltage, Voc is 

required to achieve gaseous discharge. 
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Upon application of ignition voltage to the lamp-ballast system and establishment of ionization, the 

lamp voltage decreases whilst the lamp current increases. The internal impedance seen by the lamp, 

R1amp=VLam/ i..J. has negative incremental characteristic. As illustrated in Fig. 5.2(b), the output 

impedance characteristic of the resonant converter has a positive gradient, and the resulting operating 

characteristic of the lamp-ballast system will also have positive impedance gradient. Consequently, the 

ballast stabilizes the lamp characteristic. 

When operating without electrodes, the requirement for high frequency excitation also provides the 

additional benefit of reducing the volume envelope requirements of the reactive components of the 

ballast; although this is at the expense of significantly complicating the design of the ballast since 

circuit behaviour can become dominated by parasitic elements. 

S.l.l. High Voltage Resonant Electronics Ballast Selection 

Electronic ballasts with half-bridge series resonant inverters are relatively straightforward to 

design, and have been widely reported e.g. [E3, E4, E5], along with more complicated 3'd-order LCe 

inverter variants [E6]. More generally, however, for applications that are battery powered or require 

battery backup facilities, for instance, the low DC input voltage must be 'boosted' for lamp ignition 

through the incorporation of a step-up transformer [E7]. Time domain mathematical models used to 

describe compact fluorescent ballasts have been previously reported in [E8, E9], where theoretical 

results of series-resonant and series-parallel LCC electronic ballasts are shown to provide good 

agreement with measured data, at the expense of requiring significant computation overhead. More 

often therefore, designers resort to Fundamental Mode Approximation (FMA) [E10, Ell] for 

simplifying and speeding-up the design and analysis process, at the expense of neglecting the 

important harmonic and sub-harmonic content of the circuit voltages and currents. 

The 4
th
-order resonant converter shown in Fig. 5.3 is particularly suited to high voltage electronic 

ballast applications, where, on the account of the high frequency behaviour of the fluorescent lamp, the 

gas discharge can be modelled by resistor. In such cases, the subsequent effects of the high-frequency 

transformer's leakage inductance and inter-winding capacitance can have profound effect on circuit 

behaviour, and are best represented by a model of a LCLC inverter. The 4th-order resonant inverter 

avoids problems such as current and voltage spikes associated with leakage inductance and winding 

capacitance, by incorporating them directly into the resonant tank elements, thereby eliminating the 

effect caused by transformer parasitic, and allowing the converter to operate efficiently and reliably. 

Indeed, other low order resonant converter topologies, such as the series and parallel inverter variants, 
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when used in high voltage and high frequency applications, with a non-ideal transformer, are likely to 

exhibit 4 th -order characteristics. 

As described previously, the widespread adoption of such high-order resonant inverters, has been 

impeded by and the lack of suitable design methodologies that can provide an accurate and rapid 

analysis of the circuit at the design stage; particularly those that consider the significant effects that 

parasitic resistances, capacitances and inductances have on the resonant tank behaviour. Here then, 

cyclic mode analysis is again considered as a candidate technique for the rapid analysis and design of 

an inverter, suitable for use as an electronic ballast, with the lamp providing a suitable candidate 

application for exploitation and verification of the analysis methodology. 

t 
Equivalent 
Iransformer 
model 

Figure 5.3 Proposed resonant inverter for fluorescent lamp ballast applications. 

5.2. Analysis of Resonant Inverter in Cyclic Mode 

Figure 5.4 shows the proposed electronic ballast in terms of idealised reactive components 

along with their associated series parasitic resistances. At very high frequencies, the reactance of the 

low value capacitances, Clap become very small. This allows the impedance of the capacitances to be 

modelled as part of the internal impedance of the converter. Upon ignition, the output impedance of the 

resonant converter compensates the negative incremental resistance effect of the fluorescent lamp, thus 

the inverter's output can then be conveniently modelled as a pure (apparent) resistance, Ri. In high 

frequency inverters, such as considered here, the parallel resonant components, Lp and Cp, are designed 

to be the magnetising inductance and parasitic capacitance of a step-up transformer, whilst the series 

resonant component, L., takes advantage of the transformer leakage inductance. In this way, the high 

order circuit is achieved with few additional passive components. 
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Figure S.4 Simplified circuit of electronic ballast. 

A state-variable dynanUc model of the circuit can be derived by considering the resonant tank 

components and power switches: 

dvcp iLs - iLp - NiRe 
-- = --'-'-- --'----

dt Cp 

dvCs iLs -- = -
dt Cs 

diLp vCp - iLPhp + ytp)+ repiLs - NrepiRe 
-- = 

(5-1) 

dt Lp 

diLs = fill -vcs - vcp -iLS~dS + rep + res +r/s )+rcpiLP + NrepiRe 

dt Ls 

with the resonant inverter's output voltage VR. and load current iRe given by: 

VRe = N(vcp + rep VLS - iLp - NiRe)) 

(5-2) 

The resulting state-variable model is therefore: 

0 0 _ NiRe 
Gp Gp 

[VCP 
I 

[VCP I Gp 
0 0 0 0 

YCs Gs YCs NrepiRc = 
rep + rip 

+ 
iLp 1 

0 
rep iLp Lp 

iLs Lp Lp Lp iLs V. NrepiRc 
1 rep ' lis + r cs + rep + rls -!!!..+ 

L s Ls Ls Ls 
L s Ls 

(5-3) 
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To demonstrate the accuracy of the model, a prototype 4th-order LCLC inverter (VDC = 12V, Ls = 

2.6JLH, Lp = 4JLH, Cs = 6nF and Cp = 3nF, RI = 4700) is considered. A step-up high-frequency toroidal 

transformer with secondary-to-primary turns ratio of N = 2, is also incorporated. Figure 5.5(a) shows 

the predicted steady-state operating waveforms from the state-variable model, and Fig. 5.5(b) 

compares the output voltage derived from state-variable model (simulated to steady state) with 

measurements taken from the experimental ballast. Although the state-variable description can 

accurately model the transient behaviour of the 4 th order inverter, as before, the execution time remains 

prohibitive due to the requirement for integration. As discussed in detail in Chapter 4, this drawback 

can be abated to some degree by only considering the steady-state behaviour of the circuit, thereby 

allowing analytical solutions from the state equations to be obtained for investigative and design 

validation purposes. 
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Figure S.S State-variable model simulation result of the 4th-order LCLC resonant inverter (a) Voltage and current 

wavefonn and (b) Output voltage against frequency. 

In particular, cyclic modelling, which has been employed previously for 4th -order current-output 

resonant converters in Chapter 3, provides a convenient methodology to facilitate the rapid solution of 

the steady state voltages and currents for the 4th-order ballast considered here. For operation above 

resonance, which is the norm, by describing the input voltage as a bipolar square wave, it is possible to 

see, that, for a particular resonant inverter, the initial conditions can be found from just two dominant 

modes, termed Mode 1 (Ml) and Mode 2 (M2), which are defined with respect to the polarity of input 

voltage V;n [EI2], see Fig. 5.6. 
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Flaure 5.6 Dominant operating modes and definitions of phase angles. 
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Mode MI: V;. > 0 

Mode M2: Vi. = 0 

Cyclic mode descriptions of circuit behaviour are given by the dynamics matrices Ai and the input 

excitation matrices, B~ for each mode. During Ml, the state of input excitation voltage is fi. > 0, and 

the piecewise linear state-equation is defined by the matrices: 

N2 N2, N2rcp 
0 --+ 

ep 

cp x(Rj + N2rep) cp Cp x(R/+N2rep) Cp cp X (Ri + N2rep) 
I 

0 0 0 
C, 

A.= ,8.= 

0 

0 

0 N 2r _rep+r/p rep ep 
0 V1n 

Lp Lp x(R/ + N 2rep) Lp Lp 

I N2, rep _ N2, 2 rd, +ra + rep +r/. N2r 2 
ep ep ep 

--+ + 
La L. x(Rj +N2rep} L, L, L, x(Rj + N2rep} L, L, x(Rj + N2rep} 

(5-4) 

Due to symmetry, the dynamics matrix A2 and the input matrix, B2, for inverter operation in M2 (Vu. = 
0) is given by: 

(5-5) 

It is desirable to solve for the initial operating condition, and subsequently, the steady state output 

characteristics of the resonant circuit, from (5-4) and (5-5)_ 

However, this can lead to high computational overhead due to requirement for integration, but is 

considerably simplified when cyclic mode analysis, presented in Chapter 4, is used. In this case, then, 

L, 
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operation of the resonant inverter in a cyclic-mode can be described by a system of piecewise linear 

(state-space) equations viz.: 

(5-6) 

where Xj is the state vector, A; and Bjrepresent the dynamics and input excitation matrices, given in (5-

4) and (5-5), respectively, during j,h=l, 2 operating mode. 

During MI, (5-6) can be solved analytically, giving: 

xI (I) = eA (I xI (Io)+ f e AI (l-dBI d, = <l>IXI (Io)+ TI 
o 

t 

(5-7) 

where <l>, = <l>{t, to) = eA" , T, = J eA(t-rlB, dr , and x, (to) are the initial conditions. By de-noting the 
o 

time during which the circuit operates in M 1, as d,!fs, where d, is the duty and Is is the operating 

frequency, the complete solution for the system can be obtained by employing the state vector at time 

d/Is as the initial condition for the subsequent dynamics ofM2. 

As described in Chapter 4, by combining AI and BI to form an augmented dynamics matrix, (5-8), the 

integration overhead can be eliminated at the expense of obtaining only the 'cyclic' steady-state 

description: 

(5-8) 

Now, ifMI corresponds to the time period between to and t" and M2 the time period between t, and t2, 

the solution for the state vector at end ofMl, t" is given by: 

(5-9) 

Similarly, the state vector at the transition time between MI and M2, t2, is 

(5-10) 

In general, for the mth mode: 

(5-11 ) 

where <i>; = (:; I ~j). and i{t;} is the state-vector at time tm for an initial condition i{to) , and, 

therefore, by definition of the cyclic mode, is equivalent to the initial condition for the cyclic solution. 
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Since behaviour in the cyclic mode necessarily presumes periodic steady-state operation, the initial 

condition for operation in a cyclic mode is given by, 

(5-12) 

Since only two dominant modes are considered, depending on the state of the input excitation voltage, 

symmetry dictates that the duty of each mode is 0.5T" where Ts is the period for one cycle i.e. 

d) = 0.5, d2 = 0.5. Substituting (5-4) and (5-5) along with the mode duties, into (5-9), (5-10) and 

(5-12), therefore provides the initial operating condition of the circuit in steady-state and an analytical 

solution for circuit behaviour. 
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5.2.1. Cyclic Mode Analysis: Component Electrical Stresses 

For the resonant inverter circuit considered, the peak component stresses depend phase angles, 

(3in and 'Yc, defined in Fig. 5.6. Assuming vcp is predominantly sinusoidal, and neglecting resonant 

component parasitic, for brevity, the Laplace transfer function of the circuit is: 

(5-13) 

where 

(5-14) 

and 

(5-15) 

Substituting s ~ j OJs ' the phase angle 'Yc, as a function of the operating frequency, is sufficient to 

determine the normalised duty-dvcp_o therefore denotes the duty when vCp goes to zero, as follows: 

2( m/Qop2 N2Ri CnQop2 QOp2] N
2 
Rj 

ms 2 + 2 + + -- +--
mOl'l mop2 mOp 1 Lp m op2 mOp 2 Lp 1 -I --x tan 

21r 

2( ms 2Qop2 N
2 
Ri CnQop2 QOP2] N

2 
Rj 

OJs 2 + + + -- +--
I 1 m 1 m 2 mO'P12 Lp m op2 mO'P2 Lp -I op op - - + - x tan ---'---'---"---'---~--_____ ----'-----

2 21r ms x (1- m/2] 
mopl 

2 

for 1- ms 2 ~ 0 
mOl'l 

2 

for I-~<O 
2 

mOl'l 

(5-16) 

Referring to Fig. 5.6, the magnitude of output voltage ( liRe) is seen to be phase-shifted from the end of 

the duty time dvcp_o, by trl2 rad., by virtue of the voltage VR. being sinusoidal and in-phase with VCI" 

Notably, "Re can occur in either Ml (V;n > 0) or M2 (V;. ::;: 0) depending on operating frequency. 
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From (5-16), the maximum voltage vRe occurs at, 

tyCp _ max_ model 

tyCP _ max_ mode2 

T T = _-2.. + _S tan-I 
4 27i 

( 5-17) 

Substituting (5-15) into (5-11) the states and the output vRe at t = tyRe_mm can be obtained: 

for 

for 

and 

(5-18) 

The magnitude of voltage stress across Cp immediately follows from VRe IN. The input voltage vs. 

current phase angle, {3;., after nonnalising by 21t is: 

dvCs_max 

OJs X(l-~] 
1 _\ OJonl = - x tan ______ ...,-_~ _ __=_r___'~ ___ ~ __ 

2tr OJs 4QOP2 2( Req Qop2 QOP2] Req 
-----:=--'--- - (j) + -- + --- +-

2 s 2L 01 COl L 
OJop\ OJop2 OJop\ p op2 n op2 p 

1 _\ --xtan 
2tr 

(5-19) 

Referring again to Fig. 5.6, the series resonant inductor current, it,., and the resonant capacitor voltage, 

Vc., are displaced by 7rl2 rad. VCs is a maximum at the zero crossing of h., which always occurs in M2 

by virtue of operating the tank inductively, hence, the time at which VCs experiences the maximum 

voltage stress is given by lyCS _ max = dvcs _ max Ts . 
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From (5-11) and (5-19), the maximum series resonant capacitor voltage is therefore given by: 

Vcs = [0 1 0 0 0]eA2Ivcs_maxeAldITs xper(tO) (5-20) 

The maximum series inductor current is phase-shifted from vCs by 7rI2. Hence, hs is a maximum at 

Ii/.s_max = Ivcs_max - (T/4) and can occur in either Ml or M2 (depending on operating frequency). The 

state vector when iLs is a maximum is therefore given by, 

{ 

-( ) AI (tiLs max) - () for liLs _ max ~ 0.5Ts 
X tiLs max model = e - X per to 

X (tiLs max) = --

- -( )_ A2(liLs_max-O.5Ts) AldlTs- () c 05T 
X tiLs_mox_mode2 - e e Xper to lor tiLs_max ~ . s 

(5-21 ) 

and 

(5-22) 

Observation from Fig. 5.6 indicates that the peak parallel inductor current (fLP ) occurs at 

tiLp_max=dvCp_oTs in Ml. The state vector when hp reaches its maximum, and the magnitude of the 

current, are therefore given by, 

-I )_ AI(tiLp_max)- () 
xl/iLp _ max - e x per 10 (5-23) 

and 

(5-24) 

5.3. Design Procedure for Electronic Ballasts 

Here, the design and realisation of a 4th-order electronic ballast to drive a capacitive-coupled 

fluorescent lamp, for battery backup emergency lighting (issues relating to general lamp dimming is 

not considered), is considered. Although four resonant elements in the 4th -order resonant electronic 

ballast need to be designed, they can be combined into two resonant component ratios, namely Cn and 

Ln for initial design purposes, as discussed in Chapter 3. 

Initial specifications, such as the resonant capacitance and inductance ratios, Ln and Cn, and load 

quality factor QopJ, are selected, and the ratio of the nominal operating frequency to effective resonance 

frequency, is chosen to determine the required operating point-the operating frequency is selected to 

be above, and in the region of, the resonant frequency, to promote high-efficiency operation. 
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The corresponding normalised output voltage as a function of component ratios L,,, Cn, quality factor 

Qopl and normalised frequency Ws / Wo , is: 

and 

(5-26) 

Note: Ar is the ratio of the effective resonant frequency and series tank component resonant frequency. 

The series load quality factor Qopl and switching to resonant frequency ratio, can be selected to adjust 

the attainable output voltage at the desired operating point, and the required transformer turns ratio. 

Further, it will be shown that the desired load quality factor and resonant frequency uniquely determine 

the values of resonant components. The transformer secondary to primary turn ratio, N is determined 

from, 

N = VLamp/VDC xM;nv (5-27) 

Based on the terminology developed in Chapter 3, the effective load quality factor of the circuit is 

given by: 

and the characteristic input impedance of the overall resonant circuit, Zo' is: 

Zo = Rlamp/QoN2 

The value of series resonant inductance Ls and series resonant capacitance Cs follow, 

Ls = Zo /0)0 = Zo /21Cf 0 

and 

(5-28) 

(5-29) 

(5-30) 

(5-31) 
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Thereafter, the parallel resonant inductance and parallel resonant capacitance are, 

Cp = Cs xCn 

102 

(5-32) 

The peak electrical stresses on the components can be assessed by substituting the component values 

from (5-30) through to (5-32), into (5-18), (5-20), (5-21) and (5-23). As discussed in Chapter 3, the 

input-output characteristic is very sensitive to the choice of Cn and Ln. This implies that the resonant 

component electrical stresses should also be a function of these two factors. 

Current stress on the series inductor Ls and switching devices can be reduced by increasing the value of 

L, or decreasing the value of parallel inductor Lp; thereby, increasing the Ln ratio. In a similar manner, 

a decrease in Cn can decrease the voltage stress imposed on Cp. Here, it is proposed that the two ratios 

are varied until the level of component stresses, calculated from cyclic analysis, are deemed 

satisfactory. Moreover, to promote high-efficiency operation, it is important to minimise the 

circulating energy by designing the load quality factor of the resonant circuit to be within the range of 

4 to 6 at full load [E13]. 

As previously discussed, any candidate electronic ballast must provide sufficient voltage to promote 

ignition, and a current limiting capability thereafter. Before the lamp is ignited, it can be assumed that 

the resistance presented to the output of the ballast, is infinite i.e. the output stage is essentially an 

open-circuit. Consequently, the resonant inverter behaves as a tank circuit with a high effective load 

quality factor to facilitate ionization of the gas within the tube. Of note, is that the minimum capacitive 

discharge voltage decreases with increasing frequency, when the capacitive coupling reactance 

becomes small. Once gaseous breakdown has occurred, the resistance decreases as the lamp conducts 

current and the lamp represents a pure resistance at high frequencies. 

From the experimentally measured lamp characteristics of Fig. 5.3(b), the RMS value of the voltage 

across, and current through, the lamp at full power (8W), in steady state, are VLamp (RMS) = 65V and 

hamp (RMS) = 0.136A, respectively. Hence, the resistance of the lamp is ::::470f2o The lamp is chosen 

to operate at a frequency of 2.63MHz for optimal efficiency and reduced EMI. A summary of 

specifications for the ballast is given in Table 1. 
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Table 5.1 Initial specifications for electronic ballast. 

Parameters 

Input dc voltage, VDcCV) 

Nominal lamp resistance at 8W (n) 

Resonant capacitance ratio, Cn 

Resonant inductance ratio, Ln 

Effective load quality factor, Qo 

Frequency ratio, ~ 
Nominal operating frequency,j;, (MHz) 

Ratio of nominal to resonant frequency, Is / j;, 

Values 

12 

470 

0.5 

0.5 

6 

1.935 

2.63 

1.02 
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Having chosen values for Cn, Ln and /)10, the numerical values for the four resonant elements can be 

determined. The calculated and realised component values, are given in Table 5.2. Although the 

effective load quality factor should ideally be within the range of 4 to 6, Qo is selected to be 6 in this 

design to facilitate the utilisation of a small transformer turns ratio without compromising the overall 

system stability and reliability. Further, the electronic ballast is operated at a constant frequency of 

2.65 MHz, and thereby does not have the large circulating energy problem normally associated with 

frequency modulation of resonant circuits. A Ni-Mo toroid core is used to construct the 17.6J.lH 

transformer. The toroid core has the advantage of being more compact than ETD core structures and 

provide higher magnetic coupling, thus lowering stray leakage flux, and promoting greater efficiency. 

The secondary leakage inductance of the transformer is sufficiently small so as to be neglected in the 

following analysis. In this case, the equivalent Lp incorporating the magnetising inductance Lm of the 

transformer, is measured to be 41lH. 

Table 5.2 Electronics ballast component values. 

Parameters 

Series resonant inductance, Ls (IlH) 
Series resonant capacitance, Cs (nF) 

Parallel resonant inductance, Lp (J.lH) 

Parallel resonant capacitance, Cp (J.lF) 

Transformer magnetising inductance, Lm 

Leakage inductance, Lis (J.lH) 

Values 

2.6 

6 

4 

3 

17.3 

0.06 

The accuracy of the proposed cyclic-based analysis techniques for predicting the steady-state 

behaviour of the 4th-order resonant inverter, is now demonstrated by comparison with results from 

SPICE simulations and the prototype experimental converter, over a range of operating conditions. 
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By way of example, Fig. 5.7 compares predicted and measured output voltages for the inverter for two 

load conditions, whilst Fig. 5.8 shows predicted and measured steady-state electrical stresses on the 

resonant components, at 4700. It can be seen that an excellent correlation between the cyclic and 

experimental results, is evident. 

90 
- Measured 

88 -0- SPICE 

~86 
G 

.... Cyclic 

~84 
a 
'§, 82 
(Il 

; 80 
Cl 

~ 78 
> 
::; 76 
.8-
::> 

o 74 

72 

70 
2.6 2.65 2.7 2.75 2.8 2.85 2.9 

Frequency (MHz) 

(a) 

140~~--~--~--~~--~==~====~ 
- Measured 

130 

(J) 

~ 120 
'c 
Cl 
(Il 

~ 110 
Cl 
S 
(5 

~ 100 ::> 
.8-
::> 
o 

90 

-0- SPICE 
.... Cyclic 

80~~--~~~~--~~--~--~~--~~ 
2.6 2.65 2.7 2.75 2.8 2.85 

Frequency (MHz) 

(b) 

Figure 5.7 Comparison of maximum output voltage obtained from cyclic averaging, Spic'e simulations, and 

measurements from the experimental ballast, for (a) RL = 4700 and (b) RL = 9400. 
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Figure 5.8 Comparison ofpredictipns and measurements (a) voltage stresses and (b) current stresses on resonant 

components, with load Ri= 9400. 

The proposed electronic ballast, see Fig. 5.9(a), is connected to a fluorescent lamp through a small 

length of adhesive copper tape connected to both ends of the discharge tube, such that capacitance is 

created between the copper tape and the gas, which are separated by the dielectric glass wall- see Fig. 

5.9(b) (the manufacturers electrodes are not electrically connected). Although the initial understanding 

of how the system work (see Fig. 5.3) provides the platform for converter prototyping, the stray 

capacitance of the high frequency transformer is not sufficiently large to achieve the desired voltage 

boosting effect. Thereby, additional discrete capacitor is placed on the secondary side of the 

transformer in parallel with the fluorescent lamp to obta.in the desired converter characteristic. 
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Moreover, due to practical issue related to construction of practical high frequency transfonner, an 

ideal transfonner magnetising inductance value cannot be obtained in this case. This can be 

compensated by having a discrete parallel resonant inductor, Lp on the secondary side of the 

transfonner, and to allow the primary side leakage inductance to be absorbed into the series inductor 

Ls. The characteristic of the resulting circuit in Fig. 5.9(a) is now equivalence to that of the initial 

design shown in Fig. 5.3. Hence, the high-frequency ballast achieves the required voltage for ignition 

without an associated auxiliary preheating mechanism. 

Upon establishment of ionization, the discharge now lies in the domain of positive dn/dt, and the lamp 

current increases until it reaches nominal operating point, where VLamp (RMS) = 65V and hamp (RMS) = 

O.l36A. When operated above the effective resonant frequency, the resonant tank behaves like 

inductive impedance in series with the fluorescent tube. A further increase of the lamp current would 

move the operating point into the region of negative dn/dt, the resonant ballast reacts by forcing the 

current back to hump (RMS) to promote stable operation. 

A basic approximation, useful for detennining the value of internal capacitance crap fonned by the 

proximity of the copper tape and gas, separated by the fluorescent tube wall, is given in [EI4]: 

where 

c = 8 85 X 10-12 crtrdtub/ tube 
IIIP • /. 

r 

8, = dielectric constant of the fluorescent tube 
d tube = internal diameter of fluorescent tiub 
e tube = copper tap width 
tj = fluorescent tube thickness 

(5-33) 

For the case of the 8W fluorescent lamp, the value for Crap is approximately 6OpF, and the effective 

resistance, Rj across the output of the electronic ballast is given by, 

Ri = ( 2 )2 + R1amp 
2 

= 2.03k 
2;ifscrap 

(0) (5-34) 

Subsequently, the required ignition voltage for the capacitively-coupled ballast is, 

(V) (5-35) 

For completeness, the measured output voltage for R; = 2.03kO, is compared with cyclic analysis 

predictions in Fig. 5.10(a). Once again, the predictions are in good agreement with experimental 
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results. The discrepancy between the results is attributed to effect of non-linearities that exists within 

the high-frequency transfonner. 
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Figure 5.9 Capacitive coupled fluorescent ballast: (a) Circuit schematics and Cb) Prototype lamp ballast. 
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Figure 5.10 Comparison of predictions and measurements: (a) Output voltage (ons), (b) voltage stresses and (c) 

current stresses on resonant components, with RL=2.03k. 
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Finally, Figs. 5.1O(b) and (c) demonstrate the accuracy of predicting resonant components stresses, 

which are at a maximum prior to lamp ignition. It can be seen that the cyclic modelling technique 

provides a useful tool for estimating stresses, and, characteristically, tends to produce conservative 

estimates, particularly around the resonant frequency where the designer has to accommodate the 

greatest margin of safety. It is notable that the power switches employed in the ballast are IRZ34N, 

driven by square-wave signal from the high frequency IR211 0 gate driver. There is no preheating prior 

to discharge, therefore incurring no input power losses for heating up the electrodes. The ignition 

frequency is fixed to the switching frequency, for steady-state operation, in order to maintain constant 

frequency during commutation from one mode to the other. 

5.4. Summary 

State-variable dynamic descriptions of a resonant power inverter, used as a fluorescent lamp 

ballast, have been presented. The model is subsequently used to obtain a steady-state cyclic 

description of the circuit, and the derivation of analytical formulae to calculate the electrical stresses on 

the resonant tank components, is given. The accuracy of the proposed techniques has been 

demonstrated by comparisons with both Spice simulations, and from measurements from an 

experimental 8W, capacitive-coupled, fluorescent lamp, with good agreement being shown. It is 

notable that, whilst the state-variable dynamic model requires a commensurate computational overhead 

to that of Spice simulations, the presented cyclic analysis method is typically I04X faster. 

Finally, a structured design procedure, is presented, based on a user defined ratio of operating 

frequency to nominal switching frequency, and a desired Q factor, to realise an inverter for lamp 

ballast applications, although, notably, the method is ultimately applicable to other fields such as 

induction heating and plasma generation systems. This inverter is powered from a low DC voltage 

source at a switching frequency corresponding to the highest boost capability. Thus, the size of the 

transformer in the ballast circuit is greatly reduced. 

In addition, circuit parameters are designed so that ZVS of the power devices is preserved, to promote 

high efficiency operation. Although during high frequency operation the circuit incurred losses 

attributed to the non-ideally designed discrete energy storage components, overall, system efficiency of 

around 80% was achieved during nominal operation. 
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CHAPTER 6 

Design Orientated Analysis of 4th -Order Voltage­

Output Resonant Converters 

111 

Here, properties of the voltage-output 4 th -order LCLC resonant converter, are investigated. 

Harmonics of the switching frequency are neglected, and the resonant tank waveforms are assumed to 

be purely sinusoid, thereby allowing an 'Extended Fundamental Mode Analysis' to be derived for the 

resonant tank, rectifier and output filter of the converter, whose djscontinuous conduction mode 

operation can then be analysed using linear ac tec1miques. A key result of the proposed approach is 

that, the output voltage under discontinuous conduction mode operation, is readily obtained. The 

influence of resonant tank component losses and rectifier diode non-idealities, on the output voltage, is 

also assessed. 

controlled switches 

resonant tank network uncontrolled low pass filter 

Voc 

rectifier 
" Cs i", Ls :iR: 

; .,--H---~ G f' 1;;- [! ;~ 

CPT Lp ~ : 

I C 
Figure 6.1 4th-order voltage-output LCLC converters (excluding reactive components parasitic). 

The exclusion of the output filter inductor, Lr, as shown in Fig. 6. 1, significantly complicates the 

steady-state behavioural analysis of the series-parallel voltage-output resonant converter, since there 

are periods of discontinuous conduction of the bridge rectifier due to limiting of dv/ dt at the rectifier 

input, wruch then dynamically decouples the output fi lter/load from the resonant tank circuitry. 

Although simplified equivalent circuits have been previously proposed for the analysis of resonant 

converters based on FMA [Ft-F3], in which an equivalent resistor models the combined rectifier, 

output filter and load network, these have only addressed parallel LC and series-parallel LCC and 
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LCLC-type converters with an inductive output filter. Alternative analysis techniques, presented in 

[F4, F5], based on a state-space approach, have also allowed steady-state solutions to be obtained, 

specifically for the LCC, and LCLC resonant converter variants. However, whilst providing improved 

prediction accuracy compared to FMA, ultimately, the computation time is compromised due to the 

increased complexity. 

To date, the most accurate methodologies for the rapid analysis of resonant converters have been based 

on variants of Rectifier--Compensated FMA (RCFMA) [F6, F7, F8, F9], in which, in addition to the 

use of an 'equivalent resistor' to model the effects of the rectifier and output filter (as in classical 

FMA), other components, specifically an additional equivalent capacitor, are also included to improve 

modelling accuracy. 

Although RCFMA allows the underlying attributes of FMA to be applied to the more complex voltage­

output converter, whilst still allowing rapid analysis by virtue of employing the fundamental mode 

principle, structured design procedures, based on the resulting analysis techniques, have yet to be 

reported. 

This chapter, therefore, extends the FMA principle to accommodate the non-linear interaction that 

occurs between the parallel resonant capacitor and the bridge rectifier of the LCLC voltage-output 

resonant converter, and results in a relatively straightforward analytical solution for steady-state 

analysis. In addition, knowledge of the effects of various parameters on the steady-state characteristics 

of the converter allows four design synthesis procedures, to be derived, based on the resulting 

analytical solutions. 

6.1. Operation and Steady State Behaviour 

In [F2], the voltage and current characteristics of the rectifier in a resonant converter are 

modelled by an 'equivalent' resistor. However, the non-linear voltage clamping action of the parallel 

capacitorlhridge rectifier, which occurs when higher-order resonant tank circuits are employed, does 

not, in general, allow such a simple approximation to be employed if accurate results are required. An 

extended equivalent circuit is, therefore, proposed for the LCLC voltage-output converter that 

incorporates an additional resistance in series with a capacitor to account for the coupling/decoupling 

effect that arises from the rectifier conduction/non-conduction periods. Although this has been 

previously reported for LCC converters in [F8, F9], its application to 4th-order resonant converters is 

now considered for the first time. 
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The non-linear interaction between Cp and Cf, means that the voltage presented to the rectifier cannot 

be assumed to be a square-wave due to the significant capacitor charging/discharging intervals. By 

way of example, typical voltage and current waveforms for a 4th-order converter, in the steady state, 

are shown in Fig. 6.2. 

4> <8<1t 
c 

Vcp(t) = vR ••.•.•...... ; ..........• -.~ •••••• -. . , 

T/2 or e= It 

.0 

Figure 6.2 Voltage and current waveforms of the voltage-output converter. 

At the start of a cycle, at to, the rectifier is non-conducting and no current flows into it. Capacitor Cp is, 

therefore, charged to VC! = V
OUI 

(plus the bridge rectifier voltage drop), at which time rectifier 

conduction commences once again. During the charging of Cp, v Cp is given by: 

1\ 

vcp(t) = vcp(to)+ ~ Fn sin(2ifst)dt 
p 10 

(6-1) 

Evaluating the integral in (6-1) with the initial rectifier input 

(6-2) 

where Vb = VOU1 + 2vdiode • 
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To detennine the boundary that defines the capacitor charging period, it is noted that vCI'(t l ) = VI> 

which yields the rectifier non-conduction angle tPc : 

I _I ( ) I1 =--cos f/Jc 
2;ifs 

(6-3) 

where 

The voltage across the parallel resonant capacitor v Cp can now be expressed as a function of angle fJ ; 

i· 
x (1- cos(fJ») for o ~ fJ < f/Jc -Vb + In 

2JifsC p 

Vb for tPc ~ fJ < 1( 
(6-4) VCp(fJ) = 

iin 
X (1- cos(fJ») for It ~ fJ < It + tPc vb -

21ifsC P 

-Vb for 1( + tPc ~ fJ < 21( 

During the interval 0 ~ () < tPc, the resonating inductor current, iim increases, and the rectifier is non­

conducting. This results in a decoupled resonant circuit comprised only of the resonant-tank reactive 

components (and power switches). At the end of the charging interval, when the rectifier voltage 

attempts to increase beyond Vb ' conduction of the rectifier resumes and the voltage across the capacitor 

is clamped to Vb . At fJ = It, the resonant current reverses, switching off the bridge rectifier and 

consequently discharging Cp from Vb to - Vb , and subsequently clamping the rectifier voltage at - Vh 

at () = It +tPc ... 21(. 

Under steady-state conditions, the average output current, iO"1> from the converter, can be detennined 

by calculating the average current flowing through the bridge rectifier during a complete cycle. 

Therefore, since the rectifier current flows to the output filter and load during intervals tPc ~ fJ < 1( 

and 1( + tPc ~ fJ < 2lt , the output current can be detennined from: 

(6-5) 
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Substituting (6-3) into (6-5) and evaluating the integral provides the solution for iDul , viz.: 

. i ( ()) 2(i;n - 2Jnlhf sC p) 
IOUI =..J.!!... X I + cos rpc = (6-6) 

:r :r 

Equations (6-3) and (6-6) can be used to derive the bridge rectifier non-conduction angle rpc as follows: 

(6-7) 

The output voltage from the converter can be determined by assuming that the output filter capacitance 

C f > > C p is sufficiently large to impart negligible output voltage ripple. In this case (full derivation 

details in Appendix A): 

(6-8) 

6.1.1. Determining Equivalent Passive Components 

Having determined the steady-state voltage and current characteristics of the converter, a 

describing function is now derived to model the non-linear interaction between the rectifier/output 

filter and parallel capacitor. Via a transformation, the fundamental frequency component of the 

voltage across capacitor Cp (Figure 6.2) is described by an equivalent resistance and capacitance. This 

then facilitates the rapid analysis of the resulting passive circuit. Referring to (6-4), the voltage across 

the capacitor can be divided into two intervals during each half-cycle, viz. the period when the 

capacitor is being charged, and the period when the voltage clamping action occurs. 

Given that the negative half cycle is the mirror image of the positive half cycle, the voltage during the 

period when the rectifier is conducting (i.e. the clamping period) is given by vCp_c/amp : 

{

Vb for rpc ~ () < " 
v -

Cp _clamp - _ Vb for ,,+ rpc ~ () < 2" (6-9) 
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From a Fourier series analysis, the fundamental component of VCp _clamp can be shown to be: 

(6-10) 

By matching the boundary condition (vc/~J = Vb) at the end of the interval 0 S; (:1< ~c, vh can be 

described in terms of ~n by rearrangement of(6-3), 

Substituting (6-11) into (6-10) and evaluating the integral yields: 

2vb(l + cos(~J- jsin(~J) 
vCp_c/amp(l) = j!t 

(6-11 ) 

(6-12) 

Using complex notation for the Fourier series expansion of the input current leads to the fundamental 

being described by: 

tr 

. 2 f7' . (())e- jOd() .7' 
lint)~ = - lin SIn = - Jlin 

!to 

(6-13) 

An equivalent resistance, 9l Cp _ clamp' that models the capacitor voltage clamping effect is, therefore, 

given by, 

9i = VCp c/amp(l) = 1 + e -j~c x (1- cos(~ )) 
Cp _ clamp . 2 2 r C c 

lin(l) tr J s P 

(6-14) 

A similar procedure can be used to determine the equivalent passive components that model the 

parallel capacitor voltage, during the period when the rectifier is non-conducting, and the input current 

discharges/charges Cp. The effect of charging Cp is described by: 

-vb+ i;n (l-cos(B») for OS;()<~c 
21ifsCp 

(6-15) 
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Exploiting symmetry and the trigonometric relationship-cos(O)= (eto +e-'1j{, a Fourier series 

expansion of (6-15) yields the fundamental component, 

I ;c( i ( ())J B I ".;, ( i ( ( ))} () vCp charge(I)=-f _v,,+_,_n_ x I-cos(} e- I dO+- f v,,--'.-"-, x I-cos(} ,I dO 
- 1( 0 27if, C p 1( " 2Tif,c p 

=-f -vh+-,_n-I-cosB e--JodO 2 ;'( i ( ())J' 
1( 0 27if,Cp 

(6-16) 

The fundamental of the voltage across Cp can, therefore, be described by summing the contributions of 

(6-12) and (6-16), which, after simplifying yields: 

( 6-17) 

= ;in [sin(2~c)- 2~c + j(cos(2~c )-1)] 
41T fsCp 

Derivation details of (6-17) are given in the Appendix A, for brevity. An equivalent passive resistance, 

We which models the Real term of VCp(l) is obtained by dividing (6-17) by i;n(l) as follows: 

=_ / [sin(2~c~-2rpc +(COS(2rpc)-I)] 
41T fsCp J 

(6-18) 

9i
e 

= Re[ ~Cp(l) J = ~ x )i;n (CO~(2rpc) - I) = (I - C~S(2rpc )) 
'in(l) - Jlin 41( fsC P 41T fsC p 

and an equivalent capacitance Ce , can be derived from the Imaginary term in VCp(l) : 

(6-19) 
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The resulting equivalent circuit of the voltage-output converter, is shown in Fig. 6.3, with the values 

for the equivalent passive components being given by (6-18) and (6-19). 

Cs iin Ls iOU! r fY'o\ 

[ C 1 I 
(9,"l"/" h, •. i ll • -?Z d 

,,:l 
IJi( 1) __ In :;. ~ ~) L 

Rt. Vout ~.J p 
) 

~VCI' tI',"" ' " 
~ 

Figure 6.3 RTFMA Equivalent circuit of LCLC converter. 

6.2. Circuit Analysis 

The input voltage to the resonant tank that results from switching the half-bridge V;n is a 

square-wave of magnitude vDC given by: 

for 0 < (J < 1< 

(6-20) 

The fundamental of V;n has an amplitude Vi(l) = ~VDC ' An initial estimate of the rectifier non-
1< 

2lVsQop!CII 
1<+---'---

lVop! 

(6-21 ) 
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An initial estimate of the equivalent passive components subsequently follows by substituting (6-21) 

into (6-18) and (6-19), and the effective ratio of the resonant tank capacitances, C"ejJ , is given by: 

C = Ce = 2JCCp = 2JCCn 

neff Cs Cs (2~c - sin)2~J) (2~c - sin(2~J) 
(6-22) 

Using the component values derived in (6-18) and (6-19), the capacitive-output LCLC resonant 

converter is now reduced to an equivalent 4th -order inverter, for which, using FMA, the effective input 

impedance, Zjn , of the equivalent circuit is (refer to the Appendix A for complete derivation): 

Zin = jOJsLs +_._1_ + 2 (; ) 
j OJs Cs -OJs LpCe + OJsCe91e +1 

(JOJsLp - OJ/ LpCe91e) 

(6-23) 

thereby allowing the amplitude of the input resonant current, ~n' to be determined, 

(6-24) 

(6-25) 
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Although the above describing functions provide a suitable mechanism for estimating the output 

voltage, a primary source of error is related to inaccurate modelling of the rectifier on-state voltage, 

Vdiode' Hence, using an iterative procedure, a more accurate estimate of the rectifier non-conduction 

angle <be can be obtained by substituting (6-25) into (6-7) (together with the diode on-state voltage 

drop, vdiode)-- and subsequently returning to (6-25) to refine the converter output voltage estimate. 

The iterative calculation procedure is shown in Fig. 6.4, for clarity. 

Substitute RL, 's, Cp into (6.21) to find initial estimate of ~ 

Use calculated value of ~ to determine 4n (6.24) 

Substitute iin into (6.25) to find the output voltage 

No 

( Terminate) 

Return to (6.7) for 
iteration to find a 

more accurate value 
for ~ 

Figure 6.4 Flow-chart describing the iterative calculation procedure. 

Figure 6.5 shows the variation of the nonnalised output-voltage versus nonnalised switching 

frequency, for a range of series quality factors, Qopl' as predicted from the foregoing equivalent circuit 

transfonnation technique, for specific values of resonant component ratios Ln and Cn. For a low load 

quality factor, it can be seen that the converter behaves in a similar manner to a series resonant 

converter, and is suitable for step-down operation, whilst for higher quality factors the voltage­

boosting characteristic of the converter (possible due to the inclusion of capacitor Cp) becomes 

dominant, thereby facilitating step-up operation. At low output loads, a high-load quality factor also 

results in a sharper resonant peak and the effective resonant frequency moving away from the series 

resonant frequency, wopl ' The operating frequency should, therefore, be increased to maintain 
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inductive switching of the power devices when the converter is operated at light load. Moreover, the 

higher resonant frequency will result in higher conduction and turn-off losses in the power devices, 

whilst the voltage conversion ratio will rise, leading to the converter being operated far away from the 

effective resonance in order to maintain a constant output voltage. 

2 

.g 1.5 
~ 
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.£f! 
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0.5 
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C = 0.5 
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O~~--~--~--J---~--~--~--~--~~ 
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Normali sed frequency. COs I CO
OD1 

Figure 6.S Variation of voltage gain with nonnalised frequency. 

The main observation from the presented analysis is that the effective resonant frequency i'oeff of the 

converter is highly dependent on load resistance, by virtue of the dependence on the rectifier 

conduction angle~c ' see (6-21). The resonant frequency, aJopl' of the series resonant tank components, 

as a function of the effective resonant frequency of the converter, (lJoeff ' is given by, 

aJ 2(1 +_1 + Cneff
) 

oeff L L 

{
CnefJ )2 8 
-- {IJ ,ff L DeJJ 

n 

I 

2 

(6-26) 

In particular, re-arranging (6-26) provides the ratio of the effective resonant frequency of the circuit, to 

the series resonant frequency, 

(1 + _1 + CnejJ ) + (1 + _1 + CnejJ )2 _ 4( CnejJ ) 

~' =[:::)' =~_L~n __ L_n~~2~(-CL-~-n~)_L_n~_~_Ln~ (6-27) 
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The effective load quality factor of the equivalent circuit, Q oejJ' which is generally higher than the 

series load quality factor, Q opl ' is a non-linear function of Is , the rectifier non-conduction angle, (Jc' 

and the load resistance, RL• 

(6-28) 

From Fig. 6.6, it is notable that the effective resonant frequency of-the overall circuit moves with 

increasing load quality factor. Furthermore, the value of Cnejf also varies as a function of load. In 

particular, as the series load quality factor, Qopl ' decreases, the effective resonant capacitance ratio, 

Cnejf , increases, for constant Cn andLn , as shown, from (6-22), in Fig. 6.6. 
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Figure 6.6 Nonnalised output voltage and equivalent resonant capacitance ratio at L.=O.I and C.=O.5 (a) Qopl=4 

(b) Qopl=8. 
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Figure 6.7 Output voltage characteristics for various values of en (=0.1,0.2 and 0.5) at (a) Qopl=4 and (b) 

Qopl=8. 

Figure 6.7 shows examples of the calculated input-output voltage conversion ratio, Vou!VDC as a 

function of the nonnalised switching frequency, OJn , for a range of resonant capacitance ratios Cn, 

from which, it will be seen that for high values of Cn, the output voltage about the resonant frequency 

increases, facilitating voltage-boost operation. However, for low values of C., the input-output voltage 

characteristic exhibits a smoother frequency response with a reduced resonant peak. The sharper 
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resonant peak which results as en is increased implies that the output voltage regulation when the 

converter is subjected to variations in supply. voltage, can be achieved through smaller changes in the 

operating frequency, i.e. the effective forward path gain is higher, and, hence, less control action is 

required. 

The influence of Cp on' the predicted output voltage of the converter is shown in Fig. 6.8(a). As 

expected from the previous discussions, the maximum attainable output voltage increases as Cp is 

increased, albeit increasing the input current and imparting higher electrical stresses on the resonant 

components, for the same output voltage. 
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Figure 6.8 Variation of output voltage with parallel resonant capacitor Cp (a) frequency sweep and (b) voltage 

and current stresses. 



Chapter 6 125 

Figure 6.8(b) shows the pred1cted time-domain voltage and current waveforms to highlight the fact that 

the electrical stresses and the rectifier non-conduction angle, seen by converters with a similar output 

voltage, depend on the value of resonant capacitor Cp. Specifically, it can be seen that for lower values 

of Cp, the rectifier non-conduction angle essentially becomes negligible, and the rectifier/output filter is 

presented with a square-wave voltage waveform. 

The accuracy of the proposed analysis techniques for predicting the steady-state behaviour of the 

converter is now demonstrated by comparing predictions with results from SPICE simulations and 

from measurements from a prototype converter (see Figure 6.9), with measured component values for 

providing 5-12V output voltages, given in Table 6.1. The Half-bridge MOSFETS are IRLZ34N, and 

are driven by IR21 08 gate drivers. 

Table 6.1 Experiment voltage-output LCLC resonant converter specifications. 

Parameters 
DC link input voltage, VDC (V) 

Series resonant inductance, Ls (IlH) 

Parallel resonant inductance, Lp (IlH) 

Series resonant capacitance, Cs (IlF) 

Parallel resonant capacitance, Cp (IlF) 

Load Resistance, RL (0) 

Values 
30 

12.6 

25 

0.737 

0.141, 0.282, 0.564 

5, 10 

Figure 6.9 Experimental 4th-order capacitive-output resonant converter. 

Figure 6.10 compares the predicted variation in output voltage, with switching frequency, using the 

proposed analysis procedure, (6-7), (6-21), (6-24), and (6-25), with the measured variation, Fig. 

6.l0(a), and with the variation predicted from FMA, Fig. 6.10(b), for two different loads. 
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Figure 6.10 Predicted output voltage from proposed analysis procedure compared with (a) measurements on 

prototype converter (b) results from FMA. 

In each case, it can be seen that the proposed analytical model accurately describes the steady-state 

operation of the converter. The discrepancy in output voltage predictions using FMA is due to the 
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assumption that the equivalent resistance- Req = --; RL IS sufficient to accurately model the 
7r 

interaction of the rectifier and capacitor output filter networks, which, as has been demonstrated, is not 

the case. 

From (6-18), (6-21), as the angletPc ~ 0, the equivalent capacitance due to the rectifier/output filter 

coupling effect, also tends to zero, i.e. Ce ~ 0 . By way of example, from (6-18), (6-21), and 

employing the trigonometric relationship--cos[2cos-I(0)]= 202 -1 , it can be shown that the equivalent 

output resistance, 91e , is given by: 

C 8RL 
P ~O, 91 e ~-2-' 

7r 

thereby, if Cp ~ 0, then equivalent resistor 91 e ~ 8R; . 
7r 

(6-29) 

Consequently, the characteristic of the converter then becomes similar to that of a 3 rd -order ClL series­

loaded resonant converter. For example, Fig. 6.11 shows the calculated input-output voltage 

conversion ratio, as a function of the normalised switching frequency, (J)n' for various values of the 

resonant capacitance ratio, Cn, and resonant inductance ratio, Ln, for a constant value of Qopl. 

It can be seen from Fig. 6.11(a) that for the same value of Cn, the output-voltage boosting effect of a 

3rd-order lCC-type resonant converter (Ln is assumed to be zero) is more significant than for the lClC 

voltage-output counterpart. In contrast, the maximum voltage conversion ratio at resonance, which is 

attainable from the LCLC voltage-output converter, is comparable to that for a CLl converter in which 

Cn is small enough to be neglected, whilst requiring a smaller range of switching frequency for output 

voltage regulation. 

Figure 6.11(b) shows that as the value of resonant capacitance ratio Cn, for the LCC converter, is 

halved, the maximum voltage conversion ratio is similar for all three converters at the effective 
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resonant frequency. It will also be seen that LCLC voltage-output converter has a sharper curve 

around resonance, which implies a better output voltage control characteristic. 
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6.3. Design Methodologies 

The presented analytical equations describing the characteristics of the 4th-order LCLC 

converter are now employed as a basis for deriving various design/synthesis procedures, the equivalent 

circuit parameters ~e and Ce being fundamental to the calculation of specific circuit component 

values. Four methodologies are presented, viz.: 

i) Output voltage constraint method 

ii) Parallel capacitor constraint method 

iii) Rectifier non-conduction angle constraint method 

iv) Input voltage versus input current phase-angle constraint method 

Of the methodologies, the output voltage constraint methodology is likely to be the most useful, by 

virtue of requiring a minimal amount of user-supplied information [FII]. The method essentially 

comprises a reformulation of the analysis techniques presented in Section 6.2, and allows the response 

of a converter to be independently evaluated for given values of the resonant component values, C. L., 

and Qopl' 

The requirement to constrain the value of parallel capacitance, Cp, arises primarily because of the 

possibility of exploiting parasitic elements (predominantly the inter-winding capacitance of a 

transformer or the rectifier diode junction capacitance) to realise an appropriate value. In addition, it 

also permits large values of Cp to be chosen to achieve a voltage-boosting effect around the effective 

resonant frequency, or, in contrast, small values of Cp to be employed in order to reduce electrical 

component stresses. 

The rectifier non-conduction angle constraint design methodology is essentially a complement to the 

parallel capacitor design methodology, in that it relates the influence of the Cp charging period to the 

attainable DC voltage output. A large rectifier non-conduction angle, ifJc ' is essential to provide a 

high-voltage conversion ratio, since it allows Cp to be charged/discharged for longer periods within 

each half-cycle, whilst a small value can be selected to facilitate step-down voltage operation, albeit 

compromising the output voltage regulation if the load falls below some design-specific minimum 

value. 
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As discussed in the previous section, important factors that influence the design of voltage-output 

converters, are their operational efficiency and component stresses. Therefore, since reducing the 

stress on the switching devices is a key incentive for resonant operation, the input voltage versus 

current phase angle constraint methodology, is the most useful approach for realising a power supply 

for which low switching stresses are a priority, i.e. exhibits a high power factor, even at high switching 

frequencies. 

6.3.1. Output Voltage Constraint Method 

This method enables converter component values to be chosen to achieve a given voltage 

conversion ratio and load quality factor Qopl' The procedure numerically sweeps the normalised 

switching frequency, Wn = ms/ mopl , and equates the normalised output voltage, Vout / VDC' to the 

required voltage conversion ratio, Mycr ' Specifically, after values for the resonant capacitance ratio, Cn, 

and the series load quality factor, Qopl' have been selected, to obtain a desirable frequency response 

for the normalised output voltage, by rearranging (6-25), the normalised output voltage is found by 

sweeping the value of the normalised switching frequency, wn = m/woP1 -an example being shown in 

Fig. 6.5, with Vout / v DC given by: 

(6-30) 

The numerical sweep procedure enables the operating frequency of the converter or the required 

switching frequency to resonant frequency ratio, to be found, by equating the resulting magnitude of 

the equivalent circuit transfer function (6-30) to the voltage conversion ratio specification, M vcr ' 

Having established suitable values for c., Qopl andwn , the effective characteristic impedance, 

ZoejJ of the 4th -order resonant circuit, which is also influenced by the rectifier action, is obtained from: 

Z - L _[moefJ) L - \Jfs - \ Z oefJ - moefJ s - -- m opl s - "r C - "r opl 
wop1 s 

(6-31 ) 
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where the characteristic impedance of the series resonant tank is: 

RL 
Zopl =--

Qopl 
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(6-32) 

Since the ratio \ = (i)oejJ / (i)opl ~ 1, then ZoejJ > Zopl , implying that the characteristic impedance 

is increased. Using (6-31) and (6-32), the required value of series inductor is determined from 

the desired nominal switching frequency: 

(6-33) 

Finally, the required series resonant capacitance is found from the required resonant frequency and 

(i)ejJ , as follows: 

(6-34) 

whilst parallel resonant capacitance Cp follows, by definition, from C p = Cs X Cn and Lp = Ls / Ln . 

6.3.2. Parallel Capacitor Constraint Method 

To calculate values for the resonant components, this method requires that Cl" Vou" VDC, the 

output power rating Pou" the rectifier diode voltage drop, the effective resonant frequency, ioejJ' the 

switching frequency, f. ' and both Cn and Ln, are specified. From the specification, the nominal output 

load resistance is: 

R - Vout 
L-

2 

POUl 

(6-35) 

The rectifier non-conduction angle ~c is determined by substituting given values ofls and Cp into (6-7), 

and rearranging, to give: 

(6-36) 
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where iout = Pout is the output current and v h = Vout + 2vdiode is the peak voltage across the rectifier. 
Vout 

Since the equivalent passive components, 91 e and Ce are dependant on the design 

parameters, Cp ' RL , Is and, tPc ' (6-36) is substituted into (6-18) and (6-19) to find their 'equivalent' 

values. The required value of series capacitance Cs needed to provide the desired CrI and 41::, is then 

found from (6-37), 

C = CeC" (2tPc - sin (2tPJ) 
s 2" 

From (6-22), (6,27) and (6.34), the series inductance is given by: 

"'-r2 
Ls = 2 2 

4" foejJ Cs 

6.3.3. Rectifier Non-Conduction Angle Constraint Method 

(6-37) 

(6-38) 

Here, the resonant component values are determined for a specified rectifier non-conduction 

angle tPc' values for VOUh YDC, POUh Ydiod., JoefJ' Is , C. and Ln also being specified. From (6-11), the 

value of parallel resonant capacitor could be calculated from knowledge of the peak input current 1;" : 

(6-39) 

However, since ~n is rarely known a-priori, at the design synthesis stage, it is generally more 

appropriate to determine Cp from output quantities. Thus, substituting (6-6) into (6-39) and 

rearranging gives: 

C =~x l-cos(tPc) 
P 41svb 1 + cos(tPJ 

where iout = Pout and Vb = Vout + 2Vdiode is the peak voltage across the bridge rectifier. 
Vout 

(6-40) 

The value of the series resonant capacitance follows fromCs = Cp/Cn , and the series and parallel 

inductances are determined, respectively, from Ls = 2 ~ 
2 

2 and Lp = Ls / Ln . 
4" JoejJ Cs 
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6.3.4. Input Voltage Versus Current Phase Angle Constraint Method 

Here, resonant components are chosen based on the requirement for achieving a given phase­

angle, Pvcr' between the input voltage and input current. The procedure is driven by a compromise 

between ensuring zero-voltage switching (ZVS) of the power devices to facilitate high efficiency 

operation (i.e. the circuit appears to be inductive from the perspective of the power switches), whilst 

also maximising the voltage conversion ratio and power factor (which are ultimately a maximum at 

resonance ). 

The phase difference between the fundamental frequency components of the input voltage and the 

input current is, from (6-23): 

Pin 

The normalised frequency W n = ms / mopl is swept numerically to determine the required value for Pin 

to equal the specified value Pvcr , for given values of Qopl, Cn and Ln' By way of example, Fig. 6.12 

enables the required switching frequency to resonant frequency ratio, wn , to obtain a specified value 

of Pin' Whilst soft-switching of the resonant converter power switches serves to enhance efficiency 

compared to equivalent hard-switched converters, the electrical stresses to which the tank components 

are exposed can be much higher by virtue of the currents, which are imposed on them, being 

essentially sinusoidal at high Qopl. 

Figure 6.13 shows the normalised input current obtained from the simplified equivalent circuit of Fig. 

6.14, for various values of load quality factor, viz. Qopl = 2,4,8. An advantage of the LCLC converter 

topology is that the input current decreases as the load quality factor decreases, which reduces the 

losses in the switching devices, thereby enabling a high efficiency to be achieved even for low loads. 

Substituting the required design parameters~c' Vout into (6-24) and solving for the peak series 

resonant current, ~n' leads to the required value of capacitance Cp : 

(6-42) 



Design Orientated Analysis o/4th-Order Voltage-Output Resonant Converters 134 

Resonant components C, andL, are subsequently found, respectively, from (6-37) and (6-38). Finally, 

the required input voltage rating is given by, 

(6-43) 

It should be noted that this methodology is also useful for producing numerical sweeps of the peak 

resonant current versus the normalised frequency, Wn = OJs / OJopl for specified values of vDC and Vout • 
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6.4. Summary 
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A method based on the derivation of a describing function to model the complex interaction 

between the parallel capacitor and rectifier/output-filter, has been developed, to facilitate rapid steady­

state analysis of a capacitor-loaded 4th-order resonant power converter. Predictions of the output 

voltage, as a function of load resistance, and the regulation of output voltage as a function of switching 

frequency, have been compared with measurements on a prototype LCLC voltage-output converter, 

and with results from SPICE simulations. They confirm that excellent accuracy is afforded by the 

proposed analysis methods, which, due to their very low computational overhead, are eminently 

suitable for routine use during the design of high-order LCLC converters. 

From the presented results, the advantages of the LCLC voltage-output converter, for operation above 

resonance, have been shown to be i) the peak input resonant current decreases with load current, 

thereby maintaining efficiency from full load to light load ii) a good compromise is achievable 

between the control characteristics, component values, efficiency and electrical stresses Hi) a decrease 

in losses compared to those of the LCLC current-output converter due to the elimination of the output 

smoothing inductor. Finally, the presented describing functions have been employed to facilitate the 

derivation of 4-design synthesis methodologies, each satisfying different user-defined constraints to aid 

in the design of LCLC converters. Conditions under which each methodology might be employed, and 

the qualities they subsequently impart to a converter design, have also been discussed. 
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CHAPTER 7 

Cyclic Averaging Analysis of Voltage-Output 

Converters 

137 

As in the case of the current-output converter, here, the large-signal state-variable model, 

developed in Chapter 2, is now transformed into a cyclic model description, by decomposing it into 

several piecewise linear (PWL) equations, based on the state of resonant tank current and voltage, and 

recti fier current. 

Whilst the duty-times required for cyclic analysis of the 4th-order current-output resonant converter, 

have been derived through the use of a FMA equivalent circuit, this technique often proves inaccurate, 

and renders undesirable cyclic mode results. Thus, the enhanced describing function concept from 

Chapter 6 will be adopted to determine the required duties for cyclic averaging. The parallel resonant 

capacitor voltage vCp of the converter, Fig. 7.1 , is saturated at the modulus of the output voltage plus 

the rectifier on-state voltage drop, Vdiod., during the clamping period, thereby incurring six operating 

modes during each switching cycle, as shown in the example waveforms of Fig. 7.2. 

Ves 

rds Cs rcs iLs Ls rls iL 
C}----i ~·./TrQ _r-....---~.-_____ - ....., 

+ 

Figure 7.1 Simplified circuit of 4th -order voltage-output resonant converter. 
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7.1. Cyclic Mode Analysis of Voltage-Output Resonant Converters 

Analysis of the behaviour of the voltage-output 4th-order resonant converter (Fig. 7.1) 

(operated above resonance) for switching frequencies above, and in the region of, the resonant 

frequency, shows that there are six dominant modes of operation in each switching cycle, defined with 

respect to the polarity of the input excitation voltage and state of the rectifier bridge current [G I], as 

shown in Fig. 7.2. 

~~-----:-----+. -. 0 

"I , 
iLS !---- ,----------------~-----------~---- ~---------------~------------: --~o 

! ! d1 ! d2 : 0.5 

, 

-----i-··········;····r········ ..... : ... -....... : ... ~o 
· . . · . . · . , , , , , , , , , 

M1 M2 M3 . M4 M5 M6 

Figure 7.2 Voltage and current waveforms of a voltage output LCLC resonant converter. 

Two of the modes are defined with respect to the polarity of MOSFET half-bridge input voltage. The 

remaining modes are determined by the conduction state of the rectifier input current, iR, i.e. when 

vCp>O and the rectifier is conducting positive current, or vCp<O and the rectifier conducts negative 

current, or otherwise, the rectifier is not conducting and the resonant circuit is essentially decoupled 

from the rectifier. The modes are summarised below: 

Mode 1 (Ml) I Vin> 0 I iR<O 

Mode 2 (M2) I Vin> 0 I iR=O 

Mode 3 (M3) I Vin>O I iR>O 

Mode 4 (M4) I Vin=O I iR>O 

Mode 5 (M5) I Vin=O I iR=O 

Mode 6 (M6) I Vin=O I iR<O 
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For reasons highlighted previously, modelling of the cyclic mode for this converter is complicated by 

the rectifier current being a highly non-linear function of the resonant current and filter capacitor 

voltage. The state-variable model of the converter is derived by partitioning the converter dynamics 

into 'fast' and 'slow' sub-systems that are coupled by the rectifier current. 

The combined state-variable models, and coupling equation, are ultimately given by (7-1) (full 

derivation details have been previously given in Chapter 2). 

0 0 0 
Cl' Cl' 

o VCI' 0 0 0 
1 

0 VCI' 

VCs 
Cs 

vCs 

iLl' 0 0 0 0 iLl' + 
Lp 

i Ls I rep r;is + rep + res + 'is 
iLs 

0 
vCf 

Ls Ls Ls Ls 
vCf 

o (7-1a) 

0 0 0 0 

. Cf . . Cp vCf 
'R = 'L +sgn('L)-------.!~--

Sgn(iL)Cp + Cf Sgn(iL)Cp + Cf RL 
(7-tb) 

and the output voltage of the converter is given by, 

RLrcfliRI RLvCf 
Vout = + -~"---

RL +rcf RL +rcf 
(7-2) 

However, by assuming the output filter capacitance Cf is sufficiently larger than Cp, for preserving low 

ripple level on the output voltage, (7-tb) reduces to, 

(7-3) 

In a similar manner to that used for analysing the current-output variant (see Chapter 4), the dynamic 

matrices, A; and the input excitation matrices, Bj are found by substituting the coupling equation (7-3) 

into (7-la) and considering the polarity of the input voltage and direction of the rectifier current. 

During M t, Vi. is positive and iR is negative whilst parallel resonant capacitor voltage, vCP' is clamped 

to Vou, (plus the on-state rectifier voltage drop). 
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The resulting piecewise linear dynamic matrix equation is, therefore, given by, 

0 0 --+ Cl Cl 
0 

Cp C/C/ +Cp) Cp Cp(CI +Cp ) 

0 0 0 
1 

0 
Cs 

AI= 0 0 0 0 
Lp 

1 rep repC! rds + rep + res + r,s repC! 
0 + 

Ls Ls Ls Ls(Cf +Cp) Ls Ls(Cf +Cp) 

0 0 
RLCf RLC/ 

C/RL +re/)(CI +Cp) C/(RL +re/)(CI +Cp) Cf(RL + rei) 

(7-4) 

The excitation matrix, B, = [0 0 0 0] T and the coupling equation is li RI = C f i L • 
Cf +Cp 

During M2 (~n > 0, iR = 0), the output rectifier is decoupled from the resonant tank, giving the dynamic 

and excitation matrices, respectively, as A2 and B2: 

0 0 0 0 
Cp Cp 

0 0 0 
1 

0 0 
Cs 

A2 = 0 0 0 0 ,and B2 = 0 (7-5) 
Lp 

1 rep rds + rep + res + 'is 
0 

V;n 

Ls Ls Ls Ls Ls 

0 0 0 0 0 
Cf(RL + re!) 

and similarly, during the time when ~n>O and iR>O (M3), the system is described by: 

0 0 --+ C! C! 
0 

Cp Cp(C! +Cp) Cp Cp(C! + Cp) 

0 0 0 
1 

0 
Cs 

A3= 
Lp 

0 0 0 0 

1 rep _ repCf rds + rep + res + 'is repCf 
0 + 

Ls Ls Ls Ls(Cf + Cp) Ls Ls(Cf + Cp) 

0 0 
RLC! RLC! 

Cf(RL +ref)(C! +Cp) Cf(RL +ref)(Cf +Cp) Cf(RL +ref ) 

B3 =B I 

(7-6) 
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Exploiting symmetry between half switching cycles, the modal matrices for converter operating in M4 

(V;n=O, iR>O), M5 (V;n=O, iR=O) and M6 (V;n=O, iR<O) are equivalent to those in M3, M2, and Ml, 

respectively, viz.: 

(7-7) 

7.1.1. Detennining the Duty of Each Mode 

As before, the cyclic-mode initial condition xper(to), for voltage-output converter, can be 

obtained by substituting the piecewise linear equations for different modes in (7-4), (7-5), (7-6) and (7-

7) into the augmented cyclic mode equations in Chapter 4 viz. (4-6), (4-7) and (4-12), along with the 

mode transition times associated with each. Investigations have previously shown that the time­

periods associated with each mode, required to predict the cyclic-mode initial conditions, can be 

successfully predicted using the Rectifier Transformed FMA equivalent circuits, derived in Chapter 6. 

Moreover, the procedures presented are subjected to iteration to permit the effects of rectifier on-state 

voltage drop to be incorporated. Derivation details for obtaining the equivalent model can be found in 

the previous chapter. Here, just the results are employed. 

The rectifier and capacitive output filter can be approximated by a combination of equivalent 

resistance and capacitance, as illustrated, for clarity, in Fig. 7.3 . 

\ 
L~ 

Figure 7.3 Equivalent circuit of voltage-output LCLC resonant converter. 
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In this case, the rectifier non-conduction angle is given, approximately, by, 

(7-8) 

The output filter and rectifier, when decoupled from the resonant tank circuit, are modelled by an 

equivalent resistance and an equivalent capacitance, whose values are given by [G2]: 

91 = 1- cos(2~c) 
e 41(2fsC

p 

C = 21tCp 

e 2~c - sin(2~c) 

(7-9) 

Throughout the analysis, the resonant tank input current i jn (t) , which flows from the network of series 

resonant components, into the rectifier bridge circuit, is assumed to be predominantly sinusoidal, i.e.: 

(7-10) 

Now, as before, (3in is the phase angle between the input voltage and the fundamental harmonic 

component of the series inductor current. The duty d) associated with M I is obtained by assuming that 

the output voltage is ripple-free, and the current through the rectifier follows that of i;n{t). d) is 

therefore defined as the time when series resonant inductor current its= 0, and is obtained from 

knowledge of the overall impedance, Zin, of the equivalent circuit of Fig. 7.3, viz.: 

(7-11) 

Taking the phase angle of(7-11), and subsequently normalising by dividing by 21t, yields the duty for 

M 1, as follows: 

d 1 -\ 
I =-xtan 

27r 

1-cos(2~c) 
2~c - sin(2~J 

(7-12) 
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The fact that {3in is positive implies that the first harmonic of the inductor current lags the input voltage 

when operating above the resonant frequency. During the rectifier non-conducting interval, the 

inductor current flows into Cp, charging it to VC! = VOU1 (plus the bridge rectifier voltage drop Vi/iode), at 

which time rectifier conduction resumes once again. 

It is noted that Ts is the period for one switching cycle, and vCp during charging of Cp is given by: 

1 (d2+d12~'. 
vCp = vCp(d1TJ+- X flin sm(liJ.t)dt 

Cp dT 
1, 

The duty d2 for M2 is, therefore, found by evaluating the integral in (7-13) to give: 

';' 1- cos(liJsd2 Ts) 
Vc = -Vb + l· X ----'--"-.!:.....-''-'-

P In 2...1" C 
":I s p 

(7-13) 

(7-14) 

To determine the boundary time that defines the entire capacitor-charging period, it is noted that vCp = 

VR at t = d2 Ts. From (7-14), solving for duty d2 yields: 

1 l( 41lV~.f.Cp) d2 =-xcos- 1 ~ 
21! 'in 

where the amplitude of the resonant tank input current, f;n' can be determined from, 

The switching transition times for the remaining operating modes are found, by symmetry, to be: 

d3 =0.5-d1 -d2 

7.2. Component Electrical Stresses 

d4 =d1 

d5 =d2 

d6 =d3 

(7-15) 

(7-16) 

(7-17) 

Here, the techniques presented in the previous sections are now extended to include an 

analysis of component stresses. During the design stage, consideration of electrical stresses imposed 
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on the tank components are of utmost important to the designer. It will be shown that cyclic-averaging 

provides a convenient and accurate means for addressing this issue. 

· . · . · . . 
---- - . - ~ ------------- ----- ---- - ---: -- -- -----.... 0 

~ ~ t ~_nm ~ : 
: : vCp-max _-e,....~-

---.....;~ 

Figure 7.4 Sketched current and voltage wavefonns. 

With reference to Fig. 7.4, it can be seen that the series inductor current, iLs, which coincides with the 

power switch input current, and the series capacitor voltage Vc. are phase-displaced by 1t12 rad, and the 

maximum voltage across Cs occurs when iu (t) ~ 0, when operating in M4 and occurs at time tvC3_max 

= d4Ts = dlTs. From (7-12) lies is given by substituting tvC3_mu into (4-6): 

(7-18) 

Similarly, noting that the maximum series resonant inductor current iLs occurs at time tlLs_mu = dlT,+ 

(T/4), in M2 or M3 (depending on the operating frequency), the state transition matrix of the converter 

is, 

and, thereafter, the peak value of resonant inductor current Tu is given by, 

iLs = [0 0 0 1 0 O]x~ILs max) 

(7-19) 

(7-20) 
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When the converter is operated further away from the effective resonant frequency, the assumption 

previously made that the current through series resonant inductor L" is sinusoidal, does not hold, as the 

waveform becomes increasingly triangular at higher frequencies. In this case, the time required for the 

current to reach its maximum value ultimately increases to t;Ls_l1lax= 0.5Ts. It is therefore necessary to 

modify (7-19) to account for this, in the following way, 

for tiLs _ max Z Tj{ (7-21) 

When the rectifier/filter sub-system is diode-coupled to the parallel resonant tank, I VCI' I is clamped to 

the modulus of Vau1 + 2Vdiade' The peak positive voltage occurs when the bridge rectifier begins to 

conduct forward current (iR> 0), as operation enters M3, at tvcp_max=d3Ts. From (7-14), VCI' is then 

given by, 

VCp = [1 0 0 0 0 (7-22) 

With increasing excitation frequency, the period during which the parallel capacitor voltage is clamped 

becomes shorter, and gradually migrates toward the beginning of the negative half cycle of the input 

voltage, V;n. The time at which vel' occurs, is, therefore, in M4, and lvep_max = d4Ts. 

V = [1 0 0 0 0 O]eA4/v(p_ma'eAldlT'eAldlT'eAldIT, X (I) 
Cp per 0 (7-23) 

Again, with reference to Fig. 7.4, the maximum current flows through the parallel resonant inductor 

( ~p) when the voltage across the parallel capacitor, vCP' reduces to zero. The time at which VCI' = 0, 

liLp_max. can be found by solving (7-13) to give: 

-:- 1 - cos {J)s VilP max) 
0= -VR + ,. X -----'---'--'~-'-

In 2"'" C 
'':/ s P 

(7-24) 

The maximum inductor current hp occurs in MS and the peak value of the parallel resonant inductor 

current, ~p is then given by: 

o 0 (7-25) 
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The steady-state stresses imposed on the resonant tank components are thus analyzed by considering 

(7-18) through to (7-25). Since the cyclic model can now be used, together with mode duty times, for 

finding the initial conditions, Xper(tO) , cyclic averaging techniques can be employed to provide both 

accurate predictions of the converter's output voltage, and all the primary steady state stresses. 

An example state-plane trajectory for a complete switching period, obtained using cyclic averaging, is 

given in Fig. 7.5. The tank circuit voltage and current solutions follow circular arcs and the trajectory 

for the M2 sub-interval occurs when v Cp is clamped to the output voltage. 

4 

3 

2 

1 Discontinuos interval--

$ 0 x(t
1 

) <J) 
...J 

-1 - Discontinuos interval 

-2 x(t
5
) 

-3 x(to) = Xper(to) 

-4'---...J...-_'-----'-_-'-_.l....---L._-'-_-'-----'_--'-_-:':---' 
-10 -8 -6 -4 -2 0 2 4 6 8 10 

vcp(V) 

Figure 7.5 State-plane trajectory predicted by the cyclic averaging analysis. 

A problem encountered whilst applying the cyclic averaging algorithm to the voltage-output converter 

is that the parallel resonant capacitor voltage can be either higher or lower than the output voltage, 

thereby contradicting the voltage clamping action of the bridge rectifier. As an example of this, Fig. 

7.6 shows the discrepancy produced when the duty-cycle is incorrect. Although describing functions 

provide a suitable mechanism for estimating the modal duty times, the main reasons for the voltage 

discrepancy are attributed to inaccuracies in the original estimation of rectifier non-conduction angle, 

which could arise due to excluding the effects of the non-linear rectifier on-state voltage, or the 

sinusoidal waveform assumptions associated with the R TFMA analysis. 
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Figure 7.6 Circuit voltages and currents from RTFMA predictions: (a) vcP(d2T.) < Vout and (b) vcP(d2T.) > Vout• 

Moreover, in RTFMA, the magnitude of the parallel tank capacitor charging/discharging current, icp 

assumes the magnitude of series resonant induetor current, h.. This assumption normally holds in 

cases when the value of parallel resonant inductor Lp dominates the series resonant inductor Ls and 

parallel resonant capacitor Cp, thus behaving like a large current-limiting impedance. 
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Most of the resonant tank input current then flows from Ls into the rectifier and capacitor Cp' whilst Lp 

will only conduct a small portion of the total current. However, in the case when the value of inductor 

Lp is not sufficiently larger than L" the current carried by Lp cannot be neglected. 

Again referring to Fig. 7.4, that the maximum series resonant inductor current iw occurs at time liLs_max 

= Ivcs_max + (Tj4) in either M3 or M4, depending on operating frequency. From (7-19) and (7-21), the 

state transition matrix of the resonant converter at tiLs_max, is given by, 

tiLs max ~ 0.5Ts 

tiLs _ max > 0.5Ts 

Therefore, current hp_liLsmax flowing through parallel resonant inductor is, 

iLp _tiLsmax = [0 0 1 0 0 0 )x~iLS _ max) 

(7-26) 

(7-27) 

Assuming that the current, which flows into Cp, is small compared to that which flows in L, and Lp 

during the rectifier conduction period, the voltage at the rectifier is dependent on the direction of the 

link-current flowing from the resonant tank circuitiL = iLs - iLp • 

Hence, the amplitude of the link current f;n in (7-16) can be determined from the initial cyclic mode 

analysis solution in (7-20) and (7-25), 

(7-28) 

The refined magnitude of resonant tank link current is then substituted into (7-15) to enhance the 

accuracy of the boundary time that defines the capacitor-charging period at t = d2 T,. 

Although significant improvements in prediction accuracy can obtained by appropriately including the 

effect of the parallel inductor current and Vdiode using the iterative refinement procedure described in 

Chapter 6, errors still persist at switching frequencies away from the resonant frequency due to the 

assumption of sinusoidal series resonant inductor currents. Instead, it will be demonstrated that for this 

particular converter topology, the cyclic process itself can be utilised in conjunction with knowledge of 
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boundary conditions on the discontinuity of the parallel capacitor voltage, to provide enhanced analysis 

accuracy. 

Through modifications to the scheme presented for finding the duty time and initial conditions of the 

cyclic system, it can be shown that the cyclic analysis can be employed to conduct a localised search to 

provide more accurate estimation of the second duty cycle, d2• Improvement of the duty-cycle 

accuracy can be obtained by noting that Ml ends, and M2 begins, at the point when parallel capacitor 

voltage vCp is clamped, implying that vCp = VoU/+2Vdiode' However, errors in the calculation of d2 results 

in solutions that do not satisfy this condition. 

By iteratively sweeping the duty from the initial estimate of d}, the correct duty can be found when the 

cyclic analysis solution satisfied the above condition. In summary, the initial estimate d2)ni is 

calculated from the RCFMA equivalent circuit using (7-15), and localised iterative search shown in 

Fig. 7.7 is terminated when the parallel capacitor voltage at the end of Ml at time d2T" satisfies the 

boundary condition at time d2Ts -lvepI-Vou,-2vdiode = o. 

Substitute's, Cp into (7-15) to find initial estimate of d2_ftU 

Find cyclic mode initial condition. xpe~to) from (4-7) using d2 

Yes~ 
( Tenninate ) 

Figure 7.7 Flow-chart describing the iterative localised sweep procedure. 
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7.3. Accuracy of Cyclic Averaging Analysis for Voltage-Output Resonant 

Converters 

The prototype converter in Fig. 7.8, with specifications given in Table 7.l , is used as a 

demonstration of the application of the presented techniques. Figure 7.9 compares the measured output 

voltages from the prototype converter with those derived from the state-variable model , and cyclic­

averaging, for various operating frequencies and load conditions- a good correspondence between the 

results being shown in all cases. Some discrepancy in the predictions of output voltage are attributed 

to non-linearities of the switching devices i.e. gate driver dead-time etc. 

Table 2.2 Voltage-output converter model parameters. 

Parameters Values 
DC link input voltage, v~c (V) 30 

Series resonant inductance, L, (J.1H) 12.6 

Series resonant capacitance, C, (J.1F) 0.737 

Parallel resonant inductance, Lp (J.1H) 25 

Parallel resonant capacitance, Cp (J.1F) 0.141 

Switching devices internal on resistance, r lis (0) 0.04 

Inductor Ls series resistance,'1s (0) 0.1 

Inductor Lp series resistance, rip (0) 0.15 

Instantaneous diode forward voltage drop, Vd/ode 0.7 

Output filter capacitance, Cf (J.1F) 100 

Output load Resistance, RL (0) 5, 10 

Nominal resonant frequency, la (kHz) 90 

Figure 7.8 Prototype 4th-order voltage-output resonant converter. 



Chapter 7 

9 

8 

~7 
Q) 
0) 

~ 6 o 
> 

:a5 
::J 
o 

4 

3 

2 

15 

14 

13 

12 
>"' 
-;; 11 
0) 

~ 10 
0 
> .-

9 =:l 

S 
::J 

0 8 

7 

6 

5 

o Cyclic averaging 
- Measured 
... State-variable model 

100 110 120 130 140 150 160 170 180 190 200 
Frequency (kHz) 

(a) 

- Measured 
... State-variable model 

-0- Cyclic averaging 

100 110 120 130 140 150 160 170 180 190 200 
Frequency (kHz) 

(b) 
Figure 7.9 Comparison of predicted output voltage from cyclic averaging and state-variable models with 

measurements on voltage-output LCLC converter: (a) RL=50 and (b) RL= IOO . 
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Further, the electrical component stresses predicted by cyclic-averaging, compared with measurements 

taken from the prototype converter, are given in Fig. 7.1 0, with Fig. 7.11 also showing experimental 

waveforms from the converter operating just above the resonant frequency. 

Again, it is seen that cyclic-averaging provides an accurate method to model the steady-state behaviour 

of the converter over a wide dynamic operating range. It is interesting to note that the parallel 

capacitor voltage, vCP' is demonstrated to be only 'weakly' clamped during the rectifier on-periods, as a 

result of the effects of parasitic inductances around the bridge circuit. 

Nevertheless, cyclic-averaging is still seen to provide accurate estimates of component stresses. It is 

also notable that the calculation time for obtaining the results using cyclic-averaging is, typically, only 

10-4 of that required for SPICE sirnuJations. 
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Figure 7.10 Predicted and measured electrical stresses on resonant components: (a) Maximum series capacitor 

voltage, (b) Maximum series inductor current, (c) Maximum parallel capacitor voltage and (d) maximum parallel 

inductor current. 
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Figure 7.11 Measurements from the prototype voltage-output LCLC converter. 

7.4. Summary 

Cyclic mode analysis and averaging techniques have been applied to the 4th-order voltage­

output resonant power converter to facilitate high-speed analysis of the output voltage and stresses on 

components. Its virtues have been demonstrated by comparing predictions with measurements on a 

prototype converter operating above resonance. State-variable dynamic descriptions of circuits and 

their subsequent use for determining the piece-wise linear cyclic model, have been presented, and 

analytical formulae have been derived to calculate the electrical stresses on the resonant components. 

New methods relying on localised searches and a refined iteration procedure for estimating the mode 

duties, have also been proposed. The methods are shown to provide accurate duties for a wide range of 

switching frequencies, compared to previously reported methods, particularly for low output voltage 

converters, where the effect of rectifier on-state voltage cannot be ignored. The accuracy of the 

proposed methodology has also been demonstrated by comparisons with SPICE simulations, which 

typically require _104x greater computation time. 
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CHAPTER 8 

Dual-Load Resonant Converters 

Increasing pressure on manufacturers to provide high-density power converters is spawning 

significant interest in converter topologies that can provide multiple regulated outputs-particular 

growth areas being the telecommunications and computer and microprocessor industries, with mobile 

phones, PDAs and handheld products typically requiring 3.3V, 5V, ±I2V and ±l5V supplies for 

various interfaces. To date, fly-back converters remain the low-cost solution for providing a single 

regulated output [HI] along with additional semi-regulated auxiliary outputs. Other candidate 

converters include buck [H2], forward [H3, H4, HS], and current fed push-pull converters [H6], all 

having their relative merits. Such converters employ a transformer with multiple secondary windings, 

and the designer chooses to regulate one of the outputs using Pulse-Width-Modulation or excite the 

transformer at a fixed duty-cycle. However, cross regulation error that accompanies output load 

variations, where the regulation of one output voltage impacts on the performance of others, is a 

significant limitation for voltage sensitive electronic systems. If regulation is needed on all outputs, 

the designer will generally employ a post-regulation technique, based on linear regulators, individual 

step-down DC/DC converters or magnetic amplifiers. Although cross-regulation error can be abated to 

some extend using such techniques, the required additional circuitry often precludes their use for cost­

critical applications. 

The emergence of enabling technologies such as high-frequency, high-power switching devices, and 

low cost digital processing ICs, has recently lead to resonant converters being considered as potential 

candidates for DC-DC conversion to deliver multiple stabilized outputs, due to their high efficiency, 

limited electromagnetic/radio frequency sensitivity and reduced switching stresses compared to 

classical hard-switched counterparts. Again, however, the use of a transformer with multiple 

secondary windings, with only one output being regulated through closed-loop control, and the 

remaining being unregulated or requiring secondary-side post-regulation, is commonplace. 

The development of multiple-output supplies typically requires substantial design effort, with a need 

for improved understanding of the behaviour of resonant converter solutions. Current and voltage 

waveforms of the resulting transformer-isolated converters can differ significantly from their non-
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isolated parent counterparts, and classical models do not accurately predict their dynamic 

characteristics, primarily due to the complexities of modelling the magnetic coupling between outputs. 

Here then, the analysis, design and control of the 4th -order LCLC voltage-output resonant converter 

(SPRC), specifically for the provision of multiple regulated outputs, is explored. State-variable 

concepts are employed, and new analysis techniques developed to establish operating-mode boundaries 

in order to describe the internal behaviour of a candidate dual-output resonant supply. A step-by-step 

procedure is given to guide the designer through the most important criterion for obtaining a 

satisfactory converter realisation, and the impact of the proposed choices on the ultimate performance 

of the supply. Results are included that compare predictions from the resulting models with those from 

SPICE simulations and measurements from a prototype power supply under closed-loop control. 
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8.1. Multiple-Output Resonant Converter Topologies 

Resonant converters utilising a single primary power stage and generating more than one 

isolated output voltage, are termed multiple-output resonant converters. To-date, several approaches 

have been explored to address cross-regulation issues, complexity and overall circuit performance of 

such converters, with solutions now being divided into three distinct groups. The first regulates a 

single primary output using closed-loop feedback, with the auxiliary outputs being semi-regulated and 

therefore subject to cross-regulation error. Cross-regulation error has been sub-divided into dynamic­

and static-behaviour, by Agrawal [H7], with improvements being shown through careful design of the 

output filters. However, a drawback of such techniques (also given in Agrawal and Batarseh [JIX]) is 

the requirement for large filter inductors and capacitors, high turns-ratio transformers, leading to 

significant parasitic effects, and a high-valued series resonant inductance. Furthermore, another 

disadvantage associated with the requirement for a wide switching frequency range, normally required 

for frequency regulation, is poor cross regulation of multiple output converters. The work proposed by 

Batarseh et al. [H9] therefore also suggests that the use of constant frequency PWM can be beneficial 

as a means of reducing cross-regulation, through optimisation of all components to operate at a single 

frequency. 

A number of more complex techniques for use with high-order resonant converters (3,d and 4th -order) 

have been reported in [HIO, HII], with designs employing centre-tapped transformers that are 

terminated through full-wave rectification and inductor-type output filters. A significant disadvantage 

of this configuration, however, is the relatively high diode count accompanying full-bridge 

rectification. Moreover, once again, the feedback loop is closed around only one of the outputs with 

frequency control often being used for regulation. 

The second category of solutions considers precise post-regulation of each output using either linear 

regulators or hard-switched dc-dc converters. Although relatively straightforward to design, such 

circuits are rarely used in practice due to cost constraints. 

The third category of solutions is specific to applications that require only two regulated voltage 

outputs, such as commonly found in signal-processing and microprocessor based systems. They avoid 

the need for post-regulation by utilising two closed-loop feedback configurations. A 3'd-order LLC 

converter with two independently controlled outputs has been considered by Elfrich and Duerbaum 

[HI2]. However, an in-depth analysis to provide optimum performance characteristics has yet to be 

forthcoming, primarily due to the significant complexity associated with the highly non-linear 
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behaviour and the interaction between the various outputs as a function of load. Nevertheless, it is 

solutions that broadly fall within this third category that are investigated in the remainder of this 

Chapter. 

Specifically, a detailed investigation into the behaviour of dual-output resonant converters, that 

combine the benefits of high-efficiency and flexibility , is given in Sections 8.2 and 8.3, with the LCLC 

variant, Fig. 8.1 , being used to provide a focus to the study. Realisation of a prototype LCLC 

converter operating from a standard 15V input and developing two independently-regulated outputs, 

via the use of dual-loop feedback, is demonstrated. Control of each output is achieved by switching 

the power devices asymmetrically over each half switching cycle using a combination of PWM and 

frequency control. 

SW1 

SW2 

Control Signal 

r - - - -~ nth - output 
I 

" 01 

L---L- +t--'---1i--'--- + Vout 

Feeback ~ 02 [' 
Control .. - ------'. 

Figure 8.1 Dual-load LCLC resonant converter with feedback control 
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8.2. Circuit Model of the Dual-Load LCLC-SPRC 

Fourth-order resonant converters with capacitive output filters have been considered in 

previous Chapters. From the result therein, it was shown that all variants provided beneficial 

attributes compared to 2nd-order SRC and PRC counterparts, by combining their best features, i.e. they 

can be regulated over a wide load range with reduced circulating power. Moreover, parasitic elements 

that are normally problematic for other converter designs, can be readily absorbed into the resonant 

network, to enhance performance and reduce mass and volume. 
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Figure 8.2 Dual-load 4th-order resonant converter (a) schematic (b) typical operating waveforms. 
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A schematic of a half-bridge LCLC-SPRC with two outputs is shown in Fig. 8.2(a). By changing the 

full bridge rectifier to a dual-complementary rectifier, the resulting dual-load converter combines the 

benefits of requiring a minimum number of rectifier diodes and the ability for multi-output regulation. 

The rectifier is most efficient under balanced high- and low-side output loading, and, is typically used 

together with capacitor-type output filters for low current rating applications. 

The transformer in Fig. 8.2(a) can be modelled as an ideal voltage conversion component with a 

magnetising inductance, Lm, series primary leakage inductance, Lip and secondary series leakage 

inductances, Llsl and Lls2 ' Since the primary leakage inductance of a well-designed ferrite transformer 

is much smaller than the magnetising inductances, Lm, it can be absorbed into the resonant tank series 

inductor, Ls. The value of the series resonant inductance can be increased by adding discrete 

components, if required, to satisfy pre-determined design constraints. 

To demonstrate the ability of the converter to deliver unsymmetrical output voltages, under balanced 

load conditions, the transfonner is constrained to have unity turns-ratios in both output windings, and 

the high- and low-side parallel resonant capacitors, Cpl and Cp2 , are selected to have identical values. 

The output filter capacitors, Cft and Cf2 , are assumed to be large enough so the voltages they are 

subjected to can be considered constant over a switching period. 

Since current flows through the primary side of the transfonner to the top- and bottom-sides of the 

rectifier, during different half-cycles of tank excitation, see Fig. 8.2(b), each output is replenished with 

energy alternately. During the positive half-cycle of the parallel resonant capacitor voltage wavefonn, 

vCp, the resonant current flows toward the top-side rectifier through to output, Ru , resulting in the 

voltage Vout\; whilst the resonant current then supplies power to Vout2 when the polarity of the resonant 

capacitor voltage changes. Diodes Dl and D2 clip the parallel capacitor voltage to +Voutl or -Vout2 ' 

Classically, either the high-side or low-side output will be closed-loop regulated through frequency 

modulation. However, variations in line voltage or load resistance then yield cross regulation errors 

[H7-Hll] on the unregulated output. Moreover, an asymmetric output voltage distribution is not 

achievable, in general, under balanced output load conditions, regardless of switching frequency. It is 

therefore proposed that the converter is operated asymmetrically through variation of input voltage 

duty cycle, and frequency, to facilitate regulation of both output voltages. 
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8.3. Principle of Operation 

Here, the converter operating in discontinuous voltage conduction mode, is considered. To 

achieve zero-voltage switching, the converter is assumed to operate on the negative slope of the input­

output magnitude characteristic, above resonance. 

When operating in this region, the resulting wavefonns can be sub-divided into two distinct time 

intervals (lntervall and Interval2-see Fig. 8.2(b»: 

Interval 1 Clamping of the parallel capacitor voltage. Here, the series inductor Ls and Cs provide 

resonant behaviour whilst the voltage across Lp and Cp is clamped by the output voltage. 

As the current through the series inductor, L" decays to zero, Cp begins to contribute to 

resonant behaviour, and operation enters the second designated interval. 

Interval 2 Decoupling of the rectifier and output filter. Here, all tank components contribute to 

resonant behaviour, with the rectifier effectively becoming reverse biased. Current into 

both high- and low-side diodes remain at zero, and the parallel capacitors are charged 

until their voltage is clamped at either +Vaull or -Vaul2 , thereby providing the boundary at 

the end of this designated time interval. 

In this respect, the dual-load resonant converter, as shown, constitutes a multi-resonant system since 

the effective resonant frequency varies during different time-intervals-one being detennined by the 

resonant components L" C" Lp and Cp, and the other by the resonant components and load condition. 

With reduced load the resonant frequencies become higher. A more detailed description of the 

behaviour is now given. 

A half-cycle of converter operation can be modelled by three Modes, M 1.. .M3, as shown in Fig. 

8.2(b). 

Circuit Mode Ml (to 5, I < I). With reference to Figs. 8.2 and 8.3, at the start of MI, SW2 is turned 

off at 10, At this time, the series inductor current, iLs , is negative and flows through the internal body 

diode of SW l, thereby facilitating ZVS of SW 1. Also during this period, ir" allows D2 to conduct and 

transfer energy to support the output voltage, Vaut2 , whilst the voltage on Cp2 is clamped to V aul2-all 

the rectifier current therefore flows to the load. At the end of M l, the rectifier current iR2 has decayed 
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to zero, and both high- and low-side rectifiers, and the output filter, are effectively decoupled from the 

resonant tanle This marks the beginning of Mode M2 . 
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Figure 8.3 Circuit modes. 

Circuit Mode M2 (t) :S; t < t2 ). Here, the series resonant inductor current hs starts becoming positive. 

Since SW} was turned on during Ml, current flow is now through SWl. Initial conditions for this 

mode are that hs=O and vcpz= Vout2 • The inductor current iLs and parallel resonant capacitor voltages 

now take on sinusoidal characteristics. Since the outputs are effectively disconnected from the tank., 

both Cpi and Cp2 contribute to resonant behaviour. Both rectifier currents are therefore zero and the 

converter outputs are in an 'idle' state, being supplied solely by the charge on the filter capacitors. 
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By initially neglecting the rectifier on-state voltage, and noting that the effective parallel resonant 

capacitance Cp is the sum of shunt network capacitances Cpl and Cr ], vCpl during the capacitor charging 

period is described by [H13]: 

12 

VCpl(t) = VCPI(tl)+Z- fi;n sin(2Jifst)dt 
p I( 

(8-1) 

where ~n = iLs - iLp ' Evaluating (8-1) with initial conditions vR(t\) = VCp\ (1\) = -Voul2 yields: 

(8-2) 

The boundary for the end of the capacitor-charging period is vCp\ (12 ) = +VOUl\ , which yields the rectifier 

non-conduction angle, f/lcl' associated with positive polarity of current, iR, through the high side 

rectifier: 

(8-3) 

where VIOl = VOUlI + VouI2 • This mode ends when SWl turns off. 

Circuit Mode M3 (12 ~ 1 < 1', /2). At t=12, DJ becomes forward-biased and D2 reverse-biased. The 

rectifier diode current iR2 remains zero throughout the duration of M3, and Dl clamps the capacitor 

voltage, Vcpl to +VDUII until iLs decays to zero, at which time the second half-cycle of operation 

commences. 

For 50% duty-cycle excitation, the 2nd half-cycle of operation is the mirror image of the first. 

However, for asynnnetrical excitation, the output rectifier diode (D2) non-conduction angle, associated 

with the series resonant inductor current being of negative polarity, is given by: 

-I[ 21ifsCpVIOI) f/lC2 = cos 1- ';' 
'in 

(8-4) 



ChapterS 164 

The voltage, vcpl , across the parallel resonant capacitor can therefore be expressed as a function of the 

angleB -see Fig. 8.2(b): 

_ V + iin X (1 _ cos«(}») for e = 0 ... tPc1 
out2 2".,{' C 

'':/ s P 

+ Voutl (8-5) 

Under steady-state conditions, the mean output current iou'l flowing through 01 towards the output 

filter and load, can be determined from the mean current flowing through the rectifier when it is of 

positive polarity. Since this occurs during the interval tPCI :s;; e < 1r , iou'l is given by: 

iOUII = _1_ x j~n sin((} )d(} 
21r ,,, 

Substituting (8-3) into (8-6) and evaluating the integral provides the solution for iouII as follows: 

. _ ~n (1 (A. )) = f;n - ifsC pVIOI 
'oull - X + cos 'f'cl 

21r 1r 

(8-6) 

(8-7) 

Simple mathematical manipulation of (8-3) and (8-7) then gives the corresponding rectifier non­

conduction angle ~c\ : 

(8-8) 

VoutI is determined by assuming the output filter capacitance C f is sufficiently large to impart 

negligible output voltage ripple. In this case: 

V . R f;nRLl (1 (A. )) 
oull = 10uII LI = --X + cos 'f'cl 

21! 

_ RLl (f;n -;ifsC P V,Ol) 
1! 

RLl f;n - ;ifsCpV ouI2 
=-x-------'---

1! 1 + Rd:Cp 

(8-9) 
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Equations (8-6) to (8-9) can be further manipulated to provide the complementary D2 non-conduction 

angle, tPc2 ' and the output current, ;ouI2, and output voltage Voul2, as follows: 

(8-10) 

Notably, a high-sensitivity and inter-dependence between the high- and low-side output voltage 

distributions, and TLs and lLs , has been observed, and will be discussed in detail in later sections. 

8.4. State-Variable Model for Dual-Load Resonant Converter 

A state-variable model describing the behaviour of the dual-load converter can be obtained by 

considering the electrical network in Fig. 8.4. The model is derived by separating the converter 

dynamics into 'fast' and 'slow' sub-systems, with their interaction related by a set of coupling 

equations. The leakage inductances of a well designed ferrite transformer are normally small 

compared to its magnetising inductance. For this reason, their effects are initially neglected for 

brevity. 

State variables are selected based on voltages and currents that govern the operation of the resonant 

tank. The fast sub-system is therefore considered to describe the dynamics of the resonant tank and 

power switches (8-II}-the underlying equations exclude the effects of para siti cs. 

dvcs iLs --=-
dt Cs 

diLs V;n - vCs - v Lp - = --"'--..:..::..-----''''-
dt Ls 

diLp VLp 
--=- (8-11) 

dt Lp 

dVcpl iLs - iLp - iR1 - iCp2 - iR2 
-- = ---'------'---

dt Cpl 

dVCp2 iLs - iLp - iR2 - iCpl - i R1 
--= ----'------'---

dt Cp2 

As discussed previously, the path of the current leaving the transformer secondary windings changes 

during the positive and negative half-cycles of the parallel capacitor voltage, due to the effect of the 

rectifiers allowing current to conduct only in a single direction. During the positive half-cycle interval, 
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DI is forward biased and pemlits the rectifier current iR to supply the load RLI . During the negative 

half-cycle the top rectifier is reverse-biased and D2 supports power transfer to load RL2. 

Ves L1s1 

... .rrrr"--....,.-i.:..:R..:....1 "--~--r--'- + V out1 

D1 

D2 

Figure 8.4 Simplified circuit diagram of the dual-load SPRC including output leakage inductances. 

If the output filter capacitors are assumed to be sufficiently large so as to maintain a constant voltage 

on both outputs, over a switching period, their contribution to the dynamics is given by: 

(8-12) 

As discussed, during interval tl ~ t2 (see Fig. 8.2(b)) the parallel resonant capacitor voltage is clamped 

to output voltage, vcjl during the positive half-cycle, and conversely, to -vcf2 during the negative half­

cycle, due to the action of the rectifiers. By noting that there will be negligible current flowing through 

ep during these periods, the rectifier input voltage is dependent on the direction of the current leaving 

the resonant tank inductances, i.e. iL = iLs - iLp . The relevant coupling terms are ilierefore obtained by 

equating voItages at either side of the rectifier [HI4], for each respective half-cycle, as follows: 

vCpl = sgn(iL)(Vourl + Vdiode ) = Sgn(iL)(VcJ1 + Vdiode ) 

Assuming a constant rectifier on-state voltage, (8-l3) now reduces to: 

dVCP1 . dVcJ l 
- -= Sgn(lL)--

dt dt 

dVCp2 . dVcJ2 
--= Sgn(lL)--

dt dt 

(8-13) 

(8-14) 
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The use of the model is demonstrated by example. Consider the rectifier current, iR2 , is zero during the 

positive half-cycle of the parallel capacitor voltage. Equations (8-14) and (8-12) can be substituted into 

(8-11) and solved for the rectifier current iRh 

iL - i RI - iCp2 - iR2 (. { i RI Vefl J 
=SgnlL ---

Cpl Cfl CflRLI 

(8-15) 

This leads to the following coupling equations describing the rectifier currents within each half of a 

switching cycle: 

. _{ ~PICfl (iL -iCp2 -iR2 + Sgn(iL)vCfl) 

'Rl - Sgn('L)cPI +Cfl Cpl CflRLI 
o 

for VCpl = VOUlI + V,JiOlle 

(8-16) 

for 

for 

Figure 8.5 shows typical current waveforms at the output side of the centre-tap transfonner, when 

operating subject to both symmetric and asymmetric input voltage excitation, and assuming the effect 

of transformer output leakage inductances are negligibly small i.e. L" C" Lp and Cp dominate 

behaviour-isecl and isec2 are the currents leaving the output windings of the transfonner. This then, 

means that the voltage across Lp is assumed to be a reflection of the voltages across Cpl and Cp2, and 

the state vector for the parallel inductor current in the fast sub-system (see Equation (8-11» simplifies 

to vLp = vCp' It can be seen that Cpl and Cp2 charging/discharging currents are similar, implying that 

current flowing from the primary side of the transformer is equally shared between them during modes 

M2 and M4 (when Dl and D2 are reverse-biased). Notable, in this case, is that the shunt connection of 

the parallel resonant capacitors can also be used to conveniently include ilie effects of the transfonner 

output stray capacitances or output rectifier diode junction capacitances. 
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Figure 8.5 Typical current waveforms from the resonant tank into rectifier when excited by (a) balanced input 

voltage (50% duty), and (b) asymmetrical input voltage (30% duty). 

The state variable equations for the parallel resonant capacitor voltage (8-11) can be simplified to: 

dVcpl iLs - iLp - iR 
--=-=--.::!:..--:..:.. 

dt 2Cpl 

dVCp2 iLs -iLp -iR --=---'---

(8-17) 

dt 2Cp2 

The complete state-variable model of the dual-load converter (excluding the effects of output leakage 

inductances) is given by: 

. [0'" AI 0
2

.'] 
X= A2 

02x2 02x2 X + B (8-18) 
02x3 02x2 

A3 

where 

x = [VCPI vCp2 vc. iLP iLs VCfI vcf2 f 

2CpI 2Cpl 

A'=k, 
0 

_:J -r- Cf~" 0 
(8-19) 

AI = 
1 1 

2Cp2 2Cp2 

A 3 -

0 0 

0 
1 Ls Ls Cf2RL2 

Cs 

B=[-2~PI _i 0lx2 V;n !& -"'-J 2Cp2 Ls Cfl Cf2 
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The model is now used to investigate the behaviour of the dual-load converter when subject to 

asymmetrical input excitation, with balanced output loads. The converter is supplied from a 30Y DC­

link. Model parameters for the simulations are given in Table 8.1. A resulting plot of the steady-state 

output voltage characteristics, Voull and VOUI), as a function of switching frequency and duty-cycle ratio, 

is given in Fig. 8.6 (the secondaries of the transformer have identical turns ratios, and the parallel 

resonant capacitances are the same). 

Table 8.1 Converter model parameters 

Parameters 
Characteristic impedance 
Resonant frequency, la (kHz) 

Resonant capacitance ratio, Cn 

Resonant inductance ratio, Ln 

Series load quality factor, Qopl 

Values 
2.5 

130 

0.03 

0.01 

6 

From Fig. 8.6, it is evident that for operation above resonance, the sum of the output voltages applied 

to the loads increases as the operating frequency tends to the effective resonant frequency, for fixed 

values of duty ratio. Furthermore, for 50% duty ratio, giving symmetric square-wave excitation of the 

tank, the converter delivers identical voitages to both high- and low-side outputs, for fixed operating 

frequencies, as expected. 

For a given operating frequency, a decrease in the duty ratio, from 50%, is seen to deliver more energy 

from the resonant tank to energize output VouI1 , thereby yielding a correspondingly higher output 

voltage, and power. Conversely, increasing the duty ratio beyond 50% is seen to deliver more power 

to the secondary winding to support a higher Voul2 ' From this characteristic, it is clear that, for 

balanced loads, the voltage and power distribution to each output can be independently influenced by 

suitable choice of duty ratio and switching frequency. 

For completeness, Fig. 8.7 compares the difference between possible output voltages, from which it 

can be seen that the slope of the curve is greater for lower values of switching frequency. This implies 

that when a large difference between the output voltages is required, the converter should be operated 

close to resonance, leading to high efficiency operation, and zero voltage switching. However, this 

also means that the tank components are subjected to higher electrical stresses. 



Chapter 8 170 

Figure 8.8(a) shows the relative voltage distributions as a function of the ratio of the input voltage 

duty, and load quality factor, Q op l' It can be seen that the slope of the characteristic is relatively 

independent of the quality factor, for high Q op I. although the attainable difference between the output 

voltages is seen to be greater for low values of load quality factor. Hence, operation with low Qopl 

should be chosen to facilitate large voltage differences, as opposed to the use of high Q op l to facilitate 

sinusoidal tank currents and voltages. Moreover, low Q opl conditions implies that the output voltage 

vs. frequency behaviour of the converter has a 'flatter' characteristic, and a greater range of switching 

frequencies is required to regulate the output voltage when the converter is subjected to variations in 

DC-link voltage or load, thereby requiring greater controller effort and bandwidth for tracking control. 

A trade off is therefore required in the selection of the key converter parameters. 
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Figure 8.6 Output voltage distribution vs. switching frequency and duty ratio: (a) Output Voltage +Voutt. (b) 

Output Voltage +Vout2 and (c) Simulated voltage distribution. 
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Figure 8.8 Dual output converter characteristics as a function of (a) duty ratio and Q op l as design parameters and, 

(b) duty ratio and resonant capacitance ratio C. as design parameters. 
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It is instructive to show the impact of converter parameters on the attainable voltage distribution. 

Figure 8.8(b) therefore shows an example of the resulting voltage distribution, as a function of duty 

ratio, as the resonant capacitance ratio en is varied. It can be seen, in particular, that the slope of the 

characteristic is greater for low ratios of resonant capacitance. Hence, it is instructive to choose a low 

value for Cn ratio during the design phase. However, a choice of low parallel capacitance means the 

input-output voltage characteristic exhibits a reduced resonant peak, and consequently, the voltage 

boosting capability of the converter is limited. Furthermore, the input-output voltage conversion ratio, 

at the effective resonant frequency of the tank, is consequently lower, and the resulting converter 

therefore appears more suitable for step-down DC-DC applications. 

Figures 8.6 to 8.8 have established that a chosen distribution of output voItages (with balanced loads) 

can be maintained using a combination of switching frequency and duty ratio control, so long as the 

maximum deliverable voltage, and input voltage vs. input current phase angle, are not exceeded. For 

the particular converter example considered, Table 8.2 lists example operating conditions for providing 

various output voltage distributions, with the DC-link ftxed at vDc=30V. 

Table 8.2 Example output voltage distributions. 

Is = 145 kHz, duty cycle ratio=20% 

Voutl (V) Vout2 (V) iLs (A) Vc. (V) 1!!f3;n (0) rp cl (0) rp c2 (0) 

15V@20W IOV@lOW 7.15 8 0 53.8 51.3 
----

Is = 145 kHz, duty cycle ratio=80% 
----------

Voutl (V) Vout2 (V) iLs (A) vc. (V) 1!!f3;n (0) fjJ cl (0) fjJ c2 (0) 

10V@\oW 15V@20W 4.84 25.6 64.5 51.4 53.9 

Is = 205 kHz, duty cycle ratio=50% 

Voutl CV) Vout2 CV) h. CA) Vc. (V) 1!!f3;n (0) fjJ cl (0) fjJ c2 (0) 

15V@25W 15V@25W 5.69 16.99 47 59 59 

Under nominal operation the converter is designed to be excited with a square-wave input voltage at 

Is=21O kHz. Figure 8.9 therefore shows the required operating point, as a function of frequency and 

duty cycle, on a contour plot. Assuming both outputs can be independently regulated, if the demand 

on the low-side output is varied from +15V to +lOV, but the demand on high-side output remained 

unchanged at +15V, then a compensator is required to reduce the duty-ratio to provide an asymmetrical 

output voltage distribution until the measured low-side output voltage is equivalent to the demand. 

However, a variation in the input signal duty-ratio to regulate the low-side output will also affect the 

high-side output voltage, due to cross-regulation. Consequently, a corresponding change in excitation 
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frequency, is also necessary. To compensate for a reduction in the high-side output voltage, as the 

duty-ratio is decreased, the compensator must also decrease the switching frequency towards the 

effective resonant frequency. However, due to cross-regulation, this change in switching frequency 

will have an impact on the low-side output voltage, which will require an appropriate change in duty 

ratio, once again. An appropriate compensator must therefore find a stable operating point by 

controlling both the switching frequency and duty-ratio, to provide both demanded output voltages. In 

particular, for the case considered, when operating at!s=145 kHz, with duty-ratio of 20%, Fig. 8.9(a) 

shows the example converter delivers the demanded +15V to the high side output, and +lOV to the 

low-side output. 

Conversely, with an 80% input signal duty-ratio, the opposite voltage distribution is obtained, as 

shown in Fig. 8.9(b), by virtue of employing identical turns ratios on the secondary sides of the 

transformer. 



Dual-Load Resonant Converters 175 

17 

16 
~ 

15 Qi 
>. ~ 
<.> 14 S, c: 

~ 
~ 

12 

11 

10 

9 

(a) 

::00 

190 

180 
16 

~ 

N 

~ g 170 15 
Qi >- > u 

14 .9/ c: 
Cl> Cl> 5- 160 en 

t1l ~ -u. g 
150 

140 

(b) 

Figure 8.9 Simulated operating point for asymmetric input voltage excitation: (a) Vou11=15V, Vout2=IOV and (b) 

Vout1=IOV, Vou'2= 15V. 
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Theoretically, a controlled variation in the output voltages, as shown in Fig. 8.9, can be obtained by 

operating the converter around a designated point in the region of high gradient on the frequency 

characteristic. However, high efficiency soft-switching operation cannot be sustained if the converter 

is operated at resonance, to obtain the maximum output voltage difference. 

Figure 8.10 shows an example input voltage vs. input current, phase difference, !1fJin , for the example 

converter, plotted against the nOlmalised switching frequency {tJn = {tJ. / {tJo and input voltage duty­

ratio. At frequencies less than the tank resonant frequency, the input impedance of the tank network Z in 

is dominated by the tank capacitance. Hence, the input switch current fundamental component leads 

the input voltage, and the resonant tank presents an effective capacitive load. This provides Zero 

Current Switching (ZCS) for !1fJin < O. When the resonant converter is operated above resonance, 

Zero Voltage Switching (ZVS) occurs, and the resonant tank presents an effective inductive load to the 

half-bridge switches, and the switch current lags the switch voltage. 

l).IS 

·10 
ZCS 

80 

Normal ad Frequency Uln 20 Duty Cycle (%) 

Figure 8.10 Phase difference !1fJin versus the nonnalised switching frequency and duty ratio. 

At the effective resonant frequency, under asymmetric square-wave input voltage excitation, the input 

voltage lags the first harmonic of the input current, !1fJin < 0 when the duty cycle falls below 50%- see 

Fig. 8.11. The condition for inductive mode conduction, under asymmetric conditions, is therefore 

expressed as, 

(8-20) 
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where /j,Pin is the phase angle between the actual square input voltage and fundamental of the input 

current; P in is the phase lag between the first harmonic of the input voltage and current; and tPvi(l) is 

the phase of the fundamental frequency component of the input voltage, Vi(l) . (Noting that P in =0 at 

resonance, and P in >0 above resonance, implies that the first harmonic of the input voltage leads the 

first harmonic of the current). 

--------~: v 
: In 

~ / 
,V ,. 

/ 1 
~,~~,/' 1 

:->' 
!Il;n = t.1l;n 

: ~VI(I) = 0 

:.--- " ---,:.>---" --....; 
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~ J , , 
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! ,-

,./'f 
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---t.,o-- - 2,,(1-D)-----+! 

Cb) 

Figure 8.11 Waveforms of input voltage Vii" resonant circuit fundamental input voltage v i( I), and series inductor 

current iLs at (a) 0 =0.5 (6.f3i. = f3i.) and b) 0 =0.3 (6.f3i. < f3i. ) 

For asymmetrical operation of the converter, the duty-cycles of SWl and SW2 are denoted, 

respectively, D and I-D, where D is the ratio of the turn-on period with respect to the switching period. 

Asymmetric switching therefore provides an asymmetrical voltage source V;n to excite the tank, of 

amplitude Vvc: 

{

VDC 
V;" = 0 

B=O ... 2nD 

B = 2nD ... 2rr 
(8-21) 
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Assuming that only the fundamental component excites the resonant tank, and applying relationship 

tan- I (cos(e)jsin(e)) = 7Z'j2+e , the first harmonic of the resulting input voltage, Vin( I ), and its phase 

angle, ,pVi(1 ) are given by: 

Vi( l ) = 2vDC ~1- cos(21iD) x sin(aJt + ,pVi( I») 
7r 

7Z' 
,pVi(1 ) = 2"-1iD 

(8-22) 

The condition for inductive switching can now be re-written as /3;n ~ n(O.5 - D), which is obtained by 

increasing the switching frequency to give an increase in IlPin ' However, this will induce higher 

circulating currents that increases conduction losses and contributes to thermal problems. Increasing 

the switching frequency also compromises the ability of the converter to deliver wide voltage 

differences between the high- and low-side outputs. The converter should, therefore, be ideally 

operated at the minimum switching frequency, above resonance, that can achieve ZVS. The minimum 

frequency allowed is called the critical frequency, !eru. To preserve ZVS as D is decreased, the 

required critical frequency moves away from resonant frequency, as illustrated in the example of Fig. 

8.12 

zvs 

zes 

Duty (%) 

zes zvs 

Figure 8.12 Boundary condition and critical frequency to preserve ZVS. 
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A study of the magnitude of the series resonant tank inductor current, its, and the series tank capacitor 

voltage, Ves, along with the phase-Iag between the input voltage and current, /j,fJin' and the output 

rectifier diode non-conduction angles (tP cl and tP c2 ) for both polarities of the parallel capacitor voltage, 

can be further used to identify possible operating regions for delivering asymmetrical voltage 

distributions, whilst maintaining inductive mode conduction, Fig. 8.13. It can be seen from Fig. 8.13 

that an asymmetrical output voltage distribution can be achieved by noting the value that the parallel 

capacitor voltage is clamped. 
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Figure 8.13 Simulated input voltage vs. current for various voltage combinations: (a) Voutl=+ \5V, Voua=+ 1 OV 

and (b) VoutJ=+ IOV, Voua=+ 15V. 
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Other important design considerations are also shown Fig. 8.14, where, from Fig. 8.14(a) it can be seen 

that the input current leads the actual input voltage waveform by a greater phase-angle, at resonance, 

for high load quality factor conditions. Therefore, more energy is lost through circulating currents at 

light loads if the converter is ZCS. When ZVS under light load conditions, increased conduction 

losses also occur when compared to heavy load conditions, due to higher values of 1:l{3;n' A design 

trade-off therefore exists between accepting high circulating currents under either ZVS or ZCS 

conditions, or high input switch currents. 
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Figure 8.1 4 Resonant tank input characteristic at 20% duty cycle: (a) Input phase angle and (b) Maximum h.· 
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8.4.1. Including the Effects of Output Leakage Inductances 

Although resonant converters are generally designed to operate at relatively high frequencies, 

using ferrite materials often capable of operating in 200-500 kHz range and implying that low 

transformer leakage inductances can be obtained, designers need to be aware of the impact of even low 

levels of leakage inductance on converter performance. This is particularly true for converters with 

multiple outputs. 

Here then, an enhanced state-variable model encompassing the dynamics contributed by leakage 

inductance, is derived. Incorporating such effects is shown to significantly complicate the analysis, 

particularly when determining the state of the parallel resonant induct or current, hp, for the dual output 

topology, since the voltage seen across Lp cannot be assumed to be directly related to vCp, as a result of 

the voltages across the leakage inductances, L/sl and Lls2-the model must therefore be augmented with 

VLp to allow a solution for hp. The resulting model is used to predict the behaviour of the converter, 

with comparisons of measurements from a prototype converter being used to validate the proposed 

analysis methodology. 

As in the previous case, the converter is separated into fast- and slow-subsystems. Figure 8.15 shows a 

model of the resonant converter's 'fast' sub-system. A comment on the use of Fundamental Mode 

Approximation (FMA) based component models, is necessary at this stage. A multi-state voltage sink 

consists of an equivalent FMA model comprising of a large capacitance in parallel with a load 

resistance. Whilst the rectifier is omitted in the state-variable representation, its influence on the fast­

subsystem is accommodated through the addition of current sources, as shown in Fig. 8.15. 

This additional step is justifiable by noting that the interaction between the fast- and slow-subsystems 

is solely based on coupling equations consisting of the characteristics of the rectifier output currents iRI 

and iR2• The slow-subsystem describes the behaviour of the high- and low-side rectifier outputs and the 

capacitive output-filters and 10ads-vcpl and VCp2 are considered to be the inputs to the high- and low­

side output sub-systems, respectively. 

The dynamics of the fast sub-system therefore consists of a set of state-variables whose value at time t 

= to, together with the input for all t > to, completely determines the behaviour of the system for any 

time t > to. The choice of states-variables is not unique-two sets are variables are employed here. 

One is based on the provisional selection of capacitor voltages and inductor currents, for state 

variables, as used in Chapter 2. This has the advantage of employing states that have a physical 
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meaning, but can often lead to problems when deriving models for complex piecewise linear systems, 

as is the case here, since the fommlation of appropriate coupling equations can be difficult. 

Figure 8.15 State-variable representation of the fast-subsystem. 

An alternative selection, also used herein, is based the control canonical state-space realization. This 

is very attractive for this application since it allows the impact of parasitic elements to be readily 

included in the formulation of a dynamic model, albeit at the expense of losing some of the physical 

significance of the state variables. The reader is directed to Appendix B where details of the control 

canonical state-space realisation is discussed in detail , and applied to model an example 2nd_order CL 

resonant converter. 

As previously discussed, the inclusion of transformer output inductances necessitates the augmentation 

of the 'fast' subsystem model with an extra state, VLp, to subsequently allow a solution for hp (8-11). 

The equivalent model in Fig. 8.15 is analyzed by considering the voltage and current sources 

independently. 

Investigating the impact of the sole voltage source V;n by open-circuiting the independent current 

sources iR1 and iR2 , the transfer function describing the relationship between parallel resonant inductor 

voltage VLp_v;, and voltage source, Vin , in the Laplace domain, is given by, 

G(s) = bosn
- I + ... + bn_2s + bn_1 

n n- I 
S +a1s + ... an _1s+an 

(8-23a) 



Dual-Load Resonant Converters 183 

where 

(8-23b) 

Transfonning (8-23) into the time-domain results in a single-inputlsingle-output (SISO) fast subsystem 

excited by a single voltage source, described by an ordinary differential equation: 

(8-24) 

A state-space realisation is obtained by converting the prototype input-output differential equation 

description into the relevant canonical/companion form, through equating coefficients of the dynamics 

(Ac) and output matrices (Cc), as follows, 

(8-25) 

where 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 
- [0

1

•

5

] Act = 0 0 0 0 1 0 B I -
e 1 

0 0 0 0 0 
_En.. 0 _ER 0 -~ 0 

a lO alO alO 

Cel =[ _llixEn.. 0 
blO a l2 b ll 0 

b to al\ b l2 

0] Del = [1] --x-+- --x-+-
a lO alO a lO a lO a lO a lO alO a lO 
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[Note: Only the final result is presented-the reader is directed to Appendix 8 for details of the 

derivation]. The procedure can be repeated to obtain the relationship between the fast-system dynamics 

as a result of excitation by the high-side rectifier output current source iRI-the input voltage source 

and rectifier current, iR2 , being substituted with a short-circuit and an open-circuit, respectively. 

Through inspection, the resulting Laplace transfer function for the input-output relationship. is given 

by (8-26) (full derivation details given in Appendix B), 

G(s) = bos n
-I + ... + bn_2s + bn_1 

n n-I 
S +a1s + ... an_1s+an 

(8-26) 

where 

Again, (8-26) can be transformed into an ordinary input-output differential equation form, and, after 

some mathematical manipulation and simplification, into a controllable canonical state-space 

realisation, as follows: 

(8-27a) 
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where 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 1 0 0 
_ [0IX5] 

Ae2 = 0 0 0 0 1 0 8 2 -
f I 

0 0 0 0 0 1 (8-27b) 

_ a23 0 
_ an 

0 _!2L 0 
a20 a20 a20 

CC2 =[b22 0 ~ 0 
b20 o ] De2 = [0] 

a20 a20 a20 

Finally, the same procedure is used to obtain the state-space realisation resulting from excitation by the 

low-side rectifier current, iR2 • Inspection of the equivalent model in Fig. 8.15 shows that the resulting 

canonical formulation for the parallel inductor voltage, as a result oflow-side rectifier current, VLp)R2 is 

identical to that of (8-26), with the respective input, so the derivation process is not repeated for 

brevity. The resulting controllable canonical state-space realisation is given in (8-28). 

(8-28) 

A state for the parallel resonant inductor voltage, VLp, is obtained from the summation of resultant 

voltages from the three models given in (8-25, 8-27 and 8-28), with inspection of the polarity and 

direction of flow for the high- and low-side output rectifier currents, giving: -

(8-29) 

The primary advantage of employing a canonical transformation is that ordinary differential equations 

are readily converted through simple analytical substitution, thereby permitting derivation of the output 

state that may often be difficult to otherwise obtain. However, this simplicity is at the expense of not 

providing an intuitive physical meaning to all the states. 

By including the effects of transformer output leakage inductance, problems can be encountered whilst 

solving for the state of the parallel resonant capacitor voltage (8-10) due to numerical problems when 

calculating the matrix inversion, for simulation purposes (eg. when using the state variable models in 

the MATLAB®/SIMULINK environment). Moreover, the equation for vCp incurs an 'algebraic loop'. 

In an attempt to alleviate such problems, the canonical realisation previously used can be conveniently 

applied to describe high-side parallel resonant capacitor current, icpl ' By so doing, the parallel 
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capacitor voltage can be found from the capacitor current. Only the augmented state for the high-side 

capacitor current is needed to break the troublesome 'algebraic loop' in the state-variable model. 

Consequently, with reference to the fast sub-system equivalent model in Fig. 8.15, the capacitor 

current iCpl is portrayed as the net current through the high-side parallel resonant capacitor Cpl when 

subject to excitation by V;n, iRI and iR2 : 

d 6 . d4. d 2 . 4 2 
lCp vi lCp vi ICp vi . _ b d V;n b d Vi" 

a40 6 +a41 4 +a42 2 +a431Cp vi - 40--4-+ 41--2-
dt dt dt - dt dt 

d 6 . d 4. d 2 . d S ' d 3 . d' 
ICp iRI ICp iRI lCp iRI. IRI 'RI IRI 

a50 6 +aSI 4 +a52 2 +a531Cp iRI =b50-S-+b51-3-+b52--
dt dt dt - dt dl dt 

d 6 . d4. d 2 . 3 d 
ICp iR2 ICp iR2 ICp ,R2. d iRI iRI 

a6(J 6 + a6! + a62 2 + a63 l Cp ,R2 = b6(J -- + b61 --
dt dt4 dt - dt 3 dt 

(8-30) 

Full details of the derivation are given in Appendix B. 

As before, the ordinary differential equation in (8-30) is used to obtain the controllable canonical state­

space representation, with the dynamic state and output matrices given by, 

X4 = A c4x4 + Bc4U4 

Xs = Acsxs + Bcsus 

X6 = AC6X 6 + Bc6U 6 

Y4 =Cc4 X 4 + D c4U4 

Ys =Ccsxs + Dcsus 

Y6 =Cc6 X 6 + Dc6U6 

(8-31 ) 

The net current through the parallel resonant capacitor, iCpl, is determined from (taking care of 

polarity): 

iCp! =Cc4 X 4 + D c4 V;n -Cc5xs -Dc5iRI +Cc6 X 6 + DC6iR2 

dvep ! = icp ! 

dt Cp ! 

dVcp2 = iLs - i Lp - iR2 - i Cpl - iR2 

dt C p2 

(8-32) 

Substituting the output state from (8-29) and (8-32) are into (8-10), and, together with the coupling 

equations in (8-15), can lead to a steady state solution for the resulting state-space model. The fast- and 

slow-subsystem models can also be combined and used for implementation in simulation environments 

ego MATLABoo/SIMULINK-see Fig. 8.16. However, by using (8-29) and (8-32), 12 new states are 



Dual-Load Resonant Converters 187 

introduced despite the order of the resonant converter system being only 6, implying that the 12 states 

are not unique and, are dependant of one another. 
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Figure 8.16 SIMULINK model for dual-load 4th-order SPRC (a) fast-subsystem and (b) slow-subsystem-high 

side rectifier. 
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Although simulation using the control canonical form can be undertaken, it incurs longer simulation 

time, as the model now contains redundant state variables, with detriment to the application of the 

state-variable model as an interactive design tool. Alternatively, this limitation can be abated to some 

degree, by formulating the augmented state space equation for VLp, due to each input in the observable 

canonical form. Modelling of the dual-load resonant converter using observable canonical state-space 

realisation is not included here for brevity. Therefore, the reader is directed to Appendix B where 

details of the observable canonical state-space realisation are discussed, and it is employed to model 

the equivalent circuit in Fig. 8.15. The subsequent state of parallel resonant inductor voltage, v/.p has 

identical order to that of the resonant tank fast subsystem. 

Having derived augmented state-variable models that include the effects of leakage inductance, they 

are now used to predict the steady-state output characteristics from a prototype dual-load converter. 

From a describing function analysis of the capacitive-output 4th -order resonant converter, discussed in 

Chapter 6, parameters and components for the converter can be designed. For the dual-output 

application, the target is to optimise the performance for two asymmetrically distributed output 

voltages. From the analysis given in Section 8.4, the optimal operating point of the converter is when 

the switching frequency is close to the resonant frequency, dictated by Ls, Lp, Cs and Cp, whilst 

employing a duty ratio of around 20%. This leads to a voltage gain of the high-side output being 

greater than that of the low-side output. 

Table 8.3 Prototype 4th -order dual-output resonant converter specification and component values 

Parameter 
DC link input voltage, VDC (V) 

Series resonant inductances, Ls (~H) 

Series resonant capacitances, Cs (~F) 

High-side Parallel resonant capacitances, Gpt (J.lF) 

Low-side Parallel resonant capacitances, Gp2 (IlF) 

Load resistance, RL (0) 

Filter capacitance, Gf(~F) 

Magnetising inductance, Lm (~H) 

Transformer primary leakage inductance, L/p(~H) 

Transformer output leakage inductance, L/,(IlH) 

Value 
10 

0.85 

1.5 

0.116 

0.116 

4 

lOO 

109 

0.7 

0.1 

In the proposed design, a half-bridge converter is used and the transformer turns ratios are chosen to be 

unity. To determine the resonant tank components, many trade-off issues are involved, as has been 
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discussed in Chapter 6. With this in mind, an experimental converter with a step-down capability has 

been commissioned with the measured component values given in Table 8.3. A ferrite 3F3 suitable for 

high frequency applications is used for the transformer core and resonant inductor. Leakage 

inductances are dependent on winding arrangement; therefore the secondaries are bifilar wound close 

to the core and beneath the primary to reduce secondary leakage. 

The parallel resonant inductor is designed to be on the transformer primary side, such that Lp utilises 

the magnetising inductance, Lm, of the transformer. The effective series inductance comprises of the 

series inductor, Ls. and the primary leakage inductance, Lip, and is measured to be 1.55~H. The 

transformer output networks have two identical inductances and the assignment of the polarity of the 

rectifier current is realised through winding orientation. 

A comparison of output voltage obtained from the state-variable model (8-11, 8-29 and 8-32), 

simulated to steady state, with results from SPICE simulation results, is given in Fig. 8.17, from which 

clear discrepancies are clearly evident. In particular, there is a difference in resonant frequency, and 

the characteristic curve becomes narrower-a feature that is attributable to the presence of non-zero 

transformer secondary leakage inductances. By incorporating the effects of leakage into the state­

variable model (8-11, 8-29 and 8-32), the predicted output voltages of the converter are modified to 

those shown in Fig. 8.18, which again include SPICE simulation results, along with measurements 

from the prototype converter, for comparison purposes. An improved correlation between the 

theoretical predictions and the experimental data, is clearly evident. 
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Figure 8.17 Output voltages vs. switching frequency. 
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A comparison of the estimated and measured control characteristics, when duty ratio control is 

employed, has also been obtained for various, fixed, operating frequencies viz. J,= 150 kHz, 170 kHz. 

The results are shown in Figs. 8.19 and 8.20, from where it can be seen that the proposed state variable 

model provides sufficient accuracy for design and analysis purposes, with a maximum error of 10%. 

The minimum duty ratio atJ,=150 kHz is selected to be 25% to prevent the converter from entering 

capacitive conduction mode. Furthermore, observation from Fig. 8.19 and 8.20 shows that the relative 

output voltage Vou" lVouI2 when the input voltage duty ratio is reduced to 30%, is 1.375 at 150 kHz 

(closer to resonant frequency) , compared to 1.297 at 170 kHz (further away from resonant frequency), 

thereby confirming the initial performance estimation of Fig. 8.7. 
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Figure 8.20 Control characteristic curves for Is= 170 kHz (a) High-side output and (b) Low-side output. 

Typically, the open-loop output voltage magnitude characteristic of the converter is highly nonlinear 

above the resonant frequency, but can be linearised over a limited operating frequency range for 

controller design purposes. This can be seen from Fig. 8.21 , which shows the magnitude characteristic 

for one of the converter outputs over a constrained frequency range. A similar approximation can also 

be used when a combination of Is and duty-ratio control are applied. However, in either case, the 

remaining output is unregulated, or requires secondary-side post regulation to obtain the desired 

output. 
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Furthermore, Fig. 8.22 shows the output voltage Voutl against varying switching frequency,/.. It can be 

seen that, under asymmetrical input voltage excitation (duty ratio control), a higher output voltage, and 

power, can be transferred to one individual output (Voutl in this case) compared to the magnitude of 

output voltage obtained with a 50% duty. Therefore, if the duty ratio is to be shifted at each switching 

frequency, along the control characteristic curve, a voltage boosting effect can be obtained, which is 

most significant at, or about, the effective resonant frequency. As the switching frequency moves 

away from resonance, voltage boosting performance deteriorates, and a greater separation between the 

output voltages cannot be maintained. 
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8.5. Closed-loop Control and Experimental Realisation 

A digital controller is proposed to regulate the output voltage when subjected to load and input 

voltage disturbances. Resonant converters are traditionally controlled using one of two methodologies 

a) constant frequency operation with pulse-width modulation (PWM) [H 11], or b) square-wave, 

variable-frequency control [H9, HlO). Control using PWM is often preferred since optimization of the 

output filter for a ripple voltage at the output can be achieved at constant frequency. Conversely, for 

operation over a wide load range, voltage regulation of the output becomes problematic, particularly 

for low loads, where the PWM duty has a minimum on-state value, and frequency control may then be 

preferred. 
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Figure 8.23 Closed-loop control of the dual-load resonant converter. 
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Results of the possible output voltage distributions available from the dual-output converter, Figs. 8.7 

and 8.13, have demonstrated the dependence of the output voltages on both the duty-ratio and 

switching frequency. The objective, for control purposes, is to force the converter outputs to the set 

points in the presence of line voltage and load disturbances. 

Figure 8.23 shows the structure for the proposed controller, employing two decoupled feedback loops 

for independent control of frequency and duty-ratio. Voltage feedback modulation is employed to 

avoid the need for relatively expensive current sensors, and the control structures are based on linear 

Proportional and Integral (PI) schemes, as a proof of principle. For design purposes, the output voltage 

vs. switching frequency and duty-ratio characteristics of the converter, are approximated to be linear 

over the frequency range of interest. 

Although various methodologies could be considered for the design of the PI gains, the controller 

parameters have been selected empirically for robust tracking of the reference. In this case, effective 
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bandwidths for the decoupled SISO controllers: KpflO, Kij=30, Kp_tF2 and Ku=IO have been chosen 

for good transient response and disturbance rejection. Notably, the digital compensator is tuned to 

respond quickly to variations of VOUI\' whilst the controller reacting to variations of Vout2 , acts relatively 

slowly- thereby effectively decoupling the interaction of the control loops. The switching frequency 

is restricted to values above the effective resonant frequency to maintain high efficiency operation. 

A block diagram of the digitally-controlled converter is shown in Fig. 8.24, and comprises of a 

PICl8F452-based interface-an 8-bit fixed-point rnicrocontroller that is optimized for low-cost, and 

integrates lO-bit analogue-digital converters with high sampling rates. The control outputs from the 

PlC rnicrocontroller are the effective turn-ON and turn-OFF times of the power switches, which are 

latched into registers on a SPARTAN-2 FPGA. The FPGA is used to derive signals for switching of 

the power devices. Here, only the final controller design is presented-the reader is directed to 

Appendix C for in-depth information on implementation of the controller. 

Gate 
Olovel 

duty ratio 

Decoupled SISO 
Controllers 

PIC18F452 

02 

Figure 8.24 Schematic diagram of converter supplying +5V and +3.3 V with controller. 

The prototype converter (see Table 8.3 for parameters) should provide regulated +SV and +3.3V 

outputs from a DC-link input voltage in range lSV to 20V. The realisation of the converter along with 

control circuitry is shown in Fig. 8.2S. 

Investigations have been undertaken using an experimental setup that allows load changes within the 

range 30 to 60, to be applied. Figure 8.26 shows the resulting steady-state error between the 

reference voltages, V,ejl and V,efl and the resulting measured output voltages of the converter, over the 

specified range of DC-link input voltages (15V to 20V) with a SO load. 
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Figure 8.25 Practical realisation of digitally controlled 4th -order dual outputs resonant converter . 
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It can be seen that the maximum regulation error for both outputs is <5%. For completeness, Fig. 8.27 

shows example voltage- and current- wavefonns when operating the converter with an input voltage of 

15V, with a balanced transfonner secondary, and an optimised output load resistance of RL=40 . 

Moreover, Fig. 8.28 shows measured wavefonns when the converter provides the asymmetrical output 

voltage distribution of +5V and +3.3V. As can be seen, from Fig. 8.28(a), for the balanced output 

loading case, controlled asymmetrical voltage distributions are achieved whilst maintaining Zero 



Chapter 8 196 

Voltage Switching operation of the switching devices. Furthennore, decreasing the duty-ratio 

effectively facilitates a higher voltage to the output associated with the positive cycle of parallel 

capacitor voltage. 
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Figure 8.27 Measured waveforms: (a) input voltage and input current and series capacitor voltage and (b) 

parallel resonant capacitor voltage and rectifier input current. 
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Figure 8.28 Measured waveforms at Vou11=+5V and Voua=+3.3V: (a) input voltage and input current and (b) 

parallel resonant capacitor voltage and rectifier input current. 
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Figure 8.29 shows the resulting steady-state percentage regulation error between each output reference 

voltage, Vrej1 and Vrej2 , and the resulting measured output voltages, over the specified range of load 

resistances. Observation of the results shows that the design of the converter is optiroised for 40 

output resistance. When the output resistance is reduced, the input-to-output voltage conversion ratio 

decreases, and the measured output voltages are less than their respective reference values, and the 

percentage error is therefore negative. When subject to lighter load conditions, the regulation error 

increases on both outputs with the highest error being observed when RL1= 60. Again, this agrees with 

our investigations in Section 8.4, where greater output voltage distributions are only attainable at low 

load quality factor. 
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Figure 8.29 Regulation errors when subject to variations in load resistance. 

Figure 8.30 shows example voltage- and current-waveforms from the state-variable model derived in 

Section 8.4, simulated to steady-state with parameters corresponding to those of the converter 

measurements in Figs. 8.27 and 8.28 (see Table 8.3 for converter's parameters). A comparison of the 

results shows that the model provides extremely good predictions of behaviour (notably, however, the 

frequency required to achieve the +5V and +3.3V output distribution, using the simulation model, is 

160 kHz, compared to 155 kHz for the measured reSUlts). 
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Figure 8.30 Steady state wavefonns from the simulation model of the converter with balanced outputs with (a) 

symmetrical and (b) asymmetrical duty ratios. 

To further demonstrate the versatility of the closed-loop dual-output converter, the compensator is 

designed to operate over a wider range of output voltage distributions, as shown in Fig. 8.31 , whilst 

fixing the output voltage across load RLI to 5V. Both outputs are frequency and duty ratio regulated 

while maintaining the stabilized output voltage on VDUII at 5V. It can be seen that the output voltage on 

the second output varies almost linearly with increasing frequency. 
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Figure 8.31 Output voltage distributions at constant load and constant +VOU1 ! ' 

Figure 8.32 shows the response of the converter resulting from transient start-up conditions, for a range 

of applied input voltages and output voltage distributions. It can be seen that the converter voltages 

converge rapidly to the reference values, with an initial overshoot of -10%. The overshoot is 

attributable to initial saturation of the integral action of the controller. Nevertheless, the response of 

the controller is deemed satisfactory in each case. 
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Figure 8.32 Start-up transient response for various combinations of output voltage distributions and DC-link 

input voltages (a) vDc=15V, Voull=5V, Vout2=33V; (b) voc=20V, VoutI=5V, Vout2=3.3V; (c) voc=12V, Voull=4V, 

Vout2=3.3V; (d) vDc=12V, VoutI=5V, VouI2=5V. 

8.6. Summary 

The characteristics of the dual-load, 4th-order LCLC voltage-output resonant converter, have 

been explored. Two state-variable models have been derived, with the latter incorporating the effects 

of transformer leakage inductance to inlprove prediction accuracy. 

It has been demonstrated that the two outputs of the converter can be independently regulated to 

provide asynunetrical output voltage distributions. A comparison of measurements from a prototype 

converter, capable of delivering 5V and 3.3V suitable for a standard electronic supply, with those from 

a derived state-variable model, and SPICE simulations, shows that the model provides accurate 
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predictions of output voltage under steady state conditions. Moreover, a basic control scheme is shown 

to allow reliable regulation of both outputs under transient start-up conditions. 
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CHAPTER 9 

Conclusions and Future Work 

9.1. Conclusions 

The thesis has developed novel techniques to facilitate rapid design and analysis of the 

behavioral characteristics of 4th-order LCLC resonant converters. Both frequency- and time-domain 

techniques have been explored, and their application demonstrated on candidate converter applications 

viz. a novel electrode-less fluorescent lamp electronic ballast, and a dual-output resonant power 

supply. 

The derivation and verification of frequency domain models for the steady-state analysis of current­

output LCLC converters, has been presented. An input-output transfer function, for which classical ac­

analysis Can be applied to analyse the frequency response of the converter, is derived, as a function of 

standard normalised parameters i.e. Cn. Ln, Ar , "'opl and Qopl. A comparative study using results from 

SPICE simulations is used to demonstrate the accuracy of the model to predict the converter's output 

voltage characteristic, and, crucially, to estimate peak voltage and current stresses on the resonant 

components and switching devices. It must noted that the transient stress is higher than the estimated 

steady state value, and could potentially be destructive to resonant tank capacitors. Therefore, a 

designer should be aware of the limitation of cyclic prediction, and take extra precaution when dealing 

with voltage stress. Time-domain state-variable modelling could be used to assess the transient voltage 

stress and to select appropriate component rating, after a desired converter design is finalised. FMA 

based analysis is known to be applicable for light load operating conditions, above the resonant 

frequency. However, the behaviour of the current-output converter, under heavy load conditions, has 

also been considered, and boundary conditions between Continuous Conduction Mode (CCM) and 

Discontinuous Continuous Mode (DCM), analytically determined. 

Features associated with multi-resonance behaviour, for the two resonant peaks identified for 4th-order 

converters, have been explored, and operation of the resonant converter around the secondary resonant 

peak, is advised, in order to faciltate a reduction in switching losses and operation at improved power 

factor. Closer examination of the voltage and current transfer functions shows that only two ratios of 

resonant tank elements (Cn and Ln) are needed for design purposes, even though four tank elements are 
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ultimately employed in realisation of an LCLC converter. Component values for the four tank elements 

are readily obtained from the presented design procedure. In addition to designing a current-output 

LCLC converter, the underlying design equations are also useful for analying and designing converters 

encompassing a single resonant frequency-specifically, the LCC series-parallel resonant converter 

and the LLC parallel resonant converter. 

The capacitor-loaded 4 th-order resonant power converter is normally employed to overcome the 

requirement for a bulky and lossy filter inductor at the supply output, thereby further improving the 

power density. A key feature of such converters, however, is the discontinuous resonant capacitor 

voltage (vcp) , that greatly complicates the analysis. A methodology based on a set of describing 

functions that model the complex interaction between the parallel capacitor and rectifier/output-filter, 

are therefore developed. In particular, in addition to the classical single-resistor FMA approximation of 

the rectifier/output filter, an extended equivalent circuit for the LCLC voltage-output converter, is 

derived, that incorporates an additional capacitance in series with a resistor to account for the 

coupling/decoupling effects that arise from the rectifier conduction/non-conduction periods. 

Predictions of output voltage against a range of switching frequencies, for various load conditions, are 

compared with measurements on a prototype converter, and with results from SPICE simulations, with 

excellent agreement been shown throughout. 

Although, the voltage-output LCLC converter has demonstrable advantages over the current-output 

variant, it is notable from the presented analysis, that the effective resonant point of the overall circuit 

varies with load quality factor. This can be a disadvantage from a control perspective since a wider 

range of switching frequencies is required to regulate the output, particularly if the converter is 

operated over an extended load range. Additionally, the converter incurs high-ripple currents at the 

output filter capacitance, rendering the converter less suited to low-voltage, high-current applications. 

The proposed analysis methodologies, which are demonstrated to provide prediction accuracy 

comparable to that of SPICE, are eminently suitable for routine use during the design of high-order 

LCLC converters, due to the resulting low computational overhead. The presented describing functions 

have therefore also been employed to facilitate the derivation of 4-design synthesis methodologies, 

each satisfying different user-defined design constraints. Conditions under which each methodology 

might be employed, and the qualities they subsequently impart to a converter design, are also 

discussed. 
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As previously noted, large-signal simulation studies are a powerful supplement to conventional 

frequency domain design methodologies, to establish transient behavioural characteristics and 

sensitivities prior to finalising circuit designs. State-variable models of 4th -order resonant converters 

are therefore developed as an alternative tool, to SPICE and SABER simulation packages, for both 

current- and voltage-output converters. The exclusion of an inductor (Lf) in the output filter network is 

shown to complicate circuit operation, analysis and simulation of the voltage-output converter. 

Prototype converters have been commissioned to investigate the accuracy of the resulting models­

their accuracy being proven to be commensurate with SPICE models, albeit requiring lower execution 

times. Compared to previously reported large signal models for resonant circuit evaluation, the model 

developed in the present work has the following merits: 

1. Wide range of validity - The model is valid for simulation of both voltage- and current-output 

converters, over a wide range of power levels. 

2. Realistic - Circuit physical phenomena including ESR can be included in the model and the 

effects reliably simulated. 

3. Self-consistent - The model takes arbitrary input parameters such as input voltage, frequency, 

capacitance and inductance values. 

4. Rapid Simulation - The model is proven to have at least 10x faster execution speed compared 

to SPICE. 

Although the developed large-signal state-variable models are demonstrated to provide very accurate 

transient time-domain solutions, they remain computational expensive, which is often a key 

impediment the use of such techniques in a rapid interactive design environment. 

A methodology based on cyclic-mode analysis, and its subsequence averaging technique, to facilitate 

rapid steady-state analysis, is therefore developed, for both converter variants, and the resulting virtues 

demonstrated by comparing predictions with experimental measurements. From the underlying state­

variable modelling principles, dynamic matrices for each operating mode, are derived, and analytical 

formulae employed to estimate the mode duties for operation in both CCM and DCM. The subsequent 

peak electrical stresses are also estimated using extensions to the cyclic-analysis methods. The 

accuracy of the proposed analysis methodologies has also been demonstrated by comparisons with 

practical measurements, SPICE simulations and the results from non-linear state variable models, and 
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are shown to require significantly less computation overhead at the expense of only obtaining steady­

state solutions. 

For cyclic analysis purpose, although the describing functions technique presented in Chapter 6 

provides convenient mechanism for estimating the switching transition times, the sinusoidal waveform 

assumptions, along with neglecting the effect of the parallel resonant inductor current, hp, can lead to 

inaccurate estimation of the rectifier non-conduction angle, which subsequently introduces significant 

errors on the cyclically predicted converter output voltage. A new method has therefore been proposed 

that relies on localised searches, and a refined iteration procedure for estimating the required mode 

duties. The method is shown to provide accurate duty estimates over a wide operating range, and also 

for converters that provide low output voltages, when the effect of the rectifier on-state voltage (v diode), 

is significant. 

Various synthesis techniques have been developed to provide a platform for realization of LCLC 

converters for candidate industrial applications. Specifically, an LCLC resonant ballast, operating at 

2.63MHz, is considered, that is shown to facilitate capacitive discharge and appropriate filtering for 

EMI, with near-resonance switching at high load quality factor promoting high efficiency operation. 

The design utilizes the desirable characteristic of the 4th -order resonant topology, having a fixed 

resonant point, to operate the fluorescent tube at its nominal power rating, and provide a high ignition 

voltage at a pre-defined frequency. An approximation of the value of internal capacitance C,ap formed 

by the proximity of the copper tape, and fluorescent tube gas, is given, from which the required 

ignition voltage is calculated. 

Finally, the development and characterisation of dual-load, 4th-order LCLC voltage-output resonant 

converters, have been explored. Two state-variable realisation techniques are investigated, with one 

incorporating the effects of transformer leakage inductance to improve prediction accuracy. It has been 

demonstrated that the two outputs of the converter can be independently regulated to provide 

asymmetrical output voltage distributions. A comparison of measurements from a prototype converter, 

capable of delivering 5V and 3.3V suitable for standard electronic supply, with those from a derived 

state-variable model, and SPICE simulations, shows that the model provides accurate predictions of 

output voltage under steady state conditions. Moreover, a digital control scheme is realised to allow 

good transient responses from both outputs under start-up conditions, and steady-state regulation. 



Conclusions and Future Work 208 

9.2. Future Work 

The author acknowledges that whilst the work presented in this thesis provides a 

comprehensive account of modelling and design methodologies for LCLC converters, there remains 

significant scope for future investigations. 

To achieve high power density, low profile magnetic design for inductors and transformers, is critical. 

Integrated magnetics should therefore be considered. The most common problem of integrated 

magnetic structure is that they are not readily manufactured in low quantities with consistent 

properties. However, using the 4th-order LCLC resonant converter topology, all the tank and 

transformer magnetics can be integrated into a single component, thereby making it more suitable for 

high product volume manufacture. An integrated magnetic design should also make the final structure 

of the converter easier to manufacture and mechanically more stable. Compared with designs using 

discrete components, a significant reduction on footprint can also be expected. Furthermore, the 

resonant capacitor could also be integrated into the magnetic structure using planar techniques. Such 

integration will provide additional benefits, including further reducing the volume and cost for passive 

components, less interconnection and better electrical performance. 

Knowledge of the small signal characteristics of LCLC converters is essential for the optimal design of 

closed-loop feedback systems, to provide regulation of the converter output voltage when subjected to 

line voltage and output load variations, and have yet to be fully explored. 

There is an emerging necessity for systems, such as those that are microprocessor based, for supply 

technologies that provide multiple outputs of values lower than 5V, for instance, in the 1.8-3.3V range, 

and perhaps lower in future, as a consequence of increased integration of logic into single monolithic 

substrates. In such cases, the rectifier stage can constitute the greatest source of power loss, since even 

Schottky diodes have a relatively large voltage drop at high current ratings. To circumvent such 

problems, and facilitate high efficiency operation, MOSFETs with low on-state resistance should be 

considered for synchronous rectification, to replace the diodes. 

Although simulation using the control canonical form can be undertaken when analysing the dual 

output resonant converter, it incurs longer simulation time, as the model contains redundant state 

variables, with detriment to the application of the state-variable model as an interactive design tool. In 

order to abate this limitation, the augmented state space equation for VLp, due to each input should be 
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formulated in the observable canonical form. The application of this technique for the analysis and 

simulation of various complex resonant converters should be investigated in future research. 
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APPENDIX A 

Describing Function Formulae for the Analysis of 

Voltage-Output Resonant Converters 

Derivation of the output voltage from the voltage-output 4th -order resonant converter: 

Vout = t;nRL x (1 + cos(~c)) 
tr 

2RL(t;n -2tr(Vout + 2Vdiode)fsCp ) 
~ut=--~~--~~~----~ 

tr 
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v = 2RLt;n _ 4trRLVoutfsCp 8trRLVdiode!sCp (A-I) 
out tr tr tr 

( )
_ 2RL (i;n - 47ifsC pVdiode) 

Vout 1 + 4RLfsC p - ---.:::....:..:.:.=-----.:'---!:.-=~ 
tr 

2RL (i;n - 47ifsC p V diode) 
Vout = T J tr\1 + 4RLfsC p 

The fundamental of the voltage across parallel capacitor Cp obtained by summing the contributions of 

voltage-charginglvoltage-clamping components: 

VCp(l) = vcp _charge(l) + vCp _clamp(l) 

= 7;. [je-j;c_~C_je-j2;' _j~]+ 1;. [-je-};c(l-cos(;'))] 
tr 2 f sCp 2 4 4 tr2f sCp C 
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4tr fsCp 

= ;;. [-2~c + j(cos(2~J- jsin(2I/JJ)- j] 
4tr f.Cp 

= ;;n [sin(2I/JJ- 2~c + j(cos(2I/JJ-I)] 
4tr f.Cp 
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Input impedance, Z;n of the RTFMA equivalent circuit: 

( 

2trCn/ ][ 2] 2trC
n
/. [ 2] _ 12~c - sin(2~J ~ + L + /2~c - slll(2~J _ L Wopl + 1 

i(l- cos(~c )/ _. ( )1 + I wOPl
2 

n (i(l -COS(~c)/ _. ( )) + I) n w.
2 

/2~c Sill 2~c ~ 12~c Sill 2~c 

(A-3) 
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APPENDIXB 

State Variable Modelling of Dual-load Converter 

B.l. State·Space Modelling of a 2nd·Order Resonant Converter in Canonical Form 

To demonstrate the application of the control1able canonical state-space realisation for 

modelling resonant converters, a basic 2nd-order LC parallel resonant converter, is initially considered. 

111e dynamic characteristics of the converter can be conveniently separated into fast- and slow-linear 

subsystems related by coupling equations. For the resonant topology considered, the fast subsystem 

comprises of the power switches and resonant tank components, whilst the slow subsystem is made up 

of the load and output filter. The coupling equation relating the two represents the non-linear behaviour 

of the rectifier. Fig. B.t illustrates the use of partitioning on a 2nd-order CL parallel resonant converter. 

For the fast subsystem, the half bridge switches are replaced by an equivalent voltage source, V; •. 

Although rectifier is omitted, its influence on the fast subsystem is accounted for through the rectifier 

current, iR• The slow subsystem represents the output filterlload, and the output voltage from the 

rectifier, vI, is seen at the input to this sub-system. 

Cs iR iLf Lt iout 'In 
Vin Coupling 

UJJ. L,~ 1~ Vet ICt + 

1 Equation 

IVt RL JVout 
-_ .. 

- Fast sub-system Slow sUb-system 

Cs 
I ~-

Vin 

Lw .. Lp~ VL =VL_vi - VL_iR cp;' 
-

Figure B. l State-variable representation of a 2nd-order CL resonant converter. 
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The differential equations describing the slow subsystem (LrCr output filter and load Rd are, 

. iLf vCf 
VCf=----

Cf CfRL 
(B-1) 

Considering the voltage across the input and output of the rectifier, a coupling equation governing the 

action of the rectifier, can be derived. 

(B-2) 

In essence, the fast and slow subsystems can be represented by differential equations involving state 

variables and system inputs. The selection of state-variables is not a unique process. Various sets can 

be used. Some states are easier to derive, and others easier to work with, whilst some states may have 

physical significance. In Chapter 2, the resonant tank reactive components are described by state­

variables that govern their actions. For instance, the voltage across the inductor L is governed by the 

rate of change of current through it; similarly for capacitor C, the current going through the capacitor is 

directly proportional to the rate of change of voltage across it. These rates of change become the state­

variables, and when combined are used to describe the fast subsystem of the converter. 

Figure B.2 Conceptual split ofthe SISO system into two blocks. 

Conventional representation of single-input single-output (SISO) systems is given in terms of input­

output differential equations and transfer function i.e. 

n n-I • b n-I b' b Y +aly + .. . an_1y + anY = oU + ... + n-2u + n_lu (B-3) 

where 

with input, u(t) and output, y(t). 
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Neglecting the dependency on time, t, for clarity, the continuous-time dynamic systems in (8-3) can be 

represented in state-space notation by considering the equation, which represents a third-order system: 

d 3y d 2y dy 
dt3 + a. dt 2 + a2 dt + a3Y 

(8-4) 

By introducing an intennediate variable z(t) such that the system, G(s) is conceptually split into two 

blocks, as illustrated in Fig. B.2, the intennediate variable z(t) now becomes the input to the second 

block, to produce the output y(t). Hence, 

d 3z d 2z dz 
- + a. - + a2 - + a3z = U 
dt3 dt 2 dt (B-5) 

d 2z dz 
ho - + hi - + h2z = Y 

dt 2 dt 

Applying inspection, the three first-order differential equations-state variables describing the third­

order system can be conveniently written as, 

Differentiating X3 yields, 

XI =z 

XI =X2 = Z 

x2 = X3 = Z 

(B-6) 

(B-7) 

From (B-6) and (B-7), the state-space control canonical fonn. is given by a set of first-order 

differential equations-state equation and a set of single valued algebraic output equations-output 

equation. 

(B-8) 
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The first set of equations describes the dynamics of the system, and the second describes the 

measurements from the system. The advantage of the canonical form state-space realisation, in this 

case, is that it allows ordinary linear differential equations to be transformed into control canonical 

form by simple substitution of the differential equation coefficients into the dynamic state matrix, Ac 

and output matrix Cc. 

The conversion can be performed by inspection of the input-output differential equations, ignoring the 

network theory relating inductor current and capacitor voltage. Despite this, the states of the 

companion form are not physically meaningful. From the perspective considered here, the internal 

states are not particularly important, as they are purely a matter of how we select the appropriate output 

variables required by the non-linear coupling equation. 

The fast subsystem of the 2nd -order CL resonant converter now consists of the input voltage source, v,., 
and rectifier current source, iR• The input voltage source represents the periodic excitation of 

magnitude DC link input voltage at input signal frequency and duty cycle; the rectifier current couples 

the 'fast' subsystem to the 'slow' sub-system representing the output-filter and load. Considering each 

source independently, a set of input-output state-space differential equations, associated with fast sub­

system, is given by (B-9). 

(B-9) 

The controllable canonical state-space form is obtained by introducing an intermediate variable z(t) 

and, substituting (B-9) into (B6-B8): 

(B-IO) 
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Similarly, the output equation is given by, 

V L . =[0 __ 1 ]XI +V 
_VI L C In 

P s 

(8-11) 

Note, that in this particular realization of the system state has no direct physical value, and cannot be 

identified in Figure B I. The complete state-variable model with coupling equations, are therefore given 

in (B-12), and can be readily used in a MATLAB/SIMULINK environment to simulate the dynamics 

of the 2nd-order CL resonant converter. 

(B-12) 
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B.2. Controllable Canonical State-Space Derivation of Augmented Parallel 

Inductor Voltage 

Applying superposition theory, all the independent sources, except one, are removed-the fast 

sub-system is therefore given in Fig. 8.15, and can be inspected under the excitation of one source at a 

time. Removing the output rectifier current sources in parallel with resonant capacitors, Cpl and Cp2 , the 

transfer function describing the relationship between voltage across parallel resonant inductor VLp and 

input voltage, ~m can be found, as follows: 

vLp _ vi(S) 

(B-13) 
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Similarly, for the case when the circuit is excited by the 'high-side' output rectifier current source, i R1 • 

the input voltage source and 'low-side' rectifier current source iR2 is substituted with a 'short-circuit' 

and an 'open-state', respectively. The relevant Laplace domain transfer function for the input-output 

relationship, is given then by, 

S3 L L L +s[LpLts2 + LsLp]+ __ L_s_ 
s p h2 C C C C s p2 S s p2 

(8-14) 
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Employing superposition, therefore, the transfer function describing the relationship between the 

current flowing through parallel resonant capacitor, Cpl. and all independent sources Vi'" iRI and iR2 is 

given by, 

icp _ vi(S) 

53 LsLp sLp 
--+--

Cpl CsCpl 
=iR2x~------------------------------~--~~~----------------------------, 

(8-15) 
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A state-space canonical realisation of the classical transfer function can be achieved by first converting 

the prototype Laplace domain description into the relevant input-output differential form, as shown in 

(B-16), (B-17) and (B-18). 

d
6

icp vi d4icp vi d
2
icp vi. d

4
Vin d

2
V;n 

a40 6 +a41 4 +a42 2 +a43'Cp vi =b40--4-+b41--2-
dt dt dt - dt dt 

(B-16) 

1 
a43=----

CsCplCp2 

b40 = LpL/S2 

(B-17) 

(B-18) 
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Similarly, the ordinary differential equations (B-16) to (B-18) can be used to obtain the controllable 

canonical state-space representation through substitution of relevant equation coefficients into the 

dynamic state, Ac and output matrices Cc. 

"4 = Ac4X 4 + Bc4U4 Y4 =Cc4X 4 + Dc4U4 

0 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 
Ac4 = 0 0 0 0 1 0 

0 0 0 0 0 

_ [OIXS] B 4 -
c 1 (B-19) 

_ a43 0 
_ a42 0 -~ 0 

a40 a40 a40 

Cc4 = [0 ~ 0 
b40 0 0] DC4 = [0] 

a40 a40 

Ac4 = Acs _[01

"] Bs-c 1 
(B-19) 

CC4 = [bS2 0 !?R 0 
bso o ] Dcs = [0] 

aso aso aso 

AC6 = AC6 -[01

"] B 6 -
c 1 

(B-21) 

Cc6 =[~ 0 
b60 0 0 o ] Dc6 = [0] 

a60 a60 

B.3. Observable Canonical State-Space Derivation 

Although simulation using the control canonical form can be undertaken, it will be more time 

consuming, since the model contains redundant state variables. Alternatively, this problem can be 

circumvented by formulating the augmented state space equation for VLp in the observable canonical 

form. The relevant formulae -{8-2S) and (8-27) in chapter 8 is thereby modified to address the issue. 
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The state-space observable canonical fonn is given by, 

(B-22) 

where the system matrices have the special structure, 

0 0 0 -an_I b
n

_
1 

0 0 -an- 2 bn- 2 

A = B = Cc =[0 0 ... 0 I] (B-23) c c 

0 0 0 -al bl 

0 0 -ao bo 

The transfonnation to observer canonical fonn illustrated for the equivalent circuit in Fig. 8.15. From 

(8-23) and (8-26), the state-space equations for the parallel resonant inductor voltage, VLp due to 

voltage source, Vin and current sources, iR1 and iR2 in the observable canonical fonn are given by, 

XI = AoXI + BolV;n 

YI =VLp _ vi =Cox l + DolV;n 
(B-24) 

X2 = AoX2 + BoiRz 

Y2 = VLp_iRI = CoX2 + DoziR2 

(B-25) 

X3 = AoX3 + BoziR2 (B-26) 
Y3 = vLp_iR2 = CoX 3 + Do3iR2 

where 

0 0 0 0 o· -~ blO a l3 --x-
b 22 

a lO a lO a lO a lo 

0 0 0 0 0 0 0 

0 0 0 o· -~ blO a l2 bll --x-+- !!R 
A = a lO Bel = alO alO alO 

Be2 = 
alO Bcl = -Bez 0 

0 0 0 O. 0 0 0 

0 0 0 0 -~ blO all b l2 --x-+-
b 20 

alO a lO a lO a lO a lO 

0 0 0 0 0 0 0 

Co = [OSXI 1 ] Del = [1] De2 = De3 = [0] 
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Adding (B-24), (B-25) and (B-24) yields, 

(B-27) 

By defining, 

x = XI + x 2 + X3 

Y = YI + Y3 + Y3 = VLp 
(B-28) 

The observable canonical state-space equation in (B-27) simplifies to, 

(B-29) 

It is obvious that the subsequent parallel resonant inductor voltage, VLp has identical order to that of the 

resonant tank fast subsystem, thereby ensuring the uniqueness of the solution for the state-variable 

model in (8-11), (8-16) and (8-17), 
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APPENDIXC 

Implementation of Digital Controller 

Figure C.l shows the circuit diagram of a digital controller for closed-loop control of the dual-load 4th_ 

order converter. A PIC18F452 is used to calculate required turn-on and turn off times, that are then 

latched into an FPGA register. Effectively, a simple PI control algorithm, for closed loop feedback 

control of the two outputs, is implemented on the PlC microprocessor. The flow chart for the PlC cC' 

digital controller is given in Fig. C.2. 

. . 

Figure C.1 Schematic diagram of digital controller. 
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The high- and low-side gate drive control signals are generated by the FPGA using logic circuits, with 

input data from the PlC. These digital logic circuits are implemented on the FPGA XSA lOO-a 

schematic is given in Fig. C.3. The digital control circuit is constructed from two main components, 

the data latches that store the calculated times from PlC and, the combination logic that produces the 

high and low side control signals. The pair of data latches, shown in Fig. C.3(b), store the ton and toff 

times. The times are simultaneously transferred to the combination logic block in Fig. C.4(a). 

FPGA Inputs 

Done 
Setup FPGA with 

Initial Duty and Frequency 

Setup FPGA with 
Calculated Duty and Frequency 

Calculate required ton and tat 

Figure C.2 Flow chart for PlC 'C' digital control. 

Table C.l Control and data line between the PlC and FPGA. 

Functions 

9 bit data bus Contains the 9 bit binary values for ton and toJf' 

2 bit address - select I and select2 Selects which latch to be enabled. 

4 control bit - startactlow Disables FPGA output until initial times are stored in the 

latches. An active low input to start counter and enable output. 

-latch 

- pload 

- clearall 

High and Low Side 

Done Pine 

Latches data onto enabled register. 

Loads stored data onto current register pair. 

Clear all latches. 

Output control signal for high and low side gate drive. 

Goes high when FPGA finishes being con figured. 
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The combination logic block comprises of 9-bit counters, comparators and a state machine, producing 

the control signals. The comparators are used to compare the number from the PlC with the count of 

each counter. In the event when the count is equal to the number, this increments the 2-bit counter in 

the state-machine, see Fig. C.4(b), to output the control signal. This then resets the current counter and 

enables the next, hence, effectively, only one counter is active at a time. The overall control and data 

interface between the PlC and FPGA, are given in Table C.l. 

latches 

LP!Qj~------j ..... 

l!!"'~"'~>-------j_h 

~'!.W_------jtJ .. t ... 1 

~----iIltIed2 

combination logic ~ __ 
U!!>J;I!)-----j c .. ,' HO l-t~> 

SUIT 
.----!-----E3 too(80) 

Ca) 

(b) 

'------E:::::l 1OlQ •. 0) 

'------E::::; .. od2()~ 

~f(I .. r LO 

Figure C.3 XILINX FPGA XSA 1 00 schematics: (a) Top level digital logic circuit schematic and (b) date latches. 
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e 
- - r---' .. , 

-~. t--

[I '" ---I-
F,~ ~) -.INd2 r--

bit9coregen 

---CON '.......:. :01 [o t-- -=- state machine 
,t< ON> 

Cl OR' e 

~ 
'co 

-~ 
~ 

""" 

bit9coregen 
....-c-.~ [Of-Le", 
'" 
CE 

lA 
'" 

~ 
~ 
~. 

I 

[I 

(a) 

CB2CE 
ao 

CLR 

(b) 

Figure C.4 XILlNX FPGA schematics: (a) Combination logic and (b) State machine. 
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PIC18F452 'c' code for digital controller as followed: 

#include <p18f452.h> 
#include <adc.h> 
#include <stdlib. h> 
#include <math.h> 

#define tonset 50 
#define kp_duty 
#define ki _duty 10 
#define kp_freq 10 
#define ki _freq 30 

/* for analogue to digital conversion 'I 

/* Initial on time */ 
/* Proportional gain 'I 
1* Integral gain*1 

228 

#define deadtime 2 1* dead time dead time ' SOns *1 
#define initial_count 
#define demand1 
#define demand2 
#define accum_max 
#define accum_min 

#define max freq 
#define min=freq 

#define negativeselect 
#define startactlow 
#define select2 
#define select1 
#define bufferenable 
#define done 
#define latch 
#define pload 
#define clearall 
#define LED1 
#define LED2 
#define pushbutton2 
#define pushbutton 

100 
1023*5/25 
1023*3.3/5 
2000000000 
-2000000000 

66 
134 

PORTBbits.RBO 
PORTBbits.RBl 
PORTBbits.RB2 
PORTBbits.RB3 
PORTBbits.RB4 
PORTBbits.RB5 
PORTEbits.RE1 
PORTEbits.REO 
PORTDbits.RD5 
PORTDbits.RD3 
PORTCbits.RC4 
PORTAbi ts. RA6 
PORTEbits.RE2 

/* accumulator integrator *1 

/* l/maximum frequency. max freq * SOns */ 
/* l/minimum frequency. min=freq * 50ns*1 

I/global variables go here 
un.ignad int tonnum, toffnum; 
int feedbackl, data, dataton, error1, P1, ei1, esum1; 
int feedback2, error2, P2, ei2, esum2,count; 
long int accum1.0, accum2.0; 
un.igned long int temp_accum.O; 

/* 16 bit store for A to D result */ 

//functions go here ************************************************************ 
void present (void) 
{ 

char data_array [9] ,index,x; 
un.ignad int bitno, temp; 
bitno • 256; 
index lE 1; 

for (x z 1; x < 10: X++) 
{ 

temp. data & bitno; 
temp • temp - bitno; 
H (temp 0) 

data_array [index] • 1; 
alia 

data_array [index] • 0; 

1* used in for loop *1 

I*index for results array */ 

1* test each bit if 1 or zero then stores in array *1 

/*masks all other bits except bitno.2 A bit*/ 
I*result .. if bit is 1 then - bitno gives O .. Else 0 *1 

bitno = bitno»l; 1*256 .. 128 .. 64 .. 32 .. 16 .. 8 .. 4 .. 2 .. 1 *1 
index++j 

PORTDbits.RD4 • data_array[l]; 
PORTCbits.RC5 • data_array [2] ; 
PORTDbits.RD2 • data_array [3] ; 
PORTDbits.RDl • data_array [4] ; 
PORTDbits.RDO • data_array [5] ; 
PORTCbits.RC2 • data_array [6] ; 
PORTCbits.RCl • data_array [7] ; 
PORTCbits.RCO • data_array[B]; 

if (data_array [9] •• 1) 
PORTCbits.RC3 • 0; 

al .. 
PORTCbits.RC3 • 1; 

void latchdata (void) 

l*dB*II* use index to put data to correct bit *1 
l*d7*1 
l*d6*1 
/*d5*/ 
l*d4*1 
/*d3*/ 
l*d2*/ 
/*d1*/ 
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latch 
latch 
latch 

0; 
1; 
0; 

void tonselect (void) 
{ 

select1 = 1; 
select2 = 0; 
present (); 
latchdata (); 
select1 = 0; 

void toffselect (void) 
{ 

select1 = 0; 
select2 = 1 j 
present (); 
latchdata (); 
select2 = 0; 

void tdeadselect (void) 
{ 

void 
{ 

selectl ... 1; 
select2 • 1; 
present (); 
latchdata (); 
selectl == 0; 
select2 = 0; 

loadcurrent (void) 

pload • 0; 
pload • 1; 
pload • 0; 

void wait (void) 
{ 

char countl; 
countl • 255; 
do 
countl- -; 
while (countl !. 0); 
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void analogue_freq (void) f* analogue to digital conversion for feedback 1 */ 
{ 
OpenADC (ADC_FOSC_64 , f* opens and configures A to D .. all analogue */ 

ADC_RIGHT_JUST , 
ADC lANA OREF. 
ADC=CHO - , 
ADC_INT_OFF) ; 

SetChanADC (ADC CHO) ; 
DelayloTCYX(6) ;­
ConvertADC (); 
while ( BusyADC() ); 
feedbackl = ReadADC(); 
CloseADC (); 

void analogue_duty (void) 
{ 
OpenADC (ADC_FOSC_64 & 

ADC_RIGHT_JUST , 
ADC 8ANA OREF. 
ADC=CHl -, 
ADC INT OFF) ; 
SetChanAoC (ADC CH1); 
DelaylOTCYx(6) ;­
ConvertADC (); 
while ( BusyADC() ); 
feedback2 - ReadADC() ; 
CloseADC (); 

f* selects channel */ 

f* starts a to d conversion */ 
/* waits to finish *f 

f* analogue to digital conversion for feedback 2 */ 

f* opens and configures A to 0 all analogue */ 

/* selects channel */ 

f* starts a to d conversion */ 
f* waits to finish*/ 
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void intial (void) 
( 

data = tonset deadtime; 
tonnum • data; 
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dataton • data; 1* store tons .. used to alter duty 
and calc toff *1 

tonselect (); 

data = initial_count - dataton - deadtime - deadtime; 
toffnum .. data; 
toffselect (); 
loadcurrent (); 

void intial_deadtime (void) 
( 

data = deadtime; 
tdeadselect (); 

void controller_freq (void) 
{ 

errorl - demandl - feedbackl; 
Pl - errorl * kp_freq; 

accuml • accuml + (ki_freq * errorl); 

it (accuml > accum_max) 
accuml = accum maXi 

it (accuml < accum_min)­
accuml accum_mini 

if (accuml < 0) 
temp_accum .. -accurnl; 

ehe 
temp_accum .. accumli 

temp_accum » 16; 

if (accuml < 0) 
eil ~ -temp_accum; 

ehe 
eil .. temp_accum; 

esuml "" Pl+ eil; 

count .. esuml; 

if (count > min_freq) 
count • min freq; 

if (count < max_freq) 
count • max_freq; 

void controller_duty (void) 
{ 

error2 • demand2 feedback2; 

P2 = error2 * kp_duty; 

accum2 • accum2 + (ki_duty * error2); 
Controller 

if (accum2 > accum_max) 
accum2 • accum_rnax; 

if (accum2 < accum_min) 
accu~ • accum_min; 

if (accum2 < 0) 
temp_accum • -accum2; 

ehe 
temp_accum • accum2j 

temp_accum » 16; 

if (accum2 < 0) 
ei2 A -temp_accum; 

ehe 
ei2 .. temp_accum; 

1* calc toff from T toff * I 

1* proportional controller *1 

Ilaccumulator for Integral Controller 

1/ prevent accumulators overflow 

//signed to unsigned variable 

II shift unsigned variable by ki_freq 

II convert back to signed 

Iltotal error - Proportional + Integral error 

//proportional controller 

//accumulator for Integral 

II prevent accumulator overflow 

//signed to unsigned variable 

II shift unsigned variable by ki 

II convert back to signed 
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esum2 = P2+ ei2j 

dataton ... esum2j 

if (dataton > count) 
data ton count; 

if (dataton < 0) 
dataton 0; 

data • dataton deadtime; 

tonselect (); 

data • count - data ton - deadtime - deadtime 
toffselect (); 

loadcurrent (); 

void main (void) 
{ 
II main function variable go here 

lnt LEOFLASH.O; 
char duty_cont~O; 

Ilsetup ports 

READY: 

whUa (1) 

PORTB • Ox10; 
TRISB • Ox20; 
PORTD • 0; 
TRISD • 0; 
PORTC • 0; 
TRISC • 0; 
PORTE • 0; 
TRISE • 0; 

PORTA • Oxff; 
TRISA • Oxff; 

do 
{ 
bufferenable • 1; 
} 
while (done 0); 

startactlow • 1; 
bufferenable • 0; 
LE01 • 1 ; 

intial deadtime (); 
intial- (); 

{ 
startactlow • 0; 

if (done 0) 
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lion time: total error 

II test to keep duty within range! 

I*Initial value of RB4 to be 1 *1 
I*PORTB as outputs RBS as input b'00100000'*1 

1* PORT C 0 E ae outputs ... PORTA as INPUTS*I 

1* disables buffer unit FPGA configured *1 

1* dieable output *1 
1* enable buffer *1 
I*light LEO .. FPGA configured. PlC operating*1 

Ilgets dead time 
Ilsets initial duty cycle 

II enables output 

II TEST to check FPGA atill configured and ON 

LE01 • 0; IIFPGA no longer programmed .. 
gato READY 
} 

analogue_freq (); 
analogue_duty (); 
controller_freq (); 
controller_duty (); 

lf (LEOFLASH •• 600) 
{ 

LED2 • 1A LE02j 
LEOFLASH"Oj 
} 

LEOFLASH++j 
} 

II performs A to 0 converaion 
Ilea1e. duty trom Btod. 

I IUashe. LED 

/. end of while loop ./ 
/. end of Ilin function ./ 


