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Abstract 

ABSTRACT 

A range of (methyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate)­
block-poly(methyl methacrylate) [PMMA-block-PDEA-block-PMMA] and poly(methyl 
methacrylate )-block-poly(methacrylic acid)-block-poly(methyl methacrylate) [PMMA-block­
PMAA-block-PMMA] triblock copolymers have been prepared via group transfer and 
anionic polymerisation respectively. These hydrophilic-hydrophobic block copolymers 
were characterized with respect to their chemical composition and molecular weights by 1 H 
and by gel permeation chromatography respectively. Morphological development in 
solvent cast films were followed using SAXS by monitoring changes in the structure peak. 
[PM MA-block-PMAA-block-PM MA] triblocks were found to be mechanically weak and 
therefore not suitable as chemical actuators. 

Using SAXS the "static" equilibrium molecular response of phase separated films of 
[PMMA-block-PDEA-block-PMMA] triblock copolymers to changes in pH, ionic strength 
and salt identity was evaluated. Changes in pH were effected using a controlled set of 
buffers, namely citric acid, sodium phosphate and ethanol amine. The ionic strength of the 
buffers was fixed using a series of salts from the Hofmeister series, namely NaAce, NaCl, 
NaBr, Nal, NaN03 and NaSCN. 

At a fixed pH and ionic strength the equilibrium expansion ratio of the polymer was 
found to be highly dependent on the identity of the salt. The extent of swelling was 
correlated with the surface charge density of the anionic component of the salt. Hydrogels 
swollen in solution containing more polar anions were found to have a larger expansion 
ratio. This was explained in terms of the water perturbing effect of the ion. The swelling of 
the polymer was also monitored as a function of pH. A drastic collapse of the polymer was 
observed at a specific pH corresponding to the apparent pKa of the PDEA block. The 
apparent pKa of [PMMA-block-PDEA-block-PMMA] copolymers was found to be 

.. dependent on the overall molecular weight, where higher molecular weight material had a 
lower apparent pKa. Below the apparent pKa the extent of swelling in solutions prepared at 
0.1 M ionic strength was found to be dependent on the pH. This has been attributed to the 

. complex interplay of citrate species in the buffer. The effect of ionic strength on the 
"swelling was also investigated at fixed pH and salt identity using buffer and simple mineral 
acid. A modified Donnan theory has been used to interpret the results. SAXS was found to 
be a highly sensitive technique for measuring the "static response" of the hydrogels. 

The use of SAXS was also investigated as a technique for measuring the swelling 
"kinetics" of [PMMA-block-PDEA-block-PMMA] hydrogels. Thin annealed films of hydrogel 
were swollen in a range of control buffered solutions. The in-situ nature of the technique 
afforded high resolution data. The kinetics of swelling was monitored by following the 
change in the structure peak position and its half height peak width, which gave the 
expansion ratio and diffusive behavior respectively. Swelling stresses induced in the 
samples made measuring the kinetics problematic and this limited the technique. 

Finally, to avoid the expense and limited availability of SAXS beam lines a new 
technique was used to monitor the response of the hydrogels. A diffraction grating was 
imprinted onto the surface of the hydrogel, and "static" and "kinetic" response was 
measured by monitoring the change in the diffraction pattern. This technique was found to 
offer similar accuracy as SAXS, at a Significantly reduced cost. 
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Chapter 1 - Introduction: chemical actuation in hydrogels 

Chapter 1 

Introduction: chemical actuation in 
hydrogels 

1.1 INTRODUCTION 

Chemically actuated hydrogels share a unique feature with living systems; they are 

both driven by their ability to convert chemical energy into a mechanical response. 

However, macroscopic applications of hydrogels are limited due.to the slow response 

rate of the material. This problem has been overcome by developing materials at 

micrometer length scales, as the diffusion kinetics are related to the square of the size 

of smallest dimension of the gel. In this introduction, the progress in the field of 

chemical actuation in hydrogel systems will be discussed, putting emphasis on ways in 

which new devices have been designed. 

Polyelectrolyte hydrogels are water insoluble polymer networks capable of 

accommodating large amounts of water. The volume of water absorbed is a balance 

between the thermodynamic forces of mixing and the elastic restoring force of the 

polymer. In a non-ionic hydrogel the thermodynamic force is controlled by the 

enthaipic interactions between the solvent molecules and polymer (largely controlled 

by the Flory-Huggins interaction parameter, X [2]). However in ionic gels, osmotic 

pressure which results from a build up of counter-ions in the network is the dominating 

force, largely outweighing any effect from mixing [3]. The elastic restoring force in both 

cases is provided by the entropic stretching of the polymer between cross-links. As 

well as countering the expansion of the network, the cross-links provide structura! 

integrity to the hydrogel network; without them the polymer would simply dissolve 

when immersed in a good solvent. Hydrogels can either be physically or chemically 

crOss-linked. In a chemically cross-linked gel the polymer chains are connected 

together with permanent covalent bonds. 
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Chapter 1 - Introduction: chemical actuation in hydrogels 

(b) 

Figure 1.1: Examples of cross-linking present in hydrogels. (a): Phase separation of an 

ABA triblock copolymer creates inter-micelle physical cross-links above a critical polymer 

concentration. (b): Random chemical cross-links. 

In physically cross-linked gels the chains can be connected together in a variety 

of different ways including microphase separated domains [4] [5], electrostatic 

hydrogen bonding [6] and ionic clusters [7], as shown in figure 1.1. The type and 

amount of cross-linking present in hydrogels has a strong influence on both the 

mechanical and swelling characteristics [8]. 

Many hydrogels exhibit large changes in their swelling ratio in response to 

external conditions, such as pH [9], temperature [9], ionic strength [10] and electric 

field [11]. This macroscopically observed swelling is a consequence of the 

conformational change of the individual molecules within the polymer gel. 

Hydrogels are frequently referred to as smart materials, being able to detect a 

stimulus as a signal (sensing function), and then amending their function as a result of 

this (response function) [12]. Stimuli responsive hydrogels have been developed for 

use in a plethora of fields including their use as drug delivery systems [13] and artificial 

muscle actuators [12] . However, the number of macroscopic applications is limited, a 

consequence of the slow rate of solvent diffusion into the gel during swelling [14] . To 

avoid the inherent diffusion problems associated with macroscopic gels researchers 
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Chapter 1 - Introduction: chemical actuation in hydrogels 

have taken inspiration from nature, and synthesised hydrogels at micrometer length 

scales. In the micrometer range the primary drawback of long diffusion times can be 

avoided (diffusion is related to the square of the shortest dimension of the gel [15]). 

Using this concept researchers have used photolithography techniques to fabricate 

micron sized pH responsive hydrogel valves inside microfluidic cells [16]. These gels 

act as tiny switches, which open and close in response to the pH of their environment. 

The reduction in gel dimensions was found to drastically improve the response times. 
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Chapter 1 -Introduction : chemical actuation in hydrogels 

1.2 DISCUSSION: MOTILITY IN HYDROGELS 

The ability of hydrogels to harness the chemical composition of their 

environment into a mechanical response is a common mode of operation found 

throughout nature. Probably the best known example of this is biological muscle 

actuation. An illustration describing the analogies between "synthetic" and 

"mammalian" muscle is given in figure 1.2. In both processes, transduction of chemical 

energy causes a conformational change, which causes motion or a so-called "power 

stroke". In muscle contraction, motion is driven by a conformational change in the 

myosin head group, a process fuelled by A TP [17]. In the hydrogel the macroscopic 

response is an assemble of the conformational response of the individual molecules 

making up the network, in this example driven by ions in solution. 

(a) 

Myosin 

"'----.. - r All' 

Actin 

(b) 

Fibril of electmspun pH responsive poly....,.. 

Gel strudure 

Figure 1.2: Generating the "power stroke". (a) (Mammalian muscle): ATP drives a 

conformational change in the myosin head group, which produces a 10 nm motion. (b) (pH 

responsive electrospun nanofibres): osmotic pressure causes a conformation change in the 

polymer chains driving expansion of the network. 
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Chapter 1 - Introduction: chemical actuation in hydrogels 

Kuhn [18] and Katchalsky [19] in 1949 recognised that the coupling of a 

chemically cross-linked poly(acrylic acid) hydrogel with a change in ionization state 

would induce a macroscopic shape change similar to that observed in biological 

muscle. They demonstrated one of the first examples of a mechanochemical coupling. 

More recent examples of mechanochemical actuation can be found in work reported 

by Yoshida [20]. They coupled a non-linear chemical oscillator, namely the Belousov­

Zhabotinsky (8Z) reaction [21] with a temperature responsive poly(NIPAM-co­

Ru(bpYh2+) gel. 

During the course of the 8Z reaction there is a periodic change in the oxidation 

state of the polymer-bound metal ion catalyst. This change in oxidation state alters the 

transition temperature of the poly(NIPAM) chains , which results in mechanical 

oscillations in the gel when held at isothermal temperature. An illustration depicting the 

hierarchical synchronization in BZ coupled self-oscillated gels is given in figure 1.3, 

along with an image showing the diffusion coupled chemical wave propagation in a 

rectangular gel. This system, in contrast to the early work reported by Kuhn, requires 

f4l11 rn~r 

Reduced state IMOIubie 
(J.tuced au 

• • 
• .6f) • . .,.. .. 
•• • [ a62J" 

Polymerimbon 

+ I + I Oscillation 

I + 

[ 020J~ 080 
OxldiDd ..... 

Redox oscillation 

Oscillation 

I + 

Soluble 
(oxidized ..... ) 

Soluble-insoluble 
oscillation 

Deswelling 
(r.tuced atilt.) 

+ I 
Oscillation 

I + 

10'" 

Diffusion 
couprng 

c> 

Bulk 11.-1 
10'2 

IRu(tII)1 
HIgher . 

size[m] .. 
swet_no) Chemical Q\18 --. 

Wavelength 

Rec!lIflII\Aor poIy(NIPAAIT 
co-Ru(bpyl:.'·1 gel 

/ 
o sac 
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oscm ton 
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91 sec 

Peri tattie motion 

Figure 1.3: Illustration representing the hierarchical synchronisation in self-oscillating gels 

Which utilise the Belousov-Zhabotinsky (BZ) reaction. Lower right: picture of the propagating 

chemical wave in a rectangular polymer gel [1]. 
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Chapter 1 - Introduction: chemical actuation in hydrogels 

no external on-off switching to drive the actuation. The system is autonomous and 

mechanical cycles continue for several hours without intervention as long as substrate 

remains. However, the actuator is limited by the small amplitude of the gel oscillation. 

Early examples reported by Yoshida oscillated by only 20 % of the dry length of the 

polymer, though later work improved upon this, exploiting other driving reactions such 

as [Ca2+] and even ATP to ADP [22]. Utilization of ATP was achieved using an 

anionically prepared polymer with phosphoric groups attached, to which creatine 

kinase was immobilised. When this gel was immersed in a solution of ATP an 

enzymatic reaction occurred which caused reversible fluctuations in the concentration 

of Ca2
+. The calcium ion was able to act as a physical crosslinking point between the 

phosphoric acid groups resulting in reversible expansion and collapse of the polymer. 

All of the actuator designs discussed so far have been based on chemically 

cross-linked polymers. It has clearly been demonstrated that the anisotropic nature of 

chemical cross-links reduce the mechanical strength of hydrogels [23] [24] [25] such 

that they make weak muscles. This is a result of the random nature of the distribution 

of cross-links that hold the gel together. During expansion of the network non-isotropic 

expansion leads to localised stresses, ultimately resulting in fracture and, therefore, 

mechanical failure of the gel. 

1.3 OPTIMISING THE PERFORMANCE OF CHEMICAL 

ACTUATORS 

The performance of a chemical actuator can be broken down into several key 

areas; it must be (1) mechanically robust (able to withstand many mechanical 

oscillations), (2) capable of exerting a force and enduring a~y force imposed by its 

surrounding and (3) chemically scalable to increase response times. Recognising 

some of the limitations in chemical actuation, a "synthetic muscle" has been designed 

based on nanostructured block co-polymer self-assembly. It is well known that block 

Copolymers "microphase separate" to form periodical nanostructures [26]. In early 

efforts Howse et al. [27] synthesised an A-8-A type polyacid triblock copolymer 

comprising of glassy self-assembled domains of poly(methyl methacrylate) [PMMA], 

each separated by a series of single chains of poly(methacrylic acid) [PMAA] that 

6 



Chapter 1 - Introduction: chemical actuation in hydrogels 

spanned between the PMMA domains. These domains, whilst providing physical 

cross-links to give the gel its structural integrity, additionally acted as "markers" 

allowing the molecular response of the polymer to be followed by small angle x-ray 

scattering (SAXS). In contrast to chemically cross-linked systems the physical 

entanglements are homogenously distributed throughout the network, a factor which 

should help alleviate network stresses during expansion. The cross-links are evenly 

distributed due to thermodynamic equilibrium achieved during self-assembly, and as 

the polymer chains are· near-monodisperse the length scales between domains are 

very similar. To create a free running "synthetic muscle" the polyacid was coupled with 

a Landolt chemical oscillator [28]. This complex chemical reaction oscillates in pH 

value between 3 and 7, with a period of 20 minutes. When immersed in the solution 

the polyacid produced rhythmical mechanical oscillations with a' maximum specific 

power output of 20 mW kg"1. Building on the success of this system, Topham et al. [29] 

synthesised a similar phase separated triblock, replacing the polyacid mid block with a 

polybasic material, namely poly(2-(diethylamino)ethyl methacrylate) that had opposite 

polarity. The material produced similar mechanical oscillation when placed in an 

OSCillating chemical reaction [30]. In more recent work from the same group the 

polyacid and polybase triblock discussed above was "solvent welded" together to 

produce a "bi-polymeric strip" [31], as shown in figure 1.4. 

7 



Chapter 1 - Introduction: chemical actuation in hydrogels 

polyacid triblock poIybase triblock 

Figure 1.4: (a) systematic diagram representing the change in shape ofthe "bi-polymeric 

strip" when placed in acidic and neutral conditions. (b) microscopy images taken under the 

same conditions [31]. 

At low pH (pH4) the polyacid is in its collapsed form and the polybase is 

expanded causing the strip to bend in the direction of the polyacid. At high pH (pH7) 

the strip bends in the direction of the polybase material. The antagonistic coupling of 

the two materials benefitted the macroscopic actuation of the material, when compared 

to the actuation of the separate polymers under the same conditions. 

Actuator design based on microphase separated structures allows material 

properties to be optimised from the nanoscale up. The molecular structure of the 

material can be optimised for a particular purpose, for example a lamellar structure can 

be targeted where a particular application requires actuation in one direction only. 

Another advantage over chemically cross-linked systems is that the material 

can be processed much faster into a variety of shapes and sizes, complex patterning 

techniques such as photolithography are not required. However, presently these 

materials are limited by their relatively small power output. Compared to biological 

systems such as myosin, the actuators synthesised by Howse et al. [27] were found to 

be over 1 million times weaker in specific power [32]. The power output is a function of 

8 
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beth the ferce the material can generate and the time scale ef the actuatien, as pewer 

is equal to' the ferce multiplied by the velecity. Altering either ef these two' variables 

sheuld have a measured effect en the pewer eutput and several pessibilities exist to' 

improve this value. Precessing the material intO' nanefibres is ene eptien [33], this has 

been demenstrated to' increase the respense rate ef the material, a result ef the 

increased surface area. Anether mere .challenging eptien is to' increase the inherent 

stiffness (and strength) ef the material. One candidate to' eptimise the strength is to' 

increase the melecular weight ef the material. This weuld increase the number ef chain 

entanglements and impreve the mechanical preperties. 

A relatienship between entanglement melecular weight and tensile strength 

has previeusly been identified by Teng et a/. [34]. They synthesised a series ef 

(PMMA)-bleck-pely(alkylacrylate)-bleck-(PMMA) cepelymers and found that the tensile 

strength was dependent en the melecular weight between chain entanglements in the 

midbleck. Hewever, increasing the melecular weight cernes at a price. Synthesis ef 

menedisperse tribleck cepelymers with high molecular weight (> 100,000 g mer1
) eften 

requires specialist techniques such as greup transfer (GTP) [35] and anienic 

pelymerisatien [36]. In the limit ef high melecular weight such techniques require strict 

centrel en the purity ef reagents. As the ameunt ef initiater must remain small it 

becemes increasingly difficult to' preduce menedisperse materials. Pelydispersity and 

the presence ef dibleckl hemepelymer centaminatien in these systems have a streng 

influence en the mechanical preperties. Guice et a/. [37] recently investigated the pH 

respens~ ef self-assembled lamellar ferming pelystyrene-pely(2-hydroxyethyl 

methacrylate-ce-2-(dimethylamine) ethyl methacrylate (PHD) dibleck and tribleck 

cepelymers with varying ameunt ef 2-(dimethylamine)ethyl methacrylate (DMAEMA). 

They feund that the pelymer architecture played a critical rele in the rebustness ef the 

material. In PHD tribleck cepelymers the PS demains helped to' serve as effective 

physical cress-linking peints, but this was net the case in dibleck material. In PHD 

dibleck with high DMAEMA centent the material simply breke intO' pieces when 

pretenated. SAXS data taken frem breken fragments indicated that the pelymer still 

retained a lamellar merphelegy, which suggests that grain beundaries may alsO' be a 

facter leading to' early pelymer fracture. 

When designing any new chemically actuated system the mechanical 

preperties are ene ef the key perfermance indicaters. TO' design new materials it is 
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important to be able to understand how to increase mechanical properties through 

material design and ultimately, one needs to be able to accurately measure the 

property itself. When hydrogels are used as chemical actuators it is important not just 

to know the solid state mechanical properties of the material themselves, but more so 

to know how these properties change when the material is used in a particular 

environment. As a specific example of this, Johnson et 81. [8] recognised that the 

design of new microfluidic devices required fundamental knowledge of the mechanical 

properties of the hydrogel components under varying conditions. They investigated, 

along with other variables, how the ultimate tensile strength of a pH-sensitive hydrogel 

changed when in its swollen and un-swollen states. They found that the swelling of 

hydrogels had a significant effect on the tensile strength, changing from 300 kPa when 

dry to 60 kPa when in the swollen state. 

When actuation is been driven by chemical fuel (such as changes in pH) it is 

also important to consider how this is supplied. As the specific power output is related 

to the velocity of the actuation step then changing the chemistry of the fuel provides a 

route to increasing this value, i.e. by altering the rate of the swelling! collapse 

transition. In a pH responsive polymer the swelling kinetics are controlled by several 

factors. Careful consideration must be paid not only to the pH but more importantly the 

specific species in solution. Firestone and Siegel [38] performed a systematic study 

looking "at such effects on the swelling kinetics and equilibrium swelling ratio of 

methacrylate! (2-dimethylamino ethyl methacrylate) chemically cross-linked hydrogels. 

They co~cluded that swelling rates in the gels were much faster in the presence of 

buffer when compared to simple mineral acid solutions at the same pH. This study 

implies that when evaluating the overall performance of any new chemical actuator it is 

imp,0rtant to consider not only the properties of the material but also the solution 

chemistry controlling the pH which drives the actuation. 

We now sit on the brink of chemically actuated gels being the working materials of a 

range of nanotechnologies. These include self-actuated valves for delivery devices 

and the propulsive mechanism in flagella for synthetic biology. An understanding of the 

fundamental science has been developed and rudimentary design rules are in place. 

10 
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2.1 AIMS 

Chapter 2 - Aims 

pH responsive hydrogels show great promise for applications in the field of 

chemical actuation. The potential of these materials as discussed in the introduction, 

was first recognized in the 1950's by Kuhn and Katchalsky [1, 2], where they noted 

their "muscle like" behavior. Since this time there has been an explosion in the use of 

stimuli responsive materials, which in part can be attributed to the work of Tanaka in 

the 1980's, who was responsible for the development of responsive gels sensitive to a 

wide range of stimuli including light, solvent, pH, and temperature. It was not until the 

year 2000 when the basic fundamentals for technological applications were developed, 

which commenced with the creation of microsized gels using photolithography for use 

inside microfiuidic devices [3]. 

In recent years there has been a huge interest in the area of block copolymers 

for use in the field of nano-science and technology. This is mainly attributed to their 

promise of being easily manipulated at molecular length scales. The materials can be 

tailored atom-by-atom, and molecule-by-molecule, to create devices which are orders 

of magn.~tude better in terms of their functionally and performance [4]. 

Preparation of nano-materials is usually achieved by one of two routes, known 

as top-down or bottom-up. In the top-down approach a macroscopic pre-existent 

material is "sculpted", to create the final device with the required, shape, properties 

and dimensions. However, the final device is usually not atom 'or energy -efficient and 

is typically limited to dimensions greater than 100nm. In the quest for ultimate 

miniaturization and control the nanotechnology community has strived to develop 

" materials with sizes between 10 -100nm. This has been achieved by chemists using 

the bottom-up approach. This technique involves creating hierarchical structures from 

the assembly (physical or chemical) of a finite number of simple building blocks 
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(atoms, molecules and macromolecules) [5]. This is a much simpler route requiring 

fewer steps. 

Self-organization in block copolymers has recently been used to create 

nanostructured materials which have switching (responsive) properties based on their 

phase transitions. The work of Howse et al [6] is one of the most interesting 

developments in the field of chemically actuated gels, they constructed a scalable, pH­

responsive gel from a robust, self-assembled block copolymer comprising of glassy 

domains of poly(methyl methacrylate) [PMMA], each separated by a series of single 

chains of poly(methacrylic acid) [PMAA] that spanned between the PMMA domains. 

These domains, whilst providing physical cross-links to provide structural integrity, 

additionally acted as "markers" allowing the molecular response of the polymer to be 

followed by small angle x-ray scattering (SAXS). The group was also responsible for 

the creation of other pH responsive self-assembled structures. The reader is directed 

to the introduction for further details. 

This novel material offered two key developments to the community. Unlike 

conventional chemically cross-linked hydrogels, their network linkage was a result of 

physical entanglement. A feature made possible by the bottom-up approach. In 

addition the self-assembled structure afforded the unique opportunity to measure their 

chemical response at the molecular level using SAXS. 

This thesis will be split into two parts. The first will be concerned with the 

synthesis of a series of well-defined PMMA-block-PMAA-block PMMA and PMMA­

block-PQEA-block-PMMA triblock copolymers. Annealing studies will then be 

performed on the raw polymer to determine and fine tune the necessary conditions for 

microphase separation. This will be evaluated using SAXS and AFM. These studies 

ca~ be found in chapter 3. 

The second part of the thesis will be concerned with using SAXS to evaluate 

the static and dynamic response of the polymer to changes in pH, ionic strength and 

salt identity putting the earlier work [6-10] in a sound thermodynamic framework. The 

. use of SAXS in itself for this purpose will be evaluated. Chapters 4 - 6 are devoted to 

these stUdies. In chapter 7 a novel diffraction grating method, which takes advantage 

of the bottom-up approach is used to compare the results of the static and kinetic 

SAXS studies. 
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Chapter 3 

Synthesis and processing of pH­

responsive self-ass.embled triblocks 

3.1 INTRODUCTION 

Fundamental work by a number of researchers has demonstrated how phase 

separated triblock copolymers can be successfully harnessed to create temperature [1] 

[2], and pH [3, 4] responsive materials. One of the greatest advantages of using this 

methodology is the way in which the polymer properties can be easily tuned [3]. 

Block copolymers are extremely well suited to the bottom-up approach of 

design [5]. The materials can be synthesised in a controlled way to ensure they have 

the desired final properties. For example, Guice et al synthesised a self-assembled pH 

sensitive triblock copolymer composed of polystyrene, PS, and poly(2-hydroxyethyl 

methacrjlate-co-2-(dimethylamino)ethyl methacrylate), PHD, with varying 2-

(dimethylamino)ethyl methacrylate (DMAEMA) content. By varying the length of the 

DMAEMA block they were able to change the expansion ratio in a controlled way [3]. 

One of the other advantages of phase separated materials is that it minimizes 

heterogEllneities in the cross-link distribution. Topham et al [6] have demonstrated the 

usefulness of this feature, creating robust chemical actuators from self-assembled pH 

responsive PMMA-block-PDEA-block-PMMA (polybasic) and PMMA-block-PMAA­

block-PMMA (polyacid) triblock copolymers [4, 7]. The robustness of these materials, 

and those reported by Guice et al is a result of physical cross"-links. In the latter case 

the glassy hydrophobic PMMA blocks serve as physical cross-linking pOints. 

The materials synthesised by Topham et al and Guice et al were also 

" particularly unique, in that their pH response could be measured at the molecular level 

using SAXS. In both cases this was achieved by measuring the long order 

microdomain spaCing between the hydrophobic end groups. See the introduction, 

section 1.3 for further details. 
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In this chapter, a number of similar PMMA-block-PDEA-block-PMMA 

(polybasic) and PMMA-block-PMAA-block-PMMA (polyacid) triblock copolymers will be 

synthesised. The specially designed materials will be processed to create microphase 

separated structures. This will be achieved using either thermal or solvent annealing. 

The specific conditions to achieve this will be evaluated and the final equilibrium 

molecular structures will be evaluated using SAXS. 

A number of these polymers will then be further evaluated using SAXS to 

monitor how their "static" equilibrium molecular response changes as a function of pH, 

ionic strength and salt identity. These studies are reported in chapter 4 and 5. In later 

chapters SAXS will be used to investigate the kinetics of expansion. 

An introduction into block copolymer phase separation, with an emphasis on 

triblock copolymer processing is given in the following section. 

3.1.1 Microphase separation in block copolymers 

A block copolymer is a macromolecule which contains sequences or blocks of 

chemically different repeat units covalently linked together [8]. A linear diblock is one of 

the simplest forms of a block copolymer where two distinct polymers are joined 

together in sequence (i.e. -AnBm-). A variety of higher order block copolymer 

architectures can be synthesised, such as linear triblock copolymers which contain two 

distinct polymer chains (-AnBmAo-), or three distinct polymer chains in sequence 

(-AnBmCo-). Structures may not necessarily be linear, for example, star copolymers 

can be synthesised when more than two distinct block copolymers are attached at a 

common branch point [9]. 

In many blends of block copolymer the component blocks are usually 

incompatible [10). This is a consequence of repulsion between "individual monomers in 

the different blocks, the effect being magnified due to the large number of repeats. 

It is now well established that block copolymers self-assemble into various 

.. structures with well-defined spacing and size on the tens ofnanometre length scale 

[11, 12]. The local segregation or formation of distinct phases in block copolymers is 

known as microphase separation, where domains rich in A and B are formed the 

morphology of which is dominated by the internal interfacial energy [13). 
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Microphase separation is driven by the enthalpy of de mixing of the component 

blocks, whilst macrophase phase separation is not possible due to the chemical 

connectively of the blocks [14]. This enthalpy is proportional to the Flory-Huggins 

segment-segment interaction parameter, X, which is found to be inversely proportional 

to the temperature according to equation 3.1, 

A 
%=-+B 

T 
(3.1 ) 

The values A and B are system dependent constants and T is the temperature. 

At high temperatures the component blocks mix homogenously resulting in the 

disordered phase (DIS), but as the temperature is lowered (the Flory-Huggins 

segment-segment interaction parameter increases) the blocks separate into ordered 

microstructures. There is also an entropic penalty associated with phase separation 

which is related to chain stretching. The magnitude of which is related to degree of 

polymerisation, N. 

The particular structure adopted by a block copolymer depends on the following 

controllable parameters, i) the Flory-Huggins interaction parameter X, ii) the overall 

degree of polymerisation, N, iii) the volume fraction of the component blocks f and 

finally the particular polymer architecture. In the case of an A-B-C triblock for example, 
.. 

one must consider three interaction parameters and two composition variables, 

compared to one interaction parameter and one composition variable in a diblock. This 

complicates the phase behaviour somewhat but also increases the number of 

observed phases [15]. 
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Figure 3.1: (a) Theoretical and (b) experimental phase diagram and corresponding 

morphologies for block copolymers. The phases are as follows: close packed spheres 

(CPC), body centred cubic (BCC), hexagonal (HEX), gyroid (G), lamellar (LAM). Adapted from 

reference [16] and [5]. 

The theoretically derived phase diagram for linear AB diblock melts is shown in 

figure 3.1 a. An experimentally observed phase diagram for a typical PS-PI diblock 

copolymer is also included for comparison. Each diagram encompasses the 

controllable parameters previously discussed . The simplest microphase morphology is 

the lamellar (L) phase which consists of A and B monomers separated into A-rich and 

B-rich lamellae. Other commonly observed phases include gyroid (G), hexagonal­

packed cylinders (HEX) and body centred cubic spheres (BCC). 
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3.1.2 Block copolymer processing 

Processing of block copolymer nanostructures in the bulk can be achieved 

using a number of strategies. Of the routes available, solvent [17] and thermal 

annealing [18] are some of the more commonly reported. 

The solvent annealing method involves preparing a solution of the block 

copolymer at a concentration ranging from 1 to 50% w/w. The solvent is then slowly 

evaporated. Several other factors must be controlled to ensure the formation of well­

ordered films. This includes the temperature, evaporation rate and the chemical 

atmosphere. 

The type of solvent used to anneal the polymer has a direct influence on the 

microstructure [17]. In an A-B-A triblock copolymer for example, one can choose to 

use a selective solvent which is a good solvent for both blocks. Or alternatively, a 

solvent can be chosen which is a good solvent for one block and a neutral solvent for 

the other. When a polymer is dissolved in a solvent which is selective for both blocks 

all of the chains are freely mobile. This is a due to the solvent depressing the glass 

transition temperature of the chains. The addition of a selective solvent for both blocks 

is analogous to increasing the temperature or reducing the segment-segment 

interaction parameter, X. 

During the annealing process evaporation of solvent increases the 

concentration of the polymer solution. Chain mobility is progressively reduced and at a 

certain c.~mcentration the polymer begins to microphase separate. This is energetically 

favoured as it reduces the interchain interaction between the incompatible blocks. 

With the use of a solvent which is selective for only one of the blocks it is 

possible to alter, or tailor the morphology of a block copolymer. This affect happens 

because the self-assembly process is initiated from a pre-organised state. 

In a polymer in the melt state, solvents with different degrees of selectivity can 

be used to move the system to smaller or larger degrees of segregation. This 

. corresponds to a vertical trajectory along the phase diagram in figure 3.1. This effect 

has been exploited to change the microphase morphology of self-assemble~ styrene­

isoprene (SI) diblock copolymers in the melt [17]. 
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Thermal annealing is another method to achieve phase separation. In some 

respects it is analogous to solvent annealing. The block copolymer is first heated 

above its glass transition temperate. This is equivalent to dissolving the polymer in a 

dilute solution of non-selective solvent, i.e. the polymer chains become mobile. The 

polymer is then slowly cooled, and as the chain mobility is reduced the polymer phase 

separates to reduce unfavourable interchain interactions. 

3.13 Physical cross-links in amphiphilic block-copolymer networks 

In self-assembled triblock copolymers the mechanical robustness is in part a 

result of physical cross-links [19]. This effect has recently been illustrated by Guice et 

a/ [3]. They synthesised a series of diblock and triblock pH responsive copolymers of 

polystyrene, PS, and poly(2-hydroxyethyl methacrylate-co-2-(dimethylamino)ethyl 

methacrylate), PHD. They found that the presence of PS physical cross-links in the 

triblock to be critical for structural stability. Diblock copolymers protonated under 

identical conditions simply fell to pieces. 

Hydrophobic 
Hydrophilic , 

(a) 

(b) 

Figure 3.2: Schematic representation of (a) flower micelles and (b) physical cross links. 

An example of physical entanglements in a triblock copolymer is shown in 

figure 3.2. The illustration also shows an example of a flower micelle. Flower micelles 

are created when there is a difference in the Flory Huggins interaction parameter 
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between the component polymer blocks, and the blocks with similar values tend to 

aggregate together [20]. The presence of flower micelles is undesirable as they impart 

no rigidity to the polymer network. To avoid flower micelles it is important to prepare 

the polymers at high concentration. This brings the aggregates closer together, and 

the midblock is forced to span two neighboring microdomains to form a bridge. 

3.14 Effect of microphase structure on polymer properties. 

It is also important to consider how the microphase structure changes the 

polymer properties. Nykaenen et al [2] have demonstrated this effect. They 

synthesised a number of temperature responsive polystyrene-block-poly(N­

isopropylacrylamide)-block-polystyrene triblock copolymers. They compared the 

swelling ratio of the hydrogel as a function of microphase morphology. They identified 

that the morphology had a drastic effect On swelling. Hydrogels with a spherical 

morphology were found to have the largest swelling ratio, and lamellar the smallest. 

This was a result of the lamellae domains hindering the diffusion of water compared to 

the spherical morphology which did not restrict expansion in any direction. 
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3.2 SYNTHESIS OF PMMA-block-PMAA-block-PMMA BLOCK 

COPOLYMERS 

3.2.1 Introduction 

A series of pH responsive, PMMA-block-PMAA-block-PMMA triblock 

copolymers with a range of molecular weights were targeted. This polymer is 

amphiphilic, having water insoluble hydrophobic PMMA end groups and a polar pH 

responsive midblock. When the polymer is placed in a solution above the pKa of the 

mid block it is known to expand [21]. An introduction into polyelectrolyte hydrogels can 

be found in the introduction, section 1.1. 

To maximise the magnitude of expansion the PMMA-block-PMAA-block-PMMA 

polymers were designed to phase separate with a spherical morphology. As previously 

discussed in section 3.13 this allows the material to expand unimpeded in three 

dimensions. 

As the phase behaviour of a symmetric triblock is very similar to a linear AB 

diblock one can use the phase diagram in figure 3.1 to estimate the required volume 

fraction of PMMA for a BCC morphology [19]. Based on this diagram, and previous 

results on a similar polymer [21], the triblock was 'targeted to have a PMMA volume 

fraction of approximately 15 percent, which corresponds to 7.5 percent on each end as 

it will be a symmetrical. 

There are several synthetic techniques available to achieve this which include 

anionic"and atom transfer radical polymerisation (ATRP) [22]. However to produce a 

triblock which will successfully phase. separate with well defined ordering at the 

molecular level, it is desirable to synthesise a polymer with a low molecular weight 

distribution, ideally less than 1.1. Additionally, reducing the length distribution of the 

PMMA end blocks in thermoplastic elastomers has been demonstrated to increase 

mechanical properties as more of the chains can be involved in network formation [23]. . 

Living anionic polymerisation is the technique most suited to producing well 

defined methacrylate based triblock copolymers with low molecular weight distribution 

(less than 1.2) [24]. An introduction into anionic polymerisation can be fo'und in the 

appendix, section 9.1.1. 

23 



Chapter 3 - Synthesis and processing of pH-responsive self-assembled triblocks 

3.2.2 PMMA-block-PMAA-block-PMMA block copolymers via anionic 

polymerisation 

Synthesis of PMMA-block-PMAA-block-PMMA copolymers was accomplished 

anionically using the bifunctional initiator, 1,3-bis (1-phenylethenyl) benzene, as shown 

in figure 3.3. (note: this synthetic route produces the PMMA-block-P(ter-BuMA)-block­

PMMA precursor which must be hydrolysed to give the desired polymer). 

DDPELi, ·X 
o O-tBu 

~ ~ 

I I 
Li-C-CH2-f t-Butyl methacrylate+-l-+t-ButYI methaCrylatet-CH2-C-Li 

I I 
o~C'O-tBu tBu-O/C~o 

Li-PtB"MA~U • X 
o O-Me 

Li-PMMA-PtBuMA-PMMA-Li 

Figure 3.3: Synthesis of PMMA-block-P(ter-BuMA)-block-PMMA triblock copolymer via living 

anionic polymerisation. I represents the initiator, 1,3-bis (1-phenylethenyl) benzene (BMMC). 
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Using a bifunctional initiator simplifies the reaction by reducing the number of 

monomer addition steps from three to two (as compared to sequential monomer 

addition using a monofunctional initiator). A reduction in the number of steps is 

advantageous as it reduces the chance of introducing unwanted terminating species at 

each monomer addition. GPC traces of PMMA-block-p(ter-BuMA)-block-PMMA 

precursor synthesised using the bifunctional initiator are shown in figure 3.4. 

(a) 

(b) 

~ 
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c: 
Q) 
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F' Igure 3.4: GPC chromatogram of (a) PMMA-block-p(ter-BuMA)-block-PMMA triblock 

(JSTB02) (65% triblock, 35% diblock) and (b) PMMA-block-P(ter-BuMA)-block-PMMA triblock 

(JSTB04) (42% triblock, 58% diblock) synthesised using the bifunctional initiato~ 1,3-bis (1-

Phenylethenyl) benzene (BMMC). 
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A summary detailing the molecular weight, volume fraction and Mwl Mn of 

polymers synthesised using this method is given below in table 3.1. 

Table 3.1: A summary of copolymer compositions, molecular weight and polydispersities of 

various PMMA-block-PMAA-block-PMMA triblock copolymers. 

Sample Theoretical Experimental Theoretical Experimental Mwl Percentage of 

I.D . MAAvolume MAA Mn Mn
b 

Mn triblock 

fraction volume 

fraction a 

JSTB02 0.85 0.76 79362 45700 1.1 4 65 

JSTB04 0.85 0.84 80108 72744 1.14 42 

a: As determined by 1H NMR (section 3.2.3) 

b: Molecular weight determined by triple detector GPC from the PMMA-biock-P(ter-BuMA)­

block-PMMA precursor assuming 100% hydrolysis of the ter-BuMA group (confirmed using 
1 
H NMR by loss of the ter-BuMA signal at 1.6ppm). 

26 



Chapter 3 - Synthesis and processing of pH-responsive self-assembled triblocks 

3.2.3 Calculating the composition of PMMA-block-PMAA-block-PMMA block 

copolymers by 1H NMR 

8 8 8 8 

A 8 

7. 5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 

(ppm) 

Figure 3.5: 1H NMR Spectrum of PMMA-block-P(ter-BuMA)-block-PMMA (JSTB02). 

For each PMMA-block-PMAA-block-PMMA polymer the volume fraction of 

methacrylic acid was calculated using the following procedure. 1H NMR was used to 

determine the mole fraction of ter-BuMA in the precursor polymer. Using this value 

(assuming an identical volume fraction in PM MA-block-PMAA-block-PM MA) and 

previously reported densities [6] for the corresponding component homopolymers, the 

mole fraction was converted to a volume fraction. A sample calculation is detailed 

below. 

As illustrated in the NMR spectrum given above in figure 3.5, 

Mole fraction of ter-BuMA = (1-x) 

Mole fraction of MMA = x 
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To calculate x, the mole fraction of MMA, it is necessary to find the ratio 

between the O-CH3 protons (A) on the MMA repeat unit and the remaining protons of 

the MMA (B) and ter-BuMA (B) unit as a function of x. For every repeat unit of MMA 

there are three equivalent O-CH3 (A) protons. Therefore, A = 3x. The remaining signal 

which corresponds to B is due to the 5 remaining protons on the MMA subunit and 14 

protons on the ter-BuMA subunit. Therefore B = 5x + 14 (1-x) = 5x + 14 - 14x. The 

ratio of B to A is therefore: 

B 5x+14-14x (3.2) -=----
A 3x 

x = 14 
3 (B/A) + 9 

(3.3) 

From the 1H NMR spectrum given in figure 3.5 the ratio (BfA) is 20.63. 

Substituting this value into equation 3.3 gives a value for the MMA mole fraction of 

0.20. Therefore the triblock has the molar composition 0.10-0.80-0.10. The 

corresponding volume fraction of each subunit is calculated by first multiplying the 

mole fraction by the molar mass to give a mass fraction, and then dividing this value by 

its density to give a volume. The volume of each component in the block copolymer is 

then divided by the total volume to give the volume fraction. An example is given 

below, 

Volume of MAA = 

Volume of MMA = 

MMA volume fraction = 

0.8 x 86.09 = 53.60 cm3 
1.285 

0.2 x 100.12 = 16.90 cm3 
1.185 

__ 5_3._60 __ = 0.76 
53.60 + 16.90 

(3.4) 

(3.5) 

(3.6) 

The PMMA-block-PMAA-block-PMMA triblock therefore has the following 

volume composition, 0.12:0.76:0.12. 
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As can be seen from table 3.1 this method allows good control of the target 

molecular weight and produces polymers with polydispersity indices (POI's) less than 

1.2. In all cases, however it was not possible to produce a monodisperse sample. 

Figure 3.4 shows GPC traces of polymers synthesised using this method. All 

polymerisations have a clear bimodal distribution. In figure 3.4a the peak at lower 

retention time, corresponding to 65% of the sample is believed to be triblock, and the 

second peak corresponds to diblock. A bimodal distribution from a bifunctional initiator 

suggests partial deactivation of a number of the active chain ends. This is a known 

complication arising from the use of bifunctional initiators especially in high molecular 

weight polymers as there are relatively few initiating species. To avoid active chain end 

deactivation the monomers used in this polymerisation were thoroughly dried with 

CaH2 and subsequently washed with living polystyrene [25], making this mechanism of 

termination less plausible. Alternatively the bimodal distribution may be a result of the 

initiator chain end functionality. The active bifunctional initiator is produced from the 

reaction between sec-BuLi and 1,3-bis (1-phenylethenyl) benzene. For the initiator, 

1,3-bis (1-phenylethenyl) benzene to be truly bifunctional both double bonds must 

react with sec-BuLL However it is possible that during this reaction some of the initiator 

species may have only reacted on one end of the molecule. This will give· rise to a 

mixture of both bifunctional and monofunctional 'initiator. To circumvent this from 

happening, in all polymerisations the initiator solution was added titrimetrically to the 

sec-BuU solution [26]. This ensured that the sec-BuLi solution always remained in 

excess compared to the initiator. 

It is also known that not all difunctional initiators behave in an ideal manner in 

all solvents and monomers. It may be simply that in this combination of solvent, 

initiator and monomer the system cannot generate a pure difunctional polymer. In this 

case it will simply not be possible to synthesise a monodisperse sample. Due to the 

high level of complexity and time required :for anionic polymerisations they were not 

further optimized. 
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3.3 ANNEALING OF PMMA-block-PMAA-block-PMMA TRIBLOCK 

COPOLYMERS 

3.3.1 Network fOll1lation 

As discussed in section 3.1.3,' the PMMA-block-PMAA-block-PMMA triblock 

copolymers need to be suitably processed and annealed. Annealing produces the 

desired self-assembled 'physically cross-linked network, as without this the polymer 

would have no structural integrity, and would simply fall to pieces when placed into an 

aqueous' environment [3]. 

3.3.2 Annealing Conditions for PMMA-block-PMAA-block-PMMA triblock copolymers 

In its unprocessed raw state the PMMA-block-PMAA-block-PMMA triblock 

Copolymer consists of amorphous chains which have no molecular long range order. 

This has been confirmed by SAXS as shown in figure 3.6. There is clearly no structure 

peak which is expected for a phase separated polymer. 

To induce microphase separation the block copolymer must be either thermally 

or solv~nt annealed. Thermal annealing requires the triblock to be heated above the 

glass transition temperature of the two component blocks. The alternative method, 

solvent annealing, functions by reducing· the glass transition temperature of the 

component blocks. Both cases correspond to a vertical trajectory across the block 

COpolymer phase diagram (see section 3.1.1). 

As the glass transition temperatures (Tg) for poly (methyl methacrylate) and 

poly (methacrylic acid) homopolymer are 120°C and 22SoC respectively [27], the use 

of thermal annealing is less attractive. Therefore the block copolymers were processed 

using solvent annealing. 

To process and solvent anneal thin films of PMMA-block-PMAA-block-PMMA it 

is essential to find a good common solvent, or combination of selective solvents for the 

Component blocks. Several solvents are recognised in the literature [27]. Dioxane and 

methanol are good solvents for poly (methacrylic acid) and dioxane and acetone are 

good solvents for poly (methyl methacrylate). 
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3.3.3 Selectivity of solvent on the self assembly of PMMA-block-PMAA-block­

PMMA triblock copolymer thin films 

The effect of the thermodynamic selectivity of dioxane and 85: 15 v/v 

methanol/acetone solvent on the self assembly of PMMA-block-PMAA-block-PMMA 

triblock copolymers, JSTB02 and JSTB04, was investigated using SAXS. Thin films of 

each polymer were solution cast from a forty weight percent solution, and 

subsequently solvent annealed for a period of one month (see appendix, section 9.5) . 

The SAXS profiles obtained for each polymer after annealing is illustrated in figure 3.6 

and 3.7. 
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Figure 3.6: Plot of relative scattering intensity versus wave vector q for a PMMA-block­

PMAA-block-PMMA (JSTB02) triblock (- ) which was annealed in 85/15 methanol/acetone 

(-) and dioxane (- ) for 1 month at 20°C. 
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Figure 3.7: Plot of relative scattering intensity versus wave vector q for a PMMA-block­

PMAA-block-PMMA (JSTB04) triblock (- ) which was annealed in 85:15 v/v 

methanol/acetone (- ) and dioxane (-) for 1 month at 20°C. 

The selective co-solvent system was prepared at a ratio of 85:15 (v/v) to try and 

steer the polymer into a body centred cubic morphology. 

Both polymers have no structure peak in the raw material. This is 

thermodynamically expected due to the high glass transition temperature of the 

component blocks, which are significantly higher than the temperature used in the 

annealing experiments . 

The scattering profile of JSTB02 in figure 3.6 indicates that solvent annealing in 

dioxane produces a more defined structure peak than the same polymer annealed in 

85:15 (v/v) methanol/acetone. This implies that the polymer chains annealed in 

dioxane are more ordered. This observation may be a result of the vapour pressure 

difference in the co-solvent system. Acetone has a vapour pressure of approximately 

200mmHg at 20°C, compared to methanol which is 100mmHg at the same 

temperature. During the course of one month, it would not be unreasonable to assume 
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that the concentration of acetone in the co-solvent atmosphere will decrease at a 

faster rate than methanol. Therefore the co-solvent behaves more like a single solvent 

over time, and selectivity towards PMMA is lost. This will ultimately decrease the 

mobility of the PMMA chains reducing the ability for the polymer to reach its true 

equilibrium structure. 

It is difficult to compare the effect of the two solvents on JSTB04 due to the 

structure peak being very close to the beam stop of the instrument which masks the 

required structural information. 

The domain spacing of the two polymers was also determined by SAXS. The 

results are listed in table 3.2 which indicate that JSTB04 has a larger domain spacing 

compared to JSTB02. This observation is expected as the triblock has a higher 

molecular weight which will increase the distance between the PMMA domains. 

Table 3.2: Summary of domain spacing for PMMA-block-PMAA-block-PMMA triblock 

copolymers determined by SAXS. 

Copolymer 
1.0. 

JSTB02 

JSTB04 

Domain Spacing 
q/ A-1 

0.0304 

0.0170 
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3.4 SYNTHESIS OF PMMA-block-PDEA-block-PMMA BLOCK 

COPOLYMERS 

3.4.1 PMMA-block-PDEA-block-PMMA block copolymers via group transfer 

polymerisation 

A series of PMMA-block-PDEA-block-PMMA triblock copolymers with a range 

of molecular weights were also targeted as discussed in section 3.1. The polymers 

were made by group transfer polymerisation (GTP) following a modified method 

described in the literature [4]. This technique is living and is known to produce 

polymers with controlled architectures and narrow POI's. An introduction into GTP can 

be found in the appendix, section 9.1.2. 

Synthesis of PMMA-block-PDEA-block-PMMA copolymers was accomplished 

using the bifunctional initiator 1,4-Sis (methoxytrimethylsiloxymethylene) cyclohexane 

(SMMC), as shown in figure 3.8. 

If CH3 

CH3 ~ CH, CH3 

f H
2 

I*H2 'bd-' H2Xl H2-t • C -c C -c I c-c c-c • 
mI I / nl2n12 \ I . 2 

O=C O=C\ /C=O C=O 

I 0 0 I 
'I I I 'I 
CH, iH2 iH2 CH, 

CH2 CH2 

I I 
N N 

8/ '8Et/ 'Et 

Figure 3.8: Syn1hesis of PMMA-block-PDEA-block-PMMA triblock copolymer' via group 

transfer polymerisation. represents 1he bifunctional initiator 1,4-Bis 

(me1hoxytrime1hylsiloxymethylene) cyclohexane. 
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GPC traces of a number of PMMA-block-PDEA-block-PMMA copolymers 

synthesised using the bifunctional initiator are given below in figure 3.9. 
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Figure 3.9: GPC chromatograms of (a) PMMA-block-PDEA-block-PMMA (JSPB05) and (b) 

PMMA-block-PDEA-block-PMMA (JSPB06) triblocks synthesised using the bifunctional 

. Initiator 1,4-Bis (methoxytrimethylsiloxymethylene) cyclohexane. 
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A summary detailing the molecular weight, volume fraction and Mwl Mn of 

polymers synthesised using this method is given below in table 3.3. 

Table 3.3: A summary of copolymer compositions, molecular weight and polydispersities of 

various PMMA-block-PDEA-block-PMMA triblock copolymers. 

Copolymer Theoretical Experimental MMA Theoretical Experimental 

I.D. MMAvolume volume fractiona 
Mn Mn

b 

fraction 

JSPB01 0.17 0.17 48242 226863 

(triblock) 

103552 

(diblock) 

JSPB03 0.17 0.17 48242 58941 

JSPB04 0.17 0.17 69714 91941 

JSPB05 0.17 0.17 71084 79582 

JSPB06 0.17 0.17 96485 156394 

JSPB07 0.16 0.16 48242 66796 

JSPB08 0.12 0.12 48242 58400 

a: As determined by 1H NMR 

b: As determined by GPC analysis (molecular weights calibrated against methyl 

methacrylate standards) 
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3.4.2 Calculating the composition of PMMA-block-PDEA-block-PMMA block 

copolymers by 1H NMR 

.' 

a o ~ J ~ o ~J ~o 5J 50 ~J ~o LJ LO LJ LO ~ J LO OJ 
(ppm) 

Figure 3.10: 1H NMR Spectrum of PMMA-block-PDEA-block-PMMA. 

For each PMMA-block-PDEA-block-PMMA polymer the volume fraction of DEA 

was calculated in the following way. 1H NMR was used to determine the mole fraction 

of PDEA in the polymer. Using this value and previously reported densities [6] for the 

corresponding component homopolymers, the mole fraction was converted to a 

volume fraction. A sample calculation is detailed below. 

As illustrated in the NMR spectrum given above in figure 3.10, 

Mole fraction of DEA = x 

Mole fraction of MMA = (1-x) 

To calculate x, the mole fraction of DEA, it is necessary to find the ratio 

between the O-CH2 protons (A) on the DEA repeat unit and the O-CH3 (8) protons on 
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the methyl methacrylate repeat unit, as a function of x. For every repeat unit of DEA 

there are two equivalent O-CH2 (A) protons. Therefore, A = 2x. For every repeat unit of 

MMA there are three O-CH3 (B) protons. Therefore B = 3(1-x) = 3 -3x. The ratio of B to 

A is therefore: 

B 3-3x 
-=--
A 2x 

3 
x=----

2(B/A) + 3 

(3.7) 

(3.8) 

From the 1H NMR spectrum given in figure 3.10 the ratio (B/A) is 0.667. 

Substituting this value into equation 3.8 gives a value for the DEA mole fraction of 

0.70. Therefore the triblock has the molar composition 0.15-0.70-0.15. The 

corresponding volume fraction of each subunit is calculated by first multiplying the 

mole fraction by the molar mass to give a mass fraction, and then dividing this value by 

its density to give a volume. The volume of each component in the block copolymer is 

then divided by the total volume to give the volume fraction. An example is given 

below, 

Volume of DEA = 

Volume of MMA = 

MMA volume fraction = 

0.7 x 185.26 = 125.30 cm3 
1.035 

0.3 x 100.12 =25.35 cm3 
1.185 

__ 1_25_.3_0 __ = 0.83 
25.35 + 125.30 

(3.9) 

(3.10) 

(3.11) 

The PMMA-block-PDEA-block-PMMA triblock therefore has the following 

. composition, 0.085:0.83:0.085. 
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3.4.3 Optimizing conditions for the synthesis of PMMA-block-PDEA-block-PMMA block 

copolymers 

Early attempts to synthesise PMMA-block-PDEA-block-PMMA polymers (see 

table 3.3, JSPB01 as an example) following the published method [4] resulted in the 

formation of triblock copolymers with" diblock contamination. An investigation to 

determine the origin of this indicated that monomer impurity was the cause. 

In the published procedure the monomers were dried over CaH2 without any 

further purification. It was found that an additional step was required to clean the 

monomers. In addition to drying over CaH2 the monomers were passed through a 

basic alumina column. It was found that polymers synthesised using this modified 

method were monodisperse in all cases. 

Due to the group transfer polymerisation reaction being exothermic its progress 

can easily be monitored. During the course of all GTP polymerisations the reaction 

temperature was recorded, as illustrated in figure 3.11. 

During polymerisation of the first monomer there was a gradual increase in the 

temperature of the reaction mixture. Once the initial exotherm abated (marked by a 

reduction in the reaction temperature), the second monomer was introduced 

immediately. Following the reaction in this manner allowed one to determine precisely 

when to"add the second monomer, thus reducing the chances of unwanted secondary 

chain coupling reactions. 

/-
30 / 

0:= 28 /--'----i----
i /- Second monomer added 

~ 26 

~ / 24 _ 

/ 
Time I minutes 

Figure 3.11: Typical reaction exotherm recorded during the synthesis of PMMA-block-PDEA­

block-PMMA triblock copolymers. Time at which the second monomer was introduced into 

the reaction is indicated on the figure. 
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3.5 ANNEALING OF PMMA-block-PDEA-block-PMMA TRIBLOCK 

COPOLYMERS 

3.5.1 Network formation 

As previously discussed in section 3.1.3 and 3.3.1 the specially designed 

PMMA-block-PDEA-block-PMMA triblock copolymers need to be suitably processed 

and annealed. 

3.5.2 Annealing Conditions 

Annealing of PMMA-block-PDEA-block-PMMA triblock copolymers can be 

achieved thermally or by using a solvent system as discussed in section 3.1.3. The 

glass transition temperatures of the PDEA and PMMA blocks are 16°C and 120°C 

respectively [27]. Due to the low glass transition temperature of the PDEA block 

annealing is accessible using both methods. However, in provisional thermal annealing 

studies it was found that elevated temperatures caused a distinct colour change in the 

polymer films. The film changed from being initially transparent to yellow/green. The 

same colour change also occurred when polymer dissolved in annealing solvent was 

left for extended periods. These polymers were no longer soluble suggesting cross 

linking had occurred. As a result of this all PMMA-block-PDEA-block-PMMA polymers 

used for' annealing experiments were solvent annealed. This was achieved using 

THF, which is a good solvent for both PMMA and PDEA homopolymer [27]. 

3.5.3 Selectivity of THF solvent on the self assembly of PMMA-block-PMAA-block­

PMMA triblock copolymer thin films 

The effect of the thermodynamic selectivity of THF on the self assembly of a range of 

PMMA-block-PDEA-block-PMMA triblock copolymers was investigated using SAXS. 

Thin films of each polymer were solution cast from a 40 wt % solution in'THF, and 

SUbsequently solvent annealed for various amounts of time (see appendix, section 
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Figure 3.12: Plot of scattering intensity versus wave vector q for an unannealed PMMA­

block-PDEA-block-PMMA (JSPB01) triblock (-) and the same polymer annealed in THF for 

1 week (- ) at 20°C. 

::J 
(U 

UNIVERSITY --,-.... 
0-

OF SHEFFIELD 
'-" 

0> 

LIBRARY a 

1000 

100 

10 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 

q I A-1 

Figure 3.13: Plot of scattering intensity versus wave vector q for an unannealed PMMA­

block-PDEA-block_PMMA (JSPB03) triblock (-) and the same polymer annealed in THF for 

4 weeks (- ), and 8 weeks (- ) at 20°C . 
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Figure 3.14: Plot of scattering intensity versus wave vector q for an unannealed PMMA­

block-PDEA-block-PMMA (JSPB05) triblock (-) and the same polymer annealed in THF for 

4 weeks (- ), and 8 weeks (- ) at 20°C. 
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Figure 3.15: Plot of scattering intensity versus wave vector q for an unannealed PMMA­

block-PDEA-block-PMMA (JSPB06) triblock (-) and the same polymer annealed in THF for 

1 week (-) at 20°C. 
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9.5). The SAXS profiles obtained for a selection of the polymers after annealing are 

illustrated in figures 3.12-3.15. 

The SAXS profiles of the neat un-annealed copolymers illustrated in figures 

3.12-3.15 all show a pronounced structure peak. This initial ordering which is present 

without specific annealing is likely a result of the way in which the polymers are 

prepared. Polymer synthesis was carried out in THF solvent, and after the 

polymerisation reached completion the material was recovered by rotary evaporation 

of solvent. It is therefore possible that the slow removal of solvent by rotary 

evaporation induced microphase separation in the polymers. 

For several of the annealed polymers the peak width at half height of the 

structure factor was measured during the course of solvent annealing. The results are 

shown in table 3.4. Using the peak width of the raw polymer as a reference, the 

percentage change in the peak width was determined for each annealing time, as 

shown in figure 3.16. All of the polymers in table 3.4 show a reduction in peak width 

with time, the only exception to this is JSPB03 which appears to increase after 4 

weeks. However, if one compares the raw peak width to the peak width at 8 weeks , all 

polymers show a narrowing. This general reduction is anticipated as polymers which 

have had longer periods of solvent annealing have had more time to reach their lowest 

energy equilibrium structure. The reduction in peak width becomes less pronounced 

with longer annealing times, an indication the polymer is beginning to reach its final 

equilibrium structure. The greatest reduction in peak width is observed for JSPB05, 

Which has reduced by forty percent as compared to the raw polymer. 

Table 3.4: Peak width half maximum characteristics for PMMA-b-PDEA-b-PMMA triblock 

Copolymers. 

Copolymer I. D. 

JSPB03 
JSPB05 
JSPB07 
JSPB08 

PDI 

1.38 
1.22 

1.30 

1.22 

Peak width at half maximum / q A-1 

o Weeks 4 weeks 8 weeks 
0.0105 0.0114 0.0099 
0.0119 
0.0156 
0.0250 
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Figure 3.16: Percentage change in the peak width at half height for B JSPB03 A JSPB05 Q 

JSPB07 and 13 JSPB08 PMMA-block-PDEA-block-PMMA triblock copolymers annealed in THF 

for varying amounts of time. 

Table 3.4 also lists the polydispersity index (POI) for each polymer. It may be 

expected that polymers with a narrower POI have a smaller width at half height, given 

that more of the polymer chains have a similar length. However no correlation was 

found. Additionally, none of the plots in figure 3.16 have a zero gradient suggesting 

that the equilibrium structure was not reached even after 8 weeks of annealing. 

SAXS spectra of the majority of annealed PMMA-block-POEA-block-PMMA 

polymers exhibited the first order Bragg peak only, which prevents a proper 

identification of the phases by stand crystallographic arguments. Only JSPB06 had 

indication of any further ordering beyond a structure factor. In the diffuse part of 

scattering data where the main contribution of scattering comes from the form factor 

component (see section 9.4.1), there is a small anomaly present at 0.05 A-1
. Even if 

this peak was attributed to a form factor, the lack of any further oscillations make it 

unfeasible to accurately comment further on the molecular structure of this polymer. 

It is also worth emphasising that the structure peak in annealed JSPB06 has 

shifted from 0.0230 A-1 in the unprocessed material to 0.0192 A-1 after one week of 
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annealing , an increase of approximately 5nm or 18.5 percent. In addition the shoulder 

at higher q is much more defined in the annealed material. 
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Figure 3.17: Change in the domain spacing for. JSPB03 • JSPB05 • JSPB07 and . 

JSPB08 PMMA-block-PDEA-block-PMMA triblock copolymers annealed in THF for varying 

amounts of time. 

The change in domain spacing with annealing time was also evaluated for the 

other PMMA-block-PDEA-block-PMMA block copolymers, as illustrated in figure 3.17. 

After 4 weeks of solvent annealing all of the polymers investigated showed an 

increase in domain spacing . The largest increase of 6.8% was observed for JSPB08. 

This is , however, almost a factor of three times smaller when compared to JSPB06. 

One possible explanation for the large change in domain spacing of JSPB06 

relates to the molecular weight of the material. JSPB06 has a molecular weight over 

twice that of the other polymers (156k vs 58-80k) . As a result of this the polymer has a 

larger number of chain entanglements. 

It would appear from figure 3.17 that the lower molecular weight polymers were 

already close to equilibrium in their raw state, therefore only showing a small change in 

domain spacing upon further annealing. The low glass transition temperature of PDEA, 
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and fewer entanglements in lower molecular weight polymers would support this 

conclusion. However, JSPB06 being a higher molecular weight polymer has a greater 

thermodynamic barrier for phase separation. The results indicate that JSPB06 was not 

phase separated as fully compared to the other polymers in the raw state. As a result 

when JSPB06 was further annealed the polymer chains stretched to reach their 

optimum configuration which explains the large increase in domain spacing not seen in 

the other polymers. Libera and Kim have also reported an increase in the domain 

spacing of a Polystyrene-:Polybutadiene-Polystyrene (SBS) triblock copolymer during 

the course of solvent annealing [28], as have Shibayama et al [29] on a solvated 

lamellar forming diblock. It is also evident that in several of the polymers there is a 

decrease in the domain spacing after 8 weeks of annealing. Hashimoto et al have 

observed a similar trend [30]. During solvent annealing of PS-PI block copolymers they 

found the domain increased, this is explained in terms of a thermodynamic argument 

(i.e domains increase to lower surface to volume ratio). With further evaporation of 

solvent they observed a decrease in the expansion ratio, and this was observed due to 

kinetic constrains. At a critical concentration the polymer mobility is too low to enable 

adjustments to the bulk morphology, and the domain decreases due to deswelling. 

3.6 DOMAIN SPACING VS MOLECULAR WEIGHT 

Table 3.5 lists the domain spacing calculated by SAXS for a selection of the 

PMMA-block-PDEA-block-PMMA triblock copolymers. It is evident that the domain 

spacing of the polymers increases with increasing molecular weight. Figure 3.18 

Shows a double-logarithmic plot of the experimental domain spacing vs the number­

averaged molecular weights, Mn of the triblock copolymers. 

In a similar plot assuming an unperturbed (Gaussian) polymer chain one would 

expect to have an exponent of 0.5, however a slightly higher value is observed in block 
-

COpolymers. This is due to chain constraint, as the polymer chains must minimise both 

interfacial and chain deformation. To achieve this the polymer chains stretch in the 

direction normal to the intermaterial dividing surface, thus the domain size would be 

expected to scale as N2/3 [31]. 
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It is obvious from figure 3.18 that the domain spacing systematically increases 

with total molecular weight. The best fit line in Figure 3.18 has a slope of 0.73. This 

systematic increase in domain spacing with molecular weight is consistent with 

previous findings [32]. Hashimoto and Kawai were one of the first groups to use SAXS 

to investigate the relationship between domain spacing and molecular weight [33]. 

They investigated the relationship using a series of symmetric lamellar polystyrene/ 

polyisoprene (PS-PI) copolymers. In a double logarithmic plot similar to figure 3.18 

they recorded a slope of 2/3 to 4/5 [34]. Our findings are consistent with this result, and 

scale as Domain spacing 'oc Mn073
. 

Table 3.5: Domain spacing and molecular weight characteristics for PMMA-block-PDEA-

block-PMMA triblock copolymers. 

Copolymer 1.0. Domain Spacing Domain Spacing Molecular weight 
A-1 nm gmor1 

JSPB03 0.0418 15.0 58941 

JSPB05 0.0328 19.2 79582 

JSPB06 0.0192 32.7 159394 
JSPB07 0.0357 17.5 66796 

JSPB08 0.0401 15.6 58400 

J1 a 0.0237 26.4 119869 

a: donated by Dr Paul Topham 
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Equation y •• + b·x 

1.50 AdJ, R~Squ ... e 0.99787 ' 
'Value - . Standard Error 

"Intercept : -2.29723 0.08773 
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Figure 3.18 - log-log plot of molecular weight vs domain spacing for a series of PMMA­

block-PDEA-block-PMMA copolymers. The following polymers were used in order of 

increasing molecular weight, JSPB08, JSPB03, JSPB07, JSPB05, J1*, JSPB06. *donated by 

Dr Paul Topham. 

3.7 SURFACE MORPHOLOGY OF PMMA-block-PDEA-block-PMMA 

BLOCK COPOLYMER FilMS 

All of the SAXS profiles presented in section 3.5.3 (with the possible 

exception of JSPB06) show no evidence of a form factor or further order scattering 

peaks. AFM was used to further investigate the micropha'se morphology of the 

bloc:k copolymers. Thin films (-100 nm) of PMMA-block-PDEA-block-PMMA 

triblock copolymer were spin coated (2000rpm) onto silicon wafers from a THF 

,solution (-5.0% w/w). The triblock copolymer films were subsequently solvent 

annealed using THF for one week. 
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Figure 3.19: AFM phase images of PMMA-block-POEA-block-PMMA triblock copolymer, (A) 

JSPB03, (B) JSPB05, (C) JSPB06, (0) JSPB07, (E) JSPB08. 

The composition of each polymer is listed in table 3.6. Based on the 17 percent 

volume fraction of PMMA in JSPB03, JSPB05 and JSPB06 it was anticipated these 

polymers would phase separate with a spherical morphology. As JSPB07 has a very 

similar volume fraction it is also anticipated to have the same structure. JSPB08 was 

deliberately synthesised to have a lower volume fraction of PMMA (fpMMA 0.12) 

primarily to investigate if this had any effect on phase morphology. 

The phase images in figure 3.19 show patterns of both dark and light objects . 

The light areas correspond to the higher modulus PMMA component, and the darker 

areas are typical of softer material, in this example PDEA. AFM analysis of JSPB05, 

JSPB06, JSPB07 and JSPB08 all show some evidence of microphase separation. The 

phase image of JSPB03 shows the greatest degree of microphase separation, with 

perhaps a small indication of liquid like spherical domains. A two dimensional Fourier 

transform of this phase image reveals a long order domain spacing of 15.0 nm. This 

observation is consistent with SAXS data obtained on the same polymer. As all the 

polymers in this study show a pronounced structure peak in their SAXS profile it is 
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somewhat surprising that there is not a more defined phase separation in the AFM 

phase image, especially in JSPB06. However, it is important to note that the 

preparation method used for AFM sampling differs significantly from bulk gels used for 

SAXS analysis. In the case of AFM, samples were spin coated from a dilute solution, 

as opposed to high weight percent (40%) in the bulk gels. This will have an influence 

on the assembly of the gel during solvent annealing . Additionally, preferential surface 

interactions between the different components of the gel and the silicon substrate 

(SiOx layers) will directly influence the final structure of the gel [35] . All of these 

variables could be used to explain the lack of well defined order in the majority of the 

AFM images. 

Table 3.6: A summary of copolymer compositions, molecular weight and polydispersities of 

the PMMA-block-PDEA-block-PMMA block copolymers investigated by AFM 

Copolymer I.D. DEA volume fraction Experimental Mn 0 

JSPB03 0.17 58941 1.38 

JSPB05 0.17 79582 1.22 

JSPB06 0.17 156392 1.22 

JSPB07 0.16 66796 1.30 

JSPB08 0.12 58400 1.22 

3.8 STABILITY TESTING IN SOLUTION 

3.8.1 Stability testing of PMMA-block-PMAA-block-PMMA triblock copolymers 

The polyacid block copolymers synthesised in section 3.2 were subjected to 

testing to evaluate their suitability as chemical actuators. 
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JSTB02 and JSTB04 both contain a poly(methacrylic acid) midblock which 

expands when it is placed in a solution at a pH above its apparent pKa. The pKa is 

molecular weight dependant but can be estimated at 5.5 [21]. To test robustness 110 

micron thick films of PMMA-block-PMM-block-PMMA, which had been solvent 

annealed for 1 month (phase separation checked by SAXS) were placed into a 

solution at pH 8 (distilled water which had been adjusted to pH 8 by addition of a small 

amount of 1 M NaOH). 

At this pH the triblock is anticipated to expand. However, in actual fact both 

polymers placed in this solution broke into many small pieces after only a few minutes. 

This was of course a great disappointment and suggested a lack of structural integrity. 

This lack of structural integrity is most likely a result of the high diblock 

content in these polymers. JSTB02 and JSTB04 contain 35% and 58% diblock 

respectively. The structural stability of the triblock copolymer results from bridging of 

PMM domains between PMMA hydrophobic blocks. The high diblock contaminant 

present in these samples provides no structur~1 integrity to the system. Its presence 

simply reduces the number of bridging domains in the polymer network. Any diblock 

will simply sit between the PMMA domains and not participate in network formation. 

3.8.2 Stability testing of PMMA-block-PDEA-block-PMMA triblock copolymers 

The robustness of polybase triblocks was tested in a similar manner to the 

polyacid. In this case, 110 micron thick films which had been solvent annealed for one 

week were immersed in simple HCI mineral acid solution at pH 3.6. This pH is below 

the pKa of the polymer, and as this is a polybase as opposed to a polyacid the polymer 

is anticipated to expand. The results of the robustness testing are shown in figure 3.20. 

The expansion ratio in the graph was calculated according to equation 3.12, 

(3.12) 

, where Ms and Md are the mass of the swollen and dry gel respectively. 
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Figure 3.20: Change in the gravimetric expansion ratio as a function of time for a series of 

110 micron thick films of annealed PMMA-block-PDEA-block-PMMA triblock copolymers 

measured in pH 3.5 HCI mineral acid. 

The mass of the polymer was measured at specific time intervals. The final 

measurement was taken after the polymer had been immersed in solution for 45 

hours. It is evident from figure 3.20 that JSPB03 had the largest expansion ratio, but 

more significantly it was the only polymer to remain mostly intact over a period of 45 

hours. The data points for the other polymers at 45 hours are not included, and this is 

Simply because they had broken up into many pieces and could no longer be 

measured. Comparison of the expansion ratio after 26 hrs indicates that JSPB03 and 

JSPB07 have similar levels of expansion at around 4.6. This is followed by JSPB05 at 

3.3, and JSPB06 at 1.4. Assuming the polymers have reached equilibrium after 26 hrs , 

one may hypothesise that the higher molecular weight polymer should have the 

highest expansion ratio. To test this hypothesis the molecular weight of JSPB03, 

JSPB05, JSPB07 and JSPB06 has been plotted against their expansion ratio 

determined after 26 hours , as shown in figure 3.21 . JSPB08 has not been included as 

this polymer had begun to break up. 
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Figure 3.21: Change in the gravimetric expansion ratio as function of molecular weight for a 

series of PMMA-block-PDEA-block-PMMA block copolymers measured at pH 3.6 after 26hrs. 

Somewhat surprisingly it would appear that the expansion ratio of the polymer 

decreases as the molecular weight is increased. There are a number of possible 

explanations for this. The expansion ratio measured after 26hrs is not a true 

equilibrium. Another possible explanation is the higher molecular weight polymer is 

more entangled and the osmotic pressure of the solution is not able to overcome the 

network elastic restoring force as easily, thus reducing the calculated expansion ratio. 

As this is a gravimetric measurement it is most likely that the expansion ratio at 26hrs 

is largely influenced by loss of materials and is not really a true measure. This 

highlights one of the issues associated with gravimetric analysis in that you are not 

measuring a molecular response. Further experiments will be performed in chapter 

four to investigate the 'influence of molecular weight on swelling equilibrium using 

SAXS. 
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3.9 CONCLUSION 

Anionic polymerisation has been used to synthesise PMMA-block-PMAA-block­

PMMA triblock copolymers. The polymers were synthesized with high control of 

molecular weight and narrow POI's. In all cases, however, the polymers had bimodal 

distributions. 

The specially designed polymers were annealed in a number of solvents, and 

phase separation was confirmed using SAXS. Initial stability testing of these polymers 

indicated that they were" mechanically weak. Phase separated annealed thin films 

simply fell to pieces when placed in a solution above their pKa• The mechanism of 

mechanical failure is most likely caused by the high content diblock content. Oue to the 

failure of these gels synthetic efforts were direct towards the synthe~is of PMMA-block­

,POEA-block-PMMA triblock copolymers. 

Synthesis of PMMA-block-POEA-block-PMMA triblock copolymers was 

achieved using group transfer polymerisation. A range of monodisperse polymers were 

synthesised with relatively narrow POI's. Annealing studies were conducted on the raw 

polymers using SAXS. Monitoring changes in the structure peak using SAXS gave an 

insight into the thermodynamics of phase separation. Initial stability tests on annealed 

thin films indicated the polymers to be mechanically robust, significantly more so than 

PMMA-block-PMAA-block-PMMA triblock copolymers. 

The most robust PMMA-block-POEA-block-PMMA triblock copolymer was 

JSPB03. This incidentally also had the largest swelling transition. SAXS profiles of 

JSPB03 had a defined structure peak, and AFM confirmed the polymer had a long 

order domain spacing of 15nm. 

Further studies on the "static" pH response of JSPB03 are described in chapter 

4. 

54 



Chapter 3 - Synthesis and processing of pH-responsive self-assembled triblocks 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

'8. 

9. 

10. 

11. 
12. 

13. 

14. 

15. 
16. 

17. 

18. 
19. 

20." 

21. 

22. 
23. 

Li, M.-H., P. Keller, J. Yang, and A. Albouy, Advanced Materials, 2004.16(21): 
p. 1922 - 1925. 
Nykanen, A., M. Nuopponen, A. Laukkanen, S.-P. Hirvonen, M. Rytela, O. 
Turunen, H. Tenhu, R Mezzenga, O. Ikkala, and J. Ruokolainen, 
Macromolecules, 2007. 40(16): p. 5827-5834. 
Guice, K.B., S.R Marrou, S.R Gondi, B.S. Sumerlin, and Y.-L. Loo, 
Macromolecules, 2008. 41(12): p. 4390-4397. 
Topham, P.O., J.R Howse, 0.0. Mykhaylyk, S.P. Armes, RA.L. Jones, and 
A.J. Ryan, Macromolecules, 2006. 39(16): p. 5573-5576. 
Borsali, Rand R: Pecora, Soft-Matter Characterization. 1 ed. 2008: Springer. 
160. 
Topham, P.O., Study of pH-Responsive Polymer Systems for use in Molecular 
Machines, in Chemistry. 2005, Sheffield: Sheffield. 
Ryan, A.J., C.J. Crook, J.R Howse, P. Topham, RA.L. Jones, M. Geoghegan, 
A.J.P.R-P. rez, S.J. Martin, A. Cadby, A. Menelle, J.RP. Webster, A.J. 
Gleesone, and W. Bras, Faraday Discuss, 2005. 128: p. 55-74. 
Bates, F.S. and G.H. Fredrickson, Annual Review of Physical Chemistry, 1990. 
41: p.525-57. . 
Hamley, I,W., Developments in Block Copolymer Science and Technology, ed. 
I,W. Hamley. 2004, UK: John Wiley and Sons Ltd. 1. 
Hamley, I,W., Introduction to soft matter. 1st ed. 2000, New York: John Wiley 
and Sons. 118-121. 
Bucknall, D.G. and H.L. Anderson, Science, 2003. 302(5652): p. 1904 - 1905. 
Hamley, I.W., Block Copolymers in Solution: Fundamentals and Applications. 
2005, New York: Wiley. 
Wilkinson, N. and A.J. Ryan, Polymer Processing and Structure Development. 
1 ed, ed. N. Wilkinson and A.J. Ryan. 1998, The Netherlands: Kluwer Academic 
Publishers. 301. 
Haward, RN. and RJ. Young, The Physics of Glassy Polymers. 2 ed, ed. RN. 
Haward and RJ. Young. 1997, London: Chapman and Hall. 453. 
Drolet, F. and G. H. Fredrickson, Physical review letters, 1999. 83(21). 
Bhowmick, A.K., Current TopiCS in Elastomers Research, ed. A.K. Bhowmick. 
2008, Florida: CRC Press. 132. 
Hanley, K.J., T.P. Lodge, and C.-I. Huang, Macromolecules, 2000. 33(16): p. 
5918-5931. 
Abetz, V., Block copolymers, Volume, ed. V. Abetz. 200.5, New York: Springer. 
Matsen, M.W. and RB. Thompson, The Journal of Chemical Physics, 1999. 
111(15): p. 7139-7146. 
Esquenet, C., P. Terech, F. Boue, and E. Buhler, Langmuir, 2004. 20(9): p. 
3583-3592. 
Howse, J.R, P. Topham, C.J. Crook, A.J. Gleeson, W. Bras, RA.L. Jones, and 
A.J. Ryan, Nano Letters, 2006. 6(1): p. 73-77. 
Yao, J., P. Ravi, K.C. Tam, and L.H. Gan, Polymer, 2004. 45(8): p. 2781-2791. 
Tong, J.D., G. Moineau, P. Leclere, J.L. Bredas, R Lazzaroni, and R JerOme, 
Macromolecules, 2000. 33(2): p. 470-479. 

55 



Chapter 3 - Synthesis and processing of pH-responsive self-assembled triblocks 

24. Odian, G., Principles of Polymerization Third Edition ed. 1991, New York: John 
Wiley and Sons, Inc. 389. 

25. Allen, R.D., T.E. Long, and J.E. McGrath, Polymer Bulletin (Berlin, Germany), 
1986. 15(2): p. 127-34. 

26. C. M. Fernyhough, R.N.Y., and R. D. Tack, Macromolecules 1999. 32(18): p. 
5760-5764. 

27. Brandrup, J., E.H. Immergut, and E.A. Grulke, Polymer Handbook. Fourth 
edition ed. 1999, New York: John Wiley and Sons. 

28. Libera, G.K.a.M., Macromolecules, 1998.31(8): p. 2569-2577. 
29. Shibayama, M., Takeji Hashimoto, and H. Kawai, Macromolecules, 1982. 16: p. 

1434-1443. 
30. Hashimoto, T., M. Shibayama, and H. Kawai, Macromolecules, 1983. 16: p. 

1093-1101. . 
31. Bates, F.S. and G.H. Fredrickson, Annu. Rev. Phys. Chern, 1990.41. 
32. Cheremisinoff, N.P., Handbook of Polymer Science and Technology. 1989: 

Taylor & Francis Ltd. 9. 
33. Hashimoto, T., M. Shibayama, and H. Kawai, Macromolecules, 1980. 13: p. 

1237. . 
34. Takeshita, H., Y.-J. Gao, T. Natsui, E. Rodriguez, M. Miya, K. Takenak, and T. 

Shiomi, Polymer 2007.48: p. 7660. 
35. Limary, R. and P.F. Green, Mat. Res. Soc. Symp, 2000. 629: p. 2.8.1. 

56 



Chapter 4 - Quantifying "static" hydrogel pH response using SAXS 

Chapter 4 

Quantifying "static" hydrogel pH 

response using SAXS 

4.1 INTRODUCTION 

Factors affecting hydrogel behaviour in solution have been extensively studied 

using randomly cross-linked polymer networks [1, 2]. However, the macroscopic 

response measured (Le. gravimetric, volumetric) of these systems is often far removed 

"from the behaviour of the individual polymer chains causing the measured effect. This 

is due to the random distribution of chemical crosslinks that hold the gel together, 

which can lead to localised stresses and anisotropic expansion. This can manifest 

itself in mechanical failure of the gel, but more importantly it is known to have a direct 

effect on the measured swelling characteristics. For example, the in-homogeneous 

distribution of cross links in cured epoxy resins resulted in an increase in their solvent 

uptake by a factor of 

]2 [3]. Therefore, when making comparative studies on the response of hydrogels 

control is needed on the cross-link distribution. 

In an attempt to reduce network heterogeneities, and develop a better 

understanding of hydrogel behaviour at the molecular level a microphase separated A­

B-A type polybase triblock copolymer (JSPB03, chapter 3) comprising of glassy self­

assembled domains of poly(methyl methacrylate) (PMMA); with each domain 

separated by (and covalently bound to) a series of single chains of poly(2-

(diethylamino)ethyl methacrylate) (PDEA) is investigated in this chapter. The chemical 

response of the hydrogel is governed by the PDEA chains. Structural integrity of the 

network during expansion is provided by the glassy PMMA physical crosslinks as 

discussed in chapter 3. The crosslinks are evenly distributed due to thermodynamic 

eqUilibrium achieved during self-assembly. The PMMA crosslinks also act as 

"markers", commonly referred to as hydrophobic stickers [4], providing the gel with an 

57 



Chapter 4 - Quantifying "static" hydrogel pH response using SAXS 

electron density contrast, allowing structural analysis to be performed at the molecular 

level using X-ray scattering techniques. 

Using simple buffers and mineral acids in conjunction with SAXS we will 

correlate the molecular response of this polymer to the single species in solution, while 

also evaluating the effectiveness of SAXS as a viable technique in itself for this 

purpose. 

4.1.1 Effects of pH, salt identity and ionic strength on swelling equilibrium 

The effects of pH, salt identity and ionic strength on the swelling equilibrium of 

ionisable polyelectrolyte hydrogels have been studied ([5, 6]). Historically, however, 

the experiments have almost exclusively been conducted on chemically cross-linked 
,-

gels. Typically the expansion ratios are reported as a weight average expansion ratio 

which is determined from the ratio between dry (Md) and swollen mass (Ms) of the gel, 

as shown in equation 4.1. 

(4.1) 

Measuring the expansion ratio by mass infers a number of fundamental 

limitations, which are in addition to the fact that you are measuring a macroscopiC 

response that does not necessarily reflect the response of the individual chains of the 

polymer. 

When measuring swelling by gravimetry it is often necessary to use large gel 

samples. This is necessary in order to overcome the inherent propagation errors 

associated with measuring the weight increase in small samples. However this causes 

a number of problems. It is important to ensure there is always an excess of ions in the 

solution surrounding the gel compared to the number of free ionisable group on the 

polymer in itself. But when large polymer samples are used an equally large volume of 

solution is needed to maintain an excess. This makes multiple sampling time 

demanding and consumes large volumes of solution. It is also well understood that the 

rate of solvent diffusion in hydrogels is related to the square of the size of smallest 
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dimension of the gel, [7]), therefore large polymer samples must be immersed in 

solution for long periods of time to ensure they have reached their final equilibrium 

structure. Manipulation of samples also introduces errors, in the first instance one must 

ensure that the sample is sufficiently free from surface solution, and often during 

expansion samples have a tendency to fracture which results in an incorrectly 

measured expansion ratio. 

4.1.2 Advantages of using SAXS analysis 

The use of SAXS to measure the equilibrium expansion ratio offers a number of 

advantages. Unlike gravimetric methods there is no lower limit on the dimensions of 

the hydrogel. The dimension is only limited by the diameter of the x-ray beam which 

can be easily manipulated to the micron scale. This means that very small samples 

may be used which reduces both the time the sample needs to reach equilibrium and 

the volume of solution needed to maintain an. excess of ions. In addition, as SAXS is 

sampling the molecular structure any loss of material due to fracture will have no effect 

on the expansion ratio (assuming microphase structure is retained), which would 

otherwise be detrimental for gravimetric analysis. Additionally any fracture in the gel 

can be analysed by SAXS which will help indicate the molecular mechanism of rupture 

[8]. 

As previously discussed, water uptake in hydrogels is usually reported as a 

mass ratio which relates the swollen mass to the dry mass of the polymer, through 

equation 4.1. In this work the expansion ratio is reported as a molecular unit cell, 

measured as the "small angle x-ray scattering (SAXS) expansion ratio." 

The domain spacing measured by SAXS reflects the average distance of hard 

PMMA domains in the hydrogel. If one assumes that the polymer has a cubic 

morphology (chapter 3, section 3.7), then this domain spacing can be converted to a 

volume by simply cubing the value. The molecular volume can be used in equation 4.2 

to produce a SAXS expansion ratio. 

d 3 3 

R _ e -do 
SAXS -

d 3 
o 

Where de = equilibrium domain spacing and do = dry domain spacing 
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4.1.3 Experimental SAXS setup for measuring "static" response 
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Figure 4.1: Experimental setup used to measure the molecular response of PMMA-block­

POEA-block-PMMA hydrogels. Pre-equilibrated polymer samples were loaded into an in­

house built sample plate (100 samples per plate). Each sample was scanned automatically. 

A (a) 20 SAXS image, (b) 360 degrees integration, and (c) illustration of the molecular 

structure are shown for the equilibrated polymer at pH 3 and pH 7. 

The molecular response of the PMMA-block-PDEA-block-PMMA hydrogels was 

collected using the experimental setup illustrated in figure 4.1. To facilitate an increase 

in the rate of sampling an in-house sample plate was constructed. This consisted of 

100 holes and when used in conjunction with a computer controlled x-y-z translation 

stage coupled to a SAXS instrument it allowed for rapid acquisition of data. The figure 

also shows a typical example of the SAXS image, a 360 degrees integration of this 

image and the molecular structure of the polymer measured at the pH extremes, pH 3 

and 7. Between the two pH values there is evidently an observable change in the 

polymer domain spacing; this is illustrated in the molecular cartoon as a change in the 

distance between the glassy PMMA domains . 
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4.1.4 SAXS profiles of PM MAss-b-PDEA223-b-PMMA88 annealed bulk films 
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Figure 4.2: Small-angle x-ray scattering profiles of PMMAaa-b-PDEA223-b-PMMAaa annealed 

bulk films at different pH values as indicated in the figure. Measured in 0.01M citric acid (pH 

3.1 -7.4) and 0.01 M ethanol amine buffer (pH >8.5), ionic strength set at 0.5M using NaCI. 

An example of the SAXS profile obtained for annealed films of PMMA88-b­

PDEA223.:.b-PMMA88 hydrogel immersed in two different buffer solutions (0.01 M citric 

aC~d and 0.01 M ethanol amine) at varying pH is shown above in figure 4.2. Each SAXS 

profile was created from a 360 degrees integration of the 2D SAXS image. The SAXS 

profile of the polymer in the solid state as indicated in chapter 3, figure 3.13 has a 

narrow and intense primary structure peak at q = 0.042 A-1
. The SAXS profiles 

collected in citric acid buffer solutions at pH values between: 3.1 to 6.1 as shown in 
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figure 4.2 all show a single structure peak at 0.022 A-1. This shift in the primary peak 

position at low pH values relative to the solid state polymer indicates that the molecular 

domains of the polymer have expanded, as d = 21t!q. As no further scattering orders 

are present in the SAXS prOfile, it is not possible to comment on the morphology of the 

polymer during expansion. 

The SAXS profiles collected at pH values greater than 7.0 all show a single 

more diffuse structure peak at much greater q values. At pH 10 the polymer has a 

primary structure peak at 0.042 A-1
• This is the same domain spacing as observed in 

the solid state polymer which implies that the polymer remains in its collapsed 

conformation at this pH. It is clear that the polymer conformation is controlled by 

manipulation of the pH. 

There is an obvious dramatic shift in primary peak position between pH 6.1 and 

7.0 which indicates that the polymers apparent pKa lies within these two values. When 

pKa is discussed in the context of the gel it is in effect an "apparent" pKa emanating 

Simplistically from the balance between the P':i response (swelling pressure) of the 2-

(diethylamino)ethyl methacrylate units and their hydrophobic nature at neutral pH 

(hydrophobic! hydrophilic balance), coupled with the elastic retractile force of the 

network. A transition will occur when a particular balance of osmotic and hydrophobic 

forces is achieved. This effect will be investigated and discussed in greater detail later 

in the section. 

There is also a marked difference in the peak width in the two pH extremes. At 

lower pH values the peak width is significantly reduced. At this pH the polymer chains 

are stretched due to entropic and osmotic expansion of the polymer network (see 

introduction, chapter 1). In this equilibrated structure all the individual polymers chains 

have the same length leading to a more defined structure peak. Additionally the uptake 

of water in the PDEA chains at low pH leads to better electron density contrast in the 

sample. 

It should also be noted that the thin polymer films used for this study were 

mechanically weak. The polymer samples were immersed into buffer solutions for 24 

hrs prior to SAXS analysis to ensure equilibrium was obtained. Samples immersed in 

solutions at pH 6.1 and below all exhibited isotropic expansion. During expansion, 

however, small cracks propagated in a number of the samples. Manipulation of these 
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samples often led to mechanical failure, characterised by tearing of the sample. As the 

narrow primary structure peak is still present in these samples it suggests that the 

mechanical failure could be a result of grain boundary imperfections. Such 

imperfections could be introduced into the sample during solvent casting and 

annealing of the sample. 

Each individual SAXS profile illustrated in figure 4.2 was processed using a 

Gaussian fitting program (X-fit[9]) to determine the polymer domain spacing. This 

value was converted by equation 4.2 into a SAXS expansion ratio. All molecular 

expansion ratios were determined using this procedure, an example of which is given 

in figure 4.3. 

4.1 .5 The effect of pH and salt identity on the expansion ratio and apparent pKa of 

PMMAss-b-PDEA223-b-PMMA88 hydrogel measured by small angie x-ray scattering 

The expansion ratio of solvent anneale~ thin films (2mm x 2mm) of PMMAss-b­

PDEA223-b-PMMAss was measured in 0.01 M citric acid and 0.01 M ethanol amine 

buffer solution to show the effect of solution pH. Citric acid was used to buffer the pH 

range 3.1 to 7.4 and ethanol amine at pH values greater than B.5. The ionic strength at 

each pH was fixed at a known value using a series of monovalent sodium salts. All 

solutions were prepared taking into account both thermodynamic temperature and 

ionic strength correction factors, as discussed in the appendix, section 9.6. 

It is perhaps worth emphasising that there is no totally satisfactory way to 

measure the influence of pH on a process. For example, changing the pH of a buffer 

causes a shift in the balance of conjugate acid [acid] and base [base]. This is 

illustrated in equation 4.3. 

[ [base] 
pH] = pK +Iog 

_. a 10 [acid] 
(4.3) 

Ultimately this directly changes the ionic strength of the solution making it 

difficult to differentiate the effect of ionic strength and pH. Two methods can be used to 

counter this, one can increase the concentration of the buffer species to maintain a 
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constant ionic strength at different pH values, however this will change the total buffer 

concentration and buffer capacity. The alternative approach which is used in this work 

is to maintain the imbalance of species by addition of neutral sodium salts to create a 

solution at constant ionic strength at different pH values. The salts used to fix the ionic 
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Figure 4.3: Variation of the SAXS expansion ratio of PMMAaa-b-PDEAm-b-PMMAaa annealed 

bulk films as a function of pH measured in 0.01 M citric acid (pH 3.1 -7.4) and 0.01 Methanol 

amine buffer (pH >8.5), ionic strength set at 0 O.1M, 0 O.3M and (),. O.5M using NaC!. Lines 

shown to guide the eye. 

strength of the buffer were based on the Hofmeister series [10] and included sodium 

acetate (NaAce), sodium chloride (NaCI), sodium bromide (NaBr), sodium nitrate 

(NaN03), sodium iodide (Nal) and sodium thiocyanate (NaSCN). 

The choice of buffer, in this case citric acid, was selected as it is able to buffer a 

wide pH range. This is possible because citric acid is a multivalent species with three 

pKa's ranging from 3.15 to 6.40. The advantage of using a single buffer, as opposed to 

a series of monovalent buffers to span the same pH range, is that any effects to be 

attributed to specific buffer species acting alone. 

Figure 4 .3 shows an example where NaCI has been used to control the ionic 

strength. At pH values 7.0 and above the hydrogel is unexpanded and remains 

hydrophobic regardless of the ionic strength. As the pH is reduced below this value 
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a point exists when the expansion ratio increases dramatically leading to a highly 

swollen gel. This region/ transition can be attributed to the pKa of the PDEA groups 

within the polymer, and in this example it occurs at a pH of approximately 6.8. It is also 

noteworthy that as the pH is further lowered below the apparent pKa polymers swollen 

in 0.3M and 0.5M NaCI do not significantly change their swelling ratio. However, when 

0.1 M NaCI is used to fix the ionic strength there appears to be a discontinuous 

increase in the swelling ratio as the pH is decreased below the apparent pKa. For 

example, at pH 6 the polymer has a swelling ratio of 6, which increases by almost a 

factor of 2 when the pH is lowered to 3.6. 

The effect of pH on the expansion ratio was also measured using several other 

sodium salts to control the ionic strength. This investigation was undertaken to see if 

the identity of the salt had any effect on the apparent pKa. In figure 4.4, the ionic 

strength was held constant at 0.3M using several different sodium salts which included 

NaCI, NaN03, Nal and NaSCN. The identity of the salt does not appear to have a 

significant effect on the apparent pKa. The results are very similar to those observed in 

figure 4.3, where a drastic change in the swelling ratio is observed around the same 

pH of approximately 6.8. 
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Figure 4.4: Variation of the SAXS expansion ratio of PMMA88-b-PDEAm -b-PMMA88 annealed 

bulk films as a function of pH and salt identity, measured in 0.01M citric acid (pH 3.1 -7.4) 

and 0.01 M ethanol amine buffer (pH >8.5), ionic strength set at 0.3M using 0 NaCI, ~ 

NaN03, O Nal and 0 NaSCN. 
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It is also worth emphasising that at a fixed ionic strength of 0.3M, there is not 

such a drastic discontinuous change in the expansion ratio as the pH is further lowered 

below the apparent pKa . This trend was clearly evident in solutions fixed at an ionic 

strength of 0.1 M as shown in figure 4.3. It is also apparent that at pH values below 6.8 

the identity of the salt has a substantial effect on the expansion ratio . This specific 

effect will be discussed in section 4.1.7. 

To determine if the discontinuous trend in the swelling ratio observed figure 4.3 

(at 0.1 M ionic strength) was salt specific, a comparison was made using NaBr and 

NaAce. The results are presented together in figure 4.5, which indicate that the trend is 

not salt specific. Solutions containing NaAce and NaBr show a similar marked 

discontinuous reduction in their swelling ratio as the pH is lowered from 6.8 to 3. This 

phenomenon was also evident in the swelling isotherms reported by Siegel and 

Firestone [2]. They investigated, using gravimetric analysis, the pH phase transition of 

a chemically crosslinked polybaSic DMAIMMA 30170 (mol%) gel swollen under 

identical conditions . Below the phase transition they also observed a gradual increase 

in the expansion ratio when the pH was lowered by upto a maximum of 30 percent. 
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Figure 4.5: Variation of the SAXS expansion ratio of PMMA88-b-PDEA223-b-PMMA88 annealed 

bulk films as a function of pH and salt identity, measured in 0.01M citric acid (pH 3.1 -7.4) 

and 0.01 M ethanol amine buffer (pH >8.5), ionic strength set at 0.1 Musing 6. NaBr, 0 NaCI, 

o NaAce. 
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However they did not discuss the underlying cause. One possible explanation for this 

effect would be to consider the fractional composition of species in the citric acid buffer 

between the pH values 3 and 7. 

In the swelling isotherms in figure 4.4 and 4.5 at the pH values indicated 0.01 M 

citric acid buffer was used to control the pH. This buffer is trivalent (having three pKa's) 

and the fractional composition of individual species in the solution depends critically on 

the pH, as discussed in chapter 5, where a full derivation is given on how to determine 

the fractional composition of each species at a given pH. 

Between the pH values 3.6 to 6.9 in figure 4.5, where the discontinuous swelling 

region is observed, the composition of ionic species changes from predominantly 

monovalent at pH 3.6, to divalent at pH 5 and trivalent at pH 6.5. 

The change in the distribution of buffer species would appear to be the 

underlying cause of the discontinuous swelling region. When the' buffer species are 

primarily monobasic the gel is highly swollen, and when trivalent species dominate the 

expansion is less pronounced. 

It is the concentration of counter ions in the hydrogel which are fundamental for 

expansion, a consequence of the swelling pressure they exert. It can be postulated 

that less trivalent anions (having three sites to act as counterions) are needed at pH 

6.5, than monovalent anions at pH 3.6 to neutralize an equal amount of charge in the 

gel. For this to hold true one would expect the swelling ratio to be higher at lower pH's 

as the concentration of monovalent species dominates. This is clearly observed in 

figure 4.3 and 4.5 when the ionic strength is fixed at 0.1 M. 

However, in figure 4.3 and 4.4, when the ionic strength is fixed at 0.3M and above, the 

expansion ratio below pH 6.8 does not deviate significantly with further decreases in 

the pH. This effect must emanate from the additional increase in the concentration of 

NaCI used to maintain the ionic strength. 

As the ionic strength of the solution is increased, one'would expect isoelectric 

exchange between the chloride ions in the buffer solution and citrate ions in the gel 

interior. This should occur following equation 4.3, 

'. Cit
Z

-gel interior ~ Zcr solution (4.4) 

67 



Chapter 4 - Quantifying "static" hydrogel pH response using SAXS 

It follows from equation 4 .4 that above a critical ionic strength all of the citrate species 

in the gel interior eventually become monovalent. At this stage the citrate buffer 

valency is no longer of importance, hence the lack of pH dependency on expansion 

ratio below 6.8 at 0.3M ionic strength. In other words all of the anions in the gel interior 

are monovalent cr anions. The results suggest that the critical concentration of NaCI 

for complete exchange of chloride ions in the gel interior lies between 0.1 M and 0.3M. 

4 .1.6 The effect of buffer on the swelling isotherms of PMMAss-b-PDEA223-b­

PM MAss hydrogel 

The expansion ratio and apparent pKa of PMMAaa-b-PDEA22:;-b-PMMAaa was 

additionally investigated in a different buffer, namely 0.01 M sodium phosphate. The pH 

was chosen between the range 6.0 to 8.5 to capture the swelling transition of the 

polymer. In citric acid buffer the apparent pKa is observed around pH 6.8 as previously 

shown in figure 4.3. In contrast the apparent pKa shifts to approximately 7.3 when the 

same polymer is studied in sodium phosphate buffer, as shown in figure 4.6. 
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Figure 4.6: Variation of the SAXS expansion ratio with solution pH for PMMAss-block­

PDEAm-block-PMMAss copolymer in 0 0.01 M citric acid and 0 0.01 M sodium phosphate 

bUffer at an ionic strength of 0.1M (NaBr). Value at pH 10 obtained using 0.01M ethanol 

amine. Line shown to guide the eye. 
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Not only does the pKa shift to higher values it is clear that the expansion ratio 

just below the pKa is higher by three units. The difference in expansion ratio at pH 

values below the apparent pKa can be explained if one examines the pKa value of the 

two buffers. Citric acid and sodium phosphate are both trivalent buffers, with pKa 

values of 3.13, 4.77, 6.40 [11] and 2.15, 7.20, 12.33 [12] respectively. At pH 6.5 citric 

acid will exist primarily as a trivalent species (82% trivalent (A3,) , 18% divalent (A2
,)) 

and sodium phosphate will be primarily divalent (70% divalent (A2
,) , 30% trivalent (A3

, 

)), see figure 4.7. The individual buffer species in the solution perform two key 

functions. They are responsible for protonating the polymer, but they also act as 

counter ions to maintain charge neutrality. The effectiveness of a buffer to act as a 

counter ion should depend on its valency, as previously discussed. A trivalent species 

has three sites available to act as counter ions, whereas a divalent has only two. At pH 

6.5, citric acid which is primarily trivalent should therefore require' less species to act 

as counter ions when compared to sodium phosphate which is mostly divalent. 
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Figure 4.7: Concentration of individual buffer species (not including added s~lt) in O.01M 

citric acid and O.01M sodium phosphate buffer as a function of pH. 

69 



I 
0. 

10 

8 

6 

4 

Chapter 4 - Quantifying "static" hydrogel pH response using SAXS 

2 4 6 8 10 12 14 16 18 

. Volume of 0.1 M NaOH added I mls 

Figure 4.8: Potentiometric titration curve of PMMAas-b-PDEA223-b-PMMAss. 0.1 w/w solution at 

pH 3 was titrated using a O.1M standard NaOH solution. 

At pH and 6.5 polymers swollen in citric acid should therefore show a reduction in 

swelling pressure compared to sodium phosphate. This is observed in figure 4.6. The 

marked change in apparent pKa between the two buffers is more difficult to explain. 

Perhaps this is associated with buffer specific effects on the pH probe perturbing the 

reading [13]. 

The apparent pKa of the polymer was also determined by potentiometric 

titration for comparison. A 0.1 w/w polymer solution was pre-acidified to pH 3. At this 

pH the tertiary amine groups are protonated which assists dissolution of the polymer. 

0.1 M standardised NaOH solution was slowly titrated against the solution. Initially the 

pH increased, corresponding to removal of excess acid. With further addition of base a 

plateau region was evident, corresponding to deprotonation of the ionized amine 

groups. In this region further increases in pH caused the solution appearance to 

change from one which was initially transparent to milky, a result of decreasing 

-hydrophilicity of the DEA. Above a critical pH, in this example, 10, the polymer 
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precipitated out of solution, a result of the DEA block becoming hydrophobic. The 

measured pKa of 6.6 for PMMAaa-b-PDEA223-b-PMMAaa is comparable to the pKa 
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Figure 4.9: The effect of counter-ion (anion of the sodium salt) on the SAXS equilibrium 

swelling ratio of PMMAas-b-PDEA223-b-PMMAas annealed bulk film measured at pH 3.6 in 

0.01M citric acid at an ionic strength of 0.1M. In comparison the gravimetric equilibrium 

swelling ratio of MMD/DMA 70130 mol% crosslinked gels at pH 4 in 0.01 M citric acid at an 

ionic strength of 0.1 M is given on the right axis (0) [6]. 

measured by SAXS analysis. Interestingly, the pKa of free PDEA chains was 

measured by potentiometric titration in dilute solution and found to be 6.9 [14]. The 

shift in apparent pKa most likely a result in the increase in hydrophobicity of the 

polymer caused by the addition of PMMA [15]. 

4.1.7 Specific ion effects 

Figure 4.9 shows the SAXS equilibrium expansion ratio obtained when an annealed 

thin film of PMMAaa-block-PDEA223-block-PMMAaa was placed in a 0.01 M citric acid 

buffer solution at pH 3.6, using a series of monovalent sodium salts to fix the ionic 

strength at 0.1 M. The "gravimetric" swelling results obtained by Siegel et al [6] on a 
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70/30 mol% methyl methacrylate / dimethylaminoethyl methacrylate hydrogel obtained 

under similar conditions are shown on the same plot. 
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Figure 4.10: Localised ordering of water in the first hydration layer surrounding the anion. 

The scale is approximately correctfor water and sol-anion. 

The monovalent salts were based on the Hofmeister series (HS) ([10]) . This is a series 

of salts which was initially indentified in 1888 where it was noted that a range of ions 

had varying affinities towards the precipitation of egg-white proteins, following the 

specific order SO/- > F- > Br03- > cr > CI03- > Br- > N03- > CI04- > r> SCN- for 

anions and Lt > Na+> K+> Mg2+ > Ca2+ > Ba2+ for cations . It should be noted that the 

effect of cations is less pronounced compared with anions [16]. 

Since this time the Hofmeister series has been linked to many hydrogel related 

phenomenon , such as protein solubility, critical micelle concentration, chromatographic 

selectivity and surface tension [17, 18]. Generally the system under study follows the 

specific order of the Hofmeister series but subtle differences are known to occur [19]. 

To date the Hofmeister series and its principle mechanism is a strongly 

contested subject. Many theories have been suggested to explain the effect, the 

majority of which describe it in terms of the ability of the salts (anionic or cationic) to 

"break" or "make" bulk water structure [20]. The salts are characterised as being either 

chaotropic or kosmotropic in nature, where kosmotropic species (to the left of the HS 

series) are referred to as water structure makers. They are known to increase the tocal 

order of water, as shown in figure 4.10. In the opposite case, "structure breakers 
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(disorder makers)" are weakly hydrated anions; they are also referred to as salting-in 

ions or chaotropic ions and are known to decrease the order of water. Several other 

theories to explain the HS have been put forward. Collins et al suggested the ions 

effect on water was related to competition between ion-water interactions [21]. This 

effect will be discussed at greater length in the following section. In 2003 Omta et al 

published a paper suggesting that added salt had no effect on the bulk structure of 

water [22]. However this work is disputed or simply ignored by many researchers [23]. 

Differences in the theories may due to the concentration of the solution used in each 

study or the sensitivity of the experimental probing technique [24]. More recent 

theories have suggested specific ion binding may play a role but have received little 

attention [25]. For an excellent summary on the effects of ions on the structure of water 

the reader is directed to the review by Yizhak Marcus [23]. 

Very few reports have been made regarding the effect of salts on the swelling 

of pH responsive hydrogels. The swelling results presented in figure 4.10 indicate that 

the identity of the counter-ion (anion of the sc:>dium salt) has a strong influence on the 

swelling of PMMAsa-b-PDEA223-b-PMMAaa hydrogels. In order of decreasing expansion 

ratio the salts follow the order given below. 

Ace- > cr > N03" > Br" > I > SCN" (4.5) 

The swelling ratio results in figure 4.10 for PMMAaa-b-PDEA223-b-PMMAaa 

hydrogels clearly show the expansion ratio decreases in correlation with the position of 

the salt in the general Hofmeister series, with the exception of N03 and Br which 

appear in reverse order. However previous studies on specific ion effects have shown 

a reversal in the position of N03 and Br in the Hofmeister series [19]. 

The relationship between salt identity and expansion ratio has previously been 

investigated by Siegel et al [1]. They investigated the effect ·of sodium salt anions on 

the gravimetric equilibrium swelling ratio of a chemically crosslinked 70/30 methyl 

methacrylate/ N,N-dimethylaminoethyl methacrylate hydrogel, expressed as (Ws - Wo) 

/Ws, where Ws and Wo are sample weights of swollen and the dry gel respectively. 

Their findings are plotted in figure 4.10. However, their results do not correlate with the 

findings of this work. In the work reported by Siegel there is only a small difference in 

the gravimetric expansion ratio between cr (0.90), Br" (0.90), and N03" (0.82), with r 
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(0.52) and SeN- (0.33) showing the greatest reduction in expansion ratio. It should also 

be noted that the order of the salts reported by Siegel did not follow the results 

presented here. They found N03- had a greater effect on the expansion ratio than B(. 

Perhaps their results are not as sensitive owing to the gravimetric technique they used. 

The results presented by Siegel et al were interpreted making reference to the 

work of Washabaugh et al. They investigated the mechanism of elution for several 

halide anions which had been passed through a non-Polar Sephadex G-10 

chromatography column [21], see figure 4.11. 
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Figure 4.11: Absorption mechanism for chaotropic and kosmotropic species on a Sephadex 

G-10 column. Chaotropic ions remain hydrated and flow through the column unimpeded with 

a low retention time. Kosmotropic species are partially dehydrated in the column due to a 

weak bond between the anion and first hydration cage of water leading to higher retention 

times as compared to chaotropes. 
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The surface of this gel column is known to have a number of mechanisms for 

separation, either (1) gel sieving or (2) gel absorption. They postulated that the 

mechanism of separation for a specific ion depended on how weakly or strongly 

hydrated the solute was. They found that the mechanism of separation (interaction 

with the column surface) depended strongly on the identity of the specific salt eluting 

through the column. The salts were identified as being either chaotropic or 

kosmotropic in nature, as discussed earlier. 

Washabaugh et al suggested that in chaotropic species the bond between the 

ion and the hydration cage of water immediately surrounding the ion was weaker than 

the water-water bond in the bulk solution. Therefore, when a chaotropic species was 

eluted through the column the weakly held hydration shell surrounding the ion was 

easily dehydrated. When the salt was eluted through the column the weak bond made 
. . 

the salt susceptible to sticking to the column, therefore increasing its retention time. 

They suggested the driving force for this mechanism was the formation of a strong 

water-water bond in the bulk solution from t~e weakly held water surrounding the ion 

[26]. Washabaugh et al characterised the kosmotropic species as having a stronger 

bond between the ion and the hydration cage of water immediately surrounding the 

salt. They eluded that the strong bond made them less susceptible to dehydration and 

as such they were found to travel through the column with much shorter retention 

times. 

An alternative explanation for the mechanism of ion selectivity in Sephadex 

columns was given by Collins in a later paper [27]. They suggested the strength of the 

bond between the salt and surrounding hydration cage of water was interpreted by 

considering the ion as a point charge. As the ions increase in size (larger ionic radius) 

the surrounding cage of water molecules becomes progressively further away. As a 

result the interaction between the point charge and the hydration cage becomes weak 

(more diffuse electric charge). This causes the ion to become "sticky" and adhere to 

the surface of the gel. At a certain radius the character of the ion was found to change 

from one which was kosmotropic at small ionic radii to one which was chaotropic at 

infinite size. They identified the transition from weak to strong hydration in anionic 

.. solutes to be 1.78 angstroms. 
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Figure 4.12: The effect of halide ion crystal ionic radius on the SAXS equilibrium swelling 

ratio of PMMA88-b-PDEA223-b- PMMA88 annealed bulk films measured at pH 3.6 in 0.01 M citric 

acid at an ionic strength of 0.1M, anion radius taken from ref [28]. Inset: SAXS expansion 

ratio as a function of salt identity at pH 3.6 and ionic strength of 0.1 M. 

A plot of the expansion ratio obtained using SAXS as a function of halide ion ionic 

radius for cr, Sf and r is shown in figure 4.12. It clearly shows that the expansion ratio 

of the polymer decreases almost linearly (R2=0.96) with an increase in the size of the 

ion. 

This effect was further investigated by re-plotting the graph replacing the ionic 

radii with the surface charge density of each ion. This was found to have an excellent 

correlation with an r-squared value greater than 0.99. Swelling results obtained at an 

ionic strength of 0.3M are also included on the graph. An r-squared value of 0.96 is 

obtained, showing the excellent reproducibility of this effect. A similar trend was 

observed by Lui et a/ [29]. They investigated the thermal gelation behavior of 

hydroxypropylmethylcellulose gel (HPMC), by monitoring the change in the 

temperature at maximum heat capacity (T m), in a range of Hofmeister salts. They also 

found a linear correlation (R2=0.99) when the surface charge density (charge on 

electron/ 41t~) of the halide anions was plotted again T m. Given that the majority of ' 
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studies, past and present, including those of Lui et a/ support the idea that the salt 

effect is due to their water structuring capability, this line of reasoning will be used to 

explain the Hofmeister effect in this study [29, 3D). 

The argument suggested by Collins seems to be in excellent agreement with 

the results obtained for the halide ion series in figure 4.13. The surface charge density 

of the halide ions clearly has an effect on the structuring of water. The theory also 

implies that NaSCN and Nal , which have the largest ionic radii should be the most 

weakly hydrated and therefore act as chaotropic species. 

As these ions have smaller surface charge densities they are more non-polar in 

behaviour. As a direct result of this they should be more strongly bound to the non­

polar surface of the hydrogel, leading to a greater reduction in osmotic activity and 

ultimately swelling compared to the kosmotropes. This is what is observed in figure 

4.9. 
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Figure 4.13: The effect of halide ion surface charge density on the SAXS equilibrium swelling 

ratio of PMMAaa-b-PDEAm-b- PMMAaaannealed bulk films measured at pH 3.6 in 0.01M citric 

acid at an ionic strength 0 0.1 M and 0 0.3M. Surface charge density taken from ref [28]. 

77 



Chapter 4 - Quantifying "static" hydrogel pH response using SAXS 

100 

::=-
U 
tV 80 Z 
'-" 

0 
:;::; 
tV 

0::: 
60 c 

0 .(jj 
C 
tV 
a. x 40 
W 
"0 
Q) 

.!!! 
(ij 

20 E 
L-

0 
Z 

0L-__ -4 ____ ~ ____ L-__ ~ ____ ~ __ ~~ __ ~ __ ~ 

NaCI Nal NaSCN 

Salt 

Figure 4.14: The effect of counter-ion (anion of the sodium salt) on the normalised SAXS 

expansion ratio of 0 PMMA1as-b-PDEA.m -b-PMMA188 and 0 PMMAas-b-PDEA223-b- PMMA88 

bulk annealed gels measured at pH 2.7 in hydrochloric acid at an ionic strength of 0.1 M. 

The effect of the counter-ion identity on the expansion ratio was further 

investigated using a different polymer. The polymer investigated was also a PMMA­

block-PDEA-block-PMMA triblock, having the same volume fraction as the material 

investigated in figure 4 .9, but differing only by its overall molecular weight, being 

approximately twice as high (see table 4.1). The expansion ratio with respect to NaCI 

has been normalised for both polymers and is plotted in figure 4.14. Both polymers 

have an identical trend where a general reduction in expansion ratio is observed as 

one moves across the general Hofmeister series. 

The salt specific change in expansion ratio between the two polymers is very 

similar. For example, the percentage difference in expansion ratio between NaCI and 

NaN03 in both polymers is in excellent agreement, a difference of exactly 15%. The 

change between NaCI and Nal is 55% and 50% for PMMAss-b-PDEA223-b-PMMAss 

and PMMA1ss-b-PDEA45~b-PMMA1ss respectively. Clearly this is a reproducible and 

specific effect. 
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4.1.8 Effect of ionic strength on swelling equilibrium 
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Figure 4.15. (a) Variation of the SAXS expansion ratio with ionic strength for 0 PMMA180-b­

PDEA453-b-PMMA180 0 PMMA •• -block-PDEAm-block-PMMA.. bulk annealed films in 

hydrochloric acid at pH 3.6. Ionic strength varied using NaCI. Lines are shown to guide the 

eye. 

The expansion ratio of PMMAaa-block-PDEA223-block-PMMAaa was 

monitored as a function of ionic strength at a fixed pH, as shown in figure 4.15. The 

results indicate that the polymer is sensitive to ionic strength. The expansion ratio 

decreases as the ionic strength is increased. The expansion ratio of PMMA180-

block-PDEA453-block-PMMA180 is also included which shows a similar trend. The 

decrease in expansion ratio with changes in ionic strength is investigated in greater 

detail in chapter 5. The overall increase in expansion ratio of the higher molecular 

weight polymer is due to its higher charge density. When it is protonated this 

generates a higher osmotic pressure. 
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4.1.9 Effect of molecular weight on swelling equilibrium 
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Figure 4.16: Variation of the SAXS expansion ratio with solution pH for (a) 0 PMMA1S0-b­

PDEA.53-b-PMMA1S0 (b) 0 PMMAas-b-PDEA223-b-PMMAaa bulk annealed films in 0.01 M citric 

acid at an ionic strength of O.SM (NaCI). Line shown to guide the eye. 

The effect on molecular weight on the expansion ratio was investigated 

compared between two PMMAx-PDEAy"PMMAx copolymers referred to in table 4.1. 

Both have the same overall volume fraction of PMMA end blocks of 0.17, the only 

difference between them is the overall molecular weight, one have approximately twice 

the degree of polymerisation. Figure 4.16 shows the expansion ratio of the two 

polymers as a function of pH. It is clear that the overal,1 molecular weight has a 

dramatic effect on the apparent pKa. An increase in the molecular weight by a factor of 

tWo causes a shift in the apparent pKa by over one full unit, reducing from 6.8 in 

PM MAas-block-PDEA223-block-PMMAas to 5.2 in PMMA1s0-block-PDEAt53-block­

PMMA1S0. It is also worth emphasising that in the expanded region the higher 

molecular weight polymer has a larger expansion ratio. This is experimentally 

expected as PMMA1S0-block-PDEAt53-block-PMMA1S0 has a higher charge density' 
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when protonated. The water driven into the PDEA phase thus generates a higher 

osmotic pressure compared to PMMAaa-block-PDEA223-block-PMMAaa. 

In weak polyacid brushes it is known from pH titration curves that an increase in 

polymer brush graft density causes a shift to higher pKa values. Curie et al [31] 

reported that an increase in grafted poly(acrylic acid) brush layer density from 18 to 

8nm2 per chain caused an apparent pKa increase of approximately 1.5 pH units. The 

increase in pKa was theoretically explained using annealed brushed theory [32, 33]. 

This observation is consistent with theoretical models which according to equation 4.6 

[33], 

[
as -1( )]~ a= --(Y PH+PS 

1-as 
(4.6) 

a = degree of ionisation in the brush, as = degree of ionisation in the bulk, cr = grating 

density of polymer chains, .Ai = concentration of H+, Ps = concentration of salt. 

predict that the overall degree of dissociation in the brush under conditions of constant 

pH and ionic strength will decrease as the grafting density is increased. This effect has 

also been observed on poly(2-(diethylamino)ethyl methacrylate) brushes, where a shift 

in the pKa to a lower value is observed as the brush density is increased [34]. 

The polymer brush theory described above was applied to the data in figure 

4.16 in an attempt to explain the apparent pKa shift observed with changes in overall 

molecular weight. 

An illustration of the micro-domain structure of PMMAaa-block-PDEA223-block­

PMMAaa triblock copolymer is given in figure 4.17. This material is held together by 

physical aggregation of the PMMA domains. One way to explain the apparent pKa shift 

o.bserved in figure 4.16 is to treat the triblock as a polymer brush. In this case one 

would expect that when the aggregation number of the PMMA domain is high, the 

polymer will behave more like a dense polymer brush, and in the opposite case of low 

aggregation it behaves like a loosely packed brush. Under these conditions it would be 

anticipated that increasing aggregation of the PMMA should lower the apparent pKa of 

the material. To test this hypothesis the aggregation number of the two PMMAx-block-
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POEAy-block-PMMAx copolymers was calculated . The aggregation number for each 

polymer was calculated in the following way. Using Avogadro's number the mass of a 

single polymer chain of PMMA-block-POEA-block-PMMA was calculated . As the mass 

fraction of the polymer is known the mass of a single PMMA chain end can be 

calculated. Using the density of PMMA homopolymer the mass of a PMMA chain end 

was converted into a volume. To calculate an approximate aggregation number the 

volume of a single PMMA sphere was divided by the volume of a single PMMA chain 

end. The volume of a single PMMA sphere was determined using the radius of each 

sphere which had previously been estimated using the spacing from small angle X-ray 

scattering and the composition (volume fraction) from NMR. 

PMMA aggregation 

\ It( 15 - 40 nm )1 

( 

(a) (b) (c) 

Figure 4.17: (c) micro-domain structure of PMMA88-b-PDEAm -b-PMMA88 , (b), illustration of 

the physical aggregation at each PMMA domain (a) simple polymer brush. 

The aggregation number of PM MAss-block-PO EA223-block-PM MAss and 

PMMA180-b-POEA453-b-PMMA180 was found to be 76 and 261 respectively. This 

corresponds to PMMAss-block-POEA22:lblock-PMMAss and PMMA180-block-POEA453-

block-PMMA1S0 having 5.55 nm2 and 4 .79 nm2 per PMMA polymer chain (surface area / 

aggregation number). Given that the lower molecular weight material has a smaller 

aggregation number and smaller brush density it was expected that this polymer 

should have the highest apparent pKa of the two. This is in fact observed but the 

change in graft density is only marginal. 
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Table 4.1: A summary of block copolymer compositions and calculated pKa values. 

Polymer composition Mn (gmor,)a Mw (gmor,)a Mwl Mn Volume 

fraction, 

PMMAb 

PMMAa8-PDEA223- 58941 81442 1.38 17 

PMMA88 

PMMA18o-PDE~53- 119871 152558 1.27 17 

PMMA180 * 

a: As determined by GPC (calibrated with poly(methyl methacrylate) standards) 

b: As determined by 1H NMR spectroscopy 

c: As determined by small angle x-ray scattering 

*Donated by Dr Paul Topham 

4.2 CONCLUSION 

pKa C 

6.8 

5.2 

This chapter has concentrated primarily on evaluating the pH response of a 

phase separated PMMAas-block-PDEA223-block-PMMAss hydrogel through the use of 

SAXS. A systematic study was undertaken to determine the effect of individual species 

in solution on the molecular response of the gel. There are very few reports in the 

literature where SAXS has been used to this effect, and one of the aims of this chapter 

was to evaluate the usefulness of the technique for this purpose. 

The use of SAXS for measuring the static response of phase separated 

hydrogels has proven itself to be both a reliable and sensitive technique. The 

technique offers several advantages over conventional gravimetric analysis; perhaps 

the most important is the fact that that it measures the molecular response. The results 

have demonstrated that the pH response of the polymer is complex, and a thorough 

understanding of the swelling media is required to fully explain the results. 

Although complex, the solution chemistry can be tailored to control the 

response of the polymer. This is particularly useful when designing chemically 
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actuated hydrogels. Adding salt for example, can be used to limit the extent of 

expansion in a controlled way. 

Provisional studies were also made on another polybasic triblock having the 

same volume fraction of PMMA but approximately twice the overall molecular weight. 

Through the use of SAXS it was demonstrated that the polymer had a lower apparent 

pKa, and higher expansion ratio when the pH was below the apparent pKa. This result 

demonstrates one of the advantages of the bottom-up approach, where polymer 

properties can be tuned in a controlled way, making them attractive for use in a 

multitude of applications. 
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Chapter 5 

Predicting "Static" SAXS pH. response 

using Donnan theory 

5.1 INTRODUCTION 

Ideal Donnan theory has been used by researchers to predict the behaviour of 

ionic hydrogels, and in particular how their swelling equilibrium change with solution 

conditions [1-4]. Particularly relevant to the results contained in this thesis is the work 

by Firestone et al [2]. They were one of the first groups to evaluate if ideal Donnan 

theory could be applied to explain the ~ehaviour of hydrogels swollen specifically in 

buffered solutions. They tested this by gravimetrically measuring the equilibrium 

expansion ratios of 70!30 mol% chemically cross-linked methyl methacrylate! N,N­

dimethylaminoethyl methacrylate hydrogels in a series of buffers, and compared the 

results with theoretically derived values. The aim of this chapter is to test if the theory 

of Firestone et al can be applied to predict the swelling behaviour of the phase 

separated PMMA-block-PDEA-block-PMMA triblock copolymers prepared in this 

thesis. 

5.1.1 Test of the ideal Donnan Theory 

Firestone et al [2] postulated that at equilibrium a hydrogel had a hydration level 

denoted by the value H. This value was defined as the mass fraction of gel which 

contained water. The precise level of hydration was controlled by the balance of three 

.'. pressures [5]. The first of which was the network swelling pressure, TInet. This is a 

thermodynamic parameter controlled mainly by enthalpic interactions between the 

solvent molecules and polymer (largely controlled by the Flory-Huggins interaction 

parameter, X [6]). As this is purely an enthalpic interaction it can be considered 

independent of the ionisation state of the polymer and therefore the ionic environment. 

The next pressure to consider is commonly referred to as the "ion swelling pressure", 
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TIion . This value is dependent on both the hydration level of the gel, H and the 

concentration of mobile ions {C} inside and outside of the gel. The final pressure acting 

on the gel is external. This external pressure can be varied to increase or decrease the 

level of hydration in the gel. When the gel is in a state of equilibrium the externally 

applied pressure can be considered equal to the internal swelling pressure of the gel 

as indicated below in equation 5.1. 

TInet + TIion = P ext (5.1 ) 

Their results were obtained under conditions of free swelling, as such Pext = O. 

Equation 5.1 can therefore be re-written as 

TInet (H) = -TIion (H, (G}) (5.2) 

To test the ideal Donnan theory they postulated that ionic compositions [C] which had 

the same level of hydration [H] must have the same predicted values for non. Thus a 

plot of non vs H, where experimental values of H had been used to calculate non 

should be linear. 

The ion swelling pressure in equations 5.1 and 5.2 can be theoretically derived 

using Donnan equilibrium theory. Donnan equilibrium refers to the unequal distribution 

of ions in an internal and external solution separated by a semi-permeable membrane 

or boundary condition. In simple terms the theory relates the concentration of ions in 

the external (bath) and internal solution (polymer) by 

(5.1) 

where /.. is the Donnan ratio or Donnan partitioning co-efficient, G;g and G;b is the 

.'. concentration of ions in the polymer and bath solution respectively, and Zi is the 

valence of the ion in question. Assuming charge neutrality in the hydrogel the Donnan 

ratio is calculated as the only real positive root of equation 5.4 [2, 3]. 

(S.4) 
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In this equation v p is the volume fraction of polymer in the hydrogel. In a 

gravimetric experiment the value is calculated according to equation 5.5, where H is 

the mass fraction of polymer in the hydrogel and p is the density of the polymer in 

question. 

v = ----'-(1_-_H..:.-} _ 
p 1 + (p -1}H 

(5.5) 

The 0"0 value introduced in equation 5.4 is the concentration of pH responsive 

ionisable groups in the polymer, expressed in mol r1, calculated according to equation, 

5.6. 

(5.6) 

where f is the mass fraction of pH responsive component in the polymer, fJg is the 

density of the raw polymer. In mUlti-component polymers this can be calculated from 

the weighted average of the component homopolymers using Vegard's law, 

p = (fPa + (1- f)Pa) and Mw(x) is the molecular weight of responsive component under 

study, for DEA this would be 185.26gmor1. pKa is defined as the logarithmic form of 

Ka, the dissociation constant for loss of a proton, defined as -log1OKa. 

Once the Donnan ratio has been determined using equation 5.4, it is then 

introduced into equation 5.7 using Van't Hoff's law [7] to calculate norJRT, the swelling 

pressure. 

(5.7) 

Their initial test of the ideal Donnan theory failed. A plot of H against the 

theoretically derived ion swelling pressure (non) proved to be non-monotonic. 
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5.1.2 Modified Donnan theory 

However, after recognising the failure of the ideal Donnan theory they 

suggested an alternative Heuristic model based on Donnan theory. 

Using equations 5.4 and 5.7 Firestone et al assumed a fictional situation where 

the hydration level, H, was fixed at a known arbitrary value, W, in their case 0.7. Then 

in any particular set of simulations they held the hydration level constant, and with all 

other variables changing according to the solution conditions they calculated the 

corresponding ionic swelling pressure, non. 

Clearly, as TIne! + TIion = Pext. the swelling pressure determined in the fictional 

case must be equivalent to the additional pressure over ambient which is required to 

maintain the condition (minus pressure which is applied in th~ absence of ionic effects) 

H=H*. 

Using this hypothesis they postulated that any condition which lead to an 

increase in the calculated non at H*=0;7 would in-fact lead to an increased H under 

conditions of free swelling. This theory although not perfect quite successfully 

predicted how changes in solution chemistry in buffer solutions altered the expansion 

ratio of their polymer system. 

5.2 SWELLING SIMULATION USING DONNAN THEORY 

5.2.1 Effect of ionic strength and solution species on the expansion ratio 

In figure 5.1 the SAXS expansion ratio of PMMAaa-block-PDEA223-block­

PMMAaa block copolymer was measured in both simple hydrochloric mineral acid and 

0.01 M citric acid buffer solution at pH 3.6. The ioniG strength was varied up to a 

maximum of 1 Musing NaCI. Therefore any difference in expansion ratio between the 

two solutions can be directly attributed to the specific species in the solution. 

Figure 5.1 indicates an ionic strength dependence on the expansion ratio in the 

two solutions. The extent of gel swelling for both solutions in the i0!lic strength range 

0.1 - 0.5 M decreases as the ionic strength is increased. It is also evident that the 

expansion ratio of the two solutions between 0.1 M and 0.5M ionic strength is similar. 
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Figure 5.1: Variation of the SAXS expansion ratio with ionic strength for PMMAss-block­

PDEAm-block-PMMAss annealed bulk films in 0 0.01 M citric acid and 0 simple HCI mineral 

acid at pH 3.6, ionic strength varied using NaCI. Line shown to guide the eye. 

5.2.2 Application of the modified Donnan theory 

The modified Donnan equilibrium theory derived by Firestone et a/ has been 

used to calculate the theoretical osmotic swelling pressures inside the gel for the two 

solutions in figure 5.1 . 

The first step required to determine the theoretical swelling pressure inside a 

particular gel under a given set of conditions is to solve C;b I the concentration of ions in 

the external solution, as shown in equation 5.3. In buffered media containing polyprotic 

species such as citric acid or sodium phosphate this is not a trivial task. As citric acid 

was used in the majority of the swelling experiments in chapter 4 it will be used as an 

example here. 

Citric acid shown in figure 5.2 is a trivalent acid, being capable of donating upto 

a maximum of three protons, with each new donating species being referred to a 

bronsted acid . The different species are CSH807 (H:A), CSH70 7' (H2A"), CsHsO/- (tiA2-) 

and CsHsol' (A 3") 
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HO 
OH 

OH 

pKa1 = 3.13 

pKa2 = 4.76 

pKa3 = 6.40 

Figure 5.2: Citric acid molecule, pKa taken from reference [8]. 

In any polyprotic acid the relative fraction of each bronsted acid species in 

solution at a given pH is determined from its pKa values, Citric acid has three pKa 

values, 3.13, 4.76 and 6.40 [9]. 

To calculate the relative proportions of each species in solution an expression 

is needed which relates together the three acidity constants" the total concentration of 

citric acid and the hydronium ion concentration. To setup the expression, C6Hs07 (H3A) 

is treated as the parent acid, and the total concentration of hydronium ion is' given by 

D. The three acidity constants required are given below [10], 

(5.8) 

K '= [H30+][H2A-] _ D[H2A-] 
a1 [H3A] - [H3A] 

(5.9) 

(5.10) 

(5.11 ) 

(5.12) 

Ka3 = [H30+][A3
-] = D[A3

-] 

[HA2
-] [HA2

-] 
(5.13) 
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The total concentration of citric acid in solution is expressed as: 

[H3A] + [H2A -]+[HA2-]+[A3-] = C (5.14) 

The total concentration of citric acid in solution is now expressed by four 

unknown concentrations, as shown in equation 5.14. To solve this equation the acidity 

constants (5.9, 5.11, 5.13) need to be inputted into the expression. From right to left in 

equation 5.14, Ka3 can be used to express [A3-] in terms of HA2-, then Ka2 can be used 

to express HA2- in terms of H2A- and so forth, as shown in equation 5.15. 

(5.15) 

(5.16) 

f(H3A) = [H3A] = D3 
C K 

(5.17) 

f(H
2
A-)= [H2A-] = D2Ka1 

C K 
(5.18) 

(5.19) 

(5.20) 

Using the general equations 5.17 - 5.20 the fractional composition of each 

bronsted acid species in the solution can be calculated. Only the hydronium ion 

concentration of the solution and pKa value(s) of the buffer species is required. Figure 

5.3 has been constructed using these equations and demonstrates how the fractional 

composition of species changes in a 0.01 M citric acid species with changes in solution 

pH. 
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Figure 5.3: Fractional composition of citric acid species, H3A, H2A-, HA2
- and A3

-, in a O.01M 

citric acid buffer as a function of pH. 

Complications arise in this theory when one considers that the ionic strength of 

the buffer changes the pKa of the buffer species. This influence is often overlooked 

when preparing buffer solutions. This affect can be subtley noticed if you add salt to a 

prepared buffer, as both the pH and ionic strength will change. Fortunately the 

influence of salt on the pKa can be predicted from the following Oebye-Huckel 

relationship, as shown in equation 5.21 [11]. 

i [ AJi 1 pKa =pKa + (2za - 1)· 1+Ji - 0.1.1 (5.21) 

where pKa i is the modified pKa, Za is the charge on the conjugate acid, 1 is the ionic 

strength of the solution and A is a constant which has a value of approximately 0.5 

(this is a temperature dependant variable, see table 5.1 [11]) . These subtle changes in 

pKa have a significant effect on the concentration of species due to the logarithmic 

Scale. 
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Table 5.1: Values of the temperature dependant constant A for use in equation 5.21 [11] 

Temperature / °c A 

0 0.4918 

10 0.4989 

20 0.5070 

25 0.5114 

30 0.5161 

37 0.5321 

40 0.5262 

50 0.5373 

60 0.5494 

Table 5.2 and 5.3 list the concentration of individual species in HCI mineral acid 

and 0.01 M citric acid buffer solutions respectively, as used in figure 5.1. Each 

solution has a pH of 3.6 with an ionic strength that varies between 0.01 M to 1 M 

(adjusted using NaCI). The concentration of each individual species was calculated 

using equations 5.8 to 5.21, which includes use of the ionic strength correction factor. 

It is immediately obvious that a change in ionic strength for the buffer solution has a 

significant effect on the calculated concentration of individual species in solution. In 

each case the concentration of salt added to adjust the ionic strength is simply the total 

ionic strength required minus the ionic strength due to the buffer species acting alone. 

With information now known about the total concentration of all ionic species in 

the external solution surrounding the gel, it is possible to calculate the Donnan 

partitioning co-efficient. The first step required to achieve this is to input the individual 

concentrations of each species into equation 5.4, along with several experimental 

variables for the polymer under study, these include 0'0. vp and pKa. For PMMAaa-b­

PDEA223-b-PMMAaa 6.8 was used for the pKa as determined in chapter 4. 0'0 was 

calculated following equation 5.22 (using the density values in chapter 3 for DEA and 

MMA). 

0'0 == 1000fpg ==0' == 1000 x O.7 x 1.08 ==4.08 
Mw (x) 0 185.26 

(5.22) 
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The Donnan ratio is calculated as the only real positive root of equation 5.4. 

Due to the complexity of this calculation the root was solved using Maple 13 software. 

Once the Donnan partitioning co-efficient is known for each species this number is 

then inputted into equation 5.7 to give a theoretical swelling pressure. 

The calculated theoretical swelling pressures listed in table 5.2 and 5.4 have 

been plotted in figure 5.4. Two different Vo values have been used to simulate the data, 

namely 0.3 and 0.25. These values were chosen as they fit the data quite well. It 

should be noted that the value of Vo has an influence on the swelling pressures, with a 

lower value causing a shift in the data to lower values of /, and an overall reduction in 

the swelling pressure. 

Table 5.2: Concentration of ionic species at different ionic strengths in a hydrochloric acid 

solution at pH 3.6. The calculated theoretical osmotic swelling pressure inside the PMMAaa-

block-PDEA223-block-PMMAaa hydrogel is determined for each ionic strength solution. CJa = 

4.09, vp = 0.3/0.25, pKa = 6.8, Mw (DEA) =185.26gmor1
• Ionic strength adjusted using sodium 

chloride. 

Ionic Salt Acid Donnan Donnan Osmotic Osmotic 
strength concentration concentration Ratio Ratio pressure pressure 
' / M added to to adjust pH / v=0.3 v=0.25 v=0.3/ v=0.25/ 

maintain ionic 10-4 M 10-2 10-2 M M 
strength / 10-3 

M 

- ~ 

[Nat [GI]" [Ht [Glr 
0.01 0.97 0.97 2.51 2.51 0.62 0.78 1.60 1.26 
0.05 4.97 4.97 2.51 2.51 2.90 3.72 1.62 1.25 
0.1 9.97 9.97 2.51 2.51 5.74 7.35 1.55 1.17 
0.2 19.9 19.97 2.51 2.51 11.32 14.43 1.39 1.02 

7 
0.3 29.9 29.97 2.51 2.51 16.70 21 .10 1.25 0.89 

7 
0.5 49.9 49.97 2.51 2.51 26.58 32.81 1.01 0.69 

7 
0.8 79.9 79.97 2.51 2.51 38.84 46.23 0.77 0.50 

7 
0.9 89.9 89.97 2.51 2.51 42.26 49.76 0.71 0.46 

7 
1.0 99.9 99.97 2.51 2.51 45.39 52.91 0.66 0.42 

7 
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Table 5.3: Concentration of individual ionic species at different ionic strengths in a 0.01 M 

citric acid buffer prepared at pH 3.6. era = 4.09, vp = 0.3/0.25 pKa = 6.8, Mw (OEA) =185.26gmor
1

• 

Ionic strength adjusted using sodium chloride. 

Ionic Concentration Salt Acid Donnan Donnan 
strength of Citric acid concentration concentration Ratio Ratio 
1M species I 10.6 M added to to adjust pH I 10-4 v=0.3 v=0.25 

maintain ionic M 10-2 10-2 

strength I 10-2 M 

[A 3
- ] [HA 2- [H2A- ] [Nat [CI]" [Ht [Clr 

0.01 0.18 67.4 71.42 4.02 4.02 2.51 2.51 3.21 3.66 
7 

0.05 0.39 90.2 71.21 4.02 4.02 2.51 2.51 5.06 5.98 
6 

0.1 0.61 106. 70.79 8.97 8.97 2.51 2.51 7.85 9.01 
03 

0.2 0.93 124. 70.09 18.9 18.9 2.51 2.51 12.4 15.4 
6 

0.3 1.20 135. 69.63 28.9 28.9 2.51 2.51 17.4 21.8 
23 

0.5 1.45 144. 69.18 48.9 48.9 2.51 2.51 27.0 33.2 
55 

0.8 1.43 144. 69.21 78.9 78.9 2.51 2.51 38.9 46.4 
00 

0.9 1.37 141. 69.32 88.9 88.9 2.51 2.51 42.5 50.0 
69 

1.0 1.29 138. 69.47 98.9 98.9 2.51 2.51 45.6 53.1 
76 
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Table 5.4: Theoretical osmotic swelling pressure inside a PMMAaa-b-PDEAm-b-PMMAaa 

hydrogel determined in 0.01 M citric acid at varying ionic strength adjusted using NaCI. 

Ionic strength I Osmotic Osmotic 
M pressure pressure 

v=0.31 v=0.251 
M M 

0.01 0.95 0.75 

0.05 1.24 0.98 

0.1 1.34 1.04 
0.2 1.31 0.97 
0.3 1.21 0.87 

0.5 1.00 0.68 

0.8 0.77 0.50 
0.9 0.71 0.46 

1.0 0.66 0.42 
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Figure 5.4: Theoretical osmotic swelling pressure for PMMAaa-block-PDEA223-block-PMMAaa 

measured in both 0 O.01M citric acid buffer, and 0 simple mineral acid at pH 3.6 using NaCI 

to change the ionic strength between OM and 1.0M. Data points taken from table 5.2 and. 5.4. 
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Donnan theory simulations indicate that in the ionic strength range 0.1 M -1.0M 

both the buffered and un-buffered solutions have a similar osmotic swelling pressure. 

Appreciable differences are evident when the ionic strength is lowered below 0.1 M. 

Clearly there is a maximum in the swelling pressure for buffered media at around 0.1 M 

which begins to reduce as the ionic strength is further lowered; this is not observed in 

the un-buffered case which continues to rise. This marked difference at low ionic 

strength is due to the presence of trivalent species in the buffer, as less trivalent 

species are required to maintain electroneutrality thus exerting a smaller swelling 

pressure. This was discussed in chapter 4 along with an isoelectric exchange 

argument which explains why you see a maximum in the swelling pressure. In the 

current study the concentration of salt in the buffered media was not measured below 

0.1 M so it is not possible to confirm the theoretical curve at this value. 

PMMAsa-block-PDEA223-block-PMMAsa hydrogels swollen in simple mineral 

acid in figure 5.2 show a general reduction in their expansion ratio as the ionic strength 

is increased. This is entirely consistent with the theoretical predictions which follow a 

similar trend. This trend is also observed for gels swollen in buffer solution between 

the ionic strength values 0.1 M to 0.5M. Simulations also indicate that the swelling 

pressure of the two solutions is similar in the ionic strength range 0.1 M -0.5M which is 

consistent with the swelling results. 

This general reduction in the osmotic pressure is due to the ideal Donnan 

effect, and can be explained if one inspects equation 5.23, 

(5.23) 

It is evident that as the ionic strength is progressively increased, the total 

concentration of species in solution, G increases, and to satisfy the electroneutrality 

condition ZiG; = 0, the Donnan partitioning co-efficient approaches unity. 
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5.3 CONCLUSION 

The internal osmotic swelling pressure inside PMMAaa-block-PDEA223-block­

PMMAaa hydrogels was qualitatively calculated using modified Donnan equilibrium 

theory. The results indicate that the molecular response of the hydrogel to changes in 

the ionic strength is driven primarily by the ionic osmotic swelling pressure. 
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Chapter 6 

Quantifying "kinetic" hydrogel pH· 

response using SAXS 

6.1 INTRODUCTION 

To date most swelling kinetic studies performed on pH responsive hydrogels 

have been conducted by means of gravimetric analysis. Gels are often prepared as a 

disc and during the course of their expansion the samples are periodically weighed [1-

7]. Comparison between the initial dry mass of the gel (Mo) and expanded mass (Ms) 

gives an expansion ratio, as shown below in equation 6.1. 

(6.1 ) 

6.1.1 Limitations of gravimetric swelling kinetics 

Unfortunately using gravimetric techniques to measure swelling ratios has a 

number of limitations. From an experimental point of view, the samples need to be 

weighed periodically to measure the uptake of water. To measure fast dynamic 

response in hydrogels, in the order of minutes, more frequent sampling is required. 

This may simply not be possible, and can also lead to several problems. Repeated 

manipulation of the sample can result in mechanical failure and ultimately cracking of 

the gel. Evidently this will have a detrimental effect on the calculated expansion ratio. 

To make this effect less pronounced the frequency of sampling has to be reduced. 

Clearly this makes gravimetric analysis a less attractive method, significantly reducing 

its usefulness for measuring fast kinetics. 
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6.1.2 Alternative methods to measure swelling kinetics 

Methods used to overcome the problems associated with gravimetry include the 

use of video microscopy [6, 8, 9]. This technique measures the change in the 

macroscopic size of the gel during swelling. Although this technique can be useful, one 

must consider that gels can swell anisotropically. Samples can twist during expansion 

and this makes measuring the size inaccurate. Additionally, to visualise a hydrogel in 

water there must be a difference in the refractive index of the gel and the surrounding 

solution. However, as the gel swells and accommodates more solution its refractive 

index begins to approach that of the solution. With conventional microscopy, in which a 

real image of the material under study is formed by refraction or reflection, it becomes 

increasingly difficult to visualise such objects in water as the refractive indices are so 

similar. The advantage of this technique as opposed to gravimetric methods is that it is 

an in-situ technique and does not require any manipulation of the sample. This 

reduces the chance of errors which are associated with gravimetriC analysis and 

allows swelling to be monitored with higher resolution. 

6.1.3 Measuring kinetics in hydrogels with greater resolution 

The problems which are associated with measuring kinetics gravimetrically 

clearly present an opportunity to design a new in-situ analysis method. Any new 

technique should enable the kinetics to be measured with both high accuracy and high 

resolution. Another very significant problem with gravimetry as already discussed in 

chapter 4 is that you are measuring the macroscopic response. Therefore all 

information about the response of the polymer at the level of single polymer chains is 

lost. 

6.1.4 Evaluating the use of SAXS for measuring swelling kinetics 

Small angle X-ray scattering (SAXS) is one possible technique to overcome this 

problem. This technique can be easily adapted for in-situ analysis and additionally it 

allows the molecular response of the material to be analysed. 
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To test the effectiveness of SAXS for measuring the swelling kinetics of 

hydrogels a pH responsive A-B-A type polybasic triblock copolymer was utilised, 

where A and B represent poly (methyl methacrylate) (PMMA) and poly(2-

(diethylamino)ethyl methacrylate) (PDEA) respectively [10]. This polymer undergoes 

microphase separation to form a "liquid like" BCC structure composed of PMMA 

spheres in a matrix of pH responsive PDEA. SAXS can be used to measure the 

average distance between the hard PMMA domains, as described in chapter 4. When 

the polymer expands the distance between the PMMA domains increases. This is 

representative of both a molecular and macroscopic increase in the size of the 

polymer. 

6.1.5 Factors effecting swelling kinetics· 

It is perhaps worth emphasising at this point that the rate of solvent uptake in 

hydrogels is limited by several factors. Some of these are related to the polymer 

properties, (Le size and shape of the gel) whilst others are related to the solution 

properties used to swell the gel. 

Tanaka et al have previously demonstrated that the rate of solvent diffusion in 

hydrogels is related to the square of the size of smallest dimension of the gel [11]. In 

the context of chemical actuation applications, fast switching requires the gel 

dimensions to be as small as possible. And when swelling rates are particularly high 

techniques such as gravimetry do not offer the resolution required to quantify the 

response. 

The rate of swelling in hydrogels is also strongly dependant on the chemical 

identity of the species which are used to swell the gel. Such effects have been 

investigated by Siegel et al. They investigated the swelling kinetics on a chemically 

crosslinked, methyl methacrylate! dimethylamino ethyl methacrylate gel [4], which 

swells in acidic conditions. They prepared gels as circular disks between 330 and 370 

microns in thickness. Swelling was measured gravimetrically and the expansion ratio 

Was determined using the formula expressed in equation 6.1. Due. to the thickness of 

samples used in their study, swelling was typically measured in excess of 6 hours, at 

which pOint samples were demonstrated to have reached final equilibrium. 
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Using a series of buffers and mineral acids prepared at different concentrations 

they performed a systematic study to identify if there was any noticeable difference in 

swelling rates between the different media. They identified several key differences. 

Gels swollen in buffer showed a greater rate of expansion compared to the same gel 

swollen in mineral acid at the same pH. In buffered solution they found that the rate of 

expansion was related to the concentration of buffer. Buffers prepared at higher 

concentration had a greater rate of swelling. Additionally they observed that for 

efficient protonation of the polymer it was necessary that the pKa of the buffer was 

lower than the pKa of the polymer. 

It was suggested that the enhanced rate of expansion in buffered systems was 

due to the "stealthing ability" of the proton within the buffer. At the very beginning of 

expansion a hydrogel is largely in its uncharged state. As the polymer begins to 

expand, the chains within the polymer start to protonate. As more of the polymer 

begins to expand a cloud of positive charge begins to accumulate on the surface of the 

gel. This charge acts as a barrier, also referred to as a Donnan barrier, shown in figure 

6.1 . This barrier makes it more difficult for free dissociated protons, such as those 

found in hydrochloric acid to enter the core of the gel. This phenomenon explains why 

the rate of expansion is often reduced in simple mineral acid solutions. 

(a) (b) Ef)Ef)$Ef) 

Ef) tf) 

~ 
® ~ 

~~ 
Ef) 
Ef) 
Ef) 

Ef1 
ffi 
~ 
(B 

Figure 6.1: (a) Hydrogel largely in its uncharged state at the beginning of expansion (b) 

Donnan barrier formed at the surface of a polymer during the course of protonation. The 

barrier hinders the transport of free protons to the polymer core and therefore reduces the 

rate of expansion. 
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When a buffer is used to swell a gel the concentration of dissociated and un­

dissociated species depends on several factors. These include the pKa's of the buffer 

species, the local pH and the concentration at which the buffer was prepared. All these 

variables are encompassed in equation 6.2, where C AH is the concentration of un-

dissociated buffer in the parent acid form, CAT is the total concentration of buffer, pH is 

the negative log of the hydrogen ion concentration and pKa is the acid dissociation 

constant. Siegel et al also found that the highest rate of swelling was in buffer which 

had a pKa lower than the pKa of the gel. Additionally they discovered that the pH of the 

solution needed to be lower than the pKa of the buffer. 

C - CAT 
AH -

1+10PH- PK• 
(6.2) 

They explained the enhanced rate of swelling in buffers in the following way. 

When the pH of the solution is below' the pKa of the buffer (greater than 1 unit), the 

majority of the buffer is in the un-dissociated form. In this situation the un-dissociated 

bUffer component can enter the polymer core without feeling any electrostatic 

repulsion from the Donnan charge barrier (see figure 6.1). The buffer acts as a "stealth 

proton", masking its charge until it becomes dissociated upon protonation in the gel 

interior. The buffer therefore provides both the charge and counter-ion. 

6.1.6 Using SAXS to measure hydrogel kinetics 

One of the advantages of using a physically crosslinked hydrogel, like the one 

investigated within this chapter, is that it allows the material to be processed with more 

control. It is relatively easy to manipulate the shape or thickness of the sample. The 

material can be solvent cast at a specified thickness, or poured into a mould if a 

specific shape is required. The PMMA18o-PDE~53-PMMA18o polymer used for swelling 

eXperiments within this chapter was processed as a thin film. It was 80 microns in 

thickness and approximately 5mm x 5mm in length and width. The film thickness was 

kept as small as possible to facilitate an increase in the expansion rate. The lower limit 
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on the thickness of the sample was related to the scattering power of the material. 

Eighty microns was found to be the optimum thickness. The length and width of the 
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Figure 6.2: Change in the expansion ratio of an 80 micron thick film of PMMA18o-PDEAm­

PMMA180 in 0 hydrochloric acid, V 0.01M citric acid, 0 0.01M acetic acid, ~ 0.03M acetic 

acid and 0 0.05M acetic acid at pH 3.7 at an ionic strength of 0.1M (NaCI). Inset: Exploded 

view of the onset on swelling. 

sample was limited mainly by the size of liquid cell. A detailed diagram of the liquid cell 

can be found in the appendix, section 9.3. In a typical swelling experiment a piece of 

the film was fixed inside the liquid cell. A continual flow of solution was then pumped 

through the liquid cell, and 20 SAXS images of the gel were taken every fifteen 

seconds. 

Each 20 scattering pattern was integrated to determine the domain spacing of 

the polymer. This value was input into equation 6.3 to determine the expansion ratio, 

as already discussed in chapter 4. 

(6.3) 

d:: equilibrium domain spacing and do:: dry domain spacing 

107 



, I 

Chapter 6 - Quantifying "kinetic" hydrogel pH response using SAXS 

Figure 6.2 shows the kinetic expansion data collected for an 80 micron thick 

annealed film of PMMA18o-PDE~53-PMMA18o copolymer swollen in a range of different 

solutions. These solutions included several buffers, namely acetic acid and citric acid, 

and a simple hydrochloric mineral acid. The concentration of each buffer was varied 

between 0.01 M and 0.05M at a fixed ionic strength of 0.1 Musing NaCI, at a pH of 3.7. 

The pH was specifically chosen as it is far below the pKa of the polymer. 

Swelling data was collected over a period of fifty minutes with a time resolution 

of 15 seconds. The results indicate there is a significant difference in swelling rates 

between buffered solutions compared to simple mineral acid at the same pH. Over a 

period of 50 minutes polymer swollen in mineral acid shows very little increase in its 

expansion ratio, less than 0.5 a unit. The same polymer swollen in buffer show much 

faster rates of swelling. After approximately 30 minutes the increase in swelling in the 

buffered solutions starts to plateau signifying the polymer has reached its maximum 

equilibrium expansion ratio. The expansion ratio at equilibrium for 0.01 M citric acid, 

0.05M acetic acid and 0.03M acetic acid is 10.3, 11.0 and 11.7 respectively. 0.01 M 

acetic acid has a significantly lower value of 6.5. This will be explained later. 

It is clear from figure 6.2 that the initial onset of expansion and final equilibrium 

can be resolved; however, there are regions in between where no data is present. 

These areas will be explained in greater detail later. 

Expanding upon figure 6.2, the very onset of expansion was investigated. The 

results are shown in figure 6.3. Within a period of three minutes polymer swollen in 

hydrochloric acid and 0.01 M acetic acid show the slowest rate and overall increase in 

expansion. The rate of expansion has been estimated from the gradient of the curve. 

The remaining three buffer solutions show a much greater increase in swelling. 

However there is very little difference in the rate of expansion between the three; it 

could be argued that 0.05M acetic acid has a slightly higher rate. Clearly the overall 

amount of expansion in all solutions is small, however, SAXS has demonstrated its 

ability at resolving the molecular expansion ratio in short time scales, which would 

have been difficult to achieve with another technique. 

The results presented in figure 6.2 clearly demonstrate that the Donnan 

Shielding effect discovered by Siegel is equally applicable to this polymer system. That 

is to say the rate of swelling in HCI is significantly reduced due to a charge build 'up on 

the surface of the hydrogel with impedes further influx of H+. 
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Figure 6.3: Change in the expansion ratio of an 80 micron thick film of PMMA18o-PDEA.453-

PMMA180 measured in 0 hydrochloric acid, V 0.01 M citric acid, 0 0.01 M acetic acid, b. 

0.03M acetic acid and 0 0.05M acetic acid at pH 3.7 at an ionic strength of 0.1M (NaCI). A 

representative error bar is shown for one data point. 

Further examination of figure 6.3 indicates that the rate of swelling is much 

faster in 0 .03M and 0.05M acetic acid compared to 0 .01 M acetic acid. This is due to 

the buffers prepared at higher concentration having more H+ available to protonate the 

gel and thus enhances the rate of expansion. 

A diagram demonstrating how SAXS was used to measure the pH response of 

phase separated thin films of PMMA180-PDEA453-PMMA180 polymer is shown in figure 

6.4. The illustration shows both the macroscopic and molecular response of the 

polymer, indicated using microscopy and SAXS images respectively_ The microscopy 

images show how the polymer in its initially dry state begins to expand, going through 

an intermediate stage where both an unexpanded core and an expanded periphery are 

present. Once the polymer has reached equilibrium a single phase is present. 
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Figure 6.4: A schematic illustration showing the macroscopic and molecular changes in the 

pH responsive of PMMA-block-POEA-block-PMMA during the course of expansion, three 

stages are shown (a) initial dry polymer (b) intermediate expansion and (c) full equilibrium 

expansion. Integration of the 20 SAXS data at each stage are also shown illustrating how the 

peak maximum and peak width changes during the course of expansion. 

These three stages are captured in much greater detail using SAXS. The 

graphs in figure 6.4 are an integration of the 20 SAXS data. They show the primary 

structure peak of the polymer. The position of this peak represents the domain spacing 

of the polymer, simplistically this is the distance between PMMA glassy domains. This 

domain spacing was input into equation 6.3 to calculate the SAXS expansion ratio. 

The 20 SAXS image shown in figure 6.4a is what is typically observed for polymers in 

the dry state. They have a single circular ring. 

When the polymer is immersed in solution it goes through an intermediate 

Swelling regime, where it contains parts which are both swollen and un-swollen. In the 

20 SAXS pattern in figure 6.4b you can see two circular rings. The position Of each 

ring represents the domain spacing of the polymer. The ring closest to the beam stop 
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represents the expanded periphery of the polymer and the ring further away 

represents the unexpanded core. As the polymer continues to expand the ring gets 

smaller and becomes closer to the beam stop, this represents an increase in the 

molecular size of the polymer. 

At final equilibrium as shown in 6.4c a single ring is present which represents 

the final domain size of the expanded polymer. 

6.1.7 Change in structure peak half-height peak width during expansion 

In addition to measuring the change in expansion ratio for each polymer, the 

change in half height peak width was also determined. The half height peak width of 

the structure peak represents the distribution of chain lengths between the PMMA 

domains. A more "polydisperse" sample which has a greater distribution of different 

lengths should have a larger peak width. 

The change in half height peak width during the course of expansion was 

determined using the "x-fit" Gaussian peak fitting program. An example of a typical 

peak fitting result is shown in figure 6.5. 

:::J 
<U --~ 
'iii 
c: 
Q) -c: 

2 

t = 55 minutes t = 0 minutes 
Expansion in this direction 

q/ A-I 
Figure 6.5: 3600 integral traces of the 20 SAXS pattem for PMMA180-POEA453-PMMA'80 

swollen in 0.01M citric acid, at time = 0 and 55 minuses. Gaussian peak fitting used to 

determine the half height peak width (example shown for the expanded structure peak" only). 
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In addition to measuring the peak width the program was also responsible for 

tracking the change in peak position. In the example shown in figure 6.5 the peak at 

time = 0 has a half height peak width of 0.00766 A-1
. During the course of expansion 

the peak position moves to a lower value of q, and additionally the peak width has 

reduced to 0.00549 A-1. 

The dynamic change in half height peak width during expansion is shown for 

several cases in figures 6.6 - 6.8. In each figure, the change in peak width is 

calculated using equation 6.4, where cro represent the peak width of the initially 

unswollen gel and crt is peak width at a given time of swelling. 

(6.4) 

This equation infers that a "positive change in peak width" corresponds to a 

situation where the polymer chains are becoming more disperse than the sample at 

t=O. In the opposite case, where. negative changes in peak position are reported, the 

chains are becoming less disperse than the dry sample. 
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Figure 6.6: Change in the (a) 0 expansion ratio (b) 0 peak width, of an 80 micron thick film 

of PMMA180-PDEA.,S3-PMMA180 measured in HCI at pH 3.7 at an ionic strength of 0.1 M (NaCI). 
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Figure 6.7: Change in the (a) 0 expansion ratio (b) 0 peak width of an 80 micron thick film of 

PMMA180-PDEA.m-PMMA18o measured in 0.01M citric acid at pH 3.7 at an ionic strength of 

O.1M (NaCI). Bestfit line drawn "by hand" to help visualise the data. 

Polymer expanded in mineral acid in figure 6.6 shows no significant change in 

the peak width during the first 55 minutes of expansion. This is expected as there is 

only a small change in the domain spacing during the same period. 

Polymer swollen in 0.03M and 0.05M acetic acid show a significant change in 

their peak width during expansion. In the dry unswollen gel at t=O, the change in peak 

width is zero (i.e. peak width - reference peak width). As swelling commences there is 

a Positive change in the peak width . The magnitude of this positive change in peak 

width continues to rise until it reaches a maximum. This corresponds to the polymer 

chains at their most poydisperse. This is followed by a sharp decrease. The change in 

peak width continues to fall , going through zero until it reaches a final value of 

approximately -0.002. Being a negative value, it means the polymer chains have 

become less disperse than in the original dry polymer. Once at -0 .002 (after 20 

minutes) the value does not deviate and remains approximately the same. 
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Figure 6.8: Change in the (a) 0 expansion ratio (b) 0 peak width of an 80 micron thick film 

of PMMA18o-PDEA.m-PMMA180 measured in 0.03M acetic at pH 3.7 at an ionic strength of 0.1 M 

(NaCI). Best fit line drawn "by hand" to help visualise the data. 

To understand the physical origin of the change in peak width one must 

consider the molecular structure of the polymer. In dry annealed material the polymer 

chains are locked into structure and are unable to move freely . This is because the 

glass transition temperature of PMMA is above room temperature which essentially 

locks in the structure of the gel. In the dry state the width of the structure peak is 

controlled by how well the polymer undergoes phase separation. To a large extent this 

will depend on the physical characteristics of the polymer, where mono-modal and low 

Polydispersity material would be anticipated to show the narrowest structure peak (see 

chapter 3) . 

The change in peak width during expansion represents a change in the 

distribution of chain lengths between the PMMA domains (the micellar core 

separation) . This is due to the chains expanding at different rates (assuming the x-ray 

beam goes through the entire sample), a process which is driven by diffusion kinetics . 

The observations in figure 6.7 and 6.8 can be explained in the following way. In the 

beginning of expansion you have a broadening in the peak width because not all 

chains are expanding at the same rate. Chains at the surface of the gel expand faster 
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than chains in the core as it takes time for the solution to diffuse through the polymer. 

When the polymer begins to reach equilibrium all of the chains have almost fully 

expanded and should therefore all be the same length. This results in a narrowing of 

the half height peak width which is what is observed. What is perhaps interesting is 

that the fully expanded polymer has a narrower peak width than the initially dry 

material. This can be explained if one considers how the molecular structure of the 

polymer changes in the different expansion regions. In the dry gel the length of chains 

between PMMA· domains is similar, but as they are entangled there is a slight 

distribution of lengths. However, in the equilibrium expanded region all the chains are 

now fully stretched due to Donnan osmotic pressure overcoming the restoring force of 

the network. As they all have the same length there is a narrowing in the observed 

peak width compared to the dry polymer~ 

It is also evident that in 0.03M and 0.05M acetic acid the change in peak width 

remains approximately constant beyond twenty minutes of swelling, but the domain 

spacing continues to rise slightly during this period. This would suggest that swelling 

after twenty minutes must have reached a diffusion limit, i.e. all the polymer chains are 

swelling at the same rate. 

6.1.8 Missing data points in the kinetic traces 

In several of the kinetic swelling plots there are quite a few missing data points. 

The region of missing data is almost always just after the initial onset of swelling. This 

problem was encountered for several reasons. 

20 SAXS images taken of the initially dry polymer films all had circular 

scattering rings. When the polymer films were immersed in solution the material would 

initially begin to swell in an isotropic fashion, maintaining a flat surface. During this 

time it was possible to collect the 20 SAXS data which was subsequently analyzed by 

360 degrees integration. 

As swelling continued, however, the polymer no longer expanded isotropically. 

It would typically fold on itself to reduce the surface area of the gel exposed to water. 

This caused a number of problems. In some cases the polymer folded away from the 

cross-section of the x-ray beam. Clearly no SAXS data could be collected fn this 

period. This was only a small issue as the position of the cell was changed to bring the 
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polymer back into the beam, therefore only losing a few frames of data. However, 

analysis of the 20 SAXS profile in this region was problematic. An example of the 20 

SAXS image collected during this period is shown in the figure 6.9a. 

(a) (b) 

Figure 6.9: 2D SAXS image collected of thin annealed film of PMMA18O-PDEA453-PMMA180 after 

(a) five and (b) 7 minutes of swelling in O.03M acetic acid. 

After approximately five minutes of swelling the 20 SAXS image of the gel is 

elongated in two regions, and additionally the scattering intensity is rather weak. The 

presence of directionality in the scattering pattern makes it almost impossible to 

accurately determine the domain spacing of the polymer in a consistent manner. In 

order to measure the domain spacing it is important to avoid such orientational effects. 

The swelling results presented in figure 6.2 and 6.3 are plotted from 20 SAXS data 

Where there is minimal influence of orientation in the scattering data. 

The problem of orientation in most cases only persisted in the very beginning of 

expansion. Once the polymer had gone through this initial transition period the film 

began to unfold and flatten out. This is caused by the build up of osmotic swelling 

pressure within the gel. After the polymer went through this transition the orientation in 

the SAXS pattern was no longer present, as shown in figure 6.9b (inner ring) . Not all of 

the gels behaved in this way. The swelling behaviour of gel swollen in 0.01 M acetic 

acid is shown in figure 6.10. As the polymer expands the scattering ring decreases in 

Size as illustrated in figure 6.10b. As expansion continues the intensity is weak and the 
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sharpness is lost as shown in figure 6.10c. Most significantly in this sample is the 

presence of orientation in the equilibrium structure as shown in figure 6.10d. This 

figure further illustrates the problem associated with integrating the 20 SAXS data to 

determine the domain spacing. This problem manifests itself in figure 6.2 as a 

significant reduction in the equilibrium expansion ratio compared to the other polymers. 

It is also evident from figure 6.2 that polymer swollen in 0.01M citric acid and 0.05M 

acetic acid both have a small depression in the expansion ratio after approximately 14 

minutes. The fact that it occurs at the same time for both polymer is interesting. Again, 

this effect likely emanates from very subtle differences in the orientation of the 

scattering ring. 

The inherent problem of sample twisting could be due to several reasons . It is 

most likely a result of pre-stress in the sample, which may emanate from the technique 

used to process the polymer films. 

(a) (b) (c) (d) 

t=O min t= 3.5 min t= 15 min t= 50 min 

Figure 6.10: 20 SAXS image collected of thin annealed film of PMMA180-POEA453-PMMA18O 

after various amounts of time swollen in 0.01 M acetic acid. 

To produce the desired self-assembled structure the polymer was solution cast 

as a thin film and solvent annealed using THF. During this casting process stress may 

be put into the polymer film. The presence of stress in the polymer films is evident from 

the SAXS profile as an elliptical scattering ring. A number of the dry films did show 

evidence of significant orientation but these samples were discarded and not used for 

kinetic analysis. Stress can also be put in the film when the sample is cut. If this is not 

done carefully it can cause the film to stretch. 
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To remove any residual stress the cast polymer films used for kinetics were 

typically solvent annealed for one week. In this time period the polymer chains have 

time to reach equilibrium, and the circular ring in the SAXS profile confirms this. 

However, twisting of the polymer during expansion would suggest the polymer 

has a "memory affect" retaining some knowledge of the casting process. Additionally 

the small size of the sample increases the probability that the polymer will twist. 

6.2 CONCLUSION 

SAXS analysis does offer an alternative technique for measuring swelling 

kinetics. It is particularly useful for measuring the onset of swelling in hydrogels which 
. . 

have fast swelling rates. Clearly this would not be possible with gravimetric techniques. 

The other major advantage of SAXS is that it allows the molecular nature of the 

polymer to be probed. This was demonstrated by measuring the change in structure 

peak width during expansion, which revealed the diffusive behaviour of the material. 

Unfortunately the method of sample preparation and size of polymer has made 

measuring the domain spacing problematic. Although this is clearly a sensitive 

technique, this in itself brings with it another set of problems in relation to orientational 

effects. This limits the effectiveness of the technique, however, not all polymers 

exhibited this problem which suggests that judicial choice of processing parameters 

and film dimensions could improve the situation. 
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Chapter 7 

Quantifying Hydrogel Response using 

Laser Light Scattering 

7.1 INTRODUCTION 

The ability to measure the molecular response of PMMA-block-PDEA-block­

PMMA hydrogels using SAXS has been demonstrated in both chapter 4 and 6. The 

technique proved to be an excellent method for measuring the "static" pH, ionic 

strength and salt specific response of the material. However, although the principle 

can be applied to kinetics, complex experimental setup and sample processing issues 

made it both challenging and problematic. 

One of the greatest advantages of SAXS over other techniques is that it 

measures the response of the hydrogel at the molecular level. Although SAXS analysis 

presents a significant step forward in understanding hydrogel behaviour it suffers 

several pitfalls. For example, SAXS relies on the polymer sample being comprised of 

some sort of molecularly ordered structure. However, perhaps the most significant 

issue is the use of SAXS itself. For time-resolved experiments on the time scale of 

minutes one cannot rely on conventional x-ray sources but instead must turn to high 

intensity beam lines which can only be found at synchrotron radiation sources. This is 

obviously not an ideal situation due to the expense and rather limited amount of beam 

time available to researchers. 

Clearly, it would be desirable to be able to use a complimentary in situ method, 

one which has most of the advantages of SAXS, including its sensitivity and non­

invasiveness, but which is more widely accessible. In a previous study by Topham et 

al [1], the affine nature of self-assembled PMMA-block-PDEA-block-PMMA triblocks 

has been demonstrated, which indicated that the response of the polymer in the nm 
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range scaled up to a macroscopic response. This presents an opportunity to design a 

new tool for measuring the response of PMMA-block-PDEA-block-PMMA hydrogels. 

The response of a hydrogel to a changing chemical environment has often 

been tailored to sensor applications. For example the use of hydrogels as pH sensors 

[2] or slightly more complex glucose sensors [3] In this function the hydrogel acts as a 

transducer, where a change in the property of the hydrogel is converted into a 

response signal. In chapter 4, the PMMA-block-PDEA-block-PMMA hydrogel can also 

be considered a· transducer, where the change in domain spacing is the response 

Signal, and calibration of this signal gives information about the molecular response of 

the material (Le. the expansion ratio). Other approaches have been used to create 

hydrogel sensors; Asher et al [3] fabricated a transducer based on optical changes. 

They polymerised a colloidal crystalline array (CCA) of spheres into a hydrogel. The 

hydrogel was found to shrink and swell reversibly in the presence of specific analytes, 

namely metal ions and glucose. The. incorporated CCA diffracted light in the visible 

range, the wavelength depending on the lattice domain spacing. This gave rise to a 

strong colour emission. It was found that a volume change of 0.5 % in the hydrogel 

shifted the diffraction wavelength by approximately 1 nm. Other work using the 

concept of changes in optical properties has been reported by Lowe et al [4] They 

fabricated a holographic pattern onto the surface of a pH-sensitive hydrogel. By 

monitoring the change in the diffraction wavelength (colour) of the hologram as a 

function of pH in a variety of media they were able to characterise the shrinkage and 

swelling response. They reported a response of 165 nm per pH unit. However, these 

techniques generally rely on complicated photosensitive or photo masking [5] 

techniques to create the polymeric sensors. 

The concept of monitoring optical changes within a hydrogel in the form of a 

"diffraction grating" has been applied to the PMMAss-b-PDEA223-b-PMMAas triblock 

COpolymer discussed in the chapter 4 and 6. A polymeric grating was manufactured by 

solvent casting PMMAss-b-PDEA223-b-PMMAas (JSPB03) onto the surface of a quartz 

diffraction grating template. This is a very simple procedure in contrast to the 

Complicated techniques used by other researchers. For example, the hologram 

created by Lowe required complicated photosensitization techniques. Changes. in the 

optical properties of the grating were measured at different pHs and in a range of 

solutions prepared from the Hofmeister salts introduced in chapter 4. The grating was 
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also used to measure the kinetics of swelling and de-swelling. To test the accuracy 

and usefulness of this technique the results of mesoscopic scattering will be compared 

with those obtained from gravimetric and SAXS analysis under identical conditions. 

7.1.1 Diffraction grating theory 

A diffraction grating is an optical component, the primary purpose being to 

disperse light into a spectrum. The grating consists of many parallel and equidistant 

slits, typically in the order of several thousand per cm. If the slit separation of each gap 

is narrow relative the wavelength of light, diffraction causes each slit to act as a centre 

of secondary disturbance. These scattering centres create semi-circular wave fronts, 
.-

which in a few specified directions may combine constructively to produce a 

continuous wave front or destructively in which case no wave front will be present. 

Figure 1 a shows a typical interference. pattern created by a large number of slits. 

Figure 7.1 demonstrates the origin of the interference pattern created by a diffraction 

grating. It shows a ray of path difference p being brought to a Point P, 

Monochromatic 
light source (a) 

~ 
~ ____________ ~~~~~n=1 

~------------~~~~~n=1 

Diffraction 
grating 

(b) 

p 

----_\' 
D 

screen 

Figure 7.1: (a) Diffraction at the slits of an optical diffraction grating. (b) the geometry used 

to calculate the grating slit separation (s). 

Where sinB = pI s (7.1 ) 
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and p is the path difference (S2P - S1P) for waves that are superimposed at point P. 

tan e = dID (7.2) 

if () < 1/10 rad (distant screen assumption) then, i.e. tan e = sin e 
d p 
-=-o s 

it then follows that 

ds 
p =-o 
The superposition of waves will be constructive when n is an integer, i.e. when 

ds 
p=- =n2 o 

This can re-arranged to d = nAD 
s 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

where d is the displacement from the centre line, s is the slit separation (separation of 

the centres of neighbouring gaps), A is the wavelength of incident light and D is the 

distance between the grating and the screen. 

7.1.2 Processing of the polymeric diffraction gratings 

An optical diffraction grating was engraved onto the surface of a quartz plate 

(approximately 2cms x 2 cms) using photolithography. Quartz was chosen due to its 

resistance to solvent and reusability. An AFM image of the quartz grating surface is 

presented in figure 7.2a. 

(a) 

Figure 7.2: AFM images of an (a) optical diffraction grating "mould" in fused quartz (b) 

PMMA88-b-PDEA223-b-PMMA88 polymeric diffraction grating formed by replication from it, 

obtained in contact mode. Both gratings have a spectral period of 2 microns. 
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. . . . . , 

Figure 7.3: Casting method used to create the polymeric diffraction grating. 

This grating was used as a master template, and all polymeric gratings were 

created from it. To create the polymeric diffraction grating the polymer was dissolved in 

THF. This is a good solvent for both DEA and MMA. The polymer solution was 

prepared at 30 weight percent. A high concentration was used to favour network 

formation, but not too high to ensure it would flow freely into the grooves of the grating. 

(see appendix, section 9.7). The solution was then poured on to the surface of the 

quartz grating template to create a thin film. The grating was then put into a solvent 

rich environment of THF and annealed for several days. An illustration of the technique 

demonstrating how the grating is created from the master template is shown in figure 

7.3 . 

Once the cast polymer was sufficiently annealed it was removed from the 

surface of the quartz by plasticisation in water. Figure 7.4 shows an AFM surface 

depth profile of the template, and a polymeric grating created from it. The quartz 

grating has a regular array of slits with an average separation of 2 microns. 

Comparison between the template and polymeric grating indicates the casting method 

was successful, leaving behind a negative copy. The mesoscopic pH response of the 

polymeric film was monitored by measuring the change in the laser scattering pattern. 

The setup used to measure this is shown in figure 7.5. A 632nm helium neon laser 

was suspended above the polymer grating. The laser beam was projected through the 

sample, and the diffraction spots were projected onto a white surface directly below 

the film. The intensity profile and position of the diffraction spots were measured 

quantitatively using a colour camera. 
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Figure 7.4: Depth profile analysis of the (black) fused quartz optical diffraction grating (red) 

PMMAaa-b-PDEA223-b-PMMAaa polymeric diffraction grating. 

• • • • • • • 

• • 
Figure 7.5: Illustration dernonstating the princple used to record the diffraction spots of the 

polymermeric diffraction grating, a 632nm Helium-Neon laser was used for the source of 

light. The change in the position of the diffraction spots was recorded using video 

microscopy. 
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For static scattering experiments the polymeric grating was suspended in a 

Petri dish. This allowed the solutions to be rapidly changed. A new piece of polymeric 

grating was used for each solution measurement. For dynamic experiments a specially 

deSigned liquid cell was used. This allowed the change in the scattering pattern to be 

monitored continuously with changes in the solution pH . A representative laser 

scattering pattern generated by the imprinted polymer sample in solution is shown as 

an intensity image in Figure 7.6a clearly showing the diffraction orders either side of 

the direct beam. 
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Fig 7.6: a) A typical laser diffraction pattern from the imprinted gel. b) Vertically integrated 

laser scattering patterns for the gel in distilled water at pH 7.0 (fuUy collapsed, - ), in citric 

acid buffer at pH 3.6 (expanded, - ). The direct beam has been removed and the scattering 

Patterns shifted vertically to aid visualisation. 
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The intensity images were vertically integrated using Labview software and the 

obtained 1 D scattering patterns for the gel in two different conformations (expanded 

and collapsed) are shown in Figure 7.6b. The 1 D data also show that the polymer 

diffraction grating was highly ordered. 

With this scattering technique, a large movement in the peak position is 

observed, which corresponds to the gel expanding and collapsing. The scattered angle 

is inversely prop~rtional to the period of the diffraction grating and so as the material 

expands, the diffraction pattern moves towards the direct beam (Figure 7.6b). 

Additionally, the accuracy of this technique can be tuned by altering the distance 

between the sample and detector; the larger the distance, the higher the sensitivity to 

changes in the imprinted grating structure. 

To determine the periodic spacing using laser light scattering equations 7.7 was 

used which is derived in section 7.1.1. 

s = m}'D 
d 

(7.7) 

Where s is the repeat length of the diffraction grating, d is the scattering vector 

(measured as half the distance between 1st order peaks), m is the diffraction order, 

}., is the incident beam wavelength, and D is the distance between the sample and 

the detector. By measuring the position of the diffracted beam one can preCisely 

determine the repeat length of the imprinted polymer structure. 

7.1.3 Comparing Gravimetric, mesoscopic and molecular equilibrium swelling 

behaviour 

To demonstrate the suitability and effectiveness of this simple technique a 

systematic study was conducted on the response of the hydrogel to two distinct 

parameters, namely pH and counter ions. The imprinted grating technique will display 

responses on the micron length scale (10-6 m), halfway between the length scales 

rneasured by SAXS and gravimetric analysis. The counter ions chosen for this are 

taken from a sequence of ions known as the Hofmeister series as discussed in chapter 
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4. These ions were found to have a specific effect upon the swelling of the gel. The 

counter ion study was carried out at pH 3.6, such that the gel was expanded and the 

counter ion effect would manifest itself as reduced swelling of the gel 

To test this technique the results of mesoscopic scattering were compared with 

those obtained from gravimetric and SAXS analysis under identical conditions . To 

compare the results of the studies on a single scale, the response of the gel is 

expressed in terms of an expansion ratio. This is defined as (O"eq - O"ref)/ O"ref, where O"eq 

is the equilibrium length in a given solution and Oi-ef is the dry length. 

Both SAXS and laser light scattering of the diffraction grating generate results 

in terms of a unique length scale. SAXS measures the microphase separated length 

(defined by the polymer molecular weight and relative volume fractions of the polymer 

constituents) , whereas laser light scattering measures the single length scale for the 

period of the 10 diffraction grating. Gravimetric analysis, however, will return a result in 

terms of mass. Consequently, this has been converted into a volume response , 

assuming a constant density of 1.0 g cm-3 (an approximation which also takes into 

account the change in density with swelling) and the cube-root taken to generate a 

macroscopic length scale for comparison with the other two techniques. 
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Figure 7.7: Variation of the relative change in 0 molecular domain spacing, /}. surface 

grating separation and 0 extrapolated gravimetric length, as a function of pH in O.01M citric 

aCid (3.6-7.1) and ethanol amine buffer (>9). 
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Figure 7.8: Variation of the relative change in 0 molecular domain spacing, ~ surface 

grating separation and 0 extrapolated gravimetric length, as a function of sodium salt 

identity measured in O.01M citric acid at pH 3.6 at an ionic strength of O.1M. 

Figure 7.7 and 7.8 shows that the same trend is observed using the three 

techniques for measuring the hydrogel response in the counter ion study and across 

the pH range investigated. Furthermore, the data for the grating more closely matches 

that for the SAXS studies than the gravimetric analysis, which is prone to more 

significant experimental errors. All of the analytical techniques used here show that the 

pKa of the triblock copolymer lies between pH 6.5 and pH 7.0. 

The three techniques are clearly complimentary, each probing a different length 

scale; nano, micro, and macroscopic. However, of the three techniques, it is the laser 

and x-ray scattering techniques which offer high resolution and high frame rate 

dynamic studies of the response. Of these two analytical tools, it is the laser scattering 

Which is more accessible in most laboratories. 
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7.1.4 Mesoscopic diffraction response kinetics 

To demonstrate the effectiveness of this technique for in situ studies, the 

polymer diffraction grating technique was used to measure the hydrogel response in a 

dynamic experiment. The imprinted grating was placed into a solution which was 

alternated between 0.05 M citric acid or 0.05 M ethanol amine at pH 3.6 and 11 .5 

respectively, the ionic strength was fixed at 0.1 Musing NaCI. 

Figure 7.9 shows the results from the vertically integrated laser diffraction 

pattern as a function of time along with analysis of a typical region from the dynamic 

data pH-experiment. 

a) 

b) 1.3 

.... 
1.2 ----

'§ 
--; 1.1 

...-... 
'§ 
-l 1.0 
0-
Q.l 

C 0.9 

0.8 

o 20 

12 

10 

8 
pH 

6 

4 

2 
40 60 80 

Time I minutes 

Fig 7.9: (a) Integrated 20 scattering patterns as a function of time for the gel in a manually 

OSCillating pH environment. 0.01 M citric acid (pH 3.6) and 0.01 M ethanol amine (pH 11.5) at 

an ionic strength of 0.1M (NaCI). (b) Expansion ratio as a function of time for a si~gle pH 

OScillation as highlighted in red in part a. 
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Figure 7.9a shows the reproducible movement of the scattering peaks as the 

gel expands and collapses in response to a changing pH environment. This dynamic, 

in situ method allows one to clearly determine when equilibrium is reached, 

demonstrating its applicability in measuring the kinetics of hydrogel response. Each 

transition, both expansion and collapse, is associated with a short outward movement 

of the scattering peaks. This can be attributed to small residual stresses in the surface 

causing small fluctuations/waves over the surface of the gel. This effect slightly alters 

the angle of incidence for the incoming beam, presenting a narrower grating to the 

beam. 

In spite of this, the data clearly show that laser light scattering is an appropriate 

analytical tool for measuring dynamic hydrogel response, without the need for ordered 

nanostructure nor the costs associated with SAXS. Moreover, if SAXS and laser 

scattering are carried out simultaneously (and subsequently calibrated), one then has 

the basis of a technique where materi"als can be probed in a laboratory set-up to yield 

molecular level information simply through extrapolation. 

7.2 CONCLUSION 

The imprinting of a microscale morphology into an optically transparent medium, in 

combination with laser scattering has demonstrated itself to be an accessible and 

accurate method for measuring both the static and dynamic response of pH­

responsive hydrogels. Results obtained herein indicate that the three length scales 

measured, macro by gravimetry, micro by optical diffraction and nano (molecular) 

by SAXS are comparable to each other for a pH-responsive triblock copolymer. 

The in situ nature of this technique is partioularly useful for measuring fast 

dynamic structure response in hydrogel systems. This is a clear advantage when 

compared to other laboratory scale experiments, such as gravimetric analysis, 

Which are often limited to measuring kinetics over long time periods. Moreover the 

Combination of SAXS and laser light scattering allow in situ studies and address the 

issues of spatial hysteresis. However, the laser light scattering technique is easily 

transferable to other systems which offer suitable optical transparency and will find 

Particular use for cross-linked systems which do not possess a well-defined 
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microstructure. 

For the first time, the simple approach of casting a curable polymer to 

generate a defined topography has been proven to be an inexpensive and effective 

analytical route to measuring hydrogel response on the microscopic scale. 
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Chapter 8 

Summary and Future Work 

8.1 SUMMARY 

The main aim of this project was to use SAXS as a tool to quantify the 

molecular response, both "kinetic" and "static" of phase separated triblock copolymers, 

namely PMMA-block-POEA-block-PMMA and PMMA-block-PMAA-block-PMMA. The 

first objective was the synthesis of the block copolymers and this was achieved using 

Group Transfer and Anionic polymerisation. 

Whenever PMMA-block-PMAA-block-PMMA block copolymers were 

synthesised a significant amount of dlblock contamination was always present. Thin 

films of this material were solution cast and annealed. SAXS analysis revealed phase 

separation in the cast material. These annealed films were found to be mechanically 

weak. When immersed in a solution above their pKa they simply broke up into many 

pieces. The most likely cause of this failure is the high level of diblock contamination. 

The structural integrity in the triblock copolymers is largely a result of the physically 

cross-linked network, and diblock contamination simply reduces the number of chains 

involved in bridging. Recent work Guice et al [1] has demonstrated the importance of 

bridging domains on the mechanical strength of ABA type triblock copolymers. Other 

parameters are known to have an effect on the mechanical properties, such as the 

Polydispersity of the PMMA end groups. If there is an uneven distribution of PMMA 

chains then a number of the smaller chains will not be involved in network formation 

Which will ultimately reduce the mechanical strength [2]. That is why anionic 

polymerisation was used in an attempt to produce narrow molecular weight material. 

Synthesis of PMMA-block-POEA-block-PMMA block copolymers was more 

successful, producing monodisperse high molecular weight materials with POI's 

around 1.2. Morphological development in solvent-cast films was followed using SAXS by 

monitoring changes in the structure peak. This revealed the thermodynamically conlrolled 

Phase separation of the system. A series of the annealed block copolymers were 
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immersed in a solution at pH 3.6. At this pH the block copolymer expands. By measuring 

the change in their mass over a period of the 45hrs the robustness of the material was 

evaluated. JSPB03 was found to be the most robust material. Having successfully 

synthesised and processed a robust phase separated material the second part of the 

project focused on evaluating its molecular response through the use of SAXS. 

The "static" SAXS response of the material was evaluated by measuring the 

change in its structure peak at different pH's and ionic strengths using a range of salts. 

The structure peak was subsequently converted into an equilibrium expansion ratio. 

Changes in pH were accomplished using a controlled set of buffers, namely citric acid, 

sodium phosphate and ethanol amine. The ionic strength of the buffers was fixed 

using a series of salts from the Hofmeister series, namely NaAce, NaCI, NaBr, Nal, 

NaN03 and NaSCN. Measuring the equilibrium response of the hydrogel using SAXS 

was found to be very accurate. Buffer, salt and pH specific effects could be easily 

resolved with high resolution. 

"Kinetic" studies performed on the hydrogel were less successful. During 

expansion of the material pre stress in the thin films caused them to fold which made 

evaluating the domain spacing problematic. This was only observed just after the 

onset of swelling so it was still possible to resolve the majority of the kinetic data. By 

monitoring changes in the half height peak width during expansion it was possible to 

Observe diffusion within the material at the molecular level. This is something which 

would clearly not be possible with gravimetric techniques. 

Due to the enormous cost and limited beamtime available at synchrotron 

sources a novel method was used to evaluate the response of the hydrogels. A quartz 

diffraction grating was used to create a micron-sized periodic structure on the surface 

of a thin film of the polymer and the resulting diffraction pattern was used to calculate 

the swelling ratio of the polymer film in situ. The technique has been proven to be an 

inexpensive and effective analytical tool for measuring hydrogel response on the 

microscopic scale. It is as cheap as gravimetry but has the accuracy of SAXS. 
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8.2 FUTURE WORK 

The kinetic results obtained using the diffraction grating technique at this stage 

are only preliminary and further in depth studies are required. Initial studies would 

investigate the effect of decreasing the thickness of the imprinted films to see if this 

overcomes the problems associated with residual stress. 

Clearly the robustness of PMMA-block-PMAA-block-PMMA triblock copolymers 

needs to be improved. A possible route to achieve this while maintaining a phase 

separated structure is to incorporate a reversible UV-cross-linking unit on to the PMMA 

end groups. After synthesis and post-annealing of the sample the microphase 

separated structure can be chemically locked through the UV cross-links. Such an 

investigation would allow a direct comparison between the robustness of a phase 

separated physically and chemically cross-linked gel. Reversible cross-linking of 

micelles has been reported in the' literature using the UV cross-linker 7-(2-

Methacryloyoxyethoxy)-4-methylcoumarin [3]. An alternative strategy might be the 

formation of nanocomposites using either PMMA particles or clay platelets. 

In relation to molecular diffusion studies the phase separated material could be 

exploited using microfocus SAXS. Using a microdrop dispenser similar to what is 

found in a conventional bubble jet printer picoliter volumes of solution can be 

deposited at a specific point on the subms time. Coupled with microfocus SAXS this 

would allow spacially resolved diffusion kinetics to be collected. 

136 



Chapter 8 - Summary and Future Work 

REFERENCES 

1. Guice, K. B., Marrou, S. R., Gondi, S. R., Sumerlin, B. S.-, and Loo, Y.-L., 
Macromolecules 2008, 41, 4390. 

2. Tong, J. D., Moineau, G., Leclere, P., Bredas, J. L., Lazzaroni, R., and Jerome, 
R., Macromolecules, 2000, 33,470. 

3. Jiang, J., ai, B., Lepage, M., and Zhao, Y., Macromolecules 2007,40,790. 

137 



Appendix - Theoretical background and experimental methods 

Appendix 

Theoretical background and experimental 
methods 

9.1 BLOCK COPOLYMER SYNTHESIS - THEORY 

Block copolymers with well-defined structures can be synthesised using a 

variety of different strategies [1]. Herein, a description of the techniques used in this 

thesis will be presented with the relevant fundamental theoretical background. An 

emphasis will be placed on the synthesis of triblock copolymers. This will commence 

with a description of anionic polymerisation which is one of the oldest and most 

versatile methods to synthesise block copolymers with complex architecture. 

9.1.1 Anionic polymerisation 

9.1.1.1 Introduction to anionic polymerisation 

Anionic polymerisation is a 'living' chain polymerisation which is free from 

termination or chain transfer. This living nature was first identified by Szwarc in 1956 

[2]. In anionic polymerisation the propagating active centres remain 'living' and in the 

absence of terminating species the addition of monomer will simply increase the 

degree of polymerisation. 

The method is commonly used for the synthesis of block copolymers as it 

allows one to produce polymers with predetermined molecular weight, controlled 

architecture and low molecular weight distribution. 

In order to produce polymers with low molecular distribution (Poisson distribution) a 

nUmber of criteria need to be met. 

1. The rate of initiation must be greater than or equal to the rate of propaQation. 

This ensures that all chains grow for the same period of time. 

2. No termination or chain transfer should occur at the active centre. 
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3. The propagation steps should be irreversible. 

The molecular weight in an anionic polymerisation is controlled by the degree of 

conversion and stochiometry of the reaction. For a mono-functional initiator under ideal 

conditions with no chain transfer or termination, the molecular weight at 100% 

conversion of monomer can be predicted using equation 9.1. 

Mn = mass of monomer (g) / moles of initiator (mol) (9.1 ) 

9.1.1.2 Monomers which are susceptible to anionic polymerisation 

Anionic polymerisation is limited to monomers which can be roughly classified 

into two categories. Diene, vinyl and carbonyl containing monomers which contain one 

or more double bonds, and cyclic monomers which contain a ring capable of being 

opened by an incoming nucleophile. 

9.1.1.3 Mechanism 

An ideal anionic 'living polymerisation' in the absence of any chain termination 

or transfer will involve the following elementary steps, initiation and propagation. The 

living polymerisation of methyl methacrylate is shown in figure 9.1. In solution the 

initiator, BuU exists as a cluster, but can be viewed simply as n-Bu- associated with U+ 

counterion. In the initiation step the carbanion initiator reacts with the double bond on 

the backbone of the monomer unit. This leads to the formation of a carbanion site on 

the monomer. The newly formed carbanion centre will react with another monomer 

molecule regenerating further reactive intermediates. Propagation will continue to 

OCcur until all of the monomer has been consumed. Premature termination of a living 

system can be induced by addition of a protic impurity into the polymerisation. In this 

eXample methanol is added which reacts with the active centre and renders it inactive. 

In general, monomers used in anionic polymerisation must possess an electron 

Withdrawing substituent or double bond, capable of stabilising the carbanion 

intermediate formed in the transition state for monomer addition. This is further 

demonstrated in figure 9.1. The negative charge produced during the initiation ~tep is 

resonance stabilised over the monomer carbonyl group. 

139 



Appendix - Theoretical background and experimental methods 

H H 

H3C-CH2-CH2-~n-Li ------; ... ~ H3C-CH2-CH2-L Lt 

I I 
H H 

Initiation 

Propaeation 

I r3Li~~CH3 
H3C-CH2-CH2-CH2-f-r / h--

H C~Me H C02Me 
.... 

Termination 

-
Lt OMe 

Figure 9.1: General mechanism for the living anionic polymerisation of methyl methacrylate. 

see-butyl lithium is used as the initiator, and the terminating species is methanol. 
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9.1.1.4 Initiators used in anionic polymerisation 

The choice of initiator strongly depends on the electrophilicity of the monomer 

being used. If the initiator is weak this will lead to slow initiation resulting in an increase 

in the molecular weight distribution. More reactive initiators may react adversely with 

the monomer inducing premature chain termination. This termination mechanism is 

observed when BuLi is used as an initiator in the polymerisation of alkyl methacrylates . 
. " 

BuLi attacks the expected double bond but also the carbonyl double bond. This results 

in fewer than 50 % of initiator molecules initiating a chain [3]. 

The reactivity of alkyl lithium initiators such as BuLi is strongly dependant on 

their degree of association in solution. When the initiators ,are less associated they are 

more reactive. The degree of association can be controlled by the choice of solvent. 

Aromatic solvents reduce the degree of association compared with non-aromatic 

solvents. 

9.1.1.5 Methacrylate Polymerisation - Undesirable chain termination 

When methacrylate and acrylate monomers are used in anionic polymerisation 

there are a number of undesirable side reactions which can lead to chain termination 

and other undesirable side reactions. 

The initiating species can react with the carbonyl group of the monomer forming 

the corresponding alkoxide and ketone, as illustrated in figure 9.2 [4]. This particular 

side reaction can be minimised if one uses initiators which are less reactive and 

contain bulky sterically hindered groups. 

+-
Mt OCR3 

R 

o 

Figure 9.2: Chain termination - reaction of the monomer carbonyl group with the initiator. 
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o 

Figure 9.3: Chain termination - unimolecular backbiting. 

The primary termination mechanism is thought ~o be a unimolecular chain 

backbiting reaction, as shown in figure 9.3 [4]. The carbanionic living centre is able to 

react with the penultimate ester group on the polymer chain. An energetically 

favourable six membered ring is formed with the ejection of an alkoxide group. 

Alkoxide is a poor nucleophile and is not able to reinitiate the polymer chain. This 

undesirable side reaction may be avoided by running the reaction at low temperatures 

(- -78°C), as at low temperatures the rate of propagation is approximately 104 faster 

than the rate of termination. 

A breakthrough in the polymerisation of acrylate! methacrylate monomers was 

discovered by Teyssie and co-workers [5]. They noticed that the addition of Liel salt to 

the polymerisation of t-butyl acrylate had a dramatic effect on the molecular weight 

distribution. When Liel was used the molecular weight distribution reduced from 3.61 

to 1.2 [6]. Liel is now routinely used in methacrylate polymerisations. It is understood 

to be a sigma co-ordinating salt cable of forming a four membered complex with lithium 

and the growing chain end. 

9.1.1.6 Synthesis oftriblock copolymers by anionic polymerisation 

There are several methods which can be used to create triblock copolymers 

using anionic polymerisation. Each particular method has negatives and positive 

points. Due to the living nature of anionic polymerisation it is possible to .create 

triblocks by sequential monomer addition. In this reaction scheme the first 

monomer is polymerised, followed immediately by polymerisation of the second 
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monomer and so on. However, this method suffers two main drawbacks. Living 

polymerisation is highly susceptible to termination from impurities. With each 

monomer addition to the living polymer the change of termination is increased. This 

causes the formation of undesirable diblock and or homopolymer it the monomers 

are not pure enough. It is also important to point out that this procedure relies on 

the first living polymer being able to initiate the second monomer. If this condition is 

not fulfilled the polymer will be ill defined. 

To circumvent this problem researchers have created symmetric triblocks 

using difunctional initiators. Difunctional initiators are organometallic compounds 

which have two anionic sites on the same chain, which are both capable of 

initiating polymerisation. To create a symmetrical triblock (A-B-A) the difunctional 

initiator is reacted with the first monomer to form the midblock. This is followed by 

addition of the second monomer to create the end blocks. One of the 

disadvantages of using a difunctional initiator is the fact that the monomers must 

be of high purity. This is necessary to avoid deactivation of both or one of the 

active sites with could lead to the formation of triblock with undesirable impurities. 

9.1.2 Group Transfer Polymerisation (GTP) 

9.1.2.1 Introduction to GTP 

Group transfer polymerisation (GTP) was discovered by Webster and co­

workers at DuPont in 1983 [7]. It is a method used predominantly for the 

polymerisation of methacrylate and acrylate monomers. GTP allows one to produce 

polymers with controlled architecture and low mole.cular weight distributions. GTP is 

related to classical anionic polymerisation where control is achieved through the 

livingness of the polymerisation, i.e all the chains grow simultaneously with little or no 

chain termination. Unlike anionic polymerisation of methacrylate which typically 

requires initiation at -80°C; GTP can be carried out at room temperature and above. In 

comparison with ionic and radical polymerisations GTP is much less· sensitive to 

impurities and is also tolerant to a wide variety of monomer functionalities such as 

allylic groups, amines and epoxides [8]. 
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9.1.2.2 Mechanism of GTP 

GTP was so named as it was believed at the time of its discovery that a silane 

group transferred to the growing chain end after the addition of each monomer unit. 

The original mechanism is based on an associative pathway, as shown in figure 9.4. 

A nucleophilic catalyst binds to the silane. group activating it towards the 

monomer. A hypervalent intermediate is formed and the silane group transfers to the 

incoming monomer unit. The associative mechanism assumes that the silane group 

remains on the polymer chain during the polymerisation step. 
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Figure 9.4: Scheme 1: Associative pathway. 
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Figure 9.5: Scheme 2 Dissociative pathway. 

Based on current findings it is now believed that the associative route is 

incorrect [9]. The currently accepted mechanism lies with a dissociative pathway as 

shown in figure 9.5. In this pathway the nucleophilic catalyst again binds to the silane 

group, but a reversible cleavage step produces a reactive enolate end which adds to 

the monomer. 

9.1.2.3 Synthesis oftriblock copolymers by GTP 

Using suitable bifunctional initiators, ABA type triblock copolymers can be 

synthesised in a two step monomer addition procedure. The use of 1 A-Bis 

methoxytrimethylsiloxymethylene) cyclohexane (BMMC) discovered by Steinbrecht 

and Bandermann [10] has recently been reported in the Armes group [11] for the 

synthesis of BAB and ABA triblock where A = 2-(dimethylamino)ethyl methacrylate and 

B = 2-(diethyl amino)ethyl methacrylate. 
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9.2 BLOCK COPOLYMER SYNTHESIS 

9.2.1 General analytical methods 

Melting points were determined with a Sanyo Gallenkamp melting-point 

apparatus and are uncorrected. 1H and 13C NMR spectra were recorded on a Bruker 

AC-2S0 (MHz) instrument. Electrospray mass spectra were recorded on a Waters 

Micromass LCT ESSystem. Solid state infrared spectra were obtained with a Perkin­

Elmer RX I FT-IR spectrophotometer coupled with a DurasampllR II SenslR© diamond 

ATR accessory. 

NMR splitting patterns have been defined as follows: s (singlet), d (doublet), dd 

(doublet of doublet), t (triplet), m (multiplet), and br (broadsignal). Quat. C (quaternary .. 

carbon). Coupling constants (J values) are listed in hertz (Hz). All yields reported are 

unoptimized. 

9.2.2 Solvent purification 

Tetrahydrofuran (THF) was dried over Na-benzophenone complex for three 

days (a deep purple colour indicated the solvent was free from moisture and oxygen). 

When used in anionic polymerisation the solvent was further purified over styryllithium. 

9.2.3 Monomer purification 

2-(Diethylamino) ethyl methacrylate (DEA) was passed through a basic alumina 

column to remove protic impurities. The monomer was then stirred over calcium 

hydride for 24 hrs to remove final traces of moisture. Immediately before use the 

monomer was distilled and stored at -78°C. 

Methyl methacrylate (MMA) was passed through a basic alumina column to 

remove protic impurities. The monomer was then stirred over CaH2 for 48 hrs. For 

anionic polymerisation the monomer was then distilled onto a 10% w/w AIEh solution 

[12]. When a persistent yellow/green colour was observed the' monomer was distilled 

and stored at -78°C. 
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Tertiary butyl methyl methacrylate (ter-BuMA) was stirred over CaH2 for 48 hrs 

and then distilled onto a 10% wlw AIElJ solution [12]. When a persistent yellow/green 

colour was observed the monomer was distilled and stored at -78°C. 

9.2.4 Bifunctional initiators synthesis for use in GTP polymerisations 

9.2.4.11,4-Bis (methoxytrimethy/siloxymethylene) cyC/ohexane (BMMe) 

(a) 

(b) 

Figure 9.6: (a) 4-Bis (methoxytrimethylsiloxymethylene) cyclohexane (BMMC) (b) Specially 

made glass reactor used for the synthesis of BMMC. 

BMMC was prepared using a literature recipe [13]. Synthesis of BMMC was 

carried out in a specifically designed four armed 250 ml round bottom glass reactor 

fitted with a magnetic stirrer and contact thermocouple, as shown in figure 9.6b. All 
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glassware was dried overnight prior to assembly in a 125-180°C oven, and flame dried 

immediately before use. 

100 mls of dry TH F was distilled into the reactor and at the same time (11.7 mls 88. 3 

mmol) of diisopropylamine was transferred via syringe into one of the side arms. The 

side arm was thoroughly purged with nitrogen, and then the isopropylamine was slowly 

added to the THF. To a second side arm was transferred (33 mls 88.3 mmol) of n­

BuLi, which was also thoroughly purged with nitrogen. The temperature of the solution 

in the reactor was reduced to -78°C and the n-BuLi was then added dropwise over a 

period of15 minutes. The reaction mixture was allowed to return to room temperature 

and stirred for a further two hours. To. a third side arm w.as added (6 mls 33 mmol) of ._ 

dimethyl 1,4-cyclohexane dicarboxylate, which was thoroughly purged with nitrogen. 

The reaction solution was once again cooled to -78°C and the diester was added 

dropwise over a period of 30 minutes. The solution was allowed to stir for a further two 

hours. To a fourth side arm was added (14.8 mis, 117 mmol) of trimethysilyl chloride. 

Following repeated degassing with nitrogen, the trimethysilyl chloride was added to the 

reaction mixture and stirred for a further two hours, before being allowed to warm 

slowly to room temperature. 

Solvent was removed under vacuo and dry hexane (approx 30 mls) was then 

added. The solution was filtered and n-hexane removed using rotary evaporation. 

Evaporation of solvent yielded an oily residue that was distilled from impurities under 

high vacuum. 

1H (CDCI3) = (ppm) 0.20 (s; 18H; Si(CH3)J); 2.04 (s; 4H, CH2); 2.10 (s; 4H, CH2); 3.50 

(s, 6H, OCH3)' 

MS ES+, MH+ = 345 
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9.2.5 Catalyst synthesis for use in GTP polymerisations 

9.2.5.1 Tetrabutylammonium Hydrogen Bisbenzoate (TBABB) 

o o 

Figure 9.7: Tetrabutylammonium Hydrogen Bisbenzoate (TBABB). 

TBABB as illustrated in figure 9.7 was prepared using a literature recipe [14]. 

Example. Benzoic acid (2 g, '16 mmol) was dissolved in 40% aqueous 

tetrabutylammonium hydroxide (15.9 mls). The solution was thoroughly mixed with 

gentle heating for a minimum of 15 minutes. A uniform solution resulted which was 

extracted five times using dichloromethane (5 x 15 mls). 

Benzoic acid (2g, 16 mmol) was added to the dichloromethane extract and 

thoroughly mixed. MgS04 was added to the extract. The solution was filtered and the 

solvent was removed under vacuo. Dry THF (15 mls) was added to dissolve the 

residual solid followed by careful addition of diethyl ether (50 mls) down the sides of 

the flask The solution was left to stand at room temperature overnight resulting in 

needles of bioxyanion. The solid was dried under high vacuum (10-5 Pa) for 1 week. 

1H (CDCI3) (ppm) = 1.00 (t, 12H, CH3); 1.44 ,(m, BH, C,l::hCH3); 1.64 (m, BH, 

CH2C,l::hCH2CH3); 3.20 (m, BH, NCH2); 7.39 (m, 6H, Ar m, p); 7.97 (d, 4H, Ar 0). 

Elemental Analysis: C 73.93, H 10.0 N 2.95 Expected C 74.19 H 9.75 N 2.BB. 
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9.2.6 Synthesis of PMMA-block-PDEA-block-PMMA triblocks 

Figure 9.8: Reactor used for the synthesis of PMMA-block-PDEA-block-PMMA triblock 

copolymers. 

PMMA-block-PDEA-block-PMMA copolymers were prepared using a modified 

literature recipe [15]. All GTP reactions were carried out in a specially designed four 

armed glass reactor fitted with a magnetic stirrer and contact thermocouple, as shown 

in figure 9.8. Each arm of the reactor contained a Young's tap and rubber septum. All 

glassware was dried overnight in a 125-180°C oven prior to assembly. The following 

description outlines the general procedure used in a GTP reaction. Quantities of 

monomer and initiator used will depend on the target molecular weight. 

In a typical polymerization, 2 mol % of TBABB (relative to initiator) was added 

to the reactor. The reactor was then put under high vacuum and flamed. Dry THF (200 

mls) was vacuum distilled into the reactor and the solvent was stirred to ensure 

complete dissolution of the catalyst. BMMC was transferred using a glass syringe into 

one of the side arms, which was then immediately purged with dry nitrogen. The 

initiator was then added to the reaction solution and stirred for 30 minutes. During this 

150 



Appendix - Theoretical background and experimental methods 

time DEA and MMA monomer were transferred via cannula into their respective side 

arms of the reactor. Both side arms were thoroughly purged with dry nitrogen. When 

stirring of the initiator was complete DEA monomer was added to the solution. The 

reaction exotherm was recorded using the contact thermocouple. When the exotherm 

abated a sample aliquot was removed for analysis and MMA monomer was 

immediately added to the solution. The solution was stirred overnight to ensure 

complete polymerization of MMA. Finally methanol was added to the solution, which 

was subsequently stirred for 1 hour to terminate the reaction. The solution was 

transferred into a round bottom flask and the solvent removed under vacuo. A white 

solid precipitated which was dried under high vacuum for five days. 

9.2.7 Bifunctional initiators synthesis for use in anionic polymerisations 

9.2.7.1 1,2-bis-(4-benzoylphenyl)ethane 

o o 

Figure 9.9: 1,2-bis-{4-benzoylphenyl)ethane. 

1,2-bis-(4-benzoylphenyl)ethane as illustrated in figure 9.9 was prepared 

using a literature recipe [16]. To an ice-cooled suspension of AICh (70.40g, 0.53 mol) 

in 1,2-dichloroethane (120 mls) was slowly added benzyl chloride (61.76g, 0.44 mol) 

in 1,2 dichloroethane (40 mls) under an N2 atm·osphere .. The reaction mixture was 

allowed to return to room temperature and 1,2-diphenylethane (40.1 g, 0.22mol) in 1,2-

dichlorethane (50 mls) was added. The reaction mixture was stirred overnight resulting 

in the formation of a deep red solution. The solution was poured onto ice (300 mls), 

and then extracted into diethyl ether. A precipitate formed between the aqueous and 

organic layer. The aqueous layer was discarded and the precipitate collected. The 

organic layer was washed with distilled water resulting in the formation of more 
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precipitate. The precipitate was further purified by recrystallisation using a mixture of 

cyclohexanel THF (1 :2). 

9.2.7.2 1,3-bis (1-pheny/ethenyJ) benzene 

Figure 9.10: 1,3-bis (1-phenylethenyl) benzene. 

To a solution of methyltriphosphoniumbromide (20.07 g, 0.056 mol) in THF (100 

mls) was added dropwise n-BuLi (32 mis, 2.5M in hexanes) at O°C under an N2 

atmosphere. Dichloromethane (4 mls) was then added to the solution followed by 1,2-

bis-(4-benzoylphenyl)ethane (9.03 g, 0.023 mol), the reaction was stirred overnight. 

The solution was filtered leaving behind a white solid. The solid was washed with THF 

until the solvent ran clear. Solvent from the filtrate was removed under vacuo leaving 

behind a brown solid, which was further purified by recrystallisation in the minimum 

amount of acetonel methanol (1/9). 

1H (CDCI3) (ppm) = 2.95 (s, 4H, CH2); 5.40 (d, 1H, CH); 5.45 (d, 1H, CH); 7.1 (d,4H, 

CH Ar); 7.25 (m, 14H, CH Ar). 

13C (CDCI3) (ppm) 37.56 ~H2)2; 113.83 (C=CH2);'127.67, 128.15, 128.25, 128.31 (Ar 

CH) 139.17,141.39,41.65 (quat C), (149.86(C=CH2) 
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9.2.8 Synthesis of PMMA-block-PMAA-block-PMMA triblocks 

c F 

Figure 9.11: Reactor used for the synthesis of PMMA-block-PMAA-block-PMMA triblock 

copolymers. 

PMMA-block-PMMA-block-PMMA copolymers were prepared using a modified 

literature recipe [17]. All anionic polymerizations were carried out using glass break 

seals whenever possible for the transfer of monomers and reagents. All glassware was 

dried prior to assembly overnight in a 125-180oe oven. 

The following description outlines the general procedure used in a typical 

polymerization. Quantities of monomer and initiator have not been included as a range 

of polymers were synthesized with different molecular weights . 

A specially designed reaction vessel was used as shown in figure 9.11 . Four 

breakseal ampoules containing MMA (A), ter-8uMA (8) , degassed methanol (5 mls) 

(D) and sec-8uLi (solution in cyclohexane) (E) were connected to the reactor. (e) Liel 

(solution in THF) and (F) DOPE (solution in THF) were stored in ampoules fitted with a 

Youngs tap. The reactor was first flamed under high vacuum. THF (250 .mls) was 

distilled into the reactor, the ampoule of Liel (10 times molar excess compared to 

initiator) was then added to the solution while maintaining continuous stirring. After 
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dissolution of LiCI the ampoule of sec-BuLi was added to the solution. Using a 

methanol/solid CO2 bath the contents of the reactor were then cooled to -78°C. The 

DDPE solution was then slowly titrated, resulting in the formation of a blood red 

solution. Cold ter-BuMA was added to the reaction mixture with vigorous stirring, 

causing the red colour to immediately disappear. The reaction was left stirring at -78°C 

for a further 90 minutes. Cold MMA was then added to the solution with vigorous 

stirring. After.a further 30 minutes the reaction was terminated by addition of degassed 

methanol (approximately 5 mls). 

The polymer was precipitated in a methanol/water mixture (90/10), filtered off 

and dried under high vacuum. 

9.2.9 Hydrolysis of PMMA-block-terBuMA-block-PMMA 

PMMA-block-terBuMA-block-PMMA copolymer (2 g) was added to a round 

bottom flask and dissolved in dichloromethane (DCM) (20 mls). A five times molar 

excess of trifluoroacetic acid was then added under nitrogen and the solution was 

stirred at room temperature for 24 hours. After 24 hours the DCM was removed by 

rotary evaporation. A white solid precipitated which was subsequently dissolved in 

dioxane (20 mls). The polymer was then precipitated in hexane. 
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9.3 GPC ANALYSIS 

9.3.1 Theory of GPC analysis 

Gel permeation chromatography (GPC), also referred to as size exclusion 

chromatography (SEC) is a method for determining the molecular weight distribution 

and molecular weights of polymers. The method involves the permeation of a dilute 

polymer solution through a special column containing microporous beads of cross­

linked polymer, typically polystyrene [18] (other porous material can be used including 

glass beads and silica gels). The diameters of the beads are comparable in size to the 

molecular coils in solution. 

Polymer coils permeate through the column in two ways. Some will pass 

through the beads, and others pass through the interstitial volume (the volume 

occupied between the beads). 

Lower molecular weight polymers which have a smaller coil diameter (and 

hydrodynamic volume) are able to penetrate into the beads more easily compared to 

larger polymers. The passage of smaller molecules through the column is therefore 

slower than larger molecules, which consequently travel through the interstitial volume. 

Transport through the interstitial volume is thus faster than through the beads. The 

amount of time it takes for the polymer to permeate through the column increases as 

the molecular weight is lowered. 

The concentration of polymer eluting through the column is continuously 

measured as a function of time using a suitable detector. The specific type depends on 

the properties of the polymer and eluting solvent, examples include UV, refractive 

index, viscosity, light scattering or a combination of several detectors. 

To determine accurate molecular weight information it is necessary to calibrate 

the column. To achieve this a series of well characterised calibration standards are 

eluted through the column. 

A plot of log Me. [ll]e vs retention volume (Vr) for a given solvent and 

temperature is used to construct a universal calibration plot, where Me is the ,molecular 

weight and lle is the intrinsic viscosity of the calibrant. This relationship was first 

identified by Benoit et al [19] which is possible by assuming the hydrodynamic volume 
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of the polymer is related to the product of intrinsic viscosity and molecular weight. If 

there is a valid universal calibration curve for the system then, 

(9.2) 

where the subscript c and u represents the calibrant and polymer under study 

respectively. -

As polymer chains swollen in the eluting solvent may swell to a different 

extent compared to an equal molar mass sample of the calibrant polymer, there 

hydrodynamic volume may not necessarily be the same. These subtle differences 
• a" 

can be taken into account using the Mark-Houwink parameters [20], [17]=KM , 

determined from solution viscometry, where K and a are empirical constants. 

Application of this equation allows the molecular weight of a polymer to be 

determined even if it is of a different type to the calibrant. 

9.3.2 GPC Setup 

9.3.2.1 GPC analysis of PMMA-block-p(ter-BuMA)-block-PMMA triblock samples 

Molecular weights and molecular weight distributions of PMMA-block-p(ter­

BuMA)-block-PMMA triblock copolymers were evaluated using triple detector gel 

permeation chromatography (GPC). The system was equipped with a dual 

refractometer! viscometer model 250 detector, and a RALS (right angle light scattering, 

" = 633 nm) detector (Polymer Laboratories PLgel 2 mixed-C columns, HPLC grade 

THF as eluent). The sample concentration was less than 1 mg!ml. The data was 

analysed using Multi offline GPC software. 

9.3.2.2 GPC analysis of PMMA-block-PDEA-block-PMMA triblock samples 

Molecular weights and molecular weight distributions of PMMA-bloCk-PDEA­

block-PMMA triblock copolymers were evaluated using gel permeation 

chromatography (GPC). The system was equipped with a refractive index detector 
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(mixed "D" columns, HPLC grade THF as eluent, stabilized with BHT at a flow rate of 

1.0 mL min-\ and was calibrated with linear poly(methyl methacrylate) calibration 

standards (Polymer Labs). Triethylamine (50mls per 2500mls) was also added to the 

eluent to reduce the chances of the polymer sticking to the column. 

9.4 SMALL ANGLE X-RAY SCATTERING 

9.4.1 Theory of Small angle X-ray scattering (SAXS) 

SAXS is an analytical X-ray application technique for the structural analysis of 
.~' .' 

both liquid and solid state materials. The technique is widely used in areas such as 

polymer science, biology and material science, where it can be harnessed to 

determine parameters such as particle size, conformation, pore sizes and much more. 

Scattering is recorded at scattering angles below 3 degrees, and it is therefore ideally 

suited for probing structures with length scales between 1 - 100nm. 

In SAXS, the sample is irradiated with a collimated beam of intense X-rays. 

Whilst most of the x-rays simply travel straight through the sample, if sufficient electron 

density contrast is present the sample will undergo scattering. The scattered x-rays are 

detected by a 2 dimensional detector placed behind the sample, perpendicular to the 

direction of the incoming light, as shown in figure 9.12. 

) 
) 
) 
) 

Incident beam sample 

(a) 

Figure 9.12: (a) Basic geometry of small angle X-ray scattering involving the incident X-ray 

beam, the sample, scattering wave and detector. (b) scattering vector, elastic scattering 

only, i.e. I kll = I ks I 
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The intensity of the scattered beam and changes of scattering intensity with scattering 

angle, 29 are dependent on the electron density distribution within the sample. In a 

typical scattering experiment, I(q) is measured for different values of the scattering 

vector q. 

The origin of this vector quantity is illustrated in figure 9.12b, where k; and ks 

represent the scattering vector of the incident and scattered light respectively. It is 

defined as the difference between the propagation vectors of the scattered and 

incident light [21]. The magnitude of q quantifies the lengths in the reciprocical space 

and is expressed in A-1 or nm-1
. 

The length in reciprocical and direct space are linked together through equation 

9.3 [22]. 

d=2n/q, (9.3) 

where d is the domain spacing of the sample. Using Bragg's law shown below, 

nA= 2dsin9 (9.4) 

where n is an integer, A is the wavelength of the x-ray beam, d is the distance between 

scattering planes or d-spacing, and 29 is the scattering angle, equation 9.3 can be re­

written in terms of the scattering vector, q. 

47r . () q=-sm 
A 

It follows that the intensity of scatter is approximately sin9 I A 

(9.5) 

In a two component system of particles, where one phase is immersed in the matrix of 

another, the scattering intensity can be written as, 

(9.6) 
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where n is the number density of discrete domains, p is the electron density difference 

between the two phases, V is the irradiated volume, P(q) is the form factor and Seq) is 

the structure factor. 

The form factor is a function which describes the scattering from individual 

domains, it contains information on the shape and dimension of the particles. The 

structure factor is a function which describes the scattering from the spacial 

arrangement of domains. It describes the inter-particle interference effects, and as the 

concentration of the system increases this effect becomes more prominent. In a highly 

ordered system, such as well ordered block copolymers the structure factor manifests 

itself as series of peaks in the SAXS profile. From the ratio of the most intensity 

scattered peak (first order of reflection), qmax, to the other peaks it is possible to 

determine the microphase morphology in the sample. 

Examples include: 

qmax = 2qmax : 3qmax : 4qmax 

qmax = .J2qmax : ~3qmax : ~4qmax 

qmax = .J3qmax : ~4qmax : ~7qmax 

Lamellar structure 

Body centred cubic (BCC) 

Hexagonal packed cylinders (HPC) 

The intensity of qmax is also related to the degree of microphase separation 

within the sample. In addition, the width gives information on the size distributions of 

inhomogeneities. A narrower peak indicates a more ordered structure. 
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9.4.2 SAXS Instrumentation 

SAXS data presented in chapters 3 - 7 was collected using two SAXS 

instruments. Specific details of the two instruments are given in section 9.4.2.1 and 

9.4.2.2. Table 1 indicates which instrument was used in each chapter of the thesis 

for a given set of experiments. 

Experiments performed at Synchrotron radiation sources required complex 

experimental setup such as liquid cells and scanning stages. Details of this setup 

can be found in section 9.4.3, which is additionally listed in table 9.1 for reference. 

9.4.2.1 Bruker AXS NanoStar (Nanostar) 

SAXS data was collected using a Bruker AXS NanoStar Laboratory SAXS instrument 

equipped with a 20 position-sensitive gas detector (Hi-Star, Siemens AXS). A CuKa 

radiation source was used (1 .54 A). The sample to detector distance was set at 1.045 

metres. 

9.4.2.2 European Synchrotron Radiation Facility (ESRF), Grenoble, France (BM26) 

SAXS data was collected at station BM26 (OUBBLE) using a wavelength of 1.24 A and 

sample to detector distance of 6.5 meters. 

Table 9.1: Details of the specific SAXS instrument and experimental setup used in each 

chapter of the thesis 

Chapter SAXS instrument Special setup, chapter 

reference 

3 Nanostar 

4 BM26 9.4.3.1 

5 BM26 9.4.3.1 

6 BM26 9.4.3.2 

7 BM26 9.4.3.1 
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9.4.3 Experimental SAXS setup 

9.4.3.1 "Static" Small Angle X-ray Scattering Setup 

To facilitate a reduction in the amount of time required to scan static SAXS 

samples a scanning plate was constructed. This is shown in figure 9.13. The scanning 

plate was constructed from a robust stainless steel plate. 100 holes of equal 

separation were drilled into the plate in a 10 x 10 configuration, each hole having a 

diameter of 3mm. Each polymer sample was immersed in 100mls of buffer solution for 

at least 24hrs. Once it had reached equilibrium it was placed into its respective hole. 

Kapton tape was added to each face of the plate to seal the hydrogel and stop 

evaporation of water. The fully loaded sample plate was securely attached to an x-y-z 

translation stage. Under computer control each sample was scanned in turn and the 

SAXS data collected . 

z 

r 
Polymerfilm 

Figure 9.13: Static SAXS experimental setup. A static scanning holder was constructed 

using stainless steel plate. This consisted of 100 holes (3mm diameter) in a 10 x 10 

configuration. Polymer films were sealed into each hole using Kapton tape. 
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9.4.3.2: "Dynamic" Small Angle X-ray Scattering Setup 

Dynamic SAXS data at station BM26 was collected using the experimental 

setup illustrated in figure 9.14a. A liquid cell was connected into a series consisting of 

solutions, flow valve, liquid cell and a Watson Marlow 205U peristaltic pump. An 

expanded view of the cell construction, highlighting the main design elements is shown 

in figure 9.14b. The cell consisted of two X-ray transparent windows which allowed the 

polymer sample to be monitored by SAXS. Each X-ray window was constructed from 

mica, which was mounted onto the end of a hollow brass bolt. The two bolts when fully 

screwed into the liquid cell had a 4mm gap between them. A 4mm thick PTFE washer 

was used as a sample holder, and was placed into this gap. 

PTFE washer (sample holder) 

Flow Valve Solution 

To peristaltic pump 

I 

[QJ 

Solution 
Path 

SIDE VIEW 

(b) 

/ 

Brass Bolts 
X-Ray Path 

/ 

CELL DESIGN 

Figure 9.14: Dynamic SAXS experimental setup. (a) Overall SAXS setup, solutions, flow 

valve, liquid cell and peristaltic pump connected together in series. (b) Illustration of the cell 

design (approximately 7cms x 4cms x 7cms). 
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The washer had a small recessed area on one side for attachment of polymer films. It 

also contained a small liquid channel drilled through the centre. The thickness of the 

PTFE washer was kept to a minimum to reduce the amount of unwanted solution 

absorption. A small horizontal channel was also drilled across the liquid cell. This 

allowed liquid to flow through the cell. When the channel in the liquid cell was in-line 

with the channel in the sample holder solution could be pumped through creating a 

liquid environment in the void of the washer. 

The flow of the solution entering the cell could be controlled by varying the 

pump speed. The multi-flow valve could be connected with upto 8 solutions, thus 

allowing rapid switching between them if needed. 

In a typical procedure a cast polymer film (typically 5mmx5mm) was mounted 

into the PTFE sample holder. This was then placed inside the liquid cell.The two brass 

bolts were then carefully screwed .into the cell ensuring the channel in the washer and 

cell were aligned. Using a translation stage the liquid cell was moved until the X-ray 

beam was found to go through the centre of the sample. At this point the solution was 

introduced into the cell and X-ray scattering was commenced, with a typical resolution 

of 1 frame every 15 seconds. The pH of the solution was monitored continuously using 

a microelectrodes Inc 16-702 flow thru reference electrode. This was connected inline 

between the solution and flow valve. 

9.5 ATOMIC FORCE MICROSCOPY 

Atomic force microscopy measurements were collected in tapping mode using 

a multimode Nanoscope ilia Digital instruments atomic force microscope. Commercial 

Si tips with a resonant frequency of -300 kHz and a spring constant of approximately 

40 N m-1 were used. 

9.6 POLYMER CASTING AND ANNEALING 

The specially synthesised block copolymers were processed' to form 

nanostructured thin films. This was achieved by polymer casting and solvent 

annealing. A description of the technique is given below. 
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The triblock copolymers were first dissolved in a good solvent. The particular 

solvent depended on the type of material. PMMA-(block)-PMAA-(block)-PMMA 

samples were dissolved in an 85/15 methanol/acetone co-solvent or dioxane. PMMA­

(block)-PDEA-(block)-PMMA samples were exclusively dissolved in THF. Thin films 

were prepared by solvent casting the polymer solution onto a PTFE sheet using a 

Precision Gage and Co. Applicator. "Solvent rich" films were then immediately placed 

into solvent rich environments, containing the same solvent composition used to cast 

the film. A small aperture in the solvent environment allowed slow evaporation of 

solvent. The annealing solvent and annealing time for the respective experiments 

performed throughout this thesis are listed in table 9.2. 

Table 9.2 Annealing conditions used to prepare solvent cast films of PMMA-block-PMAA­

block-PMMA and PMMA-block-PDEA-block-PMMA. Polymers, with the exception of those 

used for diffraction experiments in section 7.13 were solvent cast onto PTFE using a 

Precision Gage and Co. Applicator. "Various" indicates a range of annealing times were 

used of which the specific details are indicated in the relevant chapter. 

Chapter Section Solvent Weight Sample Annealing 

Percent thickness I time I days 

microns 

3 3.3.3 THF 40 200 various 

85/15 (v/v) 40 200 

3 3.5.3 THF 40 200 various 

3 3.6 THF 40 200 7 

3 3.8.1 Dioxane 40 110 30 

3 3.8.2 THF 40 110 7 

4 4.14 -4.18 THF 40 80 7 

5 5.2 see above see above see above see above 

6 6.16 - 6.18 THF 40 80 7 

7 7.13-7.14 THF 40* 80* 7 

*Imprinted diffraction grating were prepared at 30 weight percent, cast at a thickness of 30 

microns and annealed for one day. 
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9.7 GENERAL BUFFER PREPARATION FOR USE IN "STATIC" 

AND "KINETIC" EXPERIMENTS 

9.7.1 Reagents 

Formic acid (SOS, purex analytical grade), sodium chloride (SOS, 1380517), 

sodium phosphate monobasic dihydrate (Acros organics, 99+%, for analysis), citric 

acid monohydrate (Riedel de Haen), sodium bromide (Riedel de Haen, puriss), sodium 

thiocyanate (Riedel de Haen), sodium iodide (Riedel de Haen, puriss 99-100.5%), 

sodium nitrate (Riedel de Haen, puriss) and ethanol .amine (Riedel de Haen, 99%) 

were used as received. 

9.7.2 Buffers used to control pH, Ionic strength and salt identity. 

Citric acid, sodium phosphate and ethanolamine buffers used to measure the 

"static" and "dynamic" response of the hydrogels, were pH stabilised by relatively small 

concentrations of buffer species (0.01 M - 0.05 M), and the total ionic strength was 

controlled by the addition of neutral sodium salts; namely NaCI, NaBr, NaN03, Nal, 

NaSCN and NaAce. 

9.7.3 Monobasic buffer preparation 

The general method used to prepare monobasic buffers is detailed below, an 

example is included for the preparation of a 0.05 M ethanol amine buffer, at pH 10, 

using NaCI to fix the overall ionic strength to 0.1 M (prepared at 25°C). 

Step 1: The pKa of ethanol amine (9.50 [23]) was thermodynamically adjusted 

for temperature and ionic strength using the Oebye-Huckel relationship shown in 

equation 9.7,[24] where pKai is the modified pKa, Za is the charge on the .conjugate 

acid, I is the ionic strength of the solution and A is a constant which has a value of 

0.5114 at 25 °C.[24] 

165 



Appendix - Theoretical background and experimental methods· 

pKa' =9.5+((2 x O)-1) 

pKa' =9.61 

0.5114.JQ.1 _ 0.1 x 0.1 
1 +.JQ.1 

(9.7) 

(9.8) 

(9.9) 

Step 2: The Henderson-Hasselbalch relationship (eq. 9.10) was then used to 

determine the concentration of base [A"] and acid [HA] in the buffer at the given pH 

and the total buffer concentration (Le. pH 10 at a total buffer concentration of 0.05M). 

[A"] 
[pH] = pKa + log10 -­

[HA] 
(9.10) 

Equation 4 implies that the acid component of the buffer is neutral, and the basic 

component has a negative charge. While this is true for many buffers, in the case of 

ethanol amine for example, the basic component is neutral and the acid component is 

charged (+ 1). For clarity the Henderson-Hasselbalch equation may be re-written as 

shown in equation 9.11, where A", defined as a proton acceptor from Bronsted-Lowry 

theory represents the base. 

[base] 
[pH] = pKa + log10 . 

[acid] 
(9.11 ) 

The total concentration of acid and base in the buffer is given by equation 9.12. 

Cbuffer = [HA] + [A"] (9.12) 
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The concentration of acid [HA] is related to the concentration of hydrogen ion [H+] and 

base [A-] through the equilibrium constant, Ka, see equation 9.13. 

(9.13) 

Rearrangement, followed by substitution of equation 9.13 into 9.12 allows the 

concentration of base to be determined. 

[A -] = [0.05][2.45 x 1 0 -10] 

[2.45 x 1 0 -10] + [1 x 1 0 -10 ] 

[HA]+[A-] = O.05M 

[HA] = 0.0146 M 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

(9.18) 

(9.19) 

Step 3: Using this information the ionic strength of the buffer species can then 

be determined. 

The ionic strength describes the overall ionic properties of the solution. It is a 

function of the concentration of all individual species dissolved in solution; 

encompassed in equation 9.20. 
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(9.20) 

where Cj is the concentration of the ionic species, i, and Zj is the charge on that ion. The 

total ionic strength is taken as the sum of all species. 

In this example the concentration of [base] and [acid] is 0.0354 M and 0.0146 M, 

respectively. 

In the case of citric acid buffer, the only ions which contribute to the ionic strength are 

protonated ethanol amine (HOGH2NH3 +) and chloride anion (Gil 

There ionic strength is calculated below, 

(9.21 ) 

(9.22) 

I =O.015M (9.23) 

As, !total = Ibuffer + Isalt. (9.24) 

where Ibuffer and Isalt are the ionic strength due t<? the added salt and buffer species 

acting alone, respectively. This indicates that another 0.085 M of NaGI must be added 

to maintain an ionic strength of 0.1 M 

The final buffer can be prepared in 2 ways, (1) by dissolving the required 

amount of basic and acidic components in solution to give a final solution at the correct 

pH, (2) dissolve the required amount of basic or acid component in solution, then 

titrate it to the required pH using either strong acid or base. 

9.7.4 General procedure for preparation of multivalent buffer solutions 
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The method used to prepare multivalent buffers is more complicated. A full 

derivation can be found in chapter 5, section 5.2. 

Equations (9.26-9.29) describe how the fractional composition of each ionic 

species (H:A, H2A- and A3-) in a trivalent buffer, such as citric acid used in this study, 

vary with changes in pKa, (thermodynamically corrected), pH (-log [H+]) and the total 

buffer concentration [C). 

The fractional composition of each species multiplied by the total buffer 

concentration [C) gives the concentration of each species in solution (mol dm-3
). The 

concentration of each individual species can then be inserted into equation 9.20, to 

give the ionic strength. Summation of the ionic strength for each species gives Ibuffer 

(equation 9.24). From Ibuffer one can determine the amount of salt that must be added 

to maintain a fixed ionic strength. Care must be taken to use the correct charge and 

include all the counterions. 

(9.25) 

(9.26) 

(9.27) 

(9.28) 

(9.29) 
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9.8 DIFFRACTION GRATING EXPERIMENTAL SETUP 

- HeiNe Laser 

o 

i 0 

GaSket~ 
i 0 : . ! 
o 

- Outlet 

Liquid cell 

Figure 9.15: Dynamic diffraction grating experimental setup. 

9.8.1 Characterisation of the dynamic diffraction grating response 

An optically transparent flow cell was constructed out of Perspex (figure 9.15), 

inside of which a small (5 mm x 5 mm) piece of the imprinted gel was fixed using a 

polymer based adhesive at one corner of the gel. A rubber gasket was used to define 

the geometry of the liquid volume inside the cell (10 mm x 30 mm x 1 mm) and the 

aqueous phase was fed in from one end of the cell and pumped away at the opposing 

end. The flow geometry was such as to help minimise stress-induced curling of the 

sample as it changed volume. Initially, distilled water was pumped through the cell at a 

flow rate of 3.0 mL min-1
• After pumping for 20 minutes the solution was alternated 

between 0.05 M citric acid or 0.05 M ethanol amine at pH 3.6 and 11.5 respectively, 

the ionic strength was fixed at 0.1 Musing NaCI. A low powered 632 nm. Uniphase 

Helium-Neon gas laser was incident upon the diffraction grating perpendicular to the 

grating surface. The resulting transmitted diffraction pattern was projected onto a white 
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surface 229 mm below the polymer sample. The projected diffraction pattern was 

recorded using a Pixel ink PL-A742 colour camera every 10 seconds. The diffraction 

patterns were vertically integrated to obtain 1 D data. 

9.8.2 Characterisation of the static diffraction grating response 

Pre-cut polymer grating films (5 mm x 5 mm x 30 IJm) were equilibrated in 

buffer solutions for a period of 24 h in a glass Petri dish. In experiments to investigate 

the effect of counter ion on the expansion ratio, buffers were prepared at pH 3.6 using 

0.01 M citric acid. The ionic strength in each case was ~xed at 0.1 M using the sodiu~ 

salts, NaAce, NaCI, NaBr, Nal, NaN03. and NaSCN. pKa values (used to determine the 

concentration of buffer) were thermodynamically adjusted for temperature and ionic 

strength effects. The effect of pH on the expansion ratio of the hydrogel was also 

investigated in 0.01 M citric acid (pH 3.6 - 7.1) and 0.01 M ethanol amine (pH> 9.5) at 

a fixed ionic strength of 0.1 Musing NaCI. Each solution pH was measured before and 

after the sample had been removed, using a Thermo Scientific Ross Ultra Glass 

combination semi-micro pH electrode, calibrated at pH 4, 7 and 10. A HeNe laser (A = 
632 nm) was passed through the sample perpendicular to the surface and the 

diffraction pattern recorded at a distance of 229 mm from the sample. 

9.8.3 Fabrication of pH-sensitive polymeric diffraction gratings 

PMMAsa-b-PDEA223-b-PMMAsa copolymer was dissolved in THF (30 % w/w). 

This solution was poured onto the surface of a prefabricated quartz diffraction grating, 

which was then immediately added to a TH F rich environment. A small aperture was 

used to allow slow removal of THF over a period of 24 h. Polymer films were removed 

from the surface of the glass by plasticisation in distilled water. 
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