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ABSTRACT 

The frequency domain methods for linear systems are well accepted by engineers 
and have been widely applied in engineering practice because the transfer function of 
linear systems can always provide a coordinate-free and equivalent description for 
system characteristics and are convenient to be used for the system analysis and 
design. Although the analysis and design of linear systems in the frequency domain 
have been well established and the frequency domain methods for nonlinear systems 
have already been investigated for many years, the frequency domain analysis for 
nonlinear systems is far from being fully developed. Nonlinear systems usually have 
very complicated output frequency characteristics and dynamic behaviour such as 
harmonics, inter-modulation, and even chaos and bifurcation etc. Therefore, the 
frequency domain theory for linear systems can not be directly extended to nonlinear 
systems, and the investigation and understanding of these nonlinear phenomena in the 
frequency domain are not straightforward. 

In this study, some new advances in the characterization and understanding of 
nonlinearities in the frequency domain have been established, based on 
Volterra/Wiener series approach. A systematic frequency domain approach for the 
analysis and design of a class of nonlinear systems, referred to as nonlinear Volterra 
systems, has been developed. The main results are summarized as follows: 

(a) A parametric characteristic analysis method is proposed for the frequency domain 
analysis of nonlinear Volterra systems by using a novel operator. The result 
clearly reveals, for the first time, the analytical relationship between high order 
frequency response functions of nonlinear Volterra systems and system time­
domain model parameters, and demonstrates explicitly what model parameters 
affect system frequency response functions and how they do. This also provides 
a novel method for understanding higher order generalized frequency response 
functions (GFRFs) of Volterra systems. (Chapters 2-3 and Chapter 8) 

(b) Based on the results and the parametric characteristic analysis in (a), the output 
spectrum of nonlinear Volterra systems can be explicitly expressed into a 
straightforward polynomial function of any interested model parameters with 
detailed parametric structure, which can directly relate system output frequency 
response to any interested model parameters such that system output frequency 
response can therefore be analyzed via these model parameters. It is further 
demonstrated that the polynomial function can be accurately determined by a 
Least Square method from experiment or simulation data without complicated 
computations. This provides a significant basis for the analysis and design of 
nonlinear Volterra systems in the frequency domain. (See Chapter 4 and 
Chapters 8-9) 

(c) Based on the parametric characteristics of the nth-order GFRF of nonlinear 
systems, a novel mapping from the parametric characteristics of the nth-order 
GFRF to itself is established. This result enables the nth-order GFRF and output 
spectrum to be directly written as a polynomial forms in terms of the first order 
GFRF and model nonlinear parameters with a straightforward parametric 
relationship (Chapter 5). Based on this new mapping function, it is theoretically 
shown for the first time that under certain conditions, the output spectrum of a 
class of nonlinear systems can be expressed into an alternating series with 
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respect to some model nonlinear parameters. The result is of considerable 
practical significance for vibration suppressions (Chapter 6). 

(d) Based on the parametric characteristic analysis in (a), the effects of different 
orders' system nonlinearity on the system output frequencies are also studied. 
This provides a novel insight into this issue and reveals many significant 
phenomena such as the counteraction between different nonlinearities at some 
specific frequencies, periodicity property of output frequencies, etc. These 
results can facilitate the structure selection and parameter determination for 
system modelling, identification, filtering and controller design (Chapter 7). 

(e) Based on the new advances in the frequency domain theory of nonlinear systems 
achieved in the present study, a novel vibration control approach is proposed. 
This is a systematic frequency domain analysis based approach, which exploits 
the potential advantage of nonlinearities to achieve the purpose of vibration 
suppression (Chapter 9). 

A series of systematic frequency domain analysis and design theories and methods 
for nonlinear Volterra systems have been established in the present study, The 
significances of these results are: (1) it can directly relate the nonlinear model 
parameters of interest to system frequency response functions, and therefore the 
nonlinear controller parameters or structural parameters can be analysed and designed 
in the frequency domain in a way which can relatively be easy to be implemented in 
engineering practice; (2) the method can be used not only to design a nonlinear 
feedback controller for a system by exploiting the potential advantages of 
nonlinearities, but also to analyse and design structural nonlinear characteristics which 
can be realized in a passive/active manner to achieve a desired passive structural 
physical characteristics; (3) it provides a novel approach to understanding the nature 
of a considerably large class of practical nonlinear systems. 
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Chapter 1 Introduction 

Chapter 1 
INTRODUCTION 

1.1 Frequency domain methods for nonlinear systems 

Frequency domain methods can usually provide some intuitive insights into 
system underlying mechanisms or characteristics of interest which are in most cases 
easier for engineers to understand. For example, the transfer function of a linear 
system is always coordinate-free and equivalent description whatever the model of the 
studied system is transformed by any linear transformations; the instability of a linear 
system is usually associated with at least one right-half-plane pole of the system; the 
peak of system output vibration often happens at the natural resonance frequency of 
the system, and so on. Therefore, frequency domain analysis and design of 
engineering systems are always one of the most favourite methodologies in practices 
and attract extensive research both in theory and application. 

It is known that the analysis and synthesis of linear systems in the frequency 
domain have been well established. There are many methods and techniques that have 
been developed to cope with the analysis and design of linear systems in practice such 
as Bode diagram, root locus, Nyquist plot and so on (Ogota 1996). However, the 
frequency domain analysis for nonlinear systems is not straightforward. Nonlinear 
systems usually have very complicated output frequency characteristics and dynamic 
behaviour such as harmonics, inter-modulation, chaos and bifurcation, which can 
transfer signal energy between different frequencies to produce outputs at the 
frequency components of which may be quite different from the frequency 
components of the input. These phenomena complicate the study of nonlinear systems 
in the frequency domain, and the frequency domain theory for linear systems can not 
directly be extended to the nonlinear case. Therefore, the investigation and 
understanding of nonlinear phenomena in the frequency domain are far from being 
fully developed. 

Frequency domain analysis of nonlinear systems has been studied since the fifties 
of last century. A traditional method was initiated by investigation of global stability 
of the stationary point within the frames of absolute stability theory, and then 
frequency domain methods for the analysis of stability of stationary sets and existence 
of cycles and homo-clinical orbits, as well as for the estimation of dimension of 
attractors etc were developed thereafter (Leonov et al 1996). Practically, the nonlinear 
behaviour or characteristics of a specific nonlinear part or nonlinear unite in a system 
can usually be analyzed by using describing functions or harmonic balance in the 
frequency domain. The describing function method represents a very powerful 
mathematical approach for the analysis and design of the behaviour of nonlinear 
systems with a single nonlinear component (Atherton 1975). It can be effectively 
applied to the analysis of limit cycle and oscillation for nonlinear systems in which 
the nonlinearity does not depend on frequency and produces no sub-harmonics etc. 
Applications for controller design based on describing function analysis have 
extensively been reported (Gelb and Vander Velde 1968, Taylor and Strobel 1985). 
However, limitations of the describing function methods are noticeable. For example, 
Engelberg (2002) provides a set of nonlinear systems for which the prediction of limit 
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cycle by using describing functions is erroneous. Simultaneously, some improved 
methods were also developed (Sanders 1993, Elizalde and Imregun 2006, Nuij et al 
2006). Another elegant method for the frequency domain analysis of nonlinear 
systems in practice is referred to as the harmonic balance (Solomou et al 2002, Peyton 
Jones 2003). This method provides an approximation of the amplitude of the steady 
state periodic response of a nonlinear system under the assumption that a Fourier 
series can represent the steady state solution. It can deal with more general problems 
of nonlinear systems such as the sub-harmonics and jump behaviour etc for both the 
time domain and the frequency domain responses. Except these well-established and 
noticeable methods, there are also some other results for the nonlinear system analysis 
in the frequency domain reported in literature. For example, based on the frequency 
domain methods for linear systems such as Bode diagrams, singular value 
decomposition, and the idea of varying eigenvalues or varying natural frequencies, the 
frequency domain methods for the analysis and synthesis of uncertain systems or 
time-varying systems were studied in Orlowski (2007), Glass and Franchek (1999), 
Shah and Franchek (1999) and Logemann and Townley (1997); and a frequency 
response function for convergent systems subject to a harmonic input was recently 
proposed in Pavlov (2007), etc. 

For a class of nonlinear systems, which have a convergent Volterra series 
expansion, frequency domain analysis can be conducted based on the concept of 
generalized frequency response function (George 1959, Schetzen 1980, Rugh 1981). 
As studied in Boyd and Chua (1985), nonlinear systems, which are time invariant, 
causal and have fading memory, can be approximated by a Volterra series of a 
sufficiently high order. The results in Sandberg (1982, 1983) show that even nonlinear 
time varying systems have such a locally convergent Volterra series expansion under 
certain conditions. Therefore, this kind of frequency domain analysis methods can 
deal with a considerably large class of nonlinear systems which can be driven by any 
input signals and do not necessarily restrict to a specific nonlinear term, and thus is a 
more general methodology. Although the study on Volterra systems and the 
corresponding frequency domain methods has been carried out for several decades 
since the middle of last century, many problems still remain unsolved, relating to the 
application issues of this method both in theory and practices. The study in this 
dissertation is focused on this methodology and dedicated to the corresponding 
problems in applications. 

1.2 Frequency domain analysis based on Volterra series expansion 

As mentioned above, the input output relationship of nonlinear systems under 
certain conditions can be approximated by a Volterra series of a sufficiently high 
order (Boyd and Chua 1985, Sandberg 1982, 1983), which can be written as 

N n 

y(t) = L [, ... [hn(''''''''n)I1 u(t-'j)d'j (1.1) 
n=l ;=1 

where N is the maximum order of the series, and h" (,,,"', ',,) is a scalar real valued 
function of ',,"', '", referred to as the nth order Volterra kernel. Generally, y(t) is a 
scalar output and u(t) is a scalar bounded input in (1.1). The nth order generalized 
frequency response function (GFRF) of nonlinear system (1.1) is defined as the 
multivariate Fourier transformation of h"(,,,···, ',,) (George 1959) 
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Clearly, (1.1) is a generalization of the traditional convolution description oflinear 
systems to nonlinear systems. This fundamental property enables the Volterra series 
to have an extensive usefulness in modelling and analysis of a very wide class of 
nonlinear systems both in deterministic and stochastic (Volterra 1959, Van De Wouw 
et al 2002, Rugh 1981). This has been vindicated by a large number of applications of 
the Volterra series reported in modelling, identification, control and signal processing 
for different systems and engineering practices, which include electrical systems, 
biological systems, mechanical systems, communication systems, nonlinear filters, 
image processing, materials engineering, chemical engineering and so on (Fard et al 
2005, Doyle et al 2002, French 1976, Boutabba et al 2003, Friston 2000, Yang and 
Tan 2006, Raz and Veen 1998, Bussgang et al 1974). Technically, most of these 
results are related to direct estimation or identification of the kernel h" (T.,···, T,,) or the 
GFRF H,,(jOJ.,. .. ,jOJ,,) from input output data (Brilliant 1958, Kim and Powers 1988, 
Bendat 1990, Nam and Powers 1994, Schetzen 1980, Schoukens 2003, Ljung 1999, 
Pintelon and Schoukens 2001). 

Based on the existence of Volterra series expansion, the study of nonlinear 
systems in the frequency domain was initiated by the introduction of the concept of 
the generalized frequency response functions (GFRFs) as defined in (1.2). This 
provides a powerful technique for the study of nonlinear systems, which is similar to 
those based on the transfer function of linear systems. Thereafter, a fundamental 
method, referred to as Probing method (Rugh 1981), greatly promoted the 
development of this frequency domain method for nonlinear systems. By using the 
probing method, the GFRFs for a nonlinear system described by nonlinear differential 
equations (NDE) or nonlinear auto-regressive model with exogenous input (NARX) 
can directly be obtained from its model parameters. These results were further 
developed by Peyton-Jones and Billings (1989) and Billings and Peyton-Jones (1990), 
respectively. Based on these techniques, many results have been achieved for the 
frequency domain analysis of nonlinear systems which have a convergent Volterra 
series expansion. Swain and Billings (2001) extended the computation of GFRFs for 
SISO models to the case ofMIMO nonlinear systems. The derivation of the GFRFs of 
nonlinear systems with mean level or DC terms was discussed in Zhang et al. (1995). 
The system output spectrum and output frequencies were studied in Lang and Billings 
(1996, 1997). Some preliminary results for the bound characteristics of the frequency 
response functions were given in Zhang and Billings (1996) and Billings and Lang 
(1996). These bound results were greatly generalized in Jing et al (2007) where the 
bound expressions are described into an elegant and concise form which is a 
polynomial of the first order GFRF with model nonlinear parameters as coefficients. 
The energy transfer characteristics of nonlinear systems were studied in Billings and 
Lang (2002) and Lang and Billings (2005) recently, and some diagram based 
techniques for the understanding of higher order GFRFs were discussed in Peyton­
Jones and Billings (1990) and Vue et al (2005). Furthermore, the concept of Output 
Frequency Response Function of nonlinear systems was proposed in Lang et al (2006, 
2007). These results form a fundamental basis for the development of frequency 
domain method for nonlinear systems studied in this dissertation. 
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1.3 Problems to be studied 

As mentioned before, the frequency domain analysis of nonlinear systems is much 
more complicated than that for linear systems, because nonlinear systems usually 
have very complicated nonlinear behaviours such as super-harmonics, sub-harmonics, 
inter-modulation, and even bifurcation and chaos. These phenomena complicate the 
study of nonlinear systems in the frequency domain, and the frequency domain theory 
for linear systems can not directly be extended to the nonlinear case. Although there 
are some remarkable results having been developed as mentioned before, a systematic 
and more practical approach to the analysis and design for a much wider class of 
nonlinear systems in the frequency domain still remains to be developed. 

In this dissertation, our study focuses on the frequency domain methods for the 
class of nonlinear systems which have a convergent Volterra series expansion for its 
input output relationship in the time domain as described in (1.1) (Sandberg 1982ab, 
1983ab, Boyd and Chua 1985), and which are referred to as nonlinear Volterra 
systems in what follows. As discussed, the computation of the GFRFs and output 
spectrum is a key step in the frequency domain method based on Volterra series 
theory. To obtain the GFRFs for Volterra systems described by NDE models or 
NARX models, the probing method can be used (Rugh 1981). Once the GRFRs are 
obtained for a practical system, system output spectrum can then be evaluated (Lang 
1996). These form a general procedure for this methodology. The advantages of this 
method, as mentioned, may lie in at least the following three points: 
(a1) it is a mathematically elegant method for a considerably large class of nonlinear 

systems frequently encountered in practices of different fields, not restrict to a 
specific nonlinear unite or single nonlinear component; 

(a2) it holds for any bounded input signals whatever the input is deterministic or 
stochastic, not restrict to some specific input signals such as harmonic or triangle 
or step inputs; 

(a3) it provides very similar techniques to these for linear systems. For example the 
GFRFs for Volterra systems are similar to the FRF for linear systems, which are 
familiar to most engineers. 

However, from previous research results, it can be seen that, the high order GFRF 
is actually a sequence of multivariable functions defined in a high dimensional 
frequency space. The evaluation of the values of the GFRFs higher than fourth or fifth 
order can become rather hard due to the large amount of algebra or symbolic 
manipulations that are involved (Yue et al. 2005). The situation may go worse in the 
computation of the system output spectrum of higher orders, since this involves a 
series of repetitive computations of the GFRFs from the first to the highest order that 
are involved. Moreover, the existing recursive algorithms for the computation of the 
GFRFs and output spectrum can not explicitly and simply reveal the analytical 
relationship between system time domain model parameters and system frequency 
response functions in a clear and straightforward manner. These inhibit the practical 
application of the existing theoretical results to such an extent that many problems 
remain unsolved regarding the nonlinear characteristics of the GFRFs and system 
output spectrum. For example, how these frequency response functions are influenced 
by the parameters of the underlying system model, what the connection to complex 
nonlinear behaviours is from the frequency response functions, and so on. From the 
viewpoint of practical applications, it can be seen that a straightforward analytical 
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expression for the relationship between system time-domain model parameters and 
system frequency response functions (including the GFRFs and output spectrum) can 
considerably facilitate the analysis and design of nonlinear Volterra systems in the 
frequency domain. 

1.4 Objective of this dissertation 

In this dissertation, a novel systematic frequency domain method is developed for 
the class of nonlinear systems which have a convergent Volterra series expansion 
described by (1.1) for its input-output relationship in the time domain. Consider the 
input of (1.1) is any continuous and bounded input function u(t) in t ~ 0 which has 
Fourier transform U(jm) with input domain denoted by V, i.e., mE V . u(t) may also be 
a multi-tone function in the following study, which is obviously a special case and can 
be described by 

K 
u(t) = IIF;lcos(m;t + LF;) (1.3) 

;=1 

where F; is a complex number, LF; is the argument, IF; I is the modulus, j{ E Z+, and Z+ 

denotes all the positive integers. The class of input can be written formally as 
Kit = {u(t) E C(R)lsuPIERlu(t)1 ~ UpIU(t-1')-U(t)1 ~ U 21', fOrT ~ o} (1.4) 

where q R) stands for the space of bounded continuous function on R which 

represents the set of all the real numbers, lu(t)1 denotes the absolute value of u(t). 

In the following studies, the Volterra systems of interest may be described by a 
NDE model as follows 

M m K P d" yet) p+q d" u(t) II I cp,q(II',,·,lp+q)O-,,-O-,,- = 0 
,.=1 1'=0 ',.I

P
" =0 ;=1 dt ;=1'+1 dt 

(1.5) 

d'X(t)i KKK where ~ = x(!) , p+q=m, I (.) = I", I (-), ME Z+ is the maximum degree of 
1=0 '\,1p+,/==O '1=0 Jp+y=O 

nonlinearity in terms of yet) and u(t), KE Zo+ is the maximum order of the derivative, 

and Zo+ denotes all the non-negative integers. In this model, the parameters such as 

CO,I(.) and Cl,O(.) are referred to as linear parameters, which correspond to the linear 
d' (t) d' u(t) terms in the model, i.e.,~, and -,- for k=O,I, ... ,K, and C (-) for p+q>1 are 
~ ~ M 

referred to as nonlinear parameters corresponding to nonlinear terms in the model of 
I'd" (t) p+q d" u(t) 

the form 0+0--,,-, e.g., y(t)pu(t)q. p+q is called the nonlinear degree of the 
;=1 dt ;=1'+1 dt 

nonlinear parameter C p,q (-) . A similar discrete nonlinear model known as NARX model 

is often used for practical nonlinear system identification from experimental data, 
which is given by 

M m K I' p+q 
y(t)=I I I cl',q(kl'".,kp+q)Oy(t-k')Ou(t-k;) (1.6) 

In =1 p=o *1.kp+q=l ;=) ;=p+J 

Note that (1.6) is normalized for the coefficient y(t). For clarity and consistence with 
the discrete model (1.6), assume that cl,o(O)=l in (1.5). 

Considering system (1.1) and all the systems which can be approximated by (1.1) 
and described by (1.5) or (1.6), for the problems discussed in the last section, the 
study in this dissertation is dedicated to develop some effective methods to understand, 
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analyse, and characterize nonlinearities in the frequency domain, and therefore to 
establish a systematic frequency domain approach to the analysis and design of 
nonlinear Volterra systems in practices. Potential applications of the theoretical results 
will be validated by some detailed techniques and practical methods developed for 
some practical engineering problems. 

1.5 Outline of the dissertation 

The following chapters are organized as follows. 
In Chapter 2, a novel and powerful operator is introduced and the concept of 

parametric characteristic analysis (PCA) for the nonlinear frequency response 
functions is defined and demonstrated, which is the fundamental basis of the whole 
study of this dissertation. It is shown that the PCA method is not only effective for the 
analysis of the frequency response functions of interest in this study, but may also be 
applicable for a class of parameterized polynomial systems. This part is mainly based 
on the published paper [2] and research reports [1] and [5] as listed in the Appendix. 

Chapter 3 provides the fundamental results obtained by applying the PCA to the 
GFRFs of nonliear Volterra systems, which show an explicit relationship between the 
GFRFs and the system time-domain model parameters. Moreover, a correction for the 
recursive computation of the GFRFs given in Peyton-Jones and Billings (1989) and 
Billings and Peyton-Jones (1990) is discussed, and examples are provided to 
demonstrate the results. This part is mainly based on the published paper [2] and 
research reports [1] and [5] as listed in Appendix. 

Based on the parametric characteristics of the GFRFs obtained in Chapter 3, the 
parametric characteristic of system output spectrum for Volterra systems is studied in 
Chapter 4. A novel frequency domain method for nonlinear Volterra systems based on 
the PCA method, referred to as the parametric characteristics based output spectrum 
analysis, is proposed with some fundamental techniques developed for practical 
applications. Some advantages and disadvantages of this new frequency domain 
method are demonstrated and compared with other methods. Simulation studies are 
conducted to demonstrate these results. This part is mainly based on the published 
papers [8] and [12] and research reports [1] and [5] as listed in Appendix. 

Based on the parametric characteristics of the GFRFs for nonlinear Volterra 
systems, a novel mapping function from the parametric characteristics of the nth-order 
GFRF to itself is established in Chapter 5. The GFRFs and output spectrum can 
therefore be directly written into a polynomial function in terms of model nonlinear 
parameters and the first order GFRF. This result can facilitate the analytical 
computation of the GFRFs and output spectrum and the analytical analysis of system 
nonlinear characteristics in the frequency domain. This part is mainly based on the 
published papers [7] and [9] and research reports [6] and [9] as listed in Appendix. 

In Chapter 6, the effect of system nonlinearity on system output spectrum is 
studied by using the results in Chapter 5. Based on the novel mapping function 
established in Chapter 5, it is theoretically shown for the first time that under certain 
conditions the system output spectrum can be expressed into an alternating series with 
respect to some model nonlinear parameters. The results are verified by simulation 
studies. These results provide a novel investigation for the effect of nonlinearities on 
system output behaviours in the frequency domain. This part is mainly based on 
research reports [7] and [10] as listed in Appendix. 

Chapter 7 investigates the nonlinear effect on the system output spectrum from 
another perspective. The output frequencies contributed by different system 
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nonlinearities are studied and some significant properties, e.g. periodicity, of 
nonlinear system output frequencies are unveiled. Examples are given to demonstrate 
these results. This part is mainly based on research report [8] as listed in Appendix. 

An extension of the results in Chapters 3 and 4 is provided in Chapter 8, which 
generalizes the results established for the SISO input-output models described by (1.5) 
and (1.6) to system models with a state space equation and a general nonlinear output 
function. This part is mainly based on the published papers [3-6, 10] and research 
report [4] as listed in Appendix. 

Chapter 9 provides a practical application of the parametric characteristics-based 
output spectrum analysis method established in Chapter 4 and Chapter 8 for the 
analysis and design of a vibration suppression system. This part is mainly based on 
the published papers [1], [8] and [11] and research reports [2] and [3] as listed in 
Appendix. 

A summary and overview for the research studies in the thesis is given in Chapter 
10. 

A publication list of the author during his studying for PhD degree is provided in 
Appendix, and all references of the thesis are then listed. 
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Chapter 2 
PARAMETRIC CHARACTERISTIC ANALYSIS (PCA) 

In this Chapter, the concept of parametric characteristic analysis (PCA) for a class 
of polynomial functions with parameterized coefficients is introduced, and based on 
this concept, a novel and powerful operator, which is referred to as Coefficient 
Extractor (CE), is defined and demonstrated, which plays a fundamental role for the 
purpose of parametric characteristic analysis for a class of parameterized polynomial 
functions with separable property. 

2.1 Separable functions 

Definition 2.1. A function h(s; x) is said to be separable with respect to parameter 
x if it can be written as h(s; x) = g(x) . J; (s) + fo (s), where fi(.) for i=O,l are functions of 

variable s but independent of the parameter x. 0 

A function h(s; x) satisfying Definition 1 is referred to as x-separable function or 
simply separable function, where x is referred to as the parameter of interest which 
may be a parameter to be designed for a system, and s represents other parameters or 
variables, which may be a reference variable (or independent variable) of a system 
such as time or frequency. 

Remark 2.1. In the definition of an x-separable function h(s; x), x may be a 
vector including all the separable parameters of interest, and s denotes not only the 
independent variables of h(.), but also may include all the other un-separable and 
uninterested parameters in h(.). The parameter x and s are real or complex valued, but 
the detailed properties of the function h(.) and its parameters are not necessarily 
considered here. Note also that in Definition 1, foes) and Ji(s) are invariant with 
respect to x and g(x). Thus h(s; x) can be regarded as a pure function of x for any 
specific s. In this case, if g(x) is known, and additionally the values of h(s; x) and g(x) 
under some different values of x, for example Xl and X2, can be obtained by certain 
methods (simulations or experimental tests), then the values offo(s) andJi(s) can be 
achieved by the Least Square method, i.e., 

{
h(S; x,) = g(x,)' J; (s) + fo (s) => [fo (S)] = [1 g(x, )]-' [h(S; X')] (2.1) 
h(s;x2) = g(x2)·J;(s)+fo(s) J;(s) 1 g(x2) h(s;x2) 

Thus the function h(s; x) at a given s can be obtained which is an analytical function 
of the parameter x. This provides a numerical method to determine the relationship 
between the parameters of interest and the corresponding function. 0 

An x-separable function h(s; x) at a given point s is denoted as h(x)ls, or simply as 
h(x)s. 

Consider a parameterized function series 
H(s; x) = g, (x)J; (s) + g2 (x)f2 (s) + ... + gIl (x)!,,(s) = G· F7 (2.2) 

where n>l, fi(s) and gi(X) for i=l, ... ,n are all scalar functions, let 
F=[J;(S),f2(S),··,!,,(s)] and G= [g,(X),g2(X), .. ,g,,(x)], x and s are both parameterized 
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vectors including the interested parameters and the other parameters, respectively. 
The series is obviously x-separable, thus H(x), is completely determined by the 

parameters in x or the values of gl (X),g2 (x), .. ·,gn(x) . Note that at a given point s, the 
characteristics of the series H(s; x) is completely determined by G, and how the 
parameters in x are included in H(s; x) is completely demonstrated in G, too. 
Therefore, the parametric characteristics of the series H(s; x) can be totally revealed 
by the function vector G. The vector G is referred to as the parametric characteristic 
vector of the series. If the characteristic vector G is determined, then following the 
method mentioned in Remark 2.1, the function H(x)., which shows the analytical 
relationship between the concerned parameter x and the series is achieved, and 
consequently the effects on the series from each parameter in x can be studied. The 
function H(x). is referred to as parametric characteristic function of the series H(s; x). 

Based on the discussions above, the following result can be concluded. 

Lemma 2.1. If H(s; x) is a separable function with respect to the parameter x, then 
there must exist a parametric characteristic vector G and an appropriate function 
vector F, such that H(s; x)= G . Fl', where the elements of G are functions of x and 
independent of s, and the elements of F are functions of s but independent ofx. 0 

According to the definition and discussion above, it will be seen that the nth-order 
GFRF of the NDE model in (1.5) and NARX model in (1.6) is separable with respect 
to any nonlinear parameters of the corresponding models. As mentioned, in order to 
study the relationship between an interested function H(s; x) and its separable 
parameters x, the parametric characteristic vector G should be obtained. For a simple 
parameterized function, it may be easy to obtain parameterized vector G. But for a 
complicated function series with recursive computations, this is not straightforward. 
To this aim, and more importantly for the purpose of the parametric characteristic 
analysis for the nth-order GFRF and output spectrum of Volterra systems described 
by (1.5) or (1.6), a novel operator is introduced in the following section for the 
extraction of any parameters of interest involved in a separable parameterized 
polynomial function series. 

2.2 Coefficient Extractor 

Let Cs be a set of parameters which takes values in C, let Pc be a monomial 

function set defined in c,' i.e., Pc = kc;' .. ·c? jc; E e"r; E Zo'! = Ic,l}' where Ie,. I is the 

number of the parameters in e" Z+ denotes all the positive integers. Let Ws be another 

parameter set similar to e, but W, n e, = ¢, and let Pr be a function set defined in w,' 
i. e., PJ = {r( WI'''', wl)jw; E W,,! = Iw, I}· Let ::: denote all the finite order function series 

with coefficients in Pc timing some functions in P
J

• A series in ::: can be written as 

HCF = sJ" + Sd2 + ... + su!u E::: (2.3) 

where S; E ~,/; E Pr for i=l, ... , a E Z +, C=[SI,S2, ... , SU ], and F=[ /I, 12, .. ·, !u f. 
Obviously, this series is separable with respect to the parameters inc, and w,. Define a 

Coefficient Extraction operator CE:::: ~ Pc u , such that 

(2.4) 
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where pu = Irs S ... s ]ISt ... S E P }. This operator has the following properties: ell., 2' 'CT ' 'CT C 

(1) Reduced vectorized sum "$". 
CE(Hc ~ +Hc ~ ) =CE(HCF. )$CE(H c F. ) =Ct $C2 =[CI'C~] 

IC'J 2r 2 11 22 

andc~ = VEC(C2 -E; nC2 ), where C; = {c't(i)ll::;; i::;; ICtl~ c2 = r2(i)ll::;; i::;; Ic21}, 
VEC(.) is a vector consisting of all the elements in set (.). c; is a vector 

including all the elements in C2 except the same elements as those in C 1• 

(2) Reduced Kronecker product" ® ". 

CE(H e,/~ . H e,F,) 

= CE(H e,F,) ® CE(H e,f;) 

!J. {C3 = [Ct(l)C2"',Ct(ICtl)C21} 
=ct ®C2 =VEC c I 

c = C3 (i),1::;; i::;; IC3 

which implies that there are no repetitive elements in c t ®c2 • 

(3) Invariant. 
(i) CE(a· H CF,) = CE(HcF) ' \;fa ~ C,'; (ii) CE(HcF, + H CF,) = CE(Hc(F,+F,) = C . 

(4) Unitary. (i) If O;;F = 0 for\;fc E C" thenCE(H CF) = 1; (ii) if HCF =0 for\;fc E C" 

then CE(HcF)=O. When there is a unitary 1 in CE(HcF), there is a nonzero 
constant term in the corresponding series HCF which has no relation with the 
parameters in c, . 

(5) Inverse. Cg1(C)=HcF' This implies any a vector C consisting of the elements 
in Pc should correspond to at least one series in =: . 

(6) CE(HCF ) ~ CE(HCF.) if the elements of C1 are the same as those of C2, where 
I I 11 

" ~" means equivalence. That is, both series are in fact the same result 
considering the order of sf; in the series has no effect on the value of a series 
HCF. This further implies that the CE operator is also commutative and 
associative, for instance, CE(H C F + He F) = C1 $ C2 ~ CE(Hc F + Hc F.) = C2 $ C1 • 

I I 21 12 I I 

Hence, the results by the CE operator may be different but all may correspond 
to the same function series and are thus equivalent. 

(7) Separable and parameters of interest only. A parameter in a series can only be 
extracted if the parameter is of interest and the series is separable with respect 
to this parameter. Thus the operation result is different for different purposes. 
D 

Note that from the definition of the CE operator above, all the operations are in 
terms of the parameters in c,., and the CE operator sets up a mapping from =: to Pc u . 

For convenience, let ®O and $0 denote the mUltiplication and addition by the 
(0) (0) 

reduced Kronecker product" ®" and vectorized sum "$ " of the terms in (.) satisfying 
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(*), respectively; and ~ C p,q = C p,q ®, .. ® C p,q can be simply written as C;,q' For model 

(1.5), define the (p+q)th degree nonlinear parameter vector as 
Cp,q =[cp,q(O, ... ,O),cp,q(O, ... ,I), ... ,cp,q(~)] (2.5) 

p+q=m 

which includes all the nonlinear parameters of the form cp,q(.) in model (1.5). A 
similar definition for model (1.6) as 

C p,q = [c p,q (I,'" ,I), C p,q (I,'" ,2)"", C p,q (~)] (2.6) 
p+q=m 

Note that Cp,q can also be regarded as a set of the (p+q)th degree nonlinear parameters 
of the form Cp,q(')' Moreover, if all the elements of CE(HcF) are zero, i.e., CE(HcF)=O, 
then CE(HcF) is also regarded as empty. 

The CE operator provides a useful tool for the analysis of the parametric 
characteristics of separable functions. It can be shown that the nonlinear parametric 
characteristics of the GFRFs for (1.5) or (1.6) can be obtained by directly substituting 
the operations "+" and "." by "$ " and "®" in the corresponding recursive algorithms, 
respectively, and neglecting the corresponding multiplied frequency functions. This is 
demonstrated by the following example. 

Example 2.1. Computation of the parametric characteristics of the 2nd order GFRF 
of model (1.5). The 2nd order GFRF from Billings and Peyton-Jones (1990) is 

K 

L(n)· Hn (jOJp "" jOJn) = ~>o,n (kp "" kn )(jOJ, )kl .. . (jOJn )k. 

n-' n-q K 

+ II ICp,q(kp ... ,kp+q)(jOJn_q+,/p" "'(jOJn)kp
+

q Hn_q,p(jOJp"',jOJn_q) (2.7) 
q=' 1'=' k"k p+q =0 
n K 

+ I ICp,o(kp ... ,kp)Hn,,,(jOJp ... ,jOJn) 

K 

for n=2, where L(2)= - I C',o (k, )(jOJ, + JOJ2 )kl 

H 2,20 = H, (jOJ, )HI,I (jOJ2 )(jOJ, )kl , 

Applying the CE operator to (2.7) for nonlinear parameters and using the notation 
in (2.5), it can be obtained that 

CE(H2 (,».= CE(L(2)· H 20) = CO,2 $ (~:~(Cp,q ®CE(H2_q,p(.))))$ (~2 Cp,o ®CE(H2,p(-») 

= Co, 2 $ (C", ®CE(H" ,0»)$ (c2,0 ®CE(H2,2(-») 

Note that HI(.) has no relationship with nonlinear parameters, from the definition of 
CE operator, it can be obtained that CE(HJ(.))=l. Similarly, it can be obtained that 
CE(H2,2(.))=1. Therefore, the parametric characteristic vector of the second order 
GFRF is 

CE(H 20) = CO,2 $ C,,' $ C2,o (2.8) 
(2.8) shows clearly that nonlinear parameters in CO,2, CI,J and C2,O have independent 
effects on the 2nd order GFRF without interference, and no any other nonlinear 
parameters have any influence on the 2nd order GFRF. This provides an explicit 
insight into the relationship between the 2nd order GFRF and nonlinear parameters. 
For example, if H2(.) is required to be a special spectrum or magnitude, only the 
parameters in CO,2, CI,I and C2,O may need to be designed purposely. 0 
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Example 2.1 shows that the CE operator is very effective for the derivation of the 
parametric characteristic vector of a separable function series about the parameters of 
interest. It provides a fundamental technique for the study of parametric effects on the 
involved parameter-separable function series for any systems. In the present study, in 
most cases, the CE operator will be applied for all the nonlinear parameters in model 
(1.5) or model (1.6). When the CE operator is applied for a specific nonlinear 
parameter c, the parametric characteristic of the nth-order GFRF will be denoted by 
CE(Hn(.»c. 

2.3 Summary 

The purpose of the parametric characteristic analysis proposed in this chapter is to 
reveal how the parameters of interest in a separable parameterized function series or 
polynomial affect the function series or polynomial and what the possible effects are. 
Obviously, the CE operator provides an important and fundamental technique for this 
analysis. The following chapters will demonstrate the usefulness and significance of 
these results. 
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Chapter 3 
PARAMETRIC CHARACTERISTIC ANALYSIS 

FOR THE GFRFS OF NDE AND NARX MODELS 

In this chapter, the GFRFs for nonlinear Volterra systems described by (1.5) and 
(1.6) are discussed firstly. Then by using the novel operator defined in Chapter 2, the 
parametric characteristic analysis is conducted for the GFRFs of nonlinear Volterra 
systems described by model (1.5) and some fundamental and theoretical results are 
obtained for the parametric characteristics of the GFRFs. The results explicitly show 
what model nonlinear parameters affect the nth-order GFRF and how the effect is. 
Consequently, the analytical polynomial relationship between the GFRFs and model 
nonlinear parameters is clearly revealed. These provide a significant insight into the 
effect of system nonlinear parameters on the GFRFs. Similar results also hold for the 
NARX model described in (1.6). 

3.1 The GFRFs 

As discussed before, the concept of the GFRFs provides a basis for the study of 
nonlinear Volterra systems in the frequency domain. By using the probing method 
(Rugh 1981), an algorithm to compute the nth-order GFRF for nonlinear Volterra 
systems described by the NDE model (1.5) was provided in Billings and Peyton-Jone 
(1990): 

K 

LII(jm, + ... + jmn)·Hn(jm,,"·,jmn) = ~>o,n(k" ... ,kn)(jm,)k, "·(jmn)k. 

where 

where 

n-l n-q K 

+ L L L C p,q (k,,"', k p+q )(jmn_q+, )k._,., ... (jmp+q /P" H n-q.p (jm,,'" ,jmn_q) 
q=' 1'=' k"k po, =0 

n K 

+ L L C p,o(k" .. ·,kp)Hn,p (jm,," ',jmn) 
1'=2 k"kp=O 

n-p+l 

H n,p (-) = L H; (jm,,"', jm;)H n-;,p-' (jm;+,,"', jmn )(jm, + ... + jm; )kp 

;=1 

H"" (jm,,"', jm,,) = H" (jm,,"', jm" )(jm, + ... + jm" )k, 

K 

Ln(jm, + ... + jm" )= - L c"o (k, )(jm, + ... + jmn )k, 
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3.1.1 A correction and revision for the computation of the nth-order GFRF 

In the recursive algorithm for the computation of the GFRFs above, the second 
term in the right side of Equation (3.1), i.e., 

n-I n-q K 

L L L cp.q (k p "" k p+q )(jcon_q+1 )k._", ... (jcop+q )kp" Hn_q./jcop " ',jcon_q) 
q=1 1'=1 k,.kp,,=O 

should be 
n-I n-q K q 
LL L cp.q(kp ... ,kp+q)(n (jcon_q+;)k

p
" )Hn_q./jcop ... ,jcon_q) (3.7) 

q=1 1'=1 k,.kp"=O ;=1 

The correction is in the superscripts for (jCOn_q+I/~'" "'(jCOp+q)kp+, • That is, Equation (3.1) 

should be corrected as 
K 

Ln(jcol + ... + jcon)· Hn (jcop" ·,jcon) = LCo.n(kp " ·,kn)(jcoy' ···(jCOn)k. 
k,.k.=1 

n-I n-q K q 
+ L L L C p.q (kl,···, k p+q )(n (jcon_q+; )kp")H n-q.p (jcol ,"', jcon_q) (3.8) 

q=1 p=1 k"kp+q=O ;=1 

n K 

+ L LCp.o(kp ... ,kp)Hn./jCOp ... ,jCOn) 
1'=2 k,.kp=O 

This result can be shown by directly applying the probing method for the cross input­
output nonlinear terms labelled by nonlinear parameter cpq(.) for p ~ l,q ~ 1 in model 
(1.5) as demonstrated in Billings and Peyton Jones (1990). 

F 1 · 'd' 1 l' d k
, yet) d

k
, u(t) d

k
, u(t) or c arIty, conSI er a SImp e cross non mear term CI2(kpk2,k3)--k ---k ---k -. 

. dt' dt' dt' 

The contribution to the asymmetric nth-order GFRF from this specific term is 

[ 
n n n 1 en LH" (jcol ... jco" )(jcol + ... + jco" )k, ej(OJ'+"'+OJ,)1 . L(jCO,)k, ejOJ,1 . L(jCO,)k] ejOJ,1 

'1=1 r=1 r=1 

= H II _2 (jCOI ... jcon_2 )(jCOI + ... + jcon_2)*' ej(w,+"·+OJ.-,)1 . (jCOn_1 /, e
jOJ.-" . (jCOn )k, e jOJ•1 (3.9) 

= H (j'CO "'j'CO )(j'CO +"'+j'co )k, '(j'CO )k, . (j'CO )k, ·ej(w,+"·+OJ.)1 
,,-2 I n-2 J n-2 n-l n 

where Cn[.] denote the operation of extracting the coefficient of e}(OJ'+'''+OJ.)1 (Billings 
and Peyton Jones 1990). By using (3.2) and (3.5), (3.9) is equal to 

2 (n (jCOn_2+1 )k''')H n-2.1 (jCOI,···, jcon_2) 
;=1 

This result is consistent with (3.7). Following the same method and extending to the 
general case, (3.7) and (3.8) can be achieved. Moreover, for convenience in further 
derivation, let 

q {I q - 0 p > 1 
Ho.oO=l, Hn.o(-)=O for n>O, HII.pO=oforn<p,and nO= ~' < (3.10) 

;=1 0 q - 0, p _ 1 

Then (3.8) can be written in a more concise form as 
1 ",,-q K q 

H,,(jcop .. ·,jco,,) = " II I cp.q(kl,· .. ,kp+q)(n (jCO,,_q+,)kp")H,,_q./jCOp ... ,jCO,,_q) 
L" (j I co,) q=O 1'=0 k,.k,,,,=O ,=1 

;=1 

(3.11) 
Therefore, the corrected recursive algorithm for the computation of the GFRFs is (3.8 
or 3.11, 3.10, 3.2-3.5). Note that the GFRFs here are asymmetric and the symmetric 
GFRFs can be obtained as 
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all the permutations 
offl.2 •...• n} 

(3.12) 

From the recursive algorithm for the computation of the GFRFs in ((3.8 or 3.11, 
3.10,3.2-3.5)) for model (1.5), it can be seen that the nth-order GFRF is a parameter­
separable polynomial function with respect to the nonlinear parameters in model (1.5). 
For convenience, let 

[ 

p = 0··· m, p + q = m, 1 
C(n,K) = cp.q(kp ... ,kp+q) 2 ~ m ~ n 

k; = 0 .. · K, i = I .. · p + q 

(3.13) 

which includes all the nonlinear parameters from degree 2 to n. Obviously, C(M,K) 

include all the nonlinear parameters involved in model (1.5). 

3.2 Parametric characteristics of the GFRFs 

A fundamental result can be obtained firstly for the parametric characteristic of 
the nth-order GFRF of model (1.5), which provides an important basis for the 
parametric characteristic analysis of the frequency response functions in the following 
studies. 

Proposition 3.1. Consider the GFRFs for model (1.5). There exists a complex 
valued function vector with appropriate dimension[,,(jcop .. ·,jco,,)which is a function 

of jco""',jco,, and the linear parameters in model (1.5), such that 

H,,(jcop .. ·,jco,,) = CE(H,,(jcop ... ,jco,,»). [" (jcop '''' jco,,) (3.14) 
where CE(H" (jco l ,···, jco,,») is the parametric characteristic vector of the nth-order GFRF 
for model (1.5) whose elements include and only include all the nonlinear parameters 
in CO,n and all the parameter monomials in C pq ® C p,q, ® C p,q, ® ... ® C M. for 0 ~ k ~ n - 2 , 

whose subscripts satisfy 
k 

p+q+L(p;+q;)=n+k, 2~p;+q;~n-k, 2~p+q~n-k and I~p~n-k (3.15) 
;=1 

Proof. Equation (3.14) is directly followed from Lemma 2.1 and the 
corresponding discussions in Chapter 2. It can be derived by applying the CE operator 
to Equations (3.2-3.5, 3.8) that 

CE(Hn(jcop ' ",jcolI » = Co.n E9 (~~~ C p.q ®CE(Hn_q.p(-») E9 (~2 Cp.o ® CE(Hn./·») (3.l6a) 

n-p+) I 

CE(HII,pO)= ~ CE(H;O)®CE(H,,_;.I'_'O) or CE(H
n 

0)= nEI) ®CE(H 0) (3.l6b) 
I-I .p rl ... r,=1 ;=1 r, 

LT,.n 
CE(Hn.,O) = CE(HnO» (3.16c) 

Obviously, CO,n is the first term in equation (3.16a). For clarity, consider a simpler 
case that there is only output nonlinearities in (3.l6a), then (3.l6a) is reduced to the 

last term of equation (3.16a), i.e., $ C ,0 ®CE(H" 0) = $ C 0 ® ""€B+
1 

®CE(H 0). 
1'=2 /. .1' 1'=2 p. r,'''r,=1 ;=1 r, 

Lr,=" 

IS 
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Note that "-4+1 
®CE{H (.)}includes all the combinations of (r1,r2, ... ,rp) satisfying 

,.'··Tp=l i=l " 
L T,=::'1I 

p • 

Lr;=n, l;S;r;;S;n-p+l, and 2;S;p;S;n. Moreover, CE(H I O)=l smce there are no 
;=1 

nonlinear parameters in it, and any repetitive combinations have no contribution. 

Hence, n"EB+
1 

®CE{H" o}must include all the possible non-repetitive combinations of 
T1""p=I/=1 

L'i=n 
k 

(r1,r2, ... ,rk) satisfying Lr; = n- p+k , 2;S; r; ;s; n- p+l and 1;S; k;s; p . So does 
;=1 

CE(Hn(jliJp ... ,jliJn)). Each of the subscript combinations corresponds to a monomial of 

the involved nonlinear parameters. Thus, by including the term Cp,o and considering 
the range of each variable (i. e., rj, p, and k), CE( Hn (jliJp '''' jliJn)) must include all the 
possible non-repetitive monomial functions of the nonlinear parameters of the form 

k 

cpo®c"o®c"o®"'®c"o satisfying p+Lr;=n+k, 2;S;r;;s;n-k, 0;S;k;S;n-2 and 
;=1 

2;S;p;S;n-k. 

When the other types of nonlinearities are considered, by extending the results 
above to a more general case such that the nonlinear parameters appear in the 

k 

form C pq ® C
N

/, ® CI',q, ® ... ® c
M

, and the subscripts satisfy p + q + L (p; + q;) = n + k , 
;=1 

2 ;s; p; + q; ;S; n - k, O;S; k ;S; n - 2, 2;S; P + q ;S; n - k and 1;S; p ;S; n - k, the same conclusion 

can be reached. Hence, the proposition is proved. 0 

Remark 3.1. The result in Proposition 3.1 also holds for the NARX model (Jing 
et al 2006). In Proposition 3.1, i,,(jWp''',jw,,) is not a function of CE(H,,(jwp ... ,jwn)) 

and is invariant at a specific point (wp "" w,,) if the linear parameters of model (1.5) 
are fixed. Proposition 3.1 provides for the first time an explicit analytical expression 
for the nth-order GFRF which reveals a straightforward relationship between the 
nonlinear parameters of model (1.5) and the system GFRFs, and is an explicit function 
of the nonlinear parameters at any specific frequency point ( WI"'" OJ" ). Equation (3.14) 

is referred to as the parametric characteristic function of the nth-order GFRF, which is 
denoted by Hn(C(n,K))("" .... ,w.).O 

Remark 3.2. As mentioned above, the CE operator sets up a mapping from::: to 
Pc CT. When applying the CE operator to the GFRFs of model (1), c., =C(M,K), w, = 

{wI''' ',wN } U {cl,o(kl ),CO,I (k l )10 ;s; kl ;s; K} , Pc = kc;' ... c? Ic; E C(M, K),r; E Zo'! = IC(M,K)I} 

and::: = {H"oll;s; n;S; N}. The condition described by (3.15) in Proposition 3.1 provides a 

sufficient and necessary condition on what nonlinear parameters of model (1.5) can 
appear in the nth-order GFRF, and also how parameters determine the GFRF. 

For a better understanding of the parametric characteristic CE(Hn(jwp ... ,jwn») , the 

following properties of CE(H,,(jwl,",jw,,») for the NDE model (1.5) can be obtained, 
based on Proposition 3.1. 
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k • 

Definition 3.1. If a nonlinear parameter monomial Ilc i ' (-) (k>O, I 2: 0) IS an 
Plql 

;=1 

element of CE(H C]'OJ ... ]'OJ ») then it has an independent contribution to 
" l' , 11 , 

HII(JOJp"',jOJII ), and is referred to as a complete monomial of order n (simply as n-

order complete); otherwise, if it is part of an n-order complete monomial, then it is 
referred to as n-order incomplete. 

Obviously, all the elements in CE(HII(JOJp ... ,jOJII ») are n-order complete. 

Property 3.1. The largest nonlinear degree of the nonlinear parameters appearing 
in CE(H,,(JOJp ... ,jOJ,,») is n corresponding to nonlinear parameters cp,q(.) with p+q=n, 
and the n-degree nonlinear parameters of form Cp,q(') (p+q=n) are all n-order 
complete. 

k k 

Proof. In (3.15) when p+q=n, then p+q+~::Cp;+q;)=n+I(p;+q;)=n+k, 
;=1 ;=1 

k 

which further yields I(p; + q;) = k . Note that 2 ~ p; +q; ~ n-k and 0 ~ k ~ n-2, thus 
;=1 

k=Pi=qi=O. Therefore, the property is proved. 0 

Property 3.2. cp,q(.) is j-order incomplete for J>p+q. That is, for a nonlinear 
parameter Cp,q(')' it will appear in all the GFRFs of order larger thanp+q. 

Proof. This property can be seen from the recursive equations (3.16a-c) and can 
also be proved from Proposition 3.1. Suppose cp,q(.) does not appear in 
HII(JOJp"',jOJII ) , where n>p+q. Consider a monomial cp.qC.)c~.o(.)with k=n-p-q. It can 

be verified from Proposition 3.1 that c P.q (.)c;.~p-q C.) is n-order complete. This results in 

a contradiction. 0 

Properties 3.1-3.2 show that only the nonlinear parameters of degree from 2 to n 
have contribution to CE(HII(JOJp ... ,jOJ,J) , and the n-degree nonlinear parameters 

contribute to all the GFRFs of order 2: n. 

Property 3.3. If 2 ~ p; + q;, I ~ k and there is at least one Pi satisfying I ~ p; except 
k 

for k= 1, then c """ (-)c p,q, (-) ... C Pkq, (-) is Z-order complete, where Z = I (P, + q; ) - k + I . 
;=1 

k 

Moreover, Il Cp,q, oarej-order incomplete forJ>Z, and have no effect on the GFRFs of 
;=1 

order less than Z. 0 

The proof of Property 3.3 is given in Section 3.4. Given any monomial 
cM , C')cp,q, (-)"'cp,q, (-), it can be easily determined from Property 3.3 that, to which order 

GFRF the monomial contributes independently. For instance, consider a nonlinear 

parameter C3,2(.), which corresponds to the nonlinear term TI d k

, ~~t)rt d
k

, ~~t) . It 
;=1 dt ;=4 dt 

follows from Property 3.3 that Z=(3+2)-I+I=5. Thus this nonlinear term has an 

17 
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independent contribution to the 5th order GFRF Hs(.) and affects all the GFRFs of 
order larger than 5. Moreover, it has no effect on the GFRFs less than the 5

th 
order. 

k 

Property 3.4. If 1 ~ ri and 1 ~ k , then the elements of CECIl H r, (-) are all Z-order 
;::::1 

k 

complete, where Z = L ri - k + 1, and are all j-order incomplete for J> Z, and have no 
i=1 

effect on the GFRFs of order less than Z. Similarly, the elements of 
~ ~ n Cp,q, (-) ® CE( n H r, (-) ) are all Z-order complete, where 
; .. 1 ; .. 1 

~ k, 

Z = L (Pi + qi ) + L ri - kl - k2 + 1, and are all j-order incomplete for J> Z, and have no 
;=1 ;=1 

effect on the GFRFs of order less than Z. 0 

The proof of Property 3.4 is given in Section 3.4. Obviously, this property is an 
extension of Property 3.3, which shows that some computation by "® " between some 
parameters and the parametric characteristics of some different order GFRFs may 
result in the same parametric characteristic. 

The proof of Property 3.5 is given in Section 3.4. This property, together with 
Property 3.4, provides a simplified approach to the recursive computation of the 
parametric characteristic of the nth-order GFRF in Equations (3.16a-c), which is 
summarized in Corollary 3.1 as follows. 

Corollary 3.1. The parametric characteristic of the nth-order GFRF for model (1.5) 
can be recursively determined as 
CE(H" (jOJ I ,"', jOJ,,» 

"-I{ ("-'1- 1 l l)} { ("-1 )} = Co,,, E9 ~ C,,_q,q Ee ~I C",,! ® Xc (n, p, q, ";'1 jJ Ee C",o Ee ,!2 C ",0 ® Xc (n, p,o,ln;1 ~ 

h LJ ' ak . {CE(H 1 " +10) 
were, IS to t e the mteger part, Xc(n,p,q,~)= CO'''_''_:~I-'! 

positive integer. 

Proof. Using Property 3.5, (3.16a) can be written as (n>l) 

(3.17) 
P~~ 

, and ~ is a 
P>~ 

CE(Hn (jOJp· .. ,jOJn» = co,n Ee (~:~: C ",q ® CE(H n-q-p+1 0») E9 (,,~2 C ",0 ® CE(Hn_p+1 0») (3.18) 

Note from Property 3.4 that some computations in the second and third part of the last 
equation are repetitive. For example, the monomials in 
Cn_2,1 ®CE(Hn-n+2_1+IO)=Cn_2,1 ®CE(H 20) (n>2) are included m 

CI,I ®CE(Hn_IO) u C2,o ® CE(Hn_10) , except the monomials in Cn_
2

,1 ,CO,2 • For this 
reason, (3.18) can be further written as 
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CE(H" (jCtJI ,"', jCtJ,,» 

{ [l,,-q/J 1 [ )} ,,-1 12 ,,-q-I 

= Co." E9 ~ C,,_q.q E9 ~ C P.q ® CE(H,,_q_p+' 0) E9 l ~/J C p.q ® Co.,,_q_p+l) 
'I-I p-I p= " 12 +1 

{ (
l,,+XJ 1 ( ,,-1 )} 

E9 C".o E9 !2 C p.o ® CE(H,,_p+1 (.» E9 p=l"EJ'XJ.I C P.o ® CO.,,_p+1 

This produces Equation (3.17). The proof is completed. 0 

Remark 3.3. Corollary 3.1 provides an alternative recursive way to determine the 
parametric characteristic of the nth-order GFRF. If there are only some nonlinear 
parameters in (3.13) of interest, then Equation (3.17) and all the results above can still 
be used by taking other parameters as 1 if they are nonzero, or as zero if they are zero. 
Therefore, whatever nonlinear parameters (for instance x) are concerned, the 
parametric characteristic function with respect to x denoted by H"(x)(.,. ..... OJ.;C(,,.K)lx) and 

the parametric characteristic CE(H" (jCtJp""jCtJ,,» can all be derived by following the 

same method established above. 0 

The parametric characteristic analysis of this section can not only provide 
guidance to the computation and analysis of the GFRFs, but also demonstrate how the 
parameters of interest affect the GFRFs and consequently provide useful information 
for the system analysis. The following example provides an illustration for this. 

Example 3.1. Consider the parametric characteristics of the following two cases: 
Case 1: Suppose there is only one input nonlinear term CO) "# 0, and all the other 

nonlinear parameters are zero in model (1.5). Then the parametric characteristics of 
the nth-order GFRF can be computed as 

Ifn<3, it follows from Property 3.1 that CE(H,,(jCtJp···,jCtJ,,» =0. 

If n=3, it also follows from Property 3.1 that the parameters in Co.) are all 3-order 

complete. Thus CE(H)(jCtJp .. ·,jCtJ))=CO )' 

If n> 3, it follows from Property 3.2, co.) should be n-order incomplete in this case. 

However, from the Definition 3.1, a complete monomial should have at least one 
p ~ I. Since there are no other nonzero nonlinear parameters, CE(H,,(jCtJp···,jCtJ,,» =0 

for this case. 
Therefore, CE(H,,(jCtJp···,jCtJ,,» =0 for n"# 1 and n"# 3 in Case 1. That is, only 

H,(jCtJ) and H)(jCtJ,,",jCtJ) are nonzero in this case. Obviously, the computation of 
the parametric characteristics can provide guidance to the computation and analysis of 
the GFRFs from this case study. 

Case 2: Suppose only Co.) *" 0 and c2•0 "# 0, and all the other nonlinear parameters 

are zero. Then the parametric characteristics of the GFRFs can be simply determined 
as 

CE(H, (jCtJ,» = 1, CE(H 2 (jCtJp jCtJ2 » = C2,O, CE(H) (jCtJ,,", jCtJ)) = C;,o E9 CO,) 

CE(H4 (jCtJp"',jCtJ4 » = C;,o E9Co,) ®C2,o, CE(Hs (jCtJp'''' jCtJs» = C;,o E9 CO,) ®cto 

CE(H6 (jCtJp"',jCtJ6 » = C~,o E9 Co.) ®C;,o E9Cg,) ®C2,O 
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Especially, if only CO,) is of interest for analysis, then C2,o can be regarded as constant 

1. In this case, the parametric characteristics of the GFRFs can be obtained as 
CE(H1(j{J)I» = CE(H2(j{J)"j{J)2» = 1, CE(H) (j{J),,"', j{J)))) = CO,) 

CE(H 4 (j{J),,"', j{J)4» = CO)' CE(Hs (j{J),,"', j{J)s» = CO,), CE(H 6 (j{J),,'" ,j{J)6» = CO,) EB C;,) 

Note that different parametric characteristics of the GFRFs correspond to different 
polynomial functions with respect to the parameters of interest, which can 
demonstrate how the parameters of interest affect the GFRFs and thus provide some 
useful information for the system analysis. For example, from the parametric 
characteristics in Case 2, it can be seen that the sensitivity of the GFRFs for n<6 with 
respect to CO,) is a constant when C2,o and the linear parameters are constant. This may 
imply that in order to make the system less sensitive to the input nonlinearity with 
coefficient CO,) , it needs only to adjust the parameters in C2,o and the linear 
parameters of model (1.5) to reduce the corresponding constants in Case 2 under 
certain conditions. D 

The parametric characteristic and its properties developed in this section for the 
nth-order GFRF demonstrate what the parametric characteristics of the GFRFs are, 
and how the nonlinear parameters in C(n,K) make contributions to the nth-order 
GFRF. As demonstrated in Example 3.1, these fundamental results can be used to 
reveal how the nonlinear parameters affect the GFRFs and how the frequency 
response functions of model (1.5) are constructed and thus dominated by the model 
parameters which define system nonlinearities. Based on these results, useful results 
can be developed and will be discussed in more details in the following sections and 
chapters. 

Moreover, it should be noted that all the results above developed for the NDE 
model (1.5) also hold for the NARX model (1.6) (ling et al 2006). 

3.3 Parametric characteristics based analysis 

Based on the parametric characteristics of the GFRFs established in the last 
section, many significant results can be obtained. The parametric characteristic 
analysis can provide an important insight into at least the following aspects: 

(a) The system nonlinear effects on the frequency response functions (induding 
the GFRFs and output spectrum) ------ mainly discussed in this section, 
Chapter 4 and Chapter 7; 

(b) The detailed polynomial structure of the frequency response functions -----­
mainly discussed in this section and Chapter 4; 

(c) Computations of the GFRFs and output spectrum ------ mainly discussed in 
Chapter 4 and Chapter 5; 

(d) Understanding of nonlinear behaviour in the frequency domain ------ mainly 
discussed in Chapter 6; 

(e) Analysis and design of system output behaviour by using nonlinearities _____ _ 
mainly discussed in Chapter 9. 

In this section, some of these results are given, and more detailed results will be 
discussed later in the following chapters. 
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3.3.1 Nonlinear effect on the GFRFs from different nonlinear parameters 

The nonlinearities in model (1.5) or model (1.6) can be classified into three 
categories as follows: 

(a) Pure input nonlinearities. This refers to the nonlinear parameters CO,n(.), which 
are the first term in the parametric characteristics in equation (3.17); 

(b) Pure output nonlinearities. This refers to the nonlinear parameters cn,o(.), which 
are the last term in equation (3.17); 

(c) Input-output cross nonlinearities, This refers to the nonlinear parameters Cp,q(')' 
which are the second term in (3.17). 

It is known that different nonlinearity has a different effect on system dynamics. 
Different nonlinear parameters correspond to different degree and category of 
nonlinearities. Hence, the frequency characteristics of frequency response functions 
and the effects of different nonlinear parameters on system output behaviour can be 
revealed by the parametric characteristic analysis of the corresponding frequency 
response functions. Since the GFRFs represent system frequency characteristics, the 
study on the nonlinear effect on the GFRFs from different categories of nonlinearities 
can provide an important insight into the relationship between the system frequency 
characteristics and physical model parameters. In this section, the parametric 
characteristics based analysis is investigated and discussed for the GFRFs in order to 
reveal how different model parameters have their effect on the frequency response 
functions for model (1.5), and therefore affect the system frequency characteristics. In 
what follows, the k+ 1 in monomial C pq ® C p,q, ® C p,q, ® ... ® C M. is referred to as the 

power of the monomial. 

A. Pure input nonlinearities 

As mentioned, this category of nonlinearities correspond to the nonlinear 
parameters of the form CO,q(') with q> 1. If n=q, then from Property 3.1 the parametric 
characteristic of the nth-order GFRF with respect to the parameters in Co is 

.q 

CE(H" (jwl ,"', jw" )k, = cO•q (3.19a) 

and ifn<q, 

CE(H,,(jwp"',jw,,»c = 1 0., (3.19b) 

For n>q, since there is at least one parameter Cp,q(') with p>O for any complete 
monomials (except CO,n(.)) inCE(H,,(jwp ... ,jw,,»co,(.Jrom Proposition 3.1, thus Co,q(Y 

for any p >0 can not be an independent entry inCE(H,,(jwl,···,jw,,»c
o 

(). The largest ., 
power p can only appear in the monomial Co (.)P C •• (.), where C •• (.) is nonzero ,q p ,q P.q , 

satisfies p' ~ 1 and p' + q' ~ 2 and has the smallest p' + q' . In this case, p can be 
computed from Property 3.3 as 

For example, if p' + q' = 2 , then 

p(n,O,q) = 

Therefore, for n>q, 

p(n,O, q) = n-:~~q' 

ll~=:J Il-q 
q:r 

if ;=: is not an integer 

else 
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CE(Hn(jWI'···,jwn)}c
o 
.• =[1 CO,q Co./ ... Co./(n,o,q)] (3.l9c) 

In particular, when all the other nonlinear parameters are zero except for CO,q, then 
(n>I) 

, . {CO,q if q = n 
CE(H,,(]w,,· .. ,]W,,))co = 0 1 ., e se 

(3.l9d) 

It can further be verified that the parametric characteristic CE(H l1 (jw" ... ,jwn»c
o

, is the 

same as (3.19d) even when only all the other categories of nonlinear parameters are 
zero except for the input nonlinearity. 

From the parametric characteristic analysis of the nth-order GFRF for the input 
nonlinearity, it can be concluded that, 

(AI) The parametric characteristic function with respect to the input nonlinearity for 
the nth-order GFRF is a polynomial of the largest degree p(n,O,q) , i.e., 

H n (CO,q )(jOJ1, ... ,j"";C(n,K)IC,,.,) = [1 CO,q Co,q 2 ••• Co,q p(n,o,q)]. In (jWI ,"', jwn; C(n, K) \ CO,q) 

where In (jw,,"', jwn; C(n, K) \ CO,q) is an appropriate function vector. 

(A2) The largest power for the input nonlinearity of an independent contribution in 
CE(Hn(jw,,"',jw

l1
)) is I, which corresponds to the nonlinear parameters in CO,n. 

(A3) For comparison with the other categories of nonlinearities, considering the 
individual effect of pure input nonlinearity when there are no other categories of 
nonlinearities, i.e" output nonlinearity and input-output cross nonlinearity, it 
can be seen from (3.19d) that the input nonlinearities have no auto-crossing 
effects on system dynamics. That is, each degree of the input nonlinearities has 
an independent contribution to the corresponding order GFRF and the largest 
power of a complete monomial from input nonlinearities is 1, i.e., the nth-order 
GFRF is simply Hn(jwl"",jwn) = CO,q' In(jw1,"',jwn) from Proposition 3.1. 
Obviously, if CO,n=O, there will be no contribution from the input nonlinearities 
in the nth-order GFRF. It will be seen that these demonstrate a quite different 
property for the input nonlinearity from other categories of nonlinearities. 

It is known that a difficulty in the analysis of Volterra systems is that the Volterra 
kernel functions in the time domain usually interact with each order due to the 
crossing nonlinear effects from different nonlinearities, and so are the GFRFs in the 
frequency domain. From the discussions above, this difficulty does not hold for the 
case that there are only input nonlinearities, e.g., for the class of Volterra systems 
studied in Kotsios (1997). The parametric characteristic analysis for the input 
nonlinearities can also make light on the selection of different parameters for the 
energy transfer filter design in Billings and Lang (2002). 

B. Pure output nonlinearities 

This category of nonlinearities correspond to the nonlinear parameters of the form 
cp,o(.) with p> 1. If n=p, then from Property 3.1 

CE(Hl1 (jOJ" .. ·,jOJl1 »C
pO 

= cp,o 

If n<p, also from Property 3.1 
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CE(H,,(jwl,.·,jw,,))c = I (3.20b) 
p.O 

These are similar to the input nonlinearity. If n>p, then from Properties 3.1-3.3 
C 1'.0 will contribute to all the GFRFs of order lager than p. From Property 3, c 1'.0 (y for 

p >0 is a complete monomial for the Zth-order GFRFs where z = (p -l)p + I . For the 

nth-order GFRF with n>p, the largest power p can be computed from Property 3.3 as 

pen, p,O) = l;~\ J 
Thus, for n>p, 

)) [I C C 2 ... C p(n.p.O)] 
CE(Hn(jwp .. ·,jwn C

p
•o = 1'.0 1'.0 1'.0 

(3.20c) 

Consider the particular case where all nonlinear parameters are zero except the 
parameters in Cp,o, then for n> 1 

. .... = {o if P > n or ~:: is not an integer 
CE(H" (jwp , fW" ))('P.. C p(lI.p.O) else 

1',0 

(3.20d) 

However, when all other nonlinear parameters are zero except output nonlinear 
parameters, the parametric characteristic CE(HII(jwp· .. ,jwll)),P" for n>p is the same as 

(3.20c). 

From the parametric characteristic analysis of the nth-order GFRF for the pure 
output nonlinearity, it can be concluded that, 

(B 1) The parametric characteristic function with respect to the output nonlinearity for 
the nth-order GFRF is a polynomial of the largest degree pen, p,O) , i.e., 

Hn (C p.o)Uw" .... ;w,;C(n.K)IC
p

•
o

) = [I cp.o Cp,o 2 ••• C p/(n,p.o)]. In (jWI , •• ·,jwn ;C(n, K) \ C 1'.0) 

whereln(jwp· .. ,jwn;C(n,K)\Cp.o) is an appropriate function vector. Note that 

p(n,p,O) ~ p(n,O,q) , which may imply that for the same nonlinear degree, output 
nonlinearity has a larger effect on the system than input nonlinearity. 

(B2) The largest power for the output nonlinear parameter C 1'.0 of an independent 

contribution in CE(HII (jwp'''' jw,J) is pen, p,O) , which corresponds to the n-order 
complete monomial Cp/(II,P.O) . However, the largest power for the output 

nonlinearity of a complete monomial inCE(HII(jwp"',jwll )) is k, corresponding 

to the monomial C p,.O ® C 1',,0 ® ... ® C 1',.0' where k = PI + ... + Pk + 1- n. This is quite 

different with the input nonlinearity. 

(B3) Considering the individual effect of pure output nonlinearity when there are no 
other categories of nonlinearities, i.e., input nonlinearity and input-output cross 
nonlinearity, it can be seen from (3 .20c) that the output nonlinearities have auto­
crossing nonlinear effects on system dynamics. That is, different degree of 
output nonlinearities can form a complete monomial in the nth-order GFRF and 
the largest power of this kind of complete monomials from output nonlinearities 
is k as mentioned in (B2). Obviously, ifthe degree-n nonlinear parameter Cn,o=O, 
there are still contributions from the output nonlinearities in the nth-order GFRF 
if there are other nonzero output nonlinear parameters of degree less than n. 
These may imply that output nonlinearity has more complicated and larger 
effect on the system than input nonlinearity of the same order, which shows a 
property different from that of the input nonlinearity as mentioned in (A3). 
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(B4) It can be seen from (3.20c-d) that C P.O will contribute independently to the 
GFRFs whose orders are (P-l)i+l for i=I,2,3, .... It is known that for a Volterra 
system, the system nonlinear dynamics is usually dominated by the first several 
order GFRFs (Taylor 1999, Boyd and Chua 1985). This implies that the nonlinear 
terms with coefficient Cp.o of smaller nonlinear degree, e.g., 2 and 3, take much 
greater roles in the GFRFs than other pure output nonlinearities. This property is 
significant for the design of nonlinear feedback controller design, where a 
desired degree of nonlinearity should be determined for control objectives (Jing 
et a12006a, Van Moer et aI2001). This will be further discussed in Chapter 9. 

C. Input-output cross nonlinearities 

This category of nonlinearities corresponds to the nonlinear parameters of the 
form Cp,q(') with p ~ 1 and q ~ 1. It can be verified that the parametric characteristics of 
the GFRFs with respect to such nonlinearities are very similar to those for the pure 
output nonlinearities as shown in B, and the conclusions held for the output 
nonlinearity still hold for the input-output cross nonlinearity. Thus the detailed 
discussions are omitted here. For a summary, the following parametric characteristics 
hold for both of these two categories of nonlinearities 

CE(Hn(jOJp ... ,jOJII»c = {l[ 2 
1" ICC 

P.q p.q 

where,n>l, p(n,p,q)=lp:;~J, p~l and p+q~2. 

if n < p+q 

C p(lI.p.q) ] else 
P.q 

(3.21) 

A difference between the input-output cross nonlinearity and the pure output 
nonlinearity may be that the output nonlinearity can be relatively easily realized by a 
nonlinear state or output feedback control in practice. 

Remark 3.4. Based on the parametric characteristic of the nth-order GFRF with 
respect to nonlinear parameters in Cp,q, the sensitivity of the GFRFs with respect to 
these nonlinear parameters can also be studied. From Proposition 3.1, the sensitivity 
of HII (jOJp '''' jOJII ) with respect to a specific nonlinear parameter C can be computed as 

oHn(c)(w, ..... "'.;C(M,K.n)lc) _ oHn(jOJp .. ·,jOJn) _ oCE(Hn(jOJp .. ·,jOJn» !, ( . ') (322) 
Oc - OC - OC . n JOJI' .. ·,jOJn • 

Thus, the sensitivity of the nth-order GFRF with respect to any nonlinear parameter 
C=Cp.q(.) with p~l and p+q~2 can be obtained from (3.21) as: 

oH n (c)(w, ... ,.",.;C(K.n)lc) = [0 1 2 .,. ( ) p(n,p,q)-I].!,- ( . •••. • C(K ) \ ) (3 23) Oc rep n,p,q C n JOJI' ,jOJn, ,n C • 

where J.,(jOJp ... ,jOJ
l1
;C(K, n) \ c) is an appropriate function vector defined in Proposition 

3.1. Obviously, the sensitivity to a specific parameter is still an analytical polynomial 
function of the nonlinear parameter. From the parametric characteristics in (3.19-3.21), 
it can be concluded that the sensitivity of the nth-order GFRF with respect to an input 
nonlinear parameter must be zero or constant when there are no other category of 
nonlinearities. However, this can only happen to the output nonlinear parameters and 
input-output cross nonlinear parameters if the nonlinear degree of the parameter of 
interest is n. Otherwise, the sensitivity function with respect to an output or an input­
output cross nonlinear parameter is still an analytical polynomial function of the 
parameter of interest and some other nonzero parameters. 
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3.4 Proofs 

• Proof of Property 3.3 
From Proposition 3.1, CE(H z 0) includes all non-repetitive monomial functions of 

the nonlinear parameters in model (1.5) of the form C pq ® C M, ® C p,q, ® ... ® C p,q, ' 

k' 

where the subscripts satisfy P + q + L (Pi + qj) = Z + k' , 2 ~ Pi + q; ~ Z - k' , 0 ~ k' ~ Z - 2 , 
;=1 

2 ~ P + q ~ Z - k' , and noting 1 ~ P ~ Z - k', thus ~Cp,q, is included incE(Hz ('»' Moreover, 
k+x 

substitute k by k+x, where x>O is an integer, then Z' = L (Pi + q;) - k - x + 1 , which 
;=1 

x x 

further yields z'-z=L(p;+q;)-x. Note that 2~p;+qi' thus Z'-Z~L2-x=x. 
~ ~ 

Therefore, ® C must appear in CE(H, (j (01'" " j (0 . ») for J> Z and but must not appear in 
1=1 p,q, }} 

the GFRFs of order less thanj. This completes the proof. 0 

• Proof of Property 3.4 
From Proposition 3.1, any element Cp,,9, OCp"q, O"'cp", ,q", 0 in CE( H r, 0) with rj> 1 

satisfy 
k" 

ri = L (Pi + qJ - k" + 1 
;=1 

Note that if rj= 1, then CE( H r, (-) )= 1. In this case, suppose (p; + q; ) = 1 for consistence. 

Therefore, 
kkk" kkk" k 

Lr; -k + 1 = (LL(p) + q)- Lk" +k)-k + 1 = LL(p) +q)- Lk" + 1 = Z . 
;=1 ;=1 )=1 ;=1 ;=1 )=1 ;=1 

This proves the first part of this property. The second part follows from the first part 
and Property 3.3. 0 

• Proof of Property 3.5 
A different proof was given in Proposition 3 of ling et al (2006), but here presents 

a more concise proof based on the properties developed in Section 3.2. Applying the 
CE operator to Equation (3.5), it can be obtained that 

CE(Hn,p(JoVoo,jOJn »)= r,n~+~1 ~CE(Hr, 0)= CE(H n-p+1 O)ffi(",n~=I~CE(Hr, 0)1 
~>. =n ~:>, =n 'j 

From Property 3.4, it follows that all the elements in 'EB' ®CE{H 0) should be Z-
,.o'.Tp ;::1 j::;:l " 

L,,=n 
p 

order complete, where Z = L r; - P + 1 = n - P + 1 . This completes the proof. 0 
;=1 

3.5 Summary 

The parametric characteristic analysis proposed in Chapter 2 has been used in this 
Chapter for the study of the GFRFs of nonlinear Volterra systems described by model 
(1.5) or model (1.6). Fundamental and significant results have been established for the 
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parametric characteristics of the GFRFs of the nonlinear systems. The method has 
been shownd to be of great significance in understanding the system's frequency 
response functions. As mentioned in Section 3.3, the significance has at least five 
aspects, some of which have been demonstrated in this chapter and more will be 
discussed later. 

From the results of this Chapter, it can be seen that, the parametric characteristics 
of the GFRFs can explicitly reveal the relationship between the time domain model 
parameters and the GFRFs and therefore provide a useful insight into the analysis and 
design of nonlinear systems in the frequency domain. By using the parametric 
characteristic analysis, system nonlinear frequency domain characteristics can be 
studied in terms of the time domain model parameters which define system 
nonlinearities, and the dependence of the frequency response functions of nonlinear 
systems on model parameters can be revealed. As it has been shown, the analytical 
relationship between system output spectrum and model parameters can be 
determined explicitly, and the nonlinear effect on the system output frequency 
response from different nonlinearities can be unveiled. This will facilitate the study of 
nonlinear behaviours in the frequency domain and unveil the effects of different 
categories of system nonlinearities on the output frequency response. These will be 
further studied in the following chapters. It will be seen that, all these results provide a 
novel approach to the frequency domain analysis of nonlinear systems, which may be 
difficult to be addressed before. 

26 



Chapter 4 Parametric characteristic analysis for system output spectrum 

Chapter 4 
PARAMETRIC CHARACTERISTIC ANALYSIS FOR 

SYSTEM OUTPUT SPECTRUM 

The parametric characteristics of system output spectrum of model (1.5) are 
studied firstly, especially with respect to specific nonlinear parameters of interest. 
Then, a systematic frequency domain method based on the parametric characteristic 
analysis results, referred to as the parametric characteristics based output spectrum 
analysis, is established and discussed in detail for nonlinear Volterra systems 
described by model (1.5) or model (1.6). 

4.1 Parametric characteristics of system output spectrum 

The system output spectrum of model (1.1) can be described as (Lang and Billings 
1996): 

N 

Y{jOJ) = LYn{jOJ) 
n=1 

when subject to a general input u(t), in (4.1) 

Yn{jOJ) = Fn 1 J Hn{jOJI,··,jOJn):rlU{jOJ;)dCTw 
n (27r y-I '"t +"'+w.=w ;=1 

When the input is a specific multi-tone function described by (1.3), i.e., 
if 

u(t) = L IF; I cos(OJ;f + LF;) 
;=1 

in (4.1) 

where 

{
IF lelLI.; if OJ E {OJt , k = ± I,··· ,±K} 

F(OJ) = I 

o else 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

Definition 4.1. A function y(h;s) is homogeneous of degree d with respect to h if 
y(ch;s)=cdy(h;s), where c is a constant, s denotes the independent variables ofy(.), and 
h may be a parameter or a function of certain variables and parameters. 

The detailed properties of the functions and variables in Definition 4.1 are not 
necessarily considered here. The definition of a homogeneous function can also be 
referred to Rugh (1981). From Definition 4.1, it can be verified that Equation (4.2) 
and Equation (4.3) are both I-degree homogeneous with respect to the nth-order 
GFRF H"O. From this definition, the following lemma is obvious. 

Lemma 4.1. If y(h;sJ) is a homogeneous function of degree d, and h(.) is a 
separable function with respect to parameter x whose parametric characteristic 
function can be written as h(x)=g(X}/{S2)' then y(h;sJ) is a separable function with 
respect to x and its parametric characteristic function can be written as y(x)s 
=g(x) /d'iij{S2);SJ), where SJ denotes the un-separable or un-interested parameters or 
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variables in h(.), S2 denotes some variables iny(.),[y(f(s2);SI) is an appropriate function 
vector, and g(xidJ is the d times reduced kronecker product of g(x). 

From Proposition 3.1, Lemma 4.1 and Equations (4.1-4.2), the following result 
can be obtained for a homogeneous function Y(Hn(.); s) of degree d, where Hn(.) is the 
nth-order GFRF of model (1.5). 

Proposition 4.1. Yn(H,,(jOJp ... ,jOJn) ;OJp"',OJn) is a homogeneous function of degree 

d with respect to the nth-order GFRF Hn(jOJW.,jOJn) of (1.5). Then 

Yn( H,,(jOJI, ... ,jOJn) ; OJP"',OJ,,) is a separable function with respect to the nonlinear 
parameters in (3.13), whose parametric characteristic function can be described by 

Yn(C(M,K) "" ..... "'. =CE( H,,(jOJp ... ,jOJn) )idJ Y" (f,,(jOJp···,jOJ,,); OJp"',OJn ) (4.5) 

The sensitivity of the homogeneous function with respect to a specific parameter c is 

8Y.(C(M,K»"" ..... .,. _ 8CE(Hn(jOJp ···,jOJ.»[d] . Y (I. ( . .... ). ...) (4.6) 
----.-::.!.:.....:.::.!!.. - • • JOJp ,jOJn ,OJp ,OJn 

8c 8c 
where Y" (fn(jOJp···,jOJ,,); OJP"',OJ,,) is an appropriate function vector, and when d=1 

Y" (f,,( jOJI, "', jOJ,,); OJp···,OJ,,)= Y" (f,,( jOJI ,"', jOJ,,); OJp""OJn ) (4.7) 
Proof. The results are straightforward from Proposition 3.1, Lemma 4.1 and 
Equations (4.1-4.2).0 

The following result can be concluded directly from Proposition 4.1 for the output 
spectrum of model (1.5). 

Corollary 4.1. The output frequency response functionY(jOJ) in (4.1) for model 
(1.5) is separable with respect to the nonlinear parameters in (3.13), whose parametric 
characteristic function can be described by 

N 

Y(C(M,K»., = LCE(H.(-».Y.(fnO;jOJ) (4.8a) 
n=1 

and whose parametric characteristic is 
N 

CE(Y(jOJ» = E9 CE(HnO) (4.8b) 
n=1 

!he sensitivity of the output frequency response with respect to a specific parameter c 
IS 

8Y~~OJ) = t 8CE~~.(-» . Y. (f. O;jOJ) (4.9) 

where, if the input is a general function, then OJ = OJI + ... + OJ" , 

Yn (fn (·);jOJ) = Yn (fn (jOJp···,jOJn);jOJ) = ..r;; I .-1 J i. (jOJp '''' jOJ.)TIU(jOJ;)dO'w (4.10) 
n(27r) w,+'''+w.=w ;=1 

if the input is the multi-tone function given in (1.3), then OJ = OJk, + ... + OJk• ' 

Y.(f. O;jOJ) = Yn (fn (jOJk , , .. ·,jOJk• );jOJ) = 2In Li.(jOJk, , .. ·,jOJk• )F(OJk, )· .. F(OJk.) (4.11) 
lIJJq +."+1t1,," =W 

o 
From these results, it is noted that the system output spectrum can also be 

expressed by a polynomial function of the nonlinear parameters in C(M,K) based on 
the parametric characteristics of the GFRFs, and the detailed structure of this 
polynomial function with respect to any parameters of interest is completely 
determined by its parametric characteristic. Therefore, how the nonlinear parameters 
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affect the system output spectrum can be studied through the parametric characteristic 
analysis as discussed in Chapter 3. 

Remark 4.1. Note that CE(H"O) can be derived from the system model 

parameters according to the results developed in Chapter 3. Given a specific system 
described by model (1.5) or model (1.6), Y(C(M,K)., can be obtained by the FFT ofthe 

time domain output data from simulations or experiments at frequency m . 
Therefore, Y"(j,,O;jm) for n=I, ... ,N can be obtained by the Least Square method as 

mentioned in Remark 2.1. And then Yn(C(n,K)).,~.,.+ ... +.," = CE(HnO)·Yn(fnO;jm) for 

n=I, ... ,N and the sensitivity Equations (4.6, 4.8) can all be obtained. This provides a 
numerical method to compute the output spectrum and its each order component 
which are now determined as analytical polynomial functions of any interested 
nonlinear parameters. Thus the analysis and design of the output performance of 
nonlinear systems can now be conducted in terms of these model parameters. 
Compared with the direct computation by using (3.8 or 3.11, 3.10, 3.2-3.5) and (4.1-
4.3), the computational complexity is reduced. And compared with the results in Lang 
et al 2007, the parametric characteristic analysis of this study provides an explicit 
analytical expression for the relationship between system output spectrum and model 
parameters with detailed polynomial structure up to any order and each order output 
spectrum component can also be determined. Moreover, let 

CE(H,,(·))· Y"(j,,O;jOJ) (4 12) 
G,,(C(M,K,n)OJ~"'+"'+OJ. = I" . 

f IT U{JOJ; )dCT OJ 

.r;;(27rr-
1 "'+"'+OJ"~OJ ;=1 

This is the parametric characteristic function of the nth-order nonlinear output 
frequency response function defined in Lang and Billings (2005), which can be used 
for the fault diagnosis of engineering systems and structures. 0 

4.1.1 Parametric characteristics with respect to some specific parameters in Cp,q 

As discussed before, the parametric characteristic vector CE(H" 0) for all the 

model nonlinear parameters can be obtained according to Proposition 3.1 or (3.17) in 
Corollary 3.1, and if there are only some parameters of interest, the computation can 
be conducted by only replacing other nonzero parameters with I. In many cases, only 
several specific model parameters, for example parameters in Cp,q, are of interest for 
the analysis of a specific nonlinear system. Thus, the computation of the parametric 
characteristic vector in (3.17) and (4.8) can be simplified greatly. This section 
provides some useful results for the computation of parametric characteristics with 
respect to one or more specific parameters in Cp,q, which can effectively facilitate the 
determination of the OFRF and the analysis based on the OFRF that will be discussed 
later. 

Let 

8(p) = {~ , an pos(x) = if p = 0 d {I if x > 0 
else 0 else 

(4.13) 

Proposition 4.2. Consider only the nonlinear parameter Cp,q=c. The parametric 
characteristic vector of the nth-order GFRF with respect to the parameter c is 
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CE(H" (jw,,"', jw.» = [1 , 
where L·Jis to get the integer part of(.). 0 

l "-I J 1 - -6(p)·pos(lI-q) 
2 p+q-I e··· e (4.14) 

The Proof of Proposition 4.2 is given in Section 4.4. Note that here C may be one 
parameter or a vector of some parameters of the same nonlinear degree and type in 
Cpq. Also note that en = e ® ... e ® e and ® is the reduced Kronecker product defined in 

'-v-----' 
n 

Chapter 2, when C is a vector. Proposition 4.2 establishes a very useful result to study 
the effects on the output frequency response from a specific nonlinear degree and type 
of nonlinear parameters. Note also that if some other nonlinear parameters in model 
(1.5) or (1.6) are zero, only part terms in (4.14) take an effective role. The detailed 
form of CE(H"(jm,,"',jm,,» can be derived from Proposition 3.1 or (3.17) in Corollary 
3.1. However, a direct use of equation (4.14) does not affect the final result. 

Corollary 4.2. If all the other nonlinear parameters are zero except Cp,q=c. Then 
the parametric characteristic vector of the nth-order GFRF with respect to the 
parameter C is: if (n>p+q and p>O), or (n=p+q), and if additionally P:~~I is an integer, 
then 

else 

,,-1 

CE(H" (jml ,···, jm,,» = e P
+
q-1 

CE(HII(jmp"',jmll » = 0 

which can be summarized as 

CE(HII(jm" ... ,jmll»=eP:~~1 .o( n-l -l n-l J).(l-O(p)pos(n- q») (4.15) 
p+q-l p+q-l 

Proof. The results are directly followed from Propositions 3.1 and 4.2. 0 

Corollary 4.2 provides a more special case of nonlinear Volterra systems 
described by (1.5) or (1.6). There are only several nonlinear parameters of the same 
nonlinear type and degree in the considered system. This result will be demonstrated 
in the simulation studies in Section 4.3. The following results can be obtained for the 
output frequency response. 

Proposition 4.3. Consider only the nonlinear parameter Cp,q=c. The parametric 
characteristic vector of the output spectrum in (4.1) with respect to the parameter c 
can be written as 

CE(Y(jm» = I~I CE(HJ» = [1 e e2 ... )p~;~J6(P)JH"(N-q)6(:,;~,-lp~;~J ] (4.16) 

Then there exists a complex valued function vector F(jmp .. ·,jmll;C(M,K)\e) with 
appropriate dimension such that 

Y(e)",;C(M.K)lc = CE(Y(jm» -F(jm,,"', jm,,; C(M, K) \ e) (4.17) 
If all the other nonlinear parameters are zero except that Cp,q=c'# 0 (p+q> 1). Then the 
parametric characteristic vector of the output spectrum in (4.1) with respect to the 
parameter C is: if p=O 

CE(Y(jm» = 1 E9 CE(Hq(.».(l- pos(q- N» = [1 e·(l- pos(q- N»] (4.18) 
else 
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l N~+q_d [2 lN~+q-dl 
CE(Y(jm» = i¥o CE(H(p+q_I)/+IO) = 1 C C ... C (4.19) 

o 

The proof of Proposition 4.3 is given in Section 4.4. From Corollary 4.2 and 
Proposition 4.3, it can be seen that different nonlinearities will result in a quite 
different polynomial structure for the output spectrum, and thus affect the system 
output frequency response in a different way. By using the results established above, 
the effect from different nonlinearities on system output frequency characteristics can 
now be studied. This will be further studied in the following sections. 

Moreover, the results above involve the computation of cn. If c is an I-dimension 
vector, there will be many repetitive terms involved in cn. To simplify the 
computation, the following lemma can be used. 

Lemma 4.2. Let be c=[cJ,c2, ... ,cd which can also be denoted by c[I:I], and 
cn = C ® c··· ® c, "®" is the reduced Kronecker product defined in ling et al (2006), 

'-----v----' 
n 

n ~ 1 and I ~ 1 . Then 
c" = k/-I . Cp ···, C"-I [s(1)" - sCi)" + 1 : s(1),,]· Ci ,.··, C,,-I [s(1),,]· C1 ] 

I 

where s(i)n = LS(j)n-1 , s(.»)=I, and 1::;, i::;, I. Moreover, DIM(c") = S(1)"+I' and the 
j=; 

location of ct in cn is s(l)n+l-s(i)n+I+1. 0 

The Proof of Lemma 4.2 is given in Section 4.4. 

4.1.2 An example 

To illustrate the results above and introduce the basic idea of the parametric 
characteristics based output spectrum analysis that will be discussed in the next 
section, an example study is given in this section. Consider a nonlinear system, 

alx = -a2x - aJx - clx
J 

- C2X2 
X - cJx

J + bu(t) (4.20) 
which is a simple case of model (1.5) with M=3, K=2, c

lO
(2) = a

l 
, c

lO
(1) = a

J 
, 

c lO (0) = a2 , c JO (111) = CI , c JO (11 0) = c2 ' c JO (000) = c J ' COl (0) = -b, all other parameters are 
zero. The GFRFs for system (4.20) can be computed according to Equations (3.8 or 
3.11, 3.10, 3.2-3.5). In the following, the parametric characteristics of the GFRFs for 
system (4.20) are discussed firstly. As will be seen, the parametric characteristics of 
the GFRFs provide a useful guidance to the analysis and computation of system 
frequency response functions. 

When all the other nonlinear parameters are zero except Cp,q, it can be obtained 
from Corollary 4.2 that the parametric characteristic of the nth-order GFRF with 
respect to Cp,q is 

CE(H,,(jmp .•• , jm,,» = Cp,q P:~~I .o[ n -1 -l n -1 J). (1- o(p)pos(n - q») (4.21) 
p+q-l p+q-l 

For system (4.20), note that aI, a2, a3 and b are all linear parameters, and the nonzero 
nonlinear parameters are CJO = [cJO (000) c JO (11 0) c JO (111)] = [c

J 
c

2 
c

l 
]. Hence, 
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CE(H,,(jw,,···,jw,,)) = c3,o' = [c3 C2 cJ for n=2i+l, i=I,2,3, ... , 

else CE(Hn(jw" .. ·,jw,,)) = o. (4.22) 
It is easy to compute from (4.22) as follows: 
For n=3, CE(H 3 (jw,,"', jw3)) = [c3 c2 cll; 

Forn=5, CE(Hs(jwl, .. ,jws)) = [c3 c2 cl l
2

=[c3 c2 cll®[c3 c2 cil 

=[ C3 
2 

,C3C2,C3Cl ,C2
2 

,C2Cl ,CI
2
]; 

Forn=7, CE(H7 (jw" ... ,jW7 ))=[c3 c2 clr =[c3 c2 cll®[c3 c2 cll®[c3 c2 cil 
3 2 2 2 2 3 2 2 3] =[ C3 ,C3 C2,C3 Cl,C3C2 ,C3C2Cl,C3Cl ,C2 ,C2 CJ,C2Cl ,Cl 

From Proposition 3.1, there must exist a complex valued function vector 
J;,(jw,,· .. ,jwn)with appropriate dimension, such that for n= 2i+ I, i=I,2,3, ... , 

else 
H n(c"cZ'c3)(0Jr,'''''''.) = [c3 Cz cJ ·in(jw",,·,jwn) 

H,,(C I ,C2 ,C3 )(0Jr"",0J.) = o. 

(4.23) 

When there is only one parameter for example Cl is of interest for analysis, the 
parametric characteristic can be obtained by simply letting C3,O= Cl in (4.22), i.e., the 
parametric characteristic vector is: for n=2i+ 1 and i=I,2,3, ... 

CE(H"(jw,, .. ·,jwn)) =[1 ci Cl
2 

... c/] (4.24) 
else 

CE(H" (jw,,''', jw,,)) = 0 (4.25) 
Thus the parametric characteristic function with respect to the parameter Cl is: for 
n=2i+l and i=I,2,3, ... 

(4.26) 

else 
(4.27) 

where, in(jw,,· .. ,jwll ;c2 ,C3) is a complex valued function vector with appropriate 
dimension. The sensitivity of the nth-order GFRFs for n=2i+ 1 and i= 1,2,3,. .. with 
respect to the parameter Cl can also be obtained as 

(4.28) 

Consider the output spectrum of system (4.20). From Proposition 4.3, 
IN-~J IN-~J . 

CE(X(jw)) = $ CE(H2i+I O) = $ c30 ' 
1=0 1=0 

(4.29) 

Suppose the output function of interest is 
• ·3 • 2 3 (430) y=a2x+aJx-c l x -c2x x-c3x . 

It will be shown in Chapter 8 that 
CE(Y(jw)) = CE(X(jw)) (4.31) 

Then from Proposition 4.3, the parametric characteristic function for the output 
frequency response Y(jw) of system (4.20) with respect to nonlinear parameters Cl, C2 
and C3 is 

IN-~J 
Y(cpC2 ,C3 )", = IC30

i 
'Y;(/;O;jw) 

;=0 

(4.32) 
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For convenience, consider a much simpler case. Let C2=C3=0, then C30 = c3o (lll) = c,. 

Therefore the parametric characteristic function in this simple case is 

Y(c,)., = Yo(fo 0; ja» + c, . 1'; (.t; (.);ja» + ... + C,lN-~J. YlN-~J(flN-~JO;ja» 
= [I c,'" C,lN-~JHYo(foO;ja» 1'; (.t; 0; ja» ... >i.N-~J(jlN-~JO;ja»l' 

(4.33) 

As mentioned in Remark 2.1 and Remark 4.1, 
[Yo (foO; ja» 1'; (.t; O;ja» ... YlN-~J(flN-~JO;ja»f can be computed by a numerical 

method for a specific input u(t) and at a specific frequencya>. The idea is to obtain 
IN -~J + 1 system output frequency responses from IN -~J + 1 simulations or 

experimental tests on the system (4.20) under IN -~J + 1 different values of the 

nonlinear parameter c! and the same input u(t), then yielding 
Y(ja»o 1 c,(O) ... C,(O)lN-~J Yo(foO;ja» 

Hence, 

Y(ja» , c,(l) c,(l) 1';(.t;O;ja» 

Yo (foO;ja» 

1'; (.t; O;ja» 
c,(O) 

c, (1) 

C,(lN'-~) 

C,(O}N-~J 
c, (1) 

~ _~)lN-~J c,( 2 

-, 
Y(ja»o 

Y(ja» , 

Y(ja»lN-~J 

(4.34) 

(4.35) 

Then equation (4.33) is determined explicitly, which is an analytical function of 
the nonlinear parameter C!. The system output frequency response can therefore be 
analyzed and optimized in terms of the nonlinear parameters. And also from (4.33), 
the sensitivity of the system output frequency response with respect to the nonlinear 
parameter, and the nonlinear output frequency response function defined in (4.12) can 
both be studied. For more complicated cases, a similar process can be followed to 
conduct a required analysis and design in terms of multiple nonlinear parameters for 
model (1.5). Compared with the previous results in Lang et al (2007), since the 
detailed polynomial structure for the output spectrum up to any order can explicitly be 
determined, this can greatly reduce the simulation amount needed in the numerical 
method when multiple parameters are considered. 

4.2 The parametric characteristics based output spectrum analysis 

For more clarity, (4.8a) can be simply rewritten as 
Y(ja» = lfI' <fJ(ja»T (4.36) 

N 

where lfI = (J) CE(H .(-», <fJ(ja» = [¢, (ja» ¢2 (ja» ... ¢N (ja»]. Note that (Mja» = H, (ja» 
n=} 

is the first order GFRF, which represents the linear part of model (1.5) or (1.6), and 
¢1I(Ja» = Y,,(fIlO;ja». 

As discussed before, Equation (4.8) or (436) provide a more straightforward 
analytical expression for the relationship between system time-domain model 
parameters and system output frequency response. By using this explicit relationship, 
the system output frequency response can therefore be analyzed in terms of any model 
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parameters of interest. Hence, it can considerably facilitate the analysis and design of 
the output frequency response characteristics of nonlinear Volterra systems in the 
frequency domain. As demonstrated in Section 4.1.2, the main idea for the parametric 
characteristics based output spectrum analysis proposed in this Chapter is that, given 
the model of a nonlinear system in the form of model (1.5) or (1.6), CE(H II (·)) can be 
computed according to Proposition 3.1 or Corollary 3.1, and IPII(jm) can be obtained 
according to a numerical method which is mentioned before and will be discussed in 
more detail later, thus the OFRF (Lang et al 2007) of the nonlinear system subject to 
any specific input function can be obtained, which is an analytical function of 
nonlinear parameters of system model, and finally frequency domain analysis for the 
nonlinear system can be conducted in terms of the specific model parameters of 
interest. 

In this section, the parametric characteristics based output spectrum analysis for a 
Volterra system described by (1.5) or (1.6) is discussed in general in Section 4.2.1. In 
order to conduct the parametric characteristics based output spectrum analysis, a 
general procedure is provided in Section 4.2.2, where several basic algorithms and 
related results are discussed. 

4.2.1 A new frequency domain method 

The parametric characteristics based output spectrum analysis for Volterra 
systems described by (1.5) or (1.6) is totally a new frequency domain method for 
nonlinear analysis. The most noticeable advantage of this method is that any system 
model parameters of interest can be directly related to the interested engineering 
analysis and design objective which is dependent on system output frequency 
response, and thus the system output frequency response can be analysed in terms of 
some model parameters of interest in an easily-manipulated manner. This method 
does not restrict to a specific input signal and can be used for a considerable larger 
class of nonlinear systems. These are the main differences of this method from the 
other existing methods such as Popov-theory based analysis, describing functions and 
harmonic balance methods as discussed in Chapter 1. 

One important step of this method is to determine the OFRF for the system under 
study. This will be discussed in more detailed in the following section. Once the 
system OFRF is obtained, based on the result in Proposition 4.3 and Equation (4.36), 
the output frequency response function with respect to a specific parameter C can be 
written as 

Y(jm) = <po(jm) + c<p, (jm) + c 2 ~2 (Jm) + ... + c'~I(jm) +... (4.37a) 
Since Y(jm) is also a function of c, therefore, (14a) is rewritten more clearly as 

Y(jm; c) = <po(jm) + c<p, (jm) + C2~2 (jm) + ... + c'~,(jm) +... (4.37b) 
Y(jm;c) is in fact a series of an infinite order, f is a positive integer which can be 
determined by Proposition 4.3, <Pi(jm) is the complex valued function corresponding 
to the coefficient ci in Equation (4.36). If all the other degree and type of nonlinear 
parameters are zero except that Cp,q=c*O (p+q>l), then <Pi+,(jm)=lPi(jm) (lPi(jm) is 
defined in Equations (4.8), (4.10)-(4.11), and (4.36». Based on Equations (4.37ab), 
the following analysis can be conducted. 

• Sensitivity of the output frequency response to nonlinear parameters 
Based on Equations (4.37ab), this can be obtained easily as 
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oY(j'Q)' e) - -. t-.- . 
--"'--.:...' ~ = 'P. (jOJ) + 2e'P2 (jOJ) + ... + ee 'Pt(}OJ) + ... 

oe 
(4.38) 

Similarly, the sensitivity of the magnitude of the output frequency response with 
respect to the nonlinear parameters can also be derived. Note that 

!Y(jOJ;ef = Y(jOJ;e)Y(- jOJ;e) 

= (fPo (jOJ) + eqi., (jOJ) + e2rp2 (jOJ) + .. ·)(rpo (- jOJ) + erp. (- jOJ) + e2rp2 (- jOJ) + ... ) 

= rpo ·rpo· + ~(eltqJ; .rpL;)= Po + ep. + e2 
P2 + ... + e2l 

P2l + ... (4.39) 

It is obvious that the spectral density of the output frequency response is still a 
polynomial function of the parameter c. Equation (4.39) can also be directly derived 
by following Process C that will be discussed later. Thus, the sensitivity of the 
magnitude of the output spectrum to the parameter c can be obtained as 

o!Y(jOJ;e)1 = 1 °IY(jOJ;e)1
2 

= 1 Ii:(ee t-. frp .rpL.») (4.40a) 
oe 2IY(jOJ; e)1 oe 2IY(jOJ; e) t=. ;=0 I I 

Given (4.38), (4.40a) can also be computed as 

0IY(jOJ;e)l_ 1 0IY(jOJ;et _ 1 (oY(jOJ;e)y(_ .. ) Y(' . )OY(-jOJ;e») - - I I jOJ,e + jOJ,e 
oe 2IY(jOJ; e)1 oe 2 Y(jOJ; e) oe oe 

= m(oY(jOJ;e) . Y( - jOJ;e» 
oe IY(jOJ;e)1 

(4.40b) 
The sensitivity function for system output spectrum with respect to a nonlinear 

parameter provides a useful insight into the effect on system output performance of 
specific model parameters. This will be illustrated in Section 4.3. Another possible 
application of the sensitivity function is vibration suppression. In many engineering 
practice, the effect of vibrations should be considerably suppressed. From equations 
(4.40ab), it can be seen that if Y(jOJ,e) represents the spectrum of a vibration, in order 

to suppress the vibration, it should be ensure that °IY(jOJ;e)1 < 0 for some c. Consider 
oe 

Equation (4.39), the following conclusion is obvious. 
0IY(jOJ;e)1 n 

( a) < 0 for some c => 3some n > 0, L sign( en-. )rp; . rpn'-; < 0 
oe ;=0 

(b) - - th· 0 h h °IY(jOJ;e)1 1: Pl= Re('Po(jOJ)·'P.(-jOJ»<o=> ere eXlsts & > suc tat <0 lor 
oe 

0< e < & or -& < e < o. Where sign(x) = , ReO lS to get the real part of (.). If a {
I x~O . 

-1 else 

nonlinear parameter c satisfies PI=Re(rpo(jOJ)·rp.(-jOJ» <0, then it can be utilized for 
the vibration suppression objective. 

• Evaluation of the radius of convergence for the output frequency response 
with respect to nonlinear parameters 

It is followed from (4.37ab) that the radius of convergence is given by 

R = Iimlrpt-. (jOJ)1 
l->oo ({Je(jOJ) 

Obviously, if Icl<R, then the series is convergent. Define a Ratio Function 
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R(l;c) = IfPt-, (!OJ)c I (4.42) 
'Pt(jOJ)c 

which is a function of l and also varies with different nonlinear parameters. It can be 
seen that, if 

t.R(l;c,) > t.R(l;c2 ) (4.43) 
M M 

then the output spectrum has a larger radius of convergence with respect to Cl than 
that with respect to C2. Equation (4.42) and inequality (4.43) can be used as an 
evaluation of the effect on the convergence of the Volterra series expansion for the 
nonlinear system under study from a model parameter and the comparative advantage 
between different parameters. Note that divergence of the Volterra series expansion 
can sometimes imply the instability of the system under study or the nonexistence of a 
Volterra series expansion. Thus this analysis can provide some useful information for 
the design of system output frequency response in terms of different model 
parameters. 

• Optimization of the output frequency response in terms of nonlinear 
parameters 

Given a desired magnitude of the output frequency response Y·, an optimal c· in 
asc can be found such that 

mincIY(jOJ; c)l- Y·) 
ceOSr: 

(4.44) 

A systematic method for this purpose is yet to be developed, which will be discussed 
in the future study. 

4.2.2 Determination of the OFRF based on its parametric characteristics 

As mentioned before, an important step for output spectrum analysis based on the 
parametric characteristics is to obtain the parametric characteristic function of system 
output spectrum, which is referred to as the OFRF in Lang et al (2007). In this section, 
a general procedure for the determination of the OFRF for a given model (1.5) or (1.6) 
is proposed, and useful algorithms and techniques are provided. 

4.2.2.1 Computation of the parametric characteristics of OFRF 

N 

This step is to derive If/ = ~ CE(HJ» in (4.36). 
n=l 

• Determination of the largest order N 

To derive the parametric characteristics of OFRF, the first task is to compute the 
largest order, i.e., N, of the Volterra series expansion for the nonlinear system, which 
is basically determined by the significance of the truncation error in the Volterra 
series expansion of finite order. This can alternatively be done by evaluating the 
magnitude of the nth-order output frequency response Yn(jOJ). For example, the 

magnitude bound of Yn(jOJ) for the NARX model (1.6) can be evaluated by (Jing et al 
2007) 

IYn(jOJ)I::; an ·bn . Ii;' (4.45) 
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where all' Ii II are complex valued functions, and bll is a function vector of the system 

model parameters. For the detailed definitions for all' bll,li ll refer to Jing et al (2007). If 
the magnitude bound of a certain order of Y,,(jm) is less than a predefined value (for 
instance 10-8), then the largest order N is obtained. It should be noted that the 
magnitude bound is a function of the model nonlinear parameters, therefore, the 
largest ranges of interest for each nonlinear parameter should be considered in the 
evaluation of 1y,,(jm)l. 

• Determination of the parametric characteristics 

Once the largest order N is determined, the next step is to derive the parametric 
characteristics ofGFRFs for the nonlinear system, i.e., CE(HnO) from n=2 to N, which 

N 

will be used in the computation of '1/ = $ CE(HnO). Note that CE(HIIO) is computed in 
n=l 

terms of the parameter vectors Cp,q =[cp,q(O,. .. ,O),cp,q(O, .. "l), ... ,cp,q(~)] for some 
I'+q 

p,q in (3.17). 

Basically, for some specific parameters to be analysed for a system, CE(HIIO) can 
be recursively computed by Equation (3.17) with respect to these parameters of 
interest with other nonzero nonlinear parameters being 1. Alternatively, CE(HII (·)) can 
also be determined directly without recursive computations by using the results in 
Proposition 3 ,I. Based on Proposition 3.1, the parametric characteristic CE(HII (,)) can 
be obtained as follows, which is referred to as Process A: for 0 ~ k ~ n - 2, 

k 

(AI) Generate all the combinations (ro, r), r2 ... , rk) satisfying ro + Ir; =n+k and 
;=1 

2 ~ r; ~ n - k with respect to a specific value of k; 
(A2) Generate all the possible combinations (Pi,qi) with respect to each ri 

satisfying Pi+qi = rj, and note that when it is for ro, 1 ~ Po ~ n - k ; 

(A3) All the possible combinations can now be generated based on Step (AI) and 
(A2), then remove all the repetitive terms; 

(A4) CE(HIIO) is obtained in terms of the parameter vectors Cp,q for some p,q, 

which can be stored for any future usage. For a specific nonlinear system, 
CE(HII (0)) can be obtained only by replacing the corresponding parameter 
vector Cf',q of interest with respect to the specific nonlinear system, and the 

other parameters in CE(HIIO) are set to be zero ifit is zero or set to be I ifit 
is not of interest; 

(AS) Achieve the final result by manipulating CE(HIIO) according to the operation 
rules of" $ " and" ® " (See Chapter 2), and removing the repetitive terms. 

By this process, the parametric characteristic CE(HIIO) can be obtained without 
recursive computations. For a summary, the parametric characteristic vector 

N 

'1/ =!I CE(HnO) can be computed by following the process below, which is referred to 

as Process B: 

(B I) Determine the set of the nonlinear parameters of interest, denoted by Sc; 
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(B2) Determine the largest possible ranges for the nonlinear parameters of 
interest, denoted byasc ; 

(B3) Determine the largest order N of the Volterra series expansion according to 
(4.4S) and the discussions there. 

(B4) Computation of CE(H"O) with respect to the parameters Sc of interest 
following Process A or Equation (3.17) from n=2 to N. 

N 

(BS) Combine the final parametric characteristic vectorfJ/ = ~I CE(HnC-)). 

Therefore, based on Process A and Process B, the parametric characteristics of the 
output frequency response with respect to any specific model parameters of interest, 
which are the coefficients of the polynomial function (4.36), can be determined. Thus 
the structure of the polynomial (4.36) is explicitly determined at this stage. Note that, 
the parametric characteristic vector CE(H" (.)) for all the model nonlinear parameters in 
(3.13) can be obtained according to (3.17) or Process A, and if there are only some 
parameters of interest, the computation can be conducted by only replacing other 
nonzero parameters with 1 as mentioned above. 

4.2.2.2 A numerical method 

This step is mainly to determine c'P(JOJ) = [¢I(JOJ) ¢2(JOJ) '" ¢N(JOJ)] in (4.36), then 
the OFRF in (4.36) is obtained consequently. Since the system model is supposed to 

N 

be known, the parametric characteristic vector fJ/ = E9 CE(H nO) is achieved, and note 
n=1 

N 

that c'P(JOJ) is invariant with respect to fJ/ = E9 CE(H nO), thus c'P(JOJ) can be derived with 
n=1 

respect to any a specific input by following a numerical method as follows, which is 
referred to as Process C: 

(Cl) Choose a series of different values of the nonlinear parameters of interest, 
which are properly distributed in asc ' to form a series of vectors fJ/I "'fJ/ pIN)' 

where peN) = 1fJ/1 denotes the dimension of vector fJ/ , such that 
T T T • • 1 

'I' =[fJ/I "'fJ/p(N)] IS non-smgu ar (4.46) 

(C2) Given a frequency OJ where the output frequency response of the nonlinear 
system is to be analysed or designed. Excite the system using the same input 
under different values of the nonlinear parameters fJ/I "'fJ/ pIN) ; collect the time 

domain output yet) for each case, and evaluate the output frequency response 
Y(JOJ)I ···Y(JOJ)P(N) at the frequency OJ by FFT technique. 

(C3) Step 2 yields 

[ 

fJ/I [({JI (JOJ) [Y(JOJ)I 
. T fJ/2 ((J2(JOJ) Y(JOJ) 2 

'I' . c'P{jOJ) = . . . = . 

fJ/ P'(N) ((JP(N;(JOJ) Y(J~)P(N) 
=: YY(JOJ) 

Hence, 

¢N(JOJ)Y c'P(JOJ)T = [¢I (JOJ) ¢2 (jOJ) 

= [({JI (JOJ) ({J2 (JOJ) ({JP(N)(jOJ)f = '1'-1. YY(JOJ) 
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In Step C 1, p(N) different values of the parameter vector 'II in the parameter space 

oSc' such that det(,¥):;; 0 can be obtained by choosing a grid of parameter values of the 

nonlinear parameters of interest properly spanned in oSc , or using a stochastic-based 
searching method or other optimization search methods such as GA to generate a non­
singular matrix'¥ . In practices, it is not difficult to find such a matrix with a proper 
inverse, which will be illustrated in Section 4.3. In Step C2, given the largest order N 
of the system output spectrum, it can be seen that this algorithm needs 
p(N) simulations to obtain p(N) output frequency responses under different parameter 

values. Note from Step C 1 that p(N) = 1'111 = I'~I CE(H" 0)1, which is not only a function of 

the largest order N but also dependent on the number of parameters of interest . This 
implies the simulation burden will become heavier if the number of the parameters of 
interest and the largest order N are becoming larger. In Step C3, since det('¥) :;; 0 , the 

complex valued function vector Cl>(jm) in (4.48) is unique, which implies the result in 
(4.48) can sufficiently approximate their real values if the truncation error incurred by 
the largest order N of the Volterra series is sufficiently small. 

Therefore, by following Process C, the complex valued function vector Cl>(jm) can 
accurately be obtained for the specific input function used in Step C2 and at the given 
frequency m. Consequently, the OFRF (4.36) subject to the specific input function is 
now explicitly determined by following the method discussed above for the nonlinear 
system of interest. Although the function vector Cl>(jm) is obtained by using the 
numerical method above and consequently the obtained OFRF is not an analytical 
function of the frequencies and the input, the achieved relationship between the output 
spectrum and model nonlinear parameters is analytical and explicit for the specific 
input function at the given frequency m. Moreover, note that since CE(H"O) is known, 

and Cl>(jm) = [qJl(jm) qJ2(jm) ... qJN(jm)]is determined, then y,,(jm) =CE(H"O)·qJ,,(jml 

is also determined, which represents the analytical function for the nth-order output 
frequency response of nonlinear systems. 

It shall also be noted that, the proposed method above as demonstrated in this 
section enable the OFRF to be obtained directly in a concise polynomial form as (4.36) 
without the complex integration in the high-dimensional super-plane m = ml + ... + m" 

especially when the nonlinearity order n is high. By using the proposed method above, 
the OFRF can be determined up to a very high order with respect to any specific 
model parameters of interest and any specific input signal at any given frequency. The 
cost may lie in that the new method needs p(N) simulations. 

Once the OFRF is obtained, the analysis and design of nonlinear systems 
described by model (1.5) or (1.6) can be carried out in terms of the model parameters 
of interest which define system nonlinearities and may represent some structural and 
controllable factors of a practical engineering system. For example, the sensitivity of 
system output frequency response with respect to a nonlinear parameter can be 
studied based on the analytical expression (4.36). By using the link between the 
nonlinear terms of interest and the components of a practical engineering system and 
structure, the OFRF may provide a useful insight into the design of nonlinear 
components in the system to achieve a desired output performance. Therefore, the 
OFRF based analysis method provides a novel approach to the analysis and synthesis 
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of a considerably wide class of nonlinear systems subject to any specific input signal 
in the frequency domain. 

4.3 Simulations 

To demonstrate the application of the new frequency domain analysis method 
proposed in this Chapter, a nonlinear spring-damping system is studied as shown in 
Figure 4.1. The system has two nonlinear passive components and one nonlinear 
active unit. The active unit is described by F = c.x2 

X + c2x:e , the output property of the 

spring satisfies F = Kx + C3X
3

, and the damper F = Bx + C4X3
• u(t) is the external input 

force. The system dynamics can be described by 
lr.· K~ B· ·2 . 2 3 ·3 () IviX = - X- X-C.X X-C2XX -C3X -C4X +u t (4.49a) 

Let the output be 
y=Kx (4.49b) 

This may represent a vibration isolator system with nonlinear spring and damping 
characteristics. The task for this case study is to investigate how the nonlinear terms 
included both in passive and active unites affect the output and what the effect might 
be, and thus to provide a useful insight into the design of corresponding nonlinear 
parameters to achieve a desired output frequency response. 

For clarity in discussion, letM = 240, k =16000, and B=296, then (4.49ab) can be 
rewritten as 

240x = -16000x - 296x - c.x 2x - C2Xx 2 
- C3X

3 
- C4X3 + u(t) (4.50a) 

y= 16000x (4.50b) 
(4.50a) is a simple case of the NDE model (1.5) with M =3, k =2, clQ(2) = 240, 

clQ(l)=296 , CIQ(O) = 16000 , c3o (lII)=c4 , c3o (llO)=c. , c30 (lOO)=c2 , c30 (000)=c3 , 

co. (0) = -I , and all the other parameters are zero. Therefore, what is of interest for this 
study is to analyse the effect of the nonlinear terms with coefficients Cl, C2, C3 and C4 
on the system output frequency response. To achieve this objective, the procedure 
proposed in Section 4.2.2 are adopted to derive the OFRF of system (4.50), and the 
results in Section 4.1 will be used for the computation of the parametric characteristic 
of the OFRF with respect to the nonlinear parameters CJ, C2, C3 and C4. Moreover, 
though the method proposed in this paper is suitable for a general input function u(t), 
for convenience in discussion, the input of system (4.50) is considered to be a 
sinusoidal function u(t) = 100sin(S.lt). To illustrate the new results more clearly, first 
only the effect of parameter C2 is considered and it is assumed that Cl=C3=C4=0. Then 
complicated cases where the effect of more than one nonlinear parameters is involved 
will also be investigated. 

4.3.1 Determination of the parametric characteristics of OFRF 

Note that all the parameters of interest belong to C30, and the other degrees of 
nonlinear parameters are all zero. Thus Corollary 4.3 and Proposition 4.3 can be 
utilised directly. Therefore, 
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CE(Hn(jwl> ... ,jwn» = cn~1 .c5( n~l-l n~1 J}(I-c5(3)POS(n»)= cn~1 .c5( n~l-l n~1 J) 

• 2 /p+q-I l N-x,+q-d [ IN-V J 1 
If/=CE(Y(]w»= ~ CE(H(p+q_l)i+IO)= Icc ... c (4.51) 

= [I c c 2 ••• )N-~JJ 

where C=C2. To derive the detailed form for If/ , the largest order N should be 
determined first according to Process B in Section 4.2.2. In order to have a larger 
range in which the parameters can vary, in this case let C2 E (0,108

). The magnitude 

bound ofYn(jw) can then be evaluated as mentioned in Process B. However, for paper 
limitation, the detailed computation is omitted in this case. It can be verified that 
N=23 is enough for use in this case. Therefore, 

[ 
2 l23-~JJ- 2 3 4 5 11] If/ = Icc ... c -[1, C2, C2 , C2 , C2 , C2 , ... , C2 (4.52) 

4.3.2 Determination of CP(jw) for the OFRF 

Following Process C, the matrix 'P = [If/I T ... If/ /f should be constructed first. In this 

case, for any 12 different values of C2, the matrix 'P is a Vandermonde matrix and 
thus non-singular. Note that in many cases, the parameters may be set to be some 
large values and cover a large range. This will make the element values in the matrix 
'P extraordinarily large. Then when the inverse of matrix 'P is computed, there may 
be some computation error involved in Matlab. To overcome this problem, If/ can be 
written as 

l Njj1+q_d [ IN-~J IN-~JJ 
If/= ~ kCE(H(p+q_l)i+IO)lk= I k(clk) k2(clk)2 ... k 2 (clk) 2 (4.53) 

Then equation (4.36) can be written as 

Y(jw;c)=If/·CP(jw)7' =[1 (clk) (clk)2 ... (clk)'IIPI{jw) kIP2(jW) ... ktIP,(jw)f(4.54) 

where f = IN -/iJ Moreover, the range for each parameter can be divided into several 

sub-range, and the final result is the combination of these results obtained for each 

sub-range. In this study, let k= 105
, then c2 = c;{ E [0,1000]. Choose c2 to be the 

following values to construct 'P = [If/I T ···If//f, i.e., 0.1,1,50,65,80,100,150,200,250, 

300,350,400,450,500,550,600,650, 700, 750,800,850,900,950,980,1000. The output 
frequency response 

YY(jw) = ly(jw) I Y(jW)2 ... Y(jw)pJ (4.55) 

of system (4.50) at w = 8.1 radls corresponding to different values of C2 can be obtained 
through FFT of the time-domain output response. Then using (4.54), it can be derived 
from (4.48) that 

cp(jW)T = [IPI(jW) kIP2(jW) ... eIP,(jw)f = ('P7''Pr l 'PT ·YY(jw) (4.56) 

Therefore, the output frequency response function of system (4.50) with respect to 
nonlinear parameter C2 in the case of Cl=C3=C4=0 is obtained as 

Y(jw;c2 ) = (2.060893505718041e+002 -2.402014548824790e+002i) 
+ k- 1 (-5.14248529981906 + 5.3567637231436li) C2 
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+ k-2 (0.08589533966805 - 0.08827649204263i) cl 
+ k-3 (-8.068953639113292e-004 +8.248154776018186e-004i) cl 
+ k-4 (4.598423724418538e-006 -4.686570228695798e-006i) C24 

+ k-5 (-1.679591261850433e-008 +1.708497491564935e-008i) cl 
+ k-6 (4.056287337706451e-Oll -4.120496550333245e-Olli) C26 

+ k-7 (-6.544911009113156e-014 +6.641760366680977e-014i) C27 

+ k-8 (6.976300614229155e-017 -7.073928662624432e-017i) C28 

+ k-9 (-4.713366512185836e-020 +4.776287453573993e-020i) c/ 
+ k- IO(l.827866445826756e-023 -1.851299290299388e-023i) C2 10 

+ k- II (-3.098310700824303e-027 +3. 136656793561425e-027i) C2 11 

Based on this function, (4.39) can be further computed as 
IY(jco;cf = Po + CPt + c2 P2 + ... + cll Pu + ..... . 

=(1.001695593467675e+005)+ k-I (-4.693027791051 078e+003)c2 
+ k-2 (l.32952585824228ge+002)cl+ k-3 (-2.55801250200731)cl 
+ k-4 0.03645314106899c24+ k-5 (-3.968756773045435e-004)c25 

(4.57) 

+ k-6 0.01517275811829c26+... (4.58) 
Note that this is an alternating series and it holds that IPil > IPi+tl and IPil ~ o. Hence 
the series may keep decreasing when c is going larger and within its radius of 
convergence. By following the similar method demonstrated above, the output 
frequency response functions of system (4.50) with respect to nonlinear parameters c(, 
C2, C3 and C4 of different cases can all be obtained, for instance Y(jco;ct ) , Y{jco;c3 ) , and 
Y{jco;c4 ) (The other nonlinear parameters are zero if not appearing in the function). 
The results are shown in Figure 4.2-4.4. 

Figure 4.2 shows that the variation of the magnitude of the output frequency 
response functions with respect to each nonlinear parameter. It can be seen that there 
is a good matching between the theoretical computation results and the simulation 
results to which they have been fitted, and there is also a good match between the 
theoretical computation results and the simulation tests (for parameter C3) which are 
independent of the fitted simulation results. From both Figure 4.2 and Figure 4.3 it 
can also be seen that the system output frequency response is much more sensitive to 
the variation of the nonlinear parameters when they are small. Once the value of a 
nonlinear parameter is sufficient large, then the sensitivity will tend to be zero. From 
the comparison of these four nonlinear terms, it can be concluded that the system 
output frequency response is more sensitive to the variation of the nonlinear 
parameter C4 when the values are small; however when the values of each nonlinear 
parameters are sufficient large, the system output spectrum is more sensitive to the 
nonlinear parameter C2. From Figure 4.4 it can be seen that the convergence of the 
output frequency response functions are all very fast.. It is noted that the ratio 
functions of C2 and C3 go up much faster than that of CI, especially C2. This implies that 
the radius of convergence of the output spectrum corresponding to C2 should be larger. 
Simulation tests verify that the system is still stable when C2= 1017 where the 
magnitude of the output spectrum is 0.0216, while the system may tend to be unstable 
when CI tends to be larger than 108

. 

From the analysis above for the four nonlinear parameters of nonlinear degree 3, 
respectively, it can be seen that 
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o The computed system output spectrum has a larger radius of convergence with 
respect to C2, C3 and C4. 

o The system output spectrum is more sensitive to C4 and less sensitive to C3; 
o If the output spectrum with respect to a nonlinear parameter is an alternating series 

satisfying ip;i > ip;+li and ip;i ~ 0, then the system output spectrum may be reduced 

to zero if additionally the radius of convergence for this parameter is sufficiently 
large. 

o The magnitude of output spectrum decreases with the increase of the values of the 
nonlinear parameters. Thus an introduction of some simple nonlinear terms into a 
linear system may greatly improve the performance of output frequency response, 
and the stability of a nonlinear system is not necessarily deteriorated with 
increasing the values of nonlinear parameters; This also shows that a larger value 
of the parameter for a nonlinear term may not lead to a bad performance of a 
system. 

o For system (4.50), the nonlinear parameters C3 and C4 can be designed to be large 
enough to achieve a sufficiently small transmitted force since they correspond to 
passive elements, and several nonlinear terms in the active part can work together 
to achieve a better performance. 

To demonstrate further the advantage of the OFRF based analysis and to show 
more clearly the effect on the system output spectrum from several nonlinear 
parameters, the OFRF with respect to CI, C2 and C3, i.e., Y(jcu;C.,C 2 ,C3 ) is derived. Let 

C1 E [0,105
], C 2 E [0,6.10 5

], c3 E [0,5 .10 5
], c4=-500, and the largest order N of the output 

spectrum is determined to be 11, then the parametric characteristic can be obtained as 
(c=[C.,C2 ,C3 ]) 

[ 

2 lll-;..;J] _ 2 2 2 3 2 2 2 
If/ = 1 C c··· C 2 -[I,cl,c2,c3,cl ,CIC2,CIC3,C2 ,C2C3,C3 ,CI ,CI C2,CI C3,CIC2 ,CIC2C3, 

32 23433222 2232 2343 C2 ,C2 C3,C2C3 ,C3 ,CI ,CI C2,CI C3,CI C2 ,CI C2C3,CI C3 ,CIC2 ,CIC2 C3,CIC2C3 ,CIC3 ,C2 ,C2 C3, 
2234544323 32232222234 C2 C3 ,C2C3 ,C3 ,CI ,CI C2,CI C3,CI C2 ,CI C2C3,CI C3 ,CI C2 ,CI C2 C3,CI C2C3 ,CI C3 ,CIC2 , 

CIC23C3,CIClc/,CIC2Cl ,CIC3 \C25 ,C2 4C3,clc/,clcl ,C2C3 \C35] (4.59) 

In order to construct the non-singular matrix \f', the series of peN) =55 different 

points C = [C.,C2 'C3 ] in oSc ={ C = [C.,c2 ,cd I C1 E [0,1],c2 E [0,6],c3 E [0,5]} can be obtained 
by using a simple stochastic-based searching method. In simulations, it is noticed that 
is easy to find such a series of points that det(\f') ~ ° . For example, a series of 

points c = [C., c2' c3] are illustrated in Figure 4.5, and it can be obtained in this case that 
det(\f')=0.08608811188201. It can be seen from simulations that it is easy to find a 
non-singular matrix \f' with a proper inverse. 

Then following the same procedure as demonstrated above, the OFRF 
Y(jcu;C.,C 2 ,C3 ) in this case can be obtained. The results are shown in Figure 4.6-4.7. It 
can be seen that 
o By using the OFRF, the output spectrum can be plotted and analyzed under 

different combinations of the nonlinear parameters c), C2 and C3. This provides a 
straightforward understanding of the relationship between system output spectrum 
and model parameters which define nonlinearities. 

o The OFRF varies with different values of CI, C2 and C3. The effect on the output 
spectrum from any two nonlinear terms is not necessarily the simple combination 
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of the contributions from each term respectively. Thus the parameters can be 
analyzed in order to get the best output frequency response performance. The 
OFRF provides a useful basis for this kind of analysis and optimization. 

From the discussions above, it can be concluded that the OFRF based analysis 
provides a novel, effective and useful approach to the analysis and design of nonlinear 
Volterra systems in the frequency domain. 

350 

300 : 

250 

u(t) 

Fig. 4.1 A mechanical system 

Output frequency response fuctions 

----- c1 

* Simulation data 
---c4 

* Simulation data 
.................... c2 

* Simulation data 
---------- c3 

Simulation data 
Simulation tests 

O~--~-----L ____ ~ ____ L-__ ~ ____ -L ____ ~ ____ L-__ ~ 

o 1 2 3 4 5 6 7 8 9 
Nonlinear parameters c1,c2,c3 and c4 x 107 

Fig. 4.2 Output frequency response functions with respect to Cl to C4 respectively 

44 



Chapter 4 Parametric characteristic analysis for system output spectrum 

Sensitivity of OFRF to nonlinear parameters 
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4.4 Proofs 

• Proof of Proposition 4.2 
Regard all other nonlinear parameters as constants or 1. From Proposition 3.1 and 

Propertyes 3.1-3.5 , if p+q>n then the parameter has no contribution to CE(Hl.» , in 
this case CE(Hn(.)=l with respect to this parameter. Similarly, if p+q=n then the 
parameter is an independent contribution in CE(Hn(.), thus CE(Hn(.)=[l c] with 
respect to this parameter in this case. If p+q<n and p>O, then the independent 

contribution in CE(Hn(.) for this parameter should be Jp:~~lj, and the monomials eX 

for 0:::; x < l n -I J are all not independent contributions in CE(Hn(.). Hence 
p+q-I 
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CE( H J» = [I c c' ... ) '::;', j] for this case. The similar result is held for the case 

p+q<n and p=O. However, since there should be at least one p>O in a complete 
monomial, thus in this latter case C

X for any x are not complete, which follows 

CE( H" (.» = [I c c' ... J ;:;~, j-' ]. The parametric characteristic vector for the 

nonlinear parameter c for all the cases above can be summarized into 

CE(H" 0) = 1 e e 2 
... e 1'+'1-1 [ l~J-8(p).poS(,,-q)] 

This completes the proof. 0 

• Proof of Proposition 4.3 
Equation (4.16) is summarized from Equations (3.19-3.21), and when all the other 

parameters are zero except c=cp,q(')' the following equation can also be summarized 
from (3.19-3 .. 21) 

CE(H,,(jOJp ... ,jOJ,,»=eP:~~' .o[ n-I -l n-I J)'(I-O(p)pos(n- q») 
p+q-I p+q-I 

Therefore, it can be shown that 

IN-(P+q-d l N-(p+q_IJ . 
CE(Y(jOJ» = i~ CE(H(p+q_l)i+1 (.» = i~ e' . O(i - Li J). (1- o(p)pos((p + q -l)i + 1-q») 

l N-(p+q_d 
= €a ei . (1- o(p)pos((p + q -l)i + 1- q») 

,~O 

If p=O, 1 - o(p)pos((p + q -l)i + 1 - q) = 1 - pos((q - I)i + 1 - q) , which yields, 
CE(Y(jOJ» = [I e· (I - pos(q - N»] 

else, 1- O(p)pos((p + q -I)i + 1- q) = 1 , which yields 

lNjjJ+CJ-d [ 
CE(Y(jOJ» = i~ CE(H(p+q_l)i+IO) = 1 

This completes the proof. 0 

• Proof of Lemma 4.2 
The lemma is summarized by the following observation. For clarity, let 1=3. 

en =e®e ... ®e 
'---v----' 

n 
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4 3 2 2 3 4 S 4 3 2 2 3 4 S] 
C)C2 C)C2 C3 C)C2 C3 C)C2C3 C)C3 C2 C2 C3 C2 C3 C2 C3 C2C3 C3 

To complete the proof, the complete mathematical induction can be adopted. An 
outline for this proof is given here. Note that 

cn = (en-I. CI,···, cn-I [s(1)n - s(i)n + I: s(1)n]· C;,···, cn-I [s(1)n]· c/ ] 

includes all the non-repetitive terms of form ct'c~2 ···c;' with kl + k2 + ... + k/ = nand 
o ::;; k., k2,.··, k / ::;; n. These terms can be separated into I parts, the ith part of which, i.e., 

cn-I[s(l)n -s(i)n +1: s(l)n]·c;, includes all the non-repetitive terms of degree n which are 
obtained by the parameter Cj timing the components of degree n-l in cn

-) from 
s(1)n - s(i)n + 1 to s(1)n. Assume that the lemma holds for step n. Then for the step n+ 1, 

the ith part of the components in cn
+) must be cn[s(1)n+1 - (s(i)n + ... + s(/)n) + I: s(1)n+I]· C; 

which is cn[s(1)n+1 - s(i)n+1 + 1 : s(1)n+I]· C; . This completes the proof of Lemma 4.2. 0 

4.5 Summary 

The parametric characteristic analysis is performed for the output spectrum of 
Volterra systems described by NDE models or NARX models in this Chapter and 
some fundamental results for the parametric characteristics of system output spectrum 
are established. Based on these results, the parametric characteristic based output 
spectrum analysis for nonlinear Volterra systems is proposed. This method provides a 
novel and effective approach to the analysis and design of nonlinear Volterra systems 
in the frequency domain by using the explicit relationship between the system output 
frequency response and model parameters. The OFRF is characterized by its 
parametric characteristic timing a complex valued frequency dependent function 
vector. Thus in stead of the direct analytical computation of the OFRF, the proposed 
method simplifies the computation of the OFRF by splitting the computation 
procedure into two parts ------ one is the computation of the parametric characteristics 
for the OFRF, which is analytical in the determination of the relationship between the 
output spectrum and model parameters, and simpler to be implemented, and the other 
is the determination of the complex valued frequency dependent function vectors, 
which are obtained by using the Least square method. Some fundamental results, 
techniques, and a general procedure for the determination of the OFRF for a given 
NDE or NARX model subject to any specific input signal are provided. Although the 
proposed method needs p(N) simulation data for the numerical method of Process C, 
and the OFRF obtained by the proposed method is not analytical with respect to the 
input signal and frequency variants at present, the case study for a simple mechanical 
system shows that the OFRF analysis based on its parametric characteristic is a useful 
approach to the analysis and design of nonlinear Volterra systems in the frequency 
domain. 
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Chapter 5 
MAPPING FROM PARAMETRIC CHARACTERISTICS 

TOTHEGFRFS 

Based on the parametric characteristic of the nth-order GFRF (Generalised 
Frequency Response Function) for nonlinear systems described by an NDE (nonlinear 
differential equation) model, a mapping function from the parametric characteristics 
to the GFRFs is established, by which the nth-order GFRF can directly be written into 
a more straightforward and meaningful form in terms of the first order GFRF, i.e., an 
n-degree polynomial function of the first order GFRF. The new expression has no 
recursive relationship between different order GFRFs, and demonstrates some new 
properties of the GFRFs which can explicitly unveil the linear and nonlinear factors 
included in the GFRFs, and reveal clearly the relationship between the nth-order 
GFRF and its parametric characteristic, and also the relationship between the nth­
order GFRF and the first order GFRF. The new results provide a useful insight into 
the frequency domain analysis and design of nonlinear systems based on the GFRFs. 

5.1 Introduction 

As discussed in Chapter 1, frequency domain methods for nonlinear systems have 
been studied for many years (Taylor 1999, Solomou 2002, Pavlov 2007). The 
frequency domain theory for nonlinear Volterra systems was initiated by the concept 
of the GFRF (George 1959). Thereafter, many significant results relating to the 
estimation and computation of the GFRFs and analysis of output frequency response 
for practical nonlinear systems have been developed (Bendat 1990, Billings and Lang 
1996, Chua and Ng 1979, Jing et al 2007). 

To compute the GFRFs of nonlinear systems, Bedrosian and Rice (1971) 
introduced the "harmonic probing" method. By applying the probing method (Rugh 
1981), algorithms to compute the GFRFs for nonlinear Volterra systems described by 
the NDE model and NARX model were derived, which enable the nth-order GFRF to 
be recursively obtained in terms of the coefficients of the governing NARX or NDE 
model (Peyton-Jones and Billings 1989, Billings and Peyton-Jones 1990, Chen and 
Billings 1989). Based on the GFRFs, frequency response characteristics of nonlinear 
systems can then be investigated (Peyton Jones and Billings 1990, Vue et al 2005). 
These results are important extensions of the well known frequency domain methods 
for linear systems such as transfer function or Bode diagram, and provide a method to 
the analysis of nonlinear systems in the frequency domain. 

Although these progresses have been made and the GFRFs of nonlinear systems 
described by NARX models and NDE models can be determined effectively, it can be 
seen that the existing recursive algorithms for the computations of the GFRFs and 
system output spectrum can not explicitly and simply reveal the analytical relationship 
between system time domain model parameters and system frequency response 
functions in a clear and straightforward manner. Therefore, many problems remain 
unsolved, such as how the frequency response functions are influenced by the 
parameters of the underlying system, and the connection to complex non-linear 
behaviours, etc. In order to solve these problems, the parametric characteristics of the 
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GFRFs were studied in Chapter 2 and Chapter 3, which effectively build up a 
mapping from the GFRF to its parametric characteristic and provide an explicit 
expression for the analytical relationship between the GFRFs and system time-domain 
model parameters. The significance of the parametric characteristic analysis of the 
nth-order GFRF is that it can clearly reveal what model parameters contribute to and 
how these parameters affect system frequency response functions including the 
GFRFs and output frequency response function. This provides an effective approach 
to the analysis of the frequency domain characteristics of nonlinear systems in terms 
of system time domain model parameters. 

The study in this chapter is based on the results in Chapter 3. It is shown in 
Chapter 3 and Chapter 4 that the nth-order GFRF and output spectrum of a nonlinear 
Volterra system can both be written as an explicit and straightforward polynomial 
function in terms of nonlinear model parameters, and this polynomial function is 
characterized by its parametric characteristic with its coefficients being complex 
valued functions of frequencies and dependent on the system linear characteristics and 
input (for output spectrum). Note that, the parametric characteristics can be 
analytically determined by the results in Chapter 3. The focus in this study is to 
analytically determine the complex valued functions related to the parametric 
characteristics. An inverse mapping function from the parametric characteristics of the 
GFRFs to the GFRFs is studied. By using this new mapping function, the nth-order 
GFRF can directly be recovered from its parametric characteristic as an n-degree 
polynomial function of the first order GFRF, revealing an explicit analytical 
relationship between the higher order GFRFs and the system linear frequency 
response function. Compared with the existing recursive algorithm for the 
computation of the GFRFs, the new mapping function enables the nth-order GFRF to 
be explicitly expressed in a more straightforward and meaningful way. Note from 
previous results that the higher order GFRFs are recursively dependent on the lower 
order GFRFs. This recursive relationship often complicates the qualitative analysis 
and understanding of system frequency characteristics. The new results can 
effectively overcome this problem, and unveil the system's linear and nonlinear 
factors included in the nth-order GFRF more clearly. This provides a useful insight 
into the frequency domain analysis and design of nonlinear systems based on the 
GFRFs, and can be regarded as an important extension of the parametric characteristic 
theory established in previous chapters. Several examples are given to illustrate these 
results. 

5.1.1 Some notations for this chapter 

Some notations are listed here especially for readers' convenience in 
understanding of the discussions in this Chapter, although some of these notations 
have already appeared in previous chapters and will also be used in the following 
chapters. 

C p,q (k),···, k p+q) 

H,,(jOJ),···,jOJ,,) 

A model parameter in the NDE model, ki is the order of the 
derivative, p represents the order of the involved output 
nonlinearity, q is the order of the involved input nonlinearity, 
andp+q is the nonlinear degree of the parameter. 

The nth-order GFRF 
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C p,q = [c p,q (0"" ,0), C p,q (0"" ,1),"', C p,q (~)] A parameter vector consisting of all the 
p+q=m 

nonlinear parameters of the form cp,q(kp ... ,kp+q ) 

CE(.) The coefficient extraction operator (Chapter 2) 
CE(HI/(jOJ,,"',jOJ,,» The parametric characteristics of the nth-order GFRF 

/,,(jOJ1,''',jOJI/) The correlative function of CE(H,,(jOJp .. ·,jOJn » 
® The reduced Kronecker product defined in the CE operator 
E9 The reduced vectorized summation defined in the CE operator 
Cpo,qo OCM, O'''Cp"q, 0 A monomial consisting of nonlinear parameters 

sx,sx, '"sx
p 

Ap-partition ofa monomial Cpo,qo OCp"q, O"'cp"q, 0 

sx, A monomial of Xi parameters of {cpo,qo O, .. ·,cp"q, O} of the 

involved monomial, 0 S X; S k, and so=1 

({'n : Seen) ~ SJ(n) A new mapping function from the parametric characteristics to 

the correlative functions, Se (n) is the set of all the monomials 

in the parametric characteristics and S J (n) is the set of all the 

involved correlative functions in the nth order GFRF. 
The order of the GFRF where the monomial sx(s) is generated 

The maximum eigenvalue of the frequency characteristic matrix 

0" of the nth-order GFRF 

5.2 The nth-order GFRF and its parametric characteristic 

In this chapter, consider nonlinear Volterra systems described by the NDE model 
in (1.5), similar results can be extended to the NARX model (1.6). For convenience, 
some basic results are restated in this section as follows. 

Using the definitions in (3.10), i.e., 

Ho,oO = I, Hl/,oO = 0 for n>O, HI/,/) = 0 for n<p, and DO = {~ 
The nth-order GFRF for (1.5) can be written as (3.11), i.e" 

q = O,p > I 

q = O,p S I 
(5.1) 

I ""-'1 K 'I 

H,,(jOJp"',jOJ,,) = " LL L cp,q(kp .. "kp+<J)(IT (jOJ,,_q+,/P+< )H"_q,p(jOJp .. ,,jOJ,,_q) 
L,,(jL OJ;) '1=0 p=O*,,*p.,=o ;=1 

(5,2) 
The parametric characteristic of the nth-order GFRF can be simply computed as (See 
Corollary 3.1 for details) 

CE(Hn(jOJp .. ·,jOJI/» = co,n E9(~:~: Cp,q ®CE(Hn_q_p+I(-»)E9(~2 cp,o ®CE(Hn_p+I('») (5.3) 

Moreover, CE(HI/(jOJ,,"',jOJ,,») can also be determined by following the results in 
Proposition 3.1, which allows the direct determination of the parameter characteristic 
vector of the nth-order GFRF without recursive computations and provides a 
sufficient and necessary condition for which nonlinear parameters and how these 
parameters are included in CE(H"(jOJ,, ... ,jOJ,,») , 

Based on the parametric characteristic analysis in Chapter 2 and Chapter 3, the 
nth-order GFRF can be expressed as 
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H,,(jml'···,jm,,) = CE(H" (jml"", jm,,»)' !" (jml"", jm,,) (5.4) 
where !,,(jml'···,jm,,) is a complex valued function vector with an appropriate 
dimension, which is referred to as the correlative function of the parametric 
characteristic CE(H,,(jml'···,jm,,») in this study. 

Equation (5.4) provides an explicit expression for the analytical relationship 
between the GFRFs and the system time-domain model parameters. Based on these 
results, system nonlinear characteristics can be studied in the frequency domain from 
novel perspectives including frequency characteristics of system output frequency 
response, nonlinear effect from specific nonlinear parameters, and parametric 
sensitivity analysis etc as demonstrated in the previous chapters. In this chapter , an 
algorithm is provided to explicitly determine the correlative function !',(jml'···,jm,,) in 
(5.4) directly in terms of the first order GFRF H,(jm,) based on the parametric 
characteristic vector CE(H" (jml'''', jm,,»). To achieve this objective, a mapping from 
CE(H"(jm,, .. ·,jm,,») to H,,(jm,,···,jm,,) is established such that the nth-order GFRF can 
directly be written into the parametric characteristic function (5.4) in an analytical 
form by using this mapping function, and some new properties of the GFRFs are 
developed. These results are an extension of the previous established parametric 
characteristic theory and allow higher order GFRFs and, consequently, the OFRF to 
be analytically expressed as a functional of the system linear FRF (i.e., the first order 
GFRF). These provide a new advance for the frequency domain analysis of nonlinear 
Volterra systems. 

5.3 Mapping from the parametric characteristic to the nth-order GFRF 

The parametric characteristic vector CE(H"(jm,, ... ,jm,,») of the nth-order GFRF can 
be recursively determined by equation (5.3), which has elements of the form 
Cp,q ®C/H, ®Cp"q, ® .. ·®Cp"q, (n-2 ~ k ~ 0), and each element of which has a 

corresponding complex valued correlative function in vector !,,(jm,,"·,jm,,). For 

example, co,n(k" .. ·,k,,) corresponds to the complex valued function (jm,)*' "'(jm,,)*' in 
the nth-order GFRF. 

From Proposition 3.1, an element in CE(H"(jm,, .. ·,jm,,») is either a single 
parameter coming from pure input nonlinearity such as con(.), or a nonlinear parameter 
monomial function of the form C ® C ® C ® ... ® C satisfying (3.15), and p,q p"q, p"q, p"q, 

the first parameter of C ® C ® C ® ... ® C must come from pure output p,q 1', ,q, p, ,q, 1', ,q, 

nonlinearity or input-output cross nonlinearity, i, e., cpq(.) with p ~ I and p+q> 1. For 
this reason, the following definition is given. 

Definition 5.1. A parameter monomial of the form C ®c ®C ® .. ·®C with 
p.q PI.q. P'l,Q2 PI; ,ql; 

k~ 0 and p+q> 1 is said to be effective or an effective combination of the involved 
nonlinear parameters for CE(H"(jm,, ... ,jm,,») if p+q=n(>I) for k=0, or (3.15) is 
satisfied for k>O. 0 

From Definition 5.1, it is obvious that all the monomials in CE(H"(jm,, ... ,jm,,») are 
effective combinations. The following lemma shows further that what an effective 

53 



PhD dissertation: Frequency Domain Theory of Nonlinear Volterra Systems 

monomial should be in certain order GFRF and how it is generated in this order 
GFRF. 

Lemma 5.1. For a monomial Cpo,q, OcM , O"'cp"q, 0 with k>O, the following 

statements hold: 
(1) it is effective for the Zh -order GFRF if and only if there is at least one 

k 

parameter Cpi,q;{.) withpi>O, where Z= L(Pi +qi)-k. 
i=O 

(2) if there are I different parameters with Pi>O, then there are I different cases in 
which this monomial is produced by the recursive computation of the zth -order 
GFRF. 

Proof. (1) This is directly from Definition 5.1. Z can be computed according to 
k k 

Lemma 1, i. e., Po + qo + L (Pi + qi) = Z + k, which yields Z= L (Pi + qi) - k. (2) From 
;=1 ;=0 

the second and third terms in the recursive algorithm of Equation (3.8), i.e., 
,,-1 ,,-q K q 

LL L cp,q(kp ... ,kp+q)(O (jm,,_q+;)kp+, )H,,_q,p(jmp .. ·,jm,,_q) 
q=1 p=1 k"k p+q =0 ;=1 

(5.5) 
" K 

+ L LCp,o(kp ... ,kp)H",/jmp ... ,jm,,) 
p=2 k"kp=O 

it can be seen that all the nonlinear parameters with p>O and p+q ~ n are involved in 
the nth-order GFRF, and each of these parameters must correspond to the initial 
parameter in an effective monomial of CE(H,,(jmp ... ,jm,,»). Hence, if there are I 
different parameters with Pi>O in the monomial C po.q, Oc M, (-) ... C p, .q, (-), then there will 

be I different cases in which this monomial is produced in the Zth order GFRF. This 
completes the proof. 0 

Definition 5.2. A (p,q)-partition of H,,(jmp .. ·,jm,,) IS a combination 
p 

H, (w, )H, (w, ) .. ·H, (w, ) satisfying" r, = n-q, where 1 ~ ri ~ n- p-q+ 1, and w, is a 
I I 1 2 p p L...J ' 

;=1 

p 

set consisting of ri different frequency variables such that U w" = {ml , m2 ,"', mil} and 
i=1 

For example, HI(ml)HI(mz}H3(m3· .. ms)and HI(ml)H2(m2,m3)H2(m4,mS)are two (3,0)­
partitions of Hs(jmp .. ·,jms). 

Definition 5.3. A p-partition of an effective monomial C (-) .. ·c (.) is a 
PI·ql PI;,ql; 

combination s x Sx ••• s ,where s is a monomial of XI' parameters in {c (.) ... C (.)} 
I 2 Xp X, PI.ql ' 'Pk.ql; , 

o ~ Xi ~ k, so= 1, and each non-unitary s x, is an effective monomial satisfying 

The sub-monomial s x in a p-partition of an effective monomial cO," C 0 is 
, A~ ~~ 

denoted by sx, (cM , 0 .. · C p"q, 0) . Suppose that a p-partition for 1 is still 1, i.e., !..J;.:J = 1 . 
p 
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Obviously cp,.q, O'··cp,.q. (-) = s'" s'" ,,,s"p (cp,.q, O"·cp •. q• 0) = si. cp,.q, O",cp •. q• 0 ). For 

example, SI (C1•1 0)S2 (C2.1 (,)c3•0 0) and S2 (C1•1 OC2.1 O)SI (c3•0 (.» are two 2-partitions of 

C1•1 (')C2•1 (,)c3•0 0 . Moreover, note that when So appear in a p-partition of a monomial, it 

means that there is a RI(.) which appears in the corresponding (p,q)-partition for Ro(.). 

For an effective monomial cp.qOcp,.q, O",cp,.q, 0 in CE(H,, (jOJp''', jOJ,,») , without 

speciality, suppose the first parameter cp.qO is directly generated in the recursive 

computation of H" (jOJp '''' jOJ,,) , then the other parameters must be generated from the 
lower order GFRFs that are involved in the recursive computation of H,,(jOJp .. ·,jOJ,,). 

From Equations (3.1-3.5) it can be seen that each parameter in a monomial 
corresponds to a certain order GFRF from which it is generated. The following lemma 
shows how a monomial is generated in H,,(jOJp .. ·,jOJ,,) by using the new concepts 
defined above. This provides an important insight into the mapping from a monomial 
to its correlative function. 

Lemma 5.2. If a monomial cp.qOcp,.q, O·"cp,.q, 0 is effective, and cp.qO is the initial 

parameter directly generated in the xth-order GFRF and p>O, then 
(1) cp,.q, O,,,cp,.q, 0 comes from (p,q)-partitions of the xth-order GFRF, where x= 

k 

p+q+ L(p; +q;)-k; 
;~I 

(2) if additionally So is supposed to be generated from H I(.), then each p-partition 
of Cp"'11 (-)·"cp,.q, (-) corresponds to a (p,q)-partition of the xth-order GFRF, and 

each (p,q)-partition of the xth-order GFRF produces at least one p-partition for 
Cp,.q, O,,,cp,.q, 0; 

(3) the correlative function of Cp,.q, (-)·"cp,.'1, (-) is the summation of the correlative 

functions from all the (p,q)-partitions of the xth-order GFRF which produces 
Cp,.q, (-)"·cp,.,,, (-), and therefore is the summation of the correlative functions 

corresponding to all the p-partition of Cp,.q, (-)"'cp"q, (-). 

Proof. See Section 5.5 for the proof. 0 

Remark 5.1. From Lemma 5.2, it can be seen that all the (p,q)-partitions of the 
xth-order GFRF which produce C (-) .. ·c (-) are all the (p q)-partitions 

Pl,ql Pk.qk ' 

corresponding to all the p-partitions for C (·) .. ·c (.). Therefore to obtain all the 
PI,Ql Pk.ql.: ' 

(p,q)-partitions of interest, all the p-partitions for C O"·C (-) is needed to be 
Pl,q] Pk,qk 

determined. 0 

Based on the results above, in order to determine the mapping between a 
parameter monomial C (·)c (·)· .. C (.) and its correlative function in!, (J'OJ ... J'OJ ) 

p,q P.,q] Pk.qk " 1" ", 

the following operator is defined. 

Definition 5.4. Let Sc(n) be a set composed of all the elements 
incE(H,,(jOJp ... ,jOJ,,»), and let Sf(n) be a set of the complex-valued functions of the 

frequency variables jOJp .. "jOJ". Then define a mapping 
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such that in WI , ••• , WI/ 

H;ym (jwp···,jwn) =-;!r 

o 
all the permutations 
of {1,2, ... ,l/j 

(5.6a) 

(5.6b) 

That is, by usmg the mapping function above, an asymmetric GFRF can be 
obtained as 

HI/(jwl ,.· ·,jwn) = CE(Hn(jwI ,. .. , jWn»)· fIJn(CE(HI/(jwl , ... ,jwn»)) 

The existence of this mapping function is obvious. For example, 
fIJn(co,n(kl,···,kl/» = (jWI)k, ···(jWI/)*· . The task is to determine the complex valued 

correlative function fIJn(cp,qOCp"q, O···cp"q, (.» for any nonlinear parameter monomial 

Cp,qOCp"q, (.) .. ·Cp"q, 0 (0 sk:sn-2) in CE(HI/ (jwp ... ,jwl/»). 

Based on Lemma 5.1-5.2, the following result can be obtained. 

Proposition 5.1. For an effective nonlinear parameter monomial 

Cpo,qo OCp"q, O···cp"q, 0, let S = Cpo,q, OCp"q, O···cp"q, 0, n(sx(s» = I(PI + ql) -x+ 1, where x 
i=l 

is the number of the parameters in s x' I (Pi + qi) is the summation of the subscripts of 
;=1 

x 

all the parameters in Sx' I (.) = 0 if x<l and n(l )=1. Then for 0 s ks n(s)-2 
;=1 

'PI/(S) (c/,o,q, OC/",q, O···c/,,,q, O;W/(I) ···W/(I/<"))) 

I {.t; (c /"q (.), n(S);W/(I) ... W/(I/(S)))' I I [r2U (Sr, ... Sr
p 
(s/ C /,.q O);W/(I) ... WI(I/(S)-q» 

all the 2-partitions all the p-partitions all the different 
for.f satisfying for .'f/cpq (') pennutations 
.', (s);c p., (.) and /,>0 of Is"~ .. · .. s" j 

or simplified as 
'Pn(.,) (Cl'o,qo (')CI',.q, O···CI'"q, O;WI(I) ·"WI(n( .• ))) 

I {.t; (c I'.q 0, n(s);W/(I) ... WI(n(s)))' I [r2b (s x, ···s Xp (s/ C I',q ('»;W/(I) ... W/(n(")_q» (5. 7b) 
all the 2-partitions all the p-partitions 
for i satisfying for i/c:

p
.
q 

(-) 

.f,(S);Cp.,(') and 1'>0 

I' 

. I1 fIJn(.f" (s/cp.,(·») (S x, (S/ C I'.q 0); WI(X(i)+I) ... WI(X(I)+o(." (S/C
p
., 0))) )]} 

;=1 

the terminating condition is k=0 and <PI (1; WI) = HI (jwl ) , where, 
i-I i-I 

XCi) = In(sx, (s/cpq ('))) or Xci) = In(sx, (s/cpqO» (5.8a) 
j;1 j;1 

q / n(5) .t; (c P.q 0, n(s);wl(l) ... w/(n(.,))) = (D (jwl(n(s)_q+l) )kp" Ln<,,) (j,f;: wl(I» (5.8b) 

I' 

12 (s- "'S- (sic O)'W · .. W - )=I1(j'W - + ... +j'W )k, 
a x, xp I',q , 1(1) I(n(.f)-q) I(X(I)+I) I(X(I)+o('" (5Ic,,0))) (5.8c) 

;=) 
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• P 

f2b (sx
l 
",sx

p 
(s/cp•q ('»;OJ'(I) .. ·OJ'(n(')_q» = n: L IT (jOJ'(X(i)+I) + ... + jOJ'(X(i)+n(Sx, (ilc",,(.)))))k, 

nk all the different ;=1 
permutations 
of (k, ..... kp ) 

(5.8d) 
Moreover, {s x, ' ••. s xp} is a permutation of {s x, " •• s xp} , OJ'(I)'" OJ'(n('» represents the 

frequency variables involved in the corresponding functions, IU) for i=I ... n(s) is a 

positive integer representing the index of the frequency variables, n; = p! , 
n l !n2 ! .. ·nc ! 

nl + ... +nc=p, c is the number of distinct differentials kj appearing in the combination, 
nj is the number of repetitions of the ith distinct differential kj, and a similar definition 
holds for n;. 0 

Proof. See Section 5.5 for the proof. 0 

Remark 5.2. Equations (5.7ab) are recursive. The terminating condition is k=0, 
which is also included in (5.7ab). For k=O, it can be derived from (5.7b) that 

qJn(') (cp •q (');OJ'(I) "·OJ'(n(.i») = qJp+q(cp•q 0; OJ/(I) "'OJ/(p+q» 

= f.. (c P.q 0, P + q; OJ/(I) ••• OJ/(p+q» 

p 

L f2h (s x, ... S Xp (I); OJ'(I) ... OJ/(I'+q_q» IT qJII(.,x, (I» (sx, (I); OJ/(X(i)+I) ... OJ/(X(i)+n(,'x, (1)))) 

all the p-partitions i=1 
for I 

p 

= f.. (CI'.q 0, P + q; OJ'(I) ••• OJ/(I'+q»' f2h (!.!.;;J; OJ/(I) '" OJ/(p»' IT qJI (I; OJ1) 
p ;=1 

(5.9) 

Note that in this case, p+q= n(s) from (3.15), and s = C P.q 0 corresponding to a specific 
recursive terminal. Hence, (5.9) can be written as 

1 q I' P 

qJII(.i')(cp •q 0; OJ/(I) ·"OJ/(II(.i))) = II(S) (IT (jOJ/(P+I/
P
" • IT (jOJ/(;»k, • IT HI (jOJ/(I» (5.l0) 

L,,(.I-) (J L OJ'(I) ) ;=1 1=1 1=1 

1=1 

In order to verify this result, let n= n(s) = p+q, it can be obtained from (5.2) that for a 
parameter cp.q 0, its correlative function is 

q 

--'-"n("""s)-D (jOJI>+,)kP")H p,p(jOJI'''',jOJp ) 

Ln(.) (j L OJ;) ;=, 
;=1 

P P 

From (3.5), HI',p(jOJ, ,. .. ,jOJp ) = D (jOJ;)k, . IT H,(jOJJ. This is consistent with (5.l0). To 
;=) ;=1 

further understand the results in Proposition 5.1, the following figure can be referred, 
which demonstrates the recursive process in the new mapping function and the 
structure of the theoretical results above (See Figure 5.1). 0 

57 



PhD dissertation: Frequency Domain Theory of Nonlinear Volterra Systems 

r"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-' 
H (jw ••• jw )=c Oc O"'c 0']' 0+'" I 

n P 'j' Poqo M, p,q, ~ I 
CE(H"(jw,, .•• ,jw,,))= [cpo,qo (')cp"q, O"'cp"q, 0, ... ] ~ 

Proposition 3.1 •................................ ~ 

r-------------

C (·)c O"'c OforO:s;k:s;n-2 ..... ·· .. ·· .. · ................. ·· .... ·· .. · .. · .. · .. ; ]',O='I'nO 

------------- ------------------------, 
all the (po,qo)-partitions of H 11 (j WI"" , j wn ) 

which generate monomial cO'" C 0 
Pl,ql Pkoqk 

J ~ : 

I C p, .q, 0 ... C p, ,q, 0 ~ all the po-partitions of C p, ,q, 0 ... C p, ,q, 0 ........... , .. ..! 
f ---------.. ~ ----------' !..... : 

/ ~~--------------- ---------------------~ I 
.,.. 1,(-) = fPnO = I 

Lemma 5,1 Lemma 5.2 IV;o, I/2bO . fPno 0)1 
!._ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. - .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _.' 

Figure 5.1. An illustration of the relationships in Proposition 5.1 

To further demonstrate the results, the following example is given. 

Example 5.1. Consider the 4th-order GFRF. The parametric characteristic of the 
4th-order GFRF can be obtained from Proposition 3.1 that 
CE(H4 (jwp .. ·,jw4 ))= C O,4$ C\,3$ C3,\ $ C 2,2$ C4,O$ CI,I ®CO,3$ C\,\ ®C\,2 

$ CI,1 ®C2,\ $ CI,1 ®C3,O$ C\,2®CO,2$ C\,2®C2,O $ C2,O®CO,3 

$ C2,O®C2,\ $ C2,O®C3,O$ C2,\ ®CO,2$ C3,O®CO,2 

$ C\,\ ®Co/$ C\/®CO,2$ C\,\ ®CO,2®C2,O$ C\,\3$ CI,12®C2,O 

$ C\,\ ®C2,o2$ C 2,o®CO/$ C 2,02®CO,2$ C 2,03 

By using Proposition 5.1, the correlative function of each term in CE(H4 (jwP .. ·,jw4 )) 

can all be obtained. For example, for the term c\,\(.)CO,2(.)C2,O(.), it can be derived that 
'I',,(.i)(cl.I OCO,20C2,OO;W/(I) .. ,w/(,,(S») = '1'4 (CI,I (')CO,2 (')C2,OO;WI · .. W 4 ) 

= J; (CI,I 0,4; WI "·W4 ) 

,[r2h (S2 (CO,2 Oc2,o O);WI .. ·W3 )' 'I',,(.1',(,·o,(·)c,.o(·))) (S2 (CO,2 OC2.0 0); WX(I)+I ... WX(I)+II(.I', (co.J (·)c,.o(·))) )] 

+ J; (c2,o 0,4; WI ... W 4 ) 

. [r2h(SOS2 (CI,I OCO.2 O);WI .. ·W4 )' 'I'''(.I'o(CI.I (·)c.., (.))) (SO (CI.I OCO,2 O);WX(I)+I ·"WX (I)+II(.\·o(el.l(,)cd')))) 

. '1'11(.1', (CI.I (·)Co.JO)) (S2 (CI,I OCO,2 0);WX(2)+1 ... W X (2)+II(.I',(CI.I Oco., 0)) ) 

+ f2h (SISI (CI,I OCO.2 ('));WI ... w 4 )· 'l'1I(.,,(CI.l('))) (SI (CI.I O);WX(I)+I '" W X (I)+II(.,,(C,.,(.)))) 

. 'I',,(.,,(eo., (.))) (SI (CO.2 0); W X(2)+1 '" W X (2)+II(." (co., (.))))] 

= J; (CI.I 0,4; WI ···W4 ) 

. [r2h (CO,2 OC2,OO;WI .. ·w3 )· 'l'1I(co'(')",u())(CO,2 OC2,OO;WO+I ... W O+II(c.., Oc, 00») ] 

+ J; (C2.0 0,4; WI ... W 4 ) 

. [r2h (SOS2 (CI.I OCO.2 0); WI ... W 4 ) . '1'11(1) (1; WI ... WII(I) )'I'II(C,., (·)co.,O) (CI.I OCO,2 0; WII(I)+1 .,. WII(I)+II(CI.I (·)co., (-)) ) 

+ f2h(SI S I (CI,I OCO,2 ('));WI .. ·W4 )· '1'2 (CI,I O;WX(I)+I ·"WX (I)+II(.,,(C, ,0))) 

. '1'2 (CO.20; W X(2)+1 "'WX (2)+II(.I',(co,('))))] . 
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= .r. (CI.I (,),4; OJ
I 

•• 'O(4 ) ·lr2b (CO.2 OC2.0 O;OJI •.. O(3) '/P3 (CO.2 (,)c2.0 O;OJI ••. O(3 )J 
+ .r. (c2.oO,4; OJI •• 'l(4)' [r2b (SOS2 (CI.I OCO.2 O);OJI •• 'l(4) '/PI (1; OJI )/P3 (CI•I (·)CO.2 (·);lO2 .. 'l(4) 

+ f2b(SISI(CI.I(')CO.20);lOl"·OJ4)·/P2(CI.10;lOPlO2)-/P2(CO.20;lO3'O(4 )] (5.11) 

To proceed with the recursive computation, it can be derived that 

.r.(CI.1 (·),4;OJI "'O(4 ) = U (jlO3+J
k
, .. / L 4(jtlOJ = (jOJ4)k'/ L 4(jtlOJ (5.I2a) 

.r. (C2.0 0,4; OJI '''O(4 ) = Y L4 (jtOJ;) (5.12b) 

f2b (sx, (c2.0 OCO.2 O);lOl .. 'l(3) = (jlOl + ... + jOJ3 )k, (5.I2c) 
2 

f2b (SOS2 (C II (·)CO 2 O);lOl '''l(4) = L IT (jOJX(i)+1 + ... + jOJX(;)+II("xl (Sic",(.)))/' 

all the different ;=1 
permutations 
oflk, ..... kp ) 

2 

(5.12d) 

= .r. (c2,0 0,3; lOl ... O(3) . f2b (S x, S x, (CO.2 0); lOl ... O(3) Il/pII(.,x, Ci/c
pq

(.))) (S XI (CO.2 (.»; OJ X(i)+1 ... OJX(;)+n(.,x, (co,(')))) 
i=l 

= .r. (C2.0 0,3; OJI ... l(3) . f2h (S x, S x, (CO.2 (.»; OJI ... OJ3 )/PI (1; OJI )/P2 (CO.2 (.); OJ2, O(3) 

13 . ((jOJI )k, (jOJ2 + jOJj' + (jOJ3 + jOJ2 )k, (jOJI/' ). HI (jOJI) 

L 3(jLOJJ 
;=1 

(5.12e) 

/P3(CI.IOCO.20;102 '''O(4 ) 

= .r. (CI•I 0,3; OJ2 ... O(4 ) . f2h (S x, (CO.2 0); OJ2, O(3) '/PII('x, (Co.,('))) (S x, (CO.2 0); OJ2, O(3) 

= .r. (cl,l 0,3;OJ2 ... O(4 )' f2b (CO.2 0;OJ2 , O(3) '/P2 (CO.2 0;OJ2 , O(3) (5.12f) 

(jOJ4 )*, (. +'OJ )*, 1 ( 'OJ )*, ( 'OJ )*, 
L ( 

. . )' JOJ2 j 3 • L ( . .) j 2 j 3 
3 JOJ2 + ... + jOJ4 2 JOJ2 + JOJ3 

Using equations (5 .I2a-f) in (5.11) yields 
/P4 (CI.I OCO.2 (,)c2.0 O;OJI .. 'O(4 ) 

= .r. (CI.I (·),4;OJI ... O(4 )' [r2b (CO.2 OC2.0 O;OJI • "O(3) '/P3 (CO.2 (·)c2.0 O;OJI .. 'l(3)] 

+ .r. (c2.0 O,4;OJI ... O(4 )' [r2b (SOS2 (C I.I OCO.2 O);OJI .. 'O(4 ) '/PI (1;OJI )/P3 (c1.1 OCO.2 (·);lO2 • "l(4) 

+ f2b (SISI (CI.I (·)CO.2 O);OJI ... O(4 ) '/P2 (cl,I 0; OJI , l(2)- /P2 (CO.2 0; lO3' O(4 )] 

( . )*, ( . . )*.f(. )*, ( . . )*, (. . )*, (. )*, \,... )k, (. )*, = jOJ4 JOJI + ... + j~3 ~ JOJI . JOJ2 ~ jOJ3 . + j.OJ3 + jOJ~ j~1 "jOJ2 JOJ3 . HI (jOJ
I
) 

L4 {jOJI + ... + jOJ4 )L3 (jOJI + JOJ2 + JOJ3 )L2 (jOJ2 + jO(3) 

+ ((jOJI )*, (jOJ2 + ... + jOJ4 ~*, + (jOJ2 ~ ... + j~4)*' (jOJI )*: XjOJ4 )*: (jOJ2 ~ jOJ3 )*, (jlO2 )*, (jOJ3 )*, HI (jOJ
I
) 

L4 (jOJI + ... + jlO4 )L3 (jOJ2 + ... + jOJ4 )L2 (jOJ2 + jl(3) 

+ ((jOJI + jOJ2 )*, (jOJ3 + jlO~)*' + (jOJ3. + jOJ4 >*: (jOJI ~ jlO2 )*, !jOJ4 )~' (jOJ3 )*, (jOJt>*' (jOJ2 )k, HI (jOJ
I
) 

L4 (jOJI + ... + jOJ4 )L2 {jOJ3 + jOJ4 )L2 (jOJ2 + jOJI) 

(5.13) 
Therefore, the correlative function of the parameter monomial CI.I(·)CO.20C2.00 is 
obtained. It can be verified that the same result can be obtained by using the recursive 
algorithm in (5.2, 3.2-3.3, 5.1). For the sake of brevity, this is omitted. By following 
the same method, the whole correlative function vector /P4(CE(H4(jOJp · .. ,jOJ4»)) can be 
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determined. Thus the 4th-order GFRF H 4(j0),,· .. ,j0)4) can directly be written into a 
parametric characteristic form which can provide a straightforward and meaningful 
insight into the relationship between H 4(j0),,"',j0)4) and nonlinear parameters, and 

also between H 4 (j 0)" ... , j 0)4 ) and H, (j 0),) . 0 

Remark 5.3. From Example 5.1, it can be seen that Proposition 5.1 provides an 
effective method to determine the correlative function for an effective monomial 
Cpo .% OcM , O"·cp,.q, 0, and the computation process should be able to be carried out 

automatically without manual intervention. Therefore, Proposition 5.1 provides a 
simplified method to determine the nth-order GFRF directly into a more meaningful 
form as (5.4) which can demonstrate the parametric characteristic clearly and describe 
the nth-order GFRF in terms of the first order GFRF H,(jO) and nonlinear parameters. 
This reveals a more straightforward insight into the relationships 
between H II (jO),,''',jO)II) and nonlinear parameters, and between H n (jO),,''',jO)II) 

andH,(jO). Note that the high order GFRFs can represent system nonlinear frequency 

response characteristics (Billings and Peyton Jones 1990, Vue et al 2005) and H, (j0) 

represents the linear part of the system model. Hence, the results in Proposition 5.1 
not only facilitate the analysis of the connection between system frequency response 
characteristics and model linear and nonlinear parameters, but also provide a new 
perspective on the understanding of the GFRFs and on the analysis of nonlinear 
systems based on the GFRFs. 0 

5.4 Some new properties 

Based on the mapping function CfJn established in the last section, some new 
properties of the nth-order GFRF are discussed in this section. 

5.4.1 Determination of FRFs based on parametric characteristics 

There are several relationships involved in this paper. H II (jO),,· .. ,jO)II) is 
determined from the NDE model in terms of the model parameters. The CE operator 
is a mapping from H II (jO),,"',jO)II) to its parametric characteristic, which can also be 
regarded as a mapping from the nonlinear parameters of the NDE model to the 
parametric characteristics of HII(jO),,"',jOJII ) . Thus there is a bijective mapping 

between H,,(jO),,"',jO),,) and the NDE model. The function CfJn can be regarded as an 
inverse mapping of the CE operator such that the nth-order GFRF can be 
reconstructed from its parametric characteristic, which can also be regarded as a 
mapping from the nonlinear parameters of the NDE model to H,,(jOJ,,"·,jOJII ). This 
can refer to Figure 5.2, where"." represents the point multiplication between the 
parametric monomial and its correlative function. 
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Figure S.2. Relationship between 'PII and CE 

It can be seen from Figure S.2 that 
HII(jOJp"',jOJII ) = CE(H,,(-»· 'PII (CE(HIIO» (S.14) 

From (S.14), the inverse of the operator CE can simply be written as (X=CE(HIIO») 

CE- 1 (x) = X· 'PII (x) 

which constructs a mapping directly from the parametric characteristic of the nth­
order GFRF to the nth-order GFRF itself. Note thatcE(HII (·» includes all the nonlinear 
parameters of degree from 2 to n of the nonlinear system of interest, and 
'PII(CE(HIIO» is a complex valued function vector including the effect of the 
complicated nonlinear characteristics and also the effect of the linear part of the 
nonlinear system. Hence, Equation (S .14) reveals a new perspective on the 
computation and understanding of the GFRFs as discussed in Section S.3, and also 
provides a new insight into the frequency domain analysis of nonlinear systems based 
on the GFRFs. 

From the results in Chapters 3 and 4, the output spectrum for model (l.S) can now 
be determined as 

N 

Y(jOJ) = "LCE{Hn(jOJp".,jOJn»)· Fn(jOJ) (S.1Sa) 
n=1 

when the input is a general input U(jOJ) , 

Fn(jOJ) = .r;; 1 J 'Pn(CE(Hn(jOJ"".,jOJn)))·rr
n 

U(jOJ;)da", 
n(27r)"-' . 

WI +"'+a)1I =W 1=1 

(S.lSb) 

K 

when the input is a multi-tone function u(t) = "L IF; I COS(OJ;f + LF;) , 
;=1 

(S.1Sc) 

It is obvious that Equation (S.lSa) is an explicit analytical polynomial functions with 
coefficients in Sc (1) u,,· U Sc (N) and the corresponding correlative functions in 
S J (1) u,,· uS J (N). This demonstrates a direct analytical relationship between system 

output spectrum and system time-domain model parameters. The effects on system 
output spectrum from the linear parameters are included in S J (1) u"· uS J (N), and the 

effects from the nonlinear parameters are included in Sc (1) u,,· usc (N) and also 
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embodied in Sf(l)u···uSf(N). This will facilitate the analysis of output frequency 

response characteristics of nonlinear systems. For example, for any parameters of 
model (l.S) of interest, which may represent some specific physical characteristics, 
the output spectrum can therefore directly be written as a polynomial in terms of these 
parameters. Then how these parameters affect the system output spectrum need only 
be investigated by studying the frequency characteristics of the new mapping 
functions involved in the polynomial and simultaneously optimizing the values of 
these nonlinear parameters. Further study in this topic will be introduced in a later 
chapter 

5.4.2 Magnitude of the nth-order GFRF 

Based on Equation (S.14), the magnitude of the nth-order GFRF can be expressed 
in terms of its parametric characteristic. 

Corollary 5.1. Let CE" = CE(H"O) E>" = ({J" (CE(H" (.))). ({J"(CE(H,,O»' , 

({J" = ({J" (CE(H" (-))) , and A" = CE(H"olCE(H"O) , then 

IH" (jcol"", jco" )1
2 

= CE" E>"CE~' 
IH"(jcol' ... ,jCO,,f = ({J;A,,({Jn 

Proof. It can be derived from (S.14) that 

IH" (jcop "" jco" )1
2 = H" (jco],.··, jco,,)' H,: (jCOI"", jco,,) 

= CE(H"O) . ({J,,(CE(H,,('»)' (CE(H"O)' ((J" (CE(H" 0)))' 
, ') T T = CE(H"O)' \({J"(CE(H,,O»' ({J" (CE(H" 0» ·CE(H"O) = CE"E>"CE" 

(S.16a) 

(S.16b) 

The result in equation (S.16b) can also be achieved by following the same method. 
This completes the proof. 0 

From Corollary S.1, the square of the magnitude of the nth-order GFRF is 
proportional to a quadratic function of the parametric characteristic and also 
proportional to a quadratic function of the corresponding correlative function. 
Corollary S.I provides a new property of the nth-order GFRF, which reveals the 
relationship between the magnitude of H,,(jcol'oo',jco,,) and its nonlinear parametric 
characteristic, and also the relationship between the magnitude of H,,(jcol'oo·,jco,,) and 
the correlative functions which involve both the system linear and nonlinear 
characteristics. Given a requirement on 1 H" (jcol'oo"jco,,) I, the condition on model 
parameters can be derived by using equations (S.16ab). This may provide a new 
technique for the analysis and design of nonlinear systems based on the nth- order 
GFRF in the frequency domain. 

Moreover, it can be seen that the frequency characteristic matrix E>" is a Hermitian 
matrix, whose eigenvalues are the positive real valued functions of the system linear 
parameters but invariant to the values of the system nonlinear parameters in CE(H"O). 

Thus different nonlinearities may result in different frequency characteristic matrix 
E>", but the same nonlinearities will have an invariant matrix E>". This property of the 
nth-order GFRF provides a new insight into the nonlinear effect on the high order 
GFRFs from different nonlinearities. For this purpose, define a new function 
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x" (cop"', con) = Amax (0,,) (5.17) 
which is the maximum eigenvalue of the frequency characteristic matrix 0". As 
mentioned, the frequency spectrum of this function can act as a novel insight into the 
nonlinear effect on the GFRFs from different nonlinearities, since this function is only 
dependent on different nonlinearities but independent of their values. However, the 
frequency response spectrum of the GFRFs will change greatly with the values of the 
involved nonlinear parameters, which can not provide a clear insight into the 
nonlinear effects between different nonlinearities. 

Moreover, the following results can be obtained for the bound evaluation for the 
nth-order GFRF based on the results above. 

Proposition 5.2. 

,,\~~.~"IH,,(jCOI,···,jco,,)1 ~ f· [lhll(TI,···,Tn)ldTI···dTII ~ ,,\~~.~"(Amax(011» ·IICEnll (5.l8a) 

~~~~"IHn(jCOp ... ,jCOn)1 ~ f· [lhn(Tp ... ,Tn)ldTI .. ·dTn ~ ~Amax(An)' .,~~.~"(lIqJnll) (5.l8b) 

Proof. See Section 5.5 for the proof. 0 

From Equations (5. 18ab), it can be seen that the magnitude of the nth-order GFRF 
is proportional to a quadratic function of the parametric characteristic and also 
proportional to a quadratic function of the corresponding correlative function. These 
results demonstrate a new property of the nth-order GFRF, which reveals the 
relationship between the magnitude of HII(jcop"',jcoll ) and its nonlinear parametric 
characteristic, and also the relationship between the magnitude of HII(jcop"',jcoll ) and 
the correlative functions which include the linear (the first order GFRF) and nonlinear 
characteristics. Given a requirement on 1 HII(jcop"',jco lI ) I, the condition on model 
parameters or the first order GFRF can be derived by using these results. Proposition 
5.2 also shows that the absolute integration of the nth-order Volterra kernel function 
in the time domain is bounded by a quadratic function of the parameter characteristic. 
This reveals the relationship between the model parameters and the stability of 
Volterra series. Obviously, these may provide a new insight into the analysis and 
design of nonlinear systems based on the nth- order GFRF in the frequency domain. 

5.4.3 Relationship between HII (jco l ,···, jcoll ) and HI (jco l ) 

As illustrated in Example 5.1, HII(jcop"',jcoll ) can directly be determined in terms 
of the first order GFRF HI (jco) based on the novel mapping function qJn according to 
its parametric characteristic. The following results can be concluded. 

Corollary 5.2. For an effective parametric monomial c (·)c (·)· .. c (.) its 
Po.% PI,ql Pk.qt' 

correlative function is a p -degree function of HI (jco1(1» which can be written as a 
symmetric form 

qJlI(.,) (cpa,qo OCpl,ql O",cp,.'i, O;C01(1) ,,,co1(1I(S») 

= (n(s) - p)!p! 

n(s)! 

p 

L f.J/COI(I) '''C01(II(S»)I1 HI (jCOi(i» 
all the combinations of p integers {r"r2 ••• ·.rp} ;=1 
taken from/I,2 ... ·.II(s»without repetition 
j is for different combination 
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k k 

where p = n(s)- Lq, = LP, -k, 1 = [rp r2 ,···, rp l, and 'uj(w/(I) "'W/(n(i») can be determined 
;=0 ;=0 

by equations (5.7-5.8). Therefore, the nth-order GFRF can be regarded as an n-degree 
polynomial function of HI (jw/(I»' 0 
Proof. See Section 5.5 for the proof. 0 

Corollary 5.2 demonstrates the relationship between Hn(jwp .. ·,jwn) and H,(jw) , 

and reveals how the first order GFRF, which represents the linear part of system 
model, affects the higher order GFRFs, together with the nonlinear dynamics. Note 
that for any specific parameters of interest, the polynomial structure of the FRFs is 
explicitly determined in terms of these parameters, thus the property of this 
polynomial function is greatly dependent on the "coefficients" of these parameter 
monomials in the polynomial, which correspond to the correlative functions of the 
parametric characteristics of the polynomial and are determined by the new mapping 
function. Hence, Corollary 5.2 is important for the qualitative analysis of the 
connection between H,,(jwp .. ·,jw,,) and HI(jw) , and also between nonlinear 
parameters and high order GFRFs . 

Example 5.2. To demonstrate the theoretical results above, consider a simple 
mechanical system shown in Figure 5.2. 

u(t) 

Figure 5.2. A mechanical system 

The output property of the spring satisfies F = Ky + Cly3 , and the damper F = By + C2y3 • 

u(t) is the external input force. The system dynamics can be described by 
my = -Ky - By - Cly3 - C2y3 + u(t) (5.19) 

which can be written into the form of NDE model (1.5) with M=3, K=2, c,.o(2) = m, 

c',o (I) = B, CI,o (0) = K , C3,o (000) = CI , C3,o (III) = C2 , CO,I (0) = -I , and all the other parameters 
are zero. 

There are two nonlinear terms C3,o (000) = CI and C3,o (III) = C2 in model (5.19), which 

are all pure output nonlinearity and can be written as c3,o = [cp c
2
]. The parametric 

characterist!cs of the GFRFs of model (5.19) with respect to nonlinear parameter C3,o 
can be obtamed according to equation (5.3) or Proposition 3.1 as 

CE(H2i+I(.»=C3,Oi for i=O,I,2, ... " otherwise CE(H2{»=O for i=I,2,3, ... 
Therefore, 

CE(HI (.»=I; 
CE(H3(.»=C3,o = [CI C2]; 
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CE(H5(.»=C3,O®C3,O = [C1
2 CIC~ C2~]; 

CE(H7(.»=C3,O®C3,O®C3,O= [CI CI C2 clcl cl] ..... . 

By using (5.7-5.10), it can be obtained that 
)) ) 

fP)(c),o(000);cv p cv2 ,cv) = ) . IT (jcvy . IT H, (jcv;) = ) . IT H,(JcvJ 
L)(JLcv;) ;=, ;=, L)UL cv;) ;=, 

;=1 ;=1 

) 

) ) ITUcv;») 

fP)(c),o(lll);cv"cv2 ,cv) = ) ·ITUcvJ·ITH,Ucv;)= ;=') ·ITH,Ucv;) 
L)ULcv;) ;=, ;=, L)ULcv;) ;=, 

;=, ;=, 

fPs (c),O (OOO)c),O (000); cv, , ... , cvs) 

= .t; (C),O (000),5; cv, ,.. ·,cvs)· L L [r2a (Si, ... Sip (C),o(OOO»;cv, .. ·CVs) 
all the 3-partilions all the different 
for c',o (000) permutations of {O,O,'} 

. IT fPn(s" (.i'/c",O)) (Si, (C),O (000»; CV,(X(i)+') ... CV,(X(i)+n(.", (i/CP"O))))] 
;=1 

[

/20 (SOSOS, (C),O (OOO»;CV, ... CVs )fP, (I; cv, )fP, (I; CV2 )fP) (C),O (000); CV) ... CVs) J 
= .t; (C),O (000),5;cv,,···, CVs)· + 12a (SOS,SO (C),O (000»: cv, ... CVs )fP, (I; cv, )fP) (~),O (000); CV2 .. : CV4 )fP, (I~ CVs ) 

+ 12a (S,SOSO (C),O (000», cv, ... CVs )fP) (C),O (000), CV, ... CV) )fP, (I, CV4 )fP, (I, CVs) 

H,(cv,)H,(cv2 ) D H,Ucv;) / L)ut cv;) 

--5-- + H,(cv')D H,Ucv;)H, (CVs) / L)ut cv;) 

LsULCV;) 
;=1 

I 5 

--5--'( 5 + 4 + ) )·ITH,Ucv;) 

LsULCV;) L)ULCV;) L)ULCVJ L)ULCV;) ;=, 
i=l ;=3 ;=2 i=l 

fPs (C),O (l11)c),O (III); CV,,···, CVs) 

= .t; (c),O (111),5; cv, , ... , cvs ) , "[/20(SX ···Sx (C) 0(1 I I);cv, ···cvs ) L..J I p' 

all the 3-partitions all the different 
for c"o("') permutations of {O,O,'} 

[

/2U (SOSOS, (C),O (III»; cv, ... CVs )fP, (I; cv, )fP, (I; CV2 )fP) (C),O (III); CV) ... CVs) ] 

= .t; (c),O (111),5; cvp ···, cvs)· + 120 (SOS,SO (C),O (l11)~; cv' ...... CVs )fP, (I; cv, )fP) ~C),O (III); CV2 .... CV4 )fP, (.1; CVs) 

+ 120 (S,SOSO (C)O (l11),cv, CVs )fP) (C)o (I I I),cv, ... CV) )fP, (I, CV4 )fP, (I, CVS ) 

[
UICVJrl UCV;) UIcv;)rl UCVJ UIcv;)rl ucv;)].s 

--S-_· 1=) ;=' + 1=2 ;=' + 1=' ;=' ·IT H,Ucv, ) 

LsULCVJ L)ULCV;) L)ULCV;) L)(jLCVJ 1=' 
~ ~ ~ ~ 
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'Ps (c3,0 (000)c3,0 (111); WI"'" ws) 

= .t;(c3,0(000),5;w .. ,,·,ws)· L L[r2a(S>" ",s>'p (c3,0(111);wl ·"WS) 
all the 3-panitions all the different 
for c,.o(lll) permutations of (0,0,1) 

. IT 'Pn(Si, (s/cp .• (·))) (S>', (C3,0 (111); W'(X(I)+I) ". W,(X(I)+n(Si,(S/C
P 

•• (.»»)] 
1=1 

+ .t; (C3,0(1 I 1),5; WI''''' Ws)· L L [r2a (Sx, . "S>'p (C3,0 (000»; WI ." Ws) 
aU the 3-panitions aU the different 
for c,.o(OOO) permutations of (O,O,I} 

. n 'Pn(si, ('/c, .• (·))) (S>', (C3,0 (000»; W'(X(I)+I) ... W'(X(I)+II(Si, ('/C,., 0))) )] 

1=1 

[

f2a (SOSOSI (C3,0 (111»; WI ." Ws )'PI (1; WI )'PI (1; W2 )'P3 (C3,0 (111); W3 ". WS) J 
= .t; (c3,0 (000),5; WI>"', Ws)· + f2a (SOSISO (c3,0 (111»; WI ." Ws )'PI (1; WI )'P3 (~3,0 (111); W2 ",' W4 )'PI (1: Ws) 

+ f2a (SISOSO (c3,0 (111); WI ". Ws )'P3 (c3,0 (111), WI ." W3 )'PI (1, W4 )'PI (1, Ws) 

[

f2a (SOSOSI (c3,0 (000»; WI ". Ws )'PI (1; WI )'PI (1; W2 )'P3 (c3,0 (000); W3 ". Ws) J 
+ .t; (c3,0 (111),5; WI"'" Ws)· + f2a (SOSI So (c3,0 (OOO»~ WI ." Ws )'PI (1; WI )'P3 (~3'0 (000); W2 ": W4 )'PI (1: Ws) 

+ f2a (SISOSO (c3,0 (000», WI ." Ws )'P3 (c3,0 (000), WI ." W3 )'PI (1, W4 )'PI (1, Ws) 

_ _ -:-_. 1=3 ,=1 1-2 ,-I + ,-I I-I ·TIH (lW ) 

[

I + (JIw;)rl (Jw;) 1+ ut(1)rl (Jw;) 1+ (JtW;)I) (JW;)].S . 

= 5 5 + 4 3 1 I 

LsULW;) L3(JLW;) L3(JLW;) L3(JLW;) 1=1 
;=1 ;=3 ;=2 ;=1 

Hence, it can be obtained that 

'P3 (CE(H3 0» = 3 '[TI3 (l'w)j·n HI(Jw;) 
L ( ." . ) 1, ,=\ 

3 1 L..,.W' ;=\ 
;=1 

--s--+ 4 + 3 

L3(JLW;) L3 (JLW;) L3 (JLW;) 
1=3 ;=2 ;=\ 

S S 4 S 3 S 

5 

1+ (JLW;)TI (Jwl ) 1 + (JLw;)TI (Jw;) 1 + (JLw;)TI (Jw;) s 
1=3 S ;=\ + ;=2 4 1=\ + ;=\ 3 ;=1 • TI H\ (JW;) 

Ls(JLW;) L3 (JLW;) L3(JLW;) L3 (JLW;) ;=\ 

;=1 1=3 ;=2 ;=1 

s S 4 S 3 5 

(JLW,)TI (JW;) (JLw;)TI (JW;) (J L W;) TI (JW;) 
;=3 ;=\ + 

;=2 ;=\ 
+ 

;=\ i=l 
5 4 3 

L3 (JLW;) L3 (JLW;) L3 (JLW;) 
;=3 ;=2 ;=\ 

By using equation (5.14), the GFRFs for n=3 and 5 of system (5.19) can be 
obtained. Proceeding with the computation process above, any higher order GFRFs of 
system (5.19) can be derived and written in a much more meaningful form. It can be 
seen that, the correlative function of a monomial in the parametric characteristic of the 
nth-order GFRF is an n-degree polynomial of the first order GFRF as stated in 
Corollary 5.2, and so the nth-order GFRF is. Based on equation (5.14), the first order 
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parametric sensitivity of the GFRFs with respect to any nonlinear parameter can be 
studied as 

For example, 

oH) (jOJ,,···,jOJ) = oCE(H) 0) . ip) (CE(H) 0» = [1,0]. ip) (CE(H) 0» = :rl: HI (jOJ; )/L) (jIOJ;) 
oCI oCI ;=1 ;=1 

Similarly, 

oHs (j~, .. ',jOJs) = OCE~HsO) . ips (CE(HsO» = [2c" c
2
,0]· ips (CE(Hs('»)' 

CI CI 

Similar results can also be obtained for parameter C2. It can be seen that the sensitivity 
of the third order GFRF with respect to the nonlinear spring CI and nonlinear damping 
C2 is constant which is dependent on linear parameters, but the sensitivity of the higher 
order GFRFs will be a function of these nonlinearities and the linear parameters. Note 
that for a Volterra system, the system output is usually dominated by its several low 
order GFRFs (Boyd and Chua 1985). Hence, in order to make the system less 
sensitive to these nonlinearities, the linear parameters should properly be designed. 

Moreover, the magnitude of H,,(jOJ,,"',jOJ,,) can also be evaluated readily 

according to Corollary 5.1. For example, for n= 3 

As mentioned above, instead of studying the Bode diagram of H)(jOJ,,"',jOJ) , the 
frequency response spectrum of the maximum eigenvalue of the third order frequency 
characteristic matrix defined in Corollary 5.1 can be investigated. See Figures 5.3-5.4. 
Different values of the linear parameters will result in a different view. An increase of 
the linear damping enables the magnitude to increase for higher OJI + OJ2 + OJ) along the 

line OJI + OJ) =0 . Note that the system output spectrum (5.15a-c) involves the 

computation of the GFRFs along a super-plane OJI + ... + OJ" = OJ. The frequency 

response spectra of the maximum eigenvalue on the plane OJI + ... + OJ) = OJ with 

different output frequency OJ are given in Figures 5.5-5.6. The peak and valley in the 
figures can represent special properties of the system. Understanding of these 
diagrams can follow the method in Vue et al (2005), and further results are under 
study. 
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Figure 5.3 . Frequency response spectrum of the maximum eigenvalue 
when m=24, B=2.96(left) or 29.6(right), K=160 
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Figure 5.4. Frequency response spectrum of the maximum eigenvalue 
when m=2.4, B=2.96, K=1.6 and ml + m2 + m3 = 0.8 (left) or 1.5(right) 

····f 

The system output spectrum can also be studied. For example, suppose the system 
is subject to a harmonic input u(t) = Fd sin(mot) (F" > 0) , then the magnitude of the 
third order output spectrum can be evaluated as (ling et al 2007a) 

I F3 
IY3 (jm)1 ::; 13 I /H 3 (jmk, ," ' , jmk,)//F(mk,)'" F(mk)/::; 2'~ I/H3 (jmk,, ''' , jm.)/ 

tVk , + ... +wk) =m wt , +···+wl:) =(j) 

From corollary 5.1, IH 3 (jm p"', j(3)1 ::; ~ ..1.3 (jmp"', jm" )/iCEn/. Therefore, 

F3 F3 
IY3 (jm)l::; 2~ I ~ ..1.3 (jmp"" jm,')/ICE; /I = -+ ~ el

2 
+ e; I~ ..1.3 (jmp ''' , jm,,) 

W k , +"'+WtJ =m 2 Wt , +···+l1.It ) = w 

For m =0.8 and m=2.4, B=29.6, K=1.6, it can be obtained that ~~(jmp ... , jm.) 

::; 0.006055896 . Hence, in this case 

IY3(jm)l::; 0.00227096FJ ~e12 + e; 

Obviously, given a requirement on the bound of IY3(jm)l, the design restriction on the 

nonlinear parameters Cl and C2 can further be derived. 0 

5.5 Proofs 

• Proof of Lemma 5.2 
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(1) From Proposition 3.1, it can be computed that Cpq(')CM, O"'Cp,q, o comes from the 
k 

xth-order GFRF, where x= p + q+ ~)p; + q)-k . It is obvious that cM, O",cp,qJ) comes 
;=1 

from the correlative function of the parameter cpqO in (3.8) or (5.2) for the xth-order 
q 

GFRF, i.e., (n (jOJx_q+Jp" )Hx_q,/jOJp .. ·,jOJx_q) , that IS, it comes from 
;=1 

Hx_q,p(jOJp"',jOJn_q)' From equation (3.5), it follows that 

(HI) 

p 

Obviously, n HT, (jOJ
rx

+
1 

, ... ,jOJ
rXH

,) is a (p,q)-partition for the xth-order GFRF. 
;=1 

(2) Supposing that So comes from H10, each monomial SX, in a p-partition for 

c ,,', 0'" c ,,', (.J comes from the [t. (p J + q J J - x, + I J th-order GFRF if x, > 0, therefore, 

each p-partition for Cp1ql O,"c",q, 0 corresponds to a combination of 

H, (w,)H (w ) .. ·H (w ) which must included in (HI) since (HI) includes all the 
1 I '2'2 'JI'p 

possible (p,q )-partitions, where r; = t (p j + q) - X; + I . That is, each p-partition for 
j=1 

C MI 0 .. · C p,q, 0 corresponds to a (p,q )-partition for the xth-order GFRF. On the other 

hand, each (p,q)-partition in (HI) which produces c
M1 

O"'cp,q, 0 must correspond to at 

least one p-partition for cM, 0 .. 'Cp,q, 0 . 

(3) Equation (HI) includes all the (p,q)-partitions for the xth-order GFRF which 
produce C

Nh 
O",cp,q, 0 , thus the correlative function of Cp1ql O",cp,q, 0 are the 

summation of all the correlative functions of each (p,q)-partition. Note that each (p,q)­
partition may produce more than one p-partition for C MI 0 .. · C p,q, O. This implies there 

are more than one cases in the same (p,q)-partition to produce c
M1 

O"'c",q, 0 . 

Therefore, the correlative function of C
Nh 

O"'c",q, 0 should be the summation of the 

correlative functions corresponding to all the cases where C MI 0··· C p,q, 0 are produced. 

This completes the proof. 0 

• Proof of Proposition 5.1 
Considering the recursive equation (5.2), the recursive structure in (5.7a) is 

directly followed from Lemma 5.1 (2) and Lemma 5.2 (3). That is, the correlative 
function of C

Nh 
O",cp,q, 0 are the summation of the correlative functions with respect 

to all the cases by which this monomial is produced in the same n(S) th-order GFRF, 
in each case it should include all the correlative functions corresponding to all the p­
partition for Cpq O'''cp q 0, and for each p-partition of C (·)· .. C (.), the correlative 

I I Ie k Plql P.qt 

function should include all the permutations of XIX2 .•• xp, since the correlative function 
f2a(S" ",s'p (S/Cpq 0); OJ1(1) "'OJ1(IICfJ-q» is different with each different permutation which 

can be seen from (3.5) . .t; (c p,/-), n(s);OJ1(1) "·OJ1(n(';))) is a part of the correlative function 

for Cp.q (k p "" kp+q ) except for HnCil-q,p (jOJp " ·,jOJn(.i)_q) , which directly follows from (5.2). 
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f2a(Sx, ",sx
p 

(s/CpqO);OJ/(I) "'OJI(n(s)-q» is a part of the correlative function with respect to a 

pennutation of a p-partition Sx, ",sx
p 
(s/cpq ('» of the monomial s/cpqO which 

corresponds to a (p,q)-partition for the n(s)th-order GFRF, and it is followed from 
(3.5). Equation (5.7b) has a similar structure with equation (5.7a), and is an optimised 
one which simplifies the computation of (5.7a) for the reason that 

p n rp.(s" (S/c",('))) (s x, (s/ C pq ('»;OJI(X(i)+I) .. 'OJI(X(i)+'('" (s/c".(.»») is identical to each other under each 
i=1 

pennutation of a p-partition for the monomial s/ C pq 0, and therefore the contribution 

from each pennutation is included in f2b(Sx, ",sx
p 
(s/cpqO);OJI(I) ···OJI(n(")_q» which can be 

obtained from (3.5) and is also given in Peyton-Jones (2007). This completes the 
proof. 0 

• Proof of Proposition 5.2 

From Equation (1.2), it can be obtained that 

IH.(jOJpoo·,jOJ.)1 ~ [ 00. [lh.(Tpoo.,T.)exp(-j(OJITI +"'+OJ.T.»ldTloo.dT. 

which further gives 

sup IH. (jOJp 00', jOJ.)1 ~ E· [ Ih. (1'1' 00',1'. )ldTI '00 dT. 
((}I ..... OJ" ao Xl 

Suppose at point ( OJ; ,"', OJ,: ), it holds that 

w~~.~,IH.(jOJI ,oo.,jOJ,,)1 = IH,,(jOJ; ,oo.,jOJ;)1 = £. [lh.(Tpoo" T.)ldTI oo·dT. 

From (S.16a), it can be obtained that 

IH" (jOJI ,"', JOJ" )1
2 
~ A.m •• (e,,)' CE"CE:' 

Thus it holds that 

1 
.' .' 12 .• T H" (jOJI ,. 00, jOJ,,) ~ A.m .. (e" (OJI ,. 00, OJ,,»' CE"CE. 

Hence, £. [lhll(Tpoo" TII)ldTI .oodTII ~ sup (A.m •• (ell» ·llcEIIII. Following a similar process, 
00 (~.".,Q}" 

Equation (5.18b) can be obtained. This completes the proof. 0 

• Proof of Corollary 5.2 

From (S.1 0), for a parameter corresponding to a pure input nonlinear tenn co,q(.), it 
can be derived that 

q 

rpll(S) (coq (.); OJI(I) 00. OJI(II(.,») = "(.') (n (jOJI(i) /' 

LII(s) (j L OJI(i» i=1 
;=1 

There is no HI (jOJI(I» appearing in the correlative function. That is, the degree of 

HI (jOJI(I» in the correlative function of this kind of nonlinear parameters is zero. For a 

parameter corresponding to a pure output nonlinear tenn cp,o(.), it can be derived that 
1 ,,($) II(S) 

rpll(S) (cpo O;OJI(I) 00' OJI(,,(S») = rp,,(s) (clI(s)O (.); OJI(I) 00. OJI(IIU))) = II(S) n (jOJI(,) )k, . n HI (jOJI(i» 

LII(s) (j L OJI(i» i=1 ;=1 
;=1 

The degree of HI (j OJI(I» in the correlative function of this kind of nonlinear 
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parameters is n(s). For a parameter corresponding to a pure input-output nonlinear 
term Cp,q(.), it can be seen from equation (5.10) that the degree of HI (jOJ1(1») in the 

correlative function of this kind of nonlinear parameters is n(s) -q. Hence, after 

recursive computation, for a monomial cM• OcM, O"'cp,q, 0, the degree of HI (jOJ1(1) in 
k k k k 

the correlative function is n(s) - L qi = L (Pi + qi) - k - L qi = L Pi - k. It is also noted 
;=0 ;=0 ;=0 ;=0 

that the largest order is n(s) when all qj=O corresponding to the parametric monomial 
whose parameters are all from pure output nonlinearity, and the smallest order is zero 

k 

when n(s) = L qi corresponding to the parametric monomial whose parameters are all 
;=0 

from pure input nonlinearity. Therefore, Hn(jOJI,··,jOJn) can be regarded as an n­

degree polynomial function of HI (jOJ1(1»)' This completes the proof. 0 

5.6 Conclusions 

A mapping function from the parametric characteristics to the GFRFs is 
established. The nth-order GFRF can directly be written into a more straightforward 
and meaningful form in terms of the first order GFRF and model parameters based on 
the parametric characteristic, which explicitly unveils the linear and nonlinear factors 
included in the GFRFs and can be regarded as an n-degree polynomial function of the 
first order GFRF. The new results demonstrate some new properties of the GFRFs, 
which can reveal clearly the relationship between the nth-order GFRF and its 
parametric characteristic, and also the relationship between the higher order GFRF 
and the first order GFRF. These provide a novel and useful insight into the frequency 
domain analysis and design of nonlinear systems based on the GFRFs. Note that the 
results of this study are established for nonlinear systems described by the NDE 
model, similar results can be extended to discrete time nonlinear systems described by 
NARX model. The frequency characteristics of system output frequency response of 
nonlinear systems will be studied by using these new results in the next chapter. 
Moreover, further study will also focus on some detailed issues relating to the 
application of the theoretical results developed in the present study. 
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Chapter 6 
NONLINEAR EFFECT ON SYSTEM OUTPUT 
SPECTRUM I ------ ALTERNATING SERIES 

The nonlinear effect on system output spectrum is studied for nonlinear Volterra 
systems. It is shown for the first time that under certain conditions the system output 
spectrum can be described as an alternating series with respect to some nonlinear 
parameters. This alternating series has some interesting properties by which system 
output spectrum can be suppressed easily. The sufficient (and necessary) conditions of 
this nonlinear effect are studied. These results reveal a novel frequency domain 
characteristic of the nonlinear effect on a system, and provide a novel insight into the 
analysis and design of nonlinearities in the frequency domain. 

6.1 Introduction 

It is known that, the transfer function of a linear system provides a coordinate-free 
and equivalent description for system characteristics, by which it is convenient to 
conduct the system analysis and design. Thus frequency domain methods are widely 
applied in engineering practice. However, as mentioned, although the analysis and 
design of linear systems in the frequency domain have been well established, the 
frequency domain analysis for nonlinear systems is not straightforward. Nonlinear 
systems usually have very complicated output frequency characteristics and dynamic 
behaviour such as harmonics, inter-modulation, chaos and bifurcation. Investigation 
and understanding of these nonlinear phenomena in the frequency domain are far 
from full development. 

In this study, understanding of nonlinearity in the frequency domain is 
investigated from a novel viewpoint for nonlinear Volterra systems. The system 
output spectrum is shown to be an alternating series with respect to some model 
nonlinear parameters under certain conditions. This property has great significance in 
that the system output spectrum can therefore be reduced by a proper design of these 
model parameters. The sufficient (and necessary) conditions in which the output 
spectrum can be transformed into an alternating series are studied. These results are 
illustrated by two examples which involve a spring-damping system with a cubic 
nonlinear damping. The results established in this study reveal a significant nonlinear 
effect on the system behaviours in the frequency domain, and provide a novel insight 
into the analysis and design of nonlinear systems. 

The content of this chapter is organised as follows. Section 6.2 provides a simple 
explanation for the background of this study. The novel nonlinear characteristic and 
its influence are discussed in Section 6.3. Section 6.4 gives a sufficient and necessary 
condition under which system output spectrum can be transformed into an alternating 
series. A conclusion is given in Section 6.5. 

6.2 An outline of frequency response functions of nonlinear systems 

For convenience, an outline is given in this section for some results discussed in 
the previous chapters relating to frequency response functions that form the basis of 
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this study. As mentioned, a wide class of nonlinear systems can be approximated by 
the Volterra series up to a maximum order N around the zero equilibrium (Boyd and 
Chua 1985) described by (1.1). In this study, consider nonlinear Volterra systems 
described by the NDE model (1.5). The computation of the nth-order generalized 
frequency response function (GFRF) for the NDE model (1.5) can be conducted by 
following Equations (3.8 or 3.11, 3.10, 3.2-3.5). The output spectrum of model (1.6) 
can be evaluated by (4.1-4.4), i.e., 

Y(j{J)=f.,rn 1 n-I f H n(j{J)I' .. ·,j{J)jr1U (j{J);)dO"w (6.1) 
n=1 n (2n) "" + ... +w. ='" ,=1 

where, 

H n(j{J)I"",j{J)n) = [ ... [hn (1'1'''', 1'n)exp(-j({J)I1'1 +"'+{J)n1'n»d1', .. ·d1'n (6.2) 

is known as the nth-order GFRF defined in George (1959). When the system input is a 
multi-tone function described by (1.3), the system output frequency response can be 
described as: 

Y(j{J) = f ~ I Hn (j{J)k, , ... , j{J)k)F({J)k,)'" F({J)k) 
n=1 2 lOki +"'+CLlt" =co 

(6.3) 

where F({J)k,) can be explicitly written as 

F({J)k,) = Iflk,lleJilj'.ISig(k,) for k
j 

E {± I,,, .,±K} (6.4) 

Instead of (4.4), where sgn(a) = ,and {J)k E ±{J)I,"',±{J)K . . {I a;::: 0 { } 
-I a<O ' 

In order to reveal the relationship between the system frequency response 
functions and the model parameters, the parametric characteristics of the GFRFs and 
output spectrum are studied in Chapter 3 and Chapter 4. The results show that the nth­
order GFRF can be expressed as a more straightforward polynomial function of the 
system nonlinear parameters, i.e., 

H,,(j{J),,"',j{J),,) = CE(H,,(j{J),,"',j{J),,»). /,,(j{J),,"',j{J),,) (6.5) 

where, CE(H" (j{J)I"'" j{J),,») is referred to as the parametric characteristic of the nth­
order GFRF H"(j{J),, ... ,j{J),,) , which can recursively be determined by (3.17) or (5.3), 
and /,,(j{J),,''',j{J),,) is a complex valued vector with the same dimension as 
CE(H"(j{J),, ... ,j{J),,») . In Chapter 5, a mapping qJ"(CE(H,,(·»;{J),, .. ·,{J),,) from the 
parametric characteristic CE(H" (j{J),,"', j{J),,») to its corresponding correlative function 
/" (j{J)I"'" j{J),,) is established as 
qJn(i) (c poqo (')cp,q, O"'cp,q, 0; {J)I(I) "'{J)/(n(S») 

I V;(cp.qO,n(s);{J)I(I) "'{J)I(n(S»)' I I [r2a(Sx, "'SX
p 

(S/CpqO);{J)I(I) "'{J)I(n(i)_q» 
all the 2-partitions all the p-partitions all thedifTerent 
for s satisfying for orlepq (·) permutations 
SI (s)=cpq (.) and p>O of {s,q •· ... s"'r} 

. IT qJn(.<;,<'/Cpq ('))) (Sx, (S/CpqO);{J)I(X(j)+I) "'{J)I(X(j)+n(S;,(i/C
pq

(')))))]} (6.6a) 
;=) 

where the terminating condition is k=0 and qJl (I; {J)j) = HI (j{J)j) (which is the first order 
GFRF, i.e., transfer function when all nonlinear parameters are zero) {s- .. 's- } is a 

, XI' Xp 

permutation of {sx, ,"'sx) , {J)/(I) "·{J)I(n(.,)) represents the frequency variables involved in 

the corresponding functions, /(i) for i=l ... n(s) is a positive integer representing the 
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index of the frequency variables, s = C M. (·)c p,q, 0 .. · C p,q, 0, n(s x (s» = ! (Pi + qi) - x + 1 , X 
;=1 

is the number of the parameters in Sx' !(Pi +q;) is the summation of the subscripts of 
;=1 

i-I 

all the parameters in Sx . Moreover, x(i) = Ln(sx) (s/cpq ('») , InC jOJJ + ... + jOJI/ )= 
j=J 

K 

- L CJ,Q (rJ )(jOJJ + ... + jOJ,,)" , and 

q / n(s) 
f.. (C P.q 0, n(s);OJ/(J) ... OJ/(n(S))) = (D (jOJ/(n(S)-q+i) )'P" Ln(s) (j ~ OJ/(i» (6.6b) 

P 

f2a(Sx, "'Sx
p 

(S/CpqO);OJ/(J) "'OJ/(n(S)-q» = IT (jOJI(i(i)+J) + ... + jOJI(f(i)+n(Si,(SlC,.,(.»)))" (6.6c) 
;=1 

The mapping functionqJl/(CE(HI/O);OJp .. ·,OJ/I) enables the complex valued function 

/',(jOJp .. ·,jOJn)to be analytically and directly determined in terms of the first order 
GFRF and model nonlinear parameters. Therefore, the nth-order GFRF can directly be 
written into a more straightforward and meaningful polynomial function in terms of 
the first order GFRF and model parameters by using the mapping function 
qJl/ (CE(H/I O);OJJ'''', OJ/I) as 

H/I (jOJp '''' jOJI/) = CE(HI/ (jOJp"" jOJ/I»)' qJl/ (CE(H/I O~ OJp "', OJI/) (6.7) 
Using Equation (6.8), Equations (6.1) can be written as 

N 

Y(jOJ) = LCE(Hn(jOJp ... ,jOJn»)."F,,(jOJ) (6.8a) 
n=J 

where F,,(jOJ) = fn 1 f qJn (CE(Hn (');OJp ... ,OJn)·rrU(jOJ;)dO"w 
n(21Z")n-l wJ+ ... +w,,=w ;=) 

Similarly, 

Equation (6.3) can be written as 
N 

Y(jOJ) = L CE{Hn (jOJk," .. ,jOJk.»). 1'n (OJ) (6.8b) 
n=1 

As discussed in Chapter 5, it can be seen from Equations (6.7) and (6.8) that the 
mapping function qJl/(CE(HI/('»;OJp"',OJ/I)can facilitate the frequency domain analysis 
of nonlinear systems so that the relationship between the frequency response functions 
and model parameters, and the relationship between the frequency response functions 
and H J (jOJ/(J» can be explicitly revealed, and some new properties of the GFRFs and 

output spectrum can be clearly demonstrated. 

In this study, a novel property of the nonlinear effect on system output spectrum is 
revealed by using the new mapping function qJ/I(CE(HI/('»;OJP"',OJI/) and frequency 
response functions defined in Equations (6.7-6.8). It is shown that under certain 
conditions, the nonlinear terms in a system can drive the system output spectrum to be 
an alternative series of specific model parameters. This reveals a significant nonlinear 
effect on the system output frequency responses. 
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6.3 Alternating phenomenon in the output spectrum and its influence 

The alternating phenomena and its influence are firstly discussed in this section to 
point out the significance of this novel property, and then the conditions under which 
system output spectrum can be expressed into an alternating series are studied in the 
following section. 

For any specific nonlinear parameter c in model (1.5), the output spectrum (6.8a,b) 
can be expanded with respect to this parameter into a power series as 

Y(jco) = Fo(jco) + cF; (jco) + c2 F2 (jco) + ... + cP Fp (jco) +... (6.9) 

Note that when c represents a pure input nonlinearity, (6.9) may be a finite series; in 
other cases, it is definitely an infinite series, and if only the first p terms in the series 

(6.9) are considered, there is a truncation error denoted by o(p). F;(jco) for i=0,1,2, ... 

can be obtained from F;(jco) or F;(jco) in (6.8a,b) by using the mapping 

'P1I(CE(HII(·»;cop··"colI ). Clearly, F;(jco) dominate the property of this power series. 
Thus the property of this power series can be revealed by studying the property of 
'P1I(CE(HnO);cop···,coll ). This will be discussed in detail in the next section. In this 
section, the alternating phenomenon of this power series and its influence are 
discussed. 

For any VEe, define an operator as 

{

+I 
where sgnr(x) = 0 

-I 

sgn«v) = [sgnr(Re(v» sgnr(lm(v»] 

x>o 

x = 0 for x E R. 
x<o 

(6.10) 

Definition 6.1 (Alternating series). Consider a power series of form (6.9) with c>O. 
If sgnc(F;(jco» = -sgnc(F;+I(jco» for i=0,1,2,3, ... , then the series is an alternating series. 

The series (6.9) can be written into two series as 
Y(jco) = Re(Y(jco» + j(Im(Y(jco») 

= Re(Fo (jco» + c Re(F; (jco» + c2 Re(F2 (jco» + ... + cP Re(F/jco» + ... 

+ j(lm(Fa (jco» + c Im(F; (jco» + c2 Im(F2 (jco» + ... + cP Im(Fp (jco» + ... ) 

(6.11) 

From Definition 6.1, if Y(jco) is an alternating series, then Re(Y(jco» and Im(Y(jco» are 
both alternating. When (6.9) is an alternating series, there are some interesting 
properties summarized in Proposition 1. Denote 

Y(jco)I->P = Fa (jco) + cF; (jco) + c2 F2 (jco) + ... + cP Fp (jco) (6.12) 

Proposition 6.1. Suppose (6.9) is an alternating series for c>O, then: 

(1) if there exist 1'>0 and R>O such that for 1> T 

. {Re(F;(jco» Im(F;(jco» } mm - , >R 
Re(F;+1 (jco» Im(F;+1 (jco» 

then (6.9) has a radius of convergence R, the truncation error for a finite order 
p >T is lo(p)I ~ cp+1IFp+1 (jco)l, and for all n ~ 0, 
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IY{jm)1 E nil = [IY{jm)I .... T+211+11, IY{jm)I .... T+211IJ and IT II+1 C nil ; 
(2) IY{jm)1

2 
= Y(Jm)Y( - im) is also an alternating series with respect to parameter c; 

Furthermore, IY{jmt = Y(Jm)Y(-im) is alternating only if Re(Y(Jm» is 

alternating; 

(3) there exists a c > 0 such that aIY{jm)1 < 0 for 0 < c < C . 
ac 

Proof. 
(1) Y(Jm) is convergent if and only if Re(Y{jm» and Im(Y(Jm» are both convergent. 
Since Y(Jm)is an alternating series, Re(Y(Jm»and Im(Y{jm» are both alternating from 
Definition 6.1. Then according to Bromwich (1991), Re(Y{jm» is convergent if 

IRe(ci I'; (Jm»1 > IRe(ci+1 1';+1 (Jm»1 and )~'!!IRe(ci I'; (Jm»1 = o. Therefore, if there exists 7>0 

such that IRe(cil';(Jm»I>IRe(ci+II';+I(Jm»1 for i>T and )~'!!IRe(cil';(Jm»I=O, the alternating 

series Re(Y{jm» is also convergent. Now since there exist 1'>0 and R>O such that 

- Re(l';(Jm» > R for l>T and note c<R, it can be obtained that for i>T 
Re(I';+1 (Jm» 

_ Re(c
i
+
1 
1';+1 (Jm» = _ Re(cl';+1 (Jm» = /Re(cl';+1 (Jm»/ < -.:.. < 1 

Re(c'l';{jm» Re(l';(Jm» Re(l';{jm» R 

i.e., IRe(cil';{jm»I>IRe(ci+II';+I{jm»1 for l>Tand c<R. Moreover, it can also be obtained 

that for n>O 

It further yields that 

IRe(c1'+n FT+II (Jm»1 < (~)" cT IRe(FT (Jm»1 

That is, !~IRe(cT+1I FT+n(Jm»1 = o. Therefore, Re(Y{jm» is convergent. Similarly, it can 

be proved that Im(Y{jm» is convergent. This proves that Y{jm) is convergent. The 
truncation errors for the real convergent alternating series Re(Y{jm» and Im(Y(Jm» are 

lOR (p)1 ~ cP+1IRe(Fp+l(Jm»1 and 10 , (p)1 ~ cP+1IIm(Fp+l{jm»1 

Therefore, the truncation error for the series Y(Jm) is 

10(p)1 = ~OR(p)2 + 0, (p)2 ~ cp+1IFp+1 (Jm)1 

It can be shown that for Re(Y(Jm» and Im(Y(Jm», for n ~ 0 

IRe(Y{jm)HT+I)1 < ... < IRe(Y(Jm)I .... T+211+1)1 < IRe(Y{jm»1 < IRe(Y(Jm)I .... T+2n)1 < ... < IRe(Y(Jm)I-+T)1 

IIm(Y{jm)I .... T+I)1 < ... < IIm(Y{jm)I-+T+211+1)1 < IIm(Y{jm»1 < IIm(Y{jm)I-+T+211)1 < ... < IIm(Y{jm)HT)1 

Therefore, IY(Jm)I-+T+II < ... < IY(Jm)Hl'+211+11 < IY(Jm)1 < IY(Jm)I-+T+2111 < ... < IY(Jm)I-+TI. 

(2) 

IY(Jmt = Y(Jm)Y(- im) 

= (Fo{jm) + cF; (Jm) + c 2 F2 (Jm) + .. ·)(Fo (-im) + cF; (-im) + c 2 F2 (-im) + ... ) 

= L cIlII';{jm)I';,_i(-im) 
II~O.I.2.... i~O 
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It can be verified that the (2k)th terms in the series are positive and the (2k+ 1 )th terms 
are negative. Moreover, it needs only the real parts of the terms in Y(jOJ) to be 

alternating for IY(jOJ)1
2 = Y(jOJ)Y(-jOJ) to be alternating. 

(3) 

aIY(jOJ)I_ 1 alY(jOJf 

ac - 2IY(jOJ)1 ac 

= I 1. I {Re(Fo(jOJ)F; (-JOJ» + c L nc
n
-
I f F';(jOJ)F,,-;(-JOJ)} 

2 Y{jOJ) ,,=1.2.... ;=0 

S· 0 h . h th t aIY(jOJ)1 < 0 Dor 0 < c < -c . mce Re(Fo (jOJ)F; (-JOJ» < , t ere must eXIst c > 0 suc a 
ac 

This completes the proof. 0 

Proposition 6.1 shows that if the system output spectrum can be expressed as an 
alternating series with respect to a specific parameter c, it is always easier to find a c 
such that the output spectrum is convergent and its magnitude can always be 
suppressed by a properly designed c. Moreover, it is also shown that the low limit of 
the magnitude of the output spectrum that can be reached is larger than IY(jOJ)I->T+21 

and the truncation error can also be easily evaluated, if the output spectrum can be 
expressed into an alternating series. 

An example is given to illustrate these results. 

Example 6.1. Consider a SDOF spring-damping system with a cubic nonlinear 
damping which can be described by the following differential equation, 

my = -koY - By - cY + u(t) (6.13) 
Note that ko represents the spring characteristic, B the damping characteristic and c is 
the cubic nonlinear damping characteristic. This system is a simple case of NDE 
model (l.5) and can be written into the form ofNDE model with M=3, K=2, cJO(2) = m, 

CJO (I) = B, CJO (0) = ko, C30 (III) = C, COl (0) = -I and all the other parameters are zero. 

Note that there is only one output nonlinear term in this case, the nth-order GFRF 
for system (6.13) can be derived according to the algorithm in (3.8 or 3.11,3.10,3.2-
3.5), which can recursively be given as 

. , c3.0(l,l,I)Hn.3(jOJ,,"·,jOJn) 
H (jOJ ... JOJ ) - ---'----'-----

n ", n- L(' .) n JOJI + ... + JOJ" 
"-2 

H",30 = LH;(jOJp ... ,jOJ,)H"_;,2(jOJi+" .. ·,jOJ")(jOJI + ... + JOJi ) 

;=1 

H ",I (jOJ),···, jOJ,,) = H" (jOJ),···, JOJ" )(jOJ) + ... + jOJ,,) 

Proceeding with the recursive computation above, it can be seen that H,,(jOJ,,"',jOJ,,) 

is a polynomial of c30 (lll) , and substituting these equations above into (6.8) gives 
another polynomial for the output spectrum. By using the relationship (6.7) and the 
mapping function qJ"(CE(H,,O);OJp"',OJ,,) , these results can be obtained directly as 
follows. 
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For simplicity, let u(t) = Fd sineW) (Fd > 0) . Then F(OJk, ) = - jk,Fd , for 

k, =±I,OJ
k 

=kp., and 1=1,···,n in (6.8b). By using (5.3) or Property 3.3, it can be , 
obtained that for n=0,1,2,3, ... 

CE(H2n+1 (jOJk, , .. . ,jOJk,.+,» = (c3,o(1,I,I)y and CE(H2n (jOJk, ,.··,jOJk,.» = 0 (6.14) 

Therefore, for n=0,1,2,3, .. . 
H 2n+I(jOJ

k 
, ••• ,jOJk ) = C" . ({J2n+1 (CE(H2n+10}'OJk, ,···,OJk,.+, ) and H 2,,(jOJk, , ... ,jOJk,) = 0 (6.15) 

I 2n+1 

Then the output spectrum at frequency a can be computed as 
IN-XJ 

Y(jQ)= fCIl.F2'HI(O) (6.16) 
11=0 

where F211+1 (jO) can be computed as 

F211+1 (jO) = 2LI L ({J211+1 (CE(H 211+1 O);OJk, ,..·,OJk,,+,)· (- jFd )211+1 • klk2 .. ·k211+1 

lOki +, "+(I)k211+1 =.0 

2 2n+1 L ({J2n+1 (CE( H 2n+1 (-»; OJk, ,.'., OJk,"+, ) . ( _1)"+1 j(Fd )211+1 • (-I)" 
(Ok, +, "+Wk2lf+1 =.0 

(6.17) 

= _j'( Fd )211+1 ~ (CE(H ( ». OJ OJ) ~ ({J211+1 2n+1 • , k,'·· ., k,.+, 
2 (lI. +"'+(lI. =0 

I 211+1 

and m2 I (CE(H2 1('»)' OJ
k 

.'., OJk ) = m2 I (c30 (1,1,1)"; OJk ,. •• , OJk ) can be obtained according 
.,., n+ n+' I ' 211+1 ..,.. n+ I 2n+1 

to Equations (6.6a-c). For example, 
3 

3 3 IT (jOJk,) 3 

({J3 (c30 (111); OJk, ' OJk,' OJk,) = 3 • IT (jOJk, ). IT HI (jOJk, ) = ;-1 3 • IT HI (jOJk,) 
L3 (j L OJk,) ;=1 ;=1 L3 (j L OJk,) ;=1 

;=1 i=l 

({Js(C3,o(J II)c3.o(111);OJk, ,···,OJk,) 

= f.. (c3.0 (111),5; (i)k,'···' (i)k,)· L 
all the 3-partilions all the different 
for c3.o(lll) permutations of {O,O,1) 

. I1 ({JII(S,Y/C",q(')) (Sx, (c3,o (111)); (i)1(X(i)+I) ... (i)1(X(;)+n(.<,'(i'/c
P

'q('»)))] 
1=1 

[

f20(SU SOSI(C3,0(1II));(i)k' ,"',(i)k, )1P1(1;(i)k, )1P1(1;(i)k, )1P3(C3,o(1 I 1);(i)k, ···(i)k,) J 
= f.. (C3,o (111),5; (i)k, , ... , (i)k, ). + f2<1 (soS 1 So (C 3,0 (J 11)~; (i)k, , ... , (i)k, )1P1 (1; (i)k, )1P3. (C 3,0 (111); (i)k, .... (i)k, )1P1 (.1; (i)k, ) 

+ f2a (SISO S() (c3() (1 I 1)),(i)k, ,"',(i)k, )1P3 (C 30 (1 I I),(i)k, ·"(i)k, )1P1(1,(i)k, )IPI(1,(i)k,) 

.[(jtOJk)D (jOJk) ut(i)k)D (jOJk) (jtOJk)D (jOJk.>].ns H (. ) 
--.,-s -- S + 4 + 3 I jOJk, 

Ls U L OJk, ) L3 U L OJk, ) L3 (j L OJk, ) L3 (j L OJk, ) ;=1 

;=1 ;=3 ;=2 ;=1 

where OJk, E {O,-O}, and so on. Substituting these results into Equation (6.16), the 

output spectrum is clearly a power series with respect to the parameter c. When there 
are more nonlinear terms, it is obvious that the computation process above can 
directly result in a straightforward multivariate power series with respect to these 
nonlinear parameters. To check the alternating phenomenon of the output spectrum, 
consider the following values for each linear parameter: m=240, ko= 16000, B=296, 
Fd=100, and 0= 8.165. Then it is obtained that 
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Y{jn) = F; (n) + CF3 (0) + C2 Fs (n) + ... 

n31H ( "0)1
2 
H ( 'n) =_ .(Fd)H ('n)+3(Fd )3 I J I J 

J 2 I J 2 LI (jn) 

Fd s nSIHI (jnt HI (jn) ( j6n j3n - j3n ) +3(-) --+ + + ... 
2 LI (jn) LI (jn) LI (j3n) LI (-jn) 

=(-0.02068817126756 + 0.00000114704116i) 
+(5.98285157853244ge-006 -6.634300276113922e-0 1 Oi)c 
+(-5.192417616715994e-009 +3.323565122085705e-Olli)c2+ ... (6.18a) 

The series is alternating. In order to check the series further, computation of 
1P2n+l(c3•o {l,I,IY;wk,,···,wk,.+) can be carried out for higher orders. It can also be verified 

that the magnitude square of the output spectrum (6. 18a) is still an alternating series, 
i.e., 
IY{jn)1

2 = (4.280004317115985e-004)-(2.475485177721052e-007)c 

+(2.5063 78395908398e-0 1 0)c2 
- ••• (6.18b) 

As pointed in Proposition 6.1, it is easy to find a c such that (6.18a-b) are convergent 
and their limits are decreased. From (6.18b) and according to Proposition 6.1, it can 
be computed that 0.01671739< IY{jn)1 <0.0192276<0.0206882 for c=600. This can be 

verified by Figure 6.1. Figure 6.1 is a result from simulation tests, and shows that the 
magnitude of the output spectrum decreases when c increases. This property is of 
great significance in practical engineering systems for output suppression through 
structural characteristic design or feedback control. 

0.021 .----,----r---r--,.----.--~--.--.----.-------, 

0.0205~ 

E 0.02 l ~. 
f 0.0195 ~"'" 
~ '" 
i:o~: '~~ 
g> 
:!: 0.018 

"~ 0.0175 

O. 017 ~--:-::-:--__::_:_-::-------:-:-~~-~---'-----'-----..l.---'---------.J 
o 100 200 300 400 500 600 700 800 900 1000 

c 

Figure 6.1. Magnitude of output spectrum 
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6.4 Alternating conditions 

In this section, the conditions under which the output spectrum described by 
Equation (6.9) can be expressed as an alternating series with respect to a specific 
nonlinear parameter are studied. Suppose the system subjects to a harmonic input 
u(t) = Fd sin(Ot) (Fd > 0) (The results for this case can be extended to the general input 

one) and only the output nonlinearities (i.e., cp,oO with p~ 2) are considered. For 
convenience, assume that there is only one nonlinear parameter cp,oO in model (1.5) 
and all the other nonlinear parameters are zero. 

Under the assumptions above, it can be obtained from the parametric 
characteristic analysis in Chapter 3 and Chapter 4 as demonstrated in Example 6.1 and 
Equation (6.8b) that 

YUO) = Y1 UO) + YpUO) + ... + Y(p_I)/I+1 UO) + ... 

= F; (0) + C 1',0 OFp (0) + ... + C 1',00" Fcp-I)II+1 (0) + .. . 

= F; (0)+ cp,oOFp(O) + ... + Cp,OO" Fcp-I)II+I(O) + ... (6.19a) 

wherewk, E {±o}, Fcp-I)/I+IUO) can be computed from (6.8b), and n is a positive integer. 

Noting that F(wk,) = - jk,Fd , k, = ±I, wk, = k,O , and I = 1"", n in (6.8b), 

F: CO) - 1 " «)/I, ) ( 'F )(1'-1)11+1 k k k (1'-1)11+1 ) - 2 (1'-1)11+1 L.J IP(p-I)II+1 C 1',0' , wk, , ••• , wk(P_').+' . - ) d ' 1 2'" (1'-1)/1+1 

W'q +"'+l»k(p_l)n+' =0: 

(6.19b) 
If p is an odd integer, then (p-I )n+ 1 is also an odd integer. Thus there should be (p­
I )nl2 frequency variables being -0 and (p-I )nl2+ 1 frequency variables being 0 such 
that Wk + ... + Wk = 0 . In this case, 

I (p-I)n+' 

(- jFd )(1'-1)11+1 • klk2 ... k(p_I)II+1 = (-I)· j' (l )<1'-1)1112 . (Fd lp-I)II+1 • (_1)(1'-1)/1/2 = _ j(Fd )(1'-1)11+1 

If p is an even integer, then (p-I )n+ 1 is an odd integer for n=2k (k= 1,2,3, ... ) and an 
even integer for n=2k-1 (k=I,2,3, ... ). When n is an odd integer, Wk +"'+Wk :;tofor 

I {p-l)n+1 

Wk, E {± o}. This gives that Fcp-I)II+1 UO) =0. When n is an even integer, (p-l )n+ 1 is an 

odd integer. In this case, it is similar to that p is an odd integer. Therefore, for n>O 

F: ( '0) = - j f L IP(p-I)/I+1 (c 1',00"; wk, , ... , wk(P_"'" ) if P is odd or n is even 

{ 

( 

F )(1'-1)/1+1 

(p-J)II+1 J rut! +···+W.I:(p_l)n+1 =0 

o else 

(6.19c) 
From Equations (6.19a-c) it is obvious that the property of the new mapping 

IP(I'_I)n+I(Cp,Oon;wk,,""Wk(P_".+) plays a key role in the series. To develop the alternating 

conditions for series (6.19a), the following results can be obtained. 

Lemma 6.1. That IP(p-l)n+1 (c 1',0 (Y; wk, ,"', wk(P_".+,) is symmetric or asymmetric has no 

influence on Fcp-I)/I+I (j0) . 

This lemma is obvious since L 0 includes all the possible permutations of 

(Wk, , .. ·,wk,.+) . Although there are many choices to obtain the asymmetric 
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9'(p-l)n+1 (c 1',0 (Y; W k, ,"', wk(P_"o.) which may be different at different 

permutation(wk ,'·,Wk ), they have no different effect on the analysis of Fcp-l)n+I(jQ)· 
I (p-l)n+1 

Lemma 6.2. Consider parameter cp,q(r),r2, ... ,rp+q)' 
(al) If p ~ 2 and q=O, then 

9'n(') (c p,o(,r; WI(I) ,., wl(n('») = 9'(p-l)n+1 (c 1',0 (Y; WI(I) ., 'WI«p_I)n+I» 

(p-l)n+1 

(_1)"-1 Il HI (jWI(i» 

;=1 

L(p_I)n+1 (jWI(I) +.,' + jWI«p_l)n+I» 
L [IT 9'(p-I)x,+1 (c 1',0 (-)x, ; wl(X(,)+I) ••• WI(X(')+(P_I)X,+I» 

all the different combinations 1=1 

where, 

of {x, ,x, , ... ,x,) satlSfymg 
xl+·,,+xp=n-i,O$xjsn-1 

'(- - ) I' J nx xl, .. ,X p , • , 
. , W - + ... + W - -' . ( ...) L Il (j I(X(i)+I) } I(X(i)+(p-l)x, +1» 

nr rl , , rp all the different ;=1 
permutations of 

{k, .... ,k,) 

9';p-I)n+1 (c 1'.0 (Y; WI(I) •.• WI«p_l)n+I» 

-I 
[ 

I' 

L Il 9'(p-I)x,+1 (c 1',0 (/' ; wl(X(,)+I) .•• WI(X(,)+(p_I)x,+I» 

all the different combinations 1=1 L(I'_I)n+1 (JWI(I) + ... + jWI«p_l)n+I» 
of {x"x2 '" .,ip) sallsfymg 
XI +".+xp =n-J, OSx, so-1 

nx'(x., ... ,xp ) L Ill' . . 'J . . W - + ... + W - -' '( ...) . (j I(X(i)+I) } I(X(i)+(p-l)x,+I» 
nr fl' ,rp allthedlf'ferent ;=1 

permutations of 
(" .... ,',) 

h ..., , p! . h b f t etermmatlonIS 9'1 (l;Wi ) = I. n,(rl,···,r,,)= ,n)+ ... +ne=p,elst enum ero 
nl !n2 !· ··ne ! 

distinct differentials rj appearing in the combination, nj is the number of repetitions of 
n, and a similar definition holds for n; ex.,···, xI') . 

(a2) If p ~ 2, q=O and r)=r2= ... =rp=r, then 

9'(p-l)n+1 (c 1',0 (Y; WI(I) ••• WI«p_l)n+I» 

(p-l)n+1 

(_1)"-1 Il [(JWI(i»' HI (JWI(i»] 

i=l 

L(p_l)n+1 (JW'(I) + .. , + jW'«p_l)n+I» 

I' 

L nx ' (XI'''' X p). Il 9'tp-I)x,+1 (c 1'.0 Ox, ; w'(X(')+I) .•• W'(X(i)+(P_I)x,+I» 
all the different combinations ;=1 
of (XI 'X2 , ... ,ip ) satisfymg 
x,+·,,+xp=n-J,Osxjsn-J 

where, 

if Xi =0, 9'c"p-I)x,+1 (c 1',0 Ox, ;W'(X(i)+I) .. 'W,(X(i)+(P-I)x,+I» = 1 , otherwise, 

9'c"p-I)x,+1 (c 1',0 Ox, ; w'(X(i)+I) ••• w,(X(i)+(p-I)X,+I» 

(Jw'(X(i)+I) + ... + jW'(Y(i)+(I'_I)x,+I»' 

- L(p_I)x,+1 (Jw'(X(i)+I) + ... + jW,(X(i)+(p-I)x,+I» 

The recursive terminal of rn" _ (c (.)X,. W - ... W - ) is x- = 1 
't'(p-I)x, +1 1'.0 ., '(X(i)+I) '(X(i)+(p-I)x, +1) i' 
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Proof. 
<fJn(s) (c 1'.0 (or; ll)/(1) ••• ll)/(n(:;))) = <fJ(p-l)n+1 (c 1'.0 (·)C 1'.00'" C 1'.00; ll)/(1) ••• ll)(/(p_l)n+I» 

I{t;(cp.oO,(p-l)n+I;ll)/(I) "'ll)/«p_l)n+I»' I I 
all the 2-partitions all t~e p-partitions all the diff~rent 
for i satisfying for s/c),o(') permutations 
.,(s)=c, .• O. of{s" ... · •• ,,) 

[r2a (Sx, ." Sx, (Cpo (·r-I
); ll)/(1) ". ll)/(n(s))) • Ii: <fJn('i, (c, .• o·-')) (sx, (c 1'.0 (·r-

I
); ll)/(X(i)+I) ". ll)/(X(i)+n('i, (C"'(')"-'))))]} 

;=1 

=-----------------------
[ 

I' I I TI (jll)/(X(')+I) + ... + jll)/(X(/)+(p_I)X, +1) )" 

L(p_l)n+1 (jll)/(I) + ... + jll)/«p_l)n+I» all the different combinations all the dIfferent 1=1 
of {XI ,x1 •... ,xr } satisfying permutatl,ons,of 
Xl + ... +xp=n-l, OSXj So·1 each combination 

. Ii: <fJ(p-l)x,+1 (C 1'.0 Ox, ; ll)/(X(i)+I) ••• ll)/(X(i)+(p_I)X,+I»] 

;=1 

Note that different permutations in each combination have no difference to 
I' n <fJ(p-l)x,+1 (C 1'.0 Ox, ; ll)/(X(i)+I) ". ll)/(X(i)+(p-I)X,+I» 

i=1 

written as 
<fJ(p-l)n+1 (c 1'.0 On; ll)1 ••• ll)(p_l)n+l) 

L(p_l)n+1 (jll)/(I) + ... + jll)/«p_l)n+I» 

I' 

I TI <fJ(p-l)x,+1 (c 1'.0 Ox, ; ll)/(X(i)+I) ••• ll)/(X(i)+(p-I)X,+I» 

all the different combinations ;=) 
of {i,.x2 •• ··.i r }satisfying 
XI +.··+i)=n-I, Osi, so·1 

I' 

I TI (J'll) - +." + J'll) - )" 
I(X(i)+I) I(X(i)+(p-l)x, +1) 

all the differ en. 
permutations of 

each combination 

i=1 

L(p_l)n+1 (jll)/(I) + ... + jll)/«p_l)n+I» 

nx ' (Xp ''', Xp ) 

nr ' (rp,,·,rp ) 

I' 

I TI <fJ(p-I)X, +1 (c 1'.0 (-/' ; ll)/(X(i)+I) ••• ll)/(X(i)+(p-I)X, +1» 

all the different combinations ;=1 
of {x. ,Xl , ... ,ip ) satisfying 
Xl + ... +i" =n-I. 0$",$0-1 

I' 

I TI (J'll) - +". + jll) - -)" 
I(X(i)+I) I(X(i)+(p-l)x, +1) 

all the different 
permutations of 

(r, ..... r,) 

;=1 

n;(.xp""xp ) and n;(rp.",rp ) are the numbers of the corresponding combinations 

involved, which can be obtained from the combination theory and can also be referred 
to Peyton-Jones (2007). From an inspection of the recursive relationship in the 
equation above, it can be seen that there are (p-1)n +1 HI(jll)i) with different 
frequency variable at the end of the recursive relationship. Thus they can be brought 
out as a common factor. This gives 

(p-l)n+1 

<fJ(p-l)n+1 (c 1'.0 on; ll)/(I) ". ll)/«p_l)n+I» = (_I)n TI HI (jll)/(i» • <fJ;p-l)n+1 (c 1'.0 on; ll)/(I) ." ll)/«p_l)n+I» (6.20a) 
;=1 

where, 
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IP;p-l)n+1 (c 1'.0 (or; W,(I) •• 'W'«p_l)n+I» 

I' -I 

L(p_l)n+1 (jW'(I) + ... + jWI«p_l)n+I» 
L IT IP;p-l)x,+1 (c 1'.0 Ox, ; W'(X(i)+I) •• 'WI(X(i)+(p_l)x,+I» 

all the different combinations ;=1 

nx'(i<p""Xp) 

nT·(rl,···,rp ) 

of {XI.x2 ..... xp } satisfying 
XI + ..• +xp =n-I. O~xi So·) 

I' 

L IT (jW,(X(i)+I) + ... + jWI(X(i)+(p_I)X,+I»r, 

all the different ;=1 
permutations of 

{I, ....• I,} 

(6.20b) 

the termination IS IP; (I; W) = I. Note that when Xi =0, there is a term (jWI(X(i)+I»" 

I' 

appearing from nx ' (Xp""Xp) 

n
T

' (rp ... ,rp) 
L IT (jW'(X(i)+I) + ... + jW,(X(i)+(p_l)x,+I»r, • It can be 

all the different ;=1 
permutations of 

{I, ..... I,} 

verified that in each recursion of IP;p-l)n+1 (c 1'.0 (Y; W/(I) •• 'W,«p-I)n+i)' there may be some 

frequency variables appearing individually in the form of (jw/(X(i)+I»r, , and these 

variables will not appear individually in the same form in the subsequent recursion. At 
the end of the recursion, all the frequency variables should have appeared in this form. 
Thus these terms can also be brought out as common factors if r)=r2= . .. =rp. In the 
case ofr)=r2= ... =rp=r, 

nx ' (xP"" xp) 

nT'(rl,··,rp ) 

I' 

L IT (jW/(X(i)+I) + ... + jW,(X(i)+(p_l)X,+I»r, 

all the different ;=1 
permutations of 

(I, ..... I,) 

I' 

= nx ' (XP'''' Xp)· IT (jWI(X(i)+I) + ... + jWI(X(i)+(p_I)X, +I»r, 

;=1 

Therefore (6.20ab) can be written, ifr)=r2= ... =rp, as 
IP(p-l)n+1 (c 1'.0 (Y; W,(I) •• 'WI«p_l)n+I» 

(p-l)n+1 

= (-Ir IT [(jW/(i»' HI (jwl(i»] . IP;p-l)n+1 (c 1'.0 (·r ; w/(I) •• 'WI«p_l)n+I» 

;=1 

IP;p-l)n+1 (c 1'.0 on ; W,(I) •• ,w'«p_l)n+I» 

I' 

(6.21a) 

-I 

L(p_I)II+1 (jWI(I) + ... + jW'«p_l)n+I» 
L IT IP;P-I)X, +1 (c 1'.0 Ox, ; WI(X(i)+I) •. ,w/(x(i)+(p-I)x, +1» 

all the different combinations ;=1 
of {XI 'X2 •...• x,} satisfying 
XI + ... +ip =n-I. OS;(. :So-l 

I' .(- - ) IT( . . ),(1-5(x)) 
'n x Xp""X p ' jWI(X(i)+I)+"'+jW,(X(i)+(p_l)x,+I) ' , 

;=1 

(6.21b) can be further written as 
IP;p-l)n+1 (c 1'.0 on; W/(I) •. 'WI«p_l)n+I» 

-I 

L(p_l)n+1 (jW/(I) + ... + jW'«p_l)n+I» 

(6.21b) 

I' 

I nx ' (Xi''''' X p). n IP[p-l)x,+1 (c 1'.0 (/' ; WI(X(I)+I) ••• W/(X(,)+(p_I)X, +1) ) (6.22a) 
all the different combinatIOns 1=1 
of {i l .x2 •...• xp } satisfying 
XI +"'+xp =n-I, O:SXj So-I 

where, if Xi =0, 

otherwise, 
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IP[p-l)x,+1 (c 1',0 Ox, ; w'(X(i)+I) '" W,(X(i)+(p-l)x, +1» 

= (jW'(X(i)+I) +." + jW,(X(i)+(p-l)x,+I) r IP;p-I)X, +1 (c 1',0 Ox, ; W'(X(i)+I) ••• W,(X(i)+(p_I)X, +1» 

(j'W - + ... + j'W - - r 
I(X(i)+I) I(X(i)+(p-l)x, +1) ~.() 

. . ~nx xp,,·,xp 
- L(p_l)x,+1 (jw,(X(i)+I) + ... + jW,(X(i)+(p-l)x,+I» all the different combinations 

of {X1.Xl •...• X,,} satLSfymg 
xI +'''+xr =x, -1. OSx j Sx,.1 

I' .n(' .... ),,(1-5(x,)), (c (.)X,·W - "'W - ) 
jW'(X'(i)+I) + + jW,(X'(i)+(p_l)x,+I) IP(p-l)x, +1 1',0 , I(X'(i)+I) I(X'(i)+(p-l)x, +1) 

;=1 

(jW'(X(i)+I) + ... + jW,(X(i)+(p_I)X,+I) r 
- L(p_l)x,+1 (jW'(X(i)+I) + ... + jW,(X(i)+(p_I)X,+I» 

I' 

L nx ' (XI"'" Xp)' n IP[p-l)x,+1 (C 1',0 (Y' ; W'(X'(i)+I) ••• W'(X'(i)+(P_I)X,+I» 

all the different combinations ;=1 
of {x l ,X 2 , .... x,,} satisfying 
XI +'''+xp=x,-l, OS;Xj Sx/-l 

(6.22b) 

The recursive terminal of (6.22b) is Xi =1. Replacing (6.20b) into (6.20a) and 
replacing (6.22ab) into (6.21a), the lemma can be obtained. This completes the proof. 
o 

For convenience, define an operator "*,, for sgnc(.) satisfying 
sgnc (VI) * sgnc (v2) = [sgn r (Re(vlv2» sgn r (lm(vlv2»] 

for any VI>V2 EC. It is obvious sgnc(vl)*sgnC(v2)=sgnc(vJv2)' 

The following lemma is straightforward. 

Lemma 6.3. For VPV2'V E C, suppose sgnc(v l ) = -sgnc(v2 ). If Re(v) Im(v) = 0, then 

sgnc(vlv) = -sgn c(v2v). If Re(v) Im(v) = 0 and v ¢ 0, then sgnc(vJv) = -sgn c(v2!v). 0 

Proposition 6.2. The output spectrum in (6.19a) is an alternating series with 
respect to any specific parameter cp,O(r),r2, .. . ,rp) satisfying cp,o(.»O and p = 21 + I for 
1=1,2,3, ... 

(a1) if and only if 

sgnc[w. + ... +f:, (-l!~-I IP(p-l)n+1 (c 1'.0 on; W'(I) ,., W I «I'_I)n+I»J = const , i.e., 
I (p-I)/f+1 

= const 

nx'(xp""xp ) 

nr ' (rp·",rp ) 
L IT (jW'(X(i)+I) +, .. + jW,(X(i)+(P-I)x,+I) r 1 

all the different ;=1 
permutations of 

{rl ... ·.r,} 
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atk) +···+W.t(p_l)n+1 =n all t!!e ~iffereEt com.bin~tions 
of {x"x 2 , .•. ,xp } satlsfymg 

sgn c x, +"'+xp =n-I, OSXi Sn-I 

. IT lP[p-I)X,+1 (C 1'.0 (/', ; W1(X(i)+I) ... W1(X(i)+(p_I)X,+I»] 

i=l 

= const (6.24) 

where const is a two-dimensional constant vector whose elements are + I, 0 or -I. 

Proof. (al). From Lemma 6.1, any asymmetric lP(p_l)n+I(Cp.O(Y;wk"""Wk(P_I).') is 

sufficient for the computation of 1\1'-1)11+1 (jn) . It can be obtained that 

( z:: ( 'n» (.( Fd )(p-l)n+l) (" « )n » sgnc F(p_l)n+1 } =sgnc -j 2 *sgn L..JlP(p-l)n+1 Cp•o • ;Wk,,"',Wk(P_"'" 

(Ok, +"'+Wk(p_l)n+1 =0 

From Lemma 6.3, sgn c (- j(; ><1'-1)11+1) has no effect on the alternating nature of the 

sequence 1\p-I)II+I(jn) for n=I,2,3, .... Hence, (6.l9a) is an alternating series with 

respect to cp,o(.) if and only if the sequence LlP(p-I)II+I(Cp.OO";wk"""Wk(P_,,.''> for 
W k , +'''+aJk(p_l)n+1 =0 

n=I,2,3, ... is alternating. This is equivalent to 

sgn c [ ... L (-l}n-'lP(p_l)n+, (c p.oO
n 

;W1(1) •• 'W1«p-l)n+I»J = const 
lilt) + +CO.t(p_l)n+J-.o 

In the equation above, replacing lP(p-l)n+1 (c 1'.0 (·r; w k, , ••• , wk(P_I)." ) by using the result III 

Lemma 6.2 and noting (p-I )n+ 1 is an odd integer, it can be obtained that 

I [rllP;p-I)X,+1 (c 1'.0 ox. ; W1(X(I)+I) ••• W1(X(I)+(p_l)x,+I» 
all the different combinations 1=1 
of {XI,X l , ...• xp } satlsfymg 
x, +·.·+x.,=n-I. 0.$".$0-1 

n;(xl'''''Xp ) 

nr*(rl,···,rp) 
I' 1 'w - + ... + 'w _. r, 

L IT (j I(X(i)+I) } I(X(I)+(p-l)x,+I» 
all the different 1=) 
permutations of 

!" ..... ,,) 

(p-l)n/2 

III(jn) IT /111 (jn)1 2 

;=1 

L(p_')n+' (jn) 

I L [rllP;p-I)X,+1 (Cp.oO
X
' ;W1(X(i)+I) '''W1(X(i)+(p-I)X,+I» 

(Okl +"'+Wk(p_l)n+1 =.0 all t!!e different combinations ;=1 
of (x,.Xl •...• xp } satisfying 
XI +"'+xp =n-I, OSxisn-1 

nx*(xl'''''xp) 

nr*(rl' ... ,rp) I rl (jW1(X(i)+I) + ... + jW1(X(i)+(p_I)X,+I»r, 1 
all the different ;=) 
permutations of 

!" ..... ,,) 
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(p-l)n/2 

Note that ITIHI (j0)12 has no effect on the equality above from using Lemma 6.3, 
;=1 

then the equation above is equivalent to (6.23). 

(a2). If additionally, rl=r2= ... =rp=r in cp,o(.), then using the result in Lemma 6.2, 
(6.23) can be written as 

(jo)' H1(j0) " "r .(- ... - ) -=----'----=--=-. ---'- L... L... Ln x x l' ' X p 

L(p_I)n+1 (JO) w, +,,·+w, =Oa11 the different combinations 
I (p-l)n+1 of {x1.x1 •. · .• xr}satistying 

sgnc "'+'''+'',=n-I,O$,,;$n-1 = canst 

. 11 rp~P-I)x,+1 (c P.O (/' ;W'(X(i)+I) " 'W'(X(i)+(P_I)X,+I»] 
1=1 

From Lemma 6.3, (jo)' has no effect on this equation. Then the equation above is 
equivalent to 

= canst 

P ] . IT rp~I'-I)x,+1 (c p,O Ox, ; W'(X(i)+I) .•• W,(X(i)+(P-I)x,+I» 
;=1 

H(U) H(U) H(U) If Re( 1 J ) Im( 1 J ) = 0, then 1 J has no effect, either. This gives 
L(I'_I)n+1 (j0) L(I'_I)n+1 (j0) L(I'_I)n+1 (j0) 

Equation (6.24). The proof is completed. 0 

Proposition 6.2 provides a sufficient and necessary condition for the output 
spectrum series (6. 19a) to be an alternating series with respect to a specific nonlinear 
parameter cp,O(rl,r2, ... ,rp) satisfying cp,o(.»O and p = 2F + I for F =1,2,3, .... Similar 
results can also be established for any other nonlinear parameters. Regarding 
nonlinear parameter cp,O(rl,r2, ... ,rp) satisfying cp,o(.»O and p = 2F for F =1,2,3, .... , it 
can be obtained from (6. 19a) that 

Y(jO) = F; (0) + c 1',0 (-)2 F 2(p_I)+1 (0) + ... + Cp,O 0 211 
F 2(p_I)II+1 (0) + ... 

F 2(p_I)II+1 (0) for n= 1,2,3, ... should be alternating so that Y(jO) is alternating. This yields 
that 

_ (" « )2(n+I). ») - - sgn c w +"'+w ~ rp2(p:I~n+I)+1 c 1',0 • ,W'(I) ... w
'
(2(1'_I)(n+I)+I) 

*1 kZ(p-IXII+I)+1 

Clearly, this is completely different from the conditions in Proposition 6.2. It may be 
more difficult for the output spectrum to be alternating with respect to cp,o(.»O 
withp = 2F than cp,o(.»O withp = 2F + I. 

Note that Equation (6.19a) is based on the assumption that there is only nonlinear 
parameter cp,o(.) and all the other nonlinear parameters are zero. If the effects from the 
other nonlinear parameters are considered, Equation (6.19a) can be written as 

Y(jO) = F;'(O) + cp,oOF;(O) + ... + Cp,OO" i\~-I)n+I(O) +... (6.25a) 
where 
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F(~-1)11+1 (n) = F(p-l)l1+1 (n) + O(p-l)n+1 (n; Cp',q' \ Cp,o (.» (6.25b) 
C , ,includes all the nonlinear parameters in the system. Based on the parametric p,q 

characteristic analysis in Chapter 3 and the new mapping function 
((In(CE(H,,O);OJp''',OJ,,) defined in Chapter 5, (6.25b) can be determined consequently. 

For example, suppose p is an odd integer larger than 1, then F(p-I),,+I (jn) is given in 

(6.19c), and o(p_l)n+l(n;Cp',q' \Cp,o('» can be computed as 

[ ( 

F Jl1
(C

P':"('» 
0(1'_1),,+1 (n; C p',q' \ Cp,o (.» = L - j f 

all the monomails consisting of the parameters in C p',q' \cp .o(·) 
satisfYing np+ L (P: +q:) is odd and less than N 

L ((J1I{cP.o."('» (Cp,o"S(Cp',q' \Cp,oO);OJk, "'OJk.(,P .•• ,(.,,)] 
aJk +",+wk ={l 

I II(Cp,O",I('» 

where s( C p',q' \ C 1',00) denotes a monomial consisting of some parameters in C p',q' \ C 1',00 . 

It is obvious that if (6. 19a) is an alternating series, then (6.25a) can still be 
alternating under a proper design of the other nonlinear parameters (For example, 
these parameters are sufficiently small). Moreover, from the discussions above, it can 
be seen that whether the system output spectrum is an alternating series or not with 
respect to a specific nonlinear parameter is greatly dependent on the system linear 
parameters. 

Example 6.2. To demonstrate the theoretical results above, consider again the 
model (6.13) in Example 6.1. Let u(t) = Fd sin(nt) (Fd > 0). The output spectrum at 
frequency n is given in (6.16-6.17). From Lemma 6.2, it can be derived for this case 
that 

2n+1 

(-W-1 IT [(jOJ'(i»' HI (jOJ'(i»] 

((JZ11+1 (C3,o on; OJ'(I) .', OJ'(Z11+I» = __ --'-'i=:!..,I ______ _ 

LZ11+1 (jOJ'(I) +." + jOJ'(Z11+I» 

3 

L nx *eX p XZ' X3 )· IT ((J;X,+I (C 3,o (}", ; OJ'(X(i)+I) •• 'OJ,(X(i)+Zx,+I» 
all the different combinations ;=1 
£f {~I ,x1.,x)) satisfYing 
XI +X 2 +X 3 =n-l, O:S:;Xj :50-1 

where, if Xi =0, ((J~P-I)x,+1 (C 1',0 OX, ;OJ'(X(i)+I) •• 'OJ'(X(i)+(P_I)X,+I» = 1 , otherwise, 

((J;x,+1 (c3,o (/' ; OJ1(X(i)+I) ••• OJ'(X(i)+Zx,+I» 

(jOJ1(X(i)+I) + ... + jOJ'(X(i)+2X,+I)Y 

- L 2x,+1 (jOJ1(X(i)+I) + ... + jOJ1(X(i)+zx,+I» 

Note that the terminal condition for (6.26ab) is 

(6.26a) 

(6.26b) 

"- (c (.)X,. _ ••• )1 -"( (,). ... - (jOJ1(1) + ... + jOJ1(3»' (626) 
((JZx, +1 3,0 ,OJ1(X(i)+I) OJ,(X(i)+Zx,+I) x,=1 - ((J3 C3,o ,OJ1(1) OJ1(3» -, , • c 

- L3 (j OJ1(1) + ... + J OJ'(3» 

Therefore, from (6.26a-c) it can be shown that ((JZn+I(C3,O(Y;OJI "'OJZn+l ) can be written as 
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(6.27) 

where rX(xpx2"",xn_l) is a positive integer which can be explicitly determined by 
(6.26ab) and represents the number of all the involved combinations which have the 

n-I' . 

same n JOJ1.(I) + ... + JOJ1?,) . Therefore, according to Proposition 6.2, it can be 
;=1 - Lx, (JOJ1(1) + ... + JOJ1(x,» 

seen from (6.27) that the output spectrum (6.16) is an alternating series only if the 
following two conditions hold: 

(b2) sgnc = const 

Suppose 0 = J¥ which is a natural resonance frequency of model (6.13). It can be 

derived that 
K 

L2n+1 (j0) = - I c1,o (rl )(jOY' = -(m(j0)2 + B(jO) + ko) = - JBO 
k,=O 

H ('0)=_-_1 ___ 1_ 
1 J L ( '0) - 'EO 

1 J J 

It is obvious that condition (b 1) is satisfied if 0 = !!i-. Considering condition (b2), it 

can be derived that 
JOJ1(1) + ... + JOJ1(X,) j&(x; )0 

- Lx, (jOJ1(1) + ... + )OJ1(x,» - Lx, (j&(x;)O) 
(6.28a) 

where e(x;) E {±(2j + 1)10 :;:;; j :;:;; In + 1) , and In + 11 denotes the odd integer not larger than 

n+ 1. Especially, when &(x;) = ± 1 , it yields that 
JOJ1(1) + ... + JOJ1(x,) __ ±.::...j_O_ = _±_J_'O_ = 

when 1&(x;)1 > 1 , 

JOJ1(1) + ... + JOJ1(x,) 

- Lx, (j OJ1(1) + ... + j OJ1(x,» 

j&(x;)O 

(l-&(xY)ko + j&(x;)nB 

If B« ~ kom , then it gives 

- Lx, (±jO) ± JBO B 

j&(xJO 

- Lx, (j&(x;)O) 

JOJ1(1) + ... + )OJ1(X,) 
--....:....:...----'-'-'--:::.------== 
- Lx, (jOJ1(1) + ... + JOJ1(X,» j(&(xJ - &(~)~kom 
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Note that in all the combinations involved in the summation operator in (6.27) or 
condition (b2), i. e., 

I Io 
lUi +"'+fV,t =0 all the combination (x,.x1.···.xn.,) 

, 1.+' satisfYing .,E(2j+IIISjSn-lj 
x,;;::x2 :i!:,.:2:xn_,. and 
"=. happens only if Xi +xI+IS2n-2 

There always exists a combination such that IT jOJI(I) + ... + jOJI(X, ) = _1_ (6.29) 
;=1 - LXI (jOJI(I) + ... + jOJI(X,» B

n
-

I 

Note that (6.28b) holds both for s(x;) = ±I, thus there is no combination such that 

IT jOJI(I) + ... + jOJI(x, ) = __ 1_ 

;=1 - Lx, (jOJI(I) + ... + jOJI(X,» B
n

-
I 

Noting that B« .Jkom , these show that 

rr"- I 
jOJI(I) + ... + jOJI(x,) 1 

max ( . .) ) = ----;;:! 
all the in~olved '_1 - L (j OJI(I) + ... + lOJI( ) B 
combmatlons 1- x, XI 

which happens in the combination where (6.29) holds. 

Because there are n+ 1 frequency variables to be +0 and n frequency variables to 
be -0 such that OJI + ... + OJ211+1 = 0 in (6.16-17), there are more combinations where 

s(x;) > 0 that is (s(x;)- &(~).Jkom >0 in (6.28c-d). Thus there are more combinations 

where Im( jOJI.(I) + ... + jOJI.(X,) ) is negative. Using (6.28b) and (6.28d), it can be 
- Lx, (jOJI(I) + ... + l OJ/(x,» 

shown under the condition that B«.J kom , 

max (IIm(IT"-
1 

jOJI(I) + ... + jOJ/(X,) )1) "" I I 
all the involved . -L ('OJ +"'+l'OJ ) B"-2 ( ( ) __ 1_) f'k= &(x,)=3 
combmatlons ,=1 x, 1 1(1) I(x,) s x; &(x,) " II.Om 

11-1' . 

This happens in the combinations where the argument of IT l
OJ

I.(I) + ... + l
OJ

,.(x,) is 
;=1 - Lx, (jOJ/(I) + ... + l OJ/(x,» 

either -90° or +90°. Note that there are more cases in which the arguments are _90°. If 
the argument is -180°, the absolute value of the corresponding imaginary part will be 
not more than 

max (Im(IT
n

-

1 

jOJ/(I)+"'+jOJ/(X,) »"" I I _ =------:-
the combination _ L (1' OJ + ... + l'OJ ) n-4 ( I 3 ~3 «x, )-3 3 n-4 ~3 
whose argument is ;=1 x, /(1) /(x,) B S(X;)--(-» "kom 2.7 B "kom 
_1800 I: x, 

which is much less than ---== 
2.7 B n

-
2 .Jkom . 

Therefore, if B is sufficiently smaller than.J kom , the following two inequalities 
can hold for n> 1 

n-l' . 
" IT l OJ/(I) + ... + l OJ/(x) Re( ~ rX(xpx2, ... ,xn.I) . . ' ) > 0 

allthecombination(x,.x, ....••. ,) ;=1 - Lx, (l OJ/(I) + ... + l OJ/(x,» 
satisfYing x,E{2j+lll~j~n-1} 
x, :2:"2:2:";;::)(n.'. and 
"=" happens only if Xi +X/+I $2n-2 

n-I' . 
" IT l OJ/(I) + ... + l OJI(x) Im( ~ rX(XpX2, ... ,Xn.I) . . I )<0 

all the.combination(x, •• , •...• x •. ,) ;=1 - Lx, (l OJ/(I) + ... + l OJ/(x,» 
satlsfYmg ',e{2j+IIISj';n-lj 
",:2:x 2 :2:'··:2:x n_" and 
"=" happens only if Xi +XHI S2n-2 
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That is, condition (b2) holds for n> 1 under B« ~ kom and n = .J¥ . Hence, (6.16) is 

an alternating series if the following two conditions hold: 

(cl) B is sufficiently smaller than ~kom , 

(c2) The input frequency is n = .J¥ . 

Note that in example 6.1, n=.J¥ '" 8.165, B=296« ~kom =1959.592. These are 

consistent with the theoretical results. Therefore the conclusions are verified. 

6.5 Conclusions 

A novel nonlinear effect on the system output spectrum is revealed in this chapter 
based on the frequency domain methods established in the previous chapters. It is 
shown for the first time that under certain conditions the system output spectrum can 
be described as an alternating series with respect to a specific nonlinear coefficient 
and this alternating series has some interesting properties which are of significance to 
engineering practices. 
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Chapter 7 
NONLINEAR EFFECT ON SYSTEM OUTPUT 
SPECTRUM II ------ OUTPUT FREQUENCIES 

For nonlinear Volterra systems, the output frequencies are studied in this chapter. 
The results show some interesting features of output frequencies of nonlinear systems 
such as periodicity and opposite properties, and reveal the nonlinear effects on system 
output spectrum from different nonlinearities. These results have significance in the 
analysis of nonlinear systems and in the design of nonlinear filters by taking 
advantage of nonlinearities, and consequently can provide a useful guidance for the 
practical application of Volterra series theory of nonlinear systems. 

7.1 Introduction 

As mentioned before, an important phenomenon for nonlinear systems in the 
frequency domain is that they always have very complicated output frequencies, for 
example, super-harmonics, sub-harmonics, inter-modulation, and so on. This usually 
makes it rather difficult to analyze and design the output frequency response 
behaviour for nonlinear systems. The output frequencies for Volterra systems have 
been studied by several authors (Raz and Van Veen 1998, Lang and Billings 1997, 
2000, Bedrosian and Rice 1971, Wu et a12007, Wei et a12007, Bussgang 1974, Frank 
1996) by using the frequency domain method based on the Volterra series. These 
results provide algorithms from different viewpoints for the computation and 
prediction of the output frequencies for nonlinear systems. It can be seen from the 
previous results that Volterra systems can effectively be used to account for super­
harmonics and inter-modulation in the output spectrum of nonlinear systems. 

In this study, some important properties for the output frequencies of the Volterra 
systems are established. They provide an alternative insight into the super-harmonic 
and inter-modulation phenomena in the output frequencies of nonlinear systems, 
especially when the effects from different system nonlinearities are considered. The 
new properties demonstrate several novel frequency characteristics of the output 
spectrum for nonlinear systems. They have significance in the analysis and design of 
nonlinear systems and nonlinear filters in order to achieve a specific output spectrum 
in a desired frequency band by taking advantage of nonlinearities. These new results 
can also provide an important guidance to modelling, identification, control and signal 
processing by using the Volterra series theory in practices. Examples and discussions 
are provided to illustrate the results. 

7.2 Output frequencies for nonlinear Volterra systems 

As discussed in Chapter 4, the output spectrum of nonlinear Volterra system (1.1) 
subject to a general input can be described by (4.1-4.2). For convenience, it is 
rewritten here as 
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N 

Y(jw) = LY,,(jw) 

n 
(7.1) n=1 

H n (jwl,"', jwn) n U(jw; )da OJ 

;=1 

where fO da", represents the integration on the super plane WI + ... + OJ" = W. Yn (jw) is 

referred to as the nth-order output spectrum. Similarly, when the system is subject to a 
multi-tone input described by (1.3), the system output spectrum is given in (4.3-4.4), 
i.e., 

N 

Y(jw) = ~):,(jw) 
11=1 (7.2) 

Yn(jw) = 21" LH,,(jWk, ,. .. ,jwk)F(Wk, ) .. ·F(wk.) 
((.Itl +"'+Q},tn::'(lJ 

where F(wk) can be written explicitly as F(Wk)=/flk"//Lrj,,j'S;gl(k,) fork; E{±I, ... ,±K}, and 

{

I a> 0 

sgn I(a) = 0 a = 0 . 

-la<O 

From Equations (7.1) and (7.2), it can be seen that the output frequencies 
corresponding to the nth-order output spectrum, denoted by Wn and simply referred to 
as the nth-order output frequencies, are completely determined by 

W = WI + W2 + ... + OJ" or W = wk, + wk, + ... + Wk. 

which produce super-harmonics and inter-modulation in system output frequencies. 
Consider any continuous and bounded input function u(t) in t 2: 0 with Fourier 
transform U(jw) whose input domain is denoted by V, i.e., WE V . Note that V can be 
any closed set in real. Let v =- V u V, whose meaning will be discussed later. 

Therefore, for the general input U(jw) defined in V, the nth-order output 
frequencies are 

Wn = {co = WI + W2 + ... + wnlw; E V,i = 1,2, ... ,n} (7.3a) 

or for the multi-tone input (4), 
w" = f = Wk + Wk + ... + Wk /wk E V,i = 1,2, ... ,n} (7.3b) 'fJ I 2 n I 

This is an analytical expression for the super-harmonics and inter-modulations in the 
nth-order output frequencies of nonlinear Volterra systems. All the system output 
frequencies up to order N, denoted by W, can be written as 

W = WI uW2 u",uWN (7.3c) 
In Equations (7.3 abc), v represents the input frequency range corresponding to the 
nth-order output spectrum, V is the original input frequency range corresponding to 
the first order output spectrum and WI represents the output frequencies of linear part 
in the system. For example, V may be a real set [a,b]u[c,d], thus v=[-d,-c]u[-b,­
a] u [a,b] u [c,d], where d 2: c 2: b 2: a >0. Especially, when the system subjects to the 
multi-tone input (1.3), then the nth-order input frequency range IS 

V = {± WI ,±w2 ,'" ,±WK }, which is obviously a special case of the former one. 

92 



Chapter 7 Nonlinear effect on system output spectrum II 

7.3 Fundamental properties and the periodicity property 

In this section, some fundamental properties of the output frequencies of system 
(1.1) especially the periodicity of the output frequencies are studied under the 
assumption that V is a closed set of frequencies in real. Although the computation of 
the system output frequencies for the case with V=[a,b] and V=[ai,bi], i=I,2, ... m has 
been studied in Raz and Van Veen (1998), Lang and Billings (1997), Wu et al (2007) 
and for the multi-tone case was also studied in Lang and Billings (1997), Wei et al 
(2007) and Bussgang et al (1974), the properties of the output frequencies of 
nonlinear systems are established in this study in a uniform manner based on the 
analytical expressions (7.3abc) for any input domain V. Let max(.) denote the 
maximum value of the elements in (.), and min(.) the minimum value. 

Property 7.1. Consider the nth-order output frequency Wn, 

(a) Expansion, i.e., Wn-2 ~ Wn; 

(b) Symmetry, i.e., 'i0 E W", then -0 E W,,; 

(c) n-multiple, i.e., max( Wn) = n . max(V) and mine Wn) = -n . max(V) . 

Proof. (a) Consider Equation (7.3a), iflet CU,,_I == -CU", then 

w" = ~ = CUI + CU2 + ... + cu"lcu; E V,CU"_I = -cu",i = 1,2, ... ,n} 
= W,,_2 = ~ = CUI + CU2 + ... + cu,,_2Icu; E V, i = 1,2, ... , n - 2} 

Therefore, Wn-2~ Wn. The same conclusion also holds for Equation (7.3b). 

(7.4) 

(b) From the realness of the output spectrum, this property is straightforward. It can 
also be proved as follows. If 0 E W" , then there exists CU; E V such that 
0= CUI + CU2 + ... + CU" • Note that v is symmetric with respect to 0, thus it must hold that 
- CU -CU ••• - CU E V Therefiore _r\ = -cu - cu - ... - cu E W I' 2' n' ,~~ I 2 n" • 

(C) This is obvious from CU = CUI + CU2 + ... + CU" and CU = CUk + CUk + ... + CUk • 
I 2 " 

This completes the proof. 0 

Property 7.1 shows that the output frequency range will expand larger and larger 
with the increase of the nonlinear order, the expansion is symmetric to zero and its 
rate is n-multiple of the input frequency range. Property 7.1(a) shows that, the (n-2)th 
order output frequencies Wn-2 are completely included in the nth order output 
frequencies Wn. This property can be used to facilitate the computation of output 
frequencies for nonlinear systems. That is, only the highest order in odd number and 
the highest order in even number, to which the corresponding GFRFs are not zero, are 
needed to be considered in Equation (7.3c). For example, supposing the system 
maximum order N=lO, only WIO and W9 are needed to be computed if HIO(.) and H9(.) 
are not zero, and the system output frequencies are W = W9 U WIO ( in case that H9(.) is 
zero, W9 should be replaced by the output frequencies corresponding to the highest 
odd order of nonzero GFRFs). For the case that V=[a,b], Property 7.1 (a) has be shown 
in Lang and Billings (1997). Here it is shown to hold for any V. 

Property 7.1 shows the basic properties of the output frequencies of system (1.1) 
subject to any input frequencies. The following proposition shows the periodicity of 
the output frequencies of Volterra systems, providing a new insight into the system 
output frequency characteristics. 
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Proposition 7.1 (Periodicity property). The frequencies in Wn can be generated 
periodically as follows 

(7.5a) 
;=1 

II;(n) = ~ = lVl + lVz + ... + lVnllV
j 

E V,lV} < 0 for I$; j $; i -1,lV} > o for j 2:: i} or (7.5b) 

II (n)=J··=lV
k 

+lVk +"'+lVk IlVk EV,lVk <Oforl$;j$;i-l,lVk >Oforj"2::i} (7.5c) 
I fV 1 2 /I J j J 

rn = n (7.5d) 

The above process has the following properties 
max(II;(n»=-(i-l)min(V)+(n-i+l)max(V) and (7.6a) 
min(II; (n» = -(i -l)max(V) + (n - i + l)min(V) (7.6b) 

max(IIi-l (n» - max(II;(n» = min(II;_1 (n» - min(II/(n» = min(V) + max(V) (7.6c) 

Ll(n) = max(ll; (n» - min(II; (n» = n· (max(V) - min(V» (7.6d) 

Especially, when the system subjects to a general input U(jlV) defined in [a,b] or the 

multi-tone input (1.3) with lV;+I-lV; =const>ofori=l, ... ,K-l, 
II;(n)=IIi-l(n)-T fori=2, ... ,n+l (7.6e) 

where II;(n)-T is a set whose elements are the elements In II;(n) minus T, T 
= min(V) + max(V) is referred to as the frequency generation period, and Ll(n) is referred 

to as the frequency span in each period. 
Proof. See Section 7.6 for the proof. 0 

For the simple case where V=[a,b], the periodicity above can be easily checked 
from the result in Lang and Billings (1997). 

Property 7.2. Consider the ith frequency generation period II;(n) in Wn, 

(a) If the system input is the multi-tone function (1.3), then for any two 
frequencies Q and Q' in II;(n) and any two frequencies lV and lV' in V, 

mine Q - Q') = min(lV -lV'). 

(b) If Ll(n»T, then max(II(n);+I) > min(II(n);) for i=l, ... ,rn • That is, there is overlap 

between the successive periods of frequencies in Wn• 

Proof. (a) is obvious from the proof for Proposition 7.1. Note 
that max(II(n);+I) = max(II(n);) - T thus it can be derived that 

max(II(n);+I) - min(II(n);) = max(II(n);) - min(II(n);) - T = Ll(n) - T > 0 . (b) is proved. 0 

Proposition 7.1 and Property 7.2 explicitly demonstrate, for the first time, an 
interesting and useful feature of the output frequencies of nonlinear systems ------ the 
periodicity. This property can not only be used to simplify the computation of the 
output frequencies for some special cases as stated in Proposition 7.1 (where only one 
period of output frequencies need to be computed) but also provide an insight into the 
computation and understanding of the output frequencies in general case. Some 
important issues will be discussed further in the following sections. From Proposition 
7.1, the following corollary is straightforward. 

Corollary 7.1. All the conclusions in Proposition 7.1 and Properties 7.1-7.2 hold 
for the case that the system subjects to a general input U(jlV) defined in 

z 
U[a + (i -l)£,b + (i -1)e] where b"2:: a,e 2:: (b - a) and Z is a positive integer. 0 
i=1 

94 



Chapter 7 Nonlinear effect on system output spectrum II 

Note that when V does not satisfy the condition in Corollary 7.1, the property in 
Equation (7 .6e) does not hold. Example 7.1 is given to illustrate the results above. 

Example 7.1. Consider a simple nonlinear system as follows 
y = -O.Oly + au 2 + bu 3 

The input is a multi-tone function u(t)=sin(6t)+sin(7t)+sin(8t). The output spectra are 
given in Figures 7.1-7.2 for different cases. Note that there are only input 
nonlinearities with order 2 and 3 in the system, thus only the 1st, 2nd and 3rd order 
GFRFs are not zero and all the other order GFRFs are zero (See Proposition 3.1 and 
Properties 3.1-3.5 Chapter 3). Hence, the output frequencies of the system are the 
same as the 2nd and 3r

<J order output frequencies. That is, when a=1 and b=O, then 
W=W2; when a=O and b=l, then W=W3; and when a=l and b=l, thenw = w2 uW3 • 

Figures 7.1-7.2 demonstrate clearly the results in Properties 7.1(c)-7.2(a) and 
Proposition 7.1, and also show that the system output frequencies are simply the 
accumulation of all the output frequencies corresponding to each order output 
spectrum when the involved nonlinearities have no crossing effect and no overlap as 
stated in Property 7 .2(b). The overlap of the output frequencies contributed by 
different orders' system nonlinearity will be discussed in the next section. 

Output Spactrum 
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Figure 7.1. Output frequencies when a=l and b=O (left) and when a=O and b=l (right) 
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7.4 Nonlinear effect in each frequency generation period 

The periodicity of output frequencies is revealed and demonstrated in the previous 
section. In this section, the nonlinear effect on system output spectrum in each 
frequency generation period, and especially the nonlinear interaction between 
different nonlinearities of the same nonlinear degree and nonlinear type are studied. 

From (7.1) and (7.2), it can be seen that the operators fOdO'" OJ and L 0 have 
l"l1t +'''+W,,=W Wkl +"'+cVk" =aJ 

an important and fundamental role in the frequency characteristics of the nth order 
output spectrum in each frequency generation period. The following property can be 
obtained. 

Property 7.3. For wEll; (n) (1;5; i ;5; i(n + I)/2l), L I reaches its maximum at 

the central frequency (max(ll; (n)) + min(ll; (n)))/2 or around the central frequency if the 
central frequency is not available, and has its mInImUm value at 
frequencieSmax(ll;(n)) and min(ll;(n)), i.e., 

min ( II)= II II =C~-I 
OJEn,{n) 

(Okl +···+Cd.t" =Cl) Wk. +"'+Wk" =max(n,(n» mkl +"'+Wk" =min(n, (n» 

Moreover, 

Especially, for the multi-tone input case with W;+I - W; = canst> 0 for i=1 '''., K -1, 
II II for 0;5; k';5;T/const 

((.Ikl +'''+(I1k" =max(n, (n»-k'·,-on.\'1 CiJk, +"'+Wk
ll 

=min(n,(n»+k"conSI 

where, i(n + I)/2l is the smallest integer which is not less than (n + 1)/2, < W + T > is the 
frequency in ll;_1 (n) which is the most approximate to W + T . The similar results also 
hold for the general input case defined in Corollary 7.1 by replacing 

LI as fIdO'"w. 

Proof. Note that II is equal to the number of all the combinations satisfying 

Wk +"'+Wk = W and with the n frequency variables satisfying the conditions inll;(n), 
I • 

thus the conclusions in this property can be obtained by using the combination theory, 
which are straightforward. When the values of WI and wI[ are fixed and K is approaching 

infinity such that canst approaches zero, the multi-tone frequencies will become a 
continuous closed set [w" wl[]' The input frequencies defined in Corollary 7.1 are 

further extended from these two cases. Hence, the conclusions holding for the multi­
tone case can be easily extended to the input case defined in Corollary 7.1. This 
completes the proof. 0 

Property 7.3 shows that in each frequency generation period, the effect of the 

operator f(·)dO'" OJ and L (-) on system output spectrum tends naturally to be 

more complicated at the central frequency. That is, there is only one case for the 
operator L (-) at the two boundary frequency of each period, it reaches the 
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maximum at the central frequency of the same period and tends to decrease in 
different period with the frequency increasing. These can be regarded as the natural 
characteristics of the output frequencies that can not be changed (This can be verified 
by Figure 7.3 in Example 7.2). 

Note that different nonlinearities may have quite different effect on system output 
spectrum. In order to study the nonlinear effect between different nonlinearities of the 
same nonlinear degree and kind, consider the nonlinear Volterra systems which are 
described by the NDE model in (1.5), i.e., 

M m K p d l• y(t) p+q d l , u(t) II I Cp,q(lp ... ,lp+q)TI-I,-TI-I, = 0 (7.7) 
m=1 p=O I,'/p., =0 ;=1 dt ;=p+1 dt 

See Chapter 1 after Equation (1.5) for the notations. Similar results discussed in this 
study can also be easily established for the NARX model in (1.6). 

When different categories and degrees of nonlinearities exist in the system, there 
will be much crossing effects at the same frequency from different nonlinearities. This 
will make the output spectrum at the frequency of interest to be enhanced or 
suppressed. For example, different nonlinearities of the same order and the same 
category can produce the same output frequencies according to Chapter 3. However, 
the effect from different nonlinearities at the same frequency generation period may 
counteract with each other such that the output spectrum may be suppressed in some 
periods and others enhanced. Clearly, this property is of great significance in the 
design of nonlinear systems for suppressing output vibration (Zhou and Misawa, 
2005). 

In this study, consider there are only input nonlinearities in the NDE model above 
with cp,q(.)=O for all p+q> 1 and p>O. In this case, following the results in Chapter 3, 
the GFRFs can be written as 

K 

H,,(jmp .. ·,jm,,) = L ( . 1 .) Ico.,,(lp .. ·,/,,)(jml)/, "'(jm,,/' (7.8) 
" ]ml + ... + ]m" t,.t.=1 

where 
K 

Ln(jml + ... + jm" )= - L>I,o (k l )(jml + ... + jmn )k, (7.9) 

From (7.8-7.9) and (7.2), the nth-order output spectrum under the multi-tone input 
(1.3) can be obtained 

1 ( F(m ) .. ·F(m) K ] 
Yn(jm)=-n I . k, .k. ICo.n(lp ... ,ln)(jmky ... (jmkj' 

2 W" +"'+ru •• =w Ln (] mk, + ... + ] mk• ) t,.t,=1 
(7.10) 

= 1 I (F(mk ) .. ·F(mk ) ICon(lp .. ·,ln)(jmk )/, "'(jmk )/.] 
2n Ln (jm) ru. + .. ·+w. =W ' , 1,1 =1 • , • 

I II 'II 

To reveal the nonlinear effect from input nonlinearities in each frequency generation 
period, the following results can be obtained. 

Definition 7.1 (Opposite property). Considering two input nonlinear terms of the 
same degree with coefficients CO,n (11''''' In) and CO,n (I;, ... ,/~), if there exist two nonzero real 

number c) and C2 satisfying co,n(/p .. ·,ln) = c) and co.n(l;, .. ·,/~) = C2, such that at a given 

frequency n >0, 
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with respect to a multi-tone input (1.3), then the two terms are referred to as opposite 
at frequency n under co.n(/p· .. ,ln) = Cl and co.n(/;"",I;) = C2" whose effects in the 

frequency domain counteract each other at n . 

Note that the concept of the opposite property can be defined similarly for the 
other categories of nonlinearities. The following result can be concluded for the 
opposite property of two input nonlinear terms. 

Proposition 7.2 (Opposite of input nonlinearity). Consider nonlinear systems 
with only input nonlinearities subject to multi-tone input, and there are two nonlinear 
terms with coefficients Co n (/1''''' In) and Co n (l;,. .. ,1;). If there exists a non-negative . . 
integer m:::; i(n + 1)/2l-1 such that sgn( F(wk ) ... F(wk ») is constant with respect to all the , , 

combinations of wk,"", wk, E {±wl ,. .. ,±wA'} satisfying wk, + ... + wk, E I1m+1 (n), then for the 

two nonlinear terms, 
(1) they can be designed to be opposite at any frequency in the (m+l)th frequency 
generation period I1m+1 (n) with proper parametric values of the two coefficients, if and 

II " 

only if II; and II: are both odd integers or even integers simultaneously. 
;=1 ;=1 

(2) for a proper value of cO,n (/1''' ·,1n) / co.n(/;,· .. ,I; »0, they are opposite in I1m+1 (n) iffor a 

real n >0, 

sgn l( 
Wk , +···+tUkli =(n-2m)-O 
Wk, .. ··,Wk"E(+O.-!l) 

Proof. See Section 7.6 for the proof. D 

Wk! + ... +tl.I .. " =(n-2m)-!l 
(tiki ,···.Wk" e{+n,-O) 

From Equation (7.10), it can be seen that the magnitude of Y,,(jw) depends on 
K 

Ln( jw ), F(wk) .. ·F(wk) "L co.lI(/p .. ·,IIl)(jwk)" "'(jwkj' ,and "LO. "LO 
represents the system natural effect which can not be changed as mentioned. Ln( jw ) 

represents the effect from the linear part of the system and 
K 

F(wk) .. ·F(wk) "Lco.lI(lp .. ·,1I1)(jwk)" "'(jwk)" represents the nonlinear effect from input 

nonlinearities. These two later effects can be designed purposely in practice. 
Therefore, the results in Proposition 7.2 provide guidance to the design of input 
nonlinearities to achieve a specific output spectrum. Similar results can also be 
established for the other categories of nonlinearities. The following example 
illustrates the result in Proposition 7.2. 

Example 7.2. Consider a simple nonlinear system as follows 
y = -O.OIY + au s + bU 3U2 
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The input is a multi-tone function u(t)=O.Ssin(7t)+O.Ssin(St)+sin(9t), which can be 
written as u(t)=O.Scos(7t-90o)+O.Scos(St-90o)+cos(9t-90o). Therefore, F( W±I )=+ O.Sj, 

F(w±2)=+O.Sj and F(w±3)=+j. It can be verified that, sgn(F(wk,)···F(wk,» is constant 

in each period nj (5) (i= 1, .. ,6). This satisfies the condition in Proposition 7.2. The 
output spectrum under different parameter values are provided in Figures 7.3-7.4. It 
can be verified that the two nonlinear terms are opposite at the second frequency 
generation period. For the nonlinear term au 5

, 

sgn I( L (w
k
, )/, •.• (w

k
, )/, »(_1)1

1/
,-1;+./1,-1;11 = sgn I( L (Wk,)O ••• (Wk,)O »(_1)1 

ldkl +"'+Wkll =(n-2m)·Q 
OJ,tj .... ,w}" e{+n,-n} 

= sgn I( 
(LItl +,,,+wk , =3·0 
cok , .···.m .. , e{+n,-n) 

For the nonlinear term bU 3u2
, 

- sgn I( 
lOki +"'+lVk" =(1l-2m)·(} 
.... , .... , ..... E{+n,-n} 

= -sgn I( 
(0'\:1 +···+t'Uk5 =:30 

w" ... ·."'., E{+n.-n) 

Wk, +"'+Wts =(5-2)·0 
(tiki ,· ... wk, e{+n,-n) 

"'" +"'+"'" =(5-2)·n 
.... , ......... , E{+n,-n) 

Note that there are five combinations for W k + ... + W k = 3n, W k , ... , W k E {+n,-n} , i.e., 
I " I " 

-n,n,n,n,n;n,-n,n,n,n;n,n,-n,n,n;n,n,n,-n,n;n,n,n,n,-n; 

Therefore - sgn I( "(Wk Wk ) = -sgn l(n2) = -I. Equation (7.11) is satisfied. L... , , 
Wt, +,. '+Wk, =3n 
... " .... , .... , E{+n,-n} 

From Figure 7.4 it can be seen that, the counteraction between the effects from the 
two input nonlinear terms results in suppression of the output spectrum in the second 
period and enhancement for the first and third periods, compared with the output 
spectrum under single nonlinear term au5

• 
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Figure 7.3. Output spectrum when a=1.3 b=O (left) and a=O,b=O.l(right) 
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Figure 7.4. Output spectrum when a=1.3 b=O.1 

Moreover, it is obvious that given system model and input function, the system 
output spectrum can be analytically determined from (7.1-7.2). Contrarily, given 
system model in the multi-tone input case, the input function can be obtained from the 
output spectrum at a specific frequency generation period for example II,(n). Because 

each output frequency in II;(n) can be explicitly determined, thus a series of 

equations can be obtained in terms of F(OJk)'" F(OJk.), and then F(OJ,), .. ·, F(OJ,,) can be 

solved. That is, the original input signal can be recovered from the received signal in a 
specific frequency generation period. This is another interesting property based on the 
periodicity and is worth further studying. 

7.5 Parametric characteristic of the output frequencies 

There are three categories of nonlinearities in model (7.7): input nonlinearity with 
coefficient CO,q(') (q> 1), output nonlinearity with coefficient cp,o(.) (p> 1), and input 
output cross nonlinearity with coefficient Cp,q(') (p+q> 1 and p>O) (where p and q are 
integers). Different category and degree of nonlinearity in a system can bring different 
output frequencies to the system. How a nonlinear term affects system output 
frequencies and what the effect is for Volterra systems are a very interesting and 
important topic. However, few results have been reported for this. This section 
provides some useful results for this topic based on the properties developed above. 

Consider nonlinear Volterra systems described by the NDE model in (7.7). What 
model parameters contribute to a specific order GFRF and how model parameters 
affect the GFRFs can be revealed by using the parametric characteristic analysis in 
Chapter 3. From Equations (7.1, 7.2), it can be seen that the nth-order output 
frequencies Wn are also determined by the nth order GFRF. If the nth order GFRF is 
zero, then Wn=[]. It is known from Chapter 3 that the nth order GFRF is dependent on 
its parametric characteristics, thus the nth-order output frequencies are also 
determined by the parametric characteristics of the nth-order GFRF. That is, 
Equations (7.3a-b) can be written as 

w" = {w = (OJ, + OJ2 + ... + OJ,,)' (1- 8(CE(H" (OJ" "',OJ" »»IOJ; E v, i = 1,2, ... ,n} (7.13a) 
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and 
w" = f = (Wk + Wk + ... + W k ). (1- 8 (CE(H n (wk , .•• , Wk »)\IWk E v, i = 1,2, ... , n} (7 .13b) tct' 11" 1 ,,~, 

where o(x)- . In EquatIOns (7. 13ab), suppose Wn IS empty w en - {I x = 0 or I. . h 
- 0 else 

8(CE(Hn(.)) =1. 

Equations (7 . 13a-b ) demonstrate the parametric characteristics of the output 
frequencies for Volterra systems described by (7.7) and (1.6), by which the effect on 
the system output frequencies from different nonlinearities can be studied. Since 
negative output frequencies are symmetrical with positive output frequencies with 
respect to zero (Property 7.2(b)), thus for convenience only non-negative output 
frequencies are considered in what follows. 

Property 7.4. Regarding nonlinearities of odd and even degrees, 
(a) when there are no nonlinearities of even degrees, the output frequencies 

brought by the nonlinearities with odd degrees happen at central frequencies 
(2/+1)TI2 for 1=0,1,2, ... with certain frequency span; 

(b) when there are only input nonlinearities of even degrees, the output 
frequencies happen at central frequencies /. T for 1=0,1,2,... with certain 
frequency span; 

(c) in other cases, the output frequencies happen at central frequencies /. T 12 for 
/=0,1,2, ... with certain frequency span. 

The frequency span is ~(n) corresponding to the nth order output frequencies if 
applicable. 

Proof. See Section 7.6 for the proof. 0 

Property 7.4 shows that odd degrees of nonlinearities bring quite different output 
frequencies to the system from those brought by even degrees of nonlinearities. 

Property 7.5. Regarding different categories of non lineari ties, 
(a) when there are only input nonlinearities of largest nonlinear degree n, the non­

negative output frequencies are in the closed set [0, n· max(V) ]; 

(b) in other cases, the output frequencies span to infinity. 
Proof. (a) From Equation (3.17) or Proposition 3.1 in Chapter 3, only the GFRFs 

of orders equal to the nonlinear degrees of the non-zero input nonlinearities are not 
zero since there are no other kinds of nonlinearities in the system. Thus the largest 
order of non-zero GFRFs is n. The conclusion is therefore straightforward from 
Property 7.1 (c). (b) If there are other kinds of nonlinearities, the largest order of 
nonzero GFRFs will be infinite, because for any parameter Cp,q(') withp>O andp+q>l, 
it can form a monomial with any high nonlinear degree (cp,q(.)") and thus contribute to 
any high order GFRF from Proposition 3.1 in Chapter 3. Thus the output frequencies 
can span to infinity. This completes the proof. 0 

The input nonlinearities of a finite nonlinear degree can independently produce 
output frequencies in a finite frequency band. 

Property 7.6. Regarding different categories and degrees of non lineari ties, 
(a) when there are only input nonlinearities, a nonlinear term of degree n can only 

produce output frequencies Wn, and there are no crossing effect on output 
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frequencies between different degrees of input nonlinearities; 
(b) in other cases, a nonlinear term of degree n contributes to not only output 

frequencies Wn but also some high order output frequencies W m for m > n due 
to crossing effect with other nonlinearities. 

Proof. (a) Considering a nonlinear term CO,n(.), it can be obtained from Equation 
(3.17) that only CE(Hn(.)) is not zero if the other degree and kind of nonlinear 
parameters are zero. That is, CO,n(.) only contributes to H n(.) in this case. If there are 
other input nonlinearities, it can be known from Proposition 3.1 in Chapter 3 that only 
nonlinear parameters from input nonlinearities can not form an effective monomial 
which is an element of any order GFRF. That is there are no crossing effects between 
different degrees of input nonlinearities. (b) When there are output or input-output 
cross nonlinearities, it can be seen from Proposition 3.1 in Chapter 3 that there are 
crossing effects between different nonlinearities, and the nonlinear degree of any 
effective monomial (e.g. CI,q(.)CO,q(.)" (q>I)) formed by the coefficients from the 
crossing nonlinearities can be infinity. Thus a nonlinear parameter of degree n, for 
example CO,n(.), has contribution not only to Hn(.), but also to some higher order 
GFRFs, for example cl,n(.)co,n(f is an element ofCE(Hm(.)) where m=zn+n+l-z. This 
completes the proof. D 

From Property 7.6, the crossing effect usually happens easily between the output 
nonlinearities and the input-output cross nonlinearities. 

Properties 7.4-7.6 provide some novel and interesting results about the output 
frequencies for nonlinear systems when the effects from different nonlinearities are 
considered, based on the results from parametric characteristic analysis in Chapter 3. 
Property 7.4 shows that odd degrees of nonlinearities have quite different effect on 
system output frequencies from even degrees of nonlinearities. Especially, it is shown 
from the properties above that input nonlinearities have special effect on system 
output frequencies compared with the other categories of nonlinearities. That is, input 
nonlinearities can move the input frequencies to higher frequency bands without 
interference between different frequency generation periods. These properties may 
have significance in design of nonlinear systems for some special purposes in 
practices. For example, some proper input nonlinearities can be used to design a 
nonlinear filter such that input frequencies are moved to a place of higher frequency 
or lower frequency as discussed in Billings and Lang (2002). The results in this 
section have also significance in modelling and identification of nonlinear systems. 
For example, if a Volterra system has only output frequencies which are odd multiples 
of the input frequency when subject to a sinusoidal input, the system may have only 
nonlinearities of odd degree according to Property 7.4. Obviously, the results in this 
section provide a useful guidance to the structure determination and parameter 
selection for the design of novel nonlinear filters and also for system modelling or 
identification. 

Example 7.3. Consider a simple nonlinear system as follows 
y = -0.0 Iy + au 5 _ by 3 _ cy2 

The input is a multi-tone function u(t)=sin(6t)+sin(7t)+sin(8t). The output spectra 
under different parameter values are given in Figures 7.5-7.7, which demonstrate the 
results in Properties 7.4-7.6. For the input nonlinearity, the readers can also refer to 
Figures 7.1-7.2. 
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Figure 7.5. Output frequencies when a=O.1, b=O, c=O (left) and a=0, b=5, c=O (right) 
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Figure 7.6. Output frequencies when a=O.l, b=5, c=O 
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Figure 7.7. Output frequencies when a=O, b=O, c=O.09 

When there are only odd nonlinearities, the output frequencies happen at around 
central frequencies 7* (2k+ 1). When there are even nonlinearities, the output 
frequencies appear at around central frequencies 7*k. The input nonlinearities only 
produce independently the output frequencies within a finite frequency band.. The 
periodicity of the output frequencies can also be seen clearly from these figures. 

Especially, it is worthy pointing out from Figures 7.1, 7.2 and 7.5 that there can be 
no crossing effects between proper chosen input nonlinearities as mentioned before, 
which can not be realized by the other categories of nonlinearities. Thus the input 
frequencies can be moved to higher frequency periodically without interference 
between different periods and then decoded by using some methods. This property 
may have significance when a system is designed to achieve a special output spectrum 
at a desired frequency band in practices by using nonlinearities. 

7.6 Proofs 

• Proof of Proposition 7.1 
Consider multi-tone input case only. Then the same results can be extended to the 

general input case readily. From Equation (7.3b), it can be seen that the frequencies in 
w'n are determined by W = W + W + ... + W When all the frequency k, k, k. 

variable wk , E V (for i=I, ... , n) are positive, i.e., wk, > ° for i=I, ... ,n, the computed 

frequencies are obviously those in ll\(n). Then ll2(n) can be computed by setting that 
there is only one frequency variable (for example wk, ) is negative and all the other 

frequency variables are positive, i.e., 

ll2(n)=L=wk +Wk +"'+Wk IWk EV,Wk <o,wk >O,i=2,3, ... ,n} 't£U I 1 n, I I 
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Similarly, ll3(n) can be computed by setting that there is only two frequency variables 

(for example OJk and OJk ) are negative and all the other frequency variables are 
, 2 

positive, i.e., 

ll3(n)=J =OJk +OJk +···+OJk IOJk EV,OJk <O,OJk <o,OJk >0,i=2,3, ... ,n} 'fJ I 2 II I I 2 I 

Proceed with this process until that all the frequency variables are negative. There are 
totally n negative frequencies (or frequency variables) in V, thus it is obvious that the 
periodical number of the computation process above is r" = n . 

From Equation (7.5c), it can be obtained that 

Therefore, 

and 

max(ll;(n)) = -(i -1)min(V) + (n - i + l)max(V) and 
min(ll; (n)) = -(i -1)max(V) + (n - i + l)min(V) 

max(lli-l (n)) - max(ll; (n)) 

= -(i - 2)min(V) + (n - i + 2)max(V) + (i -l)min(V) - (n - i + l)max(V) 

= min(V) + max(V) = T 

min(lli-l (n)) - min(ll; (n)) 

= -(i - 2) max(V) + (n - i + 2) min(V) + (i -1) max(V) - (n - i + 1) min(V) 

= max(V) + min(V) = T 

Moreover, the specific width that the frequencies span in ll;(n) is 
~(n) = max(ll;(n)) - min(ll;(n)) 

= -(i -1)min(V) + (n - i + I)max(V) + (i -1)max(V) - (n - i + l)min(V) 

= n· (max(V) - min(V)) 

which is a constant. 
Now consider the case that the input is the multi-tone (1.3) with OJ;+I - OJ; = canst> 0 

for i=I, ... , K -1. In this case, it can be shown that the difference between any two 
successive frequencies in ll;(n) is const. For example, for any n E ll;(n), let n = 
OJk + OJk + ... + OJk • Without speciality, suppose min(V) ~ OJk < max(V) , then the smallest 

I 2 /I I 

frequency that is larger than n must be n' which can be computed as 
OJ; + OJk + ... + OJk where OJk' = OJk + canst . Hence, there exists an integer number 
1:2 " I I 

O~a~~(n)/const such that n=min(ll;(n))+a·const for 'VnEll;(n). Considering 

'Vn E ll; (n) with n = min(ll; (n)) + a~(n) , it can be obtained that 
n + T = min(ll;(n)) + a~(n) + T 

= -(i -1)max(V) + (n - i + I)min(V) + a~(n) + max(V) + min(V) 

= -(i - 2)· max(V) + (n - i + 2)min(V) + a~(n) 

= min(lli-l (n)) + a~(n) E ll;_1 (n) 

Therefore, for 'Vn E ll;(n) there exists a frequency n' E lli-l(n) such that n' = n + T and 

vice versa. This gives Equation (7 .6e). When OJ1 = a, OJ/{ = b and K ~ 00 such that 

OJ;+I - OJ; = canst ~ 0 for i= 1, ... , K -1, it will become the case of a general input 

V(jOJ) defined in [a,b]. The proposition is proved. 0 

• Proof of Proposition 7.2 
(1) When the multi-tone input satisfies that sgn( F(OJk )···F(OJk ) is constant with , . 
respect to all the combinations of OJk, ,. •• , OJk• E {±OJp ·•· ,±OJ/{} satisfying 
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OJk + ... + OJk E IIm+1 (n) (for example K = 1 or Fi is a real number in (1.3», then the , . 
opposite condition according to Definition 7.1 is that, there exist two nonzero real 
number c) and C2 such that at a given frequency 0' E IIm+1 (n), 

I (c1 (jOJkY ... (jOJkj' + C2 (jOJkY ... (jOJkj; ) = 0 (CO) 
(Ok1 +·"+tiJkn =0' 

(CO) can also be written as 

L (c t(l,-I:J I 1 ) L~ I' 1') --L(j')'.' (OJ)' "'(OJ ). = - (OJ ), "'(OJ ). 
~ ~ ~ ~ 

(Ok) +"'+(1).1:" ::0' C2 "'tl +"'+aJk " =0' 

(Cl) 

Note that given two specific nonlinear parameters co.n(lp···,ln) and co,n(l;,"',l;), it can 

be seen that (OJ i' "'(OJ )1. and (OJ ii "'(OJ i; are both nonzero for k, k. k, k. 

OJk, , ... , OJk• E {±OJp '" ,±OJK} satisfying OJk, + ... + OJk• E IIm+1 (n), and the right side of (C 1) is 

real, therefore 
t(l,-I;J 

(j)'.' must be nonzero real 

On the other hand, if (C2) holds, whatever the value of -

(C2) 

I (OJkY; "'(cokj:) is, there 
Wk, + .. '+Wk

ll 
=0' 

are always exist two real number c) and C2 such that (CI) holds. Hence, the opposite 
condition above now is equivalent to be that (C2) holds. That (C2) holds is equivalent 

II 

to be that ±(l; -I;) is an even integer. This is further equivalent to be that II; and 
,=1 ;=1 

II 

II; are both odd integers or even integers simultaneously. 
;=1 

(2) Let sgn(a + bj) = [sgn l(a),sgn l(b)]. Noting that ±(l; -In is an even integer, then from 
;=1 

(7.11), it can be derived that 

s{, .~~:~j",.y .. u "'.f l) = - sg.{, .~~~~ u "",)" .. (j "")' l) (C3) 

where OJk "",OJk E {+O,-O} and 0' = (n-2m)0 for any 0 >0. (C3) implies that there , " 

exist two nonzero real number c) and C2 satisfying C)/C2 >0 such that at a given 
frequency 0' EIIm+1(n) = {(n-2m)0} , (CO) holds. Note that IIm+1(n) = {(n-2m)0} is the 
case that the input is a single tone function i.e., K = 1. Hence, (7.11) implies that (CO) 
holds for K = 1. To finish the proof, it needs to prove that, if Equation (7.11) holds, 
then Equations (CO) holds for all 0' E IIm+1 (n)K>1 (note that when K> 1 there are more 

than one elements in IIm+1 (n)K>1 ). By using the mathematical induction and 

combination theory, it can be proved that 

sgn[.., .~~:~j",.y u"'.f lLgn[OJ~' +.~,~~~~jOJk' )1, ... (jOJk• i' )] 
o en •• , (II)"., ) Oen •• ,(II)K" 

For paper limitation, this is omitted. Therefore, if Equation (7.11) holds, Equation (CO) 
holds for all 0' E IIm+1 (nh>1 . 0 

• Proof Property 7.4 
(a) According to Proposition 3.1 in Chapter 3, the elements of CE(Hn(.) are 

monomial functions of the coefficients of the nonlinear terms, i.e., c
M

, O"'cp"q, 0 for 
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some L ~ 1 . Note that there are only nonlinearities of odd degrees, i.e., 2k+ 1 
(k=O,I,2, ... ), thus the nonlinear degree of any monomial in this case is (Proposition 

L L L 

3.1 in Chapter 3) n= L(p; +q;)-L+l = L(2k; +1)-L+l=2Lk; +1. Clearly, n is still 
~ ~ ~ 

an odd number. That is the nonlinearities in the system of this case can only 
contribute to odd order GFRFs. Thus all the even order GFRFs are zero, i.e., 
CE(Hn(.))=O for n is even. Therefore, Wn may not be empty only when n is odd, 
otherwise it is empty. 

Suppose n is an odd integer and CE(Hn(.)) '" 0 and 1. That is, there are nonzero 
elements in CE(Hn(.)) and all the elements in CE(Hn(.)) consist of the coefficients of 
some nonlinear terms of the studied case. According to Proposition 7.1, the first 
period in Wn must be TIl (n) ~ [n· min(V),n· max(V)] , whose central point is 

obviously n· T 1 2 and of which the frequency span is il(n). Also from Proposition 7.1, 

the kth period in Wn must be TIk(n)~[n·min(V)-(k-l)T,n·max(V)-(k-l)T], whose 

central point is obviouslyn.TI2-(k-I)T=(n-2(k-I))TI2 and of which the frequency 
span is stillil(n). Note that n-2(k-l) is an odd integer for k=I,2, .... The first point of 

the property is proved. 

(b) Consider the case that there are only input nonlinearities of even degrees. In 
this case, it can be verified from the parametric characteristics in Chapter 3 that only 
the GFRFs of orders equal to the nonlinear degrees of the non-zero input 
nonlinearities are not zero. That is, only some GFRFs of even orders are not zero. 
Suppose n is an even integer and CE(Hn(.))", 0 and 1. According to Proposition 7.1, 
the kth period in Wn must be TIk(n)~[n·min(V)-(k-l)T,n·max(V)-(k-l)T], whose 

central point is obviously n· T 12 -(k-I)T=(n-2(k-I))T/2 and of which the frequency 
span is il(n). Note that n-2(k-l) is an even integer for k=1,2, .... This second point of 

the property is proved. 

(c) The conclusion is straightforward since there are non-zero GFRFs of even and 
odd orders. This completes the proof. 0 

7.7 Conclusions 

The super-harmonics and inter-modulations in the output frequencies of Volterra 
systems, especially of the nonlinear Volterra systems described by the NDE model, 
are studied, and some interesting properties of the system output frequencies are 
revealed in a uniform and analytical way. These properties provide several novel 
insights into the nonlinear behaviour of the Volterra systems such as the periodicity 
and opposite properties, and reveal the effects of different categories and different 
degrees of nonlinearities on the system output. These results can be used for the 
design of nonlinear systems or nonlinear filters to achieve a special output spectrum in 
a desired frequency band by taking advantage of nonlinearities, and provide an 
important and significant guidance to the analysis and design of nonlinear systems in 
the frequency domain by using the Volterra series theories of nonlinear systems. 
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Chapter 8 
AN EXTENSION 

For the nonlinear Volterra systems which can be described by a nonlinear state 
equation with a general nonlinear output function, the system frequency response 
functions and some related frequency response characteristics are developed and 
discussed in this Chapter. For this class of nonlinear systems, the new results provide 
an analytical insight into the relationship between model parameters and the 
frequency response functions, and the relationship between model parameters and the 
magnitude bound of frequency response functions, based on the results studied in 
previous chapters. 

8.1 Introduction 

As discussed in Chapter 1, great progress has been made in the frequency domain 
analysis of nonlinear systems based on Volterra series theory (Volterra 1959, Rugh 
1981) in the past decades. Based on these results, the parametric characteristic 
analysis method and its related results are proposed and studied systematically in 
previous chapters. These new results provide a novel approach to the frequency 
domain analysis of the nonlinear Volterra systems. It is also noted that most of these 
results are developed for nonlinear systems which can be described by a simple input 
output model such as NARX or NDE model as those in (1.5) and (1.6). However, in 
many cases especially in control literature, the system model is usually described by a 
state equation with a nonlinear output function of system states. In these cases, many 
of the frequency domain analysis theory mentioned above can not be directly applied 
for the analysis. For this reason, some basic results are established for the frequency 
domain analysis of the nonlinear Volterra systems which can be described by a 
nonlinear state equation with a nonlinear output function in this chapter. These can be 
regarded a useful extension of the parametric characteristic theory developed in the 
previous chapters. 

In the following sections, Section 8.2 gives an outline about some related research 
results that have been studied in the previous sections, and state the problem clearly; 
Section 8.3 develops the frequency response functions for the general form of 
nonlinear Volterra systems described by an NARX-type model with a general 
nonlinear output function; the parametric characteristics and bound characteristics of 
these frequency response functions are studied in Section 8.4 and Section 8.5; Section 
8.6 extends these results for the NARX-type model to an NDE-type model; Some 
proofs are given in Section 8.8 and a conclusion is provided in Section 8.8. 

8.2 Frequency response functions of nonlinear systems described by a 
simple input-output model 

Nonlinear systems can often be modelled as an input-output model referred to as 
NARX model (Chen 1989), which are given in (1.6). For a wide class of nonlinear 
systems, this model provides a concise parametric structure and can be identified 
practically from experimental input-output data by using some well developed 
methods such as OLS (Billings et al 1988). It is known that, the time-domain input-
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output relationship of a class of nonlinear systems can be approximated by a Volterra 
functional series of a finite order in the neighbourhood of the zero equilibrium (Boyd 
and Chua 1985, and Sandberg 1983), which can be described by (1.1). In this study, 
consider the class of nonlinear Volterra systems described by the NARX model (1.6), 
whose GFRFs were given in Peyton-Jones and Billings (1989). Referring to Chapter 3 
for the GFRFs given in (3.8 or 3.11, 3.10, 3.2-3.5) for the NDE model (1.5), the 
GFRFs for NARX model (1.6) can be given as 

Ln (j(wl + ... + wn»· H n (jwp "" jwn) 
K 

= 2:Co.,,(kp ... ,kn)exp(-j(wlkl +",+w"k,,» 
*,.k.=1 

~~ ~ ~ (8.1) 
+ L..JL L..J cp,q(kp .. ·,kp+q)exp(-j Lw,,_q+;kp+;)H,,_q,/jwp ... ,jw,,_q) 

q=1 1'=1 *,.*. =1 ;=1 

" K 
+ L LCp,o(kp ... ,kp)H",p(jWp ... ,jW,,) 

1'=2 *"kp=1 

n-p+1 

H n,p (-) = I H; (jwl , .. ·, jw;)H n-;,p-I (jW;+I'"'' jwn) exp( - j(WI + ... + w;)k 1') 

;=1 

K 

(8.2) 

(8.3) 

where L,,(j(wl + ... + w,,» = 1-I cI,o(kl)exp(- j(WI + ... + w,,)kl). Hnjj04, .. ·,jwn) in (8.2) can 
*,=1 

also be rewritten as 
n-p+1 p 

Hn,p (jOJ I , .. ·, jOJn) = L n H r, (jOJX(i)+P'" ,jOJX(;)+r,) exp(- j(OJx(t)+1 + ... + jOJX(i)+r,)k;) (8.4) 
r,"",,:::1 ;=1 

L::lr,=n 
;-1 

where Xci) = Ir/ . Moreover, it shall be noted that in Equation (3.8) or (3.11), 
1=1 

Cp,q(.)=o when p+q>M according to the definition of the NARX model in (1.6). 

Note that the expression of nth-order GFRF can be divided into three parts, that is, 
those arising from pure input nonlinear terms H" (-) corresponding to the first part in 

the right side of equation (8.1), those from cross product nonlinear terms H" (-) 0,. 

corresponding to the second part in the right side of equation (8.1), and those from 
pure output nonlinear terms H" (-) corresponding to the last part of equation (8.1). For ,. 
clarity, (8.1) can also be written as 

H,,(jwI, .. ·,jw,.) = {H"o (-) + H"o, (-) + H",. (-»)jL" (j(wl + ... + w,,» (8.5) 

Equation (8.5) shows clearly that different categories of nonlinearities produce 
different contribution to the system GFRFs. Hence, when deriving the GFRFs of a 
nonlinear system, what is needed is to combine the different contributions from 
different nonlinearities without directly using the probing method. This property will 
be used later. 

Using the GFRFs above, the system output frequency response can be evaluated 
as given in (4.1-4.4). It can be seen that these results mentioned provide an important 
basis for the frequency domain analysis of nonlinear Volterra systems described by 
model (1.6). However, in many cases especially in the field of control engineering the 
model of nonlinear systems of interest usually takes a form as 
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x(t + 1) = f(x) + g(x, u) 

Yx = h(x,u) 
(8.6) 

which is the discrete time nonlinear state space equation, where x ERn. It is obvious 

that frequency domain analysis of this nonlinear system can not be conducted by 
directly using the results above and some of the results which are developed for 
NARX model (1.6) in previous chapters. Thus some basic results of the system 
frequency domain analysis theories for this form of nonlinear Volterra systems are 
developed in this chapter. 

8.3 Frequency response functions for nonlinear Volterra systems with a 
general nonlinear output function 

Consider nonlinear Volterra systems described by the following model in a form 
similar to model (8.6) 

(8.7a) 

M, m K p m 

y(t) = II I cp,m_/kp ... ,km)Ilx(t-kJIlu(t-kJ (8.7b) 
m=1 p=O k] ,km=O ;=1 i=p+1 

where MJ, M2 and K are all positive integers, and x(t), yet), u(t) E R. (8.7a) is the 
system state equation which is still described by a NARX model, and (8. 7b) 
represents the system output which is a nonlinear function of state x(t) and input u(t) 
in a general polynomial form. This model represents a more useful case than model 
(1.6), since it is frequently adopted in control literature as mentioned above, although 
(8.7) can still be written into the form of (1.6). Hence, determination of frequency 
response functions for model (8.7) is significant. To derive the GFRFs for (8.7), the 
probing method in Rugh (1981) can be adopted. However, this paper uses an 
alternative simple method based on the discussions in Section 8.2 for that the structure 
and nonlinear types of this model are clear. 

To derive the GFRFs for model (8.7), system (8.7) can be regarded as a system of 
one input u(t) and two outputs x(t) and yet). Therefore, there are two sets of GFRFs 
for model (8.7) corresponding to the two input-output relationships between input u(t) 
and two outputs x(t) and yet) respectively. Considering the GFRFs from input u(t) to 
output x(t), there are three categories of nonlinearities as mentioned above. Therefore, 
the nth-order GFRF from input u(t) to output x(t) denoted by H;' (jOJp···,jOJn) can be 
directly determined which is the same as (8.1-8.4), i.e., 

H
X 

• • H,~, (jOJp ···, jOJ/I) + H,~~ (jOJp ···, jOJn) + H,~x (jOJ,,··', jOJ/I) 
n (jOJ,,···, }OJn) = L ( .( )) 

/I } OJI + ... + OJ/I 
(8.8) 

K 

where, Ln(j(OJI +···+OJ/I))=1- ICI,o(kl)exp(-j(OJI +···+OJ/I)kl ) 
k,=1 

K 

H,~, (jOJp ···, jOJ/I) = I CO,/I (k p ···, k/l )exp( -j(OJlkl + ... + OJnk/l)) (8.9a) 
k,.k,=O 

H,~~ (jOJp ···, jOJ/I) 

/I-I /1-'1 K _. . • (8.9b) 
= I I Ie p,q (k l ,···, kp+q) exp( -}(OJ/I_q+lkP+1 + ... + OJ/lkp+q ))H/I_q,p (jOJI,···, }OJ/I_q) 

'1=1 1'=1 k"kp"=O 
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II K 

H,~, (jOJ" ... , jOJII ) = L L cp,o(k" ''', kp)HII,p(jOJ,, " ',jOJII ) (8.9c) 
p=2 k"kp=O 

;=1 

HII,I (jOJI ,"', jOJII ) = H,~ (jOJI ,"', jOJII ) exp( - j(OJI + ... + OJ" )kl ) (8.ge) 

Similarly, consider the GFRFs from input u(t) to output yet). There are also three 
categories of nonlinearities in terms of input u(t) and output x(t) similar to those from 
input u(t) to output x(t), and there is one linear output yet). Note that there are no 
nonlinearities in terms of yet), and all the nonlinearities come from input u(t) and 
output x(t). For this reason, the GFRFs from u(t) to yet) are dependent on the GFRFs 
from u(t) to x(t). Therefore, in this case the nth-order GFRF from input u(t) to output 
yet) denoted by H;,(jOJ,,"',jOJII ) is, 

H;, (jOJI'''', jOJ,,) = H:' (jOJI'''', jOJ,,) + H;,~ (jOJ,,"', jOJ.) + H:' (jOJI'''', jOJn) 

where the corresponding terms in (8.10) are 
K 

H:' (jOJ,,"',jOJ,,) = LCo,,,(kl',,.,kll)exp(-j(OJlkl +"'+OJllkll ) 
k"k.=O 

H:~ (jOJI'''',jOJII) 

(8.10) 

(8.11a) 

II-III-q K _. • . (8.11b) 
= L L L Cp,q (kl , .. ·, kp+q)exp( - j(OJII_q+lkp+1 + ". + OJ"kp+q))HII_q,p (jOJI' "', jOJII_q) 

" K 
H:' (jOJI"",jOJII ) = L LCp.o(k"".,kp)HII,pUOJ" ... ,jOJII ) (8.11c) 

p=1 k, ,kp=O 

Note that p is counted from 1 in equation (8.11c), different from equation (8.9c) 
where p is counted from 2, and Hn.p(jOJI'''·,jOJn) in (8.11 bc) is the same as that in 

(8.9b-d) because the nonlinearities in equation (8.7b) have no relationship with yet) 
but x(t). Note also that these results can also be derived by following the method in 
Swain and Billings (2001). However, the results are developed in a more 
straightforward manner here and provide a concise analytical expression of the 
GFRFs for model (8.7). 

From the GFRFs of model (8.7), the output frequency response of (8.7) can also 
be derived readily by extending the results in (4.1-4.4). Regard x(t) and yet) as two 
outputs actuated by the same input u(t), then 

N 1 n 

X(jOJ) = ~ ,In(2;rr),,-1 w.+ ... L'=1lJ H;UOJI' ".,jOJ")DU(jOJ;)dO'IlJ (8.12a) 

N 1 n 

Y(jOJ) = ~ ,In(2;rr)n-1 w,+ .. L.=w H;'(jOJI'.",jOJn)DU(jOJ;)dO'w (8.12b) 

When the system input is a multi-tone signal (1.3), then the system output frequency 
response can be similarly derived as: 

x(jOJ) = ~ _I '" H: (jOJ k , ... ,jOJk )F(OJk ) ... F(OJk ) (8.13a) L..J 2 n L..J , • , " 
n=l {Ihl +"'+Wk" =(0 

(8.13b) 
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h {
1F:lejLF, if WE {wk,k=±I, ... ,±K} 

were F(w) = , W±k = ±Wk • 

o else 

It can be seen from the results above that the frequency response functions for 
nonlinear systems are quite different from those for linear systems. It is known that in 
a linear system, frequency response functions of different parts can be combined 
together by addition or multiplication. This is not the case for nonlinear systems. For 
instance, if x(t) is only regarded as an input in equation (8. 7b) independent of (8.7a), 
then the GFRFs H;'(jwp···,jw lI ) and therefore the output spectrum Y(jw) will all be 
changed completely for n> 1, since in this case there are only input nonlinearities in 
(8.7b) and no output nonlinearities. Even so, it can also be seen from (8.12-8.13) that 
the output frequency ranges for both x(t) and yet) are the same one, i.e., 

N 

U{wlw=wl +···+Wn'W; ER.,} (8.14) 
n=1 

where RaJ represents the input frequency range, for example RaJ = {wk , k = ± 1,··· ,±K} for 
the multi-tone signal (1.3). 

These frequency response functions obtained above for model (8.7) provide a 
useful basis for the frequency domain analysis of nonlinear Volterra systems 
described by model (8.6). In the following sections, some important frequency 
response characteristics of these frequency response functions for nonlinear Volterra 
system (8.7) are further established and discussed. 

Example 8.1. Consider the following nonlinear system, 
mX(1 - 2) + alx(t -I) + a2x 2 (I -I) + a)x) (I -1) + kx(/) = U(/) 

(8.15) 
Y(/) = alx(1 -1) + a2x 2 (I -1) + a)x) (I -1) + kx(/) 

which can be written into the form of model (8.7) with parameters K=2, 
<\0 (2) = -m / k, cl,o (1) = -al / k, c2,0 (11) = -a2 / k, c),O (111) = -a3 / k, CO,I (0) = 1/ k 

cl,o (1) = ap c 2,0 (11) = a2 , c 3,0 (111) = a3 , cl,o (0) = k , and all the other parameters are zero. 

The GFRFs can be computed according to (8.8-8.11). For example, 
2 

HI: (jwl) = I co/kl )exp(- jwlkl) = CO,I (0) = 11 k, H r. (jwl ) = 0 , 

Because there are no input nonlinearities and cross nonlinearities, thus 
H:.(jwp···,jwn ) =0 and H:'(jwp···,jwn ) = o for n>l 

H:~ (jwp···, jwn ) = 0 and H:~ (jwp···, jwn ) = 0 for all n 

Regarding the output nonlinear terms, 
Ht (jwl ) = 0, 

2 2 

H;, (jwp jw2) = I Ic",0(kp ... ,k")H2,,,(jwp jW2) 
,,=2 k"kp=1 

2 2 

= I c2,0(kp k2)H 2,2 (jwl, j(2) = I c2,0(kp k2)Ht (jwl)HI,1 (jw2)exp(- jwlk2) 
~~~ ~~~ 

2 

= I c2,0 (kl, k2 )Ht (jWI )Ht (jW2 )exp( - jw2kl )exp( -jwlk2) 
k"kp=1 
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2 2 

H ~ (jOJI) = L C;,o(kl )HI,I (jOJI) = L cl,o(kl )H( (jOJI )exp(- jOJlkl ) 
~ ~ 

2 2 

HUjOJpjOJJ = L LCp,0(kp""kp)H2,/jOJpjOJ2) 

2 2 

= L C;,O (kl)H 2,1 (jOJI, jOJ2) + L C2,0 (kl' k2)H 2,2 (jOJI, jOJ2) 
~~ ~~~ 

2 

= L cl,o(kl )H; (jOJp jOJ2)exp(-j(OJI + OJ2)kl ) 
k,=O 

2 

+ L C2,0 (kl, k2 )H( (jOJI )H( (jOJ2 )exp( - jOJ2kl )exp( - jOJlk2) 

= kH; (jOJI, jOJ2) + alH; (jOJI, JOJ2 )exp( - j(OJI + OJ2 )kl ) 

+ a2H( (jOJI )H( (jOJ2 )exp( - jOJ2)exp( - jOJI) 

Note that 
2 

Ln (j(OJI +." + OJn )) = 1- L cl,o (k l ) exp( - j(OJI +". + OJn )kl ) 
k,=1 

= 1 + -t- exp( - j(OJI +". + OJ/1)) + fexp( - j2(OJI +". + OJ/1)) 

Hence, by following similar process as above, the GFRFs for x(t) and yet) can all be 
computed recursively up to any high orders. For example, 

. H( (jOJI) + H( (jOJI) + H( (jOJI) 1/ k 
HX{jOJ)=' ~ '=----------

I I LI (j OJI ) 1 + ~ exp( - j OJI ) + .m. exp( - j20JI ) 

H X " H;, (jOJp JOJ2) + H;~ (jOJp JOJ2) + H;, (jOJp JOJ2) 
2 (jOJp jOJ2) = L ( .( )) 

2 j OJI + OJ2 

- -t- H( (jOJI )H( (jOJ2 )exp( - jOJ2) exp( - jOJI) 

1 + -t- exp( - j(OJI + OJ2)) + fexp( - j2(OJI + OJ2)) 

H ((jOJI) = H:' (jOJI) + H ( (jOJI) + H:' (jOJI) = k + alH( (jOJI )exp( - jOJI) 

H~ (jOJI ,jOJ2) = H:, (jOJI ,jOJ2) + HL (jOJI ,jOJ2) + H:, (jOJI ,jOJ2) 

= alH; (jOJI ,jOJ2)exp(-j(OJI + OJ2)) + a2H( (jOJI )H( (jOJ2)exp(- jOJ2)exp( - jOJI) 

It can be verified that the first order GFRFs are frequency response functions in z­
space of the linear parts of model (8.15). By using the GFRFs above, the output 
spectrum can also be computed according to (8.12-8.13). 

8.4 Parametric characteristics 

The parametric characteristic analysis was proposed and studied in Chapters 2-4. 
It is used to reveal which model parameters contribute to and how these parameters 
affect the system frequency response functions. By using the parametric characteristic 
analysis, some useful characteristics of system frequency response can be obtained, 
and the explicit relationship between system frequency response and system time 
domain model parameters can be unveiled. In this section, the parameter 
characteristics of the output frequency response function relating to the output yet) of 
model (8.7) with respect to model nonlinear parameters are studied, and the model 
nonlinear parameters in equation (8.7a) are focused since nonlinear parameters in 
equation (8.7b) has no effect on system dynamics. In what follows, let 

113 



PhD dissertation: Frequency Domain Theory of Nonlinear Volterra Systems 

C(n)={cp,q(k, ... kp+q)il<p+q~n,O~k; ~K,I~i~p+q} denotes all the nonlinear 

parameters in equation (8.7a) with degree from 2 to n, and similarly denote all the 
parameters in equation (8. 7b) with degree from 2 to n as: 
C(n) = {cp,q(k, ... kp+q)il < p + q ~ n,O ~ k; ~ K,I ~ i ~ P + q}. All the (p+q)th degree nonlinear 

parameters in (8.7) of form Cp,q(.) construct a vector denoted by 
C p,q = [cp,q (0"" ,0), C p,q (0"" ,1)"", Cp,q (~)] 

p+q 

In what follows,CE(HCF ),9means to only extract the parameters in the set f) fromHcF> 

and without specialty CE(H CF) means to extract all the nonlinear parameters (i.e., its 

nonlinearity degree> 1) appearing in H CF • 

8.4.1 Parametric characteristic analysis for H: (jwp···,jw,,) 

Application of the CE operator to a complicated series for its parametric 
characteristics can be performed by directly replacing the addition and multiplication 
in the series by "$ " and" ®" respectively. 

The parametric characteristic of the nth-order GFRF H,~ (jwP"',jw,,) with respect 

to model nonlinear parameters C(n) is 

x • • _ (H:, (jwp .. ·,jwn) + H:~ (jwp .. ·,jwn) + H:, (jwp ... ,jWn)] 
CE(Hn (jWp"" jWn)) - CE ----''--------=.---------'----­

Ln (j(w, + ... + wn)) 

= CE(H:. (jwp" ·,jwn)) $ CE(H:~ (jwp" ·,jwn))$ CE(H:, (jwp .. ·,jwn)) (8.16) 

= Co,n E9 (~:~ Cp.q ®CE(Hn_q,pO))E9 (~2 C".o ®CE(Hn,pO)) 

where 

CE(H"" 0) = CE(H,~ (.))) (8.18) 

Note that in (8.16), E(II L,,(j(w, + ... + w,J)) = 1 since there are no nonlinear parameters (in 

the set C (n) ) in IlL" (j(w, + ... + 01,,)). It is shown in Chapter 3 that 

CE(Hn•p (·» = CE(H:_ p+, 0) 
and thus (8.16) is simplified as 

CE(H,~ (jw,,"', jw,,)) 

(8.19) 

- (,,-' "-q- ) (- l"+liL 1 (8.20) 
= co,,, E9 ~,;!, C p,q ® CE(H,~_q_p+, 0) $ C",o E9 PEf!2 Cp,o ® CE(H,;_p+, 0) 

From (8.20), CE(H,~ (jwp"" jw,,)) has no relationship with C(n). With the parametric 

characteristics (8.20), it can be concluded (referring to Chapter 3) that there must exist 
a complex valued function vector /,,(jw,,"',jw,,) with appropriate dimension, such that 

H: (jwp"" jw,,) = CE(H,~ (jwp ... ,jw,J)' In(jwp "',jwn) (8.21) 
Equation (8.21) provides an explicit expression for the relationship between nonlinear 
parameters C(n) and the nth-order GFRF from u(t) to x(t). For any parameter of 
interest, how its effect is on the GFRFs can be revealed by checking 
CE(H,~(jwp ... ,jW,,)). From (8.21), H,~(Jwp .. ·,jw,,) is in fact a polynomial function of 
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parameters in C(n) which define system nonlinearities, thus some qualitative 

properties of H,~(jOJp···,jOJ,,)can also be indicated byCE(H:(jOJp ... ,jOJ,,»). Moreover, 
using (8.21), (8.12a) can be written as 

N 

X(jOJ) = L CE(H: (jOJp"" jOJn»)' F. (jOJ) (8.22) 
n=l 

n 

fn(jOJp ... ,jOJn)T1U(jOJ;)da", . This is the parametric 
;=1 

characteristic function expression for the output X(jOJ). By using this expression, 
X(jOJ) can be obtained by following a numerical method without complicated 
computation that involved in (8.8-8.9, 8.12a,8.13a) (for more detailed, refer to 
Chapter 3 and Chapter 4). More detailed discussion about the potential application of 
the parametric characteristic analysis can also refer to Chapter 3 and Chapter 4. 

8.4.2 Parametric characteristic analysis for H;, (jOJ,,"', jOJ,,) 

To study the parametric characteristic of the nth-order GFRF H;,(jOJp"',jOJ,,) with 

respect to only model nonlinear parameters in C(n), the parametric characteristic with 

respect to model parameters in C(n) and C(n) are derived first and then the case with 

respect only to nonlinear parameters inc(n) is discussed. 

Applying the CE operator to (8.10) yields, 
CE(H;, (jOJp"" jOJn» = CE(H:' (jOJ,,"', jOJn» $ CE(H:'

u 
(jOJ,,"', jOJn» $ CE(H:' (jOJ,,"', jOJ.» 

= Co,n $ ('$,n$ Cp,q ®CE(Hn_q,p(jOJ" ... ,jOJn_q»)$(a, Cp,o ®CE(Hn,p(jOJ" ... ,jOJn») 
~F' ~ 

using (8.19), which further gives 
CE(H;, (jOJ,,.··, jOJ,,» 

~ ("-' "-q ~ x..) (" ~ x..) (8.23) = Co" $ $ $ Cp,q ®CE(H,,_q_p+,(jOJP"',jOJ,,_q» $ $ Cp,o ®CE(H,,_p+,(jOJP"',jOJ,,» 
, ~~ ~ 

Thus the parametric characteristic of H;,(jOJp"',jOJ,,) with respect to both nonlinear 

parameters in C (n) and C (n) is obtained. 

Especially, if C(n) is independent of C(n) , the parametric characteristic of 

H;,(jOJ,,"',jOJ,,) with respect to nonlinear parameters inC(n)can be written as 

CE(H:(jOJp ... ,jOJn»c(n) = Co,n $(~:~: Cp,q)$ (~2 Cp,o) (8.24) 

Therefore, in this case H;, (jOJ,,"', jOJ,,) can be expressed as a polynomial function of 

C(n)as 

H:(jOJ" .. ·,jOJn;C(n» = CE(H:(jOJ" ... ,jOJn»)c(n) . f.(jOJ,,"·,jOJ.;C(n» (8.25) 

where f.(jOJp ... ,jOJ.;C(n» is a complex valued function vector with an appropriate 

dimension, which is also a function of the parameters inC(n)in this case. From (8.24), 

it can be seen that CE(H;, (jOJ,,"', jOJ. »e(n) is a vector which is composed of all the 

elements in C(n). That is, the nth-order GFRF is a polynomial function of all the 
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parameters in C(n) if C(n) is independent of C (n). This conclusion is straightforward. 

The case where C(n) is dependent onC(n) will be discussed in the following section. 

8.4.2.1 Parametric characteristics of H;'(jmp···,jm,,) with respect toC(n) 

What is of more interest is the parametric characteristic of H;'(jmp···,jm,,) with 

respect to nonlinear parameters in C(n) which define system nonlinear dynamics. 
Consider two cases as follows. 

(1) C(n) has no relationship withC(n) 
In this case, it can be derived from (8.23) that 

(

,,-1"-'1 ~ ) 

CE(H;, (jmp"" jm" »('(") = ~ ~I (1- o(C p,q»' CE(H:_q_p+1 (jm l ,.·· ,jm,,_q» 

EB (~p -o(Cp,o»' CE(H,~_p+I (jml ," .,jm,,») 

(8.26) 

{
o Cpq -:f. O. . 

where o(Cp,q) = '_. From (8.26) It can be seen thatcE(H;'(jmp ... ,jmn»C(n) IS 
1 Cp.c,-O 

the summation by "EB " of parametric characteristics of some GFRFs for x(t) from the 
1 sl order to the nth order. From the definition of operation" EB ", the repetitive terms 
should not be counted. Therefore, (8.26) is simplified as 

where 

" 
CE(H;, (jm l ,.··, jm" »C(,,) = ~I zen, p). CE(H,~_p+I (jm l ,···, jm" »C("-P+I) 

z(n,p)=1-0[ L(1-0(Cp"q»j 
O~q~n-I,I~p'~n-q 

p'+q:p 

(8.27) 

(8.28) 

(8.28) means that if there is at least one nonzero Cp',q then the corresponding 

CE(H,~_q_p+I(jmp ... ,jm,,_q»will be counted in (8.27). According to Proposition 3.1 in 

Chapter 3, it follows from (8.27) that the nth-order GFRF for yet) has relationship 
with all the nonlinear parameters in C (n) of degree from 2 to n' in this case, where 

n':$ n . 

(2) C(n) has linear relationship withC(n) bycp,qO = a + jjcp,qOfor some real 

number a and fJ 

Note that applying the CE operator to Cp,qO = a + jjcp,qO for the nonlinear 

parametercp,qO gives CE(cp,/'» = CECa + jjcp,qO) = Cp,q(') ' i.e" CE(Cp,q) = Cp,q' Hence, in 

this case (8.23) should be 
CE(H;, (jmp"" jm,,» 

- (n-In-q - x..) (" - x,.) (8.29) 
= co,,, E9 ~I ~I Cp,q ® CE(H,,_q_P+1 (jmp" ·,jm,,_q» E9 ;!I C 1',0 ® CE(H,,_p+1 (jmp .. ·,jm,,» 

(8.29) can be further written as 
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CE(H: (jWI ,···, jwn» 

= CO./I €a ('ffil''e,q Cp q ® CE(H,;_q_p+1 (jWI , ... , jW/I_q») €a (EB Cp 0 ® CE(H;_p+I (jWI , ... ,jW/I») 
q=1 p=1 . p=2 . (8.30) 

€aC;,0 ®CE(H;(jwl'.",jw/I» 

= CE(H,~ (jwl''''' jW/I» €a CI.O ® CE(H,; (jwl''' ·,jw/I» 

In the derivation of (8.30), equations (8.16) and (8.19) are used. (8.30) can reveal that 
how the model parameters in equation (8.7a) affect system output frequency response. 
When only nonlinear parameters are considered under the assumption that linear 
parameters are fixed in the model, then (8.30) is simplified as 

CE(H: (jwl,"', jWn »c(n) = CE(H; (jwl,"', jWn »c(n) (8.31) 

(8.31) indicates that the parametric characteristics of the GFRFs for yet) and x(t) are 
the same with respect to model nonlinear parameters inC(n). Note that equation (8.31) 

has a relationship with all the parameters in C(n) from degree 2 to n, which is 
different from (8.27). In this case both x(jw) and Y(jw) can be expressed as a 

polynomial function of model nonlinear parameters inC(n) with the same polynomial 
structure. 

8.4.2.2 Some further results and discussions 

The following results can be summarized based on Section 8.4.2.1. 

Proposition 8.1. Considering system (8.7), there exists a complex valued function 
vector J,,(jwl' ... ,jw,,) with appropriate dimension which is a function of linear 
parameters, such that 

H:(jwl' .. ·,jw.) = CE(H:(jwl' ... ,jWn»)c(n) . Z(jwl' ... ,jwn) (8.32) 

and the output spectrum of system (8.7) can be written as 
N 

Y(jw;C (N» = I CE(H: (jwl''' .,jWn»)c(n) . Fn (jw) (8.33) 
n=l 

where Fn(jw) = J;; 1 J Z(jwl' ... ,jWn)·rrU(jwJdO'",. If the input of system 
n(2Jl'r-

1 
"'1+"'+'",='" ;=1 

(8.7) is the multi-tone signal (1.3), then the OFRF of system (8.7) can be expressed as 
N ~ 

Y(jw;C(N» = "CE(H:(jwk ,. .. ,jwk »)- . Fn(jw) (8.34) ~ 1 , C(n) 
n=l 

~ 1 
where Fn (jw) = 2: IZ (jwkl ,. .. ,jWk)· F(wk)· .. F(wk)· CE(H: (jwl" .. ,jwn) 1(n) is given 

(()t, +"'+Wkn=OJ 

in (8.27) or (8.31). 
Proof. The results are straightforward from the discussions above and the results 

in Chapter 3 and Chapter 4. 0 

Proposition 8.2. Under the same assumption as Proposition 8.1 for system (8.7). 
If C(n) has either no relationship or linear relationship with C(n) , 

then CE(H:(jwl ,. .. ,jwn)1(n) is given in (8.27) or (8.31), and the parametric 

characteristic vector for Y(jw) can both be written as 
N 

CE(Y(jW»C(N) = r:!1 CE(H: (jwl,. .. , jWn »C(n) (8.35) 
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That is, there exists a complex valued function vector F(jmp···,jmn) with appropriate 

dimension, which is a function of nonlinear parameters in C(N) , linear parameters and 
the input, such that 

f(jm;C(N» = ('~I CE(H,~ (jm p ... ,jmn»)C(II»)- F(jm) 

Proof. See the proof in Section 8.7.0 

(8.36) 

From Proposition 8.2, both of the two mentioned cases have the same parametric 
characteristics for the output spectrum f(jm). If C(n) has no relationship with C(n) , 

(8.35) may be conservative since some terms in (8.35) have no contribution. However, 
this does not affect the result of (8.36) because the corresponding terms in the 
complex valued vector will actually be zero after numerical identification. Once the 
parametric characteristics CE(H: (jml,···, jmn) 1(n) are derived, the polynomial structure 

of the parametric characteristic expression for f(jm) is determined, and then as 
mentioned above, (8.33) and (8.34) can be determined by using a numerical method. 
Therefore, analysis, design and optimization of system output frequency response can 
be conducted based on this explicit polynomial expression in terms of model 
nonlinear parameters in C (N) . 

Example 8.2. Consider nonlinear system (8.15) again. Note that there are only 
two nonlinear parameters in C (n) , i. e., c2 0 (11) = -a2 / k, c3 0 (111) = -a3 / k , and the , , 

nonlinear parameters in C(n) are linear functions of the corresponding parameters 

inC(n). Let C2,0 = -a2 / k,C3,0 = -a3 / k. The GFRFs up to the 5th orders are computed 

according to (8.31) as follows, 
CE(H((jml» = 1 (8.37) 

_ l2+~L 
CE(Hi(jmp jm2»C(2) = CE(H;(jmp jm2»C(2) = C2,0 EB ;r!2 Cp,o ® CE(HLp+1 0) (8.38) 

= C2,0 EB 0 = C2,0 = -az/k 

_ r+~L 
CE(Hj(jml,···,jm3 »C(3) =CE(H;(jmp ... ,jm3 »C(3) =c3,0 EB ;r!2 Cp,o ® CE(HLp+1 0) 

- - x - - 2 a3 ai 
=C30EBC20®CE(H20)=C30EBC20 =[--'-2] 

" "k k 

(8.39) 

_ l4+~L 
CE(HI(jmp···,jm4»C(4) = CE(H;(jmp.·.,jm4»C(4) = C4,0 EB ;r!2 Cp,o ®CE(HLp+IO) 

= OEB C2,0 ®CE(H;O) = C2,0 ®(C3,0 EB C2,0 2) (8.40) 

- - - 3 a a a3 

=C20®C30EBC20 =[~23 ,_-2.3] , , , k k 

_ ls+~L 
CE(H{(jml,··,jOJs»C(S) = CE(H;(jOJp ... ,jOJs»C(S) = Cs,o EB ~2 Cp,o ® CE(HLp+1 c·» 

= OEB C2,0 ®CECH;C·»EB C3,0 ®CE(H;O) (8.41) 
2 4 2 

- 2 - - 4 - 2 a2 a3 a2 a3 = C20 ®C30 EB C20 EB C30 = [-3-'-4 '-2] , , , , k k k 

The parametric characteristic of the output spectrum up to the 5th order can be 
obtained as 
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. _ s y . . _ [ a2 a3 a; a2 a3 a~ a; a3 a; ai] (8 42) 
CE(Y(jOJ»C(S) - E9 CE(HII (jOJP"',jOJII»C( ) - 1'--'--'-2 '-2-'--3 '-3-'-4 '-2 . 

11=1 II k k k k k k k k 

Then according to Proposition 8.2, there exists a complex valued function vector 
F(jOJp ... ,jOJs) such that 

. . _[ a2 a3 a; a2 a3 a~ a;a3 a~ ail ~. . (843) 
Y{jOJ,a2 ,a3» - l'-T'-T'k!'7'-J;i'--;;'3'J;4'k! ·F{jOJp·",jOJs) . 

It should be noted that the system output spectrum in (8.43) is only approximated up 
to the 5th order. In order to have a higher accuracy, higher order approximation might 
be needed in practice. To obtain the explicit relationship between system output 
spectrum and the nonlinear parameters a2 and a3 at a specific frequency of interest, 
FejOJ""',jOJs) in (8.43) can be determined by using a numerical method as mentioned 
before. The idea is to obtain Z system output frequency responses from Z simulations 
or experimental tests on the system (8.15) under Z different values of the nonlinear 
parameters (a2 a3) and the same input u(t), then yielding 

Yz = [Y(jOJ;a2 ,a3 )1 Y(jOJ;a 2 ,a3 )2 ... Y(jOJ;a2 ,a3 )zY =cD·FejOJp ... ,jOJs) (8.44) 

where 
a2 (I) a3 (I) ai (I) a2 (l)a3 (I) a~ (l) ai (l)a3 (I) a~ (1) a; (l) 

1--- --- -- --- -- --
, k' k' k 2 ' k 2 ' k 3 ' e ' k4 ' k 2 

cD= 
a2 (2) a3 (2) ai (2) a2 (2)a3 (2) a~ (2) a; (2)a 3 (2) a~ (2) ai (2) 

1--- --- -- --- -- --
, k ' k ' k 2 ' k 2 ' e' e ' k4 ' k 2 (8.45) 

a2 (Z) a3 (Z) a; (Z) az (Z)a3 (Z) a~ (Z) ai (Z)a3 (Z) a~ (Z) a; (Z) 
1------ -- --- -- --
, k ' k ' k Z ' k Z ' k 3 ' k 3 ' k4 ' k Z 

Then 
~ 7' 1 7' (846) F(jOJp .. ·,jOJs) = (cD cDr cD Yz . 

Therefore, equation (8.43) can be determined, which is an explicitly analytical 
function of the nonlinear parameters a2 and a3. By using this method, the system 
output frequency response can thus be analyzed and designed in terms of model 
nonlinear parameters of interest. For the detailed discussion of the numerical method 
can refer to Chapter 4. 0 

8.5 Magnitude bound characteristics 

This section provides an evaluation of the magnitude bound of Y(jOJ), which is 
significant in many cases where only the magnitude of Y(jOJ) is needed to obtain some 
information of a system without computing the complicated analytical functions in 
(8.12-8.13) in multi-dimensional complex space. 

It can be derived from (8.12b) that 
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IY(jw)l= ~ ..r;; I _ J H:(jwl,. .. ,jWn)nn U(jw;)da", 
L. n(2;r)n 1 . 
n=1 ro.+"'+w,,=w 1=1 

(8.47a) 

II 

Denote Y" (j OJ) = r 1 
v n (27r ),,-1 f H;'(jOJ1,···,jOJn)f1U(jOJ;)da", representing the nth-

lVt+"+W,,:;:w i=1 

order output frequency response. Then 

Iy" (jOJ)1 ~ (27<1),,-1 IH;, (jOJ;,· .. , JOJ; )1!ul * ... : IU(jOJ)! (8.47b) 
n 

Note that lul*···*lu(jOJ)1 can be computed by an algorithm in Billings and Lang (1996). 
'------v----' 

n 

Thus from (8.47), it can be seen thatIH;'(jOJp ... ,jOJ,JI should be evaluated first in order 

to obtain the magnitude bound for Y(jOJ) . For this purpose, the following notations are 
introduced. 

K 

I ICp,q (kl,···, k p+q )1, 1 ~ q ~ n - 1,1 ~ p ~ n - q 
k, ,k p+q =0 

q = n,p = 0 

K 

Ilcp,o(kl,···,kp)l, 

0, else 

C(p, q) has the similar definition as (8.48), except C (1,0) = 0 . Let 

b= inf ~Ln(OJ)I} 
(,t}:::(().+",+w" 

Moreover, let 

H n,p = sup ~Hn.pOI) Ho.oO = 1 
w""wIIER(\! 

Hn,oO=Oforn>O 

H n,p 0 = 0 for n < p 

H; = sup ~H:ol) 
m"·"w,,eR(\l 

(8.48) 

(8.49) 

(8.50) 

where RaJ is the input frequency range. Furthermore, two operations"." and "0 " are 
needed in the evaluation of magnitude bound, which was first defined in Jing et al 
(2007) and is restated in Section 8.7. 

Proposition 8.3. Considering system (8.7), for OJ1 + ... + OJ; =1= 0 (i =1,2, ... ,n), the 

magnitude of H;'(jOJp···,jOJ
II

) for system (8.7) is bounded by 

IH;, (jOJp "" jOJn)1 ~ C(O, n) +[n~1 n:
q 
C(p, q). 0 c= b, )). hn 

q=O p=O Lr/=n-q .=1' 

151j ·"rpSn-p-q+l 

(8.51) 
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where 

hn = [1 (ilt Y ... (ilt r] and br, = [br"o br,,1 ... br"r,] (8.52) 

bilk for ° ~ k ~ n can be recursively computed as follows, 

bilk =~C(k,n-k)+~[: 0 [C(P,q). 0 (:br)ll(k) L L m~2p+q~m ~>,~n-q I~I' 
- - OSp,qSm ):ST!''''psn-m+l 

b2 = [b20 , b21 ' b22 ] = [~C (0,2), ~ C (1,1), ~ C (2,0)] 
L L L - - -

bJ=[blO,b\l]=[O, 1] 

(8.53) 

(8.54) 

(8.55) 
P n 

Moreover,- br = ° if p<l, and 0 (-) = ° if n<2. 
1=1 I m=2 

Proof. See the proof in Section 8.7.0 

The bound in (8.51) provides another explicit analytical expression for the 
relationship between system GFRFs and model parameters as the parametric 
characteristic function in (8.32). The magnitude bound of the nth-order GFRF can 
directly be described by an n-degree polynomial function of HI . Different order of the 
GFRFs has a different degree polynomial of ill , and has no crossing effect with each 
other. Using (8.47) and (8.51), it can be derived that 

'y(jW)'~fl-ln-_'U,*",*'U(jW),.[c(o,n)On~ln:qC(p,q). 0 C=br»).hn} 
n~1 (2n") I '-----v------' q~O p=o Lr,=n-q /=1' 

n ISrl'··rpSn-p-q+1 

= 1: ~Iul * ... * IU(jw)l· [C(O, n) 0 n~1 n:
q 
C(p,q)' 0 c= br »)}. hN (8.56) 

n=1 (2n") '-----v------' q=O p=O Lr,=n-q /=1' 
n ISrl ,,·rp Sn-p-q+l 

=(~I(an . Bn)} hN 

(8.57) 
where 

(8.58) 

........ 11-1 n-q ........ p 

BII=C(O,n)Oq~Op~oC(p,q)· Lr,~~-lf (i~lbr) (8.59) 
1S'I" "p '5.n-p-q+l 

Similarly, when the input of (8.7) is a multi-tone signal (1.3), then the output 
spectrum of system (8.7) is bounded by 

IY(jw)I~(~/fin .Bn)}hN (8.60) 

IYn (jw)1 ~ fin . Bn . hn (8.61) 

f3n = 2
1
n L F(w k,)'" F(wk ) (8.62) 

wk\ +"'+Wk" =(0 

The magnitude of a frequency response function for a system usually reveals some 
important information about the system, and consequently takes a great role in the 
convergence or stability analysis of the system and the truncation error of the 
corresponding series. Therefore, the magnitude bound results developed in this 
section can be used to measure the significant orders of nonlinearities or to find the 
significant nonlinear terms, indicating the stability of a system and providing a basis 
for the analysis and optimization of system output frequency response. 
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Example 8.3. Consider system (8.15) with a2=0, i.e., 
mx(t - 2) + a1x(t -1) + a3x

3 (t -1) + kx(t) = u(t) 
(8.63) 

yet) = a l x(t -1) + a3x
3 (t -1) + kx(t) 

and let u= Asin(Qt). Assume that m, ai, a3, and k are all positive. There are only two 

nonlinear parameters, i. e., c3,Q (111) = -a3 / k and c3,Q (111) = a3 • Before the magnitude 

bound of the output spectrum is evaluated, the parametric characteristics of the 
GFRFs for yet) are checked first. In this case, the parametric characteristics for the 
GFRFs can be computed according to (8.31). It is noted from (8.37-8.41) that 

CE(HJi('» = 0 for i ~ 1 (8.64) 
thus 

HJiO = 0 for i ~ I (8.65) 

according to Proposition 8.1. Hence, only IH Ji-I 01 for i ~ I are needed to be evaluated 

for the magnitude ofr(jm). Since the input is a sinusoidal signal, the magnitude of 

r(jm) can be evaluated by (8.60-8.62), which can be written in this case as 

IY(j")1 < [l ~~J(P'H B,,_,»)- '1N<y,J (8.66) 

and 
IYZi - 1 (jlU)l:::; f32i-1 • B2i- 1 • h21 _ 1 (8.67) 

Note that u= Asin(Qt) is a single tone signal, then 

{

A" { Imk = k,Q,k, = ±I,) 
(-)" L.,.I mE m +"'+m I 

f3n=2-nw,+.~)~;mk,)"·F(mk)l= 2 w.,+-oo+w,.=w' k, k·I:::;/:::;n (8.68) 
, • 0 else 

From (8.53-8.55) it can be obtained that 
b2i=0 for i=I,2,3,... (8.69) 

and for n=2i-l, i=I,2,3, ... 
bnk = 0 for 0:::; k < n 

1- 1- L Il3 

bll=l, b33 =-C(3,O), bnn =-C(3,O) b •• forn>3 L L 'I'. 

Therefore, 

and for n=2i-l, i=2,3 ... 
11-1 n-q 

B = 0 0 0 

n q=O p=O Lr,=n-q 

- Lr,=n ;=1 
1~rl"'r:,Sn-3+1 

~ p ~ ~ 

(C(p,q). Ce br» = (C(1,O)· bn) 0 (C(3,O)· 
1=1 I 

lsrl "'rp sll-p-q+l 

(8.70) 

(8.71) 

(8.73) 

According to (8.73) and (8.70-8.71), Bn can be computed up to any high orders. For 
example, 

(8.74) 
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Let Bn=[Bno,Bnl, ... ,Bnn]. Hence, using (8.71) and (8.73), 
Bnk=O forO ~ k < n (8.75) 

1 _ ) ) 
Bnn = «al +k)'LC (3,O) _L IJbr,r,)o(a). L.~=n (i~lbr,r,)) forn=2i-l, i=I,2,3 ... (8.76) 

Lt;-n ,-1 lSr. ... ,. Sn-2 
ISrl"'r:1Sn-3+1 I l 

Since only the last element in Bn is nonzero, (8.66-8.67) can be rewritten as 

I 
. I IN+~J -x 2H 

Y{jw) ~ i~1 (P2H' B2i- I,2H ' (HI) ) 

and 

Note from (8.49-8.50) that 

1:. = infll + ; exp(- j2(wl + .. , + llJn) + ~ exp(- j(llJl + .. , + llJn)1 

Ht = SllPI-----l-----1 k + mexp(-j2llJl ) + a l exp(- jllJl ) 

(8.77) 

(8.78) 

(8.79) 

(8.80) 

Based on (8.77-8.80), the magnitude bound of the output spectrum of system (8.63) 
can be evaluated readily. For instance, 

I ~ ( ll)1 ~ P , B ' fix = A(al + k) fix 
I ) I 1,1 I 2 I 

IY) (jn)1 ~ p) , B),) , (fin) = 3A)a)(~lk: k + k!::.) (fin) 

This process can be conducted for up to any higher orders, which can be used to 
evaluate some properties of the nonlinear system, such as the truncation error of 
Volterra series and system stability etc (ling et al 2007). 0 

8.6 Extension to continuous time nonlinear systems 

The results above can be extended to continuous time nonlinear Volterra systems 
in a general form of 

x = I(x) + g(x, u) 
(8.81 ) 

Yr = h(x,u) 

For this purpose, consider the following system described by differential equations 

(8.82) 

(8.83) 

where x(t), yet), u(t) E R. System (8.82-8.83) has similar notations and structure as 

system (8.7). It can be regarded as an NDE model with two outputs x(t) and yet), and 
one input u(t). Hence, following the same idea, the GFRFs for the relationship from 
u(t) to yet) are given as 

H Y( , ') - HY ( , ') HY ( , ') HY ( , ') n jllJp· .. ,jllJn - n, jllJp .. ·,jllJn + n~ jllJp .. ·,jllJn + n, jllJP''',jllJn (8.84) 

where 
K 

H Y (j'llJ .. , j'llJ ) = "c (k .. , k )(j'llJ )k, "'(j'llJ )k. 
nil 1 , , n L..J O,n I , 'n I n (8.85) 

k"k.=O 
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n-I n-q K 

= II ICp,q(kp ... ,kp+q)(jlUn_q+l)kp'l .. ·(jlUn)kp" Hn_q,p(jlUp''',jlUn_q) 
q=1 p=1 kl,kp"=O 

" K 
H~ (jlUp .. ·,jlU,,) = I ICp,o(kp ... ,kp)Hn,p(jlUp ... ,jlUn) 

p=1 kl,kp=O 
n-p+1 

H",p 0 = I Ht (jlUp " ·,jlU; )H,,_;,p_I (jlU;+p · .. ,jlUn)(jlUI + ... + jlU; )kp 

;=1 

H ",1 (jlUI,···, jlU,,) = H,; (jlUI,···, jlUn )(jlUI + ... + jlUn)*1 

(8.86) 

(8.87) 

(8.88) 

(8.89) 

where H: (jlUI,",jlU,,) is the nth-order GFRF from u(t) to x(t), which is the same as that 
given in (3.8 or 3.11,3.10,3.2-3.5). 

Example 8.4. Consider a nonlinear mechanical system shown in Figure 8.1. 

Tx(t) 

Fig. 8.1 A mechanical system 

The output property of the spring satisfies A = kx, the damper F = alx + a3x 3
, and the 

active unit is described by F = a2x2. u(t) is the external input force. Therefore, the 
system dynamics is 

mX = -kx - alx - a2x 2 
- a3x 3 + u(t) 

and the output be the transmitted force measured on the base 
(8.90) 

yet) = alx + a2x 2 + a3x 3 + kx(t) (8.91) 
It can be seen that the continuous time model (8.90-8.91) is similar in structure to the 
discrete time model (8.15) in Example 8.1. Therefore, similar results regarding the 
frequency response functions and consequently their related frequency characteristics 
as demonstrated in Examples 8.1 and 8.2 for the discrete time model (8.15) can be 
straightforward established for model (8.90-8.91). 

Moreover, it can be verified that the results developed by the parametric 
characteristic analysis above for system (8.7) also hold for system (8.82-8.83). 

8.7 Definitions and Proofs 

• Multiplication and addition operators between two vectors of different 
dimensions 

Consider two polynomials of degree n and m respectively, 
fa =ao+alh+"'+a"h" =a·Ii;',and fb =bo+blh+ .. ·+b"hm =b·li: 

where the coefficients ao, a I, ... , an; bo, b I, . .. , bm are all real numbers, h stands for a 
real or complex valued function, a=[ ao, aI, ... , an], b=[ bo, b], ... , bm], and 1i;=[I, 
h, ... , hi]. 
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Define a multiplication operator"." as a. b = c, where c is an n+m+ I-dimension 
vector, such that c(k)= ~:>;bj for 0 ~ k ~ m + n . Denote (a. b Xk) = I a;bj . From this 

i+j=k 
O'5.;-S;n,O$j$m 

i+j=k 
O$;$n.O'5.),$m 

operator it follows that, for example, fa . fb = a. b ·n~;+m' Similarly, define an addition 
operator" 0" as a 0 b = c, where c is an x-dimension vector, x=max {m,n}, such that 
c(k)=a(k)+b(k) for 0 ~ k ~ x . If k>n or m, then a(k)=O or b(k)=O, accordingly. From the 
operator" 0 " it follows that, for example, fa + fb = a 0 b ·n :ax(n,m) • 

These two operators actually define a multiplication operation and an addition 
operation between two vectors with different dimensions. The operator"." can also 
be regarded as the Cauchy product between two vectors of different dimensions. A 
little speciality is that" • " produces a new vector from two operated vectors. 

• Proof of Proposition 8.2 
From (8.33) and (8.34), the parametric characteristic vector for Y(jill) is 

N 

CE(Y(jill»C(N) =!I CE(H:Uillp .. ·,jilln»c(n) (C1) 

If C(n) has a linear relationship with C(n) , then CE(H:(jillp ... ,jilln)~(n) is given by 

(8.31). In this case, (8.35) is straightforward by substituting (8.31) into (C1). If 
C(n) has no relationship withC(n), then substituting (8.27) into (C1) yields 

CE(Y(jill»C(N) = '!I(!I x(n,p)' CE(H,~_p+I (jillp ... ,jill,,)C(II») (C2) 

By the definition of operation "E9 ", repetitive terms should be removed. Therefore, 
(C2) further gives 

N 

CE(Y(jill»C(N) = ~I X(N,p)· CE(H~_p+I (jillp· .. ,jillN )C(N» (C3) 

N 

Note that, all the elements in vector 1f!IX(N,p).CE(H~_P+I(jillp ... ,jillN)C(N» must be 

N 

elements in vector ~CE(H:(jillp ... ,jilln)c(n»' Hence, the parametric characteristics in 

(C3) are all included in (8.35). Equation (8.36) is straightforward from Proposition 8.1. 
o 

• Proof of Proposition 8.3 
It is derived from (8.10) that 

K 

IH: (jillp "" jill.)1 ~ ~]co,n (k,,"', kn )IIH 0,0 (jwp"" jwn)1 
k"k.=1 

1/-1 n-q K n K 

+ L L LICp,q (k l , ••• ,kp+q )IIHn-q,p (jw1 , ••• ,jWn-q)1 + L Llcp,o(k l ,· •• ,kp )IIHn,p(jw1 , ... ,jWn)1 (D1) 
q=1 1'=1 k"k.=1 1'=1 k,.k,=1 

n-l n-q n n n-q 

~C(O,n)Ho.o + LLC(p,q)HII -q,p + L C(p,O)H1/,p = LLC(p,q)Hn-q,p 
q=1 1'=1 1'=1 q=O 1'=0 

From Lemma 1 and Theorem 1 in ling et al (2007), 
n-q-p+1 I' 

Hn_g,p ~ I Il H; for p::f. O,q::f. n (D2) 
r\, .. rp =1 ;=1 

~>,=n-q 

and 
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li: = br 0 + br lli; + ... + br r (li; 'vi = br . h; 
I "1' /. I J I i 

(D3) 

where br, = [br"Q br,,1 ... br"r,] which can be determined by (8.S2-8.SS), and 

hr, = [1 lit ... (Ht r]. Then it can be derived from (D2-D3) that 

(D4) 

(DS) 

This completes the proof. D 

8.8 Conclusions 

Some fundamental theoretical results have been established for the frequency 
domain analysis of nonlinear Volterra systems which can be described by a state 
space equation with a nonlinear output function. Related frequency characteristics 
such as the parametric characteristics and bound characteristics for the system 
frequency response functions are developed and discussed. These results can be 
regarded as a useful extension of some established results in this topic discussed in 
previous chapters, and provide an important basis for the frequency domain analysis 
and design of nonlinear Volterra systems in a more general case. The application of 
these results to the analysis of practical mechanical systems will be studied in the next 
chapter 
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Chapter 9 
AN APPLICATION OF THE NEW FREQUENCY 
DOMAIN METHOD TO OUTPUT VIBRATION 

SUPPRESSION 

Based on the frequency domain theory that is developed in the previous chapters 
for nonlinear Volterra systems, a frequency domain analysis based nonlinear feedback 
control approach is proposed. The analytical relationship between system output 
frequency response and controller parameters is obtained, and a series of associated 
results and techniques are discussed for the nonlinear feedback controller analysis and 
design. A general procedure is provided accordingly. The results provide, for the first 
time, a systematic frequency domain approach to exploiting the potential advantage of 
nonlinearities to achieve a desired frequency domain performance for active/passive 
vibration control or energy dissipation systems. The new approach is demonstrated 
through the design of a nonlinear damping for a vibration suppression problem. 

9.1 Introduction 

Suppression of periodic disturbances covers a wide range of applications, for 
example, active control and isolation of vibrations in engineering and vehicle systems. 
Traditionally, an increase in damping can reduce the response at the resonance. 
However, this is often at the expense of degradation of isolation at high frequencies 
(Graham and McRuer 1961). Many methods have been proposed to deal with this 
problem, such as optimal control, H-infinity control, "skyhook" damper, repetitive 
learning control, and optimization etc (Graham and McRuer 1961, Housner et a11997, 
Karnopp 1995, Lee and Smith 2000). A much more comprehensive and up-to-date 
survey can refer to (Hrovat 1997). Nonlinear feedback is an approach that has been 
noted recently by some researchers (Alleyne and Hedrick 1995, Chantranuwathanal 
and Peng 1999, Zhu et al 2001). It is shown in Lee and Smith (2000) that, although it 
is not possible to use linear time-invariant controllers to robustly stabilize a controlled 
plant and to achieve asymptotic rejection of a periodic disturbance, the problem is 
solvable by using a nonlinear controller for a linear plant subjected to a triangular 
wave disturbance. Based on the Hamiltonian system theory, an optimal nonlinear 
feedback control strategy is proposed in Zhu et al (2001) for randomly excited 
structural systems. It has also been reported many times that existing nonlinearities or 
deliberately introduced nonlinearities may bring benefits to control system design 
(Graham and McRuer 1961). Hence, the design of a nonlinear feedback controller to 
suppress periodic disturbances has great potential to achieve a considerably improved 
control performance. However, it should be noted that most of these existing methods 
mentioned above are based on state space and in the time domain, and some of those 
usually involve a complicated design procedure. 

Based on the results discussed in Chapter 3, Chapter 4 and Chapter 8, the OFRF 
(output frequency response function) for nonlinear Volterra systems can be obtained 
explicitly, which reveals an analytical relationship between system output spectrum 
and system model parameters for a wide class of nonlinear systems and provides an 
important basis for the analysis and design of output behaviour of nonlinear systems 
in the frequency domain. For a linear controlled plant subject to periodic disturbances, 
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if a nonlinear feedback is introduced to produce a nonlinear closed loop system, the 
relationship between the disturbance and the system output is nonlinear and can, 
under certain conditions, be described in the frequency domain by using the OFRF to 
explicitly relate the controller parameters to the system output frequency response. 
Therefore, by properly designing the controller parameters based on this explicit 
relationship, the effect of the periodic disturbance on the system output frequency 
response could be significantly suppressed. Motivated by this idea, a frequency 
domain approach to the analysis and design of nonlinear feedback for the exploitation 
of the potential advantage of nonlinearities is proposed in this study to suppress 
sinusoidal exogenous disturbances for a linear controlled plant. 

This chapter is organized as follows. The problem formulation is given in Section 
9.2, which is divided into several basic problems that can be addressed separately. 
Section 9.3 is concerned with some fundamental issues of the analysis and design of 
nonlinear feedback corresponding to different basic problems. Some theoretical 
results and techniques needed to solve these basic problems are established. Section 
9.4 illustrates the implementation of the new approach by tackling a simple vibration 
system. Some proofs for the theoretical results are provided in Section 9.5 and a 
conclusion is given in Section 9.6. 

9.2 Problem Formulation 

Consider an SISO linear system described by the following differential equation: 
L 

L Cx(/)D' x+b,u+e'1] = ° (9.1) 
'=0 

I.-I 

y= LCy(/)D'x+d.u (9.2) 
'=0 

where, x, y, u, 1] E R I represent the system state, output, control input, and an 

exogenous disturbance input respectively; 7] stands for a known, external, bounded 
and periodical vibration, which can be described by a summation of multiple 
sinusoidal functions; L is a positive integer; D' is an operator defined by D' x = d' xl dt' . 

The model of system (9.1-9.2) can also be written in a state-space form: 
X = AX + Bu + E1] (9.3) 
y=CX+du (9.4) 

where, X=[x, Dlx, ... , d-1x]T E 9l L is the system state variable, A and C are matrixes 
with appropriate dimensions, B=[ 0lx(L-I), bf, E=[ 0lx(L-I)' ef. The problem to be 
addressed in the present study is: 

Given a frequency interval /(0) and a desired magnitude level of the output 
frequency response Y· over this frequency interval, find a nonlinear feedback control 
law 

(9.5) 
such that 

max (Y(jO)Y( - jO)) ~ Y· (9.6a) 
WE/(w) 

where the feedback control law - ({l(x, D' x, ... , D L
-' x) is generally a nonlinear function 

of x, D\ ... , DL-1X, with the linear state/output feedback as a special case; Y(j OJ) is 
the spectrum of the system output. 
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For the purpose of implementation, the control objective (9.6a) is transformed to 
be 

max (Y(jmk )Y( - jmk» ~ Y· 
aJ,EI(aJ) 
k=I,2".,k 

(9.6b) 

That is, evaluate the output spectrum at a series frequency point such that the 
maximum value is suppressed to a desired level. The control law (9.5) should 
therefore achieve the control objective defined by (9.6b). In the following, 
assume 1(m) = Q)o, that is only the output response at a specific frequency is considered. 

Let Y = Y(jm)Y( - jm)l(ov) ' then Yo = Y(jm)Y(- jm)l(aJo,o) shows the magnitude of the system 

output frequency response at frequency Q)o under zero control input. Obviously, 

Y(jm)Y(- jm)l(aJo,u) ~ Y· < Yo = Y(jm)Y(- jm)l(aJo,o) (9.7) 

To obtain a nonlinear feedback controller, cp(x, D J x, ... , D L
-
J x) is written in a 

polynomial form in terms of x, Dl X, ..• , DL
-
1 x as 

M L-I I' 

cp(x, DIX, .. " DL-IX) = L L Cpo(lI'···,lp)Il D',x (9.8) 
1'=1 """p=O ;=1 

where M is a positive integer representing the maximum degree of nonlinearity in 
L-I L-I L-' 

terms of Dix(t) (i=O ... L-l); I(-) = I"·I(-). The nonlinear function in (9.8) 

includes a general class of possible linear and nonlinear functions of DiX (i=0 ... L-l). 
Since Dix=e(i+ 1) T X, where e(i+ I) is an L-dimensional column vector whose (i+ 1 )th 
element is 1 with all other terms zero, cp(x, D' x, ... , D L

-' x) can also be written as a 
function of X, i.e., cp(X). As mentioned before, for the parameters Cpo(.) (p=1, ... ,M), 

when p = 1 the parameters will be referred to as the linear parameters corresponding to 

the linear terms in (9.8), e.g., Clo (2) d
2

x
2
(t) . All other parameters in (9.8) will be 

. dt 
I' 

referred to as nonlinear parameters corresponding to the nonlinear terms Il D', x(t) . p 
;=1 

is the nonlinear degree of nonlinear parameter cpo (-) . Let 

[ 

p=I .. ·M ] 
C(M,L)= cpo(lI',,·,lp)~; =O· .. L-I 

1=1 .. ·p 

(9.9) 

which includes all the parameters in (9.8). Substituting (9.8) into (9.1) and (9.2) yields 
the closed loop system as 

M L P 

L L Cpo(ll'· .. '/p)n D',x + e'1] = 0 (9.10a) 
1'=' ',''''p=O ;=1 

M L-' I' 

L L cpo (II' " . , I 1') n D', x = Y (9. lOb) 
p=l/l"'/,,=O ;=1 

where, 
C IO (I,) = C x (/,) - bCIO (1,), clO (/,) = C /1,) - dCIO (/,) 

Cpo (I, , ... , I 1') = -bC 1'0(11'" ·,11')' Cpo (I" ... , II') = -dCpo(l",,' ,11')' 

for p=2·"M,lj=0 .. ·L, and i=l .. ·p. (9.10) is a nonlinear differential equation model, 
whose generalized frequency response function can be obtained by using the results in 
Chapter 3. According to the results in Chen and Billings (1989), the model can 
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represent a wide class of nonlinear systems. This implies that the nonlinear control 
law (9.S) can be used for many control purposes of interests. The task for the 
nonlinear feedback controller design is to determine M and a range for the controller 
parameters in (9.9) to make the closed loop system (9.10) bounded stable around its 
zero equilibrium, and then to determine the specific values for the controller 
parameters from the OFRF which defines the relationship between the closed loop 
system output spectrum and controller parameters to achieve the required steady state 
performance (9.7). 

There are generally four fundamental issues to be addressed for the nonlinear 
feedback design problem as follows: 

(a) Determination of the analytical relationship between the system output 
spectrum and the nonlinear controller parameters. 

(b) Determination of an appropriate structure for the nonlinear feedback 
controller. Only nonlinear terms which are useful for the control purpose are needed 
in the controller to achieve the design objective .. 

(c) Derivation of a range for the values of the control parameters over which the 
stability of the closed loop nonlinear system is guaranteed. 

(d) Development of an effective numerical method for the practical 
implementation of the feedback controller design. 

The focus of Section 9.3 is to investigate these fundamental issues. A simulation 
study will be presented thereafter to illustrate these results. 

9.3 Fundamental results for the analysis and design of the nonlinear 
feedback control 

9.3.1 Output frequency response function 
In this section, the output frequency response of the closed loop nonlinear system 

(9.10) is derived. The relationship between the system output spectrum and the 
controller parameters are investigated to produce some useful results for the nonlinear 
feedback analysis and design. 

9.3.1.1 Output spectrum of the closed loop system 
As discussed before, any time invariant, causal, nonlinear system with fading 

memory can be approximated by a finite Volterra series. With the BIBO stability 
condition for the controller parameters which will be studied in Section 9.3.3, the 
relationship between the output yet) and the input ,,(t) of system (9.10) can be 
approximated by a Volterra functional series up to a finite order N as described by 
(1.1), i.e., 

N n 

y(t) = LYn(t), Yn = [ ... [hn(T p ... ,T,,)I11](t-T,)dT; (9.11) 
,,=1 ;=1 

where hn (T, , ... , Tn) is the nth order Volterra kernel of system (9.10) corresponding to 

the input-output relationship from ,,(t) to yet). When the input in (9.11) is a multi-tone 
function in (1.3), i.e., 

K 

1](t) = L IF; I cos(w;l + LF;) (9.12) 
;=1 

the system output spectrum can be obtained by extending the result described in (4.3-
4.4), as given in (S.12b) and (S.13b), i.e., 
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N 

Y(jOJ) = "",_1 "'" HII(jOJk ,···,)OJk )F(OJk ) ••• F(OJk ) 
~2" ~ I n I II 

,,=1 rut, + .. '+aJk " =w 

) 
{

IF; leiLJo; if OJ E {OJk , k = ± 1, ... ,±K} 
F(OJ = 

o else 

H (J'OJ ... J'OJ )= [ ... [h (1' ... l' )e-J(W,T,+"'+W.T')d ... ·d. 
n kl ' , kn n I ' 'n 1 n 

00 <Xl 

(9.13) 

(9.14) 

(9.15) 

(9.15) is the nth-order generalised frequency response function (GFRF) of system 
(9.10) for the relationship between 1](t) and yet), which can be obtained by directly 
following the results in Section 8.3 of Chapter 8. 

Proposition 9.1. The GFRFs Hn (jOJk , .. ·,)OJk ) from the disturbance 1](t) to the , . 
outputy(t) of nonlinear system (9.10) can be determined as 

n L-I 

Hn(jOJp .. ·,jOJn) = L LCpo(lI"·!p)H!p(jOJp .. "jOJn) (9.16a) 
p=1 """,,=0 

n-p+l 

H I ( , .) - "HI( . . )HI ( , ')( , . )" np )OJI, .. ,)OJn - L... ; )OJp .. ·,)OJ, n-',p-I )OJ'+I, .. ·,)OJn )OJI + ... + )OJ, (9.16b) 
;=1 

H!I(jOJp .. ·,jOJn) = H!(jOJI, .. ·,jOJn)(jOJI + ... + jOJn)", HII(jOJ) = elt/~IO(lI)(jOJI)" 
7 ',=0 

(9.16c) 

(9.16d) 

Note that the nth-order GFRF from 1](t) and x(t) can directly be obtained from 
(3.8 or 3.11, 3.10, 3.2-3.5) as discussed in Section 8.6, which is denoted by 
H!(jOJp ... ,jOJn). However, from the study in Chapter 8 it can be seen that, the nth-order 
GFRF from 1](t) and yet) can only be obtained by using the results in Section 8.3 
instead of directly applying the results in Billings and Peyton-Jones (1990), because 
system (9.10) having a nonlinear output is not consistent with the model studied in 
Billings and Peyton-Jones (1990). From Proposition 9.1, the GFRFs can be computed 
recursively from the time domain model (9.10), and the output spectrum of system 
(9.10) can be obtained analytically from (9.13) and (9.16), which are an explicit 
function of the parameters in the control law (9.8). Therefore, the design of controller 
(9.8) can be studied in the frequency domain. In order to obtain an analytical 
relationship between the system output spectrum and model parameters from these 
recursive computations the OFRF of system (9.10) is expressed as a polynomial 
function of the nonlinear controller parameters in (9.9) according to Chapter 4, i.e., 

Y(jOJ) = Po (jOJ) + alPI (jOJ) + a2 P2 (jOJ) +... (9.17a) 
where Po(jOJ) is the linear part of the system output frequency response, P;(jOJ) (i~l) 

represents the effects of higher order nonlinearities, and a; (i = 1,2,,,,) are functions of 
the nonlinear controller parameters which can be determined by following Chapter 3 
and Chapter 4. Moreover, for a nonlinear controller parameter c in (9.9), there exists a 
series of functions of frequency OJ {P;(jOJ), i=0,1,2,3, ... } such that 

(9.17b) 
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(9. 17b) explicitly shows the relationship between the system output spectrum and 
the nonlinear controller parameters, and therefore enables the OFRF to be determined 
by using a simple numerical method which will be discussed in Section 9.3.4. 
Obviously, this considerably facilitates the analysis and design of the nonlinear 
feedback controller in the frequency domain. In order to reveal the contribution of the 
nonlinear controller parameters of different degrees to the output spectrum more 
clearly and thus shed light on the issue of the structure determination for control law 
(9.8), some useful results regarding the parametric characteristic of the OFRF are 
discussed in the following section. 

9.3.1.2 Parametric characteristic analysis of the output spectrum 
The parametric characteristic analysis of the system output spectrum is to 

investigate the polynomial structure of OFRF (9. 17a), and to reveal how the 
frequency response functions in (9.13,9 .I6a-d) depend on the nonlinear controller 
parameters (i.e., Cpo(.) for p> 1) in (9.9). 

Following the results in Section 8.4.2 of Chapter 8, the parametric characteristics 
of the GFRF H ~ (jOJ) , ... , jOJn) from u(t) to yet) can be obtained as for n> 1 

CE(H~(jOJp.··,jOJn» = 4
2
(c p,Q ®CE(H~,p(jOJp ... ,jOJn»)) 

p' 

n [n+~l 
= EB(Cpo ®CE(H~_p+)(jOJp ... ,jOJ.»)=Cno EB EB (Cpo ®CE(H~_p+)O») 

p=2 ' p=2 

(9.18) 

For n=l, CE(H)) (jOJ)) = I. Here, [nI2] means to take the integer part of [.J. From the 
invariant property of the CE operator, it follows for the nonlinear controller 
parameters in (9.9) that 

CE(C"o (/), .. ·,1,,» = C"o(/),·· .,I,,+q)' CE(C"o(/),·· .,1,,» = C"o(/),··· ,1,,) 

Applying CE operator to Equation (9. 16a) for the nonlinear parameters in (9.9), 

CE(Hn (jOJ) , ... ,jOJn» = CEl ~(\o(l) )H~,) (jOJ p "" jOJn)+ t II.t~po(l) "'/p )H~p (jOJ), .. · ,jOJn) J 

= eEl t. (C, (I, ) - Coo (/,))H~, (jw,,"', iw.) + t, "t~ -dlC,. (I, .. ·1, )H ~ (jw" ... , Jw.) J (9.19) 

{

I n=1 

= 4 (cpo ®CE(H~p(jOJp ... ,jOJn») n> I 
p=2 

Therefore, with respect to the nonlinear parameters in (9.9), the parametric 
characteristics of the GFRFs Hn(jOJp .. "jOJn) from 17(t) to yet) is the same as those of 
the GFRFs H~(jOJp .. ·,jOJn) from u(t) to yet), i.e., 

CE(H;('»=CE(H~(-» forn>O (9.20) 
That is, the effect of the nonlinear parameters in (9.9) on the GFRFs Hn (jOJp··',jOJn) is 

the same as that on the GFRFs H~(jOJp .. ·,jOJn). Equations (9.18-9.20) reveal how the 
GFRFs depend on the nonlinear controller parameters in (9.9). Based on these results, 
the parametric characteristic of the OFRF can be obtained as 

CE(Y (jw)) = CE( t. ;. _" ,I~: (j w" , ... , jw., )F( w" ) ... F( w', ) J 

= CE( t.~, ,~~;(jw", .. ·,jw.,) J = CE( t.H;Uw" , ... ,jW,)) (9.21.) 

= CE(H)2(-» EB CE(H; 0) ffi ... ffi CE(H~ 0) = CE(H)) 0) ffi CE(H~ 0) ffi ... ffi CE(H~ (.» 
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Therefore, according to the results in Chapter 8, there exist a complex valued function 
vector F" (jw) with appropriate dimension such that 

Y(jw) = ($ CE(H~(jWI , ... ,jWn)P· 'in (jw) (9.21 b) 
n=1 

This is the detailed polynomial function of (9.l7a). Equation (9.21b) provides an 
analytical and straightforward expression for the relationship between system output 
spectrum and the controller parameters. Now the coefficients of the polynomial 
function (9.l7a) can be determined as 

[a l a2 a
3 

... a
K 
]=CE(Y(jw))=CE(HIIO)E9CE(H~O)E9···E9CE(H10) (9.21c) 

where K is the dimension of the vector CE(H1

10) E9 CE(H~(')) E9 ... E9 CE(H10). 

In order to better understand these parametric characteristics, the following 
results are given, which is a special case of Proposition 3.1. 

Proposition 9.2. The elements in CE(H~(j~, .. ·,jwn») include and only include all 
the parameter monomials (consisting of the nonlinear parameters in (9.9)) in 

k 

Cpo ®Cr,o ®Cr,o ® .. ·®cr,o for O:s;k :s;n-2, satisfying p+ ~>; =n+k, 2 :S;r; :S;n -I, and 
i=) 

2:S;p:S;n.D 

Proposition 9.2 shows whether and how a nonlinear parameter in (9.9) is 
included in CE(H~(jOJI, .. ·,jOJn»)' Different parameters may form one monomials acting 

as an element in CE( H~(jOJI, .. ·,jOJn»)' and thus have a coupled effect on H~(jOJi' .. ·,jOJn)' 

If a nonlinear parameter appears in CE( H~(jOJI, .. ·,jOJn»)' this implies that it has an effect 
on H~(jOJI, .. ·,jOJn) and thus on Y(jw). If this nonlinear parameter is an independent 

element in CE( H~(jOJI'''',jOJn»)' then it has an independent effect on Y(jw). Furthermore, 
if a parameter frequently appears in CE( H~(jOJi' .. ·,jOJn») with different monomial 
degrees, this may implies that this parameter has more strong effect on 
H~(j~,. .. ,jOJn) and thus Y(jw). For this reason, the parametric characteristic analysis of 
H~(jOJI, .. ·,jOJn) can shed light on the effect of different nonlinear parameters on 

H~(jOJi' .. ·,jOJn) and thus Y(jw). 

From Proposition 9.2 (also referring to Property 3.3 for the general case), the term 
(CIIOY should be included in the GFRF Hm(.), where m is computed as m+k=m+i-I =ni. 

Hence, m= ni - i+I=I+(n-l)i. It can be seen that, when n is smaller, C n•o will 

contribute independently to more GFRFs whose orders are (n-l)i+l for i=I,2,3, ... ; 
and if n is larger, C n.o can only affect the GFRFs of orders higher than n. It is known 

that for a Volterra system, the system nonlinear dynamics could be dominated by low 
order GFRFs (Boyd and Chua 1985). This implies that the nonlinear terms with 
coefficient Cn,o of smaller nonlinear degree, e.g., 2 and 3, may play greater roles than 
other pure output nonlinear terms. This property is significant for the selection of 
possible nonlinear terms in the feedback design. Moreover, it can be verified from 
Proposition 9.2 that, If the 2nd and 3rd degree nonlinear control parameters are all zero, 
i.e., C20=O and C30=O, then H2C.)=O, and H3(.)=O. However, even if CnO=O (for n>3), 
the nth order GFRF Hn(.) is not zero, providing there are nonzero terms in C20 or C30. 
This further demonstrates that the nonlinear controller parameters in C20 and C30 have 
a more important role in the determination of the GFRFs than other nonlinear 
parameters, and thus has a more important effect on the output spectrum. These imply 
that a lower degree nonlinear feedback may be sufficient for some control problems. 
These provide a guidance for the selection of the candidate terms in (9.9). 
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9.3.2 The structure of the nonlinear feedback controller 
The determination of the structure for the nonlinear feedback controller (9.8) is 

an important task to be tackled. Firstly, as discussed in Section 9.3.1.2, the structure 
parameter Min (9.8) should be chosen as small as possible since lower degree of 
nonlinear terms have greater contributions to the output spectrum. It can be increased 
gradually until the control objective is achieved. Secondly, after M is determined, 
whether a term in Cpo is effective or not should be checked. An effective controller 
must satisfy the inequality (9.7). Thus for the effectiveness of a specific nonlinear 
controller parameter c, this requirement can be written as 

8IY(Jwo)1 < 0 for some c (9.22) 
8c 

Consider the specific nonlinear controller parameter c in Cpo and let all the other 
nonlinear controller parameters be zero or assumed to be a constant. Then only the 
nonlinear coefficient ci appears in CE(H11+(P_I)i(')) according to Proposition 9.2. 
Therefore, only the G FRF s for the orders 1 +(p-l)i (for i= 1,2,3, ... ) need to be 
computed to obtain the system output spectrum in (9.13). According to (9.21), the 
output spectrum can be written as 

Y(Jw;c) = Po(Jw) + c~ (Jw) + C2~ (Jw) +... (9.23) 
It can easily be shown that if Re(Po(Jw)· ~ (- jw)) < 0 then there must exist 6' >0 such 

that 8IY(Jw)1 < 0 for 0 < c < 6' or -6' < c < 0, where ReO is to take the real part of (.). This 
8c 

can be used to find the nonlinear terms which are effective. Only the effective 
nonlinear terms in C(M) is considered. By this way, the structure of the nonlinear 
function (9.8) can be determined. It shall be noted that, in this process the output 
spectrum needs to be analytically computed up to at most the third order by using 
Equations (9.12-9.16). The structure of the control law (9.8) can also be determined 
by simply including all the possible nonlinear terms of degree up to M. Once the 
output spectrum is determined by the numerical method in Section 9.3.4, the values of 
the coefficients of these nonlinear terms can be optimized for the control objective 
(9.7) in the stability region developed in the following section. If the objective (9.7) 
can not be achieved after M is enough large, this may implies that the objective (9.7) 
can not be achieved by the controller (9.8) and a best possible solution can be used for 
this case. 

9.3.3 Stability of the Closed-loop System 
As mentioned above, the stability of a nonlinear system should be guaranteed such 

that the nonlinear system can be approximated by a locally convergent Volterra series. 
Therefore, a range for the nonlinear controller parameters which can ensure the 
stability of the closed loop system (9.10) can be determined. For simplicity, (9.10) can 
also be written in a state space form as 

X = AX - Btp(X) + E17:= f(X) + E17 

y = ex - Dtp(X) := heX) 

(9.24a) 

(9.24b) 

A, B, C, D, E are appropriate matrices which are the same as the matrices in (9.3-9.4). 
Note that the exogenous disturbance in (9.24) is a periodic bounded signal, and the 
objective in a vibration control is often to suppress the output vibration below a 
desired level, a concept of asymptotic stability to a ball is adopted in this section. This 
concept implies that the magnitude of the output for a system is asymptotically 
controlled to a satisfactory predefined level. Based on this concept, a general result is 
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then derived to ensure the stability of the closed loop nonlinear system (9.24), which 
can be regarded as an application of some existing theories in Isidori (1999). 

A Ball B p (X) is defined as: B p (X) = {xllixil ~ p, p > o} . A K -function y (s) is an 

increasing function of s, and a KL -function fJ (s,t) is an increasing function of s, but a 

decreasing function of t. For detailed definitions of K IKL-functions can refer to 
Isidori (1999). 

Asymptotic Stability to a Ball. Given an initial state Xo Em" and disturbance 
input 'l of a nonlinear system, if there exists a KL -function fJ such that the solution 

X(t,Xo,'l) (for t~O) of the system satisfies IIX(t,Xo,'l)II~fJ(IIXoll,t)+p, 'ift>o, then the 

system is said to be asymptotically stable to a ball B p (X) , where p is an upper bound 

function of 'l, i. e., there exist a K -function y such that p = y(II'lL) . 
Assumption 9.1. There exists a K -function 0 such that the output function 

heX) of the nonlinear system (9.24) satisfies Ilh(X)11 ~ o(IIXII) . 
Proposition 9.3. If assumption 9.1 holds, then the following statements are 

equivalent: 
(a) There exist a smooth function v: 91L ~ 91~o and Koo -functions fJ,,/32 and K­

functions a , y such that 

fJl (IIXII) ~ VeX) ~ fJ2 (IIXII) and a~~) {I(X) + E'l}~ -a(IIXII) + y(II'lIioo) (9.25) 

(b) System (9.24) is asymptotically stable to the ball B p (X) with 

p = fJl (2· fJ;1 ·a-I . y(II'liL», and the output of system (9.24) is asymptotically 

stable to the ball BO(2p) (y) .0 

Proof: See the proof in Section 9.5. 0 
Note that Proposition 9.3 can guarantee the asymptotical stability to a ball of 

system (9.24) when subject to bounded disturbance, and asymptotical stability to zero 
when the disturbance tends to zero. This is just the property of fading memory which 
is required for the existence of a convergent Volterra series approximation for the 
system input-output relationship (Boyd and Chua 1985). Although it is not easy to 
derive a general stability condition for the general controller (9.5), there are always 
various methods (Ogota 1996) to choose a proper Lyapunov function based on 
Proposition 9.3 to derive a stability condition for a specific controller. 

9.3.4 A numerical method for the nonlinear feedback controller design 
The nonlinear controller parameters can be determined by solving equation (9.17) 

to satisfy the performance (9.6) or (9.7) under the stability condition. However, it can 
be seen that the analytical derivation of the output spectrum of system (9.10) involves 
complicated symbolic computation for orders higher than 5. To circumvent this 
problem, as discussed in Section 9.3.1.1, the numerical method discussed in Section 
4.2.2 of Chapter 4 can be used since the detailed polynomial structure of the OFRF 
can be determined by using the method in Section 9.3.1, which is summarized as 
follows: 

(1) The system output frequency response function can be expressed as 
Y(jm)y(-jm)=IY(jm)1 2 =C.P(jm) according to (9.21) with a finite polynomial 

degree, where P(jm) is a complex valued function vector, 
C=[l CI C2 C3 ••• CK,] 

= (CE(HIIO) E9 CE(H~ (.» E9 ... E9 CE(H~ O»)® (CE(H l
i 0) E9 CE(H~O) E9 ... E9 CE(H~O») 
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(2) Collect the system time domain steady outputYi(t) under different values of the 
controller parameters C j=[l CJi,C2j, .•. c(KJ)d for i=1,2,3, .. . Ni; 

(3) Evaluate the FFT for Yi(t) to obtain 1';(jOJ), then obtain the magnitude 

11'; (jOJo) 12 at frequency OJo and finally form a vector 

YY = [11'; (jOJo) 12, .. ',1 YN (jOJo) 12 f 
I 

(4) Obtain the following equation, 

1, c2P C 22 ,.", c2,K! 

... , ... , "', "', ... 
[

1, c, P c l2 ,"', C',K! 

l,cN,p cN,2, .. ·,cN"KI P
K

! 1 YN, (jOJo) 12 

(5) Evaluate the function P(jOJo) by using Least Squares, 

P(jOJo)= (If// 'If/cT' 'If// ·YY 

(6) Finally, the nonlinear controller parameters C* for given y* at a specific 
frequency OJo can be determined according to 

Y' == c· . P(jOJo) 

The numerical method above is very effective for the implementation of the 
design of the proposed nonlinear controller parameters, which will be verified by a 
simulation study in Section 9.5. 

Although there are some time domain methods which can address the nonlinear 
control problems based on Lyapunov stability theory such as the back-stepping 
technique and feedback linearization (Isidori 1999) etc, few results are available for 
the design and analysis of a nonlinear feedback controller in the frequency domain to 
achieve a desired frequency domain performance. Based on the analytical relationship 
between system output spectrum and controller parameters defined by the OFRF, the 
analysis and design of a nonlinear feedback controller can be conducted in the 
frequency domain. For a summary, a general procedure for this new method is given 
as follows. 
(A) Derivation of the output spectrum for the closed loop system given M and L. 

Given M and L in (9.8), the general output spectrum with respect to the 
control law (9.8) for the closed loop system (9.10) can be obtained according to 
Equations (9.13, 9.16a-d). This will be used for the validation of the effectiveness 
of nonlinear terms in the next step. L is the maximum derivative order which is 
dependent of the system model, and M is the maximum nonlinearity order which 
can be given as 2 or 3 at this stage. 

(B) Determination of the structure of the nonlinear feedback function in (9.8). 
This is to determine the value of M and choose the effective nonlinear 

controller parameters Cpo(.) (p=2,3, ... ,M). Based on the analysis of the parametric 
characteristics in Section 9.3.1.2, the nonlinear controller parameters included in 
C20 and C30 take a dominant role in the determination of GFRFs and output 
spectrum. Hence, M can be chosen as 2 or 3 at the beginning, and increased later if 
needed. The effectiveness of each nonlinear parameter can be checked by 
9t(Po(jOJ)' P; (- jOJ» < 0, where P; (- jOJ) can be computed from Step(A) by letting the 

other nonlinear parameters to be zero and Pa(jOJ) is the linear part of the output 

spectrum in this case. If the parameter is not effective, it can be discarded. 
(C) Derivation of the region for the nonlinear feedback parameters in Cpo(.) for 

p=2,3, ... ,M. 
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This is to ensure the stability of the nonlinear closed loop system (9.10), which 
can be conducted by applying Proposition 9.3 to derive a stability condition for 
the closed loop system in terms of the nonlinear controller parameters. Although 
how to develop a systematic method for this purpose for a general nonlinear 
system is still an open problem, this can be easily done for some special or simple 
cases. 

(D) Determination of the OFRF by using the numerical method and the optimal values 
for the nonlinear parameters 

This is to derive a detailed polynomial expression for the output spectrum 
according to (9.21) for the maximum nonlinearity order M larger than 3, and use 
the numerical method provided above to determine the desired value for each 
nonlinear controller parameter within the stability region to achieve the control 
objective (9.6) or (9.7). 

9.4 Simulation study 
Consider a simple case of the model in (9.1) and (9.2), which can be written as 

{
Mi = -Kx - alx+ ('l + u) 

y=Kx+alx-u 

This is the model of a vibration isolation system studied in Daley (2006) (Figure 9.1), 
where yet) is the force transmitted from the disturbance 'let) to the ground, K and al 

are the spring and a damping characteristic parameters respectively. 
Following the procedure in Section 9.3, a nonlinear feedback active controller u(t) 

is designed and analysed for the suppression of the force transmitted to the ground. It 
will be shown that a simple nonlinear feedback can bring much better improvement 
for the system performance, compared with a linear feedback control. According to 
the general procedure above, the output spectrum under control law (9.8) for the 
closed loop system should first symbolically be determined. But for this simple 
example, it can be left to the next step. 

9.4.1 Determination of the structure of the nonlinear feedback controller 
Considering the nonlinear feedback in (9.8), for this simple system, M is directly 

chosen to be 3, and all the other nonlinear controller parameters are chosen to be zero 
except C3o(l1l)=a3 which represents a nonlinear damping and will be shown to be 
effective in the later analysis. If C3o(l11)=a3 is not effective, more other nonlinear 
terms can be chosen. 

The nonlinear feedback control law now is 
·3 

U = -a3x 

and the closed loop system is therefore 

{
Mi = -Kx - alx - a3x

3 + 'l (9.26a) 

y = Kx+ alx+ a3x
3 (9.26b) 

Note that system (9.26) is a very simple case of system (9.10), that is, L=2, C;o(2) = M , 

C;o(1) = ai' C;o(O) = K , C3o (111) = a3 , COl (0) = -1 and C\O(1) = ai' C\O(O) = K , C30 (111) = a3 ; 

All other parameters in model (9.10) are zero. Moreover, assume the disturbance 
input is 'let) = Fd sin(8.1t) (8.1 is the interested working frequency of the system), which 
is a single tone function and a simple case of equation (9.12). Now the task for the 
nonlinear feedback controller design is to determine a3 such that system (9.26) 
satisfies the control objective (9.7). 

To verify the effectiveness of this nonlinear control, the output spectrum should be 
computed up to the 3rd order as discussed in Step(B). Note that only C3o(l11)=a3 and 
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other nonlinear parameters Cpo for p>2 are all zero. According to Equations (9.18-
9.20), the following parametric characteristics of the GFRFs can be obtained 

[2+Yz] 
CE(H~ 0) = c 20 ffi L C pO ®CE(H~_p+) (.» = c 20 = 0, 

p=2 
[3+Yz] 

CE(H~ (0» = c 30 ffi L C pO ®CE(H~_p+) (.» = c 30 = a3 
p=2 

[4+Yz] 

CE(H! 0) = c 40 ffi L cpo ®CE(H!_p+) 0) = 0, 
p=2 

[S+Yz] 
CE(H~ 0) = c so ffi L C po ®CE(H~_p+) (.» = c 30 ®CE(H~ 0) = a;, ..... . 

p=2 

It is easy to check from Propositions 9.2 that 
CE(H~II+) 0) = a;' for n>O and all other CE(Hi 0) = 0 (9.27) 

This shows that only H ~1I+) 0 for n>O are nonzero and all others are zero. Therefore, 
the output spectrum can be computed from (9.13,9.16) with only odd order GFRFs as 

yU(j)\ = ~_l_ "H2 Urn ... l'rn )F(,,,) .. · F(r.l ) 
'} ~22n+l L... 2n+l ........ k.' ' ........ k1".1 ......... k. ""'1:2"0' 

n=J Wk, +"-+fL\2IHI =W 

(9.28a) 
where 

Po(j{j) =! H)2 (j(j)F«(j) = - j(a) (j(j)+ K)Fd , P; (jw) = -~ MF} w 5 IH)) (jwf [H)) (jw)j 
2 2M(j(j) 2 +2a)(j(j)) +2K 8 

~ (jw) = - ~; MFJljWH)) (jwf UwH)) (jw)j (jw)· (j3wH)) (j3w) - j3wH)) (- jw) + j6wH)) (jw)) 

(9.28b) 
Note that carrying out the computation above, the analytical relationship between the 
output spectrum and nonlinear parameter Q3 can be obtained explicitly for up to any 
high orders. It can be checked that Re( Po (j wo) . ?; ( - j Wo )) 0.5 

(Po(jwo)?;(-jwo)+Po(-jwo)?;(jwo))= -31.132<0 when Q3>0, WO =8.1 rad/s and other 
system parameters as given in the simulation studies. Hence, the nonlinear control 
parameter Q3 is effective. If there are other nonlinear controller parameters, the same 
method can be used to check the effectiveness as discussed in Step(B). Only the 
effective nonlinear terms are used in the controller. 

9.4.2 Derivation of the stability region for the parameter Q3 

According to Proposition 9.3, the following result can be obtained. 
Proposition 9.4. Consider the closed loop system (9.26), and assume the 

exogenous disturbance input satisfies 111](1)11 ~ Fd . The system is asymptotically stable to 

a ball B. ~(X), if Q3>0 and additionally there exist p=pT>O, f3 > 0 and e > 0 such 
FJ'I )."", (Q) & 

that 
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Moreover, the closed loop system (9.26) without a disturbance input is global 

asymptotically stable if the above inequality holds with E=O. Here, A = [ _ ~ _ ~~] , 
B=[O,YMf', C=[O,I], E=[O'YMf'. 

Proof. See the proof in Section 9.5. 0 
It is noted that the inequality in Proposition 9.4 has no relation with Q3 and is 

determined by the linear part of system (9.26) which can be checked by using the LMI 
technique by Boyd et al (1994). This implies that the value of Q3 has no effect on the 
stability of the system if the inequality is satisfied. Hence, the nonlinear controller 
parameter Q3 is now only restricted to the region [0, 00), provided that the linear 
system satisfies the inequality condition. 

9.4.3 Derivation of the OFRF and determination of the desired value of the 
nonlinear parameter Q3 

By using (9.27), the parametric characteristics of the output spectrum of nonlinear 
system (9.26) can be obtained as 

CE(Y(jcv» = CE(HIIO) $ CE(H~ (.» $ ... $ CE(H1 (.» = [I a3 a; an 

where Z= IN -~J. Therefore, the system output spectrum can be written as a 

polynomial expression as 
Y(jcv) = 'Po (jcv) + a3?; (jcv) + a; ~ (jcv) + ... + a{ Pz (jcv) 

Hence, 
Y(Jm)Y(- jm)= IY(Jmf 

= IPo(Jm)1 2 
+ a3 (Po (Jm)?; (- jm) + Po(- jm)?; (Jm») + ai(l?; (Jmf + Po(Jm)~ (- jm) + Po(-jm)~ (Jm» + ... 

(9.28c) 
Clearly, I Y(j cv)1 2 is also a polynomial function of Q3. Given the magnitude of a desired 

output frequency response Y at any frequency mo, Q3 can be solved from Equation 

(9.28c) provided that IY(jw)1 can be approximated by a polynomial expression of a 

finite order. In order to determine a desired value for Q3 to achieve the control 
objective (9.7), the numerical method proposed in Section 9.3.4 is used. Since 

Equation (9.28c) is a polynomial function of Q3, IY(jw)1
2 

can be directly approximated 

by a polynomial function of Q3 as follows: 

Y(jcv)Y(-jcv)=IY(jcv)1
2

"" a;zP2Z + ... a;p', +a;,-Ip',_1 + ... +a3~ +IPo(jcvf (9.29a) 

where IY(jcvf can be obtained via evaluating the FFT of the system output response 

from the system simulations or experimental data. Given 2Z different values of Q3, i.e" 
Q31, Q32, ... , Q3,2Z, (9,29a) can be further written as (for each values of Q3) 

1 1
2 2Z ~ - I ~ ~ 1- 12 Y(jcv); "" a3; P2Z + .. ·a;',p" +a;';- P',-I + .. ·+a3;~ + Po(jm) 

for i= 1,2, ... ,2Z, i. e., 

a31 a;1 a~1 
a32 a;2 a~2 

a2Z 
IY(jCV)11

2 
-I'Po(jcvf 31 

~ 
a2Z 

32 
P2 = IY(jCV)21

2 
-IPo(jcvf 

2Z 
a3,2Z 

P2Z IY(jCV)2l-I'Po(jcv)1
2 

Then ~,P2"'" P2Z are obtained as 
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a 31 ail ail 

a32 ai2 a;2 

2Z 
a3•2Z 

(9.29b) 

Consequently, equation (9.29a) is obtained. By using this method, a polynomial 

expression of IY(jwf in any order can be achieved. Given a desired output frequency 

response y* at a frequency cOO, Q3 can be solved from (9.29a) to implement the design. 
Note that roots of equation (9.29a) are multiple. According to Proposition 9.4, the 
solution Q3 should be a nonnegative real number. 

9.4.4 Simulation results 

In the simulation study, the parameters of system (9.26) are: K=16000 N/m, 
Ql=296 N.S/m, M=240 Kg. The resonant frequency of the system is Wo =8.1 rad/s. In 
order to show the effectiveness and advantage of the nonlinear feedback controller 
u = -a3x3 

, a linear controller u = -a2x will be used for a comparison. 
Firstly, let Fd=100 N. We need to obtain the polynomial function (9.29a). In order 

to have a larger working region of Q3, let Z=6 in (9.29a), and Q3= 500, 1000, 2000, 
4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000. Under these different 
values of Q3, the output frequency response of the system was obtained and the 
corresponding output spectrum was determined via FFT operations. Then P,,(jco) for 
n=1. .. 12 were obtained according to (9.29b), which are summarized partly in Table 
9.1. For comparisons, the corresponding theoretical results were also computed from 
equation (9.28abc) and are given partly in Table 9.1. From Table 9.1, it can be seen 
that there is a good match between the numerical analysis results and the theoretical 
computations although there are some errors. This result shows that the theoretical 
computation results are basically consistent with the results from the simulation 
analyses. It can also be seen from the numerical analysis results in Table 9.1 that 
equation (9.29a) is in fact an alternative series in this case. 

Figure 9.2 shows the results of the system output spectrum under different values 
of the nonlinear control parameter Q3 and provides a comparison between theoretical 
computations using polynomial expression (9.28c) up to the 3rd order and the 
numerical results using the polynomial expression (9.29a) up to the 12th order. This 
result demonstrates the analytical relationship between the nonlinear control 
parameter and the system output spectrum, and shows that the theoretical results have 
a good match with the numerical results when Q3 is small since only up to the 3rd order 
GFRF are used in the theoretical computations. Hence, with an increase of Q3, the 
numerical method has to be used in order to give correct results. Moreover, it should 
be noted that the magnitude of the system output spectrum decreases with the increase 
of Q3. This verifies that the nonlinear control parameter Q3 is effective for the control 
problem. 

Without a control input, the system output frequency spectrum is as shown in 
Figure 9.3(b), whereY(jco)I"," =335.71. Note that the output response spectrum shown in 

the figures is 21YI not IYI, which is also applied on the plot of the output spectrum 
using the theoretical computation. This is because 21YI represents the physical 
magnitude of the system output at the frequency coo' If the desired output frequency 
spectrum is set to be y* = 180, then the calculation according to (9 . 29ab) and 
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Proposition 9.4 yields a3= 11869. The output frequency spectrum under the nonlinear 
feedback control is shown in Figure 9.3 (a), where Y(jm)I",. = 180.08, and hence the 

result matches the desired result quite well. The system outputs in the time domain 
without and under the nonlinear feedback control are given in Figure 9.4. It can be 
seen that the system steady state performance is considerably improved when the 
nonlinear controller is used. 

In order to further demonstrate the advantage of the nonlinear feedback control, 
consider a linear controller u = -275x. Under this linear control, the system output 
frequency response as shown in Figure 9.5 is similar to that achieved under the 
nonlinear controller. However, when Fd is increased to 200 N, the output frequency 
response is quite different under the two controllers. The nonlinear feedback 
controller results in a much smaller magnitude of output frequency response at 
frequency (00' referring to Figure 9.6. Figure 9.7 shows the results of the system 
outputs in the time domain under the two different control inputs, indicating the 
nonlinear controller has a much better result than the linear controller. When the input 
frequency (00 is increased to be 15 rad/s, the same conclusions can be reached for the 
two controllers, referring to Figure 9.8. When the input frequency is decreased to be 5 
rad/s, the output spectrums under the two controllers are similar (see Figure 9.9). On 
the other hand, although increase of the liner damping can also achieve better output 
performance at the driving frequency, this will degrade the output performance at high 
frequencies as known in literature (Figure 9.10). However, the nonlinear damping has 
no obviously such a limitation (Figure 9.11). 

TABLE 9.1 
COMPARISON BETWEEN SIMULA nON AND THEORETICAL RESULTS 

Simulation results from (9.29ab) Theoretical results from (9.28abc) 

IPa(jm)1
2 

1.1270e+05 IPa(jm)1
2 

1. 1257e+05 

~ -58.9652 
Pa(jm)~ (- jm) 

-62.2641 -
+ Po (-jm)~ (jm) 

P2 0.0423 
I~(jmf +Pa(jm)~(-jm) 

0.0615 
+ Pa(-jm)~(jm) 

PJ -2.3762e-005 - -

P4 9.1382e-009 - -
~ -2.3593e-012 - -
... ... . .. . .. 
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Figure 9.1. A vibration isolation system 
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Figure 9.2 Analytical relationship between the system output spectrum and the control 
parameter a3 
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Figure 9.5 Output spectrum with the linear feedback control 
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Figure 9.6 Output spectrum (a) with the linear feedback control and (b) with the 
designed nonlinear feedback control, when Fd is increased to Fd=200 (a2=275, 

a3=11869) 
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Figure 9.7. The system outputs in time domain under different control inputs (Fd=200) 
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Figure 9.8 Output spectrum (a) with the linear feedback control and (b) with the 
designed nonlinear feedback control , when (vo = 15 rad/s, Fd=1 00, Q2=275, Q3=11869 
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Figure 9.9 Output spectrum (a) with the linear feedback control and (b) with the 
designed nonlinear feedback control when Wo = 5 rad/s, Fd=1 00, G2=275, G3=11869 
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Figure 9.10 Output spectrum with the linear feedback control when (a) G2=275 and (b) 
G2=2750 (wo = 15 rad/s, Fd=200 ) 
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Figure 9.11 Output spectrum with the nonlinear feedback control when (a) G3=11869 
and (b) G3=118690 (wo = 15 rad/s, Fd=200) (Here, G3 is just arbitrarily increased to see 

the control effect) 

The results demonstrate that a cubic nonlinear damping as introduced by a simple 
nonlinear feedback control can achieve better performance than a linear damping 
control for vibration suppression both in low and high frequencies. The frequency 
domain method proposed in this study provides an effective approach to the analysis 
and design of the nonlinear feedback control. Although only a simple case with only 
one nonlinear term is studied in this simulation, much more complicated cases with 
multiple nonlinear parameters can also be analysed and designed by following a 
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similar method. It should be noted that there may be some other methods in the 
literature which can be used to realize the same control purpose of this study, however, 
the advantage of this method is that it can directly relate the nonlinear controller 
parameters to system output frequency response and therefore the nonlinear controller 
or structural parameters can be analysed and designed in the frequency domain, which 
is a more understandable way in engineering practice. Furthermore, the designed 
controller, for instance the nonlinear damping designed in the example study above, 
may also be realized by a passive unite, and the analysis by using this method can be 
performed directly for a physical characteristics of a structural unite in a system. This 
will have great significance in practical applications. 

9.5 Proofs 

• Proof of Proposition 9.3: 

To prove Proposition 9.3, the following Lemmas are needed. 

Lemma 9.3. Consider two positive, scalar and continuous process in time t, x(t) 
and yet) satisfying y(t) ::; a (x(t» (for t ~ 0), where a is a K-function. If x(t) is 

asymptotically stable to a ball B p (x) , then y(t) is asymptotically stable to a ball 

Ba (2P) (y) . 

Proof. There exists a KL -function [J, such that function x(t) (for I ~ 0) satisfies 

x(t) ::; [J(x(O), I) + p VI> 0 Therefore, 

y(t) 
::; a(x(t» = a([J(x(O), t) + p) ::; a(max(2[J(x(O), t),2p» = max(a(2[J(x(O), t», a(2p»::; a(2[J(x(O), t» + a(2p) 

Note that a(2[J(x(O), t» is still a KL -function of x(O) and t, thus the lemma is concluded. 

o 
From Lemma 9.3, if there exists a K-function 0 such that the output function 

heX) of a nonlinear system satisfies Ilh(X)II::; o(IIXII) , then the system output is 

asymptotically stable to a ball if the system is asymptotically stable to a ball. 

Lemma 9.4. Consider a scalar differential inequality yet) ::; -a(y(t» + r , where a is 

a K -function and r is a constant and yet) satisfies Lipschitz condition. Then there 

exists KL -function [J such that 

y(t)::; [J(ly(to)-a-l(r)l,t)+a-1 (r). 

Proof. Consider the differential equation yet) = -a(y(t». From Lemma 1 0.1.2 in 

Isidori (1999) it is known that, there is aKL -function [J such that y(/) = [J(y(to),t) . 

Similarly, considering the differential equation yet) = -a(y(t» + r then 

yet) = sign(y(to) - a-I (r»' [J(ly(to )-a -I (r)l, t) + a -I (r). Thus from the comparison principle 

and the differential inequality y(t)::; -a(y(t» + r , the lemma follows. 0 

Then to prove Proposition 9.3, it follows from (9.25) that 

V(X(/»::; -a(IIXII) + r(II'lIL) 

146 

(AI) 



Chapter 9 An application to output vibration suppression 

Noting V(X) ~ fJ2 (II Xii) , we have Ilxll ~ fJt (V(X» . Substituting this inequality into (AI), 

we have 
V(X(t» ~ -a(fJ2-1 (V(X») + y(II'7IL) 

From lemma 9.4, it follows that, there exist a KL -function fJ, such that 

V(X(t» ~ fJ(Vo,t) + fJ;1 . a-I. y(II'7IL) (A2) 

where, Vo = IV(X(to» - fJ;1 . a-I. y(II'7II,,)I. From (A2), V(X(t)) is asymptotically stable to 

the ball B fJ,'.a-'.y(M.) (V) . Noting fJl (IIXII) ~ V(X), we have Ilxll ~ fJl (V(X». From lemma 9.3, 

X(t) is asymptotically stable to the ball Bp(X). Furthermore, since assumption 9.1 

holds, from lemma 9.3, y(t) is asymptotically stable to the ball B
O

(2P) (y). This 

completes the proof of sufficiency. The proof of the necessity of the proposition can 
follow a similar method as demonstrated in the appendix of Hu et al (2005). The 
proof completes. 0 

• Proof of Proposition 9.4: 

The state-space equation of system (9.26a) can be written as X = AX - Bq) + E'7, where, 

x=[x,xf, q)=a3a 3 ,a=CX. Choose a Lyapunov candidate as: 

V = XTpX + .!ta 4 
2 

where, a> O. Equation (A3) further follows 

(A3) 

V = XTpX + XTpX + 2aa 3CX = XT (ATp + PA)X - 2X TpBq) + 2XTpE'7 + l!!.¢C(AX - Bq) + E'7) 
a J 

= XT (ATp + PA)X - 2XTpBq) +l!!.¢£AX -l!!.¢£Bq) + 2X TpE'7 +l!!.¢CE'7 
OJ"] a3 

(A4) 

. T A P+PA fJA C -PB Z Z7"T zr A P+PA fJA C -PB Z -IZTTTTZ T 
[

T TT] [T TT] V = Z + '7 ~ + £ + £'7 '7 
* -2fJCB * -2fJCB 

Z r[[ATP+PA fJATCT -PB] -ITTT)Z 2 ZTQZ 2 = + £ + £'7 = - + £'7 
* - 2fJCB 

Note that, in the inequality above, the following inequality is used 
2Z TT'7 ~ £-IZ TTTTZ + £'7 T'7 , for any 8> 0 . 

If Q=QT>O, then ZTQZ~Amin(Q)IIXI12 is a K-function of "XII. Hence, according to 

Proposition 9.3, the system is asymptotically stable to a ball 

Bp(X) with p = ~Amin (Qrl £sup(II'7112) = Fd~Amin (Qrl £ . Additionally, when there is no 

exogenous disturbance input, and if Q=QT>O holds with E=O, then it is obvious that 
the system without a disturbance input is globally asymptotically stable. This 
completes the proof. 0 

9.6 Conclusions 

A frequency domain approach to the analysis and design of nonlinear feedback 
controller for suppressing periodic disturbances is studied and some preliminary 
results in this subject are provided. Although there already are some time domain 
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methods, which can address the nonlinear control problems based on Lyapunov 
stability theory, few results are available for the design and analysis of a nonlinear 
feedback controller in the frequency domain to achieve a desired frequency domain 
performance. Based on the analytical relationship between system output spectrum 
and controller parameters defined by the OFRF, this study provides a systematic 
frequency domain approach to exploiting the potential advantage of nonlinearities to 
achieve a desired output frequency domain performance for the analysis and design of 
vibration systems. Compared with other existing methods for the same purposes, the 
method in this chapter can directly relate the nonlinear parameters of interest to the 
system output frequency response and the designed controller may also be realized by 
a passive unite in practice. Although the results in this paper are developed for the 
problem of periodic disturbance suppression for SISO linear plants, the idea can be 
extended to a more general case (i.e., nonlinear controlled plants) and to address more 
complicated control problems. 
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Chapter 10 
SUMMARY AND OVERVIEWS 

Frequency domain methods can usually provides very intuitive insights into the 
underlying mechanism of a studied system in a coordinate-free and equivalent manner, 
compared with the corresponding time domain methods. Thus they are widely applied 
in engineering practice and extensively studied in literature. Due to the complicated 
output frequency characteristics and dynamic behaviour of nonlinear systems, a 
systematic frequency domain theory for the analysis and design of nonlinear systems 
has been a focused topic in the past several decades. As discussed in Chapter 1, 
different subjects have been studied in this field and many remarkable results have 
been achieved both in theory and practice. 

In this study, new advances in the characterization and understanding of nonlinear 
systems in the frequency domain have been achieved based on the Volterra series 
theories of nonlinear systems. A systematic frequency domain approach for the 
analysis and design of nonlinear Volterra systems is developed via a novel technique 
known as parametric characteristic analysis, which is developed for the extraction of 
parametric characteristics of any parameterized polynomial systems satisfying 
separable property. 

The contributions of this study are: 

(a) A parametric characteristic analysis method is proposed for parameterized 
polynomial systems with separable property, which is to reveal what model 
parameters affect system frequency response functions and how they do. Based 
on this technique, it is shown for the first time that, the analytical relationship 
between high order frequency response functions of Volterra systems and 
system time-domain model parameters, and also provides a novel method for the 
understanding of the higher order GFRFs of Volterra systems. Refer to Chapters 
2-3 and Chapter 8. 

(b) By using the parametric characteristic analysis, the system output spectrum up to 
any orders can be explicitly expressed as a polynomial function of model 
parameters of interest which relates the system output frequency response to 
any model nonlinear parameters such that system output frequency response can 
be analyzed via these model parameters. This provides a significant basis for the 
analysis and design of nonlinear Volterra systems in the frequency domain. 
Refer to Chapter 4 and Chapters 8-9. 

(c) A novel mapping function from the parametric characteristics of the nth-order 
GFRF to itself is established. This result enables the nth-order GFRF and output 
spectrum to be directly written as a polynomial forms in terms of the first order 
GFRF and model nonlinear parameters, which is shown to be a new approach to 
the understanding of higher order GFRFs. Refer to Chapter 5. 

(d) It is theoretically shown for the first time that system output spectrum can be 
expressed as an alternating series with respect to some model nonlinear 
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parameters under certain conditions. The result reveals a significant nonlinear 
effect on the system behaviours. Refer to Chapter 6. 

(e) The nonlinear effects on system output spectrum from different nonlinearities are 
also studied. This provides some novel insights into the nonlinear effect on 
system output spectrum in the frequency domain, such as the counteraction 
between different nonlinearities at some specific frequencies, periodicity 
property of output frequencies and so on. These results can facilitate the 
structure selection and parameter determination for system modelling, 
identification, filtering and controller design. Refer to Chapter 7. 

(t) A new method for the vibration control problem is proposed. It is a systematic 
frequency domain approach to exploiting the potential advantage of 
nonlinearities to achieve a desired output frequency domain performance for the 
analysis and design of vibration systems. Refer to Chapter 9. 

The significance of these results is that a systematic frequency domain theory for 
the analysis and design of a class of nonlinear systems is established. In this novel 
method, (1) it can directly relate the nonlinear model parameters of interest to system 
frequency response functions, and therefore the nonlinear controller parameters or 
structural parameters can be analysed and designed in the frequency domain, which is 
a more understandable way in engineering practice; (2) it can be used not only to 
design a nonlinear feedback controller for a system by exploiting the potential 
advantages of nonlinearities for a practical system, but also to analyse and design 
structural nonlinear characteristics which can be realized in a passive/active manner to 
achieve a desired passive structural physical characteristics; (3) it provides a novel 
approach to understanding the nature of a considerably large class of nonlinearities in 
the frequency domain. 

Although interesting and significant results have been achieved, there are still 
many tasks yet to be done for the full development of a systematic frequency domain 
method. For example, understanding and characterization of nonlinearities in the 
frequency domain based on the results developed in this dissertation, optimization and 
design of nonlinear systems based on the system OFRF, automatic and systematic 
controller designs for a wider class of nonlinear systems by exploiting nonlinearities, 
extensions of the results for SISO systems to MIMO systems, development of 
practical techniques for the applications of these theoretical results, and so on. All 
these issues are left to the future studies in the direction that is established by the 
results in this dissertation. 

150 



Appendix Publication list 

Appendix 
Publication List during Studying for PhD Degree 

• Refereed Journal Articles 
[1] Jing X.J., Lang Z.Q. and Billings S.A., Frequency Domain Analysis for 

Suppression of Output Vibration from Periodic Disturbance using Nonlinearities. 
Journal of Sound and Vibration, 314, 536 - 557, 2008 

[2] Jing X. 1., Lang Z. Q., Billings S. A. and Tomlinson G. R., The parametric 
characteristic of frequency response functions for nonlinear systems. International 
Journal of Control, Vol. 79, No. 12, 1552-1564, December 2006 

[3] Jing X. J., Lang Z.Q., and Billings S.A., New Bound Characteristics of NARX 
Model in the Frequency Domain. International Journal of Control, Vol 80, Nol, 
140-149,2007 

[4] Jing X. 1., Lang Z.Q., and Billings S.A., Correction on some typos in 'New 
Bound Characteristics of NARX Model in the Frequency Domain'. International 
Journal of Control, Vol 80, N03, pp. 492-494, 2007 

[5] Jing X. J., Lang Z.Q. and Billings S.A., "Magnitude Bound Characteristics of the 
GFRFs for NARX Model". Automatica, 44, 838-845, 2008 

[6] Jing X. J., Lang Z.Q. and Billings S.A., Frequency domain analysis for nonlinear 
Volterra systems with a general nonlinear output function. International Journal of 
Control, 81 :2, 235 - 251, 2008 

[7] Xing Jian Jing, Zi Qiang Lang, Stephen A. Billings, Mapping from parametric 
characteristics to generalized frequency response functions of nonlinear systems. 
International Journal of Control, Vol. 81, No.7, 1071 - 1088, July 2008 

[8] Xing-Jian Jing, Zi-Qiang Lang, Stephen A. Billings. Output Frequency Response 
Function based Analysis for Nonlinear Volterra Systems. Mechanical Systems and 
Signal Processing, 22, 102-120, 2008 

• Refereed Conference Proceedings 
[9] Xing Jian Jing and Zi Qiang Lang. Properties of output frequencies of Volterra 

systems. to appear in International Conference on Control (UKACC), Manchester, 
U.K., Sep 2-4, 2008 

[10]Xing Jian Jing, Zi Qiang Lang, Stephen A. Billings. New Results on the 
Generalized Frequency Response functions of Nonlinear Volterra Systems 
Described by NARX model, to appear in IFAC World Congress, Seoul, Korea, 
July 6-11, 2008 

[11] Xing Jian Jing and Zi Qiang Lang. Magnitude Bounds of Generalized Frequency 
Response Functions of Nonlinear Volterra Systems. Proceedings of the European 
Control Conference, Kos, Greece, 3068-3073, July 2-5, 2007 

[12]Jing X.J., Lang Z.Q. and Billings S.A., Frequency domain analysis based 
nonlinear feedback control for suppressing periodic disturbance, The 6th World 
Congress on Intelligent Control and Automation, June 21-23, Dalian, China, 2006 

[13]Xing-Jian Jing, Zi-Qiang Lang, Stephen A. Billings. Output Frequency Response 
Function for NARX model of Nonlinear Volterra Systems. Proceedings of the 
12th Chinese Automation & Computing Society Conference in the UK, 
Loughborough, England, 16 September 2006 

151 



PhD dissertation: Frequency Domain Theory of Nonlinear Volterra Systems 

• Research Reports in University 
[1] Jing X. 1., Lang Z. Q., Billings S. A., and Tomlinson G. R., The Parametric 

Characteristics of Frequency Response Functions for Nonlinear Systems. 
Department of Automatic Control and Systems Engineering, University of 
Sheffield, Research Report 932, Aug 2006 

[2] Jing X. J., Lang Z. Q., Billings S. A., and Tomlinson G. R., A New Approach to 
Nonlinear Feedback Control for Suppressing Periodic Disturbances, Part 1. 
Fundamental Theory. Department of Automatic Control and Systems Engineering, 
University of Sheffield, Research Report 933, Aug 2006 

[3] Jing X. J., Lang Z. Q., Billings S. A., and Tomlinson G. R., A New Approach to 
Nonlinear Feedback Control for Suppressing Periodic Disturbances, Part 2. A 
Case Study. Department of Automatic Control and Systems Engineering, 
University of Sheffield, Research Report 934, Aug 2006 

[4] Jing X. 1., Lang Z. Q., and Billings S. A., New Bound Characteristics of NARX 
Model in the Frequency Domain. Department of Automatic Control and Systems 
Engineering, University of Sheffield, Research Report 937, Aug 2006 

[5] Jing X. J., Lang Z. Q., and Billings S. A., Parametric Characteristic Analysis for 
the Output Frequency Response Function of Nonlinear Volterra Systems. 
Department of Automatic Control and Systems Engineering, University of 
Sheffield, Research Report 942, Aug 2006 

[6] Jing X. J., Lang Z. Q., and Billings S. A., New Results on the Generalized 
Frequency Response functions of Nonlinear Volterra Systems Described by 
NARX model. Department of Automatic Control and Systems Engineering, 
University of Sheffield, Research Report 970, Feb 2008 

[7] Jing X. 1., Lang Z. Q., and Billings S. A., Frequency Domain Analysis of a 
Dimensionless Cubic Nonlinear Damping System Subject to Harmonic Input. 
Department of Automatic Control and Systems Engineering, University of 
Sheffield, Research Report 971, Feb 2008 

[8] Jing X. J., Lang Z. Q., and Billings S. A., The Properties of Output Frequencies of 
Nonlinear Volterra Systems. Department of Automatic Control and Systems 
Engineering, University of Sheffield, Research Report 972, Feb 2008 

[9] Jing X. J., Lang Z. Q., and Billings S. A., Mapping from Parametric 
Characteristics to Generalized Frequency Response Functions of Nonlinear 
Systems. Department of Automatic Control and Systems Engineering, University 
of Sheffield, Research Report 975, Feb 2008 

[lO]Jing X. J., Lang Z. Q., and Billings S. A., Nonlinear Influence in the Frequency 
Domain: Alternating Series. Department of Automatic Control and Systems 
Engineering, University of Sheffield, Research Report 976, Feb 2008 

• There are still several papers being reviewed for journals 

152 



_ 1 

References 

REFERENCES 

Alleyne A. and Hedrick J .K., Nonlinear adaptive control of active suspensions, IEEE 
Transactions on Control Systems Technology, Vol 3, No 1, pp 94-101, 1995 

Atherton D. P., Nonlinear Control Engineering, Van Nostrand Reinhold Co., London 
& New York; full edition 1975, student edition 1982 

Bedrosian, E., Rice, S. O. The output properties of Volterra systems (nonlinear 
systems with memory) driven by harmonic and Gaussian inputs. Proc. IEEE 59, 
1688 1971 

Bendat J.S., Nonlinear System Analysis and Identification from Random Data, New 
York: Wiley, 1990 

Billings S.A. and Lang Z.Q., A bound of the magnitude characteristics of nonlinear 
output frequency response functions, International Journal of Control, Part 1 Vol 
65, No.2, 309-328 and Part 2, Vol 65, No.3, 365-384, 1996 

Billings, S. A., Korenberg, M., and Chen, S., Identification of nonlinear output-affine 
systems using an orthogonal least-squares algorithm. Int. Journal of Systems 
Science, 19, 1559 - 1568, 1988 

Billings, SA and Lang ZQ. Nonlinear systems in the frequency domain: Energy 
transfer filters. International Journal of Control 75(14): 1066-1081,2002 

Billings S.A. and Peyton-Jones J.e., Mapping nonlinear integro-differential equation 
into the frequency domain, International Journal of Control, Vol 54, 863-879, 
1990 

Boutabba N., Hassine L., Loussaief N., Kouki F., Bouchriha H., Volterra series 
analysis of the photocurrent in an AlI6T/ITO photovoltaic device, Organic 
Electronics 4, pp 1-8, 2003 

Boyd, S. and Chua L., Fading memory and the problem of approximating nonlinear 
operators with Volterra series. IEEE Trans. On Circuits and Systems, Vol. CAS-
32, No 11, pp 1150-1160, 1985 

Boyd S., Ghaoui L. E, Feron E, and Balakrishnan V., Linear Matrix Inequalities in 
System and Control Theory. Philadelphia: the Society for Industrial and Applied 
Mathematics. 1994 

Brilliant M.B., Theory of the analysis of non-linear systems, Technical Report 345, 
MIT, Research Laboratory of Electronics, Cambridge, Mass, Mar. 3, 1958 

Bromwich T. J., An Introduction to the Theory of Infinite Series, American 
Mathematical Society, AMS Chelsea Publishing, 1991 

Bussgang J. J., Ehrman L., and Graham J. W., Analysis of nonlinear systems with 
multiple inputs, Proc. IEEE, vol. 62, no. 8, pp. 1088-1119, Aug. 1974 

Chantranuwathanal S. and Peng H., Adaptive Robust Control for Active Suspensions, 
Proceedings of the American Control Conference, San Diego, California. June, 
pp 1702-1706, 1999 

Chen S. and Billings S. A. Representation of non-linear systems: the NARMAX 
model. International Journal of Control 49, 1012-1032. 1989 

Daley S., Hatonen J., Owens D.H., Active vibration isolation in a 'smart spring' 
mount using a repetitive control approach, Control Engineering Practice, 14, 
991-997,2006 

Doyle III, F. J., Pearson, R. K., & Ogunnaike, B. A .. Identification and control using 
Volterra models. Berlin: Springer, 2002 

153 



PhD dissertation: Frequency Domain Theory of Nonlinear Volterra Systems 

Elizalde H., Imregun M. An explicit frequency response function formulation for 
multi-degree-of-freedom non-linear systems. Mechanical Systems and Signal 
Processing, Vol 20, pp 1867 - 1882, 2006 

Engelberg, S. Limitations of the Describing Function for Limit Cycle Prediction, 
IEEE trans. Automatic Control, 47(11), pp 1887-1890,2002 

Fard RD., Karrari M., and Malik O. P., Synchronous Generator Model Identification 
for Control Application Using Volterra Series, IEEE Trans. Energy Conversion, 
Vol 20, No 4, pp 852- 858, 2005 

Frank W. A., Sampling requirements for Volterra system identification, IEEE Signal 
Processing Letter, vol. 3, no. 9, pp. 266 - 268, Sep. 1996 

French S., Practical Nonlinear System Analysis by Wiener Kernel Estimation in the 
Frequency Domain, BioI. Cybernetics 24, 111-119, 1976 

Friston K. J., Mechelli A., Turner R, and Price C. J., Nonlinear Responses in fMRI: 
The Balloon Model, Volterra Kernels, and Other Hemodynamics, NeuroImage 
12,466-477,2000 

Gelb A. and Vander Velde W. E., Multiple-Input Describing Functions and Nonlinear 
System Design, McGraw-Hill Book Co., New York, NY, 1968 

George D.A., Continuous nonlinear systems, Technical Report 355, MIT Research 
Laboratory of Electronics, Cambridge, Mass. Jul. 24, 1959 

Glass J. W. and Franchek M. A., Frequency Based Nonlinear Controller Design of 
Regulating Systems Subjected to Time Domain Constraints, Proceedings of the 
American Control Conference San Diego, California, pp 2082-2086, June 1999 

Graham D. and McRuer D. Analysis of nonlinear control systems. New York: John 
Wiley & Sons. Inc. 1961 

Housner G.W., Bergman L.A., Cuaghey T.K., Chassiakos A.G., Claus R.O., Masri 
S.F. et aI., Structural Control: Past, Present, and Future, ASCE Journal of 
Engineering Mechanics, Vol. 123, Issue 9, pp. 897-971, 1997 

Hrovat D .. Survey of advanced suspension developments and related optimal control 
applications. Automatica, Vo1.33, No. 10, 1781-1817, 1997 

Hu T., Teel A. R, and Lin Z .. Lyapunov characterization of forced oscillations, 
Automatica 41, 1723 - 1735,2005 

Isidori A. Nonlinear control systems II. London: Springer, 1-3, 1999 
Jing x.J., Lang Z.Q. and Billings S.A., Frequency Domain Analysis Based Nonlinear 

Feedback Control for Suppressing Periodic Disturbance. The 6th World 
Congress on Intelligent Control and Automation, June 21-23, China, 2006a 

Jing X.J., Lang Z.Q., Billings S. A. and Tomlinson G. R, The parametric 
characteristic of frequency response functions for nonlinear systems. 
International Journal of Control, 79(12), pp 1552 - 1564, December, 2006 

Jing X.J., Lang Z.Q., and Billings S. A., New Bound Characteristics ofNARX Model 
in the Frequency Domain, International Journal of Control, 80(1), ppI40-149, 
2007 

Karnopp D., Active and semi-active vibration isolation, ASME Journal of Mechanical 
Design, Vol. 117, 177-185, 1995 

Kim K.I. and Powers E.J., A digital method of modelling quadratically nonlinear 
systems with a general random input, IEEE Transactions on Acoustic, Speech 
and Signal Processing, 36, pp. 1758 - 1769, 1988 

Kotsios, S., Finite input/output representative of a class of Volterra polynomial 
systems. Automatica, 33, 257-262, 1997 

Lee R. C.H., Smith M. C. Nonlinear control for robust rejection of periodic 
disturbances, Systems & Control Letters 39, 97-107, 2000 

154 



References 

Lang Z.Q., and Billings S. A. Output frequency characteristics of nonlinear systems. 
International Journal of Control, Vol. 64, 1049-1067, 1996 

Lang Z. Q. and Billings S. A., Output frequencies of nonlinear systems, International 
Journal of Control, Vol 57, No 5, 713-730, 1997 

Lang Z. Q. and Billings S. A., Evaluation of Output Frequency Responses of 
Nonlinear Systems Under Multiple Inputs, IEEE Trans. Circuits and Systems­
II: Analog and Digital Signal Processing, VOL. 47, NO.1, pp 28-38, 2000 

Lang Z.Q., and Billings S.A., Energy transfer properties of nonlinear systems in the 
frequency domain, International Journal of Control, Vol 78, 345-362, 2005 

Lang Z.Q. Billings S.A., G R Tomlinson, and R Yue, Analytical description of the 
effects of system nonlinearities on output frequency responses: A case study. 
Journal of Sound and Vibration, Vol 295, 584-601, 2006 

Lang Z.Q., Billings S.A., Yue R. and Li J, Output frequency response functions of 
nonlinear Volterra systems, Automatica, 43, 805-816, 2007 

Leonov G.A., Ponomarenko D.V. and Smirnova V.B., Frequency-domain methods for 
nonlinear analysis, theory and applications. World Scientific Publishing Co. Pte. 
Ltd., Singapore, 1996 

Ljung, L .. System Identification: Theory for the User (second edition). Prentice Hall, 
Upper Saddle River. 1999 

Logemann H. and Townley S., Low gain control of uncertain regular linear systems, 
SIAM J. Control and Optimization, 35, 78-116, 1997 

Nam S.W. and Powers E.J., Application of higher-order spectral analysis to cubically 
nonlinear-system identification, IEEE Transactions on Signal Processing, 42(7), 
pp. 1746 - 1765, Jul. 1994 

Nuij P.W.J.M., Bosgra O.H., Steinbuch M. Higher-order sinusoidal input describing 
functions for the analysis of non-linear systems with harmonic responses. 
Mechanical Systems and Signal Processing, 20, pp 1883 - 1904, 2006 

Ogota K., Modern control engineering (3rd ed.) Prentice-Hall, Inc. Upper Saddle 
River, NJ, USA, 1996 

Orlowski P., Frequency domain analysis of uncertain time-varying discrete-time 
systems, Circuits Systems Signal Processing, Vol. 26, No.3, 2007, PP. 293-310, 
2007 

Pavlov A., Van De Wouw N., and Nijmeijer H., Frequency Response Functions for 
Nonlinear Convergent Systems, IEEE Trans. Automatic Control, Vol 52, No 6, 
1159-1165,2007 

Peyton Jones J.C. and Billings S.A. Recursive algorithm for computing the frequency 
response of a class of nonlinear difference equation models. International 
Journal of Control, Vol. 50, No.5, 1925-1940. 1989 

Peyton Jones J. C. and Billings S. A., Interpretation of non-linear frequency response 
functions, Int. 1. Control 52 , 319-346 ,1990 

Peyton Jones J.C. Automatic computation of polyharmonic balance equations for 
non-linear differential systems, Int. J. Control, 76(4), pp 355 - 365, 2003 

Peyton-Jones J.C. Simplified computation of the Volterra frequency response 
functions of nonlinear systems. Mechanical systems and signal processing, Vol 
21, Issue 3, pp 1452-1468, April 2007 

Pintelon R. and Schoukens J., System Identification: A Frequency Domain Approach, 
IEEE Press, Piscataway, NJ, 2001 

Raz G. M. and Van Veen B. D., Baseband Volterra filters for implementing carrier 
based nonlinearities, IEEE Trans. Signal Processing, vol.46, no. 1, pp. 103 - 114, 
Jan. 1998 

155 



PhD dissertation: Frequency Domain Theory of Nonlinear Volterra Systems 

Rugh W.J., Nonlinear System Theory: the Volterra/Wiener Approach, Baltimore, 
Maryland, U.S.A.: Johns Hopkins University Press, 1981 

Sandberg I. W., Volterra expansions for time-varying nonlinear systems, Bell Syst. 
Tech. J., Vol. 61, No.2, pp. 201-225, Feb. 1982 

Sandberg I. W., On Volterra expansions for time-varying nonlinear systems, IEEE 
Trans. Circuits Syst., Vol. CAS-30, Feb. 1983 

Sanders S.R., On limit cycles and the describing function method in periodically 
switched circuits, IEEE Transactions on Circuits and Systems - I: fundamental 
theory and applications 40 (9), pp 564 - 572, 1993 

Schetzen M., The Volterra and wiener theories of nonlinear systems, John Wiley and 
sons, 1980 

Schoukens J., Nemeth J., Crama P., Rolain Y., Pintelon R., Fast approximate 
identification of nonlinear systems. 13th IF AC Symposium on System 
Identification, Rotterdam, The Netherlands, 27-29, pp. 61-66, August, 2003 

Shah M. A., Franchek M. A. Frequency-based controller design for a class of 
nonlinear systems, International Journal of Robust and Nonlinear Control, Vol 9, 
Issue 12 , Pages 825 - 840, 1999 

Solomou, M. Evans, C. Rees, D. Chiras, N. Frequency domain analysis of 
nonlinear systems driven by multi harmonic signals, Proceedings of the 19th 
IEEE conference on Instrumentation and Measurement Technology, 1, pp 799-
804,2002 

Swain A.K. and Billings S.A .. Generalized frequency response function matrix for 
MIMO nonlinear systems. International Journal of Control. Vol. 74. No.8, 829-
844,2001 

Taylor J. H., Describing Functions, an article in the Electrical Engineering 
Encyclopedia, John Wiley & Sons, Inc., New York, 1999 

Taylor J. H. and Strobel K. L., Nonlinear Compensator Synthesis via Sinusoidal-Input 
Describing Functions, Proc. American Control Conference, Boston MA, pp. 
1242-1247, June 1985 

Van De Wouw N., Nijmeijer H., and Van Campen D. H., A Volterra Series Approach 
to the Approximation of Stochastic Nonlinear Dynamics, Nonlinear Dynamics 
27,397-409,2002. 

Van Moer W., Rolain Y., and Geens A., Measurement-Based Nonlinear Modeling of 
Spectral Regrowth, IEEE Transactions on Instrumentation and Measurement, 
VOL. 50, NO.6, pp. 1711-1716, Dec. 2001 

Volterra, V., Theory of Functionals and of Integral and Integro-Differential Equations, 
Dover, New York, 1959 

Wei H.-L., Lang Z.-Q., and Billings S. A., An Algorithm for Determining the Output 
Frequency Range of Volterra Models With Multiple Inputs, IEEE Trans. 
Circuits and Systems-II: Express Brief, VOL. 54, NO.6, pp 532-536, JUNE 
2007 

Wu X. F., Lang Z. Q., and Billings S. A., Analysis of the output frequencies of 
nonlinear systems. IEEE Trans on Signal Processing, Vol.55, NO.7, pp.3239-
3246,2007 

Yang J. and Tan S. X.-D., Nonlinear transient and distortion analysis via frequency 
domain Volterra series, Circuits, Systems and Signal Processing, VOL. 25, NO. 
3, PP. 295 - 314, 2006 

Yue R., Billings S. A. and Lang Z.-Q., An investigation into the characteristics of 
non-linear frequency response functions. Part 1: Understanding the higher 
dimensional frequency spaces. International Journal of Control, Vol. 78, No. 13, 

156 



References 

1031 - 1044, 2005; and Part 2 New analysis methods based on symbolic 
expansions and graphical techniques, International Journal of Control, Vol 78, 
1130-1149,2005 

Zhang H. and Billings S.A, Oain bounds of higher order nonlinear transfer functions, 
International Journal of Control, Vol 64, No 4, 767-773, 1996 

Zhang H., Billings S.A, and Zhu Q.M., "Frequency response functions for nonlinear 
rational models". International Journal of Control, 61, 1073-1097, 1995 

Zhou L. and Misawa E. A, Low Frequency Vibration Suppression Shape Filter and 
High Frequency Vibration Suppression Shape Filter. American Control 
Conference, Portland, OR, USA, 4742-4747, June 8-10, 2005 

Zhu W.Q., Yang Z.O. and Song T.T. An optimal nonlinear feedback control strategy 
for randomly excited structural systems, Nonlinear Dynamics, 24:31-51, 2001 

157 


