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Summary 

Natural organisms are infected by many different parasites, and as a consequence, 

hosts have evolved a wide range of defences to cope with them. Resistance may be 

conferred through mechanisms that reduce susceptibility to infection ('avoidance') 

or increase the rate of clearance ('recovery'). Other forms of resistance reduce the 

deleterious effects of infection ('tolerance'), or inhibit the parasite's growth 

('control'). In addition to these innate forms, hosts may also benefit from 

immunological memory ('acquired immunity'). The evolution of resistance is 

expected to be costly in terms of other life history traits. In the presence of such 

'trade-offs', the host population may evolve towards an evolutionarily stable 

strategy (ESS) that balances the costs and benefits of resistance. Another possibility 

is that a process of evolutionary branching occurs, leading to polymorphism of 

distinct strategies. Parasites also show adaptation to their hosts and have generally 

not evolved to be avirulent. Again, this is the result of trade-offs between virulence 

and other aspects of life history. Often, a higher transmission rate is attained at the 

cost of increased virulence. 

This thesis uses a mathematical modelling approach to examine host­

parasite interactions. The first part considers the evolutionary dynamics of 

quantitative host resistance and parasite traits, employing fitness expressions 

constructed using the techniques of adaptive dynamics. The second part examines 

the population dynamics of host-parasite interactions; in particular, how different 

assumptions about the nature of the transmission process may affect the dynamics. 
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1·1. Biological Outline: Host·Parasite interactions 

J -J -J. Classification of resistance mechanisms 

Nature shows countless examples of parasitic organisms. Faced with this array of 

natural enemies, hosts have evolved many diverse forms of defence that can be 

functionally classified. Defence against parasites (resistance) may evolve through 

mechanisms that reduce the probability of infection (avoidance; Boots and Bowers 

1999). Avoidance may be conferred by numerous mechanisms, such as a behavioural 

change for example. It may also manifest through physiological barriers; in insects, 

parasites must first penetrate the gut wall before they can successfully infect the host 

(Dunn et al. 1994; Boots and Haraguchi 1999). In addition to these first line defences, 

a more efficient immune system will also confer resistance to parasites (Medzhitov 

and Janeway 1997; Zuk and Stoehr 2002; Schmid-Hempel 2003, 2005). This may 

manifest as an increased rate of recovery (van Baalen 1998; Boots and Bowers 1999; 

Restif and Koella 2004), or better control of the parasite once an infection has 

developed (Sheldon and Verhulst 1996). Resistance may also be conferred by a more 

efficient immunological memory (acquired immunity; Boots and Bowers 2004). 

Tolerance mechanisms that reduce the deleterious effects of infection 

(virulence) may also be classed as a form of resistance (Boots and Bowers 1999). 

Plant tolerance of herbivores in particular has been widely documented (Strauss and 

Agrawal 1999; Stowe et al. 2000), and pathogen tolerance has also been observed in 

some plant species (Simms and Triplett 1994; Kover and Schaal 2002). There is also 

evidence for tolerance in insects; the bumblebee, Bombus terrestris, has been shown 

to evolve tolerance in response to a trypanosome intestinal parasite (Imhoof and 

Schmid-Hempel 1998). Importantly, the mechanisms conferring resistance may act in 

more than one way. In the rabbit-myxomatosis system, the evolution of genetic 

resistance initially correlates with an increased survival time, while higher levels of 

resistance also increase the chance of recovery (Ross and Sanders 1984; Williams et 

al. 1990). 
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1-1-2. Costs of resistance 

The evolution of resistance is generally expected to incur a cost (Sheldon and 

Verhulst 1996). Costs have been identified in both plant-herbivore (Mauricio et al. 

1997; Tiffin and Rausher 1999) and plant-pathogen interactions (Simms and Triplett 

1994). Costs have also been identified in vertebrates, where a reduction in 

reproductive effort may reduce the likelihood of contracting a sexually transmitted 

disease, but also the number of offspring (Zuk and Stoehr 2002). In terms of the 

host's immune response, there may be evolutionary costs that arise due to negative 

genetic covariances. Here resistance is traded-off at the genetic level with another 

fitness-related trait such as growth or reproduction (antagonistic pleiotropy; Stearns 

1992). Evolutionary costs have been demonstrated experimentally by, for example, 

Boots and Begon (1993) and Kraaijeveld and Godfray (1997). 

1-1-3. Parasite evolution 

This tension between cost and benefits of resistance is only half the story, however, 

as parasites also show adaptation to their hosts. When initially introduced to 

Australian rabbits in 1950, the myxomatosis virus was extremely virulent, with nearly 

100% mortality of infected rabbits. The following ten years then witnessed a gradual 

decline in virulence (Fenner and Ratcliffe 1965). In contrast, in a horizontally 

transmitted microparasitic disease of the planktonic crustacean, Daphnia, increasing 

geographic distance between host and parasite origin correlated with a decrease in 

spore production and also virulence (Ebert 1994). This contradicted the conventional 

hypothesis that parasites should evolve to be benign. Indeed, virulence may often be 

an unavoidable consequence of pathogen replication in order to transmit to new hosts 

(Anderson and May 1982; Lipsitch and Moxon 1997; Mackinnon and Read 1999; 

Messenger et a1. 1999). Multiple infections within a single host in particular are 

thought to select for more virulent parasites. In nematodes infecting fig wasps, 

increased horizontal transmission was correlated with higher virulence, and this was 

explained by within-host competition (Herre 1993; Bull 1994). That the mode of 

transmission also influences virulence evolution is widely recognised. Pathogens 
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transmitted via free-living infective stages (TB, smallpox) or through insect vectors 

(malaria) generally have much higher virulence compared to those requiring direct 

host-to-host contact (Ewald 1993). 

1-1-4. Male-biased parasitism 

There is convincing evidence that parasitism may often be biased towards males. This 

may often be due to differences in behaviour; males tend to have larger home ranges 

and higher activity levels, which may increase the likelihood of infection (Poulin 

1996; Perkins et al. 2003). Sexual size dimorphism is common in mammals, with 

males usually being the larger sex, and this is associated with increased parasitism -

possibly because a larger body size makes an easier target for parasites (Moore and 

Wilson 2002). In this context, two recent studies of the yellow-necked mouse, 

Apodemus jlavicollis, identified a small proportion of the population (large, sexually 

mature males) as the key agents chiefly responsible for spreading the disease (Perkins 

et al. 2003; Ferrari et al. 2004). Male-biased parasitism may also be due to 

differences in immune investment. From an evolutionary perspective, this is likely to 

be a consequence of life history differences. Males gain fitness mainly through 

mating success, and females mainly through longevity, a phenomenon known as 

Bateman's principle (Bateman 1948; Trivers 1972; Clutton-Brock 1988; Rolff2002). 

In some cases, the trade-off between immune function and mating may be explicit. 

Androgenic hormones that increase mating success (i.e. testosterone in vertebrates) 

are thought to have an immunosuppressive effect (Folstad and Karter 1992; Moore 

and Wilson 2002); in insects, the juvenile hormone may also reduce phenoloxidase 

activity after mating (Rolff and Siva-JothY 2002). 

1·2. Theoretical models 

1-2-1. The evolution o/host resistance 

Theoretical models typically model costs as a lower intrinsic growth rate or higher 

susceptibility to croWding. Under this assumption, avoidance (reduced susceptibility 
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to infection) evolves over a wide range of costs (Antonovics and Thrall 1994; Bowers 

et al. 1994), and in some circumstances may result in polymorphism. This is because 

avoidance reduces the force of infection acting upon susceptible hosts (the 

transmission rate multiplied by the density of infecteds) and therefore the advantage 

of resistance (negative feedback; Antonovics and Thrall 1994; Roy and Kirchner 

2000). Polymorphism becomes increasingly likely as the degree of difference 

between susceptible and resistant strains increases (Boots and Bowers 1999); this 

would seem to agree with observations of plant populations (Burdon 1987; Alexander 

et al. 1993). In this context, the structure of the trade-off is particularly important for 

determining the evolutionary outcome; polymorphism is only predicted to evolve 

under a decelerating trade-off, where the cost increases less than linearly with the 

benefit of resistance (Boots and Haraguchi 1999). 

Crucially, in the model of Boots and Haraguchi (1999), the level of resistance 

a host manifested also determined its uninfected carrying capacity. Boot and Bowers 

(2003) later showed this to be a necessary condition for the coexistence of different 

avoidance strategies. Mutual invadability (polymorphism) is impossible under the 

assumption of a constant carrying capacity, because here an invader's fitness can be 

expressed as a separable function of two terms, one depending on the resident strain, 

and the other on the invader (Boots and Bowers 2003). This leads to a competitive 

exclusion principle, whereby the host evolves to minimize the basic depression ratio 

(Do)' defined as the number of host individuals, per capita infected, by which an 

endemically infected population is depressed below its carrying capacity (Bowers 

2001). Analysis of the basic predator-prey model has further revealed that 

polymorphism is only possible given an emergent carrying capacity (i.e. one defined 

implicitly by the host's birth rate and susceptibility to crowding) (Bowers et al. 

2003). Thus, the negative feedbacks associated with avoidance allow for 

polymorphism only under certain ecological conditions. In populations where the 

carrying capacity is effectively fixed by environmental factors, therefore, 

polymorphism in avoidance should not evolve (Boots and Bowers 2003). 
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The evolution of higher recovery rates is qualitatively similar to avoidance, in 

terms of the dynamics. A faster recovery rate reduces the duration of infection, which 

incurs negative feedback and may select for polymorphism (Boots and Bowers 1999). 

Interestingly, the recovery rate evolves to maximize the force of infection (van 

Baalen 1998). This is an example of the 'pessimization principle,' whereby the 

optimal strategy is the one that creates (and can survive in) the worst possible 

environment (Mylius and Diekmann 1995). In contrast, the evolution of tolerance is 

associated with positive feedback, since as the density of tolerant individuals 

increases, so does the prevalence of infection (Roy and Kirchner 2000). As tolerance 

spreads, it becomes increasingly beneficial, and is therefore predicted to be 

monomorphic within populations (Roy and Kirchner 2000; Boots and Bowers 2004). 

Clearly, resistance only ever evolves where its benefits exceed its costs (Boots 

and Bowers 1999, 2004; Boots and Haraguchi 1999). Since, by definition, resistance 

reduces the fitness loss due to parasitism, the evolution of one form may therefore 

reduce selection for others (Simms and Triplett 1994; Mauricio et al. 1997; Kover 

and Schaal 2002). In plant-herbivore interactions, tolerance is often negatively 

correlated with other forms of resistance (Fineblum and Rausher 1995). Population 

genetics models also suggest that avoidance and tolerance are mutually exclusive, 

unless there is genetic covariance between the traits and unequal costs (Tiffin 2000). 

The evolution of avoidance may reduce selection for recovery, as the latter is only 

selected in response to highly transmissible pathogens; similarly, avoidance is 

favoured at low recovery rates (Boots and Bowers 1999). In contrast, the evolution of 

tolerance may actually increase selection for avoidance or recovery, because these 

mechanisms are increasingly favoured as virulence decreases (Boots and Bowers 

1999). The evolutionary dynamics of innate resistance (avoidance, recovery, 

tolerance) are quantitatively the same whether or not the host also benefits from 

acquired immunity (Boots and Bowers 2004). Acquired immunity itself (evolving as 

reduced rate of loss of immunity) is selected in response to high transmission rates, 

high virulence and intermediate rates of recovery, and has a limited potential for 

polymorphism. 

6 



Restif and Koella (2004) examined the concurrent evolution of recovery and 

tolerance as distinct strategies. Tolerance was favoured at low virulence and high 

transmission rates of infection. In contrast, high virulence and low transmission 

selected for relatively greater recovery. Crucially, the optimal defence strategy 

depended on the cost structure. Accelerating costs favoured mixed strategies, where 

the host balanced investments between the two defences to minimize the total cost. 

With linear costs, either mixed or pure strategies could evolve. Polymorphism of pure 

strategies was also possible, and in some cases the outcome was dependent on the 

initial conditions (evolutionary bistability). 

1-2-2. The evolution ojparasites 

Theoretical models often assume a trade-off between parasite transmission and 

virulence. The dominant paradigm is that parasites achieve transmission through 

within-host replication, with virulence seen as an unavoidable consequence. If 

transmission is modelled as an increasing saturating function of virulence, this selects 

for an intermediate level of virulence (van Baalen and Sabelis 1995; Frank 1996; 

Restif and Koella 2003). However, many pathogens transmit via free-living infective 

stages, capable of surviving for long periods of time outside the host (Anderson and 

May 1981). This partially decouples transmission from the lifespan of infected hosts, 

and therefore selects for higher virulence (Day 2002b). If free-living particles are 

released upon death of the infected host (e.g. as in the nuclear polyhedrosis and 

granulosis viruses), this potentially selects for even higher virulence (Day 2002b). 

Obligately killing parasites in particular may be expected to evolve very high 

virulence (Ebert and Weisser 1997). Furthermore, some free-living pathogens, such 

as the bacteria Bacillus anthracis, produce toxic substances that have no clear 

connection to within-host replication (Prescott et al. 1999; Mock and Fouet 2(01). 

Recent theory has shown that such toxicity effects may actually confer a selective 

advantage, particularly in, although not limited to, obligate killers (Day 2002b). 

If hosts may be simultaneously infected by more than one pathogen strain 

(multiple infection), this generally selects for higher virulence, where more 
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exploitative parasites have a competitive advantage within infected hosts 

(Bremermann and Pickering 1983; Frank 1992a, 1994, 1996; May and Nowak 1994, 

1995; Nowak and May 1994; van Baalen and Sabelis 1995; Mosquera and Adler 

1998). Here the evolution of virulence is mediated by the intensity of within-host 

competition; as such, reducing the probability of infection may therefore select for 

lower virulence (Ebert and Mangin 1997). 

Heterogeneities in the host population have implications for virulence 

evolution. In this context, Gandon (2004) modelled the evolution of multi-host 

parasites. An extreme bias towards within-type transmission allowed polymorphism 

of different virulence strategies, each specialized to exploit a particular host, while 

increasing the relative amount of between-type transmission favoured more generalist 

strategies. Regoes et al. (2000) also investigated the evolution of virulence in a 

heterogeneous host population. The study showed that a decelerating trade-off 

between virulence on the two hosts (i.e. where a decrease in virulence in one host 

caused a less than proportionate increase in virulence on the other host) favoured 

polymorphism. 

Parasites also exhibit different modes of transmission. This has important 

implications because different forms of transmission may lead to fundamentally 

different dynamics (Antonovics et al. 1995). In non-sexually transmitted diseases 

(ordinary infectious diseases, or OIDs), the rate of new infections tends to increase 

with the density of infecteds (density-dependent transmission; McCallum et al. 2001; 

Begon et al. 2002). On the other hand, in sexually transmitted diseases (STDs), the 

number of partners remains roughly constant as density increases and transmission 

therefore depends on the proportion of infected hosts (frequency-dependent 

transmission; Getz and Pickering 1983; Antonovics et al. 1995; McCallum et al. 

2001; Begon et al. 2002). However, these two assumptions (density- and frequency­

dependent transmission) represent extremes on a continuum, and in reality the 

transmission dynamics will often fall somewhere in between (see review by Ryder et 

al. 2005). Moreover, individual pathogens may often have more than one 

transmission mode (Lockhart et al. 1996; Thrall and Antonovics 1997). 
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1-2-3. Host-parasite coevolution 

Coevolution has mainly been studied using population genetics models, which 

examine the interactions between resistance and infectivity alleles (Flor 1971; Burdon 

1987). Matching genotype models assume a one-to-one correspondence between host 

and parasite genotypes, such that hosts possessing a resistance gene may only be 

infected by parasites with the corresponding virulence gen~, or alternatively, that 

hosts only express resistance against a perfectly matched parasite genotype (Sasaki 

2002). In real systems, however, the relationship between host and parasite genotypes 

is highly asymmetric: some parasite genotypes may be able to infect multiple hosts, 

and some host genotypes exhibit resistance to a wide range of parasites (Sasaki 

2002). As such, natural systems are more realistically modelled using multi-locus 

gene-for-gene (GFG) interactions. Multi-locus GFG models generally predict the 

evolution of high degrees of resistance and virulence, with frequency-dependent 

selection favouring new gene combinations. This potentially leads to polymorphisms 

in both host and pathogen genotypes, and sustained cycles in the genotype 

frequencies (Frank 1992b; Sasaki 2002). 

Gene-for-gene models are highly characteristic of the evolutionary arms races 

observed in many plant-pathogen systems (Burdon 1987). However, they fail to 

capture an important aspect of host-parasite interactions: that resistance will rarely be 

an all-or-nothing affair. This is particularly relevant in the context of the host's 

immune response: given that investing in immunity is costly, hosts will evolve 

different degrees of resistance to their parasites (van Baalen 1998). In turn, the host's 

investment in resistance affects the evolution of quantitative parasite traits (e.g. 

virulence, transmissibility) (Frank 1996). Epidemiological models including this 

complexity have been proposed by a number of authors. Restif and KoeUa (2003) 

showed that the optimal parasite virulence is often independent of the level of 

avoidance. This depends, however, on how the host's susceptibility and parasite's 

replication rate combine to determine transmission; in some cases, avoidance may 

select for increased virulence. In contrast, if hosts may be simultaneously infected by 

more than one parasite strain, avoidance may select for lower virulence (Gandon et al. 
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2002a). The evolution of tolerance is predicted to select for increased replication rates 

and potentially higher virulence (Restif and Koella 2003), as is resistance conferred 

throug~ control of the parasite (Gandon and Michalakis 2000). The evolution of 

higher recovery rates also selects for increased parasite virulence; a faster recovery 

reduces the benefit of lower virulence in terms of prolonging the infectious period 

(van Baalen 1998). In some cases there are two locally stable outcomes: an internal 

optimum characterised by relatively high recovery and virulence, and zero investment 

in recovery with relatively low virulence (van Baalen 1998). 

The evolution of parasites in response to host resistance is analogous to the 

selection imposed by imperfect vaccination strategies (Gandon et a1. 2001, 2002b, 

2003). This relates in particular to the evolution of malaria in response to partial 

vaccines acting at different parts of the infection process (Mackinnon 2005). 

Vaccines that reduce the toxicity due to pathogen replication are predicted to select 

for increased replication (Gandon et a1. 2001), unless there is a separate metabolic 

cost of toxin production that the vaccine is able to maintain (Gandon et a1. 2002b). 

Anti-growth vaccines reducing both virulence and transmission rate also generally 

select for higher replication rates (Gandon et a1. 2003). Here the increase is likely to 

be less severe wherever there is a strong anti-infection component, as the lower 

probability of infection in vaccinated hosts reduces selection for higher replication. 

Furthermore, if superinfection by other parasite strains is possible, the infection­

blocking component selects for lower parasite replication by decreasing the level of 

competition among strains. These theoretical predictions have recently gained some 

empirical support. Using the mouse-malaria model, Plasmodium Chabaudi, the 

evolution of virulence was investigated in both immunized and non-immunized mice: 

parasite lines in immune mice evolved higher virulence (Mackinnon and Read 2004). 

Theoretically, population genetics models may incorporate the 

epidemiological details of the host-parasite interaction (e.g. May and Anderson 

1983). However, such models are very complicated, which presents difficulties in 

their analysis. Gandon et a1. (2002a) examined the coevolution of host avoidance and 

parasite virulence, with the simplifying assumption that resistance was complete (Le. 
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hosts expressing resistance to a given parasite genotype cannot be infected). In the 

absence of superinfection, optimal virulence was shown to be independent of the 

level of avoidance. With superinfection, the evolution of virulence depended on the 

mutation rate at the infectivity locus: at low mutation rates, there were effectively two 

different parasite populations and virulence evolved independently in each; with a 

higher mutation rate, avoidance selected for a lower level of (monomorphic) 

virulence. Encouragingly, this agreed with the prediction of the epidemiological 

model without population genetics (Gandon et al. 2002a). 

1-2-4. Population dynamics: stable points, cycles and chaos 

Persistent long-term population cycles occur in many insect-pathogen systems 

(Baltensweiler 1964; Varley et al. 1973). There have been several theoretical models 

proposed to explain these dynamics. The continuous host-microparasite model of 

Anderson and May (1981) has the potential to exhibit long -term periodic cycles, if 

transmission occurs via free-living stages. The inclusion of density-dependence in the 

birth rate provides a stabilizing mechanism that increases dynamics stability and 

reduces the likelihood of cycles (Bowers et al. 1993; Dwyer 1994; White et a1. 1996). 

However, cycles tend to occur in species with discrete, non-overlapping generations, 

where the pathogen typically kills the insect at the larval stage before it can 

reproduce. A discrete, seasonal formulation may therefore more accurately describe 

such systems, although this introduces greater complexity to the models. The basic 

discrete model is inherently less stable and predicts divergent oscillations, due to the 

time delay in the pathogen's response to changes in host density (Briggs and Godfray 

1996; Bonsall et a1. 1999). Mechanisms that allow the pathogen to respond more 

quickly, or control the host's growth by other means, will therefore increase stability 

(Bonsall 2004). For example, if the pathogen is able to pass through several 

infectious bouts per season, this reduces the time delay and may result in stable 

cycles (Briggs and Godfray 1996). Host density-dependence may also allow cycles, 

by preventing the divergent oscillations that normally ensue following low pathogen 

density. If infectious particles are able to survive between seasons, either in a 
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protected reservoir or through vertical transmission, this may also result in cycles 

(Briggs and Godfray 1996; Bonsall et al. 1999). 

It is now believed that sublethal or covert infection may be responsible for the 

endemic persistence of many pathogens (Boots et al. 2003; Burden et al. 2003). 

Sublethal infection is assumed to reduce fecundity and/or increase development time, 

but to have no other overt symptoms. The general consensus is that sublethal 

infection is destabilizing, as the sublethal class is unable to infect and regulate the 

host (Boots and Norman 2000; Bonsall et al. 2005). Covert infection is similar to 

sublethal, although it may also spontaneously convert into overt infection and is also 

transmitted vertically. Covert infection is generally stabilizing, although this depends 

on the complex interplay of parameters - in some circumstances, covert infection may 

be destabilizing (Boots et al. 2003; Bonsall et al. 2005). Intermediate rates of 

conversion to the overt state are stabilizing, while high or low rates are destabilizing 

(Boots et al. 2003). Interestingly, the degree of stabilization is much greater in highly 

pathogenic diseases (Boots et al. 2003). If covert infection confers immunity to the 

overt stage this also stabilizes the dynamics (Bonsall et al. 2005). 

1·3. Theoretical approach 

1-3-1. Epidemiological models 

In a seminal paper, Anderson and May (1981) developed models to describe the 

popUlation dynamics of microparasites and their invertebrate hosts. The basic model 

assumes that transmission occurs through direct contact between an uninfected 

(susceptible) and an infected host (Fig. 1.1). Once infected, individuals suffer an 

increased mortality rate (virulence) and recover at a constant rate. The model can be 

adapted to include morbidity, vertical transmission, density-dependent birth rates, and 

transmission via free-living infective stages. 
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Figure 1.1. Compartmental representation of the basic susceptible-infected-susceptible model for a 

host-microparasite interaction (reproduced from Anderson and May 1981). 

Holt and Pickering (1985) showed how the Anderson and May model could 

be extended to include two competing hosts interacting with a shared pathogen. Their 

model identified three possible dynamical outcomes: competitive dominance (where 

one host eliminates the other), mutual infected coexistence, and contingent 

competition (where either host may eliminate the other, depending on initial 

conditions). Coexistence was only possible if transmission within species was 

stronger than transmission between species. This model did not include density­

dependence, and if unregulated by the pathogen, the population would therefore grow 

to infinity. The addition of self-regulation allows coexistence under a wider range of 

conditions (Begon et al. 1992). The model was later applied as an evolutionary 

algorithm, with the two hosts representing different haploid genotypes. This is the 

common methodology used to investigate the evolution of host populations 

(Antonovics and Thrall 1994; Bowers et al. 1994; Boots and Bowers 1999, 2004; 

Boots and Haraguchi 1999; Bowers 1999, 2001; van Boven and Weissing 2004). 

Similarly, host-pathogen-pathogen models have been applied to study the evolution 

of parasites (van Baalen and Sabelis 1995; Frank 1996; Restif and Koella 2003). 

1-3-2. ESS theory and adaptive dynamics 

The theory of evolutionarily stable strategies (Maynard Smith and Price 1973; 

Maynard Smith 1982) states that a particular phenotype, when adopted by a large 
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enough proportion of the population (Le. when 'resident'), may be sufficiently 

advantageous such that it resists invasion by all other possible phenotypes. Such a 

phenotype is called an evolutionarily stable strategy, or ESS. The phenotypic 

approach is particularly useful in that genetic considerations may be circumvented to 

some extent. However, the ESS-definition does not specify whether the singular 

strategy will actually become established in the first place (Eshel 1983). This has led 

to an alternative definition of evolutionary stability: a singular strategy is called 

'convergence stable' (CS) if nearby residents may be invaded by those closer to it 

(Christiansen 1991). 

Evolutionary and convergence stability are independent stability properties 

that may occur in any combination (Eshel 1983; Christiansen 1991). Recognition of 

this fact has led to the theory of adaptive dynamics (Metz et a1. 1996; Geritz et a1. 

1998), which assumes that the most common individuals (the 'residents') will 

necessarily determine the environment. As selection operates and the composition of 

the population changes, so therefore will the fitness of a putative invader. This 

indicates a dynamic feedback, where the fitness of a particular phenotype depends not 

only on its own life history parameters, but on those of the resident as well. Adaptive 

dynamics incorporates basic trade-off theory (Stearns 1992) to construct fitness 

expressions that determine the position and nature of singular points of evolution. 

Mutation is assumed to occur locally, near to the resident strategy, and evolutionary 

processes to occur over a sufficiently long time period such that the population 

always reaches its dynamic attractor before a new mutation occurs. A full treatment 

of the techniques of adaptive dynamics is given in Geritz et a1. (1998), but I present 

here a basic outline. 

Assume that a particular phenotype, x, is resident (Le. the population is 

composed entirely of individuals with phenotype x). Let r(x,Ex ) represent the 

marginal fitness (the long-term population growth rate) of phenotype x in the 

environment determined by it, Ex' Assuming phenotype x is initially at its 

population dynamic attractor, its marginal fitness is given as (Geritz et a1. 1998): 
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(1.1) 

Let y denote a mutant strategy, initially rare, attempting to invade this resident 

population. Assuming the initial mutant density is negligible, the mutant's fitness can 

be expressed as (Geritz et al. 1998): 

(1.2) 

If Sx(y) < 0 then the mutant cannot invade and will become extinct. If Sx(y) > 0 and 

Sy(x) < 0 then the mutant can invade and replace the resident phenotype, x. If 

S)y) > 0 and S/x) > 0 then the mutant can invade the resident, but the resident can 

also invade the mutant; this leads to a dimorphism, as discussed later. Assuming local 

mutation then, a linear approximation of the mutant's fitness is (Geritz et al. 1998): 

(1.3) 

Here D(x) gives the local fitness gradient: 

(1.4) 

From (1.1) the first term in (1.3) is always zero. An initially monomorphic popUlation 

will therefore evolve in the direction of the local fitness gradient (1.4). If D(x) > 0 

then only mutants with y > x can invade, while if D(x) < 0 then only mutants with 

y < x can invade. The mutation-selection process continues until a singular point is 

reached, where: 

D(x) =0 (1.5) 

By evaluating the second order partial derivatives of D(x) with respect to x and y, 

the nature of the singular point can be determined. The condition for a singular point 

to be an ESS is (Geritz et al. 1998): 
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(1.6) 

The condition for convergence stability is (Geritz et al. 1998): 

a
2
sxCY) _ a

2
sx (Y) > 0 

ax2 ay2 (1.7) 

Combinations of the ESS and CS properties lead to the classification of four 

types of singular point (Table l.1). First, a singular point that is both evolutionarily 

and convergent stable is called an evolutionary 'attractor' because it resists local 

invasion and local mutation also proceeds towards it (Bowers and White 2002; 

Bowers et al. 2005). In contrast, an evolutionary 'repellor' is neither evolutionarily 

nor convergence stable (Bowers and White 2002; Bowers et al. 2005). A singular 

point that is convergence stable (CS) but lacks evolutionary stability (non-ESS) is an 

evolutionary branching point (Geritz et al. 1998; Bowers et al. 2005). Here, disruptive 

selection near to the singular point leads to coexistence of more than one distinct 

strategy. This may lead to further branching, and ultimately an evolutionarily stable 

coalition may evolve. Finally, a singular strategy that is evolutionarily but not 

convergence stable (ESS and non-CS) corresponds to a 'Garden of Eden' point 

(Bowers et al. 2005). There may also be more than one locally stable strategy, a 

phenomenon known as evolutionary bistability, where the outcome is dependent on 

the initial resident. 

Table 1.1. Classification of the singular point in terms of the evolutionary properties 

Evolutionarily stable Convergence stable (CS) Type of singular point 

(ESS) 

x X Repellor 

X ..; Branching point 

...; X Garden of Eden 

...; ...; Attractor 
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The evolution of a monomorphic population is often determined using 

pairwise invadability plots (PIP; Metz et al. 1996; Geritz et al. 1998; Boots and 

Haraguchi 1999). These display graphically the sign of the marginal fitness of 

possible mutant invaders, y, against the range of residents, x (Fig. 1.2). Here, 

regions of positive fitness (Sx(y) > 0) are shaded, while regions of negative fitness 

(Sx(y) < 0) are left unshaded. Along the main diagonal, resident and mutant strategies 

have identical phenotypes and the mutant therefore has a marginal fitness of zero. 

A Rc..idcnt .trategy B 

x' 

x' 

o x' x' 

c Resident strategy D Resident strategy 

;' ;' < < !. ~ ;;-.. CI .. .. .. 
i ~ .:: 
'< .. 

'< 

Figure 1.2. Pairwise invadability plots. (A) x'" is an attractor (ESS. CS); (B) x* is an evolutionary 

branching point (CS, non-ESS); (C) (Bistability) x'" is an attractor. x** is a repeUor (non-CS. non­

ESS). and the maximum strategy (x = I) is also locally stable; (D) (Bistability) x* is a branching point. 

x"'· is a repellor. and the maximum strategy (x = 1) is also locally stable. 

17 



Singular points of evolution occur where the main diagonal intersects another zero 

fitness boundary. The evolutionary properties of the singular point can then be 

assessed by the way in which the neighbouring parameter space is partitioned. If a 

point is convergence stable (CS) then, when below the singular strategy, local 

mutants above the main diagonal have positive fitness, as do local mutants below the 

main diagonal when above the singular strategy (Figs. 1.2A, B). If a singular point is 

evolutionarily stable (ESS) then the vertical line through the point lies entirely in a 

region of negative fitness (Fig. 1.2A). 

1-4. Thesis outline 

This dissertation provides an investigation into the evolution and population 

dynamics of host-parasite interactions. The theoretical approach is to apply 

compartmental models that describe the epidemiology of host-parasite interactions 

combined with the techniques of adaptive dynamics. Chapters 2 and 3 investigate the 

evolution of host resistance traits assuming a uniform pathogen. Chapter 2 utilizes a 

free-living model to contrast two similar but qualitatively different forms of 

resistance (tolerance and control). In particular, the conditions promoting 

polymorphism in control strategies are examined. Chapter 3 looks at how the host's 

lifespan influences the evolution of resistance. Innate (avoidance, recovery, tolerance) 

and acquired immunity are investigated as separate traits. Chapter 4 investigates how 

the evolution of host tolerance may select the parasite, and the effect this has on the 

wider epidemiology. Chapter 5 considers a novel form of transmission function 

allowing varying degrees of density-dependent and frequency-dependent 

transmission, and how this affects the dynamics. Chapter 6 examines the population 

dynamics of a host-microparasite interaction under the assumption of male-biased 

parasitism. The stability of the equilibrium is compared to that occurring with 

unbiased parasitism, and an uninfected population. 
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2. The evolution of tolerance and control 
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2·1. Introduction 

There are a variety of different biological mechanisms that may reduce pathogen 

virulence. These are generally grouped under the heading 'tolerance' (Simms and 

Triplett 1994; Boots and Bowers 1999, 2004; Roy and Kirchner 2000; Restif and 

Koella 2003, 2004; van Boven and Weissing 2004). Pure tolerance, however, is 

unique in that it reduces the deleterious effects to the infected host, but does not 

reduce the fitness of the pathogen. Applying a host-host-microparasite model, Boots 

and Bowers (1999) showed that tolerance is more likely to evolve when the host has a 

high intrinsic growth rate and/or a low susceptibility to crowding, suggesting that 

populations with larger carrying capacities are more likely to become tolerant. Boots 

and Bowers (2004) then extended this model, allowing recovered hosts to acquire 

temporary immunity to the disease. The probability of a tolerant host invading and 

becoming fixed in the population was shown to be inversely proportional to the 

duration of acquired immunity, suggesting tolerance may be selected against in the 

presence of other forms of resistance. 

Roy and Kirchner (2000) have shown that, since tolerance increases the 

lifespan of infected hosts, it also increases disease prevalence, by providing more 

opportunities for transmission. Tolerance is therefore associated with a form of 

positive feedback that increases its own benefits. This implies that stable 

polymorphisms of strains with different degrees of tolerance is not deterministically 

possible, although stochastic effects might allow multiple strains to be maintained. 

Boots and Bowers (2004) also predict that polymorphism in tolerant strains will not 

occur for directly transmitted infection, and indicate there may be bistability in the 

evolutionary outcomes, where the level of tolerance that evolves depends on the 

initial resident strategy. 

Previous theoretical work on the evolution of tolerance has generally assumed 

that pathogens are directly transmitted through contact between an infected and a 

susceptible host. However, in the life cycles of many microparasites, transmission 

occurs via free-living infective stages (Anderson and May 1981). In the insect 
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baculoviruses, host tissue is converted into millions of occlusion bodies, which are 

then released into the environment upon host death or shed continually during the 

infection through the faeces. Transmission then occurs upon ingestion by a 

susceptible host (Cory and Myers 2003). 

In this chapter, the evolutionary dynamics of tolerance are investigated, where 

infection occurs through contact with free-living infective particles. Particles are 

released from diseased hosts at a constant rate during the period of infection (until the 

host either dies or recovers). Different forms of the production rate of infective 

particles are investigated, and their biological relevance discussed. I distinguish 

between two forms of host resistance, designated 'tolerance' and 'control'. Tolerance 

mechanisms reduce virulence but have no effect on the parasite's replication/growth 

within the infected host. The production rate of infective particles is therefore 

modelled as being independent of the level of tolerance. Control reduces virulence by 

limiting the parasite's replication/growth within an infected host (this assumes that 

virulence correlates with the rate at which host tissue is converted to pathogen 

particles), and their production rate is assumed to be an increasing function of 

virulence. In particular, a reduction in virulence conferred by control of the parasite is 

shown to allow a wider spectrum of evolutionary outcomes compared to when 

reduced virulence is due to tolerance. The implications of free-living stages, per se, to 

the evolution of resistance are also examined. For simplicity, I assume a haploid host. 

In line with previous theoretical work, tolerance and control both are both associated 

with a pleiotropic fitness cost, in terms of a reduced intrinsic growth rate. 

2-2. A host-host-pathogen model 

I consider the dynamics of two host genotypes (susceptible and resistant) and a 

shared free-living pathogen. The model structure is adapted from model G of 

Anderson and May (1981). I assume the system reaches an endemic eqUilibrium for a 

susceptible host, and consider a competing resistant strain attempting to invade this 

stationary state. This follows the common methodology used in host-host-pathogen 

models for directly transmitted infection (Antonovics and Thrall 1994; Bowers et al. 
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1994; Boots and Bowers 1999, 2004; Boots and Haraguchi 1999; Bowers 1999, 

2001). Let Xi and ~ denote the respective densities of un infected and infected hosts 

of strain i, and Z denote the density of infective particles in the external 

environment. The dynamics are then described by the differential equations: 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

The total host density is given by H .. Xs + Ys + XR + YR and the subscripts S and R 

denote the susceptible and resistant strains respectively (resistance may manifest as 

either tolerance or control). Here 1'; gives the intrinsic growth rate of host strain i, 

equal to an implicit birth rate, ai' minus the disease-independent death rate, b. The 

quantity q measures susceptibility to crowding and represents density-dependence 

acting on the birth rate of the host. Hosts become infected through contact with 

infective particles. The transmission rate of infection, the recovery rate, and the 

virulence (disease-induced mortality) are denoted f3, r and a; respectively. Once 

infected, hosts produce free-living particles at a rate AI' until they either die or 

recover. These infective particles persist in the external environment with a 

background mortality rate 1-'. Equation (2.3) therefore differs from model G of 

Anderson and May (1981), in that there is no loss of infective particles due to 

consumption by susceptible or infected hosts. It has been shown by Dwyer (1994) 
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that such losses are likely to be negligible relative to other parameters. Loss of 

infective particles therefore occurs only through their natural decay rate ft. 

I assume a uniform pathogen with a fixed level of potential virulence that is 

only fully expressed in susceptible hosts. The actual level of virulence experienced is 

the potential virulence that is not compensated for by a resistance mechanism. In 

tolerant hosts, resistance reduces virulence but this does not affect the growth of the 

pathogen. Control limits viral replication in infected hosts, reducing both virulence 

and the production of free-living particles. Both forms of resistance incur a cost in 

terms of a lower intrinsic growth rate of the host. The assumptions are therefore: 

Tolerance: 

Control: 

AR-AS"W 

¢aR ... AR < As - ¢as 

(2.6) 

(2.7) 

Susceptible and tolerant hosts therefore produce infective particles at a constant rate 

measured by the parameter w. In the control scenario, the production rate is an 

increasing function of virulence. Note the level of virulence experienced by 

susceptible hosts is always constant whichever form of resistance is being considered 

(w ... ¢as)' All parameters are assumed to be positive. 

It is assumed that diseased hosts produce free-living particles cOJlstantly 

throughout the period of infection. However, infective particles may sometimes be 

released into the environment only upon death of an infected host. Such obligately 

killing parasites must kill the host in order to transmit infection (Ebert and Weisser 

1997). As shown by Anderson and May (1981), if the host releases a total of A 

infective particles upon death, and the infected lifespan is given by II(a + y + b), this 

is equivalent to producing infective particles at a constant rate: 

A= A(a + y+b) (2.8) 

Assuming the disease-independent and recovery rates are constant, this yields a 

positive relationship between virulence a and the production rate A, which is 
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qualitatively the same as that in (2.7). In this case tolerance of an obligately killing 

parasite also confers an element of control (because the lower virulence increases 

host lifespan and reduces the average rate of production). 

2·3. Analysis 

2·3·1. Equilibrium states 

There are six equilibrium solutions of equations (2.1)-(2.5). Taking the variables in 

the order (Xs'YS,Z,XR,YR) the equilibria are: 

(0,0,0,0,0) 

(Ks ' 0,0,0,0) 

(0, 0 ,0 , KR , 0) 

(X; , Y; , Z; , 0 , 0 ) 

(O,O,Z;,X;,Y;) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

The trivial equilibrium (2.9) is always unstable for positive parameters. The third 

equilibrium (2.11) corresponds to the resistant carrying capacity, K R = rR I q. This 

equilibrium is always unstable, due to the susceptible strain's higher intrinsic growth 

rate in the absence of infection (rR < rs). The second equilibrium (2.10) corresponds 

to the susceptible carrying capacity in the absence of infection, Ks - rs Iq. The 

condition for the pathogen to invade this equilibrium is given as: 

K > H • ",(as + r+b) 
s T.S As{:3 (2.15) 

Here HT,s is the threshold density required to support the pathogen (Anderson and 

May 1981). If (2.15) is not satisfied then the uninfected equilibrium (2.10) is stable 

and the parasite will go extinct. This result can be understood in terms of the basic 
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reproductive rate of the parasite, Ro' which gives the expected number of infections 

caused during the lifespan of a single infected host (Anderson and May 1981, 1982; 

van Baalen and Sabelis 1995; Frank 1996). For this model, the basic reproductive rate 

is: 

R _ f3 AsH 
o /l(as+y+b) 

(2.16) 

The threshold density is therefore related to the basic reproductive rate according to 

the equation (Anderson and May 1981): 

HT•S 1 ----
H Ro 

(2.17) 

Here the total host density, H, is simply the uninfected density, Xs " Ks' The 

condition for the pathogen to invade (2.15) can therefore be expressed as: 

(2.18) 

This is the standard result for pathogen persistence in models of infectious disease 

(Anderson and May 1981, 1982). The fourth (2.12) and fifth (2.13) equilibria 

respectively correspond to the susceptible or resistant strain supporting the pathogen 

alone. The final equilibrium (2.14) corresponds to a dimorphic equilibrium where a 

susceptible and a resistant strain jointly support the pathogen. Throughout this study, 

I assume that condition (2.18) is always satisfied, and that the host is always capable 

of supporting the pathogen. The first three equilibria are therefore always unstable, 

and I need only consider the stability criteria with respect to the infected states (2.12)­

(2.14). By applying an invadability analysis, the specific conditions for a resistant 

mutant strain to invade the resident susceptible equilibrium are established. These 

conditions are determined using a traditional Jacobian analysis, but I first present a 

more intuitive, biologically motivated derivation. 
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Consider then an initially rare mutant of the resistant strain, attempting to 

invade the susceptible equilibrium (2.12). To successfully invade, the resistant mutant 

must have a positive growth rate. This means that the net contribution of a single 

resistant individual must be greater than zero. On average, a single resistant mutant 

will remain uninfected for a period Tx ' during which time it makes a contribution Px 

to the total population, and will be infected for an average time Ty , making a 

contribution py. Letting IR denote the overall contribution, this gives: 

(2.19) 

This term must be greater than zero for the genotype to invade. From equations (2.1)­

(2.5) the uninfected contribution is: 

(2.20) 

Similarly, the contribution while infected is: 

(2.21) 

The average period an individual stays uninfected is determined by the natural 

mortality rate (b) and the probability of becoming infected through contact with an 

infective particle. Since there are Z; such particles, the probability of an infection is 

{3Z;, which gives: 

(2.22) 

The probability of dying while uninfected is b Tx. The only other possibility is to 

become infected and then either die or recover, with probability (aR + y+ b)Ty • 

Logically, this gives: 

bTx +(aR +y+b)Ty .1 (2.23) 
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Note that successive periods of infection and recovery are possible, but this only 

serves to scale the results by a positive common factor. Also, infected individuals 

cannot prosper unless uninfected individuals do. It is therefore sufficient to consider 

only a single cycle, where an initially un infected individual either remains so, or 

becomes infected and then either dies or recovers (Boots and Bowers 1999). 

Combining equations (2.22) and (2.23): 

(2.24) 

Substituting the terms into (2.19) gives the expression for the growth rate IR of the 

resistant strain: 

(b + /3Z;)(aR + y + b) 
(2.25) 

To invade the susceptible equilibrium, IR must be greater than zero. Eliminating a 

positive common factor, the condition for the resistant strain to invade is: 

(2.26) 

If this condition is not satisfied then the susceptible equilibrium (2.12) resists 

invasion and a resistant mutant will be eliminated. By symmetry, the condition for a 

susceptible strain to invade the resistant equilibrium (2.13) is: 

(2.27) 
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The equilibria can now be classified according to these two invasion criteria. When 

only condition (2.26) holds, the resistant strain can invade the susceptible equilibrium 

but the resistant equilibrium resists invasion by the susceptible strain. In this case the 

susceptible strain is eliminated and equilibrium (2.13) is stable. Conversely, when 

only condition (2.27) holds, the susceptible equilibrium (2.12) is stable and the 

resistant strain is eliminated. If both (2.26) and (2.27) hold, then neither strain is 

favoured and the only stable equilibrium is the dimorphic state (2.14). The remaining 

situation occurs when neither condition holds, in which case both single equilibria 

«2.12) and (2.13» are locally stable, and the outcome is contingent on the initial 

conditions. Within the evolutionary context, this scenario favours the susceptible 

strain that is initially confronted with the parasite. 

2-3-2. Jacobian Analysis 

Taking the variables in the order (Xs'YS,Z,XR,YR) the associated Jacobian matrix 

evaluated at the susceptible equilibrium (2.12) has the form: 

(2.28) 

Here A, B, C are sub-matrices of size 3 x 3, 3 x 2 and 2 x 2 respectively, and 0 is 

the 2 x 3 zero matrix. Due to the linear independence of A and C, the stability 

conditions for J can be determined from two separate problems: a cubic equation 

corresponding to stability with respect to the pathogen (derived from A) and a 

quadratic corresponding to stability with respect to invasion by the resistant strain 

(derived from C). The stability conditions pertaining to A are satisfied if the 

susceptible strain is capable of supporting the pathogen. Since (2.18) is assumed to be 

satisfied, it therefore remains to consider the stability of C. 

C = ('R - q(X; + :;) - fiZ; 'R - q(X; + Y;) + (y + b») 
fiZs -(aR+y+b) 

(2.29) 
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The matrix C has trace, 't', and determinant, !l., given by: 

!l.(C) ... {rR - q(X; + Y;) - tJZ;}{ -CaR + y + b)} 

-{pZ;}{rR -q(X; +Y;)+(y+b)} 

(2.30) 

(2.31) 

The determinant (2.31) will certainly be negative unless the first term 

{rR - q(X; + Y;) - tJZ;} is less than zero (if this term is greater than zero then the 

final term {rR - q(X; + Y;) + (y + b)} is necessarily greater than zero and the 

determinant must be negative). If this first term is less than zero, we can see from 

(2.30) that the trace must also be negative. The equilibrium (2.12) is therefore stable, 

if and only if the determinant is greater than zero. If the determinant is negative, then 

the equilibrium is unstable and a resistant mutant characterized by (aR , rR ) can 

invade. The condition for a stable equilibrium is therefore: 

{rR - q(X; + Y;) - tJ Z;}{ -CaR + Y + b)} 

-{tJZ;}{rR -q(X; + Y;) + (y+ b)} > 0 (2.32) 

Reversing the sign of this inequality gives the condition for a resistant mutant strain 

to invade. Some algebraic manipulation allows this condition to be expressed as: 

(2.33) 

Condition (2.33) is identical to the earlier result (2.26) for invasion fitness. 
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2·4. Results 

2-4-1. Reciprocal invasion plots 

The dynamics are illustrated using Reciprocal Invasion Plots (Antonovics and Thrall 

1994; Bowers et al. 1994; Boots and Bowers 1999. 2004). I assume a fixed resident 

(susceptible) strain characterised by (as.rs) and a range of possible resistant mutants 

(aR.rR). The susceptible strain is then paired with each resistant genotype and the 

invasion criteria (2.26) and (2.27) evaluated in each case. Using this method. the 

relative costs and benefits that favour control or tolerance (for a given level 

susceptible host) can be determined. 

I begin by investigating the dynamics when resistance evolves as tolerance. 

Figure 2.1A partitions the (aR.rR) parameter space into regions where Is and IR are 

positive and negative. The solid lines therefore correspond to equality in (2.26) and 

(2.27). Importantly, there is no polymorphism: either the susceptible or the tolerant 

strain is eliminated. There is a limited region where the outcome is contingent on 

initial conditions. but this also results in monomorphism. This appears to be the 

general case: polymorphism was not observed for any parameter combinations. The 

addition of free-living stages therefore does not alter the prediction for a directly 

transmitted microparasite, which states that polymorphism is unlikely to evolve 

through tolerance (Boots and Bowers 1999.2004; Roy and Kirchner 2000). 

When instead resistance evolves as control, polymorphism is observed over a 

significant region of parameter space (Fig. 2.1B). It is most likely to occur between 

dissimilar strains, where the resistant strain has a much smaller virulence. The region 

of polymorphism becomes increasingly narrow as the degree of similarity between 

the resistant and susceptible strain increases. Note that the only difference between 

the two diagrams lies in the position of the Is ... 0 line. In Figure 2.1 A this lies below 

the IR .. 0 line, whereas in Figure 2.lB it lies above it. 
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Figure 2.1. Outcomes in trade-off space when a resistant mutant characterized by (aR' rR) attempts to 

invade a resident susceptible strain. The susceptible strain has intrinsic growth rate rs = 1 and 

experiences a level of virulence as = 3. Resistance evolves as either: (A) tolerance, or (B) control. 

Other parameters are: q = 0.1, f3 = 0.25, Y = 1.5, b = 0.5, /J = I, CJ) = 10 (tolerance) and tP = 10/3 

(control). 

Examination of the resistant equilibrium (2.13) reveals that a lower value of AR (due 

to control) increases the total host density X; + y;, and reduces the density of 

infective particles Z;. A putative susceptible invader therefore faces an increased 

level of resource competition, but a reduction in the force of infection. The overall 

effect on Is may theoretically be either positive or negative. However, the results 

indicate that Is should increase under control (as compared to tolerance with the 

same parameters). Faced with a controlling rather than a tolerant competitor, the 

susceptible strain experiences a reduced force of infection that outweighs the increase 

in resource competition. Graphically, this shifts the Is - 0 line upwards, reducing the 

region of parameter space where the susceptible strain is eliminated and precluding 

contingent competition as an outcome. Interpreted biologically, the presence of a 

control strain reduces the density of infective particles, the opportunities for new 

infections, and hence the selective pressure for resistance. 
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2-4-2. Adaptive Dynamics 

In the preceding analysis, the susceptible strain was assumed to be resident and 

putative invaders had higher resistance (reduced virulence) and a lower growth rate. 

If a resistant strain is able to invade, it either eliminates the susceptible strain or 

coexists with it in a dimorphism. However, after an initial invasion has taken place, 

further mutations may arise to challenge the new equilibrium. There may indeed be 

many evolutionary steps before the final equilibrium is reached. To determine the 

ultimate outcome of evolution, it is necessary to embed the single step algorithm 

(2.1 )-(2.5) within an adaptive dynamical framework. Applying the techniques of 

adaptive dynamics (Metz et al. 1996; Geritz et al. 1998), it can be determined 

whether the evolutionary behaviour outlined for the susceptible-resistant analysis can 

occur as a result of many evolutionary steps. In particular, I can investigate whether 

polymorphism is able to evolve from an initially monomorphic resident. 

The invasion exponent (2.26) gives the fitness of a resistant mutant in the 

environment determined by the susceptible strain. Generally, the resident strain is not 

necessarily 'susceptible,' but may have any level of resistance and associated growth 

rate (assuming a particular trade-off). Nearby mutants may be either more or less 

resistant and are also subject to the trade-off constraint. In the general case, the 

invasion exponent for a given mutant (aM ,rM) attempting to invade a resident strain 

(aE,rE) at equilibrium is: 

(2.34) 

This is identical to the invasion exponent (2.26), except that the subscripts M and E 

are now used to identify the mutant and the resident strains, respectively. 

I now assume explicit trade-offs between virulence (a) and growth rate (r), 

such that a given level of resistance is associated with a specified cost. When 

resistance evolves as control, this implies an additional relationship between growth 
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and the production rate (A). Attention is restricted to non-linear trade-off curves (Fig. 

2.2). 

With a decelerating trade-off, the cost (the reduction in growth rate) of a given 

increment of resistance becomes less as the investment in resistance increases (Le. 

there are increasing benefits of resistance). Given a particular cost structure, I 

generate a corresponding Pairwise Invadability Plot (PIP), from which the 

evolutionary dynamics can be determined. I assume a weakly decelerating trade-off 

(Fig. 2.2) and compare the pairwise plots when resistance evolves as control (Fig. 

2.3A) and tolerance (Fig. 2.3B). The virulence of the resident strategy is given on the 

horizontal axis and the mutant's virulence on the vertical axis. Where the region 

contains a plus (+) sign this indicates the mutant strain has a positive fitness and may 

invade the resident equilibrium. A minus (-) sign indicates the fitness is negative and 

that the mutant will be eliminated. 

"'"" ~ 0.8 '-' 

~ 
..c 0.6 i 
~o 

.S! 0.4 
'" c ·s 
c - 0.2 

0 2 3 

Virulence (ClR) 

Figure 2.2: Non-linear trade-off curves. There is a cost of resistance (reduced virulence) in terms of a 

lower intrinsic growth rate. Resistance evolves from the initial susceptible strain defined by as = 3 and 

rs = 1. The examples shown are: (A) accelerating costs, (B) mildly decelerating costs, and (C) strongly 

decelerating costs. 
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In Figure 2.3A, resistance evolves as control; the intersection at a ° - 0.39 indicates a 

singular strategy at which the local fitness gradient is zero. At resident values of a 

below this singular point, mutants with bigger a have positive fitness (indicated by 

the positive (+) region to the left of a ° and directly above the main diagonal). 

Similarly, given a resident above the singular point, mutants with smaller a have 

negative fitness (hence the (-) region to the right of a ° and below the main diagonal). 

Directional selection therefore moves towards the singular strategy at a ° - 0.39 and 

the fixed point is convergence stable (CS). However, the singular strategy does not 

itself resist invasion by mutants with larger or smaller virulence (the vertical through 

a O 

lies entirely in a positive (+) region). Once the fixed point is reached (or very near 

to it) disruptive selection will occur. Here the resident can be invaded by strains on 

either side of the singular point, and a process of evolutionary branching ensues. This 

leads ultimately to a dimorphic equilibrium composed of two sub-populations, one 

highly resistant (a ° = 0) and the other highly susceptible (a ° = 3). 

This is seen in evolutionary time by simulating the mutation-selection process 

and tracking the resident strategy (Fig. 2.3C). In Figure 2.3B, resistance evolves as 

tolerance under the same trade-off. There is no internal strategy at which the fitness 

gradient is zero and the optimal fitness occurs at the minimum value. The 

evolutionary process converges at a - 0 (Fig. 2.30). 
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Figure 2.3. Pairwise invadability plots (PIPs) when resistance evolves as: (A) control, and (B) 

tolerance. In both cases, there is a decelerating trade-off, such that r = 0.5 + 2/(7 - a). Other parameters 

are: q = 0.1, f3 = 0.25, Y = 1.5, b = 0.5, I.L = I, co = 10 and t/> = 10/3. The corresponding time plots are 

(C) control, and (D) tolerance. 

When resistance incurs accelerating costs, dimorphism is not observed, 

whether resistance evolves as control or tolerance. Using the method of pairwise 

invadability plots, singular strategies were determined that were both convergence 

and evolutionarily stable (CS and ESS). It can therefore be seen how the optimal 

investment in resistance differs with control and tolerance under an accelerating 

trade-off. The optimal investment in resistance is defined to be the difference in 

virulence between optimally resistant (ESS) and susceptible hosts. The optimal 

strategies are plotted as a function of the transmission rate (Fig. 2.4A) . As 
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transmission increases, the investment in both types of resistance increases. Hosts 

therefore invest more in defence when faced with highly infectious pathogens. The 

effect of the uninfected host lifespan (lib) is also investigated (Fig. 2.4B). As 

lifespan increases, resistance becomes increasingly beneficial and the optimal 

investment is higher. Longer-lived hosts therefore invest more in defending 

themselves against pathogens. 

Optimal 
resistance 

(a-a·) 

A 

3~----------------------~ 

21 ~ ...... -- .... -.... -.---
If "",.-

, 
I " 

0.5 

Transmission (~) 

B 
3.----------------------, 

2 

( -----------------­.... - ... -.-." 
I " , , 

Lifespan (lib) 

Figure 2.4. Optimal investment in resistance. The investment in resistance is defined as the reduction 

in virulence achieved by a resistant (tolerant or control) host, from that experienced by the initial 

susceptible host. The optimal resistance is therefore (as - aO) where as is the virulence experienced by 

the susceptible strain and aO is the optimal virulence. The solid line corresponds to the optimal strategy 

when resistance evolves as tolerance, and the dotted line to the optimal investment in control. In both 

cases there are accelerating costs of resistance such that r = 72162 • 1I[2( a + 0.1)] and the optimal 

strategy is evolutionarily stable (an ESS). The susceptible host is defined by as = 3. In (A) there is a 

constant natural mortality rate b == 0.5; in (B) there is a constant transmission rate f3 = 0.25. Other 

parameters are: q = 0.1, Y = 1.5, ~ = 10/3, co = 10 and Il = 1. Note that I/Jas = co to allow comparison 

between tolerance and control (susceptible strains are defined by 'As = 10 in each case). 

Looking at Figures 2.4A and 2.4B, the optimal investment in tolerance is 

always greater than the investment in control. This is because control also reduces the 

prevalence of infective particles, the force of infection, and the selective pressure for 

further resistance. However, as transmission rate increases, the difference between the 

investments becomes smaller (Fig. 2.4A). There is stronger pressure on the host to 

reduce the force of infection, and mechanisms conferring reduced transmission 
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increase their benefits at a faster rate. Despite the cost of resistance, it is still worth 

allocating more resources to controlling the pathogen. By contrast, in response to 

greater host longevity, the two defences increase their benefits equally. As the 

average lifespan increases, the difference between the optimal allocations remains 

roughly constant (Fig. 2.4B). 

2-5. Discussion 

It has been shown that different forms of virulence-reducing resistance lead to 

different evolutionary outcomes. As a general rule, tolerance will result in 

monomorphism. However, the evolution or" control may lead to dimorphism of 

extreme strains. Dimorphism is achieved when two distinct strategies are able to 

invade each other, and this is only likely when resistance evolves as control. 

Tolerance does not restrict the growth of the pathogen: on average, the longer-lived 

infected hosts produce more free-living infective particles, increasing the force of 

infection, f3 Z;, and hence the selective pressure for further tolerance. This acts as a 

form of positive feedback (Roy and Kirchner 2(00), such that tolerant hosts are better 

able to resist invasion by susceptible genotypes. The evolutionary dynamics of 

tolerance to a free-living pathogen are therefore analogous to those observed for a 

directly transmitted microparasite (Boots and Bowers 1999). 

A control strategy reduces virulence, not through 'tolerating' the deleterious 

effects of disease, but rather by limiting pathogen growth. Since the within-host 

replication of the pathogen is likely to correlate with tissue damage (Bremermann and 

Pickering 1983), resistance mechanisms that control the virus will also reduce 

virulence. The evolution of a control genotype corresponds to lower viral 

productivity, reducing the force of infection and hence the selective pressure for more 

resistance. This negative feedback may allow a susceptible host to invade a more 

resistant one, promoting dimorphism of extreme strains. The free-living model 

employed here makes the mechanism of control explicit, since pathogen growth is 

correlated with the production rate of infective stages. The analysis, however, is not 

strictly limited to indirectly transmitted pathogens. There is often assumed to be a 
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positive relationship between transmission rate and virulence (Anderson and May 

1982; Bremermann and Pickering 1983; Lenski and May 1994; van Baalen and 

Sabelis 1995; Restif and Koella 2003, 2004). There is also evidence in the rabbit­

myxomatosis system that virulence may be negatively correlated with the recovery 

rate (Anderson and May 1982; May and Anderson 1983). Virulence-reducing 

mechanisms may therefore also reduce the transmission rate or increase recovery. 

These may be classed as 'control' and may be a likely response to directly transmitted 

microparasites. 

There is some theoretical evidence that tolerance and avoidance (reduced 

susceptibility becoming infected) may not be mutually exclusive adaptive traits. 

Tiffin (2000) showed that intermediate investments in both traits could evolve, if the 

costs of resistance.are unequal. Restif and Koella (2004) modelled the simultaneous 

evolution of tolerance and higher recovery rate as distinct traits and found that, when 

investment in either trait incurs accelerating costs, the host may split its investment 

between the two defences. These provide a parallel to my study, given that control 

may be viewed as a composite form of resistance combining the components of 

avoidance (through a lower density of infective particles) and tolerance; here, 

investment in one component of defence necessitated a given investment in the other 

(since there is a fixed relationship between virulence and the production rate of 

infective particles). However, Roy and Kirchner (2000) showed that a single gene 

conferring avoidance and tolerance can be maintained or become fixed in a 

population. It is clearly important, therefore, to distinguish whether resistance is 

conferred by one or more defence mechanisms. Where resistance is due to a single 

control trait, it may be easier to predict the evolutionary outcome, particularly if the 

trade-off could be determined. It would also be interesting to investigate the 

consequences of decelerating trade-offs in Restif and Koella's model, since 

decelerating costs of avoidance may also allow branching (Boots and Haraguchi 

1999). Extrapolating from previous results, polymorphism should be less likely when 

the overall bias is towards higher investment in tolerance (Roy and Kirchner 2000). 
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When tolerance and control are equally costly, and the costs are accelerating, 

hosts will invest relatively less in control (Fig. 2.4). This is due to the added benefit 

of control in terms of reducing the force of infection, which also reduces the selective 

pressure for resistance (Boots and Bowers 1999). A weakly decelerating trade-off has 

been shown to promote maximal investment in tolerance (Figs. 2.3B, 2.30), although 

different trade-offs (accelerating or strongly decelerating) may select for intermediate 

or even zero investment in tolerance. 

Tolerance is most likely to evolve in response to high transmission rates and 

low virulence (Boots and Bowers 1999; Restif and Koella 2003). Restif and Koella 

(2003) also predicted only locally stable investments in tolerance, such that a highly 

susceptible host with high fecundity was capable of invading the local ESS and 

driving the pathogen to extinction. In this model, only host genotypes capable of 

supporting the pathogen were considered. This effectively fixes an upper limit on the 

level of virulence, which also implies a maximum growth rate, due to the trade-off. 

Pathogen extinction through invasion by a susceptible mutant with high birth rate was 

therefore assumed to be impossible. Nevertheless, it is worth noting that convergence 

towards the branching point (Fig. 2.3C) may be dependent on initial conditions: if the 

initial virulence in susceptible hosts is sufficiently high, evolution proceeds towards a 

monomorphic strategy with high fecundity and high virulence. Whether dimorphism 

is actually attained as the result of selection may therefore be contingent on the level 

of susceptibility exhibited by the resident genotype, although in real systems there 

will be constraints imposed by the morphology. 

The dynamics in a free-living host-microparasite system can exhibit 

population cycles where those for a comparable directly transmitted system cannot 

(Anderson and May 1981; Bowers et al. 1993; Dwyer 1994; White et al. 1996). The 

invasion analysis performed in this study assumes stable eqUilibrium behaviour. 

However, when the underlying dynamics are non-equilibrium the invasion exponents 

«2.26) and (2.27» are not valid and need to be replaced by the largest Lyapunov 

exponent (Metz et al. 1992). Understanding how the introduction of population cycles 

would affect the results may form the basis of future work. 
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The chief aim in this chapter was to investigate the evolutionary dynamics of 

tolerance and control as distinct defence strategies in response to pathogenic 

infection. The two. forms of resistance have been shown to attain different 

evolutionary optima. Control has been shown to promote a wider range of 

evolutionary outcomes, in particular dimorphism of extreme strains. This may go 

some way to explaining the high level of polymorphisms observed in nature. 
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3. Lifespan and the evolution of resistance 
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3·1. Introduction 

There is widespread interest in how life history traits affect the evolution of resistance 

characteristics (Zuk and Stoehr 2002; Schmid-Hempel 2003; Schmid-Hempel and 

Ebert 2003). The level of resistance an organism evolves depends on the 

epidemiology of the particular host-parasite interaction, which in turn depends itself 

on the life histories of hosts and parasites (Zuk and Stoehr 2002). One aspect of life 

history that has attracted a great deal of recent attention in this context is the host's 

lifespan. Shorter-lived populations are generally expected to invest relatively less in 

costly resistance (Medzhitov and Janeway 1997; Rinkevich 1999; Zuk and Stoehr 

2002). This is based on the idea that, since fitness is correlated with reproduction and 

survival, shorter-lived organisms will have a lower mortality cost of parasitism. 

However, selection for resistance is dependent on both epidemiological and 

demographic processes. Demographic turnover is lower in long-lived populations and 

this may lead to unexpected patterns of selection. In particular, analysis of the basic 

susceptible-infected-removed (SIR) model has revealed that, under certain conditions, 

there may be a non-monotonic relationship between lifespan and the optimal immune 

investment (van Boven and Weissing 2004). There can also be bistability in the 

evolutionary outcomes, where the level of resistance that actually evolves depends on 

the initial conditions of the system (van Baalen 1998; Boots and Bowers 1999; Restif 

and Koella 2003; van Boven and Weissing 2004), 

It is therefore important to recognize that the evolution of resistance traits 

occurs within an adaptive context, which encompasses a dynamic ecological 

feedback loop. The life histories of the host and pathogen determine the population 

dynamics, which in turn determine the evolutionarily stable resistance and the 

evolution of life history characteristics (Frank 1996; van Baalen 1998; Day and Bums 

2003; van Boven and Weissing 2004). In this chapter, I develop fitness expressions 

that depend on both resident and mutant strategies, therefore incorporating the 

feedbacks between life history traits and popUlation dynamics. These expressions are 

used to determine the evolutionarily stable strategy (ESS; Maynard Smith and Price 

1973) that cannot be invaded by any other genotype, and also whether this strategy is 
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attainable. Using this theoretical approach, I investigate the conditions under which 

longer-lived host popUlations evolve more or less resistance to their parasites, 

examining a variety of different forms of resistance. Particular emphasis is given to 

how acquired immunity affects the dynamics. The evolution of acquired immunity 

itself is also considered. 

3·2. Models and Analysis 

3-2-1. Susceptible-injected-susceptible (model I) 

This describes a susceptible-infected-susceptible (SIS) interaction for a directly 

transmitted microparasite. Infected individuals are able to recover but then 

immediately return to being susceptible and may be subsequently re-infected. The 

dynamics are described by the following differential equations: 

dS -aH-qH2 -bS-{3SI+yI 
dt 

dI 
- - {3SI - (a + y+ b)I 
dt 

(3.1) 

(3.2) 

Here S is the density of susceptible individuals, I is the density of infecteds, and 

H - S + I is the total population density. The parameter a represents the birth rate, 

and b the natural death rate. The host population is assumed to experience intra­

specific crowding that limits its growth. For simplicity, this density-dependent 

crowding is assumed to act directly to reduce the birth rate, and is measured by the 

parameter q which is related to the carrying capacity, K, by the relationship 

K - (a - b) / q. Susceptibles become infected through contact with infected hosts, at 

a rate determined by the transmission efficiency, {3. Infected hosts have an increased 

death rate (virulence, a) due to pathogen replication and/or toxicity. Infected hosts 

are still able to reproduce, and recover at a rate y. 
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3-2-2. Susceptible-injected-removed-susceptible (model II) 

The second model corresponds to a susceptible-infected-removed-susceptible (SIRS) 

interaction, where infected hosts acquire immunity to the disease upon recovery. 

While immune, hosts do not become infected or transmit the disease to susceptibles. 

Immunity is lost at a constant rate, 0, whereupon individuals revert to tieing 

susceptible. The dynamics are described by the equations: 

dS _ aH _qH2 -bS - PSI + oR 
dt 

dl 
--pSI-(a+y+b)1 
dt 

dR 
- -yl - (0+ b)R 
dt 

3-2-3. Susceptible-injected-removed (model III) 

(3.3) 

(3.4) 

(3.5) 

The third model gives an alternative formulation including recovery to an immune 

class. I assume that upon recovery a proportion, v, of recovered hosts acquire 

permanent immunity, while the remaining proportion, 1-v, immediately return to 

being susceptible. The dynamics are described by the equations: 

dS -aH-qH2 -bS-PSI+(1-v)yl 
dt 

dI 
- - PSI -(a+ y+ b)1 
dt 

dR 
--vyl-bR 
dt 

(3.6) 

(3.7) 

(3.8) 

Note that in models II and III, the total population density is given by H - S + I + R. 

The evolution of resistance is investigated through the alternative mechanisms of 

avoidance, recovery, tolerance or acquired immunity (Boots and Bowers 2004). 

A voidance reduces the probability of becoming infected, and resistant hosts therefore 

have a lower transmission rate (13). Recovery increases the rate of clearance (y), 
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while tolerance reduces virulence (a) but does not affect the transmission rate. 

Finally, acquired immunity evolves as either a lower rate of loss of immunity (15), or 

a higher probability of acquiring immunity (v). The different forms are summarised 

as follows (where x denotes the host's investment in resistance): 

Avoidance: f3 ... f3,(1- X)h + f30 (3.9) 

Recovery: h 
Y"'Y,x +Yo (3.10) 

Tolerance: a=a,(1-x)"+ao (3.11 ) 

Immunity (model ll): 15 ... 15, (1- X)h + Do (3.12) 

Immunity (model ill): h v" v,x + Vo (3.13) 

I consider explicit trade-offs such that a given level of resistance corresponds to a 

given reduction in the intrinsic birth rate of the host: 

(3.14) 

This trade-off is such that the benefit from an increase in resistance is bought at an 

ever-increasing cost in terms of a reduction in the birth rate (a trade-off with 

accelerating costs). In the absence of any resistance, the intrinsic birth rate is given by 

Clo. The parameter e provides a measure of the cost (to avoid negative birth rates, it is 

assumed that 0 s (1- ex) s 1). 

I begin by examining the evolution of avoidance (3.9), recovery (3.10) and 

tolerance (3.10) for the basic SIS interaction (model I). Acquired immunity is then 

added as described by (3.12) and (3.13), and the evolutionary dynamics considered. 

Since the natural death rate is b, the average lifespan of uninfected (susceptible) hosts 

is taken as lib. The method is to examine how the level of investment in resistance 

(xo) that evolves is affected by changes in lifespan (lIb). This is achieved using the 

method of adaptive dynamics as described below. 
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3-2-4. Invasion analysis 

I derive the condition for a rare mutant strain to invade and replace an established 

resident host. I make the initial assumption that all host strains are capable of 

supporting the parasite in endemic equilibrium. This requires that host births exceed 

deaths (a> b) and that the carrying capacity exceeds a threshold density 

K ~ HT .. (a + r + b)/ fJ. The analysis is presented in detail for model II and 

summarised for the other models. 

Consider the stable endemic equilibrium (S", 1", R") in model II with resident 

host strategy, x, and associated total density H· - S" + I" + R" . Suppose a mutant 

strain characterised by xm evolves at an initially low density (in the following the 

subscript m denotes the mutant parameters). For this mutant strain to invade, its 

marginal growth rate must be positive. This means the average contribution per 

mutant individual to the population must be greater than zero. Assume the mutant is 

initially in the susceptible state, and remains uninfected for an average time period 

Ts, and let 1'r and TR denote the average times spent in the infected and recovered 

states. The average contributions while in the respective states are denoted PS' PI 

and PR' From the arguments given in Boots and Bowers (2004), the following 

identities can be derived: 

Ps -am -b-qH" 

P -a -b-qH"-a I m m 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 
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(3.20) 

Let rp(xm I x) denote the marginal growth rate of the rare mutant strain, x m ' in the 

resident population, x. This is equal to the sum of the average time periods (3.18)­

(3.20), weighted by the corresponding contributions (3.15)-(3.17): 

(3.21) 

Substituting in the values for (3.15)-(3.20) and eliminating the positive common 

factor, 1/(b + f3",t), the marginal growth rate of a rare mutant strain is given as: 

rp(xm Ix) _ a", -b-qH' + f3m f (am -b-qlf -am) + ... 
(am + Ym +b) 

... + Ymf3",t(a", -b-qlf) > 0 
(<<5", + b)(am + Ym + b) 

(3.22) 

Provided (3.22) is satisfied, a rare mutant strain characterised by Xm can invade the 

resident strain x. Otherwise, the mutant strain has a negative growth rate and will 

become extinct. Two points need to be mentioned. Firstly, successive periods of 

infection are possible (assuming the rates of recovery, Y m' and loss of immunity, «5m , 

are non-zero). Taking this into account scales (3.22) by a positive constant and can 

therefore be ignored. Secondly, invasions by infected or recovered individuals may 

also occur. It can be shown, however, that infecteds or recovered cannot prosper 

unless susceptibles do. Equation (3.22) therefore sufficiently determines the growth 

rate of a rare mutant strain and can be taken as the invasion criterion (or fitness 

function). Using the same technique, the invasion criterion for model I is obtained as: 

(3.23) 

Similarly the invasion criterion for model III is: 
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VmYnof3mt(am -b-qH*) 0 
... + > 

b(am + Ym + b) 
(3.24) 

Adaptive dynamics are now used to determine the evolutionary behaviour and the 

level of investment in resistance that evolves. Explicit trade-off functions are 

employed such that a given investment in resistance (3.9)-(3.13) is associated with a 

given reduction in birth rate (3.14). This trade-off is incorporated into the fitness 

functions (3.22)-(3.24). The theory of adaptive dynamics (Metz et al. 1996; Geritz et 

al. 1998) states that the population will evolve in the direction of the local fitness 

gradient, [iJt/J/iJxml.x. ' and that singular points of evolution occur where this fitness 

gradient is equal to zero: 

(3.25) 

As discussed in chapter 1, evolutionary singular points may exhibit a number of 

evolutionary properties. Here the attention is limited to two particular properties. I 

determine whether the singular point is an ESS (if, when resident, it resists invasion 

by all other strains), and also whether it is convergence stable (if local evolution 

proceeds towards it). The optimal strategy is assumed to be the continuously stable 

strategy (CSS; Geritz et al. 1998) that is both evolutionarily and convergence stable. 

Such a strategy corresponds to a local maximum. An evolutionary repellor on the 

other hand, is neither evolutionarily nor convergence stable (non-ESS, non-CS) and 

therefore corresponds to a local fitness minimum. All the singular points analysed in 

this model were found to be either CSS attractors or evolutionary repellors. As will 

be shown, in some cases, this leads to the interesting phenomenon of evolutionary 

bistability. The evolutionary properties of the singular points was checked using 

pairwise invadability plots, and by numerical simulations of the mutation-selection 

process. 
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3·3. Results 

3-3-1. Avoidance (model/) 

When resistance evolves as reduced transmission rate (avoidance), the relationship 

between host lifespan (1/ b) and the optimal investment, x·, is dependent on the 

virulence, a. This is illustrated in Figure 3.1A, showing the level of investment that 

evolves as a function of lifespan. For intermediate or high virulence ( a - 2, 2.75), the 

optimal strategy, x·, is an increasing saturating function of lifespan. At lower 

virulence (a -1.75), resistance initially increases and then decreases marginally. 

This predicts longer-lived hosts to evolve more avoidance, although this is not always 

the case; in response to low virulence (a -1.67), longer-lived hosts may evolve less 

avoidance than shorter-lived ones. In this case, the optimal avoidance, x·, is non­

monotonic, but mainly decreasing with lifespan. Over a range of intermediate 

lifespans (10 < 11 b < 43) there is bistability in the evolutionary outcomes: there 

evolves either a locally stable level of avoidance (x· > 0), or no avoidance (x· - 0), 

the outcome being determined by the initial conditions. If the initial level of 

avoidance is above a particular threshold (determined by the position of an 

evolutionary repellor; see Fig 3.1A) then avoidance evolves to the stable positive 

level of avoidance. If the initial level of avoidance is below the threshold then the 

population evolves to zero avoidance. Hosts with sufficiently high lifespan (lib i! 43) 

will evolve zero avoidance. This evolutionary behaviour only occurs over a small 

range of low virulences (a), between the regions where avoidance is worthwhile at 

alilifespans (x· > 0 at a -1.7), and is never worthwhile (x· - 0 for a !O 1.5). 

That avoidance should generally increase with lifespan can be explained by 

the higher prevalence of infection in longer-lived populations (Fig. 3.1B). Longer­

lived susceptibles encounter more parasites, while longer-lived infecteds have more 

opportunities to infect susceptibles. Provided virulence (a) is not too low, the higher 

prevalence in longer-lived populations increases the selection for avoidance (Fig. 

3.1A). Importantly, there is also a negative relationship between virulence and 

disease prevalence (Fig. 3.lB). Lower mortality of infected hosts increases the 
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average infectious period. l/(a + y + b). and therefore increases the opportunities for 

transmission. Assuming virulence ( a) and the death rate (b) are low. a given level of 

avoidance may only marginally reduce the prevalence of infection. Consequently. 

longer-lived populations may evolve relatively less avoidance, but only if the 

pathogenic effect on fitness (virulence) is relatively small. 

3-3-2. Recovery (model I) 

The evolutionary dynamics when resistance evolves as recovery (increased rate of 

clearance) are illustrated in Figure 3.1 C. At intermediate to high virulences (a - 1.75 , 

2.75), the optimal recovery rate is an initially increasing then saturating function of 

lifespan. At low virulence (a -1.25), the optimal investment, x·, initially increases 

with lifespan and then decreases towards a positive asymptote. As with avoidance, 

the prevalence of infection increases monotonically with lifespan. Longer-lived 

populations have higher disease prevalences and this generally increases the selection 

for resistance. At low virulence, disease prevalence is even higher such that recovered 

hosts are highly likely to be re-infected. Consequently, longer-lived populations may 

sometimes evolve marginally lower recovery rates in response to parasitism. Note, 

however, that there is no bistability in evolutionary outcomes. 
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Figure 3.1. (A) Evolutionarily stable investment in avoidance, and (B) corresponding prevalence of 

infection, as a function of host lifespan. Parameters are y :::: 0.25, f31 :::: f30 :::: 1 and h :::: 2. (C) 

Evolutionarily stable investment in recovery as a function of host lifespan; parameters are f3:::: 1.5, YI :::: 

2.5, Yo = 0.1 and h = 0.9. (D) Evolutionarily stable investment in tolerance as a function of host 

lifespan. Parameters are f3 = 1, y:::: 0.25, al :::: 1.5, Clo :::: 1 and h = 1.5. In all figures the black lines 

correspond to evolutionary attractors (CSSs) and the grey lines correspond to evolutionary repellors; 

the arrows indicate the direction of evolution. Other parameters are a = 1.5, q :::: 0.1 and c :::: 0.25. 

3-3-3. Tolerance (model I) 

The evolutionary dynamics of tolerance are illustrated in Figure 3.1D. Very short­

lived hosts do not invest in any tolerance. As lifespan increases, there is a range of 

bistable strategies, where the host either evolves no tolerance (x· .. 0), or some 

positive level, x· > 0, that increases with lifespan. As lifespan further increases, the 

positive ES tolerance increases and the local optimum at x· - 0 vanishes. Once again, 
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disease prevalence was found to increase with lifespan. Longer-lived populations 

invest more heavily in tolerance in response to these higher prevalences. 

3-3-4. Avoidance (model II) 

If there is a sufficiently high rate of loss of immunity (6 - 5), optimal avoidance 

increases and saturates with lifespan (Fig. 3.2A). With longer lasting immunity 

(lJ ... 0.5), the optimal investment initially increases with lifespan and then marginally 

decreases towards a positive asymptote (Fig. 3.2A). For lower rates of loss of 

immunity (lJ - 0.325), investment tends to fall with lifespan and over an intermediate 

range there is bistability (a positive optimum, x· > 0, and the zero strategy, x· - 0). 

Furthermore, above a threshold lifespan (lib O! 50) hosts do not evolve any avoidance 

(Fig. 3.2A). Comparing the three examples, it is notable that hosts invest relatively 

less in avoidance (at any lifespan), as the length of immunity (116) increases. 

These results can again be explained by the epidemiology. At moderate or 

high rates of loss of immunity (lJ), the prevalence of infection always increases with 

lifespan (Fig. 3.2B). Interestingly, disease prevalence is almost the same for a 

moderate rate ofloss (i5 .. 0.5) as for a high rate (lJ - 5). In the former case, however, 

a greater proportion of the population is immune to infection (Fig. 3.2C), reducing the 

selection for avoidance. This lower level of avoidance balances the reduction in the 

susceptible population due to the immune class, leading to a similar level of 

prevalence. 

Provided the rate of loss of immunity (lJ) is not too small, longer-lived 

populations will exhibit higher prevalences, and consequently evolve relatively 

greater avoidance. 
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Figure 3.2. (A), (0) Evolutionarily stable investment in avoidance; (B), (E) corresponding prevalence 

of infection; and (C), (F) proportion of immune individuals, as a function of host lifespan. In all figures 

the black lines correspond to evolutionary attractors (eSSs) and the grey lines correspond to 

evolutionary repellors; the arrows indicate the direction of evolution. In (A)-(C) recovered hosts lose 

immunity at a constant rate, {, (model II); in (D)-(F) the probability of acquiring immunity upon 

recovery is v (model 111). Other parameters are a = 1.5, q = 0.1, c = 0.25, a = 2.75, Y = 0.25, PI = Po = I 

andh=2. 

Even at low rates of loss «(j - 0.325), prevalence generally increases with lifespan. 

although it is constant when the host does not invest in any resistance (Fig. 3.2B). 

The proportion of immunes always increases with lifespan and with the duration of 

immunity (Fig. 3.2C). Longer-lived hosts are more likely to become infected. and to 

53 



recover from infection before (natural) death. They will also live longer while 

immune. If immunity is sufficiently durable, it may therefore be more advantageous 

to invest in reproduction rather than resistance, as this outweighs the advantage of 

avoiding infection in the fIrst place (Le. avoiding virulence). 

3-3-5. Avoidance (model Ill) 

Next I examine the situation where the proportion, v, of hosts that acquire permanent 

immunity varies (model III). Here the optimal avoidance is always maximal for an 

intermediate lifespan; as lifespan increases from low values, the ES avoidance 

initially increases and then decreases (Fig. 3.2D). There always exists a narrow 

region of bistability, and a threshold lifespan above which hosts do not evolve any 

avoidance. As expected, at higher probabilities of acquiring immunity (v), hosts 

always invest relatively less in avoidance (Fig. 3.2D). The proportion of immunes 

always increases with lifespan and with the probability of becoming immune, v (Fig. 

3.2F). Moving from low to intermediate lifespan, the prevalence of infection also 

increases (Fig. 3.2E). Longer-lived species have higher prevalences and a higher 

proportion of immunes; for sufficiently high lifespan, this always reduces selection 

for avoidance. 

This contrasts with variation in waning immunity (model II), where optimal 

avoidance may be monotonic (lJ - 5 in Fig. 3.2A), non-monotonic but reach a 

positive asymptote (lJ - 0.5 in Fig. 3.2A), or non-monotonic and zero for suffIciently 

high lifespan ({J - 0.325 in Fig. 3.2A). The relative importance of the immune class 

and its attendant density-dependent effects are more important when immunity is 

permanent (model III), as selection for avoidance always decreases at higher lifespan. 

Furthermore, where the host does not ev'olve any avoidance, prevalence is seen to 

decreases with increasing lifespan (Fig. 3.2E). In model II, immunity always wanes 

eventually (at rate lJ), and the effects are weaker. Note also that the non-monotonic 

response described for both models is quantitatively dependent on the host's recovery 

rate (y). As y decreases, a lower rate of loss of immunity (or higher probability of 
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acquiring immunity) is required for selection for avoidance to decrease due to the 

relative importance of the immune class. 

3-3-6.Recovery(~delll) 

I examine the evolutionary dynamics of recovery, assuming immunity wanes at a 

constant rate, () (model II). At high rates of loss immunity (() - 5), the results are 

similar to that of the SIS interaction: optimal investment increases and saturates with 

lifespan, as recovered hosts quickly lose their immunity and prevalence increases 

monotonically with lifespan (Figs. 3.3A-3.3C). At intermediate rates of loss of 

immunity (() - 0.25), the optimal recovery initially increases with lifespan, then 

decreases towards a positive asymptote. When immunity wanes very slowly 

(() - 0.01), the ES recovery is again non-monotonic with lifespan but shows a 

stronger decrease. Here the proportion of immunes is much greater, and in long-lived 

species comprises the majority of the population (Fig. 3.3C). This reduces the 

proportion of susceptibles, and (due to the density-dependent effects) may also reduce 

their absolute density. This indirectly reduces the prevalence of infection (Fig. 3.3B), 

and therefore the selection for recovery (Fig. 3.3A). 

3-3-7.Recovery(~dellll) 

I now assume that a proportion (v) of recovered hosts acquire permanent immunity 

(model III). The optimal recovery, x·, initially increases and then decreases with 

higher lifespan, tending towards the zero asymptote; recovery is always maximal for 

an intermediate lifespan (Fig. 3.30). At lower probabilities of acquiring immunity 

(v - 0.5), there is a stronger initial increase, but investments always tend to zero for 

sufficiently long lifespans. Again, the dynamics are explained by density-dependent 

effects and by the relative importance of immunes. 
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Figure 3.3. (A), (0) Evolutionarily stable investment in recovery; (8), (E) corresponding prevalence of 

infection; and (C), (F) proportion of immune individuals, as a function of host lifespan. In all figures 

the black lines correspond to evolutionary attractors (CSSs) and the grey lines correspond to 

evolutionary repellors; the arrows indicate the direction of evolution. In (A)·(C) recovered hosts lose 

immunity at a constant rate, {; (model II); in (D)-(F) the probability of acquiring immunity upon 

recovery is v (model Ill). Other parameters are a = 1.5, q = 0.1, c = 0.25, a = 2.75, f3 = 2, YI = 2.5, 

Yo = 0.1 and h = 0.9. 

As shown in Figure 3.3E, the prevalence of infection decreases monotonically as 

lifespan is increased (at lower values of v, prevalence may initially increase, but 

always decreases at higher lifespan). The proportion of immunes always increases 

with lifespan (Fig. 3.3F). At sufficiently high lifespan, this long-lived immune 
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population induces a higher level of density-dependent crowding. Disease prevalence 

is therefore lower and longer-lived popUlations invest less in recovery (Fig. 3.30). 

The immune class has a greater effect in model (III) due to the fact that immunity is 

permanent: even at very low v. prevalence and the selection for recovery always 

decrease for sufficiently high lifespan. 

At low lifespan (models I. II) and/or high rate of loss of immunity (model II). 

the optimal recovery rate is much higher than in the absence of acquired immunity 

(compare Figs. 3.1C with 3.3A. 3.30). The added benefit of becoming immune 

increases selection for recovery. Provided the overall proportion of immune hosts 

remains relatively low. individuals may therefore evolve higher recovery rates ifthey 

also have acquired immunity. 

3-3-8. Tolerance (model II) 

Next, I consider the evolution of tolerance when hosts lose immunity at constant rate 

(model II). Provided the rate of loss of immunity (0) is sufficiently high. the optimal 

investment increases and saturates with lifespan (Fig. 3.4A). Below a certain lifespan 

(11 b $ 3). host do not invest in any tolerance. For higher lifespans. hosts may evolve a 

positive level of tolerance. x· > O. However. for part of the range there is bistability 

whereby either a positive level of tolerance or zero tolerance will evolve; this is 

dependent on the initial level of tolerance. Disease prevalence and the proportion of 

individuals with immunity both increase with lifespan (Figs. 3.4B. 3.4C). Here the 

increases in prevalence dominate resulting in the selection for increases in tolerance 

mechanisms. since the immune class is too small to significantly influence the 

dynamics. 

57 



A D 

... 
'" 

~ 
!! !! 
i OJ> J ~ ... 
. 5 

.1 
I .! ... , I u \ ; 

i3 0.: .5 

I· I I '. if! , 

" I. II 12 I. ~I 

W"""n(llb) Ure'IMm ( 11h) 

B F. 

... 
~ ~ C '" 
i H 

1 
l l 
:a I:l .. / I 

all 

IL2 
I: .. • " I. :u 

Uf<SpOll (lib) l.if':'pAli (lib} 

C P .... 
~ 

OJ 
2; 

~ 
~ ~ u 
B i 
.~ E 

.~ ... ' '15 'l5 

1 t .. , 
13 13 ~I 

DJII 
12 " II 12 I. '" 

Ufcs...,(lIb) Lif_n(llb) 

Figure 3.4. (A), (0) Evolutionarily stable investment in tolerance; (B), (E) corresponding prevalence of 

infection; and (C), (F) proportion of immune individuals, as a function of host lifespan. In all figures 

the black lines correspond to evolutionary attractors (CSSs) and the grey lines correspond to 

evolutionary repellors; the arrows indicate the direction of evolution. In (A)-(C) the rate of loss of 

immunity is 6 = I (modelll); while in (D)-(F) 6 = 0.05. Other parameters are a = 1.5, q = 0.1, c = 0.25, 

fJ= 1, y= 0.25, a l = 1.5, ao = 1 and h = 1.5. 

At lower rates of loss of immunity (<5), neither very long-lived nor very short­

lived hosts invest in any tolerance (Fig. 3.4D). At intermediate lifespans, there is a 

locally stable level of tolerance, x· > 0, which is globally stable over a reduced range; 

otherwise, there also exists a locally stable investment at x· - O. The level of 
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investment (x· > 0) initially increases and then decreases with lifespan, which is 

again due to the effect of the immune class. Initially, prevalence increases with 

lifespan, and there are relatively few hosts with immunity (Figs. 3.4E, 3.4F). As 

lifespan further increases, the proportion of immunes also increases, and prevalence 

correspondingly begins to decrease (Figs. 3.4D, 3.4E). There is therefore a clear 

positive relationship between disease prevalence and the optimal investment in 

tolerance. At high lifespan, the large immune class increases the density-dependent 

effects, reducing the proportion of susceptibles and therefore disease prevalence. If 

there is a sufficiently low rate of loss of immunity, longer-lived populations may 

therefore evolve relatively less tolerance (Fig. 3.4D). However, as with avoidance, 

the decrease in investments occurring at high lifespans is quantitatively dependent on 

the recovery rate, r. If there is a lower rate of clearance, then lower rates of loss of 

immunity (6) and/or higher host lifespans are required for tolerance to decrease. 

3-3-9. Tolerance (model III) 

Varying the proportion, v, of hosts that acquire permanent immunity (model III), 

produces qualitatively similar evolutionary dynamics to those in Figures 3.4D-3.4F. 

Even at very low probabilities of acquiring immunity (v), tolerance is always non­

monotonic with lifespan and falls to zero for sufficiently long-lived hosts. 

3-3-10. Acquired immunity (model II) 

I now examine the evolution of acquired immunity itself, in terms of a reduced rate of 

loss of immunity, 6, or a higher probability, v, of gaining acquired immunity. If 

immunity increases the duration of the immune period (model II), then very short­

lived hosts do not invest in resistance at all (Fig. 3.SA). Above this threshold, there is 

bistability with an intermediate ES level of immunity, x·, that rapidly attains a very 

high level and an alternate ES strategy at x - 0 (zero investment). The proportion of 

immunes increases with lifespan, and is relatively small where the host does not 

invest in any resistance (Fig. 3.SC) and disease prevalence increases monotonically 

with lifespan (Fig. 3.SB). When the host does invest in acquired immunity, the 
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immune class is very large at higher lifespan (Fig. 3.5C), and density-dependent 

effects cause prevalence to fall (Fig. 3.5B). At lower lifespan, the prevalence of 

infection is too high and the proportion of immunes too few, for it to be worthwhile 

investing in maintaining immunity. As lifespan increases, the benefits of increased 

immunity (in terms of a higher proportion of immunes and reduced prevalence) are 

greater. For sufficiently high lifespan, then, longer-lived popUlations always evolve 

greater immunity. 

3 -3 -J J . Acquired immunity (model III) 

The situation is very different for the evolution of acquiring immunity (model III). 

Here, the ES level of immunity, x·, increases initially and then decreases at higher 

lifespan (as lifespan tends to infinity, x· asymptotes towards zero) (Fig. 3.5D). This 

contrast is due to differences in the effect of the immune class on the epidemiology, 

and therefore selection for immunity. As lifespan increases, the proportion of the 

individuals with acquired immunity increases, becoming very large at high lifespan 

(Fig. 3.5F). In contrast, disease prevalence decreases with increasing lifespan to low 

levels (Fig. 3.5E). Density-dependence from the long-lived immune class reduces the 

proportion of susceptibles and therefore the prevalence of infection. This reduces the 

selection for immunity as lifespan increases. The initial increase in immunity (Fig. 

3.5D) is explained by the fact that, although disease prevalence in the population is 

decreasing, at the level of the individual, longer-lived hosts still have a greater 

number of encounters with infected hosts. If the immune class and the corresponding 

density-dependent effects are relatively small, moderately long-lived populations may 

therefore evolve greater immunity. 
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Figure 3.5. (A), (D) Evolutionarily stable investment in acquired immunity; (B), (E) corresponding 

prevalence of infection; and (C), (F) proportion of immune individuals, as a function of host lifespan. 

In all figures the black lines correspond to evolutionary attractors (CSSs) and the grey lines correspond 

to evolutionary repellors; the arrows indicate the direction of evolution. In (A)-(C) lJ1 = 5, c5v = 0.1 and 

h = 2 (model II); in (D)-(F) VI = 0.9, Vo = 0.1 and h = 0.9 (model m). Other parameters are a = 1.5, 

q = 0.1, c = 0.25, a= y= 2.5 and,8 = 2.5. 
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3-4. Discussion 

Longer-lived species relying only on innate resistance to defend against parasites 

generally invest more in resistance. This increased investment occurs whether 

resistance reduces the probability of infection, increases the recovery rate, or reduces 

virulence. Longer-lived individuals are more likely to become infected, and therefore 

tend to have higher disease prevalence. This increases the selection for costly 

defences that avoid infection or tolerate pathogen damage. In the examples given, 

infected hosts were able to recover from infection but it can be shown these results 

hold even if the disease is invariably fatal. In contrast, if hosts benefit from 

immunological memory and therefore acquire immunity, the optimal investment in 

innate resistance may often be maximal for an intermediate lifespan. If immunity is 

permanent (the classic susceptible-infected-removed dynamic), the optimal immunity 

is always maximal for an i~termediate lifespan. If immunity wanes over time, longer­

lived individuals may invest more in innate defences, but this is not always the case: 

depending on the epidemiology, hosts of intermediate lifespan may again invest in 

relatively more resistance. These effects occur because longer-lived individuals are 

more likely to recover from infection, and may therefore invest relatively less in 

mechanisms that reduce transmission. Populations of longer-lived hosts have a higher 

proportion of immune individuals and, due to intra-specific crowding, a lower 

prevalence of infection. Selection for mechanisms that reduce virulence or increase 

recovery may therefore also be lower in such longer-lived species. 

There is often bistability in the evolutionary outcomes. Where resistance 

reduces the probability of infection (avoidance), it is longer-lived individuals that 

show this bistability, either evolving resistance, or no resistance at all. This bistability 

is due to the existence of a local fitness minimum, or evolutionary 'repellor' (Metz et 

al. 1996; Geritz et al. 1998), occurring between two locally stable strategies (CSSs). 

An important implication of this is that if long-lived individuals are initially 

susceptible to a novel parasite, with local mutation, they will not evolve any 

resistance. However, if global mutations occur, even an initially susceptible 

population may evolve resistance. There may therefore be dramatic shifts in the level 
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of avoidance, when a highly resistant morph invades and eliminates an initially 

susceptible population. This type of bistability is also seen in the evolution of 

tolerance, although here it may occur in both short-lived and long-lived species. In 

this case, assuming local mutation, only hosts of intermediate lifespan will evolve 

tolerance to a novel pathogen. It is important to note, however, that this only occurs if 

acquired immunity is long lasting. 

The evolution of acquired immunity depends on whether immunity is 

permanent or temporary. When the resistance mechanism operates by allowing the 

probability of gaining permanent immunity to evolve, then as lifespan increases, the 

optimal investment rises to a maximum and then falls towards zero (Fig. 3.SD). If, 

instead, resistance increases the length of the immune period, then optimal 

investment always increases with lifespan, although bistability at short and 

intermediate lifespan may possibly lead to zero investment. Given local mutation, 

shorter-lived species may therefore not evolve any acquired immunity, while longer­

lived species are predicted to invest heavily (Fig. 3.5A). Acquired immunity is also 

most likely to evolve in response to high transmission rates and intermediate rates of 

recovery (Boots and Bowers 2004). These results suggest that acquired immunity 

should only evolve in the face of very strong selective pressure, where prevalence is 

high and the benefits of immunity are large (i.e. organisms have a considerable 

chance of recovering and also live long enough to benefit from immunity). 

The possession of an acquired immune system has important implications, 

since longer-lived individuals may invest in relatively more, or relatively less innate 

resistance, if they have acquired immunity. Given that innate and acquired immunity 

are costly to maintain, hosts may be expected to balance the investment between the 

two defences in each in order to minimize the total cost. It is well known that 

different forms of resistance may be traded-off (Mallon et al. 2003). In particular. 

investment in specific forms of defence may be negatively correlated with investment 

in non-specific defences (Frank 2000), where the optimal allocation between the two 

forms will depend on the prevalence of infection (Moret 2003). As shown here, it also 
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crucially depends on the lifespan of the host, because this selects for innate and 

acquired immunity differentially. 

It is well established that population density may affect the evolution of 

resistance characteristics (Svensson et al. 2001; van Boven and Weissing 2004). It 

has been shown here that increased crowding due to a long-lived immune class may 

indirectly reduce disease prevalence and therefore the selection for innate or (model 

III) acquired immunity. The evolutionary dynamics of resistance were also 

investigated omitting the density-dependent effects: this assumes a constant birth rate 

(Le. the parameter q - 0 in the previous models). In this case, when resistance 

evolved as increased recovery or reduced virulence (tolerance) the optimal 

investment always increased with lifespan. However, the optimal investment in 

reduced transmission (avoidance) was maximal at intermediate lifespan. Density­

dependence alone therefore cannot explain the reduction in avoidance occurring in 

longer-lived populations. The optimal avoidance is lower in long-lived individuals 

because these are highly likely to become infected anyway, but have a sufficiently 

high chance of recovering (and therefore acquiring long lasting immunity). This 

outweighs the advantage of investing in costly avoidance. 

This model assumed purely constitutive costs of resistance. More resistant 

hosts therefore always have a reduced birth rate (whether infected, susceptible or 

immune). Evolutionary costs are strictly constitutive in that they are genetically 

determined and can change only through natural selection (Schmid-Hempel 2003, 

2005). Energetic or physiological costs of resistance may also be constitutive, where 

the organism is forced to expend valuable resources to maintain its immune system in 

a state of readiness (Schmid-Hempel 2003, 2005). However, there are also likely to 

be 'induced' costs associated with activating and/or maintaining an immune response 

(Zuk and Stoehr 2002). The selective pressures may be very different under the 

assumption of induced costs. For example, Day and Bums (2003) showed that longer­

lived hosts should invest relatively less in recovering from infection when there is no 

acquired immunity. In contrast, in assuming constitutive costs, longer-lived 

individuals generally evolve higher recovery rates if they lack acquired immunity 
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(Fig. 3.1 C). Recent theoretical work has investigated when organisms should switch 

between constitutive and inducible forms of defence. Assuming constitutive defences 

act more rapidly, hosts should invest in these whenever parasites are highly virulent 

and transmissible, although pathogens that grow quickly within the host may favour a 

mixed response (Shudo and Iwasa 2001). It would be interesting to see how lifespan 

affects this response. 

The results suggest that in long-lived species, the presence of a long-lasting 

acquired immune system may reduce selection for less specific, innate resistance. 

This is more likely if the species is particularly prone to intra-specific crowding, 

although internal or external (behavioural) mechanisms that reduce the probability of 

infection may be selected against even in the absence of such density-dependence. 

Both invertebrates and vertebrates have innate immunity, and vertebrates also benefit 

from a highly specific acquired immune system (Medzhitov and Janeway 1997). 

Invertebrates are generally thought to have no acquired immunity as such (Medzhitov 

and Janeway 1997; Rinkevich 1999; Zuk and Stoehr 2002), although there is 

increasing evidence for immunological memory in many insects (reviewed by 

Schmid-Hempel (2005». My results may therefore apply to both vertebrate and 

invertebrate systems, although it is important to note that longer-lived species in 

particular are likely to be exposed to many different pathogens. Acquired immunity is 

antigen-specific and is activated by signals from the innate immune system 

(Medzhitov and Janeway 1997; Menezes and Jared 2002). As the diversity of 

parasites increases, the value of a given defence option therefore becomes less 

effective and may be selected against (Jokela et al. 2000). As a result, acquired 

immunity may only select for less innate resistance in long-lived organisms if these 

have relatively few parasites. 

This chapter has investigate? how lifespan affects the evolution of resistance, 

and the related implications of having an acquired immune system. The selective 

pressures affecting optimal allocation to resistance have been shown to depend on a 

variety of epidemiological and ecological factors, in particular, the effects of density­

dependence and the immune class. 
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4. The evolution of virulence in response to 

tolerance 

66 



4-1. Introduction 

In chapter 2, I distinguished between tolerance and control as different forms of 

resistance. The important distinction between these two forms is that control achieves 

a reduction in virulence by inhibiting the growth of the parasite within infected hosts, 

whereas tolerance mechanisms merely reduce the damage caused by parasite growth. 

The evolutionary dynamics of tolerance and control were shown to have marked 

differences in terms of the level of resistance that evolves. This has important 

implications because the evolution of the host may also select the parasite. This has 

been considered in a number of contexts before (van Baalen 1998; Gandon and 

Mickalakis 2000; Gandon et al. 2001, 2002b, 2003; Gandon et al. 2oo2a; Restif and 

Koella 2003). Epidemiological models have tended to assume that virulence is 

proportional to the within-host parasite replication rate (Read and Harvey 1993; Ebert 

1998; Mackinnon and Read 1999; Ebert and Bull 2003; Gandon et al. 2003). Under 

this assumption, control of the parasite's growth rate by the host has been shown to 

select for more exploitative parasites (Gandon and Mickalakis 2000). This chapter 

focuses instead on how tolerance, once fixed in the host popUlation, will act to select 

the parasite. 

I classify three generic types of tolerance mechanism and consider the 

implications in terms of the parasite's evolution. The approach is to examine the 

evolution of parasite growth (or replication) rate within the host, assuming that this 

relates to transmission and causes virulence. An explicit account of the 

epidemiological feedbacks in the system is taken, and the consequences of tolerance 

evolution in terms of disease prevalence and mortality at the level of the population 

are considered. I develop a formal model that examines the evolution of parasites in 

response to tolerance with different characteristics and show that higher or lower 

. parasite growth rates can be selected, depending on the nature of the tolerance 

mechanism. Roy and Kirchner (2000) have shown that tolerance will tend to become 

fixed in populations, with no possibility of polymorphism. I therefore assume that 

selection acts on the parasite after the evolution of tolerance. This is a realistic 

simplifying assumption for tolerance mechanisms, but less so for resistance through 
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avoidance, recovery or control of the parasite, where a full coevolutionary model may 

be more appropriate. In line with recent trade-off theory (Stearns 1992), the evolution 

of tolerance is assumed to be costly in terms of a reduction in the host's intrinsic 

growth rate. 

4-2. The Model 

The following equations describe a host-pathogen interaction for a directly 

transmitted microparasite, where X denotes the density of uninfected individuals, Y 

denotes the density of infected individuals, and H ... X + Y gives the total host 

density: 

dX 2 R Y -=rH-qH -,..XY+(y+b) 
dt 

(4.1) 

dY 
-=pXY -(a+ y+b)Y 
dt 

(4.2) 

Here r is the intrinsic growth rate of the host genotype, equal to the birth rate (a) 

minus the natural death rate (b ). Density-dependence is assumed to act directly on 

the birth rate, where the parameter q measures the host population's susceptibility to 

croWding. The transmission rate of infection, the recovery rate, and the virulence are 

denoted by p, yand a respectively. All parameters are assumed to be positive. 

I assume that virulence (a) is determined by the parasite's within-host 

replication rate (e). In the 'wild type' host that has not evolved any tolerance, the 

relationship between increased death rate and parasite growth rate takes the form 

a - evw . The parameter Vw scales the damage that within-host growth causes the 

host, and may be interpreted as the 'iIltrinsic' virulence of the parasite. 

Tolerance mechanisms reduce the damage caused for a given rate of 

replication. With type I (complete) tolerance, I assume the host is able to completely 

tolerate a given rate of parasite replication, p, below which it suffers no damage. 
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Above this level, virulence increases at the same constant rate that occurs in non­

tolerant hosts, such that a - 0 for esp, and a = aCE) .. (e - p) Vw for e:i!! p (Fig. 

4.1A). Type II (constant) tolerance reduces virulence by a constant factor across the 

range of parasite growth rates, such that a .. a(e) ... EVr where vr < Vw (Fig. 4.1B). 

Type III (saturating) tolerance causes virulence to increase at a non-linear rate. This 

form is able to ameliorate host damage well at lower rates of replication, but is less 

effective at higher rates, which swamp the tolerance mechanism. I assume the 

relationship a .. aCE) = vwm(e/m)", where a:i!! 1 and there is a maximum rate of 

replication (m) attainable by the pathogen (Fig. 4.1C). For all three forms, tolerant 

host genotypes pay a cost in terms of a reduction in their intrinsic growth rate (r is a 

decreasing function oftolerance). 

In line with previous work, transmission is assumed to be a bounded 

increasing function of parasite replication rate (Anderson and May 1982; van Baalen 

and Sabelis 1995; Restif and Koella 2003): 

Ke 
/3-/3(E)-­

e+TJ 
(4.3) 

Transmission and virulence are therefore traded-off from the point of view of the 

parasite. The parameter K gives the upper bound of the transmission rate, and TJ 

measures the rate at which transmission approaches this upper bound as E increases 

(smaller values of TJ correspond to faster rates of saturation). Tolerance reduces the 

virulence that a particular growth rate causes but does not affect the transmission rate. 

I investigate how the parasite is selected in response to the different forms of 

tolerance, compared to a wild host. The evolutionarily stable (ES) parasite replication 

rate eO (Figs. 4.1, 4.2) and the corresponding level of virulence a (Fig. 4.3) are 

determined. 
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Figure 4.1. Responses for different forms of the tolerance mechanism. The left-hand panels plot 

virulence (a) as a function of the replication rate (e); the right-hand panels give the corresponding 

transmission rate (fJ) as a function of virulence. The solid lines give the trajectories when the host 

genotype is wild. Filled circles denote the ES replication rate, virulence and transmission. Type I: (A), 

(E) the tolerant host is characterized by p = 0.5 (dashed line), p = 1.5 (dotted line). Type II: (B), (F) the 

tolerant host is characterized by VT = 0.5 (dashed line). Type III: (C), (D), (G), (H) the tolerant host is 
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rate of saturation, T'J - 5. Other parameters are: y= I, b = 0.5, K = 5, Vw = 1 and m = 5 (type III). 
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I then consider the epidemiology when a tolerant host replaces the wild type in two 

scenarios: one in which the parasite replication rate remains fixed (at the wild type 

rate e~) and one in which the replication rate evolves to its new optimum (e;). The 

epidemiology is described by the prevalence of infection (Fig. 4.4), the total number 

of hosts dying from infection aY· (Fig. 4.5), and the relative number of hosts dying 

from infection aY· lit (Fig. 4.6). This last gives the average mortality due to 

infection (virulence, a) scaled by the probability that a given individual becomes 

infected (prevalence, Y· 1 H"). 

4-3. Analysis and Results 

The evolutionarily stable (ES) parasite strategies are summarized in Table 4.1 and are 

derived below. 

Table 4.1. ES pathogen replication rates for different forms of tolerance 

ES pathogen replication rate (e - e·) 

Wild host .Jf1(y+b)lvw 

Type I .Jf1(Y+ b- pVw)lvw if P < Pc - ~f1(Y + b)lvw + f12 14 - f1/2 
(complete) 

P if P ~ Pc 

Type II f1(Y+ b)lvr 

(constant) 

Type ill The optimal strategy, e - e·, is given by solution of: 

(saturating) e(e +f1)avw(e Imy-I -f1v",m(e Imt -f1(Y + b) 

In the absence of infection, the host population (X) grows until it reaches its 

carrying capacity, C .. r 1 q. This uninfected equilibrium will be invaded by a parasite 

strain with replication rate E, if and only if the parasite's reproductive ratio (Ro) is 

greater than unity. The reproductive ratio is given as (Anderson and May 1981, 1982; 

van Baalen and Sabelis 1995; Frank: 1996): 
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Ro _ P(E)C 

a(E) + r+b 
(4.4) 

Throughout the analysis it is assumed that Ro > 1 for all parasite strains. The host­

parasite interaction with replication rate EI (strain 1) will therefore attain a positive 

stable equilibrium (X;, :r;'), found by equating the right hand side of equations (4.1) 

and (4.2) to zero. In particular: 

X. _ (a(EI)+r+ b) 

I P(EI) 
(4.5) 

The evolutionary dynamics of the parasite are determined using invasion analysis, 

examining whether a parasite strain with a different replication rate E2 (strain 2) can 

invade the resident equilibrium set by strain 1. From equation (4.2), parasite strain 2 

can invade if and only if: . 

(4.6) 

By direct substitution of X; (using equation (4.5» into equation (4.6), strain 2 can 

invade if and only if: 

(4.7) 

It is clear from equation (4.7) that mutual invadability cannot occur and therefore any 

strain satisfying (4.7) will replace the resident. Define: 

See) _ peE) 
q(E) + r+b 

(4.8) 

The parasite therefore evolves to maximise See) and the unique global maximum of 

S(e) is the evolutionarily stable CES) parasite strategy E'. First assume a 'wild type' 
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host that has not evolved any tolerance. Substituting the functional form for aCE) and 

fJ (e) for the wild type host, that has not evolved any tolerance, into (4.8) implies the 

following: 

S(e).. eK 
(e + 17)(evw + y + b) 

Solving dS(e) = 0 gives the ES parasite strategy: 
de 

The corresponding ES virulence is: 

(4.9) 

(4.10) 

(4.11) 

The optimal replication rate therefore increases with the recovery rate y, and the 

natural death rate b (Lenski and May 1994; van Baalen and Sabelis 1995; Ebert and 

Mangin 1997; Restif and Koella 2003). Higher rates of loss from the infected class 

decrease the average duration of infection and therefore diminish the benefit of 

reduced virulence (van Baalen 1998). 

4-3-1. Type I (complete) tolerance 

When the tolerance mechanism is complete (type I), the evolution of the parasite 

depends crucially on the extent to which the host can completely tolerate the 

parasite's growth rate. The optimal parasite strategy against the tolerant host (e;.) is 

given as: 

if P < Pc so ~17(Y + b)/vw + 172
/ 4 -17/2 

if P~ Pc 
(4.12) 
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These results are now proved. First consider the case e:!: P, which implies that a - O. 

From (4.8): 

See) = eK 
(e + 11)(r + b) 

(4.13) 

Since dS(e)/ de is always positive it implies that See) is an increasing function and 

so is maximised when E = P . Now consider E > P , where: 

S(E)'" eK 
(e + 11)«e - p)vw + r + b) 

This is maximised at e;. (by solving dS(E) = 0) where: 
dE 

(4.14) 

(4.15) 

Here the condition for the host to have positive density (X· > 0) ensures that E; is 

positive. The parasite will evolve to e; provided P < E;. This requires that: 

P < Pc ... ~11(r +b)/vw +11 2
/ 4 -11/ 2 (4.16) 

Substituting for E~ from (4.10) into (4.16) it can be shown that: 

(4.17) 

Since all parameters are positive this implies Pc < E~. Therefore, if the maximum 

growth rate the host can completely tolerate is significantly less than that of the ES 

wild type parasite (such that p:!: Pc)' then tolerance selects for reduced parasite 

replication (e;. < e~), with positive but reduced rates of transmission and virulence 
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(Figs. 4.1A, 4.IE). If Pc < P < e~ then a form of apparent commensalism evolves 

where the ES replication rate falls to the maximum value for which virulence is zero 

(e;, .. p). This also corresponds to a reduction in the parasite's transmission rate. If 

p > e~, again the parasite evolves to the maximum replication rate for which 

virulence is zero (e; - p) but this is now higher than that of the wild type (Fig. 

4.1A). The transmission rate will also be correspondingly higher (Fig. 4.1E). 
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Figure 4.2. ES pathogen replication rate (ET') as a function of the level of tolerance. The rate at which 

transmission saturates is varied, such that TJ = 213, (solid line), TJ - 5 (dashed line). Other parameters 

are: y= 1, b = 0.5, K= 5, vw= 1 and m = 5 (type m). 

The relationship between tolerance p and the ES replication rate e; is illustrated in 

Figure 4.2A. The level of virulence (a) experienced by infected hosts is always 

reduced when a tolerant genotype becomes fixed in the population (Figs. 4.3A, 4.30). 

The evolution of type I tolerance is likely to increase disease prevalence (Figs. 

4.4A, 4.40). This is due, in part, to the lower death rate of infected hosts, which also 

increases the opportunities for disease transmission (Roy and Kirchner 2000). The 

reduction in virulence associated with the evolution of tolerance may also reduce the 
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number of hosts dying from infection aY· (Fig. 4.5A). However, a reduction in 

virulence due to tolerance may sometimes result in greater total mortality, particularly 

if the level of tolerance is low (Fig. 4.5D). This counter-intuitive result can be 

explained by the following consideration. If the wild type virulence (which is 

proportional to the parameter 'Y/) is relatively low, then the initial prevalence of 

infection will tend to be high (Fig. 4.4A). The evolution of tolerance therefore 

generates a relatively small increase in prevalence compared to the reduction in 

virulence experienced by infected hosts. Thus, the number of infected mortalities is 

likely to decrease as tolerance increases (Fig. 4.5A). If, however, wild-type virulence 

is high, initial prevalence will be low and tolerance induces a relatively large increase 

in prevalence compared to the reduction in virulence (Fig. 4.4D). As a result, there 

may often be more infected mortalities in response to low tolerance. Mortality always 

decreases at high tolerance (Fig. 4.5D), where the reduction in virulence is 

sufficiently large to outweigh the increase in prevalence. If the parasite is selected, 

the described changes in the epidemiology occur at lower levels of tolerance, due to 

the evolutionary decrease in virulence. Prevalence increases more rapidly (Figs. 4.4A, 

4.4D), and absolute mortality increases at lower levels of tolerance (Fig. 4.5D). When 

the host evolves complete (type I) tolerance, relative infected mortality is generally 

lower (Figs. 4.6A, 4.6D). If tolerance also selects the pathogen, there is a greater 

reduction in virulence (Figs. 4.3A, 4.3D), and also relative mortality. Even in cases 

where the absolute mortality increases in response to low tolerance (Fig. 4.5D), the 

relative mortality is still reduced (Fig. 4.6D). 
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4-3-2. Type II (constant) tolerance 

Where tolerance manifests as a constant (type II) reduction in virulence, the optimal 

parasite replication rate is obtained by replacing Vw with vr in (4.9)-(4.10): 

(4.18) 

The corresponding ES virulence is: 

(4.19) 

Fixation of the tolerant genotype increases the ES replication rate (since vr < vw)' 

Faced with a more robust host, the cost of a given level of replication in terms of 

virulence is reduced and this selects for higher parasite replication and transmission 

rates (Figs. 4.1B, 4.1F, 4.2B). The increase in replication rate (compared to e~) 

corresponds to an evolutionary increase in virulence and this reduces some of the 

benefit conferred by the tolerance mechanism. However, the level of virulence 

experienced by the tolerant host is always less than that of the wild type (compare 

equations (4.11) and (4.19); Figs. 4.3B, 4.3E). 

Prevalence is likely to be higher in response to type II tolerance (Figs. 4.4B, 

4.4E). If the parasite is selected, prevalence may increase less rapidly (Figs. 4.4B, 

4.4E). This is not necessarily the case at high tolerance, where pathogen evolution 

may increase prevalence still further (Fig. 4.4B). Fixation of a tolerant genotype will 

often reduce total mortality (aY*), particularly at low initial virulence (Fig. 4.SB). 

Alternatively, mortality may increase if the initial virulence is high. Indeed, if the 

pathogen evolves then mortality may be considerably higher, even at high tolerance 

(Fig. 4.SE). This result notwithstanding, tolerance is likely to reduce relative 

mortality CaY· / H*). The decrease is always less when the pathogen is selected, due 

to the higher replication rate and virulence (Figs. 4.6B, 4.6E). Extensive computer 

simulations suggest that relative mortality is generally reduced by type II tolerance, 
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although it may increase if the parameter T/ is sufficiently large. For extremely large 

T/, even a highly tolerant population may experience greater relative mortality when 

the pathogen is selected. 

4-3-3. Type III (saturating) tolerance 

In this case numerical simulations were used to determine the optimal parasite 

strategy. This is given by the value E - e;. satisfying: 

(4.20) 

The evolution of saturating tolerance may select for either higher or lower parasite 

replication rates, compared to a wild type host. The parameter T/ strongly influences 

the evolutionary outcome. When T/ is small, transmission saturates relatively quickly 

and tolerance generally selects for increased replication and transmission rates (Fig. 

4.1 C, 4.1 G, 4.2C). This eliminates some of the benefit of tolerance in terms of 

reduced virulence but never increases virulence above the level experienced by the 

wild host (Fig. 4.3C). At larger values of T/, tolerance may select for either increased 

or decreased replication rates. Slower replicating pathogens are more likely to be 

selected if the tolerance mechanism is weak (Figs. 4.1D, 4.2C); this will lower the 

transmission rate (Fig. 4.1H), and further reduce virulence (Fig. 4.3F). High levels of 

tolerance are always likely to select for more exploitative pathogens (Fig. 4.2C). 

Computer simulations also suggest that when Vw is large, tolerance is more likely to 

select for faster replicating pathogens. 

As with the previous two forms, saturating tolerance generally increases 

prevalence (Figs. 4.4C, 4.4F). If the pathogen evolves a lower replication rate, the 

increase in prevalence will be greater (Fig. 4.4F). When initial virulence is low, the 

evolution of tolerance generally reduces absolute infected mortality aY· (Fig. 4.5C). 

At higher initial virulence, low levels of tolerance may result in greater absolute 

mortality (Fig. 4.5F). More efficient tolerance mechanisms are likely to reduce 
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absolute mortality (Fig. 4.5F), where the reduction in virulence outweighs the 

increase in prevalence. These same results are obtained when the pathogen is 

selected, although the extent of the increase/decrease in mortality depends on whether 

the evolved replication rate (e;) is higher or lower than the wild type (e~), and on the 

balance between prevalence and virulence in terms of their effect on mortality (Fig. 

4.5F). Saturating tolerance is likely to reduce the relative infected mortality 

(aYo / HO), whether or not absolute mortality (aY') increases or decreases (Figs. 

4.6C, 4.6F). If the pathogen is selected to increase (decrease) its replication rate then 

the reduction in mortality is less (more) pronounced (Fig. 4.6C). 

To summarise the epidemiological effects, the evolution of host tolerance 

generally increases disease prevalence (Fig. 4.4). Consequently, the number of 

pathogen-induced deaths (ayo) may actually increase, if the tolerance mechanism is 

weak and the initial virulence (a~) is high (Figs. 4.5D-4.5F). When the wild host 

experiences less severe virulence, tolerance is more likely to reduce absolute 

mortality (Figs. 4.SA-4.SC). A high degree of tolerance always results in less absolute 

mortality. unless the mechanism is constant (type II) and the wild virulence (a~) is 

high (Fig. 4.5E). The relative mortality due to infection (aY' / HO) is generally lower 

in tolerant populations (Fig. 4.6). An exception to this may occur with constant (type 

II) tolerance: if transmission saturates particularly slowly then pathogen evolution 

may result in greater relative mortality. even at high tolerance. 
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4-4. Discussion 

The evolution of tolerance in hosts may act as an important selective pressure on 

parasites. The evolutionary outcome has been shown to be dependent on the nature of 

the tolerance mechanism. When tolerance reduces death rate by a constant factor 

(type II), this always selects for higher parasite replication rates. This is a somewhat 

intuitive result: the parasite responds to tolerance due to its ability to gain more 

transmission without paying as large a cost in terms of host mortality. However, the 

post-selection parasite-induced death rate never reaches the level prior to the 

evolution of the tolerance mechanism, implying that some of the benefit of tolerance 

is lost, but not all of it. Since tolerance increases prevalence there is also the 

possibility that it leads to greater total mortality in the population. Whether absolute 

mortality increases or decreases will depend not only on the degree of tolerance that 

evolves, but also the initial virulence of the pathogen in wild hosts. However, even if 

the number of deaths due to infection increases, the relative chance of any individual 

in the population dying of infection will probably be less. 

When a tolerance mechanism evolves that is able to completely compensate 

for the damage the parasite causes at particular growth rates, there is the possibility of 

evolution from parasitism to commensalism. This is always the outcome if the 

natural, 'wild' parasite growth rate can be completely tolerated. Furthermore, if 

parasite strains with a higher growth rate than that of the ES wild type can be 

completely tolerated, the parasite will evolve to this higher growth rate, leading not 

only to commensalism, but also a higher level of transmission. Less intuitively, 

commensalism can also evolve if the level of complete tolerance is less than but 

relatively close to the natural ES growth rate. The parasite evolves to reduce its 

growth rate to the level that can be completely tolerated. In this case, transmission 

rate is reduced, although prevalence still increases. Complete (type I) tolerance 

therefore potentially selects for a parasite strain that causes no virulence, although 

this is not always the outcome. If the parasite growth rate that can be completely 

tolerated is significantly below that of the wild parasite, commensalism will not 

evolve. It should be noted that when commensalism does evolve, the resulting 
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commensal's growth rate within the host is still constrained by the 

transmission/virulence trade-off. The distinction between commensal and parasitic, in 

many groups of microorganisms in particular, is often far from clear-cut. Species 

considered 'commensal' may therefore be on the edge of parasitism with some 

strains causing damage to their hosts. Furthermore, when commensalism evolves 

through tolerance mechanisms in the host, there is likely to be a cost for the host. 

Once established, this 'apparent commensalism' shows no evidence of this 

evolutionary cost. It is interesting to speculate how many seemingly commensal 

interactions in nature have been bought at an evolutionary cost to the host. In such 

interactions, the removal of the 'commensal' may lead to benefits for the host if 

evolution selects against the redundant tolerance mechanism. 

Saturating (type III) tolerance is similar to complete tolerance in that the 

mechanism is particularly efficient at tolerating relatively low replication rates. 

Indeed, the evolutionary dynamics are often similar. Low levels of tolerance may 

select for reduced parasite replication, although evolution to complete commensalism 

does not occur. That being said, interactions with parasite strains that cause very little 

virulence to their hosts may often evolve. Given the difficulty in measuring costs to 

parasites in the wild, such low levels of virulence may often not be detected. 

Saturating tolerance mechanisms may also therefore lead to the evolution of 

interactions that are thought to be commensal. Again these interactions will be 

characterised by high disease prevalence and as such they are likely to be relatively 

stable. 

Consequently, the evolution of host tolerance may be partly responsible for 

the Ubiquity of parasites in nature. Roy and Kirchner (2000) have pointed out that 

since tolerance leads to higher prevalence of the parasite, it more easily allows their 

persistence. My results lend support to this idea because, although the parasite 

increases its growth rate and transmission in the face of tolerance, it never attains the 

level of virulence prior to the evolution of tolerance. Individual selection for the 

evolution of tolerance, its tendency to become fixed in populations, and the 

subsequent individual selection on the parasite may have had important effects on 
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shaping natural communities. Parasites are ubiquitous in nature and tolerance in their 

hosts may therefore have contributed to this. 

Tolerance is most often implicated in plant host-natural enemy interactions. 

The implications of tolerance to herbivores have received considerable theoretical 

and empirical attention (Fineblum and Rausher 1995; Mauricio et al. 1997; Strauss 

and Agrawal 1999; Tiffin and Rausher 1999; Tiffin 2000). Tolerance in plants to 

infectious organisms is also being increasingly considered in both crop (Zuckerman 

et al. 1997; Schurch and Roy 2004) and model systems (Simms and Triplett 1994; 

Kover and Schaal 2002). Although there is some issue with definitions, there is an 

increasing awareness that tolerance rather than other resistance mechanisms is most 

important in a number of host-parasite interactions. Schurch and Roy (2004) have 

suggested that tolerance may be non-linear and more likely to operate at low 

virulence. They note that in such cases, there may be no clear relationship between 

pathogen growth and host damage, since the deleterious effects of less virulent 

pathogens are ameliorated while virulent strains inflict significant fitness losses to the 

host. This resembles saturating (type ill) tolerance according to my defmitions. Given 

that pathogens may evolve lower replication rates in the face of such tolerance, this 

may be responsible for maintaining low virulence in such interactions. 

The selective pressures caused by tolerance are different from those of 

resistance mechanisms that reduce the reproductive rate of the parasite. 

Understanding whether any response to infectious organisms is tolerance or another 

form of resistance is therefore vital if the final outcome of evolution is to be 

predicted. Tolerance mechanisms have received relatively little attention in animal­

parasite interactions. Various forms of resistance are generally implicated in both the 

innate and acquired immune systems (RolfI' and Siva-Jothy 2003). Whether tolerance 

mechanisms in animals really are rare remains to be determined and due to the 

importance of selection on parasites, it is a priority area. 

There is growing interest in the use of parasite-tolerant crop plants as 

alternatives to chemical control. This study emphasizes it is important to consider 
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selection on the target parasites. Their evolution may lead to higher disease 

prevalence with lower, but still significant damage to the host. High levels of 

tolerance are more likely to be successful at reducing absolute mortality. Perfect or 

very high levels of tolerance should therefore ideally be achieved before the 

widespread use of tolerant crops, in order to reduce the problems of selection on the 

parasites. There may still be concerns, however, if the tolerance mechanism is 

constant (type II). If pathogen damage is measured as the individual risk of dying 

from infection (relative infected mortality), problems appear less likely. However, if 

the tolerance mechanism is constant in response to a wide range of parasite growth 

rates, then pathogen evolution may result in greater prevalence and mortality even_ in 

highly tolerant populations. 

This model assumes only single infections. However, infected hosts may often 

harbour more than one parasite strain simultaneously. Models generally predict that 

multiple infection will select for higher virulence and the coexistence of multiple 

parasite strains (Bremermann and Pickering 1983; Frank 1992a, 1994, 1996; May and 

Nowak 1994, 1995; Nowak and May 1994; van Baalen and Sabelis 1995; Mosquera 

and Adler 1998). There has been relatively little work on host-parasite coevolution 

with the assumption of multiple infections. However, Gandon et a1. (2002a) have 

shown that reducing the force of transmission may select for lower virulence by 

reducing the level of competition between parasite strains. Indeed, any mechanism 

(of the host or otherwise) affecting the probability of multiple infections will 

indirectly influence the evolution of virulence (Gandon et a1. 2002a). Since tolerance 

is likely to increase disease prevalence (Roy and Kirchner 2000) it may also increase 

the level of competition between parasite strains. Assuming within-host exploitation 

rates are positively correlated with competitiveness, this would select for increased 

virulence. This is perhaps particularly important in the case of type II (constant) 

tolerance, where virulence might be restored to (or exceed) its pre-tolerance level. If 

instead, within-host competition (and virulence) is negatively correlated with host 

exploitation (Chao et a1. 2000), by increasing the level of infection in the population, 

tolerance may conceivably select for reduced virulence. In super-infecting parasites, 

where the more virulent strains are more likely to be transmitted (Nowak and May 
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1994; Mosquera and Adler 1998), the evolution of reduced exploitation rates (type I 

and III tolerance) may well be constrained, as less exploitative parasites are selected 

against. These conclusions are however somewhat speculative and future work on the 

evolution of parasites in response to tolerance should consider the role of multiple 

infections in detail. 

This chapter has shown how tolerance can select parasites to increase their 

replication rate within the host. Tolerance may only evolve in particular local 

populations of hosts. The implications for non-tolerant hosts coming into contact with 

a parasite that has evolved in response to tolerance in another population may be 

severe. Type II (constant) tolerance always selects for more exploitative parasites. 

The levels of virulence experienced by intolerant hosts exposed to an evolved 

pathogen may therefore be significantly higher than those optimal for the pathogen, 

and intolerant populations may suffer catastrophic levels of mortality. There are also 

problems when tolerance results in apparent commensalism. As demonstrated, 

commensal strains may have evolved higher replication and transmission rates. 

Intolerant hosts corning into contact with an evolved parasite would again experience 

high levels of virulence and transmissibility. The emergence of disease from 

seemingly commensal organisms may therefore occur without changes in the 

parasite, but due to a lack of tolerance mechanisms in new host populations. 

I have emphasised how tolerance mechanisms may have important 

implications to the life histories of parasites and pathogens. Tolerance has not been 

greatly researched in animal-parasite interactions, but may have been important in 

shaping their community structure. The form of the tolerance mechanism has been 

shown to determine the selective pressure acting on parasites. A mechanistic 

understanding of tolerance is vital in order to understand its role in natural host­

parasite and seemingly commensal interactions. 
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5. Disease dynamics under combined frequency­

dependent and density-dependent transmission 
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5·1. Introduction 

Theoretical models generally model disease transmission using one of two forms. In 

the first case, transmission is assumed to be 'density-dependent' and to be directly 

proportional to the density of infecteds in the population. This type of transmission is 

represented by the term {3S1 (McCallum et a1. 2001; Begon et a1. 2002). Here S is 

the density of susceptible hosts, I is the density of infecteds, and {3 denotes the 

probability of an infectious contact (Le. the probability of a contact between an 

infected and a susceptible host, multiplied by the probability that an infection occurs). 

This form of transmission function is generally used to describe 'ordinary infectious 

diseases' (OIDs), since in these cases transmission is likely to be proportional to the 

density of infecteds. In contrast, transmission is often assumed to be 'frequency­

dependent' and to depend on the proportion of contacts that are with infected hosts. 

This type of transmission is represented by the term {3S1 / N, where S + [ .. N gives 

the total density (McCallum et a!. 2001; Begon et a!. 2002). As such, frequency­

dependent transmission is more suitable for modelling the transmission dynamics of 

sexually transmitted diseases (STDs), since sexual contact rate is assumed to remain 

roughly constant as density changes (Getz and Pickering 1983; Antonovics et al. 

1995). Vector-transmitted diseases may also follow frequency-dependent 

transmission, because relatively large vector populations and vector biting behaviour 

may compensate for changes in host density (Antonovics et a1. 1995). 

The assumptions of frequency- and density-dependent transmission lead to 

different theoretical predictions. Firstly, density-dependent transmission requires that 

the host density exceed a certain threshold before the pathogen is able to persist 

(Anderson and May 1981). In contrast, disease persistence under frequency­

dependent transmission requires only a sufficiently large transmission rate (Getz and 

Pickering 1983; Thrall et a1. 1995). This leads to the prediction that frequency­

dependent diseases may be able to persist at lower population densities than density­

dependent ones. Secondly, frequency-dependent transmission has the potential to 

cause extinction of the host popUlation (Getz and Pickering 1983; Alexander and 

Antonovics 1988). Deterministic host extinction does not occur under density-
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dependent transmission (Anderson and May 1981; Antonovics et al. 1995; Lockhart 

et al. 1996). The conditions promoting stable coexistence are generally thought to be 

more stringent under frequency-dependent transmission. In particular, host-parasite 

coexistence requires that the host population be regulated by some factor apart from 

the disease, such as a density-dependent birth rate (Getz and Pickering 1983; Thrall et 

al. 1993). 

In natural populations, disease transmission often does not strictly conform to 

either pure frequency- or density-dependence. The transmission of OIDs may be 

partly frequency-dependent, if organisms live in defined social and family groups 

(Begon et al. 1999), or in rare, solitary species, where sexual contact provides the 

main opportunity for transmission (Lockhart et al. 1996). Similarly, density­

dependent transmission may also influence STD dynamics (Antonovics et al. 1995; 

Thrall et al. 1995; Lockhart et al. 1996; Thrall et al. 1998; McCallum et al. 2001; 

Begon et al. 2002). Ryder et al. (2005) recently demonstrated experimentally that 

host population density may have a strong influence on STD transmission in Adalia 

bipunctata ladybirds. Among vertebrate groups such as birds, a number of studies 

have reported increases in the rate of extra-pair copulation with population density; 

density-dependent variation in sexual contact rate also seems to be commonplace 

among invertebrates (Ryder et al. 2005). 

Therefore, whilst it may be convenient to characterize diseases as having 

either purely frequency- or purely density-dependent transmission dynamics, this 

simple view is challenged by the biology of many natural systems. Given that SID 

transmission probably often diverges from pure frequency-dependence, and that the 

transmission of OIDs may often be partly frequency-dependent, it is important to 

consider the implications for disease dynamics. In this chapter, the dynamical 

implications of incorporating varying amounts of frequency- and density-dependence 

into a single model are considered. In particular, I investigate the implications in 

terms of disease persistence, parasite-driven extinction and host-parasite coexistence. 

I present two variations of a novel form of transmission function, which allows the 
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level of frequency- and density-dependence to be varied either independently (model 

I) or together (model II). 

5-2. Frequency- and density-dependence vary independently 

5-2-1. Model and analysis 

First consider a situation where the dynamics are described by the following 

equations: 

dX _ (b _ hN)N _ v(c + mN)XY _ uX 
dt N 

(5.1) 

dY .. v(c + mN)XY _ (u + a)Y 
dt N 

(5.2) 

It is assumed that infected (Y) and susceptible (X) hosts consume resources at the 

same rate and that infected individuals can reproduce. The total density of hosts is 

N - X + Y, the birth and natural death rates are band u respectively, a is the rate of 

disease-induced mortality (i.e. virulence), v is the probability that an encounter 

between a susceptible and an infected host results in infection, and h is a coefficient 

of density-dependent host regulation. The carrying capacity is given by K - r I h, 

where r = b - u is the intrinsic growth rate of the host population. There is no 

recovery from infection, and all parameters are assumed to be positive. 

In equations (5.1}-(5.2) the term representing the rate of transfer from the 

susceptible to the infected class is: 

v(c+ mN)XY 

N 
(5.3) 

The parameters c and m determine the amount of frequency- and density-dependent 

transmission, respectively. Disease transmission therefore has a frequency-dependent 
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component, vc XY / N (where the term vc equates to the commonly used transmission 

coefficient in a frequency-dependent framework), and a density-dependent 

component, vmXY (with vm equating to the transmission coefficient in a density 

dependent-dependent framework). This formulation is appropriate because it is the 

probability of infection, v, that remains common for both frequency- and density­

dependent transmission, and not the transmission coefficient (Begon et al. 2002). 

Assuming c > 0, transmission approaches complete frequency-dependence as m - 0, 

and assuming m > 0, transmission approaches complete density-dependence as 

c-O. 

To simplify the analysis, I make the substitutions N - X + Y and p - YIN. 

The equations can then be rewritten in terms of the total host density (N) and the 

prevalence of infection (p): 

dN 
--(b-hN)N -uN-apN 
dt 

dp 
- - p[v(c + mN)(I- p) - (b - hN) - a(1- p)] 
dt 

(5.4) 

(5.5) 

As will be shown, this substitution allows a more intuitive explanation of the 

equilibrium states. 

There are four equilibrium solutions of equations (5.4)-(5.5). Taking the variables in 

the order (N,p), the equilibria are (0,0), (NK,O), (O,PE ) and (N·,p\ The relevance 

and stability of the equilibrium values are determined. 

(i) The trivial equilibrium, (0,0) has Jacobian matrix: 

(
b- U 0 ) 
o -b-a+cv 

(5.6) 
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Assuming the birth rate (b) exceeds the natural death rate (u), the eigenvalue 

A, '" b - u will be positive and the equilibrium is unstable. Throughout the analysis, 

it is assumed that this is always the case. 

(ii) At the disease-free equilibrium (N K' 0), the population reaches its carrying 

capacity, N K '" (b- u)lh. The associated Jacobian matrix is: 

-b+u (-b+u)a 1 
h 

m(b- u) 
-u-a+(c+ h )v 

(5.7) 

o 

The first eigenvalue, A, - -b + u, is always negative for positive parameters. Stability 

therefore depends upon the other eigenValue, ~ - -u -a + (c + m(b - u)/h)v, having 

negative sign. This condition can be expressed as: 

u+a 
v< -VI 

c + (m(b- u)lh) 
(5.8) 

Thus, if v> VI then the parasite is able to invade the uninfected host population, while 

a disease-free equilibrium requires that V < v,, From (5.8), the persistence threshold 

increases with virulence (a). More virulent diseases require a higher probability of 

infection to be able to persist in the population. 

(iii) At the third equilibrium state (0, PE)' the parasite drives the host to extinction. 

The equilibrium is defined by N - 0 and PE - 1- b I( vc - a), and is feasible provided: 

vc >b+a (5.9) 

The associated Jacobian matrix is: 
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[ 

. bev 
-u-a+---

-a+ev 

(1 b )(h bmV) 
+ a - ev + -a + ev 

(5.10) 

The second eigenvalue is given by ~ == (b + a) - ev, which is negative provided the 

relevance criterion (5.9) is satisfied. The other eigenvalue is 

A, - -u - a + bev /( -a + ev). The condition for a stable equilibrium can therefore be 

expressed as: 

a(u+a) 
v> .. v 

e(a -b+ u) C 

(5.11) 

Note that (5.11) requires that a> b - u - r. Below this level of virulence, there is no 

possibility of extinction, since births outweigh deaths. Above this level, there is a 

non-monotonic relationship between virulence (a) and the infection probability (v) 

required to cause extinction. Thus, at low virulence, reproduction from infecteds 

provides a mechanism that reduces the cost of parasitism, and extinction can only 

occur if the infection probability is high. Extremely virulent parasites are also 

unlikely to cause extinction, because here infected hosts die very rapidly, which 

reduces the opportunities for transmission. It can be shown analytically that if 

infecteds are unable to reproduce, the threshold for persistence (5.8) is unchanged, 

but that the condition for stability of the extinction equilibrium reduces to the 

relevance criterion (5.9). This result is analogous to that obtained for a purely 

frequency-dependent model: allowing reproduction from infected individuals reduces 

the probability of extinction (Boots and Sasaki 2003). 

(iv) The endemic (coexistence) eqUilibrium (N°, pO) is defined by: 

(5.12) 
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Here <l»c -v(eh+ma-m(b-u», <l», -v(eh+ma+m(b-u», 

0c - veb - veu + a(a + u) - vea and 0, ... veh - ha + vmb - vmu - uh. 

Assuming r .. b - u > 0 it is known that <l» I > O. Therefore p. > 0 requires 0, > 0 , 

which is the same as v> v, (see (5.8». To obtain N· > 0 there are two possibilities. If 

a> r then <l»c > 0 and 0e > 0 is required, which is the same as v < v c (see (5.11». If 

a < r then Oc > 0 is always true and so N· > O. The coexistence equilibrium is 

therefore feasible if: 

v,<V<ve (5.13) 

The associated Jacobian matrix is: 

( 
-hN· -aN·) 

p·(vm(l- p.) + h -p·v(e + mN*) + ap. 
(5.14) 

It can be shown that this matrix has negative trace and positive determinant, provided 

0< N· < Nk and 0 < p. < 1. Thus, whenever the equilibrium (N· ,p.) is feasible it 

is also stable. This requires that v I < V < ve' 

These results are illustrated in Figure 5.1, in which the (v,a) parameter space 

is partitioned into regions where the three outcomes occur. The equilibrium regions 

are delineated by two thresholds in infection probability, v, and vc(see (5.8) and 

(5.11». The lower threshold (v,) delineates the boundary between the disease-free 

and endemic regions. The upper threshold (v e ) delineates the boundary between the 

endemic and extinction regions. 

I consider the effect of independently varying the amount of frequency- and 

density-dependence, by allowing the values of e and m to vary. Figures 5.lA-5.IC 

show the effect of varying m whilst e is held constant. Conversely,Figures 5.IC-

5.IE show the effect of varying c whilst m is held constant. 
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5-2-2. Probability of Disease Persistence 

Increasing m from 0 to 10, with c fixed at 10 (Le. moving from complete frequency­

dependence to both frequency- and density-dependence), has the effect of increasing 

the size of the endemic region at the expense of the disease-free parameter space 

(Figs. 5.1A-5.1 C). Thus, as the relative importance of density-dependent transmission 

is increased, disease persistence becomes possible at lower infection probabilities for 

a given level of virulence. Moving from complete density-dependence (Fig. 5.1E) to 

both frequency- and density-dependence (Fig. 5.1C) (increasing c from 0 to 10, with 

m fixed at 10) reduces the size of the disease-free region and therefore disease 

persistence occurs at lower infection probabilities. 
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Figure 5.1. (Model I) Outcomes in (v, a) parameter space for different levels of frequency-

Pttf'rliltlt·drl,_ 
~."iMtinll 

and density-dependence: (A) m = 0, C = 10; (B) m = 3, c = 10; (C) m = c = 10; (D) m = 10, c = 7; 

(E) m = 10, c = O. The other parameters are: b = 2, U = 1 and h = 1. The carrying capacity is NK = 1. 

97 



5-2-3. Probability of Parasite-driven Extinction 

The boundary of the parasite-driven host extinction region is unaffected by variation 

in m: increasing the amount of density-dependence does not affect this equilibrium 

(Figs. S.IA-S.I C). In contrast, both the existence and size of the parasite-driven 

extinction region depends on c. When c = 0 (pure density-dependence, with m = 10), 

parasite-driven extinction cannot occur and the endemic region is unbounded for 

increasing values of v (Fig. S.IE). When a component of frequency-dependence is 

introduced, parasite-driven extinction becomes possible at high infection probability 

(Fig. 5.10). Further increases in c lower the upper boundary of the endemic region, 

making extinction possible for a lower infection probability (Fig. S.IC). 

5-2-4. Probability of Endemic Persistence 

Higher levels of density-dependent transmission always increase the probability of 

endemic persistence by lowering the boundary between the endemic and disease-free 

regions in (v, a) parameter space. In contrast, higher levels of frequency-dependent 

transmission generally reduce the probability of endemic persistence, by lowering the 

boundary between the endemic and parasite-driven extinction regions. Figure 5.2 

summarizes these results by plotting the disease-free, endemic and parasite-driven 

host extinction regions in (m, c) parameter space. As the value of m increases, the 

endemic region expands at the expense of the disease-free space, making disease 

persistence attainable for a smaller component of frequency-dependence (v I occurs at 

decreasing values of c as m increases). However, increasing the amount of density­

dependence (m) has no effect on the parasite-driven extinction region (v c occurs at 

the same value with respect to c for varying m). Conversely, for any given value of 

m, the amount of frequency-dependence (c) determines whether the population is in 

disease-free, endemic or parasite-driven extinction parameter space. 
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Figure 5.2. (Model I) Outcomes in (c, m) parameter space: b = 2, U = I, h = I, v = 0.7 and a = 2.5. 

The carrying capacity is N" = I. 

5·3. Frequency. and density-dependence are linked 

5-3-1. Model and analysis 

Now consider the situation where the frequency- and density-dependent components 

are linked. Here I introduce a parameter f E (0,1) and rewrite equations (5.1 )-(5.2) 

as: 

dX _ (b _ hN)N _ uX _ vUe + (1- f)mN)XY 
dt N 

dY _ vUe + (1- j)mN)XY _ (a + u)Y 
dt N 

The term representing infection is now: 

v(fc + (1- f)mN)XY 

N 

(5.15) 

(5.16) 

(5.17) 
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Disease transmission again has both a frequency-dependent component, v f c XY / N, 

and a density-dependent component, v (1- j)mXY. The parameter f measures the 

relative amount of frequency- to density-dependent transmission: f.., 0 corresponds 

to purely density-dependent transmission, while f "" 1 corresponds to pure 

frequency-dependence. 

The analysis is again simplified by making the substitutions N .. X + Y and p "" Y / N . 

Equations (5.15)-(5.16) are then rewritten in terms of the total host density (N) and 

the prevalence of infection (p ): 

dN 
- - (b - hN)N - uN - a pN 
dt 

dp 
- - p[v(jc + (1- j)mN)(1- p)-(b-hN) -a(l- p)] 
dt 

(5.18) 

(5.19) 

Analysis of equations (5.18)-(5.19) is identical to that of equations (5.4)-(5.5), with 

the exception that m - m(1- j) and c - cf in the equations. 

The trivial equilibrium is again unstable, provided r - b - u > O. The condition for 

stability of the disease-free equilibrium is: 

u+a 
v< -v 

cf + (m(1- f)(b- u)/h) I 

(5.20) 

If v> v, then the parasite will invade the uninfected host population. The condition 

for stability of the parasite-driven extinction equilibrium is: 

a(u+ a) 
v> -v 

cf(a-b+u) C 

(5.21) 
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If V, < V < ve' with V, and ve defined by (5.20) and (5.21), then the endemic 

equilibrium is both relevant and stable. 

Figure 5.3 partitions the (v, a) parameter space into regions of the three non­

trivial outcomes, delineated by the two threshold probabilities, v, and ve' I 

investigate the effect of increasing the relative amount of frequency- to density­

dependent transmission, as measured by the parameter f. 

5-3-2. Probability of Disease Persistence 

Differentiation of equation (5.20) gives: 

dv , h(ll+ a )(m(b-u)-hc) 

df - (hcf + m(1- f)(b - U»2 

Hence dv , /df < 0 if and only if: 

m(b- u)/h <c 

(5.22) 

(5.23) 

A greater degree of relative frequency-dependence (f) will reduce the threshold for 

disease persistence (v,) provided (5.23) is satisfied. Thus, if the relative importance 

of frequency-dependent transmission (as measured by c) is large compared to the 

importance of density-dependent transmission (as measured by the parameter m and 

by the carrying capacity, N K - (b - u) / h), then increasing f lowers the threshold for 

persistence (Figs. 5.3A, 5.3B). On the other hand, if density-dependence is relatively 

more important in terms of transmission such that (5.23) is not satisfied, increasing 

the value of f instead raises the threshold for persistence (Figs. 5.3C, 5.30). In this 

case the attendant decrease in v, due to a greater frequency-dependent component, 

cf, is relatively small compared to the increase due to a lesser density-dependent 

component, m(1- j)(b-u)/h. Clearly, this is more likely if the population has a 

large carrying capacity, N K - (b - u)/ h. However, even at small carrying capacities, 

if m is large enough then density-dependence may still be relatively more important 
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in tenns of transmission. In the particular case where m(b - u)1 h .. c, the threshold 

for persistence is independent of the value of f (here v, - u + a). 
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Figure 5.3. (Model m Outcomes in (v. a) parameter space for different degrees of relative frequency­

dependence (/). In (A). (C)!= 0.5; in (8). (D)!= 0.9. In (A). (8) the density-dependent component is 

m = 3; in (C). (D) m = 30. Other parameters are: b = 2, U = 1 and h = 1. The carrying capacity is 

HI(= \. 

5-3-3. Probability of Parasite-driven Extinction 

From (5.21), increasing the relative amount of frequency-dependence (f) always 

reduces the threshold for parasite-driven extinction (v c). Extinction is more likely if 
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transmission is highly frequency-dependent. As illustrated in Figure 5.3, extinctions 

occur over a wider range of infection probabilities (v) and virulences (a) as f 

increases. 

5-3-4. Probability 0/ Endemic Persistence 

Assuming (5.23) is satisfied, such that higher relative frequency-dependence reduces 

the threshold for disease persistence (v,), this does not necessarily increase the range 

of parameter space where we observe endemic persistence. This is because increasing 

the relative amount of frequency-dependence (/) also reduces the threshold for 

parasite-driven extinction (v,), at the expense of the endemic region (Figs. 5.3A, 

5.3B). The parasite more easily persists in the host popUlation, but is also more likely 

to drive it to extinction. 

On the other hand, assuming condition (5.23) is not satisfied, increasing the 

relative degree of frequency-dependence (/) will increase the persistence threshold 

(v,), but reduce the threshold for extinction (v c), As a result, endemic persistence of 

the parasite is always less likely (Figs. 5.3C, 5.3D). This suggests that the conditions 

favouring a stable endemic equilibrium are high carrying capacities «b - u) / h) and 

strongly density-dependent transmission (low /, high m). Although strongly 

frequency-dependent infections (high /' high c) may more easily persist in smaller 

populations, they are also more likely to cause extinctions. 

5-4. Discussion 

My results show that where transmission follows conventional frequency­

dependence, host-parasite coexistence is possible for intermediate transmission 

probabilities. Parasite-driven host extinction can also occur if the infection 

probability rises above the extinction threshold, v" In model I, where the relative 

contributions of frequency and density-dependence can be varied independently, 

incorporating density-dependent transmission (i.e. m > 0) has no effect on the 

position of v <' which depends only on the frequency-dependent parameter, c. 
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However, increasing the amount of density-dependence lowers the boundary between 

the endemic and disease-free regions (V,). Thus, if c is fixed, the probability of 

endemic persistence increases with the relative contribution of density-dependent 

transmission. Conversely, when frequency-dependence is incorporated into a 

conventional density-dependent model, there is again a reduction in the size of the 

disease-free region, and parasite-driven extinction also becomes possible for a 

sufficiently high infection probability. As c is increased further, the extinction 

equilibrium becomes stable for lower values of v, constraining the region within 

which coexistence is possible. In model II, density-dependence can only be 

introduced if the relative degree of frequency-dependence is simultaneously reduced. 

Provided density-dependence is relatively more important than frequency­

dependence, this increases the probability of endemic persistence. 

Parasites have been implicated in host extinctions a number of times, 

including in the Thylacine, a carnivorous marsupial (McCallum and Dobson 1995), 

African wild dogs (Burrows et al. 1995) and some amphibian species (Daszak and 

Cunningham 1999). OIDs are generally only implicated in extinctions if they lower 

the host population size, or cause destabilization leading to dramatic cycles in 

abundance, such that there is a higher risk of stochastic events causing extinction. 

Alternatively, if OIDs are shared by two hosts, one of which acts as a reservoir for the 

parasite when the other is at low density, there is also a possibility of extinction 

(McCallum and Dobson 1995). The results presented here suggest that a degree of 

frequencY-dependence in such diseases will make extinction more likely. Parasite­

driven extinction may indeed be a theoretical possibility in a wide variety of OIDs. 

The majority of OIDs are likely to have some component of frequency-dependence 

and even a small degree may be sufficient to place a population above vC. For 

example, OIDs may be commonly transmitted during sexual activity, leading to a 

degree of frequency-dependent transmission. The transmission of OIDs may also be 

partly frequency-dependent when animals live in social or family groups. Contacts of 

all types within the group will often remain constant even if the density of the overall 

population varies (this will always be the case when there are fixed group sizes). As 

the overall density of the host population rises, the impact of density-dependent 
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transmission will be greater, but within-group transmission will still occur. When 

considering human diseases, social factors such as fixed class sizes in childhood may 

lead to a substantial frequency-dependent component of transmission dynamics 

(Bjornstad et al. 2002). The consequences of incorporating frequency-dependent 

transmission may be particularly important at low densities, where the likelihood of 

extinction may be greatest. 

Animal-STD systems may often be stabilized to some degree by density­

dependent transmission. Ryder et at. (2005) recently demonstrated that STD 

transmission has a large component of density-dependence in A. bipunctata. This 

may partly explain why coexistence is possible in this system, despite the regular 

occurrence of epidemic levels of infection (Webberley et al. 2006). A variety of 

studies have also reported relationships between mating rate and population density 

in both insects and birds (reviewed in Ryder et al. 2005). This introduces a 

component of frequency-dependence to the transmission of any STDs present. In 

birds, a number of studies have demonstrated that the rate of extra-pair copulation 

increases with population density, in species ranging from swallows to guillemots 

(Hatchwell 1988: Brown and Brown 1996). A number of insect studies have also 

found that mating rate is density-dependent (Harshman et al. 1988; Gage 1995). 

Density-dependent changes in mating rate are also likely in higher vertebrate groups, 

where a similar effect on the STD dynamics would be expected. In the red deer, 

increases in population density are associated with changes in the sex ratio, which in 

tum affects the number of males achieving a small number of matings (Clutton-Brock 

et al. 1997). 

The model of Antonovics et al. (1995) placed these two forms of transmission 

at opposite ends of a continuum and incorporated greater behavioural complexity into 

the transmission process. As 'handling time' (i.e. time spent competing for access to 

sexual partners, pair formation. etc) increased relative to the total available search 

time. the relationship between the number of encounters per infected individual and 

host density changed from linear to asymptotic. When handling time was low, 

therefore. host density was the main determinant of encounter rate. making 
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transmission nearer to being density-dependent. Higher handling times constrained 

the encounter rate, pushing transmission towards frequency-dependence. In retaining 

the simplicity of the traditional linear functions, the combined transmission function 

presented here does not allow for the same level of behavioural complexity as this 

previous model. However, it has the advantage of being analytically tractable and the 

phenomenological emphasis should increase its general relevance. For example, 

contact rates may remain fairly constant at low densities, according to social 

structure, but increase at high densities as promiscuity begins to modify the usual 

sexual behaviour. The approach is well suited to the empirical modelling of such 

data. It is easy to convert the model to incorporate respective frequency- and density­

dependent transmission coefficients: defining vc - fJI and vm - fJ2 (model I), the term 

representing the rate of transfer to the infected class becomes 

v(c + mN)XY = fJ.XY + fJ XY 
N N 2 

(5.24) 

A recent study of A. bipunctata measured fJ. and P2 experimentally (Ryder et al. 

2(05), but failed to demonstrate that the frequency-dependent term (PI) had any 

significant explanatory power over and above the standard density-dependent term 

(P2)' However, a wide variety of animal-SID systems are likely to demonstrate both 

significant frequency- and density-dependent transmission and the combined 

transmission function provides a potential basis for determining where on the 

'transmission continuum' such systems lie. As such, the approach may help to 

encourage the integration of theoretical and empirical approaches to SID ecology. 
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6. Male-biased parasitism and population dynamics 
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6-1. Introduction 

There is considerable evidence in nature for sex-biased parasitism. Male-biased 

parasitism is thought to be much more common (poulin 1996; Schalk and Forbes 

1997; Perkins et al. 2003; Ferrari et aI. 2004), although a study by McCurdy et aI. 

(1998) observed higher levels of infection of blood parasites in female birds. Males 

may be more susceptible to infection, or alternatively, they may transmit it more 

easily. It has been pointed out, however, that in populations where males have higher 

levels of infection, they are also likely to cause most of the transmission to females 

(Skorping and Jensen 2004). There are several reasons why males may have more 

parasites. Sexual size dimorphism in mammals is often strongly correlated with 

higher male mortality; a comparative study by Moore and Wilson (2002) identified 

positive correlations between male-biased parasitism and the degree of sexual 

selection, and between male-biased parasitism and male-biased mortality. Two 

explanations have been suggested to explain this. Firstly, the larger body size of 

males may make them easier targets for parasites (Moore and Wilson 2002). Second, 

sexually selected traits that increase growth or reproductive effort require androgenic 

hormones (e.g. testosterone in vertebrates) and these may have a negative effect on 

the immune system (Folstad and Karter 1992; Moore and Wilson 2002). There is 

convincing evidence that males gain fitness largely through reproductive ability and 

females through longevity, suggesting males might often invest less in costly immune 

mechanisms (Rolff 2002; Rolff and Siva-Jothy 2003). Although they lack 

testosterone, insects are thought to increase their reproductive ability through the 

presence of the juvenile hormone at the cost of reducing their immunity. 

Given that male-biased parasitism is considerably widespread, it is likely to 

have strong implications for population dynamics. Ecological models have the 

potential for extremely complicated dynamics (May 1974, 1976; May and Oster 

1976), however natural populations tend to be relatively stable (Hassell et aI. 1976; 

Berryman and Millstein 1989). In this chapter I investigate the effects of male-biased 

parasitism on the population dynamics. A common approach in theoretical studies is 

to assume that the dynamics of sexual populations can be understood by examining 
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only one of the genders in isolation. This approach can be justified if males and 

females have identical life cycles, or if one sex is completely dominant such that the 

dynamics are independent of the abundance of the other (Caswell and Weeks 1986). 

However, there are often significant demographic differences between the sexes 

(Allen 1980; Sherman and Morton 1984; Clutton-Brock 1991; Massot et aI. 1992; 

Ohgushi and Sawada 1995). For example, mammalian species with polygynous 

mating often show strong sexual selection for larger males, which tend to have higher 

mortality (Clutton-Brock et aI. 1982, 1985; Moore and Wilson 2(02). The assumption 

of complete dominance also fails in many cases, where an uneven sex ratio may 

constrain reproduction due to limited availability of the scarcer sex. A consideration 

of sexual reproduction and the differences between sexual classes may have a 

profound effect on the dynamics, and appropriate 'two-sex' models should therefore 

consider each gender separately (Caswell and Weeks 1986; Caswell 2(00). 

Modelling separate classes for each sex has important implications for the 

dynamics, as here births will depend on both sexes. Caswell and Weeks (1986) 

analysed an explicit two-sex model where births were determined by a 'harmonic 

mean' function, where reproduction depended on the ratio of males to females, and 

declined to zero in the absence of either sex. As the authors showed, this birth 

function can be modified to accommodate polygynous or polyandrous mating 

systems. Crucially, since here births depend on the relative proportion of either sex, 

models using the harmonic function are strictly frequency-dependent (Caswell and 

Weeks 1986). The equilibrium sex ratio was derived and shown to be locally 

asymptotically stable under the assumption of pure frequency-dependence. The 

addition of an extra age class did not, in itself, alter the dynamic stability of the 

model. However, if individuals of different ages also competed for mates, this 

introduced a degree of density-dependence, possibly destabilizing the equilibrium sex 

distribution. In particular, if males and females had different survival, this could 

generate a stable five-point cycle, the amplitude of the oscillations increasing with the 

degree of competition. Where the sexes also differed in development time, a range of 

complex behaviour was observed, from periodic or quasi-periodic cycles, to 

apparently chaotic dynamics. Furthermore, with a sigmoidal birth function, a 
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sufficiently large perturbation from the equilibrium sex ratio could drive the species 

to extinction. The size of the perturbation needed to cause extinction increased with 

the clutch size (Caswell and Weeks 1986). 

Following on from this, Lindstrom and Kokko (1998) compared the relative 

stability of sexual and asexual populations, in a model that included both polygyny 

and demographic sex differences. As the intrinsic growth rate increased, the asexual 

population exhibited a period-doubling route to chaos. With no demographic 

differences between the genders, a monogynous population exhibited greater stability 

than the asexual one, and polygynous populations were stable to a similar degree as 

asexual ones. Where males also experienced higher crowding, this had a destabilizing 

effect: chaos was observed at higher growth rates, and the dynamics no longer 

showed period-doubling bifurcations. Polygynous populations with higher male 

crowding were highly unstable, exhibiting chaos or cycles at all but very low growth 

rates. 

In this chapter I use a theoretical approach to examine how male-biased 

parasitism affects dynamical stability, under different characteristic mating structures. 

In line with previous two-sex models, I include the effect of demographic gender 

differences. The basic model is derived from Lindstrom and Kokko's (1998) model 

for a disease-free sexual population, and the host-parasite framework of May and 

Anderson (1983). The epidemiological model therefore incorporates the specific 

demography of the individual male and female populations. 

6-2. The Model 

The model of May and Anderson (1983) describes a host-microparasite interaction 

with discrete, non-overlapping generations. Disease epidemics occur within a cohort 

such that only surviving hosts are able to reproduce. Here, I generalize the model to 

include both males and female hosts. For each gender, the densities of uninfected, 

infected and recovered hosts are Xi' 1'; and Z;, and the total density is 

N; - X; + 1'; + Z;' The epidemiological dynamics are described by the equations: 
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dX P -'-- .X.(Y+Y)+yIY dt ", J ' 
(6.1) 

(6.2) 

dZ, Y --Y2· 
dt ' 

(6.3) 

The subscript i - m.,f denotes males or females, respectively. The transmission rate 

of infection is Pi (this allows for different susceptibilities to infection for males and 

females, but both types of host are equally infectious). There is an increased death 

rate due to the disease (virulence) given by a. Infected hosts recover to the 

susceptible state (at rate YI) or to the immune class (at rate Y2). 

The condition for the host population to support the pathogen is that its basic 

reproductive ratio (flo) exceeds unity (Anderson and May 1981, 1982). Since I am 

considering a heterogeneous population, the reproductive ratio will depend on the 

parasite fitness in both males and females and on their individual densities (Regoes et 

al. 2(00): 

(6.4) 

Throughout the analysis, it is assumed that flo > 1. The disease will therefore persist 

and cause an epidemic. At the end of a given cohort, the epidemic is assumed to have 

completely run its course such that there are no infected individuals left in the 

population. Defining (1-1) as the proportion of hosts who remain susceptible after 

the epidemic (May and Anderson 1983) the densities at the end of the cohort are: 

(6.5) 
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r; ... -0 (6.6) 

(6.7) 

The total number of surviving hosts is therefore: 

(6.8) 

Reproduction occurs according to the harmonic mean function (Caswell and Weeks 

1986; Caswell 2000). The number of births, B, therefore depends on the relative 

densities of males and females at the end of the previous cohort: 

2kN N B(N N ) _ f." ....... 
f ... • "'." N N h-I 

..... + f." 

(6.9) 

The parameter h gives the average harem size. This harmonic function assumes the 

total offspring per fertilized female is 2 k. and that births will fall to zero in the 

absence of either sex. With monogamous mating, h - 1, and males and females are 

equally important in terms of births. Values of h greater than one correspond to 

polygynous mating, where the birth rate is more dependent on females (Caswell and 

Weeks 1986; Lindstrom and Kokko 1998). The population is also assumed to 

experience density-dependence of the Moran-Ricker type (Moran 1950; Ricker 

1954), as employed by Lindstrom and Kokko (1998). Population growth is therefore 

limited at high densities by intra-specific crowding, in terms of increased infant 

mortality. Assuming births are equally likely to be of either sex, the population 

densities in the next cohort are given as: 

(6.10) 

(6.11) 
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Note that males and females may experience different levels of crowding, as 

measured by the parameters IJ, and ,.,.,. respectively. 

The seasonal model of May (1985) implicitly assumed that infection was able 

to persist from one cohort to the next via some external mechanism, such as repeated 

inoculation. Koella and Doebeli (1999) later adapted the model, allowing infection to 

persist through vertical transmission. Recovered individuals were assumed to carry a 

stage of the parasite that they transmit to their offspring. I follow this approach and 

assume that the proportion of infected offspring, v. depends on the proportion of 

surviving females who recovered from infection, and also on a parameter a 

measuring the efficacy of vertical transmission: 

(6.12) 

The eqUilibrium densities (6.5)-(6.7) were determined using computer 

simulations of the differential equations (6.1 )-(6.3) until the system reached a stable 

state. Reproduction then occurred according to equations (6.10)-(6.11), with a 

proportion, 1- v, offspring classified as susceptible and a proportion, v, classified as 

infected (according to equation (6.12». This process was repeated 120 times to 

eliminate the initial transient effects and the population densities were plotted for the 

last 20 iterations. From the coincidence of the consecutive values it can be seen 

whether the system converges to a stable point, limit cycle, or displays other complex 

behaviour. 

6-3. Results 

I begin by reproducing the results of Lindstrom and Kokko (1998), showing how the 

inclusion of sexual reproduction affects dynamical stability. Unbiased parasitism is 

then added to the basic model, characterized by equal transmission rates of infection 

to each gender. Finally, the effect of male-biased parasitism is investigated, 

represented as a higher transmission rate of infection to males and a correspondingly 
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lower transmission to females. I investigate the impact of parasitism at different 

levels of virulence, in terms of the case mortality due to infection, 

X ... a/(a + YI + Y2) ' 

6-3-1 . Disease-free host population 

To investigate the effects of parasitism (male-biased or otherwise) the dynamical 

behaviour in the absence of disease needs first to be established. This has been 

discussed in depth by Lindstrom and Kokko (1998). For a monogynous popUlation 

with no density-dependent differences between the sexes, the dynamics are generally 

stable with two-point limit cycles occurring at high fecundity (Fig. 6.1A). In 

polygynous populations, the density of males is less important in terms of births, and 

the dynamics follow a period-doubling route to chaos (Fig. 6.1B). 
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Figure 6. 1. Population dynamics in the absence of parasitism. (A) Monogyny (h = I), males and 

females are equally vulnerable to crowding (1-'/= Jl,. = I); (B) polygyny (h = 10), males and females are 

equally vulnerable to crowding (ILr = IL. = I); (C) monogyny (h = 1), males have a greater vulnerability 

to crowding (jJ.,= 0.4, I-l. = 1.6); (D) polygyny (h =-10), males have a greater vulnerability to crowding 

(J.t,= 0.4, I-l. = 1.6). The rate of vertical transmission is {j = 0.2. 
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Returning to the monogynous mating system but assuming that males are more 

vulnerable to crowding. the dynamics become highly unstable at high fecundities and 

no longer follow a period-doubling route to chaos (Fig. 6.1 C). For a polygynous 

population that also experiences greater male crowding. the dynamics are generally 

complex. with alternating regions of chaos and limit cycles (Fig. 6.1D). 

6-3-2. Unbiased parasitism 

I examine the effect of adding parasitism to each of the model systems. Initially. I 

assume a low case mortality such that X = 0.08 (infected individuals have a 92% 

chance of recovering). The dynamical behaviour is essentially unaffected (Fig. 6.2). 

There is. however. a slight shift to the right of the initial bifurcation point. Unbiased 

parasitism therefore corresponds to a mild increase in dynamical stability if case 

mortality is low. 
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Figure 6.2. Population dynamics with unbiased parasitism. (A) h = I, IJ/ = IJ.. = I; (B) h = 10, 

iJJ= IJ.. = I; (C) h = l , IJ/= 0.4. 1J.. = 1.6; (D) h = 10, iJJ= 0.4.1J.. = 1.6. Other parameters are: 

PI = P. = 1.2. a = 0.08. Y. = Yl = 0.46 and 6 = 0.2. 
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Increasing case mortality ( X) generally increases the stability of the system: the 

initial bifurcation shifts further towards the right (Fig. 6.3). For high enough mortality 

rates, the populations are completely stabilized (over the given range of fecundities) . 

This applies to all four mating systems. The pattern of increased stability with higher 

case mortality holds true generally, but there are some exceptions. Very high case 

mortalities (typically in excess of 95%) tend to promote cyclic dynamics, which are 

generally of period two. For an extremely high case mortality (99.9%) the system 

may exhibit high-period cycles or even chaos. This appears to be more likely at high 

transmission rates (Fig. 6.4B). Lower transmission rates tend to generate two-point 

cycles or a stable equilibrium (Fig. 6.4A) . 
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Figure 6.3 . Population dynamics with unbiased parasitism. (A) a = 0.3, YI = Y2 = 0.35; (B) a = 0.5, 

YI = Y2 = 0.25; (C) a = 0.7, YI = Y2 = 0.15. Other parameters are: 13/= 13m = 1.2, h = 10,1-1-/= 0.4, 1-1-.. = 1.6 

and 0= 0.2. 
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Figure 6.4. Population dynamics with unbiased parasitism. (A) /3, = /3 .. = 0.6; (B) /3,= /3 .. = 1.2. 

Other parameters are: h = 10, J.i.,= J.I.. = I , a = 0.999, YI = Yl = 0.0005 and c5 = 0.2. 

Interestingly, a reduction in transmission rate was occasionally associated with 

increased stability at lower mortality rates. At extreme mortality, however, infection 

may actually destabilize the dynamics of an uninfected population (compare Figs 

6.1B, 6.4B). In this case, the dynamics are determined almost entirely by the 

epidemiology and there is very little effect of mating system or density-dependent 

factors . 

6-3-3. Male-biased parasitism 

This manifests as a higher transmission rate to males (13m)' and a correspondingly 

lower transmission rate to females ( fJ j ) . The overall force of transmission (fJm + fJ
j

) 

is held constant to allow comparison with the unbiased case (13m = 13j ). Extensive 

simulations did not reveal many consistent results; the effect of male-biased 

parasitism appears to be heavily parameter-dependent, although some general 

patterns did emerge. Firstly, at low mortality rates there appears to be very little effect 

of male-biased parasitism (Fig. 6.5). There is mild stabilization of an uninfected 

population, in terms of a later initial bifurcation (Fig. 6.1), but little difference 

compared to an unbiased parasite (Fig. 6.2). 
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At intermediate case mortalities, either stabilization or destabilization 

(compared to an unbiased parasite) may occur in all four systems. For most parameter 

values the effects are small, corresponding to a small shift to the left (less 

stabilization) or to the right (more stabilization) of the initial bifurcation point. There 

may also be unexpected effects on stability. At high fecundity, unbiased parasitism 

results in two- or four-period cycles (Fig. 6.6A); the periodicity is much higher with 

male-biased parasitism (Fig. 6.6B). The cycles are also of much higher period than 

observed in the absence of parasitism (Fig. 6.1D; 14.S<k<17.S). In some 

circumstances then, male-biased parasitism may destabilize an uninfected population 

at intermediate mortalities. 
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Figure 6.5. Population dynamics with male-biased parasitism. (A) h = 1, 1-',= 1-'m = 1; (B) h = 10, 

1-',= 1-'m = 1; (C) h = 1,1-',= 0.4, 1-'m = 1.6; (D) h = 10,1-',= 0.4, 1-',. = 1.6. Other parameters are: P,= 0.6, 

Pm = 1.8, a = 0.08, y, = Y2 = 0.46 and {) = 0.2. 

At mortality rates greater than 90% (greater than 80%, if there is monogyny 

and higher male crowding), there may be significant effects of male-biased 

parasitism; these are observed only for specific parameter combinations. 
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Monogynous populations may be relatively less stable compared to an unbiased 

parasite. Where the unbiased system reaches a stable point, the male-biased system 

exhibits two-point cycles (Fig. 6.7). There may also be destabilization of an 

uninfected population (compare Figs. 6.1A, 6.7B). Under polygyny, the effects of 

male-biased parasitism are less straightforward; if males and females experience 

equal crowding then the dynamics are generally more stable. In particular, where the 

unbiased parasite generates cycles at high fecundity (Fig. 6.8A), the male-biased 

system attains a stable point (Fig. 6.8B). If males experience higher crowding and 

there is polygynous mating, the effect of male-biased parasitism is strongly 

parameter-dependent. It may result in greater stability at high fecundity, but be less 

stable at low fecundity (Figs. 6.8C, 6.8D). Alternatively, the male-biased system may 

be relatively less stable at all fecundities ; this appears to be the case for most 

parameter values. 
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Figure 6.6. Population dynamics with male-biased parasitism. (A) 13! = 13m = 1.2; (B) 13/ = 0.6, 13m = 1.8. 

Other parameters are: h = 10, ~! = 0.4, ~,. = 1.6, a = 0.5, YI = Y2 = 0.25 and 0 = 0.2. 

The results given in the preceding paragraph are generalized from a large 

number of simulations , but exceptions do exist. For example, at extremely high 

mortality rates (99.9%), male-biased parasitism may be relatively less stabilizing to a 
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polygynous population when the genders experience equal crowding. This results in 

limit cycles with higher periodicity compared to the unbiased parasite. 
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Figure 6.7. Population dynamics with unbiased and male-biased parasitism. (A) h = 1,1-',= 1-' .. = I, 
a= 0.95, Y. = Y2 = 0.025, {J,= {J,. = 1.2; (B) same as (A) except 13,= 0.4 and {J,. = 2; (C) h = 1,1-',= 0.4, 

IJ.. = 1.6, a = 0.8, Y. = Y2 = 0.1, 13,= 13,. = 1.2; (D) same as (C) except {J,= 0.6 and 13,. = 1.8. 

The rate of vertical transmission is {} = 0.2. 

If there is no density-dependence in the population (I-', -I-'m -0), whether 

male-biased parasitism increases or decreases stability may be due to an interaction of 

the mating system with the fecundity. Figure 6.9 partitions the (k, h) parameter space 

into regions where the dynamics reach a stable point, a two-cycle, or more complex 

dynamics (higher point cycles or chaos). There is extreme' mortality of infected hosts 

(X - 0.99). With unbiased parasitism, point equilibria occur only in monogynous 

populations and only at very low fecundity (Fig. 6.9A). At intermediate fecundities 

the dynamics are always two-point cycles. High fecundities may result in either two­

point cycles or more complex dynamics; populations with very high fecundity always 

exhibit two-point cycles provided there is a significantly high degree of polygyny. 
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Figure 6.8. Population dynamics with unbiased and male-biased parasitism. (A) h = 10, JJ,= JJ .. = I, 
a = 0.97, Yl = Y2 = 0.015, fJ,= fJ .. = 1.2; (B) same as (A) except ,8,= 0.6 and fJ .. = 1.8; (C) h = 10, 

JJt= 0.4, JJ", = 1.6, a = 0.97, Yl = Y2 = O.oI5, fJ,=,8,. = 1.2; (D) same as (C) except fJ,= 0.6 and,8,. = 1.8. 

The rate of vertical transmission is () = 0.2. 

Under male-biased parasitism, at very low fecundity the population always reaches a 

stable point (Fig. 6.9B). For a sufficiently high degree of polygyny, the population 

exhibits either a two-point cycle or (for high fecundity) reaches a stable point. Higher 

point cycles occur only at lower harem sizes and are always likely at high fecundity. 

In contrast to the unbiased case, high point cycles may also occur at quite low 

fecundities. In the absence of density-dependence, male-biased parasitism is 

generally more stabilizing at high fecundity and harem size. Lower harem sizes tend 

to be less stable under male-biased parasitism. 

Returning to the density-dependent case, where parasitism is highly biased 

towards males ({Jm »{J/)' the dynamics may be highly complex. At extreme 

mortality, there is a range of bifurcations leading to high point cycles and possibly 
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chaos. This is more likely with monogyny (Fig. 6. lOA), but may also occur in 

polygynous systems, in particular if males are also more vulnerable to crowding (Fig. 

6. lOB). 
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Figure 6.9. Stability plots. Regions shaded light grey correspond to a stable equilibrium, dark grey 

regions correspond to 2-point limit cycles, and regions shaded black correspond to high-period cycles 

or chaotic dynamics; (A) {31= {3,. = 2.5; (8) {31= 1.25 and {3m = 3.75. Other parameters are: a = 0.495, 

YI = 0, Y2 = 0.005 and 15 = 1. 
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Figure 6.10. Population dynamics with male-biased parasitism. (A) h = 1,1-'/ = I-'m = 2, 

YI = 0, Y2 = 0.0005 , a = 0.4995; (B) h = 10,1-'1= 0.5, I-'m = 2, YI = 0, Y2 = 0.005, a = 0.495. 

Other parameters are: PI = 0.25, Pm = 4.75 and {) = 1. 

6·3·4. Discussion 

Sexual populations may exhibit complex dynamics quite independently of the effects 

of disease (Lindstrom and Kokko 1998). It is generally thought that disease will 

destabilize population dynamics. However, I have shown that if parasitism is male­

biased, there may be either stabilization or destabilization of an uninfected 

population. What happens is highly dependent on the level of case mortality of 

infected hosts. At low case mortality there is a negligible effect of male-biased 

parasitism, as diseased hosts mainly recover from infection and there is only a slight 

difference in male and female densities. This corresponds to a small increase in 

stability in terms of a marginal shift to the right of the onset of bifurcations, although 

the bifurcation pattern is unaffected. At intermediate case mortalities, the degree of 

stabilization is generally greater; however, over a range of high fecundities, male­

biased parasitism may induce cycles with higher periodicity than occur in the 

unparasitized model. This destabilization is due to scarcity of male mating partners. 

This is also evident at high mortality rates, in particular if the population is 

123 



monogynous. Under monogyny, the birth function is equally dependent on both sexes 

in a multiplicative manner and a reduction in male density therefore generates a more 

than proportionate reduction in the birth rate. If males are also more vulnerable to 

crowding, the effect is more pronounced and male-biased parasitism is highly likely 

to be destabilizing. On the other hand, provided case mortality is not too high, male­

biased parasitism causes stabilization and the dynamics may attain a point 

equilibrium. This is more likely with polygyny, as males are relatively less important 

in terms of births (Lindstrom and Kokko 1998). Here male-biased parasitism reduces 

the variance in the birth rate due to infection, with the result that the population is less 

likely to fluctuate between successive infectious seasons. 

There is a similar effect of unbiased parasitism. In many cases, this also 

stabilizes the dynamics, provided the case mortality is not too high. A proportion of 

the population dies from infection, reducing both the male and female densities and 

therefore the birth function. As such, infectious disease may be seen to stabilize the 

population by reducing its overall growth rate. However, at high case mortalities both 

male-biased and unbiased parasitism often generate two-point cycles. At extremely 

high case mortality, the degree of instability is greater and the dynamics are prone to 

exhibit high-point cycles or even chaos. This is because the prevalence of infection is 

much lower and the mating system and density-dependence effects (which define the 

population's growth) interact with the infectious disease in determining the dynamics. 

Population cycles are a feature of continuous models that include disease 

transmission via a free-living infective stage (Anderson and May 1981; White et al. 

1996). In particular, cycles are predicted when the increased mortality rate due to 

infection (a) is high. There exists a parallel with my results, where cycles occur at 

high case mortality. Population cycles are also predicted at high case mortality in the 

discrete asexual model (May 1985; Koella and Doebeli 1999). Following a large 

epidemic, a high case mortality will strongly depress the male and female densities. 

The next epidemic is therefore much smaller and the number of hosts surviving to 

reproduce is higher. This allows the population to recover to high levels, which 
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triggers another large epidemic, and in the long run the population oscillates between 

high and low density. 

The Allee effect (Allee 1931, 1938) is implicit in the form of the birth 

function. This is essentially a cost of rarity for sexual populations, due to scarcity of 

breeding partners. At low density, sexual populations may be expected to have 

reduced reproduction. Population growth rates may also be reduced at low density 

due to associated factors, such as social dysfunction and inbreeding depression 

(Scheuring 1999). There is indeed considerable empirical evidence for such effects of 

low density (McCarthy 1997). In the absence of infection, an uneven sex ratio is 

likely to destabilize the dynamics: period-doubling bifurcations is a common feature 

of the disease-free model (Lindstrom and Kokko 1998). In the host-microparasite 

model presented here, an Allee effect is theoretically possible whenever male-biased 

parasitism results in an uneven sex ratio, but does not always occur. Monogynous 

populations appear to be particularly vulnerable to Allee effects. In contrast, 

reproduction is only constrained in polygynous species if males are also more 

vulnerable to crowding. Interestingly, where females experienced relatively greater 

crowding, male-biased parasitism was found to increase dynamic stability in many 

cases. This further implies that unequal sex ratios are destabilizing, whether due to 

disease or other demographic factors. 

There is considerable evidence for male-biased parasitism in vertebrates 

(Poulin 1996; Schalk and Forbes 1997; Moore and Wilson 2002). However the 

mechanisms behind this are not wholly understood. Males are predicted to have 

greater exposure to parasites, due to their larger home ranges and increased activity 

levels (Perkins et a1. 2003). Increased male susceptibility is often attributed to the 

immunocompetence handicap hypothesis (Hamilton and Zuk 1982; Folstad and 

Karter 1992; Schalk and Forbes 1997). In mammals, sex-biased parasitism is 

associated with sexual size dimorphism, with males the larger and more heavily 

parasitized sex (Moore and Wilson 2002; Wilson et a1. 2002). Furthermore, there is 

now convincing evidence that not only do males have greater susceptibility and 

support higher parasite intensities, they may also be responsible for the majority of 
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disease transmission. Perkins et al. (2003) investigated the role of key hosts in the 

yellow-necked mouse, Apodemus jlavicollis. These are parasitized by the sheep tick, 

Ixodes ricinus, the vector of the zoonotic tick-borne encephalitis (TBE) (Labuda et al. 

1997). Sexually mature males of high body mass were identified as a functional 

group responsible for driving most of the transmission. Removal of this group (which 

constituted 26% of the total population) was shown to reduce transmission potential 

by 79%. In another study on A. flavicollis, Ferrari et al. (2004) experimentally 

reduced the helminth community to either sex, of the dominant macroparasite 

nematode, Heligmosomoides polygyrus. Reducing the parasite intensity of males 

significantly reduced the intensity in females, estimated through faecal egg counts, 

although reducing the intensity in females had no significant effect on the intensity in 

males. Furthermore, 20% of the most infected individuals (62% of males) were found 

to be responsible for 73% of the total eggs expelled. These two studies both roughly 

conform to the '20/80 Rule', by which 20% of the individuals account for 80% of the 

transmission potential (Woolhouse et al. 1997). Male-biased parasitism may often be 

responsible for the persistence of diseases, by maintaining the basic reproductive ratio 

(Ra) of the pathogen above unity (Perkins et al. 2003). Males may often have an 

increased susceptibility to infection; they may also cause the majority of female 

infections. Indeed, the most heavily parasitized individuals are likely to be the ones 

most responsible for disease transmission (Skorping and Jensen 2004). Males may 

also be intrinsically more infectious, due for example to their increased activity 

and/or host range. Investigating the effects of higher male susceptibility and 

infectiousness may form the basis of future work. 

The aim of this chapter was to examine the effect on dynamical stability of 

male-biased parasitism. As with unbiased parasitism, there is generally an increase in 

dynamic stability, provided the case mortality is not too high. For sufficiently high 

case mortality both unbiased and male-biased parasitism are likely to induce cycles or 

even chaos. In this case, a population experiencing male-biased parasitism is 

relatively less stable if there is monogyny; in contrast, a polygynous species may be 

relatively more stable. 
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7. Discussion chapter 

127 



7-1. Conclusions and general perspectives 

In chapter 2, the evolution of tolerance and control were shown to have 

fundamentally different dynamics. Tolerance confers a reduction in virulence and 

invasion by a tolerant strain therefore increases the prevalence of infection. 

Consequently, tolerance may only ever result in monomorphism. In contrast, invasion 

by a control strain may reduce the prevalence of infection. Under a decelerating 

trade-off this may lead to polymorphism. Given that avoidance is also associated with 

a reduction in disease prevalence (Roy and Kirchner 2000), this suggests that forms 

of resistance that reduce pathogen fitness (avoidance, control, recovery, acquired 

immunity) have at least some potential to evolve polymorphism. Indeed, 

polymorphism in avoidance strategies has been predicted in several models (Boots 

and Haraguchi 1999; Bowers et aI. 2(03). In the model presented in chapter 2, only 

marginally decelerating trade-offs were associated with polymorphism. This relates to 

the recent theory of trade-off and invasion plots (TIPs; Bowers et a1. 2005). 

According to this theory, polymorphism will only evolve under trade-offs of 

intermediate curvature (though these need not necessarily be decelerating). 

Interestingly, a decelerating trade-off between virulence on different hosts has been 

associated with polymorphism in parasite strategies (Regoes et aI. 2000). 

Chapter 3 examined how the evolution of different forms of resistance is 

dependent on the host's lifespan. The basic assumption that longer-lived species 

should always invest in relatively greater resistance was shown to be invalid in a 

number of cases. In particular. if hosts have acquired immunity, there is often a non­

monotonic relationship between lifespan and the level of innate resistance that 

evolves. Longer-lived populations tend to have higher levels of density-dependence, 

which reduces the density of susceptibles and in tum the infection prevalence. This 

extends previous work on lifespan and resistance (van Boven and Weissing 2004), 

highlighting that the prevalence of immunity must be sufficiently large for density­

dependence to reduce the selection for resistance. This is likely if there is a high 

probability of acquiring immunity and a low rate of loss of immunity. The evolution 

of acquired immunity itself was also investigated. Depending on how immunity 
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evolves, the host's investment either increased monotonically with lifespan (although 

here there was bistability at low lifespan), or initially increased with lifespan and then 

decreased towards zero. 

The phenomenon of evolutionary bistability can occur in many situations. 

There is often evolutionary bistability in tolerance outcomes (chapters 2, 3; Boots and 

Bowers 1999). In contrast, there is no bistability in recovery (chapter 3), unless the 

parasite also coevolves with the host (van Baalen 1998). Longer-lived populations 

may show evolutionary bistability in avoidance, in particular if they benefit from 

acquired immunity (chapter 3). This is somewhat surprising, given that avoidance and 

recovery both reduce the prevalence of infection and have similar evolutionary 

dynamics (Boots and Bowers 1999). The difference is likely to be due to the fact that 

recovery is beneficial only after a host becomes infected, while avoidance confers a 

benefit to susceptible hosts. The evolution of parasite virulence may also exhibit 

bistability (Andre and Gandon 2006). 

Chapter 4 examined the evolution of the pathogen in response to a fixed level 

of host tolerance. The outcome was shown to depend on the form of the tolerance. In 

agreement with previous theory (Restif and Koella 2003), if tolerance reduces 

virulence by a constant factor, this always selected for higher replication rates and 

virulence, assuming these traits are positively correlated (Frank 1996). Where 

tolerance reduces virulence in an additive manner this often selected for lower 

replication rates, possibly leading to an apparent commensalism. The fact that 

tolerance is costly for the host (modelled as a lower intrinsic birth rate) may be 

interpreted as a morbidity cost of parasitism, although the mortality cost ( virulence) is 

zero. Of particular interest is the fact that a high level of additive tolerance may result 

in commensalism at a higher replication rate than prior to the evolution of tolerance. 

Chapter 5 considered the implications of varying degrees of density- and 

frequency-dependent transmission. The conditions for disease persistence, host­

pathogen coexistence, and parasite-driven extinction were derived. In particular, 

increasing the amount of frequency-dependence was shown to allow extinction for a 
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lower probability of infection. When the two forms of transmission were traded-off, 

host-parasite coexistence was most likely when the population had a high carrying 

capacity, transmission was highly density-dependent, and there was an intermediate 

probability of infection per contact. Provided there is some element of frequency­

dependence in the transmission mode, a high infection probability may cause the host 

to go extinct. Pure frequency-dependent transmission is generally predicted to result 

in parasite-driven extinction at high transmission rates, unless the host has a 

sufficiently high birth rate (Getz and Pickering 1983; Thrall et al. 1993; Alexander 

and Antonovics 1988; Boots and Sasaki 2(03). In these previous models, a high birth 

rate prevents extinction by keeping the average per capita growth rate above zero. I 

have shown that endemic persistence may also be maintained if disease transmission 

is partly density-dependent. This raises the question of whether pathogens should 

evolve to be more density- or more frequency-dependent. High population densities 

favour density-dependent transmission, while low densities select for frequency­

dependence (Thrall and Antonovics 1997; Thrall et al. 1998). If frequency-dependent 

transmission is associated with sterilizing effects, and density-dependence with 

virulence, then mixed strategies or polymorphism in transmission mode may evolve 

(Thrall and Antonovics 1997; Thrall et al. 1998). Given that STDs tend to be 

associated with sterility costs and OIDs with mortality costs (Lockhart et al. 1996), 

pathogens may often evolve such complementary transmission strategies. 

Chapter 6 investigated the population dynamics due to male-biased 

parasitism, in comparison to unbiased parasitism, or an uninfected host population. 

This was modelled as a higher male susceptibility to infection (lower avoidance). 

Males and females were therefore modelled explicitly as separate population classes, 

where the birth function depended on the relative densities (Caswell and Weeks 1986; 

Lindstrom and Kokko 1998). The case mortality of parasitism was shown to have a 

strong influence on the dynamics. At Jow case mortality, male-biased parasitism was 

similar to unbiased parasitism and had a stabilizing effect on the dynamics. This was 

generally the case at intermediate mortalities, although in some cases male-biased 

parasitism increased the periodicity of cyclic dynamics. At high mortalities, there was 

shown to be a strong effect of the mating system: monogynous populations exhibiting 
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male-biased parasitism were generally less stable, while polygynous ones could be 

either more or less stable. 

7-2. Implications for further work 

The evolution of parasite virulence is likely to be constrained by relationships 

between other aspects of parasite fitness. This requires that both within-host and 

between-host (epidemiological) factors be considered (Gandon 2004). Virulence is 

likely to be positively correlated with transmissibility (Anderson and May 1982; 

Frank 1996; Ebert and Weisser 1997; Lipsitch and Moxon 1997) and negatively 

correlated with recovery (Fenner and Ratcliffe 1965; Anderson and May 1982). As 

such, most epidemiological models make simplifying assumptions about the nature of 

the parasite dynamics within infected hosts. Although such simplifications have their 

utility, models have recently begun to consider within-host parasite dynamics 

explicitly (Antia et al. 1994; Ganusov et al. 2002; Gilchrist and Sasaki 2002; Andre et 

al. 2003; Alizon and van Baalen 2005; Andre and Gandon 2006). In such models, 

transmissibility, virulence and recovery are therefore determined as a result of the 

interaction between the host's immune system and the parasite's replication. Antia et 

al. (1994) investigated the evolution of parasite virulence, assuming a threshold 

parasite density above which the parasite automatically kills the host. Parasite fitness 

was shown to be maximal for an intermediate virulence, equivalent to maximizing the 

parasite's basic reproductive rate (Ro). The model also defined a range of 

intennediate virulences over which the parasite is able to persist. This is particularly 

relevant in the context of multiple infections, which generally select for higher 

virulence (May and Nowak 1994, 1995; Nowak and May 1994). Virulence evolution 

will therefore be constrained to within an upper bound, as extremely virulent 

parasites will go extinct. Andre and Gandon (2006) considered how vaccination 

conferring a higher rate of replication of lymphocytes (equivalent to host resistance in 

this context) would select the parasite. The optimal parasite replication rate was 

shown to increase with the proportion of vaccinated hosts. This is consistent with 

earlier models that do not explicitly consider the within-host dynamics (Gandon et al. 

2001, 2(03). Another interesting parallel is that the case mortality due to infection 
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was lower in vaccinated hosts, even when the parasite evolved. Virulence (the 

instantaneous rate of parasite-induced mortality) may often increase in response to 

tolerance, but never totally erodes the benefit of the initial tolerance (chapter 4; type 

II). Although case mortality and virulence provide different measures of parasite 

damage, these are likely to be correlated in many cases. Models combining within­

host and epidemiological dynamics may also be useful in investigating host-parasite 

coevolution. Here, the replication rate of lymphocytes could be taken as a dynamic 

variable (equivalent to the level of host resistance) and coevolve with parasite 

replication rate. 

Coevolutionary processes are particularly characterised by the antagonistic 

interactions between host and parasites (van Baalen 1998). Parasite virulence is 

generally predicted to increase in response to a higher recovery rate of the host 

(chapter 4; van Baalen and Sabelis 1995; Day 2001; Restif and Koella 2003). In turn, 

higher virulence may cause the host to evolve a higher recovery. The actual case 

mortality may therefore either increase or decrease, although the duration of an 

infection will be much shorter (Day 2002a; Day and Bums 2003). It is clearly 

important, therefore, to consider whether the particular measure under investigation 

(Le. virulence, case mortality, duration of infection) provides an accurate 

characterisation of the evolutionary processes. 

Recent publications have demonstrated that complex relationships between 

parameters may confound many of the predictions regarding virulence evolution (Day 

2001, 2002a, 2003; Williams and Day 2001; Day and Proulx 2004). Ebert and 

Mangin (1997) provide an interesting case in point. In their study, a horizontally 

transmitted microsporidian gut parasite, Glugoides infesfinalis, was artificially 

selected in response to increasing background mortality of the host. Virulence was 

positively correlated with within-host replication rate. However, selected lines 

evolved lower virulence. In contrast, the basic transmission-virulence trade-off 

predicts that optimal virulence should increase with background mortality (chapter 4; 

van Baalen and Sabelis 1995; Day 2001; Restif and Koella 2003). This disparity was 

thought to be due to multiple infections. Higher background mortality reduces the 
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frequency of multiple infections and therefore the intensity of within-host 

competition, and this selects for reduced virulence (Ebert and Mangin 1997). Day and 

Proulx (2004) suggest that it is the relative importance of susceptible and infected 

hosts as sources of potential transmission that actually determines the direction of 

virulence evolution. Higher background mortality increases the density of susceptible 

hosts, and decreases the density of infecteds. If the latter are more important in terms 

of transmission (i.e. if mUltiple infections are common), increasing background 

mortality should therefore select for reduced virulence. In modelling host-parasite 

interactions, therefore, there are clearly no panaceas. 
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