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ABSTRACT 

A closed-loop computer-controlled single-sheet test system has been developed to 

characterise lamination materials and to measure, the iron loss density under any 

specified flux density waveform. The system has been 'used to validate predictions 

from a recently developed theoretical model, for the ~al,culation of the excess loss 

component associated with domaiQ wall movement, under flux density waveforms 

typical of those encountered in the stator core of brushless permanent magnet dc 

motors. In addition, an improved expression for the calculation of the iron loss density 

component, from measured 71 and 7!vectors, due to rotatio~ in non-purely rotating 

flux conditions, has been derived. 

A simple analytical model from which the airgap flux density and spread of magnet 

working points can be determined and which accounts for the effects of curvature for 

radial-field permanent magnet machines has been developed and validated. The model 

has been coupled to an analytical technique for the prediction of the open-circuit flux 

density waveforms in different regions of the stator core, and has subsequently been 

employed for the prediction of the open-circuit iron loss. 

In order to predict the iron loss under any specified load condition, a technique which 

couples a brushless dc drive system simulation to a series of magnetostatic finite 

element analyses corresponding to discrete instants in a commutation cycle has been 

developed. It enables the prediction of the local flux density waveforms throughout 

the stator core under any operating condition, and has been employed to predict the 

local iron loss density distribution 'and the total iron loss and their variation with both 

the load and the commutation strategy, Finally, the theoretical findings have been 

validated against measurements on a representative low power brushless drive system. 
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CHAPTER 1 

INTRODUCTION 

1-1) Introduction 

In the United Kingdom, iron losses in electric motors amount to approximately 

5 x 109 kWhr per annum [1]. These losses, half of which are produced in industrial 

3-phase induction motors, cost the user £ 150 millions pa. Although reductions to these 

loss figures can be achieved, for example, by the use of better grades of electrical 

steel, the resulting increase in the initial capital cost represents a major obstacle. 

However, the use of lower loss grades of electrical steel is certainly economically 

justified, if the real cost is considered to include the capitalised running cost over the 

expected life time of the machine. Indeed, it is estimated that for most motors in the 

5-125 hp range operating for 500 to 1000 hours/year it would be economical to use a 

better grade of electrical steels [1]. In addition, alternative drive formats, in particular 

those based on permanent magnets, are emerging which offer the potential for further 

efficiency improvements. 

Permanent magnets are cost-effective and energy efficient components of numerous 

types of electrical machine. For example, stepper motors, line-start synchronous 

motors, and brush less de motors. Nevertheless, the brushless dc format is arguably the 

most prominant for a wide spectrum of applications. However, their optimal utilisation 

requires attention to many aspects related to the machine design and performance. In 

this respect the calculation of iron losses, which may account for a significant 

component of the total loss, is particularly challenging since it requires an accurate 

prediction of the temporal and spatial distribution of the flux density and the 

corresponding iron loss density distribution. 
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Efficiency opportunities, through for example, the use of improved electrical steel 

laminations and/or more sophisticated control strategies, can be quantified at the 

design stage on an application by application basis only if the iron loss calculation can 

account for the interaction between the machine and the system by which it is 

controlled. This thesis describes research which has been undertaken on the prediction 

of iron losses in brush less permanent magnet dc drives. Therefore, it focuses on two 

facets of the iron loss prediction problem in electrical machines, viz the prediction of 

the spatial and temporal distribution of the flux density, and the calculation of the 

corresponding iron loss density distribution, which are equally challenging. 

In this chapter, the most significant advances related to the measurement and 

prediction of iron losses in electrical steel laminations and electrical machines are first 

reviewed. The main features of the research to be described in the remainder of the 

thesis are then highlighted. 

1-2) Soft ferromagnetic materials 

Soft magnetic materials are essential constituents of nearly every electromechanical 

device, as they perform the crucial task of concentrating and shaping magnetic flux. 

The continued development of better materials has resulted both in improved 

efficiencies of key building blocks of present technology, viz motors, generators, 

transformers, inductors, and sensors, and in novel devices and applications [2]. 

1-2-1) A brief excursion into atomic physics 

In order to understand the cause of ferromagnetism the nature of the atom must first be 

considered. At its centre there is a nucleus around which electrons orbit in a 

complicated manner. Since the nucleus only has a small magnetic contribution, it is 

justified to consider only the orbiting electrons. Each electron possesses an electric 
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charge, and, as a result of its rotation around itself, it has a magnetic spin moment. The 

effect of a vast number of such electron magnets, summed under prescribed conditions 

and in a specific way, represents ferromagnetism. In addition to its spin moment, each 

electron possesses a magnetic orbital moment moment caused by its rotation around 

the nucleus. 

In an atom having a large number of electrons, there are very strict laws governing the 

magnitude and direction of the individual contributions. The tendency is for the 

contributions to either wholly or partially cancel out, so that frequently there is no 

resultant magnetic moment associated with a single atom, whilst in some cases it 

results from only a few electrons. The number of electrons which are effective in 

contributing to the atomic magnetic moment is called the Bohr magneton number. 

Even though the existence of the atomic magnetic moment represents the fundamental 

cause of any type of magnetism, ego ferromagnetism, anti-ferromagnetism etc, it is the 

effect of the coupling forces between the atomic magnetic moments that determines 

the type of magnetism. In the case of ferromagnetism, these forces cause the atomic 

magnetic moments to arrange themselves parallel, resulting in an intrinsic 

magnetization, or saturation magnetization, whose magnitude is dependent on the 

number of atoms per unit volume and more strongly on the Bohr magneton number, 

see Table (1.1). 

Table (1.1) Bohr magneton numbers and saturation magnetizations for the primary 
soft ferromagnetic metals. 

Element Number of Bohr magneton Saturation 
electrons per atom number magnetization (T) 

Iron 26 2.218 2.16 

Cobalt 27 1.714 1.8 

Nickel 28 0.604 0.61 
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In reality, the ideal case of perfectly parallel atomic magnetic moments 10 

ferromagnetic materials occurs only at very low temperatures. At higher temperatures 

the atomic magnetic moments make jittery movements about the field direction, which 

increase with increasing temperature, up to a value Tc called the Curie temperature, 

where the thermal agitation overcomes the effect of the coupling forces, and the 

material loses its ferromagnetic properties. Fig (1.1) shows a typical variation of the 

intrinsic magnetization with temperature. 

1-2-2) Magnetic domains and domain walls 

The coupling forces in ferromagnetic materials are generally so powerful that the 

atomic magnets at room temperature are almost entirely parallel-aligned. This does 

not, however, occur generally throughout the body, but only within certain regions. In 

adjacent regions, there is still alignment but the atomic magnets lie in different 

directions, so that the mean magnetic moment of the whole body is zero. These 

regions of large scale alignment of atomic magnetic moments are called magnetic 

domains. 

The boundaries between the magnetic domains are called domain walls or Bloch walls 

( after F. Bloch ). Such a wall is not only a boundary, it is more of a transition layer 

with its own system of laws. Its thickness may vary from several hundreds to a 

thousand atomic distances. The orientation ofthe atomic magnetic moments within the 

wall changes in a screw-like fashion from the direction of one domain to the other, Fig 

(1.2). 

1-2-3) Elementary processes of magnetization 

If a soft ferromagnetic core is introduced into a small magnetic field, the domain walls 

exhibit a slight displacement from their rest positions, and if the field is switched off 
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they return to their original positions. If, however, the field is allowed to rise more 

sharply, the domain boundaries wrench themes elves free from their rest positions 

under the influence of the field and can come to rest again only when they encounter 

major obstacles, which can be surmounted only when the magnetic field is increased 

further. These domain wall jumps are called "Barkhausen jumps". They are the cause 

of ferromagnetic hysteresis. It can happen that a domain will absorb one of its 

neighbours by a single jump, as those domains in which the spontaneous 

magnetization happens already to lie roughly in the direction of the lines of the 

magnetic field grow at the expense of the other domains. 

Other elementary processes that occur during the magnetization of soft ferromagnetic 

material are the domain rotations, during which the atomic magnetic moments of a 

whole domain align themselves simultaneously in the direction of the applied field. 

These rotational processes, however, demand relatively high field strengths. 

Although the magnetizing process is in fact supported by small rotations, with soft 

ferromagnetic metals it is accomplished at the start by wall displacements, and only 

when these are concluded, and preferred directions close to the field have been 

assumed throughout, does the final alignment in the field direction take place by 

domain rotations on further raising the field. 

Table (1.2) summarises the different magnetizing processes and their properties, 

whilst Fig (1.3) shows a diagramatic representation of the different stages of 

magnetization of an initially demagnetized sample. 

1-2-4) Different types of anisotropy 

In soft ferromagnetic materials three types of anisotropies exist, viz 
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Table (1.2) Elementary magnetization processes. 

Magnetization process Magnetic field strength Reversibility 

Slight wall displacements Small reversible 

Barkhausen jumps Medium irreversible 

Domain rotations High reversible 

a) Crystal anisotropy 

b) Induced uniaxial anisotropy 

c) Stress anisotropy 

Crystal anisotropy is present mainly in materials characterised by a crystalline 

structure, and represents the tendancy ofthe intrinsic magnetization to lie in a specific 

direction inside the crystal or "grain". In isotropic crystalline materials, the easy axes 

of magnetization of the different crystals are randomly distributed over the body, 

resulting in a macroscopically isotropic material. 

To overcome the effects of the random distribution of the crystals easy axes, in 

crystalline materials to be used in applications where only a unidirectional 

magnetization is needed, ego transfonner cores, a uniaxial anisotropy is induced by 

heat treatment of the material near its Curie temperature in the presence of a magnetic 

field. This results in a magnetization process along the induced easy axis which is 

dominated mainly by wall displacements, hence reducing the amount of energy 

necessary for magnetization by avoiding domain rotations. 

Before defining stress inisotropy, it is necessary to highlight another feature of soft 

ferromagnetic materials, viz magnetostriction, which represents a change in material 

dimensions as a result of it being magnetized. Since magnetostriction is caused only 

by domain rotation processes, a perfectly grain-oriented material would not exhibit a 
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change in its dimension as a result of being magnetized. However, In practice 

imperfections in the structure often cause magnetostriction. 

The inverse of magnetostriction results in the creation of uniaxial stress induced 

anisotropy. For example, for a material with positive magnetostriction in tension, the 

stress anisotropy would compete with the crystal anisotropy to align the magnetization 

along the stress direction. As such, the sensitivity of a particular material to stress is 

determined by its crystal anisotropy as well as the extent of domain rotation during its 

magnetization. Thus, non crystalline materials, such as metallic glasses, which are 

characterised by a liquid-like structure in which the atomic ordering does not exceed 2 

to 3 atoms, and the crystal anisotropy is negligible, present a particular sensitivity to 

stress. For example, in typical metallic glasses for transformer applications, the 

magnetization is predominantly determined by stress effects beyond a stress level of 

about 2 MPa. 

1-2-5) Heat treatments of soft ferromagnetic materials 

Soft ferromagnetic materials are subjected to heat treatments for a variety of reasons: 

a) To bring them after cold working into a state amenable for further working 

b) To achieve desired magnetic properties 

1-2-5-1)Annealing heat treatments 

In carrying out the annealing of soft ferromagnetic materials it is necessary that time, 

temperature and in many cases also the cooling conditions be accurately monitored 

and controlled. It is best carried out in electric resistance heating furnaces having 

automatic temperature control. Further, the annealing process should be carried out in 

a protective gas atmosphere to avoid scaling of the material. Generally, hydrogen is 
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preferred because it not only acts as a proctector, but also reacts with the metal to 

remove impurities. Annealing in ammonia gas or in a vacuum is also possible. 

1-2-5-2) Final-annealing 

There are several objectives for this annealing process, among which are: 

a) The growth of a disturbance free structure from the crystal grains of the metal 

which were disturbed by the working. 

b) Creation of the uniaxial anisotropy by orienting the crystallites in a specific 

manner. 

After final annealing the material must be protected from subsequent mechanical 

stresses, even apparently minor ones. 

1-2-5-3) Stress-relieving annealing 

For an annealed material which has been subjected to mechanical overstresses, 

especially when it has been plastically deformed, the resultant magnetic damage can 

usually be almost entirely repaired by two to three hours annealing at 650-800° C in a 

near perfect annealing atmosphere. However, after very intensive stresses, the whole 

final annealing programme must be repeated. 

1-2-6) Losses in soft ferromagnetic materials 

When subjected to a time-varying magnetization, soft ferromagnetic materials exhibit 

two types of losses, viz 

a) Hysteresis loss 

b) Eddy current losses 
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Hysteresis loss is due to energy consuming changes in the domain structure caused by 

Barkhausen jumps during the magnetization process. Since, the duration of a 

Barkhausen jump is typically around 0.1 ~ the hysteresis loss per cycle is fairly 

independent of frequency, in the range of frequencies which soft ferromagnetic 

materials are normally used, and depends only on the number of jumps per cycle. In 

other words, in the absence of minor loops it is dependent only on the maximum 

magnetization. As regards the variation of the hysteresis loss with the peak 

magnetization, two typical flux conditions are distinguished, viz: 

- Alternating flux conditions 

- Rotating flux conditions 

Under alternating flux conditions the magnetization is varied in magnitude and 

polarity whilst maintaining the same direction. Hence, increasing the magnetization 

necessarily leads to an increase of the number of Barkhausen jumps to cater for the 

magnetization swing, leading to an increase of the hysteresis loss. 

Under rotating flux conditions, however, the magnetization is kept constant in 

magnitude whilst its direction is rotated. Under medium field strengths the change in 

the magnetization direction is still accomplished mainly by Barkhausen jumps. At 

higher field strengths, and because there is no magnetization swing, the magnetization 

rotation will be accomplished mainly by the reversible domain rotation process, which 

explains the drop in the hysteresis loss at relatively high magnetizations, until it 

vanishes at saturation. Fig (1.4) shows typical variations of the hysteresis loss under 

both alternating and rotating flux conditions. 

The eddy current losses, however, represents the power loss due to the Joule effect 

caused by eddy currents induced by the rate of change of the flux density. They exist 

under time-varying flux conditions, but unlike the hysteresis loss, under rotating flux 

conditions they do not vanish at saturation. 
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Table (1.3) Major families of soft ferromagnetic materials [2]. 

Category Saturation Resistivity Maximum Applications I Notes 
Bs (T) ( JlQ-m) permeability 

I. Steels 

low carbon 2.1-2.2 0.4 - Cheap fractional hp motors 
steels 

non-oriented 2.0-2.1 0.24-0.5 - high efficiency motors 
Silicon steels 

3rain-oriented 2.0 0.45-0.48 - Power and distribution 
Silicon steels trans formers 

II. Nickel and Cobalt alloys 

40-50Ni 1.6 0.48 150 x 103 high permeability 

70-80Ni 1.1 0.55 150 x 103 requirement applications 

79Ni-4Mo 0.8 0.58 106 highest permeability 
metallic material 

49Co-2V 2.3 0.35 50 x 103 Highest Bs of commercial 
soft materials 

III. Ferrites 

MnZn 0.5 2 x 106 6000 Power supply inductors, 

NiZn 0.35 1010 4000 HF transformers 

1-2-7) Major families ofsoft ferromagnetic materials 

Table (1.3) summarises the major families of laminated soft ferromagnetic materials, 

their properties and their applications. Other types of soft ferromagnetic materials, 

such as the metallic glasses, viz amorphous alloys, are also available. However, 

athough characterised by relatively good magnetic performance, the difficulty of using 

such thin brittle materials makes them far from economically viable for many 

applications. 

In addition, 6.5 % Silicon steel has excellent magnetic properties but present a poor 

ductility. Thus, commercial production of this material was not possible until 1988 



11 

Table (1.4) Comparison between 6.5 % Silicon steel and conventional Silicon steels 
[3]. 

Material Thickness Core loss Core loss permea- Magneto-
(mm) IT/50Hz IT/400Hz bility striction 

0Nlkg) 0Nlkg) 

6.5 % Silicon steel 0.1 0.51 5.98 31000 0.2 x 10-6 

0.3 0.49 10.0 40000 

0.5 0.58 15.6 58000 

3.5 % Silicon steel 0.5 1.36 27.1 7700 5.0 x 10-6 

3.2 % Grain oriented 0.3 0.35 10.5 74000 1.3 x 10-6 

Silicon steel 

when the Japanese company NKK Corporation [3] developed a process for the 

commercial production of the material in sheet forms with thicknesses ranging from 

0.1 to 0.5 mm and a with maximum width of 400 mm. Being characterised by low 

loss, high permeability and very low magnetostriction, 6.5 % Silicon steel has a 

promising future for a wide range of applications. Table (1.4) shows a comparison 

between the magnetic properties of the conventional Silicon steels and 6.5 % Silicon 

steel. 

1-2-8) Operational environment 

The capability of a soft ferromagnetic material to withstand mechanical and climatic 

stresses depends on the form in which the material is supplied, the alloy composition. 

and the strip thickness. Thus, the capability of a specific material cannot generally be 

specified. Further, the operating temperature could be an important parameter in some 

applications. In this respect the magnetic properties of Nickel alloys have a relatively 

higher sensitivity to temperature, because of their relatively lower Curie temperatures. 

In applications which expose materials to high energy radiation, such as in nuclear 

reactors, new types of demands are placed on soft ferromagnetic materials. Indeed. 

two effects of primary importance arise, viz: 
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a) A change of magnetic properties due to irradiation 

b) Induced radioactivity in the material 

High energy radiation causes stresses and other inhomogeneities which prevent the 

displacement of the domain walls as well as initiating rearrangement processes in 

alloys characterised by uniaxial anisotropy. Both effects alter the coercivity, 

remanence and the shape of the hysteresis loop. 

In addition to affecting the magnetic properties, high energy radiation also induces 

radioactivity in soft ferromagnetic materials. Indeed, by the capture of thermal 

neutrons, in particular, some isotopes contained in the natural elements are excited 

into radioactive radiation. In this respect, y-radiation which is hazardous to human 

beings, is determined by the activation constant of the basic element, which depends 

on the cross-sections of the capture reaction, the abundance of the isotope, and the 

product of the emission probability and the energy of the y-radiation components 

arising, and the half life time of the isotope. Table (1.5) gives the activation constants 

and the half-lives of the y-emitters for the primary soft ferromagnetic materials, from 

which it can be seen that Cobalt is by far the highest y-ray emitter. Thus, Cobalt 

alloys should be avoided or used with caution in radioactive environments. 

Table (1.5) Activation constants and half-lives of primary soft ferromagnetic metals 

Element Activation constant 
(cm2.MeV/g) 

Half life Isotope 

Iron (Fe) 3.0 x 10-5 47 days Fe59 

Nickel (Ni) 1.7 x 10-4 2.6 hours Ni65 

Cobalt (Co) 0.85 5.3 years C060 
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1-3) Review of measurement of iron losses in electrical steel laminations 

The most important quantity for characterising the quality of electrical steel 

laminations is the iron loss density. The Epstein frame, with double overlapping 

corners, was first proposed by Burgwin in 1936, as a means of measuring iron loss 

densities in electrical steel laminations under alternating flux conditions. It is 

characterised by a high degree of repeatability, and, given the great amount of 

experience which has been aquired on the measurement procedure, considerable 

knowledge of the correlation between the results which it provides and the losses in 

real devices now exists. However, this high correlation does not mean that it provides 

an exact value of the iron losses [4], the inhomogeneity caused by the overlapping 

corners in the magnetic circuit of the Epstein frame being a major cause of errors. 

Therefore, new experimental techniques are becoming more popular, in particular 

single sheet or strip testers (SSTs). These are preferred to the Epstein square for two 

basic reasons. Firstly, the sample preparation and its insertion into the test rig are 

easier, and secondly, they eliminate the errors which are present in the Epstein square. 

Single-sheet/strip testers are used in three different configurations, viz the Ss-type, and 

the So-type, which differ only in the location of the H sense-coil, and the D-type, Fig 

(1.5). The D-type is preferred to the others for two main reasons, viz, it gives a better 

uniformity of the field strength along the length of the sheet [5], and the influence of 

the overhang length ofthe sample is negligible [6]. 

In the single-sheet tester, the magnetic field strength H can be sensed by one of two 

methods. The first is a direct sensing method, using so-called H-coils, as shown in the 

configuration of Fig (1.5). However, because in theory the field to be sensed is 

actually at the surface of the lamination sample, the distance between the sense-coil 

and the lamination can be a source of error. Indeed, the field strength has been found 

to be linearily dependant on the distance, and an improved method using a double 
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H-coil has been proposed [7]. However, the risk of errors by using search coils is great 

for two reasons. The first is concerned with the calibration of the coil area-turns, the 

error of which enters linearily into the loss calculation. Secondly, the coil is a very 

sensitive sensor which is prone to pick-up from surrounding magnetic sources. 

Furthermore, because the induced coil voltage is proportional to dHldt, an 

intermediate integration is necessary to obtain H, which may create an additional 

source of error, especially if analogue integrators are used. 

Another method of measuring H is based on the determination of the effective 

magnetic path length and a knowledge of the applied mmf. Indeed, the error in 

measuring iron loss densities by assuming the effective magnetic path of the sheet 

simply to be its inner length, Ie in Fig (1.5), has been found to be negligible [6]. The 

main advantage of this method is that no integration is required, the field strength 

being determined directly from the measured magnetising current, which avoids all the 

practical problems associated with the H-coil method. The corresponding flux density, 

however, must still be sensed by means of a search coil tightly wound around the 

lamination sample, to provide an induced voltage signal proportional to dB/dt. 

Rotational fluxes also occur in electrical machines in addition to alternating fluxes. 

For example, they occur at the T-joints of transformer cores and in the core-back of 

rotating machines, and can contribute significantly to the total iron loss. Since early 

this century the problem of measuring iron losses under purely rotating flux conditions 

has been studied by many investigators. The first measurement method which was 

proposed to measure the rotational hysteresis loss [8] was the torque magnetometer 

method, in which disc shaped samples were rotated at very low speed so as to avoid 

the generation of eddy currents. However, this method was abandoned for two reasons 

[9]. Firstly, it was difficult to magnetise the discs with a homogeneous magnetisation 

because residual domains always remain non-magnetised at the edges. Secondly, in 

materials having a degree of anisotropy the magnetisation could not be kept constant 

at any angle from the easy axis, giving rise to unknown alternating components. 
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Therefore, Kaplan [10] subsequently replaced the disc by a cross-shaped sample 

having magnetising windings on the orthogonal legs. The magnetic field components 

in the mutually perpendicular directions were measured by means of small iron yoke 

devices which served as magnetic potential probes, and the flux density components 

were measured by means of pick-up tips, via the drop voltage due to eddy currents. 

However, because the small yoke devices could influence the magnetisation process, 

they were subsequently replaced by air-cored coils [11], whilst the flux densities were 

measured by means of coils threaded through small holes drilled in the central region 

of the sample, with laminated yokes carrying the magnetising windings being added to 

carry the flux between the legs [12]. 

Brix et al [13] proposed a new configuration, in which the sample was square shaped, 

and an airgap was introduced between the sample and the yokes so as to produce a 

better flux pattern in the region of interest. This also eased insertion of the sample. 

Having established the rotating flux conditions, thermal methods based on the 

determination of the rate of change of temperature of the sample [14] by means of a 

thermocouple or thermistor have also been used to determine the iron loss. However, 

iron loss measurements based on the measurement of the orthogonal flux density and 

field strength components is considered to be the most convenient, since, apart from 

giving the total loss, it enables other quantities to be derived, especially under 

non-purely rotating flux conditions, such as the component of the total loss caused by 

the rotating flux component alone. However, problems still exist, and quite 

contradictory results have been published concerning the formulae from which the 

total loss, and the rotational components are calculated [11,15,16,17,18]. This will be 

discussed later in detail in Chapter 2. 
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1-4) Review of the prediction of iron losses in electrical steel laminations 

It is usual to separate iron losses into two main categories, viz quasi-static losses, or 

hysteresis losses, and dynamic losses. The hysteresis loss per cycle is equal to the area 

of the hysteresis loop. Hence, any model which is capable of predicting magnetic 

hysteresis would be capable of predicting this component of loss. In the first and the 

only model, proposed by F. Preisach [19], the macroscopic hysteresis loop is seen as 

the superposition of a large number of elementary rectangular loops, with reversal 

fields F and IT characterised by a distribution function p (F,IT). As such the 

change in magnetisation M due to a change of the magnetic field from Hi - Ho is 

given by 

HoIf 

Mf- 2 <Ms> f f p (F,lT) dF dlT (1.1) 
Hi Hi 

and the area ofa hysteresis loop having extremums Hi and Ho, is given by: 

Half 

Ph - 2 <Ms>J f f p (F,lT)( F -11 ) dF dlT (1.2) 
l/jHi 

where <Ms> represents the height of the elementary Preisach loops. In grain oriented 

materials it equals the saturation magnetisation Ms, whilst in isotropic materials and 

because ofthe random orientation of the crystallites, <Ms> - 0.85 Ms. 

One of the properties of this representation is the congruency, which means that all 

hysteresis loops, major or minor, which correspond to the same magnetic field 

extremums are congruent. However, in soft ferromagnetic materials this is not 

necessarily the case, as the height of a minor loop depends not only on the extremum 

fields but also on the average magnetisation [20,21], Fig (1.6). Furthermore, the 

distribution functionp (F,JT) is generally unknown, even though Bertotti [22,23,24] 

suggested that the distribution function p (F,11) can be decomposed as 
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p (F,l1) =f(F)f(-l1), and that the function f (lI) could be approximated by a 

Lorentzien function: 

K 
f(1I)-----

1 + (.lL _1)2 
Hm 2 

(1.3) 

where K is a normalisation constant and Hm is the distribution width. Whilst very 

good results have been reported concerning the hysteresis loss prediction in the case of 

3% SiFe steels, this can by no means be generalised as similar analyses carried out on 

different types of sheet steels have not yielded the same degree of accuracy. As a 

consequence, hysteresis loss prediction still has to be done empirically. In practice, 

however, this does not present a major problem because in the absence of minor loops 

the hysteresis loss per cycle does depend only on the maximum flux density. 

As concerns the dynamic loss the first model proposed for its prediction is the 

classical eddy current model which assumes a uniform magnetisation throughout the 

lamination cross-section. However, experiments show that the dynamic losses 

predicted by this model are usually far from accurate, and there is always a so-called 

excess dynamic loss. Therefore, although this model provides relevant information 

about the effects of certain parameters, for example the lamination thickness, the fact 

that it completely disregards the existence of the domain structure in ferromagnetic 

materials is the major cause of its failure. In 1959 Pry and Bean [25] presented a 

model which took into account the existence of the domain structure. They divided the 

lamination into domains of rectangular cross-sections with alternate polarisation. If 2L 

is the domain width with zero overall magnetisation, this model predicts an excess loss 

for L>d ( case of grain oriented SiFe) characterised by the following factor: 

(1.4) 
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where d is the lamination thickness. Since 7 varies linearly with frequency, this 

factor shows that the dependence of the excess loss per cycle on frequency is also 

linear. However, in practice its dependence on frequency is far from linear [26]. As 

regards the materials characterised by a fine domain structure, such as non-oriented 

materials, the model predicts negligible excess loss. However, experiments show that 

excess loss exists both in oriented and non-oriented materials. This model failed 

because its overall interpretation was only based on the concept of domain wall 

spacing. Indeed, two other concepts which characterise the Bloch wall bahaviour have 

a high contribution to the loss process in soft ferromagnetic materials. These are the 

number of simultaneously active walls contributing to the total flux rate and the 

enhanced eddy current overlap due to wall proximity [26]. Whilst the increase in the 

number of simultaneously active walls tends to cause a decrease in excess loss, 

domain wall proximity effects tend to cause an increase, which may explain the 

existence of the excess loss in materials with fine domain structure. 

A recent model has been proposed by G. Bertotti [27,28,29,30,31], in which the loss 

calculation is reduced to a statistical problem. In this model the magnetisation rate is 

described as a sequence of random elementary jumps, each of which corresponds to a 

localised and sudden wall displacement. It is written as follows: 

n 
dM ~. 
dt (r,t) - L.J m (r,t,ri,t;) (1.5) 

; .. 1 

where n is the number of jumps, and ;" (r,t,r;,t;) is the contribution of the jump i at 

position r; and time ti. 

In this model the shape of the jump is not dealt with because of its effect on the 

hysteresis loss rather than on the dynamic losses in which its effect on the 

instantaneous magnetisation rate is most important. To cater for the effect of domain 

wall proximity, the model introduces a new concept, which is the idea of magnetic 

objects (MOs). An (MO) is a group of Bloch walls behaving in a very correlated 
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fashion in a certain region of the sample, and which contribute to the magnetisation 

change in clusters. The effect of the whole group is modelled in a compact form, 

namely the above mentioned (MO). This new concept reduces the number o~ highly 

correlated walls into a number of independant magnetic objects (Mas). 

As regards the rotational losses, the same components exist, viz hysteresis, classical 

eddy current, and excess or \I anomalous \I losses. However, in practice high fields tend 

to cause a coherent rotation of the magnetisation, which reduces the irreversible 

processes due to Barkhausen jumps, and explains the variation of the hysteresis losses 

with the magnitude of the rotating flux density which tend to decrease above a certain 

value until it completely vanishes at the saturation flux density. This explanation is 

further strengthened by experimental work [9], which shows that not only is the 

hysteresis loss reduced but also the excess loss which is also related to Barkhausen 

jumps. However, only experimental investigations are available and no model for 

predicting the rotational losses has yet been proposed. 

1-5) Parameters affecting iron losses in electrical steel laminations 

As reviewed in section 1-2, the magnetic properties and losses of soft ferromagnetic 

materials are affected by several parameters, the most important in electrical machines 

being stress and temperature. However, whilst temperature is generally related to the 

operating condition, stress is generally induced during the fabrication process. Other 

effects, such as welding also affect the magnetic performance of built cores. 

1-5-1) Effects ofstress 

Stress affects iron losses in different ways. For example, compressive stress tends to 

increase the losses [32], whilst tensile stress tends to decrease them up to a certain 

level when the effect is reversed. In most electrical machines, a significant radial 



20 

compressive stress is caused by the pressure imposed by shrink fitting the outer frame 

onto the stator [33], which induces a complicated local stress distribution throughout 

the stator core which is primarily dependent on the mechanical properties of the 

laminations as well as their geometry. Of course, in interior stator/exterior rotor 

machine topologies such a stress is not likely to occur. Other types of stress can also 

be inflicted axially, during the adjustment of the stacking factor of the lamination 

stacks during assembly, for example [34]. 

Further, magnetic damage at lamination edges may also be prominent [34,35], as the 

stamping process induces a stress zone at the edge, Fig (1.7), whose depth is 

controlled only by the manufacturing process. As such, the sharper the punching tool 

the less damage occurs. However, in order to minimise this effect the laminations 

should be subjected to a stress relieving annealing, despite the extra cost of such a 

process step. 

Other methods for cutting laminations albeit normally for pre-production prototypes 

are also used, eg laser cutting and electro-discharge machining. However, no reports 

on the extent of damage which they may cause to the magnetic properties are 

available. 

After being stacked, core laminations are sometimes welded. As welding is 

accompanied by the formation of a zone of metal fusion with a clearily pronouced 

nonequilibrium structure and a recrystallized zone a depth of several millimeters, it 

affects the magnetic properties of the soft ferromagnetic materials, resulting in an 

increase of coercivity in the weld zone [36], and hence an increase in iron losses [37]. 

1-5-2) Effects oftemperature 

Temperature also affects iron losses in different ways. Firstly, the most common effect 

is an increase of the material resistivity, resulting in a decrease of the eddy current loss 
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component. Indeed, an investigation [38] as to the effects on temperature on iron 

losses in a Coblt alloy, which is characterised by a relatively high Curie temperature, 

Tc = 9200 C, showed that an increase in temperature up to 2000 C, resulted in a 

decrease of the total iron losses, which points to the fact that temperature effects in 

this case are more or less limited to the resistivity. Because of their relatively higher 

saturation magnetization, about 2.3 T, Cobalt alloys are used in rotating machines 

when the power-to-weight ratio is a critical factor, such as in aerospace applications. 

Since magnetic steels, viz low Carbon and Silicon steels, are also characterised by 

high Curie temperatures, over 7000 C, in the range of operating temperatures generally 

encountered, temperature effects would also be limited in practice to the resistivity of 

the materials. 

1-5-3) Effects of the electrical steel laminations grade 

Changing the grade of material from which a machine core is built can result in a 

dramatic change in the performance of the machine, especially as far as efficiency is 

concerned. However, whilst this may result in an increase of the initial cost, in 

applications where efficiency is a key performance factor, such as battery-fed devices, 

this may be unavoidable. In this respect, a study made by Takada et al [39], on the 

effect of using the newly developed 6.5 % Silicon steel for the core of electrical 

machines showed a dramatic reduction in the iron loss. Table (1.6) and (1.7) show a 

comparison between the iron loss for different core materials for an 1800 rpm, 8-pole 

brushless dc micro-motor for an audio-visual machine and a 2-pole, 0.4 kW, 200 V, 

Table (1.6) Effect of using 6.5 % Silicon steel on iron losses of brush less dc 
micro-motor [39]. 

Material Iron loss (W) 

3.5 % Silicon steel 0.l02 

6.5 % Silicon steel 0.067 
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Table (1. 7) Effect of using 6.5 % Silicon steel on iron losses of a high speed induction 
motor [39]. 

Type of supply No load and 0.5 mm,6.5 % 0.5 mm, 3.5 % Amorphous 
iron losses (W) Silicon steel Silicon steel alloy 

Sinusoidal No load loss 39.0 53.0 38.0 
supply 

Iron loss 22.0 34.3 20.9 

Non sinusoidal No load loss 45.0 67.0 48.9 
supply 

Iron loss 27.2 47.5 29.7 

360 Hz high-speed induction motor, respectively. From such results two conclusions 

can be drawn. Firstly, changing the grade of material can lead to a dramatic change in 

iron losses, and secondly 6.5 % Silicon steel has a promising future. 

1-6) Measurement of iron losses in electrical machines 

Efficiency is one of the most important performance characteristics of any energy 

conversion device. Whilst all energy conversion processes exhibit losses, be they 

primary or secondary, the electromechanical energy conversion process is one of the 

most efficient. However, the design of energy efficient machines requires a thorough 

knowledge of the different losses which exist in a particular design, which can only be 

achieved through direct measurement and/or accurate prediction techniques. 

Electrical machines exhibit different types of losses, which can be summarised as 

follows: 

a) Copper losses, due to the joule effect in the windings (I R) 

b) Losses in the ferromagnetic core of the machine, or iron losses, which are due to 

time-varying fluxes. 

c) Mechanical losses, due to windage and friction. 

Their proportions vary with the type and power rating of the machine, as well as the 

operating condition. 
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In theory, the total loss of an electrical machine can be obtained by measuring the 

input and the output power simultaneously. However, it is ironic that the more 

efficient the machine the less reliable is this method, since experimental errors in the 

measurement of the input and the output powers can induce an untolerable error in the 

loss. For eaxmple, a machine having an efficiency of 90%, but with input and output 

powers measured with an error of2% would lead to an error of 14% in the determined 

loss. Therefore, other methods, such as the calorimetric method, for the direct 

measurement of the total or component losses, either through their cause or their 

effect, are often preferred. 

1-6-1) Loss separation in electrical machines 

The copper losses depend on the current in the windings as well as their resistances, 

which in tum is dependant on the winding temperature rise. However, in most 

machines, a steady state copper loss measurement can be easily achieved through a 

single measurement of the steady state RMS winding currents, whilst the winding 

resistances are measured immediatly after switching off the machine. Of course, this 

would not be possible for machines with unaccessible windings, such as the rotor bars 

in squirrel cage induction machines. 

The mechanical losses can be measured when the machine is unexcited, as these are 

dependent only on the speed of rotation. However, whilst this is quite easy with 

wound-field machines, for permanent magnet excited machines it is difficult to 

separate the open-circuit iron losses from the mechanical losses. One possibility, 

however, is to temporarily replace the magnets with non-magnetic components having 

the same geometry and the same weight, so as to produce the same windage loss and 

the same friction loss in the bearings. 

Unlike the copper and mechanical losses, the iron losses cannot be determined directly 

since there is no condition when they are the only loss component. As such, they have 
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always to be separated from another loss component, no matter whether the machine is 

operated on open-circuit or on load. On open-circuit they have to be separated from 

the mechanical losses, whilst on-load they have to be separated from both copper and 

mechanical losses. Hence, a high degree of acccuracy has to be achieved in measuring 

both the total loss and the other loss components if an acceptable error in the iron 

losses is to be achieved. 

1-7) Prediction of iron losses in electrical machines 

The prediction of iron losses in electrical machines has always been, and will be for 

some time, limited to accounting for the effect of design parameters whilst assuming 

ideal manufacturing conditions. Altough, rules for handling and processing electrical 

steel laminations during the manufacture of machines in order to achieve conditions 

close to the ideal exist the cost of implementing such procedures has always been the 

major obstacle. Furthermore, as far as the magnetic properties of the laminations are 

concerned these can vary dramatically from the first stage of a manufacturing process 

to the last as well as with the quality of the process. For example, Figs (1.8) and (1.9) 

show the variation of the extent of the damage incurred at the edge of stamped 

laminations with the sharpness of the cutting tool [35]. 

The prediction of iron losses in electrical machines, even assummg ideal 

manufacturing conditions, has always been a two-fold problem, determining firstly the 

cause, namely the temporal and spatial flux density distribution throughout the core, 

and secondly the effect, namely the iron loss density distribution throughout the core. 

1-7-1) Conventional approach 

The conventional approach has been based on determining the average flux density in 

specific regions of the core, generally the stator teeth and back-iron, and assuming that 
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the flux density exhibits a sinusoidal temporal variation so that a corresponding iron 

loss density can be attributed to the different regions, either directly from 

manufacturer's iron loss data or calculated from classical expressions for the iron loss 

density under sinusoidal flux densities [40]. However, even though this pragmatic 

approach may be acceptable in classical ac machine formats, in which the flux density 

waveforms are essentially sinusoidal, if only an approximate estimate is required, this 

is not the case for most formats of permanent magnet excited machines, since the 

magnets generally induce flux density waveforms which are essentially 

non-sinusoidal. Indeed, they are often closer to having a trapezoidal waveform rather 

than a fundamental sinusoid. As such, a more refined method for predicting the flux 

density waveforms is required [41]. 

1-7-2) Impact of numerical techniques 

With the availability of computer workstations, more and more computing power is 

available to machine designers, who can now use numerical techniques such as the 

finite element method for field calculations. Besides being accurate, finite element 

analysis provides localised information of the field, so that most of the assumptions 

regarding the flux density distribution in the conventional method for iron loss 

calculation can be avoided. Furthermore, when finite element analysis is coupled to a 

drive system simulation accurate information on the field distribution under any 

specific operating condition can be obtained. Indeed, numerous investigators have 

exploited these possibilities, no-load iron losses being computed for salient-pole 

alternators [42], iron losses being shown to increase in permanent magnet brushed dc 

motors when controlled by chopping circuits [43], the effects of stator flux density 

waveform harmonics in buried magnet permanent magnet synchronous motors being 

quantified [44], the prediction of stator no load iron loss and the improvement in 

efficiency as a result of changing the stator core material of induction motors has been 

attempted [45,46]. 
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Studies on laminations [47] tested under flux density wavefonns similar to those 

which would exist in inverter supplied induction motors have shown that not all types 

of inverter necessarily cause an increase of iron loss. For example, whilst a substantial 

increase has been reported for the case of a PWM inverter, no substantial increase has 

been observed for the case of a six-step inverter. However, whilst such studies on 

laminations may provide a guideline, a sensible estimation of the effect of such 

inverters can be achieved only in the context of the complex electromagnetic nature of 

the machines, either by experiment on real prototypes or by using numerical analysis 

techniques which couple the drive system simulation to the field calculation. 

1-8) Discussion 

As will be evident in the foregoing review, the calculation of the iron loss in electrical 

machines is characterised by several problem, the most fundamental of which 

concerns the prediction of the magnetic power loss in the electrical steel laminations. 

To date a unifying model, which enables the prediction of the magnetic power loss 

under any flux condition, has yet to be proposed, and an examination of current 

research in this particular area suggests that it is unlikely that a model of such a nature 

will be proposed in the near future. Therefore, given the nature of the problem and the 

ever growing need for a more accurate estimation of the iron losses in electromagnetic 

devices, researchers in the field have tended to undertake semi-empirical approaches, 

which are guaranteed to yield results, rather then attempt to solve the problem from its 

fundamental base, bearing in mind that, over the years, many researchers have tried 

and failed. Furthennore, the sensitivity of the properties of soft ferromagnetic 

materials to mechanical conditions, such as stress, in real devices adds to the 

complexity of the problem. However, from the engineer's point of view this does not 

matter too much, in as much as an estimation of the actual iron loss in a particular 

design and/or operating condition is still possible. However, a greater awareness ofthe 

fundamental problems which exist would provide the designers with the possibility of 



27 

undertaking a more sensible design methodology as well as avoiding assumptions 

based on oversimplified analysis. An accurate knowledge of the temporal and spatial 

flux density distribution is a necessary condition, and any improvement in this area 

will have a direct benefit. However, this is far from being the only requirement since 

the accuracy of the prediction of the temporal and spatial field distribution throughout 

the core is very much dependent on the modelling of the soft ferromagnetic materials. 

Nevertheless, even in the most sophisticated techniques for the field calculation, soft 

ferromagnetic components in the magnetic circuit are often assumed to be loss-less, 

and the relationship between the magnetic field strength and the flux density is 

approximated simply by the initial dc magnetization curve. Whilst this simplified 

modelling of soft ferromagnetic materials would not affect the accuracy of certain 

performance parameters, such as total flux per pole etc, other parameters such as the 

local flux density waveforms throughout the core will be more affected. 

As concerns manufacturing conditions, these are quite impossible to include since they 

can vary dramatically from one manufacturer to another. However, whilst many 

investigators have investigated their effects from tests performed under laboratory 

controlled conditions [32,33,34,48,49,50,51,52,53], their results can be used only to 

assess the influence of manufacturing parameters, without being able to yield 

quantitative data. 

In the subsequent chapters of this thesis, the following facets of the investigation are 

described: 

Chapter 2: A description is given of closed-loop computer-controlled 

single-sheet testers which have been developed for the measurement 

of iron losses in electrical steel laminations, under alternating flux 

conditions. Ambiguities related to the calculation of the iron loss 

from the measured 11 and lf vectors are clarified, and an expression 

for the calculation of that portion of loss due to rotation in 

non-purely rotating flux conditions is derived. Finally, a description 
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Chapter 4: 
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of a computer-controlled system which has been developed for the 

characterisation of electrical steel laminations under dc conditions is 

included. 

The most recent techniques for the prediction of the iron loss density 

in electrical steel laminations are described, and predictions are 

validated against measurements carried out on the single-sheet 

testers, for flux density waveforms typical of those encountered in 

permanent magnet brushless dc motors. 

A simple analytical technique for the prediction of the flux density 

waveforms throughout the stator core of permanent magnet 

brushless dc machines on open-circuit is presented. In the analysis 

special emphasis is given to curvature effects on the airgap flux 

density in radial-field machine topologies. A simple analytical 

model which caters for the effect of curvature is presented, and 

predictions are compared to those obtained from more sophisticated 

models and experiments. 

Further, a numerical technique which couples the simulation of a 

brushless dc drive system to magnetostatic finite element analyses, 

for predicting the temporal and spatial flux density distribution 

throughout the stator core is described. 

Comparisons of flux density waveforms in various regions of the 

stator core as predicted by both analytical and numerical techniques 

are made with measurements carried out on a prototype brushless dc 

motor. 

A comparison is made between predicted and measured iron losses, 

on both open-circuit and on-load condition, for the same prototype 

motor. The method of measurement is described, and the effect of 

the load condition and commutation strategy on the total iron losses 
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and the iron loss density distribution throughout the stator core is 

analysed. 

Conclusions on the various aspects of the research which has been 

carried out are presented. 
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Fig (iA) Typical variation of the hysteresis loss under alternating and rotating flux 
conditions. 
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CHAPTER 2 

MEASUREMENT OF IRON LOSSES IN ELECTRICAL STEEL 

LAMINATIONS. 

2.1) Introduction 
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Arguably the most important parameter for characterising the quality of electrical steel 

laminations is the iron loss density, which depends on the excitation frequency, the 

flux density waveform, and the flux conditions, which may vary from purely 

alternating to purely rotating. However, the data provided by electrical steel 

manufacturers is generally limited to alternating flux conditions and sinusoidal flux 

density waveforms at fundamental supply system frequencies most applied, viz 50 or 

60 Hz. In most electrical machines, flux conditions generally vary greatly from one 

location in the core to another, whilst local flux density waveforms often deviate 

substantially from a fundamental sinusoid, particularily in controlled drive systems 

operating from power electronic converters. For these reasons, the characterisation of 

electrical steel laminations under conditions which mimic those encountered in 

practice is necessary if power loss involved during the energy conversion is to be 

predicted to an acceptable accuracy without resorting to the application of empirical 

iron loss factors, and the suitability of a particular grade of material for a specific 

application is to be assessed with confidence. 

Systems which have been developed for the measurement of the iron loss under 

alternating controlled flux conditions will be described in this chapter. Further, for the 

case of non-purely rotating flux conditions, ambiguities related to the calculation of 

the magnetic power loss from measured 11 and 1! vectors, will be clarified, and 
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expressions for the calculation of the iron loss contributions from alternating and 

rotating flux components will be derived. 

2.2) Single-sheet iron loss test system 

Fig (2.1) shows schematic diagram of a closed-loop computer-controlled test system 

which has been developed for the measurement of the power loss in electrical steel 

laminations, under alternating flux conditions. It enables the measurement of power 

loss under any pre-specified flux density waveform and up to a fundamental frequency 

of 300 Hz. This limit is primarily set by the hardware specifications, namely the 100 

KHz maximum sampling frequency of the analog to digital converters les, and can be 

easily overcome by the use of faster components, without substantial alterations to the 

original design. The systems, Fig (2.2), comprise the following elements: 

- An 80286 personal computer. 

- 1 programmable waveform generators. 

- 2 digital recorders. 

- A 2-channellinear power amplifier. 

_ Amplification and feed-back control circuits. 

_ Magnetic circuit for imposing alternating flux conditions. 

2.2.1) Waveform generator and digital recorders 

A system consisting of 4 modules, viz: a waveform generator, 2 digital recorders and a 

peripheral interface, have been constructed. For flexibility reasons, the modules have 

been designed separate in housing and operation. And can be interfaced to any IBM 

compatible personal computer by a 3 110 ports universal peripheral interface. Fig (2.3) 

shows a functional block diagram of the system, the main features being as follows: 

i) Controllable by any IBM compatible personal computer. 
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ii) In the run mode it operates under the control of an external TTL clock, with all the 

hardware control procedures effected on board. This feature makes the frequency of 

waveform generation and sampling limited only by the hardware specifications and 

not by the language used for the control software or the speed ofthe computer. 

iii)Specifically designed for periodic waveform generation and sampling, as such only 

512 Bytes of memory is needed for each waveform generation or sampling 

modules. 

When effecting measurement under a periodic flux waveform, controlled by a 

personal computer, the control software should implement the following procedure: 

- Set all the modules to the read/write mode. 

_ Load the waveform arrays to the memory cells of the waveform generators. 

_ Set all the modules to the run mode. 

_ Allow a steady-state condition to be reached. 

- Set all the modules to the read/write mode. 

_ Read the measured data arrays from the digital recorders. 

_ Convert and post-process the measured data. 

2.2.1.1) Programmable waveform generator 

The waveform generator generates a periodic 256 step staircase function, which is 

loaded into on-board memory cells, and then periodically fed into a 12-Bit digital to 

analog (D/ A) converter. The frequency of the analog output is controlled by an 

external TTL clock driving an 8-Bit counter which generates the memory cell 

addresses. The relationship between the TTL clock frequency fclock and the analog 

output frequency fis given by: 

/clock - 256 xf (1.1 ) 
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Periodic staircase functions include a large number of higher harmonics. A periodic 

staircase function can be described as: 

23t "3t 
U(8) - Uk, for ( k - 1 ) -N S 8 < k .... N 

st sf 
(2.2) 

where Nst is the number of stairs per period and Uk is the de voltage of one stair. For 

stairs of equal length the Fourier spectrum of the periodic staircase function can be 

expressed as: 

NSI 

2 . n3t ~ 3t 
an - - sm( N ) L.J Uk cos( n ( 2 k - 1 ) N ) 

3tn ~ at 
k-l " 

(2.3a) 

NSI 

bn - ~ sine nN:It ) ~ Uk sin( n ( 2 k - 1 ) N
3t 

) 
3tn ~ L.J ~ 

k-l 

(2.3b) 

In the case of a sinusoidal waveform generated by an Nbts Bit digital to analog 

converter Uk is given by: 

Uk'" Um sin ( N
2

:1t ( k - m » 
sf 

(2.4) 

where 

m= 

. 23t Uda 
1 forlUmsm(N k)-Uk-II<N 

st 2 hIs 

. (2 3t ) Uda o fori Umsm N k - Uk-II ~N 
st 2 hIS 

(2.5) 

where Um and Uda are the maximum voltage of the generated waveform and the 

maximum voltage that can be generated by the DI A converter. Table (2.1) shows the 

effect of the DI A converter resolution on the higher harmonics in a sinusoidal 

waveform approximated by a staircase function. The total harmonic distortion is 

calculated as: 

(2.6) 
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where en is the percentage of the nth hannonic to the fundamental. The harmonic 

content of the alternating voltage for the control of the power amplifier for iron loss 

measurements under sinusoidal flux density wavefonns should not exceed 0.2% [54]. 

A 256 step staircase function generator, equipped with a 12-Bit D/A converter, fulfills 

this condition for a wide range ofthe ratio UmlUda. 

2.2.1.2) Digital recorders 

These modules perform the digitization of periodic analog waveforms. The 

digitization is achieved by a 12-Bit analog to digital (AID) converter. 256 samples are 

stored, and periodically updated, in on-board memory cells. The sampling frequency 

is controlled by the same external clock, driving the counter which generates the 

memory addresses, at the rate of 1 sample per clock cycle. 

A digitized periodic wavefonn is only known for a finite number of instants per cycle. 

For equi-spaced samples it can be described as: 

2:n; 
u(e) - Uk for e - N (k - 1 ) 

sp 
(2.7) 

where Nsp is the number of samples per cycle. For equi-spaced samples the Fourier 

spectrum, for n :s; Nspl2, of a periodic discrete function is given by: 

Nsp 

an - Real ( ~ Uk x zn ) 
k-l 

(2.8a) 

Table (2.1) Computer total hannonic distortion for different D/A converter 
resolutions. (The calculation is performed taking account of up to the 1000th 

harmonic) 
Um thd 
Uda 

Nbts- 8 Nbts - 9 Nbts - 12 Nbt~ - 14 Nbt .. - 16 

0.25 0.769 0.41 2.09 x 10-2 2.44 x 10-3 3.53 x 10-4 

0.5 0.417 0.18 7.83 x 10-3 6.61 x 10-4 1.11 x 10-4 

0.75 0.268 9.74 x 10-2 4.13 x 10-3 6.71 x 10-4 1.11 x 10-4 

1.0 0.181 6.70 x 10-2 2.44 x 10-3 3.53 x 10-4 1.3 x 10-6 
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bn - Imag ( }: Uk x zn ) 

k-l 

where the complex variable z is given by: 

z .. cos ( N
2 

3t ( k - 1 » + j sin ( N
2 

3t ( k - 1 » 
sp sp 

41 

(2.8b) 

(2.9) 

where i - - 1. Digital sampling is also affected by the resolution of the AID 

converter. Similar analysis to that performed for the periodic staircase functions shows 

that 256 samples per cycle carried out by a 12-Bit AID converter are sufficient for an 

accurate reconstruction of periodic waveforms similar to those encountered in iron 

loss measurements. 

2.2.2) Magnetic circuits and 1f and lfsensing. 

In Chapter I it was argued that the D-type single-sheetlstrip-tester has the best 

characteristics, in that it combines accuracy, simplicity of the test sample. and ease of 

magnetic field sensing. Fig (2.4) shows the dimensions of the magnetic circuit. The 

magnetic yokes are made of 0.3 mm thick laminations of high quality grain-oriented 

steel (M5). 

The flux density derivative dBI dt is measured using a search coil wound tightly 

around the lamination in order to minimise the effect of air flux. The relationship 

between the voltage induced in the search coil and dBldt is given by: 

where ebs is the search coil induced voltage. 

Nbs is the number of turns ofthe search coil. 

S is the lamination sample cross-section area. 

l 

(2.10) 

L .. ,' 
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The magnetic field strength H is deduced by using a precision resistor Rh connected in 

series with the magnetising winding. Assuming that the effective magnetic path length 

is the inner length of the sample, the field strength is given by: 

(2.11) 

where Nmis the number of turns of the magnetising windings. 

Ie is the effective magnetic path length. 

Rh is the resistance of the precision resistor. 

ell. is the voltage drop across the precision resistor. 

2.2.3) Closed loop control 

Soft ferromagnetic materials are characterised by having a non-linear B-H 

characteristic under both dc and ac flux conditions. Under dc flux conditions, 

however, the shape of the B-H hysteresis loop is dependant only on the maximum flux 

density, whilst under ac conditions it also depends on the excitation frequency as well 

as the magnetic field waveform. However, under the application of a specified 

magnetic field waveform the flux density waveform is virtually unpredictible, whilst 

both the hysteresis and eddy current components of iron loss are dependant on the flux 

density. Since, any comprehensive measurement system should be capable of 

imposing the cause, if the effect is to be thoroughly investigated, a feed-back control 

system has been designed and implemented which allows the iron loss measurement to 

be carried out under a pre-specified flux density waveform. 

In practice, however, the control of the flux density B is achieved through the control 

of its derivative dB/dt for two main reasons: 

i) The sensing search coil provides a signal proportional to dB/dt. Hence the direct 

control of B would necessarily lead to intermediate integration, with all the 

attendant practical problems, such as offset drifts. 
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ii) Closed-loop control can never be perfect, since it is always subject to practical 

limitations. However, whilst a sucessful reduction of unwanted distortion in the 

dB/dt waveform guarantees that at least the same success has been achieved in the 

B waveform, the reverse is not true. As a consequence, unwanted distortion in a 

periodic flux density waveform is always more pronouced in its derivative. 

Fig (2.5) shows a schematic diagram of the closed-loop control. It will be seen that a 

variable cut-off frequency first order low pass filter has been added to overcome the 

effect of sub-resonance phenomena associated with non-linear systems. Under 

closed-loop, these cause the system to oscillate, besides the specified frequency, at 

frequencies many times higher. Since the degree of non-linearity in electrical steel 

laminations depends on the grade of material, the maximum flux density, the speci fied 

frequency and the flux density waveform, it is quite impossible to set a standard value 

for the cut-off frequency of the filter, and hence it has to be manually adjusted to 

create the required measurement conditions. 

Fig (2.6) and (2.7) show examples of measured dB/dt waveforms together with their 

Fourier spectrums, for specified sinusoidal B waveforms of amplitudes 1.5 T and 1.7 

T respectively. Where it will be noted that, under pre-specified sinusoidal B 

waveforms, total harmonic distorsion as low as 0.7% in dB/dt waveform can be 

achieved for relatively high maximum flux densities. 

2.4 ) Iron loss calculation from measured -nand J!. 

The calculation of the total iron loss from measured values of -nand 7!is still subject 

to considerable controversy, especially under rotating flux conditions, for which only 

experimental investigations are available, and the lack of rigorous theoretical analysis 

has lead to some confusion, as well as paradoxical conclusions, being drawn, as will 

be discussed later. For this reason, in the following section expressions for the 
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calculation of the total iron loss from measured 11 and 7! vectors are derived from the 

fundamental theory of electromagnetic fields. 

2.4.1) Total iron loss calculation 

The power transferred electromagnetically from a volume to its environment is given 

by the flux of the Poynting vector through the enclosing surface. The Poynting vector 

is defined as: 

where ris the electric field 

llis the magnetic field 

(2.12) 

The power trans ferred from the external system to the volume enclosed by the surface 

IS: 

PI - - If p;jds 
surface 

where iiis the unit vector normal to the surface. 

The divergence theorem yields 

PI - - If P.ii ds - - fff div(Pj dv 
surface V 

where V is the volume contained by the enclosing surface. 

Further, 

div(11- div(r x m -11. curl r - r. curl 11 

and from Maxwell equations, 

curl r __ oBi 
at 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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where l1i is the local flux density. From equations (2.15) and (2.16), the 

electromagnetic power density is given by: 

w - - div ( p) -11. a~ + r. curl 11 (2.17) 

In the iron loss measurement for both rotating and alternating flux conditions, the 

applied magnetic field 71 is generated by the magnetising windings and is assumed to 

be uniform over the cross-section of the lamination. Hence, its curl operator vanishes 

and equation (2.17) becomes: 

w-ll. a~ (2.18) 

and spatial averaging leads to: 

- 1 f 'ri' a 7!i 'ri' dJ! 
w- s SI1· dt dS-I1'di (2.19) 

where 7!is the average flux density in the lamination. 

Altematina flux conditions 

In this case the flux is unidirectional and the average power loss density becomes: 

- dB w-H-
dt 

Time averaging over a cycle yields: 

where T is the period 

Rotatina flux conditions 

If dB PI-- H-dt 
T T dt 

(2.20) 

(2.21 ) 

In this case the flux has two orthogonal components, and using the properties of the 

dot product the average power density becomes: 



- H dBx H dBy 
w ... x dt + y dt 
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(2.22) 

where Hx and Hy are the components of -n in the x and y directions respectively. 

Bx and By are the components of 7! in the x and y directions respectively. 

Again time averaging over a cycle yields 

1 f dBx dBy 
PI" T T (Hx dt + Hy dt ) dt (2.23) 

In the above analysis, only the applied magnetic field, which represents the primary 

source of power, has been considered. However, whilst this may still be open to 

argument, a good agreement between the field sensing, using equation (2.23), and the 

initial rate of rise of temperature loss measuring methods has been reported [55]. 

An alternative expression for the total loss calculation, which has been considered to 

be equivalent to equation (2.23) [11], is as follows: 

(2.24) 

where ( -n x 71)z is the component of the vector ( -n x 7!) on the z direction, which is 

also the instantaneous torque caused by the rotation of the field. 

Experimental investigations [15], however, have shown that these expressions give the 

same results only for the case of a pure rotating flux condition. Indeed, as will be 

shown later, equations (2.23) and (2.24) are mathematically equivalent only for the 

case of a pure rotating flux condition. However, as derived previously, equation (2.23) 

should give the total loss under any flux condition. Hence, an issue which requires 

resolving is the loss which equation (2.24) represents. 

Equation (2.24) has been attributed by certain investigators as being the true rotational 

power loss [16,17], namely the component of loss due to rotation in non-purely 

rotating flux conditions, because it provides the power loss caused by the loss torque 
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which is a consequence of the angle of lag between the vectors 11 and 7!. The existence 

of the angle of lag between the two vectors is certainly a characteristic of rotating flux 

conditions, and the component of loss that it causes can be a good measure of the 

effect of rotation. However, equation (2.24) is certainly not correct. This is supported 

by experimental results, given by the same investigators, which show that in the case 

of grain oriented materials the loss given by equation (2.24) when the flux density is 

not purely rotating is higher than that given by equation (2.23). Which lead them to 

conclude that the power loss given by equation (2.23) does not represent the total loss, 

being just the sum of the losses due to the flux components in the x and y directions, 

whilst equation (2.23) still provides the power loss component due to rotation. In 

reality the contrary is true. To resolve this controversy, an expression for the portion 

of loss due to rotation, ie rotational loss, is derived, and the paradox is clarified. 

2.4.2) Calculation of the iron loss component due to rotation, or rotational loss, 

due to non-purely rotating flux conditions 

d· d.. b In polar coor mates -;Ji 1S g1ven y: 

d/! ~ d) -+ AI 'U1 -+ 
--IDI-ee+~e 
dt dt dt r 

(2.25) 

where ee and e; are the unit vectors in the circumferential and radial directions 

respectively. In rectangular coordinates they are given by: 

-+ 8~' 8~ er - cos 1 + sm } (2.26a) 

-+ . 8~ 8-+ eo - - sm I + cos j (2.26b) 

where i1nd rare the unit vectors in the x and y directions respectively, as shown in 

Fig (2.8). 

Furthermore, 11 can be expressed as: 
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H ... I HI cos (u+e) it I HI sin «He)} (2.27) 

where (l is the angle of lag between Hand 1! 

From equations (2.25), (2.26), and (2.27), the power density 11. ~iS rewritten as: 

J!. ~ - ~ IlTll 7!1 sin u + IlTl '" d~ cos u (2.28) 

which can also be written as: 

(2.29) 

From equation (2.29) the rotational power loss is given by: 

(2.30) 

and the power loss due to alternating flux components is given by: 

Pa - ~fTI1!1 ~ cos u dt (2.31) 

2.4.3) Effect of the instantaneous angular speed of the flux density vector 7! 

The difference between expressions (2.24) and (2.30) for the rotational power loss 

calculation is the instantaneous angular speed of the rotation of the flux density vector 

at) which has been wrongly assumed to be ill - 2 3t f Indeed, under non-purely 
dt' 
rotating flux density, and even if the x and y components are purely sinusoidal, 

although the average rotational speed is ill the instantaneous speed is not. To clarify 

this consider a flux density vector having x and y components as follows: 

Bx - Bm sin ( ill t ) (2.32a) 

By - a Bm cos ( ill t ) (2.32b) 
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where 0 sa s I. a=1 corresponds to a pure rotating flux density, and a=O corresponds 

to a pure alternating flux density. From equations (2.32a) and (2.32b), 
B e - arctg (i; ) - arctg (a tg ( w t) ) (2.33) 

leading to, 
at) aw 

dt - cos2 ( 00 t ) + a2 sin2 ( w t ) 
(2.34) 

Fig (2.9) shows flux density loci for different values of a, whilst Fig (2.10) shows the 

variation of the per unit instantaneous angular speed 1. at)d over a cycle for different 
00 t 

values of the ratio a, where it will be noted that under non-purely rotating flux density 

conditions the instantaneous angular speed of the flux density vector is not constant 

over a cycle but can vary substantially. 

Furthermore, under purely rotating flux conditions, the magnitude of the flux density 

is constant, leading to: 

~-O 
dt 

(2.35) 

whilst from equation (2.34), for a=l, the instantaneous angular speed is constant and is 

given by: 
at) 
--00 
dt 

(2.36) 

From equations (2.30), (2.31), (2.35), and (2.36): 

Pa - 0 (2.37) 

and 

(2.38) 

which proves the mathematical equivalence of equations (2.23) and (2.24) for purely 

rotating flux conditions only. 
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2.5) D C conditions 

The characterisation of soft ferromagnetic materials under dc flux conditions is also 

very important, because it gives a direct indication of the potential magnetic 

performance of the material, which is often diluted by dynamic effects under ac flux 

conditions. Furthermore, the prediction of the power loss usually requires its 

separation into its fundamental components, viz, hysteresis and eddy current losses, 

which are linked to the magnetic and electric properties of the material. A 

computer-controlled system for the characterisation of soft ferromagnetic materials 

under dc conditions has been developed. Among other things, the system enables the 

measurement of the hysteresis loss as well as the initial dc magnetisation curve. Fig 

(2.11) shows a schematic diagram of the system, which comprises the following 

elements. 

- An 80286 personal computer. 

- A linear power amplifier. 

- An integrating fluxmeter. 

_ 14 Bit, 16 channels AID, 2 channels D/A converters card. 

- Magnetic circuit. 

2.5.1) Sample demagnetisation. 

The magnetisation in a ferromagnetic material is a function of its past history as well 

as the level of the magnetic field strength. In other words, a knowledge of the 

magnetic field strength alone is insufficient for a complete characterisation of the 

magnetisation. For this reason, before effecting any measurement the initial conditions 

have to be known if the experiment is to have any relevence. 
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For the above reason, the lamination sample are demagnetised before each 

measurement. This is achieved by initially subjecting the sample to a high magnetic 

field strength, above 5000 Aim, and then periodically reversing the magnetic field 

whilst gradually decreasing its magnitude to zero. 

2.5.2) Measurement of the hysteresis loss and the initial magnetisation curve. 

The initial magnetisation curve is the B-H characterestic of a sample when it is 

gradually magnetised from a fully demagnetised state. Due to symmetry, the tips of a 

family of dc hysteresis loops, for each of which the enclosed area represents the 

hysteresis loss per cycle, is the initial magnetisation curve. Hence, the measurement of 

the initial magnetisation curve as well as the hysteresis loss can be undertaken 

simultanously. In the current investigation the magnetic circuit as well as the 

lamination samples are identical to those used for the alternating flux iron loss 

measurement. However, ring shaped lamination samples can also be used for the 

measurement without altering the control software. 

2.6) Conclusions 

In this chapter systems for measuring iron losses in electrical steel laminations under 

both alternating and rotating flux conditions have been described. Ambiguities related 

to the calculation of the total iron loss under rotating flux conditions from measured 

l! and lfhave been clarified, and an expression for the calculation of the portion of 

loss due to rotation under non-purely rotating flux conditions has been derived. In 

addition, procedures for measuring the initial dc magnetisation characteristic and the 

hysteresis component of iron loss have been presented. 
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Fig (2.1) Schematic of iron loss measurement system under alternating flux condition. 
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(a) Connected system 

(b) Magnetic circuit. 

Fig (2 2) Single-sheet test system for measurement of magnetic power loss in electrical 
steel laminations. 
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CHAPTER 3 

PREDICTION OF THE IRON LOSS DENSITY IN ELECTRICAL STEEL 

LAMINATIONS. 

3.1) Introduction 
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The prediction of the total iron loss density in electrical steel laminations under 

various flux density waveforms represents the cornerstone for any subsequent 

prediction of the iron loss density and the total loss, particularly when the laminations 

are part of a complicated magnetic circuit, such as in rotating electrical machines. 

However, the calculation of the excess eddy current or "anomalous" loss component 

presented a major difficulty in the accurate prediction of the total iron loss density, 

partly, because its causes were only broadly understood. 

In this chapter the most recent techniques for the prediction of the iron loss densities 

in electrical steel laminations are presented and validated against measurements 

carried out on samples of non-oriented electrical steel laminations under flux density 

waveforms similar to those encountered in the stator core of permanent magnet 

brushless dc motors. 

3.2) Prediction of the hysteresis loss 

The hysteresis loss is due to irreversible changes in the domain structure, namely 

Barkhausen jumps, which are very localised in time and space. The loss is the 

difference in potential energy before and after each jump. It is important to note that it 

is independant of the dissipation mechanism, as this only influences the duration of the 

jump [26]. As a consequence the hysteresis loss per cycle is fairly independant of the 
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magnetising frequency, and only depends on the maximum flux density, when the flux 

density waveform does not cause minor hysteresis loops. When minor hysteresis loops 

occur, their area has to be added to the area of the major loop to determine the total 

hysteresis loss per cycle [56]. However, in practice the calculation of this component 

of iron loss does not ususally present a problem, and a single experimental hysteresis 

loss per cycle data, covering a wide range of maximum flux densities, is usually 

sufficient. In general, the following empirical expression provides a good fit to such 

experimental data [41]: 

(3.1 ) 

where kh and a are constants determined by fitting the above equation to a set of 

experimental data, preferably covering a wide range of peak inductions, and f and Bm 

are the frequency and the peak induction respectively. In cases where Nmlp minor 

hysteresis loops occur, the following empirical correction can be used [56]: 

where 

Nmlp 

K(Bm).., 1 + °B~ ~ llB; 
i-I 

ABi being the change in flux density during the excursion around a minor loop. 

3.3) Prediction of the dynamic loss 

(3.2) 

(3.3) 

The natural action of an applied field, which is uniform in space, is to induce a 

homogeneous magnetisation over the lamination cross-section. In materials with no 

structural inhomogeneities, this is exactly what happens, and the dynamic loss is equal 

to the classical eddy current loss. However, in soft ferromagnetic materials the 

magnetisation can only proceed easily as a correspondence of Bloch walls which 
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separate different magnetic domains. This results in the the magnetisation changing 

coherently inside a characteristic region, which , in tum, results in eddy currents 

concentrating above the average around the active region, which gives rise to the 

excess or the "anomalous" loss . In this respect, two extreme cases can be 

distinguished, viz 

a) Magnetically oriented materials, where the average Bloch wall spacing is larger 

than the lamination thickness, the correlation region coincides with a single wall. 

b) Non-oriented materials, which are characterised by a fine domain structure leading 

to a strong interaction between the neighbouring Bloch walls. In this case, the 

magnetisation change involves a highly correlated motion of a great number of wall 

segments in a limited region of the sample. 

As a consequence, Bertotti [30,31] introduced the new concept of a magnetic object 

(MO), which correponds to a group of neighbouring walls so strongly correlated, that 

they can be treated as a whole. The structural and dynamic properties of the (Mas) are 

different in different materials, ranging between the ones for a single wall to ones for a 

cluster of walls, as the average wall spacing decreases. Furthermore, the (Mas) are 

employed in the context of the following assumptions: 

i) All the (Mas) are identical. 

ii) The (Mas) are randomly distributed. 

iii)The average eddy current distribution due to all the active (Mas) is identical to that 

of a homogeneous medium. 

From the above reasoning the eddy current loss can be separated into two components, 

viz, the power loss due to the average eddy current distribution, and which can be 

calculated by the classical model assuming a homogeneous medium, and the power 

loss due to the extra concentration of eddy currents around the active (Mas). 
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3.3.1) Prediction of eddy current losses by the classical model 

The classical model is based on the assumption of a smooth distribution of the 

magnetisation over the cross-section of the lamination. In other words, it neglects the 

existence of the domain structure. 

Given d« L in a practical lamination, and the flux density 7! vector is along the z 

direction, as shown in Fig (3.1), the induced electric field rttas no component along z 

and its component along y is negligible in the major part of the lamination 

cross-section, ie 

7!-oTtOJ+BTC (3.4) 

and 

(3.5) 

where i, j, ~ and TC are the unit vectors in the x, y, and z coordinate directions 

respectively. Furthermore, rand 7!are related by the following Maxwell equation: 

curlF!. _ aJ! 
at 

From equations (3.4), (3.5) and (3.6): 

aEx aBz - ... -ay at 

(3.6) 

(3.7) 

In the range of frequencies where skin effect is negligible, J! is almost constant 

throughout the cross-section of the lamination. Therefore, from equation (3.7): 

( dBzl Ex - dt y+c (3.8) 

where c is an integration constant, which can be determined as follows. 
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In the practical range of frequencies the continuity equation is reduced to: 

div"j,. 0 (3.9) 

where Jis the eddy current density, and which is related to the electric field by: 

(3.10) 

where 0 is the electric conductivity of the lamination. From equations (3.9) and (3.10): 

divr- 0 (3.11 ) 

Hence, the eddy current and the induced electric field force lines are closed. In 

addition, a force line at y - Yo reverses direction at x - ± 00 and returns at y - - Yo. 

Therefore, the symmetry requires that: 

From equations (3.8) and (3.12) the intgrating constant is derived as c = o. 

The local eddy current power loss density is given by: 

and space averaging leads to: 

Ign 
pc(t) - -df Pc (t) dy 

-dh 

From equations (3.8) and (3.13): 

_ oci (dB)2 3 
pc(t) -12 di (Wlm) 

and averaging over a cycle: 

oj 1 f (dB)2 
Pc" 12 b T T di dt ( WI kg ) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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where T and b are the period and the mass density respectively. Furthermore, in the 

case of a sinusoidally time-varying flux density: 

(3.17) 

where Bmax andfare the maximum flux density and the frequency respectively. 

3.3.2) Prediction of the excess or " anomalous" loss by Bertotti's model 

Firstly, is considered the case of a plane, 180
0 

domain wall, moving at the velocity v. 

Besides the applied field and the coercive counter field, the moving wall also 

experiences an eddy current counter field, due to its own movement. According to the 

results of Williams et al [58], it is given by: 

He- 8 Ms30d(}: ~lV-OGw~ (3.18) 
3t oddnn 

where <pw is the flux rate provided by the moving wall, Us IS the saturation 

magnetisation, and the dimensonless parameter Gw given by: 

Gw " ~ (}: ~ 1 s= 0.136 (3.19) 
3t oddnn 

which measures the damping effect of the eddy current pattern which surrounds the 

wall, and is obtained from Maxwell's equations, with assumptions made on the shape 

of the wall as well as the geometry of the sample cross-section. 

In the case of nw simultaneously active uncorrelated walls, and imposing the 

requirements that the flux rate due to the nw moving walls must be equal to the 

imposed average flux rate, 

(3.20) 
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where S is the cross-sectional area and B is the average flux density. From equations 

(3.18) and (3.20), 

and 

2 
P ... aGw S(dB) 

e nw dt 

(3.21 ) 

(3.22) 

In the above equation the excess loss is inversely proportional to the number of 

simultaneously active walls nw· Therefore, if nw tends to infinity the excess loss 

vanishes. This can be interpreted by the fact that the greater the number of walls 

contributing to the total flux change the smoother is the distribution of the 

magnetisation in the cross-section ofthe lamination. 

By analogy with the former case, but in this case with the wall replaced by a magnetic 

object, which at a limit can coincide with a wall, the same formulae can be derived, 

VlZ 

and 

H. 
aGmoS dB 

e-
nmo dt 

2 
Pe .. a Gmo S ( dB) 

nmo dt 

(3.23) 

(3.24) 

where Gmo is a damping factor dependant on the shape and the internal structure of the 

magnetic object, and nmo is the number of active magnetic objects. All the information 

on the structural and dynamic characteristics of the magnetic objects is included in the 

ratio Gmo. In order to unify the mathematical formulation a new parameter is 
nmo 

introduced: 

/\ Gw n-nmo -
G mo 

(3.25) 
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~ could be interpreted as the effective number of magnetic objects. In terms of the 

above defined parameter a general expression governing the excess field and loss is 

derived, viz 

(3.26) 

and 

2 
P e" (J ~\w S ( dB ) 

n dt 
(3.27) 

The above two equations show that if the function ~ .... f( He ) is known the excess loss 

could be calculated for any frequency, when the skin effect is negligible, and for any 

flux density waveform. 

Bertotti [31,59] found experimentally that in many iron-based materials ~ - f( He ) 

follows a simple linear law: 

A A He 
n- no + Vo (3.28) 

where Vo is a parameter determined experimentally. Further equation (3.38) can be 

reduced to 

A He 
nrtd-

Vo 
(3.29) 

in non-oriented materials, above a frequency of few Hz. From equations (3.26), (3.27) 

and (3.29) an expression for the excess loss is derived as: 

3 

dB 2 
pe - vo Gw S Vo dt 

Averaging over a cycle, leads to 

3 

P e'" vo Gw S Vo J dB 2 dt 
T T dt 

which becomes 

(3.30) 

(3.31 ) 
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Pe = 8.67 vo Gw S Vo]1l B::; (3.32) 

for a sinusoidal flux density waveform. 

In equations (3.31) and (3.32) the only unknown variable is the field Vo, which can be 

determined experimentally. It is worth mentioning that the field Vo exhibits a 

dependence on the maximum induction for certain materials [31,59]. 

3.4) Experimental validation 

To validate the theoretical analysis given in the previous sections, three lamination 

samples S 1, S2 and S3, for which information is given in Table (3.1), have been 

considered. The samples were chosen on the basis of their wide use for the 

laminations of stator cores. 

3.4.1) Determination of the laminations constants 

3.4.1.1) Hysteresis loss constants 

The hysteresis loss constants have been derived directly from a set of hysteresis loss 

data, covering a range of flux densities, which have been fitted to equation (3.1). Fig 

(3.2) shows an example of measured dc hysteresis loops for sample S2, whilst Figs 

Table (3.1) General specifications of the samples SI, S2 and S3. 

Sample Commercial name Heat treatment Sample thickness 
(mm) 

SI Newcor660 non-annealed 0.5 

S2 Losil450 annealed 0.5 

S3 Transil300 annealed 0.35 
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(3.3), (3.4) and (3.5) show hysteresis loss data for the samples S 1, S2 and S3 

respectively, where it will be noted that equation (3.1) provides a very good fit to 

experimental data for S 1 and S2, but not for S3 as the exponent a is an increasing 

function of the maximum flux density. To overcome this problem a correction to 

equation (3.1) is suggested, viz 

(3.33) 

where 

ah - ahl m" + ah2 (3.34) 

Fig (3.5) shows the very good fit provided by equation (3.33) for S3. Table (3.2) gives 

the hysteresis constants for S 1, S2 and S3. 

As the hysteresis loss is only dependant on the maximum flux density when the flux 

density waveform does not induce minor loops, in practice a single set of experimental 

hysteresis loss per cycle data for a reasonable range of flux densities can be fitted to a 

cubic spline to enable the accurate computation of the hysteresis loss for any 

frequency and flux density waveform. 

3.4.1.2) Excess or " anomalous" loss constant 

~ vaGwSVo . . 
In theory, the excess loss constant At! - b can be determmed from a smgle 

value of the total iron loss density measured at a given frequency and amplitude for a 

sinusoidally time-varying flux density, ie from 

Table (3.2) Hysteresis loss constants. 

Sample kh Uhl Uh2 

Sl 1.49 x 10-1 1.56 0.0 

S2 1.96 x 10-2 1.58 0.0 

S3 1.55 x 10-2 1.36 4.27 x 10-1 
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o J-1t2 
Pt-Ph- Ilmf 

ke - 66 
8.67 B~5 /.5 (3.35) 

However, it is then very sensitive to the accuracy to which Pt and Ph can be 

determined. Therefore, a preferred approach, which reduces the effect of experimental 

errors, is to fit experimental loss per cycle data, spanning a range of frequencies, to 

equation (3.36). For example, Fig (3.6) compares measured and curve fitted loss per 

cycle data for sample S2. 

Pt Ph 0 J- 1t
2 ~2 1.5/.5 7" 7 + 6 6 ffinJ + 8.67 ke Bm (3.36) 

Figs (3.7), (3.8) and (3.9) show the variation of the constant ke with the maximum flux 

density for each of the samples. It will be noted that ke exhibits a negligible variation 

for S 1, whilst for S2 and S3 it increases with the maximum flux density. At first, this 

was attributed to experimental errors. However, the similarity of the variation of ke for 

S2 and S3 as well as the possibility of such variation occuring as reported by Bertotti 

[31,59] tended to eliminate this possibility. Furthermore, the experimental error should 

be more pronouced in sample S 1 because of its higher hysteresis loss component 

compared to its dynamic loss component. In practice an average value of ke could be 

used as an approximation. Alternatively, however, a more accurate approach is to 

obtain a set of values for ke for a reasonable range of maximum flux densities to which 

a cubic spline curve fit is performed to enable the computation of the excess loss for 

any flux density waveform, in a similar manner to the hysteresis loss component. 

3.4.2) Validation of iron loss calculation 

The experimentally derived constants under dc conditions for the hysteresis loss 

component and under ac sinusoidal flux density waveforms for the excess loss 

component can be used to compute the total iron loss density under flux density 

waveforms usually present in permanent magnet excited machines. From equations 
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(3.16) and (3.31) the eddy current loss component of the iron loss density due to a 

piece-wise linear flux density waveform composed ofN intervals can be shown to be: 

:1 N 2 
ocr 2 ~ llBi 

Pc = 24 :It b ill ~ ~e i 
,.1 

(3.37) 

whilst 

(3.38) 

where ill ... 2 :It f, and f is the fundamental frequency, llB; is the incremental change of 

flux density over interval i, and ~ei is the duration of the interval (elec rad). 

Trapezoidal flux density waveforms, typical of those which exist in the teeth of 

permanent magnet brushless dc motors, can be characterised by the parameter 1: which 

determines the extent of the" flat-top", where 1: - 0% corresponding to a rectangular 

waveform and 1:" 1 00% corresponds to a triangular waveform as shown in Fig (3.10). 

In terms of the parameter 1:, equations (3.37) and (3.38) can be transformed as follows: 

(3.39) 

and 

P 
2 v'2 ke 1.5 B~5 

e - _c ill _I'::: 
:It V:lt V 1: 

(3.40) 

Figs (3.11), (3.12) and (3.13) show a comparison between measured and computed 

iron loss densities for samples S 1, S2 and S3 respectively, for a wide range of 

trapezoidal flux density waveforms. 

Furthermore, Figs (3.14), (3.15) and (3.16) show a comparison between measured and 

computed iron loss densities for other piece-wise linear flux density waveforms, 

typical of those which exist in the stator yoke of brushless dc motors having 112 

slot/pole/phase, and characterised by the parameter K as shown in Fig (3.17). Again, 

equations (3.37) and (3.38) can be transformed, this time in terms of K to give: 
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oj- 2.....2 ( 2 ) Pc'" 2 ill ffin 3K -2K+l 
21t b 

(3.41) 

and 

(3.42) 

3.4.3) Discussion 

Apart from showing that good agreement can be obtained between computed and 

measured iron loss densities, the results presented in this section illustrate clearily the 

effect of the flux density waveform on the total iron loss density. The iron loss density 

can vary dramatically simply by varying the flux density waveform with the peak 

value kept constant. Since the hysteresis loss component would remain constant, the 

variation is caused entirely by a change in the eddy current loss component. Further, 

Tables (3.3) and (3.4) compare measured per unit iron loss densities under sinusoidal, 

triangular and trapezoidal flux density waveforms having a maximum flux density of 

Table (3.3) Per unit iron loss densities at 50 Hz. 

Sample Sinusoidal Triangular Trapezoidal waveform 
waveform waveform 

"t .. 30 % "t - 60 % "t - 90 % 

S1 1.0 0.97 1.20 1.035 0.985 

S2 1.0 0.93 1.63 1.14 0.95 

S3 1.0 0.966 1.25 1.07 0.981 

Table (3.4) Per unit iron loss densities at 100 Hz. 

Sample Sinusoidal Triangular Trapezoidal waveform 
waveform waveform 

"t- 30 % "t - 60 % "t - 90 % 

S1 1.0 0.95 1.34 1.07 0.957 

S2 1.0 0.90 1.90 1.20 0.93 

S3 1.0 0.935 1.40 1.06 0.97 
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1.5 T, for 50 Hz and 100 Hz respectively. It will be seen that iron loss density data 

corresponding to sinusoidal flux density waveforms is generally inappropriate for 

predicting the iron loss of permanent magnet machines. Further, it will be noted that 

the iron loss density under a triangular flux density waveform is less than under a pure 

sinusoidal flux density waveform. This is due to the fact that a constant rate of change 

of flux density induces less eddy current loss, both classical and excess components. 

This can also be seen in Figs (3.14), (3.15) and (3.16) where the iron loss density 

variation exhibits a minimum at K -= t which corresponds to a triangular flux density 

waveform. 

The excess loss component, which has been usually neglected or poorly catered for 

can represent a substantial portion of the total iron loss density. Tables (3.5), (3.6) and 

(3.7) show the proportion of each loss density component in the total iron loss 

densities under sinusoidal, triangular and trapezoidal flux density waveforms having a 

peak flux density of 1.5 T, at 50 and 100 Hz, for samples Sl, S2 and S3 respectively. 

It can be seen that in sample S 1 the hysteresis loss component is predominent because 

the sample is not annealed, whilst the excess eddy current component is still important 

Table (3.5) Iron loss density separation for Sample S 1. (Bmax - 1.5 T) 

Flux density waveform Frequency Hysteresis Classical Excess eddy 
(Hz) loss (%) eddy current current loss 

loss (%) (%) 

Sinusoidal 50 86.1 10.68 3.21 

100 76.85 19.08 4.06 

Triangular 50 88.09 8.86 3.03 

100 80.0 16.1 3.89 

Trapezoidal 't - 30 % 50 71.51 23.9 4.5 

100 56.82 38.12 5.05 

't - 60 % 50 82.49 13.83 3.67 

100 71.51 23.98 4.49 

't - 90 % 50 87.09 9.73 3.16 

100 78.43 17.53 4.03 
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Table (3.6) Iron loss density separation in sample S2. (Bmax - 1.5 T) 

Flux density waveform Frequency Hysteresis Classical Excess eddy 
(Hz) loss (%) eddy current current loss 

loss (%) (%) 

Sinusoidal 50 45.43 24.53 30.02 

100 33.17 35.82 30.99 

Triangular SO 48.88 21.37 29.77 

100 36.52 31.97 31.49 

Trapezoidal L==30% SO 28.0 40.84 31.16 

100 18.2 53.13 28.66 

L-60% 50 39.73 28.98 31.27 

100 27.99 40.84 31.16 

L=90% 50 46.97 22.84 30.18 

100 34.70 33.75 31.54 

compared to the classical eddy current component. For the annealed samples S2 and 

S3, however, the excess eddy current loss component represents not only a substantial 

portion of the total iron loss density, but can be higher than the classical eddy current 

Table (3.7) Iron loss density separation in sample S3. (Bmax - 1.5 T) 

Flux density waveform Frequency Hysteresis Classical Excess eddy 
(Hz) loss (%) eddy current current loss 

loss (%) (%) 

Sinusoidal 50 72.18 7.49 20.32 

100 62.27 12.93 24.79 

Triangular 50 74.40 6.26 19.32 

100 65.11 10.96 23.92 

Trapezoidal L-30% 50 56.98 15.98 27.02 

100 44.80 25.14 30.05 

L-60% 50 67.76 9.50 22.72 

100 56.98 15.98 27.02 

L-90% 50 73.13 6.83 20.02 

100 63.52 11.88 24.59 
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loss component. Thus, neglecting it or poorly modelling it would necessarily lead to a 

substantial error on the total iron loss density prediction. 

3.~) Rotational loss 

Rotating fields also exist in most electrical machines. However, to date a model for 

predicting the associated iron loss has yet to be presented. Nevertheless, experimental 

investigations [9] have shown that for low to medium induction levels a reasonable 

approximation is to add the losses associated with the corresponding orthogonal 

alternating flux density components. 

Further, the calculation of the rotational loss in soft ferromagnetic materials introduces 

a problem as to which parameters have to be defined, ie the specification of 

parameters which yield a unique loss density. For example, under alternating flux 

conditions the peak flux density is not a parameter which fully specifies the flux 

conditions, since the same peak flux density can yield different iron loss densities. 

Similarly, the flux density loci, which to date represent the only way of characterising 

a rotating flux condition, cannot yield a unique total iron loss density. In addition, the 

instantaneous angular velocity of the flux density vector is a necessary parameter, as 

was shown in Chapter 2. Thus, only a flux condition defined by the flux density loci 

and the instantaneous angular velocity can yield a unique rotational iron loss density. 

3.6) Conclusions 

The excess or " anomalous" dynamic loss component has, until recently, presented a 

major obstacle in the way of accurately predicting iron loss densities in electrical steel 

sheets, and this has lead to the development of various empirical methods over the 

years, which were generally validated against flux density waveforms having a 

harmonic content similar to that caused by saturation in transformers and classical a.c 
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machines. However, even under those conditions they did not prove to be very reliable 

[56]. Bertotti's model, however, which takes into account the discrete nature of the 

magnetisation process, which is the cause of the excess loss, would clearly be 

expected to provide a more reliable solution. Indeed, the results for sinusoidal flux 

density waveforms with 3rd hannonic distortion [50], as well as the results provided in 

the proceeding section for a wider range of flux density waveforms, for which very 

good agreement has been obtained between predictions and measurements, confirm 

the generalised nature of Bertotti's model. For the calculation of iron losses in 

permanent magnet machines, this presents a major step forward, since the rectangular 

magnet m.m.fnaturally produces highly "distorted" flux density wavefonns. 
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Fig (3.1) Classical model for eddy current loss calculation. 
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Fig (3.11) Total iron loss density under trapezoidal flux density wavefonns in sample 
Sl. 
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Fig (3.12) Total iron loss density under trapezoidal flux density wavefonns in sample 
S2. 
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Fig (3.13) Total iron loss density under trapezoidal flux density wavefonns in sample 
S3. 
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Fig (3.14) Total iron loss density under piece-wise linear flux density waveforms for 
sample SI. 
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Fig (3.15) Total iron loss density under piece-wise linear flux density wavefonns for 
sample S2. 
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Fig (3.16) Total iron loss density under piece-wise linear flux density wavefonns for 
sample S3. 
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Fig (3.17) Examples of piece-wise linear wavefonns characterised by the parameter K. 
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CHAPTER 4 

PREDICTION OF THE FLUX DENSITY WAVEFORMS IN THE STATOR 

CORE OF BRUSHLESS DC MACHINES. 

4.1) INTRODUCTION 

The calculation of the total iron loss requIres a knowledge of the flux density 

waveform in different regions of the stator core. Whereas in classical a.c machines the 

flux density waveforms are essentially sinusoidal and only a knowledge of the peak 

flux density is required, in permanent magnet excited machines not only is the peak 

required but also the waveform, which is generally far from being sinusoidal. 

The analytical prediction of the flux density waveforms in a permanent magnet 

machine on open-circuit is achieved by initially calculating the airgap flux density 

waveform and then deducing corresponding waveforms throughout the stator core. It 

builds on the technique reported in [41]. 

In this investigation, special attention is given to the airgap flux density waveform, 

and it will be shown that curvature effects, which are often neglected or poorly 

modelled, can cause significant errors to the prediction of the airgap flux density 

waveform. In this respect, a simple analytical model for the calculation of the 

magnet/airgap flux density taking account of curvature, is presented, and predictions 

are compared to those from more sophisticated techniques, both analytical and 

numerical, as well as with measurements. 

The technique for predicting the stator core flux density waveforms, is appJied to 

brushless dc motors having 1-s10t/pole/phase, which usually carry "overlapping" 
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windings as well as to motors having 1I2-sI0t/pole/phase, which usually carry 

"non-overlapping" windings. 

Much more detailed information on the temporal and spatial variation of the flux 

density distribution throughout the stator core, under both open-circuit and load 

conditions, can be derived from a series of 2-d magnetostatic finite element analyses 

as the rotor rotates 1800 elec, with the instantaneous phase currents corresponding to 

each rotor position varying according to the specific operating condition of the drive. 

The series of field solutions is post-processed to obtain local flux density waveforms 

over the cross-section of the stator core. Predictions from such analyses are compared 

with analytical predictions for the open-circuit condition, and with measurements for 

the load condition. 

4.2) Flux density waveforms on open-circuit 

4.2.1) Prediction of flux density distribution in magnet/airgap region of slotless 

radial-field machines 

In radial-field machine topologies, flux focusing can cause a significant spread of 

magnet working points. Thus, the usual analytical expression for the airgap flux 

density: 

Br 
Bg - (4.1) 

1 + J!rf 

in which Br, J!r, g and hm are the remanence, t\\e relative recoil permeability, the 

airgap length and the magnet thickness respectively, and which assumes a single 

magnet working point, can be considerably in error. In order to account for a spread of 

magnet working points, a simple model, designated A, is presented. The predictions of 

model A are compared to those of a more sophisticated analytical model, designated 
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B. Model A assumes negligible inter-pole leakage flux, but has the merit of leading to 

a simple analytical expression for the magnet/airgap flux density, whereas Model B 

caters for leakage flux. However, both models assume: 

a. Radial magnetization. 

b. Magnetization to saturation throughout the volume of the magnets. 

c. Infinitely permeable stator and rotor cores. 

d. Slotless magnetic circuit. 

Model A 

With reference to Fig (4.1), the flux per pole at any radius r between Rr and Rs is 

constant, i.e. 

CJlp{r) - B{r) r upa - Constant (4.2) 

where upa is the pole-arc. Hence, the flux density varies inversely with the radius: 

Applying Ampere's law: 

where 

in the magnets, and 

C B(r) ... -
r 

1 C 
H{r) - -- ( - - Br ) 

J.tr JA.o r 

C 
H{r)--

J.to r 

in the airgap. Hence, the constant C can be determined from: 

(4.3) 

(4.4) 

(4.Sa) 

(4.Sb) 
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c = Br ( Rm - Rr ) 
Rs Rm 

(4.6) 

for both machine 

~r In ( R ) + In ( - ) 
topologies shown f71 Fig (Ii). For the topology of Fig 

(4.1a)Rm = Rr + hm and Rs" Rm + g 

B( ) 
Br hm 1 

r = x-
L hm r 

~r In ( 1 + R ) + In ( 1 + - ) 
m Rr 

and for the topology of Fig (4.1b) Rr - Rm + hm and Rm - Rs + g 

B( ) 
Br hm 1 

r = x-
.K. hm r 

~r In ( 1 + Rs) + In ( 1 + Rm ) 
ModelB 

In polar coordinates the magnetization n can be written as: 

where 

00 

Mr = ~ Mn cos ( n p fj ) and Me - 0 
oddn 

(4.7a) 

(4.7b) 

(4.8a) 

(4.8b) 

with respect to the axis of a magnet pole, where p is the number of pole pairs, and 

. (n ~ op) 
Br sm 2 

Mn =2-op 
~o 

(4.9) 
n~op 

2 
op is the pole-arc to pole-pitch ratio. Assummg uniformly radially magnetized 

magnets: 

(4.10) 

and 
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(4.11a) 

in the airgap, and 

a 2<1> II 1 a <I> II 1 a2
<1> II Mr 

--+---+-----a,2 , a, ,2 ae2 , !-tr 
(4.11b) 

in the magnets and interpole airspaces, where the magnetic scalar potential functions 

<I> I and <I> II are related to the components of 1fby: 

a<l> 1 a<l> 
Hr = - a, , He - - -;: ae (4.12) 

and 

Brl = !-to Hrl, Bel - f.to Hel (4. 13 a) 

BrIl - !-to!-tr Hrll + !-to Mr ,Bell - f.to f.tr HeIl + !-to Me (4. 13 b) 

For both machine topologies shown in Fig (4.1) the general solutions of equations 

(4.11a) and (4.11 b) are: 

00 

<1>](,,8) = }: (AnI ,np + En]' -np ) cos ( n p 8 ) 
oddn 

00 

<l>I/(r,e) - }: (AnlI,nP + BnIl ,-np ) cos ( n p e) 
oddn 

00 

~ Mn + £J 2 rcos(npe) 
odd n !-tr (1 - (np) ) 

for np vt 1, and 

for np = 1. 

<l>1](r,e) - (AlII' + BlIJr-1 ) cos (e) + 21 Ml r In r cos (e) 
!-tr 

(4.14) 

(4.1Sa) 

(4.1Sb) 
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The boundary conditions are: 

HeI{Rs,S) - 0 (4.16a) 

HeIlJ~r,S) - 0 (4.16b) 

Bd.Rm,S) - BrII{Rm,S) (4.16c) 

HeJ(Rm,S) - He/J(Rm,S) (4.16d) 

Hence, the complete solution for the magnetic field components in both the airgap and 

magnet regions can be deduced [61]. For example, the radial flux density distribution 

at the surface r .. Rs is: 

00 np-l 
B(Rs) ... ~ 2 ~ Mn n p ( Rs 1 

odd n (np)2 - 1 Rm 

x cos ( n p S) (4. 1 7 a) 

1 
(np-l) Rm2np + 2 R/p+l Rmnp-l - (np+l) R.,.2np 1 

(~r+1) [Rs2np - R;,nP] - (~r-l) [R~np _ i;np (::)2np] 

when np I, and 

cos ( 8 ) (4. 17b) 

when np= I. 

4.2.2) OPTIMIZATION 

In the machine topology shown in Fig (4.la), having an airgap length g, the flux 

density at the surface r - Rs exhibits a maximum value for a particular magnet 

thickness, which can be deduced from: 

dB(Rs) _ 0 
dhm 

(4.18) 
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where B(Rs) can be obtained from equation (4.7a). From equations (4.7a) and (4.18): 

Rm 
where Xo = R

r
' 

Xo - In Xo = 1 + J.1r In ( 1 + ~ ) 
Rm 

(4.19) 

Although equation (4.19) can be easily solved numerically, there is no exact analytical 

solution. However, an approximate analytical solution can be determined since 

equation (4.19) is equivalent to, 

whilst in practice the ratio t « 1, and x lies in the interval 1 ~ Xo ~ 1.5. 

Taylor series expansions for the functions (In x) and eXo for Xo IIa 1 are: 

and 

00 n 
Xo }: (xo - 1 ) 

e -e 
n! 

n-O 

00 

In Xo ... ~ ( _ 1 )n+l (xo: 1 t 

Hence eXo and (1n xo) can be approximated by: 

2 n 
x ~ (Xo - 1) 1 2 x 

eO"", e £.J n ! - 2' e (xo + 1 ) ~ e 0 
n-G 

and 

2 n 2 
~ n+ 1 (xo - 1 ) Xo 3 

In Xo "'" £.J (-1) n'" 2 - 2 Xo + '2 ~ In Xo 

n-l 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

From equations (4.19) and (4.24) an approximate analytical solution is obtained as: 

(4.25) 
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whilst from equations (4.20) and (4.23) an alternative approximate solution is obtained 

as: 

Xo ~ Xe ... ( 1 + ~ )flr + V ( 1 + ~ )2 flr - 1 
Rm Rm 

(4.24) 

Since in the interval 1 ~ Xo ~ 1.5 e
Xo has been under-estimated in equation (4.23) 

whilst (In xo) has been over-estimated in equation (4.24), XI ~ Xo ~ Xe , and a more 

accurate solution for x in equation (4.19) is: 

X/+ Xe 
Xo'" 

2 
(4.27) 

Fig (4.2) compares the approximate analytical solution of equation (4.19) as given by 

equation (4.27) with the numerically determined solution for values of g/ Rm varying 

from 0 to 0.1. 

4.2.3) Experimental validation and discussion 

The magnet/airgap flux density distribution has been analysed for three slotless 

machines designated MI, M2 and M3, Fig (4.3). All three machines are equipped with 

radially magnetised anisotropic flexible ferrite magnets mounted on the surface of a 

cylindrical mild steel inner hub, the only difference being in the magnet thickness, 

Table (4.1). Furthermore, the magnet thickness in motor M2 has been chosen, using 

Table (4.1) Parameters oftest motors 

Motors MI M2 M3 

airgap length g(mm) 0.5 0.5 0.5 

bore radius R.s (mm) 20.8 20.8 20.8 

magnet thickness hm(mm) 2.0 4.0 6.0 

remanence Br(T) 0.23 0.23 0.23 

relative recoil permeability ~r 1.04 1.04 1.04 

number of poles 2p 2 2 2 

pole-arc/pole-pitch up 1.0 1.0 1.0 
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equation (4.27), so as to produce the maximum flux density at the bore radius R.\-. Fig 

(4.1a). 

Fig (4.4) shows the calculated variation of the flux density along a magnet pole axis of 

the optimised motor M2, using Model A, Model B, and finite element analysis. whilst 

Fig (4.5) compares the flux density distribution at r - R.~. computed from model B. 

with measured results for all three machines. It will be noted that motor M2 exhibits 

the highest airgap flux density despite having less magnet material than motor M3. 

Fig (4.6) compares computed and measured variations ofthe maximum flux density at 

the stator surface with magnet thickness. It can be seen that for this particular stator 

bore radius equation (4.1), which assumes a single magnet working point. becomes 

increasingly in error as the magnet thickness is increased beyond about 2 mm. Fig 

(4.7) shows predicted flux density distributions at r - Rs together with corresponding 

flux plots for a range of magnet thicknesses, from which it will be seen that inter-pole 

leakage becomes more pronouced as the magnet thickness is increased, which explains 

the difference between predictions from Models A and B. The effect of inter-pole 

leakage is also evident in Fig (4.8), which shows the variation of the flux per pole with 

magnet thickness. 

Figs (4.9), (4.10), and (4.11) show a comparison between predictions from Models A 

and B for the optimised motor M2, and further highlight the effect of inter-pole 

leakage as the number of pole pairs p, the pole-arc to pole-pitch ratio up, and the 

airgap length g are varied. However, it will be noted that both models predict almost 

the same flux density for pole numbers up to 12, a pole-arc to pole-pitch ratio 

up <!: 0.25, and airgap lengths up to 10 mm. 

Finally, Fig (4.12) shows the computed variation of the airgap flux density at r - R..\. 

with magnet thickness in the machine topology of Fig (4.lb) when Rs is assumed to 
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have the same dimension as in MI, M2 and M3. However, it will be noted that unlike 

the topology of Fig (4.1a) an increase in the magnet thickness always results in an 

increase of the magnetic loading at the airgap no matter how pronouced the flux 

focusing effect. 

4.2.4) Effect of stator slotting 

The stator slotting affects the airgap magnetic field in different ways. Firstly, the 

airgap flux is reduced. Secondly, the magnetic field distribution is distorted in both the 

magnet and the airgap, as it exhibits a minimum at the centre of a slot opening. The 

effect of slotting on the magnetic field distribution can be accounted for by using a 

relative permeance function, which can be determined by the conformal 

transformation method by applying unit magnetic potential between the stator and 

. [6] h' Brnax (r) - Bmin (r) rotor iron surfaces With no magnet present 1. T e ratio ~(r) - --=.:.==-~---=-:.::::.:....!~ 
2 Brnax (r) 

is then given by: 

~(r) .1 [ 1 - --;='==b~l :::;==== 1 
2 V 1 + ( 2 0, )2 ( 1 + x2 ) 

hm hi' g d h f'&" . where bo and g' ... g + -;- are t e s ot openmg an tee lectIve alrgap respectively, 

(4.28) 

whilst x is determined from: 

3t 1 (V l+i +x) 2:.K (U. x ) Y -b .. -2 In V 2 2 + b arctan b (V 2 2) 
o q +x -x 0 0 q +x 

(4.29) 

where for machine topology of Fig (4.1a) 

y- r- Rs + g' (4.30a) 

and for machine topology of Fig (4.1b) 

y- Rs+g'-r (4.30b) 

-f 2g' 2 
and q - 1 + ( b

o 
) . 



102 

The magnetic field distribution within the airgap is assumed to be affected by the 

stator slotting in a similar manner to that in a slotted induction machine. viz. 

I
B(r) ( 1 - ~(r) - ~(r) cos (0: e e)) 

B(r,8) . 0 

B(r) 

for 0 :s; 8 :s; 0.8 eo 
(4.31) 

where 8 ... 0 coincides with the centre of a slot. 80 - !o. 8d - ~ and 'tt is the slot pitch. 
ns Rs 

4.2.5) Flux density waveform in tooth body 

As the rotor rotates, the total flux in a tooth body remains essentially constant until an 

adjacent slot opening coincides with a transition between magnet poles, Fig (4. 13a). 

after which it varies linearily until it changes polarity. ie. the flux wavefonn is 

trapezoidal, the extent of the flat-top depending on the number of slots N. .. as well as 

the number of pole pairs. However, for the usual cases of Ns = 3p and Ns = 6p. the 

duration of the transition from flux of one polarity to the other is given by: 

2:n: 
Td--P 

Ns 
(4.32) 

The maximum flux in a tooth body occurs when the tooth axis coincides with the axis 

of a magnet pole, and is given by: 

ad 
<Ptmax - 2 Rs f2 B (Rs,8) d) 

o 
(4.33) 

where B (Rs,8)is given by equation (4.31). Hence, from equations (4.31) and (4.33): 

Rs B (Rs) 2:n: 
Btmax - Wt (Ns - 1.6 ~ (Rs) 80 ) (4.34) 

where Wt is the width of the tooth body. 
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4.2.6) Flux density waveforms in the stator back-iron 

The flux density waveform in the stator back-iron also depends primarily on the 

number of stator slots and the number of pole-pairs. For example, when N\· = 6p (ie. 

I-slot/pole/phase), which usually corresponds to the stator carrying 'overlapping' 

windings, the flux waveform is essentially triangular, the maximum flux being: 

.PE. 
CPymax - 2 (4.35) 

whenever a stator slot opening coincides with an interpolar axis, when, the total flux 

per pole, is given by: 

and 

ad 
({Jp - 6 Rs f2 B (Rs,e) cIJ 

o 

3 Rs B(Rs) 2 '1: 
Bymax - W ( N - l.6 ~(Rs) eo ) 

yk s 

(4.36) 

(4.37) 

where Wyk is the thickness of the stator back-iron. On the other hand, when Ns=3p, 

which corresponds to a stator having 'non-overlapping' windings, the situation is 

slightly more complicated, since only one tooth per pole contributes to the flux carried 

by the stator back-iron at the instant when this is a maximum. However, the flux 

waveform can be approximated as piece-wise linear, using two values of flux, 

cPymax and CPy. corresponding to the instant when the axis of a stator slot and the axis of 

a stator tooth coincide with transitions between magnet poles, as shown in Fig (4. 13b). 

If iron saturation is likely to be significant the fluxes can be calculated from the simple 

non-linear lumped model shown in Fig (4.14), in which reluctance 1 has an effective 

flux path length equal to twice that of reluctance 2. However, if saturation can be 

neglected the fluxes can be approximated simply as: 

2 1 
cpymax - '3 CPIm, and CP)C - '3 {{Jim (4.38) 
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where 

23(; 
cptm - Rs B (Rs)( N - 0.8 ( 1 + fl (Rs» 80 ) 

s 
(4.39) 

which neglects flux fringing into the slot opening which is coincident with a magnet 

pole transition. 

4.2.7) Flux density waveforms in stator tooth tip 

Various shapes of stator tooth tip are used, often being selected so as to minimise the 

effect of stator slotting on both the flux per-pole and the magnetic field distribution in 

the airgap. Further, in general the flux paths in the tooth tips are generally more 

complex than those in the tooth body. However, in machines in which the tooth tip is 

smaller than volume of the tooth body, the tooth tip can simply be assumed to be an 

extension to the tooth body, and to have a similar flux density waveform. the peak flux 

density being approximated by taking an average cross-section area. However. in 

machines in which the tooth tip volume is comparable to that ofthe tooth body, which 

is usus ally the case in machines having a low number of slots. the flux density 

waveforms in the tooth tip region have to be analysed separately. In the following. a 

more or less typical tooth tip shape for lslot/pole/phase and 112 slot/pole/phase 

brushless dc machines, Fig (4.15), is analysed. 

The stator tooth tip can be divided into two regions, 1 and 2, as shown in Fig (4. 15). in 

each of which the flux density waveforms are markedly different. In region 1. for 

example, the flux density will have both radial and circumferential components. ie. the 

flux density vector exhibits rotational behaviour, whilst in region 2 the flux density is 

more or less alternating. However, in both regions each of the two orthogonal 

alternating components can be analysed independently. 
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The maximum radial flux component in region 1 is assumed to be identical to that in 

the tooth body, and to be trapezoidal in waveform, although the effective maximum 

radial flux density is different, due to the variable cross-section of the region. 

However, the average peak flux density, can be approximated by: 

(4.40) 

2 It + Wt. h t' Th' fi . II d' where 2 IS t e average cross-sec Ion area. e cIrcum erentia y Irected flux 

component has a peak value when the axis of a tooth coincides with a transition 

between magnet poles, as shown in Fig (4.13), and decreases almost linearity to zero 

as the rotor rotates half a slot pitch. The maximum circumferential flux density can be 

approximated by: 

B 
<ptmax 

16---
2 It 

(4.41) 

Assuming a perfect transition between magnet poles, the maximum flux entering 

region 2 is given by: 

(4.42) 

and is essentially alternating with a trapezoidal waveform. The average maximum flux 

density can be deduced by the following expression: 

B 
<PI 

(2-

( It + it R" ( 1 ~ 0 8 II (R,,) eo )1 
(4.43) 

It + l!:.- Rs ( 1 - 0.8 ~ (Rs) 80 ) 

where Ns 2 is an approximation of the effective average 

cross-section area, taking account of the magnetic field distribution in the airgap, with 

the transition angle from flux of one polarity to the other being approximated by: 
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(4.44) 

4.3) Flux density waveforms on load 

4.3.1) Drive system simulation 

The voltage equations govemmg the dynamic performance of a 3-phase 

star-connected motor are given by: 

· dia dib die 
R la + Lp dt - Mp ( dt + di ) + ea - Va 

· dib die dia 
R Ib + Lp dt - Mp ( dt + dt ) + eb - Vb (4.45) 

· die dia dib 
R Ie + Lp di - Mp ( dt + dt ) + ee - Ve 

ia + ib + ie ... 0 

where R, Lp and Mp are the phase resistance, the phase self-inductance and the mutual 

inductance between two phases respectively, and ea, eb and ee are the induced emfs in 

phases A, Band C respectively. For a brushless dc drive, Fig (4.16), Va, Vb and Vc are 

functions of the dc supply, the characteristics of the electronic components in the path 

ofthe phase currents, viz transistors and diodes, and the commutation logic. 

Ideally, in a brushless de drive only two phases are simultaneously active, Fig (4.17), 

whilst under normal commutation a phase is commutated on 30° elec. from the zero 

crossing of its induced emf. In practice, the inductive nature of the phase windings 

causes the phase current waveform to deviate from the ideal rectangular waveforms 

for two main reasons: 
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a) the electrical time constant, which prevents sudden current variations, and causes a 

dependence of the current waveforms on the motor speed. 

b) the creation of 6 periods per electrical cycle, each of duration 8c as shown in Fig 

(4.18), during which all three phases simultaneously conduct. However, since only 

two phases are commutated on, the stored magnetic energy in the third phase 

causes a circulating current through the free-wheel diode. 

In addition, the back-emf waveform often deviates from the ideal trapezoid. 

In general, the commutation of the current in particular phase is delayed by an angle y 

from the zero-crossing of its induced emf: 

:It 
y---uc 

6 
(4.46) 

where Uc is the commutation angle, Uc < 0 for retarded commutation, Uc - 0 for 

normal commutation and Uc > 0 for advanced commutation, as shown in Fig (4.19). 

The numerical solution of equations (4.45) is performed using a time-stepping system 

simulation program "SIMNET" developed at the University of Sheffield under an EC 

funded BRITE (Basic Research in Industrial Technologies in Europe) project. The 

parameters required to model a brushless dc drive include: 

_ back-emf waveform 

_ phase resistance, self and mutuals inductances 

_ steady-state motor speed 

_ commutation angle 

as well as the characteristics of the electronic components of the drive circuit,viz, 

_ constant voltage drops of the transistors and free-wheel diodes 

_ resistances ofthe transistors and free-wheel diodes. 
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is all contained in a the functional block "bldc3", as shown in Fig (4.20). In the 

analysis cogging is neglected and the rotor speed is assumed constant. 

4.3.2) Relative positions of the open-circuit field and armature reaction Fields 

Having calculated the phase current waveforms under a specified operating condition, 

before performing finite element analyses of the motor on load, it is necessary to 

determine the instantaneous position of the rotor relative to the current waveform. 

Assuming: 

a) The axis of phase A as reference, Fig (4.22) 

b) The reference polarity of current flowing in phase A such that a positive current 

creates a positive m.m. f, and similarly for the other two phases. 

c) The phase sequence A,B and C such that the start conductor of phase B is 2 t e1ec. 

from that of phase A, with the start conductor of phase C 23'1t e1ec. from that of 

conductor of phase B, in an anti-clockwise direction. 

d) t=0 as the instant when phase A is commutated, as shown in Fig (4.21); 

t) The rotor is rotating anti-clockwise at an angular speed Wr. 

The relative instantaneous position of the permanent magnet field, with respect to the 

armature reaction field is then given by: 

'1t 
Oma - p <.Or t - Oc + 6 + '1t 

whilst at the instant when phase A is commutated on : 

'1t 
Oma - ( 2 n + 1 ) '1t - Oc + "6 

where n is an integer, as shown in Fig (4.22). 

(4.47) 

(4.48) 
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4.3.3) Calculation of the instantaneous field distribution 

The first-order finite element magnetostatic field solver "MAGS TAT", which has been 

developed at the University of Sheffield, is used to predict the instantaneous field 

distribution at each motor position. 

4.3.4) Post-processing 

Given the amount of data to be handled, which corresponds to potential values at each 

node for each rotor position times the number of position over half an electrical cycle, 

a post-processor was developed, its main features being: 

A) Input 

_ Vector magnetic potential data from MAGSTAT. 

_ Iron loss density constants for the particular steel laminations used for the stator 

core, from a single-sheet test. 

_ Steady-state rotational speed of rotor. 

_ Axial length of the stator lamination stack. 

B) Processing 

_ Synthesis of the local flux density waveforms from the potential data. 

_ Harmonic analysis of local flux density waveforms. 

_ Calculation of the local iron loss densities. 

C) Output 

C-l) Numerical output 

_ Data file containing harmonic information of the synthesised local flux density 

waveforms. 
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_ Data file containing local iron loss density components, viz, hysteresis, classical 

eddy current and excess eddy current. 

_ Total integrated iron loss. 

C-2) Graphical output 

_ Screen plot of the finite element mesh. 

_ Screen plot of the harmonic distortion distribution throughout the stator core. 

_ Screen plot ofthe hysteresis loss density distribution throughout the stator core. 

_ Screen plot of total eddy current loss density distribution, viz, classical and excess, 

throughout the stator core. 

_ Screen plot oftotal iron loss density distribution throughout the stator core. 

_ Screen plot of flux density waveforms, ie to the circumferential and radial 

components, their respective Fourier spectrums, and the corresponding flux density 

loci, at 'mouse' selected elements from the finite element mesh plot. 

_ Screen print of the local iron loss density at mouse selected elements from the iron 

loss density distribution plot. 

_ Screen plot of the flux density waveform between two mouse selected nodes, again 

selected from the finite element mesh plot. 

In addition, in order to ease the task of element and node selection as well as to 

provide the user with a enlarged view of a specified region, a zooming facility has 

been implemented which can be activated from any of the parameter distribution plots 

as well as from the finite element mesh plot. The use of the different output is 

controlled via a menu. 

4.3.5) Harmonic analysis 

The Fourier spectrum of a periodic waveform B (8) defined at a discrete number Np of 

equis-paced rotor positions per cycle, is 



where 

~ 
2 

B(6) == ~ ( an cos (n 6 ) + bn sin ( n 6 ) ) 
n=1 

Np 

an - Real ( ~ R(6;) x zn) 
; ... 1 
Np 

bn == Imag( ~ R(6i) x zn) 
;al 

for n:s;;!!.E., and where the complex variable z is given by: 
2 

where/ = - I. 

6; _ 2 3t ( i-I ) 
Np 

z == cos ( ~ 3t ( i-I ) ) + j sin ( 2N
3t 

( i-I ) ) 
p p 

4.4) Flux density waveforms in a prototype brushless de motor 

III 

(4.48) 

(4.49) 

(4.50) 

(4.51) 

A prototype 150 W, 4-pole, 3-phase, 2000 rpm permanent magnet brushless dc motor 

equipped with flexible, surface-mounted, radially magnetized NdFeB magnets having 

a remanence ofO.4S T and a relative recoil penneability of 1.1, is shown in Fig (4.23). 

The stator lamination stack is made of the same material S3, which was characterised 

in Chapter 3. The motor was instrumented by wrapping search-coils around various 

parts of the stator core, ie the tooth body, the stator back-iron, each sides of a tooth tip, 

and through holes drilled in the back of a tooth in order to measure the radial and the 

circumferential components of flux, Fig (4.24). 
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4.4.1) Open-circuit operation 

Figs (4.25) and (4.26) show a comparison between the computed and measured 

average flux density waveforms in the tooth body search coil A and the stator 

back-iron search coil B. It will be noted that whilst in both case a good agreement 

exists, using both analytical and numerical techniques, in the stator back-iron a slight 

asymmetry exists in the measured flux density waveform. The cause of the asymmetry 

is that flux sharing between the different sections of the back-iron in 1/2 

slot/pole/phase motors is almost controlled entirely by the properties of lamination 

material. Hence, hysteresis plays an important role in determining the flux waveform. 

In order to investigate this further, measurements were made on a second 1/2 

slot/pole/phase brushless dc motor having its stator lamination stack made from the 

non-annealed material, which again was characterised in Chapter 3. Since the material 

is non-annealed, it exhibits more hysteresis. Fig (4.27) compares the measured dc 

hysteresis loops of Samples of S 1 and S3 at a maximum flux density of 1.5 T. It will 

be seen that sample S 1 has a much wider hysteresis loop. As a consequence the 

measured stator back-iron flux density waveform of the motor with the stator 

lamination stack ofS} exhibits greater asymmetry, Fig (4.28). 

Fig (4.29) compares measured and computed component flux density waveforms in 

the back of a tooth (search coils E and F), where it will be seen that the resultant flux 

density exhibits rotational behaviour. Further, due to the non-sinusoidal flux density 

components, the flux density loci is far from being either purely circular or elliptic. 

Finally, Figs (4.30) and (4.31) show a comparison between computed and measured 

flux waveforms at both sides of a tooth tip (search coils C and D). It will be seen that 

the flux waveforms in both sides of a tooth tip are essentially identical. 



113 

4.4.2) On load operation 

A load test was carried out on the prototype motor under rated load conditions, viz 

2000 rpm, 150 W, 1.9 A rms phase current. Further, and in order to investigate the 

effect of the commutation strategy on iron losses, the motor was also tested at 

20° advanced and 20° retarded commutation, in both cases, the dc link voltage being 

adjusted and recorded to keep the rms phase current equal to 1.9 A at 2000 rpm. Fig 

(4.32) shows the measurement rig. 

Figs (4.33), (4.34) and (4.35) show a comparison between measured and computed 

phase winding current waveforms for normal, 20° advanced and 20° retarded 

commutation, respectively. Clearly, the commutation strategy has a considerable 

effect on the phase winding current waveform. 

Figs (4.36), (4.37) and (4.38) show a comparison between measured and computed 

average flux density waveforms in the tooth body under normal, 20° advanced, and 

20° retarded commutation strategies, from which it will be seen that the commutation 

strategy also affects the flux waveform in the tooth body. 

Figs (4.39), (4.40) and (4.41) show comparisons between measured and computed 

average flux density waveforms in the stator back-iron for nonnal, 20° advanced and 

20° retarded commutation, where again the effect of the commutation strategy IS 

clearly observed. 

Further, Figs (4.42), (4.43) and (4.44) show a comparison between measured and 

computed flux density wavefonns in the back of a tooth, for nonnal, 20° advanced and 

200 retarded commutation. As with open-circuit operation the flux exhibits pronouced 

rotational behaviour. 
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Finally, Figs (4.45) and (4.46) show a comparison between computed and measured 

flux waveforms at both sides of a tooth tip under normal commutation, whilst Figs 

(4.47) and (4.48) show a comparison for 20° advanced commutation, and Figs (4.49) 

and (4.50) show a comparison for 20° retarded commutation. It will be seen that under 

a load condition, and no matter what the commutation strategy, the flux waveforms 

are not similar. An asymmetry with respect to the tooth axis always exists, and is 

caused by armature reaction. Fig (4.51) shows flux plots for different instants on 

open-circuit and on load operations. 

4.4.3) Typical post-processor outputs 

Fig (4.52) shows the finite element mesh which was used for the above calculations, 

whilst Fig (4.53) shows flux density waveforms and loci at selected sites in the stator 

core for open-circuit operation. Figs (4.54), (4.55) and (4.56) show corresponding flux 

density waveforms and locis at the same sites for rated load, for normal, 20° advanced 

and 20° retarded commutation respectively. 

4.4.4) Discussion 

In this section, it has been shown that the flux density waveforms in the stator core of 

a brushless de motor are affected markedly by the load condition and the commutation 

strategy. Hence, it can be assumed that the iron loss will vary with load and 

commutation strategy. Numerical calculations indicate that this is the case as shown in 

the next chapter. It has also been shown that a more sophisticated analysis, which 

couples a drive system simulation to magnetostatic finite element analyses, enables the 

local flux density waveforms throughout a stator core to be predicted under any load 

conditon, and hence the iron loss and its variation with load can also be calculated. 
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4.5) Conclusions 

In radial-field permanent magnet excited machines curvature can have a considerable 

effect on the calculation of the magnetic loading in the airgap. It has been shown that 

when the magnets are mounted adjacent to the airgap on an inner rotor an optimal 

magnet thickness exists for which the magnetic loading is a maximum, as has been 

confirmed by both finite element analysis and experiment. Further, and despite being 

very simple, an idealised analytical model can give very good results for the prediction 

of both the magnetic loading in the airgap and the spread of magnet working points. 

A simple analytical technique for predicting flux density waveforms in the stator core 

of brushless dc motors on open-circuit operation has been presented, and confirmed by 

both finite element analysis and experiment. In addition, it has been shown that 

hysteresis in electrical steel laminations can affect the flux density waveforms in the 

stator back-iron. 

The flux density waveforms throughout a stator core are affected significantly by the 

operating condition ofthe drive, ie the load and the commutation strategy. It has been 

shown that the flux density waveforms can be predicted under any operating condition 

by coupling a drive system simulation to magnetostatic finite element analyses. 

Further, the resultant field, ie comprising armature reaction and permanent magnet 

field components, distribution is unsymmetric about a tooth axis, as has been shown 

by predictions and experiments. 
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Fig (4 .7) Flux density distributions at the stator surface and corresponding potential 
plots for different magnet thicknesses . 
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Fig (4.12) Variation of airgap flux density with magnet thickness for machine topology 
of Fig 1 (b) . (up = 1 ,p = 1 ) 
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Fig (4.15) Different regions and cross-sections in the tooth-tip. 
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Fig (4.16) Basic elements of brush less dc drive circuit. 
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Fig (4 .20) Drive s stem simulation using SIMNET. 
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Fig (4 23) Prototype motor 
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Fig (4.24) Positions of the search coils . 
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Fig (4.28) Me'asured flux density wavefonn in the stator back-iron of the second motor, 
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Fig (4.32)Schematic of the rig for the measurement ofthe current and flux density 
waveforms. 
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Fig (4 52) Finite element mesh . 
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(a) Site 1. 

(b) Site 2 
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(c) SIte 3 

(d) ite 4 
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(e) Site 5. 

(f) Site 6. 

Fig (4 .53) Local flux density waveforms at selected sites on open-circuit operation. 
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(a) Site I 

(b) Site 2 
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c) Site 3 

d) Site 4 



(e) Site 5 

(f) Site 6. 

Fig (4 .54) Local flux density waveforms at selected sites on rated load (Normal 
commutation) 
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(a) Suel 

(b) Site_. 
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(c) Site 3 

(d) Site 4 
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(e) Site 5. 

(f) Site 6. 

Fig (4.55) Local flux density waveforms at selected sites at rated load. (200 advanced 
commutation) 
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(a) Site I . 

(b) Site_. 
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(c) Site 3 

(d) Site 4 
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(e) Site 5. 

(t) Site 6. 

Fig (4 56) Local flux density waveforms at selected sites at rated load. (200 retarded 
commutation 
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CHAPTERS 

PREDICTION OF IRON LOSSES IN THE STATOR CORE OF BRUSHLESS 

DC MACHINES. 

S.l) Introduction 

Iron losses can represent a substantial portion of the total loss In electrical machines. 

Hence, they can influence considerably both the efficiency and the thermal 

performance. However, in all electrical machine topologies four fundamental 

parameters determine both the total iron loss and the iron loss density distribution, viz: 

a. the temporal and spatial distribution ofthe m.m. f sources. 

b. the geometry of the magnetic circuit. 

c. the grade of the electrical steel laminations used for building the core. 

d. the speed of the electrical machine. 

Even though different machine topologies can be equipped with the same grade of 

laminations and run at the same speed, the temporal and spacial distribution of the 

m.m.fs and the shape of the magnetic circuit can make a major difference. 

In this Chapter, two techniques, viz analytical and numerical, for the prediction of the 

iron loss in permanent magnet brushless dc motors are presented. However, whilst the 

application of the analytical technique is limited to open-circuit operation, the 

numerical techniqe caters for any load condition. 
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S.2) Iron losses on open-circuit operation 

The prediction of the iron losses on open-circuit can be achieved either analytically or 

numerically. The analytical method is based on the technique described in Chapter 4 

for prediction of the flux density waveforms in various parts of the stator core, whilst 

the numerical technique is based on finite element analysis for the prediction of the 

local flux density waveforms. 

S.2.1) Analytical technique 

In the analytical technique, the stator core is subdivided into 4 distinct regions, Fig 

(5.1), in each of which the flux density waveform is assumed to be the same 

throughout and is predicted using the technique described in Chapter 4. Since 

throughout the stator core, the flux density waveforms can be approximated as 

piece-wise linear, ie trapezoidal etc, the calculation of the hysteresis component of the 

stator core loss can be calculated using equation (3.1) or (3.33), according to the 

lamination material, whilst the eddy current loss component can be calculated using 

equations (3.37) and (3.38), for the classical and excess eddy current components 

respectively. 

S.2.1.1) Tooth body 

In the tooth body the flux density waveform is essentially trapezoidal. Hence, the 

hysteresis component ofthe iron loss is given by: 

P 
P O)r kh Btmax o'k V, Ns b 

h 1-- 21t (5.1) 

where ror and VI are the motor speed and the volume of the tooth body respectively. 

The classical eddy current component is given by: 
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oJ- 2 2 2 
Pc 1= --2 P Ns fir Btmax VI 

- 121t 
(5.2) 

and the excess loss component is given by: 

2 k pO.5 1.5 N 1.5 B 1.5 
P 

e (Or s tmax V ~ 
e_1 = 1t1.5 I u (5.3) 

5.2.1.2) Stator back-iron 

In the stator back-iron the flux density waveform is essentially triangular for 1 

slot/pole/phase motors and piece-wise linear for 1/2 slot/pole/phase motors. In both 

cases, however, the hysteresis loss component is given by: 

(5.4) 

where Vyk is the volume of the stator back-iron. For the eddy current components, two 

cases are distinguished according to the number of slots/pole/phase, viz: 

a. 1/2 slot/pole/phase motors 

In this case, the classical eddy current component is given by: 

p oJ [B 2 ( Bymax - Bye )2] 2 2 v: 
cY--2- yc + 2 P <Or yk 

1t 

the excess eddy current component is given by: 

P 2 ke 1.5 1.5 [-f6B 1.5 (B B)1.5 -'3] V ~ ey - 1t1.5 P fir vo yc + ymax - yc v.) yk u 

h. 1 slot/pole/phase motors 

The classical eddy current loss component is given by: 

oJ- 2 2 2 
Pc y - --2 P IDr Bymax Vyk 

31t 

(5.5) 

(5.6) 

(5.7) 
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whilst the excess eddy current component is 

2V2ke 15 15 15 
Pc y = 1.5 p" illr' Bymax" Vyk b 

Jt 
(5.8) 

5.2.1.3) Tooth tips 

It was shown In Chapter 4 that a tooth tip can be divided into two regions. ie viz 

regions 1 and 2 with reference to Fig (5.1). In region 1, the flux density has two 

orthogonal flux density components, viz radial and circumferential. for which 

associated losses have to be computed independently, whilst in region 2 the flux 

density is assumed to be unidirectional. 

a. Region 1 

The total hysteresis loss component is given by: 

(5.9) 

where Vllpl is the volume of region 1. The eddy current loss components are given by: 

oJ- 2 2 2 2 
Pc IIpl .. --2 P Ns illr Vttpl (Btr + Bte ) 

- 6Jt 
(5.10) 

and 

P 2 ke 0.5 N 1.5 1.5 V J;. (B 1.5 B 1.5) 
e_ttpl - -15 P s illr ttpl U II' + te 

3t' 
(5.11) 

b. Region 2 

The hysteresis loss component is given by: 

P 
P illr kh Vttp2 Nsb B (l 

h_ttp2 - 23t t2 (5.12) 
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where Vttp2 is the volume of region 2, whilst the classical eddy current component is 

given by: 

aj- 2 2 , 
Pc_ttp2 - 2 P wr Ilr hm N.~ Vttp2 Bt2-

6:1t g 

and the excess loss component by: 

P 4 ke 1.5 1.5 0.5 h 0.5 B 1.5 v: N)l. 
e _ttp2 = 1.5 0.5 P wr Ilr m 12 /tp2 s U 

:It g 

5.2.2) Numerical technique 

(5.13) 

(5.14) 

As was described in Chapter 4, the technique is based on the synthesis of local flux 

density waveforms from a series of magnetostatic finite element solutions, each of 

which corresponds to a des crete number of rotor positions, spanning half an electrical 

cycle. The different components of the local iron loss density are subsequently 

computed numerically by the following: 

a. HystereSiS loss component 

The hysteresis loss component is given by: 

(5.15) 

h. Classical eddy current component 

The classical eddy current component is given by: 

0;' 1 f (dB)2 
Pc - 12 b T T -;ji dt (5.16) 

or, in terms of the electrical angle e, 

:1. 23t 2 
au- 2 2f( dB) 

Pc - 24 :It b P Wr 0 a\J df:) (5.18) 
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c. Excess eddy current loss component 

Similarly, in terms of the electrical angle, the excess eddy current loss component is 

given by: 

k 1.5 1. 5211: d'B 1.5 
Pe= ep wr f at) 

2Jt at) 
(5.19) 

o 
The total iron loss at any specified speed is then given by: 

Ne 

Ptotal-lstk b ~ [( Ph + Pc + Pe ) An] (5.20) 

n-l 

where lstk is the axial length of the stator stack, Ne is the number of elements in the 

finite element mesh, and An the area of the nth finite element. 

5.3) Iron losses on-load 

The prediction ofthe iron loss on load follows simply from the technique, described in 

Chapter 4, which couples a drive system simulation to the finite element analyses. 

Local flux density waveforms are synthesised, and the local iron loss density 

distribution and the total loss are computed, exactly as for open-circuit operation. 

5.3) Measurement technique 

5.3.1) Open-circuit operation 

The open-circuit stator iron losses are measured using the torque-speed method, ie the 

motor is driven with the stator windings on open-circuit up to the required speed by a 

second coupled motor. The total power loss on-open circuit is obtained from the loss 

torque and speed. However, since the open-circuit power loss also includes a 
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mechanical loss due to friction and windage, the measurement was repeated with the 

stator stack replaced by a non-magnetic non-conducting material. Fig (5.2) shows a 

schematic of the measurement rig. 

5.3.2) On-load operation 

Fig (5.3) shows a schematic of the test rig. The measurement is undertaken under 

closed-loop speed control. The input power of the machine is measured using a 

3-phase power analyser, whilst the output power is obtained from the measured torque 

and speed. The iron loss is then determined from: 

Piron - Pinput - Poutput - Pcopper - Pmechanical (5.21) 

The copper losses Pcopper are determined from: 

Pcopper - 3 R jl (5.22) 

where R is the resistance per phase, and I is the rms phase current. The winding 

resistance was measured, using a milli-ohmeter, immediately after switching off the 

motor, after the winding had attained its steady-state temperature rise. 

5.4) Iron losses of prototype motor 

The iron loss of the prototype 112 slot/pole/phase 150 W, 3-phase, 4-pole, 1. 9 Arms, 

motor, which was used for the investigation of the flux waveforms in Chapter 4, has 

been measured and predicted both on open-circuit and on load. 
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5.4.1) Open-circuit iron loss 

Fig (5.4) shows the measured windage and friction losses. Fig (5.5) shows a 

comparison between measured and predicted open-circuit iron loss, for which fairly 

good agreement can be seen. Further, Fig (5.6) shows the distribution of the total iron 

loss density throughout a cross-section of the stator core, whilst Figs (5.7) and (5.8) 

show distributions of the ratio of the hysteresis loss and the eddy current loss 

components to the total iron loss density respectively. 

5.4.2) Iron loss at rated load 

Three operating conditions have been considered, ie normal commutation, 20° 

advanced commutation, and 20° retarded commtation, which correspond to the 

conditions under which the flux waveforms were investigated in Chapter 4. Table 

(5.1) compares the computed total iron loss for each condition with both the measured 

and the open-circuit iron loss. It will be seen that, unlike the open-circuit operation, 

there is now a considerable discrepancy between the measured and computed results. 

The likely reason for this is that, firstly, the measurement technique employed 

inherently introduces significant error in the total loss measurement which could be 

eliminated only by employing a calibrated calorimetric technique. Secondly, because 

of the high quality of the steel used for the stator stack, in this motor the iron loss 

represents only about 15% of the total loss. Hence, any error in the measurement of 

the other loss components, ie copper and mechanical losses, will have a considerable 

effect on the accuracy ofthe iron loss measurement. 

Nevertheless, from the computed and measured total iron losses, it can be seen that the 

operating condition has a considerable effect on the total iron loss. Further, it can be 

seen that advancing commutation results in the least change to the total iron loss. 
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Table (5.1) On-load iron loss ofthe prototype motor at 2000 rpm. 

Computed Measured 

Numerical Analytical 

Open-circuit 2.01 1.87 1.97 

Normal commutation 3.28 - 7.33 

20° advanced commutation 2.26 - 6.66 

20° retarded commutation 3.41 - 6.80 

Fig (5.9) shows the distribution ofthe total iron loss density throughout the stator core 

for normal commutation, whilst Figs (5.10) and (5.11) show the corresponding 

distributions of the ratio of the hysteresis loss and the eddy current loss components to 

the total iron loss density respectively. Fig (5.12) shows the distribution of the total 

iron loss density throughout the stator core for 20° advanced commutation, whilst Figs 

(5.13) and (5.14) show the corresponding distributions of the ratio of the hysteresis 

loss and the eddy current loss components to the total iron loss density respectively, 

whilst Figs (5.15), (5.16) and (5.17) show corresponding distributions for 20° retarded 

commutation. It can be seen, that, as a consequence of the field asymmetry, the iron 

loss density on load is asymmetrical with regards to a tooth axis. 

5.5) Conclusions 

In this chapter, it has been shown that both the analytical and numerical techniques 

provide a fairly good estimate of the iron losses on open-circuit. Therefore, even 

though the analytical technique does not cater for the effects of load, and despite the 

fact that the iron loss changes with load it can be employed at an early stage in the 

design process if a quick estimation is required. 

It has also been shown that both the iron loss density distribution and the total iron 

loss can be affected markedly by the operating condition of a brushless drive. 

However, this has to be predicted by a numerical technique, the utility of which has 
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been confirmed by experiment. Hence, the assumption that the iron loss remains more 

or less constant throughout the whole range of operating conditions can be very 

erroneous. 

Finally, it has been emphasised that the torque-speed method for measuring the iron 

losses can be very unreliable. Hence, methods for their direct measurement, such as a 

the calorimetric method, are preferred. However, time precluded the development of 

such a method. 
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Fig (5.1) Different regions ofthe stator core. 
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Fig (5.2) Schematic of the rig for the measurement of the mechanical losses and 
open-circuit iron loss. 

Fig (5.3) Schematic ofthe rig for the measurement of the on-load iron loss. 
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Fig (5.5) Comparison between measured and computed open-circuit iron loss. 
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Fig (5.6) Total iron loss density distribution on open-circuit. (2000 rpm) 

Fig (5.7) Hysteresis loss component distribution on-open circuit. (2000 rpm) 
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Fig (5 .8) Eddy current loss component distribution on open-circuit (2000 rpm) 

Fig (5 .9)Total iron loss density distribution at rated load. onnal commutation) 



Fig (5 10) Hysteresis loss component distribution at rated load 
strategy) 

186 

orma! commutation 

Fig (5 11) Eddy current loss component distribution at rated load. orma! 
commutation strategy) 
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Fig (5 .12) Total iron loss density distribution under ad anced commutation strategy . 

Fig (5 .13) Hysteresis loss component distribution under advanced commutation 
strategy. 
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Fig (5 14) Eddy current loss component distribution under ad anced commutation 
strategy 

Fig (5.15) Total iron loss density distribution under retarded commutation strategy . 
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Fig (5 .16) HysteresIs loss component distribution under retarded commutation 

Fig (5 . 17) Eddy current loss component distribution under retarded commutation 
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CHAPTER 6 

CONCLUSIONS 

6.1) Iron loss density in electrical steel laminations 

It has been shown that a general model recently developed by Bertotti enables the 

accurate prediction of the excess eddy current iron loss density component under flux 

density waveforms typical of those encountered in the stator core of brushless 

permanent magnet dc motors. Thus, when used together with well established 

techniques for predicting the hysteresis and the classical eddy current iron loss density 

components, a reliable means for the prediction of iron losses in permanent magnet 

brushless dc motors is now available, albeit still being dependent upon the accurate 

characterisation of the lamination material. However, the characterisation requires 

parameters to be determined experimentally only under sinusoidal flux density 

waveforms. Although, a number of techniques are available in this investigation a 

computer-controlled single-sheet rig was developed, and used subsequently to validate 

the loss density calculation under a wide range of flux density waveforms. 

Further, an exact expression for the calculation of the iron loss density component due 

to rotation under non-purely rotating flux conditions, from measured values of 

-n and 7!, has been derived. It has been shown that the instantaneous angular speed of 

the flux density vector is a necessary parameter for defining a rotating flux condition, 

and that only a flux condition defined by the flux density loci and the instantaneous 

angular speed of the flux density vector yields a unique iron loss density. 
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6.2) Curvature effects in radial field permanent magnet machines 

It has been shown that curvature can have a considerable effect on the magnetic 

loading in the airgap of a permanent magnet excited machine. Indeed, in the machine 

topology of Fig (4. 1 a), which embraces interior rotor brush less dc machines, 

increasing the magnet thickness would not necessarily result in an increase of the 

magnetic loading in the airgap. In other words, an optimal magnet thickness exists for 

which the airgap flux density is a maximum. However, in machine topology of Fig 

(4 .1 b), which embraces external rotor brushless dc machines, an increase in the 

magnet thickness always leads to an increase of the magnetic loading in the airgap. 

A simple model which caters for the effects of curvature has been developed. The 

model enables the prediction of both the magnetic loading in the airgap and the spread 

of magnet working points. Predictions have been validated against calculations using 

sophisticated analytical and numerical techniques as well as by experiment. 

The impact of the effect of curvature extends beyond the accuracy of the magnetic 

field prediction. For example, the cost of the magnet material may be of particular 

importance, especially if high energy magnets are used, since they can amount to a 

considerable portion of the total cost of a machine. Thus, their optimal use requires 

attention to effects, such as those related to curvature. 

6.3) Flux density waveforms in the stator core of permanent magnet brushless dc 

machines. 

A simple analytical technique has been established to predict the flux density 

waveforms in various regions of the stator core of permanent magnet brushless dc 
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motors on open-circuit operation. The predictions have been shown to be fairly 

reliable by comparison with both finite element analysis and measurements. 

A technique which couples a drive system simulation to the magnetostatic finite 

element analysis has also been developed to enable the prediction of the flux density 

waveforms in the stator core under any load/operating condition. Predictions, 

validated by experiment, have shown that the flux density waveforms can be affected 

markedly by the load condition. Besides having a marked effect on the actual 

waveforms, both their shape and magnitude, armature reaction causes an unsymmetric 

distribution with respect to the teeth axes. 

6.4) Iron losses in the stator core of permanent magnet brushless de motors 

It has been shown that the open-circuit iron loss can be predicted fairly accurately 

using both the analytical and the numerical techniques. It has also been shown that the 

load condition has a marked effect on both the iron loss density distribution as well as 

the total iron loss. Indeed, as a result of the unsymmetric distribution of local flux 

density waveforms with respect to a tooth axis, the iron loss density distribution is also 

unsymmetric. Thus, the open-circuit iron loss, which is usually assumed to be the loss 

no matter what the operating condition, clearly cannot yield an accurate estimate of 

the loss on-load. 

Finally, even though the difference between the measured and computed iron losses 

on load has been attributed mainly to experimental errors, other sources of error 

attributable to armature reaction effects in both the magnets/rotor and the stator 

end-region exist. However, at present there is no reliable method for estimating the 

contribution from these additional loss components. 
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6.5) Further work 

A) More fundamental research concernmg the iron loss density associated with 

rotating fluxes needs to be undertaken, since at present there is no available 

theoretical method for such a calculation. Therefore, a theoretical approach, based 

on the physical origins of the iron loss density is required, particularly since 

emerging drive/machine formats are giving rise to more complex flux conditions. 

A test rig for the measurement of the iron loss density under rotating flux 

conditions is currently under development. Although fairly good success has been 

achieved using the initial rate of rise of temperature loss measuring method, the 

method based on the measured -nand ]fis to be employed, since besides allowing 

the total iron loss density to be determined, it will enable the investigation of the 

iron loss density component due to rotation in non-purely rotating flux conditions. 

However, special care needs to be taken in designing and constructing the 

instrumentation, since small errors which are usually associated with the 

misalignement of the 1! and 11 sensing coils, can cause substantial errors in the 

measured iron loss density (18]. The test rig is to be used to study the iron loss 

density under rotating flux conditions, as well as to validate theoretical findings 

concerning the calculation of the iron loss density component in non-purely 

rotating flux conditions. 

B) A thorough study of the effects of manufacturing conditions, such as stress, on the 

iron loss density in electrical steel laminations is required. A test rig which enables 

the measurement of the iron loss density under a compressive stress of up to 100 

MPa is currently under development, and will be used to characterise materials 

under a stressed condition as well as to validate a proposed approach for the 

prediction ofthe iron loss density under stress conditions. 
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In Chapter 3, it has been shown that only three constants are required for the 

prediction of the iron loss density under any alternating flux density waveform. 

Hence, if the variation of these constants with stress is known, the iron loss density 

can be predicted under any stress level and flux density waveform. The total iron 

loss density is then written as : 

a(s) oJ- 1f (dB)2 ke(s) f dB 1.5 
Pis) = kh{S)f Bm + 12 b T T dt dt + T T dt dt (6.1) 

where s is the level of stress exerted on the lamination material. The variation of the 

hysteresis constants with stress needs to be determined from a set of measurements 

of the dc hysteresis loss for a reasonable range of stress levels, whilst the variation 

of the excess loss constant needs to be determined from tests under sinusoidal flux 

density waveforms for a similar range of stress levels. The classical eddy current 

component should not be affected by stress, since the material conductivity 

depends only on the alloy composition of the material. 

The above approach avoids the use of correction factors, whose validity is usually 

limited to the conditions under which they have been determined. Further, the 

suggested technique can be easily incorporated into a C.A.D package for the 

prediction of iron losses in stressed machines. 

C) The numerical technique which couples the drive system simulation to finite 

element analyses needs to be extended to cater for other drive/machine formats in 

order that the relative efficiencies of alternative drive systems can be compared, 

and improved. This can only be achieved in the context of the analysis of complete 

drive systems. 

D) A more reliable technique for the direct measurement of loss needs to be 

developed. In this context a calorimetric method is currently under development at 

the University of Sheffield, Fig (6.1). The technique is based on the 'balance' 

method, the measurement procedure being as follows: 
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a. The temperature rise of the air flowing through the insulated enclosure is first 

measured with the test machine operating at a specified load. 

b. The test is then repeated with the machine unexcited but still being rotated with the 

source of heat being resistance heaters, whose input power is adjusted until the 

same temperature rise is obtained. 

c. Provided the air flow rate and incoming air temperature are unchanged the power 

supplied to the heaters will be equal to the loss dissipated by the test machine. 

Thus, only the power dissipated in the heaters needs to be accurately measured, and 

this can easily be achieved by using a standard laboratory watt meter. 

E) A study of the proportion of rotor and end-region losses to the total iron loss should 

be undertaken. The rotor losses (in both the magnets and the rotor hub) are caused 

by the fact that the armature field rotates incrementally (ie the load angle 

effectively varies from 60° to 120°) at each commutation. The relative motion 

between the field and the rotor causes eddy currents to be generated, which may 

cause the excessive heating, which may not only impact the mechanical integrity of 

the rotor but also cause the magnet properties to deteriorate. The use of laminated 

rotor hub [61] has been shown to significantly reduce the problem, whose severity 

depends on the supply converter. End-region losses are caused by stray fields 

generated by the end-windings as well as fringing at the airgap, and these have 

been the subject of much research in relation to turbo-generators. However, to the 

author's knowledge the issue of end-region effects in permanent magnet machines 

has not been addressed. 
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