
Uncertainty Propagation Through Large 
Nonlinear Models 

William Becker 

A thesis submitted to the University of Sheffield for 

the degree of Doctor of Philosophy in the faculty of 

Engineering. 

Department of Mechanical Engineering 

January 2011 

University of Sheffield 



ii 



Abstract 

Uncertainty analysis in computer models has seen a rise in interest in recent years as 
a result of the increased complexity of (and dependence on) computer models in the 
design process. A major problem however, is that the computational cost of propagating 
uncertainty through large nonlinear models can be prohibitive using conventional methods 
(such as Monte Carlo methods). A powerful solution to this problem is to use an emulator, 
which is a mathematical representation of the model built from a small set of model runs 
at specified points in input space. Such emulators are massively cheaper to run and 
can be used to mimic the "true" model, with the result that uncertainty analysis and 
sensitivity analysis can be performed for a greatly reduced computational cost. The work 
here investigates the use of an emulator known as a Gaussian process (GP), which is 
an advanced probabilistic form of regression, hitherto relatively unknown in engineering. 
The GP is used to perform uncertainty and sensitivity analysis on nonlinear finite element 
models of a human heart valve and a novel airship design. Aside from results specific to 
these models, it is evident that a limitation of the GP is that non-smooth model responses 
cannot be accurately represented. Consequently, an extension to the GP is investigated, 
which uses a classification and regression tree to partition the input space, such that 
non-smooth responses, including bifurcations, can be modelled at boundaries. This new 
emulator is applied to a simple nonlinear problem, then a bifurcating finite element model. 
The method is found to be successful, as well as actually reducing computational cost, 
although it is noted that bifurcations that are not axis-aligned cannot realistically be dealt 
with. 
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Chapter 1 

Introduction 

True wisdom consists in knowing that you know nothing. 

(Bill S. Preston Esq., paraphrasing Socrates - see above) 

Perhaps one of the most profound changes to engineering in the 20th century was caused 

by the advent of computers. Computers have enabled calculations to be performed of 

a complexity and scale that would have been inconceivable in previous centuries. Fur­

thermore, as processing power has increased exponentially, so has the ability to perform 

increasingly complicated calculations. Finite element (FE) models are a case in point. 

A very complicated structure may be divided into much smaller and simpler elements, 

each of which is governed by well-known equations describing displacement and stress as a 

result of applied forces and boundary conditions. As the availability of computing power 

has dramatically increased, so the complexity and scale of FE models has followed, to the 

point where models with millions of elements are no longer seen as exceptional. This trend 

is reflected in every type of computer model used in engineering today. 

Since computer models offer enormous insight into the workings of complicated systems, 

for a fraction of the cost of prototypes and tests, they are very attractive to engineering 
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Figure 1.1: A "black box" view of a computer model. 

2 

industries. Large engineering projects now rely heavily on computer models, which have 

become an integral part of the design process - examples of such "virtual prototyping" 

can be found in all major engineering companies. 

1.0.1 A Black Box View 

All computer mod Is can be considered as systems that take a number of input parameters 

x = {xd1=1 (such as material properties, loads, boundary conditions etc. for an FE 

model) , and return a number of outputs y (displacements, stresses, velocities etc.) , i.e. 

y = f(x) (1.1) 

F igure 1.1 illustrates this "black box" view. The mapping of the inputs to the outputs 

is controlled by a number of mathematical relationships, which can be considered as a 

function f(x). There is little doubt that with the increase of processing power it has been 

possible to greatly increase the sophistication of the equations that dictate the model 

outputs given some set of inputs - multiphysics simulations can now closely simulate in­

teractions between solids and fluids, with magnetic and thermal considerations if required. 

However, the quality of the model output is also highly dependent on the quality of the 

inpu t values themselves, all the more so since more sophisticated models typically require 

more information to be defined than simpler ones. Consider for example the material 

definition in an FE model: only a few years ago many materials were approximated as 
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Figure 1.2: Number of publications per year with "uncertainty" in the title (sourc Scopus 
[1]) . 

being linear due to restrictions in processing power, which requires the definition of only 

one or two parameters. Modern material models describing hyperelastic and viscoelastic 

materials now require a great number of parameters to fully specify the material alone. 

1.1 Uncertainty in Computer Models 

Given the increased sophistication and reliance on computer models, it is becoming increas­

ingly apparent that uncer'tainties in the model inputs create uncertainty in the outputs 

and results of the model that cannot be reasonably di counted. This has given rise to 

the discipline known as Uncertainty Analysis (UA) , which has een a considerable surge 

of interest in recent years. VA seeks ultimately to quantify the uncertainty in the output 

of a model, given the uncertainty in the model inpu ts, which allows much more informed 

decisions to be taken based on model re ults. Figure l.2 shows a histogram of publications 

with the word "uncertainty" in the title in engineering journals from 1980 to the present 

day. This illustrates (somewhat crudely, given the concurrent increase in publications in 

general) the rise in interest over recent years , reflecting the increasing awareness of the 

problem as industry relies more heavily on computer models. 

As Bill S. Preston Esq. asserts at the beginning of this chapter , "true wisdom consists in 

knowing that you know nothing". As engineers, we do not have the luxury of such extreme 

assertions, but we are responsible for fully accounting for what we do and don 't know. 
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This can be a much more difficult task than might first be thought - see Chapter 2. 

The difficulty of describing "knowns" and "unknowns" was famously described by Donald 

Rumsfeld: 

Reports that say that something hasn't happened are always interesting to me, 

because as we know, there are known knowns; there are things we know we 

know. We also know there are known unknowns; that is to say we know there 

are some things we do not know. But there are also unknown unknowns - the 

ones we don't know we don't know. 

(Donald Rumsfeld, 2003) 

Despite earning almost universal ridicule, this statement is actually quite logical and begins 

to make distinctions between different types of uncertainty. A brief discussion on types of 

uncertainty follows here, which is continued in Chapter 2. 

1.2 Sources of Uncertainty 

Uncertainties can occur for a number of reasons. Broadly speaking, they can be di­

vided into two categories: epistemic uncertainties, and aleatoric uncertainties. Aleatoric 

uncertainties are those which arise from natural variability - for example, dimensional 

uncertainties due to machining tolerances, or inherent geometric variability between simi­

lar components. Diomechanical models are an excellent example of aleatoric uncertainty: 

consider a model of loading on a human bone - the dimensions and material properties 

vary from person to person, so it is essential to consider this variability if the model is to 

be generally applicable, rather than applicable to a specific individual. 

Epistemic uncertainties, on the other hand, are due to the difference between a model's 

theoretical approximation and reality; an example of this might be approximating a vis­

coelastic material by a simple time-independent model. These can be intentional, to reduce 

computational expense, or due to lack of knowledge. Some uncertainty can be considered 

as a mixture from both epistemic and aleatoric sources: it might be known that the ma­

terial properties of a component vary from one component to the next (aleatory), but a 

small sample size may not permit the distribution of this parameter to be known with 

great accuracy (epistemic uncertainty). Generally aleatoric uncertainties cannot be re­

duced, whereas epistemic uncertainties can, by further research to improve the correlation 

of the simulation to reality. 
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1.3 Uncertainty Analysis 

Uncertainty analysis is the discipline of accounting for uncertainty in systems, which often 

occurs in two steps. First of all, the uncertainty in model inputs must be quantified. Sec­

ond, the uncertainty is propagated through the model, resulting in a quantification of out­

put uncertainty. Sometimes it is necessary to combine information about uncertainty from 

different sources and frameworks; this is known as the fusion problem. Regarding quan­

tification, the most popular framework is probability theory, since it is well-understood 

and easily interpreted by anyone with a basic mathematical background. Fusion is also an 

area of research that is still largely confined to mathematical research groups. As such, the 

majority of interest from an engineering perspective has been generated by the problem 

of propagating uncertainty. A much more extensive discussion of these aspects of UA is 

given in Chapter 2. 

1.3.1 Computational Expense 

Perhaps the main sticking-point of uncertainty propagation is however that it can be enor­

mously time-consuming from a computational perspective. A large FE simulation may 

take hours or even days to run for a single set of input parameters. With the consideration 

of uncertainty, the input x can now be considered as a point in a d-dimensional input 

hyperspace which is bounded by the upper and lower limits of each uncertain parameter. 

The propagation of uncertainty involves exploring this input space in order to find how the 

value of y varies with variations of x. Clearly, the computational cost of doing this rises 

dramatically with the number of uncertain inputs, to the point where it may be unfeasible 

without enormous amounts of processing power, or even completely impossible. A good 

example of this is a fairly recent calculation performed at Los Alamos National Labora­

tories to propagate uncertainty through a nonlinear FE model of a weapon component 

under blast loading. The analysis took over 72 hours on a 3968-processor cluster, using 

nearly 4000 Abaqus/Explicit licences [2]. Obviously this amount of processing power is 

not available to many, and even when it is available it may not suffice. 

1.3.2 Solutions 

In order to alleviate this problem, many approaches to propagating uncertainty for reduced 

computational cost have been proposed. A large class of these are based on the idea of 

using a small number of model runs at points in the input space to build an emulator of 

the model that imitates the function f(x), but at a greatly reduced computational cost. 

The emulator is then used to explore the input space and propagate uncertainty. This 

approach has been shown to work well, but is only effective if the emulator accurately 



1.4 Objectives of this Thesis 6 

reproduces the input/output relationship of the model over the full range of input space. 

The problem of uncertainty propagation is therefore very closely associated with the dis­

ciplines of data modelling and machine learning. In particular, nonlinear models generate 

response surfaces (the hypersurface of the model output as a result of varying the inputs) 

that are difficult or impossible to characterise with "conventional" regression models. In 

the extreme case, the response surface may even bifurcate. There is therefore a necessity 

to develop ways of performing U A with emulators that can emulate as wide a class of 

computer models as possible. This is the main motivation of this thesis. 

1.3.3 Sensitivity Analysis 

A furtherance of VA, known as Sensitivity Analysis (SA), is the concept of finding how 

sensitive the model output is to each input or set of inputs. SA is very closely tied to VA 

because it forms part of the prognosis resulting from an VA: often the majority of output 

uncertainty is caused by only a small set of input parameters, so it is of great interest to 

focus efforts to reduce input uncertainty on these parameters. SA will therefore feature 

extensively in the following chapters. 

1.4 Objectives of this Thesis 

The work in this thesis can be considered from two viewpoints. From the point of view of 

uncertainty analysis, it aims to outline in detail and investigate the use of new emulator­

based approaches that are novel to the field of engineering research. The focus here is on 

the ability to propagate uncertainty through large nonlinear computer models and perform 

sensitivity analysis for a reasonable computational cost. The work aims to apply these 

methods to real FE models in order to test and demonstrate their use on real engineering 

problems, since these nascent approaches are generally developed in the machine learning 

and statistics communities, and have been applied very little outside of trivial problems. 

This first objective may therefore be summarised as, 

1. To investigate and apply new techniques for propagating uncertainty through large 

nonlinear engineering models at a reduced computational expense. 

From another point of view, the models developed in the work here are themselves novel, 

particularly given their consideration of uncertainty. Therefore the application of the 

emulator techniques is not merely a case study or trivial problem, but offers new insight 

into the respective problems of each model. This second aim can be stated as, 

2. To use the emulator propagation techniques from (1) to offer new insight into the 

problems of each case study. 
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FUrthermore, it is intended that by examining and using these techniques in detail, the 

efficacy of each can be assessed and extensions to the methods suggested where appropri­

ate. 

1.5 Summary of Chapters 

This thesis is structured as follows: 

Chapter 2 

Uncertainty analysis is explained in depth, with a thorough review of contemporary ap­

proaches to the quantification, fusion and propagation of uncertainty. Sem;itivity analysis 

is then introduced and some common measures of sensitivity discussed. Next, the issue of 

computational expense is addressed, and some solutions in the engineering literature are 

outlined. The ideal qualities of an emulator are presented, and the Gaussian process (GP) 

is introduced as an emulator that fulfils many of these criteria. 

Chapter 3 

Gaussian processes are introduced in depth, with a step-by-step walkthrough of the 

Bayesian process of conditioning the prior distribution on training data to produce a 

posterior distribution-over-functions (Le. training the GP). Next, the marginalisation and 

estimation of hyperparameters is presented in detail. Finally, the process of obtaining 

analytical sensitivity and uncertainty mea"lures is given. Overall, this chapter aims to 

present one of the most complete descriptions of GP-based UA and SA available. 

Chapter 4 

The first case study for Bayesian UA/SA is presented here, which is the modelling of 

the aortic valve in the human heart. Two FE models are presented that are both novel 

in different ways. The first model is a "dry" pressure-loaded model that is specified 

almost entirely by geometric parameters. A second, "wet" model is a sophisticated fluid­

structure interaction model that is at least comparable to contemporary models in the 

biomechanics literature, using anisotropic hyperelastic material models and considering 

geometric nonlinearities. 
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Chapter 5 

Uncertainty and sensitivity analyses are performed on both aortic valve models using the 

GP emulator approach. Geometric, material and loading parameters are investigated and 

conclusions are drawn from a biomechanical perspective, given that the work here repre­

sents the only consideration of uncertainty in heart valve models to date. Observations 

are also made on the success of the GP emulator: while in general it performs extremely 

well, the possibility of model bifurcations motivates further work in Chapters 8 and 9. 

Chapter 6 

A second case study is outlined here, which is a model of an new airship design in produc­

tion in Italy. The concept of the design and its applications are explained. A series of FE 

models of the airship are presented, which are to be used to assess stress and displacement 

in the design under normal loading from propellers and buoyancy, with the final model 

ultimately including fluid loading from a gust impact. 

Chapter 7 

The airship models from Chapter 6 are subjected to uncertainty analyses, again using 

the Bayesian approach from Chapter 3. The work here is used to assess the effect of 

uncertainties in the models in order to make better decisions regarding the design of the 

ship. Further conclusions are also drawn regarding the use of the GP emulator. 

Chapter 8 

Given the issue of possible model bifurcations raised in Chapter 5, this chapter introduces 

an extension to the GP emulator which uses classification and regression trees (CARTs) to 

divide the input space into more homogeneous regions. The Bayesian approach to CART 

is demonstrated on a simpler regression tree, then the method is shown to be extendable to 

the "tree-structured GP" with several alterations. Finally it is demonstrated on a simple 

case study of a Duffing oscillator that the this new emulator is capable of modelling 

bifurcating data by creating divisions of input space over bifurcations, whereas a single 

GP introduces unwanted fluctuations in the posterior mean. 

Chapter 9 

A case study of a bifurcating FE model is presented to investigate the ability of the 

tree-structured GP to model data from a real bifurcating engineering model. The model 

investigates the movement and stress in a rigid-stent prosthetic heart valve, which is known 
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to bifurcate. The data is used to construct both tree-structured and "standard" GP em­

ulators, and the results compared. Finally, a brief study is performed on the effect of 

reducing training data for the tree-structured emulator. Conclusions about the compara­

tive abilities of both emulators are drawn, where it is noted that the tree-structured GP 

has additional advantages as well as its ability to model bifurcations. 

Chapter 10 

Conclusions from all chapters are summarised and further work is suggf'sted. The bibli­

ography and appendices follow. 
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Chapter 2 

Uncertainty Analysis: An 

Overview 

This chapter aims to outline in more detail the steps and difficulties involved in VA, and 

presents an overview of the various approaches that have been developed, with a view to 

putting the work in the rest of this thesis into context. The main aspects and issues of 

VA are outlined in Section 2.1, including a review of many of the various frameworks that 

exist for quantifying uncertainty, the relations between them and the practical details 

surrounding their implementation. In Section 2.3 the specific problem of propagating 

probabilistic uncertainty is examined, with recent developments described. The concept 

of sensitivity analysis is then introduced in Section 2.2 as a natural extension of VA, 

being a tool to explore in more depth the effects of uncertainties. It will be seen that 

one of the main stumbling blocks of uncertainty and sensitivity analysis is the problem of 

computational expense, therefore a class of methods known as "emulator-ba.,.,ed" methods 

is introduced in Section 2.4. This provides the motivation for the work in Chapters 3 and 

8. 

2.1 Issues in Uncertainty Analysis 

It usually agreed that the process of uncertainty analysis raises three key issues. At 

the most fundamental level, the magnitude and nature of the uncertainty about a given 

quantity must be expressed in some mathematical way. This is known as the problem 

of quantification. Probability theory is undoubtedly the most well-known framework, but 

there are in fact many alternatives, each with its own advantages and disadvantages. In­

deed, some offer considerably more general and flexible methods of expressing uncertainty, 

in particular the ability to express subtle shades of partial ignorance. However many of 

these frameworks are relatively recent and some have made only a limited impact outside 

of largely theoretical examples. An intrinsic problem is that uncertainty should ideally be 

11 
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prC'cis<'iy expressed, which means that a framework should be able to express the vagueness 

that exists about a quantity, without adding any unnecessary assumptions, and equally, 

without bdng over-conservative. A discussion of the main methods of quantification is 

provided in Section 2.1.1. 

Given that for a particular problem a number of different types of uncertainty may be 

present, each could conceivably be expressed in the uncertainty framework that is the most 

suitable for that particular quantity. Alternatively, for a single quantity, two measures of 

uncertainty may exist from different frameworks. This then creates the second problem 

surrounding UA: that of fusion. This is the problem of translating from uncertainty 

expressed in one framework to another in order to fuse the data from the two frameworks 

into a single, more informative expression about uncertainty in that variable. It is evident 

that the various frameworks discussed here are related to each other in many ways; in fact, 

s01l1e may be seen as special ca"les of other more general theories. Although the fusion 

problem is almost certainly the least-investigated problem of the three mentioned here, a 

short overview of recent developments is given in Section 2.1.2. 

Finally, the problC'm known as propagation is usually the subject of the most interest 

in the field of engineering. In short, if the uncertainty in some model inputs has been 

quantified in some way, what will be the uncertainty in the outputs and results of the 

model? This problC'm is undoubtedly the most studied because it gives the end product 

of uncertainty analysis: the output uncertainty. For a system that can be expressed 

in terms of a set of tractable equations, uncertainty can be propagated analytically. In 

most cases however, models are not analytically tractable and can be viewed even as 

unknown functions of their inputs - unknown in the sense that for a particular set of 

input values the output is not known until the model has been run. The problem is further 

compounded by nonlinearities in the model response: small variations in inputs can cause 

disproportionately large variations in any of the model outputs and even bifurcations. This 

leads to the general class of propagation techniques known as sampling-based approaches. 

As will be seen, the main hurdle to be overcome is that the accuracy of propagation is 

strongly related to computational expense, so much so that standard methods can quickly 

become unviable for large problems. This is discussed at length in Section 2.4. A discussion 

of methods of propagation is given in Section 2.1.3. 

2.1.1 Quantification 

A brief outline is given here of some of the main frameworks for dealing with uncertainty. 

Although probability theory will be used throughout this thesis for reasons stated later, 

to put this work in context in the wider field of uncertainty analysis it is useful to briefly 

examine the alternative theories that are available for dealing with quantification of uncer­

tainty. Klir and Smith compare various theories and categorise them in two "dimensions" 
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Figure 2.1: Classificat ion of uncertainty th ories a cording to Klir an I Smith [3] 

[3] as shown in Figure 2.1. The fir t dim nsion deal with the lassifi ation of set . In clas­

sical crisp probability th ory, for xample, a probability i ' as 'ign d to a 'ubs t of vents 

in some universal et . This concept can b ext nd d to as ign probabilitie to fuzzy s l , 

known as probability theory based on fuzzy v nt [4] . Aside from fuzzy . ts , 7'ough s ts 

(sets where the upp r and lower bounds are themselve d fin d by sets) [5] and fu 'ions 

of the two approach s (rough fuzzy sets andfuzzy TOugh sets [6]) ar alternativ ways of 

defining uncertainty on a et. Fuzzy et are di u d later in this tion , but rough 

ets will not b further discussed , sin e th y ar a r latively recent d v lopm nt. Th 

interested reader can however refer to [7]. 

The other dimension deal with the me ur m nt of uncertainty as 'igned to a given t of 

ev nts (be ita cri p , fuzzy or rough et etc.). Thes are defin d as rnonoton rneaSUT' , 

because they satisfy the condition of monotonicity with r p ct to ub thood ord ring, 

i.e. for all subsets A and B in some universal et e , if A ~ B , th n a monotone measure 

9 is such that g(A) ~ g(B). 

Monotone measures may be divided into additive and non-additive m asure . For example, 

classical probabili ty theory uses an additive measur , i.e. for two vent A and B , 

g(A U B ) = g(A) + g(B) (2 .1) 
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whereas the more general non-additive branch of monotone measure theory allows for 

cases where g(A U B) =1= g(A) + g(B), therefore capturing types of uncertainty that cannot 

be dealt with by probability theory alone. Not all of the theories in Figure 2.1 will be 

discussed here, since a number of them have made little progress beyond the mathematics 

literature. Instead, only a selection of the main frameworks that have been applied to 

engineering will be discussed. The subject of quantification is however discussed in much 

more detail in a recent book by Klir [8]. 

Interval Theory 

One of the most basic expressions that can be made about uncertainty in a variable is 

that it is within an certain interval. For example, given an uncertain quantity x, it might 

be known that it lies between an upper bound x and a lower bound ~, but no other 

information is available. Such expression of uncertainty underlies the concept of interval 

analysis, which was outlined to a large extent by Moore [9] in 1966. More formally, an 

interval xl is expressed as, 

(2.2) 

The concept of intervals on scalar quantities can be extended to interval vectors and 

interval matrices, for example the d-dimensional interval vector xl is expressed as, 

31= (2.3) 

Thus, whereas a crisp (deterministic) vector will describe a point in d-dimensional space, 

an interval vector describes a d-dimensional hypercube which is bounded by the upper and 

lower limits of each component of the vector. Perhaps the most significant limitation of 

interval analysis is that it is an extremely crude method of specifying uncertainty, merely 

between one value and another. However, this could also be viewed as an advantage in 

the case where upper and lower limits are the only information available (which is not 

an uncommon situation). Interval theory will be seen to be closely related to fuzzy set 

theory - in fact, perhaps the main application of interval analysis in recent literature is 

as a basis for implementing fuzzy set theory (see later). 

Probability Theory 

Probability theory is certainly the most widely-used and well understood method of quan­

tifying uncertainty. An uncertain random variable X in some sample space X (the set of 

all possible outcomes of X) is assigned probabilities p(X) for each value of X EX, such 
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that, 

p(x) -+ [0,1] V x E X 

LP(x) = 1 
xEX 
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(2.4) 

In the case when X is continuous, probabilities cannot be assigned to point values of x. 

Therefore it is convenient to define the probability distribution of x in a number of ways, 

for example, the cumulative distribution Junction (cdf) P(x) describes the probability of 

X being equal to or below x. More commonly however, a probability density Junction 

(pdf) p( x) is used. It is a function that defines the probability of X falling inside a given 

interval [x, x + <5x], such that, 

l
x +.sx 

p{X E [x, x + &x]} = x p(x)dx (2.5) 

The univariate case can be generalised to a multivariate pdf for a d-dimensional random 

variable (hereafter pdf will refer also to the multivariate pdf) denoted p(x), which gives 

the individual pdfs of each variable Xi and the dependencies between them. An example 

of this is the multivariate Gaussian distribution, which is given here (since it will feature 

significantly in this thesis), 

(2.6) 

where J-L is a d-dimensional vector of means and ~ is a dxd covariance matrix that gives 

the covariance between inputs. An important aspect of multivariate pdfs that will be 

stated here is the idea of marginalisation, which is stated as, 

p( x,.) = 1 p( x)dx_r 
X-r 

(2.7) 

which states that the distribution of x,. c x can be obtained by integrating with respect 

to the variables in the complementary set X-r over their sample space x- r • 

An important distinction in probability theory that should be mentioned here (and the 

source of ongoing dispute) is the difference between the Jrequentist and Bayesian inter­

pretations of probability. From the frequentist perspective, probability is defined as the 

limit of frequency of occurrence of an event over a large number of trials. This of course 

introduces the limitation that probabilities of events that have not been witnessed yet 

cannot be formally specified. In the alternative Bayesian viewpoint, probability is consid­

ered to be a degree of belief. Probabilities and distributions can therefore be assigned to 

events about which there is some subjective opinion or prior knowledge. Bayesian infer­

ence, which is the process of inferring unknown quantities through prior assumptions and 

further evidence, is used extensively in this thesis. Briefly, inference is performed using 
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an updating procedure known as Bayes' Theorem, such that the probability of an event 

B given some evidence A is given as, 

(BIA) = p(AIB)p(B) 
p p(A) (2.8) 

where p(BIA) is called the posterior probability (of B), p(AIB) the likelihood, p(B) the 

prior probability and p(A) is a normalising factor. Bayes' theorem is often used to estimate 

model parameters e through Bayesian inference, sometimes by finding the posterior mode 

of E>, a process known as maximum a-posteriori (MAP) estimation (see [10]). 

A probability distribution is considerably more informative than the intervals described 

previously. The pdf p(x) can take any number of forms so long as the pdf integrates to 

lover X. This means that potentially any distribution of probability can be expressed, 

as long as a suitable pdf can be defined. Much like interval analysis, the main strength of 

probability theory is also its weakness, although in this case the issue is that uncertainty 

must be expressed in some detail. Even the simplest pdf, the uniform distribution, implies 

that probability is uniformly distributed within a given range. Interval theory, in contrast, 

makes no assumption whatsoever about the distribution of uncertainty inside the interval. 

In the case where detailed information is available about the uncertainty of a parameter, 

probability theory is an excellent choice. However, quite often the distribution of a variable 

is unknown and must be elicited. This is itself an active field of research - a full treatment 

is given in [11]. Even then, a lack of information can force assumptions to be made about 

the nature of uncertainty in a variable that cannot be justified by the available data. 

Possibility Theory 

First outlined in detail by Lotfi Zadeh [12], possibility theory is viewed as an alternative 

to probability theory that allows for more subtle expressions of uncertainty and partial 

ignorance. Whereas probability theory allows only a single measure of uncertainty (the 

probability of an event), possibility theory uses two measures, known as the possibility and 

the necessity. The possibility measure of an event A from the universal set e is defined 

such that pos(A) -+ [0,1], in much the same way as probability. However, a probability 

measure of 1 suggests that an event is certain to happen, whereas a possibility measure 

of 1 only suggests that it is completely possible that this event occurs, or in other words, 

one would not be at all surprised if the event occurs. This can be stated as: 

• pos(A) = 0 implies that A is completely impossible 

• pos(A) = 1 implies that A is completely possible, plausible or unsurprising 

Possibility can of course take any measure in the interval [0, 1], expressing varying degrees 

of belief about the possibility of A occurring. To complement the possibility, the necessity 
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Figure 2.2: Interpretation of variou regions in po sibility/necessity. 

must also be expressed. This is defined as, 

nec(A) = 1 - po (A) 

17 

(2.9) 

where A here denotes the complement of A in the universal set . Between the two measure , 

it is possible to express more subtle levels of unc rtainty than with probabili ty theory. 

Consider three situations: 

• pos (A) = 0 implies that A is impossible. nee (A) must also be zero. 

• pos (A) = 1 implies that A is completely possible. nec (A) can take any value. If 

nec (A) = 0 , this implies complete ignorance about A , i.e. A is definitely possible, 

but it would be completely unsurprising if it did not occur. 

• nee (A) = 1 implies that A is completely n cessary and therefore will definitely 

occur. This requires that pos(A) = 1. 

An illustration of this is given in Figure 2.2. Possibility mea ures follow a serie . of rules, 

much like in the probabili tic framework, that allow unions of possibili ties, in tersections 

and conditional pos ibilities . For further information, see [13]. 

Fuzzy Sets 

Fuzzy set theory was first introduced by Lotfi Zadeh [1 4] (also one of the principle de­

velopers of possibility theory). In contrast to conventional et theory, where an element 
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Figure 2.3: Illustration of nlf'mbership functions of fuzzy quantities: general fuzzy quantity 
(top); fuzzy number (middle); fuzzy interval (bottom). 

cith('r d('finitely belongs or definitely does not belong to a given set, a fuzzy set has an 

associated membership function that states the degree of membership or belonging to the 

set IlS a vallie in the interval [0, 1 J. Thus a "crisp" (conventional) set can be seen as a 

sIwcial (~ase of a fuzzy set, wh('re an element's membership is only allowed to take a value 

of eitiH'r 0 (it is not in the s('t) or 1 (it is in the set). A fuzzy set A is written as, 

(2.10) 

where II A is the membership function that a"lsigns a membership value to any x. As with 

other frameworks for uncertainty, fuzzy sets have a system of rules governing operations 

such as unions and intersections of sets. The reader is referred to Klir's book [15] for 

furth('r information. It is important to point out here that the membership function of 

a fuzzy set is not equivalent to the probability distribution of a random variable (which 

is a common misunderstanding). The difference is subtle but important: whereas a fuzzy 

set assigns levels of membership to known and fixed elements of the universal set e, 
probability theory a"lsumes a crisp set, but it is the values of the elements of e that are 

uncertain. Therefore, fuzzy sets should not be viewed as an alternative to probability 

theory; rather, the two can complement each other to a large extent. This is discussed in 

d('tail in [16]. 

A COllcPpt which is of particular interest in the context of uncertainty in modelling is that 
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of fuzzy quantities. Fuzzy quantities are a special case of fuzzy sets, since a fuzzy quantity 

can be thought of as a fuzzy subset of lR. A membership function can be defined ov('r sOllie 

range of values to express the uncertainty surrounding some particular input paranH'ter 

(see Figure 2.3). In particular, if the membership function is triangular, it is terIlH'd a 

Juzzy number, whereas if it is trapezoidal it is referred to as a fuzzy interval (although 

fuzzy intervals are also sometimes referred to as fuzzy numbers). Fuzzy quantities have 

been used extensively in UA in engineering - some instances include fuzzy finite d(,llH'nt 

analysis applied to vibration analysis [17] and fault diagnosis using fuzzy logic [18J. Fuzzy 

quantities do have the disadvantage however that they force quite strong assumptions 

about the nature of the membership function and therefore ideally require cousiderable 

knowledge of the distribution of the quantity of iuterest. 

Non-Standard Fuzzy Sets 

It is worth briefly mentioning some of the extensions of fuzzy S(·ts that have b('(,11 pro­

posed. In the first instance, interval-valued fuzzy sets are fuzzy sets wh('re the llIC'miwrship 

function is itself uncertain, and assigns an inter-val of meml)('rship rathC'r than a crisp llIem­

bership value. Another way of looking at this is to (!<·fine the lI}(,lIllwrship fUllction as an 

interval, 

(2.11) 

If this is not uncertain enough, there exist type-2 Juzzy sets, in which the llI(,llll)(,fship 

function is itself defined on fuzzy intervals. Then·fore, for a giv('n x, the llwnil)('rship 

function will return a fuzzy quantity dC'scribing the ll1ell1b('rship lew'l of x. In fact, this 

concept can be extended to further nested levels of membership fUIIctions, although the 

practical value of this is questionable. 

Another extension, known as a level-2 fuzzy set, is to define a numl)('r of diff('rent levd-

1 (standard) fuzzy sets, which are themsC'lves groupC'd together into a fuzzy s('t. This 

nesting of fuzzy sets allows higher-order concepts to be r<'presented by lower-lev£'! OI1('S. 

As with type-2 fuzzy sets, level-2 fuzzy sets can naturally be extend('d to further levels as 

required, but again these higher orders have seCl1 little investigation a.'i yet. Some further 

manifestations of fuzzy sets are discussed in [8]. 

Dempster-Shafer Theory of Evidence 

Dempster-Shafer Theory (DST) is a theory of evidence based on work by Dempster [19] 

and Shafer [20] in the 19GOs and 1970s. Like possibility throry, DST allows a slightly more 

general framework than probability theory since it is non-additive and then·fore allows 

more subtle expressions of partial ignorance. A particular distinction is that instead of 

only assigning probability mass to single elements, probability mass can be assigned to 
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sub.'lds of elcllwnts. 

L(,t t he frame of discernment H (othC'rwise known as the universal set in other frame­

works) be dditwd as the ('xhaustive s('t of pm;sible events. The elements of {28 }, which 

arc all the possible subsets A of H, are given a probability mass m known as the basic 

bdifJ assignment (I3I3A), such that 

m(A) ~ [0,1] 'V A ~ 8 

m(0) = 0 

Lm(A) = 1 
A~B 

(2.12) 

wlH're 0 i:; the empty set. Any subset A of 8 where m(A) > 0 is called a focal element. 

If all focal E'il'llwnts arc singletons (Le. contain only one element), this is the special case 

of I3ay<'sian probability theory - i.e. fl.'!signing belief to single events or non-overlapping 

suhs(,ts of ('wnts. DST th('refore extends probability theory by allowing a degree of un­

c('rtainty or ignorance, because helief in events can "overlap" between different subsets. 

Partial ignorance is often r<'presmtcd by assigning a proportion of the unit belief mass to 

the ('utire fmme f), since this implies no special knowledge about any subset of 8. 

Tlw bdifJ of an eV('Jlt D is related to the DI3A of subsets of A by, 

Dd(D) = L m(A) (2.13) 
A<;H 

which SUIll:; all the probability mfl.'!s that is in support of n occurring. A further measure, 

kuown fl.'! the plausibility, is defined as, 

PI(D) = L m(A) (2.14) 
AnHI0 

whi('h expr('ss<'s the total belief mass that could be assigned to n if all unknown facts 

we're found to support D. Finally, a third measure is sometimes used, known as the doubt, 

whieh is related to the belicf such that, 

Dou(D) = Bcl(D) (2.15) 

i.e. the total probability mass in support of D not occurring. It should be emphasised 

that since belief and doubt do not necessarily sum to unity, DST can represent an interval 

of uncertainty that is beyond the scope of probability theory (see Figure 2.4). In fact, 

belief and plausibility actually r<'present the upper and lower bounds of the "true" belief 

in an event. The probability mass assigned to the belief and doubt is fixed, but if the 

ignorance wcre somdlOw removed (by gaining further information) the remaining mass 
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Figure 2.4: Dempster-Shafer a signment of belief and un rtain ty across th unit in terval 
(adapted from [21]). 

could be assigned to either further doubt in an event, or furth r support, so t hat t he t rn 

belief of B can be anywhere in the int rval [B I(B), PI(B)J. 

DST has been successfully applied in th cont xt of damag 10 at iol in air raft [21], faul t 

diagnosis in engines [22J and fault diagnosi in induction motor ' [23J. H w v r it still 

remains largely within the confines of simple th or t ical appJi ati n . 

2.1.2 Fusion 

As stated previously, fusion between th variou th ori fun rtainty is h I a ·t ill V /;­

tigated of the three problems of UA. The Klir diagram in Figur - 2.1 do ' how vcr 8h w 

that , in particular , there has been some work done to apply t h th ory f fuzzy . ts to 

non-additive measures of uncertainty. For xample, Zad h g n rali d prob b ili ty t ll -ory 

in 1968 to apply to event bounded by fuzzy s ts [4J. T h r lat i n and mi und rstand­

ings between fuzzy ts and probabili ty theory ar di ' U " d in som d tail by uboi 

[16J. Zadeh similarly interpreted classical possibili ty th ory in a fu zzy nt xt [12J a !i ttl 

later , and more recently has suggested a Gen mlised th ory of unc rtainty [24J. D T has 

also recently been generali ed to d al with fuzzy ts, pr rving t h con pt of upp rand 

lower probabilities (which had previou Iy not b n a h iv d). Mol' on thi an b found 

in [25J. 

There are also some cross-over between various th orie of monoton measur s. Ro .' has 

done work to create a bridge between probabili ty and po ibility th ory in th ont xt of 

"Total Uncertainty" [26], which allows an expr s ion of both epi temi un rtainty and 

aleatory. Dubois also discusse at length the variou way in whi h po ibili t i mea ur 

can be interpreted in a probabilistic sen e [27]. In fact, possibili ty theory ha be n propos d 

as a kind of bridge between probabili ty theory and fuzzy set theory by Dubois and Prade 

[16J. Finally, it has already been stated that DST i ' a generali ation of pI' bability th ory 

to allow non-additive measures of uncertainty. A much fu ll r discus ion of un rtainty 



2.1 Issues in Uncertainty Analysis 22 

measures and the various associations between them is given in [8J. 

2.1.3 Propagation 

Intervals 

The method of propagation is strongly dependent on the framework of quantification of 

uncertainty. In the case of interval analysis a system of interval arithmetic parallels many 

of the arithmetic operations available to crisp numbers. For example, the addition of two 

intervals is achieved by, 

[a, bJ + [c, dJ = [(a + c), (b + d)J (2.16) 

and multiplication is defined by, 

[a, bJ * [c, dJ = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)J (2.17) 

Intervals can therefore replace crisp numbers in the specification of model inputs, and 

theoretically all the calculations that are involved in the solution of the model with the 

crisp input could be replaced by interval calculations, thus yielding an interval vector that 

specifics all the outputs of a given model in terms of intervals. 

One problem with propagating intervals through a model is that in order to precisely 

propagate them it is required that the equations governing the model can be expressed in 

a closed form, but in practise this is rarely possible. Instead, research focuses on approxi­

mations of the exact solution set. Additionally, interval analysis introduces conservatism, 

which means that it tends to over-estimate the uncertainty in the model output as a result 

of neglecting dependencies between the inputs. Some work has been done to address this 

last issue by Manson in the context of affine arithmetic [28J. An extensive discussion of 

the m;e and application of interval analysis is found in [29J. 

Fuzzy Quantities 

Fuzzy quantities that are assigned to uncertain model parameters can be propagated 

through a standard FE model by dividing the membership functions into a series of "a­

cuts", such that the membership function for each fuzzy input {Xl, X2, ... , xn} is intersected 

at a level !1Xj = a (see Figure 2.5). This results in number of nested crisp sets at each a­

cut that are typically propagated through the model by an interval analysis, producing a 

realisation of the fuzzy quantities that describe the model outputs. The problem with this 

is that since it involves interval analysis, it introduces conservatism into the estimates of the 

output uncertainties (as discussed earlier). A way round this is to use global optimisation 

to search for the global maximum and minimum of the output at a given a-cut, which 

means that the practice of propagating fuzzy numbers is closely tied to the discipline 
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Figure 2.5: An example of a -cut propagation of fuzzy numb rs through a two-inpu t, 
two-output model using two a -cuts. 

of opt imisation - an example is that by Moens and Vandepitte [30J . Propagation of 

fuzzy quanti tie via a-cuts has been applied extensively to dealing with uncer tainty in FE 

models - some examples of this are [17, 31] . 

Probability Distributions 

Since propagation of probabilistic uncertainty is one of the central themes of this thesis, a 

description of available approaches is left until Section 2.3 , where it is treated in greater 

detail. 

Other frameworks 

The methods available for propagating possibility theory and DST have een very li ttle 

investigation at all - in fact, it is difficult to find vir tually any references in the li terature. 

Therefore, propagation of these frameworks will not be discussed here. 

2.1.4 Summary 

Examining the uncertainty frameworks available, it i apparent that each method has its 

own advantages and disadvantages and can be useful in particular situations. One of the 

defining features is the degree of ignorance that can be expressed. Probability theory is 

perhaps the perfect characterisation of uncertainty, in the situation where enough infor­

mation is available to characterise the pdf of an uncertain quantity. If this quantity of 
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information is not available, assigning a pdf requires some assumptions that may not be 

justified. In this case, possibility theory and DST can offer more subtle expressions of 

ignorance. However, the frameworks for using such theories are considerably less devel­

oped. For this reason, uncertainty will hereafter be considered from a purely probabilistic 

perspective. 

2.2 Sensitivity Analysis: an Extension of Uncertainty Anal­

ysis 

The end product of uncertainty analysis is to quantify the uncertainty of some model 

outputs in order to know the robustness of the model, or assess the probability of exceeding 

some critical value in the model output. If the uncertainty surrounding the output of the 

model is unacceptable, this can be the start of a wider iterative process to attempt to 

reduce it to within some specified limit. The question then arises: "what can be done 

to reduce uncertainty?". In the case of aleatory uncertainty, the answer is "not a lot". 

As discussed, aleatory uncertainty is fundamentally irreducible since it involves natural 

variability. Epistemic uncertainty, on the other hand, is caused by insufficient knowledge, 

therefore if extra information were gained about a quantity of interest, the uncertainty of 

the model output could potentially be reduced. 

According to a heuristic suggested by Pareto [32] (often known as the Pareto Princi­

ple) roughly 80% of "effects" in many systems are a result of only 20% of the "causes". 

Although a somewhat vague observation, this ratio tends to hold roughly true in many 

situations, from business (80% of business comes from 20% of clients) to software engi­

neering (80% of errors can be eliminated by fixing the top 20% of bugs). In the context 

of uncertainty analysis, the implication is that quite often a small subset of model inputs 

is causing the majority of the output uncertainty - to put it another way, even if equal 

uncertainty were assigned to all model inputs, it would be seen that the output is con­

siderably more sensitive to uncertainty in certain inputs, and practically insensitive to 

others. Therefore in order to reduce the uncertainty of the model output, it is of great 

interest to identify the inputs that are most important in influencing the output. This is 

one of the main motivations of what is known as Sensitivity Analysis (SA). Since SA is 

a natural extension of UA, it features at length in this thesis. An outline of some of the 

main motivations and techniques follows here. 

2.2.1 Motivations 

Saltelli lists the various motivations of SA from a number of different perspectives [33]. 

Amongst these are three which are particularly interesting from the point of view of an 

engineer: 
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1. To identify parameters that contribute significantly to output variability with a view 

to reducing the uncertainty of these parameters. 

2. To identify insignificant parameters that can be eliminated from the final model (Le. 

model simplification) and disregarded in uncertainty analysis. 

3. To understand interactions between parameters and therefore gain deeper insight 

into the working of the model. 

The first of these has already been discussed. If an uncertainty analysis reveals that model 

uncertainty is unacceptably high, SA can be used to identify the important parameters, 

and effort can be directed to reducing the uncertainty in these inputs. Equally, by identi­

fying unimportant parameters, a model can be considerably simplified, then'by reducing 

computational expense. These parameters can then be ignored in further UA, SA or op­

timisation procedures. Finally, it will be seen in later chapters that SA can provide a 

remarkably useful way of investigating and un(krstanding the interactions and processes 

at work in a complex model. 

2.2.2 Levels of Sensitivity Analysis 

SA is often classified into three levels of depth (see Figure 2.G). At the most basic level, 

screening ranks the inputs in order of importance in affecting the output. This can help 

the modeller identify the set of most important inputs, as well as any inputs that con­

tribute very little to the output (and can thus be eliminated from ~mbseqllent uncertainty 

analyses), but it offers little or no quantification. The next level, local SA, analyses and 

quantifies the effects of varying input parameters, but only around their immediate lo­

cality. This does not allow for full exploration of the input space unless respons('s are 

linear, so is of limited use in complex models. The most informative analysis is global SA, 

which investigates and quantifies uncertainties over the complete range of input space. Of 

course, the cost of extra information inevitably increases computational expense, which 

will be seen to be one of the most constraining issues in UA/SA, and is discussed further 

in Section 2.4. 

Screening 

Most screening analyses are based around the concept of a Design of Experiments (DOE). 

This involves running the model at a carefully chosen set of input points to investigate 

the basic response of the output to simple variations in the input. An example of this 

is a one-at-a-time (OAT) experiment [34]. In this approach, the model is evaluated at 

maximum and minimum values of each input in turn. The results are then compared to a 
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(Often Monte Carlo) 

F igure 2.6: The thre levels of sensitivity analysis, as suggested by Saltelli [33]. 
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bas line run (Le. all paramet rs at their nominal values) and the residuals used to estimate 

sensi ti vi ty. 

A l ar limitation of OAT designs however is that first , they assume monotonicity, and 

second, they ignor the po sibili ty of interactions between parameters. For example, two 

param tel' Xl and X2 may be largely uninfluential to individual variations, but when 

both ar simultan ously varied , the output may vary substantially. In fact , the proportion 

of input spac partially explor d in an OAT design decreases rapidly as the number of 

input dim n ion incr as s. One simple solution to this problem is the concept of factorial 

xperimentation [35], where the range of input parameters is divided into k levels. The 

input parameter ' ar then varied simultaneously across all permutations of these levels. 

The clear drawback i ' computational cost, which is proportional to kd , where d is the 

dimension of input space. A fractional fa ctorial design alleviates this problem to some 

xtent by only investigating a limited subset of input interactions. Notably, all screening 

methods di regard the distribution of uncertainty for input variables , so are of no use in 

propagating unc rtainty (unless perhaps if the uncertainty is uniformly distributed and 

th model is linear). They may however be of use to identify non-influential variables that 

could then be discounted from a more detailed UA. 

Local Sensitivity Analysis 

Local SA is an analytical approach that involves taking partial derivatives oy / OXj of the 

model around some "locality" Xo, usually the nominal or mean values of the parameters, 
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giving a first-order sensitivity mea'lure Si such that, 

ay I 
Si,local = ox' 

I X;=Xo 

(2.18) 

Local SA, is (as its name suggests) only useful in the locality of xo, since estimates 

about local sensitivity are performed by making small perturbations about the nominal 

parameter values and therefore contain no information about the model response outside 

of this locality. Nevertheless, if a model is known to have a lincar response, or nearly 

linear, it can be a useful SA tool requiring little computational expense. A variety of 

methods are compared by Saltelli [33J that compute the partial derivative in (2.18). The 

most simple approach is the finite-difference approximation, where, 

(2.19) 

although of course this can require a substantial number of model runs if d is large. 

Other, more sophisticated methods include the method of l\liller and Frenklach [3G], which 

approximates the solution with an empirical model, and t.he polynomial app7'Ox'i7nation 

method [37], which approximates the sensitivity differential equations by polynomials. One 

additional drawback of local SA is that it does not account for non-uniform distrihution 

of uncertainty in the inputs. Therefore it is more applicable to SA alone, rather than 

propagating uncertainty. 

Global Sensitivity Analysis 

Global SA is the most informative level of sensit.ivit.y analysis, since (at least idmlly) it 

investigates the ent.ire range of input space and can handle nonlinear responses. In the 

case of most FE models it is required to run SA at. t.he global level because nonlinearity 

is often present, or at least can rarely be ruled out. For t.his reason, global SA and UA 

will be the main theme of this thesis. Although Global UA/SA could be considered from 

within several of the frameworks of uncertainty discussed earlier, this work will focus on 

the probabilistic point of view. From this perspective then, a global SA can be seen as 

consisting of five levels: 

1. Elicitation of input distributions 

2. Building a sampling strategy (DOE) 

3. Model realisations {Yl = /(X1), Y2 = /(X2), ... , Yn = /(Xn)} 

4. Uncertainty analysis 

5. Sensitivity analysis 
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Figure 2.7: An example of a scatter plot of a chosen variable Xi and an output y . 

The first four of these have been discussed previously, although still ignoring the problem 

of computational expense, which is addressed in Section 2.4. There are many approaches 

for dealing with the third step , of which many are summarised in [38]. 

The crudest measures of global sensitivity can be obtained by scatter plots and correlation 

coefficients. For example, a plot of a given output Yi against an input Xi can be drawn. 

Although it is a very informal method , it can serve to give a good initial impression about 

underlying trends. Figure 2.7 shows as an example of a number of model samples - the 

roughly linear trend is immediately evident, as is the increasing scat ter with increase in Xi . 

An obvious problem however is that it is only a qualitative indication, and plots must be 

generated for every input. This can be addressed by the use of correlation coefficients such 

as the Pear·son product moment correlation coeffi cient and the Spearman coeffi cient, which 

can be used to assess correlation in linear and nonlinear models respectively [39]. Another 

strategy is to fit a linear model to the sampled data and use t he regression coefficients as 

sensit ivity measures. This kind of regression analysis could be criticised by the fact that 

it assumes linearity, therefore is not much improvement on a local SA. A nonlinear model 

could perhaps be fitted, but the results might be hard to interpret. 

One useful way of visually assessing the sensitivity of the model output to particular inputs 

is based around a functional decomposit ion of f(x) into orthogonal functions of individual 

inputs and subsets of inputs (see [40]). This requires an assumption of independence. 

Taking expectations of this decomposition yields the following (see e.g. [41]) where the 

function (model) is broken down into a series of expected values E( ·) and conditional 
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expectations, 

d 

Y = f(x) = E(Y) + LCi(Xi)+ LCi.j(Xi.j)+ L ci.j.k(Xi.j.k)+ ... + cl.2 ..... d(X), (2.20) 
i=l i<j i<j<k 

Ci(Xi) = E(YIXd - E(Y) 

ci.j(Xi.j) = E(YIXi.j ) - ci(Xi) - Cj(Xj) - E(Y) 

and so on for higher interactions. ci(xd is known here 8.<-; the main effect of Xi, which 

is the effect of varying Xi, averaged out over the uncertainty in the other parameters. 

ci.j(Xi.j) is known as the interaction effect of Xi and Xj. Typically in a global SA the 

main effects of input parameters are plotted on a single graph, normalised over the range 

of each parameter. Plotting main effects serves as a visual indication of the influence 

of particular inputs and interactions, showing (albeit qualitatively) the variance of the 

output with respect to individual input parameters and the nonlinearities associated with 

those responses. 

If the main effect of an input produces little output variation over its range (i.e. the 

response is flat), it can be said that the output is insensitive to the main effect of that 

parameter. Conversely, if the main effect has a strong gradient, the output is clearly 

sensitive to variations in that input. A quantitative measure of this property is to take 

the variance Vi of the main effect, i.e. 

Vi = var{ E(YIXd} (2.21) 

Another way to interpret this is that it is the amount by which the uncertainty (variance) 

in the model output would be reduced if the "true" value of Xi were suddenly known. 

This can of course be extended to subsets of inputs to give the variance contribution of 

interactions of variables. For easy interpretation, these variance measures are typically 

standardised by dividing by the total output variance, Le. 

Si = var{E(YIXi)} 
var{E(Y)} 

(2.22) 

where Si is known as the main effect index (l\mI) of Xi, a widely-used global sensitivity 

measure proposed by Sobol' [40, 42] with the property that, 

d 

LSi + L Si.j + ... + Sl.2 ..... d = 1 (2.23) 
i=l i<j 

where Si.j denotes the sensitivity index of the interaction between Xi and Xj. One draw­

back of this measure is that to account for all variance it is necessary to calculate all 

2d - 2 sensitivity indices, which for a model with many inputs could be prohibitively time-
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consuming. An alternative sensitivity measure [43], describes the output variance that 

would remain if one were to learn the true values of all inputs except Xi, 

VTi = var(Y) - var{E(YIX_i )} (2.24) 

This measure, called the total sensitivity index (TSI), measures the variance caused by an 

input Xi and any interaction of any order including Xi, since after standardisation, this 

yields, 

STi = 1 - S-i (2.25) 

where S-i is the sum of all the main effects and interactions that do not include Xi. STi 

therefore allows a more holistic view of the uncertainty attributed to each input, but does 

not give any details as to how it is distributed between main effects and interactions. Note 

that since the TSIs "overlap" each other, they do not typically sum to unity. 

2.2.3 Summary 

Of the three levels of SA presented here, global SA is the most applicable to modern 

engineering models, since nonlinearities are often present or can not usually be ruled out. 

Screening and local SA techniques may be used as an initial analysis to filter out unimpor­

tant parameters, but to give an accurate representation of sensitivity in a nonlinear model, 

the variance-based measures given here are the best option. The drawback of global SA is 

of course that it is computationally much more expensive than simpler techniques. This 

problem is discussed further in the following sections. 

2.3 Propagating Probabilistic Uncertainty 

Methods of propagating probabilistic uncertainty through a model vary in their approach 

and applicability. This section will first describe general approaches for propagating prob­

ability distributions through an arbitrary system (Section 2.3.1), followed by a review 

of some recent approaches which are designed specifically for structural models and FE 

(Sections 2.3.2 and 2.3.3). 

2.3.1 General Approaches 

In order to exactly propagate probabilistic uncertainty through a model y = f(x), an 

analytical solution can be found if the function f can be written explicitly. However, in 

the majority of practical cases, this is not possible. The most common solution to this 

problem is to use a sampling-based approach - in short, the joint pdf of the inputs is 

sampled at a number of points, then each point is run through the model to generate a 
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crisp output value. With enough sample points, an approximation of the distribution of 

any output of interest may be obtained. Such an approach is known as the Monte Carlo 

Method [44J. 

Monte Carlo propagation works well as long as the sampling resolution is sufficiently high, 

but a clear problem is that if the number of input dimem;ions is large, and/or the simulation 

has significant run time, the computational expense of building up a good estimate of 

output distributions quickly becomes prohibitively high. It should be noted however, that 

that the great strength of the Monte Carlo method is that it can estimate means and 

variances of outputs with an accuracy that is independent of the number of inputs (the 

same is not true if building up a histogram of the output distribution). Despite this, it 

can still be computationally expensive if a number of s('parate estimates (e.g. means, 

variances and conditional variances) are required from a single large model, to the point 

of infeasibility. As such many methods have been proposed increase the efficiency of the 

Monte Carlo method. 

One aspect of this is known as design of experiments (DOE), which is the strategy used for 

selecting the number and location of input points whell building a sample set. Many types 

of sampling procedures exist - olle of the most obvious of these is random sampling. Given 

a joint pdf p( x), samples are randomly drawn from the sample-space X, weighted by the 

probability distribution; i.e. more samples will be drawn from regions of high probability 

and less from regions of low probability. This can be done by generating random numbers 

across the interval [0, 1 J and using them to draw samples of p( x) from the cdf of x -

a univariate example of this is shown in Figure 2.8. However, the main drawbacks with 

random sampling are that first, it is not possible to generate truly random numbers, and 

second, random numbers do not guarantee that the sample space will be explored evenly 

for small samples. Additionally, random samples may occur very close to one another, 

thus making the sampling inefficient. 

An alternative method, known as importance sampling, divides the sample space X into 

R non-overlapping regions such that X = {Xv} ~=l. Random samples are drawn from 

each region Xv, weighted to the probability of that region to provide meaningful results 

(often there is only one sample drawn per region, resulting in a total of R samples). 

The advantage of this method is that the sample space is guaranteed to be explored to 

a resolution controlled by the specification of R. However, a problem may be that the 

range of each input variable may not be fully explored. 

One extension of importance sampling is known as Latin hypercube sampling (LIIS) [45J. 

In this method, the range (support) of each variable is divided into nLHS intervals of equal 

probability. For each interval in the first input variable Xl, a value is randomly sampled. 

This is then randomly paired with the nLHS similarly randomly sampled values from X2, 

without replacement. The process is repeated with all variables up to Xd, resulting in 

a total of nLHS samples that are distributed in a multi-dimensional generalisation of a 
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Figur 2.8: Random am pies drawn from the unit [0, 1] used to sample from the cumulative 
distribution of a normal distribution over x . 

Latin quare - i. . there is exactly one sample in every division of each variable. An 

illust ration of LHS for two input variables is shown in F igure 2.9. 

Although random sampling is the "ideal" sampling method, since it will naturally provide 

unbias d e t imate of tati tical moments, the number of samples required for propagation 

of pdf can be unfeasibly high. LHS designs are generally thought to be more suitable 

wh n th re i a practical limit on the number of samples available and there is no need 

to a curately e t imate high quant iles (such as 99th percentiles and above), such as in 

the majori ty of unc rtainty analyses. Importantly, since LHS designs are guaranteed 

to ample across the full range of each variable, they will include the effects of varying 

ev ry parameter betw en its maximum and minimum: this is particularly desirable when 

performing sensit ivity analysis (see Section 2.2) . 

LHS designs can be fur ther improved by adjusting the sample points to optimise some 

criterion of interest . One example of this is known as maximin LHS. Since points are ran­

domly sampled within each region of the LHS grid , it may occur that points are clustered , 

r ducing the efficiency of the design . Maximin designs seek to maximise the minimum 

distance between sample points, therefore providing an LHS design that has improved 

space-filling properties. This may not be sui table for direct Monte Carlo sampling, but 

can be very useful for a class of methods known as emulator-based approaches - see 

Section 2.4. 
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2.3.2 The Stochastic Finite Element Method 
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It is worth briefly exploring an alternative approach to propagating uncertainty specifically 

through FE models, known as the Stochastic F init Element Method (SFEM). Rather 

than viewing the model a a black box, SFEM propo es a specific method for calculat ing 

the response of FE models with un rtain lement prop rt ies and loading conditions. In 

this method material properties (for xample) may be r pre nted as a tochastic fi eld 

that varies spatially over the mesh, therefore allowing non-homogeneous proper tie of a 

structure, SFEM is performed in two steps: the first is to quantify the random input to 

the model - this requires the representation of a stochast ic process or field . The second 

is to propagate these through the model to provid a reali ation of th random output . 

These will be dealt with separately here. A good review of the subject can b found in 

[46]. 

Representing Stochastic Processes (SFEM) 

Typically when quantifying input uncertainty in SFEM, an assumption is made that ran­

dom quantities are distributed joint-normally. Two main approaches exist for quantifying 

a Gaussian stochastic field in this context - the fir t is called the spectral repre entation 

method and the second is known as the Karhunen-Loeve xpansion. A thorough review 
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and comparison of these approaches is found in [47]. 

The spectral representation method expresses a stochastic field T](x) (where x represents 

a spatial measure, such as a mesh location) as a sum of trigonometric functions (much 

like the Fourier series), but with random phase angles and amplitudes. As the number of 

terms approaches infinity, this representation tends to a Gaussian stochastic field. It can 

also be used for multi-dimensional variables. 

The Karhunen-Loeve (KL) expansion is similar, but uses a sum of orthogonal functions 

with random coefficients to represent the stochastic process. This can be expressed as, 

m 

T](x) = T](O)(x) + L (}jT](j) (x) 
j=1 

(2.26) 

where the {r,<J)(x)}j!:o are pairwise orthogonal functions and the {Bj }j!:1 are uncorrelated 

Gaussian random variables. The KL expansion has an associated covariance measure 

between points in the stochastic process (elements, in this case) that can be defined as a 

function of distance. Compared to the spectral representation method, the KL expansion 

is thought to be more accurate for lower numbers of terms under certain circumstances 

[46], but it is computationally less efficient and may not produce fully homogeneous sample 

functions when required [47]. More on the KL expansion is found in [48]. 

A further method that can also represent non-Gaussian and non-stationary stochastic 

processes is known as Polynomial Chaos Expansion (PCE), which was first introduced 

by Wiener in 1938 [49] and later reintroduced by Ghanem and Spanos [48]. Like the KL 

expansion, PCE uses an infinite linear combination of orthogonal functions. In this case 

however, the functions are orthogonal polynomials which are defined by the property that 

for any series of polynomials T = {11(x), i E N}, the integral of the product of any pair 

11, Tj and a weight function w(x) (equivalent to a version of the inner product) over some 

interval of orthogonality [;£, x] is zero, i.e. 

(2.27) 

Many types of orthogonal polynomials exist, of which a great many are discussed in detail 

in [50]. The Legendre polynomials are one example of a series of orthogonal polynomi­

als that have been used in the context of UA and SA (see [51]), which are orthogonal 

with respect to the uniform distribution over [-1,1]. Perhaps more importantly, the Her­

mite polynomials are orthogonal with respect to the Gaussian distribution, therefore the 

Hermite or Legendre polynomials are typically chosen for use in PCE depending on the 

distribution of interest. Some limitations of PCE have been noted however: PCE approx­

imation is not always improved as the number of terms is increased [52], and the method 

can be computationally demanding due to the large number of coefficients that need to 
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be estimated, particularly in problems involving strong nonlinearities and bifurcations 

[52, 53J. 

Propagating Uncertainty (SFEM) 

Propagating uncertainty in the SFEM framework is achieved in one of three ways. The 

first is known as the perturbation approach, which uses a Taylor series expansion of the 

response vector. The second uses PCE to quantify the output; in this case this is the 

method of spectral stochastic finite elements (SSFEM) [48J. The Monte Carlo method 

may also be used, but is generally used as a validation tool for small test models due to 

the computational expense required. 

SFEM requires that the random field describing input uncertainty be discretised into a 

random vector. Typically this discretisation is performed at element centroids or nodes, 

but it is computationally less demanding to specify an independent "stochastic mesh" that 

is coarser than the FE mesh, which requires less random variables. Aspects of this are 

discussed further in [46J. Once the random field has been defined at discrete points, it is 

possible to assemble stochastic matrices for each element, and ultimately for the whole 

model. 

To solve the stochastic matrices to find (for example) nodal displacements, the simplest 

method is to use Monte Carlo sampling, where the stochastic matrix is sampled many 

times and statistical properties of output quantities are evaluated in the usual way. The 

Monte Carlo approach is computationally expensive but it is thought that Monte Carlo 

methods may be the only way of dealing with truly complex models in the SFEM approach 

[46J. 
I 

An alternative approach is to use the perturbation method. In this approach, the stochas-

tic field is discretised into a number of zero-mean random variables, and the stochastic 

system matrix (stiffness matrix) is represented as a Taylor series expansion, consisting 

of derivatives of the system matrix and random variable coefficients. Calculating dis­

placements based on this stochastic matrix results in a further Taylor series expansion 

of the displacement vector, i.e. the stochastic output. The means and (co)variances of 

the displacements can be calculated using first- and second-order approximations. How­

ever since the derivatives of the system matrix must be calculated, this method can be 

computationally demanding when many random variables are involved [46J. 

The SSFEM method, in contrast, uses a KL expansion to express the stochastic spatial 

variation of a random input parameter, for example the elastic modulus (see e.g. [48]). 

Assuming deterministic loading, a peE is used to approximate the displacement response, 

which may be calculated using a Galerkin approach [48J. 
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Comments on SFEM 

SFEM and SSFEM has been shown to be successful, with attractive advantages such as the 

ability to deal with complex specifications of input uncertainty, such as time- and spatially­

varying input parameters, as well as the ability to simultaneously evaluate the uncertainty 

in all outputs of the FE model. However, the method has a number of limitations. First, 

it is applicable only to linear systems in general, and requires a considerable amount of 

work and modification to FE algorithms - it would therefore be difficult to implement 

on models built in commercial FE packages. Furthermore it is only applicable to FE, and 

has a computational cost that scales poorly with the number of degrees of freedom. In 

contrast, the methods presented in this thesis in Chapters 3 and 8 will be shown to be 

capable of dealing with very large models (not only FE models), which would be outside 

the reach of SFEM. In conclusion, SFEM is a powerful method, but seems to have some 

drawbacks concerning its applicability to large models. 

2.3.3 Random Matrices 

A further approach that will be very briefly discussed is that of random matrices, developed 

largely by Christian Soize [54J. In this approach, uncertainties due to structural and 

loading problems are considered, as well as uncertainties due to mathematical assumptions 

made in the construction of the model. The random structural matrix of the model is 

described by a "dispersion parameter" that controls the random properties of the matrix, 

which can be calculated by comparing experimental data with the model run at nominal 

parameter values. This method has seen little application so far, and again is applicable 

only for structural models. It has also only been applied to very simple problems. One 

issue is that the output of the mean model is based on arbitrary assumptions, which calls 

into question the meaning of the dispersion parameter. It is clear that this method requires 

more investigation - a summary of recent developments is given in [55]. Some very recent 

developments are however given in [56, 57J in which the method is demonstrated to be 

applicable to larger models. 

2.3.4 Summary of Propagation Methods 

Despite the development of efficient sampling strategies, direct Monte Carlo methods can 

still be computationally prohibitive. It is also evident that spectral methods and ran­

dom matrix approaches are promising but only applicable to specific problems, and have 

other limitations, often requiring direct intervention in the FE code. For this reason, 

an additional class of methods exists where emulators or metamodels are built from a 

small number of samples based on a DOE, then propagation is performed on the (com­

putationally much cheaper) emulator, rather than the model itself. These data modelling 
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approaches do not require any knowledge of the model itself; only a set of model runs to 

use as training data. A full discussion of this problem is left to Section 2.4. 

2.4 Emulators for Uncertainty Analysis 

A recurring problem that has been mentioned is that, since both UA and SA involve 

exploration of the input space of a large model, the computational cost can often become 

prohibitive. The problem of estimating output pdfs in UA by Monte Carlo propagation has 

been discussed, and the difficulty is compounded in the case of SA. Consider for example 

the task of computing the MEl of a single input variable: a conditional expected value 

must be calculated, 

(2.28) 

where the subscript -i refers to the complement of i-e.g. X-i is the range of input space 

in all dimensions except i. In the majority of cases this must be performed numerically 

since f{x) is rarely tractable. Numerical Monte Carlo integration, for example, requires 

sampling the function and marginal pdf a large number of times in order to accurately 

evaluate the integral. This must be repeated for every new sensitivity measure. It is easy 

to see how the computational cost of numerical integration for every sensitivity measure 

can become prohibitive, even for relatively small models. 

2.4.1 About Emulators 

One solution to the problem of computational expense is to replace the model with an 
. I 

emulator (also known variously as a metamodel, surrogate model or response surface) 

that accurately imitates the response of the model over the range of input space. A 

simple example of an emulator might be a polynomial function. If the emulator is much 

cheaper to run than the original model (but still gives sufficiently similar results) the 

measures discussed previously can be estimated at a greatly reduced computational cost 

using Monte Carlo sampling of the emulator. Even better than that, if the emulator is 

also mathematically tractable, the integrals representing means, variances and sensitivity 

indices can be evaluated analytically, thus bypassing numerical integration completely. A 

restriction with many emulators is that they necessarily consider only univariate outputs, 

although of course a typical model will have a large number of outputs. To examine 

multiple outputs, typically a separate emulator is constructed for each output. For a very 

good book on emulators and data modelling, the reader is referred to [58]. 

Building an emulator is essentially an exercise in data modelling or regresssion. First 

of all, a metamodelling approach must be proposed that is deemed to be suitable for 

emulating the original model. The original model is then sampled at n points in the input 
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space according to a sampling strategy (LHS is often used for emulator construction -

see Section 2.1.3), giving a set of training data V which consists of n input-output pairs, 

i.e. 

(2.29) 

which can also be expressed as the matrix of training data inputs X and the corresponding 

vector of ouputs y, 

X = (Xl, X:2, ... , Xn) 

Y = (Yl, Y2, ... , Yn? 

(2.30) 

(2.31) 

Typically an emulator will be defined by a set of tunable parameters or higher-level hy­

perparameters. The training data is therefore used to train the model by adjusting these 

parameters so that the model fits the data as well as possible. There are many methods 

of achieving this, usually dependent on the type of model under consideration. 

2.4.2 Types of Emulator 

Potentially any form of regresl:lion or machine learning can be ul:led to emulate a model. 

However there are a number of desirable emulator properties that may influence the choice. 

Three of the key properties may be summaril:led as, 

• Generality 

• Efficiency 

• Tractability 

The first of these specifies that an emulator should be as general, flexible or applicable as 

possible. Consider for example a simple linear regression (e.g. [59]): if the model is linear 

this is likely to provide a good fit once the regression parameters are tuned to the training 

data. However, if the model is strongly nonlinear, the regression model will not be able 

to fit the data to an acceptable level of accuracy no matter what values of parameters are 

chol:len. Since in the majority of cases little or no prior knowledge is available concerning 

the nature of the model response, the emulator should be able to model as wide a class of 

problems as possible. 

Secondly, the efficiency of the emulator is important since it dictates the amount of training 

data that is required for a specific problem. Clearly for a large model of considerable run­

time, the less training data the better. Last of all, with particular applicability to UA/SA, 

is the tractability of the emulator. As discussed before, this may allow analytical estimates 

of uncertainty and sensitivity, giving significant computational savings. 
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Parametric and Nonparametric Emulators 

The choice of emulator is a field of very active research in the data modelling community, 

and is also closely linked to optimisation. Broadly speaking, they can be divided into two 

categories: parametric emulators, and semi- or non-parametric emulators. Parametric 

emulators make an a priori assumption about the order or type of model to be fitted to 

the data, and the corresponding emulator coefficients (parameters) are chosen to provide 

an optimum fit to the data - this is often done by least-squares analysis (see for example 

[35]). Although computationally simple, parametric emulators are considered to be quite 

inflexible due to the fact that an assumption must be made about the order of the function 

to be fitted, for example the order of a polynomial function - some comparisons of 

polynomials with other methods are given in [GO, 61J. This can lead both to a model 

that does not fit the data at all, as well as to over-fitting, which is when the model is 

too complicated to describe the underlying data-generating mechanism and introduces 

fluctuations in the response that should not exist. 

In contrast, non-parametric emulators use a higher class of governing hyperparameters 

that can represent an infinite number of parameters in a parametric model, thus remov­

ing the necessity for assumptions about the model order. Semi-parametric models are 

a combination of the two; for example, a parametric model with residuals modelled by 

a non-parametric approach. Given the limitations of parametric emulators, the major­

ity of recent emulator-based UA and SA literature has focused on the use of semi- and 

non-parametric emulators. 

Artificial Neural Networks 

One well-established example of a non-parametric emulator is an Artificial Neural Networ'k 

(ANN). An ANN is an arrangement (similar, but on a much reduced scale, to the design 

of the human brain) of simple processing units called neurons that are inter-connected by 

synapses. The ANN takes an input vector x and maps it to an output y by propagating 

the values of the various Xi through layers of neurons. Layers apart from the output and 

input layer are called hidden layers (see Figure 2.10). Each neuron consists of a summing 

junction that adds the weighted values of its inputs and produces an output Yn that is is 

some function g(.) of this sum, i.e. 

(2.32) 

where the Wi are weights to each of the N inputs to the neuron (not necessarily equal 

to the number of inputs to the ANN). The function g may be a threshold function that 

gives an output only when the weighted sum of the inputs exceeds a certain value, or may 
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be a continuous function of the sum, such as a hyperbolic tangent function. The weights 

are the parameters of the emulator, which can be optimised to a set of training data by a 

number of different approaches (see [62]). 

Individually-weighted synapses 

i 1 j 

y 

Input layer Hidden layer Output layer 

Figure 2.10: An example of an ANN with four inputs, one output and one hidden layer. 
The circles represent neurons and the arrows represent synapses. 

Once the weights are correctly optimised, the ANN is capable of emulating a wide class 

of models, so long as the number of layers of neurons is sufficiently large. ANNs have 

been applied to calculate first-order sensitivity measures by analytically constructing par­

tial derivatives of the output with respect to each input [63]. This approach has been 

extended to calculate global variance-based sensitivity measures [64], although in this case 

the sensitivity indices were necessarily evaluated by Monte Carlo methods applied to the 

trained ANN. This int ractability could be seen as a drawback to ANNs. Furthermore, 

ANNs require specification of their structure, might introduce a certain loss of generality. 

Gaussian Process Regression 

One recent approach to emulation that has seen enormous interest in recent years is the 

use of Gaussian processes (GPs) (see [65]). In this method, the values of model outputs 

are assumed to be distributed in a multivariate Gaussian probability distribution, so that 

predictions may be made by conditioning the prior distribution of an unknown point 

on the set of training data. Inferences about the model at unobserved points return 

estimates that are Gaussian distributions, rather than crisp points. GPs are very well­

suited to emulating computer models since they are very computationally efficient, semi-

. . 
"' " ~ , 

'i - : I : ' • • 
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or non-parametric (depending on prior assumptions) and can provide analytical estimates 

of sensitivity measures. Furthermore, very few specifications need be made about the 

response of the data - certainly fewer than the methods presented above. For these. 

reasons, GP emulators will be used extensively in this thesis. A full description of GPs 

applied to VA/SA follows in Chapter 3, with an extension in Chapter 8 that increases the 

generality of GPs still further. 

2.5 Conclusions 

The discipline of uncertainty analysis has been outlined here, showing that it can be 

divided into three problems: those of quantification, fusion and propagation. The methods 

of quantification are various, but this thesis will focus on the probabilistic methods, since 

they are by far the most well-established and are widely applicable. The elicitation of 

probability distributions is recognised as a difficulty here but this problem is a subject 

on its own and is outside the scope of this thesis. Instead, it is the propagation problem 

that will be the focus of the remaining chapters. A furtherance of uncertainty analysis, 

known as sensitivity analysis, has also been introduced as a way of quantifying each input 

parameter's contribution to the output uncertainty - this may then be used as a starting 

point in reducing uncertainty and a method to achieve a deeper understanding of the 

model itself. Sensitivity analysis is intrinsically linked with uncertainty analysis and so 

will feature at length in this work. 

It has been shown that the Monte Carlo method is the ideal method for propagating uncer­

tainty, but that it is computationally very expensive when estimating detailed statistical 

quantities for large models, which are increasingly common in engineering. As suc~, there 

is a need for propagation methods that reduce this computational burden. This chapter 

has described some emerging methods such as the spectral stochastic FE method and 

random matrix theory that can be used to propagate probabilistic uncertainty through 

structural models, but it is noted that they generally require direct intervention in the 

FE code, and have some limitations when dealing with very large models. A different 

angle of attack is to use a data-modelling approach, which uses a small number of model 

runs to build an emulator of the model that is much cheaper to run, then propagates 

uncertainty through the emulator, either by Monte Carlo or analytical methods. This 

emulator-based approach requires no knowledge of the model, therefore it is applicable to 

any kind of model and able to deal with very large models as long as sufficient t~aining 
data can be obtained. However, there has been shown to be a need for emulators that are 

as widely-applicable and efficient as possible, since basic emulators may fail to effectively 

capture the response of the model, or require an infeasibly-Iarge number Qf training data. 

A brief discussion of emulators has been provided, and a recent method known as Gaus­

sian process regression has been introduced as an emulator that is efficient and analytically 
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tractable, with the ability to emulate a wide class of computer models. This approach will 

be shown to be capable of analytically estimating uncertainty and sensitivity measures, 

therefore it provides an informative and widely-applicable method of propagating uncer­

tainty that is perhaps out of the reach of other methods discussed here. As such, this 

method will be thoroughly investigated in Chapters 3 and applied in Chapters 5 and 7. 

Finally, extensions to the method are discussed in Chapters 8 and 9. 



Chapter 3 

Gaussian Processes and Bayesian 

Sensitivity Analysis 

It has been explained previously that an inherent problem in UAjSA is the difficulty of 

performing a comprehensive global analysis without increasing the computational cost 

to an unacceptable level. Emulator-based approaches can alleviate the computational 

burden significantly, offering (at least partially) a solution to this problem. However, a 

key problem is the selection of the emulator itself. Simple emulators such as polynomials 

require an assumption about the order of the model when usually little or nothing is known 

about the response of the model in advance. The key to successful emulation is then to 

choose an emulator that is as general as possible, and assumes as little as possible about 

the function to be modelled. An additional requirement is that the emulator be able to 

accurately mimic the true model for as few training data points as possible. 
. I 

An approach proposed by Oakley and O'Hagan [41] considers the emulation problem from 

a Bayesian perspective. A Gaussian Process (GP), which is a probabilistic method of 

regression, is used as the emulator. GPs are well-suited to emulation since they are semi­

or non-parameteric (they are not specified by parameters, but rather by more general 

hyperpammeters, see later), which means that they are sufficiently general to model a 

wide class of problems. Additionally, under certain circumstances, they are tractable 

enough to infer sensitivity measures analytically. This means that the GP (emulator) can 

be constructed from a set of runs, then used to estimate sensitivity indices, main effects, 

means and variances without the necessity for additional runs (even of the emulator itself). 

As will be seen, this involves the construction of some sizeable integrals, but orice this 

framework is built it can be re-applied to emulate any model, so long as the assumptions 

about the model still hold. The GP-based SA will be shown in this chapter to provide 

an efficient and flexible method for detailed UA and SA of the complex ~onlinear models 

that are found in engineering and elsewhere. The method is applied to several models in 

Chapters 5 and 7. 

43 
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An explanation of GPs in the context of regression follows in Section 3.1, including a 

detailed description of how to train the GP by first conditioning on a set of training 

data and then analytically marginalising hyperparameters. Next, the inference of various 

sensitivity measures is discussed in Section 3.2, where the necessary integrals are derived 

for an assumed joint pdf, giving a complete description of the steps involved in this form 

of Bayesian SA. A more practical guide to implementing Bayesian VA/SA with a partial 

example is also provided in Appendix B. 

3.1 Gaussian Processes 

The concept of the Gaussian Process has been around for many years, but was first 

proposed to be used in the context of emulation of computer codes by Sacks et al. [65J 
in 1989. Since then, the power of GPs has been exploited to model many varied types of 

computer code - Kennedy et al. provide a summary of recent applic~tions [66].' Most 

recently, the attraction of GPs as a sophisticated tractable emulator has been exploited 

in the context of VA and SA by Oakley and O'Hagan [41]. It is this approach that will 

be outlined in some detail here. For a very comprehensive treatment of GPs in a wider 
context see Rasumussen [67]. 

A GP can be thought of as a distribution over functions, i.e. the random variable of the 

distribution is a function rather than a single number or fixed-length vector. Rather than 

returning a crisp output value f(x) for any given input point x (as in a standard regres­

sion), the GP returns a specification for a Gaussian probability distribution. This means 

that for any given set of input points, the corresponding output values are distributed 

joint-normally. Importantly, this applies to combinations of known points and unknown 

points, which provides the mechanism for training the GP - unobserved points can be 

conditioned on known points (see Section 3.1.2). The fact that any output has an as­

sociated variance means that predictions made using a GP automatically have a mean 

and associated confidence limits, making them particularly suitable for VA applications; 

furthermore, the quality of the emulator fit can be easily assessed. An example of a fitted 

GP is shown in Figure 3.1 for illustration. Observe that the confidence limits are naturally 

much smaller in the vicinity of training data, while further away (and particularly in areas 

of extrapolation) they become significantly wider. 

One of the key assumptions made by the GP is that the model is a smooth function of 

its inputs. A high degree of smoothness implies that if f(x) is known at x, then f(x) 

can be predicted with a high degree of confidence if X is close to x. The specification of 

smoothness is the mechanism that allows a GP emulator to accurately mimic a complex 

model for a greatly reduced computational cost so long as the assumption of smoothness 

is valid (the problem of when this assumption no longer holds is addressed in Chapter 8). 
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Figure 3.1: A one-dimensional example of a GP fitted to t raining data . Confidence limi ts 
and the t rue function are shown. 
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Figure 3.2: The process of fitting a GP emula tor to a set of trainIng data 



3.1 Gaussian Processes 46 

The GP is trained according to the principles of Bayesian inference, which means that 

prior assumptions are made about the model to give a prior distribution (Section 3.1.1), 

then a set of training data is used to update the prior assumptions, resulting in a predictive 

distribution (Section 3.1.2. The training is completed by marginal ising hyperparameters 

in Section 3.1.3, yielding the posterior distribution. This process is illustrated in Figure 

3.2. 

3.1.1 Prior Specification 

Since the GP must specify a mean and variance for any given input point, it is completely 

defined by a mean function m( x) and a scaled covariance function c( x, x) , i.e. for a single 

point x, 

(3.1) 

where x is any neighbouring point and (j2 is a scaling factor (the prior variance of data). 

Following the Bayesian paradigm, any set of model outputs are assigned a joint prior 

distribution, defined by a prior mean function and prior covariance function. These will 

be subsequently be conditioned on the training data to provide a predictive distribution. 

Starting with the mean function then, the most simple assumption would be to assume that 

the prior mean is zero for any value of x, in the absence of any other knowledge. Perhaps 

a better assumption however, is to guess that the data is approximately linear in x. In 

the experience of the author, this is quite a reasonable assumption since many engineering 

models display roughly linear behaviour with respect to at least some of the model inputs. 

In any case, it is important to remember that this is only a prior specification of beliefs, 

and the training data will have a much greater influence over the final emulator than the 

prior specification. The prior mean is therefore expressed as a regression fit through the 

training data such that, 

m(x) = E{f{x)lw} = ¢(x)T w (3.2) 

where ¢(xf is a specified vector of q basis functions of x, and w is the corresponding q_ 

length vector of coefficients. The expectation is conditional on w because w is treated as 

unknown, and is itself assigned a prior probability distribution (see later). For simplicity, 

¢(x)T was chosen to be (1, a1) , representing a linear regression, 

(3.3) 

This represents the belief that the data is close to a global linear model with residuals 

modelled by a GP. ¢(xf can be extended to other functions if there is information to 

suggest that this is appropriate. The covariance between outputs is specified as a function 

of any two input points such that, 

(3.4) 
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where c(x, x) is a covariance function that decreases as Ix - xl increases, and satisfies 

c(x, x) = 1 for all x. 

The covariance function is the most important part of the GP: although the prior mean can· 

potentially be set to zero (and is often used in this manner), the covariance function is the 

source of the GP's predictive power. It specifies the smoothness of a function by defining 

the covariance of output points as a function of the distance between their corresponding 

inputs. Here a squared-exponential function is used, of the form, 

c(x,x) = exp{-(x- x)TB(x- x)} (3.5) 

where B is a d x d diagonal matrix of inverse length-scales, representing the roughness 

of the output with respect to each input parameter, which is treated as "known" since 

it cannot be dealt with analytically. Estimation of B is however addressed in Section 

3.1.4. That B is diagonal requires an assumption of independence between inputs. The 

squared-exponential covariance function here is used since it is one of the most simple 

formulations and results in tractable integrals for estimation of SA measures. However, 

the GP is by no means limited to this form and there exist many other possible covariance 

functions with a variety of properties, a discussion of which is provided in [67J. With the 

aid of numerical integration these could also be used in the G P emulator for SA. 

Equations 3.2, 3.4 and 3.5 therefore imply a prior mean for any vector of outputs y = 

(J(XI)' f(X2), ... f(Xn)) as follows, 

(3.6) 

where, 
I 

1 C(XI, X2) 

A= 
C(X2, Xl) 1 

1 

Note that when x = x, 3.5 reduces to unity, giving the variance at x. 

Note that Equation 3.6 is conditional on the quantities 0'2, B, and w, which are known 

as hyperparameters, since they are controlling parameters that define the behaviour of the 

model (a much fuller explanation of this can be found in [67]). These hyperparameters 

must be estimated from the training data, and are instrumental in avoiding pitfalls such 

as over-fitting. Figure 3.3 shows an example of the result of incorrectly fitting the hyper­

parameters defining the smoothness of the function. Although by definition the GP must 

pass through all training data points whatever the value of the hyperparameters (assuming 

no noise on the training data), when the length-scales are incorrectly defined (l = 0.7) 
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Figure 3.3: GPs of varying length scale (l) condit ioned on training data from a sine wave. 

the GP does a very bad job of fitting the sine wave since the covariance between points is 

too large. The problem of estimating the hyperparameters is dealt with in Section 3.1.3. 

At this point , the hyperparameters must be assigned prior distributions to complete the 

prior specification of the GP. (7 2 and w are assigned weak priors (otherwise known as 

noninformative priors - see for example [10] for fur ther information) , which do not give 

any weight to any range of values over any other. This is done when there is no prior 

information wha tsoever about the hyperparameters, although other prior distributions can 

be, and are, used by Oakley and O 'Hagan in [41]. The prior is expressed in an improper 

form , meaning that it is only described as a proportional relationship, i.e . 

2 1 
p(w, (7 ) ex 2 

(7 
(3.7) 

which implies an infinite prior variance on w , and a diminishing probability with in­

creasing (72 . The other remaining hyperparameters in B will need a different t reatment 

as explained shortly (Section 3.1.4). The prior distribution of the function and its hy­

perparameters is now complete - the next step is to condition the GP on the training 

data . 

3.1.2 Conditioning on the Training Data 

In order to make in an informed prediction about some unknown function value J(x*) 
a t a given input point x* , the prior distribution of J(x*) must be condit ioned on the 

training data y. Since it is defined by the GP that all dat a (including the as-yet unknown 
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point f(x*)) are distributed joint-normally, the joint normal distribution can be expressed 

by partitioning the mean vector J..L and covariance matrix ~ into parts representing the 

distribution of f( x*) and parts representing the distribution of y, i.e. 

(3.8) 

(3.9) 

where, 

t(x*f = (c(x*, Xl)' ... , c(x*, x n )), (3.10) 

A lemma exists that states that, for a joint-Gaussian distribution, the marginal distribution 

of f(x*) may be conditioned on the marginal distribution of y, giving the predictive 

distribution (the * notation here indicates a posterior distribution) by the following result: 

where, 

p(f(x*)Jw, (72, V) rv gP (m*(x*), (72c*(x*, x')) 

m*(x*) = ¢(x*f w + t(x*)T A-I(y - <I>w) 

c*(x*, x') = c(x*, x') - t(x*f A-It(x*) 

(3.11) 

(3.12) 

(3.13) 

Note that Equation (3.11) is still conditional on the three hyperparameters. Following 

the principles of Bayesian inference, it is possible to marginalise these parameters by 

integrating the predictive distribution with respect to each one - this is outlined in 

Section 3.1.3. In the case of wand (72, they can be analytically marginalised due to 

the prior distributions that have been assigned to them. B, on the other hand, tcannot 

be analytically marginalised and so must be treated as known (i.e. it is not assigned a 

prior probability distribution). Instead, it is estimated by maximum likelihood estimation 

(MLE), which involves expressing the likelihood of parameters given the training data and 

optimising the parameters to maximise the probability of the data [68] (this must be done 

numerically in this case). It is also possible to numerically marginalise B using Markov 

Chain Monte Carlo (MCMC) estimation, but this is not considered here. It is however 

referred to in Chapter 8. 
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3.1.3 Marginalising Hyperparameters 

Considering first the problem of marginalising w, the distribution that is required is 

p(f(x*)10'2,y). This can be expressed as, 

p(f(')10'2, y) = J p(f(.), w10'2, y)dw 

= J p(f(')lw, 0'2, y)p(wI0'2, y)dw 

(3.14) 

Where f(-) = f(x*) . The first term in the integral is the predictive distribution, which 

has already been defined in Equation 3.11. The second term can be derived from the 

likelihood of the data, i.e. 

n 

p(ylw, 0'2) = IIp(Yilw , 0'2) 
i=l 

n 

= IIp(f(Xi)lw, 0'2) (3.15) 

i=l 

In order to get p(wI0'2,y) it is necessary to express this distribution in terms of w. The 

distribution can be expanded out, i.e. 

N(<I>w, 0'2 A) = (21l"0'2) -2
n 

exp {~(y - <I>w)T A-I(y - <I>w)} 

= (21l"0'2) -2
n 

exp {~ (yT A-ly - 2yT A -l<I>w + wT<I>A- 1<I>w)} (3.16) 

Through some judicious rearrangement it is possible to extract a normal distribution over 

wand an inverse-gamma distribution over 0'2, therefore splitting the distribution into two 

distributions which can be used separately for marginalising each hyperparameter. The 

aim is therefore to express the exponent in 3.16 in the form, 

~ {(w - wf~;~/(w - w) + (n - q - 2)a2 } 
(3.17) 

where the (n-q-2)a2 has been inserted as the constant in the inverse-gamma distribution 

in a form that allows a convenient form after marginalisation (see Equation 3.39 later). 

Comparing coefficients of w(.)wT between Equations 3.16 and 3.17 it is evident that 

the covariance of matrix of w is ~~1 = <I>T A-1<I>. Further, if the coefficients of ware 
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compared, the mean w of w can be found, 

WT~~1 = yT A-l<I> 

wT = yT A-l<I>~w = yT A-I <I>(<I>T A-l<I»-1 
(3.18) , 

This expression may now be used as a "best-estimate" of w, since it represents the value 

of w for which the probability of the observed data is the highest, given that the mean of 

a Gaussian distribution is also its mode - this is therefore a Maximum a Priori (MAP) 

estimate (the equivalent of a MLE estimate, but with a prior distribution included). A 

prior distribution has been specified for w; since the prior is uninformative, however, the 

MAP estimate gives the same result as the MLE equivalent. The distribution of weights 

may now be stated, 

(3.19) 

Now to find the estimate of (12 the constants are compared between Equations 3.16 and 

3.17 to find that, 

Substituting the expression for wand rearranging gives, 

(n - q - 2)0'2 = yT A-Iy _ yT A-I <I> (<I>T A-l<I»-I<I>T A-I <I> (<I>T A-l<I»-I<I>T A-Iy 

= yT A-Iy _ yT A-l<I>(<I>T A-l<I»-I<I>T A-Iy 

8-2 = 1 {yT (A-I _ A-I <I>(<I>T A-l<I»-I<I>T A-I) y} 
n-q-2 

(3.20) 

Similar to 3.18, this provides the best estimate of (72. 

Turning back now to the integral in Equation 3.14, the first term may be expressed as, 
, i 

{
-I 2} p(f(-)Iw, (12, y) ex: exp 2C*(12 (1(-) - k~ w + a) (3.21) 

where k~ = ¢(x? - t(x? A-I <I> and a = t(x? A-Iy. c*(x*, x') is denoted here as c* 

for convenience. The second term is, 

(3.22) 

Therefore (denoting the distribution in 3.14 as PI) the combined result is, 

(3.23) 

Note that the aim here is to find the posterior distribution of fO, which Will be Gaussian. 

Given that this distribution must necessarily integrate to unity, the normalising constant 

can be evaluated at the end of the integration, and constants (terms that are not a function 
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of f(·)) that appear throughout the calculation can be ignored. 

In order to integrate 3.23 it is necessary to expand the terms in the exponent and to 

complete the square. Skipping some rearrangement, this becomes a quadratic in w, 

where, 
P =K+c*E~l 

qT = (a - f(.)) k~ - w T c*E~l 

r =(f(.)-a)2+wTc*E~lw 

K =km~ 

Completing the square gives, 

PI ex J exp{2~~2 (w-a)T p(w-a)+b}dw 

a = p-lq 
b = r _ qTp-lq 

The integral therefore becomes, 

PI ex exp {2~~2 (r - qT p-lq) } J exp {2~~2 (w - af P (w - a)} dw 

(3.24) 

(3.25) 

·(3.26) 

(3.27) 

since b is not a function of w, and can be taken out of the integral. It is useful at this 

point to carefully consider the integral in 3.27. This is the integral of ad-dimensional 

Gaussian function which has P, a and c* (72 as parameters. Of these, only a is a function 

of f(·), which is the variable of interest. The Gaussian integral in Equation 3.27 can be 

solved by a standard result I G, 

2nd 

I c!;,21 
Ie = (3.28) 

which notably is not dependent on the a term (and hence not on f(·)). This means that 

the entire integral can be discarded as a proportional constant, leaving only the b term. 

The remaining terms are restated here explicitly in their original form for clarity, 

PI ex exp {2~~2 (r - qT p-lq) } 

p = K +c*E~l 
qT = (t(.)T A-ly - f(-)) k~ - w T c*E~l 

r = (1(-) - t(·? A-ly)2 + wT c*E~lw 

(3.29) 

Remembering that f(-) is the variable of interest, it is convenient to define r;:; = f(-) -
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t(·f A-1y, giving, 

PI ex exp {2C-:~2 (w2 - [-k~w - wT(P - K)] p-l [-k~w - wT(P - K)f)} 

ex exp {2c-:~2 (w2 - w2k~P-lk~ + 2wk~P-l(p - K)w)} 

(3.30) 

Where the wT c*r;;lw term has been discarded as a constant. Now defining Q = 1 -

k~M-l km this leaves, 

PI ex exp {2~~2 (Qw2 - 2Qwk~ w) } 

ex exp {2c-:~2 Q (w2 - 2wk~ w) } 

ex exp {2~~2Q (w - k~w)2} 

(3.31) 

Where once again a constant is discarded. This is now starting to resemble a Gaussian 

distribution. Replacing the original terms yields, after a little rearrangement, 

(3.32) 

From which it can be recognised that the distribution is proportional to a Gaussian over 

f(·), such that, 

(3.33) 

The mean is easily identified from the exponent and is given as, 

m**(:z:*) = ¢(:z:*)T W + t(:z:*f A-I (y - <J>w) (3.34) 

Concerning the posterior covariance, it is a little trickier to get it into the correct form. 

First it is recognised that the posterior covariance c** is found by comparing to a Gaussian 

distribution, giving, 
c** = c*a2Q-I 

= c*a2(1 - k~J\,1-1k~)-1 
(3.35) 

This can be shown to be equal to the following after some rearrangement, 

(3.36) 

This simplifies to, 

(3.37) 
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Now substituting back in all original terms, the final expression is given as, 

c**(x*,af) = c*(x*, 31) + (<jJ(x*f - t(x*f A-l<I»(<I>T A-l<I»-l(<jJ(aff - t(aff A-l<I>f 

(3.38) 

Note that the mean function is the same as the predictive mean in 3.12, except the random 

variable w is replaced by the best-estimate VI. The covariance function, however, has an 

extra term to accommodate the additional uncertainty surrounding the estimate of w. 

Finally, the marginalisation of (12 is performed by combining the normal distribution in 

3.33 with the inverse gamma distribution of (12 found previously to give a normal-scaled 

inverse gamma distribution over f(x) and (12. It is a standard result that the marginal 

distribution of f(x) (i.e. integrating out (12) in this case is a multivariate student's t­

distribution (see e.g. [69]) conditional only on Band y, such that, 

f(x)/B, y '" tn-q{m**(x), a-2c**(x, af)} (3.39) 

The GP is now fully fitted to the training data. Examining the posterior mean function 

in (3.34) (which would be used in predictions made with the GP), it is composed of two 

terms - the prior mean from (3.2) and the GP's correction to this prior "guess" after 

conditioning on the data: 

m**(x) = ¢(x)T VI + w(x)i (3.40) 

where W = t(x)T A-l and €. = (z - Hw). This latter term can be viewed as a vector of 

residual errors between the linear regression model and the training data. If the training 

data were perfectly linear, this term would become zero and (3.40) would collapse to 

the prior mean, i.e. the linear model. When the training data deviates from the linear 

model, however, this term modifies the linear prior model to fit the training data with a 

smoothness (covariance) dictated by the hyperparameters that have been estimated. It is 

this combination of regression and interpolation in the posterior mean that means that 

the GP has much greater predictive power than a linear regression alone. In fact, the GP 

is even more sophisticated than this; as one also has a posterior variance for the model, 

one can establish natural confidence bounds on predictions. 

It can be seen then that the GP is a very appropriate emulator for use in VA/SA. It 
is an efficient form of regression, thus requiring many fewer runs than estimation using 

Me methods. The structure is sufficiently flexible to fit a wide class of models, and the 

smoothness parameters can be estimated from the training data. Furthermore, confidence 

intervals are given for predictions - the GP quantifies its own uncertainty in modelling the 

data and can pa.."lS this model uncertainty on in the VA/SA to give a fuller overall account 

of uncertainty. Finally, the structure of the posterior mean and covariance functions are 

sufficiently tractable to analytically provide many of the required sensitivity estimates, 

since a squared-exponential covariance function has been selected and this will be shown 
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to allow analytical evaluation of integrals when normal distributions are assigned to the 

input parameters. 

3.1.4 Estimating Roughness Parameters 

The roughness matrix B cannot be analytically marginalised in the same way as the other 

hyperparameters. For this reason, it is estimated from the data by MAP estimation, which 

involves assigning prior distributions to each element bi (in this case uniform weak priors) 

and expressing the probability of the observed data as a function of B. The value of B 

that gives the highest probability of the data (i.e. the mode of the posterior distribution) 

is known as the MAP estimate and will be used as the best-estimate of B. 

The derivation of the likelihood function for B will not be given in detail here, but further 

details can be found in [70J. However, the principle is as follows. The prior distribution 

of the data conditional on all the hyperparameters is given in 3.6. By combining this 

with the improper prior distribution p( a 2 , w) given in 3.7 and improper priors over each 

element of B, the posterior distribution of parameters given the data can be expressed as, 

2 1 { -1 T -1 } J (w, a ,ElY) = an+227rn/2IAI1/2 exp 2a2 (y - <I>w) A (y - <I>w) (3.41 ) 

It is now necessary to marginalise wand a 2 • Integrating first with respect to w gives 

(recognising that proportional constants can be ignored since this will not affect the value 

of the posterior mode), 

(3.42) 

Next, a2 may be integrated out to give, 

(3.43) 

With a global optimisation algorithm, the maximum of this function (or more conveniently, 

the logarithm of the function) can be found by searching the parameter space of B. Of 

course, this is another manifestation of the curse of dimensionality, so optimising B for 

models with a large number of input dimensions can be extremely time-consuming. In 

fact, the estimation of B may often represent the most computationally-intensive .part of 

the process of VA with a GP emulator. It would however still tend to represent only a 

small fraction of the cost of obtaining the training data in the first place. 
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3.2 Inference for Sensitivity Analysis 

At this point it is assumed that a joint pdf p( x) exists, expressing the uncertainty of the 

input parameters to the emulator. This necessarily forces the inputs to be defined by 

the same class of probability distribution. Additionally, an assumption of independence 

is made, first to improve the tractability of the integrals that follow, and second, to allow 

the variance decomposition given previously in Section 2.2.2. To ensure that the integrals 

for inference are tractable it is further required that the joint pdf is either uniform or 

Gaussian; the integrals defined here are derived for the joint-Gaussian case. This is a 

limitation of sorts; however in the experience of the author, it is not usually the case that 

enough data concerning the input uncertainties are available to define distributions of a 

more complex form than Gaussian or uniform. However, in the event that other forms or 

a mixture of forms is essential, a Beta distribution (or similar flexible distribution) could 

be used which allows the definition of a wide class of pdf shapes. In this case however, 

numerical integration would be required. 

3.2.1 Mean, Variance and Main Effects 

With the joint pdf defined as Gaussian or uniform, all of the uncertainty measures dis­

cussed in Section 2.2.2 can be analytically derived from the posterior distribution of the 

GP. For notational clarity, throughout the rest of this chapter any marginal pdf such as 

P-rlr(x-rlx,.) will be expressed as p(x-r). A shorthand integral notation will also be 

adopted so that, for example, 

(3.44) 

where Xr is the support of the marginal distribution of X-r and -r represents the com­

plimentary set of r. 

Of immediate interest are the expected value and variance of any outputs of the model, 

given the uncertainty in the inputs. The expected value can be shown to be a special case 

of the definition of main effects and interactions for a subset of inputs r, since, 

(3.45) 

from which it is evident that if r is the empty set, (3.45) reduces to the expected value 

of Y. This expression can be therefore used to define both the main effects of Y, as well 

as the expected value. Remember here that the function /(x) is a random variable and 

therefore has associated mean and variance; E(YIx,.) is therefore also a random variable. 

To find the posterior mean of this conditional expectation, it suffices to insert the posterior 
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mean of the GP in place of f(x) such that, 

(3.46) , 

(with E* denoting the posterior expectation over the random variable f(-)), which can 

be expressed as, 

where, 

tr(x,.) = L-r t(x)dP(x_r ) 

e = A-1(y - <1>w) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

Main effects ret;ult from cont;idering the case when r cont;ists of only one input, while 

interactions can be found when r is extended to larger subt;ets. Notice that the expression 

for the main effect (3.47) is a function of x,. and therefore to plot the main effect response 

it is evaluated over the range of uncertainty of x,. and typically standardised for convenient 

comparison with other main effect plots. Clearly, plotting interactions of third order and 

higher interactions becomes difficult but is rarely of interest. 

In order to find the variance of the pOt;terior dbtributions of main effects (and hence the 

posterior variance of Y), a general result can be used which is given as, 

cov* {E(YIx,.), E(YI~)} = 8'2 L-r L_p c**(x, x)dP(x_p)dP(x_r ) 

[ Ur,p(x,.,~) - t,.(x,.)A-1tp(:zp)T + 1 
{ Tr( x,.) - t,.( x,.)A -1<1> } ~w { Tp(:zp) - tp( :zp)A -1<1> } T 

(3.51) 

where, 

(3.52) 

The evaluation of the integrals in Equations 3.48 and 3.49 is now considered. Since the 

joint dit;tribution is Gaussian, integrating over the support Xr or X-r is equivalent to 

integrating between the limits -00 to +00. It is supposed from here that r is an 'integer 

denoting the last input dimension in the monotonically increasing set {Xl, X2, ... , x r }. This 

is to simplify the illustration of the matrices that result from thet;e integrals, but r can of 

course be any permutation of input dimensions. 
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Integral cPr 

Starting with CPr(x,.) and remembering that cp(xf = (1, Xl, X2, ... , Xd), the resulting vector 

is composed of two separate integrals. A notation will be used from here where integrals 

are split into manageable terms denoted as, for example, It, where cP denotes the vector 

or matrix to be evaluated, and a is simply an index for reference. The first integral of 

CPr (x,.) is the integral of 1, 

(3.53) 

Since the integral of a pdf is by definition equal to 1. Next, for any Xi ~ x,. we have, 

It = r XidP(X-r) for Xi ~ x,. 1.Lr 
= r P (X-(rUi») dX-(pUi) 1 XiP (Xi) dXi 

.I~-(rUi) ~i 

Finally, for the case of Xi Ex,., 

= Xi 

since Xi is treated as constant. This results in the vector, 

Integral tr 

Turning now to tr (x,. ), the j th element Tj of tr (x,.) is the integral, 

. (3.54) 

(3.56) 

(3.57) 
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Since B is a diagonal matrix this breaks down into, 

Tj = LJuexp {-b;(x; - X;,;)2) 1 p(X_,)d'L, 

= gexp {-b;(x; - X;,;)2)J~t [L~, cxp {-b;(x; - X;,;)2) P(X;)dX;] 

(3.58) 

since the joint distribution is also separable. For any of the integrals in second product 

operator of 3.58, we have, 

(3.59) 

By completing the square this results in a Gaussian integral, which can be shown (after 

some rearrangement) to be equal to, 

(3.60) 

tr(x,.) can now be constructed from 3.60 and 3.58. 

3.2.2 Sensitivity Indices 

The same procedure applies for derivation of the Sobol' sensitivity indices. In order to 

evaluate Vr, the variance of a main effect or interaction, a variance identity is used (see 

e.g. [10]), 

This reduces to the following using a property of conditional expectation known as con­

sistency which states that E(E(YIX)) = E(Y) [lOJ, 

(3.62) 

Hence, 

. (3.63) 

E*(Er (y)2) can be found from the result that, 

(3.64) 

using a rearragement of the same variance identity (see again [68]). This leaves E*[Er{E_r{Ylxr)2}J 
the equation for which is presented here, using the notation that x~ is the vector compris-
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• of d" mg 0 Xr an X_r , I.e. 

Xl Ex,. 

:J= and X= 

This can then be represented as the following, 

E*[Er{E-r(Ylxr )2}] 

= LrL-rL-r E*{f(x)f(xU)}dP(x_r)dP(x'-r)dP(xr ) 

= {1 ( E*{a 2c**(x, xU) + m**(x)m**(xU)}dP(x_r)dP(x'-r)dP(xr ) 
J.~r x_)x-r 

which can equivalently be expressed as, 

E* [Er {E_r (Ylxr)2} J 

60 

(3.65) 

0(3.66) 

= a2[Ur - tr(A-I Pr ) + tr{Ew(Qr - SrA-1<I> - <I>T A-IS; + <I>T A-I PrA-1<I>)}] (3.67) 

+tr(eTpr ) + 2tr(wTSre) + tr(wTQrw), 

where, 

Qr = Lr L-r L-r 4>(x)4>(xU)T dP(x_r)dP(aLr)dP(x,.) (3.68) 

Sr = LrL_r L-r 4>(x)t(:J? dP(x_r)dP(aLr)dP(x,.) (3.69) 

Pr = Lr L-r L-r t(x)t(:J? dP(x_r)dP(aLr)dP(x,.) (3.70) 

Ur = { { (o c(x, :J)dP(x-r)dP(aLr)dP(x,.) (3.71) JXr JX_r JX_r 
and "tr" denotes the trace of a matrix. The derivation of these integrals follows in Section 

3.2.3. The variance of Vr could also be derived but is complex and also rarely of interest. 

Note that (3.63) can be used to express both Si and STi by considering the cases were x,. = 

Xi and x,. = X-i respectively. To standardise, the estimates can be divided by E* {var(Y)} , 

although this is not exactly equal to the posterior expectation of the sensitivity indices. 

It is however the closest analytical expression available. 

An implementation of the method outlined here is available in a package called GEM-SA 

[71]. The equivalent was also written in Matlab by the author. For the analyses performed 
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in this thesis a mixture of the two codes was used. 

3.2.3 Derivation of Integrals for Sensitivity Indices 

The remaining integrals are here presented in a convenient order based on complexity. 

The notation is consistent with that used previously in the chapter. 

Integral Qr 

Qr = Lr L-r L-r ¢(x)¢(xU? dP(x_r)dP(x_r)dP(x,.) (3.72) 

The product of ¢(x)¢(xU? creates the matrix, 

1 Xr I x' Xl Xr+l d 
x2 XIXr I I Xl I XIXr+1 XIXd 

¢(x)¢(xU? = Xr XrXI (Xr)2 I xrxr+1 
I xrxd (3.73) 

Xr+l Xr+IXI Xr+IXr I 
Xr+l Xr+1 

I 
xr+1xd 

Xd XdXl XdXr I 
Xd Xr+l I Xdxd 

This results in several different integrals, which are listed here: 

1(3.74) 

=1 

since once again, it is the integral of a pdf. The second case is, 

(3.75) 

= E(xd = I-ti 
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Considering now the case when Xi ~ x,. , 

(3.76) 

= E(xd 

This result also holds for integrals of x~ E ~Lr' In the case of x;, 

, (3.77) 

Using a substitution combined with the standard result for a Gaussian integral, and after 

a little rearrangement, this yields the satbfyingly simple result, 

(3.78) 

Turning now to the other diagonal elements, 

(3.79) 

since in this case the integrals are separable. For all other elements, the variables are 

also treated separately, and the integrals are again separable. ' The matrix can now be 

constructed as, 

1 /l1 /lr /lr+1 /ld 

/l1 /lI + (1? /ll/lr '/ll/lrH /ll/ld 

Up(xp) = /lr /lr/l1 /l2 + (12 r r /lr/lr+1 /lr/ld (3.80) 

/lrH /lrH/ll /lr+l/lr 
2 

/lrH /lr+l/ld 

/ld /ld/ll /-ld/-lr /ld/-lr+l /-l~ 
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Integral Sr 

This is expressed as, 

(3.81) 

where, 
c(xtl, xd c( xtl, X2) c( xtl, Xn) 

¢(x)t(xtl)T = 
Xl C( xtl, xr) XIC(xtl, X2) XIC(xtl, xn ) 

(3.82) 

XdC( xtl , Xl) XdC(xtl, X2) XdC(xtl, Xn) 

Considering first the j th element in the top row only, 

(3.83) 

This is in fact equal to 3.57, and the result can therefore be expressed by 3.60. Considering 

now an element in a row for Xi Ex,., 

(3.84) 

The expression for the first integral can be evaluated by completing the square and using 

the standard result of a Gaussian integral, resulting in the following, 

The result of the second integral, for a single input variable, is given in 3.60, and will be 

denoted here as Iff3 The combined result is therefore, 

d 

I~ = If a II Iff3 . (3.86) 
i=r+l 

So that If a is evaluated for inputs in the set r, and Iff3 for the remaining inputs. 

The final case occurs for the remaining rows, where Xi rf. x,. , 
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Since Xi ~ x,. , it is only integrated with respect to x_p and can be separated from the 

other terms. This results in the product of three integrals, 

(3.88) 

The product of the last two integrals here is equal to the product of Ir,f3 over all input 

dimensions. The first integral is simply the expected value of Xi, therefore, 

d 

If = /1i II Ir,f3 
i=l 

This results in the final solution for Sr, given as, 

Integral Pr 

This is defined as, 

where, 

t(x)t(xllf = 

Ir,i=l 
12

S . 1 . 1 ,1= ,)= 

12
S . . 1 ,1=r,)= 

13
S

. +1· 1 ,1=r ,)= 

13
S

. d· 1 ,1= ,)= 

Ir,i=2 
12

S
. 1· 2 ,1= ,)= 

12
S . . 2 ,1=r,)= 

Ir,i=r+l,i=2 

c(x, Xl)C(:z:II, Xl) c(x, xt}c(:z:II, X2) 
c(x, X2)C(:z:II, Xl) C(X,X2)C(:z:II,X2) 

c(x, a:n)c(:z:II, xt) c(x, a:n)c(:z:II, X2) 

Ir,i=n 
12

S . 1 . ,1= ,)=n 

1
2
S. . ,z=r,)=n 

13
S

. +1· ,z=r ,)=n 

c(x, xt)c(xII, a:n) 
c(x, X2)c(:z:II, a:n) 

c(x, a:n)c(a;I!, a:n) 

(3.89) 

(3.90) 

(3.91) 

(3.92) 

All the elements in this matrix can be treated in the same way. The integral of the (j, k)th 

element is given as, 
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This splits into the product of three integrals, 

Pr(j,k) = If If If (3.94) . 

where, 

If ~ tHL,exp {-2b.«(Xi - Xi,;)' + (Xi - Xi,,)')} dP(Xi)} 

d 

If =.11 {lexP{-bi((Xi-Xi,j)2)}dP(Xi)} (3.95) 
t=r+1 X, 

d 

If = II {1 exp {-bi ((x~ - Xi,k)2)} dP(xD} 
i=r+1 x, 

Both If and If have been presented before, and the result is given in 3.60. If is found 

from the usual method of completing the square, using the result of a Gaussian integral 

and some tedious rearrangement, yielding the result, 

{
_ (2bi(Xi,i+Xi ,k)+J.ti)

2 
_ b. ( 2 + 2 ) _ J!l.} exp -4biq2-1 t Xi,j Xi,k 2q2 , , 

If = (3.96) 
V4biO"; + 1 

Integral Ur 

This is defined as, 

r (3.97) 

This integral is slightly different from the previous ones, since it is the covariance between 

two variables, x and xrt. Integrating first with respect to x,. , 

( c(x, :J)dP(x,.) = tr{l exp {-bi(Xi - Xi)2} dP(Xi)} 
J Xr 1=1 x, (3.98) 

=1 

since C(Xi' Xi) = 1 and this leaves the integral of a pdf. This then leaves the integral of all 

-r terms, i.e, 

u, ~ L,L, ti!,exp {-b;(Xi - xD'} }dP(X_,)dP(z'c') 

d 

= ill1LiLi {exp {-bi(Xi - xD2} } dP(Xi)dP(x'-i) 

(3.99) 
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since as usual, the diagonal covariance expression can be split into multiples of integrals. 

For any i th integral It of this product of integrals where Xi ~ x,. , integrating first with 

respect to Xi is accomplished by remembering the result from 3.60, i.e. 

It = r 
}Xi 

dP(X'-i) 

This integral is solved by collecting terms in (xD2, Xi, and constants, giving 

where, 

(3.100) 

(3.101) 

(3.102) 

After completing the square and applying the standard result of a Gaussian integral as 

usual, this gives, 

(3.103) 

Which, after some very considerable rearrangement, leads to the almost suspiciously simple 

result, 

(3.104) 

3.3 Conclusions 

The Bayesian SA approach has been outlined in considerable detail in this chapter, with 

the intention of providing a step-by-step walkthrough of the specification of the GP, its 

training, and the analytical inference of VA and SA quantities with the use of a joint­

Gaussian distribution for model uncertainties. The result is an emulator that is sufficiently 

flexible to model a. wide class of problems, yet is very computationally efficient, since to 

estimate posterior means and (conditional) variances it requires no additional runs, even 
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of the emulator itself. This is in contrast to Monte Carlo methods which require separate 

DOEs for each quantity to be estimated. The expressions given here are applicable to 

any model with a joint-Gaussian input distribution, so long as the assumptions about· 

smoothness are valid. This means that once the expressions are programmed, they can be 

reused for any set of training data for any model. 

Perhaps the only drawbacks that could be mentioned are the GP's requirement that the 

response of the model is smooth (although this issue is addressed in Chapter 8) and that 

for a large number of training points the GP can be slow, since it requires the inversion 

of the n x n covariance matrix A. Additionally, the matrix B of roughness parameters 

must be optimised, the computational expense of which increases exponentially with d. 

However it should be remembered that the GP emulator would typically only be used 

when a small set of training data is available - even for larger sets, the cost of training 

the GP will usually be only a small fraction of the cost of obtaining the training data. 

In the following chapters, the GP emulator is used extensively on a number of complex 

engineering models: its practicality will be thoroughly tested and conclusions drawn at 

each stage. A practical walkthrough of the method described in this chapter is also 

provided in Appendix B. 
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Chapter 4 

Modelling the Aortic Valve 

There are many examples of models that occur in an engineering context that could 

require an uncertainty or sensitivity analysis. An area of modelling that is particularly 

hampered by the presence of large uncertainties is that of biomechanics, i.e. the study 

of the mechanics of biological systems. In order to more fully understand the mechanics 

of such systems, computational models (very often FE models) are used since detailed 

measurement of mechanical properties in vivo is extremely difficult and potentially tricky 

from an ethical perspective. However, the modelling of biological systems is subject to large 

uncertainty in material properties, loading and geometry (and many other model inputs) 

from both aleatoric and epistemic sources. The dimensions and material properties of a 

given biological component (a bone, for example) vary dramatically from one individual 

to the next. Furthermore, the material behaviour is often not well understood and can 

only be mathematically characterised with limited accuracy. 

The Aortic Valve (AV) has been the subject of much interest in the biomechanics com­

munity since, of the four valves in the heart, it is the most prone to failure. Modelling the 

AV is motivated by two aspects: first, to understand the failure mechanism of the natural 

valve (and thereby hope to improve its longevity); second, to attempt to replicate the 

remarkable durability of the natural valve in bioprosthetic devices, which are themselves 

subject to failure. Many models of the AV have been created, usually using the FE ap­

proach, yet to date very little consideration has been given to uncertainties in modelling, 

despite the fact that the magnitude of uncertainties is large and their existence is well 

known. This chapter outlines the background to AV simulation, then describes in detail 

two models of the AV that have been constructed, both of which are novel in different 

ways. The following chapter (Chapter 5) presents an in-depth uncertainty and sensitivity 

analysis of both models with two motivations: first, to investigate the efficacy of Bayesian 

SA on finite element models; and second, to understand the effect of uncertainties on the 

modelling of the AV. The work can therefore be considered both from a statistical and a 

biomechanical perspective. 
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4.1 The Aortic Valve 

The AV is one of the four valves in the human heart. It is situated between the left ventricle 

and the aorta (see Figure 4.1), its function being to ensure one-way flow of oxygenated 

blood from the heart to the rest of the body. Figure 4.1 also shows an illustration of the 

AV itself: it consists of three "cusps" or "leaflets" arranged in a rotationally symmetrical 

pattern, normal to the axis of blood flow. Opposite each leaflet are the sinuses, which 

are bulges in the aorta allowing the leaflets space to open fully. The section of aorta 

between the leaflets and the ventricle is known as the aortic coronet. When the blood 

pressure on the ventricular side of the valve exceeds the pressure on the aortic side (Le. 

in systole), the valve opens by the three leaflets separating from each other and reversing 

their curvature; conversely, when the opposite is true (diastole) the valve closes and the 

leaflets come together or "coapt". The thicker regions of the leaflet that contact each 

other on closure are known as the commissures. 

The opening mechanism is one of the most studied aspects of the AV, because in a natural 

lifetime the valve can open and close around 4 billion times. In the majority of cases 

this is achieved without failure. It is this impressive resistance to fatigue that prosthetic 

designers attempt to emulate. 

4.1.1 Valve Failure and Prostheses 

Although in the majority of cases the AV performs without failure for the entire life of 

the individual, of the four heart valves it is the most likely to fail. The valve can become 

stenotic (forward blood motion is impeded) or insufficient (the valve fails to fully close, 

allowing blood to leak back into the ventricle during diastole). Deformations (where the 

valve is not properly formed) are also reasonably common. In the case of AV failure, the 

patient is treated by fitting a replacement valve. There are several types of replacement, 

all of which have their respective advantages and disadvantages. 

Perhaps the most common replacements are mechanical prostheses, which can consist of a 

ball-in-cage device, or an arrangement of moving plates - see [72] for a recent summary 

of both mechanical and bioprosthetic devices. These devices are very durable (being 

typically made of metal), but have major drawbacks. Blood forms clots on contact with 

metal, therefore anti-coagulents must be taken to prevent this for the remaining life of 

the patient. Furthermore, the blood flow (haemodynamics) can be turbulent around the 

angular surfaces of the mechanical prosthetic, which can damage the components of the 

blood. The alternative to a mechanical prosthetic is a bioprosthetic device - this consists 

of a valve constructed at least in part with biological materials. Quite often the leaflets 

of the aortic valves of pigs are attached to a metallic or polymer stent. This is known 

as a stented porcine xenograft· Pigs are chosen because the dimensions of the porcine 
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valve are very similar to the human equivalent (although some work has shown that the 

small differences could be responsible for reduced longevity of porcine xenografts [73]). 

Dioprosthetic devices do not require the use of anti-coagulents and have much improved 

haemodynamic performance. However, they are much less durable than the mechanical 

alternatives and as such tend to be used for elderly patients with a shorter life expectancy, 

since it is not difficult to appreciate that replacing an AV involves major surgery and 

therefore performing the procedure more than once is very undesirable. Overall however, 

there is no clear favourite in the choice between mechanical and bioprostheses [74], but 

there is certainly scope for improvement in the design of both. 

Given the context of this work, it is useful to briefly examine the reasons for the poor 

durability of bioprostheses. Failure in bioprosthetic valves is usually due to calcification 

and degradation of the leaflets. Research has indicated that this calcification occurs in 

areas where fibres are damaged by high compressive stress [75J. This is thought to be 

due to sub-optimal valve opening in bioprostheses - in short, the leaflets of bioprosthetic 

valves undergo higher stresses in each cycle than the natural valve since they do not open 

in as smooth a fashion. \Vork by Yoxall et ai. [76J suggests that the flexibility of the 

aortic root may be critical in the smooth opening of the natural valve. The motivation of 

modelling the natural valve is therefore to understand how it minimises leaflet stress and 

subsequently apply the same principles in the design of long-lasting prostheses. 

4.1.2 Material Properties 

Accurately modelling biological tissue is perhaps the most challenging part of developing 

biomechanical models. The material of the heart valve leaflet is known to be highly 

nonlinear and anisotropic (see for example [77]) and even heterogeneous [78J. It comprises 

of three distinguishable layers: on the ventricular side is the ventricularis, consisting 

of a layer of collagen and elastin fibres. The spongiosa layer in the middle consists of 

protoglyceans of low elastic modulus. The fibrosa layer facing the aorta is considered to 

be the main stress-bearing layer [75J - it consists mostly of collagen fibres. The fibres run 

largely in the circumferential direction, and are "crimped" in the relaxed state of the valve; 

as such, at low strains they are not under tension and resistive force is due purely to the 

connective tissue. However, once the fibres are un-crimped, they provide a strong (and 

virtually linear-elastic [77]) resistance - this is responsible for the hyperelastic, or roughly 

bi-modular nature of the material (see Figure 4.2). Some previous FE analyses have 

used a Mooney-Rivlin material model to represent this property [79J. Other alternatives 

include a piecewise-linear model or an Ogden model. The material has also been shown 

to be insensitive to strain rate and does not exhibit creep, although does experience stress 

relaxation [80J. The aortic tissue is also hyperelastic, but due to the relatively small strains 

in this region compared to the leaflet, it is often considered to be linear for the purposes 

of modelling. 
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Figure 4.2: Uniaxial s tress test on circumferentially-orientated AV leaflet tissue [81J. The 
arrangement of collagen fibres is shown in the pr - and post-transition regions. 

4.2 Simulating the Aortic Valve 

4.2.1 Existing Work 

In vivo measurement of stress and blood flow in the AV has been performed in some cases, 

for example by Thubrikar [75J. It is however very difficult to get precise measurements, and 

requires specialist equipment and ethical approval. Instead, Finite Element (FE) modelling 

offers a detailed alternative and as such has been used extensively in the biomechanics 

litera ture to model the AV, as well as many other biological components. 

AV models available in the li terature vary extensively in their level of sophistication. 

Broadly speaking, the sophistication of such models is evident in three main areas: the so­

lution method , the loading and the material models used. Regarding the solution method, 

early FE models considered only linear sta tic models to calculate stress under pressure 

loading, usually in the closed position - see for example [82J. However, the dynamic 

opening of the valve is usually of much more interest , therefore current models break the 

simulation down into time steps and consider inertial effects (see e.g. [83 84]) . This can 

be done with either an implicit integration method (see for example [85]) , but e~plicit 
integration is usually chosen since it is more stable when element contact is used and is 

suitable for fast , short-term events. Recent models have also used encompassing multi­

scale approaches , considering organ-level, tissue-level and cell-level simula.tions ([86]) . 

In reality, the loading of the valve is provided by pressure exerted on the valve by the 

flow of blood. The actual pressure exerted on each side of the leaflet is a function of 
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the position of the valve and the stage in the cardiac cycle, but early models prescribe 

pressure loading only by defining a simple pressure curve on the leaflets (e.g. [79, 87]). 

With an increase in available processing power and software capabilities, Fluid-Structure­

Interaction (FSI) models have become increasingly common, including approaches based 

on the "Lagrange multiplier-based fictitious domain method" [88,89], and several based on 

the use of Eulerian elements [84, 86, 90J. This allows a much more accurate representation 

of valve loading and also allows investigation of the blood flow itself depending on the fluid 

model used (see for example Morsi et al. [90]). Regarding the sophistication of material 

modelling, this is discussed in Sections 4.1.2 and 4.3.2. 

4.2.2 Uncertainties 

In almost all of the existing literature, little or no consideration has been given to the 

uncertainties prevalent in biomechanical models. In fact, the only treatment of unceitainty 

in AV models to the knowledge of the author is an informal investigation by Ranga et al. 

[79J of varying the elastic modulus of the aorta. This is despite the fact that the uncertainty 

associated with a AV model (and biomechanical models in general) is very substantial and 

stems from a number of sources, both epistemic and aleatoric. 

One obvious source is that biological components vary in size from one individual to the 

next. For example, Thubrikar [75] states the dimensions of the AV only in wide ranges. 

Figure 4.3 illustrates these dimensions: this diagram has become the de facto reference 

for constructing the geometry of the AV. The values for each parameter are quoted as, for 

example, H = 15.7 to 19.8mm, or 1> = 25° to 37°. The vast majority of HV models in the 

literature pick the mean value for these parameters, yet the effects of these uncertainties 

on the output of the model remain unknown. The thickness of the leaflets and sinus (the 

aortic root) is also known to vary significantly and has in fact been quoted very differently 

in different AV models [73J. 

Aside from the geometry of the valve, the loading can vary depending on the individual 

- for example, the blood pressure in a healthy adult is known to be 120/80mmHg (this 

first value represents maximum pressure in systole; the second is the maximum pressure in 

diastole), but it is possible for it to be as low as 75/50mmHg and as high as 150/100mmHg 

in the cases of hypotension and hypertension respectively [91J. An additional source of 

uncertainty is from the material properties of the valve. This is both aleatory uncertainty 

(since material properties also vary from individuafto individual) and epistemic, given that 

the behaviour of heart valve material is extremely complex and can only be characterised 

with limited fidelity. More is said on material properties in the following section. 
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Figure 4.3: Schematic of the AV: Rb =radius of ba.'·;e; Rc =radius of commissures' , 
H =valve height; a=bottom surface angle of leaflet; ¢=free edge angle of leaflet; 
Hs =height of commissure; hs =sinus height; ds =radius of extremity of sinus; 
Cc =coaptation height. (adapted from Thubrikar [75]) 

4.3 The Finite Element Models 

The solver used for all the modelling in this chapter is the explicit dynamic solver "LS­

Dyna". This is a well-established commercial FE package that is capable of handling llighly 

nonlinear dynamic events, complicated element contact and fluid-structure interaction. It 

has been successfully used in the literature to model the AV, e.g. [84, 86] amongst others. 

Two models were constructed for the purposes of this investigation. The first shall be 

referred to as the "dry" model, since it is loaded using only specified pressures on surfaces. 

The second makes use of fluid-structure interaction (FSI) and includes Eulerian elements; 

it will therefore be called the "wet" model. Although the wet model is substantially more 

sophisticated than the dry model, the dry model has its geometry defined parametrically 

and can thus be used to investigate geometric uncertainties such as those mentioned pre­

viously. The dry model is capable of this since it is pre- and post-processed entirely In the 

Ansys environment, using Ansys Parametric Design Langauge (APDL). This means that 

for a given set of geometric parameters it is automatically meshed, and dimensions can be 

treated as variables. However, the more advanced features of LS-Dyna a~e not available 

in the Ansys environment, thus the wet model was not able to be completely constructed 

in APDL. For this reason, the two models will be used to investigate different types of 

uncertainty and complement each other to some extent. 
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Figure 4.4: Two-thirds of aortic valve dry mesh (typical parameter set) 

4.3 .1 The Dry Model 

The dry model was constructed parametrically in Ansys using APDL and solved using 

Ansys/LS-Dyna (a limited version of LS-Dyna embedded into the Ansys environment). 

Post-proce sing was also written into the APDL file to extract quantities of interest . The 

approach was to use B lytschko-Lin-Tsay (BLT) shell elements [92] to model the entire 

structure, encompas ing the sinus, leaflets and a section of aorta at either end. This is an 

approach very commonly used in the literature (see for example [83, 87, 93] amongst many 

others) , since the BLT element is the most computationally efficient shell element available 

in LS-Dyna [94] and is set as default. An illustration of the mesh for a typical parameter 

set is shown in Figure 4.4. The thickness of the leaflet is defined separately between the 

commissural region and the remainder of the leaflet. The entire model consists of some 

3200 elements (dependent on the dimensions specified) and is run over a period of O.ls, 

representing the opening of the valve at the beginning of systole. 

Loading 

The loading of the model was pressure-based- in other words, a time-varying pressure 

was specified on the underside of the valve leaflets in order to open the valve, as well as 

separate pressure specifications for the sinuses and aort ic coronet ( ee Figure 4.5). The 

pressure curve was calculated from the well known pressure variations that result from 
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Figure 4.5: Pressure loading on the dry AV model: leaflet pressure (left) ; sinus and aorta 
pressure (right ). 
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Figur 4.7: Nodal displacement constraints on the dry AV model (marked as crosses) 

the cardiac cycl (see Figure 4.6). This formulation is not ideal because although the 

pressure differen e betwc n the aortic and ventricular side of the valve can be specified 

quite confidently from the pressure graph of the cardiac cycle, the pressure difference 

on the leaflets is only equal to the blood pressure difference (as specified by Figure 4.6) 

when the valv is clos d. Once the valve is open or partly open, the pressure difference 

across the leaflets is no longer obvious. Nevertheless, this was considered an adequate 

first approximation for the mainly geom try-orientated uncertainty analysis of this model. 

Displacement constraints were applied to the nodes at the extremities in the z -direction 

- this is shown in Figure 4.7. 

Material Models 

Although the material properties of the AV are complex, in the dry model a simple linear 

elastic model was assumed for both the leaflets and the sinus and aorta. This is following 

the approach of older models in the literature (se for example [84, 87]). A more accurate 

material model is adopted in the wet model - see Section 4.3.2. A general contact 

algorithm was used to control the interactions between the leaflets. 

4.3.2 The Wet Model 

Th wet model was built as a continuation of the dry model, using the same mesh, and 

th same shell element approach. As explain d previously, the wet model is solved in the 

stand-alone LS-Dyna solver. Due to the nature of the input file, it is not possible to define 

global dimensions of the input file parametrically. Therefore the wet model was built using 
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the mean values of the dimensions provided by Thubrikar [75J and other parameters were 

varied in the UA/SA. It improves on the more basic dry model in several ways. 

Fluid M esh 

Low pressure 
sink (Eulerian) 

Ambient fluid 
(Eulerian) 

Lagrangian shell 
elements 

High pressure 
-~---- sink (Eulerian) 

Figure 4.8: Illustration of wet AV model with overlapping Eulerian mesh. Shell elements 
are displayed with their assigned thicknesses. 

In order to more accurately model the pressure on the leaflets from the blood, it is possible 

to use an Eulerian mesh overlapping the shell elements to model the blood and its inter­

actions with the valve. Figure 4.8 illustrates the arrangement of the two meshes. Notice 

that cyclic symmetry was exploited in order to reduce the computational expense of FSIj 

the model consists of ~ of the entire valve, with symmetry conditions at the boundaries. 

In the Eulerian mesh, the material is not constrained to move with the movement of the 

nodes, and can flow through the mesh. This is in contrast to the standard Lagrangian mesh 

(of which the shell elements are composed) , where the mesh deforms with the m?-terial. 

The difference is illustrated in Figure 4.9. When combined with a fluid-like material model 

that allows the very large deformations characteristic of fluids, the Eulerian mesh provides 

a suitable method of modelling fluid flow, particularly those problems that involve short­

duration , high-pressure events. This approach has indeed been successfully used before in 

the AV literature, for example [84J amongst others. 

The Eulerian mesh is· arranged into three parts: a high pressure sink, a part at ambient 

(unspecified) pressure, and a low pressure sink. The sinks can be constrained to follow 
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Figure 4.9: Lagrangian and Eulerian element formulations at time t and time t + 8t (after 
deformation) 
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the pressure variations given in Figure 4.6 - that is to say, at every timestep the pressure 

in the elements is reset to the pressure specified in a given pressure-time curve. In the 

Eulerian framework, the material occupying the mesh is assigned a material model and 

an equation of state (EOS). The EOS used here is the Gruneisen type, which consists of 

a number of parameters which define the pressure on a compressed element as a function 

of relative volume and internal energy (see [94] for more information). The pressure of 

Eulerian elements can therefore be controlled by adjusting these parameters. Figure 4.10 

shows the pressure distribution of the model at the initial timestep. The division of 

materials in the Eulerian mesh is also shown. Note that the region outside the valve is 

assigned a "void" material model, which is used to fill the areas of empty mesh into which 

the valve is expected to expand. The other regions are assigned a constitutive material 

model which defines deviatoric stresses with a viscosity term. Coupling between the two 

meshes is performed using a penalty-based system: more on this can be found in [94]. 

Therefore, over the opening time period considered, the fluid flows from the high pressure 

sink to the low pressure sink, exerting a pressure on the Lagrangian elements that is much 

closer to that found in the natural valve. 

Material Model 

A further improvement in the wet model is that a nonlinear anisotropic material model 

was used. This is a constitutive soft-tissue (ST) model developed by Weiss et al. [95] 

which assumes that the hyperelastic response of the material is due to unidirectional 

fibres embedded in an isotropic matrix. The model has the added advantage that it is 

already implemented in LS-Dyna. To the knowledge of the author, this model ~as not 

been previously used to model AV tissue. 

As with all hyperelastic material models, the stress is defined indirectly through a strain 

energy function W of invariants of the deformation gradient tensor F. This ensures that 

the material is perfectly elastic and is a scalar function, so is mathematically easier to 

handle. The invariants ensure that the constitutive equation is the same under a change of 

basis (the reader is referred to Bower [96] for a full treatment of tensors and hyperelasticity, 

which is outside the scope of this thesis). 

In the case of the ST model, the strain energy function is defined as, 

( 4.1) 

where 11 and 12 are deviatoric invariants of the right Cauchy deformation tensor, >. 

represents the deviatoric stretch (where>. = 1 + €, € being the true strain) in the fibre 

direction, K is the effective bulk modulus and J is the volume ratio (the determinant 

of the deformation gradient tensor F). The functions Fl and F2 are the (deviatoric) 

contributions of the isotropic background matrix and the reinforcing fibres respectively. 
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The last term provides the volumetric component, although heart valve tissue is usually 

assumed to be incompressible, rendering the term negligible. The isotropic background 

matrix is represented by the Mooney-Rivlin model [97], which expresses the strain energy 

as, 

(4.2) 

where C1 and C2 are constants which can be determined from test data (see Section 

4.3.2 below). The fibre term assumes that the fibres provide no resistance in compression, 

and in tension provide resistance in two stages. Below the critical stretch level ).*, stress 

is described by a scaled exponential function as the fibres "un-crimp", whilst at higher 

stretches it is a linear function, representing the approximately elastic response of the 

straightened fibres. This is expressed as, 

). < 1 } 
). < ).* 

). ;:::: ).* 

(4.3) 

where C3 represents a scaling factor of the exponential region, C4 is the exponent, C5 is 

effectively the elastic modulus of the straightened fibres and C6 is a function of the other 

parameters that ensures continuity at ). * . 

Fitting the Material Model 

In order to fit material coefficients to test data, a nonlinear regression approach is adopted 

here, following that outlined by Quapp and Weiss [98]. On the assumption that fibres run 

only circumferentially, radial uniaxial stress/strain data can be used to fit the isotropic 

matrix term Fl, and the remaining coefficients can be fitted from the circumferential test 

data. 

For the special case of an incompressible uniaxially loaded material, the Mooney-Rivlin 

stress G"MR is expressed by differentiating the strain energy function with respect to F, 

setting appropriate terms to zero (see [96] for further explanation): 

(4.4) 

for which the constants can be readily computed by a linear regression algorithm. In the 

fibre direction, ).* was estimated by visual inspection of the circumferential test data, 

it being the point at which the effective modulus sharply increases and the stress is ap­

proximately linear with respect to stretch. The test data was then divided into pre and 

post-transition regions, such that C3 and C4 were fitted to the former and C5 to the 

latter using nonlinear regression. 

Results of some element tests with a range of coefficients suggested that a strongly negative 
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Figure 4.11: ST material model fi tted to uniaxial test data [99] and compared against 
LS-Dyna element test 

P C1 C2 C3 C4 C5 K ,\* 

1300kg/ m3 80.6kPa 0 60.1kPa 16.26 9.91MPa 2200GPa l.14 

Table 4.1: Typical parameter values for the ST model, found from data in [93]. p repre­
sents density. 

C2 could result in numerical instability. Although it is a requirement that (C1 + Q2) > 0 

(since this is a Drucker stability criterion [100]) even some negative C2 values that satisfied 

this equality were observed to cause simulation failure. Therefore, C2 was set to zero to 

prevent problems, considering that the model needed to be robust over the wide input 

space considered in the sensitivity analysis. This effectively reduced the isotropic matrix 

term to a Neo-Hookean model. For the same reasons, the sinus was also modelled by 

a single-term Mooney-Rivlin model, with the assumption of isotropy. A typical set of 

parameter values calculated from data in [93] is presented in Table 4.l. The resulting 

theoretical curves were compared against available test data for the leaflet of the AV and 

also against data from a single-element test in LS-Dyna. The result for a set of uniaxial 

data gained from Li et al. [99] is shown in Figure 4.1 l. The circumferential test data 

is well represented by the ST model and captures the linear post-transition region well. 

The radial data is not quite as well-fitted , due to the necessity of using a single-term 

Mooney-Rivlin model. However the fit is still acceptable. The element test results for the 

coefficients calculated in the ST model follow the theoretical curves exactly (as would be 

expected) - this confirms that the material model in LS-Dyna behaves in the same way 

as described here. 
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Figure 4.12: The varying thickness of the AV leaflet (half-section of single leaflet shown). 

Other Aspects 

The thickn ss of the AV 1 aflet is also known to be different over different areas of the 

surface. Thubrikar [75] gives the thickn ss of the 1 aflet as varying from O.25mm in the 

belly region to 1.33mm near the leaflet edge (the coaptation region). This aspect was 

included in the model (see Figure 4.12) . Finally, to account for contact with neighbouring 

leaflets, a sliding contact plane was defined on the coaptation face of the model. A reduced 

input deck for the wet model can be found in Appendix C. 

4.4 Conclusions 

A description of the aortic valve and of two finit element models representing its response 

to physiological loading has been given here. Modelling the aortic valve has been shown 

to be motivated by the desire to improve the longevity of replacement prosthetic valves. 

Each of the two models developed here is novel in its own way. In the first case, the dry 

model is a basic pressure-driven simulation with linear material properties. However , since 

it is specified almost entirely by adjustable parameters inside the Ansys environment , it is 

possible to automati ally vary geometric parameters that would oth rwise be impossible 

to investigate. Therefore, it is not int nded to be a state-of-the-art heart valve model, but 

rather a less-sophisticated simulation that has been designed with a very high degree of 

flexibili ty. In this resp ct therefore, it can be regarded as novel. 

In th second case, the wet model is a state-of-the-art aortic valve model that is at least 

comparable with any of the contemporary models available in the literature. It is fully 
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fluid-driven, exploits cyclic symmetry and includes a sophisticated constitutive material 

model that has been validated on available material data. It therefore represents a typical . 

model that would be created with the intent of investigating the aortic valve. The following 

chapter will investigate the effects of uncertainties in these models, which are typically 

disregarded in the literature. 
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Chapter 5 

Uncertainty Analysis of the Aortic 

Valve Models 

Chapter 4 outlined in detail two finite element models of the aortic valve. The first (dry 

model) was a somewhat simpler model, but was built almost entirely on a parametric basis. 

The second (wet model) can be considered a state-of-the-art biomechanical model, includ­

ing a constitutive hyperelastic material model, anisotropy, and Buid-structure-interaction. 

This chapter now draws together the Bayesian VA/SA technique outlined in Chapter 3 

by testing it. on the two AV models. This allows evaluation of the Bayesian techniques, 

but can also be considered as a novel investigation from the biomechanical perspective: a 

formal VA/SA has not hitherto been performed on an AV model, and the awareness of un­

certainty analysis is only beginning to filter into the biomechanics community. Certainly 

Bayesian SA is novel in its application to biomechanical models. 
t 

Results from the "dry" model were found to be somewhat problematic, due to stress 

concentrations. However the results are still presented here since useful lessons were 

learned from the perspective of the emulator. 

Section 5.1 gives details of the uncertainty analyses to be performed on both models. This 

is followed by the results of these analyses in Section 5.2.2. Finally, a discussion of the 

results and the implications is given in Section 5.3, followed by conclusions. 

5.1 Approach 

Even with an emlliator-based approach, it is impractical to consider all possible uncertain­

ties, given the exponential increase in computational expense with the number of input 

parameters (the so-called "curse of dimensionality"). Strictly speaking, a FE model can 

have an almost unlimited number of uncertain input variables (since the properties of 

each element could be considered as separate variables), but it is sufficient to select only 
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Parameter Name Mean Standard Data source 
Deviation 

Elastic modulus Es 2.45 0.8 [79J 
of sinus (MPa) 
Thickness of sinus Ts 1.3 0.325 [73J 
shells (mm) 
Elastic modulus El 2.05 0.65 [73J 
of leaflet (MPa) 
Thickness of leaflet Tl 0.35 0.0085 [75J 
shells (mm) 
Thickness of commissure Tc 1 0.25 [73,75J 
shells (mm) 
Radi us of base Rb 12.7 0.675 [75J 
(mm) 
Angle of coaptation ¢> 31 3 [75J 
(degrees) 
Leaflet separation in Fltrad 6 2 Subjective 
relaxed state (ratio) 

Table 5.1: Uncertain input parameters, dry AV model. 

a subset of these inputs that are of interest: perhaps those that are suspected to cause 

large uncertainties in the output, or those that are known only to be within wide ranges. 

Accordingly, a number of input parameters were chosen to be investigated for each model, 

based on the capabilities of the model and available data. It is not therefore claimed 

that an exhaustive U A has been performed here, however the investigation could easily 

be extended if required. 

5.1.1 Dry Model 

For the dry model, eight input parameters were chosen to be examined that were found 

to vary substantially from one simulation to the next in a comprehensive literature review 

on the topic - these are presented with references in Table 5.1. Ranges could then be 

collected for each parameter based, in a loose sense, on the "belief" of existing literature, 

in the absence of formal statistical data. Other parameters were collected from studies 

quoted by Thubrikar [75J. Each parameter was assigned a normal distribution for math­

ematical tractability. It is acknowledged that this is an assumption that cannot be fully 

justified; however, it is required that either a uniform or normal distribution be assigned 

(see Chapter 3). Normal distributions appear to be more suitable in this case, since the 

size of biological components tends to be normally-distributed (the height of human beings 

is a well-known example of the normal distribution [101]). This is thought to be due to a 

manifestation of the central limit theorem (see e.g. [10]). 



5.1 Approach 89 

The parameters listed were chosen to reflect a range of types of uncertainty, and to have 

little or no correlation with each other. Several are geometric parameters, but also some. 

material parameters are investigated, despite the fact that material parameters in the 

more complex model are investigated in Section 5.1.2. This is to examine the effects of 

the assumption of a simple material model compared to a more complex model. The 

elastic modulus of the sinus was assigned a distribution based on values collected in a 

study in [79J. The leaflet modulus was assigned a range based on the variation between 

the material properties in the circumferential and radial directions [73J, thus examining 

the effect of assuming isotropy. The base radius and angle of coaptation were gained 

by measurements taken from a range of specimens [102J. Finally the leaflet separation 

of the valve is an important quantity, since it determines how" open" the valve is in its 

relaxed state, which can influence stress patterns later in the analysis. This quantity is 

an epistemic uncertainty, so it was thought to be of interest to investigate its effect -

a subjective range was assigned to this parameter. It is acknowledged that the means 

and variances assigned to parameters here are somewhat subjective, due to the scarcity 

of data. Note that the fact that the thickness and elastic modulus of the leaflet and sinus 

have been found to vary from simulation to simulation suggests that they are epistemic 

uncertainties. However, additionally they are sources of aleatory, since they vary naturally 

from one individual to the next. 

The input distributions were used to create a maximin Latin hypercube design of 250 

training points (see Section 2.1.3). This input matrix was then run through LS-Dyna to 

evaluate the model 250 times and provide corresponding output points, which were then 

used to train the GP emulator. The model took around 3 minutes to solve on a 3GHz 

dual-core processor, giving a total analysis time of about 12 hours. Although this is not 

nearly as intensive as the wet model (see later), the emulator approach allows this to 

be run in a very manageable time (an equivalent Monte Carlo simulation for the same 

analysis would take days or even weeks). 

Note that the UAjSA of this model is used as an example to demonstrate the practical 

points of Bayesian uncertainty analysis in Appendix B. 

5.1.2 Wet model 

For the wet model five input parameters were chosen to consider as uncertain, listed 

in Table 5.2. These parameters were selected because they are sources of significant 

uncertainty and interest, data is available concerning their upper and lower limits, and 

they can be easily varied within the LS-Dyna input file. 

The sources of uncertainty in the wet model were as follows. Thubrikar quotes the ranges 

of the transition stretch ).* and post-transition modulus CS, which are known to vary 

from person to person [75J. CiS, being the neo-Hookean coefficient of the background 
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Parameter Name Min. Max. Data source 
Fibre elastic modulus C5L 3MPa lOMPa Thubrikar [75] 

in leaflet 
Straightened fibre ,\* 1.13 1.2 Thubrikar [75] 
stretch 
Neo-Hookean coefficient CiS O.lMPa 1MPa Ranga [79] 
in sinus 
Thickness of sinus TS 0.9mm 1.2mm Grande [73] 
shells 
Pressure difference PDIF 0.625 1.25 Coni [91] 
scaling factor 

Table 5.2: Uncertain input parameters, wet AV model. 

matrix, is varied according the range specified by Ranga et al. in a study on uncertainty 

in material properties of the aorta [79] (after conversion). The pressure scaling factor 

PDIF is obtained from well-established variations in the cardiac cycle, as explained in 

Section 4.2.2 previously [91]. This contrasts with the normally-assumed 120/80mmHg 

(1O.7/16kPa) healthy blood pressure (equivalent to PDIF=I). Finally, the thickness of 

the sinus and aorta is known to vary significantly, both within different parts of the same 

valve, and from one person to the next (see for example the study by Grande et al. [73]). 

A conservative range of 0.9-1.2mm was therefore assigned to this parameter. 

A space-filling sample design based on Latin Hypercube sampling was created to generate 

training data, consisting of 100 model runs over the 5-dimensional input space. On a 

3GHz dual-core machine, the solution time for one model run was around three and a half 

hours, which meant that the uncertainty analysis required around two weeks of CPU time. 

This immediately demonstrates the attractiveness of using a GP-based emulator; similar 

Monte Carlo simulations have been shown to take orders of magnitude longer in CPU 

time [41], which would have made this UA impractical without the use of brute processing 

force. The output quantities of interest were extracted after each model run. 



5.2 Results 

5.2 Results 

" . . . . . . . . . .. . 
' . .. . ' .. ' . . . . 

Fringe Levels 

2.500e+05 

2.216e+05 

2.052e+05 

1.828e+05 

1.6048+05 

1.380e+05 

1.156e+05 

9.320e+04 

1.080e+04 

4.840e+04 

2.600e+04 

91 

Figure 5.1: Illustrat ion of typical Von Mises stress (Pa) distribution over dry AV model 
at half-open stage; sinuses removed for clarity. 

Interpreting the results of a sensitivity analysis can be a difficult process, since the quantity 

of data is very substantial. For each run of a dynamic model, a large quantity of data 

is output for each requested time state - for example, in both the wet and dry models, 

field data is recorded at 100 equally-spaced intervals throughout the solution. ThIs is in 

order to give sufficient "time resolution" to capture high-speed events in the movement 

of the valve. For each of the 100 states , nodal coordinates, velocities, element stress and 

many other quantities are recorded (see for illustration the stress plot in Figure 5.1) for 

each of the thousands of elements in the model. This creates a problem, namely that 

the GPs used here can only consider a scalar output. The issue then becomes one of 

dimensional reduction - in other words, it is required to find a scalar quantity for each 

run that represents some output of interest. The method of Bayesian SA allows us to 

investigate the variations of these outputs in detail and with greater accuracy than the 

raw data. However, plots with raw data are still used to illustrate trends that are not 

visible otherwise (since data is lost by reducing each run to a single number). In practice, 

a combination of emulator data and raw data works well. 

5.2.1 Model Outputs 

It is useful at this point to examine existing AV modelling literature to see which outputs 

are of most interest in an AV model, since these should be the outputs examined in the 
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SA. An obvious choice is stress in various parts of the valve - this has been investigated 

in almost all of the literature (see for example [85, 86, 89] amongst many others), given 

that stress is important in determining the durability of the valve. This must be reduced 

to a single quantity however, despite the fact that stress varies over the elements of the 

model and over the time of the simulation. The approach adopted here is to consider the 

maximum stress in various parts of the model, for example the maximum stress in the 

leaflets or parts of the leaflets, from any point in the simulation time. 

Other outputs of interest include leaflet displacement (investigated in e.g. [85]), which is 

important in determining the extent to which the valve opens at a given pressure. This 

of course varies over time, so the opening speed of the valve may also be considered. 

The velocity of the blood is also measured in the wet model since it indicates a correctly 

functioning valve and can be used to validate the model to some extent (see for example 

Sacks and Yoganathan [78]). In the case of the dry model it was possible to investigate 

some more complex outputs due to the automatic post-processing capabilities available 

in APDL. For example, it has been indicated that buckling in the AV leaflet on opening 

may be responsible for shortened longevity and therefore should be minimised as much 

as possible [83]. Therefore, a measure of leaflet buckling was created and recorded at the 

point where the leaflet reverses its curvature. This was defined as a function of the angles 

that successive elements made with each other in the XY plane at the point of curvature 

reversal. 

5.2.2 Dry Model Results 

Output Uncertainties 

Parameter Mean Standard COY (%) Relative RMS 
deviation error (%) 

Dispmax 12.5mm 0.161mm 12.8 4.9 
Thalfop 0.00194s 0.00122s 63.4 37 
Sigmax 636kPa 355kPa 55.8 41 
Wig 0.161 0.0157 9.8 7.24 

Table 5.3: Posterior output uncertainties for dry AV model. Dispmax=Max. displacement 
of outer leaflet node; thalfop=time until valve is half-open; sigmax=max. stress anywhere 
in the valve at any time state; wig=measure of leaflet buckling. 

Starting first with the uncertainty measurements, the posterior expected value of the mean 

and standard deviation for each output parameter is shown in Table 5.3 (see Equations 

3.45 and 3.51 respectively). This gives an overall idea of the uncertainty in each output, 

given the uncertainty assigned to each input. To illustrate the comparative uncertainty 

between outputs, the standard deviation has also been presented as a percentage of the 
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mean (known as the Coefficient of Variation (COV)). It is evident that some of the 

uncertainties here are substantial - Thalfop, which represents the speed of opening of the, 

valve, has a COY of 63%. Similarly, the maximum stress has a COY of about 56%. The 

first conclusion here is thus that the uncertainties are indeed significant and the UA seems 

an appropriate measure. 

To check the prediction accuracy of the emulator, Cross Validation (CV) was used. This 

process involves removing one of the data points and training the emulator on the remain­

ing set, then evaluating the error between the removed data point and the corresponding 

prediction by the emulator. This is repeated for all data points, from which a relative 

Root-Mean-Squared (RMS) error value can be calculated. Table 5.3 shows that the Rl\1S 

error is quite high, possibly to an unacceptable level, for the stress and opening times. 

These outputs are however 'examined in a more realistic fashion in the wet model (Section 

5.2.3). The results are highlighted here to illustrate the diagnostic process of the GP. 

Although much of the uncertainty in the model output can be attributed to the uncertainty 

in the inputs, it is equally important to consider that oscillations in the model can also 

cause a kind of random effect on the maximum value of certain outputs (for example, the 

maximum stress). This is to be expected in a large dynamic FE model, and is in fact a 

limitation of the GP emulator: finding a sensible univariate output in a large dynamic FE 

model can be quite difficult. Therefore some care should be taken in interpreting these 

results. The dry model is also considerably simplified compared to the wet model and 

some of the results are not realistic - the opening time, for example, is much too short. 

The results are however left here to provide an additional case study for use with the GP 

emulator and to investigate geometric effects to some extent. 

Leaflet displacement 

Some sensitivity measures are now given. Figure 5.2 shows the MEls expressed as pie 

charts for each of the four outputs given in Table 5.3 (for the equations relating to the 

MEls, see Equation 3.63, which has been divided by Equation 3.51 to standardise; see also 

Appendix B for more details). The results show that maximum leaflet displacement (which 

controls the blood flow through the valve) is shown to be possibly the most "well-behaved" 

of the outputs tested, with nearly 90% of output variance explained by main eff~cts of 

parameters (see Figure 5.2(a)). This is regarded as "well-behaved" because when high­

order interactions explain a large proportion of the variance (see e.g. the maximum stress, 

Figure 5.2 (c)), in the experience of the author, this is often evidence of some "noise" in the 

data that cannot be easily explained by the parameter variations. Or in other words, there 

is no definite trend in the data, which may be caused by model oscillations overshadowing 

the effects of parameter variations. This does however illustrate a great advantage of SA 

that might often be overlooked: it is possible to deeply explore the workings of a model 
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Figure 5.2: MEIs and interactions with respect to (a) Dispmax; (b) thalfop; (c) sigmax; 
(d) wig. 
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and identify possible faults when expected trends do not appear. The low proportion of 

variance due to MEIs is evident in valve opening time (Figure 5.2(b)), maximum stress, 

(Figure 5.2( c)), and to a lesser extent in the leaflet buckling parameter wig. All three of 

these model outputs should therefore be treated with a little caution. Further evidence of 

the tenacity of the emulator fit in these outputs is given by the CV values in Table 5.3. 

The emulator fit could be potentially improved by adding more data points, however if 

there is reason to suspect that there is a problem with the model output, this is unlikely 

to help greatly. The wet model eliminates many of the problems here because leaflets are 

damped to some extent by the fluid, and oscillations are reduced. 

Returning to the MEIs of dispmax, the remaining variance is explained quite evenly be­

tween first-order interactions. Notably, the main effect of Rb accounts for nearly 40% of 

output variance. This is not unexpected, since a wider aortic radius creates an overall 

wider valve, which allows leaflets to open further. The elastic modulus of the leaflet also 

contributes significantly, as does the initial opening width, both of which are to be ex­

pected since they effect the shape and stiffness of the leaflet and therefore the opening of 

the valve. 

To examine the effects of the inputs on leaflet displacement in more detail the main effect 

plots of each input are presented - see Figure 5.3. Note that the main effect plots are 

generated using Equations 3.47 and 3.51, setting p = i, where i is the input variable of 

interest (see also Appendix B). The plots here show random draws from the posterior 

main effects of each input (200 draws are shown for each variable). The dispersion of the 

main effect plots here is quite small, suggesting that there is a good emulator fit to the 

training data. One of the most noticeable trends is the strong, roughly linear main effect 
, 1 

of Rb. As expected, a wider valve allows a greater leaflet displacement. Negative trends 

are evident in Es, Ts, El, Tl and Tc since an increase in any of these parameters will 

either impede the flexibility of the sinus or the leaflet. The responses are generally quite 

linear, with the exception of Es and El. 

Stress 

In contrast with maximum displacement, examination of Figure 5.4 shows that there is a 

much greater uncertainty surrounding the main effect plots of sigmax, given that the main 

effect draws are considerably more dispersed than those of dispmax - indeed, less 'that a 

quarter of output uncertainty can attributed to the main effects of input parameters (see 

Figure 5.2 (c)). There are however some trends that can be extracted: leaflet thickness 

and stiffness both cause roughly linear responses in stress, but it is large~y insensitive to 

both ¢ and Rb. It is also again evident that the properties of the sinus are causing a 

nonlinear effect. Both Es and Ts cause quite strongly nonlinear trends as well. This 

pattern will be seen to be prevalent also in the wet model, and is discussed further in 
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Figure 5.3: Main effect plots of inputs with respect to dispmax. Green=Es; blue= Ts ; red 
(upper)=El; pink=Tl; black=Tc; light blue=Rb; yellow = 4>; red (lower) = Fltrad. Input 
variables are normalised over the sample range for comparison. 
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Figure 5.4: Main effect plots of inputs with respect to sigmax. Green=Es; blue= Ts; red 
(upper )=El; pink= Tl; black= T c; light blue=Rb; yeUow= 4>; red (lower ) = Fltrad. 
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Section 5.3. It is inappropriate to draw further conclusions from the stress results given 

the level of dispersion in the main effects. 

Buckling and Opening Time 

To illustrate the variation in the opening mechanism of the valve, the positions of the leaflet 

edge nodes were recorded at the reversal-of-curvature point for each run. These curves 

are illustrated in Figure 5.5. The general trend is a smooth opening curve with minimal 

buckling, but it is evident that some values of the input parameters cause very distorted 

leaflet patterns. The level of buckling is quantified numerically by the wig parameter -

Table 5.3 shows that it has the lowest COY of all, at around 10%. Investigating the causes 

of this, using the MEIs in Figure 5.2, the dominant parameters are the leaflet stiffness and 

the sinus stiffness, because the deformation of the leaflet is a function both of its own 

stiffness and the stiffness of the sinus that is constraining its movement. 

Interestingly, a plot of the main effect of El with respect to wig (Figure 5.6) reveals that 

there is a significant nonlinearity in the response of wig to El. It is evident that below 

ela'ltic moduli of around 500kPa the level of bucking increases dramatically. The fact that 

the leaflet has to reverse its curvature creates responses that might be difficult for the GP 

to handle, since there could be abrupt changes in the response. This is discussed further 

in Section 5.3. 

Briefly commenting on the valve opening time, it is predominantly influenced by the 

properties of the sinus. The aspect of sinus material properties influencing valve opening 

will be investigated further in the wet model (Section 5.2.3) given that the opening speed 

of the valve is not realistic in this (dry) model. 

5.2.3 Wet Model Results 

Before the uncertainty analysis, the wet model was run at mean parameter values in order 

to verify that the model output agreed with experimental data. Figure 5.7 shows the 

opening of the mean-parameter valve over a simulation time of 20ms. Thubrikar reports 

that the opening of the aortic valve takes between 17 and 20ms [75], which is in agreement 

with the results presented. The variation of blood velocity with time for a central point 

on the aortic side of the valve rises to approximately 1.2m/s (see Figure 5.9 later), which 

is within the range specified by Sacks (1.35±O.35m/s, [78]). This validates the wet model 

to a certain extent, therefore it will provide a considerably more realistic simulation of the 

valve opening than the dry model. 



5.2 Results 99 

Leaflet edge curve 

Coaptation nodes 

y 

~x 

0.2 

E 0.15 

E-
m 0.1 
u 
c 
~ 
Ul 

'6 
tii 
'6 
ro 
cr: 

-0. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Standardised distance between coaptation nodes 

0.9 
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Figure 5.7: Von Mises stress and velocity vectors of wet AV model at intervals up to 20ms 
(fluid not shown). 
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Output Uncertainties 

The uncertainty in the model outputs, which are expressed as posterior means and vari­

ances in the same manner as the dry model results, are presented in Table 5.4. Note again 

that these quantities are based on the emulator and therefore provide a more informed 

estimate than the sample mean and variance. From the results it is clear that all outputs 

measured have a significant uncertainty associated with them, rising as high as a Co V of 

44% in the case of stress in the commissures. However, the COVs are not as high as those 

in the previous dry model, because the wet model is an improved version that has ironed 

out some of the oscillation problems in the previous model. Despite this, the magnitude of 

uncertainty cannot be discounted if reasonable conclusions are to be made from the results 

of the model, therefore justifying the uncertainty analysis. Notably the highest dispersion 

in maximum stress is found in the commissure. This is likely to be because this is the 

area that interacts with the contact plane in the model, which can cause peaks in stress 

due to the algorithms involved. It can be seen that all CV error values are small, typically 

less than 5%, although the stress in the commissure rises to nearly 9%. This indicates a 

reliable emulator fit overall, certainly a significant improvement over the dry model. 

Mean Standard CoY (%) Relative RMS 
deviation error (%) 

Blood Velocity (mm/s) 1069 133.9 12.52 3.88 
Max Displacement (mm) 11.5 0.995 8.63 1.79 

sigmax All (kPa) 343 77.9 22.71 3.49 

sigmax Belly (kPa) 91.6 21.4 23.33 4.17 

sigmax Commissure (kPa) 105 46.2 44.09 8.57 

sigmax Edge (kPa) 93.8 33.5 35.72 4.34 

sigmax Sinus (kPa) 342 80.8 23.62 4.23 

Table 5.4: Wet AV model output uncertainties: stress regions (sigmax) are those illus­
trated in Figure 4.1. 

It is interesting to examine the distributions of some of the model outputs. Figure 5.8 

illustrates histograms of two selected stress outputs: whilst the uncertainty in sinus stress 

could be said to somewhat resemble a Gaussian distribution, the commissure stress is 

highly skewed towards lower values, with a scattering of much higher values. Assuming 

that the sampling strategy is giving a reasonable representation of the output distribution, 

these distributions must be explained by the nonlinearity of the model with respect to the 

uncertain input parameters. 
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Response: smmx_com 
100 samples: Mean = 0.116 Standard Deviation = 0.0608 

Response: smmx_sinus 
100 samples: Mean = 0.33 Standard Deviation = 0.0923 

Figure 5.8: Histograms of maximum stress in commissure (top) , and sinus (bottom) from 
raw data. Stress values in MPa. 
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Figure 5.9: Variation of blood velocity with time for all model runs. Colours represent 
PDIF values. 
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Figure 5.10: Main effects of inputs on maximum blood velocity. Red=TS, blue=C5L, 
green=PDIF, black=C1S, pink=A*. 
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Figure 5.11: MEls and summed interactions for input variables with respect to blood 
velocity (left); maximum leaflet displacement (right) 

Blood Velocity 

The blood velocity will now be considered in more detail: Figure 5.9 shows the variation 

of blood velocity with time as a result of varying PDIF, generated from raw data from 

each of the 100 model runs. The clear (and expected) trend is that increasing the pressure 

difference produces a higher blood velocity, though the fact that some low PDIF values 

produce high blood velocity is due to variation in other parameters. The main effect plots 

allow one to sort through this confusion to a large extent , although the variation with time 

is lost , and a scalar output must be considered. In this case the maximum velocity over 

t ime is chosen. Figure 5.10 shows the main effect plots of the maximum blood velocity 

for the input variables. It is clear that the dominant parameters are PDIF and ClS, with 

ClS showing a strongly linear trend. ClS is effectively the stiffness of the sinus and aorta, 

so increasing the stiffness naturally restricts the blood flow somewhat , since it constricts 

the expansion of the aorta and impedes the opening of the valve. Other parameters have 

litt le effect. This trend is confirmed by examining the MEl pie chart in Figure 5.11 -

PDIF and ClS are by far the most dominant parameters, with little interaction variance. 

Leaflet Displacement 

Turning now to leaflet displacement, Figure 5.12 shows the variation ofleaflet displacement 

with time and coloured with respect to ClS. The visible trends are that a stiffer sinus and 

aorta cause the valve to open to a lesser extent and more slowly. This is according to 

expectations that the flexibility of the aorta is crucial in the opening of the valve [83J. 

This time, however, the equivalent main effect plot (figure 5.13) reveals trends that are 

not evident in the plots from the raw data. There is a strong nonlinearity evident in the 
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Figure 5.13: Main effects of inputs on maximum leaflet displacement. Red~ TS, blue= CSL, 
green=PDIF, black=C1S, pink=)'* 
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main effect of CiS, such that some intermediate values of sinus stiffness cause greater 

leaflet displacements than lower values, contrary to the general (and expected) trend. 

This may be because of the existence of more than one opening mechanism for the AV. A 

discussion of this is provided later in Section 5.3. 

Other trends in leaflet displacement are that a greater pressure causes the leaflet to open 

further, which is unsurprising. It is notable however that none of the material parameters 

that were investigated have any significant effect; referring to Figure 5.11, the pressure 

difference and sinus properties are by far the dominant parameters. The material param­

eters account for less than 1 % of variance in leaflet displacement. It is perhaps worth 

remembering here that the maximum displacement of the leaflet is generally dictated by 

point at which it contacts the sinus, therefore the stiffness of the leaflet itself may not be 

as important a parameter as might be first supposed in this respect. 

Stress 

One important model output is the stress, particularly in the leaflet, since high stresses 

are responsible for prosthetic valve failure. Figure 5.7 shows Von Mises stress contour 

plots for the valve at various stages of its opening for a typical parameter set. The highest 

stresses tend to occur in what will be called the "edge" region, this being the region where 

the leaflet joins the sinus. In this area the leaflet is forced to bend significantly on opening, 

creating high stress concentrations. 

One unexpected finding however, was that the leaflet material properties do not appear to 

significantly affect any of the stress outputs. Examining pie charts of the MEIs in Figure 

5.14, it is clear that ;\* and C5L account for very little ofthe variance in all of the outputs 

investigated, typically 1 or 2% including interactions with other parameters. The trend 

is even clearer in a plot of the TSIs of the inputs with respect to stress in model regions 

- see Figure 5.15. This can potentially be explained by the fact that these material 

parameters are only influential in the fibre direction, and stress perpendicular to the fibres 

is consequently unaffected. Furthermore, the uncertainty in the input ;\ * is quite small. 

It would seem then that although leaflet material parameters have some influence on 

stress, the effect of the rigidity and movement of the sinus vastly overshadows the effect 

of varying leaflet material properties. In particul~r, the stiffness of the sinus is easily the 

most important investigated parameter for determining leaflet stress. This result agrees 

with that from the dry model and that of previous studies [83]. Figure 5.16, a plot of main 

effects of CiS with respect to stress, shows the underlying trends in more detail: one can 

see that low values of CiS cause a marked rise in stress in the three areas shown. After 

some examination of stress plots of various runs, it seems that when the sinus is below a 

certain stiffness, the blood pressure is enough to cause the sinus to expand to the point 

where it starts to stretch the leaflet between its coaptation nodes and cause additional 
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Figure 5.14: Sensitivity indices of model inputs and interactions for stress in various 
regions of wet AV model. "XLAM" here refers to A * . 
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Figure 5.16: Main effects of ClS with respect to stress in edge region (blue) ; belly (red) ; 
commissure (green). 

tensile stress. This is illustrated in Figure 5.17. The two plots show the distortion of the 

valve at roughly the same point in the opening process - the low sinus stiffness causes 

the valve to expand to the point where the leaflet is under tension, constraining further 

expansion. Conversely, the stiffer sinus expands considerably less and the leaflet is not 

under tension, but rather under some compression, and opens with a modest amount of 

buckling at the reversal-of-curvature point. Finally, the pressure difference was also an 

important factor, typically accounting for a quarter to a third of the output variance. 

Figure 5.18 illustrates the main effects of PDIF on stress in the leaflet regions (the sinus 

region is excluded because it experiences much higher stresses). The relationship is linear 

to a large extent , but there appears to be some evidence of nonlinearity, particularly in 

the belly region. This suggests that variations in pressure difference should be accounted 

for in the creation of a robust aort ic' valve model. 

5.3 Discussion 

The role of the sinus stiffness in reducing leaflet stress appears to be very important . It 

seems that there may be an optimum value that is not so stiff so as to cause extensive 

buckling, but stiff enough to prevent the leaflet from bearing tensile force caused by 

the pressure of the blood on the aorta and sinus. In practice, bioprosthetic valves are 

often constructed by attaching porcine leaflets to an inflexible stent - this arrangement 

undoubtedly causes unnecessarily high stress due to buckling. More recent valve designs 

have used a stentless approach, which has been shown to significantly increase survival 
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rate [103], doubtless (at least in part) for the reasons outlined above. In the stentless 

approach, a section of porcine aorta may also be transplanted, which should be closer 

to the optimum flexibility. However, the blood pressure in pigs is known to be higher 

than that of human beings [104], which could mean that the valve is not working under 

optimum conditions. A solution to this could be to specifically design the stent to expand 

to the optimum amount ba.<;ed on the average blood pressure of the patient, although the 

practicality of doing so might be questionable. 

The response of the model to some inputs, particularly to the stiffness of the sinus, raises 

the issue of possible bifurcations in the model. Since the valve consists of a leaflet that 

must reverse its curvature, it is similar to a "snap-through" problem, which is a typical 

example of a bifurcation in displacement. For some responses therefore, such as stress 

and displacement, there may exist two separate, very different regimes that are separated 

only by a small difference in input space. This kind of response is inherently difficult for 

the GP to handle, since it must assume a smooth relationship between the output and its 

inputs. There is some evidence of these non-smooth responses in the model- see Figures 

5.13 and 5.16. This has given motivation for further work - see Section 5.4. 

From an additional angle, it is interesting to test the effect of sinus rigidity up to the point 

of constraining the coaptation nodes completely, since this simulates the effect of a rigid­

stented bioprosthetic valve. This is interesting both from a biomechanical perspective and 

from the point of view of the capability of the emulator to model a bifurcating system. 

This problem provides the motivation for work in Chapters 8 and 9, since performing 

an uncertainty and sensitivity analysis using a GP on a bifurcating model may produce 

incorrect results. 

5.4 Conclusions 

This chapter has followed an efficient statistical method for analysing uncertainties and· 

sensitivities in two finite element models of the aortic valve. Uncertainties in biomechani­

cal models are often overlooked or informally dealt with, but Bayesian uncertainty analysis 

allows them to be considered and investigated in a thorough statistical fashion, yielding 

detailed information about the robustness of the model. Additionally, by examining sen­

sitivity to input parameters it is possible to gain a deeper insight into the working of the 

model by exploring how parameter variations affect certain outputs. A less-sophisticated 

model was used to investigate uncertainties in geometric parameters, but also as a use­

ful case study for the GP emulator, since some of the model outputs were shown to be 

somewhat unreliable. From this it was shown that sensitivity analysis can be employed 

as a useful diagnostic tool - little or no trends found in the data can be evidence of a 

poorly-constructed or unstable model. 
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From the biomechanical perspective, valve opening has been shown to be highly dependent 

on the stiffness of the aorta/sinus in both models, reinforcing the supposition that the 

expansion of the aorta is intrinsic in the opening mechanism of the valve. It is suggested 

that there is an optimum aorta/sinus stiffness and that this should be accounted for in 

the design of prosthesis, including the stentless variety. The effect of valve stiffness has 

also been shown to be very nonlinear, possibly to the point of bifurcation. This motivates 

further work in Chapters 8 and 9. One surprising conclusion was that some of the chosen 

leaflet material parameters from the constitutive material model (the transition stretch 

and post-transition modulus) were not found to be very influential, being overshadowed 

by the effect of the expansion of the sinus on the buckling of the leaflet. 

It is not claimed here that an exhaustive uncertainty analysis has been performed, since 

the number of uncertain parameters can be extended almost without limit. However, a 

practical means of investigating selected uncertainties has been demonstrated. Further­

more, it has highlighted the necessity for consideration of uncertainties in AV models, 

since the dispersion of model outputs is significant. This necessity can presumably be ex­

tended to apply to biomechanical models in general, since they are prone to uncertainties 

for similar reasons to the A V. 

;1 
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Chapter 6 

Modelling an Airship 

This chapter concerns the design of a new unmanned airship, ongoing at the Department 

of Aerospace Engineering in the Politecnico di Torino in Turin, Italy. The design aims 

to address certain problems that limit the effectiveness of classical airship designs (see 

later). To reduce costs in prototypes and testing, finite element models have been integral 

in the development of the project to date. However, since the sophistication of the models 

is quite substantial, a concern is that uncertainties in model inputs may have significant 

effects on the outputs of interest. In the case of the airship, a great number of param­

eters must be input into a finite element model, such as material properties, boundary 

conditions and loading conditions. Any number of these can be subject to uncertainties 

resulting from lack of knowledge, varying operating conditions, or other reasons. As such, 

a series of uncertainty analyses were performed to investigate the effects of uncertainties in 

loading and material properties in models created to test proposed airship design~, since 

design decisions are taken based on results from such models (Le. if the model outputs are 

uncertain then it is difficult to make a clear decision about the choice of design). Since 

some of the models produced here were very substantial in size, the Bayesian SA approach 

outlined in Chapter 3 is used to conduct the uncertainty and sensitivity analysis. 

The work here is used as a further case study for the GP emulator, as well as providing 

useful data on uncertainty for the airship project. The field of application is briefly outlined 

in Section 6.1, after which the specific design is described in Section 6.2. Details of the 

FE models used are given in Section 6.3, followed by a short conclusion. The uncertainty 

analysis itself is left until Chapter 7. 

6.1 Airships and Applications 

Airships, a form of "lighter-than-air" (LTA) aircraft, have been in use in some form or 

another since the 18th century. LTA aircraft are distinguished by the characteristic that 

their weight is less than (or nearly equal to) the volume of air they displace; thus they are 

113 



\ 

6.2 The Elettra Twin Flyers 114 

held aloft by buoyancy. Despite clear caveats such as poor manoeuvrability and enormous 

bulk, airships still retain certain attractive advantages, including the possibility of long 

flight times for a comparatively low cost, the ability to remain virtually stationary and 

to take off vertically. They are also relatively environmentally-friendly when compared to 

fixed-wing aircraft. One interesting area of application is the lifting of very heavy loads to 

remote locations, although a design has never been fully realised for this to date. Given 

the potential number of applications, there are still a number of airship projects ongoing 

around the world aimed at specialist applications. Liao provides a summary of various 

projects and designs in progress worldwide as of 2009 [105J. 

One set of applications in which airships perform particularly well compared to heavier­

than-air aircraft is that of surveillance, monitoring and communications relaying. Such 

airships are often relatively small and unmanned, since the applications require lengthy 

flight times, yet airships are particularly well-suited to this application due to their ability 

to remain aloft for long periods for a very low cost, and also the stable and relatively 

vibration-free platform that they can provide for delicate surveillance equipment. Fur­

thermore, since they are practically noise free and use little fuel, they are well-suited for 

situations where a low environmental impact is imperative, such as in environmental and 

oceanographic monitoring. However, there are several drawbacks in conventional designs: 

since airships have very large profiles, they are very susceptible to disturbance from cross­

winds, a problem that is particularly undesirable in landing and takeoff. Additionally, 

at low velocities, the rudders and elevators that are used for manoeuvring are ineffective 

since they depend on lateral air movement to generate any steering force. 

6.2 The Elettra Twin Flyers 

6.2.1 Design 

In order to combat the problems mentioned with conventional airship designs and expand 

the range of operable weather conditions, a new design has been proposed in [106], called 

the Elettra Twin Flyers (ETF). The ETF falls into the category of semi-rigid airships, 

which means that the lifting gas is contained in flexible membranes that are partially 

constrained by some rigid structure. The ETF is. designed for use in environmental mon­

itoring and surveillance. An early demonstrator design has been constructed and tested 

- this is illustrated in Figure 6.1. 

In continuation of this design, an altered design was proposed, which is the subject of this 

investigation. Figure 6.2 illustrates the concept of the new design. Note that the design 

innovations of the ETF are twofold - firstly there are two gas envelopes rather than one 

(as found in conventional designs), positioned side by side. This allows a smaller profile 

for the equivalent lift, thereby reducing forces on the ship from lateral gusts. The two 
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Figure 6.1: Illustration of the ETF demonstrator design 
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Figure 6.2: An illustration of the ETF design; one balloon is translucent for clarity. 
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balloons are connected by a rigid central beam that also acts as a platform for affixing the 

payload and operational equipment. The balloons are attached to the frame by a number 

of rigid "ribs" that encompass part of the circumference of each, with flexible "belts" 

running round the remainder of the circumference (see Figure 6.2). 

The second innovation is that the ship is moved in all six degrees of freedom by ten 

directional propellers (rather than movable aerodynamic surfaces) - the advantage being 

that the ship can be manoeuvred effectively without the requirement of forward motion. 

The position of the propellers is illustrated in Figure 6.1. During hovering, altitude is 

maintained by the helium and the propellers orientated along the vertical axis, while 

during forward movement additional aerodynamic lift is also generated as a result of air­

flow over the hulls with suitable angle of attack. This movement of the airship is controlled 

by a specialised control system - details can be found in [107J. Altogether, the innovations 

should give the ship greatly increased manoeuvrability at low velocities, and allow it to 

hover with the prow orientated in any direction, even in adverse weather conditions. These 

capabilities are crucial to the application of the airship. 

A series of previous analyses were performed to ascertain the dimensions of the structure 

[108J. The thickness and shape of the structure is governed by the stresses due to loading, 

however changing the structure to withstand these stresses will inevitably change the mass, 

which then will require a greater or lesser volume of helium for buoyancy. This in turn 

will change the overall size of the airship and change the loading. The final dimensions , 

will therefore be the result of an informal iterative process - the models in this chapter 

do not represent final designs but parts of the iteration. The models investigated here are 

36m in length, this being the length required for sufficient buoyancy to support the total 

weight of the structure and payload (approximately 3 tonnes), as calculated by previous 

analyses [109J. The length is only mentioned here to give an idea of the scale of the airship, 

although the final design is expected to be of a similar magnitude of length. 

Part of the development of the design involves ascertaining the stresses and displacements 

in the structure under operational loading conditions; this chapter presents FE models 

that were built to achieve this. 

6.2.2 Materials and Uncertainties 

The two materials that comprise the majority ·of the airship are the envelope material 

(which is also the same material used for the belts) and the frame material (see figure 

6.2 showing material divisions in the model). The following describes the nature and 

characterisation of these materials, followed by the uncertainties that are associated with 

them due to temperature. The material models described here are adopted for all of the 

FE models in this chapter. 



6.2 The Elettm Twin Flyer-s 

b 

~ 
-450 ~ 

c: 

450 ~ 
o 

900 

o 

H 
(/) 

117 

Figure 6.3: Arrangement of sandwich layup material for fram with fibre angles shown 
(layup is symmetric about the honeycomb layer). 

Frame 

Desirable material properties of the frame material include low density, whilst being as 

stiff as po sible, since large deformations of the structure would alter th aerodynamic 

response and have unwanted effects on the control system. It was concluded, after some 

simple preliminary simulations, that the most suitable material would be a sandwich layup , 

consisting of layers of carbon/epoxy T300 15k/ 976 composite, either sid of an Ultra or® 

honeycomb core [109 , 110J . An illustration of the suggested layup is given in Figure 6.3. 

Since the arrangement of the layup is symmetric and the orienta tion of the orriposite 

layers is such that there is an equal number of layers for each 45 0 interval, the orientation 

of the sandwich can be assumed to be unimportant since the planar prop rties are roughly 

equal in all di rections. The definition of the material can be further simplified by assuming 

constant properties across the layers by approximating the stiffness of the layup with an 

isotropic material model - details of this approximation can be found in [111J . Although 

this macroscopic model will not reveal details of the stresses in individual layers, for 

the purposes of an initial study into frame dimensions it is thought to be a sufficient 

approximation. 

It was found that the mat rial properties of the omposite vari d significantly with change 

in temperature [112J . Since the airship is potentially operating in conditions of ± 50° C 

(depending on altitude, location and weather) , the uncertainties in material properties 

wer expected to have a substantial effect on the response of the structure to loading. 

Given the variation in the composite material it was possible to calculate macroscopic 

moduli for the layup over the range of temperatures specified (no temperature-dependent 

data was available for the honeycomb core, so it was treated as constant). By fitting 
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Figure 6.4: Variation of material properties of sandwich layup and envelope material with 
t mpera ture 

a polynomial function to these calcula ted values, the stiffness could be expressed as a 

function of temperature, so that temperature could be used as the uncertain input vari able, 

rather than stiffness. This is expressed as, 

Ee = aT2 - bT + c 

a = 0.137 

b = 75.0 

c = 16910 

(6.1) 

where Ee is the macroscopic elastic modulus of the sandwich (MPa), T is the temperature 

(in Kelvin) and a , b and c are specified constants. Figure 6.4 illustrates the variation of 

stiffness of the sandwich layup with varying temperature. 

Envelope 

The envelope mat rial was r qui red to possess a high tensile stiffness with minimal weight . 

Additionally, it should have low permeability (to helium) and be resistant to degradation 

from UV radia tion. A number of candidate materials were under considera tion , and one 

of these (Nylon 6) was s lected and test d to failure a t a range of tempera tures. Figure 

6.5 shows examples of material t ests a t two temperatures within the rang . Although the 

material is not perfe tly lin ar , it was considered sufficient to model it as a linear elastic 

material fo r the purposes of investigating temperature-based uncertainty. Preliminary 

runs of the model (in Section 6.3.1) at nominal parameter values suggested that envelope 
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Figure 6.5: Selection of material tests performed on samples Nylon-6 env lop material. 
Successive tests have been shifted along the strain axis for clarity only; all tests start a t 
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strains were < 5%, therefore it was not thought n cessary to onsid r plastic d formation 

or failure. 

Given the linear material model for the envelope, a relationship could be established 

between temperature and elastic modulus, in MPa (also presented in Figure 6.4), governed 

by the quadratic equation in Equation 6.1 with th coefficients a = 0.205 , b = 128.5 and 

c = 20680. 

6.3 The Airship Models 

The modelling of the airship was performed to reveal the stress and deformation of the air­

ship under normal and extreme loading conditions. As mention d, control of the structure 

is perform d by a number of directional propellers, (currently) based on the a sumption 

that the structure is rigid. This is an important point because even minor d formations 

and rotations of the arms on which the propellers ar locat d can have effects on the 

control system that are hard to predict. One main objective of the FE analysis was thus 

to quant ify deformation in certain parts of the structure under a variety of loading condi-
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Figure 6.6: Structural FE model of the ETF frame. Loading from the balloons is con­
sidered by applying pressure to the underside of t he arms (see arrows). Blue asterisks 
represent the point masses of the propellers. 

tions, and to ensure that it would not deform to an unacceptable level. Furthermore, it was 

important to know whether t he structure could withstand various loads wi thout failure, 

and make informed decisions regarding, for example, thicknesses and types of material. 

Published literature concerning airship modelling is scarce, probably due to the small num­

ber of airship design projects in existence, and the fact tha t the heyday of airship design 

was many years before the rise of computer modelling. Furthermore, t he simulation of 

airships poses particular difficulties to the modeller , given that it involves interactions be­

tween flexible membranes and stiff structures, aerodynamic loading, and is unconstrained 

in all degrees of freedom. Of the few available art icles, Bessert et al. [113] examined 

the effects of aeroelasticity in a classical airship design by coupling and iterating between 

structural and fluid solvers . Liu et al. [114] performed a similar analysis, concluding 

tha t aeroelasticity has an effect on the pressure distribution of a conventional airship bal­

loon. Li et al. [115] performed an analytical analysis of t he aerodynamics of a flexible 

airship. However , the author is not aware of any consideration of uncertainties in air­

ship modelling; furthermore the novel twin-balloon design of the ETF is hitherto untested 

concerning dynamic loading. 

Three models were constructed to investigate t he ETF design; first, a preliminary linear 

stat ic model investigated deformations on the structure without consideration of t he pres­

ence of the membrane (see Figure 6.6) - t his was used to estimate structural dimensions 

for the more sophisticated models. Although the membrane itself was not present, t he 

buoyancy loads were applied to the frame as pressures to the underside of the upper arms. 
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The structure was constrained by a technique known as inertia relief, which has been 

successfully used in previous airship structural analyses [11 3] . In order to keep deflection 

to an acceptable level for the 36m configuration , the sandwich material was required to 

be 38mm thick. This thickness was then used in the construction of the following, more 

sophisticated models. The static model will not be mentioned further since it did not 

feature in the uncertainty analysis and is only used as a preliminary model. 

The second model was a nonlinear model which included the membranes and investigated 

the uncertainties in pressure and material properties as a result of temperature. This 

will be referred to as the "dry" model. Finally, a full FSI model (the "wet" model) 

considered the effect of gusts of wind incident at different angles to the airship. To deal 

with nonlinearities in the latter two models, the solution was performed in the primarily 

explicit-dynamic code LS-Dyna. A similar approach was used for the wet model to that of 

the wet AV model in Chapter 4, where Eulerian fluid elements overlapping the Lagrangian 

mesh are used to model the effect of a gust impact. 

6.3.1 Nonlinear Dry Simulation 

-6000 elements 

Point masses Solid elements Cable elements 

Figure 6.7: The mesh of the airship FE model, balloons removed for clarity (right) . 

An illustration of the dry model mesh is shown in Figure 6.7. As can be seen, the two 

balloons are now present , which provides a more realistic model of the rigidity of the 

airship. The model consists primarily of shell elements for the membrane, belts and most 

of the frame - the thick sections of the frame near the axis are actually hollow. Solid 

elements are also used where necessary. Point masses are positioned in the locations of 
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Figure 6.8: Loading on the airship membranes: pressure loads (top) ; buoyancy loads 
(bottom). 

the propellers and underneath the frame where the payload is attached. Beam elements 

are used to represent the central tube, and the bracing cables are represented by cable 

elements that offer resistance only in tension. The model is in total around 6000 elements. 

Although as previously mentioned, the material could be treated as linear , the inclusion 

of the gas envelopes required that a nonlinear solver be used. The reason for this was 

that in flight the envelopes are in a pre-stres ed state. To determine this state prior to 

further simulation, it was necessary to "infla te" the membranes, that is, to estimate the 

un-inflated size and apply a pressure so that the balloons expanded into the frame. On 

contact between balloon and frame nodes, coupling occurred to unify the structure. The 

contact algorithms can only b performed by a nonlinear solver. 



6.3 The Airship Models 123 

Figure 6.9: Division of balloon into discrete volumes for assignment of buoyancy 

Loading on the structure was the same as the linear simulation, with the addition of 

the helium loads on the membranes. This loading was divided into two components (see 

Figure 6.8): first , a pressure acting equally over the entire inside surface of each balloon, 

representing the pressure due to inflation. This was applied as a surface pressure to the 

shell elements. Additionally, buoyancy was considered. The buoyancy acts only on the 

upper surface of the balloons, and is not a uniform load since it is proportional to the 

volume of underlying helium, which varies along the length of the airship. To deal with 

this , each balloon volume was considered as twenty discrete volumes (see Figure 6.9) , and 

the volume of helium calculated for each division. The total buoyancy force could then 

be calculated for each volume and the force equally distributed over every node in t he 

overlying surface, giving a discrete approximation of the distribution of force. Note that 

since the forces are applied to every node, this is equivalent to a pressure load in the FE 

model. 

The advantage of this loading approach over the static simulation was that it gave a 

much more accurate distribution of pressure over the frame , which was previously only 

estimated . Since inertia relief is not available in nonlinear simulations the simulation was 

performed using an explicit dynamic solver, so that rigid body motion was allowed to 

occur. This more accurately reflects the true nature of the problem because airships are 

of course unconstrained when in flight , and displacements and stresses vary as a function 

of t ime. 

6.3 .2 Nonlinear Wet Simulation 

One further problem of concern was to understand how the airship would respond under 

aerodynamic loading, which was hitherto not considered. The forms and magnitudes of 
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aerodynamic loading can vary greatly, from the response of the structure in steady-state 

flow, to ramped or stepped loading (i.e. from gusts of wind in still air). The gust is an 

important aspect in the study of the interaction of any aircraft with the real atmosphere. 

It must be taken into consideration for two reasons: first, to consider the dynamic re­

sponse of the aircraft; secondly, to evaluate the implications of the gust on the stresses in 

the structure. With regard to the latter, the most critical situation is the vertical gust. 

However, in the case of the ETF, operational velocity is low and an important design 

objective is the ability to hover in adverse weather conditions. In this case therefore, the 

horizontal gust becomes of interest. The form of gust used is the classic constant-gradient 

gust referred to for example in the European Aviation Safety Agency regulations [116]. 

The velocity profile of the linear gust is known to closely follow that of a natural gust, 

therefore it was thought to be reasonable to use this slight simplification, given that in 

the structural analysis the model nonlinearities are of much greater importance. 

Since the pressure distribution on a non-trivial structure due to a particular gust of wind 

is far from obvious (especially at certain angles), a FSI model was created whereby an 

arbitrary-Lagrangian-Eulerian (ALE) mesh was overlapped with the Lagrangian mesh 

used for the" dry" model. The possibility of structural deformation that would change the 

boundary conditions of a standard CFD model necessitates this approach. The ALE mesh 

combines the benefits of the Lagrangian and Eulerian mesh approaches (see Section 4.3.2 

and Figure 4.9): respectively, that the mesh is allowed to move in space (thus limiting the 

size of the mesh necessary); and that the material can flow through the mesh, allowing the 

very large deformations that are characteristic in fluid flow. The ALE mesh is capable of 

both, therefore it is an Eulerian mesh which can move in space and deform if necessary. 

The Eulerian mesh used in Chapter 4 can therefore be regarded as a special case of an 

ALE mesh. An extensive discussion on the ALE method is found in [117]. The two 

meshes are coupled together using a penalty-based approach in the explicit solver so that 

they iteratively interact with each other [94]. Figure 6.10 illustrates the arrangement of 

the two meshes. The ALE mesh is cylindrical because it allows investigation of different 

incident gust angles, as the airship could simply be rotated by altering the incident angle 

J-l between the ship and mesh without the need for extra pre-processing. Note that the 

wet model is an extension of the dry model; as such it includes all the loading described 

in Section 6.3.1, additional to the loads from the ALE mesh. 

The ALE mesh is of a multi-material type tha~ allows mixing of different materials in 

individual elements. It was configured so that it was filled with stationary air surrounding 

the airship, then at the edge nodes of the mesh on one side (the inlet to the mesh) the air 

was constrained to move at a velocity ramped from Omls to lOmls in the direction of the 

ship. These are modelled as separate materials, even though the properties are identical 

- Figure 6.11 illustrates this arrangement. This closely simulates the effect of a sudden 

gust of air hitting the airship hovering in stationary air. A key advantage of the ALE mesh 
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Figure 6.10: Top-view of the ALE fluid mesh overlapping the Lagrangian mesh of the 

airship (above); oblique view (below) . 
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Figure 6.11: Arrangement of materials in the ALE mesh at the initial time step. 
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formulation is that it can be "tied" to the airship mesh so that when the airship moves as 

a result of the gust impact, the mesh moves with the structure, which means that a much 

smaller mesh can be used even if the airship is displaced by a significant amount. This 

will be seen to be very significant since even with the moving ALE mesh, the run-time of 

the model is very substantial. 

The air is defined by a constitutive model, which gives the deviatoric stresses (not consid­

ering possible changes in volume); and an equation of state, which provides the pressure 

component . This allows modelling of compressible, viscous flow , although without consid­

eration of turbulence, representing a first approximation of the airflow around the structure 

for use in uncertainty analysis. Note that this is not a full CFD analysis, but since the 

response of the frame is of more interest than the airflow itself, it is sufficient. A more 

sophisticated CFD analysis would however be an obvious continuation of this work. 

Although there are many conceivable uncertainties associated with the definition of the 

gust hitting the airship, in this analysis only the wind angle was investigated. After adding 

the fluid mesh, the run time of the model became very substantial, due to the large extra 

number of ALE elements, which also require extra processing for the advection steps (the 

operation of translating the ALE nodes). As such, for the wet model only the wind angle 

was treated as uncertain; the material properties were assumed to take nominal values. 
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6.4 Conclusions 

This chapter has outlined a new and innovative design for a remotely-controll~d airship 

that is under development at the Politecnico di Torino in Turin, Italy. The airship is 

intended for use in the fields of surveillance and monitoring, and has a distinctive twin­

balloon design with a series of directional propellers that should allow it to operate in 

adverse weather conditions, thereby overcoming some of the main weaknesses of conven­

tional airship designs. 

As part of the design process, finite element models have been built to test the structural 

integrity of the airship, as well as to ensure that deformations in the structure are not 

so extensive as to hamper the control system that governs the manoeuvres. Two models 

have been presented here: the first is a "dry" model that accounts for the buoyancy and 

pressure loading due to helium, as well as directional loads from the propellers. The 

second ("wet") model is an extension of the dry model and also includes an overlapping 

arbitrary-Lagrangian-Eulerian mesh which allows aerodynamic loading to be considered 

from a sudden gust of wind. 

The two models will be used as further case studies for the Gaussian process emulator out­

lined in Chapter 3, by performing an uncertainty and sensitivity analysis in the following 

chapter. 
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Chapter 7 

Uncertainty Analysis of the 

Airship Model 

Chapter 6 presented two models that were developed for an unmanned airship design 

known as the Elettm Twin Fliers (ETF). Both of these models are large simulations 

that are subject to substantial uncertainty in the input parameters. Using the Bayesian 

technique from Chapter 3, these models will be subjected to an uncertainty and sensitivity 

analysis. This will be useful from the point of view of the airship design, as well as a further 

case study for the Gaussian process emulator. 

Section 7.1 outlines the approach and results of the uncertainty analysis of the dry airship 

model, followed by the same for the wet model in Section 7.2. Conclusions are drawn at 

the end of this chapter. 

7.1 Dry Model 

The uncertainties of interest in the airship model are those that are due to varying operat­

ing conditions. One of the main concerns was that since the airship could conceivably be 

deployed in a very wide range of environments, the uncertainty in model outputs due to 

temperature-dependent material properties could be substantial. Furthermore, the effect 

of varying altitude will change the helium pressure in the balloons within quite a wide 

range. 

7.1.1 VA Approach 

A two-dimensional parameter space was investigated, varying material femperature be­

tween -50°C to +50°C (which in turn, varied the material properties of both the frame 

and envelope according to the relationships illustrated in Figure 6.4) and also varying he-
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Figure 7.1: A Von-Mises stress contour plot of the linear model under a torsional loading 
situation. Forces are marked as red arrows. 

lium pressure. This second variable (in reality the difference between internal and external 

pressure) was considered between 2kPa and 5kPa . This was considered to be a plausible 

variation of pressure given a particular mission objective or a malfunctioning regulator 

valve. 

The motor loading of the structure was considered to be an additional uncertainty, since 

in the event of a control system failure the motors could conceivably be orientated in any 

direction. It is of course desirable that the structure be able to withstand this eventuality, 

however unlikely it might be. Since the consideration of eight additional motor angles 

would greatly increase the computing time required for the analysis, a separate st atic 

analysis was run with nominal temperature and pressure conditions for the motor loading 

conditions to find the most severe deformation, and this condition (representing a twisting 

of the frame) was used in the subsequent analysis by applying point forces at the locations 

of the propellers. The propeller loading is illustrated in Figure 7.1 , showing the directional 

forces applied in 1350 and 3150 angles in the XY plane. All forces here are lOOON in 

magnitude. The simulation is therefore a worst-case scenario in terms of motor loading. 

Over the two-dimensional parameter space investigated , fifteen training simulations were 

run by creating a space-filling design-of-experiments for each loading case. The maximin 

LHS design was again used to train the GP, as in previous analyses. The output of 

interest was the maximum stress in the structure, since this would indicate a possible 

failure. As such , maximum stress was extracted from each run from both the envelope 

and the composite frame. The stress value was t aken from the final time step since this 
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F igure 7.2: Typical Von Mises stress plot of the dry airship model 
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represented the most stable state of the model, after oscillat ions due to ramped loading 

were reduced to a minimum. 

For each run, the maximum stress was collected at the final time step , as well as the 

maximum stress for any t ime step , for different parts of the model. The model was divided 

into the two balloons, the composite frame, and the belts . Of the 15 runs performed , two 

(corresponding to low frame stiffness) resulted in numerical failure around half way through 

the simulation. This is typical of an uncertainty analysis of a complex nonlinear model -

it is very difficult to construct a model that is st able over a wide input parameter space. 

Despite this, the thirteen runs were still sufficient to conduct the analysis. For illustration , 

a typical final-st ate stress plot is shown in 7.2. 

7.1.2 R esults 

Model r egion M ean Stress Standard COY RMS error 
(MPa) deviation (MPa) 

Balloon 1 14.8 1.13 7.6% 2.75% 
Balloon 2 15.0 2.83 18.9% 6.38% 

Belts 9.11 3.31 36% 14.5% 
Frame 10.0 3.14 31.4% 19% 

All 15.3 2.65 17.3% , 6.23% 

Table 7.1 : Uncertainty analysis results from the dry airship model 



7.1 Dry Model 132 

The overall uncertainty values are listed in Table 7.1 (refer again to Equations 3.45 and 

3.51, as well as Appendix B). What is apparent from these values is that the uncertainty 

in the outputs investigated in the model is substantial, immediately justifying the use 

of uncertainty analysis techniques. This is to be expected, since an airship operates in a 

wide range of environmental conditions. In particular, the standard deviation of the frame 

stress is nearly i of the mean, a significant output uncertainty. Of course, stresses lower 

than the mean are not critical, but it is clear that taking mean temperature and pressure 

values would underestimate potential stress by a large extent. Gaussian process emulator 

uncertainty var* {E(Y)} for all outputs was found to be small, such that the posterior 

standard deviation of the mean was 100kPa at most. This indicates that the GP can 

interpolate to unknown simulation points with a high level of confidence; in other words, 

the emulator is working well. This is further confirmed by the relatively low RMS errors, 

although in the case of the frame stress the uncertainty is nearly 20%. If the emulator 

accurately mimics the behaviour of the model then the sensitivity analysis data is also 

of a high fidelity. Note that this var* {E(Y)} is distinct from E* {var(Y)}, which is the 

posterior estimate of the variance of the model output, presented in Table 7.1. 

Sensi ti vi ties 

The main effect plots for the two inputs examined are presented in Figure 7.3, to gain 

a more detailed insight into the influences of these parameters on the stress in various 

parts of the model. It should be remembered that these lines represent mean main effect 

values, averaged over variations in the other parameter, i.e. the expected value of the 

output with respect to one parameter if we were to suddenly know the "true" value of 

the other parameter. Recall that the main effect plots are generated using Equations 3.47 

and 3.51, setting p = i, where i is the input variable of interest (see also Appendix B). 

Examining the pressure plot first, the strongly linear relationship of stress and pressure is 

evident in the nearly-straight lines representing both the balloons. The small differences 

between the two balloons are due to the asymmetry of the frame - loading conditions are 

not exactly the same for both balloons. A less obvious relationship is that of the frame 

stress and pressure. The fact that frame stress decreases with pressure suggests that when 

the balloons are under greater tension due to pressure they are impeding distortion in the 

frame from motor loading. This relationship of pressure and frame stress supports the 

hypothesis of the author that a structural analysis of the frame without consideration of 

the balloon is inaccurate, since it plays an important part in the rigidity of the structure. 

Regarding the main effects of temperature, it is apparent that the stress in the balloons 

is not strongly dependent on this parameter. The stress varies little between 16MPa and 

17MPa. Conversely, the stress of the frame is highly dependent on temperature. This is 

perhaps contrary to initial intuition since the material properties of the frame vary little 
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Figure 7.3: Posterior mean of the main effects of: (a) helium pressure, (b) temperature. 
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Figure 7.4: Sensitivity indices of temperature and pressure on various model regions 

with temperatur , whilst those of the envelope vary to a large extent . However, consider 

that frame stress is a function of material properties and the applied loads. Since the 

envelope properties are highly d pendent on temperature, they exert large temperature­

dependent forces on the frame. Therefore the stress in the frame is highly dependent on 

temperature, but indirectly through the vari ation of envelope material properties. This 

serves to illustrate one of the main advantages of sensitivity analysis - complicated model 

interactions can be examined from an objective point of view. 

A further result of the sensitivity analysis is shown in Figure 7.4. The non-standardised 

MEIs (see Equation 2.21) are summed for each model output , along wi th the output 

variance. This allows a comparison of the variance of stress in various parts of the model, 

and the extent to which each of the two input parameters, or the interaction between 

them , is responsible for causing uncertainty in the output. As would be expected, the 

great majority of uncertainty in the balloon stress is due to the uncertainty in pressure. In 

the frame, temperature has a greater influence, but there are also significant interactions 

with the variation in pressure, caused by the extra rigidity in the structure at higher 

pressures . Note that these trends can also be qualitatively observed from the plots of 

main effects, but the MEIs quantify the sensitivity of the output to each parameter to 

give a precise m asurement . The main effect plots are still required though to see the 

exact relationship between an output and the variation in an input. Between the plots 

and the sensitivity indices, a very det ailed picture of the model response can be built up. 
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Examination of the maximum stress values collected over all time steps in the model 

shows that they are up to 50% higher than the final time step stress in some cases. This 

is evidence of the higher stresses caused by initial fluctuations in the model, a drawback 

of using a dynamic analysis, yet unavoidable due to the particular loading and constraint 

conditions of an airship. 

7.2 Wet Model 

A typical illustration of airflow around the airship hull is shown in Figure 7.5. Note that 

extracting a meaningful quantity from this model is not trivial because the impact of the 

gust causes structural oscillations, and all displacement and stress values are a function 

of time. Some meaningful results can however be obtained. Examining the results from 

the wet model, Figure 7.6 illustrates the positioning of four displacement measurements 

between opposite propellers in the x-direction of the model, which are a mea..'>ure of the 

deformation of the structure and thus the degradation of the control system. Figure 7.7(a) 

shows the main effects of the final displacement of these measurements. The variation in 

displacement is reasonably linear and quite small. This is attributed to the rigidity of 

the structure caused by tension in the balloons. The displacement is increasingly negative 

as the gust is angled more towards the front of the airship, likely because the balloon is 

pushed towards the rear of the ship, causing the structure to contract slightly. 

Other outputs of the model are less well-behaved. A significant difficulty with this model 

is that a small change in gust angle can drastically change the output of the model. 

Figure 7.7 shows the variation of stress with gust angle for four chosen regions in the 

model (regions are shown in Figure 7.6). Each of these regions represents an ar~a of 

observed stress concentration in the frame (and thus a potential point of failure). The 

response of stress is shown to be highly nonlinear in relation to the gust angle. This 

does cause some problems since a rough response requires a higher density of training 

data. An investigation of this (Figure 7.8) uses leave-one-out cross validation (which tests 

the prediction error as a result of repeatedly removing single points and retraining the 

emulator, see [33]) to test the accuracy of the emulator for the stress in region 2. The 

emulator is constructed n times (where n is the number of training data), each time 

leaving out one of the training data points. The mean and variance at each point is then 

noted. The results show that the variance of the emulator is large, due to the combination 

of a rough response and an insufficient density of training data, however all data are within 

the predicted confidence intervals. This suggests that a higher resolution of output data 

is necessary to investigate more accurately the true response of the model, but that the 

emulator is at least quantifying its own uncertainty correctly. Therefore,' the results in 

Figure 7.7 are ideally in need of refinement but provide an insight into the problems that 

. d l'ng conclusions from a very nonlinear model. can occur III raw 
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Figure 7.5: Velocity vector plots of gust impact at J-L = 0° : (a) oblique view; (b) top view. 
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Figure 7.6: Displacement measurements 1-4 (labelled D1-D4 respectively) , and stress re­
gions 1-4, on the airship frame. 
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Figure 7.8: Cross-validation study on the emulator of the wet airship model - 95% 
confidence intervals shown. 

7.3 Conclusions 

T ypical FE models of an airship have b en developed and it was found that output un­

certainty is significant , particularly when a simple model of aerodynamic loading is in­

t roduced. The GP emulator has been shown to be a powerful tool to investigate the 

magnitude of uncertainty in such models, and combined with sensitivity analysis data , 

can identify parameters that could reduce model uncertainty if they were known to a 

greater degree of accuracy. It is clear however , that in highly nonlinear responses, more 

training data is required if meaningful conclusions are to be drawn from emulators such as 

the GP. Nevertheless, the GP acknowledges its own uncertainty in emulating the response 

of the model and so when a poor emulator fit occurs, it can be easily identified. 

The overall benefit of emulator-based uncertainty analysis compared to Monte Carlo meth­

ods is a substantial computational saving, which can be very significant in the case of a 

large computer simulation. The specific results gained from the airship show that uncer­

tainty and sensitivity analysis are important tools given that computer models are used 

extensively in design , since an acknowledgement of the uncertainty in the model allows 

more informed decisions to be made about a particular design. Furthermore, sensitivity 

analysis allows a modeller to gain a deeper understanding of the interactions at work in 

a model, by examining how variation in certain parameters affect s various model out­

puts. Further work is required from the perspective of the airship design to t est material 
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uncertainty in the other candidate membrane materials. 
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Chapter 8 

Tree-Structured Gaussian 

Processes for Uncertainty Analysis 

Chapters 3-7 have outlined in detail a sophisticated emulator-based approach for per­

forming uncertainty and sensitivity analysis on large nonlinear models using GPs. The 

method has been shown to provide very detailed information at low computational cost, 

whilst making as few assumptions as possible about the form of the response surface of 

the model output. 

The uncertainty analysis of the aortic valve in Chapter 5 raised an interesting issue how­

ever. It was observed that for some areas of model input space the response of the model 

may have been violating one of the few assumptions of the GP emulator, namely that the 

data is a smooth function of its inputs. This suggests the question - how well ca,n the 

GP emulator cope with non-smooth data, and is there perhaps an alternative way of per­

forming uncertainty analysis on non-smooth and even bifurcating computer models? One 

conceivable solution to this problem is to somehow divide the input space, fitting separate 

regression models at each region and using the region boundaries to model discontinuities. 

A very recent approach to deal with exactly this issue has been proposed by Gramacy 

et al. [118] which essentially uses a fully Bayesian variant of classification and regression 

trees (CARTs) to perform the divisions of input space. Gaussian process (GP) emulators 

are fitted at each of R "leaves" of the tree (regions of input space), with the result that 

the emulator now consists of a number of non-overlapping GPs, rather than a single GP. 

The "standard GP" from Chapter 3 (as it will now be termed), could therefore be viewed 

as a special case of this "tree-structured GP". 

Tree-structured GP emulators were originally developed for use with data that has a non­

stationary covariance structure (known as heteroskedastic data), since the standard GP 

necessarily uses the same covariance function for the whole range of input space. Instead, 

this chapter will investigate the possibility of using the tree-structured GP emulator for 
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Figure 8.1: An example of a 2D CART: (a) Tree structure; (b) Corresponding divisions 
of input space. 

bijuT'cating data, using the tree divisions to model bifurcations (since the emulator can be 

discontinuous over divisions in input space). One very nice feature of the tree-structured. 

GP is that the computational expense is actually reduced compared to the standard GP, 

since the cost of inverting the required covariance matrices is n3 for a single GP, whereas 

when the data are handled by R equally-sized GPs the cost is n3 / R2. 

The concept of CARTs will be explained in Section 8.1, after which the Bayesian approach 

to CART is outlined in: Section 8.2 and applied to an simple example in Section 8.3. 

Conclusions and comments follow. 

8.1 Classification and· Regression Trees 

A Classification and Regression Tree (CART) is a system used to recursively divide data 

into classes that are increasingly homogeneous within their divisions in some respect. 

CARTs were developed primarily by Leo Breiml;tn, who wrote a seminal book describing 

methods of constructing trees and their applications [119]. 

An example of a CART applied to 2-dimensional data is shown in Figure 8.1(a). The tree 

starts with the full set of training data. At each split in the tree (known as a "node"), 

a rule is used of the form Xi :$ s to divide the data using a single input variable. If a 

data point agrees with this rule, it goes to the left "branch". Otherwise, it goes to the 

right. This process is repeated as many times as necessary on any variables until the data 

is sorted according to some criterion, at which point the data reaches the "terminal node" 
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or "leaf" of the tree and is assigned either a category (in the case of a classification tree), 

or some numerical value (a basic regression tree). In fact, the concept may be extended 

to fitting regression models at each leaf (i.e. the terminal node contains a parameter set 

describing an emulator) which will be of particular interest in the context of this work. 

The result of this splitting of data is that the input space is divided into R non-overlapping 

regions, as illustrated in Figure 8.1(b). Note that since the splits are performed on one 

variable at a time, all the partitions are made using lines parallel to the axes. This will be 

seen to be a possible limitation later on because when splits are required to be non-parallel 

it may require a complicated tree to satisfactorily partition the data. 

8.1.1 Growing Trees :- Greedy Algorithms 

Leaving aside for a moment the issue of what is actually at the leaf of the tree, the main 

problem to overcome is that of constructing a tree that partitions the data to some required 

level of accuracy, ideally by the simplest means possible. In other words, it is desirable to 

have a tree that is no more complicated than is necessary to partition the data, to avoid 

the problem of over-fitting (note that this is based on the principle of Occam's Razor 

[120)). 

The simplest approach to "growing" the tree is to use a greedy algorithm that optimises 

some criterion at each split. Starting with the whole data set at the root node, the 

algorithm performs an exhaustive search of every possible split for every variable and 

calculates the number of correct classifications for each. Since there are a finite number of 

possible ways to divide the data and the calculation of classification error is very cheap, this 

strategy is not a problem from a computational point of view. The split that minimises the 

classification error is then selected and the data accordingly divided according to the new 

rule. The process is then repeated for the two new leaves of the tree, resulting in more 

divisions. The division of data continues until some global criterion has been reached, 

such as an overall percentage of correct classification or when the classification rate has 

converged. 

The problem with the greedy algorithm is that although the splits are locally optimal, there 

is no guarantee that this will result in a globally optimal solution. The sub-optimality of 

greedy algorithms is demonstrated by the classic "travelling salesman problem" (see e.g. 

[121]). Some improvement may be gained by "pruning" the tree, which involves simplifying 

the tree by removing nodes, based on some strategy such as a cost-complexity criterion or 

using cross validation. Further methods for tree construction are discussed in [119]. 
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8.2 Bayesian CART 

An alternative way of growing CARTs using a Bayesian approach has been suggested by 

Chipman et al. [122], where each leaf contains a Gaussian distribution (Le. a regression 

tree). This was later extended to use linear regression models at each leaf [123]. Most 

recently, Gramacy and Lee extended the Bayesian CART much further by using it to fit 

GPs over each region of input space. However, in all cases the principles of the tree con­

struction itself remain essentially the same, being based on Chipman's original paper. For 

the purposes of clarity therefore, the following sections will discuss the Bayesian approach 

to CART construction in the context of a simple regression tree. The extension to the full 

GP tree will be briefly explained but not treated in full detail. A very detailed description 

of the tree-structured GPs can however be found in [124]. 

8.2.1 Overview 

The Bayesian approach to CARTs considers the problem from a probabilistic perspective. 

Following the normal procedure, a prior distribution over models is created, which will 

ultimately be conditioned on training data to produce a posterior distribution. In order 

to fully specify a CART model, it is necessary to have both a tree structure (which will 

be called T), and a set of parameters e that specifies the regression parameters at each 

leaf, for all leaves. In the full GP tree, these would be GP hyperparameters, but in the 

basic CART they will be means and variances at each leaf. In particular, the following 

explanation will use the simple "mean-shift" model described by Chipman as an example 

[122]. In this model, it is assumed that the data is distributed with a separate mean J-Lv 

for each leaf rv E {rll}:=l' but is governed by a global variance measure (12 that is the 

same for all leaves. 

Likelihood 

To express the model likelihood, it is assumed that the data Yj (where j is the sample 

index inside a given leaf) are independent and identically distributed (iid) within each of 

the R leaves, and independent across leaves. Defining the division of data across leaves 

as Y = {Yv}:=l' and the data inside each leaf as Yv = {Yj}j~l (where nv is the number 

of data points in the leaf rv) the specification of model likelihood may be given as, 

R R nv 

p{y/X, e, T) = II !(Yv/Ov) = II II !(Yvj/Ov) (8.1) 
v=l v=lj=l 



8.2 Bayesian CART 145 

where Yvj is the jth observation at the vth leaf. In the case of the mean-shift model, a 

normal distribution is assigned, such that for any leaf the !(Yvj I(}v) are expressed as, 

(8.2) 

This can be easily extended to the mean-variance-shift model where (12 can vary between 

leaves, but this will not be considered here. 

Prior 

The prior distribution over models p(T,8) is now outlined. This can conveniently be 

divided such that 

p(8, T) = p(8IT)p(T) (8.3) 

which allows the tree prior to specified independently of the regression parameters. 

The prior may now be combined with the model likelihood given the data, which is de­

pendent on the type of model used at each leaf. If the parameter prior has a carefully 

chosen form, it is possible to analytically marginalise the model parameters, Le., 

p(YIX, T) = J p(YIX, T, 8)p(8IT)d8 (8.4) 

Now using Bayes' theorem the posterior distribution over trees can be found up to a 

proportional constant, 

p(TIX, Y) ex p(YIX, T)p(T) (8.5) 

By searching the posterior distribution in Equation 8.5, the most probable trees may be 

selected given the supplied training data. For example, if a single tree is required, it might 

be reasonable to pick the MAP tree - Le. the tree with the highest posterior probability. 

The selection of trees is discussed further in Section 8.2.3. Now, the specification of priors 

and likelihoods for the CART model will be dealt with. 

8.2.2 Prior Specification 

The model prior is split into a tree prior and a conditional parameter prior, as no.ted in 

Equation 8.3. These are dealt with separately. 

Tree Prior 

The tree prior p(T) cannot be expressed in a closed form. However, it is possible to create 

a stochastic process that produces a series of trees based on specified rules that successively 

split terminal nodes. Implicitly, this allows sampling from an indirectly-specified prior tree 
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Figure 8.2: Desirable bushy trees (left) and undesirable lanky trees (right) 

distribution. Since the posterior tree distribution from Equation 8.5 is explored by MCMC 

(see later), this definition of p(T) is not a problem in practice. Importantly, the tree prior 

is independent of the model parameters at the leaves - it only specifies the structure of 

the trees and the associated splitting rules at this point. 

The tree-generating process proceeds as follows. One starts with an "empty tree", which 

consists of a single root node. At this point, all the data is at the root node, and the 

input space is undivided. In order to split the data, it is necessary to choose first, the 

node TJ E T to be split (in the case of the empty tree there is of course no choice); second, 

the variable Xi E x on which to perform the split; and last, the value s which dictates the 

value of Xi at which to perform the split. With the new splitting rule, two "child nodes" 

are created. This new tree can be considered as a sample from p(T) , and the same process 

can be applied repeatedly to generate a series of samples. 

To deal with the selection of the node to be split, Chipman suggests a splitting rule PSPLIT 

such that, 

(8.6) 

where dT} is the depth of node TJ (the number of splits above TJ), and a and f3 are 

parameters that can be set to control the shape of the prior distribution. Since this rule 

is a decreasing function of dT}' it encourages the growth of "bushy" trees (trees whose 

terminal nodes do not vary too much in depth), rather than "lanky" trees (see Figure 

8.2), which are more likely to over-fit the data. The shape parameters can be adjusted 
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empirically by generating samples from p(T) and plotting histograms of criteria of interest, 

for example, by examining the number of terminal nodes. 

Now, given that a split has been made, the variable Xi on which to make the split, and 

the split value s must be chosen. This is done by assigning a further rule PRULE(pl7J, T), 
which dictates the probability of the rule p by a distribution on the available Xi, and a 

further distribution on the available split values, conditional on each Xi. "Available", in 

this context, refers to split variables and split values that do not lead to empty leaves. 

Note that s could take any value, but there are only a finite number of possible data splits 

- for example, the midpoints between all the data values along a given Xi. Therefore 

PRULE is a discrete distribution. By extension, this also implies that p(T) is also a discrete 

distribution, albeit over a very large number of possible trees for a reasonable-size data 

set. 

The specification of PRULE is simply given by assigning a discrete uniform distribution 

over available Xi and a discrete uniform distribution over available split values. It could 

be reasoned, however, that this strategy could be improved if there were some a priori 

knowledge about the importance of individual Xi. For example, the current rule assigns 

lower probability to multiple splits on a single variable. If it were known that splits are 

more likely or less likely to occur on particular variables, it might be of interest to assign 

non-uniform distributions over the variables to reflect this. Furthermore, it might also be 

a better strategy to assign a distribution to the splitting value that puts more weight on 

splitting in the centre of the data, rather than the. tails. This strategy would give more 

probability to bushy trees. However, the uniform distributions described above will be 

assumed to suffice for now .. 

Parameter Prior 

In choosing the parameter prior p(8IT), it is convenient to choose a form that allows 

the analytical marginalisation described in Equation 8.4. In this case, the conjugate prior 

of the Gaussian likelihood in Equation 8.1 is used, which is a normal distribution over 

each /Lv and an inverse-gamma distribution over a2 • This is broken down such that 

p(/L, a21T) = p(ttla2 , T)p(a2IT) , where, 

(8.7) 

(8.8) 
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This now yields an analytical expression for the marginal likelihood of the trees after 

marginalising the parameters (by performing the integral in Equation 8.4), which is, 

(8.9) 

where c is a constant that does not depend on T, SV is (nv -1) times the sample variance 

of Yv, tv = [nvaj(nv + a)lUlv - Jl)2, and Yv is the mean value of the YV. The prior 

parameter values may be chosen with guidance from the training data - for details of 

this the reader is referred to Chipman [122]. 

8.2.3 Searching the Posterior Distribution 

Now that the prior distribution and likelihood have been specified,' the posterior distri­

bution of trees p(TIX, Y) (having integrated out the model parameters) is expressed by 

Equation 8.5, up to a constant of proportionality. Although as mentioned, p(T) is a dis­

crete distribution, and therefore the posterior is also discrete, an exhaustive search of all 

trees is usually impossible due to the sheer number of possible trees. However, using the 

Metropolis-Hastings (MH) algorithm, it is still possible to effectively search for the most 

probable trees, since the MH algorithm naturally moves towards areas of higher proba­

bility. The workings of the MH algorithm will briefly be explained here, after which an 

overview of its use in the context of trees will be given. 

The Metropolis-Hastings Algorithm 

The MH algorithm, which has been described as one of the most important algorithms 

of the last century [125], is a form of Markov Chain Monte Carlo (MCMC) estimation. 

First proposed by Metropolis [126] and subsequently extended by Hastings [127], it allows 

sampling from a distribution even when the normalising constant is unknown. 

The MH algorithm is based on the idea of generalised rejection sampling in a Markov 

chain. A Markov chain is a sequence of events {At, At+1, ... } where the probability of each 

successive event is conditional only on the event immediately before it, i.e., 

(8.10) 

where At denotes the state of the chain at time t. The Markov chain is defined by 

an initial starting state Ao, and a transition probability distribution q(A, Aj) which 

describes the probability of jumping to a state j given that the current state is i. For 

chains where the possible number of states is small, the probability of jumping between 

any permutation of steps can be explicitly defined, however quite often the transition 
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Successive 
samples 

Figure 8.3: Metropolis-Hastings draws from a 2-dimensional sample distribution. Candi­
date points are drawn from the proposal distribution and accepted or rejected based on 
the MH acceptance ratio . 

probability must be defined by a transition kernel that returns the probabili ty of jumping 

to a new state based on some function of the present sta te. Typically this may be done 

by using a small jumping distribution (such as a Gaussian) , centered on the present state , 
to propose new values of A . 

The MH algorithm uses a Markov chain to move around the support of the sample distri-
I 

bution (which is very often a distribution of parameters), taking samples {0o, 0 1 , O2 , . . . } 

as it moves, however the jumping distribution only proposes new values, which are ei­

ther accepted or rejected based on the MH acceptance ratio. Figure 8.3 illustrates the 

movement of the MH algorithm over a 2-dimensional parameter space. 

In the context of the tree posterior , the variable of interest is the tree T , and it is required 

that samples be drawn from p(T/X , Y) . This is performed by generating a Markov chain 

of tree samples {To , T1 , T2"' } that converges to the posterior distribution. The steps of 

the MH algorithm are here given in the context of trees, but the principle extends to the 

search of any posterior: 

1. Star t wi th an initial tree To . Typically this will be the empty tree, but not necessarily 

so (see later) . 

2. Generate a candidate t ree T * from a jumping distribution q(To , T *) : Note this is 

not the probabili ty of acceptance. It is simply a probabili ty distribution of possible 

candidate trees. 
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3. Evaluate the acceptance probability Q: such that, 

. {I p(T*IX, Y)q(T*, To)} 
Q: = mIn , -';-=-f-::----::...::...:-~::..:... 

p(ToIX,Y)q(To,T*) 
(8.11) 

4. Accept the candidate tree with probability Q:. In other words, if the MH ratio is 

greater than or equal to 1, accept the candidate point. If it is less than 1, generate 

a random number between 0 and 1 and accept the candidate point if the random 

number is less than Q:. Otherwise, reject the candidate point, keep the current tree 

and return to step 2. 

Note that since the acceptance probability is dependent only on the previous state, this 

process generates a Markov chain. Since this chain can be shown to be ergodic (i.e. it is 

not sensitive to initial conditions after a sufficient period of time, .known as burn-in), it 

will eventually generate effectively independent samples from the distribution of interest. 

The MH ratio also satisfies a criterion known as detailed balance, which ensures that after 

sufficient burn-in, the chain is stationary, and will continually sample from the distribution 

of interest (see [120] for more information). 

The key to the success of the MIl algorithm is that since the acceptance probability Q: is 

a ratio of posterior probability values, the normalising constant of the posterior actually 

cancels out. Therefore it is only necessary to know the posterior distribution up to a 

constant of proportionality, as in Equation 8.5. Additionally, since the algorithm will 

always accept jumps to points that have a higher probability in the sample distribution, 

the MH search naturally gravitates towards areas (trees, in this ca.'le) of higher probability. 

Posterior Search Using MH 

In order to calculate the acceptance ratio, it is necessary to have some jumping distribution 

q that specifies the probability.of jumping to a new tree, given the present tree state. 

Chipman suggests a distribution that may be defined implicitly by a set of four rules 

(although other rules could easily be conceived), which are as follows, 

1. GROW: Randomly pick a terminal node and use the PRULE rule defined in the prior 

to split it into two child nodes. 

2. PRUNE: Randomly pick the parent of two terminal nodes and collapse it into a 

terminal node by removing the splitting rule. 

3. CHANGE: Randomly pick an internal (not terminal) node and randomly re-specify 

the splitting rule using PRULE from the prior. 
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4. SWAP: Randomly pick a parent and child node that are not terminal nodes. Swap 

the splitting rules, unless the other child node has the same rule, in which case swap 

the splitting rule of the parent node with that of both child nodes. 

Note that when selecting between these rules, it is necessary to only consider those that 

will not lead to an empty terminal node. The rules defined above give a reversible Markov 

chain, because the GROW and PRUNE rules are reversible counterparts. Furthermore, 

the CHANGE and SWAP rules are reversible when compared to themselves, therefore 

every possible move has a counterpart in the opposite direction. The actual probability 

of a given move can be calculated by multiplying the probability of picking a particular 

rule (1/4) by the probability of the alteration made by that rule. For example, in the case 

of the GROW move, one would multiply the probability of picking a particular terminal 

node (1/ R) by the probability of a'lsigning the rule specified by PRULE. The calculation 

of these probabilities can be easily built into the search algorithm. 

8.2.4 Comments on the Posterior Search 

Chipman et al. note that although the MH algorithm is convergent, and can be shown to 

visit all possible trees given enough time, in practice the search tends to get stuck for very 

long periods of time in local modes of high probability. Therefore it is a good strategy 

to restart the chain every 500 moves or so. The restart point can be the empty tree, 

previously visited trees, or a start tree generated by some process, perhaps by a greedy 

algorithm. It has been shown that this will significantly improve the mixing of the chain 

and therefore high-probability trees will be located in fewer runs [122]. .'/ 

It is necessary to have some strategy for selecting "good" trees. Because of the huge 

number of possible trees, it is not possible to use the frequency of visits to a particular 

tree as an indicator, because it would simply take too long. An obvious approach is to 

pick trees with the highest posterior probability, although it is noted that this may be a 

misleading measure because when comparing single trees, a relative posterior probability 

measure will favour trees using splits on variables with fewer split points (an explanation of 

this is given in Chipman [122]). A much better alternative might be to use model averaging, 

where an overall posterior mean can be calculated by using weights proportional to the 

posterior probability of each tree visited. This also has the advantage of nullifying the 

problem of comparing trees based on posterior probability., 

8.2.5 Extension to Tree-Structured GPs 

The previous explanation has focused on the use of a CART coupled with a simple mean­

shift model to assign means and variances at each leaf of the tree. Although from a high­

level perspective the method remains essentially the same when a GP is fitted at each 
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leaf (since a GP is defined by a set of parameters 8 in the same way as the mean-shift 

model), in practice the details of its implementation are somewhat more complex. Since 

the principles of Bayesian CART have been shown in depth, it is not considered necessary 

to provide a detailed treatment of the construction of tree-structured GPs, however, an 

outline will be given, and the main differences explained. For a full explanation, the reader 

is referred to [124]. 

The idea of tree-structured GPs was introduced by Gramacy and Lee [118], who are also 

the authors of the R package "tgp" [128], which incorporates all the features described 

here, including the ability to perform UA and SA on both tree-strucured and standard 

GPs. This package was used to perform all the tree-structured GP analyses in this thesis. 

Prior Specification 

At each of the R leaves {rv}~=l of the tree a GP is defined. Gramacy et al. propose 

a GP for each region rv of the same form used in Chapter 3, except further parameter 

uncertainty is accounted for by using a hierarchical specification of the hyperparameters. 

Rather than specifying an uninformative prior over the weights wand the variance scale 0'2 

(refer back to Equation 3.7), normal and inverse-gamma distributions are used respectively, 

the hyperparameters of which are also assigned distributions. This hierarchical model and 

its priors are specified as, 

wvIO';, r;, W, Wo fV Nm(wo, O';r;W) 
Wo fV Nm(/-l, C) 
r; fV IQ(aT/2, qT/2) 

0'; fV IQ(aq/2, qq/2) 
W- 1 

fV W((PvV)-l,p) 

(8.12) 

(8.13) 

where W is an m x m matrix (m is the number of covariates in the training data), IQ 

and Ware the inverse-gamma and Wishart distributions respectively and the remaining 

undefined hyperparameters are treated as known. The covariance function is the same 

as that used in Chapter 3. Rather than estimating the roughness parameters B in the 

covariance function however, prior distributions "are assigned to the diagonal elements of 

B, giving a fuller account of uncertainty. Details of these priors will not be presented 

here, but can be found in [118]. 

The hyperparameter priors from Equation 8.13 together constitute the conditional hyper­

parameter prior p(8IT). Additionally, the parameter likelihood is easily expressed from 

Equation 8.12. The tree prior p(T) is the same used in the mean-shift CART from Section 

8.2.2. 
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Posterior Search 

Since the form of p(8IT) is considerably more complex than that used by Chipman et 

al., numerical integration is used to marginalise parameters. In fact, the tree-structured 

GP approach goes one step further, by using Reversible-Jump MaTkov Chain Monte Carlo 

(RJ-MCMC) sampling [129J to fully integrate out tree dependence, Le., 

p(YIX) = J p(YIX, 8, T)p(8IT)p(T)d8dT (8.14) 

This is now a formal model-averaging approach, since all uncertainty has been accounted 

for, not only in the parameter estimation, but also in the tree estimation. The nice thing 

about averaging over trees is that although for any given tree the posterior mean will be 

discontinuous over leaf boundaries, when model averaging is used it will actually smooth 

out at the boundary, as a result of averaging over many possible models. Importantly 

for this invel-ltigation, however, it still retains the ability to model bifurcating data at leaf 

boundaries. 

In order to sample from the joint posterior of (8, T) (remembering that parameters have 

not been analytically marginalbed here), MeMe il-l used to explore the model space, 

consisting of jumps between parameter sets and trees. Moves between trees and parameter 

sets are treated separately, so the sampling performs a move to a new set of parameters, 

then a new tree, then a parameter move again, and so on. In other words, samples are 

being drawn alternately from p(8IT), then p(TI8). In order to do this, it is necessary 

to use a mixture of forms of MeMe. 
1 

For moves in parameter-space, a sampling technique known as Gibbs sampling [130J IS 

used where possible. A problem with the MH algorithm is that when the number of 

parameters to be estimated (Le. the number of dimensions of the probability distribution 

to be searched) is more than a few, searching the parameter space can take a very long time. 

Gibbs sampling is a special cal-le of the MH algorithm where the acceptance ratio il-l always 

1, therefore all samples are accepted. However, inl-ltead of sampling from the joint posterior, 

the Gibbs algorithm samples sequentially from univariate full conditional distributions 

(distributions of a single parameter, conditional on all other parameters). This allows a 

faster sampling of parameters in many cal-les. Full conditional distributions can be derived 

for all parameters except thol-le ul-led in the covariance matrix (roughnel-ll-l parameters), 

therefore Gibbs steps may be used [124J. In the cal-le of the roughness parameters, the 

MH acceptance ratio is ul-led. The steps are performed over all parameters 6v for a single 

tree leaf, then repeated for all leaves, generating a set of parameters condi~ional on a tree 

(8IT). 

Once a move to a new full set of tree parameters has been performed, it is necessary 

to move to a new tree, using a stochastic tree-jumping process similar to that used by 
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Chipman et al.. However, since the size of the parameter space (i.e. the length of the 

S vector) will change as a result of adding or subtracting leaves, in order to formally 

integrate out tree dependence it is necessary to use RJ-MCMC, which is a generalisation 

of the MH algorithm that can cope with jumps between parameter spaces of different 

dimensions. RJ-MCMC copes with the jumps between dimensions by using a function h 

that dictates the next state of the chain S' as a function of the current state 8 and some 

vector of random numbers u, generated from a density 9 such that, 

h(8, u) = (8', u') (8.15) 

where u' is a new vector of random numbers. To make the reverse move, a set of ran­

dom numbers u' is generated from a density g'. The key to RJ-MCMC is that if the 

transformation h is bijective (the sum of dimensions of 8 and u is equal to the sum of 

dimensions of S' and u'), the MH acceptance ratio can still be calculated, if appropriately 

modified. Crucially, although the sum of dimensions must remain the same, the size of S 

need not be the same as 8'. The MH acceptance ratio now must include a Jacobian term 

to account for the change of variables, 

. { p(8*)g'(u') I oh I} 
(tRJ-MCMC = mIll 1, p(8)g(u) 8(S,u) (8.16) 

Note that given the presence of the Jacobian term, it is necessary that the function hand 

its inverse are differentiable - this is known as a diffeomorphism. Further details about 

RJ-MCMC will not be discussed here, however the interested reader can refer to a good 

recent tutorial by Green and Hastie [131], which is perhaps a little more accessible than 

Green's original paper [129]. 

Setting up a RJ-MCMC parameter search can be somewhat time-consuming, but it is 

a very powerful method, allowing searches across parameter and model space. The MH 

acceptance ratios must be calculated for each possible move, but since the move types are 

very few, this is not necessarily too arduous. The acceptance ratios for the moves used in 

the tree-structured GP search will not be presented here, but can be found in [118]. 

Limiting Linear Models 

One further additional feature used in the tgp package is the concept of Limiting Linear 

Models (LLMs). The response of a model in part (or all) of the input space may be linear, 

in which case fitting a GP is unnecessary, and increases computational expense for no 

reason. In the case of a region where the data is sufficiently linear, the GP jumps to the 

LLM, which is a special case of Equation 8.12, such that, 

(8.17) 
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where I is the nv x nv identity matrix. This is actually the Bayesian linear model 

considered by Chipman et al. as an extension of basic Bayesian CART [123]. The switch 

is implemented by a Boolean operator that chooses the GP or the LLM based' on the 

estimated roughness matrix B. If the roughness parameters bi for each dimension are 

sufficiently small, the data can be treated as linear. The full details of this will not be 

discussed here, but can be found in [124]. It will however be seen to be a significantly 

useful feature in the following case studies. 

8.2.6 Application to VA/SA 

The use of tree-structured regression models in VA/SA has been considered before by 

Pappenburger et al., but only using simple regression trees and random forests [132]. The 

tree-structured GP method is considerably more sophisticated, yet the practical details of 

calculating the necessary integrals from Section 3.2 are not too difficult. 

The approach of Gramacy et al. [133] is that at each tree (and corresponding parameter 

set) that is visited during the posterior search, output predictions are made over a large 

selected set of input locations based on an LHS design. For each set of predictions, 

the necessary integrals may be evaluated conditional on the predicted output by Monte 

Carlo integration [44]. Although this approach is less elegant than the analytical methods 

used in Chapter 3, it does have the advantage that VA and SA estimates now account 

for uncertainty over possible models, and all hyperparameters are estimated in a fully 

Bayesian fashion. Additionally, rather than calculating sensitivities as ratios of expected 

values, the numerically-integrated sensitivity indices here are true estimates of the Si. Full 

details of the numerical integ~ation are found in [133]. In short, the tree-structured' GP 

can estimate all of the sensitivity measures discussed in Section 2.2.2 and used in previous 

chapters. 

8.2.7 Summary of Tree-Structured GPs 

The Bayesian approach to mean-shift CART models has been shown here to be extendable 

to tree-structured GPs, albeit with the introduction of some new features, such as the 

hierarchical GP model and the necessary RJ-MCMC to integrate out tree dependence. 

The tree-structured GP method relies heavily on numerical integration, but in tenus of 

computational expense it has been found by the author to be rather efficient and in no 

way time-consuming to analyse substantial data sets. This is in part due to the useful 

reduction in CPU time due to using multiple smaller GPs, and perhaps, the fact that 

roughness parameters are estimated by MCMC, rather than the (possibly) more time­

consuming optimisation that is required by the standard GP. A test of the tree-structured 

GP now follows with a simple case study. 

ii 
Ii 
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8.3 Example: Duffing Oscillators 

In order to compare the abilities of the tree-structured GP against the standard GP, both 

emulators were applied to the bifurcating response of a Duffing oscillator. This is a very 

simple case-study of a response bifurcation that can be governed by two parameters. 

8.3.1 About Duffing Oscillators 

The Duffing oscillator is a very well-known example of a nonlinear system in structural 

dynamics. It is a sinusoidally-forced single degree of freedom system with a cubic stiffness 

term: 

my + ciJ + ky + k3y3 = Pcos(wt) (8.18) 

where m is a mass, c is a damping coefficient, k and k3 are stiffness constants, P is the 

forcing amplitude and w is the forcing frequency. y, iJ and y denote the displacement, 

velocity and acceleration respectively. 

The frequency response function (FRF), in the case of k3 = 0, is single-valued at any 

frequency. However, when k3 =1= 0, at certain frequencies the response of Equation 8.18 

can have three possible amplitudes, since they are the solutions of a cubic equation. Of 

these three, one amplitude is unstable and is never achieved in practice, however, as the 

system approaches a steady state it snaps to one of the two remaining amplitudes, either 

the high amplitude or the low one. Whether the system ends up in the high or low 

amplitude is determined by the initial conditions of the system: the initial displacement 

Yo and the initial velocity Yo. For a more detailed description of the response of Duffing 

oscillators the reader is referred to [134]. 

The amplitude response therefore provides a taxing system with which to test the GP 

and tree-structured GP methods. Essentially the steady state amplitude can be seen as 

a function of the two initial conditions. But since the amplitude can only take on either 

the high value or low value, there will be bifurcations in the response. Examples of this 

are illustrated in the following section. In order to investigate response surfaces of varying 

complexity, several areas of parameter space were sampled, which will be referred to as 

cases 1-3. These are explained in the following pages. 

8.3.2 Results 

Cases 1 and 2 

Figure 8.4 shows a high-resolution amplitude plot of two of the parameter regions inves­

tigated, cases 1 and 2. This therefore represents the "true" solution. Case 1 was chosen 
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Figure 8.4: Case 2, single bifurcation (case 1 region illustrated) . Red= high, blue=low. 

to be the simplest possible response surface - an area where the ampli t ude is completely 

insensitive to parameter variations. As such , the sensitivity data and model fit s are not 

illustrated here since it is a trivial problem. Case 2 provides a more interesting test . Ex­

panding the range of init ial displacement reveals a region of high amplitude response and 

a bifurcation between the low amplitude (blue) and high-amplitude (red) regions. 

A set of 49 t raining points was drawn with a maximin L atin hypercube sampling strategy 

(see Section 2.1.3). This was then used to t rain both the GP and tree-structured GP 

models. Figure 8.5 shows surface plots of the fi t ted models and the training samples It 

is immediately clear that the tree-structured GP models the data in a much closer way to 

the real response. The GP, on the other hand , introduces a type of Gibb 's phenomenon in 

order to accommodate the steep bifurcation, because the GP 's roughness parameters are 

necessarily constant over the whole model. The bifurcation forces the roughness to be high 

in the direction of initial displacement , but this value is not suitable in the perfectly smooth 

regions on either side, causing undulations in areas of sparse training data. Conversely, 

the tree-structured GP can snap to the linear model in the high and low regions, and 

easily model the bifurcation with a two-leaf tree. Tha t the bifurcation does not appear 

perfectly vertical in Figure 8.5(b) is due only to the resolution of predictive points used 

to plot the surface. The MAP tree for the tree-structured GP is not illustrated here since 

it has only a single spli t at Yo = 0.00122 . 

Figure 8.6 shows a main effect plot of the input parameters for case 2. Both models capture 

the variation of the output wi th respect to each input quite well. The tree-sti-uctured GP, 

however , captures the liJ)earity of the high and low regions and the bifurcation with more 

accuracy. The main effect of initial velocity is virtually fla t in both models (since the 
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bifurcation is not exactly parallel to the velocity axis it would not be exp cted to be 

perfectly flat) but the GP appears to show a li ttle too much sensit ivity, which is reflected 

in the slight gradient in the velocity direction in Figure 8.5. 

Case 3 

Figure 8.7 illustrates the parameter space of case 3, which is an enlargement of th~ pa­

rameter space in case 2. This reveals several bifurcations, including one that is not per­

pendicular to either axis and also curved. This poses immediate problems for even the 

tree-structured GP, because divisions of input space must be made perpendicular to the 

axes . An initial LHS sample of 49 training points was used to train the model, but initial 

analyses suggested that more t raining data were needed to model the complex response. 

The sample was therefore increased to 100 t raining points, the resul ts of which are shown 

in Figure 8.8. 

As in case 2, the GP cannot fait hfully reproduce the response surface, introducing fluctua­

tions in the surface as a result of the several bifurcations. It is clear that a standard GP is 

not suitable for modelling t his kind of surface (which is a well established fact). The t ree­

structured GP, on the other hand, does a reasonable job. The bifurcations in the region 

of Yo = 0.005 are captured qui te well. However , the t ree-structured GP struggles with the 

curved bifurcation and t ries to fi t a linear surface in that region. This appears to be part ly 

due to a lack of t raining data in that area; Figure 8.9(a) (a plot of predictive uncertainty) 

shows that in t he lower right region there are few training points and subsequently the 
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Figure 8.7: Case 3: multiple bifurcations; case 2 region illustrated. Red= high, blue=low. 

predictive uncertainty is high. However, this serves to illustrate one of the advantages of 

GPs: despite a poor fit , the high uncertainty in prediction is recognised and can be used 

to suggest locations for further training data . The MAP tree is shown in Figure 8.9(b) 

with the six leaves (regions in 8.9( a)) as circled numbers and the variable splits shown at 

each branch. It is evident that a considerably more complex tree is required here than for 

case 2, and that ideally the tree should be even more complex than shown to more closely 

model the curved bifurcation. 

Model uncertainty is also reflected in the estimates of main effects and sensitivity indices. 

Figure 8.1O(a) shows the main effect plots of both models. The main effect lines agree to 

a large extent , though the tree-structured GP captures the large high-amplitude region 

more accurately. Figure 8.10(b) shows the 95% confidence intervals of the main effect 

plots. The uncertainty is markedly higher in the initial velocity line. This could be due to 

the region of high uncertainty discussed previously. Another effect of this is that although 

the Yo main effect has very small error in most regions, for the lowest values of Yo t he 

uncertainty increases substantially. 

Posterior estimates of sensitivity indices are sho~n in Figure 8.11 for both the standard 

and tree-structured GPs. The estimates are quite similar for the MEls, though perhaps 

the most notable difference is that the TSI of initial velocity is somewhat higher in the 

tree-structured GP model, suggesting more interaction variance between the two parame­

ters. This is again possibly a result of the poorly-fitted region in the tree-structured GP. 

Nevertheless the sensitivity indices are quite similar overall. 
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Figure 8.9: Case 3 (a) predictive uncertainty and tree divisions, training data marked 
as dots, predictive points marked as circles); (b) corresponding tree, Vl=initial veloc­
ity, V2=initial displacement ; circled numbers are leaf regions; "obs" denotes number of 
observations in that leaf; the remaining number is the MAP estimate of (12. 
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8.3.3 Discussion 

The ability of standard and tree-structured GPs to model a bifurcating system has been 

examined for simple and more complex regions. It is no surprise that a standard GP has 

some trouble modelling a bifurcation, because this forces the roughness hyperparameters 

to be high, which are then used over the full model, and are unsuitable in the perfectly flat 

high- and low-ampli tude regions. If the t raining data were sufficiently dense, however, t he 

GP would become increasingly accurate, though this removes one of the main attractions 
I 

of GP-based SA. Never theless, the Duffing oscillator was chosen to be a tough test , and 

in a great number of cases the GP is an excellent way of modelling a smooth r sponse 

surface. 

The tree-structured GP is rather better , but still has some shortcoming . In the case 

of a bifurcation that is parallel to a parameter axis, it can very accurately cap ture the 

bifurcation in a way that is beyond the abili ty of the standard GP. Furthermore, the 

computational cost of doing so is actually reduced. The LLM technique al 0 extends the 

flexibility of the model by recognising a linear surface, which allows the almost constant­

amplitude regions to be modelled very effectively, providing there is sufficient training data 

to invoke the LLM. However , the tree-structured GP has trouble in modelling bifurcations 

that are functions of more than one parameter (not parallel to any axis, or curved). In 

case 3 the tree-structured GP fails to capture the curved bifurcation result ing in areas of 

high error. In order to closely model the curved bifurcation, a very complex tree would 

be required , since partitioning can only be performed parallel to axes. Kim t al. [135J 

have indeed addressed this issue wi th the use of Voronoi tessellations, although these such 

divisions of input space could be regarded as overkill for simple bifurcations. 
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Figure 8.12: "Dust" region: initial conditions are displacement and forcing frequency. 
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Main effects and sensitivity indices can be readily gained from both models , which tend 

to agree to a large extent in the cases investigated. However, as a result of the over-fitting 

of the data by the standard GP from the presence of bifurcations, the sensitivity of the 

output to some parameters can be over-estimated slightly. In both cases however, there are 

very significant computational savings over Monte Carlo estimates. Both models provide 

a powerful framework from which to apply SA to complex models. 

As a point of interest , some other areas of parameter space were investigated that reveal 

very complex responses that illustrate the potential difficulty of emulating certain systems. 

Figure 8.12 shows the amplitude response where the initial displacement is varied along 

with the forcing frequency for a chosen range of values. There is no discernable pattern, 

other than the appearance of scattered dust. Indeed, the amplitude response shows strong 

indications of being fractal [134]. It should be remembered though that the Duffing os­

cillator is an extreme example with numerous bifurcations, which would perhaps not be 

expected in many systems. 

8.4 Conclusions 

This chapter has outlined an extension to the GP emulator used in previous chapters, 

that uses a classification and regression tree (CART) to divide the input space into non­

overlapping regions and fits separate GPs in each leaf (region) dictated by the tree. The 

construction of the tree has been presented, using a Bayesian approach that specifies a 

prior distribution over trees and parameters, and gives a posterior prediction based on 

training data. The use of Markov Chain Monte Carlo methods as a way of estimating 
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trees and parameters has been discussed. 

This "tree-structured GP" has been shown to be able to effectively model bifurcating 

data, whereas a single GP covering all input space has great difficulty, because it uses 

a single set of roughness parameters for all the data, which are forced to be very high 

due to the bifurcation. This introduces unwanted fluctuations in the posterior mean away 

from the bifurcation. In contrast, the tree-structured GP can model bifurcating data by 

positioning the leaf boundary at the point of bifurcation. The fact that the tree-structured 

GP can specify separate sets of hyperparameters for each region has further advantages: 

prior variance estimates between regions can be independent, allowing for heteroskedacity. 

Also the roughness coefficients can vary from region to region; indeed, one region may be 

modelled with a linear model and another with a GP. This also has impacts on small 

extrapolations outside of the data range - the tree-structured GP will follow the local 

trend outside of range of training data, whereas the single GP will necessarily snap back to 

a global trend, which is likely to be a poorer estimate. Finally, because the tree-structured 

GP inverts a number of smaller covariance matrices in training itself to the data, it actually 

comes with a reduction of computational expense over the single GP. 

The main limitation of the tree-structured GP, however, is that splits in the input space 

are necessarily functions of a single variable and are therefore always parallel to axes. An 

example of a curved bifurcation in the Duffing oscillator case study here showed that the 

tree-structured GP has great trouble in modelling anything but axis-aligned bifurcations, 

requiring overly-complicated trees to describe such data. However, the tree-structured GP 

naturally includes variance estimates and techniques such as cross-validation can be used 

to identify poor model fits. 
I 

The following chapter investigates the use of tree-structured GPs on a bifurcating FE 

model. 
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Chapter 9 

Emulating a Bifurcating System 

Given the indications of possible model bifurcations in the aortic valve (AV) model in 

Chapter 5, a method for performing uncertainty and sensitivity analyses on bifurcating 

systems, based on tree-structured Gaussian processes (GPs), has been outlined in Chapter 

8. The method has been shown to be more effective than using a single GP since it can 

handle discontinuities at leaf boundaries. Furthermore it actually reduces computational 

expense. 

The tree-structured GP emulator will now be applied to a case study of a rigid-stent pros­

thetic AV. The AV model in Chapter 5 has been shown to have very nonlinear responses 

with respect to sinus/aorta material properties, which is to say that leaflet opening is 

highly dependent on the constraints imposed on the leaflet boundaries. Taking this to the 

extreme here, the leaflet boundaries are constrained in all degrees of freedom, which is the 
r 

case of a conventional "rigid-stent" bioprosthetic valve. The response of this kind of model 

is expected to result in bifurcations since it is an example of a buckling or snap-through 

problem. 

The rigid-stent model will be used to test the emulators outlined in Chapters 3 and 8. 

The effect of reducing training data is also briefly investigated in Section 9.2.3. 

9.1 Dry Leaflet Model 

The model used here simulates a rigid-stent prosthetic AV. The model is based on the 

"wet model" configuration from Chapter 4. It incorporates the soft tissue material model 

and simulates half of the leaflet, with assumptions of symmetry across the leaflet and 

cyclic symmetry around the valve. In contrast to the original wet model, th~ loading on 

the leaflet is due only to pressure (rather than Eulerian fluid elements) to simplify the 

analysis and the sinus has been removed since this is now treated as rigid. The points of 

the leaflet that were formerly connected to the sinus are now constrained in all degrees of 

167 
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Figure 9.1: An illustration of the mesh of the dry I afiet mod l. Constrained nodes are 
marked with arrows. 

fre dom, simulating the attachment of the leaflet to a rigid stent , as used in many porcine 

bioprosthetic devices. Figure 9.1 illustra tes the layout of the model. 

Sin e th 1 afiet is an exampl of a buckling or snap-through problem, bifurcations were 

expected to occur as a re ult of varying th loading on the structur , and potenti ally the 

material properti s of the leaflet. To k ep the analysis relatively simple, two parameters 

wer pi ked to vary - the pressure exerted on the leaflet, and th post-transition modulus 

of the soft tissue material model (see Section 4.3.2). The range of pressure was deliberately 

made wider than is necessarily realistic in the human body in the interests of capturing a 

bifurcation in the response; the realistic range can be considered as a subset of the range 

present d here. 

100 points were used to train the emulators, using the usual maximin LHS strategy. This 

is a large amount of data for two dimensions, so the ffect of reducing the number of 

training points is inv stigated in Section 9.2.3 as a matter of interest . 

9. 2 Results 

9. 2.1 Raw Data 

Figure 9.2 shows th mov ment of the leaflet over 12ms for a mid-range pressur load. This 

represents the movement of the leaflet for any area of parameter space where it reverses 

its curvature (Le. the valve opens). It is clear that the movement of the leaflet is nonlinear 

over time, since at the point of reversal-of-curvature (ROC) the leaflet accelerates towards 
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Figure 9.2: The opening of the "rigid-stent" leaflet over 12ms (top view). 
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its reversed state. This is illustrated in more detail in Figure 9.3 (a), which shows that 

the initial application of pressure is not sufficient to displace the leaflet by anything but a 

very small amount (i.e. in the first 5ms of the graph). However, when the leaflet reaches a 

critical pressure the displacement very quickly increases to the point where the leaflet has 

reversed its curvature. There are then oscillations due to the lack of damping in the model, 

although these do not affect the results to a significant degree. The critical pressure occurs 

at different times depending on the pressure scaling factor used for that run of the model 

(remember that the pressure is ramped over the 20ms from zero to the value dictated by 

the scale factor) For the lowest pressure values the valve does not open at all. 

Examining a raw data plot of the maximum leaflet displacement against pressure (Figure 

9.3 (b)), one thing that is immediately evident is that the material parameter (post­

transition modulus) does not seem to be affecting the output in any way, since there is 

no scatter to the data in this plot. Instead, there is a very clear nonlinear relationship 

with pressure. Displacement increases in a kind of exponential fashion with pressure, 

representing the diminishing resistance of the leaflet as it reaches the ROC point. At a 

pressure factor of around 0.5 the pressure is sufficient to completely reverse the leaflet 

and any further displacement is due to stretching of the leaflet, which is roughly linear 

with increased pressure. This response does not constitute a bifurcation, but will be an 

interesting test of the GP given the abrupt changes in smoothness. 

Turning to the variation of stress yields some very interesting response plots. History plots 

of commissure stress are shown in Figure 9.4(a). There is a very sharp peak in stress that 

occurs at the point where the leaflet reverses its curvature (the earliest of these is at about 

O.Ols). This peak does not occur if the leaflet does not reverse its curvature, and since 

ROC occurs for a very small change in pressure, the response of maximum stress actually 

results in a bifurcation. Figure 9.4(b) shows this trend: at a pressure factor of around 0.5 

there is a clear bifurcation at the point where pressure is just enough to open the valve. 

The stress responses in other areas also produce bifurcations, however, the response of 

commissure stress is the clearest. This and the displacement response will now be used to 

train emulators for both the standard and tree-structured GPs. 

9.2.2 Fitting Emulators 

The displacement and stress responses are now used to train the GP and tree-structured 

GP emulators. The intention here is to examine the ability of both emulators to model 

bifurcating data from an FE model. Beginning with the clearest bifurcation, that of 

the commissure stress, Figure 9.5 shows the fitted emulator means from both the tree­

structured and standard GPs with the training data overlayed. The difference in quality 

of fit is immediately evident: similar to the Duffing oscillator response in Chapter 8, the 

standard GP is constrained by the necessity of assigning the same length-scales (roughness 
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Figure 9.3: Radial leaflet displacement: (a) history plot for all runs (colou~s represent 
pressure values); (b) scatter plot of maximum leaflet displacement against pressure. 
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Figure 9.4: Stress in commissure region: (a) history plot for all runs (colours represent 
pressure values); (b) scatter plot of maximum stress against pressure. 
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Figure 9.5: Posterior mean of maximum stress in commissure region with training data 
overlayed (dots): (a) GP; (b) n 'ee-structured GP (split at scale factor = 0.467) . 
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Figure 9.6: 2D view of tree-structured GP fit to commissure stress data. Confidence 
intervals and leaf boundary shown. 

parameters) to all of the input space. As a result , it introduces oscillations close to the 

bifurcation that should not exist . Note that this is also with 100 data points for a two­

dimensional input space, which might be considered a dense training set for a GP, if 

bifurcations were not known to exist. 

Turning now to the tree-structured GP (Figure 9.5(b)) , the fit is considerably better. The 

MAP tree here uses a single split at a pressure scale factor of 0.467, which means the 

bifurcation is followed with much greater accuracy, since it occurs at the leaf boundary. 

The linear region above this value is assigned a limiting linear model (LLM) , which is 

appropriate given the very linear training data. Below the bifurcation the data is assigned 

a GP, which can easily follow the nonlinearities in this region. Figure 9.6 shows the 

same plot but viewing only variation with pressure. Here the 5% and 95% quantiles are 

shown, which correspond to roughly two standard deviations either side of the mean. The 

confidence intervals are very narrow, particularly in the GP area. On the right side of the 

bifurcation the confidence intervals are somewhat wider, and of a constant width due to 

the LLM that has been fitted , which assigns a constant posterior variance to all points. 

Overall it must be said that the t ree-structured GP provides a very marked improvement 

over the st andard GP, all the more given that the bifurcation is parallel to an axis, which 

is very easy for the tree to deal with. 

Figure 9.6 raises a further possible advantage of the t ree-structured GP, which is in the 

context of extrapolation. For predictive points outside of the range of the t raining data , 

both the tree-structured and standard GPs will tend to veer back to their prior means, 

which are linear regression fits through the training data. In the case of the standard GP 
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this regression fit is taken over the whole set of training data. Taking the data in Figure 

9.5 as an example, it is clear that if a flat surface is fitted to all the data, it not going to 

be particularly close to any of the training points. Since the GP will necessarily revert 

to this prior mean outside of the range of training data, even for predictive points that 

are a small distance away from the training data it will provide predictive estimates that 

are not intuitively realistic. On the other hand, the tree-structured GP can take different 

prior means for different leaves of the tree. For example, in the linear region to the right 

of the bifurcation, predictions at higher pressures will follow the linear trend of that leaf, 

and not revert to a global prior mean (as in the case of the GP), therefore following the 

local trend rather than the global trend. Although extrapolation of data should be treated 

with caution, the tree-structured GP should produce predictive estimates that are more 

in line with intuition than the standard GP, particularly when a LLM is used. 

Examining now the emulators' fits of the leaflet displacement data, the story is similar. 

Figure 9.7(a) shows the posterior mean of the GP. Here the fit is quite good but again 

there are undulations in the emulator fit that are not justified by the data, for the same 

reasons outlined before. Since there is no real bifurcation here, the GP still provides an 

acceptable fit however. The tree-structured GP in Figure 9.7(b) is marginally better -

in particular the abrupt change in gradient is captured much more faithfully. 

9.2.3 Reduced Training Data 

Given that 100 training data points is quite a substantial number for a GP and tree­

structured GP, it is interesting to briefly investigate the effect of "starving" the emulators 

of data. Figure 9.8 shows the effect of successively reducing the training data set 'by 

removing random data points for the tree-structured GP trained on the stress data. At 

60 points the fit of the emulator is not significantly changed, however at 31 data points 

the fit is considerably worsened. The details of the response below the bifurcation are 

lost and the confidence intervals are increased, reflecting the increased uncertainty about 

predictive points. Despite this, the location of the bifurcation is still correctly identified. 

When the training data is again reduced, to 17 points, the fit becomes poor. The bifur­

cation is now not identified and the data is modelled by a single GP, since there is not 

enough data to identify the higher-pressure region as being linear. The error plot in Figure 

9.8(f) shows that the highest magnitude of error is no longer at the bifurcation, but in the 

linear region. The implication of this is that the tree-structGred GP is able to emulate 

a bifurcating system, but only when there is sufficient training data to invoke a division 

in input space. This is unsurprising, but it is particularly crucial to have enQugh data in 

the vicinity of the bifurcation, since a bifurcation may look like a smooth increase when 

training data is scarce, which can be modelled more simply by a single GP. It is possible 

that adjusting parameters in the tree prior may have some improvement on the fit if a 
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Figure 9.7: Posterior mean of maximum leaflet displacement with training data overlayed 
(dots): (a) GP; (b) Tree-structured GP. 
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bifurcation is suspected, but more data is always preferable. 

9.3 Conclusions 

A simple FE model ba.-.;ed on the aortic valve model from Chapter 4 has been presented 

here. The model simulates a leaflet in a rigid-stent prosthetic valve, where the leaflet 

boundaries are fixed in all degrees of freedom. The opening of the leaflet is therefore 

achieved by snapping through the reversal-of-curvature point, which creates bifurcations 

in certain responses. 

The displacement and stress values were sampled for a range of pressure and leaflet mate­

rial property values. It was found that clear bifurcations in maximum stress resulted from 

the variations in pressure, as well as abrupt changes in displacement. The data were used 

to train both the tree-structured and "standard" GPs - it was found that, as expected, 

the tree-structured GP is able to capture bifurcations and variations in smoothness over 

the response. The GP, on the other hand, is forced to use high values of roughness parame­

ters due to the bifurcation, which introduces unwanted undulations in the much smoother 

regions. However, if high values of roughness parameters are noticed when training a 

GP, this may be used as a indicator that the GP is not correctly emulating the data. 

Cross-validation may also be used to further investigate the emulator fit. 

In order to observe the effect of reducing the number of training data, the data set was 

successively reduced. It was found, as expected, that the quality of fit worsened. In 

particular, for small training data sets the bifurcation may not be identified at all. There 

is a need not only to have sufficient data overall, but particularly to have sufficient data 

in the vicinity of a bifurcation, if it exists. This could perhaps be achieved by an adaptive 

sampling procedure. 

Finally it is noted that a further. advantage of the tree-structured GP is that it may 

perform better in extrapolation. Since the tree-structured GP will revert to its local prior 

distribution outside of the range of training data, it is likely to produce better predictive 

estimates in extrapolation than a single GP, which will revert to the global prior (which 

may often be markedly different to local trends). 



Chapter 10 

Conclusions and Further Work 

This thesis has focused on the problem of propagating uncertainty through large nonlinear 

models. It has been stated that the main problem with uncertainty analysis is that the 

computational expense is often prohibitive. This has given rise to a number of emulator­

based approaches, where a much simpler and faster emulator is used to describe the 

response of the model in the presence of uncertainty in the inputs. Such emulators may 

also readily be used for sensitivity analysis and other applications in computer science. A 

great number of flexible emulators exist, but many are untested outside of mathematical 

journals and are unknown to engineering. One aim of this thesis has been to introduce 

new techniques to structural dynamics and engineering. 

Two particular emulators have been described in some detail and used on several case 

studies. The first is a Gaussian process (GP), which is a very flexible probabilistic emu­

lator, capable of emulating very nonlinear models with sparse training data. The sec~lld 
emulator is an extension, or generalisation, of the first, which uses a decision tree to split 

the input space into a number of regions, each of which is assigned a separate GP. This 

second emulator was investigated as a possible way of performing uncertainty analysis on 

bifurcating data, motivated by observations on a model of the aortic valve. 

In concurrence with the thesis objectives presented in Section 1.4, conclusions are presented 

here: first from the perspective of the uncertainty analysis techniques used; and second, 

regarding findings specific to the case studies investigated. 

10.1 Emulator-based Uncertainty Analysis 

Emulators have been shown to be a powerful method of performing uncerta,inty analysis 

and sensitivity analysis for a reasonable computational cost. Some specific conclusions 

are: 

• GPs have been shown to be an excellent way of emulating nonlinear computer mod-

179 
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els, since they are efficient, analytically tractable, and give an account of predictive 

uncertainty by variance estimates at unknown points. The GP can give analytical 

estimates of all the widely-used global sensitivity measures. For the majority of 

computer models therefore, GPs are a very good choice when compared to other 

emulators in the literature . 

• A limitation of GPs is that they necessarily assume a smooth response. In the case 

of bifurcating data the GP has been shown to be insufficient, since it uses constant 

roughness parameters across the full range of input space, which results in a poor 

fit because the data is very "rough" at the bifurcation, whereas it is much smoother 

away from it. The GP cannot make this distinction . 

• The tree-structured GP has been shown to be capable of estimating all the uncer­

tainty and sensitivity measures that are estimated by the single GP, whilst offering 

several additional advantages, which are listed here: 

1. Difurcations can be modelled by positioning divisions of input space at the point 

of bifurcation. The tree-structured GP has been shown to correctly identify 

points of bifurcation on two case studies, although it is noted that a sufficient 

density of training data is necessary to invoke a split. 

2. Different hyperparameters can be used for each region. This allows the mod­

elling of data with a non-constant variance, as well as assigning smooth (or 

even linear) trends to a certain region, while other regions are allowed to vary 

rapidly. A further impact is that prior means are assigned that better reflect 

local trends, so small extrapolations are likely to be more accurate. 

3. Since the tree-structured GP inverts a number of smaller covariance matrices 

rather than a single large one (in the case of a single GP), the computational 

expense of training is actually reduced, although there is some trade-off due to 

the necessity of numerical integration to estimate hyperparameters . 

• One main limitation of the tree-structured GP is that it only allows axis-aligned 

data splits. When a bifurcation exists that is not parallel to an axis, the GP has to 

use an overly-complicated tree to describe the data. The problem is compounded 

in the case of a curved bifurcation. Tree-structured GPs are therefore inherently 

unsuitable for modelling these types of bifurcations . 

• Both emulators can however identify their own uncertainty about the data fit through 

estimations of variance. Areas of high predictive uncertainty can therefore be iden­

tified and more data added to these regions if necessary. Cross validation can also 

be used to measure the fit of the emulator. I 
I 
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10.2 Practical Observations 

Even with the use of sophisticated emulators such as those mentioned, the main limitation 

on propagating uncertainty is computational expense. There are also a number of practical 

difficulties that arise. The following are observations and suggestions from the author, 

based on experience from practical implementation of uncertainty analysis: 

1. The first difficulty likely to be encountered is the quantification of uncertainty. Quite 

often there is simply not enough data to reliably characterise probability distribu­

tions. The assertion of many mathematicians that probability distributions can be 

elicited from "expert knowledge" is often, in the experience of the author, somewhat 

optimistic. When determining hyperelastic coefficients or Prony series parameters, 

information about distributions is usually scarce and assumptions must be made. 

This could be tackled by investigating ways of propagating more vague uncertainty 

theories, such as evidence theory or possibility theory, through large systems. A 

formal investigation into the uncertainty induced by selection of probability disb'i­

butions could be useful, or the use of hierarchical models for modelling parameter 

uncertainty. 

2. A great deal of computational expense can be saved by simplifying the model itself. 

This may seem obvious, but is often overlooked. As an example, an early version 

of the "wet" heart valve model in Chapter 4 required over 24 hours of simulation 

time. After including assumptions of symmetry, cyclic symmetry, shaping the fluid 

mesh to only include elements where absolutely necessary, and running the mddel 

only over a necessary 20ms, the simulation time was reduced to around 1 hour. This 

should always be the the first port of call when looking to reduce computational 

expense in uncertainty analysis. 

3. A practical difficulty is that building a complex model that is stable over the full 

range of parameter space can be quite difficult. While a nonlinear model may be 

easy to solve at nominal parameter values, it can fail to solve in extremes of param­

eter space, or (perhaps worse) return unrealistic results, which can severely taint 

measures of uncertainty and sensitivity. Improving the stability of models has in 

fact been one of the most time-consuming parts of the work here for the author, imd 

should be accounted for. 

4. In order to lower computational expense, the number of input variables should be 

kept to a minimum. Screening can help to identify parameters that are not influential 

- even a simple global sensitivity analysis could be a worthwhile investment before 

running a much more thorough analysis on the few important parameters. 

5. A further difficulty is that, considering that all the emulators here only consider 
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univariate outputs, it can often be difficult to find a meaningful univariate output to 

a complex model. This problem was illustrated in both the heart valve and airship 

models, where oscillations in model outputs made the determination of a single value 

difficult. Section 10.4 suggests some possible further work based on this. 

6. Sensitivity analysis can be used to identify errors in a model. Experience has shown 

that when variation in a model's output is not explained to much extent by main 

effects of parameters, or low-order interactions, this can suggest that the model is not 

functioning correctly. If high interaction variances are noted, it is worth manually 

checking that the model is behaving as expected before drawing any conclusions. 

10.3 Heart Valves and Airships 

Uncertainty and sensitivity analysis on the heart valve and airship models suggests several 

concI uHions: 

• The uncertainty in biomechanical models is very substantial, but the awareness of 

uncertainty analysis in biomechanical modelling is quite low. Through the heart 

valve model it was extrapolated that biomechanical models in general will benefit 

greatly from a formal quantification of uncertainty . 

• In both models, sensitivity analysis was shown to be a powerful tool for investigating 

the interactions and mechanisms at work in a large FE model. Trends can noticed 

that might not be evident from a single run at nominal parameter values. Some 

instances of these were: 

- The stiffness of the sinus and aorta is instrumental in determining stress and 

displacement in the heart valve. In particular, it is noted that an optimum 

stiffness of aorta is desirable, that prevents buckling but does not transfer tensile 

load to the leaflet. 

- Although the material properties of the airship frame were not found to vary sig­

nificantly with temperature, the stress in the frame did vary substantially with 

temperature, as a result of loads transfeFred to the frame by the temperature­

dependent balloons. 

10.4 Further Work 

The work here has ·several obvious future directions. From the emulation point of view, the 

tree-structured GP could potentially be improved by using a data division method that 

allows more general types of splits that are a function of two variables or more. Voronoi 
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tessellations have been used to this end [135J - this method could potentially be adapted 

for use in uncertainty analysis and sensitivity analysis using a numerical integration ap­

proach. In the case where Voronoi tessellations may be too complex to describe the data, 

it is even conceivable to use the RJ-MCMC algorithm to explore between tree-structured 

GPs and tessellated GPs, finally selecting the most probable one. Another approach might 

be to use Bayesian mixture models of multiple GPs. 

Another issue that could be addressed is to implement adaptive sampling into the process 

of uncertainty analysis. The choice of the number and location of training data required 

to accurately emulate a model is usually far from obvious. It would be extremely useful 

to sample the model on a step-by-step basis, where each new data point is chosen to 

optimise some criteria, such as a reduction in predictive variance. It would not be difficult 

to program such an algorithm to alter input decks for FE software, so that the program 

can be left to run successive simulations until it has built an emulator to a sufficient 

accuracy. In the case of the tree-structured GP this would allow a clustering of data in 

the neighbourhood of bifurcations, ensuring that bifurcations are captured as accurately 

as possible. 

A concern that has not been fully addressed is that of model validation, since it was 

decided that this aspect was outside the remit of this thesis. When the output of a 

model is uncertain, it is hard to validate it against test data. Possible ways of doing 

this could include comparison of output moments, such as means and variances. A more 

thorough way might even be to compare sensitivities to certain model parameters, if 

sufficient validation data are available. 

Finally, since all the models investigated here have been time-dependent, and the emulators 

consider only univariate outputs, it has been noted that it can be very difficult to find a 

single value for each model run that meaningfully describes a time-varying system. Some 

very recent work has been performed to address this issue by Conti et al. using an iterative 

approach [136, 137], as well as multivariate emulation by Urban and Fricker [138J - it 

might be fruitful to investigate this work in the context of engineering. 
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Appendix B 

Practical Aspects of Bayesian 

Uncertainty Analysis 

The following demonstrates the practical steps involved in calculating uncertainty and 

sensitivity qua~tities with the Bayesian method outlined in Chapter 3. The first "dry" 

aortic valve (AV) model will be used throughout as an example - see Sections 4.3.1,5.1.1 

and 5.2.2 for the model description, input uncertainties and results respectively. 

Model Preparation and Training Data 

1. The first task is to select the d input parameters to vary - these must be univariate 

and independence must. be assumed. They are denoted here as random variables 
I 

Xi, 

(0.1) 

In the heart valve model example, 8 univariate inputs were selected, compnsmg 

material, loading and geometric parameters (see Table 5.1). From a practical point 

of view, these need to be parameters that can be varied easily in the input file to the 

solver used. For example, LS-Dyna uses an ASCII input file, where the parameters 

chosen are specified as numerical values. Therefore it is simple to use a controlling 

program (LS-Opt in this case) to edit these parameter values for each new run. 

2. Next, distributions must be assigned to the input parameters. Elicitation of distribu­

tions will not be dealt with here, but uniform distributions may be appropriate if only 

upper and lower limits are available on parameters. If more data is available, or the 

parameter is thought to be normally-distributed, means and variances, may be speci­

fied. In the case of the AV model, normal distributions were a.I.Jsigned, so that means 

and standard deviations can be expressed as d-Iength vectors I' = (J-Ll, ... , J-Ld)T and 

U = (O"l, ... ,O"d)T, indexed by the dimension or variable index i. In the case of the 

197 
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A V model, these vectors will be, 

JL = (2.45,1.3,2.05,0.35,1,12.7,31, 6f 

u - (0.8,0.325,0.65,0.0085,0.25,0.675,3, 2)T 

For example, X2 here refers to the variable Ts, with mean J.L2 = 1.3 and standard 

deviation (J2 = 0.325 (see again Table 5.1). 

3. A sampling strategy must now be used to collect a set of n training data points 

(note that the inputs X together form a matrix because each input point is a d­

dimensional vector): 

(B.2) 

The LHS design for the AV model is printed at the end of this appendix chapter 

- in this case 250 points were investigated, although one run waS discarded as an 

non-convergent, therefore n = 249. The maximin Latin Hypercube approach has 

been found to work well, but is by no means the only choice - see Section 2.1.3. 

Note that it is convenient to consider each sample Xj as a point in 8-dimensional 

input space. Running these input parameter values through the model n times 

results in n model realisations. It is necessary to pick an output to consider - here 

the maximum displacement will be considered. This yields an n-Iength vector of 

training data outputs (maximum displacements in this case), 

(B.3) 

Again, the AV output vector is printed at the end of this appendix chapter. Note 

that the univariate output means that the GP here is being constructed to predict 

displacement only. Separate emulators must be built for other outputs. 

4. Finally, the roughness matrix B in the covariance function (Equation 3.5) must be 

estimated from the data. The likelihood function of B is found in Equation 3.43, 

and is restated here as, 

(B.4) 

In order to estimate B it is necessary to maximise this function with respect to the 

diagonal elements {bi}f=l of B, according to the principle of maximum likelihood 

estimation. Note that the terms here ultimately only involve the training data and 

the roughness parameters (see below for a fuller description). This means that this 

can essentially be regarded as a function of b = trb, i.e. f((b)) where b = (bl' ... bdf. 
This function has a maximum, which can be found by numerically searching through 

the space of b using, for example, a simplex search algorithm - see [139J. Typically 

it is more convenient to maximise the logarithm of this equation due to the very 

small numbers that can be involved. In the case of the AV model the vector of 
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roughness parameters was as follows (i.e. these are the values of B which produce 

the maximum value of B.4), 

tr(B) = (2.66,0.187,2.17,0.276,0.087,1.010,2.67, 2.99f (B.5) 

Calculating Posterior Means and Variances 

The equations for the posterior mean and variance are restated here from Equations 3.47 

and 3.51 respectively: 

E* {E(YIx,.)} = <P1·(x,.)T w + tr(x,.f e (B.G) 

cov* {E(YIx,.), E(YI~J} = 0-
2 L-r L_p C**(X, 3!)dP(x_p)dP(x_r) 

-2 [Ur,p(x,.,~) - t,.(x,.)A-ltp(Xp)T + J 
= a (B.7) 

{rr(x,.) - t,.(xr)A-1<I>} Ew {rp(xp) - tp(Xp)A-l<I>} T 

Starting with Equation E.6, the posterior mean, note that apart from the two integrals, 

this equation consists of the estimate of the vector of weights W, and a further term e. 

These are restated here, from Equations 3.18 and 3.50 respectively, 

(B.8) 

(E.9) 

Of the terms in these equations, yT is the vector of training data outputs, which is 

available. <J> is restated as, 

where, in the case that ¢(x)T = (1, x), <J> can be constructed from X, i.e. 

<J>= 
1 X12 X22 

(B.lO) 

where Xij refers to the i th dimension (equivalently the i th uncertain input) of the j th 

training point. The specific <J> of the AV example is not provided here, since it is very large. 

The only remaining term is A, which is a matrix formed by calculating t~e covariances 

between all permutations of input points using the covariance function from Equation 3.5, 
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giving the matrix, 

1 C(XI' X2) 

A= 
C(X2, Xl) 1 

1 

In the case of the AV model this is a 249 x 249 matrix, therefore it is not explicitly 

presented here. Finally, the integrals cPr and tr result in vectors which are derived in 

Section 3.2.1 (Equations 3.56 and 3.58 respectively). cPr is a (d+ I)-length (Le. of length 

9 for the example here) column vector which is dependent on X r • For example, to calculate 

the posterior expected value of Y, r is set to the empty set, leaving, 

(B.ll) 

where the Pi are the means corresponding to the distributions of the uncertain inputs 

Xi. The result for tr will not be restated here, since it is more complex, but a glance 

at Equation 3.58 reveals that it is only dependent on the means and variances of the Xi, 

as well as the roughness parameters bi and the training input matrix X. Since tr is of 

length n, in the case of the AV model this resulted in a 249-length column vector. The 

posterior expected value may now be calculated from Equation B.6 using the terms stated 

here. 

Considering now the variance, note that Equation B.7 has essentially all the same terms, 

with the addition of the integral U. Since to get the posterior variance we again set 

r = p = 0, none of these terms are a function of x; all of the terms in this expression 

have been explicitly stated here, with the exception of U. The result is however given in 

Equation 3.104, and it can be seen that it is only a function of roughness parameters and 

parameter variances, resulting in a single scalar quantity. 

Calculating Sensitivities 

In order to plot main effects, Equation B.6 is again used, but setting Xr = Xi, where Xi 

is the input variable of interest. Note that this changes cPr and tr slightly - now, they 

are functions of Xi. Therefore, in order to plot the main effect of Xi, E* {E(YIXi)} is 

calculated at a range of values over the support of Xi and plotted. The posterior pointwise 

variance is similarly calculated by setting Xr = xp = Xi in Equation B. 7. 

For the sensitivity indices Sr, the calculations are somewhat more complex (see Section 

3.2.2). The estimates are calculated by taking Equation 3.63 and dividing by the posterior 



201 

variance of Y (already presented above as a special case of Equation B. 7) , 

E* [Er {E_r(YIXr) 2}] - E* (Er (y)2) 
E* {var(Y)} 

(B.12) 

To consider the sensitivity index of a single input Xi, simply set T = i as usual. Note 

that since the estimate of Si is based on the GP, which has a probabilistic output, it 

is itself a random vari able. The quantity presented here is the expected value of Si . 

Calculating the variance of Si is not possible without numerical integration. The t rms 

in the numerator of Equation B.12 (the denominator has been discussed) are presented 

III Equations 3.64 and 3.67. Although they may seem a little daunting, they are simply 

complex combinations of the terms already presented here, as well as the matrices P , 

Q and S, the results of which are presented in Section 3.2.3 (these matrices are of sizes 

n x n, (d+ 1) x (d + 1) and (d + 1) x n respectively). It is not propos d to construct the 

matrices here, since the process is lengthy and would take an enormous amount of space, 

but it should be noted that all of the terms heTe ultimately only depend on the training 

data, and the means and vaTiances specifi ed for the inputs. This is on of the strengths of 

the GP approach - although the construction of these terms is time-consuming, they can 

be reused for any model. 

Input matrix X T 

The input matrix is presented here in order to illustrate the process. This is a 249 x 

8 matrix, where one sample point has been removed as an outlier. Column headings 

represent the inputs {Xd~=l' 

Es Ts El Tl Te Rb Phi Fltrad 
2.21686750+006 1 .28600000-003 1 .60361450 +006 2 . 22000000-004 1.1 3100000 - 003 1 .26880000-002 2.52891570+001 2.25702800+000 

9.879518 10+005 1 .80800000-003 3.92168670+006 3.45000000-004 6 . 65000000 -004 1. 33490000-002 2.85662650+001 7. 17269100+000 

4.45783130+006 1 .32200000-003 2.05783130+006 3.73000000-004 6.69000000-004 1. 39670000-002 2 . 97228920+001 3. 51004000+000 

4.53012050+006 1. 47300000-003 3.63976900+006 2.39000000-004 1. 3 1100000-003 1. 27860000-002 2.90000000+001 9.58232900+000 

1. 92771 080+006 1 . 15000000-003 2.85662650+006 1 .00000000-004 1.4120000.-003 1 . 14300000-002 3 . 05903610+001 3 . 73494000+000 

3.44578310+006 1 . 90700000-003 2.60602410+006 2.55000000-004 1 . 1590000.-003 1 .32300000-002 3 .26626510+001 7.94377500+000 

1 . 71084340+006 1 .52600000-003 1 . 00000000+005 1 . 14000000-004 1 . 19100000-003 1.14190000-002 3 . 57469880+001 4.79518100+000 

2.43373490+006 1 . 72400000-003 1 .38433730+006 1. 42000000-004 7 .37000000-004 1 . 3436000.-002 2.87590360+001 7 . 8 1526100+000 

1 .60240960+006 1 .09800000-003 3.9530120.+006 2.83000000-004 1 . 22300000 - 003 1 . 1723000.-002 3.5265060.+001 7.26907600+000 

2.59638550+006 2.09500000-003 2. 4 1807 230+006 1 .62000000-004 7 . 77000000 -004 1 . 14410000-002 3.23253010+001 9 . 90361400+000 

9.33734940+005 1 .36900000-003 2.82530120+006 4. 19000000-004 1 .29500000-003 1 .25900000-002 3.56506020+001 7.78313300+000 

4. 20481930+006 9.83000000-004 1 .854 21690+006 3 . 47000000-004 1 .2070000.-003 1. 3501000.-002 2. 77951810+001 3.6064260.+000 

4 . 4216867. +006 8.3100000.- 004 1 .3216867. +006 2.33000000 - 004 1 .45600000-003 1.14520000-002 3.32409640+001 7 . 04417700+000 

6.80722890+005 1. 80200000-003 8.36144580+005 5.08000000-004 1 .38800000-003 1 .2113000.- 00 2 3.43975900+001 6. 0160640. +000 

3.3554217. +006 1 .0240000.-003 3 .20120480+006 4.31000000-004 7 .0500000.-004 1. 2764000.-002 3.38192770+001 2. 16064300+000 

4. 34939760+006 1 .20200000-003 3.31084340+006 3 .93000000-004 1. 0260000. - 003 1 .34040000-002 3. 08313250+001 7 .558233'00+000 

1. 87349400+006 1. 89100000-003 6 .1 6867470+005 5 .30000000-004 1. 31900000- 003 1 .36960000-002 3.02530120+001 2.28915700+000 

3 . 96987950+006 8 . 26000000 -004 4.44578310+005 2.3700000.-004 5 . 57000000 - 004 1 . 36420000-002 2.98192770+001 9.45381500+000 

3 . 04819280+006 1. 08200000-003 2.5277108.+006 2.97000000-004 1 . 1180000.-003 1. 3447000.-002 3 . 51204820+001 2.93172700+000 

4.8373494.+006 1 . 24900000-003 1 . 16506020+006 2.6500000.-004 9.54000000-004 1. 2612000.-002 2.6783 1331+001 6. 78714900+000 

2.27108430+006 1.58800000-003 3 . 09156630+006 5. 74000000-004 5.40000000-004 1. 20700001-002 2.5674699.+001 2. 12851400+000 

4.80120480+006 2.07900000-003 9.3012048.+005 3.67000000-004 1 .07000000-003 1. 3295000.-002 2. 7265060.+001 5 . 72690800+000 

4. 74698800+006 1 .3850000.-003 1. 36867470+006 3 .39000000-004 6.04000000-004 1 . 2363000.-002 3.55542178+001 2 . 3534 1400+000 

4.22289 16.+006 2.05300000-003 1 .83855420+006 3.37000000-004 8. 13000000-004 1. 38160000-002 3 .1168675 .. +001 7.8795180.+000 

4.4397590.+006 2 . 05800000-003 2. 1518072.+006 5 .12000000-004 1 .3270000.-003 1 .34250000-002 3.01084348+001 4 .05622500+000 

5.00000000+006 1. 54700000-003 1. 80722890+006 1 .64000000-004 1 . 19500000 -003 1 .30890000-002 2.81807231+001 5 . 40562201+000 

1.89156630+006 1 .2750000.-003 3.38915660+006 5.66000000-004 1 .32300000-003 1. 38810008-002 3 . 47831330+001 2 . 67469908+000 

4.49397590+006 1 .04000000-Q03 3.97590360+005 2.29000000-004 1. 2 1100000-003 1 .20270000-002 2.88072290+001 3.76706800+000 

4 . 09638550+006 1. 91200000-003 3. 13855420+006 2. 10000001-004 8.57000000-004 1. 21350000-002 3. 179518 1a+001 9.67871500+000 

1 .006024 10+006 1. 42100000-003 2 . 73132530+006 5.62000000-004 5 . 80000000 - 004 1. 25010000-002 3 . 13614460+001 6.4979920.+000 

2 .79518070+006 1 .03000000-003 3 .67108430+006 5 .86000000-004 1 .00600000-003 1 .23080000-002 3.32891570+001 9.77510000+000 

1 . 20481930+006 1 . 13400000-003 3 . 24819280+006 2.73000000-004 9.02000000-004 1. 337 10000-002 3.39156630+001 9.06827300+000 



3 .89759040+006 1. 98500000 - 003 1. 96385540+006 4 . 41000000- 004 9 . 70000000-004 1. 37180000-002 2.70722890+001 3 . 47791200+000 
4 . 33132530+006 9 . 98000000- 004 3 . 57710840 +006 5.68000000- 004 1. 20300000-003 1. 28720000-002 3. 15542 170+001 3.67068300+000 
8 . 79518070+005 1. 25900000- 003 3 . 26385540+006 4 . 17000000- 004 8.05000000-004 1. 15170000-002 3.29518070+001 6 . 59437800+000 
3 .78915660+006 1. 45300000-003 2.62168670+006 5 . 70000000 - 004 8 . 53000000-004 1. 29590000-002 3 . 65662650+00 1 4 . 18473900+000 
4 . 56626510+006 1. 53600000- 003 2 . 32409640+006 4 . 82000000-004 1. 17 100000-003 1. 20590000-002 2 . 7 1686750+00 1 5 . 43775100+000 
3 . 50000000+006 1. 67200000 - 003 1. 72891570+006 3. 17000000-004 8 . 37000000-004 1. 20920000 - 002 3.45903610+00 1 3 . 99 196800+000 
2 . 19879520+006 1. 09200000- 003 6 . 48 192770+005 5 . 38000000- 004 6 . 29000000- 004 1 . 16900000 - 002 3 . 48313250+001 2 . 83534100+000 
4 .89 156630+006 1.10300000- 003 1. 932530 10 +006 4 . 55000000-004 1. 03800000-003 1.18860000-002 3 .56987950+001 3 . 70281100+000 
2.75903610+006 2.00600000- 003 2 . 40963860 +005 5. 78000000- 004 1. 05400000- 003 1. 29810000-002 3.42048190+001 8 . 58634500+000 
1. 566265 10+006 1. 26500000-003 1. 57228920+006 4.37000000- 004 8.29000000 - 004 1. 33280000 - 002 3 . 18915660+001 5 . 21285100+000 
1 . 34939760+006 1 .06100000- 003 1.05542170+006 3 .97000000- 004 1 .49600000-003 1 . 33390000-002 3 . 6277 1080+001 8 . 93975900+000 
3 . 86 144580+006 8.63000000- 004 1. 40000000+006 5 . 80000000 - 004 1.46000000- 003 1. 22110000-002 2 . 745783 10+001 8 . 55421700+000 
8 . 43373490+005 9.36000000- 004 3 . 19277 110+005 3 . 63000000- 004 1.13900000- 003 1.13980000-002 3 . 00120480+001 2 . 51405600+000 
3 . 08433730+006 1. 57800000-003 3 . 37349400+006 2 . 04000000-004 1. 24300000-003 1. 16040000- 002 3 . 23734940+001 9 . 19678700+000 
3 . 9 1566270+006 2 . 02700000-003 1. 259036 10+006 4 .0 1000000-004 1. 44400000- 003 1. 26450000- 002 2.76987950+001 7 . 7 1887600+000 
2 . 18072290+006 1 .81800000-003 2.93493980+006 5 . 64000000- 004 5 . 08000000- 004 1 .30350000-002 2 . 87 108430+001 4 . 50602400+000 
1. 33132530 +006 1. 70300000 - 003 3.81204820+006 3 . 75000000- 004 8.98000000-004 1. 37940000-002 2 . 88554220+00 1 2.96385500+000 
4 . 85542170+006 1. 77100000-003 1. 88554220+006 4 . 13000000- 004 1. 48400000- 003 1.19940000 - 002 3 . 14578310+00 1 7 . 6546 1800+000 
1.06024100+006 8 . 89000000-004 2 . 1048 1930+006 3.19000000- 004 9.26000000-004 1.18420000-002 3 . 59397590+00 1 9.32530100+000 
2.52409640+006 1 .1 1300000-003 3.73373490+006 2.95000000- 004 1 .40000000- 003 1 . 26340000 - 002 2.61084340+001 3 . 38 152600 +000 
2.48795 180+006 8.2 1000000-004 2 . 16746990+006 1. 30000000- 004 1. 10600000- 003 1. 13000000 - 002 3.27590360+001 8 . 97 188800+000 
1.15060240+006 1. 56200000-003 1. 9 1686750+006 4. 15000000 - 004 1. 08200000-003 1. 25470000 - 002 3.25180720+001 9.83935700+000 
1. 81927710+006 1. 40000000-003 2 . 277 10840+006 2 . 87000000 - 004 8. 17000000- 004 1. 38270000-002 3.57951810+00 1 5 . 02008000+000 
6 . 44578310+005 2 .09000000-003 3 . 96867470+006 5 . 48000000- 004 1.17500000-003 1.13760000 - 002 3. 55060240+00 1 9 . 71084300+000 
3 . 39156630+006 1. 74000000-003 6 . 795 18070+005 5.44000000 - 004 8 . 33000000 - 004 1. 17770000 - 002 3 . 59879520+001 3 . 63855400+000 
3 . 37349400+006 1. 93300000-003 2.74698800+006 1. 98000000-004 1. 04600000 - 003 1. 2 1020000 - 002 3 . 35301200+001 6 . 08032100+000 
2 . 30722890+006 1.00400000- 003 1. 31325300+005 2 . 08000000 -004 9 . 22000000- 004 1. 25580000-002 2 . 55301200+00 1 7 . 9 1164700+000 
3. 0 1204820+006 2 . 10000000 - 003 3 . 8 1927710+005 2 . 8 1000000- 004 1.14700000-003 1.19720000- 002 3.406024 10+00 1 4.34538200+000 
3 . 93373490+006 1 . 16500000-003 1. 43 132530+006 3 . 23000000- 004 6.77000000- 004 1 .33170000- 002 3 . 50240960+00 1 4 . 40963900+000 
7 . 71084340+005 1. 32700000- 003 3 . 34216870+006 5 .94000000- 004 1. 33 10000.-003 1.16470000- 002 2 . 83253010+001 9 . 16465900+000 
1. 31325300+006 1. 79700000-003 2 . 966265 10+006 5 .0 2000000-004 1. 27100000-003 1. 15600000-002 3 . 09277110+001 4 . 53815300+000 
4 . 18674700+006 1 . 8 2300000- 003 1 . 15662650+005 1 .68000000 -004 9.38000000- 004 1 . 29160000-002 3 . 33855420+00 1 6 . 62650600+000 
5 . 72289160+005 1. 53100000-003 1. 58795 t 80+006 3 . 65000000- 004 6 . 33000000-004 1. 18960000-002 3 . 20843370+00 1 2 . 44979900+000 
2.61445780+006 9.57000000- 004 3. 16987950 +006 3.85000000- 004 1. 35 100000-003 1.15060000-002 3 . 44457830+001 4 . 28112400+000 
1. 76506020+006 1. 75000000-003 1. 03975900+006 2.53000000-004 1. 23500000-003 1. 22870000-002 2 . 61566270+001 4.47389600 +000 
2 . 07228920+006 1. 97500000- 003 2.33975900+006 3 .21000000- 004 1. 45200000-003 1. 38590000-002 2 . 80843370+001 5 . 30923700+000 
7 .34939760+005 1. 94900000- 003 1. 94819280+006 4 . 33000000-004 1. 16700000-003 1. 13220000- 002 3 . 69036 140+00 1 9 . 26 104400+000 
2. 28916660+006 1. 82900000- 003 2 . 63734940+006 6 . 98000000-004 6 . 45000000-004 1.19070000 - 002 3 . 6 1807230+001 8 . 23293200+000 
9 . 69879520+005 1.37400000-003 2 . 8796 1810+005 2 . 79000000 -004 7.73000000-004 1 . 29700000-002 3 . 34337350+001 8 . 20080300+000 
2 . 86746990+006 1. 73600000- 003 2 . 90361450+006 4 . 63000000-004 8.49000000-004 1. 3 1650000-002 3.1 1204820+001 6 . 30522100+000 
2 . 68674700+006 2 . 07400000- 003 1. 9795 1810 +006 2 . 02000000- 004 5.96000000-004 1. 21670000-002 3. 10240960+001 3. 12449800+000 
1 . 66662650+006 8.57000000- 004 2.24578310+006 1. 80000000-004 1. 05800000-003 1 .32620000-002 2.68313250+00 1 7.75100400+000 
1. 4036 1450+006 9 . 93000000-004 7.5783 1330+005 3.31000000-004 5.00000000- 004 1.17990000 - 002 2.76506020+001 5 . 11646600+000 
3 . 4277 1080+006 9.67000000-004 4 . 289 16660+005 5.60000000-004 1. 00200000-003 1. 36530000-002 2 . 50481930+001 3.79919700+000 
3 . 13855420+006 1 . 65600000-003 1 . 65662650+006 4 . 21000000-004 6 . 24000000-004 1.25800000-002 2.66867470+00 1 5.50200800+000 
4 . 94678310+006 1. 96400000- 003 3 . 23263010+006 2.86000000-004 7 . 49000000 - 004 1. 35660000-002 3.52168670+001 8 . 68273100+000 
2 . 99397590+006 1.10800000-003 2.01084340+006 2 . 43000000-004 1.06200000- 003 1. 23520000-002 3 . 67590360+001 5 . 9 1967900+000 
4 . 62048190+006 1. 36400000- 003 2 . 35542170+006 4 . 11000000- 004 5.20000000- 004 1. 20370000 - 002 3 . 39638550+001 6 . 8 1927700+000 
4 . 98192770+006 8.37000000- 004 3.84337350+006 6.68000000-004 1. 27600000-003 1. 22660000 - 002 2 . 65903610+001 5.96 180700+000 
2 .88554220+006 1. 66100000-003 9.92771080+005 2.61000000- 004 9.90000000-004 1.14080000-002 3.348 19280+001 8 . 8 1124500+000 
3 . 21084340+006 9.78000000- 004 3.65542170+006 1.18000000- 004 1. 29900000-003 1. 34800000-002 3 . 37710840+001 7 .10843400+000 
2.70481930+006 1. 87000000-003 1. 29036140+006 5 . 76000000-004 9 . 94000000-004 1. 27750000-002 2 . 736 14460+001 5 .85542200+000 
2 . 93976900+006 1. 08700000-003 7 . 89 166630+006 4 . 88000000-004 1. 35600000- 003 1. 39460000-002 2.75060240+001 8 . 07228900+000 
3 . 55421690+006 1. 88100000- 003 2 . 57469880+006 5 .88000000-004 7 .89000000-004 1. 20050000-002 2.93373490+001 7 .62249000+000 
4 .87349400+006 8 . 84000000- 004 1 . 22771080+006 3.79000000-004 7 . 61000000-004 1 .30460000-002 2.91445780+001 4.66666700+000 
3 . 10240960+006 1.44700000-003 2 . 40240960+006 1. 44000000-004 1. 37 100000-003 1. 28290000-002 3 . 40120480+001 5 . 08433700+000 
4 . 96385640+006 8 .73000000 - 004 2 . 7783 1330+006 2 . 93000000-004 1. 09400000-003 1 . 32630000-002 3.53614460+001 7 . 20481900+000 
1.54819280+006 1. 63000000- 003 1. 7 1325300 +006 1. 82000000-004 8 . 78000000-004 1. 23950000-002 2 . 55783 130+001 7 . 68674700+000 
1. 945783 10+006 1. 76600000- 003 1.19638550+006 3.07000000-004 8 . 45000000-004 1. 38700000-002 3.21807230+001 4.21686700+000 
9 . 16662650+005 1.41100000- 003 3.48313250+006 2. 12000000-004 1.10200000-003 1. 30780000-002 2.93855420+001 2 . 61044200+000 
2.46987950+006 1. 27000000-003 9.45783130+005 3.77000000-004 6.20000000-004 1 .22980000-002 3.3192771 0+001 5. 14859400+000 
4.0783 1330+006 1. 43200000-003 5 . 07228920+005 5.24000000-004 7.25000000-004 1. 28830000-002 3 .16024 100+00 1 9 . 55020100+000 
2 . 54216870+006 2 . 04800000 - 003 3 .07590360+006 4.49000000-004 8.90000000-004 1. 22430000-002 3 . 65180720+001 6 . 63012000+000 
4 . 13253010+006 1 .89600000-003 1 .66060240+006 1 . 48000000-004 5. 32000000-004 1. 33060000-002 3 . 06385540+001 9.2931 7300+000 
2 . 10843370+006 1 . 52000000-003 7 . 73493980+005 5.46000000-004 7.93000000-004 1 . 15930000-002 2 . 51927710+001 2 . 09638600+000 
3.26506020+006 1. 8 1300000-003 6.95 180720+005 2 . 20000000- 004 8 . 73000000-004 1. 28070000-002 2 . 76024 100+001 3 . 25301200+000 
4 . 69277110+006 9.31000000- 004 2 .88796180+006 4._90000000-004 1. 09800000-003 1.13110000 - 002 2.86144580+001 3 . 16662700+000 
1. 47690360+006 2 . 0 1600000 - 003 3 . 66266060+005 1. 58000000-004 6. 16000000-004 1. 37070000-002 3.26 144580+001 7 . 39769000+000 
9.61807230+005 1.96400000-003 1 . 44698800+006 5 _ 34000000- 004 9.58000000-004 1 .27530000 -002 2 . 54819280+001 9. 10040200+000 
2 .00000000 +006 1. 68200000-003 4 .132530 10+006 2. 16000000- 004 5 .92000000-004 1. 29050000-002 3 . 36783 130+001 3.41365500+000 
2 .96783 130+006 1.06600000- 003 3.06024100+006 2 . 49000000- 004 7. 17000000-004 1. 30130000-002 2.92891670+00 1 2.64618500+000 
4 . 60240960+006 8 . 68000000-004 1 .76024 100+006 2 . 14000000-004 7.09000000-004 1 . 39020000-002 3. 14096390+001 3.28514100+000 
3.22891570+006 1. 34300000- 003 3 . 10722890+006 3.71000000- 004 1. 39600000- 003 1. 28400000-002 3.04939760+001 2 . 5783 1300+000 
4 . 25903610+006 1 . 92200000-003 3.68674700+006 3. 11000000-004 1 .06600000- 003 1.17550000-002 3 . 67108430+00 1 4 . 63453800+000 
1.83734940+006 9.51000000-004 1. 63493980+006 4.69000000-004 1. 25900000-003 1. 36200000-002 3.63253010+001 2.32128500+000 
4 . 58433730+006 1. 35900000- 003 1. 66626510+006 4 . 78000000-004 9.66000000-004 1. 32410000-002 3.29036 140+00 1 4.37751000+000 
6 . 6 2650600+005 1. 03500000-003 2 . 44939760+006 3 . 49000000- 004 7. 13000000-004 1 .39240000-002 3.04457830+001 3.54216900+000 
4 . 72891570+006 1. 63500000-003 1. 78313250+005 3.89000000- 004 7 .53000000-004 1. 26990000-002 2 . 67349400+00 1 4 . 1526 1000+000 
4 . 78313250+006 1. 31700000- 003 2 . 29277118+006 3 . 57000000-004 1. 38400000-003 1.13430000-002 2.56265060+00 1 2.77108408+000 
3 . 17469880+006 1. 5 1000000- 003 2.07349400+006 2.57000000- 004 1. 03400000-003 1. 34140000-002 2 . 73132530+001 5 . 88755000+000 
3 . 030 12050+006 1. 30600000-003 5 . 69879520+005 1. 88000000-004 6 . 93000000-004 1.19400000-002 2.63012050+001 3. 18875508+000 
3 . 68072290+006 1 . 04600000- 003 2.6903614.+006 5.42000000-004 1 . 18300000 - 003 1 .27100000-002 2 . 69638558+001 5 . 46988000+000 
3. 73493980+006 t. 06600000-003 6 . 32530 120+005 1. 94000000-004 1. 26700000-003 1. 33820000-002 2 . 78433730+001 5 . 79116500+000 
4 . 38554220+006 1.01900000- 003 1. 27469880+006 3.69000000- 004 8.01000000-004 1. 2 1240000- 002 2 . 99638550+001 9 . 967871 00+000 
2 .83132530+006 1.64100000- 003 2.71566270+006 5.56000000- 004 1. 39200008-003 1. 16250000- 002 2.54337350+001 8 . 87550200+000 
2 . 8 1325300+006 1. 46800000-003 3 . 32650600+006 5.84000000- 004 6 . 08000000-004 1. 35120000- 002 3.48795180+00 1 2 . 00000000+000 
3 . 33734940+006 1. 39000000- 003 3. 18564220+006 3 . 55000008-004 6 . 37000000-004 1. 24490000-002 2 . 59156630+001 4 . 89 156600+000 
1. 63855420+006 1. 77600000- 003 2 . 51204820+006 1. 26000000-004 1. 43200008- 003 1. 19290000- 002 3 . 0 1566270+00 1 6 . 40160600+000 
3 . 57228920+006 1 . 44200000- 003 2 . 70000000+006 5 . 36000000-004 1 .47600000-003 1 . 35450000-002 2 . 79397590+001 8 . 1044 1800+000 
4 . 40361450+006 1 _ 23300000-003 2 .80963860+006 1 . 96000000-004 8.41000000-004 1 . 38480000-002 2 . 62530120+00 1 9 . 13253000+000 
1 .25903610+006 1 . 29100000- 003 3 . 70240960+006 6.00000000-004 1 . 50000000-003 1 . 33600000-002 2 . 75542 170+001 5 . 98393600+000 
2.97590360+006 1 .69300000-003 1.6192771.+006 3.15000000-004 5 . 64000000-004 1 . 13330000- 002 3 . 09759040+001 5 . 24498000+000 
5 . 54216878+005 1. 75500000- 003 3.85903618+006 2. 75000008-004 1. 36700000-003 1. 27960000-002 3 . 03975900+00 1 6 . 88363400+000 

202 



203 

4.76506020+006 1 .30100000-003 2. 19879520+006 4.96000000-004 8 .94000000-004 1 .39570000-002 2 . 60 120480+001 6 . 33734900+000 

3.66265060+006 1 .83900000-003 2.72289160+005 4.39000000-004 9. 10000000-004 1. 36750000-002 2 . 98674700+001 8.48996000-000 

3.77108430-006 1 .78200000-003 6.01204820-005 2. 18000000-004 1 . 11000000-003 1 .37720000-002 3.36746990-001 4.31325300-000 

1.11445780-006 2.01100000-003 7. 10843370- 005 5.16000000-004 1 .05000000 -003 1.17450000-002 3 . 19397590+001 2.19277 100+000 

1 .45783 130-006 1.19200000-003 8.83132530-005 2.59000000-004 1. 29100000-003 1 .30020000-002 3.00602410_001 4.98795200-000 

6.98795180-005 1.76100000-003 3.43614460-006 1.34000000-004 1 .02200000-003 1 .38050000-002 3 . 2277 1080_001 6. 17670700-000 

1 .38554220-006 1 . 72900000- 003 1. 74457830-006 3.03000000-004 5.48000000-004 1.24390000-002 2 . 96746990- 001 8.297 18900-000 

1 .72891570- 006 1 .34800000-003 3.60843370-006 1 .20000000-004 1.22700000-003 1 . 16140000-002 2.71204820- 001 8.61847400-000 

4.00602410-006 1.67700000-003 5.38554220-005 6.96000000-004 1.33900000-003 1 . 17880000-002 3.38674700+001 2.48192800- 000 

1.02409640-006 1 .19700000-003 3.54578310-006 1. 54000000-004 9 .78000000 -004 1. 33930000-002 3 . 42530120-001 3.83132500-000 

1. 74698800+006 1. 11800000-003 2.02650600+006 4.94000000-004 6.49000000-004 1. 16690000-002 2.89036140+001 4 .82730900-000 

1 .90963860-006 8.42000000-004 1 .306024 10-006 4 . 71000000-004 1.37600000-003 1.23190000-002 3.43012050-001 8.90763100-000 

2.66867470-006 1. 40600000-003 1. 07 108430- 006 4.80000000-004 7.01000000-004 1. 35230000-002 2 . 62048190+001 9.35743000+000 

1 . 78313250- 006 1 .33300000-003 1.00843370-006 4.73000000-004 8.21000000-004 1. 31980000-002 2 . 606024 10-001 5.63052200- 000 

1 .24096390- 006 1.18600000-003 2.56903610+006 5 . 00000000-004 6.85000000-004 1 .31110000-002 3.47349400+00 1 2.99598400- 000 

3.87951810-006 1.28000000-003 1 . 69759040-006 4.45000000-004 1.46800000-003 1.22000000-002 3.46867470_001 2.41767 100-000 

2.0 1807230-006 1.78700000-003 5.542 16870-005 4.67000000-004 1.41600000-003 1.13870000-002 3.46385540-001 8.26506000-000 

2.23493980+006 1.95900000-003 2.04216870-006 1. 86000000-004 1. 30300000 -003 1.35650000-002 3.64216870-00 1 7. 14056200-000 

1 .04216870-006 1 .26400000-003 1 .77690360-006 1 . 16000000-004 9. 14000000-004 1 . 17340000-002 2.70240960-001 9.93674300-000 

3.62650600- 006 8. 16000000-004 1 .21204820+006 5.40000000-004 6 . 63000000 -004 1 .21890000-002 3.06421690+001 3.09236900-000 

3.61807230-006 1 .48400000-003 2.30843370+006 3.83000000-004 6 . 89000000 -004 1 .38370000-002 3 . 49769040+001 7.62610400- 000 

2.379518 10-006 1 . 12400000-003 1. 68192770-006 3.95000000-004 1 . 08600000 -003 1. 39130000-002 2.57710840- 001 3.57429700-000 

2.14457830-006 1.41600000-003 3.78072290- 006 4.65000000-004 6 . 12000000 -004 1 .3 1220000-002 2.77469880-001 8.7 1486900_000 

4 .24096390-006 1 . 16000000-003 3 . 93734940-006 1 . 24000000-004 1.12200000-003 1.18310000-002 3.03012050+001 4.08835300+000 

3.46385540+006 1.58300000-003 4.60240960+005 2 . 9 1000000-004 1 . 18700000-003 1 .20160000-002 2.99166630-001 4. 12048200-000 

4.63866420+006 1 . 50600000-003 3.34939760+005 3.27000000-004 1.17900000-003 1 . 16280000-002 3.63132630-001 6 . 27710800-000 

1. 277 10840-006 1 .49400000-003 1 .60963860-006 4.23000000-004 1 .30700000-003 1 .26550000-002 2.53373490-001 8.84337300+000 

4.7 1084340-006 1. 60900000-003 1. 46987950+005 1 . 10000000-004 5.76000000-004 1 .18200000-002 3.16506020-001 2 . 22490000-000 

2.74096390-006 1 .43700000- 003 3 . 21686750+006 4.29000000-004 5.36000000-004 1 . 15820000-002 2.79879620+001 8 . 13654600+000 

7.16867470+005 1 .86000000-003 1.11807230-006 1 .70000000-004 1.16300000-003 1 .39780000-002 3.63734940+001 9.64668600- 000 

2.45180720-006 1 .55700000-003 8.20481930 - 005 4.07000000-004 1 . 40800000-003 1. 31640000- 002 2.63865420+001 6.04819300+000 

2.63253010-006 1.12900000-003 2.46506020-006 1 .78000000-004 7 . 29000000 -004 1.21780000-002 2.86626510+001 5.34 136500- 000 

1 .09638550+006 1 . 33800000-003 3.56 144580-006 3.13000000-004 1 .25100000-003 1 . 14630000-002 3.30000000-001 3.86345400+000 

1. 49397590+006 8 . 52000000-004 1 .86987950 - 006 1. 08000000-004 1 . 28700000-003 1 .36640000-002 3 . 54578310+00 1 9.036 14500+000 

2. 12650600- 006 1 .83400000-003 3.2795 1810+006 1 .02000000-004 8 . 25000000- 004 1. 27420000-002 3 . 06867470- 001 3 . 31726900+000 

1. 80120480-006 2.03700000-003 2 . 26 144580+006 5.32000000-004 1 .09000000-003 1. 39890000-002 3.27108430-001 9 . 87148600-000 

3.7 1686750+006 8.00000000-004 2.54337350 - 006 4.61000000-004 5.88000000-004 1 .35880000-002 3 . 28554220+001 8.36144600-000 

3.60843370+006 1 .57300000-003 2.38674700+006 4.43000000-004 1 .25500000-003 1.25690000-002 2.91927718+001 9 . 00401600+000 

4.06024 100-006 1 . 71400000-003 2.87228920+006 3 . 43000000-004 1 . 15500000-003 1.36310000-002 3.62289160+001 4 .76305200+000 

3.59036 140-006 1.79200000-003 3.98433730- 006 5.26000000-004 7.41000000- 004 1 .29270000-002 3.49277110-001 5.56626500+000 

2.25301200-006 1. 13900000-003 2.65301200+006 3.05000000-004 8.82000000-004 1.13650000-002 2.57228920+001 9.48594400-000 

8.97590360+005 8.05000000-004 2 . 09638550 - 005 1 .38000000-004 1.01800000-003 1 .37610000-002 3 .45421690-001 5 .75903600- 000 

2.39759040-006 1 . 42700000-003 2.43373490+006 5.82000000-004 1. 35900000-003 1 .23730000-002 3.22289160-001 1 .00000000-001 

3.48192770+006 1 .55200000-003 3.79638550- 006 1 .56000000-004 8.61000000- 004 1 . 25250000-002 3 . 6036 1450+001 2.64257000+000 

4.31325300+006 8.78000000-004 2.91927710-006 1 . 74000000-004 5.44000000-004 1 .26660000-002 3. 13132530+001 5 . 69477900-000 

3.80722890- 006 9. 15000000-004 5.85542170-005 5 .90000000-004 5 . 28000000-004 1. 32190000-002 3.28072290+001 4.92369500-000 

2.34337350+006 1 .39500000-003 4.91566270-005 1 .32000000-004 1. 27900000-003 1 .36860000-002 3.51686750+001 7.59036100+000 

7.53012050+005 2 .03200000-003 1 . 14939760+006 1 .40000000-004 1 . 38000000 -003 1. 24280000-002 3.24698800+001 7.49397600-000 

5.36144580+005 1. 23900000-003 4 .75903610-005 1. 28000000-004 1 .48800000-003 1 .37830000-002 2.95301200+001 5 . 37349400_000 

3.536 14460+006 1 . 48900000-003 6.63855420-005 1 .76000000-004 1 .48000000 -003 1.26230000-002 3.19879520+001 7.01204800-000 

1.13253010+006 1.85500000-003 2.98192770-006 2 . 63000000-004 1 . 04200000 -003 1 .26770000-002 3.43493980-001 7.42971900+000 

1. 5 1204820- 006 1 .74500000-003 2 . 56626518- 005 1 .06000000-004 7 .65000000 -004 1 .20480000-002 3.44939760_001 6.56224900+000 

4.295 18070- 006 1 .61400000-003 2 . 99759040- 006 4.47000000-004 5.56000000-004 1 .247 10000-002 3.41566270-001 3.22088400+000 

1. 69277 110- 006 1. 46800000-003 2.23012050+006 3.01000000-004 1. 03000000 -003 1 .18100000- 002 3 .58915660-001 8 .00803200+000 

2.09036140- 006 1 . 62500000-003 1 .08674700-006 2.27000000-004 1. 43600000 -003 1 .38920000- 002 2.82289160_001 8 .4578310rOOO 

2.57831330-006 9.62000000-004 1. 82289160+006 5.50000000-004 9.82000000-004 1.19830000-002 3.07349400_001 7 . 07630500+000 

3.40963860-006 1 .29600000-003 2.48072290-006 5 . 92000000-004 1. 07400000 -003 1 . 19610000-002 3.07831330_001 2 . 80321300+000 

1.53012050-006 2.02200000-003 2.37108430+006 1 . 72000000-004 6.61000000-004 1 .35340000-002 3.54096390+001 7.46184700_000 

1. 96385540+006 1. 91700000-003 1. 93975900+005 3.61000000-004 1 . 46400000-003 1. 37510000-002 3 . 24216870_001 6 . 97992000- 000 

1.18674700-006 1. 07100000- 003 9 .61445780+005 4.84000000-004 5.68000000- 004 1. 27310000- 002 2.97710840-001 6. 75502000+000 

1. 16867470-006 1 . 90200000-003 3.5 1445780+006 2.89000000- 004 6.81000000-004 1.17660000-002 3. 12650600+001 9.22891600_000 

4.36746990- 006 1. 46300000-003 3.49879520+006 2.77000000-004 9.98000000-004 1. 361 00000-002 3.68072290+001 7.84739000- 000 

3.3192771 0-006 2 . 06300000-003 2.68433730+006 1 .84000000-004 7.21000000-004 1. 37400000-002 2.64939760+001 5 . 05220900- 000 

1. 43975900- 006 1. 47900000-003 3. 12289160+006 2.45000000-004 5.72000000-004 1 .22760000-002 3. 10722890-001 4.60241000+000 

6.08433730- 005 1. 17100000-003 1 .49397590- 006 5. 14000000-004 1 .36300000-003 1 .23300000-002 3.66144580+001 2.06425700_000 

3. 12048190-006 9 . 25000000 -004 3.295 18070- 006 2.41000000-004 9. 18000000-004 1.31760000-002 3.66626510+001 6.36947800-000 

3.98795180-006 2.06900000-003 1. 47831330+006 3.81000000-004 1 .15100000-003 1. 27200000-002 3.36265060+001 4.02409600-000 

4.90963860-006 1 .84900000-003 1. 33734940- 006 2.47000000-004 1 . 19900000-003 1. 32080000-002 2 . 63493980+001 8.77911600+000 

2.56024 100- 006 1 .22800000-003 3 . 8277 1080- 006 4.51000000-004 1 . 11400000-003 1 .35990000-002 2.69277110+001 4 .69879500-000 

1. 07831330-006 1 . 07700000-003 3 .76506020 - 006 5.04000000-004 1. 23100000-003 1 . 19180000-002 2.8277 1080_00 1 5.82329300-000 

2.84939760+006 1. 64100000-003 8 . 98795180- 005 3.4 1000000-004 7 .46000000 -004 1 .22540000-002 3.64698800+001 8.32931700-000 

3 .75301200- 006 1 .36300000-003 2 . 18313250-006 2.06000000-004 1 .49200000-003 1. 37290000-002 2.64457830+001 9.38955800+000 

4. 15060240- 006 1. 65100000-003 8 . 67469880-005 6.72000000-004 1. 34300000 - 003 1. 32840000- 002 3.26662650+001 4.85943800- 000 

4 . 8 1927710-006 9.41000000-004 3.69277110-006 4.35000000-004 6.00000000-004 1 .24930000-002 2.85180720-001 6.18072300+000 

2. 16266060- 006 1. 05100000-003 3.74939760-006 1. 50000000-004 1 . 01400000 -003 1.16800000-002 3.37228920+001 2.03212900+000 

1. 9819277 0_006 1 .88600000-003 2.79397690-006 4 .86000000-004 8 . 69000000 -004 1. 24060000-002 2.81326300+001 2.70682700-000 

4.27710840-006 1 .24400000-003 1. 4 1566270-006 4.09000000-004 9.46000000-004 1.17120000-002 3 .02048190+001 3 .3493980"-000 

3.28313250-006 1. 01400000-003 1 . 10240960-006 2.67000000-004 1. 44800000 -003 1 . 23840000-002 3.60843370+001 4 .67028100-000 

4. 16867470- 006 8 . 99000000 -004 1 .24337360-006 1 .22000000-004 1. 31500000-003 1 . 14840000-002 3 .30963860+001 3.02811 200- 000 

4.11445780-006 1. 20700000-003 3.62409640-006 4.92000000-004 6 . 73000000 -004 1. 34690000-002 2.63976900-001 8. 16867500_000 

7.89156630+006 1. 93800000-003 3.89036140+006 6.20000000-004 6.97000000-004 1.18750000-002 2 . 90481930 - 001 8.39357400+000 

8 .25301200-005 1 .64600000-003 3.40481930+006 5 . 18000000-004 6.41000000-004 1 .30670000-002 2.61445780 - 001 6.20883500- 000 

8.07228920+005 1. 18 100000-003 3 . 46746990+006 3.59000000-004 7 . 33000000-004 1. 24600000-002 2.74096390_001 5.59839400+000 

1. 22289160+006 8.47000000-004 1 .54096390+006 5.06000000-004 1. 24700000-003 1. 31330000-002 2.92409640- 001 6.46586300- 000 

6.26506020-005 1. 87600000-003 3.90602410+006 3.29000000-004 5 . 62000000-004 1 .28610000-002 3.33373490- 01>1 9.74297200+000 

4.6 1204820- 006 1 .96900000-003 3.01326300+006 1 .36000000-004 7.69000000-004 1 .29480000-002 2.96266060+001 6 .86140600+000 

3.24698800-006 8 .94000000-004 3.35783130+006 1.12000000-004 1 .42400000-003 1 .21570000-002 3.68433730+001 5.66265100+000 

1. 42168670+006 2.04300000-003 1 .46265060+006 1 .60000000-004 6 .04000000-004 1 . 18530000-002 2.50963860- 001 4.95582300+000 

2.36144580-006 1 .86500000-003 9.77108430+005 3.87000000-004 1 .47200000-003 1 .25040000-002 3.20361450_001 8.04016100+000 

3 .1 5662650- 006 9. 10000000-004 3.02891570+006 3.51000000-004 1 .42800000-003 1 .22330000-002 3.08795180- 001 9.42168700+000 

2.03614460+006 1 .00900000-003 2.21445780+006 4.25000000-004 9.34000000-004 1. 31000000-002 3.68554220+001 6.43373500+000 

3 . 1927711 0-006 1 .94300000-003 3.42048190+005 2.51000000-004 9.06000000-004 1 .34580000- 002 3.30481930-001 3.92771100+000 

4 . 02409640- 006 9.46000000-004 2. 13614460-006 4.59000000-004 9 . 42000000 -004 1. 234 10000-002 3.61325300-001 8.74698800+000 



1. 85542170+006 1. 66700000 -003 1. 35301200+006 3.99000000-004 5.60000000-004 1. 40000000-002 2.83734940+001 7.33333300+000 
1. 36746990+006 9.88000000-004 3 . 15421690+006 3.09000000-004 1. 28300008-003 1. 30670000-002 2.65421698+001 9.80722908+000 
3.82530120+006 1.84400000- 003 2 . 49638550+006 5.52000000-004 1. 40400000-003 1. 28180000-002 3.21325300+00 1 6.65863500+000 
4.54819280+006 1.99000000- 003 2. 12048190+006 3.91000000-004 9.74000000-004 1.15710000-002 2.84698800+00 1 6 . 11245000+000 
3 . 30120480+006 1. 17600008-003 9.14457830+005 4.98000000-004 1.12700008-003 1. 22220000-002 3.41084340+001 4.44176700+000 
2.05421690+006 9.04000000-004 1.18072290+006 5.22000000-004 9 . 86000000-004 1. 25140000-002 2 . 58192770+001 8.52208800+000 
4 . 65662650+006 1. 69800000-003 2 . 95060240+006 6.10000000 - 004 5.84000000-004 1.16360000-002 2.90963860+001 4 . 73092400+000 
2.92168670+006 1.69400000-003 2.84096390+006 1. 66000000-004 1.13500000-003 1. 35770000-002 2 . 89518070+001 9.51807200+000 
2.90361450+006 1. 59900000-003 7 .26506020+005 4.76000000- 004 8 .65000000-004 1. 28510000-002 2.94819280+00 1 2.38554200+000 
2.72289 160+006 1. 31200000-003 2.25301200+005 4.27000000-004 1. 34700000-003 1. 30240000-002 2.94337350+001 3.89558200+000 
2 . 65060240+006 2.00100000-003 2.66867470+006 1.46000000-004 1. 21900000-003 1. 24170000-002 2.69759040+001 4.24899600+000 
3 . 64457838+006 1. 92800000-003 3.03614460+005 3.53000000-004 7.81000000-004 1.19510000-002 2.68795180+001 8.65060200+000 
1. 295 18070+006 1. 98000000-003 3.45 180720+006 5.28000000- 004 1. 23900000-003 1. 24820000-002 3.50722890+001 5.53413700+000 
1. 62048190+006 1. 71900000-003 8.51807230+005 2.69000000-004 9.50000000-004 1. 15390000-002 3.31445780+001 3.95983900+000 
2.32530120+006 8.10000000-004 3.53012050+006 5.54000000-004 7.85000000- 004 1. 32730000-002 3 . 12168670+00 1 6.69076300+000 
5 .90361450+005 1.14500000-003 5.22891570+005 1. 52000000-004 1. 26300008-003 1. 20810000-002 2.52409640+00 1 2.89959800+000 
8.61445780+005 1.50000000-003 4 . 00000000+006 4.05000000-004 1. 0 1000000-003 1. 3 1870000-002 3 . 15060240+001 6.91566300+000 
3 . 06626510+006 9 . 72000000-004 1. 79156630+006 2.24000000-004 5.24000000-004 1. 29370000-002 2.50000000+001 7.97590400+000 
4.67469880+006 1. 21200000 - 003 3.71807230+006 3 . 35000000-004 1. 44000000-003 1. 21460008-002 3 . 70000000+001 2.73895600+000 
5.18072290+005 1. 51500000-003 1. 90120480+006 4.57000000-004 5. 12000000-004 1. 34900000-002 2.80361450+001 3.44578300+000 
3.69879520+006 1.15500000-003 1.13373490+006 2.35000000-004 1. 07800000- 003 1.14730000-002 3. 16987950+001 6.14457800+000 
2.41566270+006 1. 22300000-003 1. 52530120+006 2 . 71000000-004 1. 21500000-003 1. 39350000-002 3.18433730+001 7.23694800+000 
3.84337350+006 1. 56700000-003 3.04457830+006 2 . 31000000-004 7.57000000-004 1.16580000-002 2 . 84216878+001 3.06024100+000 
4.04216870+006 1.99600000-003 8 . 04819280+005 1 .04000008-004 5.16000000-004 1 . 18640000-002 2.58674700+001 6.24096400+000 
2.77710840+006 1. 70800000-003 3 . 50602410+005 3.25000000-004 7.97000000-004 1. 28940000-002 3. 17469880+001 6.72289200+000 
3 . 95180720+006 1. 60400000-003 3 . 87469880+006 4.03000000-004 1.14300000-003 1.15490000-002 2.72168670+001 6.27309200+000 
4.47590360+006 1. 38000000-003 7 . 42168670+005 1. 90000000-004 9.30000000-004 1.11010000-002 3.69518078+001 8.42570300 +000 
5.00000000+005 1.62000000-003 2 . 76266060+006 4.53000000-004 9 . 62000000-004 1. 13540000-002 2.78915660+001 7.30120500+000 
2.50602410+006 2 . 08400000-003 2 .08915660+006 2.99000000-004 8.09000000-004 1 . 31430000-002 2.66385540+001 9.61445800+000 
1. 68433730+006 1. 2 1800000-003 1. 99518070+006 2.00000000-004 1. 33500000- 003 1.14950000-002 2.95783130+001 7.36646200+000 
4.92771080+006 1. 68800008- 003 1. 62650608+006 3.33000000-004 1. 42000000-003 1. 26360000-002 3.56024 100+001 6.94779100+000 

Output vector y of dispmax 

204 

Note this is a 249-1ength column vector, but has been concatenated into 8 columns to 

save space. 

1.05173680-002 1. 21492388-002 1. 27787970-002 1. 04385240-002 1.13161780-002 1. 40583230-002 1. 22603698-002 9.46929800-003 
1. 2984094.-002 1.04634300-002 1. 04314460-002 1.18741630-002 1. 44704920- 002 1. 42661270-002 1.18425970- 002 1. 25286310-002 
1.35385140-002 1. 14008150-002 1. 20669690-002 8.62849840-003 1. 48452660-002 1. 25500130-002 1. 02957000-002 1. 20807290-002 
1 . 18171250-002 1.14526590-002 1 .218 16030-002 1 . 75714670-002 1 .26865010-002 1. 31036590-002 1 .33846930-002 1 . 51931650-002 
9.5 1730740-003 9.84299950-003 1. 18471408-002 1. 22475880-002 1. 0 1796208-002 1.18979948-002 1. 31840620-002 1. 0 1689730-002 
1. 29500580-002 1.14302320-002 1. 07212750-002 1. 57680648-002 1. 09208970-002 1.03228430-002 1. 31746580-002 1. 25854240-002 
1. 4176343.-002 1. 33439530-002 1. 87388420-002 1.16193670-002 1. 45447140-002 2.28152600-002 1. 12867370-002 1. 14894510-002 
1.43127700-002 1.07347950-002 1. 22535790-002 1. 42537090-002 1. 08495870-002 1.09939978-002 9 . 16836330-003 1. 23321250-002 
1.13824388-002 1. 57187680-002 1.10079870-002 9.95403940-003 1. 36952320-002 1.13287170-002 1. 03424940-002 1. 32458030-002 
1. 09505840-002 1. 37837820-002 1. 35384350-002 1.07409800-002 1. 41634830-002 1. 33019250-002 1. 04046590-002 1. 93940868-002 
1.32468460- 002 1. 64375140-002 .1. 45245580-002 1. 35488250-002 1. 43128560- 002 1. 52964980-002 1. 35407570-002 1. 30579920-002 
1. 31119780-002 1. 1395234.-002 1. 44923920-002 1. 29776950-002 1. 28165100-002 1. 63011540-002 1. 09048880-002 1. 35736350-002 
1. 12766320-002 1. 69379810-002 1. 19777680-002 1. 649 16210-002 9.90869590-003 1. 34804050-002 1. 22353710-002 9.44911450-003 
1. 36057458-002 1.12203640-002 1. 3824311.-002 1.44699710-002 1.15733500-002 2.56282250-002 1.06408900-002 1. 5160110.-002 
1. 05844820-002 1.16339740-002 1. 3116613.-002 8.34229340-003 1. 45022720-002 1. 32216330-002 1.1778715.-002 1.14575150-002 
1. 25027758- 002 1.14309720-002 1.16130760 - 002 1. 26510730-002 1. 22216240-002 1. 28144078-002 1. 20557240-002 1. 49397850-002 
1. 34972598-002 1. 20629000-002 9.855522la-003 1.18111310-002 1. 24766720-002 1.47666570-002 1. 41410940-002 9.89982860-003 
1. 72205490-002 1. 09829980-002 1. 20338780-002 1. 07580350-002 1. 4327171 0-002 1.08258380-002 1. 3525684.-002 1.13868710-002 
1. 29825480-002 1. 43341470-002 1. 36460040-002 1.38970700- 002 1. 34344050-002 1. 20648930-002 1. 24635170-002 1. 59356880-002 
1. 22409060- 002 9 . 87604 140-003 1. 2239858.-002 . 1. 23697410-002 1. 21656210-002 1. 46631430-002 1.14866940-002 9.20872840-003 
9.3030566.-003 1. 15438520-002 1. 48150910-002 9.77033070-003 9.58912320-003 1. 20690710-002 1.18156000-002 1. 32341710-002 
1. 24584100- 002 1. 28350510-002 1. 02726730-002 1.08739210-002 1.18546190-002 9.32328850-003 1. 23994390-002 1. 06125060-002 
1.13671550-002 1. 49549310-002 1. 29048760-002 1.11641680-002 1. 2438636.-00 2 1.49662360-002 1.16292840-002 1. 27046610-002 
1. 35966630-002 1.04057060- 002 1.16840260-002 1.04324460-002 1. 23437230-002 1. 75746780-002 1. 43032840-002 1. 06925460-002 
1. 16765290-002 1.18343160-002 1. 32218158-002 1. 28052410-002 1. 36653188-002 1. 50606030-002 1. 24664360-002 1. 57950758-002 
1.16494310-002 1.13750378-002 1. 20978288-002 1. 31457290-002 1. 05490990-002 1.14 14 1788-002 1. 25008860-002 
1.21999518-002 1. 63073210-002 1 .49288260-002 1 . 12840630-002 1 .77404210-002 1 . 42035140-002 1 .52470190-002 
1. 20165500-002 1. 29463830-002 1.14107720-002 1. 10111090-002 1. 28913820-002 1. 25659080-002 1. 26230960-002 
1.18670430-002 1. 35814258-002 1. 35844480-002 1. 20232160-002 1.16669170-002 1.16816010-002 1. 10442230-002 
1. 244 10210-002 1.02370370-002 1. 41111060-002 1. 28482390-002 1. 0 1~049 10-002 1. 23012290-002 1.00561200-002 
1.11878380-002 9.86272320-003 1.18306840-002 1. 55688790-002 1. 65312520-002 1. 39864190-002 1. 230669 10-002 
1. 47160090-002 1. 63306210-002 1. 34262820-002 1. 44792140-002 1.17560310-002 1.13989930-002 1. 30521480-002 



Appendix C 

The Aortic Valve Model 

The following is a reduced input deck for the AV model. This is included since the author 

has found example decks from other people to be very useful (and equally, their absence 

to be somewhat frustrating). It is common practice to give reduced input decks in LS­

Dyna conferenc publications. Only the important cards are included here and node and 

element definitions are removed due to obvious space limitations. 

$# LS- DYNA Keyword file created by LS- PREPOST 2.4 - 22Jun2009(14:31) 
$# Created on May- 07- 2010 (18 : 19:31) 
*KEYWORD 
*TITLE 
$# title 
FSI Model of Aortic Valve (mm/tonne/s) 
*PARAMETER 
R es 2.S00000R ts 1 . 100000R cSl 
R cis 0.200000R xlam 
*CONTROL_ALE 
$Basically default values here . 
$# dct nadv 

4 0 
$# start end 

0.0001.0000E+20 
*CONTROL_CONTACT 
$ 

meth 
1 

aafac 
1.000000 

1.140000 

afac 
0 . 000 
vfact 

1.0000E-6 

$ Some control cards are omitted here 
$ 
*CONTROL_TERMINATION 
$# endtim endcyc 

0.020000 0 
*CONTROL_TIMESTEP 
$# dtinit tssfac 

0.000 0.700000 
$ ============== 

dtmin 
0 . 000 

isdo 
o 

$ DATABASE cards (OMITTED) 
$ ============== 
$ ============== 
$ BOUNDARY/CONSTRAINT cards 
$ ============== 
*BOUNDARY_SPC_SET_ID 
$# id 

end eng 
0.000 

tslimt 
0.000 

OUpper node ring constraint 
*SET_NODE_LIST_TITLE 
Aortic Lagrangian No 
$# sid dal da2 da3 

bfac 
0.000 
prit 

0 

endmas 
0.000 

dt2ms 
0.000 

da4 
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6.S00000R pdif 

cfac 
0.000 

ebc 
0 

lctm 
o 

dfac 
0.000 
pref 

0.000 

erode 
o 

9 . 9010E-6 

efac 
0 . 000 

nsidebc 
0 

mslst 
o 

heading 



2 0 . 000 0 . 000 0.000 
*BOUNDARY _SPC_SET_ID 
$# i d 

3ALE Ventricular constraints 
$# ns id cid dofx dofy 

301 1 
$ 

0 . 000 

dofz 
1 

dofrx 
1 

dofry 
1 

heading 

dofrz 
1 

$ Further boundary cards contraining shell nodes and ALE nodes are omit t ed here 
$ 
*BOUNDARY_AMBIENT_EOS 
$This controls the pressure of the inflow region. 
$# pid lc1 l c2 

12 3 4 
$Controls pressure of outflow region 

11 6 4 
*CONTACT_ENTITY 
$ Thi s is the s liding symmetry contact plane. 
$# pid geotyp ssid sstyp s f 

112 1 10 0 1.000000 
$# bt dt 

0.0001.0000E+20 
$# xc 

$# 

so 
o 

go 
1 

zc ax 
0.000 1.000000 

bz 
0 .000 

ay 
0 . 000 

df 
0.000 

az 
0 . 000 

$# 

0 .000 
bx 

0 . 000 
inout 

yc 
0 . 000 

by 
1. 000000 

gl 
0 .000 

g2 
0 . 000 

g3 
0 . 000 

g4 g5 

"'PART 
$# title 
Sinus 

o 

$# pid 
3 

secid 
3 

*SECTION_SHELL_TITLE 
Sinus 

mid 
11 

$# secid 
3 

elform shrf 
2 0 .833300 

$# t1 t2 t3 
kt s kts kts kts 
*MAT_MOONEY-RIVLIN_RUBBER_TITLE 
Sinus and Aortic root 
$# mid ro pr 

11 1 .3000E-9 0.499000kc1s 
$# sgl 

0.000 
*PART 
$# title 
LPres 
$# pid 

11 

sw 
0.000 

sec id 
8 

*SECTION_SOLID_ALE_TITLE 
Pressure outflow 

st 
0.000 

mid 
7 

$# secid elform aet 
8 11 4 

$# afac 
0.000 

bfac 
0.000 

*MAT_NULL_TITLE 
Low pressure blood 

cfac 
0.000 

eos id 
o 

nip 
2 

t4 

a 

lcid 
o 

eosid 
6 

dfac 
0 . 000 

$# mid ro pc mu 
7 1.0600E-9 

*EOS_GRUNEISEN_TITLE 
0 . 000 3.4500E-9 

1 .732051 - 1.000000 

hgid 
o 

propt 
1 

nloc 
0.000 

b 
0 . 000 

hgid 
1 

start 
0.000 

terod 
0.000 

grav 
o 

qr/irid 
o 

marea 
0.000 

ref 
0.000 

grav 
o 

end 
0.000 

cerod 
0 . 000 

EOS for low pressure outflow (diastole pressure) 
$Simplified EOS for blood - coefficients for water used here, 
$but properties of blood in mat_null card 
$P=GAMAO*EO=11.3kPa 
$# eosid c s l 

6 1.4840E+6 1.979000 
$# vO 

0.000 
*HOURGLASS_TITLE 

s2 
0.000 

s3 gamao 
0 . 000 0 . 110000 

cf 
0.000 

intord 
o 

g6 g7 
0.000 30.000000 

adpopt 
o 

icomp 
o 

idof 
0.000 

adpopt 
o 

aafac 
0.000 

ym 
0 .000 

trnid 
o 

setyp 
1 

edgset 
o 

tmid 
o 

pr 
0.000 

a eO 
0.000 0.102700 
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Hourglass control for ALE parts 
$# hgid ihq qm ibq ql q2 qb/vdc qw 

1 1 1.0000E-5 0 1 . 500000 0.060000 0.100000 0.100000 

*PART 
$# title 
HPres 
$# pid secid mid eosid hgid gray adpopt tmid 

12 9 6 5 1 0 0 0 
*SECTION_SOLID_ALE_TITLE 
Pressure Inflow 
$# secid e lform aet 

9 11 4 
$# afac bfac cfac df ac start end aafac 

0.000 0.000 0.000 0.000 0 .000 0.000 0.000 
*MAT_NULL_TITLE 
High pressure blood 
$# mid ro pc mu terod cerod ym pr 

6 1 .0600E-9 0.000 3 .4500E-9 0.000 0.000 0.000 0.000 
*EOS_GRUNEISEN_TITLE 
EOS for high pressure inflow (systole pressure) 
$Simplified EOS for blood - coefficients for water used here, 
$but properties of blood in mat_null card 
$P=GAMAO*EO=16kPa 
$# eosid c s l s2 s3 gamao a eO 

5 1 .4840E+6 1 .979000 0.000 0.000 0.110000 0 .000 0 . 145000 
$# vO 

0.000 
*PART 
$# title 
The Void 
$# pid secid mid eosid hgid gray adpopt tmid 

13 11 5 0 1 0 0 0 
*SECTION_SOLID_ALE_TITLE 
The Void 
$# secid elform aet 

11 11 1 
$# afac bfac cfac dfac s tart end aafac 

0 . 000 0.000 0.000 0.000 0.000 0 . 000 0 . 000 
*MAT_VACUUM_TITLE 
Void 
$Just here to allow elformll to be used . 
$# mid den 

5 1.0000E- 9 
*PART 
$# title 
L- 0.25 
$# pid secid mid eosid hgid gray adpopt tmid 

101 101 10 0 0 0 0 0 
*SECTION_SHELL_TITLE 
L-0 . 25 
$# secid elform shrf nip propt qr/irid icomp setyp 

101 2 1.000000 2 1 0 0 1 

$# tl t2 t3 t4 nloc marea idof edgset 

0 .250000 0 . 250000 0.250000 0.250000 0 . 000 0.000 0 . 000 0 

*MAT_SOFT_TISSUE_TITLE 
Soft Tissue Model for leaflet 
$# mid ro cl c2 c3 c4 c5 

10 1.3000E-9 0.040000 0 . 000 0 . 008000 18.830000tc5l 

$# xk xlam fang xlamO 

2200 .0000txlam 90 . 000000 1.000000 

$# aopt ax ay az bx by bz 

0.000 0 .000 0 . 000 0.000 0 .000 0.000 0 . 000 

$# lal la2 la3 macf 

0.000 0 . 000 0.000 1 

*PART 
$# title 
L-l . l 
$# pid secid mid eosid hgid gray adpopt tmid 

102 102 10 0 0 0 0 0 



*SECTION_SHELL_TITLE 
L- 1.1 
$# secid 

102 
elform 

2 
shrf 

1 .000000 
$# tl t2 t3 

1 . 100000 1 . 100000 1 .100000 
$ 

nip 
2 

t4 
1 . 100000 

propt 
1 

nloc 
0.000 

qr/irid 
o 

marea 
0.000 

icomp 
o 

idof 
0.000 

setyp 
1 

edgset 
o 

$ Further part definitions follow for different thickness parts of l eaf let (omitt ed) 
$ 
*PART 
$# title 
Ambient blood 
$# pi d 

111 
secid 

10 
*SECTION_SOLID_ALE_TITLE 
Ambi ent Blood 
$# secid 

10 
$# afac 

0.000 

elform 
11 

bfac 
0.000 

*MAT_NULL_TITLE 
Ambient Blood 

raid 
4 

aet 

cfac 
0 .000 

eos id 
4 

dfac 
0.000 

$# mid ro pc mu 
4 1. 0600E-9 

*EOS_GRUNEISEN_TITLE 
0 . 000 3.4500E-9 

EOS for ambient blood 
$Simplified EOS for blood - coefficients for 
$but properties of blood in mat_null card 
$P=GAMAO*EO=11.7kPa 
$# eos id c sl 

4 1 .4840E+6 1.979000 
$# vO 

0 . 000 
*PART 
$# title 
Rigid Plane 
$# pid 

112 

for contact 
secid 

112 
*SECTION_SHELL_TITLE 

mid 
8 

s2 
0 .000 

eosid 
o 

Section for rigid plane for symmetry 
$# secid elform shrf nip 

112 2 0.833300 2 
$# tl 

0 . 000 
t2 

0.000 
*MAT_RIGID_TITLE 

t3 
0 . 000 

Rigid material for contact_entity 

t4 
0 . 000 

$# mid ro e pr 
8 1 . 0000E-9 1.000000 0.300000 

$# cmo 
1.000000 

$# lco or al 
0.000 

conl 
7 

a2 
0.000 

*HOURGLASS_TITLE 

con2 
7 

a3 
0 . 000 

vl 
0 . 000 

Hourglass control for shell elements 
$# hgid ihq qm ibq 

hgid 
1 

s tart 
0.000 

terod 
0.000 

gray 
o 

end 
0.000 

cerod 
0 . 000 

water used here, 

s3 gamao 
0.000 0.110000 

hgid 
o 

gray 
o 

propt qr/ irid 
1 0 

nloc 
0.000 

n 
0.000 

v2 
0 . 000 

marea 
0.000 

couple 
0.000 

v3 
0 .000 

ql q2 
2 4 0 . 100000 0 1.500000 0.060000 

adpopt 
o 

aafac 
0.000 

ym 
0 .000 

tmid 
o 

·pr 
0.000 

a eO 
0 . 000 0.102700 

adpopt 
o 

icomp 
o 

idof 
0.000 

m 

0.000 

tmid 
o 

setyp 
1 

edgset 
o 

alias 

qb/ vdc qw 
0 . 100000 0 . 100000 

*INITIAL_VOLUME_FRACTION_GEOMETRY 
$Fills the outside of the HV with "void" , 

ntrace 
o 

leaving the inside filled with ALE fluid. 
$# fms id fmidtyp bammg 

111 1 0 
$# conttyp 

1 

fillopt 
1 

fammg 
3 

$# sid stype normdir 
310 

*DEFINE_COORDINATE_SYSTEM_TITLE 
Csys 

vx 
0.000 

xoffset 
0.000 

vy 
0.000 

unused 
o 

yz 
0.000 

unused 
o 

unused 
o 

unused 
o 

$# cid xo yo zo xl yl zl 
2 

$# xp 
0.000 

yp 
0.000 -3.600000 0.500000 0.866026 -3.600000 

zp 

unused 
o 

unused 
o 
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-4.430000 -2.558000 -3.600000 
*DEFINE_CURVE_TITLE 
Ventricular pressure 
$ This curve defines 
$# lcid sidr 

$# 

$ 

1 0 
al 

0.000 
0.0100000 
0.0200000 
0.0500000 
0.0800000 
0.1000000 

scaled to EO 
ventricular pressure as a function of EO 

sfa sfo offa offo 
1.000000 9 . 0910E-6 0.000 0 . 000 

01 
11300.000000 
12500.000000 
13600.000000 
15300.000000 
16000.000000 
15500.000000 

$ Further pressure curves follow (omitted) 
$ 
*SET_MULTI-MATERIAL_GROUP_LIST_TITLE 
Fluids that interact with HV 

dattyp 
o 

$This is all the fluid MMGIDs, without the void and the LP region, 
$which shouln't interact with the structure. 
$# ammsid 

1 
$# ammgidl ammgid2 ammgid3 ammgid4 

1 2 0 0 
*SET_MULTI-MATERlAL_GROUP_LIST_TlTLE 
Void 
$# ammsid 

2 
$# ammgidl ammgid2 ammgid3 

3 0 0 
*ALE_MULTl-MATERlAL_GROUP_PART 
$MMID for high pressure inlet 
$# pid 

12 
$ 
$ Further MMGIDs follow (omitted) 

ammgid4 
0 

$ 
*CONSTRAINED_LAGRANGE_lN_SOLID_TlTLE 
$# coupid 

lCoupling sinus 
$# slave master sstyp . mstyp 

3 3 1 0 
$# start end pfac fric 

0.0001. 0000E+l0 0 . 100000 0.000 
$# cq hmin hmax ileak 

0.000 0.000 0 . 000 0 
$# iboxid ipenchk intforc ialesof 

0 0 0 0 
$ 
$ Further CLlS cards follow (omitted) 
$ 
*ELEMENT_SOLID 
$ 

ammgid5 
0 

ammgid5 
0 

nquad 
3 

frcmin 
0.500000 

pleak 
0.010000 

lagmul 
0.000 

$ (Omitted) - these cards define the ALE mesh 
*ELEMENT_SHELL_BETA 
$ 

ammgid6 ammgid7 
0 0 

ammgid6 ammgid7 
0 0 

ctype direc 
4 2 

norm normtyp 
0 0 

ICidpor nvent 
0 0 

pfacmm thkf 
0 0 . 000 

ammgid8 
0 

ammgid8 
0 

title 

mcoup 
-1 

damp 
0 

blockage 
0 

$ (Omitted) - Angles are specified in each element for fibre alignment. These 
$ cards are for leaflet elements only 
*ELEMENT_SHELL 
$ 
$ (Omitted) - These cards are for the sinus and aorta 
*NODE 
$ 
$ (Omitted) - Node definitions 
*END 
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