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Abstract 

The number of people with spinal cord injury (SCI) is increasing every year and 

walking has been found to be the most exciting and important prospect to these 

patients to improve their quality of life. Many individuals with incomplete SCI 

have the potential to walk and everyone of them wants to try. Unfortunately up to 

now, there is less than one third of patients could walk again after SCI. Residual 

function, the orthotic support, energy expenditure, patient motivation and control 

technique are some of the factors that influence the walking outcome of spinal cord 

injured people. In this thesis, a series of studies are carried out to investigate the 

possibility of enhancing the performance of the functional electrical stimulation 

(PES) assisted paraplegic walking with wheel walker through the development and 

implementation of intelligent control technique and spring brake orthosis (SBO) 

with full utilization of the voluntary upper body effort. The main aim of this thesis 

is to enable individuals with complete paraplegia to walk again with maximum 

performance and the simplest approach as possible. 

Firstly, before simulation of the system can be made, it is important to select the 

right model to represent the actual plant. In this thesis, the development of a 

humanoid and wheel walker models are carried out using MSC.visualNastran4D 

(vN4D) software and this is integrated with Matlab Simulink® for simulation. The 

newly developed quadriceps and hamstrings muscle models from the series of 

experiments are used to represent subject muscles after comparison and validation 

with other two well-known muscle models are performed. 

Several experiments are conducted to investigate the effect of stimulation frequency 

and pulse-width in intermittent stimulation with isometric measurement from 

paraplegic subjects. The results from this work can serve as a guidance to determine 

the optimum stimulation parameters such as frequency and pulse-width to reduce 

muscle fatigue during PES application. The ability test is introduced to determine 



the maximum leg force that can be applied to the specific paraplegic subject during 

FES functional task with minimum chance of spasm and leg injury. 

Investigations are carried out on the control techniques implemented for FES 

walking with wheel walker. PID control and fuzzy logic control (FLC) are used to 

regulate the electrical stimulation required by the quadriceps and hamstrings 

muscles in order to perform the FES walking manoeuvre according to predefined 

walking trajectory. The body weight transfer is introduced to increase the efficiency 

of FES walking performance. The effectiveness of body weight transfer and control 

strategy to enhance the performance of FES walking and reduce stimulation pulses 

required is examined. 

Investigations are carried out on the effectiveness of spring brake orthosis (SBO) 

for FES assisted paraplegic walking with wheel walker. A new concept in hybrid 

orthotics provides solutions to the problems that affect current 'hybrid orthosis, 

including knee and hip flexion without relying on the withdrawal reflex or a 

powered actuator and foot-ground clearance without extra upper body effort. The 

use of SBO can also eliminate electrical stimulation pulses required by the 

hamstrings muscle for the same FES walking system. 

Further improvement of the FES walking system is achieved by introducing finite 

state control (FSC) to control the switching time between springs, brakes and 

electrical stimulation during FES assisted walking with wheel walker with the 

combInation of FLC to regulate the electrical stimulation required for the knee 

extension. The results show that FSC can be used to accurately control the 

switching time and improve the system robustness and stability. 

ii 



Acknowledgements 

In the name of Allah, the Most Merciful and Most Gracious. Praise is for Allah, 

Lord of the world, Guide of the bewildered and joiner of those who are severed; 

Whose help we seek in worldly matters and in religion. May His blessings and 

peace be upon our noblest of Prophets and Messengers, Prophet Muhammad 

S.A.W, the Truthful and Trustworthy, and upon his Family, and Companions, and 

all those who excel in following them until the Day of Reckoning. 

I am deeply indebted to my supervisor, Dr. M. Osman Tokhi for the many helpful 

suggestions and excellent discussions to improve the thesis in many ways. I also 

would like express my sincere gratitude to Dr. Samad Gharooni for his help. 

This appreciation also includes my fellow research colleagues and all staffs in the 

Department of Automatic Control and System Engineering, University of Sheffield 

for their advice and assistance during the execution of the project. Thanks go to the 

Malaysian Government and Universiti Teknologi MARA for the financial support 

during my PhD. 

Lastly, it would not be possible for me to complete this project without the moral 

support from my loving husband, Zamali Zamin, my daughter, Nur Alya Farzana 

and my son, Muhammad Ammar Luqman. They have sacrificed a lot due to my 

study abroad. 

Last but not least, my special thanks to my loving mother, Rahmah Sayed Jonid, 

my sisters and brothers, all my family members and my friends for their 

understanding, support and encouragement through the years. 

111 



Table of Contents 

Abstract 

Acknowledgement iii 

Table of Contents iv 

List of Figures ix 

List of Tables xiii 

CHAPTER 1: Introduction 

1.1. Overview 1 

1.2. Spinal Cord Injury 2 

1.3. Functional Electrical Stimulation 4 

1.4. PES-Assisted Walking 8 

1.5. Research Objectives 9 

1.6. Contributions 10 

1.7. Thesis Outlines 13 

1.8. Publications 15 

Refereed J oumals 15 

Refereed Conference Proceedings 15 

Award 18 

CHAPTER 2 : Modelling of Humanoid with Wheel Walker And Identification of 

Passive Leg Parameters 

2.1. Introduction 19 

2.2. Modelling of Humanoid with Wheel walker 20 

2.2.1. Visual Nastran Software 20 

2.2.2. Humanoid Model 22 

2.2.3. Wheel Walker Model 27 

2.2.4. Visual Nastran in Matlab/Simulink 29 

iv 



2.3. Identification of Passive Leg Parameters 

2.4. Optimisation Techniques 

2.4.1. Genetic Algorithm 

2.4.1.1. GA operation 

2.4.1.2. GA operators 

2.4.2. Particle Swann optimisation 

2.5. Optimisation of Leg Passive Parameters 

2.5.1. Passive Pendulum Test 

2.5.2. Measurement and Estimation 

2.5.3. Visual Nastran leg Model 

2.5.4. Parameter Optimization 

2.5.5. Results 

2.6. Summary 

CHAPTER 3 : Muscle Model 

3.1. Introduction 

3.2. Physiology of Human Muscle 

3.2.1. The motor Unit 

3.3. Muscle Model 

3.3.1. Riener's Muscle Model 

3.3.1.1. Muscle Activation 

3.3.1.2. The calcium dynamics 

3.3.1.3. Muscle fatigue 

3.3.1.4. Force-velocity relation 

3.3.1.5. Maximum isometric muscle force 

3.3.2. Ferrarin's muscle Model 

3.4. Adaptive Neuro-Fuzzy inference System (ANFIS) 

3.4.1. ANFIS Architecture 

3.4.2. Hybrid Learning Algorithm 

3.5. Development of Muscle Model 

3.5.l. Quadriceps Muscle Model 

v 

30 

31 

32 

33 

34 

35 

37 

37 

38 

40 

41 

42 

46 

47 

48 

50 

53 

57 

58 

59 

60 

60 

62 

62 

65 

65 

67 

72 

72 



3.5.2. Hamstrings Muscle Model 

3.6. Results 

3.6.1. Quadriceps Muscle Model 

3.6.2. Hamstrings Muscle Model 

3.7. Summary 

CHAPTER 4 : Muscle Fatigue 

4.1. Introduction 

4.2. Muscle Fatigue in Human muscle 

4.3. Muscle Fatigue Test 

4.4. Paraplegic Ability test 

4.5. Results 

4.5.1. Muscle Fatigue Test 

4.5.2. Paraplegic Ability Test 

4.6. Summary 

CHAPTERS: Control of FES-Assisted Walking with Wheel Walker 

5.1. Introduction 

5.2. Control of PES for Paraplegic 

5.3. Walking Gait and Predefined Reference Trajectories 

5.4. Control of PES-Assisted Walking with Wheel Walker 

5.4.1. PID Controller 

5.4.2. Fuzzy Logic Controller 

5.4.2.1. Fuzzy sets 

5.4.2.2. Fuzzification 

5.4.2.3. Fuzzy inference mechanism 

5.4.2.4. Fuzzy rule base 

74 

75 

75 

79 

82 

84 

84 

85 

87 

89 

90 

90 

94 

95 

96 

96 

97 

98 

100 

100 

101 

102 

103 

104 

105 

5.4.2.5. Defuzzification 106 

5.5. Control of PES Walking Control of Output Torque for PES-Assisted Walking 108 

5.5.1. Implementation of PID control design 109 

vi 



5.5.2. Implementation of FL control design 

5.5.3. Results and Discussion 

5.6. Control of Stimulation Pulse Width for FES-Assisted Walking 

5.6.1. Implementation of PID control design 

110 

112 

115 

116 

5.6.2. Implementation of FL control design 117 

5.6.3. Results and Discussion 118 

5.7. Control of Stimulation Pulse Width for FES-Assisted Walking with Body Weight 

Transfer 122 

5.7.1. Implementation of FL control,design 

5.7.2. Results and Discussion 

5.8. Summary 

CHAPTER 6 : Spring Break Orthosis 

6.1. Introduction 

6.2. Hybrid Orthosis 

6.3. Walking Gait in SBO 

6.3.1. Segment Interaction 

6.3.2. Hip Flexion Kinetics 

6.3.3. The Swing Phase of SBO 

6.4. The Development of SBO 

6.4.1. Brakes 

6.4.1.1. Maximum brake torques 

6.4.2. Springs 

6.5. Control of Knee Extension 

6.5.1. Fuzzy Logic Controller for ~nee Extension 

6.5.2. PID Controller for Knee Extension 

6.6. Simulation Results 

6.6.1. Fuzzy Logic Controller 

6.6.2. PID Controller 

6.6.3. Comparison with and without SBO 

6.7. Summary 

vii 

122 . 

123 

126 

128 

128 

129 

134 

134 

135 

139 

141 

141 

142 

144 

145 

146 

149 

150 

151 

152 

153 

154 



CHAPTER 7: Finite State Control for FES Walking with SBO 

7.1. Introduction 

7.2. Finite State Control in FES 

7.3. FSC in FES Walking with SBQ· 

7.4. Results 

7.5. Summary 

CHAPTERS: CONCLUSION 

8.1. Conclusion 

8.2. Recommendation for Further Work 

viii 

155 

155 

156 

158 

163 

165 

166 

166 

171 



List of Figures 

Figures 

Figure 1.1: Levels of injury and extend of paralysis (Hassan, 2009) 

Figure 1.2: Muscle contraction using PES (FESNW, 2010) 

Figure 1.3: Single-channel monopolar stimulation of one muscle near its motor 

point is shown for a surface, percutaneous, and implanted system. 

Stimulator (S), anode (A) (reference electrode), 

cathode (C) (active electrode), external control unit (ECU) 

Figure 2.1: Basic Modelling Steps for vN4D for Windows 

Figure 2.2: Human dimensions, Winter (2005) 

Figure 2.3: Humanoid using vN4D (a) with and (b) without the position of 

centre of gravity 

Figure 2.4: Wheel walker (Anonymous, 2010) 

Figure 2.5: Wheel walker model using vN4D 

Figure 2.6: Humanoid model with wheel walker 

Figure 2.7: Block diagram of vN4D model in Matlab/Simulink 

Figure 2.8: Flowchart of working principle of genetic algorithm 

Figure 2.9: Flowchart of working principle of particle swarm optimization 

Figure 2.10: Passive pendulum test 

Figure 2.11: Passive pendulum test output 

Figure 2.12: vN4D leg model 

Figure 2.13: Block diagram of GNPSO parameter optimization applied to 

the vN4D leg model 

Figure 2.14: Stiffness computed from subje~t during first six half-cycle. 

F is stiffness in flexion; E is stiffness in extension 

Figure 2.15: Damping computed from subject during first six half-cycle. 

F is stiffness in flexion; E is stiffness in extension 

Figure 2.16: Convergence curve for GA and PSO 

Figure 2.17: Comparison between the knee angle measured during the passive 

pendulum test (solid line), simulated by vN4D with parameters from 

ix 

Page 

4 

6 

7 

21 

23 

26 

27 

28 

28 

29 

33 

36 

38 

39 

41 

41 

43 

44 

45 



GA (dashed line) and simulated by vN4D with parameters from 

PSO (dashed-dotted line) 45 

Figure 3.1: Structural and organisational levels of skeletal muscle (Anonymous, 2010) 49 

Figure 3.2: Motor unit activate the muscle fibers by receive the signal from the brain 

through the spinal cord (Bailey bio, 2010) 51 

Figure 3.3: Hill Model (Vignes, 2004) 53 

Figure 3.4: The physical model of sarcomere introduced by Huxley (1957) 54 

Figure 3.5: Huxley model (Winter, 1990) 55 

Figure 3.6: Zajac Model (Zajac, 1986) 56 

Figure 3.7: Muscle contraction Model (Riener et aI., 1998) 58 

Figure 3.8: Muscle activation model 58 

Figure 3.9: Schematic representation of a free swinging leg, with surface stimulation 

of the quadriceps muscle (Ferrarin and Pedotti, 2000) 63 

Figure 3.10: (a) A two-input first order Sugeno fuzzy model with two rules; 

(b) Equivalent ANFIS architecture 65 

Figure 3.11: MultiStick gel surface electrodes 73 

Figure 3.12: RehaStim Pro 8 channels stimulator 73 

Figure 3.13: Training data set 75 

Figure 3.14: Convergence curve for ANFIS 76 

Figure 3.15: Output from the testing data set 77 

Figure 3.16: Prediction error from the testing data set 77 

Figure 3.17: Graph show the comparison between ANFIS, Riener and 

Ferrarin muscle models 79 

Figure 3.18: Hamstrings training data set 80 

Figure 3.19: Convergence curve for ANFIS training of hamstrings muscle model 81 

Figure 3.20: Output from testing data set 81 

Figure 3.21: Prediction error from the testing data set 82 

Figure 4.1: Peak force for 75 stimulations with different stimulation frequencies 90 

Figure 4.2: ~ Peak force distribution of 75 stimulations for different stimulation 

Frequencies 91 

Figure 4.3: Peak force of 75 stimulations for different stimulation pulse widths 92 

Figure 4.4: Peak force distribution of 75 stimulations for different stimulation 

x 



pulse widths 

Figure 5.1: Gait cycle (Anonymous, 2011) 

Figure 5.2: Reference trajectory based on Winter (1990) used in this study 

Figure 5.3: Basic fuzzy logic controller architecture 

Figure 5.4: Triangular membership functions 

Figure 5.5: CoG defuzzification methods on a fuzzy output 

Figure 5.6: Max-min inferencing and CoG defuzzification method 

Figure 5.7: PES-assisted walking with wheel walker designed in vN4D 

Figure 5.8: Block diagram of PID controller, for PES-assisted walking without 

muscle model 

Figure 5.9: Fuzzy membership functions 

Figure 5.10: Block diagram of FL controller for PES-assisted walking without 

muscle model 

Figure 5.11: Reference and actual trajectories from PID and FLC 

Figure 5.12: Quadriceps torque required from PID and FLC 

Figure 5.13: Hamstrings torque required from PID and FLC 

Figure 5.14: Integral of knee torque of PID and FLC 

Figure 5.15: Block diagram of PID controller for PES-assisted walking with 

92 

98 

99 

102 

104 

107 

108 

109 

110 

110 

112 

113 

114 

114 

115 

muscle model 116 

Figure 5.16: Block diagram of FL controller for PES-assisted walking with 

muscle model 118 

Figure5.17: (a) Reference and actual trajectories from PID and FLC for left knee, 

(b) Reference and actual trajectories from PID and FLC for right knee 119 

Figure 5.18: Stimulation pulse width for quadriceps muscles 120 

Figure 5.19: Stimulation pulse width for hamstring muscles 120 

Figure 5.20: (a) Integral of stimulation pulse width for quadriceps muscles, 

(b) Integral of stimulation pulse width for hamstrings muscles, 

(c) Integral of stimulation pulse width for combination of 

-quadriceps and hamstrings muscles 

Figure 5.21: Body weight transfer in walking cycle 

Figure 5.22: Reference and actual trajectories from with and without BWT 

Figure 5.23: Stimulation pulse width from quadriceps muscle 

xi 

121 

122 

124 

125 



Figure 5.24: Stimulation pulse width from Ham 

Figure 5.25: Integral of stimulation pulse width for combination of quadriceps 

and hamstrings muscles 

Figure 6.1: Power orthosis (Ferris et aI., 2005) 

Figure 6.2: Reciprocating Gait Orthosis (Solomonov et aI., 1997) 

Figure 6.3: Controlled-Brake Orthosis (Kobetic et aI., 2009) 

Figure 6.4: Bench model physical prototype of energy storage orthosis 

(Durfee and Rivard, 2005) 

Figure 6.5: Hip flexion resulting from flexed. knee 

Figure 6.6: Static relation between knee and hip flexion angle 

Figure 6.7: Hip flexion angle produced in the knee flexion 

Figure 6.8: Spring for knee flexion in SBO 

Figure 6.9: SBO swing phase synthesis 

Figure 6.10: (a) Brake used in SBO (b) Brake for knee and hip in SBO 

Figure 6.11: Spring parameters in SBO simulation test 

Figure 6.12: Fuzzy membership functions 

Figure 6.13: Block diagram of the FL control system 

Figure 6.14: Block diagram of the PID control system 

125 

126 

130 

131 

132 

133 

136 

136 

137 

138 

140 

143 

145 

147 

149 

149 

Figure 6.15: Stimulation pulse-width, knee and hip trajectory for complete walking gait 151 

Figure 6.16: Sti'mulation pulse-width, knee and hip trajectory of FLC for 

complete walking gait 

Figure 6.17: Stimulation pulse-width and knee trajectory of PID control for 

complete walking gait without SBO 

152 

153 

Figure 7.1: Finite state operation 156 

Figure 7.2: FSC state flow diagram 160 

Figure 7.3: The switching period for the FES, spring, hip and knee brake for both legs 162 

Figure 7.4: FSC ofFES walking with SBO block diagram 163 

Figure 7.5: Stimulation pulse-width, knee and hip trajectory for with and without 

-FSC of FES walking with SBO 164 

xii 



List of Tables 

Tables Page 

Table 2.1: Body segment length 24 

Table 2.2: Body segment mass 25 

Table 2.3: Segment location of centre of mass, density and volume for 

humanoid model 25 

Table 2.4: Properties of the humanoid joints 26 

Table 2.5: Specification of wheel walker model 27 

Table 4.1: Percent decline in peak force and maximum muscle force for different 

stimulation frequencies 93 

Table 4.2: Percent decline in peak force and maximum muscle force for different 

stimulation pulse widths 93 

Table 5.1: Fuzzy rules for leg extension 111 

Table 5.2: PID controller parameters for PES walking with muscle model 117 

Table 5.3: FLCs' scaling factor for PES walking with muscle model 118 

Table 6.1: Fuzzy rules for leg extension 148 

Table 7.1: State description of the FSC of PES walking with SBO 160 

xiii 



Chapter 1 

Introduction 

1.1 Overview 

Paraplegia is impairment in motor and/or sensory function of the lower extremities. 

It is usually the result of spinal cord injury (SCI) which affects the neural elements 

of the spinal canal. The prevalence of SCI is not well known in many countries. In 

some countries, such as Sweden and Iceland, registries are available. According to 

new data initiated by the Christopher & Dana Reeve Foundation, there are nearly 1 

in 50 people living with paralysis; approximately 6 million people. That number is 

nearly 33% higher than previously estimated in 2007 (CDRF, 2010). In the United 

Kingdom, incident of SCI are 10 to 15 per million people per annum which are 600 

to 900 new cases per year (Swain and Grundy, 2002). Sisto et al. (2008) reported 

that more than 200,000 people in the United States (US) suffer from SCI and each 

year more than 10,000 new cases occur while in China there are approximately 60, 

000 new cases per year (Qiu, 2009). 

The majority of SCI (61 %) comprise of male population and 39% are female. The 

average age for spinal cord injuries is 48 years old. These injuries result from motor 

vehicle accidents (24%), work-related accidents (28%), sport/recreation accidents 

(16%), falls (9%), natural disaster (1%), birth defect (3%), victim violence (4%) 

and unknown reason (9%) (CDRP, 2010). Quadriplegia is slightly more common 

than paraplegia. 

Brown-Triolo et al. (1997) found that 51 % of SCI subjects defined mobility in 

terms of life impact and autonomy, and gait was found to be perceived as the first 

choice in possible technology applications. Their subjects also indicated willingness 
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to endure time intensive training and undergo surgery operation if mobility is 

guaranteed. Therefore, solutions to mobility loss were seen as an exciting prospect 

to these patients. 

1.2 Spinal Cord Injury 

A SCI usually begins with a sudden, damage or traumatic blow to the spinal cord 

that fractures or dislocates verteb~ae and results in "a loss or impaired function 

causing reduced mobility orland feeling (Apparelyzed, 2010). The damage begins 

at the moment of injury when displaced bone fragments, disc material, or ligaments 

bruise or tear into spinal cord tissue. Instead, an injury is more likely to cause 

fractures and compression of the vertebrae, which then crush and destroy the axons, 

extensions of nerve cells that carry signals up and down the spinal cord between the 

brain and the rest of the body. An injury to the spinal cord can damage a few, many, 

or almost all of these axons. Some injuries will allow almost complete recovery but 

others will result in complete paralysis (NIND, 2010). 

Spinal cord injury can occur from many causes, common causes of damage are 

trauma (automobile crashes, gunshot, falls, sports injuries, war injuries, etc.) or 

disease (Transverse Myelitis, Vascular malformations, development disorders, 

Ischemia, Tumor, Polio, Spina Bifida, Friedreich's Ataxia, etc.). The spinal cord 

does not have to be severed in order for a loss of function to occur. In most people 

with SCI, the spinal cord is intact, but the cellular damage to it results in loss of 

function. 

SCIs are classified as either complete or incomplete. An incomplete injury means 

that the ability of the spinal cord to convey messages to or from the brain is not 

completely lost. In an incomplete injury, some sensation and/or movement below 

the level of the injury is retained. A person with an incomplete injury may be able 

to move one limb more than another, may be able to feel parts of the body that 
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cannot be moved, or may have more functionality on one side of the body than the 

other. With the advances in acute treatment of SCI, incomplete injuries are 

becoming more common. Recent evidence suggests that over 95% of people with 

incomplete SCI recover some locomotor function. On the other hand, a complete 

injury is indicated by a total lack of voluntary movement, sensory and motor 

function below the level of injury. Both sides of the body are equally affected. 

Recent evidence suggests that less than 5% of people with complete SCI recover 

locomotion. People who survive on SCI will most likely have medical 

complications such as chronic pain and bladder and b~~.el dysfunction, along with 

an increased susceptibility to respiratory and heart problems. Successful recovery 

depends upon how well these chronic conditions are handled every day 

(Apparelyzed, 2010). 

The spinal cord is about 18 inches long and extends from the base of the brain, 

down the middle of the back, to about the waist. The nerves that lie within the 

spinal cord are upper motor neurons (UMNs) and their function is to carry the 

messages back and forth from the brain to the spinal nerves along the spinal tract. 

The spinal nerves that branch out from the spinal cord to the other parts of the body 

are called lower motor neurons (LMNs). These spinal nerves exit and enter at each 

vertebral level and communicate with specific areas of the body. The sensory 

portions of the LMN carry messages about sensation from the skin and other body 

parts and organs to the brain. The motor portions of the LMN send messages from 

the brain to the various body parts to initiate actions such as muscle movement 

(Apparelyzed, 2010). 

Generally, the higher in the spinal column the injury occurs, the more dysfunction a 

person will experience. Figure 1.1 shows the level of injury and extent of paralysis. 

Cervical SCI's usually cause loss of movement and sensation in all four limbs, both 

.. arms and legs resulting in quadriplegia. It usually occurs as a result of injury at T1 

or abo~e. Quadriplegia also affects the chest muscles and injuries at C4 or above 

affects the respiratory muscles and the ability to breathe where it requires a 

mechanical breathing machine (ventilator). The twelve vertebras in the chest are 
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called the Thoracic Vertebra. The first thoracic vertebra, Tl, is the vertebra where 

the top rib attaches. Injuries in the thoracic region usually cause loss of movement 

and sensation in the lower half of the body affecting the chest, right and left legs 

and is called paraplegia. The sacral vertebra runs from the Pelvis to the end of the 

spinal column. Injuries to the five Lumbar vertebra (L 1 - L5) and similarly to the 

five Sacral Vertebra (S 1 - S5) may affect nerve and muscle control to the bladder, 

bowel, and legs. 

C4 injury (quadriplegia) _ 

C6 injury-----­
(quadriplegia) 

ervica[ 

T6 injury----~,~ 
(paraplegia) -Thoracic 

LI injury 
(paraplegia) - occygeal 

Figure 1.1: Levels of injury and extend of paralysis (Hassan, 2009) 

1.3 Functional Electrical Stimulation 

Functional electrical stimulation (FES) is a safe technique that produces 

contractions in muscles by means of small electrical stimulation to stimulate the 

physical or bodily functions lost through nervous system impairment, caused by 

paralysis resulting from SCI, head injury, stroke or other neurological disorders. 

FES has been used widely in rehabilitation for therapy, function restoration and 
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maintenance of vital function in muscle weakness and/or paralysis. It was first 

introduced as functional electrotherapy by Liberson in 1961 to correct foot drop in 

people with stroke and later with people with multiple sclerosis from 1977 

(Liberson et aI., 1961). A year later, Moe and Post (IFESS; 2010) changed the name 

to functional electrical stimulation and the name remains so until now. 

Stimulation is delivered as a waveform of electrical current pulses, which are 

characterized by three parameters: pulse frequency, amplitude, and duration. Figure 

1.2 shows that the nerve sends a message received frq1U 2 FES electrodes to the 

muscle it supplies to contract. The strength of muscle contraction is controlled by 

manipulating those parameters. If the pulse frequency is too low, the muscle 

responds with a series of twitches. Above a certain stimulation frequency, known as 

the fusion frequency, the response becomes a smooth contraction. The cumulative 

effect of repeated stimuli within a brief period of time is known as temporal 

summation. Higher stimulus frequencies produce stronger muscle contractions up 

to a maximum, but also increase the rate of muscle fatigue. The strength of a 

muscle contraction may also be increased by increasing the number of motor units 

acti vated, an effect known as spatial summation. This is achieved by increasing the 

stimulus pulse amplitude and/or pulse duration, which effectively increases the 

electric charge injected, producing a larger electric field and broader region of 

activation so that more axons and motor units are activated (Crago et aI., 1980). In 

most neuroprostheses, the strength of muscle contraction is controlled by 

modulating the pulse amplitude or pulse duration, and the stimulus frequency is set 

constant and as low as possible to avoid fatiguing the muscle prematurely. 
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Figure 1.2: Muscle contraction using FES (FESNW, 2010) 

The electrical stimulation may be delivered using surface, percutaneous, or 

implanted systems (Figure 1.3). Surface systems, sometimes referred to as 

transcutaneous systems, utilize electrodes that are placed on the skin and are 

connected with flexible leads to a stimulator that may be worn around the waist, the 

arm, or the leg. Usually, a sensor or switch that controls the stimulation is also 

connected to the stimulator. Surface electrodes are readily available in a variety of 

sizes from many manufacturers. 

The electrodes are placed on the skin over the nerves or over the motor points of 

muscles to be activated. The advantages of surface systems are that they are non­

invasive and relatively technologically simple. Therefore, these systems are easily 

applied in the clinic, easily reversible, and relatively inexpensive, making them 

especially well utilized in therapeutic applications. However, the repeated 

placement of electrodes in appropriate locations to get the desired response requires 

skill and patience. Also, it can be difficult to achieve isolated contractions or 

activate deep muscles. 
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Surface Percutaneous Implant 

J ECU L Control S ! Inputs 

0 ------­
COO~ 

A 

Figure 1.3: Single-channel monopolar stimulation of one muscle near its motor point is shown 

for a surface, percutaneous, and implanted system. Stimulator (S), anode (A) (reference 

electrode), cathode (C) (active electrode), external control unit (ECU). 

Percutaneous systems make use of intramuscular electrodes that pass through the 

skin and are implanted into the muscle to be activated. Percutaneous electrodes can 

activate deep muscles, can provide isolated and repeatable muscle contractions, and 

are less likely to produce pain during stimulation because they bypass the sensory 

afferents in the skin. An electrode is inserted through the skin and implanted in the 

muscle using a hypodermic needle. The electrode leads exit the skin and are 

connected to external stimulation equipment. A large surface electrode is used as 

the return electrode. The percutaneous interface on the skin is protected by placing 

a junction connector over the skin surface where the electrodes exit. Percutaneous 

systems provide a minimally invasive technique for investigating the feasibility of 

restoring functional muscle contractions without having to prematurely subject 

research participants to implantable system surgery. 

Implanted neuroprosthetic systems are designed for long-term use. Unlike surface 

and percutaneous systems, the stimulator is implanted, eliminating the need for 

wiring outside of the body to an external stimulator. The implanted electrodes are 

connected by leads under the skin to the implanted stimulator. Thus, the electrodes 

can be made wi th larger and more durable leads because they do not pass through 

the skin. They are often connected to the stimulator using in-line connectors, which 

permit the surgical removal and replacement of individual electrodes if necessary. 

Currently, applications of FES include standing, walking, cycling, rowing, 

ambulation, grasping, male sexual assistance, bowel-and-bladder function control 

and respiratory control. FES can also be used as an exercise system for paralysed 
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muscles in order to increase muscle bulk, improve blood flow, and improve skin 

condition. In many cases patients have reported reduction in spasticity of opposing 

muscle groups, as a side benefit of using FES. 

1.4 FES-assisted Walking 

The vital aim of lower extremity FES systems is to" enable individuals with 

complete paraplegia to walk again. Walking involves a translation of the body's 

centre of gravity through a space in a safe manner along a pathway requiring the 

least energy. Paraplegics are physically disabled in most cases and some people 

may be able to walk to a certain extent. One way to accomplish this task is to 

provide them with assistive devices, such as crutches (Bajd et aI., 1992, 1994; 

Zefran et aI., 1996), walker (Dutta et aI., 2008; Hu et aI., 2004; Popovic et aI., 1999; 

Scheiner et aI., 1994; Zhaojun et aI., 2006), braces (Marsolais and Mansor, 1992), 

orthosis (Hendershot and Philips, 1988; Jaspers et aI., 1996; Solomonow et aI., 

1992) and walk trainer (Bouri et aI., 2006). 

The physiological benefits of standing and walking for persons with paraplegia 

were first mentioned by Abrahamson in 1948 (Abrahamson, 1948), who stated that 

an hour of standing each day will prevent osteoporosis in the lower limbs and will 

help to prevent urinary calculi and genitourinary infections. Walking for 

paraplegics also can increase their physical fitness, bone mass density, 

independence and quality of life. Kralj and Bajd (1989) introduced the technique of 

eliciting a flexion withdrawal reflex of the hip, knee and ankle by stimulating the 

peroneal nerve using a single electrode, to produce lower extremity motion toward 

the swing phase of walking gait. Graupe and Kohn (1998) introduced ParastepTM 

that uses four to six channels of bilateral surface stimulation of quadriceps, proneal 

nerves and if necessary the glutei to enable paraplegia to walk for a" short distance 

with help of walker. Before that, they used EMG signals as a feedback to control 

the FES stimulation for the same purpose (Graupe, 1989, Graupe et aI., 1982, 
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1989). 

Quigley M. J. (1977) reported that only about two percent paraplegic will reach the 

level of household ambulation. The main reason is that paraplegic needs more 

energy to ambulate using orthosis and the procedure for most orthoses is difficult 

and time consuming. Clinkingbeard et al. (1964) found that a paraplegic expends 

nine times more energy per meter than a normal person walking at a comfortable 

speed. Moreover, Mikelberg and Reid (1981) in their 5 years study found that 50% 

of patients for whom orthoses were prescribed did not .use them. Therefore, a new 

orthosis design which can reduce the energy expenditure, is safe and practical is 

aimed to improve the acceptance of orthoses. Similar to the hybrid PES activity, the 

performance of PES-assisted walking gait can be enhanced through the 

implementation of an efficient control strategy. Suitable electrical stimulation to the 

muscle is required in achieving a smooth and well coordinated walking gait. 

1.5 Research Objectives 

The main aim for this research is to develop a reliable, effective, safe and 

affordable PES-assisted paraplegic walking with wheel walker. In order to achieve 

this aim successfully, several research objectives are set as follows: 

1. To develop the humanoid and wheel walker models that duplicate the 

subject and actual wheel walker used in this research as accurate as 

possible using suitable software. 

2. To optimize the subject's leg properties based on pendulum test using 

evolutionary algorithms to complete the humanoid model developed in 1. 
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3. To carry out a muscle fatigue test to investigate the effect of stimulation 

parameters on the subject's muscle fatigue. Also, to perform tests to 

examine the subject's leg limitation. 

4. To develop a muscle model based on experimental data obtained from the 

subject. This will ensure that the developed model representing the 

subject's muscle is as accurate as possible. 

5. To develop intelligent control strategies for .PES-assisted walking with 

wheel walker that is able to deliver correct amount of electrical stimulation 

to the muscle to achieve smooth and safe walking gait. 

6. To minimize the electrical stimulation applied to the quadriceps and 

hamstrings muscle by introducing a body weight transfer technique and a 

novel spring brake orthosis to assist walking process so that it is more 

efficient, effective, smooth, safe and reliable. 

1.6 Contributions 

The main contributions of the research can be highlighted as follows: 

Modelling the dynamic humanoid FES-walking with wheel walker: In this 

study, the wheel walker and humanoid are modelled using dynamic computer aided 

software called MSC.visualNastran4D (vN4D). The humanoid model is built up 

using anthropometric data obtained from the subject used in this research while the 

wheel walker model is duplicated from a real wheel walker available in the market. 

The~· vN4D combines CAD, motion, physics-based animation and finite element 

analysis' (PEA) simulation into a single functional modelling system. The vN4D 

enables engineers to simulate how a design behaves under real world conditions 
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without having to solely rely on costly physical prototypes. This is a new method of 

simulating the system performance without placing the subject to risk. 

Optimizing subject leg's stiffness and damping: In' this study, evolutionary 

algorithms, genetic algorithm (GA) and particle swarm optimisation (PSO) are used 

to optimize stiffness and damping of subject leg based on passive pendulum test 

output obtained from the subject. This will make the model developed imitate the 

subject used as accurate as possible. The current method of obtaining these 

parameters is by using mathematical equations, so ~ar. the use of evolutionary 

algorithm approach to estimate these parameters has not been reported yet. 

Novel muscle model: This research has successfully developed a novel muscle 

model for paraplegic. The muscle model is developed based on experimental data 

obtained from the paraplegic. The muscle model has been compared with two well­

known muscle models developed previously by other researchers. 

Investigation of the effect of FES on paraplegic muscle fatigue: In this research, 

the effect of FES on muscle fatigue has been examined. The results from this study 

indicate the best selection of stimulation parameters that can be used for the 

particular functional task. A simple rule has also been introduced to calculate 

paraplegic maximum ability that can be used to avoid leg spasm orland leg injury 

during and after stimulating paraplegic leg. The main contributions in this area are 

the identification of leg performance and optimum stimulation parameters. So far, 

there is no publication available to obtain optimum stimulation parameters of FES 

for the paraplegic and most of the previous research obtain stimulation parameters. 

Intelligent control of FES-walking: In this research, intelligent control techniques 

using fuzzy logic and PID control are proposed to regulate the stimulation pulse 

.wid~th required by the quadriceps and hamstrings muscles in order to perform a 

smooth walking gait.. Both controllers are able to track predefined walking 

trajectories thoroughly but fuzzy logic control uses less electrical stimulation 
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compared to PID control. In this respect, the effectiveness of these two controllers 

is investigated. 

Body weight transfer technique to reduce electrical stimulation: In this 

research, a new body weight transfer (BWT) technique is introduced. This 

technique can improve the paraplegic walking performance by reducing the 

electrical stimulation required. BWT is practical technique that can be applied to 

paraplegic walking with wheel walker. 

Spring brake orthosis for FES-walking: In this research, a new methodology for 

paraplegic gait, based on exploiting natural dynamics of human gait, is introduced. 

The work is a first effort towards restoring natural like swing phase in paraplegic 

gait through a new hybrid orthosis, referred to as spring brake orthosis (SBO). This 

mechanism simplifies the ,control task and results in smooth motion and more­

natural like trajectory produced by the flexion reflex for gait in spinal cord injured 

subjects. SBO was first introduced in 2001 by Gharooni for leg swing and in this 

thesis the work is extended to increase paraplegic walking performance using SBO. 

Finite state control for FES-walking with SBD: In this research, finite state 

control is developed for the implementation of intention detection and activity co­

ordination levels of hierarchical control in PES-walking and SBO mechanism. The 

finite state control is proposed to automatically control the output from the fuzzy 

logic used to control the stimulation pulse widths required by the quadriceps 

muscles and control the switch of the brake used in SBO while the subject 

voluntarily performs the upper body part manoeuvre with the help of wheel walker. 

This study proposes a novel approach which is used to increase the stability and 

efficiency of PES-walking with SBO. 
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1.7 Thesis Outlines 

Chapter 1: This chapter defines SCI and introduces the theory and brief history of 

FES for person with SCI. Moreover, this chapter defines the problem and 

significance of FES for paraplegic mobility. Additionally, the objectives and 

contributions of the research are described in detail. Finally, the list of publications 

and achievement arising from this research work are provided. 

Chapter 2: This chapter illustrates the process of modelling of humanoid and 

wheel walker using the vN4D environment. This chapter describes the optimisation 

process of leg's passive parameters using ev~lutionary algorithms. Two different 

evolutionary algorithms used are genetic algorithm (GA) and particle swarm 

optimisation (PSO). Results from both algorithms are compared with the 

measurement and estimation made using mathematical equations published earlier. 

The best results obtained are then used to complete the humanoid model. 

Chapter 3: This chapter describes the anatomy and physiology of the human 

skeletal muscle. This chapter also presents the development of paraplegic 

quadriceps and hamstrings muscle model using adaptive neuro-fuzzy inference 

system (ANFIS). A series of experiments using FES with different stimulation 

frequency, pulse width and pulse duration to investigate the behaviour of output 

muscle torque is conducted. The data thus collected is used to develop the 

paraplegic muscle model. 

Chapter 4: This chapter compares isometric performance and paraplegic muscle 

fatigue using two different prot9cols: pulse-width modulation and frequency 

modulation. Muscle performance is assessed by measuring percent decline in peak 

. force and maximum muscle force for different stimulation frequencies and pulse 

widths. A simple rule is introduced to avoid spasm or injury to the leg during FES 

application. 
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Chapter 5: This chapter describes a simulation of bipedal locomotion to generate 

stimulation pulses for activating muscles for paraplegic walking with wheel walker 

using FES. The study is carried out with a model of humanoid with wheel walker 

using the vN4D dynamic simulation software. The developed stimulated muscle 

models of quadriceps and hamstrings discussed in chapter 3 are used for knee 

extension and flexion. Proportional-integral-derivative (PID) and fuzzy logic 

control (FLC) are designed in Matlab/Simulink to regulate the muscle stimulation 

pulse-width required to drive FES-assisted walking gait and the computed motion is 

visualised in graphic animation from vN4D. The bqdy weight transfer (BWT) 

technique is introduced to improve the paraplegic walking performance. 

Chapter 6: This chapter introduces a new methodology for paraplegic gait, based 

on exploiting natural dynamics of human gait. The work is a first effort towards 

restoring natural like swing phase in paraplegic gait through a new hybrid orthosis, 

referred to as spring brake orthosis (SBO). This mechanism simplifies the control 

task and results in smooth motion and more-natural like trajectory produced by the 

flexion reflex for gait in spinal cord injured subjects. Stimulated muscle model of 

quadriceps is need for knee extension. A comparison of performance of FLC and 

PID control for knee extension using SBO is provided and the best controller is 

obtained. 

Chapter 7: This chapter investigates the effectiveness of finite state control (FSC) 

to control walking gait and SBO switching sequences. This technique can reduce 

the need for sensor in SBO alone. The results obtained are discussed. 

Chapter 8: This chapter summarizes the thesis with highlight remarkable 

achievements and concludes the work. Future research directions and 

recommendations are also presented. 
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Chapter 2 

Modelling of Humanoid with Wheel Walker 

and Identification of Passive Leg Parameters 

2.1 Introduction 

In order to simulate a system and control its operation accurately, it is important to 

choose the right model for the plant. This chapter illustrates the way humanoid with 

wheel walker using MSC.visualNastran 4D (vN4D) is modelled. The vN4D 

software is selected for this project where it combines computer aided design 

(CAD), motion, finite element analysis (FEA) and control technologies into a single 

functional modelling system. It can be linked to Matlab/Simulink control system 

within a single program. The Matlab/Simulink software is chosen to build the 

control system and simulate the system in real-time. 

This chapter also presents investigations into pendulum test to measure passive 

knee motion from a paraplegic subject. The test is used to evaluate changes in the 

knee angular displacement, passive stiffness and damping. Then, genetic algorithm 

(GA) and particle swam optimisation (PSO) are used with vN4D to optimise 

passive stiffness and damping values for modelling the paraplegic leg. The best 

passive leg's values obtained from GA and PSO are used to complete the leg model 

integrated with vN4D. Therefore, the humanoid with wheel walker together with 

passive stiffness and damping represent the actual paraplegic subject that has been 

used throughout this thesis. 

19 



2.2 Modelling of Humanoid with Wheel Walker 

2.2.1 Visual Nastran Software 

The MSC.visualNastran 4D (vN4D) software is for design and engineering 

professional development of products involving assemblies of three dimensional 

(3D) parts. It is an engineering tool that will resolve design problems, reduce 

failures and warranty costs, turn around designs faster and work with existing 

Window® based 3D computer-aided design (CAD) systems. The vN4D combines 

CAD, motion, physics-based animation and finite element analysis (FEA) 

simulation into a single functional modelling system (MSC visualNastran, 2011). 

The vN4D is a physical testing tool in a virtual environment and consists four main 

parts, namely draw it, move it, break it and control it. The draw it associates and 

integrates with virtually every 3D CAD system and provides photo realistic 

rendering of images, animations, and mark-up. The move it provides 3D rigid body 

dynamics and kinematics, ability to check the moving interferences or clearances, 

measures velocity, force, torque, friction, gravity, acceleration and other meters and 

always to obtain contact, collision and response. The break it comprises integrated 

dynamic and static stress analyses, automatic calculation of loads & stresses 

throughout assembly, stress and strain, deflection, vibration, factor of safety and 

thermal analyses. The control it integrates vN4D with the control systems testing 

and visualization with Simulink®, formula language, Excel, and C++NB OLE 

control (MSC visualNastran, 2011). 

The vN4D's versatility allows users to complete models in several ways. The 

general idea is to firstly define the geometry of the model, mesh this geometry, load 

& constrain the mesh and lastly analyse this model.. Figure 2.1 shows the basic idea 

. behind modelling with vN4D. 
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Figure 2.1: Basic modelling steps for vN4D for windows 

The vN4D enables engineers to simulate how a design behaves under real world 

conditions without having to solely rely on costly physical prototypes. There are 

many successful works done using vN4D. Cote (2004) used vN4D for dynamic and 

static modelling of piezoelectric composite structures while Acosta-Marquez (2005) 

used vN4D to model the exoskeleton for gait analysis. Keith (2010), a technical 

specialist at ColTech Inc., confirmed that vN4D saved several fundamental 

mistakes in their internal combustion engine test, which could have caused four 

months delay. In addition, they would have scrapped two or three engine sets 

before discovering the problems if they did not run the simulation using vN4D. 

Wang (2001) used vN4D to investigate the strength of composite honeycomb 

structures and found that results from both computation and experiment indicated 

good agreement. These prove that vN4D software for modelling and simulation is 

reliable, accurate and suitable for non linear systems. 
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2.2.2 Humanoid Model 

The humanoid model is built up using anthropometric data. Human anthropometry 

was first introduced by Alphonse Bertillon in 1883 and was the first scientific 

system used by police to identify criminals (Pheasant, 1886). Many of the human 

anthropometry developed before is according to the human origin. Nowadays, the 

interest in body segment parameters is mainly due to the need for these parameters 

in two areas, namely motion analysis and prosthesis design (Bj0rnstrup, 1995). 

The motion analysis covers both analysis and description of human movement, 

computer simulations and visualization of motion under influence of external forces 

and constraints. Prosthesis design is partly a matter of making prostheses that looks 

right with the right mass and mass distribution (Bj0rnstrup, 1995). 

In this study, well-known human anthropometry that has been developed in 1966 

by Drillis and Contini (1966) and obtained from Winter (1990) is chosen to make 

sure that the same procedures can be duplicated for subject from different origin. 

Human body is characterized by three main planes and directions with planes 

crossing in the centre of the body gravity. The length and mass of each body 

segment is expressed according to the overall weight and height of the humanoid. 

The physical measurements of the body segment vary with body build, sex and 

racial origin. This technique demonstrates that the corresponding anthropometric 

data is obtained as fractions of body height or weight. These segment proportions 

serve as good approximation in the absence of better data, preferably measured 

directly from the individual. Figure 2.2 shows the average set of segment length 

that is expressed as a fraction of body height, H. The corresponding segment length 

used for the humanoid is given in Table 2.1, which corresponds to fraction of body 

height. The humanoid developed in this work is based on an available paraplegic 

. subject whose height (H) is I.73m. This is to make sure the simulation results can 

be validated with experimental results from the same paraplegic subject. 
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Table 2.1: Body segment length 

Body segments Segment Length, Segment Length (m) 

Fraction of height (H) 

Foot height 0.039H 0.06747 

Foot breadth 0.055H 0.09515 

Foot Length 0.152H 0.26296 

Shank 0.246H 0.42558 

Thigh 0.245H 0.42385 

Trunk 0.288H 0.49824 
., 

Hand ,0.108H 0.18684 

Lower ann 0.146H 0.25258 

Upper ann O.l86H 0.32178 

Neck 0.052H 0.08996 

Head O.l3H 0.2249 

The same anthropometric data was used to determine' the mass of each body 

segment. Table 2.2 lists the mass of each segment related to total body mass based 

on the same paraplegic subject body weight of 80kg. In order to determine an 

appropriate shape for each of the body segment, the location of the centre of mass 

of the segment is required. The locations of the centre of mass together with 

segment density were also obtained from anthropometric data of the same source. 

The density of each body segment was used to determine its volume which then 

determined their segment width. Table 2.3 lists both location of the centre of mass 

and segment density. The location of the centre of mass is measure from the top of 

the each of the body segment. 
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Table 2.2: Body segment mass 

Body segments Segment Mass, Segment Mass (kg) 

Fraction of weight (M) 

Foot 0.0145M 1.16 

Shank 0.0465M 3.72 

Thigh O.lM 8.00 

Trunk 0.497M 39.76 

Hand 0.006M 0.48 

Forearm 0.016M 1.28 .. 

Upper arm 0.028M 2.24 

Head & Neck 0.083M 6.64 

Table 2.3: Location of segment centre of mass, density and volume for humanoid 

Body segment Centre of mass Density (kg/I) Volume (mJ) 

proximal (m) 
Hand 0.09454 1.16 0.0004 

Lower arm 0.10861 1.13 0.0011 

Upper arm 0.14029 1.07 0.0021 

Foot 0.12300 1.10 0.0011 

Shank 0.18427 1.09 0.0034 

Thigh 0.18353 1.05 0.0076 

Head and Neck 0.31486 1.11 0.0003 

Trunk 0.24912 1.03 0.0386 

The body segments are linked with humanoid joint. Table 2.4 shows the developed 

humanoid joints, their types, axes of rotation and degree of freedom. The most 

important joints are the knee and hip joints as they contribute significantly to FES 

assisted paraplegic mobility. The elbow and shoulder are also considered to be 

important as they provide voluntary upper body movement assisting the walking 

gait. 
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Table 2.4: Properties of the humanoid joints 

Body Number of Type of joint Axis of Control Degree of 
segment segment rotation parameter freedom 

Head 1 Rigid NA NA 0 

Neck 1 Rigid NA NA 0 

Shoulder 2 Revolute Y NA 1 

Elbow 2 Revolute Y NA 1 

Wrist 2 Revolute Y NA 1 

Hip 2 Revolute X NA 1 

Knee 2 Revolute X Torque 1 

Motor 

Ankle 2 Revolute X NA 1 

The humanoid developed uSIng the anthropometric data and appropriate joint 

properties under vN4D software are shown in Figure 2.3. The developed model will 

be used together with wheel walker. 

z z 

- -- -< 

(a) (b) 

Figure 2.3: Humanoid using vN4D (a) with and (b) without the position of centre of gravity 
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2.2.3 Wheel Walker Model 

The wheel walker model is developed using vN4D software based on the design of 

a wheel walker sold by Pines Discount PharmacyTM, see Figure 2.4. The model 

developed incorporates all the basic parts of the real machine. Table 2.5 shows 

specifications of the wheel walker used in this research. The material, dimensions 

and weight are duplicated from a real wheel walker available in the market 

(Anonymous, 2010). Figure 2.5 shows the developed wheel walker using vN4D. 

Table 2.5: Specification of wheel walker model 

Part Specification 

Frame Material: Anodized aluminium 

Depth: 49 cm 

Width: 64 cm 

Height: min 82cm, max 98cm 

Weight: 2.4 kg 

Radius 2.5 cm 

Maximum user weight 150kg 
-

Figure 2.4: Wheel walker (Anonymous, 2010) 
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Figure 2.5: Wheel walker model using vN4D 

Figure 2.6: Humanoid with wheel walker 

The final stage of the development of the humanoid with wheel walker model 

incorporated is the combination of both models. It is important to make sure that 

the humanoid is attached to the wheel walker model at the right position and right 

joint. The complete model of the humanoid with wheel walker using vN4D is 
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shown in Figure 2.6. This humanoid with wheel walker model is used throughout 

this thesis. 

2.2.4 Visual Nastran in Matlab/Simulink 

The completed vN4D humanoid with wheel walker model is use for futher 

investigation such as FES control in this thesis. The control scheme that is applied 

to the system to test and evaluate the model is designed in Matlab/Simulink 

environment. Therefore, the model ,developed in vN4b has to be connected to 

Matlab/Simulink. The advantage of the vN4D is that it is easily linked to 

Matlab/Simulink. A block representing the vN4D model can be inserted into 

Simulink obtained from Simulink library for further evaluation. The parameters in 

the vN4D model, such as velocity, position and torque, can be linked between 

vN4D and Matlab/Simulink for control system design and processing. 

Meters can be installed in any parts of the model to measure position, velocity, 

acceleration, etc. These features are very helpful in examining the model for 

structural or controller design. The information sent from these meters can be used 

as inputs to the controller or can be analyzed to understand the structural behaviour 

as required. 

Figure 2.7 shows the general block diagram of the vN4D model controller in 

Maltlab/Simulink. In this thesis, the muscle model developed in Matlab/Simulink is 

linked to the humanoid walking with wheel walker model developed in vN4D for 

model evaluation. 

Fuzzy Logic 
Controller 

Muscle Model HumanoidModelWalker2.3 

Figure 2.7: Block diagram ofvN4D model in Matlab/Simulink 
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2.3 Identification of Passive Leg Parameters 

The vN4D is four-dimension software that can be used to represent normal human 

body and its movement accurately. However, to develop paraplegic leg model is 

very difficult since there are many parameters that have to be considered. Riener 

and Edrich (1997;1999) and Riener et al. (1996) presented a simple mathematical 

model that describes passive elastic joint properties of hip, knee and ankle. They 

used healthy subjects in their experiments, and later (Edrich et aI., 2000) they used 

six paraplegics and ten healthy subj ects and found that passive elastic properties of 

the joints in the healthy subjects can be adopted to model the lower extremities of 

paraplegic. So far, the literature lacks publication on development of joint model to 

represent paraplegic leg, specifically using vN4D software. 

The trajectory of the oscillating leg from passive pendulum test provides a set of 

kinematic parameters such as peak angular values, useful to monitor the changes in 

the range of knee motion. Lin and Rymer (1991) and Fee (1994, 1995a, b) used 

this test to understand the underlying neurophysiological disturbances in spasticity. 

The kinematic outcome depends on a combination of forces acting at the joint. 

Among these forces, stiffness and damping represent the passive resistances 

provided by the articular and periarticular tissues to the angular motion. While 

stiffness is the resistance of an elastic body to resist deformation, damping is related 

to the friction between adjacent layers of tissues. Thus, both parameters may 

influence the range of motion of knee joint affecting angular displacement and both 

are important parameters to represent the properties of the leg. Ferrarin and Pedotti 

(2000) used these parameters obtained from their passive pendulum test together 

with data from FES trials to develop ~heir dynamic joint torque model. 
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2.4 Optimisation Techniques 

Recently, GA and PSO techniques appeared as promising approaches for handling 

various optimization problems. These techniques are finding popularity within the 

research community as design tools and problem solvers because of their versatility 

and ability to perform optimization in complex multimodal search· spaces (Panda 

and Padhy, 2007). GA can be viewed as a general-purpose search method, an 

optimization method, or a learning mechanism, based on principles of biological 

evolution, reproduction and "the survival of the fittest" (Goldberg, 1989). GA is 

well suited to and has been extensively applied to solve complex design 

optimization problems because it can handle both discrete and continuous variables, 

nonlinear objective and constrained functions without requiring gradient 

information (Abdel-Magid and Abido, 2003). PSO is inspired by the ability of 

flocks of birds, schools of fish, and herds of animals to adapt to their environment, 

find rich sources of food, and avoid predators by implementing an information 

sharing approach. The PSO technique was invented in the mid 1990s while 

attempting to simulate the choreographed, graceful motion of swarms of birds as 

part of a sociocognitive study investigating the notion of collective intelligence in 

biological populations,(Kennedy and Eberhart, 1995). 

In this chapter, passive knee stiffness, damping and relaxation indexes are 

measured using Wartenberg's technique (Wartenberg, 1951). Relaxation indexes 

represent the subject's leg relaxation level during experiment. These indexes are for 

monitoring purposes. GA and PSO are used with vN4D to find the stiffness and 

damping, and the results are assessed in comparison to one another. Stiffness and 

damping thus found are validated by'results from the experiment while results from 

Wartenberg technique are for comparison purposes so that the final results can be 

accurately used to develop paraplegic passive leg model using vN4D. 
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2.4.1 Genetic Algorithm 

Genetic algorithm is a robust intelligent optimisation technique with powerful 

global searching ability in complex spaces (Goldberg, 1989) based on the principle 

of natural evolution and population genetics without the need of derivative 

information. It was initiates by Holland (1975) where computational models that 

mimic natural evolution to solve problems in a wide variety of domains were 

introduced. Additionally, no continuous conditions of the objective function and 

design space are needed. . GA is implemented as a computer simulation in which a 

population of abstract representations of candidate solutions to an optimization 

problem evolves toward better solutions. 

A simple GA that has given good results in a variety of engineering problems is 

composed of three operators; selection, crossover and mutation. These operators 

are implemented by performing the basic tasks of copying strings, exchanging 

portion of strings and generating random numbers. These tasks are easily performed 

on a computer. Selection is simply a process by which strings with large fitness 

values, good solutions to the problem at hand, receive correspondingly large 

numbers of copies in the new population while strings exchange information via 

probabilistic decisions by the second operator called crossover. Crossover provides 

a mechanism for strings to mix and match their desirable qualities through a 

random process. The third operator, mutation enhances the ability of the GA to find 

near optimal solutions. Mutation is the occasional alteration of a value at a 

particular string position. Figure 2.8 shows the flowchart of the working principle 

of GA. 
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Figure 2.8: Flowchart of the working principle of genetic algorithm 

2.4.1.1 GA operation 

Genetic algorithm is implemented in a computer simulation in which a population 

of representations ( chromosomes) of candidate solutions (individuals) to an 

optimization problem evolves toward better solutions. The solutions are signified in 

binary as strings of Os and 1 s, but other encodings are also possible. The evolution 

normally starts from a population of randomly produced individuals. In each 
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generation, the fitness of every individual in the population is assessed, multiple' 

individuals are stochastically selected from the current population (based on their 

fitness), and modified (recombined and possibly randomly mutated) to form a new 

population. The new population is then used in the next iteration of the algorithm. 

Commonly, the algorithm comes to an end when either a maximum number of 

generations has been achieved or a satisfactory fitness level has been reached for 

the population. If the algorithm has completed due to a maximum. number of 

generations, a satisfactory solution mayor may not have been reached 

(Chipperfield et aI., 2002). 

2.4.1.2 GA operators 

After an initial population of potential solutions is randomly generated, the 

algorithm evolves through three operators: selection which equates to survival of 

the fittest, crossover which represents mapping between individuals and mutation 

which introduces random modifications. 

Selection 

Once the individuals are evaluated and fitness values are assigned, a selection 

process takes place to select the individuals that will be the parents of the next 

generation. The selection operator gives preference to better individuals, allowing 

the individuals to pass on the genes to the next generation. The goodness of each 

individual depends on its fitness. Fitness may be determined by an objective 

function or by a subjective judgement (Goldberg, 1989). 

Crossover 

Crossover is the prIme distinguished factor of GA from other optimization 

techniques. It is the operation responsible for producing new chromosome in the 

GA. Once the selection operator has selected two individuals from the population, 

the crossover operator exchanges part of the genetic information to produce new 
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chromosome. The exchange points are randomly chosen. The two new offspring' 

created from this mating are put into the next generation of the population. By 

recombining portions of good individuals, this process is likely to create even better 

individuals (Chipperfield et aI., 2002). 

Mutation 

Mutation is another important genetic operator that introduces new genetic structure 

in the population. With some low probability, a portion of the new individuals will 

have some of their bits flipped. The purpose is to maintain diversity within the 

population and inhibit premature convergence. Mutation alone induces a random 

walk through the search space. Mutation and selection (without crossover) create 

parallel, noise-tolerant and hill-climbing algorithins (Chipperfield et aI., 2002). 

2.4.2 Particle Swarm Optimisation 

The PSO method is a member of wide category of swarm intelligence methods for 

solving optimization problems. It is a popUlation based search algorithm where 

each individual is referred to as particle and represents a candidate solution. Each 

particle in PSO flies through the search space with an adaptable velocity that is 

dynamically modified according to its own flying experience and also the flying 

experience of other particles. Figure 2.9 shows a flowchart of the working principle 

ofPSO. 
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Figure 2.9: Flowchart of working principle of particle swarm optimization 

In PSO each particle strives to improve itself by imitating traits from its successful 

peers. Further, each particle has a memory and hence it is capable of remembering 

the best position in the search space ever visited by it. The position corresponding 

to the best fitness is known as pbest and the overall best out of all the particles in 

the population is called gbest (Panda and Padhy, 2007; Brandstatter and 

Baumgartner, 2002). The update velocity equation used is 

(2.1) 
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where Vi is the velocity of particle i, Xi is the position of particle i, c 1 is the cognition . 

factor, C2 is the social factor, r 1 and r2 are uniformly distributed random numbers 

between 0 and 1, Pi is personal best (pbest), Pg is global best (gbest) and w is a 

inertia weight. 

The algorithm used has been introduced by Latiff and Tokhi (2009) that 

incorporates the instantaneous spreading of the particles and is used to calculate the 

spreading factor as: 

SF=k(spread+deviation) (2.2) 

The value of SF varies from the maximum range of the search space down to the 

desired convergence precision. This factor then modifies the inertia weight 

according to: 

w=exp(--t J 
SFxtmax 

2.5 Optimisation of Leg Passive Parameters 

2.5.1 Passive Pendulum Test 

(2.3) 

During the experiment, a paraplegic subject is placed in a semi-upright sitting 

position (45° to 60°) with the lower legs hanging over the edge of a table (see 

Figure 2.10). The thigh is tightened' with strap to the table to make it stay in a 

stationary condition. To avoid any modification to the passive characteristic of the 

Imeedue to ankle movements, plastic ankle foot orthosis (AFO) is used to keep the 

ankle at 90°. The subject's shank is raised and held until the knee muscle is 

completely relaxed. This may take about 10 to 15 seconds. Then the subject's leg is 
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allowed to swing freely and the leg movement is recorded until the shank reaches 

its final resting position. 

Figure 2.10: Passive pendulum test 

2.5.2 Measurement and Estimation 

There are several variables that could be derived from kinematics of pendulum test. 

The following displacement and timing parameters are measured using 

Wartenberg's technique (Wartenberg, 1951): 

1. Start angle, onset angle (OA) 

2. Resting angle (RA) 

3. First 3 peak flexion angles (FJ, F2, F3) 

4. First 3 peak extension angles (EJ, E2, E3) 

5. Amplitude of initial flexion, FJamp=FJ-OA 

6. Amplitude of initial extension, EJamp=FJ-EJ 

7. Plateau amplitude, P A = RA -OA 

8. Relaxation index, RI=FJam/PA 

9. Extension relaxation index, ERI=EJam/PA 

10. Period of the first cycle, T 
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Figure 2.11: Passive pendulum test output 

Figure 2.11 shows the measurement and estimation of W artenberg' s equation 

applied to the passive pendulum test output. The high peak represents the knee 

flexion and low peak represents the knee extension. The stiffness and damping are 

measured for every cycle of knee flexion and extension. 

Knee stiffness (K) and damping (B) were estimated by computing the damping ratio 

(() and the natural frequency (cvn) obtained from the test data. The following 

equations as reported by Lin and Rymer (1991) are used: 

B (lnD)2 

(= 2.J JK' = 41Z'2 + (lnD)2 (2.4) 

where 
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where J represents the sagittal moment of inertia applied to the leg-foot complex 

rotation around the knee axis, m is the leg-foot complex mass, g is the acceleration 

due to gravity, lleg-foot length from the knee axis and T is time for one complete 

cycle. 

The estimation for J, m and 1 were obtained for the subject according to Winter 

(1990). Using equations (2.4) and (2.5) the values of damping and stiffness were 

obtained as follows: 

(J) = ~ K' = 2ft 
n J T 

K = K'- mgl 
2 

2.5.3 Visual Nastran Leg Model 

(2.5) 

(2.6) 

(2.7) 

The vN4D can give an accurate prediction of product performance. In this section, 

a leg model is built using the anthropometric data discussed in Section 2.3. The 

corresponding segment length used for the leg model is given in Table 2.2, which 

corresponds to fraction of body height. Using the anthropometric data above, the 

leg model was developed using the vN4D. Figure 2.12 shows the developed leg 

model. 
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Figure 2.12: vN4D leg model 

2.5.4 Parameter Optimisation 

Two algorithms; GA and PSO are used with vN4D to find the passive stiffness and 

damping values of paraplegic leg. These values are then used to develop paraplegic 

leg model as shown in Figure 2.13. 

Stiffness / 
Damping vN4D 

GA/PSO 

actual 

error + desired 

Figure 2.13: Block diagram of GAIPSO parameter optimization applied to the vN4D leg model 

The use of vN4D to evaluate the individuals' fitness and GAIPSO to optimise the 

design variables, allows solving complex problems. This approach can be 

implemented as follows: the variable information of the individuals/particles for 

each generation in GAIPSO is put into vN4D software automatically in order, the 

vN4D carries the simulation analysis and the results of the relative individuals' 

UNIVERSITY 
OF SHEFFIELD 

LIBRARY. 41 



fitness are output to GAIPSO program. GAIPSO executes to create new individuals 

particle to achieve convergence. For GA, according to stochastic universal 

sampling method, the values of 0.8, 0.01, 0.8 and 20 for the crossover, mutation, 

generation gap and number of individuals respectively were obtained by trial and 

error while for PSO number of particle was 20. The objective function specified for 

the optimization process is to minimize the mean squared error of the knee angle 

trajectory. The objective function is given by the following equation: 

b· . f . . . {2:f-l(Yref-Yact)2} .' o ,]ectzve unctzon = mz~ - N . (2.8) 

where Yrej is the desired knee angle trajectory, Yael is actual knee angle trajectory 

and N is number of sample values. 

Under such conditions, the GA and PSO searches well, in a stable manner and 

without pre-mature convergence. In this chapter, the interface between vN4D and 

GAIPSO is completed. Then the results from GA and PSO are validated with 

experimental data. 

2.5.5 Results 

First, the relaxation index, extension relaxation index, stiffness and damping are 

obtained from the equation described in Section 2.5.2 above. Relaxation index from 

the subject's passive swing leg is 3.485. This is good indicator that the subject has 

no influence on his leg movements. The extension relaxation index is found to be 

1.83 which is normal value for a paraplegic. 

Figure 2.14 shows that the stiffness was maintained about 0.32 Nmldeg from 

second flexion and above and it was less than 0.32 NffiJdeg for the first flexion and 

extension. This indicates that the maximum passive stiffness for the subject's leg 

was 0.32 Nmldeg. 
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Figure 2.14: Stiffness computed from the subject during first six half-cycle. F is the stiffness in 

flexion; E is the stiffness in extension 

Figure 2.15 shows that damping for leg flexion was less than damping for leg 

extension. However, the damping found from the experimental data by calculation 

was between 0.0009 Nms/deg and 0.009 Nms/deg. 

During the GA optimisation session, it was found that the best performance of the 

vN4D leg model can be achieved with the optimum values of the damping and the 

stiffness equal to 0.0031055 Nms/deg and 0.024244 Nmldeg respectively while 

PSO gave optimum values of the damping and the stiffness equal to 0.0031 

Nms/deg and 0.0242 Nmldeg respectively. From these results, stiffness and 

damping found from GA and PSO are in the range of values obtained from the 

calculation. These values are obtained by considering all leg movements' cycles 

and adaptation with the vN4D leg model. Therefore, these experiments are 

important when the stiffness and damping values for the vN4D leg model may be 

inaccurate to obtained using calculation. 
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Figure 2.15: Damping computed from subject during first six half-cycle. F is the damping in 

flexion; E is the damping in extension 

The convergence rate of the objective function of the system with the number of 

iterations for GA and PSO are shown in Figure 2.16. From the figure, it is clear that 

PSO converged at earlier iteration (at 18th iteration) compared to GA which 

converged at 930th generation. This means that PSO was faster than GA in terms of 

processing time. Using the damping and stiffness obtained from GA, the modelling 

gave a satisfactory result for the given experimental data. The percentage of this 

model accuracy is found to be 98.1 percent while model accuracy obtained from 

PSO is 0.2 percent less. In this case, both results were good and acceptable because 

both algorithms gave almost similar values of stiffness and damping. Figure 2.17 

shows a comparison between experimental data and data from vN4D leg model 

with parameters from GA and PSO. 
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Figure 2.17: Comparison between the knee angle measured during the passive pendulum test 

(solid line), simulated by vN4D with parameters from GA (dashed line) and simulated by 

vN4D with parameters from PSO (dashed-dotted line) 
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2.6 Summary 

This chapter has described the development of the humanoid with wheel walker 

using vN4D. The important criteria in developing the model have been layered out. 

The anthropometric data for humanoid has been used based on the data provided by 

Drillis and Contini (1966) taken from Winter (1990). Each body segment has been _ 

designed depending on its relative height and weight and has been connected to 

each other using appropriate joints or constraints. Output and control meters were 

determined for the purpose of controlling the walking gait. 

An original paraplegic leg model has been developed. Stiffness and damping are 

important passive parameters that influence leg movements. These parameters will 

determine the exact leg movement when FES is applied to the paraplegic muscle. 

The performance of the model, at their respective most optimally tuned set of 

parameters, the percentage of GA model accuracy is found to be 98.1 percent while 

model accuracy obtained from PSO is 0.2 percent less. The model was found to be 

the most suitable model for use to represent paraplegic leg model in terms of 

accuracy using vN4D. This model will be used in later chapters for development of 

control strategies for FES stimulation of paraplegic. 
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Chapter 3 

Muscle Model 

3.1 Introduction 

This chapter presents the development of paraplegic quadriceps and hamstrings 

muscle model using adaptive neuro-fuzzy inference system (ANFIS). A series of 

experiments using functional electrical stimulation (FES) with different stimulation 

frequencies, pulse width and pulse duration to investigate the behaviour of output 

muscle torque is conducted. Then these clinical data are used to develop the 

paraplegic quadriceps and hamstrings muscle models. 500 training data and 300 

testing data set are used in the quadriceps muscle model development while 588 

training data and 220 testing data set are used for the hamstrings muscle model 

development. The quadriceps muscle model developed has been validated with 

clinical data from one of the paraplegic subject and for quadriceps muscle model it 

also has been validated with two other known muscle models. In other words, the 

hamstrings muscle model is only validate using testing data set since there are no 

other hamstrings muscle model developed so far for comparison. In the quadriceps 

muscle model, the ANFIS muscle model developed is found to be the most accurate 

muscle model representing paraplegic quadriceps muscle model compared to the 

other two well known quadriceps muscle models. The established models are then 

used to predict the behaviour of the underlying system and are used subsequently 

for the design and evaluation of various intelligent control strategies throughout this 

thesis. 
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3.2 Physiology of Human Muscle 

There are 40% to 60% of the total human body weight is· comprise by muscles. 

Muscle is an organ specializing in the transformation of chemical energy into 

movement. There are many types of muscles, but they fall into three categories: 

skeletal, cardiac, and smooth muscles. Their function is to produce force and cause 

motion by contraction. Cardiac and smooth muscle contraction occurs without 

conscious thought and is necessary for survival. It is able to function for a century 

or more, without ever taking a break. Smooth muscle lines the walls of the arteries 

to control blood pressure, or pushes food through the digestive system while 

skeletal muscle is responsible for locomotion. and can be finely controlled. 

Examples of skeletal muscles are, movements of the eye, or gross movements like 

the quadriceps muscle of the thigh. In this thesis, only the skeletal muscle is 

considered since it is used to affect skeletal movement such as locomotion and 

maintaining posture. Though this postural control is generally maintained as a 

subconscious reflex, the muscles responsible react to conscious control like non­

postural muscles. As percentage of body mass, an average adult male is made up of 

42% of skeletal muscle and an average adult female is made up of 36%. 

Muscle is mainly composed of muscle cells. Within the cells are myofibrils; 

myofibrils contain sarcomeres, which are composed of actin and myosin. Figure 3.1 

shows the structure and different levels of skeletal muscle. Individual muscle fibres 

are surrounded by endomysium. Muscle fibres are bound together by perimysium 

into bundles called fascicles; the bundles are then grouped together to form muscle, 

which is enclosed in a sheath of epimysium. 
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Figure 3.1: Structural and organisational levels of skeletal muscle (Anonymous, 2010) 

Each muscle is comprised of numerous fibres, each of these in turn consists of 

many myofibrils, which form the functional units of muscle and affect the 

contraction and relaxation process. The functional part of the myofibrils consists of 

numerous contractile units, called sarcomere connected in series. Each sarcomere is 

composed of different muscle proteins, in particular the two main contractile 

proteins, myofilaments called actin and myosin. Myosin filaments are thick 

contractile proteins and remain relatively stationery during contraction. Actin 

filaments are thin contractile proteins that are drawn towards each other from both 

ends of the sarcomere during muscle contraction. The actin and myosin filaments 
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lie parallel to each other and become interlocked during contraction. The two 

contractile proteins are connected during contraction by myosin cross-bridges. 

These are globular proteins that originate from the larger myosin filaments and are 

chemically bound to the actin filaments during contraction. Muscle spindles are 

distributed throughout the muscles and provide sensory feedback information to the 

central nervous system. 

When contracting, the actin myofilaments from both ends of the sarcomere slide 

over the myosin filaments t'owards the middle of the sarc~mere, thereby shortening 

the contractile unit by pulling the Z-disks towards each other. Figure 3.1 (d) shows 

the structure of sacromere .. This is similar to the forward movement of a millipede. 

The cross-bridges attach and detach in different sequences (the way a millipede's 

legs move along the ground) to pull the actin filaments over the myosin filaments. 

Not all myosin cross-bridges are attached at the same time. The difference between 

the millipede and cross-bridges is that the cross-bridge cycling is significantly 

faster. The entire muscle fibre contracts as each sarcomere shortens. Depending on 

how many myofibrils are activated, their respective forces are also summed and 

transferred by the tendons and tendinous structures to the bones. 

3.2.1 The Motor unit 

Each fibre of a muscle can contribute to force production only if it is recruited by 

the brain. One motor nerve can branch into tens, hundreds, or even a thousand 

branches, each one terminating on a different muscle fibre. One motor nerve plus 

all of the fibres that it innervates is called a motor unit. Figure 3.2 shows how motor 

unit is activated bi the signal from the brain sent through the spinal cord. A single 

muscle can consist of hundreds of motor units. For example, rectus femoris (one of 

the 4 quadriceps muscles) might contain 1 million muscle fibres, controlled by 

1000 motor nerves. So on average, each motor unit contains 1000 fibres. The fibre 

type composition of a single motor unit will always be homogeneous. So a single 

motor unit will consist entirely of either type I (slow twitch) or type II (fast twitch) 
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fibres. The composition of the entire muscle will be heterogeneous. Every muscle 

will contain some combination of slow and fast motor units. 

Spinal cord 

Motor neuron 
cell body 

Figure 3.2: Motor unit activate the muscle fibers by receive the signal from the brain through 

the spinal cord (Bailey Bio, 2010) 

The brain combines two control mechanisms to regulate the force a single muscle 

produces. The first is called recruitment. The motor units that make up a muscle are 

not recruited in a random fashion. Motor units are recruited according to the size 

principle. Smaller motor units (fewer muscle fibres) have a small motor neuron and 

a low threshold for activation. These units are recruited first. As more force is 

demanded by an activity, progressively larger motor units are recruited. This has 

great functional significance. When requirements for force are low, but control 

demands are high (writing, playing the piano) the ability to recruit only a few 

muscle fibres gives the possibility of fine control. As more force is needed the 

impact of each new motor unit on total force production becomes greater. It is also 

important to know that the smaller motor units are generally slow units, while the 

larger motor units are composed of fast twitch fibres. The second method of force 
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regulation is called rate coding. Within a given motor unit there is a range of firing 

frequencies. Slow units operate at a lower frequency range than faster units. Within 

that range, the force generated by a motor unit increases with increasing firing 

frequency. If an action potential reaches a muscle fibre before it has completely 

relaxed from a previous impulse, then force summation will occur. By this method, 

firing frequency affects muscular force generated by each motor unit. 

At low exercise intensities, like walking or slow running, slow twitch fibres are' 

selectively utilized because they have the lowest thresho~d . .for recruitment. If the 

pace is suddenly increased to a sprint~ the larger fast units will be recruited. In 

general, as the intensity of exercise increases in any muscle, the contribution of the 

fast fibres will increase. For the muscle, intensity translates to force per contraction 

and contraction frequency per minute. Motor unit recruitment is regulated by the 

required force. 

In an unfatigued muscle, a sufficient number of motor units will be recruited to 

supply the desired force. Initially desired force may be accomplished with little or 

no involvement of fast motor units. However, as slow units become fatigued and 

fail to produce force, fast units will be recruited as the brain attempts to maintain 

the desired force production by recruiting more motor units. Consequently, the 

same force production in fatigued muscle will require a greater number of motor 

units. 'This additional recruitment brings in fast, fatiguable motor units. Therefore, 

fatigue will be accelerated toward the end of long or severe bouts due to the 

increased lactate produced by the late recruitment of fast units. During continuous 

contractions, some units are firing while others recover, providing a built in 

recovery period. Unfortunately in FES, the same motor units are fired with the 

same number of pulse width and frequency used. The switching motor unit 

phenomena do not happen during FES stimulation. These will make the muscle 

fatigue~very quickly and only by stopping the FES stimulation gives muscle time to 

recover. Muscle fatigue is a very important topic to be explored while dealing with 

FES for paraplegic. Therefore, chapter 4 will discuss the effect of FES stimulation 

parameters on muscle fatigue. 
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3.3 Muscle Model 

An important step required before the implementation of the movement synthesis 

and associated control strategy is the development of muscle model. Many muscle 

models have been developed and the first was pioneered by Hill (1938). The Hill 

model assumes a muscle to be combination of linear springs and nonlinear 

contractile element. Figure 3.3 shows the Hill model. It is composed of 3 elements. 

2 elements are arranged in series; an elastic element Es which represents the 

mechanical isometric response of the muscle, and a contractile element Ec which 

represents the active force generating capacity derived from chemical free energy 

stores. The third element is elastic element Ep and is joined in parallel with the two 

series elements, which account for the resistance of passive muscle to stretch. The 

properties of these 3 elements are defined in terms of ' force-length property and 

force-velocity property (Vignes, 2004). 

Series Element Contractile Element 

Es Ec 

T ..... - ..... 

Parallel Element 

Figure 3.3: Hill Model (Vignes, 2004) 

For 50 years the Hill (1938) model dominated the field. In this period many ideas 

have been added to the model in order to accommodate newly discovered facts 

(Epstein, 1998). Originally rather simple, the model became more and more 

complicated and lost its appeal. However, the simplest version is still used today to 

simulate the mechanical behaviour of muscles. However, Hill's model does not 
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provide insight into the mechanism of the production of force. Since the 

introduction of Hill model, various modifications have been made to more 

accurately incorporate further complexities and increase the model's accuracy. 

Before 1954, most theories of muscle contraction were based on the idea that 

shortening and force production were the results of some kind of folding or coiling 

of large protein molecules. In 1954, Huxley and Hansen (1954) as well as Huxley 

and Niedergerke (1954) demonstrated that muscle contraction is not associated with 

any change of length inside the microstructure. These au~hors postulated that the 

force is generated through the interaction of actin and myosin filaments. Based on 

this understanding, Huxley (1957) developed a new theory of muscle contraction by 

considering the physical and chemical interactions in one muscular unit called a 

sarcomere. Figure 3.4 shows that the sarcomere consists of four physical 

components; thick myosin fibers, thin actin filaments, cross-bridges which link the 

actin to myosin and external matrix to hold the muscle together. Although the 

myosin fibers provide passive strength of the muscle, active control from the 

central nervous system occurs in the cross-bridges. The level of neural activation in 

the muscle depends on the number of cross-bridges, which pull the myosin and 

actin fibers together to cause a contraction. This is why the model devised by 

Huxley is often referred to in the literature as the cross-bridge theory (Zahalak, 

1990). 

myosin (Ethick) 
~~ 

~.~----- ---.... 

nlatrix (Ematrix) 

Figure 3.4: The physical model of sarcomere introduced by Huxley (1957) 
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Figure 3.5 shows the Huxley model in which behaviour of the cross-bridge is 

represented by a non linear contractile element (CE). This component generates a 

force which depends on the sacromere length, contractile velocity and level of 

neural activation. The myosin and actin fibers connect in' series with the cross­

bridges. Since these are inherently passive elastic structures, they are depicted by 

linear springs. The myosin fibers (Ethick) are significantly thicker than the actin 

filaments (Ethin) meaning that the lumped stiffness is approximated by the stiffness· 

of the myosin alone. Finally, the matrix (Ematrix) lies in parallel with the rest of the 

sarcomere, holding the entire system together. This para.1lel spring usually has a 

comparatively small stiffness, except for large strains (Winters, 1990). 

Ethick CE Ethin 

?l 

Ematrix 
Figure 3.5: Huxley model (Winter, 1990) 

Another notable muscle model has been reported by Zajac et al. (1986). Zajac 

introduced the tendon connection and accounted for the muscle fibre pennation 

angle in the model. The model is shown in Figure 3.6. 
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Figure 3.6: Zajac Model (Zajac, 1986) 

Ferrarin and Pedotti (2000) developed a model that is capable of relating electrical 

stimulus to dynamic joint torque. The optimal model is described by a simple one 

pole transfer function that relates the stimulus pulse-width and active muscle torque 

that was identified by means of parametric approach that considered the family of 

ARX models and using least squares method on the error between the real data and 

the output of the model. More complex models have been developed by researchers 

(Ferrarin et aI., 2001; Riener et aI., 1996; Riener and Fuhr, 1998) to increase the 

model accuracy, describing the physiologically based interpretation that capture 

activities under microscopic and macroscopic levels such as muscle fatigue, 

calcium dynamics and cross bridge interaction. They introduced a muscle model 

composed of three parts, activation dynamics, contraction dynamics and body 

segmental dynamics. Activation dynamics provide the activation needed by the 

muscle to generate force. It is computed as a function of pulse width and frequency 

with first order relation and includes the effect of muscle fatigue by introducing the 

fitness function and a linear second order calcium dynamics (Riener and Fuhr, 

1998). -
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Makssoud et al. (2004) developed a muscle model composed of two parts, 

activation model and mechanical model. The activation model depends on the 

parameter of the stimulation intensity, pulse-width and frequency whereas the 

mechanical model deals with the mechanical behaviour. The model developed is 

based on physiological operation condition through the implementation of 

macroscopic muscle model designed by Huxley (1957) who provided an 

explanation of the interaction of cross bridge phenomena and thus can be linked to . 

the microscopic muscle model introduced by Hill (1938). The drawback of 

Makssoud et al. (2004) muscle model is that the important component of 

physiological based muscle model such as muscle fatigue and calcium dynamics 

are not accounted. Therefore, this research will develop a new muscle model from a 

series of experimental data, and then the model developed will be compared and 

validated with the experimental data and two other famous muscle models 

developed by Ferrarin et al. (2001) and Riener and co-workers (Riener et aI., 1996; 

Riener and Fuhr, 1998). 

3.3.1 Riener's Muscle Model 

One of the famous muscle models has been developed by Riener and co-workers, 

where their first article was published in 1996 and then in 2000 the. complete 

muscle model was reported. Their muscle model consists of four main components. 

These are muscle activation, maximum isometric force, force velocity relation, and 

force-length relation. Figure 3.7 shows that the resultant muscle force can be 

calculated by multiplying these components. 
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Muscle activation ------~ Muscle force 

Joint position q 

'-------------- Joint velocity -q 
Figure 3.7: Muscle contraction Model (Riener et al., 1998) 

3.3.1.1 Muscle Activation 

The muscle activation model comprises four main mechanisms. These are shown as 

blocks in Figure 3.8. Each block can be considered as a sub-model of the activation 

dynamics. 

Stimulation 
PuIs e width. d Recruitment a r -. characteristic Muscle 

activation 
calcium acal muscle abt Time 

fatigue delay 
Stimulation 
fre quency. f Frequency 

characteristic af 

Figure 3.8: Muscle activation model 

The recruitment level Car) is the percentage of the recruited motor units, which is 

computed on the basis of muscle recruitment curve. For constant stimulation 

amplitude the recruitment level can be approximated as follows: 

where 0 ~ ar ~ 1, ar is calculated as a function of the pulse-width, d thr and d sat are 

pulse-width values corresponding to the threshold and saturation, respectively. The 
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curvatures of the recruitment curve in the area of threshold and saturation can be 

adjusted by changing k thr and ksat' respectively. The constants c1 and c2 can be 

chosen to satisfy the conditions ar(O) = 0 and ar(dL~oo ~ 1.' 

The muscle force is controlled by adjusting the stimulation pulse-width or pulse 

amplitude, and pulse frequency. For low frequencies active muscle force drops. 

between successive stimulation pulses, resulting in rippled joint motion, thus long 

inter-pulse intervals make it difficult to control movements with PES (Riener et aI., 

1996a). The normalized amount of acti~ation af (0 ~ af ~ "I) in a single motor unit 

is expressed as a function of stimulation frequency f 

(3.2) 

This function has been introduced by Riener and Fuhr (1998) and captures the force 

frequency characteristics of an artificially stimulated muscle. 

3.3.1.2 The calcium dynamics 

The release of calcium ions from the sarcoplasmic reticulum as a function of the 

membrane depolarization, as well as the re-accumulation process of the calcium ion 

pump is modelled by two first order transfer functions in cascade. 

(3.3) 

The input into the calcium dynamics model is ap while the output is the activation 

of a non fatiguing muscle, aca[. 
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3.3.1.3 Muscle Fatigue 

The fitness function fit{t) is used to describe the effect of muscle fatigue and 

recovery, which affect the amount of calcium ions released by the sarcoplasmic 

reticulum. This is described as: 

_dfit = (fitmin - fit)aA(f) +....:......(1-----'fi_lt~)(1_-_aA_:.;;..(f_:..:...)) 
dt Tlat Tree (3.4) 

The minimum fitness is given by fit min , the time constant for fatigue is Tlat and for 

recovery it is Tree . The tenn A(f) is a function of stimulation frequency, while ~ is 

a shape factor. A{f) has been introduced by Riener et al. (1996) to better account 

for the fact that muscle fatigue rate strongly depends on the stimulation frequency. 

The fitness function equation constitutes a general approach which can be applied 

to any shape of stimulation input. The activation of the fatigued muscle is given as: 

a fat (t) = aCt) fit(t) 
(3.5) 

3.3.1.4 Force-velocity relation 

The force-velocity relation is given as: 

f fv = 0.54 tan -1 (5.69v + 0.51)+ 0.745 
(3.6) 

where v is the muscle velocity nonnalized with respect to the maximum 

contraction velocity of the muscle, Vm, of the muscle, .( v =vJlvmD and v=dZldt and 

v<O fo~ muscle contraction. The velocity, Vi of the muscle group, i is detennined 

using the following expression: 
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Vi = L <pjmaij (qJj) 
j (3.7) 

where maij is the moment arm of the muscle group, i, around joint, j and rp j is the 

angular velocity of the joint. 

Force-velocity relation for rectus femoris is given as: 

v .. , 
!jv(rectus- !emoris)=0.5,4tan-1

(5.69 0.;1 +0.51)+0.745 (3.8) 

Force-velocity relation for vasti is given as: 

!jv(vasti) = 0.54tan-l(5.69~+ 0.51) +0.745 
0.48 

3.3.1.5 Force-length relation 

The force-length relation is given as: 

(3.9) 

(3.10) 

where I is the muscle length normalized with respect to the optimal muscle length 

lopt and e is a shape factor. In order to evaluate 1ft in equation (3.10), I has to be 

calculated. 
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3.3.1.5 Maximum isometric muscle force 

Maximum isometric force is the maximum voluntary forces produced by apparently 

asymptomatic subjects exerting with some muscle actions against opposite 

direction. Average maximum isometric force for normal subjects is 185N and about 

330N for knee flexion and knee extension respectively (Andrews et aI., 1996). 

Meanwhile, for paraplegic subjects, Levy et aI. (1990) report that the mean of 

quadriceps maximum isometric force is between 5N to 30N depending on the level 

of injury. This value is small because a paraplegic is unable to put the force against 

opposite force to maintain the leg position. In this muscle model, this value has to 

be set before it can be used to conduct an experiment on the respective subject. 

3.3.2 Ferrario's Muscle Model 

Pedotti et aI. (1996) have developed a mathematical model for the lower limb that 

describes the dynamic equilibrium of the moments acting on the knee joint in the 

sagittal plane. The lower limb model is a swinging leg composed of two rigid 

segments: the thigh and the shank-foot. The ankle joint is fixed at 90° by a plastic 

ankle foot orthosis (APO). Only flexion-extension knee movements' are considered 

as illustrated in Figure 3.9. The passive behaviour of the knee joint depends on the 

knee joint elastic moment eMs) and the viscous moment eM d). Considering the 

inertial eM) and gravitational eM g) moments along with active knee torque eM a) 

resulting from quadriceps stimulation, a moment balance equation can be written 

as: 
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eloctrical stil'nulation 

Figure 3.9: Schematic representation of a free swinging leg, with surface stimulation of the 

quadriceps muscle (Ferrarin and Pedotti, 2000) 

(3.11) 

therefore 

.. . 
J·O = -m· g ·Z·sin(O ) +M - B ·O+M v v s a (3.12) 

where Jis the inertia of shank-foot complex, 0 is the angle between shank and 

. 
thigh in the sagittal plane, 0 is the knee joint angular velocity, Ov is . the angle 

.. 
between the shank and the vertical direction of the sagittal plane, Ov is the angular 

acceleration of the shank, m is the mass of foot-shank complex, g is the 

gravitational acceleration, Z is the distance between knee and centre of mass of 

shank-foot complex, and B is the viscous coefficient. 

According to Ferrarin and Pedotti (2000), the damping component of the knee is a 

linear term with a constant viscous coefficient B. The stiffness component is 

calculated using 

(3.13) 
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where, A and E are the coefficients of the exponential term, and OJ is the resting 

elastic knee angle. The negative sign is due to the choice of the positive extensor 

torque. The nonlinear component of the knee elasticity IS represented by the 

exponential term. 

The passive parameters of the leg model were obtained during passive pendulum 

trials done by Ferrarin and Pedotti (2000). Once the viscous-elastic parameters were' 

substituted in the following equation, the active torque produced by the stimulated 

muscle can be calculated at each stimulation frequency; 

.. . 
M = J . B + m . g ./ . sin(B ) - M + B . B a v v 5 (3.14) 

l 

A transfer function between electrical stimulation and the resultant knee torque was 

identified by means of a parametric approach that considered the family of ARX 

models and using a least square method on the error between real data and the 

output of the model. The muscle model obtained is a first order model (one pole 

only) given as: 

G 
H(s)=--

l+s, 

where r is time constant and G is static gain. 

(3.15) 

Ferrarin and Pedotti (2000) found that 't is independent of the stimulation 

frequency, but is strongly dependent on the shape of the stimulus pulse (step and 

ramp stimulation). The static gain G is directly dependent on the stimulation 

frequency, because a higher pulse repetition frequency corresponds to greater 

electric charge delivered to the muscle, resulting in an increase in muscle 

contraction and therefore higher values of active joint torque. 
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3.4 Adaptive Neuro-Fuzzy inference System 

Performance of FES control systems depends greatly on .the accessibility of an 

accurate muscle model. However, muscle model is known as a highly complex, 

time varying and nonlinear dynamic system. Therefore, it is necessary to develop 

the muscle model using a suitable approach that can cope with the complexity and 

uncertainty of the model. Adaptive neuro-fuzzy inference system (ANFIS) is well 

known by its ability to undertake this kind of problems. 

3.4.1 ANFIS Architecture 

Sugeno model output membership functions are either linear or constant. If a fuzzy 

system under consideration has two inputs x and y and one output f, then for a first 

order Sugeno fuzzy model, a common rule set with two fuzzy if-then rules is as 

follows: 

x 

Rule 1: Jfx is Al andy is BI, thenji.=PIx+qIy+rI 

Rule 2: Jfx is A2 andy is B2, then/2=P2x+q2y+r2 

I, = AX HI.Y.,." 

g 
t % = PzX +'bY +1'% 

X Y 
(a) 

Layer 1 Lsyer4 
~ Lsyer2 Layer 3 ! 

~ ~ LByer5 

~ 

(b) 

1= w,I,+ "Zf% 
w, + "Z 

=w,I,+~f% 

I 

Figure 3.10: (a) A two-input first order Sugeno fuzzy model with two rules; (b) Equivalent 

ANFIS architecture. 
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Figure 3.10(a) illustrates the reasoning mechanism for the Sugeno model discussed 

above while the corresponding ANFIS architecture is as shown in Figure 3.1 O(b), 

where nodes of the same layer have similar functions. A node represented by a 

square has parameters and it is called adaptive node while the circle shape one has 

none and it is called fixed node. The ANFIS architecture consists of five layers with 

the output of the nodes in each respective layer represented by Ou where i is the ith 

node of layer 1 (Denai et aI., 2007; Mahfouf, 2004). 

Layer 1: The membership function layer. The output of any·node in this layer gives 

the membership degree of an input (crisp); 

0l/i = J1Ai(X), 

0l/i = J1Bi-2 (y), 

'i = 1,2 or 

i = 3,4 

(3.16) 

where x (or y) is the input to the node and Ai (or Bi-2) is the fuzzy set associated 

with this node such as the generalized bell function 

(3.17) 

where {ail hi, c;} is the parameter set referred to as premise parameters. 

Layer 2: Multiplication layer. Every node here multiplies the inputs of membership 

degrees and produces the firing strength of the rule or the degree with which the 

corresponding rule is fired. 

(3.18) 

Layer -3: Normalization layer. It calculates a ratio of the particular rule-firing degree 

to the sum of all rule fitting degrees; 

66 



O - Wi 
3-=W-=--

,t t Wl +W2' 
i = 1,2 (3.19) 

Layer 4: This layer applies Sugeno's processing rule and is therefore an output 

calculating one. 

(3.20) 

where {Pi,qi,ri} is the consequent parameters 

Layer 5: Calculates the overall output as the sum of all incoming signals; 

(3.21) 

Hence, the artificial neural network (ANN) architecture has been built so that it can 

operate exactly like a Sugeno-type fuzzy system. 

3.4.2 Hybrid Learning Algorithm 

The hybrid learning algorithm is a combination of least square and backpropagation 

method. In the least square method, the output of a model y is given by the 

parameterised expression 

(3.22) 

where U = [Ul, ... Un]T is the models input vector, iv ... in are known function of u, 

and ev ... en are unknown parameters to be optimised. To identify these unknown 

param~ters £J1 , usually a training data set of data pairs {(ui'Yi),i = 1, ... m} is 

taken; substituting each data pair in equation (3.22) a set of linear equations is 

obtained, which can be written as 
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A8 =y 

in matrix form, where A is an mxn matrix 

A = Y [fl(~l) 
fl(Um) 

e is an nxl unknown parameter vector 

y is an mxl output vector 

(3.23) 

fn(~l)] 
fn(um ) 

(3.24) 

(3.25) 

(3.25) 

Since generally m>n, instead of exact solution of equation (3.23) an error vector e 

is introduced to account for the modelling error as 

A8 + e = y (3.26) 

and search for 8 = 6 which minimises sum of squared error 

(3.27) 

where E(8) is called the objective function. The squared error in equation (3.27) is 

minimised when 8 = 6, called least squares estimator (LSE) that satisfies the 

normal equation 

(3.28) 
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If AT A is non singular, {j is unique and is given by 

(3.29) 

In case of backpropagation learning rule the central part concerns how to 

recursively obtain a gradient vector in which each element is defined as the 

derivative of an error measure with respect to a parameter. Assuming that a given 

feedforward adaptive network has L layers and layer 1 has N(l) nodes, then the 

output function of node i in layer 1 can be represented as Xl,i and fz,i respectively. 

F or the node function fz,i 

Xl,i = fz,i (Xl-l,l, ••• Xl-l,N(l-l), a, fJ, y, ... ) (3.30) 

where a, fJ, y, etc are the parameters of this node. Assuming that the given training 

data set has P entries, an error measure can be defined for the pth(l :::; p :::; P) 

entry of the training data set as the sum of squared errors: 

(3.31) 

where dk is the kth component of the pthdesired output vector and XL,k is the kth 

component of the actual output vector produced by presenting the pth input vector 

to the network. The task here is to minimise an overall error measure, which is 

defined as E = L~=l Ep. The basic concept in calculating the gradient vector is to 

pass a form of derivative information starting from the output layer and going 

backward layer by layer until the input layer is reached. To facilitate the discussion 

the error signal € l,i is defined as 

aEp 
Cl·-­

,1 - aXl. 
,1 

(3.32) 

69 



This is actually ordered derivative and is different from ordinary partial derivative. 

For ith output node (at layer L) 

aEp 
€ .---L,t - ax . 

Lit 
(3.33) 

:. cL . = - 2 Cd· - XL .) It t It (3.34)" 

For the internal node at the ith position of layer /, the error signal can be derived 

iteratively by the chain rule: 

E - aEp _ ~N(l+l) aEp . afl+l,m 
li - - - L.J - x------

I aXl,i m-l aXl+l,m axl,i 
(3.35) 

= ~N(l+l) C .X afl+l,m 
L.Jm=l lit ax. 

l,t 

The gradient vector is defined as the derivative of the error measure with respect to 

each parameter. If a is a parameter of the ith node at layer /, then 

aEp aEp afl i afli 
aa = aXl,i X ad = Cl,i ad 

(3.36) 

The derivative of the overall error measure E with respect to a is 

(3.37) 

Accordingly, for simplest steepest descent without line minimisation, the update 

formula for generic parameter a is 

aE 
fla = -1']­

aa 

in which 11 is the learning rate. So, for parameter a it may be written as 
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anew = aold + l1a 

aE 
= aold - 11 acx 

(3.39) 

In this type of learning, the update action occurs only after the whole set of training 

data pair is presented. This process of presentation of whole set of training data pair 

is called epoch or iteration. 

It is assumed that'S' is the total set of parameters and 'S1' and 'S2' are the sets of 

input and output parameters respect~ve1y. For hybrid teaming algorithm, each 

iteration consists of a forward pass and a backward pass. In the forward pass, when 

a vector of input data pair is presented, the node outputs of the system are 

calculated layer by layer till the corresponding row in matrices A and y of equation 

(3.23) are obtained. The process is repeated for all the training data pair to form the 

matrices A and y completely. Then the output parameters of set S2 are calculated 

according to equation (3.29). After this, the error measure for each training data 

pair is to be calculated. The derivative of those error measures with respect to each 

node output are calculated using equation (3.33) and equation (3.35). Thus the error 

signal is obtained. In the backward pass, these error signals propagate from the 

output end towards the input end. The gradient vector is found for each training 

data entry. At the end of the backward pass for all training data pairs, the input 

parameters are updated by steepest descent method as given by equation (3.39). 

71 



3.5 Development of The ·Muscle Model 

3.5.1 Quadriceps Muscle Model 

Throughout the experiments, a paraplegic subject is placed in a semi-upright sitting 

position (45° to 60°) with the thigh hanging using thigh support at a frame to avoid 

any constraint on the leg movement. Velcro straps are used to stabilise the subject's 

upper trunk, waist and thigh. The isometric force output of the quadriceps muscle is 

recorded via a force transducer (PCE-FM200, PCE Group Company, Deutschland) 

placed aligned with the anterior aspect of the leg, about 5cm proximal to the lateral 

malleolus. The position of the leg is recorded instantaneously using Matlab 

software through analogue to digital converter (ADC) card and serial connection. 

Meantime, the force and torque are also recorded simultaneously. 

Electrical stimulation is delivered via two MultiStick™ gel surface electrodes (Pals 

platinum, Axelgaard Mfg. Comp, USA, 50mm x 90mm). The cathode is positioned 

over the upper thigh, covering the motor point of rectus femoris and vastus lateralis. 

The anode is placed over the lower aspect of thigh, just above patella. Prior to each 

test, the electrodes are tested for suitable placement on the muscle by moving the 

electrode about the skin over the motor point, looking for the maximum muscular 

contraction using identical stimulation signals through the entire trials. A RehaStim 

Pro 8 channels (Hasomed GmbH, Germany) stimulator receives stimulation pulses 

generated in !\1atlab software through USB connection for application to the 

muscle. Figure 3.11 and Figure 3.12 show the surface electrodes and electrical 

stimulator used in this thesis. 
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Figure 3.11: MultiStick™ gel surface electrodes 

Figure 3.12: RehaStim Pro 8 channels stimulator 

More than 600 stimulation pulses with stimulation frequencies and pulse widths 

varying from 10Hz to 50Hz and 200J..lsec to 400J..lsec respectively are used to 

develop the muscle model. The frequency and pulse width range are selected based 

on suggested range that is suitable for paraplegic. There are 731 data obtained from 

the experiments, 500 data are used as training data set while 300 data, some of them 

are part of training data to balance from unused experiment data, are used as testing 

data set. 
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The network architecture for quadriceps muscle model consists of three inputs and 

one output. The parameters of choice as inputs must have an influence on the 

desired output. For this model, stimulation frequency, pulse width and stimulation 

time were selected as model inputs. These inputs and output are used to induce an 

ANFIS muscle model. The time is included since muscle torque has a significant 

influence on the stimulation time, and muscle fatigue occurs when the stimulation 

time increases. 

3.5.2 Hamstrings Muscle Model 

The same procedures as for quadriceps muscle model are applied for hamstrings 

muscle model. In this experiment, the cathode is positioned at the lower thigh, 

covering from the ischial tuberosity to the midpoint of the popliteal crease. The 

anode is placed between the tendons of the biceps femoris and the 

semimembranosus. There are 808 data obtained from the experiments, 588 data are 

used as training data set while 220 data are used as testing data set. 

The network architecture for hamstrings muscle model also consists of three inputs 

and one output. It has the same input parameters as quadriceps muscle model and 

the output is hamstrings muscle torque. There are three membership functions of 

Gaussian types for each input is used to develop hamstrings muscle model. These 

parameters are generated automatically from the ANFIS Matlab toolbox with 

optimum model performance. 
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3.6 Results 

3.6.1 Quadriceps Muscle Model 

The performance of the ANFIS quadriceps muscle model obtained after training 

was evaluated by using the testing data set from one subject and validated with 

experimental results and 2 other quadriceps muscle models developed previously 

by other researchers. There were 500 data used for training and 300 data for testing 

purposes. Figure 3.13 shows the training data used iIi this work. Then, the 

quadriceps muscle model was validated with experiment data from same subject 

and with quadriceps muscle model developed by Reiner and F errarin. The 

quadriceps muscle model developed by Riener (1996, 1998) and Ferrarin (2001) 

was used considering all the parameters calculated based on the same subj ect. 
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Figure 3.13: Training data set 
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There were 2500 epochs used to train the network. It was found that the network 

converged at around 220th iteration. Figure 3.14 shows the convergence curve 

during the training of the muscle model network. After 250th iteration, there was no 

further improvement on the training error and it was assumed that the network had 

already reached the global minimum. 
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Figure 3.14: Convergence curve for ANFIS 

After the training process, 300 data were used as testing data set. Figure 3.15 shows 

the output data from ANFIS quadriceps muscle model and actual data from the 

experiment. It is noted that the output from ANFIS followed the actual data 

accurately. The variation of the experimental data is believed to come from the 

recording instruments; ANFIS output followed the mean of the output data 

variation. Figure 3.16 shows the prediction error of the ANFIS muscle model from 

the testing data set. As noted the system performance is 87.5% and Figure 3.16 

shows almost all error was within ±2 Nm, and this is a very accurate representation 

of the actual quadriceps muscle model. 
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After testing the ANFIS quadriceps muscle model, validation of the network with 

experiment data from one paraplegic subject and two other quadriceps muscle 

models that have been developed using same subject characteristics was carried out. 

One male paraplegic subject aged 45 years participated to validate this model. The 

injury level was T2ff3 and the subject had lesion for 29 years. In the validation 

process, the stimulation frequency, pulse width, pulse duration and current used 

were 30Hz, 250Jlsec, 3 seconds and 40mA respectively. Figure 3.17 shows muscle 

torque produced by the stimulation parameters described. It is noted that the ANFIS 

quadriceps muscle model was the most accurate model representing the actual 

quadriceps muscle model while Riener's and Ferarrin' s quadriceps muscle models 

were found to produce lower muscle torque but slowly decreasing at end of 

stimulation to embody the passive elements of the leg. Riener's quadriceps muscle 

model's damping was found to be quite high at the end of the stimulation making 

the leg swing higher and longer than expected and this behaviour was not 

representing the actual paraplegic leg since paraplegic leg has a shorter muscle. 

While Ferrarin's quadriceps muscle model decreased the muscle torque gradually 

after end of stimulation. This made the leg slowly settle and have the second longer 

leg swing after Riener's quadriceps muscle model. 

The ANFIS quadriceps· muscle model followed the actual data from experiment 

except for one second after stimulation was provided to the muscle. The ANFIS 

quadriceps muscle model response rose immediately to 14Nm while the actual data 

gradually rose after two seconds. This is happening because prevent the leg from 

moving easily remaining after at rest for a long period of time. This torque different 

resulted the leg to extend more than actual in the first second of stimulation. 

However, the leg extended about 10° more compared to the actual angle which was 

still within acceptable range. Furthermore, during this validation process, ANFIS 

quadriceps muscle model followed 90% of experimental data implyirig that it was a 

more accurate model compared to the other two quadriceps muscle models 

developed previously. 
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Figure 3.17: Responses of ANFIS, Riener and Ferrarin muscle models 

3.6.2 Hamstrings Muscle Model 

The performance of the ANFIS hamstrings muscle model obtained after training 

was evaluated using the testing data set and validated with experimental results. 

There were 588 data used for training and 220 data for testing purposes. Figure 

3.18 shows the training data used in this work. Then, the hamstrings muscle model 

was validated with experimental data from the same subject as described in the 

previous section. 
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Figure 3.18: Hamstrings training data set 

There were 1000 iterations used to train the network. It was found that the network 

converged at around 130th iteration. Figure 3.19 shows the convergence curve 

during the training of the hamstrings muscle model network. After 130th iteration, 

there was no further improvement on the training error and it was assumed that the 

network had already reached the global minimum. 

After the training process, 220 data were used as testing data set. Figure 3.20 shows 

the output data from ANFIS hamstrings muscle model and actual data from the 

experiment. It is noted that the output from ANFIS followed the actual data 

accurately. The variation of the experimental data is believed to come from the 

recording instruments; ANFIS output followed the mean of the output data 

variation. Figure 3.21 shows the prediction error of the ANFIS muscle model from 

the testing data set. As noted 100% of the error was within ± 1 Nm, and this very 

accurately represents the actual hamstrings muscle model. The accuracy of the 

testing data set was 96.46%. 
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Figure 3.21: Prediction error from the testing data set 

3.7 Summary 

The performance of the ANFIS muscle model obtained after training, has been 

evaluated using testing data set and validated with experimental results and for 

quadriceps muscle model, it has also been validated with 2 other muscle models 

developed previously by other researchers. In this thesis, the ANFIS has been used 

to model and hence predict the behaviour of paraplegic muscle incorporated with 

FES. For quadriceps muscle model, th~ performance of these three models, at their 

respective most optimally tuned set of parameters, has been evaluated. Of these, the 

ANFIS quadriceps muscle model was found to be the most suitable model for use 

to determine the muscle torque while integrated with FES. The ANFIS hamstrings 

muscle model developed also showed outstanding performance. So far, there are 

almost no hamstrings muscle model developed, therefore the ANFIS hamstring 
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muscle model has been validated only with the experimental data. Therefore, this 

development is a new contribution in this research area. 
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Chapter 4 

Muscle Fatigue and Stimulation Parameters 

Analysis 

4.1 Introduction 

Stimulation trains of different combination of frequency and pulse-width can be 

used to generate the muscle force required to perform a functional task during 

functional electrical stimulation (FES). However, with repetitive activation, the 

muscle will fatigue and an increase in either the frequency or the pulse-width of 

stimulation will be required to enable the targeted muscle force to be maintained. 

This study compares isometric performance and paraplegic muscle fatigue using 

two different protocols: protocol 1 uses 5 different stimulation frequencies varying 

from 10Hz to 50Hz with other parameters fixed; and protocol 2 uses 5 different 

stimulation pulse-widths varying from 200Jls to 400Jls with other parameters fixed. 

This range is selected based on a suitable frequency and a pulse width for 

paraplegic. Muscle performance is assessed by measuring percent decline in peak 

force and maximum muscle force for different stimulation frequencies and pulse­

widths. A simple rule is introduced to avoid spasm or injury to the leg during FES 

application. The results from this study show that higher frequency gives faster 

muscle fatigue and the selection of force required to perform a functional task is 

important for obtaining the optimum stimulation parameters. Stimulation pulse­

width has no significant effect on the muscle fatigue but highly affects the 

maximum muscle force. The rule proposed is important and is found to be useful to 

avoid leg injury, spasm or uncomfortable feeling during PES application. This rule 

also can be used to choose optimum stimulation parameters. 
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4.2 Muscle fatigue in human muscle 

FES is widely used as substitute for the loss of voluntary motor control to enable 

people with spinal cord injury (SCI) to stand (Donalson and Chung-Huang, 1998; 

Veltink and Donaldson, 1998), walk (Popovic et aI., 2001, 1999), grasp (Besio et 

aI., 1997; Popovic et aI., 2001) and do some lower limb exercises such as rowing 

(Hussain and Tokhi, 2008) and cycling (BeDell et aI.,. 1996; Eser et aI., 2003). 

However, one of the major drawbacks is that stimulated .. muscles are likely to 

fatigue very quickly because of the 'reversed recruitment order' of the artificially 

stimulated motoneurons, ,limiting the role of FES in certain applications 

(Rabischong and Guiraud, 1993). The absence of motor unit firing phenomena 

during FES application explained in Chapter 3 also makes the muscle fatigue 

appear more quickly. Therefore, increasing either the frequency or the pulse-width 

of stimulation will be necessary to permit the targeted muscle force to be 

maintained during a functional task. 

Many studies have been conducted to investigate muscle fatigue from stimulated 

muscle and to arrive at solutions to overcome this problem. Binder-Macleod and 

Snyder-Mackler (1993) point out that stimulation parameters that have a supreme 

impact on muscle fatigue are stimulation frequency and pulse intensity. It was 

reported that muscle fatigue was greater at lower frequencies in intermittent 

stimulation (Binder-Macleod and Russ, 1999; Matsunaga et aI., 1999) while 

opposite results have been obtained during continuous stimulation (Kesar and 

Binder-Macleod, 2006). However, all these studies have used healthy subjects in 

their investigations. These results may only represent those of normal human 

population. Furthermore, several studies have suggested different ways to 

overcome muscle fatigue during FES. These consist of FES using random 

modulation (Granham et aI., 2006; Trasher et aI., 2005), N-Iet pulse trains (Karu et 

aI., 1995), variable frequency pulse trains (Mourselas and Granat, 1998) and many 

more. 
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Trasher et al. (2005) and Granham et al. (2006) concluded that random modulation 

of the stimulation frequency, amplitude and pulse-width did not have any effect on 

the muscle fatigue rate. However, if this technique gives, opposite results, then 

having this kind of signal is not practically viable technique for muscle fatigue 

reduction. Moreover, this signal is difficult to control and apply in closed loop FES 

control applications. 

Routh and Durfee (2003), and Bigland-Ritchie et al. (2000) proposed doublet 

stimulation signal to reduce muscle fatigue during FES.'· However, Routh and 

Durfee (2003) wrap up that doublet stimulation signal did worsen fatigue reduction 

and singlet stimulation signal led to 33 more cycles than doublet, with the same 

stimulation parameters. Moreover, doublet stimulation produces more than twice 

the amplitude of twitches force and tends to make the muscle fatigue quicker. Karu 

et al. (1995) reported that N-Iet pulse trains reduce 36% muscle fatigue rate 

compared to singlet stimulation signal. They used 1 to 6 pulse trains in their study 

and found the optimum stimulation train as doublet and triplet stimulation signal. 

This finding is conflicting with findings from Routh and Durfee (2003). This is 

possibly because of different protocols used in the studies. Yet, Bigland-Ritchie et 

al. (2000) proposed that using doublet stimulation signal for the first 2 minutes and 

then keeping on with singlet stimulation will cut muscle fatigue drastically as 

compared with constant rate trains. Again, this technique is difficult to implement 

practically in closed loop FES control applications. 

Kesar et al. (2007) studied the effect of stimulation frequency and pulse-width on 

muscle fatigue and found that stimulation with frequency modulation gives less 

muscle fatigue rate compared with stimulation with pulse-width modulation. 

However, stimulation with frequency' modulation is impossible with currently 

available off the shelf programmed stimulators since most of the stimulators allow 

pulse-width modulation with fixed frequency. Moreover, in their paper, they found 

that constant stimulation signal gives the least muscle fatigue compared to the 

others. Previously, Kesar and Binder-Macleod (2006) also concluded that using the 

lowest stimulation frequency and longest pulse duration could maximize muscle 
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performance if the stimulation frequency and intensity are kept constant. In both 

papers, they used healthy subjects in their experiments with very high pulse-width. 

Stimulation pulse-width more than 450Jlsec and stimulatioI?- frequency more than 

50Hz are not suitable for paraplegic use (Riener, 1998), therefore these results are 

only valid for healthy subjects. Earlier, Mourselas and Granat (1998) performed the 

same experiment with five healthy subjects and one SCI subject with which the 

results of Kesar et al. (2006, 2008) agree and conclude that stimulation with 

frequency modulation increases muscle performance, but this effect is very small 

and almost non existent to many subj ects. Therefore, the effect of stimulation with 

frequency modulation is not significant in improving muscle fatigue rate. 

Up to now, the literature lacks publication on inve'stigating the effect of stimulation 

frequency and pulse-width in intermittent stimulation with isometric measurement 

from paraplegic subjects. Furthermore, there are more studies to overcome muscle 

fatigue rather than to investigate the effect of stimulation frequency and pulse­

width on muscle fatigue. Nevertheless, to know the effect of stimulation parameters 

on muscle fatigue is important before any suggestion can be made on reducing 

muscle fatigue. 

4.3 Muscle fatigue test 

Eight paraplegic subjects aged between 32 to 47 years participated in this study. 

The injury levels of the subjects were between T2 to T4. Throughout the 

experiments, a paraplegic subject was place in a semi-upright sitting position (45° 

to 60°) with the thigh hanging using thigh support at a frame to avoid any constraint 

on the leg movement. Velcro straps are used to stabilise the subject's upper trunk, 

waist and thigh. The isometric force output of the quadriceps muscle was recorded 

via a force transducer (PCE-FM200, PCE Group Company, Deutschland) placed 

aligned with the anterior aspect of the leg, about 5cm proximal to the lateral 

malleolus. 
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Fatigue of FES induced muscle contraction can be measured by 3 modes; isometric, 

isotonic or isokinetic. Isometric measurement was applied in.this work because this 

mode of measurement allows easier control of testing parameters, thus minimizing 

problems associated with performance-based testing criteria (Mizrahi, 1997). The 

experiment consisted of 2 different protocols: protocol 1 used 5 different 

stimulation frequencies varying from 10Hz to 50Hz with step size of 10Hz with 

other parameters fixed (current at 40mA, pulse-width at 250 Jlsec and pulse 

duration at 3 sec on and 7 sec off); and protocol 2 used 5 different stimulation 

pulse-widths varying from 200Jls to 400Jls with step size of 50 JlS and with other 

parameters fixed (current at 40mA, frequency at 30Hz and pulse duration at 3 sec 

on and 7 sec off). The parameter values were chosen to be in the middle of selected 

range to make sure there were no biases in the measurement. Intermittent 

stimulation was chosen because the patterns are more realistic in practical use of 

FES, as actually happens during all functional tasks. 

Electrical stimulation was delivered via two MultiStick™ gel surface electrodes 

(Pals platinum, Axelgaard Mfg. Comp, USA, 50mm x 90mm). The same position 

of the electrodes discussed in chapter 3 was used. A RehaStim Pro 8 channels 

(Hasomed GmbH, Germany) stimulator receives stimulation pulses generated in 

Matlab software through USB connection for application to the muscle. 
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4.4 Paraplegic ability test 

One male paraplegic subject aged 45 years participated in this test. The injury level 

of the subject was T2/T3 and he has had the lesion for 29 years. Paraplegic ability 

test is to measure the maximum torque, force and angle that can be obtained from 

the subject's leg without any force applied to the leg. This is to avoid over 

stimulation of the subject's muscle, which will result iJ? spasm and in turn will 

influence the output reading, which will not represent the actual output. It is also to 

prevent the subject from the uncomfortable feeling during the experiment resulting 

from over stimulation of muscle. A spasm is a sudden, involuntary contraction of a 

muscle or a group of muscles. It is sometimes accompanied by a sudden burst of 

pain, but is usually harmless and ceases after a few minutes. Ferrarin and Pedotti 

(2000) used similar test, but there is no detailed explanation given in their paper. It 

is very essential to discover the subject's ability so that the test can be done within 

it. 

The maximum leg force, torque' and angle were obtained by rising up the 

paraplegic's leg to maximum extension. The maximum leg extension angle was 

measured using a goniometer (SG 150, Biometrics Ltd, United Kingdom) by placing 

it in the middle of the outer side and parallel with standing knee position. The 

position of the leg was recorded instantaneously using Matlab software through 

analog to digital converter (ADC) card and serial connection. The force and torque 

were also recorded simultaneously. 
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4.5 Results 

4.5.1 Muscle Fatigue Test 

Muscle performance was assessed by measuring percent decline in peak force and 

maximum force for different stimulation frequencies and pulse-widths. From the 

results, it was found that higher frequency gave faster fatigue and the percentage 

decline of peak force linearly increased with stimulation frequency. It is noted in 

Figure 4.1 that the force at higher frequencies started at higher peak value at the 

beginning of stimulation and gave minimum peak value at after 75 stimulations. 

Output from Different Stimulation Frequencies 
18r-----r-----,------.------.------r------r--r==~~ 

6 ··
r l ' . 

4 ················r·· ··· ··············,·····················,····················1····················1······ 
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Figure 4.1: Peak force for 75 stimulations with different stimulation frequencies. 

Figure 4.2 shows the range of peak force for stimulation frequencies from 10Hz to 

50Hz. A stimulation frequency at 10Hz gave rise to minimum muscle fatigue and 

minimum peak force about 1 ON. Therefore, this frequency is only suitable to be 

used for stimulation of free swing leg since this task requires minimum torque. It is 
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not advisable to use a stimulation frequency of 50Hz because it gives rise to the 

fastest muscle fatigue and can only maintain high force in the first 2 stimulations. 

Stimulation frequencies between 20Hz to 30Hz are suitable for use in most 

functional tasks since they will provide high force during the stimulation and can 

compensate for muscle fatigue. 
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Figure 4.2: Peak force distribution of 75 stimulations for different stimulation frequencies 

Figures 4.3 and 4.4 show that the stimulation pulse-width affects the stimulation 

force but there is no significant effect on muscle fatigue. Higher stimulation pulse­

widths gave rise to higher stimulation force, and it is important to make sure that 

the stimulation force is higher than that required by the functional task. 
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Figure 4.3: Peak force of 75 stimulations for different stimulation pulse-widths 
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Figure 4.4: Peak force distribution of 75 stimulations for different stimulation pulse-widths 
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Tables 4.1 and 4.2 show the percentage decline in peak force and maximum muscle 

force for different stimulation frequencies and pulse-widths. It is noted that the 

percentage decline in peak force and maximum muscle force increased with 

frequency. Furthermore, the percentage decline in peak force was not affected by 

increasing the pulse-width while the maximum muscle force increased with the 

stimulation pulse-width. It was confirmed that the fatigue time and the maximum 

muscle force measurement were independent. These results can be used as an 

indicator in determining the stimulation parameters. It is suggested to use 

stimulation pulse-width of 350 Jlsec or .~OO Jlsec for complex functional tasks, such 

as for example cycling, walking and sit to stand. 

Table 4.1: Percent decline in peak force and maximum muscle force for different stimulation 
f reQuencles 

Frequency (Hz) Percentage Decline (%) Maximum Force (N) 

10Hz 39.01 33.45 

20Hz 64.52 37.65 

30Hz 74.66 50.9 

40Hz 78.03 51.45 

50Hz 81.23 55.95 

Table 4.2: Percent decline in peak force and maximum muscle force for different stimulation 
I 'd h pu se-wl t s 

Pulse-width (Jlsec) Percentage Decline (%) Maximum Force (N) 

200 Jlsec 62.97 45.65 

250 Jlsec 74.66 50.9 

300 Jlsec 56.71 57.4 

350 Jlsec 51.59 92.95 

400 Jlsec 55.50 97.75 
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4.5.2 Paraplegic Ability Test 

In order to avoid spasm during and after the experiment, paraplegic's leg ability 

was tested. In this test, one selected paraplegic subj ect was used to demonstrate this 

assessment. The maximum torque, force and leg extension angle were 15 Nm, 47 N 

and 1390 respectively. Therefore, these values represent the maximum leg torque, 

force and extension angle that can be given to the leg in the condition that the leg 

swings freely without any' force attached or given to th~ Jeg. In addition, if the 

stimulation is given to the leg for specific functional task, the stimulation force 

produced by the stimulatioI?- is equal to the task force plus the additional force. This 

is to make sure the task can be performed and there are no large amounts of force 

wasted. A simple rule to overcome this problem was introduced, as follows; 

ForCeStimulation = ForceTask + Forceadditional (4.1) 

therefore, 

ForceAdditional < ForceTest (4.2) 

where ForCeStimu!ation is the force produced by leg from, the stimulation given, 

ForceTask is a total force to perform a functional task, ForCeAdditiona! is the additional 

force to be added to make sure that the task can be performed accurately; the range 

of this force is proposed between 5 N to 10 N which can lift around 50kg to 100kg 

load. ForceTest is the force produced from the ability test. This force value varies 

with subject. 

The additional force proposed is in the .range of 5 N to ION and less than the test 

force to make sure the functional task given can be performed accurately, not 

was,ted on the extra force produced by the leg and to avoid any injury or spasm to 

the leg during FES application. Results from the muscle fatigue tests can be used 

together with simple rules introduced from this work to find the optimum 

stimulation parameters for a given functional task. For example, if the total force 

required for performing rowing exercise is 35N and the additional force is 5N, then 
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ForCeStimulation = 35 + 5 = 40N . 

and 

ForceAdditional < FOrCeTest 

where the test force for this subject is found as 47N. Thus, with reference to Figure 

4.1 to Figure 4.4 an optimum combination of stimulation parameters to produce 

optimum leg force with low muscle fa~igue will be; frequency at 20Hz and pulse­

width at 350 Jlsec. 

4.6 Summary 

The results from this study showed that high frequencies give rise to faster muscle 

fatigue and the selection of force required to perform a functional task is important 

for obtaining the optimum stimulation parameters. Stimulation pulse-width has no 

significant effect on the muscle fatigue but highly affects the maximum muscle 

force. Contradictory results found in some of the previous studies are influenced by 

dissimilarity in experimental protocols. The results from this work can serve as a 

guidance to determine the optimum stimulation parameters such as frequency and 

pulse-width to reduce muscle fatigue during FES application. In order to determine 

the stimulation parameters, paraplegic ability test has to be conducted on the 

paraplegic to determine their maximum leg force to avoid spasm or leg injury 

during and after stimulating paraplegic leg. As a result, frequency of 30Hz to 40Hz 

and control of stimulation pulse-widths up to maximum 400 Jlsec are the best 

stimulation parameters to be used for the FES application. This is because from the 

analysis conducted in this chapter, these values adequate to produce enough muscle 

torque during FES functional task. 
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5.1 

Chapter 5 

Control of FES-Assisted Walking with 

Wheel Walker 

Introduction 

This chapter presents simulation of bipedal locomotion through regulation of 

stimulation pulses for activating muscles for paraplegic walking with wheel walker 

using functional electrical stimulation (FES). The study is carried out with a model 

of humanoid with wheel walker using the Visual Nastran (vN4D) dynamic 

simulation software. The developed muscle models of quadriceps and hamstrings 

discussed in Chapter 3 are used for knee extension and flexion. Proportional­

integral-derivative (PID) and fuzzy logic control (FLC) are designed in 

Matlab/Simulink to regulate the muscle stimulation pulse-width required to drive 

FES-assisted walking gait and the computed motion is visualised in graphic 

animation from vN4D. The performance of FLC and PID control are assessed and 

the best controller that can be used to reduce electrical stimulation is obtained. 

Firstly, the analysis is carried out without the muscle model to analyse the optimum 

stimulation parameters to be used for this purpose. Then, the controls are applied to 

regulate muscle stimulation pulse-width required with the optimum stimulation 

parameters setting. In this study, pre-defined knee traj ectory is used as a reference 

for "FES walking with wheel walker. Later, the body weight transfer (BWT) 

technique is introduced to improve the paraplegic walking performance by reducing 

the electrical stimulation required. The effectiveness' of this technique is discussed 

and highlighted. 
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5.2 Control of FES for Paraplegic, 

FES has been shown to improve impaired function and muscle deterioration in 

paralyzed limb of SCI patients. However, one of the major limitations is that the 

stimulated muscles tend to fatigue very rapidly, and this limits the role of FES 

(Gharooni et aI., 2007). Similar to other hybrid FES activities, the performance of 

FES-assisted walking gait can be enhanced through the implementation of an 

efficient control strategy. Suitable electrical stimulation to,the muscle is required to 

achieve smooth and well coordinated walking gait. 

Many researchers have investigated various control strategies to address the 

variability and nonlinearities of the musculoskeletal system, muscle conditioning 

and fatigue in many different FES-activities (Chizeck, 1988, 1992). Control has 

been a great challenge in paraplegic mobility research due to the highly non-linear 

and time-varying nature of the system involved. Conventional control has been 

used, but knowledge based control such as neural networks (Chen et aI., 2004; 

Graupe and Kordylewski, 1994), fuzzy logic (Chen et aI., 2004; Feng and Andrews, 

1994; Davoodi and Andrews, 2004; Sau Kuen and Chizeck, 1994) and genetic 

algorithm (Davoodi and Andrews, 1999) is still the practical choice in most current 

mobility control systems. Feng and Andrews (1994) used adaptive fuzzy logic 

control (FLC) to control FES for swinging leg. They found that the controller can 

customize a general rule based controller and adapt to the time-varying parameters 

due to muscle while Yu-Luen et al. (2004) found that fuzzy control solves the non­

linear problem by compensating for the motion trace errors between neural network 

control and actual system. One of the possible methods is the use of closed-loop 

adaptive control technique that mea'sures the output and alters the muscle 

stimulation for better control. 

This chapter presents the effectiveness of two main approaches; body weight 

transfer and control strategy to enhance the performance of walking gait and reduce 

stimulation pulses required to drive FES-walking manoeuvre. 
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5.3 Walking Gait and Predefined Reference Trajectories 

Walking gait is the medical term to describe human locomotion. Interestingly, 

every individual has a unique gait pattern. A person's gait can be greatly affected 

by injury or disease. The gait cycle is used to describe the complex activity of 

walking, or a gait pattern. This cycle describes the motions from initial placement 

of the supporting heel on the ground to when the same heel contacts the ground for 

a second time. 

The gait cycle is divided into two phases, stance and swing. Stance is defined as the 

interval in which the foot is on the ground, and this constitutes approximately 60% 

of the gait cycle. It is divided into four phases; heel strike (HS), foot flat (FF), mid 

stance, heel off (HO) and toe off (TO). On the other hand, swing is defined as the 

interval which the foot is not in contact with the ground, and this constitutes 

approximately the remaining 40% of the gait cycle. Swing is divided into two 

phases; acceleration to mid-swing and deceleration from mid swing to complete 

one full gait cycle. Figure 5.1 illustrates the stance and swing phases for one 

complete normal human gait cycle (Anonymous, 2011). 

Acceleration Deceleration 
I 

TO 

Stance • Swing 

o 60 1,00 (9·11 of gait cycle) 

Figure 5.1: Gait cycle (Anonymous, 2011) 
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Currently, physical therapist evaluates each individual phase of the gait cycle to 

obtain clues into specific muscular weaknesses and shortening. Addressing these 

issues in a rehabilitation program will lead to a more efficient gait pattern, resulting 

in decreased risk of injury, less energy expenditure, greater functional 

independence, and improved muscular balance. However, here one reference 

trajectory obtained from Winter (1990) referring to the normal human gait based on 

anthropometric data of one paraplegic subject is used for this study. Figure 5.2 

shows the reference trajectory for FES walking used in this work. Electrical 

stimulation used is limited to the hamstrings and quadriceps muscles. Hip 

movement will follow the hip flexion kinetics theory that will be explained later in 

section 6.3.3. Therefore, in this study the reference trajectory considered is 

represented by walking knee angle only. The same reference trajectory will be used 

throughout the thesis so that comparative assessments can be made. In addition, all 

experiments and simulations are based on the same subject so that results from this 

study can be further validated by experimental work applied to the particular 

subject. 

-10 

-20 
Q) 

~ 
0)-30 
Q) 
'U 

.5!f -40 0) 
fa 
~ -50 
c: 
~ 

-60 

Reference trajectory 

-70~--~--~----~--~--~~--~--~----~--~--~ 
o 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 

Time,s 

Figure 5.2: Reference trajectory based on Winter (1990) used in this study 
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5.4 Control ofFES-Assisted Walking with Wheel Walker 

This chapter aim is to gain an insight into control strategies which subsequently 

served as a basis for the synthesis of a life-like control scheme suitable for 

restoration of functional FES-assisted control of paraplegic walking with wheel 

walker. Two different type of controllers used in this thesis; there are proportional,:, 

intergral-derivatives (PID) linear controller and fuzzy logic nonlinear controller. In 

this chapter, the controllers are applied to investigate the -'torque required and to 

control stimulation pulse-width for walking with and without body weight transfer. 

The approach was an engineering attempt, based on biomechanical analysis of 

single and double inverted pendulum stabilization requirements, addressing several 

crucial questions related to integration of the actions of the intact physiological 

system (upper body) with the actions of the FES system supporting the paralyzed 

physiological system (lower extremities). 

5.4.1 PID control 

PID control is widely used in industrial control systems. Generally, the PID control 

can be used in closed-loop to make it more robust to changes in the system. PID 

control attempts to correct the error between measured process variable and desired 

set point by calculating and then computing a corrective action that can adjust the 

process accordingly (Liptak, 1995). The PID control algorithm involves three 

different parameters; the proportional (P), the integral (I) and derivative (D) values. 

The proportional value determines the reaction to the current error, the integral 

value determines the reaction based on the sum of current errors, and the derivative 

value determines the reaction based on the rate at which the error has been 

changing. The PID control scheme is named after its three correcting terms, whose 
.-

sum constitutes the output. Hence the output is given as: 

Output(t) = ~ut + lout + Dout (5.1) 
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where Pout, lout and D out are the contributions to the output from the PID controller. 

The proportional term makes a change to the output that. is proportional to the 

current error value. The proportional response can be adjusted by multiplying the 

error, e(t) by a constant Kp, called the proportional gain. The magnitude of the 

contribution of the integral term to the overall control action is determined by the 

integral gain, Ki • The magnitude of the contribution of the derivative term or rate to 

the overall control action is determined by the derivative gain, Kd. The PID 

controller output that is the final form of PID algorithm is combination of these 

three terms and is given as: 

t de 
u(t) = Kpe(t) + Kif e(r)dr + Kd -· 

o dt 
(5.2) 

5.4.2 Fuzzy Logic control 

An FLC system is a control system that analyzes analog input values in terms of 

logical variables and takes on continuous values between 0 and 1. FLC was first 

proposed by Lotfi A. Zadeh of the University of California at Berkeley in 1965 

(Zadeh, 1965). The ideas of fuzzy logic were elaborated in 1973 that introduced the 

concept of "linguistic variables", which equates to a variable defined as a fuzzy set. 

A fuzzy logic is described as computing with words rather than numbers and a 

fuzzy control can be described as control with sentences rather than equations 

(Jantzen, 1998). 

FLCs are used to control consumer p!oducts, such as washing machines, video 

cameras and rice cookers, as well as industrial processes, such as cement kilns, 

underground trains and robots. One of the first industrial applications of the FLC 

was the cement kiln built in Denmark. Mamdani implemented FLC on steam 

engine in 1974 (Mamdani, 1974). Many practical applications of fuzzy logic were 

invented including the subway Sendai Transportation control system in Japan, 

automated aircraft vehicle landing and the first fuzzy TV set by Sony in 1990. 
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Today the number of fuzzy logic interventions and projects are enormous and fuzzy 

logic systems have been employed as powerful tools in many control techniques in 

different areas such as robotics, medicine instrumentation and industry. 

A typical fuzzy system consists of a rule-base, membership functions (MFs), and an 

inference procedure. Figure 5.3 shows the basic control architecture of FLe. A 

brief description of the fuzzy logic paradigm is provided in this section. 

Reference 
Input r(t) 

+ 

5.4.2.1 Fuzzy sets 

Fuzzy Logic Control 

Figure 5.3: Basic fuzzy logic control architecture 

Output 
y(t) 

The input variables in a fuzzy control system are in general mapped into 

membership functions and are known as fuzzy sets. A fuzzy set that is represented 

by a membership function is defined in the universe of discourse, which is the 

space where the fuzzy variables are defined. The membership function gives the 

grade or degree of the membership within the set of any element of the universe of 

discourse. The membership function is quantifies with the certainty of the variable 

that belongs to the fuzzy set. Each of the membership functions will have a 

boundary that starts from one point and ends at another point. This boundary might 

fall into a triangle, trapezium or Gaussian shape. The numbers that are mapped by 

the membership functions are said to be its members. The membership function of a 

fuzzy set is a continuous function in the range of 0 to 1 (Passino and Yurkovich, 

1998). 
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5.4.2.2 Fuzzification 

The first block inside the FLC architecture is fuzzification, which converts each 

piece of numeric input data to fuzzy input in degree of memberships by a lookup in 

one or several membership functions. Figure 5.4 shows example of a triangular 

membership function. The fuzzification block thus matches the input data with the. 

condition of the rules to determine how well the condition of each rule matches that 

particular input instance. There is a degree of membership for each linguistic term 

that applies to that input variable. Fuzzi!ication maps a crisp input Ui E U into fuzzy 

set Au; in two ways; singleton and non-singleton. 

The fuzzy set, Au; is a fuzzy singleton such that:-

{
I iju = u· 

fl (u)= I 

.4,,/ 0 otherwise 
(5.3) 

The fuzzy set, Au; is a fuzzy non-singleton or fuzzy set (triangular, trapezoidal or 

Gaussian MF) such that:-

{
I iju=u. 

fl (u) = I 

.4,,/ 0 decreases from 1 as u moves from u i 
(5.4) 

where flAu.(u) is ·the MF and U is the universe of discourse. Note that the singleton 
I 

fuzzification is generally used in the implementations where there is no noise. 
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a.., 

Figure 5.4: Triangular membership functions 

5.4.2.3 Fuzzy inference mechanism 

Inference is the process of formulating a mapping from a given input space to the 

output space. The mapping then provides a basis of the decisions that can be 

accomplished. The process of fuzzy inference involves the membership functions, 

fuzzy logical operations and fuzzy if-then rules base. There is more than one type 

of fuzzy rules processing that have been widely employed in various control 

applications and the most popular ones are the Mamdani-type fuzzy rules 

processing and Sugeno-type fuzzy rules processing. The differences between these 

fuzzy inference processes are the consequents of the fuzzy rules, aggregations and 

defuzzification procedures. 

Mamdani's fuzzy inference method is the most commonly seen fuzzy methodology. 

Mamdani's method was among the first control systems built using fuzzy set theory. 

Mamdani's effort was based on Zadeh's work on fuzzy algorithms for complex 

systems and decision processes. Mamdani-type inference expects the output 

membership functions to be fuzzy sets. After the aggregation process, there is a 

fuzzy set for each output variable that needs defuzzification. The Sugeno-type 

inference process replaced the Mamdani' s consequent part of the fuzzy rules by a 

function. 
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5.4.2.4 Fuzzy rule base 

A fuzzy system is characterized by a set of linguistic statements based on expert 

knowledge. The expert knowledge is usually in the form of if-then rules which are 

easily implemented by fuzzy condition statements in fuzzy logic. The rules may use 

several variables both in the condition and the conclusion of the rules. The 

controllers can therefore be applied to both multi-input-multi-output (MIMO) 

problems and single-input-single-output (SISO) problems. The typical SISO 

problem is to regulate a control signal ~ased on an error signal. The controller may 

actually need both the error, the change of error and the accumulated error as inputs 

but in principle all three are formed from the error measurement. 

Basically a linguistic controller contains rules in the if-then format but can be 

presented in different formats. In many systems, the rules are presented to the end­

user in a format similar to the following:-

i) Standard fuzzy system: This fuzzy system uses linguistic fuzzy rules 

(Mamdani-type fuzzy rules) which are formed solely from linguistic 

variables and values. They are simply abstract ideas about how to 

achieve good control. The general form of Mamdani rules is 

IF <premise> OPERATOR <premise> THEN <consequent> 

This type of fuzzy system is used as the FLC strategy throughout this 

study. For example: 

IF e(t) is NB AND Lte(t) is ZTHEN u(t) is NS 

IF e(t) is PB AND Lte(t) is ZTHEN u(t) is PS 

where variables e(t), Lte(t) and u(t) are the system error, change of 

error and output whereas the NB, NS, Z, PS and PB are the linguistic 

values that are the linguistic qualifier determined for a proper 
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5.4.2.5 

variable and refers to as negative big, negative small, zero, positive 

small and positive big respectively. 

ii) Functional fuzzy system: This is known as Takagi-Sugeno-Kang 

(TSK) fuzzy system, proposed as an alternative to the standard fuzzy 

systems. The TSK rules can be described as follows: 

IF Xl is C: and··· and xn is C~, THEN yl = c~ + C: Xl + ... + C~Xn 

where C: are fuzzy sets~' c: are constants, and 1 = 1,2, ... n is the rule 

number. The IF parts of the rules are the same as in the ordinary 

fuzzy IF-THEN rules, but the THEN parts are linear combinations of 

the input variables X = (xp ... ,xn)e U (Wang, 1997). 

Defuzzification 

After fuzzy reasoning, the linguistic output variable needs to be translated back into 

crisp value. The objective of the translation is to derive a single crisp numeric value 

that best represents the inferred fuzzy value of the linguistic output variable. 

Defuzzification is such inverse transformation that maps the output from the fuzzy 

value back into crisp value. Some defuzzification methods tend to produce an 

integral output considering all the elements of the resulting fuzzy set with the 

corresponding weights. Other methods take into account just the element 

corresponding to the maximum points of the resulting membership functions 

(Shaw, 1998). There are several defuzzification methods described as follows: 

i) Centroid of Area (CoA): This method is <;>ften referred to as Centroid 

of Gravity (CoG) method that computes the centriod of the 

composite representing the output fuzzy term. Figure 5.5 shows the 

CoG defuzzification method on a fuzzy output, where Uc is chosen to 

represents the centre of gravity of the shaded area. 
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Figure 5.5: CoG defuzzification methods on a fuzzy output 

u = c 

f,uA(u).u.du 

f,uA(u).du 
in the continous case 

in the discrete case 

This method is used throughout this study. 

(5.5) 

ii) Centroid of Maximum (CoM): This method uses the peak values of 

membership functions. The defuzzified crisp compromise value is 

determined by finding the place where the weights are balanced. The 

crisp output is computed as a weighted mean of the term 

membership maxima, weighted by the inference results. 

iii) Middle of Maxima (MoM): This method consists of taking the mean 

level of all maxima within the fuzzy membership shape. This 

method is normally used in some cases when the CoM approach 

does not work. This occurs whenever the maxima of the membership 

functions are not unique. 

Figure 5.6 demonstrates an example of the max-min inferencing and centroid 

defuzzification for a system with input variables "e(t)", "Lie(t)", and "MS" and an 
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output variable "u(t}". Note that "mu" is standard fuzzy-logic nomenclature for 

"truth value". Each rule provides a result as a truth value of a particular 

membership function for the output variable. In centroid defuzzification the values 

are OR'd, that is, the maximum value is used and values are not added, and the 

results are then combined using a centroid calculation. 

NB NS 
Rule 1: 
IF e(t) is NB THEN u(t) is NS: mu(e(()) 

eft) 
PB 

Rule 2: 
IF !left) is PB THEN u(t) is PS: 

.1e(t) 

Rule 3: 
IF MS is N THEN u(t) is L: 

mu(MS) 

MS PS 
Defuzification: 

Figure 5.6: Max-min inferencing and CoG defuzzification method 

5.5 Control of Output Torque for FES-Assisted Walking 

The FES-assisted walking with wheel walker developed using vN4D is shown in 

Figure 5.7. It is controlled to follow the predefined reference trajectory discussed in 

section 5.3 by controlling the torque amount of right and left knee to coordinate the 

body movement for a smooth walking gait. In this section, the knee output torque 
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for walking manoeuvre is analysed so tl].at the stimulation parameters can be 

obtained. Therefore, the muscle model is not included in this section. 

Figure 5.7: FES-assisted walking with wheel walker designed in vN4D 

The controllers are designed in Matlab/Simulink environment to control the knee 

torque and follow the knee traj ectories of walking gait. A specific control strategy 

is required to regulate the knee torque in order to obtain smooth walking gait. In 

this section, fuzzy logic and PID controllers are designed to control knee extensor 

and flexor for both legs to perform smooth walking gait. The walking cycle is 

divided into 4 gait phases; stance, heel-off, heel strike and swing. Predefined 

walking trajectory is used as a reference trajectory for both controllers. 

5.5.1 Implementation of PID control design 

In this section, two PID controllers are used, one for each leg. For left knee PID 

controller, the parameter values used were 3.6, 0.02 and 0.05 while for right knee 

PID controller parameter values were 3, 0.01 and 0.025 for P, I and D respectively. 

These controller parameters were tuned by trial and error to obtain the best 

trajectories that tracked the predefined reference trajectories. Figure 5.8 shows a 

block diagram of the PID controller applied to evaluate the knee torques of the 

paraplegic walking system. The PID controller input is an error between the system 

output and the reference while the output is stimulation knee torques. 
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Controll Plant 

FESWalking 

Figure 5.8: Block diagram of PID controller for FES-assisted walking without muscle model 

5.5.2 Implementation of FLC design 

For the FLC design, five equal distributed Gaussian (bell-shaped) type membership 

functions were used for each input and output. The FLC inputs and outputs were 

fuzzified by using a fuzzy set of five variables defined by Gaussian shaped 

membership functions: negative big (NB), negative small (NS), zero (Z), positive 

small (PS) and positive big (PB). Figure 5.9 shows the distribution of fuzzy 

membership functions used in this section. Moreover, in this study, equal 

distribution of the membership functions gives sufficient satisfaction for the control 

process, because changing the distribution will change the results significantly. The 

Gaussian shape for the membership functions is recommended when smoothness is 

needed. 

Fuzzy Membership Function 

~ 0: 
:E -1 -0 .8 -0.6 -0 .4 -0.2 0 0 .2 0 .4 0 .6 0 .8 1 
~ Input 1 : Error i 1 NB NS Z PS PB 

E 0 .5 

o . 
m O~==~~~~~~~==~~~~~~~==~~~~==~~==~ c, -1 -0.8 -0.6 -0.4 -0

1
2 0 0 .2 0.4 0 .6 0 .8 1 

~ nput 2 : Change of Error 

0: 
-1 -0.8 -0 .6 -0.4 -0.2 0 0.2 0.4 0 .6 0 .8 1 

Output: Stimulation Pulse Width 

Figure 5.9: Fuzzy membership functions 
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The next step is to determine which rules to use. The number of the rules is 

determined by the number of membership functions for each input. The fuzzy 

controller has two inputs with five membership functions and this leads to 25 rules. 

The determination of the rules is done using the experience of the designer, 

understanding of the control process, and also is tuned by observing the control 

process, taking important information and building up knowledge of the system. 

Any combination of two linguistic variables fires at least one rule. They are 

consistent, with no contradictions and are continuous. Table 5.1 shows the fuzzy 

rules for torque of both. The fuzzy output is generated by using the standard five by 

five fuzzy rules table as shown. The final step of the design process is the 

defuzzification method which converts the linguistic values into crisp values by 

using several defuzzification methods. The centroid of gravity method is used here 

because it is commonly used in feedback control due to its smooth output. 

Table 5.1: Fuzzy rules for leg extension 

X NB NS Z PS PB 

NB NB NB NS NS Z 

NS NB NS NS Z PS 

Z NS NS Z PS PS 

PS NS Z PS PS PB 

PB Z PS PS PB PB 

A block diagram of the FLC system is shown in Figure 5.10. There are two inputs 

to each right knee and left knee controller, the error (difference between actual knee 

trajectory measured from vN4D simulation output and reference knee trajectory) 

and change of error. The controller output is the knee torques. Equally distributed 

five Gaussian (bell-shaped) type membership functions are used for each input and 

output. The inputs and output are normalised from a to 1 and the scaling factors 

used in left leg FLC were 0.1, 0.0025 and 70 while in the right leg FLC these were 

0.055, 0.0025 and 70 for error, change of error and output respectively. The knee 

111 



torques from fuzzy controller are used to drives the vN4D model to follow the 

walking gait. Then the error and change of error are fed back to the fuzzy controller 

to adjust knee torques required to the optimum level. 

Ref Knee 
Trajectory 

Controller Plant 

Knee Angle Velocity 
l eft/Right 

Figure 5.10: Block diagram of FLC for FES-assisted walking without muscle model 

5.5.3 Results and Discussion 

The control strategy was implemented in Matlab/Simulink with incorporation of 

humanoid with wheel walker model in vN4D to investigate the knee torques 

required for FES-assisted walking manoeuvre with wheel walker. The control 

objective is to regulate the level of knee torques to perform smooth walking gait by 

following the reference trajectory. The knee trajectories for walking gait from PID 

and FLC are shown in Figure 5.11. Due to various perturbations and limited 

strength of the hip and knee flexor and extensor muscles, the shank and thigh may 

not perfectly track the reference trajectory but one walking cycle was completed 

steadily. The performance of FES walking manoeuvre in this chapter was assessed 

by evaluating the walking trajectories and visually observing the walking progress 

and system stability from the vN4D. 
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Figure 5.11: Reference and actual trajectories from PID and FLC 

The accuracies of these two techniques in terms of walking gait were similar but for 

FLC, the total torque required was slightly less. Figure 5.12 and Figure 5.13 show 

the quadriceps and hamstrings torques respectively for one complete walking cycle 

from PID and FLC. It is noted that the maximum torque required for one complete 

walking cycle was not more than 60Nm for both control techniques. According to 

the analysis in chapter 4, suitable stimulation frequency to be used for walking in 

this thesis is between 30Hz to 40Hz. In this frequency range, muscle fatigue can be 

minimised and the paraplegic can possibly have more than 10 complete walking 

cycles before the knee torque reaching below 60Nm because of muscle fatigue. 

Therefore, 35Hz has been selected as a stimulation frequency from this point and 

throughout the thesis. It is to minimise muscle fatigue while having an enough 

torque power to drive FES for paraplegic walking with wheel walker. 
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Figure 5.12: Quadriceps torque required from PID and FLC 
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Figure 5.13: Hamstrings torque required from PID and FLC 

Figure 5.14 shows the integral of knee torques for both controllers. It is noted that 

the torque required for one complete gait using PID was 33.3 3 % more than the total 

torque required using FLC. The percentage of reduction or increment was calculate 

by taking the difference between integral of both techniques over the initial value, 

in this case maximum integral value from PID was the initial value. 
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Figure 5.14: Integral of knee torque of PID and FLC 

5.6 Control of Stimulation Pulse-width for FES-Assisted 

Walking 

In this section, FL and PID controllers are designed to control stimulation pulse­

width with stimulation frequency of 35 Hz obtained from previous section. The 

same vN4D model and reference trajectory as previously discussed in this chapter 

are used. In addition to the system, quadriceps and hamstrings muscle models 

developed in Chapter 3 ares used in this section. The controllers are used to control 

the stimulation pulse-width and feed to the muscle models. Then, the output knee 

torque produced form the muscle models are used to drive the knee to follow the 

trajectories of walking gait. The same predefined walking trajectory is used as a 

reference traj ectory for the controllers. 
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5.6.1 Implementation of PID control design 

In this section, four PID controllers are used; two for each leg where the controllers 

are used to control stimulation pulse-width for quadriceps and hamstrings muscles. 

The PID controllers parameters were manually tuned to obtain the best trajectories 

that tracked the predefined reference trajectories. The parameters thus obtained are 

as shown in Table 5.2. Figure 5.15 shows a block diagram of the PID controller 

applied to regulate the level of stimulated pulse-width for muscle stimulation to 

perform smooth walking gait by following the reference trajectory. The PID 

controller input is an error between the system output and the reference while the 

output is stimulation pulse-width. The stimulation pulse-width is fed into the 

quadriceps and hamstrings muscle models to produce an accurate knee torque for 

the particular subject. The stimulation pulse-width produced by the controllers will 

be the same stimulation pulse-width produced in the FES system for walking 

purpose. 

Controller Plant -----------r------------------------I II I 

: II 

I 
I 
I 
I 
I 

- - - - - - - - - - - - - - _I 

Knee Flexion Angle 
LeftlRight1 

Figure 5.15: Block diagram of PID controller for FES-assisted walking with muscle model 
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Table 5.2: PID controller parameters for FES walking with muscle model 

Proportional Integral Derivative 
Control 

gain, Kp gain, Ki gain, Kd 

PID controller for 
6.4 2.19 0.13 

Right Leg 
quadriceps muscles 

PID controller for 
12.4 2.97 0.16 

hamstrings muscles 
.' 

PID controller for 
6.21 2.13 0.11 

Left Leg 
quadriceps muscles 

PID controller for 
12.18 2.85 0.14 

hamstrings muscles 

5.6.2 Implementation of FLC design 

A block diagram of FLC system is shown in Figure 5.16. There are two inputs to 

each (left and right leg) controllers, the error (difference between actual knee 

trajectory measured from vN4D simulation output and reference knee trajectory) 

and change of error. The controller output is the stimulation pulse-width. Equally 

distributed five Gaussian (bell-shaped) type membership functions are used for 

each input and output. The same FLC system membership function and Fuzzy rules 

as in section 5.5.2 are used. The inputs and output are normalised from 0 to 1 and 

the scaling factors used are shown in Table 5.3. The input and output scaling factors 

were manually obtained by trial and error technique to attain the best trajectories. 

The stimulation pulse-width from fuzzy controller is used as input for the 

quadriceps and hamstring muscle models. The muscle models will produce suitable 

knee torques to drive the vN4D model to follow the walking gait. Then the error 

and change of error are fed back to the fuzzy controller to adjust the knee torques to 

the required optimum level. 
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Figure 5.16: Block diagram of FLC for FES-assisted walking with muscle model 

Table 5.3: FLC scaling factors for FES walking with muscle model 

Input Input Output 

Control scaling scaling scaling factor, 

factor, GE factor, G~E Go 

FL controller for 
0.12 0.025 551 

Right Leg 
quadriceps muscles 

FL controller for 
0.15 0.027 528 

hamstrings muscles 

FL controller for 
0.08 0.025 551 

Left Leg 
quadriceps muscles 

FL controller for 
0.13 0.027 528 

hamstrings muscles 

5.6.3 Results and Discussion 

The same control strategy as in the previous section was implemented with 

incorporation of humanoid with wheel walker model in vN4D and quadriceps and 

hamstrings muscle model to control the FES stimulation pulse-width required for 
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FES-assisted walking manoeuvre with wheel walker. The control objective is to 

regulate the level of FES stimulation pulse-width to perform smooth walking gait 

by following the reference trajectory. The knee trajectories for walking gait from 

PID and FLC are shown in Figure 5.17. Figure 5.17 (a) shows walking trajectories 

from PID and FLC for the left knee while Figure 5 .17 (b) shows the walking 

trajectories from PID and FLC for the right knee. Both trajectories from PID and 

FLC did not accurately follow the reference trajectory but the walking gait was 

performed in a stable and safe condition. It is noted F~gure 5.17 (b) that the 

trajectory from PID control was slightly away from the reference trajectory with the 

right knee approaching 0°. However, it settled at 0° at a later time. 
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Figure 5.17: Reference and actual trajectories from PID and FLC 

The accuracies of the two controllers in terms of walking gait were similar but for 

FLC, the total stimulation pulse-width required was less, leading to reduced and 

muscle fatigue. Figure 5.18 shows the stimulation pulse-width for the quadriceps 

muscle model from the PID and FL controllers while Figure 5.19 shows the 

stimulation pulse-width for the hamstring muscle model from the PID and FL 

controllers. This stimulation pulse-width was generated from PID and FL 

controllers. It is clearly noted that the stimulation pulse-width for hamstring muscle 

model from FLC was less than PID control but stimulation pulse-width for the 

quadriceps muscle model could not be easily observed. Therefore, Figure 5.20 

shows the integral of stimulation pulse-width for both controllers and both muscle 

models so that the stimulation pulse-width reduction can be compared. 
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Figure 5.18: Stimulation pulse-width for quadriceps muscles 
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Figure 5.19: Stimulation pulse-width for hamstring muscles 

Figure 5.20 shows the integral of stimulation pulse-width for quadriceps, 

hamstrings and combination of both muscle models for PID and FL controllers. It is 

noted that the stimulation pulse-width required for quadriceps muscles from FLC 

was 1.96% higher than PID while stimulation pulse-width required for hamstrings 

muscles from FLC was reduced by 18.02% compared to the FLC. This means that 

for one complete gait using FLC the overall stimulation pulse-width was 16.06% 

less than total stimulation pulse-width required using PID control. As same as 

120 



before, the percentage of reduction or increment was calculate by taking the 

difference between integral of both techniques over the initial value and the 

maximum integral value from PIn was the initial value. 

180 · 

1 ,60 
f 140 

~ 120 

~'00 

~ 80 

~ 60 
C5 

140. 
"C! 
- 20 

I I 

... ·t.~" .. ~:r.,-'; "" 
I I 

I 

I 

"1-'" "\ ,,' 'j 
i r ,,- '!' ." .. -. -1 

I t I 
.... "." I .. " .. _~.. "" L" L. "" ;. 

120 

I FUZZY] 
--- PIO 

%~~0~.2~O~.4~0~.6~0~8--~I ~I~2~1~.4~1~6--'~.6--7-
Tlme. s 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2 

Time • • 

(a) Quadriceps muscles (b) Hamstrings muscles 

.. , " . . 

I 
I I ,,-"" -."." ..... ·r .......... 

I I I 

! ! ; 
i" "I'" i 
I I I 

I ! I ! 
"'''j'''''''' i"···""',· . 

I I I 

(c) Combination of quadriceps and hamstrings muscles 

Figure 5.20: Integral of stimulation pulse-width for the muscles 
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5.7 Control of Stimulation Pulse-width for FES-Assisted 

Walking with Body Weight Transfer 

In this section, body weight transfer (BWT) technique is introduced to minimise the 

use of electrical stimulation required for paraplegic walking with wheel walker. It is 

assumed that the paraplegic can compensate for the changes by volitional activity 

of the trunk and upper extremities acting over the wheel walker at the ground. 

Figure 5.21 shows the walking cycle that has been considered in this work. In this 

technique, while the left leg is in the position of swing phase, the upper body will 

tilt to the right and transfer the upper body weight to the right leg. This will reduce 

the pressure and weight to the left leg and furthermore the torque required will also 

decrease. The same procedure is used with the left leg in the stance phase. The 

shaded area in Figure 5.21 shows the maximum body weight position during one 

complete walking cycle . 

..----sWING PHASE-----"JI~-STANCE PHASE' 

EARLY I 
SWING 

LATE SWING MID-STANCE 

00/0 10% 200/0 300/0 400/0 500/0 60% 700/0 800/0 900/0 1000/0 

Figure 5.21: Body weight transfer in walking cycle 

5.7.1 Implementation ofFLC design 

In this section, FLC is selected to investigate the effectiveness of BWT to reduce 

the stimulation pulse-width. This is because in the previous study, FLC was found 

to give the minimum stimulation pulse-width compared to PID control for the same 
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task. The same FLC system with quadriceps and hamstrings muscle models in 

section 5.6.2 is used as in Figure 5.16. In this section, the only difference is on the 

body weight transfer where the position of the body is considered in the model in 

vN4D. The model is developed to follow the body weight transfer theory so that it 

will reduce the pressure and weight on the stimulated leg. The same scaling factors 

used in section 5.5.3 were found to be suitable for this propose. Therefore, all the 

FLC values were set as before and no changes were made to the control part. 

5.7.2 Results and Discussion 

The BWT is introduced to reduce the stimulation pulse-width. This section 

investigates the effectiveness of BWT by analysing the output of the controller. The 

same FLC system is adopted with the modified humanoid with wheel walker model 

in vN4D that integrates the BWT theory and both quadriceps and hamstrings 

muscle models to control the FES stimulation pulse-width required for FES­

assisted walking manoeuvre with wheel walker. The control objective is to regulate 

the level of FES stimulation pulse-width to perform smooth walking gait by 

following the same reference trajectory. The reference trajectories and the actual 

trajectories from FLC for with and without BWT are shown in Figure 5.22. It is 

noted that the trajectories from BWT are smoother and more accurate compare to 

without BWT. 
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Figure 5.22: Reference and actual trajectories from with and without BWT 

Although the accuracy of the system with BWT in terms of walking gait was better 

compared to the system without BWT, the most important feature is to have less 

stimulation pulse-width so that the muscle fatigue can be minimised to the optimum 

level. Figure 5.23 shows the stimulation pulse-width for the quadriceps muscle 

models while Figure 5.24 shows the stimulation pulse-width for the hamstring 

muscle models from the system with and without BWT. This stimulation pulse­

width was generated from the same FL controllers. It is noted in these figures that 

the stimulation pulse-width for the system with BWT was less than the system 

without BWT. Therefore Figure 5.25 shows the integral of stimulation pulse-width 

for both controllers so that the stimulation pulse-width reduction can be compared. 

It is noted that for the hamstrings muscles, stimulation pulse-width more than 500 

Jlsec was require for the system without BWT while the system with BWT only 

required less than 250 Jlsec. This reduction is half with the system with BWT. 

Especially for hamstrings muscles which tend to fatigue very quickly compared to 

the quadriceps muscles. 
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Figure 5.23: Stimulation pulse-width from quadriceps muscle 
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Figure 5.24: Stimulation pulse-width from hamstring muscles 

Figure 5.25 shows the total integral of stimulation pulse-width for system with and 

without BWT. It is noted that the stimulation pulse-width required for system with 

BWT was 30.58% less than the system without BWT. This means that the system 

with BWT greatly reduces stimulation pulse-width required for walking with wheel 

walker. This technique is also a practical solution as it does not require any addition 

instrument to be attached to the paraplegic. It only requires training to be given to 

the paraplegic so that the upper body movement is used well to transfer body 

weight to the correct leg at the correct time. 
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Figure 5.25: Integral of stimulation pulse-width for combination of quadriceps and hamstrings 

muscles 

5.8 Summary 

The selection and the execution of a control strategy is essential in regulating the 

electrical stimulation required to perform smooth and stable walking gait for 

paraplegic. Different control strategies gives different control output with almost 

similar accuracy for the same task. In this study, the main objective was to 

minimise stimulation pulse-width to reduce muscle fatigue and maximise the FES 

performance. This chapter discussed the strategies to control the stimulation pulse­

width required for both quadriceps and hamstrings muscles for FES walking with 

wheel walker. Two control strategies used in this chapter were PID and FLC and 

their performances were evaluated. 

The first aim of this chapter was to investigate the torque required for FES walking 

with wheel walker. The torque required has been compare with the results from 

Chapter 4 and then used to decide on suitable stimulation pulse-width to be used in 

this study. It is explained in the previous chapter that only stimulation frequency 

will greatly affect the muscle fatigue. Therefore the selection of stimulation 

126 



frequency is crucial in this study. The stimulation pulse-width will be controlled by 

the controller with fixed stimulation frequency. From the results, it has been found 

that the stimulation frequency of 35Hz is the best frequency for FES walking with 

wheel walker with minimum muscle fatigue. Therefore, stimulation frequency of 

35Hz will be used throughout this work. Although the stimulation frequency is the 

main contribution to muscle fatigue, the stimulation pulse-width also contributes to 

the muscle fatigue. Therefore, minimisation of stimulation pulse-width will 

maximise the FES performance. 

The second aim was to investigate the effectiveness of PID and FL controllers in 

minimising the stimulation pulse-width require4. The results have shown that in 

one complete walking cycle, there has been more than 15% reduction in stimulation 

pulse-width and more than 18% reduction in torque required for walking with FLC 

as compared with the torque required for walking with PID. It is also concluded 

that PID and FLC have been successfully implemented to regulate the level of 

stimulation pulse-width used to stimulate the knee extensor and flexor muscle for 

FES-assisted walking with wheel walker. Based on the control strategy developed, 

a stable walking gait has been achieved. The advantage of FLC to minimise 

stimulation pulse-width and torque required in FES-assisted walking with wheel 

walker has been demonstrated. 

The third and last aim in this chapter was to demonstrate the advantage of body 

weight transfer. to minimise stimulation pulse-width and torque required in FES­

assisted walking with wheel walker. The results have shown that in one complete 

walking cycle, there has been more than 30% reduction in stimulation pulse-width 

required for walking with body weig~t transfer compared with walking without 

body weight transfer. It is also concluded that FLC has been successfully 

implemented to regulate the level of stimulation pulse~width used to stimulate the 

knee extensor and flexor muscles for FES-assisted walking with wheel walker with 

minimum muscle fatigue. 
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Chapter 6 

Spring Break Orthosis 

6.1 Introduction 

This chapter presents the simulation of a bipedal locomotion through regulation of 

stimulation pulses for activating muscles for paraplegic walking with wheel walker 

using FES with spring break orthosis (SBO). A new methodology for paraplegic 

gait, based on exploiting natural dynamics of human gait, is introduced. The work 

is a first effort towards restoring natural like swing phase in paraplegic gait through 

a hybrid orthosis, referred to as SBO. This mechanism simplifies the control task 

and results in smooth motion and more-natural like trajectory produced by the 

flexion reflex for gait in spinal cord injured subjects. The study is carried out with a 

model of humanoid with wheel walker using the Visual Nastran (vN4D) dynamic 

simulation software. Stimulated muscle model of quadriceps is developed for knee 

extension. FLC and PID control are developed in Matlab/Simulink to regulate the 

muscle stimulation pulse-width required to drive FES-assisted walking gait and the 

computed motion is visualised in graphic animation from vN4D. A comparative 

assessment of the FLC and PID control is carried out and the associated results are 

presented and discussed. 
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6.2 Hybrid Orthosis 

Restoring gait in individuals with SCI is a research challenge. Researchers have 

investigated various electrical, mechanical and combined techniques, also called 

hybrid orthosis, to restore functional movement in the lower limbs (Ferguson et aI.,-

1999; Isakov et aI., 1992; Nene, 1989; 1990; Philips and Hendershot, 1991; 

Popovic et aI., 1989; Solomonow et aI, 1997; Tinazzi~ !997). Among the gait 

phases, the swing phase is important in advancing the leg in order to contribute to 

movement of the body in the direction of gait progress. Hip flexion is an essential 

part of pick-up in the swing phase of reciprocal gait, whilst passive hip extension is 

important during the trunk glide in stance. Researchers have attempted to provide 

hip flexion to improve walking by FES. FES was first introduced in 1967, is a 

technique that uses a low level of electrical current to stimulate the physical or 

bodily functions lost through nervous system impairment, that is affected by 

paralysis resulting from SCI, head injury, stroke or other neurological disorders, 

restoring function in people with disabilities (Cooper et aI., 2005). Nowadays, the 

applications of FES include standing, walking, cycling, rowing, ambulation, 

grasping, male sexual assistance, bowel-and-bladder function control and 

respiratory control. To support walking support, FES-assisted paraplegic walking 

needs parallel bars,' walker or crutches. Moreover, paraplegic walking with only 

FES has significant drawbacks in function restoration. Firstly, due to stimulated 

muscle contractions, muscle fatigue will quickly occur because of the reversed 

recruitment order of the artificially stimulated motoneurons. As a result, there are 

limitations in standing time and walking distance. Another disadvantage is erratic 

stepping trajectories because of poor control of joint torque (Hausdorff and Durfee, 

1991). 
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Hybrid systems can overcome these limitations by combining FES with the use of a 

lower limb orthotic brace. Orthoses can guide the limb and reduce the number of 

degrees of freedom in order to simplify the control problem. The use of active 

muscle can also be reduced by locking orthosis joints (Goldfarb et aI., 2003). 

Moreover, the approach is useful to support body weight, protect the joint and 

ligament (Huq, 2009). Furthermore, its rigidity improves walking efficiency . and 

reduces overall energy cost (Stallard and Major, 1995). Several hybrid systems 

have been developed. The first hybrid orthosis system combining powered orthosis 

with FES called hybrid assistive system (HAS) has been introduced by Tomovic 

(1972), and then the work on HAS has continued by Popovic and Schwirtlich 

(Popovic, 1987,1990; Schwirtlich, 1984). Afterward HAS has been changed to 

powered orthosis because of the use of direct current (DC) motor in the orthosis. 

Another type of hybrid system is called powered orthosis which provides more 

function than purely passive hybrid orthosis. A small DC electric motor is installed 

at one or more joints with or without electrical stimulation support. A functional 

movement mimics the swing phase of gait closer than the flexion reflex (Popovic et 

aI., 1987; 1989; 1990). However, this type of hybrid system is not used in practice 

because of the size and weight of motor and batteries. Figure 6.2 shows the power 

orthosis. 

Figure 6.1: Power orthosis (Ferris et aI., 2005) 
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The most widely tested orthosis, named reciprocating gait orthosis (RGO) 

(Hendershot, 1991; Isakov et aI., 1992; Philips and Solomonow et aI, 1997), has 

been designed to meet the needs of the spina bifida patient. This mechanism moves 

the contralateral limb forward by using surface stimulation of hip extension. Then, 

by alternating stimulation of the hip extensors, the walking can be achieved with 

less energy consumption. However, during the leg-swing phase the body requires to 

be lifted by the arm with the help of crutches, making it difficult to produce foot 

clearance. Consequently, muscle fatigue will quickly occur (Solomonow et aI., 

1997). Figure 6.2 shows the RGO in the market. 

Figure 6.1: Reciprocating Gait Orthosis (Solomonow et aI., 1997) 

Goldfarb et aI. (2003) used controlled-brake orthosis, which is able to address the 

constraint of FES-aided gait by combining FES with a controllable passive orthosis. 

This hybrid system includes computer-regulated friction brake at the hip and the 

knee. Muscle fatigue is reduced by locking the brakes during stance phase and 

turning off stimulation to the quadriceps muscle. In addition, leg movement repeats 

smoothly during the swing phase (Goldfarb et aI., 2003). 
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Kobetic et. al (2009) introduced their hybrid orthosis called hybrid neuroprosthesis 

(HNP). The system uses 16 channels of FES stimulation delivered via chronically 

indwelling intramuscular electrodes to activate 8 different muscles for the knee, hip 

and ankle flexion and extension. Electrodes are connected to an external control 

unit (ECU) temporarily or permanently to an implanted generator powered and 

controlled via radio frequency by ECU. The variable constraint hip mechanism 

(VCHM) consisting of hydraulic system with double acting cylinders linked to each 

hip joint and controlled by energizing specific solenoid valves has been designed to 

maintain hip posture (Kobetic et. aI, 7009). The result obtained from the clinical 

test with one paraplegic subject is promising. However the system size and weight 

outweigh the advantages for it user. Figure 6.3 shows the controlled-brake orthosis. 

The size and weight also become disadvantageous for it user. 

Figure 6.3: Controlled-Brake Orthosis (Kobetic et aI., 2009) 

Durfee and Rivard (2005) introduced energy storage orthosis (ESO) which can be 

driven through a complete gait cycle. This mechanism uses stimulated muscle 

power to move the limb and also to drive the orthosis structure, storing energy in 

the process. Gas springs crossing the hip and knee joints are flexed equilibrium 

energy-storage elements. The energy store and transfer systems comprise a 

pneumatic fluid power system connected between knee and hip joints. This can 
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capture the excess energy during the quadriceps stimulation in order to transfer to 

the hip and release at appropriate instant to achieve hip extension (Durfee and 

Rivard, 2005). Figure 6.4 shows the bench model of energy storage orthosis 

developed by Durfee and Rivard which consists of gas spring on the back side. 

Figure 6.4: Bench model physical prototype of energy storage orthosis (Durfee and Rivard, 

2005) 

In this thesis, a hybrid FES gait system concept called Spring-Brake-Orthosis 

(SBO) which combines mechanical braces (with coordinated joint locking 

mechanism) with an energy storage element mounted on it and FES to generate the 

swing phase of paraplegic gait is presented (Gharooni, 2001). This approach also 

substantially simplifies and reduces .the problem of control tasks in a hybrid 

orthosis while offering more benefits on quality of a swinging leg. Previous work, 

(Gharooni, 2001) has developed and validated SBO for leg swing phase while Huq 

(2009Y used SBO in body weight supported treadmill locomotion in simulation 

environment. In this thesis, the application of SBO is widened where it is used for 

paraplegic walking with wheel walker. The new concept in hybrid orthotics 

provides solutions to the problems that affect current hybrid orthosis, including 
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knee and hip flexion without relying on the withdrawal reflex or a powered actuator 

and foot-ground clearance without extra upper body effort. . 

6.3 Walking Gait in SBO 

There are two major forces that act during walking particularly the swing phase; 

gravity and segment interaction forces. Gravity acts on all masses comprising the 

body, and for the purpose of analysis, they can all be replaced with a single 

resultant force acting at the point of centre of mass (CoM). The projection 'of the 

centre of mass on the ground is called centre of gravity (CoG). In the SBO the 

spring acts as an external force on the knee j oint and causes the knee to flex and 

potential energy is stored in the lower leg (by raising the CoM). Consequently, this 

causes firstly the shank to accelerate and secondly change in relative angle between 

the shank and thigh, with the lower extremity taking a new configuration. Both of 

these produce moments about the hip joint as will be illustrated in the following 

sections. 

6.3.1 Segment Interaction 

In the movement of a mUltiple link mechanical structure such as the armIforearm 

system, the torques at the joints arise not only from muscles acting on the joints but 

also from interactions due to movement of other links. These interaction torques are 

not present during movement at only a single j oint and represent a significantly 

complicated function in the dynamic analysis of movement (Hollerbach and Flash, 

1982). ~ 
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6.3.2 Hip Flexion Kinetics 

During normal gait, flexion and extension of the hip and knee are linked by bi­

articular muscles such as the rectus femoris and the hamstrings group, as well as 

kinematically and kinetically. Normal gait is initiated by hip flexion with little 

muscular action around the knee; the inertial properties of the shank cause the knee 

to flex in response to the accelerating thigh, producing ground clearance (Inman et 

aI., 1981). Additionally, as the hip flexes the shank remains in the lowest potential 

energy position and this leads to additional knee flexion. 

These inter-segment linkages also apply when knee flexion occurs without 

muscular activity at the hip. If the knee is flexed the action of the accelerating 

shank will cause the hip to flex; additionally, the new orientation of the knee will 

cause the leg to adopt a new minimum energy configuration with a flexed hip as 

illustrated in Figure 6.5 and Figure 6.6. The static relationship between the knee 

angle (a) and hip angle (8) (Winter, 1990) based on anthropometric data used in 

this thesis is given as: 

tan8 =sina/(2.426+cosa) . (6.1) 

This relationship is plotted in Figure 6.6, which represents an ideal situation and 

assumes no spasticity or muscle contracture. Additional hip flexion is produced by 

the dynamic inter segment coupling and is dependent on the angular acceleration of 

the knee. Thus, it can be seen that if the knee can be made to flex by any means 

then this will also lead to hip flexion. The amount of hip flexion produced by the 

d~amic inter segment coupling is dependent on the' angular acceleration of the 

knee. Figure 6.7 shows the natural hip flexion produced during knee flexion in 

SBO. These situations agree with the theory presented in this section. 
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Figure 6.5: Hip flexion resulting from flexed knee 
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Figure 6.6: Static relation between knee and hip flexion angle 
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Figure 6.7: Hip flexion angle produced in the knee flexion 

As indicated earlier, the swing phase is important in advancing the leg and hence 

movement of the body in the direction of gait progress. During pick-up, hip flexion, 

knee flexion, and ankle dorsiflexion all combine to clear the toe. In this study it is 

shown that hip flexion can be produced by the knee flexion. Therefore, the only 

important issue in generating the swing phase is how to produce proper knee 

flexion. In normal and some FES-assisted walking gait, knee flexion is produced by 

knee flexor muscle groups such as hamstring. There are two conventional options 

for producing this knee flexion; direct stimulation of hamstring and use of power 

actuator. It is possible to directly flex the knee by means of hamstrings stimulation. 

Disadvantages of this technique are that the hamstrings constitute a biarticular 

muscle-group which produces extending action at the hip and limiting any resulting 

hip flexion, hamstrings muscle is also a weak muscle which easily tends to fatigue. 

The knee may also be flexed through the use of a powered-actuator such as a DC 

motor. To minimise inertial properties, it should be mounted away from the knee, 

as proximal as possible. The previously mentioned disadvantages of size and 

weight apply. 
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In this chapter, the combination of spring and brake at the knee is introduced. The 

stimulated quadriceps muscles group can usually produce much more torque than is 

required to extend the leg, even with the thigh horizontal. A spring acts to resist 

knee extension, then the additional quadriceps torque can be used to 'charge' (store 

potential energy in) the spring when the leg is extended. A brake can then be used 

to maintain the knee in extension without further quadriceps contraction, preventing 

fatigue. When the brake is released the spring will contract, releasing its potential 

energy as kinetic energy and causing the knee to flex. The advantage of this 

approach over the use of a powered actuator is that a spring has a very high torque 

to weight and size ratio, efficient, robust and does not require any control signals or 

electrical power. Figure 6.8 shows the spring for knee flexion used in SBO. 

Figure 6.8: Spring for knee flexion in SBO 
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In order to prevent the dynamic hip flexion produced by the accelerating knee from 

being lost, a means of 'catching' the hip at its maximum flexion angle is required. 

This can be achieved by using a ratchetlbrake at the hip. This leads to an orthosis 

combining a ratchet at the hip with a brake and spring at the knee and electrical 

stimulation of the quadriceps. 

6.3.3 The Swing Phase of SBO 

Figure 6.9 demonstrates ~he swinging leg in the SBO. To synthesise the swing 

phase of gait using the SBO, the following procedure is required. 

1) At the beginning the knee brake is on to provide isometric torque against the 

spring to keep the leg in stance phase (Figure 6.9 (a)). 

2) The brake at the knee is released, and the spring causes the knee to begin to 

flex (Figure 6.9(b )). It should be noticed that in practice the toe will 

. interfere with the ground at the initiation of swing, and may prevent knee 

flexion. This problem can be overcome by allowing the unloaded foot to 

dorsiflex, thus allowing the toe to slide along the ground. 

3) Following toe-off, the spring torque will continue to accelerate the shank 

backwards, producing a reaction at the knee, which accelerates the thigh 

forwards. 

4) The combination of the reaction and the moment due to the weight of the 

flexed shank cause the hip to continue to flex, the flexed knee allows the toe 

~to clear the ground (Figure 6.9(b)). 

5) While the hip reaches its maximum flexion angle, the hip ratchet keeps it in 

peak angle (Figure 6.9(b)). 
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6) The quadriceps muscle is then stimulated to extend the knee against the 

spring torque (Figure 6.9(c)). 

7) When the knee is fully extended the brake at the knee IS applied and 

quadriceps stimulation is turned off (Figure 6.9(d)). 

(a) 

Spring 

Quadriceps 
muscle 

t/ 

(b) (c) 

Figure 6.9: SBO swing phase synthesis 

(d) 

It can be seen that it is possible to obtain knee flexion, knee extension and hip 

flexion using only a single channel of stimulation per leg. 
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6.4 The Development of SBO 

6.4.1 Brakes 

The controlled brake is the main part in those types of hybrid orthoses which use 

the brake as a dissipative element. Considerations for selecting a brake technology 

include peak resistive torque, control bandwidth, size, w~ight and residual friction. 

Most brakes are primarily designed for high angular velocity and low torque. 

Human gait however consists of relatively low angular velocity and high torque 

motion. Therefore, utilising the full range of. mechanical power of the brake 

requires a mechanical transmission. The transmission ratio, N must provide at least 

N:l speed reduction from the brake to the joint to result in the specified maximum 

joint torque from the specified brake. Also the transmission ratio, N should not be 

too high so as not to reflect the friction and inertia from the brake to the joint. 

Therefore, one parameter in selecting a brake is low free rotation friction and low 

inertia. 

There are varieties of technologies for controlled brakes in hybrid orthoses. Among 

these two different types of brakes, namely, wrap-spring clutch and magnetic 

particle brake have been reported by some researchers in hybrid orthosis design. 

Irby et al. (1999) have suggested using a wrap-spring clutch within a knee-ankle 

foot arthosis (KAFO) system. The wrap-spring clutch is a principle that is proven in 

transmission of rotational movement. The effects of friction when a flexible body is 

surrounding a non-movable body are amplified in an exponential manner; thus, a 

small force at one end can hold a large force at the other end. This design allows 

device minimisation and overall reduction in energy consumption when compared 

with other brake systems used in orthotics. Durfee and Hausdorff (1990) reported 

the use of magnetic particle brake in the CBO. It was shown in their report that 

magnetic particle brake as a controllable mechanical damping element at the joint 

with combined stimulation provides good control of limb motion despite variations 

in muscle properties. 
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Fortunately, the kinematics of the SBO reduces the complexity of brake dynamics. 

In the SBO, brake torque is applied to oppose the isometric torque of the spring. As 

described in the previous section, the brake should be on when the knee joint 

reaches its maximum extension. In this case the angular velocity is zero, therefore 

the brake only needs to provide a static torque equal and opposite to the spring 

torque. This point simplifies the issues related to the selection and design of a brake 

further, as the dynamic characteristics of the brake do not need to be accounted for. 

6.4.1.1 Maximum brake torque 

Since power flow is from the joint to the brake, the brake in any circumstance 

should be capable of producing the maximum resistive torque required on the joint 

flexion and extension range of motion. Maximum joint torque specification of the 

orthosis joint depends upon three desired capabilities; 

1) The orthosis should be able to provide the dissipative torque observed in 

normal gait. Maximum dissipative torque for knee and hip are 

approximately 0.4 Nmlkg for knee and 0.3 Nmlkg for hip (Winter, 1991). 

For a body of 80 kg, the maximum dissipative knee and hip torques are 32 

Nmand 24Nm. 

2) The orthosis must be capable of locking a joint against a stimulated muscle 

contraction. The strength of electrically stimulated knee extensors 

(quadriceps muscle) was studied by Baid and Kralj (1995) in some groups 

of paraplegic subjects. According to their experience knee joint torque over 

50 Nm permits the performance of FES activities, such as standing up and 

reciprocal walking. 

3) The orthosis should be able to perform controlled stand-to-sit manoeuvre 

without the help of muscle stimulation. 
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Based on the above, Goldfarb and Durfee (1996) selected maximal braking loads of 

50 Nm for the knee and 30 Nm for the hip joint. However, in the case of SBO as 

the knee brake is resisting the spring torque and not the muscle torque, the 

minimum braking load is reduced to 10 Nm, which is the spring torque exerted on 

the knee joint. 

It is also important in selecting the brake to consider those types of brakes which 

provide high torque with minimum input power for minimum size and weight. The 

wrapped spring clutches among other types of brakes offer high torque in a small 

package size and low power consumption for their torque capability when 

compared with typical friction clutches and brakes. Figure 6.10 shows the brake 

that has been chosen in this thesis for SBO development. In this SBO, as the knee 

reaches full extension position the brake is turned on at the knee joint by push 

button switch. 

(a) (b) 

Figure 6.10: (a) Brake used in SBO (b) Brake for knee and hip in SBO 
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6.4.2 Spring 

This section will discuss selection of spring parameters in SBO development. In the 

SBO, spring torque will act as an external elastic element to generate knee and hip 

flexion. In this section, test is performed to find the optimum spring parameters that 

produce the minimum quadriceps torque required for knee extension in SBO. In 

this test, the same knee flexion trajectory is used for all spring parameters. Fifteen 

different spring parameters consisting of three different spring lengths and five 

different spring constants were considered to find the minimum quadriceps torque 

required for knee extension. In this simulation test, spring length from O.lm to O.3m 

and spring constant from 200N/m to 400N/m were used. Figure 6.11 shows the 

results from the simulation test. The minimum quadriceps torque required was 

calculated by taking the integral of total quadriceps torque for the knee extension in 

SBO at the respective spring parameters. It is noted that the spring constant of 

250N/m and spring length of O.3m produced the minimum quadriceps torque 

required for the knee extension in SBO. Using this value the knee flexion also 

flexed according to predefined knee flexion trajectory, hence the test objective was 

successfully achieved. Therefore, this value is used throughout this chapter. 

144 



20r.=======~--:------------:-----------:----------~ 

(/) 

...... 0 .1m 
-~. 0.2m 

E 18 ..•. 0.3m ..... .. ..... ; .............................. .......... +········································ f·· ······ 

i16 ....................................... ' ............................. ........... _ ................... ................ ' ..................................... . 
I- i 
~ : 
~ 14 ...................................... L ................................. _ ..................................... ' ............... .......... ~~.~~ 

~ 12 .... · ··· · ············ ·· · ·· ' · · · ==~r~===:.:~::::::;~;;;f'~~"~~~== ···· · ..... 

t 1: . =.~ ~~~:.~.-';;;J.~;;;:;~~ ......... 1 ............................. :.: ... :.1. ........... :. ,.~.:.~.: .. :.~. 
1 ; ; 

~OO 250 300 350 400 
Spring Constant, N 

Figure 6.11: Spring parameters in SBO simulation test 

6.5 Control of Knee Extension 

The incorporation of feedback into human movement control system is expected to 

provide several significant improvements. Feedback correction for internal 

disturbances may also reduce the need for frequent retuning, but only if the closed­

loop system's performance itself is robust, or relatively insensitive to internal 

disturbances. 

As discussed earlier, the swing phase kinematics consist of some states such as hip 

and knee flexion, mid swing, forward swing and knee extension at late swing. In 

the SBO, three elements namely, spring, brake, and muscle are involved in 

synthesising the leg swing function. The swing function is initiated by the schedule 

controller command to release the brake. Then the spring torque rotates the knee 

towards mid swing. At the knee flexion peak angle the control task passes muscle 
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torque. The controller regulates the muscle torque through the electrical stimulus 

pulses to bring the knee to full extension, which is the brake catchment area. When 

the knee trajectory reaches this point the control passes to the brake so that one 

swing cycle is completed. It should be noted that, the hip is caught up with a 

ratchet at peak flexion angle. 

There are three subsystems involved in the swing phase. The first is the brake 

function, which is a simple on/off control for initiating the swing phase and 

providing isometric torque at the e~d of the swing phase mode. The second 

subsystem is the spring torque, which is not required to be controlled since the 

spring torque provides a knee joint trajectory si.milar to a normal trajectory. The 

third subsystem is electrically activated muscle. This subsystem is a nonlinear 

• actuator, which needs to be controlled in order to bring the knee joint to full 

extension position and after that the brake isometric torque keeps the knee in 

position without muscle activity. Therefore this section will discuss the control for 

knee extension in SBO. There are two control systems used in this chapter; PID and 

FLC are used for knee extension in SBO and performances of both techniques are 

evaluated and discussed. 

6.5.1 Fuzzy logic control for knee extension 

The essential aim of the fuzzy controller in this chapter is to make the knee 

extension follow a pre-defined trajectory by applying a suitable torque to it. There 

are two inputs selected for the controller. These are the error (difference between 

actual knee trajectory measured from vN4D simulation output and reference knee 

trajectory) and change of error which" is the same as the difference between the 

reference and actual angular velocities. The controller output is the stimulated 

pulse-width which then is fed into the muscle model to produce muscle torque. The 

details of FLC were discussed in Chapter 5. 

146 



In this chapter, five equal distributed Gaussian (bell-shaped) type membership 

functions are used for each input and output (Figure 6.12). In this chapter, equal 

distribution of the membership functions same as FLC in the previous chapter is 

used. The Gaussian shape for the membership functions is selected because this is 

likely to produce a smooth output. 

Fuzzy Membership Function 

~ 0: 
:.c: -1 -0.8 -0.6 -0.4 -0 .2 0 0 .2 0 .4 0 .6 0.8 1 
~ Input 1 : Error 

I 0: 
C) -1 -0.8 -0 .8 -0 .4 -0

1
2 0 0.2 0.4 0 .6 0 .8 1 

~ nput 2 : Change of Error 

0: 
-1 -0 .8 -0.6 -0.4 -0.2 0 0 .2 0 .4 0 .6 0.8 1 

Output: Stimulation Puis. Width 

Figure 6.12: Fuzzy membership functions 

The next step is to determine which rules to use. The number of rules is determined 

by the number of membership functions for each input. The fuzzy controller has 

two inputs with five membership functions and this leads to 25 rules. Table 6.1 

shows the fuzzy rules for stimulated pulse-width for quadriceps muscle. Fuzzy set 

of five variables, defined by Gaussian shaped membership functions: negative big 

(NB), negative small (NS), zero (Z), positive small (PS) and positive big (PB) is 

considered in this chapter. The centroid of gravity methods is used as a 

defuzzification method because it is commonly used in feedback control due to its 

smooth output. 
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Table 6.1: Fuzzy rules for leg extension 

K NB NS Z PS PB 
I -

NB NB NB NS NS Z 

NS NB NS NS Z PS 

Z NS NS Z PS PS 

PS NS Z PS PS PB 

PB Z PS PS PB PB 

The rules are typically fired as: 

If Error is NB, and Change of Error is NB then the Pulse-width is NB. 

The inputs and output were normalised from 0 to 1. The scaling factors used in left 

leg FLC were 0.1, 0.0025 and 322 while in the right leg FLC were 0.058, 0.0025 

and 322 for error, change of error and output respectively. The input and output 

scaling factors were manually obtained by trial and error technique to attain the best 

trajectories. Figure 6.13 shows a block diagram of the control system. The 

stimulation pulse-width from the fuzzy controller is fed into the muscle model to 

produce muscle torque to drive the vN4D model to follow the walking gait. Then 

the error and change of error are fed back to the fuzzy controller to adjust 

stimulation pulse-width to the optimum level. In order to apply muscle torque at the 

correct time, which is the peak time of knee flexion, a block was designed to detect 

the peak angle of the knee joint. This block sensed the peak time and sent a strobe 

signal to the controller to initiate controlling the plant. 
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Figure 6.13: Block diagram of the FLC system 

6.5.2 PID control for knee extension 

Desired 
Trajectory 

In this chapter, two PID controllers are used, one for each leg. For left knee PID 

controller, the parameter values used were 6.5, 0.02 and 0.04 while for right knee 

PID controller parameter values were 6.5, 0.05 and 0.035 for P, I and D 

respectively. Figure 6.14 shows a block diagram of the PID control applied to the 

walking system. The PID controller input is an error between the system output and 

the reference while the output is stimulation pulse-width. Details of PID controller 

were discussed in chapter 5. 
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Figure 6.14: Block diag~am of the PID control system 
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6.6 Simulation Results 

Simulations were carried out uSIng Matlab/Simulink with incorporation of 

humanoid with wheel walker model in vN4D to illustrate the effectiveness of SBO 

in FES-assisted walking with wheel walker. The same humanoid model with wheel 

walker discussed in Chapter 2 was used. The control objective was to regulate the 

level of stimulated pulse-width for muscle stimulation in knee extension by 

following the reference trajectory. Due to various perturbations and limited strength 

of the hip and knee flexor and extensor muscles, the shank and thigh may not 

perfectly track the reference trajectory. 

The tasks of swing phase in view of its functional characteristics can be divided 

into two modes, namely passive and active. In passive mode, combination of 

functions of passive elements (brake and spring) initiates a swing phase by flexing 

the knee joint. A large range of knee flexion picks up the foot to make enough 

ground clearance. The inertia and pendular effects of the lower extremity advance 

the leg forward. In this study a spring constant and spring length of 250 N/m and 

O.3m respectively were used after a trial and error process. This spring constant 

value gives the best flexion trajectory referring to the predefined trajectory. In 

active mode, electrically stimulated knee extensor muscles group provides the leg 

extension so that the heel reaches the ground. The timing block schedules and 

adjusts two passive and active modes by sending a strobe signal at appropriate 

times. It should be noted that the passive mode is double pendulum driven by only 

the spring torque in the knee joint and the active mode is a simple pendulum in 

which the joint trajectory is tracked by the electrically activated muscle torque. This 

is because the hip brake catches the hip at the maximum flexion angle, and does not 

allow the hip to move until the end of swing phase. 
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6.6.1 Fuzzy logic control 

Figure 6.15 shows the stimulation pulse-width, knee and hip trajectory for both 

legs. In the left knee, the stimulation starts at 0.48 second and at the time that knee 

is in full flexion. The same situation takes place with the right knee where the 

stimulation starts at 1.58 seconds. The results show that the controller designed 

worked as expected. The results show that the left hip brake caught the maximum 

hip angle at 25° while the right hip brake caught the maximum hip angle at 27°. 

This is because the left leg begins to provoke the start of periodic gait cycle and the 

right leg is where all body parts are in the movement condition where the centre of 

body is gravity and inertia driven in the direction of progression. 
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Figure 6.15: Stimulation pulse-width, knee and hip trajectory of FLC for complete walking 

gait 
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6.6.2 PID control 

Figure 6.16 shows the stimulation pulse-width, knee and hip trajectory for both legs 

produced using PID control. In the left knee, the stimulation started at 0.48 second 

and at the time that knee was in full flexion. The same situation took place with the 

right knee where the stimulation started at 1.58 seconds. The simulation time was 

set to be the same as with FLC so that fair evaluation can be made between these 

two techniques. The results show that the PID controller designed also worked as 

expected. In PID control, the left hip 'brake caught the maximum hip angle at 25° 

while the right hip brake caught the maximum hip angle at 28°. This was 1° higher 

compare with right hip brake angle from FLC. The trajectory of knee and hip found 

with FLC was smoother compared to that with PID control. 
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Figure 6.16: Stimulation pulse-width, knee and hip trajectory of PID control for complete 

walking gait 
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6.6.3 Comparison with and without SBO 

Figure 6.17 shows the stimulation pulse-width and knee trajectory from walking 

without SBO simulation. The stimulation pulses were controlled by FLC at both 

quadriceps and hamstring muscles. The results clearly show that the stimulation 

pulses from this technique were more than walking with SBO. The torque required 

in walking with SBO in FLC was reduced by 11.49% and 100% for quadriceps and 

hamstrings muscles respectively as compared with the torque required for 

quadriceps and hamstring muscles in ' walking without SBO. As explained above, 

there is no torque required for hamstring muscle in walking with SBO as spring is 

used for knee flexion. The percentage of reduction or increment was calculated by 

taking the difference between integral of both techniques over the initial value; in 

this case integral value from walking without SBO was the initial value. 
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Figure 6.17: Stimulation pulse-width and knee trajectory for complete walking gait without 

SBO 
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6.7 Summary 

The objective of the SBO approach is to eliminate reliance on the withdrawal reflex 

and the associated problems of habituation and poor controllability. Instead, a 

simple switchable brake with a spring elastic element with well-defined properties 

provides the necessary function and trajectory. The technique seems promising in 

producing functional hip flexion. The results of the SBO typical behaviour with the 

model simulation confirm the effectiveness of the SBO· for FES-assisted walking 

with wheel walker. It is also concluded that FLC and PID control can be 

successfully implemented to regulate the level of stimulation pulse-width used to 

stimulate the knee extensor muscle for FES-assisted walking with wheel walker in 

SBO. The FLC has been found to be more suitable compared with PID control for 

its smoothness in knee and hip trajectories. Based on the simulation developed, a 

stable walking gait with SBO has been successfully achieved. 
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Chapter 7 

Finite State Control for FES Walking with 

SBO 

7.1 Introduction 

In the proposed FES walking with SBO, the application of FES for knee extension, 

the spring for knee flexion and the brake at knee and hip from the SBO are 

synchronised with the incidence of specific events in the walking gait, such as knee 

extension, knee flexion, hip brake, knee brake, etc. However, timing and co­

ordination of the FES and SBO parameters applied in the system can be difficult 

and may lead to instability in the system due to incorrect detection of gait event 

from the sensor signals or muscle fatigue. The use of finite state control can 

overcome this drawback since gait sensor values are interpreted by a finite state 

controller in the situation of the subject's current system state. Therefore, switching 

of FES, spring and brake in the SBO are applied to the subject when the correct 

sequence of state transition takes place. 

This chapter presents a finite state control (FSC) of paraplegic walking with wheel 

walker using functional electrical stimulation (FES) with SBO. The study is carried 

out with the same FES walking with SBO system discussed in Chapter 6 with the 
~ 

implementation of FSC to control the transition between different states in the FES 

walking with SBO. This is to improve the previous system so that in case of any 

failures during the walking cycle, the next walking state can be terminated. It is also 

to increase the paraplegic's safety and system stability during the FES walking. At 
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the end of this chapter, the results from this technique are compared with results 

from the previous chapter and conclusion is made on the performance of both 

techniques. 

7.2 Finite State Control in FES 

A finite state controller or finite state machine is a conceptual machine comprising 

a set of states which are represented in a data structure, a set of input events, a set of 

output events and functions which determine changes of state resulting from input 

and trigger consequent output (Bavel, 1983). Each state represents an aspect of the 

system's behaviour and the complete range of the system behaviour is characterised 

by the set of all possible system states. It is a behaviour model composed of a finite 

number of states, transitions between those states, and actions. Finite state machines 

switch between states according to the system input and the current system state, 

similar to a flow graph in which one can inspect the way logic runs when certain 

conditions are met, as illustrated in Figure 7.1. Finite state machines can be 

represented graphically, using the notation where states are represented by circles 

and transitions are written above arrows signifying the state transition, inputs 

causing the respective state transitions are indicated above the arrows (Bavel, 

1983). 

x=6 

Figure 7.1: Finite state operation 
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Finite-state machines can solve a large number of problems and has been used in a 

wide range of applications. In biology and biomedical research, state machines are 

used to describe neurological systems while in FES, it was first proposed by 

Liberson et aI. (1961) for the correction of foot drop and at the same time, FSC of 

human gait was proposed by Tomovic and Karplus (1961) to control the human 

gait. Since this first report, Tomovic and McGhee (1966) initiated the concept of 

finite state controlled neural prosthesis. They consider the human gait as composed 

of a sequential pattern of movements. Later McGhee (1~~.8) investigated the finite 

state element in the leg 10comotion . .In these two papers, the concept introduced 

was to relate the control of robot walking machines to the artificial control of 

human locomotion. It was conclude that the human and animal locomotion were the 

most suitable application to be controlled using FSC as the walking gait can be 

represented as different states in FSC. Later, the combination of FES and human 

locomotion in FSC motivated other researchers (Andrews et aI., 1992; Franken et 

aI., 1994; Popovic et aI., 1989) to use FSC with FES for paraplegic gait restoration. 

Many researchers investigated the effectiveness of FSC in various FES-activities. 

Mulder et aI. (1991,1992) used low level FSC of knee joint in paraplegic standing. 

In this paper, low level FSC consisted of locked and unlocked states to control the 

electrical stimulation given to the quadriceps muscles in FES standing. The locked 

state was detected by knee angular velocity while unlocked state was switch on 

when there is zero velocity detection from the goniometer used. In these papers, 

FSC is found to have higher duration of standing and less quadriceps torque 

required compared to open loop control for all of the subjects. 

Davoodi et aI. (2002) developed an automatic FSC to replace the voluntary decision 
." 

m~ing procedure of pressing and releasing control buttons by fingers to be used 

with the modified rowing machine of FES rowing exercise for paraplegic. To 

provide sensory feedback to the FSC, two optical encoder sensors were used to 

measure the positions of the seat and handle during rowing. In this paper, FES 

rowing with FSC was found to be more convenient and easy to use but required 
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more electrical stimulation compared to manual voluntary FES control. This is 

because in the manual voluntary FES control, the subject can switch off the 

electrical stimulation whenever they believe it was not necessary. 

Henry et al. (1993) used finite state to model paraplegic walking gait. They 

investigated performances of two different types of sensory strategies. Nine 

walking states were set in FSC to represent paraplegic walking gait. The first 

sensory feedbacks were two goniometers and eight footswitch while the second 

sensory feedbacks are two goniometers and two piezo electric placed inside the 

crutches to be used to detect nine walking states in FSC. They used FSC to control 

nine pre-defined walking states and FSC was found as a promising technique to 

represent paraplegic walking gait. 

The clinical results over last forty years on FSC for FES application in neural 

prosthesis has shown that FSC is an effective and efficient control method to be 

used in FES application. In this chapter, FSC is used as a switching from one 

walking gait to other. It is used to improve the robustness of FES walking with 

spring brake orthosis discussed in the previous chapter where FSC is used to 

control the transition between the states. 

7.3 FSC in FES Walking with SBO 

Finite state control is principally an event triggered approach, where transition from 

one st~te to another one takes place if and only if a predefined event occurs. In this 

chapter, the decisions regarding the number and definition of states as well as the 

events that will provoke the transitions are based on the FES walking with SBO 

sequence described in the previous chapter. The FSC design and implementation is 

developed in Matlab Simulink and interaction with vN4D model is made for the 
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output analysis. According to the FSC concept, each state focuses on a specific 

behaviour of the system that happens under certain circumstances and the whole 

states represent an overview of the system for complete period of time. Referring to 

the FES walking with SBO in the previous chapter, walking states are identified for 

used in FSC development as double stance (initial), knee flexion, knee extension, 

knee full extension, heel strike and mid stance. These states are applied to both 

right and left legs and these are not a usual walking states used by other researchers 

as these walking states are based on FES walking wit~ .. SBO in this thesis. The 

states are selected according to the switching period in spring, hip brake, knee 

brake and FES to the quadriceps muscles in the FES walking with SBO. 

In general, there are two types of transition; normal transition and default transition. 

In the normal transition, a predefined event acts as a trigger to switch from one state 

to another and if the event does not occur, the current state will continue to execute 

the current action. Table 7.1 shows the list of states obtained to represent the FSC 

of FES walking with SBO. The same set of states is used for both right and left leg 

with different starting state. Right and left leg states are active at the same start time 

with double pendulum where both legs are in the stance position with hip and knee 

brakes on. Figure 7.2 shows the implementation of the FSC states, listed in Table 

7.1 in a state flow diagram. 
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Table 7.1: State description of the FSC of FES walking with SBO 

State Action Transition's input! 

event 

0 Double Stance (initial) Hip Brake = 1 Initial, t=O 

1 Knee Flexion 

2 Knee Extension 

3 Full Knee Extension 

4 Mid Stance 

Left Leg [HL=271 

".....-"'----''---_[ ........ HL==27],----....... 
Knee_extension 
entry: HipBrakeL=1 
and FESL=1 

Knee flexion 
entry: SpringL=1 

Mid Stance 
entry: HipBrakeL=1 
and KneeBrakeL=1 

Knee Brake = 1 
FES=O 
Spring = 0 

Hip Brake = 0 F or left knee, first start 
Knee Brake = 0 at t=O.l 
FES=O For the right knee: Left 
Spring = 1 Knee = 0°, Left Hip = 

0° 
Hip Brake = 0 Hip = 27° 
Knee Brake = 0 
FES = 1 
Spring = 0 

Hip Brake = 0 Hip = 27° 
Knee Brake = 1 Knee = 0° 
FES=O 
Spring = 0 

Hip Brake = 1 Hip = 0° 
Knee Brake = 1 
FES =0 
Spring = 0 

Right Leg [HR==27] 

[HR=271 [KR=O} 
~--"'------... ,__---...... ~---:L--_--...... 

Full_Extension Knee fle xion Knee extension Full Extension 
entry: KneeBrakeL =1 entry: SpringR=1 entry: HipBrakeR=1 ent~: Knee BrakeR =1 

and FESR=1 

IKL=--Qj& 
[HL=Oj 

Mid Stance 
ent~: HipBrakeR=1 
and KneeBrakeR=1 

Figure 7.2: FSC state flow diagram 
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, 

In this study, there are three switches to be controlled by FSC. The switches are hip 

brake, knee brake and FES stimulation. In FES walking with SBO, spring is a 

potential energy storage device where it will automatically flex the knee when the 

knee brake is off. Therefore, in this case there is no control applied to the spring 

and the spring is put in the state flow only for observation purposes. 

In the FES walking with. SBO, four main states are considered. The first state is 

knee flexion where it is a transition from the stance posiiio'n and first applied to the 

left leg when time is at 0.1 second while the right leg will remain at foot flat and 

mid stance position until the left leg complete the leg swing. In this state, the hip 

and knee brakes are off and allow the spring to flex the knee and at the same time 

produce the hip extension. The hip extension theory was explained in detail in the 

previous chapter. After the hip extends until 27°, the second state (knee extension) 

is switched on. To get this state, FES is applied to the quadriceps muscles and hip 

brake is on when the hip reaches 27 ° extension angle. 

The third state is full leg extension where the main aim is to make the leg fully 

extend and leg swing completed. At the end of this state, the knee brake is on when 

the knee angle reaches 0°, the upper body is moved forward and hip brake is off 

immediately to allow the heel strike and mid stance position take over. During the 

fourth state, mid stance state, knee brake and hip brake are on when both are at 0° 

and hip brake will be off just after that to allow the hip flex freely and tolerate the 

right leg to move from knee flexion to knee extension. Since in this study only one 

walking cycle is analysed, the process will end when the right leg is in mid stance 

position. Figure 7.3 shows the switching period of spring, FES, knee and hip brakes 

for all states in both legs for one walking cycle. It is noted that there were slight 

delays in transition between one state to another as the transition input is feed back 

to the FSC after passing through vN4D model. However, this delay does not affect 

the walking stability and the system performance. 
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Figure 7.3: The switching period for the FES, spring, hip and knee brake for both legs 

In this study, FSC is used together with FLC for knee extension. Figure 7.4 shows a 

block diagram of the complete FSC of FES walking with SBO used in this chapter. 

The same FL controller's parameters and settings in the previous chapter were 

found to be suitable to be used in this chapter. The comparative function is used for 

the FLC and the FSC outputs so that FES for knee extension will be fed to the 

vN4D model if only FES switch at FSC is on. Hip and knee brake switches are set 

in the vN4D model to activate or deactivate the brakes. In a practical situation, 

these switches can be directly attached to the SBO brake switch as the brakes used 

in the SBO development are activated by putting a voltage to them. The spring 

switch from the FSC is used for the monitoring purposes as the spring is an energy 

storage device and in this study it. will activate immediately if the knee brake is 

released. 
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Figure 7.4: Block diagram of FSC of FES walking with SBO 

7.4 Results 

In this chapter, FSC is used to enhance the switching states in the FES walking with 

SBO developed in the previous chapter. Figure 7.5 shows the knee trajectories, 

stimulation pulse-width and hip trajectories from with and without FSC of FES 

walking with SBO. In the previous chapter, the switching of FES, knee and hip 

brakes was set manually according to the pre-defined reference trajectory and the 

principle of SBO. Therefore, the knee and hip brakes were switched on and off 

even though the time was not right. In Figure 7.5, the left hip angle was locked 

before it reached 27° in the without FSC system as the hip brake switch was set 

manually. 
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Figure 7.5: Stimulation pulse-width, knee and hip trajectory for with and without FSC of FES 

walking with SBO 

Furthermore, results of hip trajectories from FSC system was slightly different 

compared to the results from system without FSC, but knee trajectories and 

stimulation pulse-width were almost the same for both systems. This is because 

using FSC, hip angle at 270 can be catch accurately with the feedback to the FSC. 

In FSC system also FES stimulation started earlier than without FSC system but the 

stimulation required was almost the same. As a result, the knee trajectories for both 

systems were slightly different at the transition between knee flexion and knee 

extension. Knee trajectory from FSC system was found to be smoother than the 

system without FSC. 
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7.5 Summary 

The objective of FSC approach is to overcome the problem in switching of FES 

walking with SBO parameters such as FES, knee and hip brakes. Instead, a simple 

control system where knowledge is represented in the states, and actions are 

constrained by rules provides intelligent switching command to the action required. 

The technique is promising in producing accurate tim~ng for FES, knee and hip 

brakes action during walking gait. The results from FSC of FES walking with SBO 

confirm the effectiveness of FSC to control the switching time of FES, knee and hip 

brakes. It is also suitable to be used with FLC. to control electrical stimulation for 

the knee extension. FSC of FES walking with SBO is simple and appropriate to be 

implemented practically with SBO. FSC is also well known to have good 

robustness for external and internal disturbances of the system. 
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Chapter 8 

Conclusion and Future Work 

This chapter presents the relevant conclusions drawn from the work undertaken and 

attempts to place these in the context of developing an FES system for paraplegic 

mobility. The main achievements in the area of FES for SCI especially paraplegic 

mobility are highlighted. Finally, recommendations for future work in these studies 

are described. 

8.1 Conclusion 

This research has been motivated by the need for a reliable and practical system for 

paraplegic mobility. Therefore, the main aim for this research has been to develop a 

reliable, effective, safe and affordable complete system for FES-assisted paraplegic 

walking with wheel walker. In order to achieve this aim successfully, every aspect 

from modelling to control to hybrid orthosis have been investigated and analysed 

vigilantly. This has been to make sure the system developed will be cost and time 

effective, safe and reliable in helping paraplegic mobility. Furthermore, it is also to 

ensur~ that the technology used in this research enhanced the current technology 

available in the market and contribute the atest FES-assisted walking system for 

paraplegic. 
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The most effective method to enhance performance of the FES-assisted paraplegic 

system is to reduce the electrical stimulation required since the electrical 

stimulation pulse is proportional to muscle fatigue. Therefore this research aimed 

to enhance the FES-walking performance by minimising the electrical stimulation 

required through the development of muscle model, fully utilising the voluntary 

upper body effort by introducing body weight transfer technique during FES­

walking, selection of optimum stimulation parameters, the application of optimal 

control techniques and the development of hybrid 0~h9Sis. The power of this 

system depends on the accuracy of the modelling parameters. For this thesis, the 

research work has focused on modelling, analysing and developing a complete 

system, which may suggest the optimum stimulation pulse-width required for FES­

assisted paraplegic walking with wheel walker. The development of a complete 

FES walking system for paraplegic in this thesis consists of seven levels. 

First, an appropriate model of humanoid with wheel walker that replicate the real 

environment has to be developed in order to simulate the FES-walking precisely. 

This is one of the critical parts in this thesis where the model has to be as accurate 

as possible. In this study, the humanoid with wheel walker has been modelled with 

anthropometric data,· based on the subject used in this work, within the 

MSC.visualNastran4D software environment (vN4D). The leg stiffness and 

damping parameters have been optimally tuned and incorporated in the humanoid 

model developed to make sure the humanoid's leg has the same properties as the 

subject used. The vN4D allows the model to be simulated as a virtual physical 

environment with the ability of measurement made in real-time. The vN4D is 

impressive and highly competent software that can replace conventional approaches 

involving complex mathematical modelling. Moreover, the ability of vN4D to be 

integrated with Matlab/Simulink environment has given additional advantages in 

this study where the interaction of the humanoid model with the muscle model and 

control system has shown real world conditions visually and measurably. 
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Second level is the development of the muscle models. This is a crucial part in this 

work where human muscle is known as a highly complex, time-varying and 

nonlinear dynamic system. Therefore, it is necessary to develop the muscle model 

using a suitable approach to cope with the complexity and uncertainty of the model 

and yet represent the actual system accurately. However, most of the current muscle 

models developed either experimentally or physically are not suitable to be used 

with control application. This is because those models characterise each muscle 

features alone and there· is no relation between the m~d.~l features, and this may 

prevent them from combining as one complete model. Muscle models developed by 

Riener and Ferrarin are well-known muscle models for FES control application. 

The Riener's muscle model is a physiological based muscle model that comprises 

calcium dynamics and muscle fatigue. Unfortunately, it needs to identify many 

muscle parameters that require customised experimental procedures and special 

equipment to be applied to the subject to obtain one complete Riener's muscle 

model. On the other hand, Ferrarin's muscle model is a first order transfer function 

obtained by a least squares error method and easy to implement. Moreover, it does 

not require many individualised muscle parameters to be identified. However, 

Ferrarin's muscle model does not provide extra information about muscle 

behaviour including muscle fatigue. In this thesis, new experimental based muscle 

model has been developed using ANFIS technique. Riener's and Ferrarin's muscle 

models together with ANFIS muscle model have been compared and investigated. 

For quadriceps muscle model, the performances of these three models, at their 

respective most optimally tuned set of parameters, have been evaluated. Of these, 

the ANFIS quadriceps muscle model has been found to be the most suitable model 

for use to determine the muscle torque while integrated with FES. The ANFIS 

hamstrings muscle model has also been developed and it has shown outstanding 

performance. 
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Third, muscle fatigue associated with PES is an important topic in this research 

area. During repetitive activation of PES, muscle fatigue is found to appear more 

quickly. Therefore increasing either the frequency or the pulse-width of stimulation 

will be necessary to permit the targeted muscle force to be maintained during a 

functional task. In this thesis, investigation on the effect of PES stimulation 

parameters on muscle fatigue has been carried out. The results from this study have 

shown that high frequencies give rise to faster muscle fatigue while stimulation 

pulse-width has no significant effect on muscle fatigu~ but highly affects the 

maximum muscle force. Therefore, by maintaining the stimulation frequency and 

controlling the stimulation pulse-width muscle fatigue can be reduced during PES 

application. The results from this work can serve as guidance for selection of 

optimum stimulation parameters in PES application. In this thesis also, initial work 

has been carried out on calculating the paraplegic maximum potential that can be 

used to avoid or reduce leg spasm orland leg injury during and after stimulating 

paraplegic leg. This work needs more investigation and experiment in the future so 

that PES can be fully utilised. 

Fourth, the development of intelligent control techniques in order to deliver the 

correct amount of stimulation pulse-widths required by the quadriceps and 

hamstrings muscles sequentially to perform a smooth and safe walking gait. In this 

thesis, two types of control techniques, namely PID and FL control have been used. 

The conventional PID controllers have been employed to track predefined walking 

trajectories by adjusting the knee torque and stimulation pulse-width in two 

separate studies. The first study is to analyse the torque required for paraplegic 

walking with wheel walker and to determine optimum stimulation parameters based 

on the maximum amount of torque while the second study has been to apply control 

for the stimulation pulse-width to be fed to the muscle model. PID control has been 

found- to be needing more torque and stimulation pulse-width as compared to FLC. 

Moreover, PID control has achieved poor tracking of the predefined reference 

trajectories compared to FLC. Thus, while both controllers have been able to track 
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predefined walking trajectories, FLC has used less electrical stimulation compared 

to PID control. 

Fifth, the introduction of body weight transfer (B WT) will improve the paraplegic 

walking performance by minimising the electrical stimulation required. BWT is 

practical technique and applicable to paraplegic walking with wheel walker. 

Paraplegic still have upper body strength that can be· used to compensate for the 

changes by volitional activity of the trunk and upper extremities acting over the 

wheel walker on the ground. In this technique, while the left leg is in the position of 

swing phase, the upper body will tilt to the right and transfer the upper body weight 

to the right leg. From the hypothesis, this technique will reduce the pressure and 

weight on the left leg and furthermore the torque required will also decrease. In this 

thesis, this hypothesis is investigated by applying the same control procedure for 

FES walking with BWT technique and the performance has been analysed. It has 

been demonstrated that BWT technique is practical and effective if paraplegic can 

be train to follow the upper body posture required in BWT technique. The torque 

required in BWT can be reduced more than 80% of torque required without BWT. 

Sixth, a new hybrid orthosis based on exploiting natural dynamics of human gait 

called spring brake orthosis (SBO) has been employed for further enhancement of 

FES walking performance. SBO simplifies the control task and results in smooth 

motion and more natural-like trajectory produced by the flexion reflex for gait in 

spinal cord injured subjects. SBO first introduced by Gharooni et al. (2001) for leg 

swing and in this thesis extended work has been done to increase paraplegic 

walking performance using SBO. During FES walking using SBO, electrical 

stimulation is required to be applied to the quadriceps muscle for leg extension 

o~ly, compared to the FES walking without SBO where electrical stimulation is 

requir~d for both quadriceps and hamstrings muscles. It has been demonstrated that 

torque required in FES walking with SBO using FLC can be reduced by 11.49% for 

quadriceps muscles as compared with the torque required for quadriceps muscles in 

FES walking without SBO. On the other hand, the torque required in FES walking 
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with SBO for hamstring muscles is totally reduced by 100% as explained above, 

there is no torque required for hamstring muscle in walking with SBO since spring 

is used for knee flexion. Therefore, SBO with FES helps spinal cord injured person 

walking more efficiently, effectively, safely and reliably. 

Seventh, the implementation of finite state control (FSC) in FES walking with SBO 

is to overcome the problem in switching of FES walking with SBO. This technique 

has been introduced to enhance or improve the switching technique in FES walking 

with SBO. The technique is promising in producing an accurate timing for FES, 

knee and hip brakes action during walking gait. This has been shown in the results, 

where the hip brake catches 0° and 27° in both legs during FES walking with SBO. 

It is also suitable to be used with FLC to control electrical stimulation for the knee 

extension. FSC technique is simple and suitable to be applied to FES walking with 

SBO. Furthermore, FSC technique is appropriate to be implemented practically 

with SBO. 

'8.2 Recommendation for Further Work 

Even though this research has embarked on alternative strategies to improve the 

FES walking system, this thesis has provided an impetus for future work. The 

research presented seems to have raised more questions that it has answered. There 

are several lines of research arising from this work which should be pursued and 

there are some natural extensions to this work that would help expand and 

strengthen the results. 

1. Although, the use of visual Nastran (vN4D) software environment for 

modelling part illustrates results visually and measurably, the execution time 

is demanding. Therefore, alternative software with more effective and less 
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computational time may increase the efficiency of the virtual investigation 

in the future for research in this area. 

2. In this thesis, novel experimental based quadriceps and hamstrings muscle 

models have been developed. The performance of the muscle model 

developed is outstanding. However, it may be improved if more data from 

various paraplegic subjects can be obtained to enhance the current model to 

become more generalised muscle model. It will "also be more useful model 

in the future. 

3. The investigation on the effect of stimulation parameters on the muscle 

fatigue is an important part before any experiment can be performed using 

FES. In this thesis, initial work has been done to obtain the stimulation 

parameters for the specific functional task to be applied to the paraplegic. 

Further investigation can be carried out by obtaining more experimental data 

from a range of paraplegic subjects. This can create comprehensive database 

for thorough analysis on the muscle fatigue and stimulation parameters. 

4. In this research, all the controllers' parameters were obtained by trial and 

error method. Further improvement can be made by optimising the 

parameters using evolutionary algorithm or optimisation techniques to 

enhance the control of the FES walking system. 

5. Even though in this thesis, the developments of spring brake orthosis is 

almost in the final stage, the implementation <?f SBO was only done in the 

simulation environment. The development of the intelligent control 

techniques including finite state control and body weight transfer for FES 

walking with wheel walker have been carried out and evaluated in the 

simulation environment. The realisation of the developed approaches in 

experimental and practical settings need to be carried out. 
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