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Abstract

For the assessment of Masonry Arch Bridges (MAB), many structural and matc-
rial models have been applied, ranging from sophisticated non-linear finite element
analysis modecls to much simpler rigid-block limit analysis modcls. i.c. clastic and
plastic methods respectively. The application of clastic analysis to MAB suffers
many drawbacks since it requires full mechanical characterization of ancient ma-
sonry structurcs. The mechanical characterization of ancient masonry is difficuit
since these structures have typically undergone a century or more of environmental
deterioration and in many cases have been already subjected to extensive modifica-
tion. Also, sophisticated material models generally require specialized parameters
that arc hard to assess, particularly if non-destructive tests are used. In these cases
practicing engineers typically favour simpler material modecls, involving fewer pa-
rameters. Thus non-linear finite element methods or other sophisticated models
may not be a good choice for the assessment of MAB, while simplified approaches
for example based on limit analysis principles are likely to be more appropriate. In
this rescarch, a holistic computational limit analysis procedure is presented which
involves modelling both soil and masonry components explicitly. Masonry bridge
parts are discretized using rigid blocks whilst the soil fill is discretized using de-
formable triangular clements and modclled as a Mohr-Coulomb material with a
tension cut-off. Lower and upper bound estimates of the collapsc load arc obtained.
Results are compared with those from recently performed bridge tests carried out
in collaboration with the University of Salford. A key project finding is that the
usc of peak soil strength parameters in limit analysis models is inappropriate when
the soil is modelled explicitly. However, use of mobilized strengths appears to be a

promising way forward, yiclding much closer corrclation with experimental data.
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Chapter 1

Introduction

1.1 Background

Masonry arch bridges are of substantial importance to the infrastructure of the
highway nctworks of Europe. Hundreds of thousands are still in service, despite
their age and the significant changes in loading conditions since their construction.
Most bridges were constructed over a century ago and were built to carry far
less loading than they are subject to today. With the current tendency towards
heavicr vehicle weights, combined with the deterioration of the natural structural
materials from loading and environmental cffects, it can no longer be assumed that
these bridges will remain capable of carrying all vehicles currently on the road
nctwork. It is estimated that there are over forty thousand highway masonry arch
bridges in the UK in need of reassessment duc to recent and anticipated European
Community Directives (Page, 1993). Consequently in recent years considerable
cffort has been spent in order to obtain a better understanding of the behaviour

of masonry arch bridges.

The aim of the work described in this thesis has been to improve current limit
analysis assessment methods, and results from the model developed will be com-
pared with cxperimental data gleaned from carefully controlled laboratory tests.
Conventional limit analysis (and many other) models often suffer from the fact

1



Chapter 1. Introduction 2

that the anticipated influence of backfill generally needs to be stipulated in ad-
vance of an analysis; hence the soil-structure interaction model necessarily has to

be simplified.

>

Capstone — |
String course

i < —Parapet
* L Road surface

ndrel wall

Voussoir Arch barrel - ——Backil
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FIGURE 1.2: Soil-structure interaction in masonry arch bridge

Strictly speaking, soil-structure interaction (SSI) is present to some degree in ev-
ery problem where a structural element is in contact with the ground. However, in
current practice SSI is often neglected or inappropriately modelled. In some cases,
neglecting SSI is quite reasonable and is justified by experience based on satisfac-
tory performance of the resulting design. Examples include a footing foundation
for a low-rise building and simple rigid retaining walls. Unfortunately, there are
also cases where neglecting SSI can no longer be justified. In the case of masonry
arch bridges, the load carrying capacity can be strongly influenced by the presence
of backfill, the latter serving both to disperse applied loads and to provide restraint

to sway of the arch barrel at the ultimate limit state. However, to model the effect
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of passive carth pressure distribution, a reduced (empirically derived) factor of 1/3
is typically applied to the lateral earth pressure coefficient, K,. In fact, passive
carth pressures arise from deformation of the soil mass (e.g. the movement of
the arch barrel into the soil). Current assessment mecthods generally require that
the form and intensity of the distribution of passive carth pressure are specified
in advance of the analysis, which is not ideal. Additionally, the dispersion of the
applied load though the fill to the arch is also typically specified in advance. It
is normal to assume a uniform distribution of live load, or alternatively a slightly

morc realistic truncated Boussinesq modcl.

Whilst problems of this sort can for example be solved using non-linear finite el-
cment analysis. the problem tends to be computationally expensive to solve and
demands that the user has appropriate expertise. Non-linear finite element meth-
ods are more suited to in-depth, specialized assessments of major structures or for
academic rescarch, and this is not presently considered to be a practical option
for use in asscssing large numbers of existing bridges. Also, the comprehensive
mechanical characterization of materials that is required, the need for calibration
and the requirement of adequate knowledge of sophisticated non-linear solution
techniques still limit the attractiveness of the non-linear finite element method.
In contrast to non-linear finite element methods, limit analysis methods are con-
ceptually simple, easy to apply and allow quick estimates of the ultimate load to
be made. Limit analysis is currently used to solve various practical engineering
problems (c.g. geotechnical, concrete slab and metal forming problems). In this
rescarch, a holistic computational limit analysis procedure is developed which in-
volves modelling both soil and masonry components cxplicitly. The aims of this
rescarch will be achieved by carrying out the objectives, outlined in the following

scction.

1.2 Objectives and methodology

By the time the project started the coupled soil-structure limit analysis problem
had received the attention of Italian rescarchers Cavicchi & Gambarotta (2005),
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who also investigated the masonry arch bridge analysis problem. However only
upper bound solutions were presented by them at that time ,no indication of
the proximity of these to exact solutions was available. Results from their limit
analysis model werc not validated against bridge test data for which the constituent
materials were well characterized. This made it difficult to draw firm conclusions.
The aim was to address these issues in the present project. The main objective
of this work is to investigate the performance of finite element limit analysis as a
practical tool for the assessment of soil-arch interaction. In order to achieve this
primary objective, the following tasks had to be undertaken:

o development of a finite element limit analysis model for combined soil and
masonry problems, and initial verification of this through application to a
number of standard benchmark problems.

e more in-depth verification of the model through application of this to a
number of full scalc bridge tests.

¢ implementation of enhancements to the model as proves necessary.

o considcration of other potential applications of the developed numerical

model.

1.3 Thesis layout

Chapter 1-Introduction: This chapter gives a bricf outline of the contents of this
thesis, together with a statement of the issues investigated.

Chapter 2-Literature review: This chapter briefly reviews historical and current as-
sessment methods applied to masonry arch bridges. Various methods of strength-
cning bridges are also outlined. The fundamental theory of plasticity and the basis
of limit analysis are described and this chapter also looks at application of limit
analysis to gecomechanics and masonry problems, and contributions in these fields
arc recognized and discussed.
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Chapter 3-Numerical limit analysis model of masonry-soil intcraction: This chap-
ter establishes a mathematical formulation which can be applied to masonry arch
bridge structurcs. Both lower bound and upper bound formulations for soil and
masonry are presented in detail. Numerical solutions obtained from the soil model

arc validated against benchmark literature solutions.

Chapter 4-Application of numerical limit analysis model to soil structure inter-
action problems: the numerical model developed in the previous chapter is used
to analyse a number of laboratory bridges tested recently at Salford University.
Results from the model are discussed and issues which arise are emphasised at the
cnd of the chapter. An important conclusion is that soil strength mobilization is
important when analysing masonry arch bridges. This chapter also identifies the
neced for an improved model.

Chapter 5-Mobilized strength limit analysis of masonry arch bridges: In this chap-
ter the issucs raised in chapter 4 are discussed and a new approach to solve the
soil strength mobilization problem is introduced. The new approach is validated
by comparing solutions with results from the literature. The new model is then
used to re-analyse Salford tests.

Chapter 6- Discussion: A number of issues relating to the finite element limit
analysis models developed are discussed. This chapter also includes consideration
of potential other applications of finite element limit analysis. In addition to
finite clement limit analysis, the author’s contribution to the development of the
innovative new discontinuity layout optimization (DLO) method is also described
in this chapter.

Chapter 7- Conclusions and reccommendations : In this chapter the main conclu-

sions are drawn together and reccommendations for future work are outlined.



Chapter 2

Literature review

2.1 Introduction

It is not clear where and when the construction of arch bridges originated, but
archacologists belicve that arches and vaults originated in Egypt and China about
five thousand years ago CIRIA (2006). In Europe the establishment of masonry
arches as part of the common European cultural heritage is a legacy of the Roman
Empire. The development of transport infrastructure for trade, communication
and military activitics was vital to the administration of the Empire. The Romans
made great use of the arch. Figure 2.1 shows one of their largest stone arch bridges,
built in 105AD at Alcantra in Spain. It has six arches, up to 30m in span and is
probably the oldest stone arch of any significant size outside China still in existence
(Page, 1993).

Most Roman arches were scmicircular in shape but some were scgmental. Most
bridges were constructed from cut stonc voussoirs, usually without mortar. Re-
grettably there are no Roman bridges still in existence in the United Kingdom.
After the Romans many arch bridges were build in Britain in medicval times,
perhaps the most famous being London Bridge, begun in 1176 and completed in
1209. The main period of arch bridge building in the United Kingdom began with
the construction of the canals in the second half of the cighteenth century and

6
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FIGURE 2.1: Roman bridge at Alcantara, Spain (built 103-106 AD)(source from
wikipedia)

ended when the railway network was substantially completed at the beginning of
the twentieth century. Very few masonry arch bridges have been built since the
first world war. It is estimated that there are about forty thousand masonry arch
highway bridges in the UK, and thirty three thousand railway masonry arch spans.
Most are modest structures with spans up to about ten metres. There are only a
small proportion with spans greater that twenty metres; the longest span in the

United Kingdom is the Grosvenor Bridge, Chester, with a span of 61metres.

Bridges built from stone were potentially very solid and durable structures, but
relied greatly on the quality of locally available materials and the skill of the ma-
sons. Until the end of the Middle Ages, brickwork was seen as inferior to stone for
construction. The material used to fill an arch bridge often consisted of whatever

was readily to hand, such as the material excavated during the building of the
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foundations. It may nevertheless have high strength as a result of its composi-
tion and due to consolidation and compaction over the years. Figure 1.1 shows
the basic structural elements of a typical masonry arch bridge. The arch spans
hetween two abutments, with backfill providing a transition between the arch and
the bridge surface. Spandrel and wing walls retain the fill and carry the para-
pets. Spandrel walls also stiffen the arch ring at its edges and may sometimes also
have a considerable strengthening effect. Many arch bridges have backing at their

haunches, with a cemented material to provide extra strength.

2.2 Bridge bearing capacity analysis and assess-

ment methods

There are many different approaches used by industry ‘to assess the load carrying
capacity of masonry arch bridges. They range from very simple models such as
the MEXE method, BA16 (1997), to sophisticated elasto-plastic finite element
models. However, the most frequently used method is probably still the MEXE

method - despite the fact that it appears inappropriate and often inaccurate.

Semi-empirical method

The MEXE method is semi-empirical, being originally based on an elastic anal-
ysis procedure developed by Pippard et al. (1936), who modelled a linear-elastic
parabolic arch barrel, pinned at its supports and carrying a central point load. He
made a number of simplifying assumptions and was thus able to formulate tables
for the strength of a given bridge based on limiting compressive stress criteria.
Assuming a soundly built and maintained parabolic arch with span : rise ratio of
4 : 1, the provisional axle load PAL (in kN) is given by:

PAL = [740(d + h)?]/L"® or 70 whichever is less. (2.1)
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in which, L is the span of the arch, d is the thickness of the arch barrel adja-
cent to the keystone and h is the average depth of fill, at the quarter points of
the transverse road profile, between the road surface and the arch barrel at the
crown, including road surfacing. This provisional assessment is then modified by
empirical factors which allow for deviation of the arch from the above ‘benchmark’
bridge structure. The method, however, has a number of disadvantages (Hughes
& Blackler, 1997):

e The only resisting mechanisms considered are the arch and the weight of the
backfill.

e The limiting load criterion is not realistic.
e Inappropriate assumptions are made about the geometry and load location.

e When used by inexperienced engineers, some modifying factors can be dan-
- gerously subjective.

e The assessed capacity is widely assumed to be conservative, but in fact can
be unsafe.

e The effect of strengthening measures cannot be considered.

Limit analysis (or ‘Mechanism’) methods

The simplest type of limit analysis procedure applied to arches is commonly re-
ferred to as the ‘mechanism method’. This is an arguably more rational approach
where the arch barrel is assumed to collapse by the formation of a mechanism;
the ‘mechanism’ method has become synonymous with an assumed 4 hinge failure
mechanism. Simple equilibrium calculations can be used to evaluate the vehicle
load needed to precipitate collapse for a given postulated mechanism geometry.
This procedure is repeated with different mechanism geometries until a minimum
load is found. The mechanism method has recently been incorporated in modern

software applications, obviating the need for the user to manually iterate to find
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the worst-case scenario. Currently available examples include a mechanism analy-
sis spreadsheet developed at Cardiff University (Hughes et al. 2002), and Archie-M
(2007). Modern forms of the mechanism method (e.g. Crisfield & Packham (1987),
Ng & Fairfield (2004)) can also take account the passive resistance when the arch
barrel is moving into the fill. The mechanism method is attractive not just be-
cause it is more rigorous than the MEXE method but also because formation of
a mechanism at failure has been witnessed in many of the full-scale bridge tests
carried out on masonry arch bridges (see e.g. Page 1993). However, the assumed
contribution of the soil to bridge capacity generally has to be specified in advance
and has a semi-empirical basis; extending this simple model, e.g. so as to be able

to treat bridges containing reinforced soil would be very challenging.

Limit analysis methods have been developed for masonry arches for many years.
Examples are the works of Kooharian (1952), Heyman (1982), Livesley (1978)
and Boothby (1994). A limit analysis software package called RING stemmed
from research by Gilbert & Melbourne (1994) and this software is now widely
used in industry. However, a drawback with this software is that the perceived
effect of the soil, rather than the soil itself, is modelled. i.e. this is not a holistic
model involving soil and masonry. Recently, Cavicchi & Gambarotta (2005, 2007)
have presented an upper, and, more recently, lower bound finite element limit
analysis model of the soil-arch interaction problem, which is also considered here.
In this model, a holistic model of soil-arch interaction has been used. However, in
their upper bound model the masonry was represented using 1D beam elements
(rather than using more realistic 2D masonry blocks), and relatively inaccurate
constant strain elements were employed in the finite element model of the soil. One
objective of this research is to address both these shortcomings, and to also tightly
bound the true solution from both above and below. Up until now limit analysis
models have generally been two dimensional. Consequently when such models are
applied to real, three-dimensional bridges, certain assumptions have to be made
about the third dimension. Standard practice to date has been to assume that
an applied load will mobilize a fixed width strip of the bridge. However, Harvey
et al. (2005); Harvey (2006) have recently questioned this assumption for wide

bridges, proposing instead an interesting fan-like distribution model to simulate
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the dispersal of an applied load through the arch barrels. Further validation work

is recommended before this model can be used in practice.

Finite element analysis methods

The finite element method is a powerful and widely used numerical discretization

procedure applied to many practical engineering problems.

Considering conventional elasto-plastic finite element analysis (FEA), there are
cases where its limitations are hard to overcome. The analysis of masonry arch
bridge using this method is one of them. Drawbacks of using FE analysis include:
the input parameters are difficult to determine (e.g. the backfill properties, the
masonry strength, the properties of the interface between different structural ele-
ments and the initial stress state). Also, as the complexity of the model increases
so does the time required to obtain results. Moreover, results from FEA are very
much dependent on the accuracy of the assumed material properties, which often
are difficult to evaluate by experimental analyses. Several authors have proposed
simplified models for the analysis of arch-like structures, e.g. Choo & Gong (1990);
Brencich & Francesco (2004); Betti et al. (2008); Drosopoulos et al. (2006). Al-
though simplified, these models still require the assessment of elastic and inelastic
parameters, and also involve a potentially fragile non-linear solution procedure.
Choo & Gong (1990) developed FEA models for the arch using one dimensional
elastic beam clements, which were assumed to have no tensile strength. The hor-
izontal soil pressure are taking into account by fixing horizontal clastic plastic
struts to the arch barrel, rather by modeling the backfill directly using elements.
Ng et al. (1999) describes analysis of masonry arch bridges using general-purpose
FEA software (LUSAS) and reports close agreement between predictions from
FEA and the results of the full-scale tests carried out by TRL (Page (1993)).
However, a conclusion from this paper was that FEA could model the load de-
flection behavior extremely well only in cases where the material properties were
well known. Unfortunately this is often only the case for bridges where, for re-

search purposes, tests to collapse have been undertaken, with associated material
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testing. Thavalingam et al. (2001) compares different computational modelling ap-
proaches for masonry arches, including discrete element modelling and non-linear
FEA, and concludes that the latter is preferable due to ease of use and ability to
obtain converged solutions. Two dimensional models are included in the works of
Loo & Yang (1991) Boothby et al. (1998), Owen et al. (1998) Sicilia et al. (2001),
Ford et al. (2003), and three dimensional models by Fanning & Boothby (2001).
1D models have proven to be ‘efficient’ for assessment and design purposes, for
both single and multispan bridges, whilst 2D and 3D models may give detailed

information on local phenomena at the expense of high computation costs.

2.3 Strengthening techniques for bridges

Various methods have recently been developed for strengthening masonry arch

bridges. These vary in effectiveness and each has advantages and disadvantages.

Saddling: casting a concrete saddle on the extrados is a popular method of
strengthening arches having low assessed strength. It involves excavation of the
fill to expose the extrados of the arch barrel. A reinforced or mass concrete flat or
curved slab is subsequently cast in place over the original barrel. The advantage
of this method is that the work is invisible but it is expensive and will disrupt
traffic flow during construction. Figure 2.2 shows Woolbeding Bridge with the
fill excavated prior to installation of a reinforced concrete saddle (Mabon (2002)).
Whilst saddling will undoubtedly increase the capacity of the bridge, with minimal
change to the external appearance of the bridge, it is expensive and will cause
considerable disruption to traffic and buried services which may be located within

the fill crossing the bridge.

Sprayed concrete: is widely used as a means of increasing arch ring thickness to
increase load capacity. This may be used in conjunction with a reinforcing mesh.
Applying sprayed concrete can cause moisture to be locked into the barrel, which
can lead to problems in the long term. Another disadvantage of the method is
that it reduces headroom under the arch.
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FIGURE 2.2: Strengthening Woolbeding Bridge (Mabon 2002)

Use of steel: there are various systems available. For (‘lelll])l(‘ a network of
steel bars can be inserted in slots cut into the intrados and bonded using special
adhesives. Such systems have been shown to increase the strength of bridges.

Again, these methods will affect the appearance of the intrados.

Anchor: a popular strengthening method is to insert anchors through the fill
and into the arch barrel. The system works by grouting a deformed stainless steel
reinforeing rod into holes drilled into the arch. This adds internal reinforcement

to the arch bridge so that it acts as a reinforced unit.
2.4 Load tests on full scale masonry arch bridges,
to collapse

Page (1993) reviews various experimental investigations which have been carried

out on masonry arch bridges. Thirteen load tests to collapse on full scale bridges
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FIGURE 2.3: Typical anchor positions and installation of reinforcement from
the road surface (Mabon 2002)

arc reported, ten of these being TRL organized tests on redundant bridges and
full scale models, and three being undertaken by Davey (1953) before the second
world war (numbers 10 to 13 in the table). Brief details of these tests are shown
on Table 2.1. Page carried out tests numbered 3 to 8 on the table, and details
of these can be found in Page (1987, 1988, 1989). However, at the time these
tests were conducted the MEXE method was popular so only data necessary for
a MEXE assessment was taken. Many material properties required by more ad-
vanced analysis techniques were not made available. Prestwood bridge (number
{ on the table) is the only bridge where reasonably good information on material
properties is available. However, the test loading arrangement was not ideal, espe-
cially when calibrating an assessment model that takes soil-arch interaction into

account (see chapter 4 for more details).

2.5 Theory of plasticity: historical remarks

The history of plasticity dates back to 1864 when Tresca published his yield crite-
rion based on experimental results on punching and extrusion. Since then, tremen-
dous progress has been made by many researchers, such as de Saint-Venant (1870),
Von Mises (1928), who have established some of the key foundations on which plas-

ticity theory now rests (Khan & Huang (1995)). Although the work by Tresca on
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No Bridge Span Rise Width Ring Depth of Collapse
thickness fill at load
(m) (m) (m) (m) crown(m)  (kN)

1 Bridgemill 183 285 83 0.711 0.203 3100
2 Bargower 10.0 5.18 8.68 0.558 1.2 5600
3 Preston 518 164 5.7 0.36 0.38 2100
1 Prestwood 655 143 3.8 0.34 0.165 228
5 Torksey 655 143 38 0.34 0.246 1080
6 Shinafoot 6.16 1.18 7.02 0.365 0.215 2524
7  Strathmashie 942 299 5.81 0.6 0.41 1325
8 Barlae 853 169 9.8 0.45 0.295 2900
9 Dundee 40 20 6.0 0.25 0.2 1040
10 Bolton 60 10 - 68 0.22 0.3 1170
11 Croft Breadsall 6.45 2.06 5.41 0.356 0.254 783
12 Yardley Wood 6.5 197 448 0.343 0.305 1230
13  Alcester Road 6.45 193 10.18 0.356 0.305 568

TABLE 2.1: Thirteen full scale bridge tests to destruction

the vield eriterion of metal is widely regarded as the starting point of the clas-
sical theory of plasticity, fundamental research on the failure or yielding of soils
had been carried out much earlier by Coulomb (1773), and applied in practice by
Rankine (1857) to solve earth pressure problems involving retaining walls. The
first attempt to formulate the stress-strain relationship for plastic deformation was
made by de Saint-Venant (1870). He worked on the plane plastic strain problem
using Tresca’s criterion and assuming zero work hardening. For the first time
he proposed that the principal axes of the strain increment coincided the axes of
principal stress. The elastic strain ¢¢ was neglected so that the plastic train ¢
was equal to the total strain €. The coaxial assumption made by de Saint-Venant
proved to be a foundation for the classical theory of plasticity with regard to
stress-strain relations. Saint-Venant's idea was extended to the three-dimensional
by Von Mises (1913). The basic assumptions of the theory of plasticity can be

stated as follows:

e The clastic strain ¢“ is so small as to be negligible.

e The increment of strain de, or equivalently the rate ¢, is coaxial with stress.
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The general mathematical treatment of the constitutive equation for plastic de-
formation of flow was proposed by Von Mises (1928). He noticed that in elasticity
theory the strain tensor was related to the stress through an elastic potential

function, the complementary strain energy U, such that:

ou

€if =
» (’)ai,-

(2.2)

By generalizing and applying this idea to plasticity theory, von Mises proposed
that there existed a plastic potential function Q(o;;) and the plastic strain rate.

(2.3)

Where p is a proportional positive scalar factor. To determine p, the yield criterion

was used.

e Geometrically this equation means that the plastic strain rate vector ¢” is

perpendicular to the surface. Therefore is also referred to as the normality
rule in plasticity theory.

e For an isotropic material, Q(c;;) is a function of the invariants of the stress
tensor.

Strain increment normal ‘
to the yield surface

Yield surface

Yo)=0

FIGURE 2.4: Yield surface and normality condition

The main purpose of using the plastic potential theory is to determine the plastic

potential . In fact the effective form of the function is an open question. A common
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approach in plasticity theory is to assume that the plastic potential function Q(o;;)
is the same as the yield function Y (0;;). Then the equation can be rewritten as:

Q(ai;) = Y(0i;)

and the plastic strain rate ¢” is normal to the yield surface. This is called the
associated flow rule. On the other hand, if Q(oi;) # Y (0y;) the flow rule is called

nonassociated.

Von Mises (1928) and Hill (1948) proposed the maximum plastic work principle.
It states that: If the yield surface is strictly convez, the actual work done in a
given plastic strain rate is greater than the fictitious work done by an arbitrary
state of stress not exceeding the yield limit. In short, the maximum plastic work

principle is a mathematical statement of the following two important ideas:

e The yield surface is convex.

e The plastic strain rate is normal to the yield surface.
However, the notations of normality and yield convezity mentioned above are just
mathematical ideas. In an attempt to provide a missing link between material
behaviour and these mathematical ideas, Drucker (1952) introduced a fundamental
stability postulate. In essence, Drucker’s stability postulate is a generalization of
simple facts which are valid for certain classes of materials. A material that is
stable in Drucker’s sense would have the following properties:

e The yield surface must be convex.

e The plastic strain rate must be normal to the yield surface (i.e. have an

associated flow rule).

e The rate of strain hardening must be positive or zero (i.e. an additional

stress must cause an additional strain).

e The maximum plastic work principle is valid.
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2.6 Limit analysis: basic theory

In the theory of clasticity, use has to be made of the stress-strain relations to
determine whether given stress and displacement states correspond and a unique
solution results. In an clastic-plastic material, however, there is as a rule a three-
stage development in a solution (when the applied loads are gradually increased
in magnitude from zero). These are namely the initial clastic response stage,
the intermediate contained plastic flow stage and finally the unrestricted plastic
flow stage. The complete solution by this approach is likely to be cumbersome
for even the simplest problems. Therefore, methods are needed to furnish the
load carrying capacity in a more direct manner. Limit analysis is a method which
enables definite statements to be made about the collapse load (or load multiplier)
without recourse to a step-by-step elastic-plastic analysis. Limit analysis considers

the stress-strain relationship in an idealized manner as it is illustrates in 2.5;

‘ Peak
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STRESS Residual
Work softening
o —
STRAIN

FIGURE 2.5: Stress-strain relationship for ideal and real soils

Assuming a rigid, perfectly-plastic solid subject to a static load distribution, the
problem of limit analysis consists of finding the minimum multiple of this load
distribution that will cause the body to collapse. In order to mathematically model
this type of material, the yield function, Y, is defined in such a way that for Y <0
the material remains rigid, for Y = 0, materials become plastic, and for Y > 0 the
stress state is inadmissible. At the yield surface, material becomes plastic and it is
necessary to define the flow direction. The classical limit analysis theory assumed

that the flow direction is normal to the yield surface. This hypothesis, also called
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normality condition, implies that this type of flow provides greatcst resistance

against deformation and the energy dissipation by this flow is the maximum.

A structure is said to be in a ‘statically admissible state’ when the internal stresses
arc in cquilibrium with the external forces and at no point in the structure is the
yicld condition violated. Assuming that a proportional loading analysis will be
performed, it can be stated that if [ is the base variable load and ) is the load
factor (non-ncgative), then Af is the load actually applied on the structurc. The
load factor can be increased from zero ilp to a limit for the structure to remain
safe. The ‘exact’ load factor is the largest of all possible statically admissible load
factors. Another possibility of classical limit analysis is the kinematic (upper-
bound) approach. The upper-bound theorem of classical limit analysis states that
the ‘exact’ load factor is the smallest of all possible kinematically admissible load
factors. The plastic limit load factor is the same either obtained by the static
or kincmatic approaches. This means that the only way in which a structure
in a statically admissible state can be unsafe is by reaching the yield surface in
cnough places so as to form a kinematically admissible mechanism. The uniqueness
theorem cstablishes that the largest of all statically admissible load factors equals
the smallest of all the kinematically admissible load factors and is the ‘exact’
plastic limit load factor. In order to determine this there are three possible ways:

o Static (cquilibrium) approach: scarching for the maximum statically admis-
sible load factor

o Kincmatic approach: searching for the minimum kinematically admissible
load factor

e By cquating the load factors of both formulations determined.
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2.7 Computational limit analysis

2.7.1 Introduction

Limit analysis plays a significant role in safety assessment and structural design,
cspecially in civil engineering. Over the past few decades extensive research has
been carried out on developing computational limit analysis approaches. Compu-
tational limit analysis involves two main aspects: (i) discretination e.g. by finite
clement (FE) approach and (ii) mathematical programming to solve the formulated
optimization problem. For an FE based approach, the former involves breaking
the continuum into a finite number of pieces (elements); describing the behavior
of each element by some suitable mathematical field equations; and then connect-
ing the clements together at nodes. This results in a set of algebraic equations
that represent the behavior of the whole continuum under loading and bound-
ary conditions. For limit analysis, these equations may be static cquilibrium or
kinematic compatibility equations together with associated relations. Computa-
tional limit analysis can be cstablished and modelled as optimization problems,
in which a functional is maximized or minimized, subject to sets of cquality and
incquality constraints. The resulting optimization problems arc then solved by
user developed or commercial optimization packages.

2.7.2 Mathematical optimization

Mathematical optimization or mathematical programming is an operations re-
scarch technique designed to solve problems in which an optimal value is sought
subject to specified constraints. Mathematical programming models include linear
programming (LP) and non-linear programming (NLP). In a optimization prob-
lem, one secks to minimize or maximize a real function of real or integer variables,
subject to constraints on the variables. The term mathematical programming
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refers to the study of these problems: their mathematical properties, the devel-
opment and implementation of algorithms to solve these problems, and the appli-
cation of these algorithms to real world problems. A mathematical optimization
problem, or just optimization problem, has the form

minimize [o(r) (2.4)
subject to fi(z) < b;.i=1,... m.

Here the vector x = (zy,...,2,) contains the optimization variables of the prob-
lem, the function [, is the ‘objective’ function, the functions f; withi=1,...,m
are the ‘constraint functions’, and the constants b,,...,b,, are the limits, or
bounds, for the constraints. A vector z* is called optimal, or a solution of the
problem 2.4, if it has the smallest objective value among all vectors that satisfy
the constraints: for any z with fi(2) < by...., fm(2) < b we have fo(2) > fo(z*).
The classes of optimization problem characterized by particular forms of the objec-
tive and constraint functions. As an important example, the optimization problem
2.4 is referred to as a ‘linear programming’ problem if the objective and constraint

functions fy. .., fin are lincar, i.e. satisfy
Jilax + By) = afi(x) + Bfi(y) (2.5)

for all x,y € R™ and all a. 7 € R. Conversely if the functions are not linear, the
problem is referred to as a ‘nonlinear programming’ problem.

Figure 2.6 shows an example of a lincar programming problem, where f; is the
objective function, fy—s are the constraints, and the optimum solution will lie
inside the shaded area. Short details of mathematical programming can be found
in Appendix A. It also provides details of the duality concept of linear optimiza-
tion, which is valuable for modelling masonry structures, and will be discussed in
Chapter 3.

In this thesis, the main mathematical programming technique is linear program-
ming although the optimizer software which will be used (Mosek, 2006) can also
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FI1GURE 2.6: A lincar programming problems with the feasible solution

solve certain non-linear problems. LP has been used in limit analysis for many
years since good LP packages were available before the development of NLP. In
limit analysis, the use of linear programming requires the use of piecewise linear
(PWL) approximation of yield surfaces. Generally, use of PWL yield surfaces
can increase the size of the model (increasing the number of constraints and vari-
ables). However, this can be moderated by using some type of adaptive procedure.
Representative contributions have been made by Anderheggen & Knopfel (1972);
Christiansen (1991); Andersen & Christiansen (1995); Krabbenhoft & Damkilde
(2003); Lyamin & Sloan (2002a). In most cases, the yield functions are nonlinear
(except some special cases such as Tresca yield condition in the principal stress
space), and hence a NLP problem is arrived at when a limit analysis model is for-
mulated. Many authors have been using NLP in their model, representative works
have been made by Casciaro & Cascini (1982); Ciria & Peraire (2004); Makrodi-
mopoulos & Martin (2005); Andersen et al. (1998); Zouain & Herskovits (1993);
Christiansen & Andersen (1999); Martin & Makrodimopoulos (2008). However,
there exists a trade-off between the speed of LP with PWL yield surfaces and NLP

with original nonlinear yield surfaces in limit analysis.
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2.8 Application of computational limit analysis

Applications of limit analysis can be found in various aspects of practical civil
engineering structures. Some of the useful applications can be found in the anal--
ysis of metal forming, plates and shells and geomechanics. There are two useful

applications relating to this research will be reviewed in the following sections.

2.8.1 Application to masonry structures

Kooharian (1952) and Heyman (1966) were amongst the first to consider (vaulted)
masonry block structures in the context of the plastic limit analysis theorems
which emerged during the preceding century. Their model was based on three key

assumptions:

e Sliding failure cannot occur
e Masonry has no tensile strength

e Masonry has an infinite compressive strength

It may be argued that masonry is brittle and therefore cannot deform plastically.
However, it is perfectly possible to create a ductile structure from a brittle material.

The plastic behaviour of the arch is well explained Harvey (2006) as below.

“Considering an arch is subjected to a sufficiently large concentrated live load, it
will erack. Typically, there will be an initial crack near the crown of the arch
which is often too small to be visible. In that circumstance, the crack will migrate
from the crown towards the load and only become wvisible as the load increases
further. Once the hinge has reached the load point, the rotation there will grow
with increasing load, but without substantial change of geometry of the structure.
The eccentricity of the thrust at that point reaches a limit and the effective moment
in the arch, the eccentricity of the thrust times its value, becomes stable. Cracks
begin to form elsewhere and migrate towards stable positions. Each hinge rotates
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freely at a constant moment until a fourth hinge forms and the structure becomes

a mechanism. This is classic plastic behavior.”

The importance of these assumptions is that they enable the bounding theorems
of plasticity to be directly applied to the determination of a collapse load for a

masonry arch and vault.
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Ficure 2.7: Normal force acting at various position across a masonry cross-
section

In order to realize the consequences of this hypothesis, consider a cross-section
of an arch-like structure in two dimensions as in figure 2.7. Since shear failure is
avoided, only the normal components of the stresses are considered. The resultant
of these stresses must be a compressive force and must act inside the cross section
since otherwise tensile stresses would be generated. Any of the first three positions
of N shown on the figure can be considered to be safe. When N acts at position
3. a limiting condition is reached by the stress distribution. If N acts beyond this
point, as in position 4, there theoretically would be tensile stresses set up in an
areca of the voussoir, However, since the joint is assumed not to be able to transmit
tensile stresses, the traditional conservative rule that requires the normal force to
remain within the middle third is breached (see Heyman (1982)). However, if the
normal force acts beyond position 3 and still lies within the voussoir, the maonry
arch will not collapse. This conclusion is supported by Pippard & Chitty (1952)
after series of careful experiments on the analysis and design of a voussoir arch.
As the normal force resultant approaches the edge of the section, a large stress
concentration appears and crushing or spalling is likely to occur. But because of
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the infinite compressive strength assumption, the resultant is allowed to reach the
very edge. At this stage, the section is fully cracked and free to rotate around the
edge, i.c. a hinge can form at this point. Extending this idea further for every
section within an arch leads to the conclusion that if a stress state can be found
where every section is safe and the external and internal forces are in equilibrium,
then the structure is itself in a safe state. This matches the first theorem of limit
analysis, which states that collapse will not occur if at cach stage of loading, a
safe, statically admissible state can be found. The line connecting all the stress
resultants at every section of an arch is called thrust line, and an arch is safe under
a given load condition if a thrust line that lies totally inside the structure can be
found. Figure 2.8 shows an arch in a state of collapse under loading P and with
a thrust line which touches the extrados and intrados at the vicinity of points
ABCD.

FIGURE 2.8: An arch in the state of collapse

The pioneer of using modern computational methods to determine the collapse
load of masonry gravity structures was Livesley (1978), who posed a lower bound
formulation which could be solved using lincar programming. In this formulation
the problem involves maximization of the collapse load factor, subject to equi-
librium and yield constraints. In his paper, Livesley shows that the adoption of
associative friction leads to an incorrect collapse mechanism. More importantly
it may also give an overestimate of the true collapse load. When using linear
programming to solve limit analysis problems, flow will always occur normal to

the specified surface (i.e. according to the so-called ‘normality rule’). It should
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perhaps be mentioned that for certain classes of problems the assumption of as-
sociative friction has been found to provide numerical predictions which are in
broad agreement with experimentally observed results. For example, in a study
of the behaviour of multi-ring arches Melbourne & Gilbert (1995) observed that
associative friction solutions appeared to agree reasonably well with experimental

results.

Following Heyman and Livesley’s works, a number of related investigations have
been carried out. Boothby (1994) considered the failure between blocks at the
contact interface, both sliding and hinging. Several attempts have been made
to solve the non-associative flow problem recently, for example: Ferris & Tin-
loi (2001) demonstrated the use of Mixed Complementary Programming (MPC)
and Mathematical Program with Equilibrium Constraints (MPEC) algorithms.
However, the problem quickly becomes difficult to solve, and hence unsuitable
for large scale application. Begg & Fishwick (1995) introduced an automatic
numerical scheme for limit analysis problems involving rigid block structures and
non-associative friction. Orduna & Lourenco (2003) presented a model that can
simultancously take account of the limited compressive capacity of masonry and
non-associated friction, leading to a nonlinear optimization problem. Gilbert et al.
(2006) proposed an iterative procedure, in which the Mohr-Coulomb failure surface
is updated at each iteration until a converged solution is obtained. However, in
spite of much research, the challenge of reliably computing the collapse load of

problems involving non-associative function remains.

2.8.2 Application in geomechanics

It is well known that limit analysis is a powerful tool for analyzing the stability
of problems in soil mechanics. The plastic limit thcorem of Drucker (1954) can
conveniently be employed to obtain upper and lower bounds on the collapse load
for a number of geomechanics problems. The theory assumes a perfectly plastic
soil model with an associated flow rule and states that any statically admissible

stress fields will correspond to a lower bound on the true limit load. However, it
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is often difficult to apply the theorem to practical problems involving complicated
loading and geometry. An alternative method of computing lower bounds, which
uses finite elements and linear programming was originally presented by Lysmer
(1970). Lysmer proposed a technique for computing lower bound limit loads in soil
mechanics involving discretizing the soil mass into a number of 3-noded triangular
elements. The nodal variables were the unknowns and statically admissible stresses
were allowed to occur at the shared edge between adjacent triangles. In contrast to
standard finite element formulations, each node was unique to a particular element

and more than one node could share the same co-ordinates.

Application of boundary conditions, equilibrium equation and yield criterion leads
to an expression for the collapse load which is maximized subject to a set of
constraints on the stresses. In order to avoid nonlinear constraints occurring in
the constraint matrix, the yield criterion must be expressed as a linear function
of the unknown stresses. For the Tresca and Mohr-Coulomb yield criteria, this is

achieved by employing a polygonal approximation of the yield surface.

The advantage of numerical formulations are that complex loading patterns and
geometries can be dealt with. Moreover, inhomogeneous soil properties can be
modelled. However, a major drawback is the large amount of computer time
potentially required to solve the resulting lincar programming problem. This is
because the linearized yield criterion typically generates a very large number of
inequality constraints on the nodal stresses. Lysmer attempted to overcome this
problem by employing an iterative technique which used a small subset of the total
number of vield constraints. Although this approach reduced the computational
effort significantly it was found, in some cases, to be unstable. This is because
the method assumed that the path followed by each nodal stress during the op-
timization process would be relatively localized. If this is not the case, then the
linear programming problem may become unbounded. Some of the most active
researchers in this field over the past two decades have been Sloan and his col-
laborators at the University of Newcastle, Australia: Sloan (1988, 1989); Sloan
& Kleeman (1995); Yu et al. (1994); Merifield et al. (2001). Lincar programming
and, more recently, non-linear programming upper and lower bound formulations
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have been considered, Lyamin & Sloan (2002a,b). In Sloan (1989), an upper
bound model using constant strain triangles is applied to geotechnical problems.
However the mesh has to be arranged in a specific manner to avoid volumetric
locking problems. In order to overcome this, Yu et al. (1994) used linear strain
triangles with straight sides and mid-side nodes. However, in this paper, the shear-
ing direction between elements has to be specified in advance; Sloan & Kleeman
(1995) proposed a new formulation to overcome this. Solutions for bearing capac-
ity problems involving respectively two-layer clay and sand over clay are provided
by Merifield et al. (1999); Shiau et al. (2003). The solutions compare well with
existing elasto-plastic analysis solutions. With the use of numerical limit analysis,
Ukritchon & Klangvijit (2003) computed values for the bearing capacity factor N.,,
finding good agreement with existing results. Chen et al. (2004) used FELA to
assess slope problems involving pore water pressure. With the use of the interior
point optimization method, Pastor et al. (2003) investigated the maximum height
of a vertical slope (‘cut’) problem. For soil with cohesion ¢, the given solution for
~vh/c was found to be between 3.767 and 3.782. The bearing capacity of various
types of footings in sand in 3D have recently been investigated by Lyamin et al.
(2007), who obtained solutions which compared well with others in the literature.
However, it should be noted that the mesh was carefully refined, making use of
specific element arrangements to avoid locking. Loukidis et al. (2003) investigated
the use of FELA to assess the stability of slopes subjected to seismic loading, con-
cluding that FELA is a versatile tool for the determination of rigorous lower and
upper bounds on acceleration which will trigger failure. Other investigators who
have studied the computation of lower bound limit loads by finite elements and
linear programming include Anderheggen & Knopfel (1972), Bottero et al. (1980).
Notable more recent work has also been undertaken by Andersen et al. (1998), who
showed that a limit analysis problem which has a quadratic yield function can be
reduced to the problem of minimizing a sum of Euclidean vector norms. Recent de-
velopments in mathematical programming allows the Mohr-Coulomb constraints
to be tackled directly. In a similar manner Makrodimopoulos & Martin (2005)ap-
plied the technique of Second Order Cone Programming (SCOP) to limit analysis
problems. However, the application of this method is restricted to yield functions
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that can be expressed in a conic form.

Casciaro & Cascini (1982); Capsoni & Corradi (1997) proposed a ‘mixed’ finite ele-
ment model. The solution obtained is neither a true lower-bound nor a true upper-
bound on the collapse load. Recently, a new numerical procedure for lower-bound
limit analysis was presented by Chen et al. (2008). In the paper, a self-equilibrium
stress basis vector at each Gaussian point is computed using the element-free
Galerkin (EFG) method. Although this does not guarantee a strict lower-bound,
a reliable estimate of the limit load factor can be obtained when the discretisation
is sufficiently fine. At the same time, the EFG method has been used to obtain
upper bounds on the limit loads of plates by Canh et al. (2008). The upper and
lower bound solutions obtained by this approach are promising. Although, the
EFG method has been applied successfully to obtain highly accurate solutions for
problems involving stress discontinuities and/or for problems prone to volumetric
locking when using finite element method (Belytschko et al. (1994); Dolbow &
Belytschko (1999): Askes et al. (1999)), both Chen et al. and Canh et al. have
not vet applied this new approach to problems involving strong singularities and
locking in 2D-plane strain or 3D.

During the course of this research, a novel computational limit analysis method
has been developed by Smith & Gilbert (2007). This method overcomes both the
volumetric locking and stress/velocity singularity problems associated with finite
clement limit analysis. The method is called Discontinuity Layout Optimization
(DLO) and involves determining the critical layout of discontinuities, and asso-
ciated upper-bound limit load, for plane plasticity problems. This method has
already been developed into a commercial software application for geotechnical

applications.

2.8.3 Computational mechanics issues

Many investigations have been carried out to provide more robust and efficient
procedures to solve practical engineering problems. There are two well-known

issues involve FE discretization and these will be discussed below.
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Locking in the fully plastic range

The so-called ‘locking™ problem was first pointed out by Nagtegaal et al. (1974).
This results from the excessive number of kinematic constraints imposed on an
incremental displacement field as collapse is approached. This may make certain
plane strain and three dimensional limit analysis problems impossible to solve.
This problem stems from the fact that the deformed state of an elastic-perfectly
plastic material is highly constrained at the limit load; with a standard material
idealization, deformation increments at the limit load will be strictly incompress-
ible. In a standard finite element formulation, posed in terms of kinematically
admissible displacement fields, the same condition will have to be satisfied. Many
methods have been proposed to overcome this problem. These include: the use
of higher order elements (Sloan & Randolph, 1982); the use of a mesh of crossed
linear triangular elements (Nagtegaal et al., 1974). The most robust and effective
method is to use higher order elements; however this leads to increased problem
size. Recently, Tin-Loi & Ngo (2003) demonstrated that the locking problem can
be overcome by using p-version finite elements. In contrast to a model involv-
ing traditional h-version elements, where solution errors are reduced by refining
the mesh size, in a model involving p-version elements the error is reduced by
increasing the degree p of the polynomials used. Interestingly Tin-Loi & Ngo
(2003) expected that this work could potentially be applied to 3D problems (as
such problems are very difficult to solve (Sloan & Randolph, 1982)). However,
all provided examples involve plane strain problems. In terms of FEA analysis,
various methods have been developed to overcome this issue. For instance the
reduced-integration method Zienkiewicz et al. (1971, 1976) has been used to cir-
cumvent the problem of incompressibility constraints in finite element schemes.
The idea of this technique is to use a limiting number of sampling points in evalu-
ating the element matrices and load vectors. One major effect of this method is to
decrease the number of incompressibility constraints on the nodal velocities. Yu
et al. (1991) proposed a new displacement interpolation function for a six-noded

triangular element to overcome locking in axisymmetric problems.

Adaptive mesh refinement
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Mesh dependency is a well known problem which affects the finite element method.
Various adaptive mesh refinement strategies have been developed over the years to
overcome this issue. In soil mechanics problem, the role of discontinuities between
elements can be crucial since their arrangement and distribution has a dramatic
influence on the accuracy of the lower bound solution (Chen, 1975). In the lower
bound analysis this restriction means that the geometry of the mesh needs to be
refined in a specific manner (i.e. it is not sufficient simply to reduce the size of
clements). Thus an adapted mesh might have a maximum density of disconti-
nuities in the direction of the maximum rate of change in the stress field. Work
by Peraire et al. (1987) and Borges (2001) has provided solutions which address
this restriction. Following the work of Peraire, the creation of fan-like zones in
the region of singularity points can be generated automatically in the re-meshing
procedure. However the origin of the singularity, the density of the element fan
and the distance that the fan will extend must be specified. Borges presented
an anisotropic mesh adaptation strategy for a mixed limit analysis formulation
which focused on the use of a directional error estimator. Combining these works,
Lyamin et al. (2005) constructed a number of suitable adaptive meshes for var-
jous geomechanics problem (e.g. rigid strip footing and vertical cut problems).
Christiansen & Pedersen (2001) proposed a technique based on the deformations
and the slack in the yield condition to obtain improved results for classical limit
analysis problems. using their technique, elements should not be refined if they

are not close to yield (lower-bound) or if they have a zero strain tensor.

2.9 Structural layout optimization

2.9.1 Introduction

Conventional design procedures aim to identify an acceptable or adequate design
which merely satisfies the functional and other requirements of the problem. In

general there will be more than one acceptable design. The purpose of design



Chapter 2. Literature review 32

synthesis, or optimization, is therefore to choose the best one of the many accept-
able designs available. To allow this to happen a criterion has to be chosen for
comparing the different alternative acceptable designs and for selecting the best
one. This criterion, when expressed as a function of the design variables, is known
as the objective function and its choice is governed by the nature of problem. In
structural design, the objective function is usually taken as the minimization of
cost, often represented by the minimization of material volume, with the variables
being element forces. The restrictions that must be satisfied to produce an accept-
able design are collectively called design constraints. Optimization may therefore

be defined as:

the process of generating a structural arrangement that achieves the most desirable
value of a given characteristic objective function by altering one or more design
variables, whilst complying with a given set of geometrical and/or behavioral limi-

tations constraints.

Sigmund (2000) conducted a comprehensive review on the different forms that
structural design optimization problems can take and his findings are summarized

below:

Sizing optimization : Involves the optimal sizing of members within a structure

of fixed geometry and topology. In a sizing optimization problem, the layout

FicURE 2.9: Sizing optimization of a truss structure (Sigmund 2000)

of the structure is prescribed. Figure 2.9 shows a truss structure optimized
by modifying the cross-sectional areas of the individual elements, such that

the stiffness of the truss structure is maximized for a given total weight.

Shape optimization : Involves the optimal sizing and geometry of a known

structural layout by selectively reducing material density in areas of low
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FIGURE 2.10: Shape optimization of a beam with circular hole (Sigmund 2000)

stress (and possibly also increasing it in arcas of high stress). Figure 2.10
shows a beam containing holes to reduce its self-weight; however, if the holes
arc made too big, the structure may be unsafe when subjected to load. Using
shape optimization, the structure is modified such that it just carries the load

using the lowest amount of material possible.

Topology optimization : Involves determination of the optimal layout of a

structure. With topological optimization, the general form of the structure

FIGURE 2.11: Topology optimization of a beam for maximum stiffness (Sig-
mund 2000)

is unknown before the optimization takes place. In the simplest of prob-
lems, the only prescribed aspects of the structure are the loading conditions,
support position and material properties. The objective function, such as
maximizing the stiffness or minimizing the volume, is chosen and the op-
timum topology is accordingly found. The topology optimization problem
can be likened to that of sizing optimization, but where element sizes can be

reduced to zero.

2.9.2 Layout optimization of gridlike structures

In his paper, Sigmund (2000) presented a number of optimization examples using

an clastic Finite Element Analysis (FEA) approach. However, FEA is not the
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only popular method for structural optimization. In this thesis, the layout opti-
mization of gridlike structures using plastic theory is of interest, and traditional
finite element methods are not applicable. Instead, a linear programming (LP)

technique is adopted.

The structural layout problem was originally cast as a (linear) mathematical pro-
gramming algorithm in the 1960’s by Dorn et al. (1964) and Hemp & Chan (1966),
probably as a direct result of the availability of the Simplex optimization technique,
pioneered by Dantzig (1963). In these, the problem is posed as a having ‘ground-
structure’, where the domain is filled with a finite number of nodes coincide with
the positions of supports, points loads and structural joints. A set of potential
members connecting all the nodes to each other and the optimum layout is some

subset of these, which the optimization looks to identify.

Ground-structure based methods produce solutions that are optimal for the speci-
fied group of potential members. However, the globally optimum solution can often
be approached when the number of nodes and potential members are sufficiently
fine.

k3

[

FIGURE 2.12: Example of a layout optimization problem (Gilbert & Tyas 2003)

One of the challenges with the ground structure approach lies in the fact that a
large number of potential members are often required and finding the optimum
subset of these can be computationally expensive. For a structure that has n
nodes, the number of potential members will be n(n —1)/2. Thus, for example, an
apparently modest 40 x 40 node problem with a fully connected ground structure
includes 1600 nodes and over one million potential members, which equates to

several thousand LP constraints and well over 2 million LP problem variables. To
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overcome this issue, it would seem sensible to start with a smaller structure and
subsequently adding new potential members. However, a comprehensive review by
Topping (1984) pointed out that there ‘were no rigorous methods of introducing
new members during optimization procedure’. Subsequently, Rozvany et al. (1995)
indicated that ‘no simple methods are available at present for finding the optimal
position of additional members’. Thankfully, Gilbert & Tyas (2003) proved that
this issue can overcome by starting with a reduced ground structure, where not
all potential members are present, then adaptively adding selected members by
checking against a criterion associated to their virtual strain. This procedure
can be used to tackle problems with several billions of potential members. More
details and applications of the method, normally referred to as the member adding
technique, can be found in Pritchard (2004).

Another challenge with the layout optimization is the stability problem of resulting
optimum structures. Figure 2.12 shows an optimum structure that contains many
slender compression members, which would be at risk of buckling if constructed.
Inclusion of buckling behavior would result in a non-linear optimization problem

and at present, there is no efficient method to overcome this issue.

2.9.3 Discontinuity layout optimization

As in previous sections, FELA is concerned with approximating the underlying
continuum problem. However it is alternatively possible to formulate the problem
in terms of the discontinua which forms at collapse. Previous workers (e.g. Alwis
(2000)) have had only moderate success with this approach, finding that solutions
were governed by the initial mesh of rigid elements defined. In fact a successful
discontinuous limit analysis procedure must be able to identify the critical ar-
rangement of discontinuities in a problem from a wide, preferably near infinite,
number of possibilities. The problem is thus became similar to the problem of
identifying the optimum layout of gridlike structures. The DLO procedure was
first introduced by Smith & Gilbert (2007) following identification of the similar-
ity between layout optimization of gridlike structure with finding of slip-lines in
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Ficure 2.13: Analogy between truss and discontinuity layout optimization
(Smith & Gilbert 2007)

a plastic plane-strain problem. Figure 2.13 shows the similarity of a truss layout
optimization with a strip footing bearing capacity problem in geomechanics. Re-
sulting optimum bars are perfectly matched with slip lines of a strip footing. A
DLO problem is formulated in terms of potential discontinuities (lines) intercon-
necting nodes laid out across the body under consideration, rather than in terms
of (solid) elements. This means that discontinuities can be allowed to freely cross-
over one another, considerably increasing the search space and hence the ability
of the procedure to identify complex failure mechanisms. Benefits of this are that
singularities are identified without difficulty (ensuring that high accuracy upper
hound solutions are obtained) and, as failure mechanisms are explicitly identified,
output is easy to interpret as in figure 2.13. It should be noted that the DLO
would not be so successful without the member adding technique described in the
previous section. Perhaps, the DLO is even more useful in engineering practical

point of view compared to the layout optimization of gridlike structures. Apart
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from application in gcomechanics problems, the DLO is also suitable for various
cngincering problems, such as the determination of yield lines in a concrete slab,

slip lincs in a metal forming process.



Chapter 3

Numerical limit analysis model of

masonry-soil interaction

3.1 Preface

»

In this chaptcr, a numerical limit analysis which can subsequently be applied to
masonry arch bridge structures is presented in detail. Solutions obtained from the
soil model developed are also validated against benchmark literature solutions.
Furthermore, in this chapter a mathematical formulation which can be applied to
the layout optimization of grid-like structures is established.

3.2 Model of masonry elements

The low tensile strength of masonry makes it prone to crack at or prior to fail-
urc. Masonry joints arc plancs of wcakness, and cracks arc often focussed here.
This mcans that at the limit statc a masonry structurc can be considered as an
asscmblage of clearly defined blocks, with rocking or sliding at cracked joints lying
between them. In a rigid-perfectly plastic model, this means that there are dis-
placement (or ‘velocity’) jumps located at cracks whilst the masonry between them

38
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remains rigid. This section deals with general limit analysis formulations, useful
for any rigid block assemblage, in contrast to those applicable only for arch-like
structures or specially simplified to make hand calculations easier. These formu-
lations are also suitable for computer implementation. As the specific bonding
pattern of masonry structures often influences the failure mode and load factor,
so there is certainly some justification for modelling masonry structures as as-
semblages of discrete blocks. The limit analysis formulation for a rigid block
assemblage presented here assumes Heyman's hypotheses, but sliding failures are
also allowed. The constituent masonry blocks are assumed to be rigid, with failure

(hinging and/or sliding) occurring only in the joints between units; no tension may
be transmitted across interfaces.
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FIGURE 3.2: Block degrees of freedom and loads

Figure 3.1 shows the stress resultants or forces acting at an interface #; these
are the normal force n;, the shear force s; and the moment m;, all acting at the
centroid of the interface. The corresponding displacement jumps are the relative
normal displacement dn;, tangential displacement ds; and angular displacement

dm, at the interface center. Each block as shown on figure 3.2 has three degrees of
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freedom, namely u.;. u,; and w,;, which are the displacements in the z, y direction
and the angular rotation of the block respectively. Similarly, the external loads

applicd at the centroid of block are denoted f;, fy; and m,;.

Yield condition

The yield condition is imposed on every interface where there is contact between
adjacent blocks. The relevant yield conditions correspond to: (i) hinging and (ii)
sliding failurc modes. The hinging condition can be enforced by ensuring that
the eccentricity of the normal force at interface ¢ cannot be greater than half the
length ¢; of the interface. The sliding condition requires that the shear force cannot
be larger than tan ¢ times the normal compressive force, where ¢ is the angle of
friction of the interface. Thus for each interface 7, the yield conditions can be
formulated as:

Yig <0 (3.1)
where
—tang 1 O
. -1, -1 0
yi = | ~tand (3.2)
—t; 0 1
—t; 0 -1
and
ng
Qin = S (3.3)
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interface {
FIGURE 3.3: Block and interface equilibrium

Equilibrium formulation

The necessary equilibrium conditions can be established by formulating free-body

relationships for each block. Thus as shown on figure 3.3, the equilibrium rela-

tionship for block j can be formulated as:

E:nq;n - fvin X frlnD * Af:uL (34)
or
E:uQ:n " AfrircL =5 frin.D (35)
where
sin 6; cos; 0
E:n s COSs 91? — sin 6,' 0 (36)
—d;sinf3; djcosp3; 1
and
: f.rj
fm = Jvi (3.7)
My

where d, is the distance from block centroid O to mid-point I of interface 4, 6, is

the interface angle made to the r-axis, and 3; is defined as shown on figure 3.3.
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f,.. .f.p are the external live and dead loads respectively..

Flow rule and compatibility conditions

m;,dm; A ,\I(,,i

FIGURE 3.4: Failure modes and yield conditions

The displacement jump at interface ¢ produced by the displacements of block j is
expressed in equation 3.8, whilst equation 3.11 defines the compatibility matrix
E!' for interface i and block j.

b = EQud, (38)
where

8. ={ 8s r (3.9)

uw = Uy; L (3.10)
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sinf; cos; —d;sing;
Ez" = | cosf; —sinb; d;cosf; (3.11)
0 0 1

The normality condition for displacement jumps on interface ¢ as shown on figure
3.4 can be stated as: .
O =YD}, (3.12)

where
—tan¢ —tan¢ -—t; —i;
Y= 1 -1 0 o0 (3.13)
0 0 -1
y 31
pi,={ ™ (3.14)
i3
Di4

where p}, is the plastic multiplier vector. This condition implies the adoption of
an associated material so that ¢, = ¢ and ¥, = 4. Substituting equation 3.8 into
cquation 3.12, leads to the following associated flow rule condition for interface i:

E ul, - Y.'p,, =0 (3.15)

Mathematical programming formulations

With the basic relationships alrecady established, it is possible to formulate the
limit analysis problem for problems involving assemblages of rigid blocks sepa-
rated by frictional interfaces. This is achicved by simply imposing all necessary
conditions (static equilibrium, kinematic, constitutive relations, and positivity of
dissipated work) that describe the collapse of such systems. Thus, from the rcla-
tions developed in the previous section, after some rearrangement, the following
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relationship can be established:

'ﬁL 2 A . 1
ET YT b . 0
e S - (3.16)
—imL Em ' ! u,, i me
Yo 3 v Pm B8 0
and ;
Pm=>0ands >0 (3.17)

in which s is a vector of slack variables that can be used to transform the inequal-
ity constraints into equality constraints. When the above static equilibrium and
kinematic variables are uncoupled, a LP problem can be recognized as being the
necessary and sufficient optimality Karush-Kuhn-Tucker conditions of a pair of
dual LP problems with unique optimal values of a A\. Mechanically, the LPs are
well-known expressions of the bound theorems of plasticity. The LP related to the
static theorem is given by the following section.

3.2.1 Static (equilibrium) formulation

m;
¥
n;

i

e |

5 &

F1GURE 3.5: Typical block assemblage

The static (equilibrium) approach of classic limit analysis theory requires that
both equilibrium and yield function constraints be met. Within this framework
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the variables are the stress resultants and the load factor. Contact and block
forces, dimensions and frictional properties are shown on figure 3.5. The problem
variables arc the contact forces:n;, s;, m; (where n; > 0; s;, m; are unrestricted
‘free’ variables), and the unknown collapse load factor A\. Assuming there are b
blocks and ¢ contact surfaces, the equilibrium and yicld constraint equations may
be stated for the problem as follows:

EQO - Ame = me (318)

and
YnQm <0 (3.19)

where E,, is a suitable (3b x 3¢) equilibrium matrix for the masonry containing
direction cosines and can be worked out from equation 3.6. q,, and f,, are respec-
tively vectors of contact forces and block loads, q,, = {n1, s1,mu, ..., n¢, Se;Mc}7T
and f,, = f.p + A, where f,,p and f,,; are respectively vectors of dead and
live loads, which applied at the block centroid. Y,, is a suitable yield constraint
matrix that can be derived from equation 3.1.

3.2.2 Kinematic formulation

In the kinematic approach, compatibility and flow rule constraints need to be set
up. The kinematic formulation can be derived using duality principles and can be
stated as

ff u,=1 (3.20)
Elu, -Y’p,,=0 (3.21)
Pm20 (3.22)

where u,, is a 3b-vector of nodal unconstrained displacements corresponding to
the nodal loads f,, and p,, is plastic multiplier vector.
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3.2.3 Extension of masonry model for crushing failure

This model is introduced by Orduna (2003) and it takes into account crushing
failure between blocks. In figure 3.7, ¢; is half the length of a interface i and
w; is the width of the joint normal to the plane of the model. The stress value
Yo given in cquation 3.23 is the compressive strength of material, a = 0.67 is
the factor allows from the difference between the bending strength and the cube
crushing strength of concrete (sce c.g Mosley et al. (1999)). The constant stress
distribution hypothesis leads to a hinge yield function given by equations:

—_)<0 (3.23)

; (t.
Imi| + na(ts + 2oy <

However, the constraints in equation 3.23 are non-linear; thus if a LP solver is
still to be used to obtain a solution to the global problem, then these constraints
need to be approximated as a series of linear constraints. In order to minimise the
number of constraints in the problem (and to maximise computational efficiency)
an iterative solution algorithm which involves only refining the representation of
the failure cnvelope where required is used. The algorithm of the adaptive lin-
carization of masonry crushing yield surface is described as below:

1. For cach contact ¢, initially add three linear constraints (i.c. OA, OB and
AB on figure 3.6)
2. Obtain a solution to the global LP problem

3. For ecach contact 7, calculate the violation factor v; as

- ni(t; + T-ﬁﬁ

4. For cach contact with v; > 1 (i.c. violation), add an additional linear con-
straint (e.g. in the case of point X, on figure 3.6, introduce a new linear
constraint tangential to the true non-linear constraint at X;).
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B

/

Fi1GURE 3.6: Adaptive linecarization of masonry crushing yield surface

5. Repeat from step (2) until the maximum value of v; < 1 + tol, where tol is

taken as a suitably small value.

The kinematic formulation requires that flow corresponding to hinging satisfies

the normality rule. Thus from figure 3.7, the flow rule can be stated as:
- n LN
s % 83 el (1) P (3.21)
om; 1 -1 P2

3.3 Formulation of strengthening element

Metallic reinforcing elements are often used to strengthen ancient masonry struc-
tures. These structural elements endow parts of the structure with tensile capacity,
but, due to their high slenderness, have low compressive strength. Tie elements are
therefore usually assumed to have tensile strength but zero compressive strength.

The tensile force provided by a tie element resists the crack opening between
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m
/ 7’
e infinite material strength
7’
-

FIGURE 3.7: Model of crushing failure and the yield surface

FIGURE 3.8: Strengthening element geometry

blocks. Denoting the yield stress of a tie element i as y;, the yield function is
defined by equation 3.25.

g5 < aiyss (3.25)
a4 20 (3.26)

in which, tensile member force gg;+ is a LP variable and a; is the cross-sectional
arca of element i. In the kinematic formulation, the strain rate €. of bar k in figure

3.8 needs to comply with the normality condition. For a tie bar k, connecting block
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i and j at point K; and K;, the compatibility condition can be established as:

e = ET*u’ — ET7ky/ (3.27)
where
ET# = [ cosf sinb; cos(Ox + au)d; ]
and
uIi
u={ uy
Wzi

and the flow rule

=1 —1]{”‘} (3.28)
D2
3.4 Model of soil

3.4.1 Static (equilibrium) formulation

Following the approach of Sloan (1988), here the soil is discretized using three-
noded lincar-stress elements separated by discontinuities. Each node in a triangu-
lar clement therefore has three unknown stresses, which are constrained so as to
satisfy (lincar) cquilibrium and (non-linear) yicld constraints. Lincar programming
(LP) can however be applied if the Mohr-Coulomb failure envelope is approximated
by a polygon. Unlike Sloan, here the yield surface is instead approximated with
an exterior polygon and then adaptively refined using an efficient iterative LP
solution scheme which terminates when no stresses violate yield, thereby cnsuring
the true ‘nonlinear’ yield surface is enforced.

The assumed stress field

The soil is discretized into a nuymber of triangular clements and scparated by
discontinuitics. The variation of the stress throughout each element is linear and
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FIGURE 3.9: Linear stress triangle with discontinuity and nodal stress

each node is associated with 3 unknown stresses 0,0, and 7,,. Stresses vary
across an clement according to:

3 3 3
Oz = Z Niosi 3 0y = Z Nioyi ; Toy = 2 NiTayi (3.29)
fe=1 t= =1
where 0,0, and 7,,; are the nodal stresses and N; are linear shape functions.

The latter are given by:

Ny = (& +mz + Gy)/24; Ny = (& + oz + Gy)/24; N3 = (& + mz + Gy) /24
(3.30)
where
G =Tys—T3yr M=Ya—Yys QG =23— 122
Q=T —T1ys M=ys—y1 Q=1 —13 (3.31)
G=Tp-—Tp M=n-yp G=rn-n

and 24 = |n G = M| is twice the element area.
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Element equilibrium

In order to satisfy equilibrium, the stresses throughout each triangular element

must obey the equation:

00 Oy _o D0y Omey

" Oz Oy Ay Ox

(3.32)

where compressive stresses are taken as positive, vy is the soil unit weight and a left-
handed Cartesian co-ordinate system is adopted. From equations (3.29),(3.30) and
(3.31), and substituting into equation (3.32) we have the equilibrium constraints

on the nodal stresses as:

1m0 G m 0 & n 0 G {012 [0 (3.33)
2410 ¢ m 0 G m 0 G m

\ Tay3
or in short, for cach clement %, the cquilibrium can be written as
Eict =b! (3.34)

Thercfore, the cquilibrium condition for each triangular clement gencrates two
equality constraints on the nodal stresses.
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FiGUure 3.10: Statically admissible stress discontinuity between triangles

Equilibrium at discontinuities

It is necessary to impose additional constraints on the nodal stress at the edges
of adjacent triangles in order to permit statically admissible discontinuities. The
condition requires the continuity of the corresponding shear and normal stresses
to be maintained. The normal and shear stresses acting on a plane inclined at an
angle # to the z-axis (anticlockwise = positive) are given by:

o, = sin® 0o, + cos® fo, — sin 207, (3.35)
| 3% 1.
= Tgsin 200, + g sin 200y + cos 201,
Figure 3.10 illustrates two triangles, a and b, which share a side i defined by the

nodal pairs (1,2) and (3,4). Equilibrium at the discontinuity requires that at every
point along i:
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Since the stresses vary lincarly along each element edge, this condition is equivalent
to cnforcing the constraints:

a b, a __ b, ._a___b a__b
Opl =032, 03 =0pgi Ty =T T3 =Ty

The above cquation can be expressed in a matrix form as:

Dici =0 (3.36)
where
. T -
D = T 0 O
0 0 T -T
in which
- sin2 6 cos2d —sin20
—~0.58in28 0.5s8in26 cos26
and
{ zl yl’ zyl' x2' 032’ T::y2’ 0:::3) ay31 T:l:‘y3’ 0-:24’ ay4" ::y4}T
Boundary conditions

In order to enforce prescribed boundary conditions, it is necessary to impose ad-
ditional constraints on the nodal stresses at boundaries. For each element on the
boundary, the equilibrium necessary constraint is:

Opl =N O =Ng; T1 =1, T2 =12

where ny, ng. ty, {3 are the external normal and shear stresses acting on the bound-
ary at node 1,2. In a matrix form, the boundary condition for boundary ¢ can be
stated as:

ioi = b} (3.37)
where

$ T
Oy = {ozl,auh Tzyl, 022, Oy2, Tz‘y?}
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and

B, = T 0 iy sin® @ cos’f —sin20
0 —0.5s8in260 0.5sin26 cos?26

Yield condition

F1GURE 3.11: Mohr-Coulomb yield criterion with a tension cut-off

The plane strain Mohr-Coulomb criterion can be modified by introducing a tension
cut-off. The Mohr-Coulomb admissible domain is expressed by the inequality:

Y= \/(7, = 0y)? + (274)? = (2ccos ¢ + (0, + 0,) sing) <0 (3.38)

The tension cut-off (o) admissible domain is expressed by the inequality

Yi= \/ (02 — 0y)? + (274y)® — (02 + 0y) — 0, <0 (3.39)

Since linear programming is to be employed, it is necessary to approximate the
Mohr-Coulomb cone by a piccewise linear yield surface. By letting 2 = o, —

o,y = 274 and : = 2cc0s 0 + (0, + 0,) sin ¢, the Mohr-Coulomb criterion may be
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FiGURE 3.12: Linear approximation of the Mohr-Coulomb yield function

expressed as z? + y? = 2, which is the equation of a circle. The Mohr-Coulomb
criterion is circumscribed by an exterior polygon with p sides and p vertices. The

x and y co-ordinates of the kth and (k + 1)th vertices are

xp = zcos(ag — 3)/cos 3 yp = zsin(ax — 3)/cos 3

T4y = 2cos(ag + 8)/cos B yp41 = zsin(ax + 3)/ cos 3

where J = n/p and ag = 2k3. Thus for the kth linearized plane, the yield function

can be written as:
Yi = Apos + Broy + CiTyy — 2ccos ¢ <0 (3.40)
where

Ay = cosag +sing; B =sing —cosay; Cp = 2sinag; k=1,2,...,p (3.41)
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The yicld condition can be expressed in a matrix equation as

A B O [ 2ccos |
Ag BQ Cg y 2ccos ¢
Oz
5 b< (3.42)
Ax Br Ci 2ccos ¢
Tey
A, B, G, 2ccos ¢

or in a more general form, for cach stress point i, the yicld condition is imposed
as: :
Yiot < b; (3.43)

The lincarized yield condition imposes p inequality constraints on the stresses
at cach node. However, in order to reduce the number of constraints p (and
hence also the total number of constraints in the LP problem), the yield surface
can be approximated using & small number for p and by then adaptively refining
the yield surface using an efficient iterative LP solution scheme which terminates
when no stresses violate yield, thereby ensuring the true (nonlinear) yield surface
is cnforced. The algorithm of the adaptive linearization of the Mohr-Coulomb
yicld criterion is described as below:

1. For cach stress point i, initially add three linear constraints (i.e. OA, OB
and AB on figure 3.13)

2. Obtain a solution to the global LP problem

3. For each stress point 1, calculate the violation factor v; as

o \/(0’,,‘ - 0’,,.')2 + (2‘7’,”,')2
* 7 2ccosd+ (o4 + Oyi) sin ¢
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FiGUre 3.13: Adaptive linearization of the Mohr-Coulomb yield criterion

4. For each stress point with v; > 1 (i.e. violation), for example point Xg in
figure 3.13, work out the angle as

tan(w,-) = o7
zyi

and thus point X, can be determined. Introduce a new linear constraint
tangential to the true non-linear yield surface at point X;

5. Repeat from step (2) until the maximum value of v; < 1 + tol, where tol is
taken as a suitably small value.

3.4.2 Kinematic formulation

The soil is discretized using six-noded linear strain elements with straight sides.
The apex of each triangular clement is associated with a specified number of
plastic multipliers. This allows the soil behavior to be modelled more accurately
than when using lower order clements, e.g. the three-noded constant strain ele-
ments used by Caviechi & Gambarotta (2005). It also avoids the locking problem
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discussed by Nagtegaal et al. (1974) without the need to resort to special ar-
rangements of clements within the mesh. Each node is unique to its clement
permitting displacement (velocity) jumps to be modelled at inter-clement bound-
aries. A kinematically admissible displacement field will be obtained provided the
associative flow rule is enforced both within elements and along discontinuitics
Makrodimopoulos & Martin (2006); the displacement boundary condition should
also be enforced. The upper bound collapse load can then be obtained by mini-
mizing the internal energy dissipation, set to be equal the work done by external
applicd loads. For a 6-node triangular element, the displacement field is given by

u(x). T3) = ag + a1 71 + AT + a3T1Z2 + a4 + as T3 (3.44)
This mecans that any strain component varies according to
€(z1, T3) = b + b7y + by, (3.45)

and thus the strain at any point within the arca of the element can be expressed as
a lincar combination of the strains at the three vertices. If the sides are straight,
the strains at any point in the triangle can be defined by the strain tensors at the
vertices. Morcover, the strains of an interior point is a convex combination of the
strains at the vertices. Therefore, it is then sufficient to enforce the flow rule at the
vertices only, since for a convex yield function, the corresponding set of plastically
admissible strains is also convex. Considering the side i, k, 7 of element shown in

@
®
® ]
®
o
o i k J
@) (b)

FIGURE 3.14: (a)General 6-node element. (b)6-node element with straight
sides
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figure 3.14, the side is straight if the following condition is satisfied
i
Xy = 5()(. i Xj) (3.46)

Assuming £ is the reference coordinates where —1 < £ < 1, the coordinates along
the side are given by: '

x = Nix; + Nixi + Nij (347)
where " :
Ni= §€(€ -1), Ne=1-¢, N; = 56(1 +§) (3.48)
This leads to g v
x = 5(Xi+%; = 2x4)€% + 5% = X)€ + x4 (3.49)

from which, it is clear that equation 3.46 must hold in order for the quadratic term
to be zero.

The assumed displacement field

Ficure 3.15: The six-noded linear strain triangles for upper bound limit anal-
ysis

The displacements (velocities) are assumed to vary throughout each triangle ac-
cording to:

6 6
Uy = Z N.-u,; y Uy = Z N.-u,,.- (350)

i=1 =1
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where u,, and uy, are the nodal velocities in the z and y directions respectively
and .V; are quadratic shape functions. The latter arc defined as:

M=Q-r-s)(1-2r-2s) Na=r(2r—1) N3=35s(2s5s-1)

, (3.51)
Ni=4r(1-r—3s) Ny = 4rs Ne=4s(1 —r —s)

in which r and s are reference coordinates as shown on figure 3.15.

Flow rule constraints in triangles

In the upper bound theorem, a rigid-perfectly plastic material model with an
associated flow rule is assumed. The plastic strain varies linearly throughout each
triangle. It can be shown that the plastic flow rule will be satisfied everywhere
within an element if the flow rule is applied at each apex of the element. The
plastic flow rule at each apex ¢ can be written as:

Ouz

€ir = (E')i = P(%)i (3.52)
Bu
o = (G2 = p(%),. (3.53)
du, & ,
tior = (G + G0 = ) (3549
and

p>0 (3.55)

where p is a non-negative plastic multiplier associated with the corner node i. Y
is the yicld function and similar to 3.40 we have

Yi = Aoz + Broy + Cy1ry — 2ccosp =0 (3.56)

Thus, from cquations 3.56 to 3.53, the plastic strain can be expressed as

o [ 6Yk_ [ A
G-x—glpikaaz —kZ:TPuc k
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Ciy = ptk_ = Zplk I3y
k_

[od [
= Z Pig oY szka

OTay

where pix is the plastic multiplicr of node 7 and kth side of the yield surface. By

using the displacement interpolation and differentiating the shape functions, the

flow rule can be formed as a set of equality constraints of the form:

Giui+Ypi =0

where
(52 0 (%2); 0
G'a = 0 (%L)t 0 ('83—1:6‘ i
(S0):(9), (9 ),(2n),
and '
ON; _ Nyor , N;0s
8, Ordz O0Osor
oN, _ Nor  N;0s
8, Ordy OBsdy

p: = {pilapﬂy e )pip}T

(3.57)

(3.58)

withi =1 — 3,j =1 — 6. The flow rule imposes nine equality constraints on the

nodal velocities and plastic multiplier for cach triangle. Each plastic multiplier is

also subjcct to non-negativity constraints.

Flow rule constraint in discontinuities

As shown on figure 3.16, at the intcrface between clements @ and b, the displace-

ment jump at node (3,3') can be expressed as:

Atingy = (23 — Uzy) €080 + (uy3 — uyy)sinf



Chapter 3. Numerical model of masonry-soil interaction 62

FIGURE 3.16: Velocity discontinuity

Augy = (u,;, - ux:y) sin 6 + ('U,y;; - ‘U.y;y) cosf

where Au,ay and Augy are displacement jumps, 6 is the angle of discontinuity

to the r-axis.

The flow rule condition at node (3,3’) can be expressed as:

1 -1 P
tan¢ tand¢ P

Thus flow rule for the discontinuity 7 can be expressed as
Hiau:a g Kispia =0 (359)
in which

H,, = T where T = cosf sinf —cosf —sinf

Ll . -
sinfl cosf —sinf —cosf

and

g g T
Uy, = {“-‘tl' Uyl Uplry Uyl <oy Ugl, Uyd, Ugd?, uy3’}
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T

K, = T where T = ! -1
T tan¢g tan¢

p:s = {plapl'v' . 'vp3ap3’}

- Since the displacement jumps vary quadratically in a discontinuity, the flow-rule
condition may not be satisfied everywhere along the discontinuity. Therefore, an
additional constraint is introduced to enforce the flow condition by forcing the
displaccment jumps to vary linearly. '

1
Augy - E(Auu' + Augy) =0 (3.60)
This condition can simply reduce to:
n-pr+p2—pr—2ps—py)=0

m+pr+pa+pr—2(p+py)=0

or in a matrix form, it can be written as:

Q'pi, =0 (3.61)

Boundary conditions

To be kinematically admissible, the computed velocity field must satisfy the pre-
scribed boundary conditions. Consider a node ¢ on a boundary which is inclined at
an angle 6 to the z-axis, where the boundary is subject to a prescribed tangential
velocity ¥ and normal velocity #; the condition can be expressed as:

cosd siné Ui | ) e
—sin® cosé Uyi - 1, (3.62)
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Thus in a general matrix form, the boundary conditions can be stated as:

Ziul =t} (3.63)

Power dissipations

Plastic flow may occur in both the continuum and at discontinuitics. The to-
tal power dissipated constitutes the objective function. The power dissipated by
plastic dcformation throughout cach triangle ¢ may be written as:

w: = /(0‘:6: + oyey + sz7zy)dA (3.64)
A

where A4 is clement arca. After substituting equations 3.52,3.53 and 3.54, the
dissipation can be expressed as:

M
Wi =2Accosg ) ps (3.65)
k=1

Similarly, the power dissipated by plastic shearing along a discontinuity i is given
by:
Wi = / cujdl (3.66)
!

in which
u; = H;,uj,

L is the length of discontinuity and c is soil cohesion.

3.5 Model of soil-masonry interface

3.5.1 Static formulation

Given that the aforementioned soil model is most conveniently formulated in terms
of stresses whereas the masonry block model is most conveniently formulated in
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terms of stress-resultants (i.c. forces), all that remains is to define a suitable
cquilibrium relationship to impose at the soil-masonry interface. For each soil

to masonry interface i, with length !, the requisite equilibrium constraint can be

written as:

% % 0 0 Onil n 0

L1 Oni2

0 0 % 3 —-< 5 =< 0

.’?. g. 00 Til 0

12 12 Tia m;
or in more general form:

D m0im — Gom = 0 (3.67)

For cach soil to masonry contact 7, the requisite yield constraint can be written
as:
nitané; + si| <

where ¢, and ¢; are cohesion and friction of the interface, n;,s;, m; are stress
resultants and 64y, Onia, Ti1, Ti2 are normal and shear stress acting on the interface.

Thus in a matrix form, the yield constraint for the interface can be written as

Yl < € (3.68)

3.5.2 Kinematic formulation

Flow rule constraints for displacement jumps of a masonry block and a soil element

at the interface i can be defined as:
C:nu:n - H:muim - K:mpim =0 (369)

Pim 20 (3.70)
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FIGURE 3.17: Soil-masonry discontinuity (kinematic approach)

where u:n — {u;. Uy, u:}rﬂ u:'n o {uxls uyl« Ug2, u]ﬂ’ Ug3, uyS}T and p;m = {plap?a P3, P4, Ps. PG}T'
# is the discontinuity angle made to the z-axis and /3 is defined as on figure 3.17.

] sinf  cosf —%+dfcosﬂ1

—cosf siné d;sin 3
C = sinf cosf L+dicosp
" —cosfl sind d; sin [}
sinf  cosf d; cos 3
: ~cosf sinfd d;sin 3
T -
H,, = T where T = [msﬂ -—s:nO}
T sinf cosf

In order to ensure that the flow-rule condition is satisfied everywhere along the
discontinuity, an additional constraint is imposed to ensure the displacement jump

varies lincarly. Similar to equations 3.61, the condition can be stated as

Q'pl,. =0 (3.71)
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The power dissipated by plastic shearing along a discontinuity ¢ has been defined
previously as in cquation 3.66.

3.6 Solution

3.6.1 Static (equilibrium) formulation

All of the stcps that arc necessary to formulate the lower bound theorem as a
lincar programming problem have now been covered. For a soil-structure interac-
tion (SSI) problem, assume that the masonry parts are discretized into m rigid
block clements with n contact interfaces, and there are sm soil-masonry interface
clements. Now assume that the soil mass is discretized into s finite elements with
d discontinuitics. The problem has b boundary conditions and y stress evalua-
tion points in the soil mass. Application of the requisite yield conditions, element
cquilibrium, discontinuity equilibrium and boundary conditions will lead to the
formulation of a LP problem. Thus the load factor A\ can be found when the
following LP problem is solved:

max A (3.72)

subject to:
EQO - Mz = fp

Ymqm <0
E,0, = b,
Y, 0, <b,
D,:0s =0
DonCsm — Qem =0
YomGQem < €
Byo, = b,
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In the above cquation, Eq,. Qm, Y have been defined in section 3.2.1, where E,, is
a suitable (3m x 3n) equilibrium matrix of the masonry, q,, is a vector of contact
forces and Qm = {n1, 51, M1, ..., Rny Sn, M } 7. E, is a (95 X 2s) cquilibrium matrix
of soil clements, obtained from equation 3.34. Y,,Y,,, are yield matrices for stress
cvaluation points and soil-masonry interfaces respectively, and can be derived from
cquations, 3.43, 3.68. D, is a suitable (12d x 4d) compatibility matrix of soil-soil
discontinuitics. The boundary conditions are applied using equation 3.37, where
B, is a (6b x 4b) matrix, and o,, 0,4, sm are (3 x y), (12 x d), (4 X sm) vectors of
stresses respectively. Qo is 8 (3 % sm) vector of stress resultants at soil-masonry
interfaces and b, by, b, are vectors of constants which depend on the prescribed
material propertics and boundary conditions of the soil.

3.6.2 Kinematic formulation

All the cquations necessary to formulate an upper bound limit finite element limit
analysis problem which can be solved using linear programming have been devel-
oped in the preceding sections. For a given SSI problem the upper bound LP
problem can be formulated as: :

min  flu, + W, + W, (3.73)
subject to:

fl un=1

Efun - Y.pn=0

G,u, +YTp,=0
Cnun - Hotym — KoiDem = 0

H,u,, - K,,p;, =0

Qpsm =0

qu =0
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Zuy, = t,

pm: pam) p&’ paa 2 0

In the above formulation, W, is the total power of dissipation of soil elements,
whercas Wy is the total dissipated power within all discontinuities. W,;, W, can
respectively be obtained from equations 3.65 and 3.66. K,, and K,,, are flow
matrices representing soil-soil and soil-masonry discontinuities. H,,,,H,; and C,,
arc compatibility matrices connecting the displacements with displacement jumps.
G, is also a compatibility matrix that connects the displacements with strain-like
quantities and is defined in equation 3.58. Pum, Psm, Ps, Pss are onc-dimensional
vectors of plastic multipliers. Finally,Q is a constraint matrix that cnsures linear
variation of the displacement jumps.

3.7 Layout optimization of grid-like structure:

mathematical formulation

To datc the focus has been on formulating suitable analysis problems. Now con-
sider the truss design problem, and in particular a potential planar design domain
which is discretized using n nodes and m potential connections. The classical ‘equi-
librium’ plastic layout optimization formulation for a single load case is defined in
the following equation:

minV = c’q,

subject to:
Eq,=f (3.74)

q- 20
Where V is the total volume of the structure, 7 = {g};971;0%: 9297}

q} and q,; arc the tensile and compressive internal forces in bar i(i = 1...m);
c” = {li/oay.L/ar la/o2.. . lm/om} where |; and o; arc respectively the length
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and vicld stress of bar i. E, is a suitable 2n x 2m equilibrium matrix and
f7 = {Jf.fV.J5. 3 ... J¥} where ff and f} are the z and y components of the
external load applied to node j(j = 1...n). The presence of supports at nodes
can be accounted for by omitting the relevant terms from f , together with the
corresponding rows from E,. This problem is in a form which can be solved using
lincar programming (LP), with the member forces in q, being the LP variables.

3.7.1 Formulation of the problem of identifying optimal ar-

rangements of reinforcement in masonry structures

‘\\]\\jomt k

Potential bar
qr 7

FIGURE 3.18: Design reinforcement for masonry structures

Figurce 3.18 shows a potcntial bar j is connected to block j across joint k. Potential
bar j can provide either compressive or tensile force, g, ¢r;. This magnitude of
this force is unknown and will contribute to the equilibrium of block j. Thus
oquilibrium matrix 3.6 can be modified to take into account the presence of bar j
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, leading to the following block cquilibrium relationship:

4 3
cos 0; — cos 6; . Sz
8in 6; —sin6; S - =9 Ju (3.75)
. cos(6; + ai)dix  —cos(6; + cir)dik a5 Myj
{9 )

In the above formulation 6; is the angle potential bar j makes to the z-axis, oy
is the angle of line Ok to the z-axis, dix is the distance from block centroid O to
joint k. Now the key parts of the formulation needed to design reinforcement in
a masonry structure have been derived. This is potentially very useful as after a
standard limit analysis has been performed, the structure may well be found to
be under strength. This allows the additional reinforcement required to be deter-
mined. The goal is to determine the least volume of material needed to strengthen
the structure. The full mathematical formulation for this problem requires that
cquations 3.75,3.74 and 3.72 are used in combination, though noting that the ob-
jective function is to minimize the volume of the reinforcing bars. The constraints
in cquation 3.72 apply with the exception of the equilibrium relationship now
governed by cquation 3.75.

3.8 Comparison and validation

3.8.1 Strip footing bearing capacity on single layered soil

Gencerally speaking, foundation bearing capacity problems pose a difficult test
for finite element methods because of the singularities that exist at the edges of
the footing. In order to obtain good lower bound solutions, particularly with a
piecewise linear stress field, it is desirable to have a very fine fan of elements
around the singularity point. Also, the accuracy of the solution obtained depends
on the soil frictional strength. Due to complex nature of the backfill material in



Chapter 3. Numerical model of masonry-soil interaction 72

masonry arch bridge, an additional test has been carried out on a multi-layered

soil problem.
Considering a weightless Mohr-Coulomb soil (¢ > 0,¢ > 0,y = 0) and without
surcharge, the bearing capacity of a rigid footing of width B is given by:

< =N, (3.76)

where Q is the limit load and N, is a dimensionless bearing capacity factor and it
depends on ¢. The exact value of N, is given by Prandtl (1921):

N, = [e"'“ tan? G + g)] ' (3.77)

thus N, = 2+ = for weightless cohesive soil. For a cohesionless soil with selfweight,
¢ = 0,6 > 0,y > 0 with no surcharge, the bearing capacity is traditionally
expressed as:

1
% = 57BN, (3.78)

where N, is a dimensionless factor that depends on ¢. At present, there is no
closcd-form analytical solution for N,; however it can be evaluated by number of
numecrical mcthods. The benchmark N, using in this study are from Martin (2003),
which rcports highly accurate solutions based on the method of characteristics
(Sokolovskii, 1965). In the initial set of analyses documented in table 3.1, mesh
1 — 3 were used to determine lower and upper bound solutions (denoted LB, UB
respectively) for the bearing capacity factors N, (¢ = 10kPa, ¢ = 0), N, (c =0,
¢ = 35°). All analyses were run on a Dell desktop computer equipped with Intel
Core 2 Quad-core 2.4 GHz processor and 2GB of memory. In order to obtain a
good solution for N, in table 3.2, a fine mesh of 20126 elements (not shown) with
a manual fan zone contained 80 discontinuity was used. The latter analyses were
run on a machine with a 2.4 GHz AMD Opteron (PC technology) processor and
4Gb of memory and running 64-bit Scientific Linux. Table 3.1 shows that close
bounds on the exact solution were obtained for a cohesive soil, with the difference
between lower and upper bound solutions being generally less than 2%. In the
case of a purely frictional soil, the bounds on the exact solution tend to widen as
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N.(5.14) N, (17.58)
Mesh LB (s) UB (s) LB (s) UB (s)
No elements  error% error% error% error%

1 5.108(63)  5.201(65) 155(71)  19.7(73)
1057 0.65 e ) 11.8 12.05

2t 5.117(217) 5.183(202)  16.57(232) 19.34 (223)
4327 0.47 0.8 5.74 10.01

3 5.132(389) 5.170(352)  17.01(461) 18.53 (421)
8024 0.22 0.55 3.24 54

tsee Figure 3.19

TABLE 3.1: Bearing capacity factors N,, N, with different meshes

o° Smooth Rough
LB  Martin (2003) UB LB  Martin (2003) UB
error% error% error% error%
15 0.692 0.699 0.712 1.15 1.182 j %
1.05 1.7 2057 157
25 3.39 3.461 3.9 6.29 6.4909 671
1.89 i i | 3.01 2.86
35 17.30 17.58 17.92 33.6 34.47 35.37
1.57 1.9 2.51 2.34
40 42.49 43.20 44.37 82.64 85.569 89.65
1.64 o 3.42 4.75
45 115.22 117.59 120.9 226.0 234.3 247.59
2.01 2.81 3.51 5.67

TABLE 3.2: Bearing capacity N, with fine mesh

the angle of [riction of the soil increases. When a very fine mesh is adopted, the

bounds are within 10% of each other provided the angle of friction is less than

45°. The average percentage error in bracketing the exact solution is calculated

as follow: .
error = UBTIB x 100 (3.79)
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FIGURE 3.19: Strip footing bearing capacity:

mesh 2 with 4327 elements

v>0.98

v=059

v<0J14

Fi1GURE 3.20: Proximity to yicld: half strip footing resting on a cohesive soil
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FiGure 3.21: Principal stress directions: half strip footing on cohesive soil
(around singularity point)
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FiGURe 3.22: Velocity field for half strip footing on cohesive soil with rough
footing
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FIGURE 3.23: Velocity field for half strip footing for frictional soil with rough
footing (¢ = 35,7 = 5)

F1GURE 3.24: Velocity field for half strip footing for frictional soil with smooth
footing (¢ = 35,y = 5)
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Figure 3.20 shows the proximity to yield v for a half strip footing resting on a

cohesive soil with ¢ = 10kPa, where v is defined as:

Moz = 0y)® + (274)°
~ 2cco8¢ + (0, + 0y)sin ¢

(3.80)

However, it should be noted that many points which are outside the plastic zone
are almost on the yield surface, especially for conical yield criteria (see e.g Lyamin
et al. (2005)). Figure 3.21 shows the maximum compressive principal stress under
the strip footing resting on a purely cohesive soil. It can be seen that the direction
of the principal stress is rotating around the singularity from vertical to horizontal.
Figures 3.22 to 3.24 show the velocity fields for a strip footing resting on a purely
cohesive soil and purely frictional soil. Considering the case of frictional soil, the
velocity field is deeper and wider for footing with rough interface compared to
footing smooth interface.

3.8.2 Strip footing bearing capacity on two layered soil

Sand layer over clay soils

The need to determine the bearing capacity of a foundation bearing on a com-
pacted sand or gravel layer overlying a soft clay arises frequently in foundation
engineering. In this section the finite clement limit analysis formulation is used
to obtain rigorous plasticity solutions for this problem. The upper and lower
bound solutions bracket the true solution from above and below. Results are
compared with upper-bound limit analysis solutions given by Michalowski & Shi
(1995). Their model considers various rigid block mechanisms that, at the point
of collapse, assume power is dissipated solely at the interfaces between adjacent
blocks. After optimizing the geometry to furnish the minimum dissipated power,
the mechanism that gives the lowest value is used to compute the best upper
bound on the limit load. The mesh shown in Figure 3.25 is used for all lower
bound and upper bound analyses. The mesh comprises 4192 clements, with a fan-

like zone at the singularity. The ‘rough footing’ case is modelled in all cases. The
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normalized bearing capacity QPE is plotted against the ‘shear strength’ of clay _y%
as shown in Figure 3.26. Figure 3.26 indicates that the obtained lower and upper
bound solutions agree well with results from Michalowski & Shi. It is also worth
also commenting on the effect of footing roughness. As discussed by Chen (1975),
approximate estimates for the frictional bearing capacity factor N, are reduced by
a factor of around two when the footing is taken as smooth instead of rough. For
the problem under investigation, it is expected that this parameter will have the
most influence when most of the failure mechanism lies inside the sand layer and
there is no surcharge. When the angle of friction is large (e.g. 40° or 45°), the
failure mechanism becomes deeper and wider and the effect of the footing rough-
ness diminishes as the influence of the clay dominates. For the results presented
here, the footing roughness has a negligible influence on the strip footing bearing
capacity. Figures 3.27 to 3.30 show the velocity field for a sand layer over clay
with different strengths. As can be seen in these figures, the deformation of the

sand layer increases when the shear strength of the clay increases.

5B

e

T‘-‘ '-'a' i |

Fixed .

F1GURE 3.25: Finite element mesh for sand over clay

3.8.3 Comparison between constant strain element and lin-

ear strain element for the upper-bound solution

This section compares the N, solutions obtained when using constant strain (CST)

clements and linear strain (LST) elements . Solutions are obtained using a uniform
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FiGUure 3.26: Dimensionless limit pressure on Sand-Clay foundation soil: (a)
¢ = 40°, (b) ¢ = 45°)

it

FIGURE 3.27: Sand on clay velocity field (Sand ¢ = 40°,7 = 20, Clay: ¢ =
30, = 20)

mesh comprising 6000 elements and discontinuities. As illustrated in table 3.3,
with the use of 6-noded elements, the use of LST leads to much improved results.
c.g for ¢ = 35° the CST clement error is over 18%. while the error when LST

clements are used is less than 7%.
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FIGURE 3.28: Sand on clay velocity field (Sand ¢ = 40°,v = 20, Clay: ¢ =
60,y = 20)

FIGURE 3.29: Sand on clay velocity field (Sand ¢ = 45°,v = 20, Clay: ¢ =
20, ~ = 20)
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F1GURE 3.30: Sand on clay velocity field (Sand ¢ = 45°,7 = 20, Clay: ¢ =
40,y = 20)

¢° CST LST  Martin (2003)

error%  error%

25 3.652 3.58 3.461
523%  3.4%

35 215 18.75 17.58
18.23% 6.65%

40 55.78 47.3 43.19

22.57% 9.51%

TaBLE 3.3: Comparison of upper bound solutions for CST and LST elements

3.8.4 Simple retaining wall problem

Consider the simple retaining wall problem shown in figure 3.31a. A weightless
cohesive soil with ¢, = 10kPa is subject to a pressure loading o,. The weight of
wall A is 105kN and the interface roughness between wall A and the foundation is
o. The wall height is 1m. The adhesion between the soil and wall A is assumed to
be ¢, = 0.5¢,. The problem is to find the o, that causes the structure to collapse.
Table 3.4 shows the results of o, for various ¢ and ¢,. Analytical results obtained
using a limit equilibrium method are provided by Powrie (1997). The active limit

to the horizontal total stress for active retaining wall with soil-wall adhesion is
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FIGURE 3.31: Simple retaining wall problem

given by:
Oy — 0 = 2¢,\/ (1 + Cw/cu)

and

Op — Op = 2Cy

(3.81)

(3.82)

for the case when soil-wall adhesion is not taken into account. Figure 3.31b,c.d

show the collapse mechanism for cases ¢ = 10, 0, 30° respectively. In the case

o = 0,¢, = 0, applying equation 3.82 with o, = 0 gives o, = 20. In the case
where 0 = 10, ¢, = 0, the mechanism involves the sliding of wall A on the interface.

The frictional interface between wall A and the foundation provides horizontal

pressure which will act to resist collapse. The magnitude of horizontal pressure is
ap = 1 x 105 x tan(10) = 18.48kN/m? so that o, = o}, + 2¢, = 38.48kN/m?. For
the case ¢ = 0,¢, = 0.5¢,, applying equation 3.81 with ¢;, = 0 and ¢, = 5, the
analytical result is 24.5kN/m®. Figure 3.31d shows the mechanism which involves

failure of the soil only. It is indeed as expected since the horizontal pressure is

large enough to resist the load that causes the soil failure.
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¢ ¢y Lower-bound Upper-bound Analytical

° kPa kN /m? kN/m? kN/m?
0 0 20 20 20
10 O 38.48 38.48 38.48
30 0 47.13 55.15 -

0 0.5c, 24.1 25 24.5
10 0.5¢, 41.7 42.6 -

30 0.5¢, 47.14 55.9 -

TABLE 3.4: Surcharge pressures for various interface properties
3.8.5 Adaptive pieces wise linearized of the yield surface

As previously mentioned, instead of using a large number of linearized surfaces to
modecl the non-linear Mohr-Coulomb yield condition, a heuristic numerical proce-
durc is adopted. This is described below:

o Input problem data

o Solve problem using very low number of linearized surfaces p = 3

e Check the yield condition.

o Add additional constraint if the stress point lies outside the true yield surface.

o Terminate if the yield is satisfied everywhere in the domain.

Table 3.5 shows the ultimate surcharge pressure obtained for a frictionless soil with
a finite element mesh comprising 4327 linear stress elements (as in figure 3.19).
As shown in the table, when using the procedure the total number of constraints
at itcration 10 is about 60% less than the number of constraints when p = 15, and
80% less when p = 32. When p = 48, the number of linearized surface is so great
that there is not cnough memory to solve the LP problem. Table 3.5 also shows
that adaptive result was closcr to the exact value ((2 + 7)c) compared to the case
when p = 32. This clearly demonstrates that this heuristic approach allows much
larger problems to be solved. However, the time taken to solve a problem using
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Adaptive Traditional

approach approach
Iter Surcharge No of added cons  Total p  Surcharge No of Total
kN/m?  (No of constraints) time(s) kN/m?  constraints time(s)
1 69.2953 - (73559) 22.87 15 44.372 229331 37.18
2 51.7095 7966 (81525) 46.38 18 46.589 268274 30.87
3 50.4409 1587(83112) 68.94 24 48.53 346160 35.81
4 50.4295 782 (83894) 91.47 32 50.01 450008 41.85
5 50.4291 411 (84305) 114.48 48 - - -
6 50.4289 235 (84540) 138.05
7 50.4288 59 (84599) 160.65
8 50.4288 13 (84612) 183.35
9 50.4288 0 (84612) 205.77

TaBLE 3.5: Comparing adaptive approach to traditional approach for a fric-
tionless soil

the adaptive approach might be longer than when using the traditional approach.
Figure 3.32 shows the ultimate surcharge pressure for 1m footing width obtained
when using the adaptive procedure for different soil types. The results indicate
that the final solution is obtained very guickly, but that morc iterations arc necded
to assurc that there is no stress point that violates yield.

3.9 Conclusions

In this chapter, a two-dimensional computational limit analysis procedure has
been developed for soil-arch interaction problems. Use of quadratic displacement
clements with discontinuities to model the soil improves upper bound predictions,
and rcasonably closc bounds on the theoretical ‘exact’ collapse load have been
obtained. The adaptive piccewise linearization of the yield surface is found to
be capable of reducing the size of the underlying LP problem, thus permitting
larger problems to be solved. For the simple retaining wall problem considered,
results from the numerical method developed were found to be in good agreement
with available analytical solutions. The above upper and lower bound model will
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200 ~&— Frictionless soil: c=10kPa

180 : ~— Cohesive-frictional soil: c=1kPa, phi = 35° gamma=1kN/m’
160 1 Exact solution for frictionless soil

140 4 = Exact solution for cohesive-frictional soil

120 =&~ Cohesionless soil: phi=35°,gamma=10kN/m*

-~~~ Exact solution for cohesionless soil: phi=35° gamma=10kN/m*
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FiGure 3.32: Adaptive approach: Load converge vs iteration for different type
: of soil for 1m footing width

be used to analyse a series of bridges recently load tested to collapse at Salford
University.



Chapter 4

Application of numerical limit
analysis model to soil-structure

interaction problems

4.1 Introduction

Finite element limit analysis is becoming an established computational means by
which upper and lower-bound strength estimates can be rapidly obtained for prob-
lems with complex gecometry and/or loading and boundary conditions. Advantages
arc that only soil strength parameters and details of the mesh geometry are re-
quired in order to obtain solutions, which also have clear status (in contrast to the
solutions obtained using incremental elastic-plastic methods for example). Whilst
several finite element limit analysis studies of soil-structure interaction problems
are already described in the literature (e.g. for bearing capacity and anchor pullout
problems), interest has typically focussed on soil performance only. For particular
classes of problems it is desirable to perform a coupled analysis of the soil and
adjacent structural clements. This study describes how such problems can be for-
mulated and cxplores some of the challenges and issues involved, including that
of rclative soil and structure strength mobilization. Illustrative example problems

86
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c (kN/m*) ¢ (degrees) ~ (kN/m?>)

Soil 5 40 14
Masonry 0 31 20
Soil-Masonry 0 20 -

TABLE 4.1: Material properties

are described, including backfilled masonry arch bridge and retaining wall prob-
lems, and results are compared with those from simple analyses and large scale

cxpceriments.

Thcorctical dcvclopmcﬁts presented in Chapter 3 have been implemented in com-
puter software fem to carry out the lower and upper-bound limit analysis. fem
was written using the well known C++ object oriented language; further details
can be found in Appendix B. With the aim that the developed numerical model
could be used in future commercial software, C++ seems to be an obvious choice
rather than Matlab. However, it means that the level of understanding of the
C++ language must be high to be able to work in a software development team.
Unlike the usual finite element method, where many free C++ libraries can be
incorporated, there is no C++ library for FELA. The author has therefore spent
a significant period of time developing fem.

The basic procedure is briefly described as follows: Finite element meshes are
generated using a third party mesh generator, Gid9. Mesh data from Gid9 is
output to a text file and then read into fem. In fem boundary, equilibrium,
yield or flow rule conditions are imposed, leading to a mathematical programming
problem formulation. The optimization problem is then solved by using a third
party LP solver, Mosek. Finally the solution is interpreted using software such as
AutoCad and Microsoft Excel.
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FiGURE 4.1: Retaining wall geometry (a) and Maximum compressive stress
vectors (b)
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FiGure 4.2: Soil velocity field and wall deformation (a) and Variation in
stresses in relation to the yield stress (b)

4.2 Analysis of a brickwork retaining wall

This example illustrates application of the model to the analysis of a masonry block
retaining wall retaining soil with a discrete surface load. Material properties are
provided in table 4.1 and the geometry is shown in figure 4.1a. Lower and upper-
bound predictions of the surface load required to cause collapse were 58.6kN/m
and 65.4kN/m respectively. To obtain these values the mesh was manually refined
around the base of the surface surcharge, though further improved predictions
could be achieved with a finer mesh (for this example a single relatively coarse mesh

comprising 3831 clements was used for both lower and upper bound analyses).
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Ficure 4.3: Vertical stresses measured at various offsets from the front of the
wall

Figure 4.2b shows how the computed stresses vary in relation to the yield stress
(red areas being closest to vield). The velocity field obtained from the upper
bound analysis shown in figure 4.2a indicates the presence of a crack between the
wall and soil and also that the wall fails by rotating near its base. In figure 4.3 the
predicted vertical stresses 6m behind the wall vary approximately linearly with
depth, the values being close to vh as expected. In contrast, the vertical stresses
immediately behind the wall are significantly above this level below a depth of
approx 2.5m. The low horizontal stresses 1m behind the wall in figure 4.4 indicate
the potential presence of cracking down to a depth of & 1.6m. The wall fails
because of the increasing horizontal stresses below this depth, acting to overturn
the wall.

No directly comparable benchmarks are available in the literature for this type of
problem; however the horizontal stress distribution on the wall due to the surface
load can be compared with that derived using a procedure due to Pappin et al.
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FiGUure 4.4: Horizontal stresses measured at various offsets from the front of
the wall

(1986) and Motta (1994). It is evident from figure 4.4 that the results do not cor-
relate well. In figure 4.2, the critical plane predicted by the upper bound method
is approx. 53.1? compared with 59.48° suggested by Motta. This is probably rea-
sonable since in Motta’s model the wall is assumed rigid and the critical plane
is derived from the bottom right of the wall. Note that for this example it has
been implicitly assumed that peak soil and structural strength will be mobilized
simultancously: this may not always hold true, as will be demonstrated in the

following examples.
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4.3 Prestwood bridge

In this section, the load test to collapse on Prestwood bridge is investigated (Page
(1987)). Figure 4.5 depicts the Prestwood bridge geometry. It had a brick segmen-
tal arch only 200mm thick and was in poor condition, with parapets removed and
a distorted arch. The bridge span was 6.55m with a rise at mid-span of 1.428m.
The depth of fill above the crown was 0.165m and the width of bridge was 3.8m.
The live load was 0.3m wide and was applied at road surface level at the quarter
point. Prestwood bridge collapsed as a ‘four hinged mechanism’ after a maximum
load of 228kN was applied. The mechanism developed with negligible material
crushing. Figure 4.6 shows the backfill and masonry material properties. Table

4.2 shows the parameters used in the numerical analysis.

0.3
jides el
[BLLTT :
o ., % F
NO.22 7,428

FIGURE 4.5: Prestwood bridge geometry

c(kN/m?) ¢ (0) 7 (kN/m?)
Soil 7 37 20
Masonry 0 31 20

TABLE 4.2: Material properties of Prestwood bridge

Figure 4.7 shows the finite element mesh used for the numerical analysis. The
mesh comprised 5096 triangular elements and 42 rigid-block elements. The same
mesh was used for both upper and lower bound analyses. In this test, there is
also no information on soil-arch interface properties, however, taking §/¢ = 2/3,

the predicted collapsed load given by the lower and upper bound solutions are
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TABLE 4
Prestwood bridge: measurements on arci and fill samples
Sample Measurement Result
Fill from west Maximum dry density {From compaction tests 1.78 Mg/m?
sbutment on reconatituted Y
tsample 1) Optimum moisture content semples) 13%
in-situ moisture content 6.0%
Fili from eest Maximum dry density (From compaction tests 1.80 Mg/m?
abutment - on reconetituted e
{sample 2 Optimum moisture content samples) 11.5%
In-alty moisture content 10.56%
Uiquid Nmit 2%
Plastic imit 14%
Plastioity index 8%
* | {Shear strength parameters from consolidsted undrained triaxisl 7 kN/m2
compression test {multistage) with measurement of pore pressure} _37"——
Biick from arch Natural density: sampls 1 2010 Kg/m?
2 1940
3 1960
4 2070
5 170
Specific gravity {sample 1) 2.8
Sscant moduius (From 54.5 mm 2200 N/mme
dismater and 129.2 mm  R————
Crushing strength long core) 7.7 N/mm?
Brick end Secent moduius 4140 N/mma
mortar block (2
bricks mortared Crushing strength 4.8N/mm?
togather on
thelr top and
bottorn faces)

FIGURE 4.6: Prestwood bridge material properties (Page 1987)
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[ Load cell

Fixed

Fixed Fixed

FIGURE 4.7: Finite element mesh of Prestwood bridge

v>0.98 v=0.59 v<0.14

Ficure 4.8: Prestwood Bridge: variation in maximum shear stress relative to
the yield stress

FiGure 4.9: Prestwood Bridge: maximum compressive principal stress vectors

195kN and 236kN respectively. The model predicted the arch will fail in a four
hinges mechanism as shown on figure 4.11, and the predicted hinge locations are
found to be similar to those observed in the test (see figure 4.10). Figure 4.12
shows the variation of the shear strain rate predicted by the upper bound. In this
example, the predicted loads provide ‘good’ bounds on the actual collapse load
of 228kN. Although the predicted collapse load was close to the actual collapse
load of the bridge, it should be noted that kentledge used as part of the collapse
load test loading system were not modelled. Figure 4.13 shows that the kentledge
is supported vertically above the arch springings and this may have influenced

the strength of the bridge. There is also uncertainty about material properties
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F1GUuRE 4.10: Prestwood bridge immediately before collapse (Page 1987)

FIGURE 4.11: Prestwood Bridge: deformed shape of soil and arch
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FIGURE 4.12: Prestwood Bridge: variation in shear strain rate
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FIGURE 4.13: Prestwood Bridge: loading system (Page 1987)
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used in the analysis. For example, in Cavicchi & Gambarotta (2005, 2007), the
close bounds (210kN and 250kN) on the test load are only obtained when the
soil strength is ¢ = 13, ¢ = 37° and the crushing strength of the masonry is low
(0. = 4.5MPa). However, it has been mentioned in Page (1987) that masonry
crushing failure was ‘negligible’. With the assumption of high masonry crushing
strength, the Cavicchi model gives collapse loads of 230kN and 280kN for the
lower bound and upper bound respectively. In Cavicchi’s model, the influence of
the soil-masonry interface properties was not incorporated so that it is difficult to
make direct comparison with results from the present model. Furthermore, here it
was found that the FELA solution was very sensitive to mesh refinement, whilst
in Cavicchi's papers, a very coarse mesh was used in the analysis. Therefore, it
is concluded that it is not at present possible to make definitive statements about
the predictive capability of FELA, based on the work of Cavicchi and the use of
Prestwood bridge as a case study.

4.4 Load test to collapse of back-filled brickwork

masonry arch bridges at Salford University

In parallel with the current work, a series of physical model tests on full-scale 3m
span soil-filled masonry arch bridges was carried out at Salford University. These
tests were commissioned by Essex County Council as part of a programme of
work to help more reliably determine the load carrying capacity of Essex County
Council masonry arch bridges. The tests were designed by researchers from the
Universities of Sheffield and Salford. More details of these tests can be found
in Appendix D. Key benefits of using test data from these bridges to verify the
numerical model are that: (i) the characteristics of the constituent materials are
known, (ii) the bridges are being tested under effectively plane strain conditions,

replicating those in the model.



Chapter 4. Application of numerical model to soil-structure problems 97

Bridge A B Back-filled Reinforcement ~ Abutment
(m) (m) (Yes/No) (Fixed/Free)
Arch01 0.73 3.92 Limestone No Free .
Arch02 193 272 Limestone/Clay No Free
Arch03 0.73 3.92 Limestone No Fixed
Arch04 1.34 3.31 Limestone/Hoggin No Free
Arch05 1.34 3.31 Limestone Yes Free
Arch06 1.34 3.31 Limestone/Clay Yes Free

TABLE 4.3: Details of Salford bridge geometry

4.4.1 DBridge geometry

The generie test geometry is shown in figure 4.14 and specific details for each test
are given in table 4.3. Two bridges had near-road surface reinforcement comprising
10No. 3m long 100x50x10mm S275 parallel flange steel channels placed across
the bridge width and centralized under the load. These replaced 50mm of fill.
For all bridges, the loading beam was always located at the quarter span point.
Bridges were backfilled with either limestone, limestone over clay, or limestone

over hoggin and had either fixed or free abutments.

Steel beam reinforcement
RO | sl
Lime stone 0.30m
! ! X > %
o3| Abutment KA
A 3.00m P B
0.32m 8.30m 0.32m

FIGURE 4.14: Salford Bridges: geometry
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Material Compressive  Nominal Density
Strength Dimensions  (kg/m?)
(N/mm?) (mm)

Class A 154 215:% 102 % 2370

engineering 65

brick

Mortar 1.9 - 1470-

1570

TABLE 4.4: Masonry properties

4.4.2 Materials
Bricks and mortar

Properties of bricks used in the construction of the arch barrels are shown in table
4.4. The mortar 1: 2 : 9 (cement:lime:sand) mix by volume was used throughout
the arch barrel. The mean properties as determined from five 100mm cubes are
presented in table 4.4. The cubes were cured under the same conditions as the

arch barrel.

Crushed limestone

In the arch tests the limestone was compacted to a typical density of 19.1kN/m?.
A series of 300mm shear box tests on compacted limestone were carried out at
normal stresses of 25kPa, 100kPa and 175kPa, employing 3 repeat tests for each
stress level. Figure 4.15 shows the shear stress against horizontal displacement
obtained from the shear box test. The shear box results indicated an average
strength of ¢ = 3.3kPa and ¢ = 54.5°..

Clay

In the arch tests, the clay was compacted at an average moisture content of 12%.

Since control over the moisture content uniformity was challenging for this type
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0 2 4 6 8 10 12 14 16 18 20
Horizontal displacement (mm)

FiGUure 4.15: Crushed limestone shear box test: shear stress against horizontal
displacement

of test, the actual placed moisture content varied ~ +2% leading to a variation in
soil strength measured on individual tube samples taken after the test. Figure 4.16
shows the typical range of triaxial test data obtained. The clay was compacted to
an average density of 21.5kN/m?.

E o
s

L oo ot 0.5 02 028 03
shear struin

FIGURE 4.16: Clay triaxial test: shear stress against strain
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Hoggin

Hoggin is a mix of sands, clay and gravel. Material characteristic of hoggin used

in the Arch04 was not available at the time of writing.

4.4.3 Finite element meshes
The influence of the mesh

Finite element limit analysis suffers from the fact that the solutions are quite
sensitive to the geometry of the mesh. This may be illustrated by examining
mesh dependency when modelling a strip footing. From figures 4.17 and 4.18, it is
evident that solutions obtained using the lower bound mesh without configuring
it to account for the singularities present at the edges of the surface load are far
from the exact solution. Close proximity to the exact solution is only achieved
when meshes are both sufficiently fine and incorporate a manually constructed fan-
like zone at the singularity. Without the fan-like zone, mesh refinement does not
significantly improve the lower bound solution. Upper bound solutions are much
less sensitive to the mesh though refining the mesh will improve the solution.
Figure 4.19 shows the influence of mesh choice on the solutions for Arch0O1. This
indicates a reduced sensitivity to the presence of singularities compared to the
strip footing problem. This is reasonable since stress ‘flow’ tends to be downward
for the arch problem rather than lateral in the strip footing problem. Refining the

mesh significantly improves the solution up to around 5000 elements.

Mesh used in the analysis

Finite element meshes used in the analysis are shown in figures 4.20 to 4.24. The
same meshes were used for the upper bound and lower bound analyses. For bridges
without reinforcement, the meshes were manually refined around the base of the
surface load and a relatively fine mesh was used around the arch barrel to capture

the essential features of the soil-arch interaction. All meshes contain 48 rigid block
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FicUure 4.17: Ultimate limit load of a strip footing on cohesive soil for various

type of meshes
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Fioure 4.18: Ultimate limit load of a strip footing on cohesive-frictional soil

for various type of meshes
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FicUure 4.19: Ultimate limit load of Arch01 for various type of meshes

clements to represent the arch barrel. The number of triangle elements used to
model the backfill varied for each test and is listed in table 4.5.

FIGURE 4.20: Arch0l and Arch03: Finite clement mesh

4.4.4 Bridge analyses

For all bridges, the soil-masonry interface angle of friction 4, has not yet been
measured experimentally and was initially taken as 1/3 soil strength. This is based
on the Eurocode 7 recommendation of taking 2/3 ¢, for the interface between
sand /gravel and precast concrete, where ¢, is the critical state angle of friction
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FiGure 4.24: Arch06: Finite element mesh
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Bridge Number of triangle elements
Arch01 and Arch03 5895

Arch02 5957

Arch04 5974

Arch05 5417
Arch04 and Arch06 5390

TABLE 4.5: Number of triangle elements for the back-filled

of the soil. Although critical state values were not available from the shear box

tests, they might be expected to be significantly lower than the peak strength.

Bridges Arch01 and Arch03

The numerical model described in previous chapters was used to analysis the Sal-
ford bridge test series. Bridges ArchOl and Arch0O3 have the same geometry, the
only difference is that the abutments in Arch03 were fixed whereas in Arch01,
the abutments were free to slide. The experimental collapse loads are 128kN and
145kN for ArchO1 and Arch03 respectively. However, when the peak soil strength
(i.e. ¢ = 3.3kPa and ¢ = 54.5°) was used in the analysis, the predicted collapse
loads are the same for these bridges as it is illustrated in table 4.6. Furthermore,
the vielding stress (figure 4.29). the shear strain rate (figure 4.30) and the defor-
mations (figure 4.32) are almost identical. Thus the numerical predictions indicate
that abutment fixity does not alter bridge capacity nor deformation for this config-
uration. This clearly contrasts with the experimental evidence, where the bridge
capacity was higher in the test with fixed abutments, and collapsed in a 4-hinge
mechanisin whilst ArchO1 collapsed in a mode that also involved abutment slid-
ing. The comparison of velocity fields given by PIV (Particle image velocimetry)
and FELA in figure 4.33, shows that on the passive side of the arch, the slope of
velocity vectors providing by the PIV (at the collapse state) are generally at 459,
whereas for the FELA, the velocity vectors are generally greater than 80°. This
illustrates that using peak soil strength and/or an associated flow model may net

be appropriate.
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For Arch03, in both model and experiment, the arch collapsed in a classical 4
hinge mechanism, as shown in figure 4.32 (though it is evident that in some areas
‘diffused’ hinges form). Figure 4.29 indicates the presence of yielding soil (red
shaded areas), both under the load and in the soil around the ‘passive’ right hand
side of the arch, where the arch barrel sways into the soil mass. Figure 4.31
indicates that the stresses ‘flow’ in two ‘streams’, the right hand (short) stream
focussing load directly onto the arch extrados, just to the right of the loading
beam, and the left hand ‘stream’ taking the stresses almost parallel to the arch
extrados towards the abutments. The position of the thrust line in figure 4.31
(i.e. alternately touching the intrados and extrados) indicates that the arch is at
the point of collapse. The initial predicted lower-bound and upper-bound load
carrying capacities were 170kN and 231kN respectively, significantly greater than
the experimentally recorded peak load. Three main factors can be considered as

contributing to this gross over-prediction:

e Soil/arch interface properties were estimated rather than measured.

e The loading beam friction was assumed to be smooth as a measured value

was unavailable.

e Large displacements of an arch cause it to lose strength (see e.g Gilbert
(1997)), whereas conversely significant soil strength is only mobilized once

structural displacements become large.

To identify the relative significance of each of the first two parameters, a para-
metric study was performed. Taking the parameter set described previously as
the benchmark, the influence of varying individual parameters was investigated.
The effect of the ratio §/¢ (plotted as F in figure 4.25) , where 4 is the soil-arch
interface friction can be seen to have a very siguificant effect on predicted load
carrying capacity. A close match between experiment and model is only achieved if
an almost perfectly smooth interface is assumed, which does not seem reasonable.
Conversely, taking F = 0.33 gives a high predicted capacity for full soil mobiliza-
tion. It was found that the soil-loading beam interface friction has a negligible
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Bridge Lower-bound Upper-bound Experiment

Arch01 170 231 128
Arch02 80 98 90
Arch03 170 231 145
Arch05 624 842 360
Arch06 271 287 280

TABLE 4.6: Predicted collapse loads (kN) of Salford bridge tests

effect on the predicted bridge capacity, in contrast to the considerable influence
of base friction in the case of ordinary foundation footings. This appears logical
in that most soil movement and transfer of load is directly downwards in the arch

problem, rather than laterally in the case of a foundation footing problem.

450 - A
upperbound —
400 - solution
350 1 variation with arch/soil interface
roughness, F
300 4 solution
g
i 250 4
} 200 -
-
© 150 A
100
50 -
0 v T r T )
0 0.2 04 0.6 0.8 1

Friction ratio F

Fioure 4.25: Arch03: variation in collapse load with different soil /arch inter-
face properties
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Bridge Arch02

Determining the shear strength of the clay is rather difficult since the data obtained
from triaxial tests were quite variable, as shown on figure 4.16. In order to evaluate
the effect of the clay shear strength on predicted behaviour, various clay shear
strengths, ranging from ¢ = 30 to ¢ = 100kPa have been used in the model. Table
4.7 shows the predicted bridge bearing capacity, illustrating that with a cohesion
30kPa, the predicted collapse load is closed to that observed experimentally (80kN
and 98kN for the lower and upper-bound analyses respectively). However, as can
be seen on figure 4.32, the numerical model predicted a localized failure in the
soil only. Figure 4.29 also shows that the soil within the top layer appears to be
yielding almost everywhere, an unexpected result. This indicates that the loading
beam will simply ‘sink’ into the soil mass and cause failure of the soil around it. For
all clay shear strengths given in table 4.7, it was predicted that a local soil failure
would occur. This predicted behaviour might be partly reasonable in that it has
been observed experimentally that vertical displacement of the loading beam is
considerable during the test (larger than movement of the underlying arch barrel).
Furthermore, there are uncertainties as to what soil strength is actually mobilized
in a given region of the bridge - and this makes numerical analysis difficult. i.e.
the assumption that constant strength is mobilized across the whole soil mass
may not be valid and it will be discussed in the following chapter. This example
clearly demonstrates the difficulty in applying the current model to the analysis

of a complex soil-structure interaction problem.

Bridge Arch04

Since the material characteristics of the ‘hoggin’ fill material was not available, a
parametric study on the contribution of the soil friction and cohesion on bridge
carrying capacity was undertaken. Table 4.8 and 4.9 show the predicted collapse
loads for various soil angles of friction and cohesion. It is found that when ¢ = 48°,
the predicted collapse load is close to the experiment. Table 4.9 shows that when
¢ = 60kPa, the collapse load given by the lower bound and upper bound analyses
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Cohesion (kPa) Lower-bound Upper-bound Experiment

30 80 98
40 96 118
50 110 140
60 123 159 90
70 136 178
80 148 195
90 159 212
100 170 230

TABLE 4.7: Predicted collapse loads of Arch02 for various clay shear strengths

¢° Lower-bound Upper-bound Experiment

20 54 63

25 65 77

30 7 86

35 90 104

40 108 127

45 126 149

48 139 165 145
50 148 178

55 171 210

TABLE 4.8: Predicted collapse loads (kN) of Arch04 for various angles of soil
friction

arc 131kN and 176kN, which are quite close to the test load. However, as for
Arch02, the FELA model predicted local footing failure when purely cohesive soil

was present.

Bridges Arch05 and Arch08

The Arch05 and Arch06 tests in Salford University arc a back-filled crushed lime-
stone and limestone over clay with near-road surface reinforcement as described
in scction 4.4.1. It was originally cnvisaged that the reinforced concrete beam
modecl developed in Chapter 3 would be used for these tests; however in the event
a stecl beam was used in the experiments. However, it can be argued that the
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Cohesion (kPa) Lower-bound Upper-bound Experiment

30
35
40
50
60
70
80

82
92
101
116.7
131
144
157

107
120
133
157
176
190
210

145

TABLE 4.9: Predicted collapse loads (kN) of Arch04 for various soil cohesion

values

¢0

Lower-bound Upper-bound Experiment

20
25
30
35
40
45
50
54.5

179
200
232
272
335
420
510
624

2148
240
278
354
436
567
689
842

375

TABLE 4.10: Predicted collapse loads (kN) of Arch05 for various limestone
angles of friction

Cohesion (kf’a) Lower-bound Upper-bound Experiment

30
35
40
50
60
70
80

271
292
313
355
395
435
473

287
309
335
375
427
465
502

280

TABLE 4.11: Predicted collapse loads (kN) of vArch06 for various clay strengths
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Arch05 Arch06
Mp Lower-bound Upper-bound Lower-bound Upper-bound
3.0 514 694 233 247
4.0 570 770 . 253 268
4.8 624 842 271 287
5.5 672 907 286 303
6.0 706 953 297 315

TABLE 4.12: Predicted collapse loads (kN) of Arch05 and Arch06 for various
beam plastic moments

numerical model developed in Chapter 3 can still be applied. The appropriateness
of using this model is verified in Appendix C. As can be seen in figure 4.31, the
angle of load spreading is wider in the case of bridges with reinforcement. This
has a significantly beneficial effect on bridge capacity. Figure 4.30 indicates that
the right-hand abutments are moving into the soil and causing a large shear band
to the right of the arch. Figure 4.32 shows that the failure mechanism is not a
4-hinge mechanism. The deformation of the arch is very similar to that observed
in the actual test, where a large movement of the abutment was seen. For Arch05,
the predicted collapse loads were 624kN and 842kN respectively for the lower and
upper bound approaches, which is a gross over-estimate (by approximately a fac-
tor of 2), compared to the actual bridge test collapse load of 375kN. In order
to estimate influence of the angle of friction of the soil, a parametric study was
performed. As in table 4.10, when ¢ = 40° the predicted collapse load is close to
the experiment (335kN and 436kN for the lower bound and upper bound analyses
respectively). Table 4.11 shows the predicted collapse loads of Arch06 for various
clay strengths. It was found that when ¢ = 30kPa, the predicted collapse loads are
271kN and 287kN, which is close to bridge test collapse load of 280kN. However,
as can be seen from figures 4.35 to 4.38, for both Arch05 and Arch06, the slopes
of the soil movement vectors indicated by PIV on the passive side of the arch are
much less than predicted by FELA.

In order to estimate the influence of the near road-surface steel beam on bridge car-
rying capacity, various plastic moment values (Mp) for the beam were examined,
Table 4.12. From the predicted collapse loads it can be seen that increasing the



Chapter 4. Application of numerical model to soil-structure problems 111

2:1 uniform distribution
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FIGURE 4.26: A 2:1 uniform distribution by BD21/01

K

plastic moment of the beam will result in a greater bridge capacity. For Arch05,
doubling the beam plastic moment will increase the capacity by approx. 15%,

whilst for Arch06, the corresponding increase is approx. 12%.

Load spreading in masonry arch bridges

The ability of the backfill to spread the load has long been considered to be impor-
tant (sce e.g Callaway (2007)). Figure 4.26 shows a 2:1 uniform stress distribution
(2 vertical, 1 horizontal) given by BD21 (2001). In this case the load spreads from
17% to 38% of the extrados. However, it is evident from figure 4.27 that in reality
the load is likely to be significantly more focused than predicted by the simple 2:1
model. In this figure, the stress is concentrated from 30% to 40% of the extrados.
Figure 4.27 also indicates that the load spreading is quite insensitive to ¢. The
normal stress acting on the extrados of ArchO1 and Arch05 are plotted in figure
4.28. This figure demonstrates that the load is spread over a much wider range
when the near-road surface beams are present (from 30% to 45% of the extrados).

The load is also less concentrated, leading to an increase in bridge strength.
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Fioure 4.27: ArchOl:mormal stress on the extrados for various of ¢

4.5 Conclusions

In this chapter, the FELA model developed in Chapter 3 has been used to analyze
the full-seale bridge tests recently conducted at Salford University. Through a
number of analyses, the following conclusions can be drawn:

e Some difficulties were initially experienced when attempting to apply the
model to a laboratory test bridge. Although high quality soil strength data
was generally available, since soil strength requires significant strains before
it is fully mobilized, there were question-marks over what values should be
used in the model, given also that large arch deformations reduce its load
carrying capacity. Furthermore the soil-arch interface friction has not yet
been measured, introducing further uncertainty.
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FI1GURE 4.28: ArchOl and ArchO5:normal stress on the extrados

e Numerical results indicate that the nature of the surface load (smooth or
rough) has negligible effect on the arch load capacity, whilst in contrast the
soil-arch interface properties have a significant influence on the predicted
ultimate load carrying capacity.

e Though further investigations are warranted it is now clear that neglecting
soil strength mobilization and/or gross displacement strength reduction may
lead to significant over-prediction of the ultimate collapse load.

e The above numerical model in some cases, predicts local soil failure rather
than the desired failure of the arch, depending on the nature of backfilled
material.

e For the bridges considered, the model indicated that the applied load is more
focused than the 2:1 uniform stress distribution given in BD21 (2001).
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ArchiOl

ArchO3

Frovre 4.29: Variation in maximum shear stress relative to the yield stress
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F1GURE 4.30: Variation in shear strain rate
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FIGUuRe 4.31: Maximum (compressive) principal stress vectors
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FI1GURE 4.32: Deformed shape of soil and arch
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Section B

FioUure 4.33: Arch01: Comparison of velocity field given by PIV and FELA

FIGURE 4.34: Arch0l: Velocity field given by PIV (Section A) and FELA
(Section B)

e For bridges with near-road surface reinforcement (beams), the load is more

widely spread than is the case for similar bridges without reinforcement.
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Section B

FIGURE 4.35: Arch05: Comparison of velocity field given by PIV and FELA

FIGURE 4.36: Arch05: Velocity field given by PIV (Section A) and FELA
(Section B)
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Section B

FIGURE 4.37: Arch06: Comparison of velocity field given by PIV and FELA

Fioure 4.38: Arch06: Velocity field given by PIV (Section A) and FELA
(Section B)



Chapter 5

Mobilized strength limit analysis

of masonry arch bridges

5.1 Introduction

A
a e aae |\

, ." Active side Passive side .

Ficure 5.1: Deformed shape of soil and arch

The interaction of the barrel of an arch bridge with the surrounding areas of backfill
material has been found to often be of great significance. Considering the mecha-
nism in figure 5.1, when the arch is loaded the arch barrel under the load moves
away from the backfill (active condition), whilst the arch barrel on the right moves
into the fill (passive condition). When a section of the arch barrel moves into the
fill, substantial passive horizontal pressures can be mobilized, thus restraining the

barrel and strengthening the bridge. These restraining pressures will be especially

121
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important in the case of deep arches. The beneficial effects of horizontal backfill
pressures on the strength of masonry arch bridges was appreciated by Crisfield &
Packham (1987), who included this effect in the analysis of an arch bridge. Many
workers have included horizontal backfill pressures in their analysis methods, and,
almost without exception, have used the equations of classical passive pressure
theory. Indeed, despite the dissimilarities between the shape of an arch barrel and
a vertical wall, Rankine's passive pressure developed for a vertical wall have been
used when analysing masonry arch bridges (Crisfield & Packham (1987), Choo &
Gong (1990)). The result is that overestimates of the passive resistance attainable
will be made unless the passive pressure coefficients are empirically scaled down.
Recently, work by Burroughs et al. (2002) confirms that full passive pressure limits
are not reached and they suggest the applied pressures are scaled down towards
the hinge point. Including backfill pressures in arch bridge analysis is however
problematic for another reason. This is because full passive pressures tend to be
mobilized only after large movements of the retaining wall have taken place (see
c.g. Chen (1975)). Conversely an arch barrel is most able to carry applied loads
in its undeformed state - large movements of the barrel significantly reduce the
ability of the arch to carry load. In an elastic arch bridge analysis, (e.g. Choo
& Gong (1990), Crisfield & Packham (1987)) the failure of a bridge is likely to
oceur well before full passive pressures are mobilized and thus the assumed initial
stiffness of the backfill material will be important. However, in the case of plas-
tic analysis, the full passive resistance is unlikely to be mobilized at the point of
bridge failure and this makes it is difficult to predict the amount of restraint which
will be offered by the backfill.

As with retaining wall analysis, the concept of mobilized strength appears to be
important when performing a soil-arch analysis. The strength of a backfilled arch
derives partly from the masonry structure itself and partly from the backfill. How-
ever the full strength of each component is not typically mobilized simultancously.
As the arch itself initially starts to deform, its full strength will be mobilized, but
this will decrease as deformation modifies its geometry. Simultancously, the de-
forming arch gives rise to shear strains within the soil; however a moderate amount

of arch deformation is required before these shear strains mobilize full soil strength.
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Somewhere between these two stages, the combined soil-arch system will generate
its peak load capacity. Implicit in the model presented in the previous chapter
is the assumption that soil and arch will mobilize their peak strength simultanc-
ously; this does not always hold true as indicated by the over-estimated predicted
bridge load carrying capacities obtained. In the first section of this chapter, a
mobilization factor is applied to the passive side of the arch to study its effect on
bridge capacity, thereby informing the needs of an improved model.

5.2 Simple mobilized strength analysis

5.2.1 The influence of mobilized soil strength

In this scction, Arch01 and Arch02 are revisited, with a mobilization factor applied
to the passive side of the arch. It is assumed that the soil on the active side is
fully mobilized with ¢ = 3.3,¢ = 54.5 and that the soil on the passive side has
strength Gnob, dmob- The soil-arch interface friction is assumed to be ¢/3. Table
5.1 shows the variation of collapse load with mobilization factor for Arcth. The
results suggest that with a mobilization factor of approximately 0.33, the predicted
collapsc load by the lower and upper bound analysis would be close to the actual
test collapse load of 128kN. Table 5.2 shows the variation of collapse load with
mobilization factor for Arch02 in which * denotes a local footing failure. The full
mobilized shear strength was taken as ¢ = 80kPa and the soil-arch interface as
lc. It is interesting to note that the arch fails when there is a low mobilization
factor on the passive side, whereas for a higher mobilisation factor, a local footing
failure is predicted. In figure 5.2, the soil is yielding under the load and on the
passive side of the arch when the mobilization factor is 0.01, indicating arch failure.
The arch barrel on the passive side pushes the soil upwards causing yield of the
soil. From this simple analysis, it can be concluded that it is important to use soil
mohilized strength when using finite element limit analysis; ignoring soil mobilized
strength could lead to an over prediction and may even predict an incorrect failure
mechanism.
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Mobilization factor Lower-bound Upper-bound

0.01 794 105.4
0.1 84 115.3
0.25 95.6 127.1
0.33 100.2 135.2
0.45 106 142.3
0.5 111.3 151.53
0.67 127 172.4
0.8 142.4 195.1
1.0 175 228.5

TasLe 5.1: ArchOl: Collapse load (kN) with various mobilization factors

Mobilization factor Lowerbound Upperbound

0.01 69.6 106
0.1 90.2 118.2
0.2 108.1 124.5
0.5 122.7* 141.5*%
1.0 148* 200*

TasLe 5.2: Arch02: Collapse load (kN) with various mobilization factors

v >0 98 v=0.59 v<0.14

X

Ficure 5.2: Arch02: variation in maximum shear stress relative to the yield
stress with mob=0.01
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5.2.2 Simple model for mobilized strength analysis

0 _fdegree)
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——Normal stress: 25kPa
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Normal stress: 175kPa

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Shear strain

FioUre 5.3: Limestone mobilised soil strength against shear strain

From the preceding section, it can be seen that applying a mobilization factor
could lead to a good prediction on bridge capacity. However, the obvious question
that arises is: what mobilization factor should be used? In this section, a simple

model is developed with the aim of answering this question.

Considering Arch01: the arch is divided into an active side and a passive side and
the mobilization factor is applied for each side of the arch separately. Subsequently,
the average shear strain is calculated for each side of the arch. Since the products
of an upper-bound finite element limit analysis are the displacement rate and
strain rate, it can be argued that estimates of the strain corresponding to a given
arch displeement (under the load) of d can be obtained with a suitable multiplier

t, as in equation 5.1,

Yy=9x%xt (5.1)

where 4 is the shear strain rate and ¢ is a time scale. ¢ can be worked out following

the equation:

~
Il
Al

(5.2)



Chapter 5. Mobilized strength limit analysis of masonry arch bridge 126

in which d is the displacement rate and d is the assumed radial displacement of
the arch barrel. The average shear strain can be worked out following equation:

n
Yi
Yave = Zl —'I’.l- (53)

where n is the number of distorted elements where the shear strain rate is greater

than zcro.

Tables 5.3 and 5.4 show the average strains for each side of the arch, corresponding
to the assumption of d = 1 mm, with different mobilization factors. It can be seen
that the average shear strain in the active side of the arch is generally greater
than 2%, while in the passive side it is less than 0.2%. Therefore, from figure 5.3,
it appears that the soil strength is likely to be fully mobilized on the active side.
On the passive side with 0.2% shear strain, ¢mo, is approximately 25°; this leads
to the mobilization factor of 0.45. With this factor, from table 5.1, the predicted
collapse load will be 106kN and 142kN for the lower bound and upper bound
approach respectively.

Active mobilization Active Passive Collapse load
factor average shear strain average shear strain (kN)
1 0.026 0.0011 241
0.95 0.029 0.0009 220
09 0.026 0.001 201
0.85 0.033 0.001 182
0.8 0.087 0.0016 155
0.75 Local failure - -

TABLE 5.3: Average shear strain for various active mobilisation factor

From the above analysis, the simple model for mobilized strength analysis (called
MSD) is described as below:

1. Solve the problem with the peak soil strength on both sides of the arch.

2. Work out the average shear strain rate and assuming the radial displacement
of the arch.
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Passive mobilization Active Passive Collapse load
factor average shear strain average shear strain (kN)
1 0.03 0.0013 241
0.8 0.021 0.0011 195
0.5 0.028 0.0011 152
0.25 0.032 0.0014 127
0.1 0.033 0.0019 115

TABLE 5.4: Average shear strain for various passive mobilisation factor

Section B

FIGURE 5.4: Arch05: Comparison of velocity field given by PIV and MSD

3. From the assumed radial displacement, work out the average shear strain for

the active and passive sides of the arch.

4. From this average shear strain, deduce the mobilized soil strength from the

actual shear strain-strength curve.

5. Use the mobilized soil strength and re-analyse.

This simple model is used to re-analyse Arch05 (recall that in Chapter 4 the pre-
dicted collapse load was a significant over-estimate of the actual bridge capacity).
The average shear strain for the active side is 0.51%, whereas for the passive side it
is 0.11%. From figure 5.3, the mobilized strength will be ¢ = 48° and ¢ = 25° for

the active and passive side respectively. Applying these mobilised soil strengths to
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FIGURE 5.5: Arch05: Velocity field given by PIV(Section A) and MSLA (Sec-
tion B)

the FELA model, the predicted collapse loads are 318kN and 387kN for the lower
and upper bound analyses. This result compares well with the actual collapse load
of 375kN. Figures 5.4 to 5.5 show a comparison of the predicted velocity field and
the PIV results. It can be seen that in the passive side of the arch that the slope of
the velocity vector given by the MSLA is greater than the PIV by approximately
10°.

However, it is uncertain what value the arch displacement would be. This poses a
limit on the above procedure. Furthermore, the simple model can not be used when
the local soil failure is likely to occur (as was the case with Arch02). Therefore, a

more powerful model is required.

5.3 Mobilized strength limit analysis: MSLA

In this section, an alternative numerical kinematic plastic model is presented. The
idea of mobilized strength design (MSD) was introduced almost two decades ago

by Bolton et al. (1989, 1990); Bolton & Sun (1991) and recently by Osman &
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Bolton (2005, 2006). In the Osman & Bolton papers, the settlement of a cir-
cular footing and the ground movement of braced excavations in undrained clay
were predicted using a kinematic plastic solution procedure. In these papers, a
compatible plastic deformation field for the soil-structure problem in question is
determined in advance. The mobilized shear stress can then be found by a stability
calculation based on the predicted mechanism. The strains required to mobilize
these stresses are deduced from the actual stress-strain behaviour of the soil taken
from a sclected location in the plastic zone. These strains are entered into a simple
plastic deformation mechanism to predict boundary displacements. The strains
used in the MSD method are average mobilized shear strains rather than local
strains at every location. In fact, at different locations, the soil would have differ-
ent stress-strain responses and would mobilize different shear stresses. Hence use
of a pre-described plastic mechanism in MSD is only suitable for simple problems.
The new numerical model presented by the author could potentially offer a ver-
satile alternative compared to the Bolton and Osman model in that it can handle
problems with complicated geometries where the plastic deformation is hard to
forcsce. This approach, termed Mobilized Strength Limit Analysis (MSLA), is
described as follows:

1. Initialize the problem with an assumed low mobilized soil strength in each

clement.
2. Determine the collapse load for the currently defined mobilized soil strengths.
3. Determine the shear strain rate for each element.

4. Update the accumulated shear strain for each element over a specified time
step &.

5. Update the shear strength for each element, according to the shear strain.

6. Repeat from 2 until termination criteria are met.

In the above procedure, the time step ¢ can be determined using the following

cquation:
t = Sne (5.4)

frmu:
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and the accumulated shear strain ¢, for each element is determined following the
cquation:
€a = €pre + Lerate (55)

in which € is the required maximum strain increment for each iteration and
is specified in advance, €mq, i8 the maximum shear strain rate of the deformed
clements in a particular iteration. ¢, is the accumulated strain in the previous
iteration. €,q¢ is the shear strain rate of an element. The mobilized strength can
be determined from actual soil strength-strain data. The termination criteria can
be based cither on the load or the displacement. The above procedure takes into
account strain-hardening behavior and non-linear stress-strain characteristics. One
of the simplifying assumptions in the model is that the problem geometry does
not change during the strain-increment process. The ideal model would model
changes in geometry after each iteration. However, this would involve remeshing
and rcformulation of the LP problem after every iteration. If the remeshing process
is adopted, this also leads to another difficulty in that the accumulated shear strain
for cach clement is hard to determine. One of the features of the above model is
that it can be used to estimate the actual load-displacement curve of a given
soil-structure problem.

5.3.1 Foundation settlement on a clay

The above numcrical procedure is compared with a non-linear finite element pre-
diction of immediate settlement for a foundation resting on clay. Bolton & Sun
(1991) carried out a series of non-linear finite element analyses for a clay that has
a stress-strain relationship of the form:
Crnob v
(=)

Cu Yu (5.6)

and applied to an isotropic soil body with no history of shear strain. The founda-
tion scttlement can be cvaluated following the equations:

Oave _ q 1/b |
B - ]ave’7u(5.14cu) (5-7)
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(smaz ' q 1/b
T - ,maa:')'.u('s‘chu) (58)

These equations are the result of Bolton’s work and were worked out following the
combination of different plastic mechanisms. In the above equations, /,,. and I,,,,.
are determined by non-linear finite element analysis as a function of b see (figure
5.7). q is the footing pressure and ¢, 7., b are the governing factor for non-linear
stress-strain curve. dq,. is the average settlement of under the width of a rigid
footing and 6,4, is the maximum settlement under the center of flexible footing.
Figure 5.8 obtained from Bolton & Sun shows the actual stress-strain data with

the a approximation stress - strain model by using equation 5.6.

Similar to an example provided in Bolton & Sun’s paper, consider a 4m strip
footing which rests on the surface of a 15m thick London Clay layer overlying very
stiff Woolwich Beds, which are assumed to be rigid. A good quality sample of the
London Clay tested in an undrained triaxial test with internal strain measurement
showed that the stress-strain curve could be represented by equation 5.6, where
cu = TOkN/m?, v, = 2% and b = 0.5. The footing pressure was applied in small
steps up to maximum value of 250kN/m?. A relatively coarse mesh composed of
1752 elements was used for the MSLA analysis. Parameters used for the MSLA
analysis were initial ¢, = 1kPa and shear increment €, = 0.25%, or 12.5%
of 4,. Figure 5.6 shows that the results from the MSLA. For the same applied
pressure, the MSLA model predicts an approx. 20% larger maximum settlement
than Bolton’s model. For example, if the applied pressure is 150kN/m?, the maxi-
mum settlement given by Bolton’s model will be 16mm, whereas the MSLA model

predicts 20mm of settlement.

Table 5.5 shows results for various shear increments, ¢;,. In the table, the loads
were obtained at 60mm settlement. From table 5.5 and figure 5.6.it can be seen
that the MSLA solution is very insensitive to €;,e When €, is small. The disad-
vantage of the MSLA method is that it is a time consuming process. As illustrated
in table 5.5, for a simple strip footing problem, with relatively coarse mesh, the
time taken to solve is approximately one hour on a powerful Dell desktop com-

puter equipped with Intel Core 2 Quad-core PC running at 2.4GHz and with 2GB
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FIGURE 5.7: 1 factor vs exponent b - strip footing (Bolton and Sun (1991))
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FiGure 5.8: Typical response of kaolin following load reversal (Bolton and Sun
(1991))
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Approximation model ¢,/@peak  Vu b

LimeStone 54.5 0.015 0.25
Clayl 52 0.05 0.38
Clay?2 35 0.05 0.38
Clay3 68 0.05 045

TABLE 5.6: Governing factor for approximation stress-strain curves

of memory.

5.3.2 Load test to cbllapse of back-filled brickwork ma-
sonry arch bridges at Salford University

Material models

The MSLA model was used to analyse the Salford bridge tests. The actual stress-
strain curves of the limestone obtained from shear box tests are shown in figure 5.9
and this was for convenience approximated by a non-linear elastic-perfectly plastic
modecl. The approximation model for the limestone is evaluated from equation 5.9
with the governing factors taken from table 5.6, The clay stress-strain curves
obtained from triaxial tests are shown on figure 5.10. Since the results from the
triaxial tests were quite variable, it was decided that the numerical approximations
should cover a range of these curves. In figure 5.10 the approximation models 1, 2,
and 3 arc worked out from cquation 5.10 with the governing factors taken from
table 5.6. ’

Smob _ (Ao
- (%) (5.9)

Gmab _ ( Ly
- (%) (5.10)
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FIGURE 5.9: LimeStone mobilised soil strength against shear strain and ap-
proximation model
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FIGURE 5.10: Clay stress strain curves and approximation models
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Bridge Number of triangle elements
Arch01 and Arch03 3504

Arch02 3486

Arch05 3493

Arch06 3485

TABLE 5.7: Number of triangle elements for the back-filled

Finite element meshes

Finite element meshes used in the analysis are shown from figure 5.11 to figure
5.14. The number of triangular elements used to discretize the backfill are shown
in table 5.7. Since the upper bound model is less sensitive to mesh geometry than
the lower bound, meshes without manual refinement were used for the MSLA

analysis.

Loading beam Free surface

r Fixed/Free abutments4i

Fixed

FIGURE 5.11: Archdl and Arch03: Finite element mesh

i—Free abutments v :::.-:"
et ..!.,': e .‘..-‘...‘.;t"._ :

FIGURE 5.12: Arch02: Finite element mesh
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FIGURE 5.13: Arch05: Finite element mesh
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FIGURE 5.14: Arch06: Finite element mesh
Bridge analysis

The MSLA model requires an initial assumption of the soil strength. For the
analysis of the Salford bridges, initial assumptions were that the initial limestone
friction was ¢, = 1° and, for simplicity, the cohesion part of the limestone was
kept constant as ¢, = 3.3kPa. The interface between soil and masonry was
always taken as 1/3 of the mobilized soil strength. The initial clay cohesion was
taken as ¢, = 1kPa. The shear strain increment ¢;,.. = 5%, was used for both

clay and limestone. v, = 0.015 was taken for the limestone.
Bridges Arch01 and Arch03

In a series of arch tests to collapse, Gilbert (1997) considers arches with the same
geometry as the Salford arches but without the fill so there is no soil-structure
interaction involved. The arch is likely to reach its peak load carrying capacity
at a small radial displacement under the load of approximately 3mm or 0.1%
of the arch span. At larger displacements the strength of the arch progressively
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reduces, and a gross displacement (i.e. geometrically non-linear) analysis is ideally
required. Since the present MSLA model does not take geometrical non-linearity
into account, it may only be assumed to be valid while the strength reduction of

the arch is negligible.

For Arch01, the predicted collapse load is 110kN compared to the actual collapse
load of 128kN. Figure 5.20 shows the soil strength mobilization contours at 3mm of
radial displacement, indicating that the soil strength under the footing is fully mo-
bilized whilst the average mobilization factor on the passive side is approximately
0.25 (the average mobilization factor only takes account of straining elements). It
also indicates that the soil near the region of the left abutment is being mobilized.
According to figure 5.21, there is quite large movement of the right abutment into

the soil, which is what was observed in the experiment.

Figure 5.22 shows the velocity vectors provided by the MSLA and the PIV. It can
be seen that on the passive side of the arch the slope of velocity vectors are similar
(at approximately 45?). This is in contrast to the FELA model, where the slope
of velocity vectors was very high (approximately 80°). As is shown in figure 5.15,
the MSLA model predicts that the arch will move slightly when the load reaches
around 50kN. Under this load, the soil under the footing is being mobilised.

For Arch03, the predicted collapse load is 138kN compared to the actual collapse
load of 145kN. The larger bridge capacity compared to Arch01 was due to the fixed
abutments in this test. This feature demonstrates that the MSLA model is more
realistic than the FELA model (recall that in chapter 4 there was no difference in
load and mechanism for ArchO1 and Arch03). In fact, fixing the abutment is likely
to increase the bridge capacity. Figure 5.16 shows the load-radial displacement
curve provided by the MSLA model. It shows that when the load is less than
80kN, there is no arch movement and the soil under the load is mobilizing. This
compares reasonably well with the experiment, where the first crack was identified
at an applied load of 80kN.

Bridge Arch02
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Bridge MSLA Experiment %Difference

Arch01 110 128 14

Arch02 95 90 5.5
Arch03 138 145 4.8
Arch05 281 360 219
Arch06 198 240 TS

TABLE 5.8: Predicted collapse loads (kN) of Salford bridge tests

Clay model MSLA Experiment

1 113
2 0" 90
3 118

TABLE 5.9: Predicted collapse loads (kN) of Arch02 for different clay models

Recall that in chapter 4, the FELA model of Arch02 always predicted local soil
failure regardless of the soil strength. This unrealistic mode is a consequence of the
fact that it is inappropriate to assume full shear strength is mobilized everywhere.
In this section, the MSLA model will be used to re-analyze this bridge. As in
figure 5.10, the obtained data from triaxial clay tests were quite variable. A back-
analysis is therefore required to find the most appropriate model. Applying three
approximate clay models for Arch03, the predicted collapse loads are shown in
table 5.9. The collapse load obtained from clay model 2 is 95kN and is the value
closest to the test load. Figure 5.17 shows the actual and predicted load-deflection
for the Arch02. The MSLA predicts that there in no arch movement when the
applied load is less than 50kN. Figures 5.20 shows that both limestone and clay
under the footing are fully mobilised, whilst the soil in the passive side is not. The
failure mechanism shown in figure 5.21 is similar to the experimentally observed
mechanism, where sliding of the abutment remote from the load was observed.
As is evident from figure 5.24 and 5.25, the slope of the velocity vectors from the
MSLA model and the PIV results are quite different. The slope vector given by
the MSLA is much greater and it was approximately 50° while for the PIV, it was

only around 20°.
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Bridges Arch05 and Arch06

From the experimental load displacement curves shown in figures 5.18 to 5.19, it
can be seen that in the presence of near-road surface reinforcement ensures that
peak capacity is only reached when arch displacements are very large. For three
bridges (Arch01, Arch02 and Arch03), the ultimate collapse loads are achieved
at approximately 15mm radial displacement. However for bridges Arch05 and
Arch06, the maximum loads are reached at approximately 40mm and 60mm radial
displacement respectively. In the Arch06 test, when the applied load reached
approximately 240kN and 40mm of radial displacement (measured under the load),
the abutments were changed from free to fixed. Based on the behaviour of Arch05,
where the maximum load was rcached at 40mm displacement, it is reasonable to
consider that 240kN is the maximum load for Arch06 with free abutments.

From table 5.8, the predicted collapse loads for Arch05 and Arch06 are 281kN and
198kN, which differ by 21.9% and 17.5% from the actual collapse loads. Figure
5.20 shows that for both bridges, the soil is not fully mobilized eithef on the loaded
side or the passive side of the arch. Asis evident from figures 5.26 to 5.29, the slope
of the velocity vectors from the MSLA and the PIV are also found to be similar.
The failure mechanisms depicted in figure 5.21 are also found to be similar to the

experiments.

b = /
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FIGURE 5.15: Actual and predicted load-deflection response of Arch01
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FIGURE 5.17: Actual and predicted load-deflection response of Arch02

5.4 Conclusions

In this chapter, the MSLA model was developed with the aim of overcoming the
soil strength mobilization issues encountered in the previous chapter. For the
bridges considered, the new method is found to be capable of evaluating bridge
capacity. Though a number of examinations, the following conclusions can be
made:

1. Simple soil strength mobilization analysis (MSD) can be used to assess bridge
capacity. However, it can not be applied for certain cases, e.g. when a local

footing failure has occurred.
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FIGURE 5.19: Actual and predicted load-deflection response of Arch06

2. In the case of bridges without near-road surface reinforcement, the soil
strength is likely to be fully mobilized under the load whilst on the pas-

sive side, the soil is not fully mobilized.

For bridges with near-road surface reinforcement, the soil is unlikely to be

fully mobilized either on the active or passive side of the arch.

In contrast to traditional kinematic limit analysis where the result is a dis-

placement rate, the proposed MSLA model can be used to evaluate actual
displacements. For the settlement of a strip footing on a cohesive soil, the

MSLA solution predicts the actual load-displacement curve reasonably well

(to within 20% in terms of displacements), compared with finite element

analysis.
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FIGURE 5.20: Variation of soil strength mobilization
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FIGURE 5.21: Deformed shape of soil and arch
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Section B

FIGURE 5.22: Arch0Ol: Comparison of velocity fields given by PIV and MSLA
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FIGURE 5.23: Arch01: Velocity field given by PIV(Section A) and MSLA (Sec-
tion B)

5. Through a number of investigations on bridge tests to collapse, the MSLA
model has demonstrated that it can overcome the soil strength mobilization
issues encountered. However, a drawback of the MSLA model is that it is a

time-consuming procedure.

6. Providing near-road surface reinforcement by using steel beams can signif-
icantly improve bridge load carrying capacity. In the present study, bridge

capacity can be increased by at least a factor of 2.
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Section A

Section B

FIGURE 5.24: Arch02: Comparison of velocity fields given by PIV and MSLA
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FIGURE 5.25: Arch02: Velocity field given by PIV(Section A) and MSLA (Sec-
tion B)
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Section B

FIGURE 5.26: Arch05: Comparison of velocity fields given by PIV and MSLA
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FIGURE 5.27: Arch05: Velocity field given by PTV(Section A) and MSLA (Sec-
tion B)
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Section B

FIGURE 5.28: Arch06: Comparison of velocity fields given by PIV and MSLA
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FIGURE 5.29: Arch06: Velocity field given by PIV(Section A) and MSLA (Sec-
tion B)



Chapter 6

Discussion

6.1 Introduction

The overall objective of this research has been to establish a general computational
limit analysis model for the practically important soil-structure interaction prob-
lem found when analysing masonry arch bridges. However, the finite element limit
analysis model developed can be applied to a variety of other SSI problems; exam-
ples include problems involving earth retaining walls, slopes, and masonry tunnel
linings. The model developed should be able-to be used in practical engineering
projoects as an assessment or design tool.

There are a large number of existing masonry arch bridges still in service, and there
is a strong need for efficient and practically useable analysis tools. However, up
until now, no onc cxisting analysis tool can be considered predominant and it is the
presence of soil that makes the problem particularly challenging. Previously soil
has been modelled only indirectly in models, by making certain assumptions about
its contribution to cither dispersal of the applied load or ability to restrain the arch
barrel. This is acceptable for practical purposes provided that the assumptions are
validated against cxperimental evidence. However, when ‘non-standard’ backfill
materials are involved the likely influence of the soil cannot easily be estimated.

149
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This thesis has tried to address this through the development of a holistic soil-
structure interaction model using finite element limit analysis. However, through
the previous 5 chapters, difficulties in developing a fast and reliable finite element
limit analysis model for this application have become apparent. Here a number
of limitations of the model developed will be discussed. In this chapter, the po-
tential usefulness of a combined limit analysis - limit design synthesis model is
also discussed (for application to the design of strengthening schemes for existing
structures). Furthermore, in an attempt to overcome a number of the drawbacks of
the FELA method, Smith & Gilbert (2007) have recently developed the so-called
‘discontinuity layout optimization’ (DLO) method, which is a conceptually simple
but efficient limit analysis method. Whilst examining the usefulness of DLO, the
author has developed an efficient scheme which allows mechanisms to be visual-
ized for a given set of slip-lines. This scheme ‘injects life’ into the classical slip-line
solutions which engineers are used to seeing as black and white line drawings in
textbooks, but might often have trouble visualizing in terms of mechanisms of
failure. This scheme has now successfully been incorporated in the commercially

available LimitState:GEO software, available from www.limitstate.com.

6.2 The mesh dependency problem

When applied to soil bearing capacity problems, and subsequently to more complex
backfilled masonry arch bridge problems, it has been found that when established
formulations (e.g. that proposed by Sloan (1988)) were used, the geometry of the
mesh used in the vicinity of singularities in the stress field influenced the results
to an unacceptable degree. It may be observed that in the literature carefully
tailored meshes have frequently been used in order to obtain solutions which are
acceptably close to the true solution. Others have recently come to a similar
conclusion, and have put forward enhanced finite element formulations to address
this. Examples include the work of Borges et al. (1999), who focussed on obtaining
upper bounds, and the adaptive mesh refinement schemes for the lower bound

problem proposed by Lyamin et al. (2005). However, when carrying out a lower
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bound analysis, the presence of stress singularities still need to be identified prior
to performing an analysis. This issue does not affect the ability of finite element
limit analysis to generate useful solutions from an academic standpoint, but does
limit the usefulness of the method when applied to generic problems. Adaptive
mesh refinement schemes can potentially overcome this problem, although it might
be argued that the resulting analysis procedure is overly complex considering the
simple rigid-plastic material idealization involved. Whilst enhanced formulations
of the sort mentioned above were latterly trialled in the present project, and did
enable tighter bounds on a true solution to be obtained, the initial mesh refinement
problems stimulated Smith & Gilbert (2007) to consider alternative numerical
approaches, eventually leading to the development of a new computational limit

analysis technique, Discontinuity Layout Optimization (DLO).

6.3 The ‘locking’ problem

The so-called ‘locking’ problem (Nagtegaal and et al (1974)) causes major prob-
lems for many finite element limit analysis formulations. Although when treating
plane strain problems the use of higher order elements can overcome this, use
of these leads to large numbers of variables and constraints being present in the
Mathematical Programming (MP) matrix. Therefore, the successfulness of this
strategy will largely depend on the efficiency of the mathematical optimization
solver used. The locking problem is even more troublesome when dealing with
axisymmetric and three dimensional problems. It is evident from figure 6.1 that
for three dimensional elements, almost all common types of finite elements will
be prone to the locking problem (the locking problem will occur when the ratio
between degrees of freedom and constraints is less than 1). Although in Lyamin
et al. (2007), constant strain tetrahedra arranged in a cube have been used when
analysing the bearing capacity of a footing, it should be noted that the mesh has to
be carefully arranged in a specific way. It can be surmised that unless an efficient
means of overcoming the locking problem can be found, the usefulness of FELA

will be severely limited.
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FIGURE 6.1: The effect of mesh refinement on the ratio of total degrees of
freedom to total number of incompressibility constraints for some common ar-
rangements of three-dimensional finite elements (Nagtegaal and et al (1974))

6.4 Potential application of layout optimization
to the design of strengthening existing struc-

tures

Reinforcement has been incorporated in plastic limit analysis models by workers
such as Orduna & Lourenco (2003), Lourenco et al. (2004) and Chen et al. (2007)
The main concern is that the addition of reinforcement may lead to undesirable
brittle failure modes. For examples including near-surface reinforcement in a multi-
ring brick work arch may increase the likelihood of ring separation. However, if
bridge strength is inadequate to carry the given load, where should additional

reinforcement be placed?
Limit analysis and design formulations are virtually identical, with the main dif-

ference being the differing goal of the optimization process (e.g. considering an

equilibrium formulation, the ‘analysis’ objective is to maximise the load factor
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whereas the ‘design’ objective might be to minimise the cost of reinforcing el-
ements). Other constraints (i.e. equilibrium and yield constraints) remain un-
changed. The CLADU integrated analysis and design software framework has
been designed to take advantage of these similarities, making it relatively easy
to synthesize ‘optimum’ retrofit reinforcement. Surprisingly, very little work has
been done in this field (though Krabbenhoft et al. (2005) does use optimization
to address the problem of designing sheet pile walls). Two examples are now

considered (the mathematical formulation has been described in section 3.6).
Design reinforcement for an arch rib

Assessing an existing arch rib using usual standard limit analysis techniques may
identify that the arch has insufficient strength. Engineers may wish to reinforce
the arch, so therefore the location and the size of the requisite reinforcing elements
needs to be identified. Figure 6.2 shows a simple example where truss bars are
added to an under strength arch to permit a heavy applied load to be carried. For
the current applied load, the best location and the sizes of the reinforcing bars are

shown.

FIGURE 6.2: Design of reinforcement for an arch rib: (a) overloaded arch and
design domain, (b) optimum layout of truss bar (rectangular prohibited zone),
(¢) revised layout of truss bars (trapezoidal prohibited zone)

Design of props for retaining wall

Suppose that a new building is to be constructed close to an existing retaining wall,
as shown in figure 6.3. Engincers would need to carry out an analysis to determine
whether the retaining wall is capable of sustaining the additional load, and, if not,
to identify a solution (e.g. whether to move the building foundation somewhere

else or to strengthen the existing wall). One strengthening option is to prop the
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. New building foundation

"%

Potential props to
support the wall

Soil

Wall foundation Support

FIGURE 6.3: A retaining wall problem

Optimum props
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FIGURE 6.4: Design of props for retaining wall problem

wall. However, the best locations for the props still need to be determined. In
figure 6.4, design synthesis has been used to identify the solution which minimizes
the total weight of the props needed (for simplicity the possibility of buckling of
the props has been ignored). This exciting method clearly has the potential to be

a considerable time saver.

6.5 Discontinuity layout optimization

As has been mentioned in Chapter 2, the success of DLO relies on two important
developments: (i) an adaptive refinement scheme which allows very large layout

optimization problems to be solved (Gilbert & Tyas (2003)), and (ii) identification
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of the similarity between layout optimization of gridlike structures and identifi-
cation of the critical arrangement of slip-lines in plastic plane-strain problems
(Smith & Gilbert (2007)). Following these breakthroughs, it was quickly realized
that DLO had potential application in engineering practice. However, the output
of the DLO needs to be easy to understand and to validate. When developing
a practical DLO software application, it was therefore decided that this should
be capable of clearly displaying the failure mechanism. This involves identifying
the rigid regions which lie between slip-lines, and then displacing these so that
the mechanism is clearly visible. Equilibrium equations can also be displayed for
each rigid region to help engineers to check the output. Details of the algorithm
developed to identify the rigid regions can be found in Appendix E. One of the
advantage of DLO over the finite element approach is that it does not suffer from

the locking problem.

FIGURE 6.5: DLO Strip footing problem: optimum layout of slip lines and
displaced failure mechanism

FIGURE 6.6: DLO Slope problem: optimum layout of slip lines and displaced
failure mechanism

Figures 6.5, 6.6 and 6.7 illustrate various failure mechanisms generated using the
DLO-based LimitState:GEO software. In figure 6.5 the ability of DLO to identify
singularities around the edges of the footing automatically is evident (i.e. mno

‘model refinement’ was necessary). It can also be seen from the figures that the
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FiGUure 6.7: DLO Pile problem: optimum layout of slip lines and displaced
failure mechanism

mode of response associated with a complex pattern of slip-lines is much easier to

visualize when the failure mechanism is displaced.



Chapter 7

Conclusions and

recommendations

7.1 Introduction

The purpose of this chapter is twofold. Firstly, the aims and objectives of the the-
sis, as sct out in chapter 1, are re-visited. The developments described in Chapters
3.4 and 5 arc discussed and compared with these goals in order to measure the
success of the project. Secondly, as a result of issues that have arisen during the
current study, further investigations are recommended.

157
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7.2 Measuring the success of the project

7.2.1 Objective 1: development of a finite element limit
analysis model for combined soil and masonry prob-
lems, and initial verification of this through applica-

tion to a number of standard benchmark problems.

Finite clement limit a.xialysis models for the analysis soil-masonry structure prob-
lems were developed in Chapter 3. The numerical solutions obtained were verified
against a number of benchmark problems and it has been found that the use of
quadratic clements in the upper bound formulation leads to improved solutions.
The usc of higher order elements also prevents the ‘locking’ problem from occur-
ring, and the mesh geometry does not need to be specially tailored in advance of
an analysis. Furthermore, whereas traditionally a large number of linear planes are
uscd to approximate the non-linear yield surface involved (if linear programming
is cmployed), here an itcrative solution algorithm which involves only refining the
representation of the failure envelope where required has been used in order to
maximize computational efficiency.

7.2.2 Objective 2: more in-depth verification of the model
through application of this to a number of full scale
bridge tests.

Although the developed finite clement limit analysis model is able to qualitatively
predict the mode of response of the soil-arch system, when peak soil strengths are
used in the analysis the model fails to accurately predict bridge bearing capac-
ity. As has been described in Chapter 4, through comparison with results from
bridge tests conducted at Salford University, FELA significantly overestimates the
experimentally observed collapse loads when peak soil strength are used in the
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analysis. This is due to the fact that the peak strength of the soil is unlikely to
be everywhere simultaneously mobilized . ~

7.2.3 Objective 3: implementation of enhancements to the

model as proves necessary.

Mobilization of soil strength is a particularly significant issue in soil-arch inter- -
action problems. This is because whilst soil strengths increase as movements
become larger, conversely the structure rapidly starts to lose strength when move-
ments become significant. Thus a key project finding is that the use of peak soil
strength parameters in limit analysis models will often be inappropriate (when the
soil is modeclled explicitly). However, use of mobilized strengths proved to be a
promising way forward, yiclding much closer correlation with experimental data.
The approach used has similarities with the ‘Mobilized Strength Design’ method
advocated c.g. by Osman & Bolton (2005), and was illustrated in Chapter 5 . Sub-
sequently a more sophisticated incremental analysis method in which mobilized
strengths are increased according to the magnitude of strain within individual el-
cments has been investigated. As has been presented in Chapter 5, it has been
termed the MSLA method. However, one drawback of the MSLA model is that it
is a time-consuming procedure.

7.2.4 Objective 4: considefation of other potential appli-
cations of the developed numerical model.

Other potcntial applications of the model developed have been briefly discussed in
Chapter 6. It has been shown that the combination of finite element limit analysis
and layout optimization provides a potentially useful tool for engineers.
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7.2.5 Concluding remarks

The works in this thesis have been presented at two international conferences and
they can be found at Nguyen et al. (2007) and Gilbert et al. (2007). The work was
also selected for presentation at the IStructE Young Researchers conferenceheld in
London in 2007. The project website is featured in the EPSRC ‘Beyond Brunel’
website (see: http://cladu.shef.ac.uk/projects/holistic/). Further details of the
developments to the DLO method as described in Chapter 6 are also expected
to be published in due course. Throughout the six chapters, it is clear that the
objectives of this thesis have been largely met. However, there are several areas

that warrant further consideration; these are described in the next section.

7.3 Recommendation for further work

7.3.1 On the development of computational limit analysis

and design synthesis

Various issues relating to the conventional continium finite element limit analysis
method have been discussed throughout this thesis. Two of the most challenging
are (i) the issue of mesh sensitivity, and (ii) the volumetric locking problem. Al-
though, mesh adaptivity can be used to improve the solution, examples are the
works of Lyamin et al. (2005); Christiansen & Pedersen (2001), this is computa-
tionally expensive because re-meshing is required. Moreover, when the problem
involves strong singularities, adaptive mesh refinement is not always applicable.
Recently, the meshfree method has been considered as an attractive alternative to
the finite element method. However, this method has not yet been widely applied
in the field of computational limit analysis, carly studies have been performed by
Canh et al. (2008) and Chen et al. (2008). Further study of the meshfree method
for the application to geotechnical problem is thus recommended. The volumetric
locking problem is rather more difficult to overcome and up until now an efficient

method to address this does not exist. However, as has been indicated by Askes
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et al. (1999); Dolbow & Belytschko (1999); Mendez (2001), for some particular

cases, the meshfree method can alleviate the locking problem.

As an alternative to the traditional continuum approach, the DLO method pro-
vides an exciting new approach. At present, only translational failure modes are
considered, and further study is required so that rotational modes can be simu-
lated. Moreover, at present the DLO method is an upper bound approach, and it
remains unclear whether it is possible to develop a lower bound formulation. Since
limit analysis and design synthesis problems are virtually identical, the question
of whether continuum finite element limit analysis formulations can be applied to
design problems naturally arises; this deserves more in-depth study. As discussed
in Chapter 6, the combination of limit analysis and design synthesis offers a great
potential application for practical engineers. It is thus recommended that further
work in this field be conducted.

7.3.2 On the development of finite element limit analysis

models for the assessment of masonry arch bridges

Soil strength mobilization is an important issue to consider when analyzing ma-
sonry arch bridge. The MSLA method has been introduced to tackle this problem.
However, it is a computationally expensive procedure and thus it may impractical
for use in practice. Moreover, the MSLA method currently does not take account
of gross displacement of the arch. Thus further work is required to improve the
MSLA method.

Up until now, limit analysis software has generally focussed on solving two di-
mensional problems. Consequently when such software is applied to real, three-
dimensional bridges, certain assumptions have to be made about the third dimen-
sion. Extending the FELA method to three dimensions is an obvious next step.
A 3D model will be able to tackle problems involving asymmetric loading and
could model skew bridges. It will also enable the assessment of masonry domes

and vaulted structures.



References 162

7.3.3 On the strengthening of masonry arch bridges

In this thesis, it has been seen that near-road surface reinforcement using steel
beams greatly increascs bridge load carrying capacity, at least by a factor of 2.
This strengthening method is simple, and relatively quick to construct, leading to
relatively little traffic disruption. Furthermore, during experiments and also from
numcrical models, it was found that large movements of the abutment remote from
the load occur when such reinforcement is used. This suggests that further increase
in bridge capacity could be achieved if this abutment was more securely fixed.
Investigation on the influence of near-road surface concrete slab reinforcement
could also be investigated.
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Appendix A
Mathematical programming

Mathematical Programming is an operations research technique that solves prob-
lems in which an optimal value is sought subject to specified constraints. Math-
ematical programming models include linear programming, quadratic program-
ming, and dynamic programming. In a mathematical programming or optimiza-
tion problem, one secks to minimize or maximize a real function of real or integer
variables, subject to constraints on the variables. The term mathematical pro-
gramming refers to the study of these problems: their mathematical properties,
the development and implementation of algorithms to solve these problems, and

the application of these algorithms to real world problems.

Optimise
Model » Optimum
Abstract Project
Problem- - - - - - - - 3 » Solution

FIGURE A.1: Mathematical programming features

There are two popular methods in use today: the Simplex method and Interior-

point method. The simplex method as introduced by Dantzig (1963) has been
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the standard technique for solving linear programming problems since the 1940s .
The simplex method passes from vertex to vertex on the boundary of the feasible
polyhedron, repeatedly increasing the objective function until either an optimal
solution is found, or it is established that no solution exists. In principle, the time
required might be an exponential function of the number of variables, and this
can happen in some contrived cases. In practice, however, the method is highly
efficient, typically requiring a number of steps which is just a small multiple of the
number of variables. Linear programs in thousands or even millions of variables
are routinely solved using the simplex method on modern computers. Efficient,
highly sophisticated implementations are available in the form of computer soft-

ware packages.

Karmarkar (1984) introduced an interior-point method for linear programming.
This method does not péss from vertex to vertex, but passes only through the
interior of the feasible region. The analysis of interior-point methods is much less
easily understood than the behavior of the simplex method. Interior-point meth-
ods are now generally considered competitive with the simplex method in most,
though not all, applications, and sophisticated software packages implementing

them are now available.

A.1 Linear programming and duality concept

Every lincar programming problem, referred to as the primal problem, can be
converted into an equivalent dual problem. In matrix form, the primal problem

can be expressed as:

maximize ¢ z

subjec to Az < b (A.1)

=10
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the corresponding dual problem is:

maximize by
subjec to ATy > ¢ (A.2)

y >0

where y is used instead of 2 as the variable vector.

There are two ideas fundamental to duality theory. One is the fact that the dual
of a dual linear program is the original primal linear program. Additionally, every
feasible solution for a linear program gives a bound on the optimal value of the
objective function of its dual. The weak duality theorem states that the objective
function value of the dual at any feasible solution is always greater than or equal
to the objective function value of the primal at any feasible solution. The strong
duality theorem states that if the primal has an optimal solution, z*, then the

dual also has an optimal solution, y*, such that c’z* = b7y*.

A linear program can also be unbounded or infeasible. Duality theory tells us that
if the primal is unbounded then the dual is infeasible by the weak duality theorem.
Likewise, if the dual is unbounded, then the primal must be infeasible. However,

it is possible for both the dual and the primal to be infeasible.

A full explanation of LP theory can be found in a number of books, most notably,
Dantzig (1963),Vanderbei (1998), Nash & Sofer (1996).
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Finite element limit analysis -

computer code

There are number of programming languages available at the moment, however
there is no perfect language. It all depends on the tools and the objective. For
the development of engineering software, the C++ object oriented language is
probably a good choice. It provides flexible data structures and easy reuse of
codes. In this chapter, a short review of the basic features of object oriented
programming will be presented.

B.1 Object-oriented programming

The object oriented programming approach considers a problem as a collection of
objects. Each object is a structure that can contain both data and function and
morc importantly can communicate with other objects. Therefore the program can
be described as a collection of interacting objects. Object-oriented programming is
an organizational style, but it helps programmers create reusable code because the
code to do a specific thing is entirely contained within a single section of code, and
to usc the code to perform tasks - for instance, creating a menu - involves using
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only a small number of functions to access the internals of the object. Object-
oricnted programming simplifies the transfer of source code from one program to
another program by encapsulating it - putting it all in one place.

B.2 Classes and objects

In C++, the class forms the basis for object-oriented programming. The class is
used to define the nature of an object, and it is C++4’s basic unit of encapsula-
tion. A class in C++ is a very flexible data structure, it associates several data
items with cach other. Classes, which can contain data and functions, introduce
user-defined types into a program. User-defined types in traditional programming
languages are collections of data which, taken together, describe an object’s at-
tributes and state. Class types in C++ enable programmer to describe attributes
and state, and to define behavior.

B.3 The finite element limit analysis framework

The fem program is built upon a general limit analysis and design synthesis soft-
ware framework developed by CLADU at the University of Sheffield. The main
structure has been developed over many years following the first commercial ring
software. Since then, a number of application have been developed, based on the
framework. Examples include fem, geo, form and ring. Of these, two applica-
tions have been fully developed as commercial software, these are ring and geo.
Important components of the framework are described below:

core is a C++ library providing the base structure for the framework. core
has the following components: clf defines the base classes and the whole
structure for the framework. clv is viewer toolbox, it contains viewers and
forms that control the visual part of clf. geometry is a helper library which
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allows construction of basic geometrical elements. 80 is a scene-object library
built to crecate visual components of clf.

mpl is a C++ library and is used as a wrapper layer to give access to different
mathematical programming solvers, for instance Mosek.

ult is a C++ library for computational limit analysis and design synthesis.

fem is the C++ library is developed for the current work. The flow chart of fem
is shown in figure B.1. The basic classes of fem are: :

Project : Project class is the basic class to create a project. This class can also
crcate an MP problem. Use of the lower or upper bound approach can be
specified so that when elements are constructed, a suitable corresponding

matrix can be cstablished.

Zone : Zonc class is a container. The role of Zone class is to store all project

clements.

StressPoint : the StressPoint class is used to create a geometry point and to the
create stress variables for a point within the MP problem.

DisplacementPoint : the DisplacementPoint class is used to create a géometry
point and and also create the displacement variables for a point within the
MP problem.

TriangleElementLinear : the TriangleElementLinear class is constructed from
three geometry points and a integer. The integer is used to defined the
number of equilibrium constraints to be created for the MP problem. This
class also cstablishes the equilibrium matrix for the element.

TriangleElementQuadratic : the TriangleElementQuadratic class is constructed
from six gcometry points. It used for upper bound analysis only.

BoundaryElement : the BoundaryElement class is used to define boundary
conditions. It is constructed from either a point or a line. Depending on the
specified requirements of the problem, the boundary condition can be set.
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PolygonElement : thc PolygonElement is constructed from a number of gcom-
ctry points and an intcger. The PolygonElement class is used to model the

masonry clements.

DiscontinuityElement : the DiscontinuityElement class is constructed from el-
ements that arc contact with each other. This class is used to model the

interface between clements.

BarElement : thc BarElement class is used to modcl reinforcement. It is con-

structed from two geometry points.

MaterialMohrColumb : the MaterialMorhColumb class is used to model a
MohrCoulomb yield surface, it imposes the yield or flow rule condition at a

point.

MaterialRockingOrduna : thc MatcrialRockingOrduna class is used to model
crushing failure of masonry.

MaterialSimple : the MaterialSimple class is used to define the material prop-

crties of a reinforced clement.
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Input mesh data
from a text file

1
Gsigning problem prop@

'

C Add problem variables)
1

Sct-up problem constraints
(e.g equilibirum, yicld, boundary,etc...)

Yield condition satisficd

Output solution: stress,
strain contours, deformation,
principal stress and so on...

FIGURE B.1l: Computer flow chart for fem
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Simple model of concrete and

steel beams

C.1 Two block cantilever beam analysis

Tie element

Block 1 Block 7 T}J gt

- b -
'
| o) fct
- . . i —
: z
. !
oy,
e
Section Stress block

FIGURE C.1: Two blocks with a strengthening element

Consider the example of 2 blocks connected to each other by a tie element as
shown in figure C.1. Block ¢ is fixed and load P is applied at the centroid of block

j, distance | = 0.5m to the interface. The compressive strength of the blocks is
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taken as 30N/mm? (taking a reduction factor of a = 0.67), and the block thickness
b = 0.2m and width a = 0.2m. The distance from the block edge to the centroid
of the tic clement is ¢ = 0.02m . The two T25 tic elements have a tensile yield
stress of y,; = 460N/mm?, and section area of 490mm?. Thus the tensile capacity
offered by the tie elements is 2 x 460 x 490 = 450.8kN. The objective is to find
the maximum load P that can be carried by this structure. Similar to standard
concrete beam design, and based on simple scction analysis, the crush depth s can
be computed as:

Je=sxbxaxy = fu

thus
s= fur/(bx a x y.) = 450.8/(0.2 x 0.67 x 30 x 10°) = 0.1121m

and the lever arm z can be calculated as:
z=a-c¢c—-5/2=0.2-0.02-0.11121/2 = 0.1239m.
Thus the resisting moment of the cross-section is
m =2z X fo =0.1239 x 450.8 = 55.8678kNm.
Therefore the maximum load P is:
P =m/l =55.8678/0.5 = 111.735kN.

The numerical result also gives the same value as the above analytical analysis,
which is P=111.735kN.

C.2 Concrete beam analysis

In this scction, the capability of the numerical model to analysis a beam with pin
and roller supports is verified. It is assumed that the beam is 6m in span, loaded
at mid-span. The cross scction of the beam has the following properties: effective
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FI1GURE C.2: 6m span concrete beam with pin and roller supports

width d = 0.52m, thickness b = 0.3m. Using 3T25 bars for bending resistance,
provides 676.2kN tensile force. Using a similar analysis to the above procedure,

the crushing depth is given by:
s = 676.2/(0.3 x 0.67 x 30 x 10*) = 0.11214m

and the lever arm:
z=0.52 - 0.11214/2 = 0.464m

‘Therefore m = 0.464 x 676.2 = 313.709, and P= 4 x m/l = 4 x 313.709/3 =
209.14kN, which is identical to the the numerical prediction.

C.3 Steel beam analysis

In order to model the steel beams used in the Salford experiments, it is necessary
to verify that the above model is able to model a steel beam. The steel section
has width @ = 0.05m and thickness b = 0.1m. The plastic modulus of the beam
section is given as e, = 17.5cm?, and the yield stress of steel is Yot = 275N /mm?.
Thus the plastic moment of the beam section can be calculated as (see e.g Mosley
et al. (1995)):

m=ep X Yo = 17.5 x 10% x 275 = 4.8kNm

In order to replicate the steel beam using the above numerical model, each section
of block is assumed to be similar to the steel section, giving @ = 0.05m and b =
0.1m. The tie bar is assumed to consist of one T25 bar, thus the tensile capacity is
460 x 491 = 225.86kN. The assumed effective depth d = 0.035. Following standard
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section analysis with the unknown as the compressive strength of the blocks, the

lever arm is calculated as follows:
m= fg X 2z=>2z=48/225.86 = 0.02125m
The crushing depth s can be calculated as: s = 2 x (d — z) = 0.0275m. Therefore,

the suitable compressive strength of block will be:

o e 235860 5 2 ’ 3
Vo= = FOTE ROl 82 x 10°kN/m” or 82N /mm

With the above information, the 3m span steel beam can be modeled as shown
_reinforcement bars P
: plastic hinge
FIGURE C.3: 3m span steel beam with pin and roller supports
in figure C.3. The predicted ultimate collapse load is 6.4kN and the plastic hinge
is formed at mid-span. The maximum load P can also be analytically worked out

as:
P=4xm/l=4x%x48/3 =6.4kN

Therefore, the above model can be used to model the steel beam as used in the

bridge tests.



Appendix D

Load test to collapse of back-filled
brickwork masonry arch bridges

at Salford University

The text in this appendiz is taken verbatim or paraphrased from a series of data
reports describing the Salford test series. These reports were authored by:

Matthew Gilbert, Colin C. Smith. University of Sheffield, Department of Civil and
Structural Engineering, Sheffield, UK

J. Wang, C. Mclbourne. University of Salford, School of Computing, Science and Engi-
neering, UK '

Phillip A. Callaway. Network Rail, York, UK
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D.1 Introduction

D.1.1 Terms of reference

The test series was commissioned by Essex County Council as part of a programme
of work to help more reliably determine the load carrying capacity of Essex County
Council masonry arch bridges. The tests were designed by researchers from the
Universities of Sheffield and Salford.

D.1.2 Test rig

Each test was carried out in the large Salford plane strain test rig. The dimensions
of the test rig arc shown in figure D.1. The frame was primarily constructed from
heavy duty stecl I sections (406 x 140 x 39UB, Grade S275) to ensure adequate
stiffness so that the plane strain conditions were maintained under load. The frame
was designed to ensure no end effects affected the results, taking into account the
anticipated failurc mechanisms. The length of the rig necessitated inclusion of
scveral tic bars across the top and bottom of the frame to provide adequate lateral
stiffness. The frame supported stiff walls consisting of 50mm thick plywood on
the cnds and along one side. On the other side, 50mm thick acrylic windows were
incorporated in order that soil kinematics could be observed. Both walls had a
further 6mm layer of acrylic sheet placed on their internal faces. The frame was
the same for all tests, but the location of the arch barrel within the frame was
changed for some tests.

D.1.3 Bridge and backfill geometry

The arch barrcl was scgmental and had a span of 3m, with a nominal span to rise
ratio of 4 : 1. It consisted of two rings and alternate courses comprised headers.
The back-fill materials used differed for each test and can be summarized as below
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FIGURE D.1: Test rig (all dimensions in min)

1. Arch01 was backfilled with crushed limestone.

2. Arch02 was backfilled with clay with a compacted limestone layer providing
a fill depth of 300mm over the crown of the arch.

3. Arch03 is similar to Arch0l1 but with fixed abutments.

4. Arch05 is similar to Arch01 but with near-surface reinforcement (10No. 100x
50mm S275 stecl channels, 3m long, centralized under load, replacing 50mm
of fill)

5. Arch06 is similar to Arch02 but with near-surface reinforcement (10No. 100x
50mm S275 steel channcls, 3m long, centralized under load, replacing 50mm
of fill) |
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Material Compressive  Nominal Density

Strength Dimensions  (kg/m?)

(N/mm?) (mm)
Class A 154 215 x 102 x 2370
cnginecring 65
brick
Mortar 1.9 . 1470-

1570

TABLE D.1: Masonry properties

D.2 Materials

D.2.1 Bricks

Class A Engineering bricks (Marshalls Products Nori bricks) were used in the
construction of the arch barrel. The average properties of the bricks are given in
table D.1.

D.2.2 Mortar

The mortar, a 1 : 2 : 9 (cement:lime:sand) mix by volume was used throughout
the arch barrel. The mean properties as determined from five 100mm cubes are
presented in table D.1. The cubes were cured under the same conditions as the
arch barrel.

D.2.3 Crushed limestone

The MOT Type 1 graded crushed limestone was sourced from Tarmac Central
Ltd - Holme Hall Quarry. The soil properties were obtained from 300mm shcar
box tests carried out at normal stresses of 25kPa, 100kPa and 175kPa, employing
3 repeat tests for cach stress level. Figure D.2 shows the shear stress against
horizontal displacement obtained from the shear box test.
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FIGURE D.2: Shear stress against horizontal displacement
D.2.4 Clay

The clay was supplied by Marchington Stone Ltd and was described as a firm
reddish brown slightly sandy CLAY with occasional gravel. The supplier’s deter-
mined index propertics were as follows: natural moisture content 15%; optimum
moisture content 9%; Liquid Limit 29%; Plastic Limit 12%. During placement
of the clay, five readings were taken across the width of the tank at a range of
locations using a pocket penetrometer. According to the manufacturer, the shear
strength of purely cohesive materials can be obtained by dividing the scale reading
by two. Following completion of the test, thirty-three 38r.nm diameter tube sam-
ples were retrieved from the exposed surfaces of the clay. Eighteen were retrieved
from the surface beneath the limestone in line with columns 3 — 5 and 9 — 14
(2 per column across the width). The remaining fifteen were retrieved from the
exposed face of the clay following removal of the plywood wall at depths 600mm
and 900mm below the limestone base. Of these samples, fourteen were subjected
to unconsolidated undrained (UU) tests. The bulk densities and moisture contents
of the tested samples are plotted in Figure A.4, and the undrained shear strengths
¢, are plotted in figure D.3. Both peak strengths and strengths mobilised at lower

shear strains are plotted. Additional measurements were made using a 19mm
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shear vane. At each measurement position 3 sets of readings were taken across
the rig width. Average results are presented in figure D.3. It is anticipated that
positions 2 — 4 suffered minimum disturbance during the test and are thus most
representative of the pre-test conditions.
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FIGURE D.3: Peak and mobilised shear strengths of clay triaxial samples

160
LR ‘/.X_',a—‘"""/
i
z"}
<
120 {,r'
,,r"/
100 ‘.// +
T ‘/k—
F B
E 80 .’/'/—.(./.
- a0 g g 8
X‘/Q——'/‘—.'.H A
-g 60 M
- /r—‘/‘ﬁm
40
20
]
0 0.0 0.1 0.15 0.2 0.25 03
shear strain

FIGURE D.4: Clay shear strength vs strain
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D.3 Construction

D.3.1 Abutments

Two reinforced concrete abutments on which the arch barrel were built were fixed
3000mm apart, parallel to each other. Each abutment comprised two parts: a lower
section was bolted to the structural strong floor; an upper section was mortared
onto the lower section. The upper section was hence free to slide once the fric-
tional/adhesive resistance of the mortar joint between blocks was overcome.

D.3.2 Centering

The arch was constructed on custom made steel centering on which 101.6 x 50.8 x
1000mm planks were placed, in turn covered by a sheet of plastic in order to
minimise bonding of the masonry to the planks and facilitate easy removal of the
centring. Each curved steel beam was supported by two individual stacks of bricks.

D.3.3 Arch Barrel

The arch barrel was constructed on a 3m span segmental centering (formwork),
with a nominal span to rise ratio of 4 : 1. The arch barrel consisted of two rings
and was constructed over an average width of 1010mm. The arrangement of the
arch barrels is shown in figure D.5 .Altcrnate courses comprised headers. These

were used to prevent ring-separation occurring during the test.

D.3.4 Tank construction

Following construction of the arch, the test frame was assembled around the arch.
The average width of the test rig was 1045mm while the average width of the arch
was 1010mm. In order to prevent fill falling between the gap between the arch
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FiGure D.5: General arrangement of the arch barrel

and the test rig walls, strips of closed cell foam were hotglued along the edges
of the arch extrados so as to span the gap. The flexible foam was expected to

accommodate any minor lateral arch movements while retaining the fill above.

D.3.5 Wall friction reduction

The tank was design to be sufficiently stiff to provide plane strain conditions.
This meant that significant confining pressures might develop between the backfill
and the tank sides. The consequence of these pressures would be to develop
significant frictional forces. To minimise side wall friction, the full faces of the 6mm
perspex sheets were covered in a layer of silicone grease followed by a 0.33mm thick
latex sheet. Of those considered, greased latex offered the lowest friction angles
for normal stresses greater than ~ 5kPa. It was considered that such stresses
would dominate in such a large model employing compacted backfill and with
high stresses beneath the loading platen. For normal stresses greater than 10kPa,

the interface friction angles of less than 2°.
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D.3.6 Removal of centering

Before testing, decentering was carried out by removing the bricks which supported
the curved steel beams using a lump hammer. Due to the confined space, the
centering was left inside the tank, leaving enough room for the arch to deform.

D.4 Instrumentation

D.4.1 Deflection

Soil pressure cells are different for each tests. For the second test, four Linear Vari-
able Differential Transformer (LVDT) type displacement transducers were placed
benceath the intrados of the arch barrel to measure its movement. These gauges
were capable of resolving displacements down to approx. 0.0lmm. Figure D.6
shows the positions of these gauges. Two types of deflection gauges were used
to mecasurc the lateral movement of the test rig: nine LVDT type displacement
transducers and six mechanical dial gauges with range of 50mm and accuracy of
0.0lmm. They were placed horizontally against the test rig to monitor its move-

ment. The positions of these gauges are shown in figure D.7.

D.4.2 Earth pressures

Soil pressure cells are different for each tests. From the second test onwards, a
total of four soil pressure cells were embedded into the arch extrados (2No. Kyowa
BER-A-200KP12S and 2No. Kyowa BER-A-500KP12S). The positions of these

pressure cells are shown in Figure 4.4
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FIGURE D.8: Positions of pressure cells on arch extrados

D.4.3 Imaging

The frame provided 14 bays between the steel columns along its length. Of these,
the middle 12 bays incorporated the acrylic windows. In order to capture the
soil kinematics, a set of six SONY DSC-V1, 5MegaPixel, digital cameras were set
up 1m and 2m from the windows such that each camera could image a pair of
bays. During the testing, and following the application of each load increment,
the cameras were remotely triggered in quick succession to capture the images.
Ilumination from above each bay with a halogen lamp was found to be essential

to ensure good image quality and to minimise reflections.

D.5 Loading Arrangement

The loading arrangement was different for each test. Typically two hydraulic jacks
supported from a steel reaction frame were used to apply a line load to the backfill
at the south quarter of the arch. The load was applied vertically onto the surface

of the backfill through a steel loading beam (base 920 x 219) resting on a wood
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base 920 x 219 which was placed on the surface of the backfill, as shown in figure
D.9. The two hydraulic jacks were used and loaded against a steel reaction frame
which was bolted to the strong floor. This loading arrangement was used through
out the test.

-, |
N L el beam
11|
“‘l i T et o
\l. |77zl
EZEZl
reactibn beam
Section A-A

Ficure D.9: Loading arrangement

D.6 Test Procedure

The test procedure for each test followed the same broad procedure. Here the
procedure for Arch02 will be described as an example. This particular test was
relatively complex due to events occurring certain stages of the test, and usefully
illustrate the procedures followed. The test was carried out in two phases. The
arch was taken to peak load in Phase I. In Phase II the arch was subjected to
a large imposed displacement to observe the development of the post peak fail-
ure mechanism. The instrumentation, as described in Section 4, was monitored
throughout all the tests
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D.6.1 Phase I test

The nuts at the ends of the two tic bars connccting the abutments to the central
column were first slackened off. The load was then applied in increments of approx.
S5kN to failure. At cach loading increment images were captured, the deflection of
the arch at 1/4L was checked, and test rig (tank) movements were checked using
the dial gauges and LVDTs. The maximum load applied was approximately 90kN
including the sclf weight of two jacks (approximatcly 1.2kN each). .

D.6.2 Phase II tests

There were three stages of the Phase II test. This was necessary due to recurrence
of a loading system tilt problem. Hence three different loading beams were used.
In Stage 1 the same loading beam as used for the Phase I test was employed. The
problem of jack tilt occurred when the load reached to about 60kN. The load was
subscequently removed. In Stage 2 a shallower stecl beam was cmployed. At a load
of approx. 60kN the jack tilt problem recurred once more. In Stage 3 the load was
dircctly to the wood base through two steel platens. The load reached approx.
94kN, after which no further load could be applied.
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DLO: Visualization of failure

mechanisms

E.1 Solid identification procedure

Solid 2

Solid 0

FiGURE E.1: DLO problem: Optimum layout of discontinuities

Figure E.1 shows the optimum layout of discontinuities for a simple strip foot-
ing resting on a cohesive soil (assuming that a vertical load is e.g. applied along
edge AB). Since the product of a DLO solution is the optimum layout of dis-
continuitics, only the relative displacements between solid elements are known,
and both the geometry and absolute velocity of a given solid element arc initially

201
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unknown. A question thercfore arises: how best to identify the displaced failure
mechanism from a given set of discontinuitics? The answer to this question was
not immediatcly obvious. An initial thought was to plot moving dots along slip-
lines. However, this will be difficult when normal and rotational displacements
along interfaces are involved. Therefore, in order to visualize the failure mech-
anism, an obvious solution was to develop an algorithm to initially identify the

solid clements.

This algorithm can be applied to the problem shown in figure E.1:

e Create a list of discontinuity end-points, as shown on figure E.2.

e For each end-point, add a list of pairs that contain discontinuities and solids
(all solids are NULL at first).

o For each end-point, sort out pairs in a counter clockwise angular order (angle
the discontinuity makes to that point).

e Start the identification process by looping through all end-points.
e At cach end-point (called the ‘master point’), loop through all pairs.

1. At each pair, check if the solid is NULL.
2. If solid is NULL, create a solid and assign the solid to the pair, carrying

out the process below.
(a) Determine the other end-point of the discontinuity.

(b) End the loop if this end-point is the master point, if not carry on
the loop.

(c) At this stage find a pair that contains the same discontinuity.

(d) Go to the pair that is immediately behind the previously identified
pair. Assign the same solid to this pair.

The above process can further be explained by reference to figure E.2. Now, for
example, the identification process starts form point A, where discontinuities 1 and
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7 connect to it. Since the first pair at point A contain a NULL solid, Solid1l will
be added to the first pair. Point B is end point of discontinuity 1, therefore solid
1 will also be added to the third pair at point B. Similarly, Solid1 will be added
to second pair at point F. At second pair of point F, discontinuity 7 is actually

connected to point A. The loop terminates and Solid1 is identified.

After all solids have been identified, the solid displacement phase can be per-
formed. However, DLO provides only information on relative displacements (i.e.
information on how solids move relative to each other), the next problem is how
to work out the absolute displacement of a given solids. This will be illustrated in

the next section.

Points A B (& D E F
Pairs 1 Solidl 2 2 Solid0 3 Solid0 8 Solid0 6
7 Solid0 ;1 Solid0 3 4 5 7_Solid 1
6 Solid 1 8 9 9--Solid 0
5
4

FIGUure E.2: DLO problem: Optimum layout of discontinuities

E.2 On the calculation of solid absolute displace-

ment

Fortunately, as can be seen in figure E.2, Solid0 is also identified from the above
algorithm. Solid0 is actually constructed from all the outer discontinuities (dis-
continuities 1, 2, 3, 8, 9, 7). Moreover, Solid0 is stationary and its absolute
displacement is zero. Therefore the absolute displacements of solids sharing the
interface with Solid0 can be worked out. It means that that when solid absolute
displacements are known, all the displacements of solids that are adjacent to it

can be determined. The process is carried out as follows:
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e Loop through the list of end-points as shown on figure E.2 (obviously, at this

stage, all solids have been identified).
e At each point, looping through list of pairs.

e For a discontinuity at each pair, check if solids have been assigned. If not,
assign the solid in the pair to the discontinuity. Also assign the solid of the

pair below to the discontinuity.

e For a solid at each pair, assign the discontinuity to the solid.

Ficurg E.3: DLO problem: Relative displacements between solids

After this process, all discontinuities will contain information about their adjacent
solids and all solids contain theirs discontinuities. The determination of the abso-
lute displacement first involves transformation of the local coordinate axes (shown
as red arrows in figure E.3) into the global coordinate system. However, before
this can take place, the directions of the local coordinates need to be worked out.
It can be seen that the displacement of Solidl is (z = 3, y = —3) because the rela-
tive displacement of discontinuity 1is (n = 3, s = —3), where n, s are respectively
the normal and shear relative displacements. However, it should be noted that
the local coordinate system for discontinuity 1 is aligned with the global coordi-
nate system. The orientation of the local coordinate system can be found from

the arrangement of points in a solid. Fortunately, the arrangement of points for
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the solids shown in figure E.3 are all in a clockwise order. For Solid0 and Solidl,
when the relative displacement of discontinuity 1 is taken into account, the local
shearing direction is from point A to B. Similarly, for Solid0 and Solid1, when the
relative displacement of discontinuity 7 is taken into account, the local shearing
direction is from point F to point A. Generally, the absolute displacement of solids
can be determined as follows:

1. Loop through all discontinuities.

2. At each discontinuity, check if at least one attached solid has a known abso-
lute displacement.

3. Establish the local coordinate system and calculate the absolute displace-
ment of the other attached solid. Assign this absolute displacement. to this
latter solid.

4. Terminate if all absolute solid displacements have been calculated. Other- _—

wise, go back to step 1.



