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Abstract 
Swarm intelligence, as inspired by natural biological swarms, has numerous power­

ful properties for distributed problem solving in complex real world applications such 

as optimisation and control. Swarm intelligence properties can be found in natural 

systems such as ants, bees and birds, whereby the collective behaviour of unsophisti­

cated agents interact locally with their environment to explore collective problem solv­

ing without centralised control. Recent advances in wireless communication and digi­

tal electronics have instigated important changes in distributed computing. Pervasive 

computing environments have emerged, such as large scale communication networks 

and wireless ad hoc and sensor networks that are extremely dynamic and unreliable. 

The network management and control must be based on distributed principles where 

centralised approaches may not be suitable for exploiting the enormous potential of 

these environments. In this thesis, we focus on applying swarm intelligence to the 

wireless ad hoc and sensor networks optimisation and control problems. 

Firstly, an analysis of the recently proposed particle swarm optimisation, which is 

based on the swarm intelligence techniques, is presented. Previous stability analysis 

of the particle swarm optimisation was restricted to the assumption that all of the 

parameters are non random since the theoretical analysis with the random parameters 

is difficult. We analyse the stability of the particle dynamics without these restrictive 

assumptions using Lyapunov stability and passive systems concepts. The particle 

swarm optimisation is then used to solve the sink node placement problem in sensor 

networks. 

Secondly, swarm intelligence based routing methods for mobile ad hoc networks 

are investigated. Two protocols have been proposed based on the foraging behaviour 

of biological ants and implemented in the NS2 network simulator. The first pro­

tocol allows each node in the network to choose the next node for packets to be 

forwarded on the basis of mobility influenced routing table. Since mobility is one of 

the most important factors for route changes in mobile ad hoc networks, the mobility 

of the neighbour node using HELLO packets is predicted and then translated into a 

pheromone decay as found in natural biological systems. The second protocol uses 

the same mechanism as the first, but instead of mobility the neighbour node remain­

ing energy level and its drain rate are used. The thesis clearly shows that swarm 

intelligence methods have a very useful role to play in the management and control 
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problems associated wi~h wireless ad hoc and sensor networks. This thesis has given 

a number of example applications and has demonstrated its usefulness in improving 

performance over other existing methods. 
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Chapter 1 

Introduction 

Ad hoc wireless networks consist of nodes interconnected by multihop wireless 

communication links. Unlike conventional wireless networks, ad hoc networks have 

no fixed infrastructure or centralised control [1]. Most of the ad hoc networks are 

self-organising networks where the necessary control and management are provided 

only by the interaction among the mobile nodes. These networks are highly attrac­

tive for future pervasive computing environments. Ad hoc networks can be rapidly 

deployed, reconfigured and tailored to any specific application [2]. On the other hand, 

swarm intelligence, as demonstrated by biological swarms in nature, has several self­

organising properties and provides distributed problem solving without centralised 

control [3]. This thesis investigates swarm intelligence applications to wireless ad hoc 

and sensor networks. 

1.1 Background 

Recent advances in wireless communications and digital electronics have enabled 

rapid development in pervasive or ubiquitous computing environments. New handheld 

devices such as personal digital assistants (PDA), wearable computers and mobile 

phones enhance both information processing and accessing capabilities with mobility. 

Recent advances in computing and communication provide small devices, sensors and 

actuators increasingly with communication capabilities. These technological advances 
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extend our living environment to a fully pervasive computing environment. Mobile 

ad hoc networking is one of the most important technologies supporting pervasive 

computing [4]. 

Significant research in wireless ad hoc networks has been ongoing for nearly 30 

years, also under the names of packet radio or multi-hop networks. Recently, the 

field has become prominent with a rapid expansion due to the advancement of in­

expensive, widely available wireless devices and the interest in mobile computing. 

Ad hoc networks are a collection of communications devices (nodes) that wish to 

communicate, but have no fixed infrastructure available, and have no pre-determined 

organisation of available links. Individual devices are responsible for dynamically 

discovering which other devices they can communicate with. These networks imply 

not only mobility and wireless connections, but also the frequent joining and leaving 

of nodes, often changing interconnection patterns and the possibility of multi-hop 

routing among mobile nodes. Ad-hoc networks management and control techniques 
'" must be based on local knowledge, using decentralised control mechanisms, and be 

capable of adapting rapidly to changing network conditions [2]. 

Routing algorithms in mobile ad hoc networks have attracted a great deal of 

attention amongst the research community from the beginnings of the research in ad 

hoc networks until the present time. Early work focused on finding feasible routes 

without considering energy costs or quality of services (QoS). Later research then 

focused on energy efficient and QoS based routing algorithms. Many routing protocols 

have been proposed for ad hoc networks: ad hoc on demand distance vector (AODV) 

routing [5], zone routing protocol (ZRP) [6], dynamic source routing (DSR) protocol 

[7], cluster based routing protocol (CBRP) [8] and destination sequenced distance 

vector (DSDV) [9]. However, most of the existing protocols are well suited for one 

scenario, but not for all scenarios. For example, DSR performs well in static networks 

but lacks in the mobile networks but AODV performs better than DSR in mobile 

networks. Furthermore, routing protocols that have a good performance in small 

networks may not perform well in large networks where scalability issues are not 

considered or studied well. To achieve good routing performance in all situations, 

different routing strategies should be used to be adaptable in all different scenarios. 
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Wireless sensor networks [10] take a special role in the ad hoc networking field and 

offer a powerful combination of distributed sensing, computing and communication. 

Sensor networks provide endless opportunities, but at the same time pose great chal­

lenges of energy scarcity and limited computational capabilities. Even though sensor 

networks share common technical issues with wireless ad hoc networks, routing is 

very challenging due to sensor nodes being prone to failure and most of the sensor 

nodes having limited computational capabilities [10]. Several routing protocols have 

been proposed for wireless sensor networks [11, 12, 13, 14, 15]. Extensive research has 

focused on almost every layer of network protocol and energy efficient routing. One 

of the other main design issues for wireless sensor networks is the node placement 

problem. There are only a few mathematical models for analysing the fundamental 

performance of information routing and control in wireless sensor networks [16, 17]. 

Such models are necessary to understand how different parameters such as the posi­

tion of nodes, number of nodes, energy levels and data rates affect the performance 

of the networks. 

Swarm intelligence appears in certain insect species such as ants, bees and birds 

where the individual insects are not generally considered to be intelligent. However, 

the group behaviour of autonomous members give intelligent behaviour through com­

plex interaction between members. The distributed way of problem solving approach 

in swarm intelligence can potentially solve numerous problems of future communica­

tion networks. 

Swarm intelligence techniques have successfully been applied in telecommunica­

tion networks routing and control [18, 19]. A computer program based on ant foraging 

principles that routes telephone calls efficiently has been developed in [19]. When the 

phone calls are re-routed through the better part of its network, the process not only 

allows those calls to get through quickly, but also enables the congested areas to 

recover from the overload. The ultimate application of swarm intelligence might be 

on the future pervasive computing environment where communication networks are 

becoming increasingly diverse and heterogeneous. Swarm intelligence techniques have 

also been very successfully applied in the optimisations known as ant colony optimi­

sation [18] and particle swarm optimisation [20]. Other main areas of application are 
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in unmanned aerial vehicles (UAV) [3] and robotics [21]. 

Swarm intelligence boasts a number of advantages for mobile ad hoc networks due 

to the use of distributed control and mobile agents. Swarm intelligence algorithms are 

distributed, adaptive, robust and scalable and have several self-organising properties 

such as positive feedback, negative feedback, randomness and multiple interaction 

where these components facilitate the natural systems to accomplish complex tasks 

with unsophisticated and simple individual members. These characteristics have re­

sulted in the design of distributed and adaptive algorithms for self organised ad hoc 

networks where the need for seamless interaction of numerous heterogeneous network 

components (nodes) presents a great challenge. 

1.2 Contributions of the Thesis 

This thesis considers swarm intelligence algorithms and their applications to wire­

less ad hoc and sensor networks. The thesis can be divided into two parts: the first 

part deals with particle swarm optimisation analysis and its application to the sensor 

network optimisation problem; the second part considers the application of swarm 

intelligence to the ad hoc networks routing problem. The thesis clearly shows that 

swarm intelligence methods have a very useful role to play in the management and 

control problems associated with wireless ad hoc and sensor networks. . 

The first part of this thesis deals with the analysis of the newly proposed swarm 

intelligence based algorithm, the so called particle swarm optimisation. It has been 

empirically shown that the algorithm performs well when exposed to many optimisa­

tion problems [22]. Since these type of algorithms are based on a sequence of random 

parameters which are usually not independent, it is difficult to theoretically analyse 

algorithms behaviour. Previous stability analysis of the particle swarm optimiser was 

restricted to the assumption that all parameters are non-random, in effect a deter­

ministic particle swarm optimiser. This thesis analyses the stability of the particle 

dynamics without this restrictive assumption, using Lyapunov stability analysis and 

the concept of passive systems. Through this analysis sufficient conditions are derived 

for stability. The prediction based on this theory is that the stability of the particle 
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dynamics requires an increase in the maximum value of the random parameter when 

the inertia factor is reduced. 

In addition, the thesis also considers the application of particle swarm optimisa­

tion for the wireless sensor network sink node placement problem. Wireless sensor 

networks consist of small battery powered devices with limited energy resources where 

replacement of the energy source is not feasible after deployment. Energy efficiency 

is therefore a vital design issue in wireless sensor networks. There has been extensive 

research effort on how to design protocols and algorithms to prolong network lifetime. 

In this thesis, three algorithms are proposed to deploy sink node in an optimal way 

which minimises the energy consumption of the overall wireless sensor networks. The 

sink node placement is formulated into a complex nonlinear programming problem. 

Since the problem is NP-hard in general, particle swarm optimisation is chosen to 

solve the the problem effectively. 

The second part of this thesis proposes two different routing methods for mobile ad 

hoc networks. The first protocol is a Swarm intelligence based routing Algorithm for 

mobile ad hoc Networks (SwAN). The node mobility is the most important factor for 

route changes in the mobile ad hoc networks and the routing algorithm compensates 

the mobility of the nodes. Mapping the pheromone laying and following behaviour 

of biological ants, the algorithm allows each node in the network to choose the next 

node for information packets to be forwarded on the basis of mobility influenced 

pheromone table. The effectiveness of the proposed approach is demonstrated through 

an extensive simulation study. 

The second protocol is a Swarm intelligence based Energy Aware Routing (SEAR) 

algorithm for mobile ad hoc networks. SEAR uses the distributed method of packet 

forwarding in the dynamic ad hoc networks. Most of the wireless nodes are powered 

by batteries where nodes can not be recharged. The node energy level should be 

considered in packet forwarding. Therefore the neighbour node remaining energy level 

and its drain rate information are predicted using HELLO packets and then related 

to a pheromone decay as found in natural foraging ant systems. The effectiveness of 

the proposed approach is demonstrated through an extensive simulation study using 

the NS2 network simulator. 
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1.3 Thesis Outline 

Chapter 2 gives an introduction to the swarm intelligence and its applications to 

the optimisation and routing problems. Firstly, the swarm intelligence properties are 

described, then the proposed swarm intelligence optimisation techniques such as ant 

colony optimisation, particle swarm optimisation and bacterial foraging optimisation 

are briefly outlined. The ant based routing algorithms AntNet and Ant based control 

are detailed. 

Chapter 3 gives an introduction to the wireless ad hoc and sensor networks. It first 

introduces wireless networks at general level, then the ad hoc networks and sensor 

networks are discussed. Ad hoc network applications and challenges are identified, fol­

lowed by details of existing routing protocols. Finally, sensor networks opportunities 

and challenges are discussed. 

Chapter 4 provides the stability analysis of the particle swarm optimisation. The 

shortcoming of the previous stability analysis of the particle swarm optimiser is dis­

cussed. Then, using Lyapunov stability techniques, an analysis is given of the particle 

dynamics without the assumption that parameters are non-random. Sufficient condi­

tions for stability are identified and illustrative examples are given. 

Chapter 5 investigates the energy efficient sink node placement in sensor networks 

using particle swarm optimisation. Firstly, an introduction to the WSN is presented 

and then the WSN mathematical modelling work in the literature is discussed. The 

WSN optimisation problem is formulated as a nonlinear optimisation problem and 

suitable optimisation techniques are detailed. The numerical results demonstrate how 

the algorithms produce efficient solutions for the sink node placement problem. 

Chapter 6 proposes a Swarm intelligence based routing protocol for mobile Ad hoc 

Networks (SwAN). The existing ant based routing algorithms are described in detail. 

The SwAN algorithm is described and pheromone laying and following behaviour 

of biological ants are related in to the algorithm. Finally, a simulation model for 

NS2 network simulator is outlined and the effectiveness of the suggested approach is 

demonstrated through an extensive simulation study. 

Chapter 7 provides a Swarm intelligence based Energy Aware Routing (SEAR) 
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protocol for ad hoc and sensor networks. Existing energy aware routing algorithms 

are discussed and the motivation of the SEAR protocol is described. The SEAR 

algorithm implemented in NS2 network simulator is detailed. Finally, simulation 

results are presented to demonstrate how the algorithm significantly increases the 

lifetime of the network. 

Finally, Chapter 8 draws conclusions and proposes a number of future directions 

for research in swarm intelligence and applications in ad hoc and sensor networks. 

1.4 Publications 

The publication resulting from the research work reported in this thesis are: 

"Stability Analysis of the Particle Dynamics in Particle Swarm Opti­
miser", V. Kadirkamanathan, K. Selvarajah, and P. J. Fleming, IEEE 
Transactions on Evolutionary Computation, Volume 10, Issue 3, June 
2006: Pages 245-255. 

"Stability Analysis for the stochastic best Particle Dynamics of a Continuous­
time Particle Swarm Optimiser", K. Selvarajah, V. Kadirkamanathan, 
and P. J. Fleming, Proceeding of the Adaptation in Artificial and Biolog­
ical Systems Conference, April 2006. 

"Swarm Intelligence based routing for mobile ad hoc networks", K. Sel­
varajah, V.Kadirkamanathan, Proceeding of the 12th European Wireless 
Conference, April 2006. 

"Energy efficient sink node placement in sensor networks using particle 
swarm optimisation", K. Selvarajah, V. Kadirkamanathan, accepted the 
publication in Fifth International Workshop on Ant Colony Optimisation 
and Swarm Intelligence, 2006. 

In addition, the following submissions have also been made. 

"Neighbour Aware Routing Algorithm for Mobile Ad hoc Networks" , 
K. Selvarajah, V. Kadirkamanathan, submitted to IEEE Transactions on 
Parallel and Distributed Systems, August 2006. 

" Sink node placement in sensor networks using particle swarm optimisa­
tion" , K. Selvarajah, V. Kadirkamanathan, submitted to IEEE Transac­
tions on Evolutionary Computation, August 2006. 



Chapter 2 

Swarm Intelligence 

2.1 Introduction 

Swarm intelligence (SI) is the property of a system whereby the collective be­

haviours of (unsophisticated) agents interacting locally with their environment cause 

coherent functional global patterns to emerge [3]. Swarm intelligence provides a basis 

with which it is possible to explore collective (or distributed) problem solving without 

centralised control or the provision of a global model [3]. 

Individual insects are not generally considered to be intelligent. However, the 

group behaviour of, for instance, a flock of birds, school of fish [23], swarm of bees 

and colony of ants [18, 3] show a connection between optimisation, engineering appli­

cations and swarm behaviour. For example, the foraging techniques of ant colonies 

can be applied to the shortest-path problems and other optimisation problems in the 

real world [3]. For a bird to participate in a flock, it must have behaviours such as 

collision avoidance, velocity matching and flock centreing that allow it to coordinate 

its movements with those of its flock mates. These techniques can be applied to solve 

nonlinear function optimisation problems and unmanned aerial vehicle (UAV) control 

problems. 

All these tasks in the social insects are accomplished without centralised control. 

That is, individuals communicate via direct or indirect contact. The individuals 

involved do not have a global understanding of the tasks or solutions. Rather, these 

8 
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complex behaviours emerge as a result of numerous individuals sensing and acting 

locally on the basis of a simple rule [24]. However, the group behaviours of social 

insects can serve as valuable models for problem solving strategies in the design and 

management of complex systems. Natural systems are self-organised, distributed, 

adaptive and robust which make them interesting for the perspective of complex 

systems [24]. This simple yet powerful approach can help solve a number of real 

world engineering and business issues. New methods are being developed based on 

swarm intelligence techniques for solving distributed problems [25]. They are based 

on the principles underlying the behaviour of natural systems such as ant colonies, 

bird flocking and fish schooling. The approach emphasises distributed solutions to 

problems, direct or indirect interactions among relatively simple agents, flexibility 

and robustness. In this chapter a overview of properties of swarm intelligence, ant 

algorithms, analysis ant algorithms, particle swarm optimisation and bacterial swarm 

optimisation are detailed. 

2.2 Properties of Swarm Intelligence 

Social insects possess some collective behaviour in order to perform tasks [24]. 

The following sections give a description of the primary mechanisms which determine 

the collective behaviour of the social insects during food foraging and other tasks. 

The main properties are identified in social insects such as self-organisation, positive 

feedback, negative feedback, randomness and multiple interaction. 

Self-organisation is a phenomenon that exists in complex adaptive systems, in­

cluding living systems and human organisational systems. This type of behaviour 

has been intensively studied in biology, sociology, management science and organisa­

tional theory [24]. Self-organising systems are typically comprised of a large number 

of commonly similar components. The most effective approach to study the self­

organising systems is to first understand some basic modes of interaction among the 

components: positive feedback, negative feedback, randomness and multiple interac­

tion. These components yield the natural systems to accomplish complex tasks with 

unsophisticated and simple individual behaviour [25]. 
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2.2.1 Positive feedback 

Positive feedback is a feedback system in which the systems responds to the per­

turbation in the same direction as perturbation [26]. Most self-organising systems 

use positive feedback this includes recruitment and reinforcement [25]. The simple 

example of positive feedback can be found in ant foraging behaviour where ants in the 

good path attract other ants to that particular path. When ant colonies are forag­

ing, positive feedback mechanisms allow ants to find the shortest path from the food 

source to the nest [27]. Ants deposit a chemical substance called pheromone while 

searching for a food source. The other ants can identify the amount of pheromone 

deposited and have a natural tendency to follow the trail. This trail laying and trail 

following mechanism is a positive feedback in the natural foraging behaviour of ants 

[3]. 

2.2.2 Negative feedback 

Negative feedback is a feedback system responds to the perturbation in the op­

posite direction as perturbation [26]. Negative feedback is used in many types of 

amplification systems to stabilise their operating characteristics. So, negative feed­

back is a counterbalance of positive feedback and it helps to stabilise the collective 

pattern. 

Negative feedback can be found in many biological systems such as the barorefiex 

in blood pressure regulations. Many biological process in the human anatomy also 

use negative feedback from regulating of body temperature to the regulating of blood 

glucose levels. In the ant foraging mechanism negative feedback is achieved through 

the pheromone evaporation technique. This property assists ants to recognise less 

effective routes and it also helps ants to explore other new food sources [3]. 

2.2.3 Randomness 

The term randomness is often used in statistics to signify well defined statistical 

properties such as lack of bias or correlation. Randomness is also referred to as ampli-
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fication of random fluctuations and it is crucial to the discovery of the new solutions 

in the natural systems. For example, in ant foraging, ants follow the pheromone trail 

with some level of error. This phenomenon may seem inefficient, but ants may find 

new, unexploited food sources and recruit nest mates to these food sources. 

2.2.4 Multiple Interaction 

Multiple interaction is a key feature of the natural systems where a single in­

dividual can not find the optimal solutions; moreover an individual should be able 

to make use of the results of their own activities as well as the activities of others. 

Self-organising systems generally require a minimal density of mutually tolerant indi­

viduals. For example, ants can self-organise if individuals use of other ants pheromone 

information [3]. 

2.2.5 Stigmergy 

Self-organisation in social insects requires interactions among other insects. The 

interaction can have direct or indirect forms. Direct interactions are, for example, 

antennation, mandibular contact, visual contact and chemical contact. Indirect in­

teractions are where two individuals interact indirectly when one modifies the envi­

ronment and the other responds to the new environment at a later time. This form 

of interaction is called stigmergy [3]. However, it does provide a general mechanism 

that relates individual and colony level behaviour: individual behaviour modifies the 

environment, which in turn modifies the behaviour of other individuals. Stigmergy 

in social insects shows how problems can be solved easily by replacing coordination 

through direct communications by indirect interaction. This simple yet powerful idea 

can be used to design simple agents and reduce communication among the agents. 

2.3 Ant Algorithms 

Swarm intelligence was originally inspired by the observation of real ant colonies. 

Ants have an interesting method of finding and transporting food to their nest. What 



Chapter 2: Swarm Intelligence 12 

is interesting is that ants are able to discover the shortest path to a food source 

and share that information with other ants through stigmergy [28]. Ants achieve 

stigmergic communication by laying a chemical substance called pheromone. When 

they search for a food source, they lay a pheromone. Ant pheromone is a very strong 

stimulant and when an ant senses pheromone, it greatly increases the probability 

that the ant will follow the trail of the pheromone. The amount of pheromone that 

has been left on a certain path indicates the number of ants that have taken that 

path recently. When another ant is searching for food, it will very likely take the 

path marked by a stronger pheromone concentration. Ant algorithms [25] is a new 

heuristic algorithm which can be applied to solve different optimisation and control 

problem because it is versatile, robust and a population based approach [25, 29]. 

2.3.1 Artificial ants 

Artificial ants are modelled from real ants with some additional features to solve 

the real world problems efficiently. Thus, artificial ants are not intended to model 

the real ant. The intention is to keep the artificial ants simple, but this may not 

be efficient as they are required to manage a high level of complexity. For example, 

artificial ants have a memory to remember past experience. Artificial ants deposit 

virtual pheromones on the path they have been on before. Other properties of self­

organising systems can be modelled by the artificial ant depending on the nature of 

the problem to be solved. For example, randomness can be incorporated by artificial 

ants to perform stochastic walks on a graph, consisting of a series of stochastic steps 

[25]. 

2.3.2 Ant colony optimisation 

Ant colony optimisation is a class of heuristic search algorithms that have been 

successfully applied to solving combinatorial optimisation problems such as the travel­

ling salesman problem [27] and the quadratic assignment problem [30]. In ant colony 

based algorithms, a set of artificial ants move on the graph which represents the 

instance of the problem: while moving they create solutions and modify the prob-
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lem representation by adding collected information. A number different optimisation 

problems has empirically shown the effectiveness of ant colony optimisation. Recently, 

a convergence proof for the ant colony optimisation algorithms was developed in [31] 

to proof the efficiency of ant based optimisation algorithms. 

The first application of an ant colony optimisation was in response to the travelling 

salesman problem (TSP) as a benchmark problem. TSP is the most studied NP-hard 

problem in combinatorial optimisation [27]. In the TSP, one has to find a closed tour 

of minimal length connecting n given cities. Each city must be visited once and only 

once. Let dij be the distance between cities Ci and Cj. The problem can be more 

generally defined on a graph G = (V, E), where the cities are vertices V and the 

connections between the cities are the edges of the graph E. The ants build solutions 

in parallel by visiting sequentially the cities of the graph. On each edge (i,j) of the 

TSP graph an artificial pheromone trail Tij(t) is maintained. The values Tij(t) are 

used by ants to direct the way they build tours. They are updated by means of a 

reinforcement procedure: once an ant has completed a tour it updates the edges it 

has crossed by adding a quantity of pheromone proportional to the success of the 

tour. More formally, at iteration t, after completing its tour n(t), the kth ant lays 

a quantity of pheromone l5Ti~(t) on each edge (i,j) belonging to Tk(t). l5Ti~(t) is a 

function ofthe length Lk of the tour Tk(t) [27] 

<5r.k.(t) = {Q/Lk if edge (i,j) E Tk(t) 
13 0 otherwise 

(2.1) 

Where Q is an adjustable parameter. Ants build solutions using a probabilistic tran­

sition rule. The Probability p~(t) with which an ant k in a city i at iteration t chooses 

the next city j to move to is a function of the following: 

• For each ant, a list is maintained that contains all the cities that the ant has 

already visited in order to prevent cities from being visited more than once. 

The list grows during one tour until it is full, and is then emptied at the end 

of the iteration. Ji
k is the set of cities that remain to be visited by ant k when 

ant k is in the city i. By exploiting Jik an ant k can avoid visiting a city more 

than once. 
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• An heuristic measure TJij of the desirability of adding edge (i, j) to the TSP is 

TJij = 1/dij , Le., the inverse of the distance between cities i and j . 

• The amount rij(t) of artificial pheromone on the edge connecting i and j: For­

mally P~j is given by 

(2.2) 

where Q and f3 are two adjustable parameters that control the relative influences of the 

pheromone trail rij(t) and heuristic desirability TJij. The above algorithm could not 

perform well without pheromone evaporation. In fact, because the initial exploration 

of the search space is mostly random, the values of the pheromone trails in the 

initials phases are not very informative and it is therefore necessary that the system 

slowly forgets these initials values to allow the ants to move towards better solutions. 

Pheromone decay is implemented by introducing a coefficient of evaporation p,O < 

P < 1, such that 

(2.3) 

where 6.Tij(t) = E;=l 6.ri~(t), and m is the number of ants. This update equation 

ensures efficient solution space exploration. The trail intensity must be allowed to 

decay, otherwise the algorithm will end up prematurely in a sub-optimal solution. 

The above algorithm [27] have shown that ant colony optimisation is an interesting 

novel approach to the parallel stochastic optimisation of the Travelling Salesmen 

Problem(TSP) . 

2.3.3 AntNet 

In AntNet [18, 3], routing is determined by means of very complex interactions of 

forward and backward network exploration ants. The idea behind this sub-division 

of ants is to allow the backward ants to utilise the useful information gathered by the 

forward ants on their trip from source to destination. A routing table is built based 

on the probability distribution functions derived from the trip times of the routes 

discovered by ants. 
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Let sand d be the source and destination node. In the network, there are N 

nodes, and each node i is characterised by a routing table ~ = [r~,d(t)]ki,N-17 where 

ki is the number of neighbour nodes of node i. The entry r~,At) in the routing table 

of node i represents the probability at time t of choosing node n as the next node for 

a packet to be delivered to for the destination node d. A local estimate, denoted by 

Ei = {J.li,d, O"i,d} , comprises average estimated trips times, J.li,d, the average time to go 

from node i and d, and their associated standard deviations (Ji,d. The routing table 

R and the local estimate Ei are updated by the ants in the ways described below [3] 

• Each network node launches forward ants to a randomly selected destination at 

regular times intervals. 

• The forward ant selects a path to the destination randomly based on the current 

routing table. 

• The forward ants create a stack, pushing in journey times for every node as 

that node is reached. 

• When the forward ant reaches the destination, it generates a backward ant and 

transfers to it all of its memory. 

• The backward ant makes the same path as that of its corresponding forward 

ant, but in the opposite direction. 

• Arriving in a node i coming from a neighbour node i-I, the backward ant 

updates the local estimate Ei and the Routing table R. 

The local model Ei is updated from the times elapsed for the arrival in every 

node on the path i to d, i.e., the path followed by the forward ant starting from 

the current node i, is used to update the corresponding sample means and variances. 

The routing table ~ is changed by increasing the probability rLl,At) associated with 

other neighbour nodes i-I and the destination node d, decreasing the probabilities 

r~.d(t) associated with other neighbour nodes of n, n "I- i -1, for the same destination. 

The trip time 7i,d experienced by the forward ant is used to assign the probability 
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increments. It gives an indication about the goodness r of the followed route because it 

is proportional to its length from a physical point of view and from a traffic congestion 

point of view. 

The value stored in the mode Ei is used to score the journey times so that they 

can be transformed to a reinforcement signal r, where the goodness value r E [0,1]. 

The value r is used by the current node i as positive reinforcement for node i-I the 

backward ants comes from. The probability rLI,d is increased by the reinforcement 

values as follows. 

rLI,d{t + 1) = rt_I,it) + r{l - d-I,At)) (2.4) 

Probabilities r~ d(t) for destination d of the other neighbour node n receive a , 

negative reinforcement as follows: 

r~,d(t + 1) = r~,d(t)(l - r), n =I- i-I (2.5) 

The network then applies these probabilities in a deterministic way, in choosing 

the next hop based on the highest probability in sending the packets. 

The above proposed algorithm showed very good performance and robustness 

under all experimental conditions with respect to other existing algorithms [18]. 

2.3.4 Ant based control 

Ant-based Control (ABC) is another successful swarm intelligence based algo­

rithm designed for communication networks [19,32]. This algorithm shares many key 

features with AntNet, but has important differences. The basic principle shared is 

the use of a multitude of agents interacting using stigmergy. The algorithm is adap­

tive and exhibits robustness under various network conditions. It also incorporates 

randomness in the motion of ants, which increases the chances of discovery of new 

routes. The routing table of every node is the same and satisfies the constraints as in 

the Ant Net algorithm. The update philosophy of the routing table is a little different 

from AntNet. There is only one group of ants, which are launched from the sources 
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to various destinations at regular time intervals. The ants are eliminated once they 

reach their destination. Therefore, the probabilities of the routing tables are updated 

as ants visit the nodes, based on the life of the ant at the time of the visit. The life 

of the ant is the sum of the delays of the nodes T = E7=1 Dj where the delays Di 

are given by Di = ce-dS , c and d are design parameters, and S is the spare capacity 

of each node in the network. Then, a step size is defined for that node according 

to Or = alT + b , where a and b are both design parameters. This step size rule is 

intuitive, because it assigns a greater step size to those ants who are successful at 

reaching the node faster. The routing table is then updated according to [19]: 

d-l,s(t + 1) 
rt_l,s(t) + Or 

(2.6) -
1 + Or 

r~,s(t + 1) 
r~ s(t) 

n7'H-l (2.7) I -
1 + Or' 

where s is the source node, i is the current node and i - 1 the previous node. It 

should be noted that the ant uses and updates the routing table at the same time. 

2.4 Analysis of Ant Algorithms 

Ant algorithms have been successfully applied to several optimisation and routing 

problems. Ant algorithms are based on a sequence of random decisions made by artifi­

cial ants. It is difficult to analyse ant algorithms behaviour theoretically with random 

variables. The following sections briefly explain modelling ant foraging behaviour and 

provide an analysis of ant colony optimisation and ant routing. 

2.4.1 Modelling ant foraging 

Deneubourg et al. [33] developed model of ant foraging behaviour, the behaviour of 

which closely matches the experimental observations. Here we explain the experiment 

carried out by Deneubourg [33]. A food source is connected to an ant nest by a bridge 

with two equally long branches. \Vhen the experiment starts the ants select randomly, 

with equal probability, one of the branches. Nevertheless, random fluctuations cause 
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a few more ants to randomly select one branch. A simplified assumption is that the 

amount of pheromone on a branch is proportional to the number of ants that have 

used the branch in the past. This assumption implies that pheromone evaporation 

is not taken into account. In the model, the probability of choosing a branch at a 

certain time depends on the total amount of pheromone on the branch. Um and Lm 

are the numbers of ants that have used the branches after m ants have crossed the 

bridge, with Um + Lm = m. The probability Pu(m) with which the (m + 1)th ant 

chooses the one branch is 

(2.8) 

while the probability of the other branch is PL(m) = 1- Pu(m). This functional form 

of the probability of choosing a branch over the other was obtained from experiments 

on trail-following and the parameters hand k allow the model to match experimental 

data. 

It is easy to modify the above experiment with different the length of branches. 

In this case, because of the same pheromone laying mechanism as in the previous 

situation, the shortest branch is most often selected. The first ants returning to the 

nest are those that took the shortest path twice, so more pheromone is present on the 

shortest branch than on the long branch immediately after these ants have returned, 

stimulating nest mates to choose the short branch. This differential length effect 

explains how ants ultimately choose the shortest of the two paths without using any 

global knowledge about their environment [34]. 

2.4.2 Analysis of ant colony optimisation 

In recent years, a number of applications to different types of NP-hard combina­

torial optimisation problems have empirically shown the effectiveness of ant colony 

optimisation. Convergence proof for a class of ant colony optimisation algorithms can 

be found in [31]. Here, the authors prove two theorems that apply to the ant colony 

optimisation. 

First theorem states that for any small constant € > 0 and for a sufficiently 

large number of algorithm iterations t, the probability of finding an optimal solution 
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at least once is P*(t) ~ 1 - f and that the probability tends to 1 the number of 

iterations tends to infinity. The second theorem states that starting from a fixed 

number of iterations after the optimal solution has been found, the pheromone trails 

will be higher on the connections belonging to the optimal solution than on other 

connection. Each iteration step chooses the connection with higher pheromone trail 

will deterministic ally construct the optimal solution [31]. 

2.4.3 Analysis of ant routing 'algorithms 

Researchers have used the ant colony metaphor to design distributed adaptive 

routing algorithms for communication networks and the effectiveness of these algo­

rithms have been shown empirically. Theoretical analysis can be found in [35] where 

the authors analysed two algorithms; the first of these is based on the earlier work by 

Holland et. al. [19] for call routing in telephone networks. They then developed an 

another algorithm which is a natural multi-path routing algorithm that is applicable 

to data networks [35]. A convergence result was also presented for each algorithm 

based on probability theory. 

The analysis of mobile agent based algorithm for network routing and management 

was developed in [36]. This work develops some preliminary analysis on the ant 

algorithm with regard to its population growing property and jumping behaviour. 

The theoretical analysis shows that the expected number of agents in a node is shown 

to be no more than (1 +maxi{17I"il} )km, where 17I"il is the number of neighbouring hosts 

of the ith host, k is the number of agents generated per request and m is the average 

number of requests. The authors also derived condition for the expected number of 

agents in a node no to be more than (1 + maxi { 1I'i} ). These theoretical findings are 

useful when using the ant like mobile agents for network management and control. 

2.5 Particle Swarm Optimisation 

Particle swarm optimisation (PSO) is a parallel evolutionary computation tech­

nique developed by Kennedy and Eberhart [20], inspired by social behaviour of bird 
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flocking and fish schooling. Let assume that a group of birds are randomly searching 

for food in an area. There is only one piece of food in the area being searched. All 

the birds do not know where the food is. However, they know how far away the food 

is in each iteration of the search. What is the best strategy to find the food? The 

answer is to follow the bird which is nearest to the food. This is the essence behind 

the idea of particle swarm optimisation. 

PSO algorithm maintains a population of initial solutions called "particles". All 

the particles have fitness values which are evaluated by the fitness function which is 

to be optimised, and have velocities which direct the motion of the particles. The 

particles search through the problem space by following the current best particles. 

Some of the attractive features of the psa includes the ease of implementation and 

the fact that no gradient information is required. PSO can be applied to a variety of 

different non linear function optimisation problems. 

2.5.1 The psa algorithms 

The PSO formulation defines each particle as a potential solution to a problem in 

d-dimensional space with memory of its previous best position and the best position 

amongst all particles, in addition to a velocity component. At each iteration, the 

particles are combined to adjust the velocity along each dimension which in turn is 

used to compute the new particle position. The PSO update equations are given by, 

Vi,i(t + 1) - Vi,j(t) + clrl(pi,i(t)(l) - xi,i(t)) + C2r2(Pi,i(t)(g) - Xt) (2.9) 

Xi,j(t + 1) - Xi,j(t) + Vi,j(t + 1) (2.10) 

where Vi,j(t) is the particle velocity at the tth iteration associated with the jth dimen­

sion of the velocity of ith particle, Xi,j(t) is the particle position of jth dimension of 

particle i at the tth iteration, Pi,j(t)(l) is the best local position or the particle's best 

position thus far, Pi,j(t)(g) is the best global position or the best solution amongst all 

particles and w is the inertia factor. The algorithms use two independent random se­

quences rl '" U(O, 1) and r2 '" U(O, 1), U(O, 1) is a uniform distribution in the interval 

(0,1) and Cl, C2 are constants. These constants are called the acceleration coefficients 



Chapter 2: Swarm Intelligence 21 

and they influence the maximum size of the step that a particle can take in a single 

iteration. 

The personal best position associated with particle i is the best position that the 

particle has visited so far, yielding the highest fitness value for that particle. The 

position yielding a smaller function value is regarded as having a higher fitness, for 

a minimisation task. f denotes the objective function that is being minimised. The 

personal best position at time t for a particle i can be calculated as follows 

(2.11) 

The best global position at time t is the position yielding a smaller function value 

among the all population. The definition of Pi(t)(g) is given below. 

Pi(t)(g) = arg min{f(xl (t)), f(X2(t)), ..... ,J{x,,( t))} 
x/et) 

(2.12) 

where s is the population size used in the algorithm. 

2.5.2 Modification to the PSO 

Several modifications have been made for improving the performance of the psa. 
These proposals usually involve changes to the psa update equations, without chang­

ing the structure of the algorithms. This normally introduces more control parameters 

to the algorithm. 

Inertia factor 

The initial algorithm proposed by Eberhart and Kennedy was found to lack con­

vergence. One of the earliest modification to the psa was the introduction of the 

inertia factor by Shi and Eberhart [37]. The idea behind this inertia factor was to re­

duce the velocity for the next iteration from the previous iteration. The new modified 

PSO velocity equation, is given by 

(2.13) 
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The original psa velocity update equation can be obtained if w = 1. Empirical 

evidence shows that for 0 < W < 1 better convergence results for the PSO are 

obtained. 

Constriction factor 

The constriction factor model describes a way of choosing the parameter values 

w, Cl and C2 so that convergence is ensured. A modified velocity update equation 

with the constriction factor is as follows [38]: 

where 

2 
X = -;-:----;==z===:_ 

12 - p - J p2 - 4pI 
(2.15) 

2.5.3 Analysis of the psa algorithms 

The analysis of psa algorithm may give proper design parameter to find the solu­

tion effectively. The primary aim of PSO however is optimisation while maintaining 

convergence. We present an analysis of a particle in the PSO algorithm and the pa­

rameter choice as developed in [39]. The PSO update equations with inertia weight 

are repeated for convenience, 

Vi,j(t + 1) - WVi,j(t) + Clrl(Pi(t)(l) - Xi,j(t)) + C2r2(Pi(t)(g) - Xt) (2.16) 

Xi,j(t + 1) - Xi,j(t) + Vi,j(t + 1) (2.17) 

The following analysis only consider a single particle and single dimension without 

loss of generality, so that the subscript i and j in the equations 2.16 and 2.17 can 

be dropped. Now, by substituting 2.16 into 2.17, the following non-homogeneous 

recurrence can be obtained, 



Chapter 2: Swarm Intelligence 23 

where a(l) = Ctrt(t) and a(g) = C2r2(t). Here a(l), a(g) and ware assumed to be 

constants. It has been claimed that the analysis of a particle dynamics can be easily 

performed when largest values of a(l) and a(g) are used for the analysis. A condi­

tion was derived for convergence of psa particle by solving the non-homogeneous 

recurrence in 2.18 as follows, 
Ct + C2 1 w> -

2 
(2.19) 

Another particle swarm optimisation convergence analysis and parameter selection 

can be found in [40]. The deterministic version of the particle swarm optimisation al­

gorithm is considered. This analysis uses the theory of discrete-time dynamic systems 

where the behaviour of the particle depends on the eigenvalues of the system matrix. 

Through this analysis the following set of conditions are derived for the parameter 

selection of the psa algorithm. 

w < 1 

Cl+C2 < 2(w+1) 

The condition in 2.19 is equivalent to in 2.21. 

(2.20) 

(2.21) 

A similar analysis based on the discrete dynamical systems theory was developed 

in [38]. The analysis includes the constriction factor and the parameters are assumed 

to be constant for the analysis. The exact relationship between deterministic and 

random versions of the algorithms are not explained well in these analyses while 

success of most search algorithms are influenced by the random parameters. 

2.6 Bacterial Swarm Foraging for Optimisation 

Researchers consider individual and group foraging in bacteria, organisms that 

are much simpler than ants or birds, yet can still work together for the benefit of 

the group. The E. coli bacterium is probably the best understood microorganism and 

the bacterium has a guidance system that enables it to search for food and try to 

avoid unwanted substances. For instance, it moves away from acidic environments 

and towards more neutral ones. Passino et al. use the ideas from bacterial forag­

ing to solve non linear optimisation problems. The biology and physics underlying 
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the chemotactic (foraging) behaviour was described in [41]. The method applied to 

optimisation problems is described below. 

2.6.1 The algorithm 

First, suppose that () is the position of a bacterium and J(()) represents the com­

bined effects of attractants and rep ell ants from their environment, with for example, 

J(()) < 0, J(()) = 0, and J(()) > 0 representing that the bacteria at location () is in 

nutrient-rich, neutral, and noxious environments respectively. Basically, chemotaxis 

is a foraging behaviour that implements a type of optimisation where bacteria try to 

climb up the nutrient concentration, avoid noxious substances, and search for ways 

out of neutral media. Let j be the index of the chemotatic step. Let k be the index 

for the reproduction step and 1 be the index of the elimination-dispersal event. Let 

P(j,k,l) = {()i(j,k,l)li = 1,2,3 .... S} (2.22) 

represent the position of each member in the population of the S bacteria at the 

j th chemotatic step, kth reproduction step, and lth elimination-dispersal event. 

J( i, j, k, 1) denote the cost at the location ofthe ith bacterium ()i(j, k, 1). For actual 

bacteria, S can be very large, but for optimisation tasks much smaller population 

sizes are used and kept fixed. Let Ne be the length of the lifetime of the bacteria as 

measured by the number of chemotatic steps they take during the life time. C( i) > 
0,1,2,3 ... ,S, denotes a basic chemotatic step size that is used to define the lengths of 

the steps during the runs. To represent a tumble, a unit length random direction, say 

cpU), is generated. After tumble, 

(Ji(j + 1, k, I) = ()i(j, k, l) + C(i)4Y(j) (2.23) 

so that C( i) is the size of the step taken in the random direction specified by the 

tumble. If at ()i(j + 1,k,1) the cost J(i,j + 1,k,l) is better than at (Ji(j,k,l), then 

another step size C(i) is taken in the same direction. This is continued as long as the 

cost is continuously reduced, but only up to a maximum number of steps, Na• The 

cell tends to keep moving only if it is heading in the direction of increasing nutrients 
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and favourable environments. BasicaIIy, this is foraging behaviour that implements a 

type of optimisation where each cell try to find lower and lower values for J(8). 

2.6.2 Parameter selection 

The success of the bacterial foraging optimisation algorithm requires the proper 

selection of a variety of parameters. First, increasing the population size of the 

bacteria, it is apparent that increasing the size of S can significantly increase the 

computational complexity of the algorithm. If the Ci are too large, then the search 

may tend to jump out of the search region. On the other hand, if the Ci values 

are too small, it takes a long time to converge. The large value for Ne will result in 

many chemotactic steps and more function evaluations but incurs more computational 

complexity. If Ne is chosen to be too small, the algorithm can easily converge to a local 

minimum due to premature convergence [41]. A complete stability analysis of social 

foraging swarms was developed in [42], where the analysis is of the continuous version 

of bacterial swarm optimisation [41]. The study provided conditions for collective 

convergence to more favourable regions. 
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Chapter 3 

Wireless Ad Hoc and Sensor 

Networks 

3.1 Introduction 

The history of wireless networking started in the 1970s with the advent of the 

development of packet radio networks by the Defence Advanced Research Projects 

Agency (DARPA). Recent developments in wireless communication and digital elec­

tronics and high processing power available in computing and communication devices 

have combined to put more and better computer based applications into the hands of 

the population. Extensive work has been done recently in integrating these elements 

into traditional networks such as the Internet [2]. However, a mobile user will want to 

communicate in situations in which no fixed infrastructure is available, either because 

it may not be economically practical or physically possible to provide the necessary 

infrastructure or because the expediency of the situation does not permit its installa­

tion. For example, a class of students may need to interact during a lecture, friends or 

business associates may run into each other in an airport terminal and wish to share 

files, or a group of emergency rescue workers may need to be quickly deployed after 

an earthquake or flood. In such situations, a collection of mobile nodes with wireless 

network interfaces may form a temporary network without the aid of any established 

infrastructure or centralised administration. This type of wireless network is known 

26 
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as an ad hoc network [1]. 

In the ad hoc networking field, wireless sensor networks [10] take a special role. 

A sensor network is composed of a large number of small sensor nodes, which are 

typically densely (and randomly) deployed inside the area in which a phenomenon is 

being monitored or controlled. Wireless ad hoc networking techniques also give the 

basis for sensor networks. However, the special constraints imposed by the unique 

characteristics of sensing devices, and by the application requirements, make many of 

the solutions designed for ad hoc networks (generally) not suitable for sensor networks. 

The combinations of sensors and ad hoc networks will have significant application in 

the pervasive computing environment and pose real challenges [43]. In this chapter 

a detailed overview of ad hoc networks, sensor networks and their challenges and 

applications is presented. 

3.2 Wireless Networks 

The history of modern wireless communications started in 1896 with Marconi 

who demonstrated wireless telegraphy by sending and receiving Morse code using 

high power transmitters. In 1907, the first commercial trans-Atlantic wireless service 

was initiated using huge ground stations. Since then the world has seen the rapid 

development of communication technology and other technologies which, lead to the 

advent of modern wireless systems. With the advent of new digital systems, the 

existence of wireless data communication became very common. In fact, the GSM 

and 1S-95 standards evolved, in the 1990s, to include wireless data transmission as 

an integral part of their service. Finally, third-generation (3G) wireless systems, 

based on CDMA technologies, are being developed and deployed with data and voice 

communication [44]. 

Wireless networks offer the following: productivity, convenience and cost advan­

tages over traditional wired networks. It provides mobile users with access to real-time 

information so that they can roam the network without getting disconnected. This 

mobility supports productivity and service opportunities not possible with wired net­

works [45]. Installing a wireless system can be fast and easy and can eliminate the 
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need to pull cable through walls and ceilings. The wireless network can be extended 

to places which cannot be reached by wired networks. The wireless networks offer 

more flexibility and adapt easily to changes in the configuration of the network. The 

initial investment required for wireless network hardware can be higher than the cost 

of wired network hardware, however overall installation expenses and life-cycle costs 

can be significantly lower in dynamic environments. The wireless systems can be 

configured in a variety of topologies to meet the needs of specific applications and 

installations. Configurations can be easily changed and range from peer-to-peer net­

works suitable for a small number of users to large infrastructure networks that enable 

roaming over a broad area [2]. 

3.2.1 Types of wireless networks 

Wireless networks consist of wireless devices equipped with wireless transceivers 

using radio frequency to transmit data from one location to another. Today, different 

kinds of networks exist in practice which are wireless wide area networks (WAN), 

wireless local-area networks (LAN) and wireless personal area networks (PAN) [46]. 

Wireless local area networks use high frequency electromagnetic waves, either in­

frared (IR) or radio frequency (RF), to transmit information for one point to another. 

Wireless LANs are set up to provide wireless connectivity within a finite coverage area. 

Typical application areas might be a hospital (for patient care systems), a univer­

sity, the airport, or a gas plant. Wireless LANs work in an unregulated part of the 

spectrum, so that anyone can create their own wireless LAN, either in the home or 

office. In principle, anyone can have complete control over where coverage is provided. 

Traffic from multiple users is modulated into the radio waves at the transmitter, and 

extracted at the receiver. Multiple radio carriers can coexist in the same physical 

space and at the time, without interfering with each other by transmitting at differ­

ent frequencies (FDMA), in different time slots (TDMA) or using specific codes for 

each message (CDMA) [47]. 

Wireless personal area networks provide wireless connectivity over distances of 

up to lOm, but this range allows a computer to be connected wirelessly to a nearby 
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printer, or a cell phone's hands-free headset to be connected wirelessly to the cell 

phone. Personal area networks are slightly different to wireless LANs in one important 

respect. In the wireless LAN cases, networks are set up first, which devices then use. 

In the Personal Area Network case, there is no independent pre-existing network. The 

participating devices establish an ad hoc connection between the devices when they 

are within range, and the network is dissolved when the devices pass out ofrange [1]. 

The one used most successfully today is a wireless wide area network built on top 

of a wired network and thus creating reliable infrastructured wireless networks. An 

example of this wireless network is cellular networks. A cellular network provides 

cell phones or mobile devices, to use a more general term, with wireless access to the 

public switched telephone network (PSTN). The service coverage area of a cellular 

network is divided into many smaller areas, referred to as cells, each of which is served 

by a base station (BS). Here the base station is fixed and it is connected to the mobile 

telephone switching office (MTSO). With the wireless link between the BS and mobile 

devices, mobile devices are able to communicate with wire line phones in the PSTN 

[43J. 

3.2.2 Enabling technologies 

The success of a network technology is connected to the development of networking 

products at a better price. A major factor in achieving this goal is the availability of 

appropriate networking standards. IEEE 802.11 [48] and Bluetooth are the two main 

standards for short-range communication. 

The IEEE adapted the first wireless local area network standard, named IEEE 

802.11, with the data rates up to 2 Mbps. Since then, several task groups have 

been created to extend the IEEE 802.11 standard. The task groups 802.11b and 

802.11a have completed their work by providing two relevant extentions to the original 

standard which are often referred to with Wireless Fidelity (Wi-Fi). The IEEE 802.11 

standard specifies a MAC layer and Physical layer for wireless networks. The Physical 

layer uses either a direct sequence spread spectrum or a frequency hopping spread 

spectrum to transmit data between nodes. The MAC layer offers two different types 
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of service: distributed coordination function (DCF) and point coordination function 

(PCF) [49]. 

Bluetooth technology [50] is a de-facto standard for low cost, short range radio 

links between Laptops, mobile phones and other portable devices. The Bluetooth 

special interest group (SIG) releases the Bluetooth specifications with the joint ef­

fort of many leading companies including IBM, Intel, Lucent, Microsoft, Motorola 

and Nokia. A Bluetooth unit integrated into a microchip enables wireless commu­

nication between portable and/ or fixed electronic devices. As a low cost, low power 

solution and industry wide support, Blutooth wireless technology has already started 

to revolutionise the personal connectivity market by providing freedom from wired 

connections. The main strength of Bluetooth is its ability to simultaneously handle 

both data and voice transmissions. It is capable of supporting one data channel and 

up to three voice channels, or one channel supporting voice and data. This capability 

combined with ad hoc device connections and automatic service discovery make it a 

good solution for mobile devices and Internet applications. This combination enables 

innovative solutions such as a mobile hands-free headset for voice calls and other 

applications in mobile devices [50]. 

3.3 Ad Hoc Networks 

It would be beneficial to provide a definition of the phrase ad hoc as it is used 

in the context of mobile wireless networks. Common definitions of this phrase are 

"for a specific purpose or occasion" or "for this case alone". There is no universally 

accepted definition for wireless ad hoc networks, but there are a few features that are 

shared by most descriptions of such networks. It is probable that the main difference 

between ad hoc networks and conventional cellular technology is the apparent lack 

of a centralised entity with an ad hoc network. There are no base stations or mobile 

switching centres in ad hoc networks. In other words, all network protocols must 

operate in a distributed manner. 

Mobile ad hoc networks are self-organising mobile wireless networks that do not 

rely on a pre-existing infrastructure to communicate. Nodes of such networks have 
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limited transmission range and packets may need to traverse multiple nodes before 

reaching their destination. Lack of a fixed network and the nature of the nodes give 

rise to challenges such as reliable data routing, dynamic network topologies, changing 

environments, selfish nodes and scarce radio resources [51, 2]. 

3.3.1 Ad hoc networking issues 

Ad hoc networking inherits the traditional problems of wireless communications 

and wireless networking. In addition, the multi hop nature and lack of infrastructure 

adds a number of characteristics, complexities, and design constraints that are specific 

to ad hoc networking [45, 52]. Some of the main issues in ad hoc networking will be 

discussed in the following section. 

Mobile ad hoc networks do not depend on any established infrastructure or cen­

tralised administration. Each node operates in a distributed peer-to-peer mode. It 

acts as an independent router and generates independent data. Network management 

has to be distributed across different nodes, which creates added difficulty in fault 

detection and management. There is no default router available and every node acts 

as a router and forwards to each others packets that enable information sharing be­

tween mobile nodes. In mobile ad hoc networks, because nodes can move arbitrarily, 

the network topology, which is typically multi-hop, can change frequently and unpre­

dictably, resulting in route changes, frequent network partitions, and possibly packet 

losses [52]. 

Each mobile node might have different capabilities, resulting in variability in pro­

cessing power. Designing network protocols and algorithms for this heterogeneous 

network can be complex, requiring dynamic adaptation to the changing conditions 

such as power and channel conditions, traffic load and congestion. The existing man­

agement algorithms are mostly designed to work on fixed or relatively small wireless 

networks. Many mobile ad hoc network applications involve large networks with tens 

of thousands of nodes. Network management issues in a large network consisting of 

nodes with limited resources are not straight forward, and present many challenges 

that are still to be solved in areas such as addressing, routing, location management 
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and scalability [2, 45]. 

3.3.2 Ad hoc network applications 

Ad-hoc networks are suited for use in situations where an infrastructure is unavail­

able or to deploy one is not possible. One of the main possible uses of mobile ad hoc 

networks is in environments where there is a need for temporary networks such as in a 

conference or meeting. A mobile ad hoc network can also be used in disaster recovery 

where an entire communication infrastructure is destroyed and restoring communica­

tion quickly is crucial. By using a mobile ad hoc network, an infrastructure could be 

set up instantly [2]. 

Early ad hoc network applications have been military oriented but non-military 

applications have also been growing rapidly since then. The rapid advances in ad hoc 

networking research have attracted the business and industrial sectors as well as other 

public sectors. The introduction of new technologies such as Bluetooth and IEEE 

802.11 facilitates the deployment of ad hoc networks outside the military domain. 

Mobile ad hoc networking applications have appeared mainly in emergency services, 

disaster recovery and environment monitoring. Mobile ad hoc networking technology 

makes several other applications possible such as, in personal area networking, home 

networking, law enforcement operation, search and rescue operations, commerce and 

education [2]. 

3.4 Ad Hoc Network Routing Protocols 

In the ad hoc networks environment, the routing is normally the distributed ver­

sion of the shortest path routing. Each node in the network maintains a preferred 

neighbour for each destination. When a node receives a data packet, it forwards the 

packet to the preferred neighbour associated with the destination. Each routing ta­

ble is constructed, maintained and updated to achieve the common objective of the 

optimal path for the data packets. The routing methods can be categorised into two 

primary classes, which are link state and distance vector. 
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The link-state approach is closer to the centralised version of the shortest path 

method. Each node in the network maintains the information of the network topology 

with the cost of each link. Each node periodically broadcasts the link cost to all 

other nodes using flooding. As a node receives the cost information, it updates the 

information and performs a shortest-path algorithm to choose its next hop for each 

destination. 

In distance vector algorithms, every node i maintains, for each destination x, a 

set of distances dij where j ranges over the neighbour of i. Node i treats neighbour 

k as a next hop for a packet destined for x if dfk is the lowest cost. The succession 

of next hops chosen in this manner lead to destinations along the shortest path. 

Each node periodically broadcasts to its neighbours in order to keep the distance 

estimates up-to-date. Distance-vector algorithm is the classical Distributed Bellman­

Ford (DBF) algorithm [53]. It has some benefits over the link-state method such as 

being computationally more efficient, easier to implement and requiring less storage 

space. However, it is well known that this algorithm can cause the formation of both 

short-lived and long-lived loops. Furthermore, within an ad hoc mobile environment 

enforcing any such internodal coordination mechanism would be difficult due to the 

rapidly changing topology of the underlying routing network. 

In order to facilitate communication within the network, a routing protocol is 

used to discover routes between nodes. The primary goal of such an ad hoc network 

routing protocol is correct and efficient route establishment between a pair of nodes 

so that messages may be delivered in a timely manner. Since the advent of DARPA 

packet radio networks in the early 1970s, numerous protocol have been proposed in the 

Internet Engineering Task Force (IETF) for execution in ad hoc mobile networks: Ad 

hoc On Demand distance Vector (AODV) routing [5], Zone Routing Protocol (ZRP) 

[6], Dynamic Source Routing (DSR) protocol [7], Cluster Based Routing Protocol 

(CBRP) [8] and Destination Sequenced Distance Vector (DSDV) [9]. Preliminary 

classification of the routing protocols can be made depending on whether they use 

a unicast, multicast or broadcast. Broadcast is the basic mode of operation over a 

wireless channel; each message transmitted on a wireless channel is generally received 

by all neighbours located within the hop from sender. Unicast forwarding means a one 
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to one communication, Le., one source transmits data packets to a single destination. 

Multicast routing protocols come in to play when a node needs to send the message 

to multiple destinations [54]. 

Mobile Ad hoc Networking routing protocols are typically subdivided into two 

main categories: Proactive routing protocols and reactive on-demand routing prote­

cols. proactive routing protocols attempt to maintain routing tables and updates at 

fixed time intervals. As the routing information is usually maintained in tables, these 

protocols are sometimes referred to as table-driven protocols. Reactive on demand 

routing protocols, on the other hand, establish the route to a destination only when 

there is a demand for it. The source node through the route discovery process usually 

ini~iates the route requested. Once a route has been established, it is maintained 

until either the destination becomes inaccessible, or until the route is no longer used, 

or expired [2]. The following sections briefly describe the key features of the DSDV, 

DSR and AODV protocols. 

3.4.1 Destination sequenced distance vector (DSDV) 

DSDV [9] is a hop by hop distance vector routing protocol requiring each node to 

periodically broadcast routing table updates. Each DSDV node maintains a routing 

table listing the next hop for each reachable destination. Packets are transmitted 

between hosts of the network by using routing which are stored at each host in the 

network. Each routing table, at each of the stations, lists all available destinations, 

and the number of hops to each. Each routing table entry is tagged with a sequence 

number which is originated by the destination station. To maintain the consistency of 

routing tables in a dynamically varying topology, each station periodically transmits 

updates, and transmits updates immediately when significant new information is 

available. Routing information is advertised by broadcasting or multicasting the 

packets which are transmitted periodically and incrementally as topological changes 

are detected - for instance, when stations move within the network. The DSDV 

protocol requires each mobile station to advertise, to each of its current neighbours, 

its own routing table. 
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3.4.2 Dynamic source routing (DSR) 

The Dynamic source routing (DSR) [7] protocol is an on demand routing protocol 

which is based on the concept of source routing. Nodes in the network are required to 

maintain the route table that contains the source routes of which the node is aware. 

In other words, DSR uses hop by hop routing, with each packet to be routed carried 

in its header, that is, the complete ordered list of nodes through which the packet 

must pass. The main advantage of this kind of routing is that intermediate nodes do 

not need to maintain up-to-date routing information in order to route the packets to 

respective destinations, since the packets already contain all the nodes information. 

Any hops in the route table that move out of wireless transmission range of the the 

next or previous hop are monitored. Routing table entries are updated as new routes 

are learned. DSR protocol is composed of two mechanisms that work together to 

allow the discovery and maintenance of source routes in the ad hoc network. Route 

discovery is the mechanism by which a node wishing to send a packet to a destination 

node obtains a source route to the destination and it allows any node in the ad hoc 

network to dynamically discover a route to any other host in the ad hoc network. 

A node initiating a route discovery broadcasts a route request packet which may be 

received by those nodes within wireless transmission range of it. The route request 

reaches the destination, referred to as the target of the discovery, then the destination 

node launches a route reply packet to the initiating node. If the route discovery is 

successful, the source node receives a listing sequence of network nodes through which 

it may reach the destination. Route Maintenance is the mechanism by which packets' 

sender detects if the network topology has changed such that it can no longer use 

its route to the specific destination, since the nodes listed in the route have moved 

out of range of its transmission range. Conventional routing protocols integrate route 

discovery with route maintenance by continuously sending periodic routing updates. 

The periodic updates will eventually reflect the changes to all other routes, resulting 

in the addition of new routes. However, there are no periodic messages of any kind 

from any of the mobile nodes. Instead, while a route is in use, the route maintenance 

mechanism monitors the operation of the route and informs the sender of any routing 
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errors. Route maintenance in the DSR uses end-to-end acknowledgements rather than 

hop-by-hop acknowledgements. 

3.4.3 Ad hoc on demand distance vector (AODV) 

AODV (5J is essentially a combination of both DSR and DSDV. It borrows the 

basic on-demand mechanism of route discovery and route maintenance from DSR, 

plus the use of hop-by-hop routing, sequence numbers and periodic beacons from 

DSDV. AODV uses sequence numbers to ensure the freshness of routes. It is loop­

free, self-starting, and scales to large numbers of mobile nodes. It is an on demand 

algorithm, meaning that it builds routes between nodes only as desired by source 

nodes. It maintains these routes as long as they are needed by the sources. When 

a node needs a route to some destination, it broadcasts a route request message to 

its neighbours, including the last known sequence number for that destination. The 

route request is flooded in a controlled manner through the network until it reaches a 

node that has a route for the destination. Each node that forwards the route request 

creates a reverse route for itself back to the source node. When the route request is 

reached via a route to the destination from the source node, that node generates a 

route reply that contains the number of hops necessary to reach the source and the 

sequence number for the destination most recently seen by the node generating the 

reply. Each node that participates in forwarding this reply back to the originator of 

the reply, creates a forward route to the destination. The state created in each node 

along the path from source to destination is know as a hop-by-hop state; that is, each 

node only remembers the next hop and not the entire route, as would be done in 

source routing. 

As long as the route remains active, it will continue to be maintained. A route 

is considered active as long as there are data packets periodically travelling from 

the source to the destination along that path. Once the source stops sending data 

packets, the links will time out and eventually be deleted from the intermediate node 

routing tables. If a link break occurs while the route is active, the node sends a 

route error message to the source node to inform it of the unreachable destination. 
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After receiving the route error, if the source node still desires a route, it can re­

initiate route discovery. In order to maintain routes, AODV normally requires that 

each node periodically transmits a HELLO message, with a default rate of once per 

second. AODV is considered as a de facto mobile ad hoc routing protocol because it 

gives high performance. 

3.5 Ad Hoc Network Energy Conservation 

Most mobile nodes rely on battery power and battery power is limited. Energy 

conservation represents one of the greatest constraints in designing a routing algo­

rithm for mobile ad hoc networks [55, 56]. Power saving mechanisms at the operating 

system level include strategies for CPU scheduling [57] and hard-disk management 

[58]. However, in small mobile wireless devices, networking activities have a ma­

jor impact on energy consumption. Therefore power-saving strategies in the ad hoc 

networks can be divided into two classes: local strategies and global strategies. 

Local strategies operate inside a node and keep the network interface in a power 

saving mode with a minimum impact on transmit and receive operation. These 

mechanisms operate at the Physical and MAC layer where power-saving strategies 

are designed to avoid transmitting when the channel is congested. While a node 

transmits a packet, the other nodes within the same interference and carrier-sensing 

range must remain silent. Therefore, these nodes are switched-off with no impact 

on system behaviour. For example, in PAMAS [59] a node turns off the radio when 

it overhears a packet not addressed to it. A comparison of a number of MAC layer 

protocols from the energy efficiency standpoint, can be found in [60] and references 

therein. 

Global strategies are utilised to maximise the network life time. These are based 

on the network-wide approach to power saving when a region is dense in terms of 

nodes, only a small number of them need to be turned on in order to forward the 

packets. To achieve this, a set of nodes is identified which must guarantee network 

connectivity while the remaining nodes can spend most of the time in the sleep state 

to maximise energy saving. Controlling the power of the transmitting node is the 
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other main direction for achieving power saving in ad hoc networks. A reduced 

transmission power also allows for the reuse of frequencies, which can help to increase 

the total throughput of the network and to minimise interference [61]. In addition, 

the minimum energy based routing protocols in mobile ad hoc networks are developed 

[62, 63, 64]. 

3.6 Sensor Networks 

Wireless sensor networks (WSN) are capable of observing the environment, pro­

cessing data and making decisions based on these observations. WSN consist of a 

large number of sensors, referred to as nodes. A sensor node integrates hardware and 

software for sensing, data processing and communication. Improvements in wireless 

network technology interfacing with emerging micro sensors based technology is al­

lowing sophisticated, inexpensive, storage, processing and communication capabilities 

to be unobtrusively embedded into our every day life. Although sensor network tech­

nologies are not new, technological barriers of performing wireless sensor networks 

have been limited in the past. Some of the benefits of the newer, more advanced 

sensor nodes have the potential to form large scale networks. Sensor network applica­

tions can be found in a wide variety of areas including industrial, military, bio-medical 

and environment monitoring. The sensor on these applications may be small or large, 

and the networks may be wired and wireless. However, wireless networks of micro 

sensors probably offer the most potential in changing the world of sensing [2]. 

3.6.1 Challenges in sensor networks 

Even though all sensor networks share common technical issues, various appli­

cations may have different challenges. Unlike traditional networks, a sensor node 

may not need an address, Le., sensor network applications are focused on the data 

generated by sensors. Data is named by attributes and applications request data 

matching certain attributes values. So, the communication primitive in this system 

is a request. Traditional networks are designed to accommodate a wide variety of 
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applications, but the routers in the traditional networks differ from sensor networks 

where intermediate sensor nodes can perform application specific data aggregation 

and caching or informed forwarding of requests for data. It is necessary to find the 

suitable architecture to provide efficient communication between the nodes. Sen­

sor network nodes coordinate to perform high level sensing tasks according to the 

application of interest. Clearly, this kind of communication can be structured in 

a centralised manner. Individual sensors report their data to a central node, but 

this centralised algorithm will not contribute much to sensor networks for several 

reasons such as a single point of failure, energy inefficiency and scalability [2]. Re­

searchers proved that sensor network coordination applications are better realised 

using distributed algorithms, which means sensor nodes only communicate with sen­

sors within some neighbourhood, yet the overall computation achieves a desired global 

objective. However, design of localised algorithms for sensor networks pose challenges 

in data-centric application-specific sensor networks [52]. In addition to the wireless 

communication problems, wireless sensor networks pose technical challenges in net­

work discovery, network control and routing, collaborative information processing, 

querying, and tasking. 

Topology information of the sensor networks is essential for a sensor in the network 

to operate properly. Each node needs to know the information of its neighbour nodes. 

In the immobile networks, the topology of the networks is fixed and usually known. 

In the case of mobile networks, since the topology of nodes change over time, methods 

should be provided to discover the topology changes. Generally global knowledge is 

not required, since each sensor node only interacts with its neighbours. In addition 

to knowledge of the topology, each sensor also needs to know its own location. When 

GPS is not feasible or too expensive, other means of location information have to be 

provided. 

Each node in the sensor networks collaborate to collect and process data to gen­

erate application specific information. Processing data from more sensors generally 

results in a better performance, but, in turn, also requires more communication re­

sources. Therefore, one needs to consider the multiple trade-offs between the per­

formance and resource utilisation in collaborative signal and information processing 
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using micro sensors. 

3.6.2 Sensor network applications 

Recent advances in sensor network technologies have introduced more and more 

practical applications of wireless sensor networks and development is continuing to 

emerge. Military sensing, air traffic control, traffic surveillance, video surveillance, 

industrial and manufacturing automation, distributed robotics, environment monitor­

ing, and building and structures monitoring are the current and potential applications 

of wireless sensor networks. 

In the monitoring applications where specialised sensor nodes that are able to 

detect temperature changes and other useful information can be deployed in high 

risk areas of a forest to receive early warning of a forest fire. In relation to indoor 

surveillance, sensor networks can be used to provide security in super markets, art 

galleries and other facilities. Sensor networks can be used in intrusion detection and 

tracking where sensor nodes are deployed along the border of a battlefield to detect, 

classify, and track intruding personnel and vehicles. 

3.6.3 Routing in Sensor networks 

Routing in sensor networks is highly challenging due to several characteristics that 

distinguish them from wireless communication and wireless ad hoc networks. Sensor 

nodes have less energy and computational capabilities than nodes in ad hoc networks. 

Sensor nodes are prone to failures and it is not possible to build global addressing 

schemes. Due to such differences, many new algorithms have been proposed for WSN. 

These routing mechanisms have addressed the characteristics of the sensor nodes along 

with the application and architecture. Proposed routing protocols for the WSN can 

be classified as data-centric protocols [11], hierarchical protocols [12, 13], location 

based protocols [14] and QoS-aware protocols [15]. 

Data centric protocols are query based and depend on the naming of desired 

data, which helps in eliminating many redundant transmissions. SPIN [11] is the 

first data centric protocol. Subsequently, directed diffusion has been developed and 
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has become notably efficient in data-centric routing. The main aim of hierarchical 

routing is to efficiently maintain the energy consumption by involving them in multi­

hop communication within a particular cluster and by performing data aggregation 

in order to decrease the number of transmitted messages to sink node. LEACH [12] is 

one of the first hierarchical routing approaches to sensor networks. LEACH assumes 

that all the nodes can transmit with enough power to reach the sink node if needed, 

the node can use power control to vary the amount of its transmit power, and nodes 

organise themselves into clusters, with one node acting as a cluster head. While there 

are advantages to using the LEACH distributed cluster formation algorithm, it offers 

no guarantee about the placement and/or number of cluster head nodes. This is 

the basis for the LEACH-centralised algorithm (LEACH-C) [12] that uses centralised 

clustering algorithms for clustering nodes and cluster head selection. PEGASIS [13] 

is an improvement of LEACH which forms chains from sensor nodes so that each 

node transmits and receives from its neighbour and only one node is selected from 

that chain to transmit to the sink node. Location based protocols require location 

information of sensor nodes. MECN [14] is a location based routing protocol for 

sensor networks and maintains its location using low power GPS. Finally, QoS-aware 

protocols are based on general network flow modelling and protocols that strive to 

meet some QoS requirements along with the routing function [15]. 

3.6.4 Placement methods in sensor networks 

Previous research in sensor networking has focused on developing protocols and 

algorithms and has largely ignored the optimal node placement issues. Recently works 

have emerged which address the node placement problem in WSN. For example, in 

[65], authors proposed an algorithm for sensor placement, wherein a minimum num­

ber of sensors are deployed to provide sufficient grid coverage of the sensor nodes. 

The optimisation framework was probabilistic due to the uncertainty associated with 

sensor detections. Optimal information extraction in energy limited wireless sensor 

networks was proposed in [16]. Here, the authors addressed the need for a symmetric 

methodology by developing formal nonlinear optimisation models of static WSN that 
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yield fundamental performance bounds and optimal designs. Two problems were ad­

dressed, namely maximising the total information gathered subject within the energy 

constraints and minimising the energy usage subject to information gathering. En­

ergy aware node placement in wireless sensor networks can be found in [17] where 

the authors formulated a constrained multi-variable nonlinear programming problem 

to determine both the locations of the sensor nodes and data transmission patterns. 

The sensor networks model considered by most researchers has a single static sink 

node located randomly in the sensor networks region [16, 17]. It is apparent that 

no research has been done for the sink node placement problem within a multi-hop 

nature. 

N odes closer to a sink node will experience heavier traffic load since they not only 

collect data within their sensing range, but also forward data to the sink node or 

to the next node. Such an unbalanced traffic load introduces an asymmetric power 

consumption among the sensor nodes. Hence, the node placement methods will have 

considerable impact on the life time of WSN. In [66], the authors investigated the 

energy provisioning for wireless sensor networks and considered a two-tier wireless 

networks. It was proposed that a relay node be deployed into the network to mitigate 

network geometric deficiencies and prolong the network lifetime. 



Chapter 4 

Stability Analysis of Particle 

Swarm Optimisation 

4.1 Introduction 

Particle swarm optimisation (PSO) is a swarm intelligence technique developed 

by Eberhart and Kennedy [20], inspired by social behaviour of bird flocking and fish 

schooling. PSO is a population based search process where individuals, referred to 

as particles, are candidate solutions to the optimisation problem at hand. Particles 

change their state by evolving in a multi-dimensional search space until an equilibrium 

or optimal state has been reached or until computation limitations are exceeded. 

PSO has been shown to be a very effective optimiser, especially in large complex 

search spaces [67]. Empirical evidence has accumulated that the algorithm is a useful 

tool for optimisation [22]. PSO has been applied to many optimisation problems in 

engineering [68, 69, 70, 71, 72, 73]. On the algorithmic front, extensions have been 

made to deal with dynamical environments and efficient exploration [74, 75]. More 

recently, multi-objective particle swarm optimisers have also been derived [76, 77, 

78, 79]. Additional operators have been incorporated into the basic particle swarm 

optimisation scheme such as the selection operator in genetic algorithms [80] and 

a neighbourhood operator [81]. The similarity between a population of particles in 

swarm optimisation and a population of genotypes in genetic algorithms has resulted 
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in a comparison between the two [67] where the psa shows good performance than 

genetic algorithm for chosen optimisation problems. 

The first analysis of the simplified particles behaviour was carried out by Kennedy 

[82] who showed the different particle trajectories for a range of design choices for 

the gain through simulations. In [83], the authors showed that a particle in a simple 

one dimension psa system follows a path defined by a sinusoidal wave, randomly 

deciding on both its amplitude and frequency. The first formal analysis of the stability 

properties of the algorithm was carried out in [38]. Essentially, the analysis required 

the simplification of the standard stochastic PSO to a deterministic dynamical system 

by treating the random coefficients as constants. The resulting system was a second 

order linear dynamical system whose stability depended on the system poles or the 

eigenvalues of the state matrix. A similar analysis based on the deterministic version 

of the psa was also carried out in identifying regions in the parameter space that 

guarantees stability [84]. The issue of convergence and parameter selection was also 

addressed in [37, 40]. However, the authors acknowledge the limitations of their 

results which do not take the stochastic nature of the algorithm into account. Similar 

analysis on a continuous-time version of psa have also been carried out in [85]. A 

Lyapunov analysis approach has also been adapted in [42] for the social foraging 

swarms, different to the PSO, in a continuous-time setting. 

In this chapter, we provide a stability analysis of the stochastic particle dynamics. 

The analysis is made feasible by representing the particle dynamics as a nonlinear 

feedback controlled system as formulated by Lure [26, 86]. Such systems have a 

deterministic linear part and a non linear and/or time varying gain in the feedback 

path. It is well known that the stability of such nonlinear feedback systems cannot be 

determined by analysing the stability of all possible linear feedback systems resulting 

from the nonlinear and/or time varying gain being replaced by constant linear gain 

values spanning the entire range ofthe gain [86]. Known as Aizerman's conjecture, its 

implication is that the stability conditions derived by treating the particle dynamics 

as deterministic, is not valid for the stochastic case in general. 
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4.2 Particle Swarm Optimisation 

The PSO formulation defines each particle as a potential solution to a problem in 

d-dimensional space with memory of its previous best position and the best position 

amongst all particles, in addition to a velocity component. At each iteration, the 

particles are combined to adjust the velocity along each dimension, which in turn is 

used to compute the new particle position. Since each dimension is updated inde­

pendently of others and the only link between the dimensions of the problem space 

are introduced via the objective functions, analysis can be carried out on the one­

dimensional case without loss of generality. The original version was found to lack 

precision in local search solution. This led to the introduction of an inertia factor in 

the velocity update in [37], giving rise to the commonly used form of the PSO. The 

particle dynamics in one dimension is given by 

Xt+l = Xt + Vt+l, 

(4.1) 

(4.2) 

where Vt is the particle velocity at the tth iteration, Xt is the particle position at the 

tth iteration, p(l) is the personal best position or the particle's best position thus far, 

p(g) is the best global position or the best solution amongst all particles, w is the 

inertia factor and a~l) "" U[O, cd, a~g) "" U[O, C2] are random parameters with uniform 

distributions. 

The following statements can be derived from the particle dynamics of (4.1): 

• The system dynamics is stochastic and is of order 2. 

• The system does not have an equilibrium point if p(g) i:- p{l). 

• If p(g) = p{l) = p is time invariant, there is a unique equilibrium point at v. = 0, 

x. =p. 

An equilibrium point, thus exists only for the best particle whose local best solution 

is the same as that of the global best solution. If asymptotic stability of the dynamics 

for the best particle can be guaranteed, then this particle will reach the equilibrium 
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point relating to the best solution is guaranteed. The analysis of the non-best particle 

is more challenging and is beyond the scope of this paper. Clearly, the conditions 

outlined for the existence of an eqUilibrium point does not hold true for any particle 

at all times in the particle swarm optimisation. There are two points to be made 

with regard to this. Firstly, convergence to a fixed equilibrium point requires time 

invariance of the best solution position. Secondly, particles stop improving their 

solution after a finite number of iterations so that beyond this point the conditions 

can be deemed to hold. 

We proceed to consider the particle dynamics associated with the best particle 

(local best solution is the same as that of the global best solution), 

(4.3) 

(4.4) 

where at = a~l) + a~g). The combined stochastic parameter is no longer uniformly 

distributed but satisfies the following inequality: 

0< at < K, (4.5) 

where K = Cl + C2' Note that the use of (4.3) with p as a constant is not valid 

for non-best particle dynamics. The following expression used in [38], [40], for the 

deterministic PSO, given that 

(4.6) 

is generally time varying if p(g) =P p(l) and if a~/) and a}g) are random. 

The previous stability analysis [38,40] proceeded to represent the system in state 

space form: 

( 
Xt+l ) = ( 1 - at w) ( Xt ) + ( at ) p. 
Vt+l -at W Vt at 

(4.7) 

By treating the random variable at as a constant, essentially deterministic particle 

dynamics, the system dynamics is reduced to a simple time invariant linear second 
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order dynamic model. Stability of such a deterministic particle dynamics can be 

concluded based on the eigenvalues of the state matrix in (4. 7), as shown in [38, 84, 40]. 

The conditions for convergence derived in [84, 40] in our notation are given by 

w < 1 and 

K < 2{w + 1). 

(4.8) 

(4.9) 

We shall see in section 4.4 that the sufficient conditions for the stability of the 

stochastic particle dynamics differ from those given in (4.8) and (4.9). 

4.3 System Characteristics 

We note that the stability analysis of the particle dynamics can be mapped to 

the problem of absolute stability of nonlinear feedback systems, known as Lure's 

stability problem [86, 87]. The stochastic particle dynamics is thus represented as 

a feedback controlled dynamic system as shown in Figure 4.1. The feedback control 

system representation depicts a time invariant linear plant in the forward path and an 

output control with time varying gain in the feedback path. The equations governing 
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the dynamics in this new representation can be expressed as 

( 
Xt+l) _ (1 w) ( Xt ) + ( 1 ) Ut, 

Vt+l 0 W Vt 1 

Y. - (1 0) ( :: ) , 

where Ut is interpreted as the control input signal. 
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(4.10) 

(4.11) 

( 4.12) 

Under the conditions of p being time invariant, the dynamical system equation 

can be simplified further by introducing the state vector as follows: 

The resulting state space representation from (4.10), (4.11), (4.12) is thus, 

~t+l - A~t + BUt, 

Yt = eet! 

(4.13) 

(4.14) 

(4.15) 

where the state matrix A, input matrix B and the output matrix e are given by, 

A=(~ :), B=(:), C=(l 0). (4.16) 

Definition (Equilibrium[88]). ~* is an equilibrium point of a dynamical system in 

the state space form et+l = ft(~t} if it satisfies ~. = ft«(..} for every t ~ O. 

Remark. For the PSO, the dynamical systems with feedback can be rewritten in the 

following state space representation 

( 4.17) 

( 
1- at w) (A - atBO) = . 
-at W 

(4.18) 
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If w =I 0, then (A - O'.tBC) is nonsingular and hence the only solution that satisfies 

~. = (A - O'.tBC)~. is ~. = O. Hence, the particle dynamics specified in (4.13-4.15) 

has a unique equilibrium point at the origin in the ~ state space. 

Remark. If p(g) =I p(l), the particle converges to the line that connects its personal 

best and the global best particle. 

The transfer function of the linear plant is then, 

G(z) = C(zI - Atl B = (z _ l)~Z _ w)' (4.19) 

where z is the complex variable associated with Z-Transforms [89]. 

Remark. The linear plant has poles at z = 1 and z = wand hence is (marginally) 

stable if Iwl < 1 and is unstable if Iwl ~ 1. Poles are also the eigenvalues of A. 

For dynamical systems specified in the state space form, the following properties 

are of interest and are needed for the analysis in the next section. 

Definition (Controllability[90]). A system is completely controllable if the system 

state x( t J) at time t J can be forced to take on any desired value by applying a control 

input u(t) over a period of time from to until tf. Suppose n, rn, l are given integers, 

A E ~nxn, B E ~nxm, C E ~lxn, D E ~lxm and Xt+l = AXt + BUt, Yt = CXt + DUt 

represents the dynamics of the linear systems. Then the pair (A, B) is said to be 

controllable if 

Rank[B AB ... An-l Bl = n. 

Definition (Observability[90]). A system is completely observable if any initial 

state vector x(to) can be reconstructed by examining the system output y{t) over some 

period of time from to until t J. Suppose n, rn, l are given integers A E ~nxn, B E 

Rnxm, C E Rlxn, D E R1xm and Xt+l = AXt + BUt, Yt = CXt + DUt represents the 

dynamics of the linear systems. Then the pair (C, A) is said to be observable if 

Rank[C CA .... CAn-1JT = n. 
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State space representation of the linear part of PSO system is given by 

et+l - Aet + But, 

Yt - Cet, 
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(4.20) 

(4.21) 

where the state matrix A, input matrix B and the output matrix C are given by 

(4.22) 

According to the controllability definition, the PSO dynamics of (4.13) gives rise to 

( 11+W) 
(B AB) = 1 w . (4.23) 

Rank( B AB) = 2. 

Hence the linear part of the PSO system is controllable. 

According to the observability definition, the PSO dynamics of (4.13) gives rise to 

(C CAf = (~ :). (4.24) 

Rank(C CAf = 2, if w =j; O. 

Hence, the linear part of the PSO systems is observable, provided W =j; O. The linear 

plant pair {A, B} is controllable and pair {A, C} is observable. 

Remark. The implication of complete controllability and observability of the particle 

dynamics is that the dynamics is always that of a second order system (not reduced to 

first order for example due to pole-zero cancellation). Such a condition is necessary 

for us to use the method of positive real lemma in the next section. 

The time varying memoryless feedback gain satisfies the so called sector condition 

at E (0, K) and hence satisfies the following inequality: 

u~ + KUtYt $ O. (4.25) 
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4.4 Stability Analysis 

The stability analysis is carried out using the concept of passive systems and 

Lyapunov stability [86]. We begin this treatment by explaining some basic concepts 

and their interpretations. 

Definition ([86]). The linear plant has a stable matrix A, if its eigenvalues lie strictly 

inside the unit circle in the Z-plane or equivalently l>'i{A} I < 1 for all i. Here Ai{'} 

represents the ith eigenvalues of A. 

Remark. The linear plant in the feedback representation of the particle dynamics has 

a semi-stable A matrix with a simple pole on Izl = 1 when Iwl < 1. 

Definition ([86]). A dynamical system is said to be passive if there is a non-negative 

scalar function V(~) with V(O) = 0 which satisfies 

(4.26) 

Remark. The equation above can be interpreted as the increase in stored energy is 

less than or equal to the energy input so that energy is lost in passive systems. 

Theorem (Lyapunov Stability[86]). Let ~ = 0 be an equilibrium point of the 

system. The equilibrium point is asymptotically stable if there is a non-negative scalar 

function V(~) with V(O) = 0 which satisfies 

(4.27) 

Remark. Lyapunov stability analysis is based on the idea that if the total energy in 

the system continually decreases, then the system will asymptotically reach the zero 

energy state associated with an equilibrium point of the system. 

A system is said to be asymptotically stable if all the states approach zero with time. 

The passivity idea and the Lyapunov stability idea are combined to analyse the 

Lure stability problem [86] whereby if all subsystems in a feedback system are passive, 

then the total energy can only decrease in an autonomous system (with zero input 

energy). 
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For linear systems, the passivity property can be related to a condition in the 

frequency domain known as positive real transfer functions. 

Definition ([86]). The transfer function H(z) of a dynamical system is said to be 

positive real if and only if the system is stable and 

for every () E [0,211'), where ~{-} indicates the real part of its argument, j = FI is 
the imaginary number. 

Remark. The transfer function G(z) representing the linear plant in the particle 

dynamics is not a positive real transfer function. However, a lower limit for 1R{ G(eiO )} 

exists and is given by, 

{ ( '())} (1 + w) [ ) ~ G e} > - 2(1 _ 21wl + w2 ) for all e E 0,211' . 

Proof. The transfer function of the linear part of (4.13-4.15) is given by, 

z 
G (z) - -:----:--:----:­

- (z-1)(z-w) 

The Real part of G( ei (}) is given by, 

This leads to the inequality, 

(cose + jsine) 
(cosO - 1 + jsinO)((cosO - w + jsinO)) 

(w+ 1) 
2(1 - 2wcosO + w2) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

'() -(1+w) 
~{G(e7 )} > 2(1 _ 21wl + w 2 ) for all () E [0,211') (4.32) 

o 

An important result that is necessary for the stability analysis is the discrete-time 

positive real lemma which links the concepts of positive real transfer functions and 

the existence of a Lyapunov function. 
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Lemma (Discrete-Time Positive Real Lemma [91],[92]). Let H(z) = C(zI -

A)-l B + D be a transfer function, where A is a stable matrix or a semi-stable matrix 

with a simple pole on Izl = 1, {A, B} is controllable, and {A, C} is observable. Then 

H (z) is strictly positive real if and only if there exist a symmetric positive definite 

matrix P, matrices Wand L, and a positive constant c such that [91j, [92j, 

ATpA-P -
BTpA -

D+DT _BTpB -

_LTL , 
C-WTL 

WTw. 

, 
(4.33) 

(4.34) 

(4.35) 

Now we are ready to state the main result of this chapter which specifies the 

conditions that when satisfied by the design parameters wand K, guarantee the 

stability of the particle dynamics. 

Theorem (Main Result). Let the particle dynamics be represented by (4.19-4.15) 

and satisfying (4.5) with an equilibrium point at the origin. Then the origin is asymp­

totically stable if Iwl < 1, w # 0 and 

K (2(1- 21wl + W2») 
< 1 . +w 

Proof. Consider the Lyapunov function 

(4.36) 

where P is a symmetric positive definite matrix. 

The decrease in the system energy as represented by the Lyapunov function between 

two discrete time instants is given by 

(4.37) 

- {t:1P~t+l-~rp~t (4.38) 

- ({(ATpA - p)et - 20WtBTpAet + (O:tyt} 2 BTpB. (4.39) 

Since -2CttYt(O:tYt - KYt) ~ 0, if we add this component to the right-hand side of the 
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equation, we get 

~vt+l < ~[(ATpA - P)~t - 2CitYtBTpA~t 

+ Cityt2BBT - 2CitYt(CitYt - KYt) (4.40) 

- ~[(AT PA - P)~t - 2CitYt(BT PA - KC)~t 

(UtYt)2(2 - BT PB). (4.41) 

We can show that the right-hand side is negative by completing a square term if the 

following matrix equations are satisfied . 

BTpA = KC - WTL, 

2 - BTpB = WTW. 

(4.42) 

( 4.43) 

(4.44) 

Comparing these with the relationship established in the Positive Real Lemma above 

indicates that if and only if the linear system with the transfer function 

H(z) = KC(zI - A)-l B + 1 

satisfies all the conditions stated in the positive real lemma, then (4.42)-(4.44) hold. 

It is straightforward then to show that H(z) satisfies the conditions in the Positive 

Real Lemma, if 

Iwl < 1,w =F 0 (4.45) 

and 

( 4.46) 

which then leads to 
K (2(1 - 21wl + w2)) 

< 1 . +w (4.47) 

Then 

~ vt+l < -~r LT L~t - 2CitYt WT L~t - (UtYt)2WT~V 

- -(L~t - UtYtW)T(L(t - UtYtW) (4.48) 

~ O. 
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Since the difference in the Lyapunov function is non-increasing, the particle dynamics 

is guaranteed to be stable, according to Lyapunov stability theorem. 

In fact, asymptotic stability can be guaranteed using La Salle's extension [86] to 

Lyapunov stability observing that when ~ vt+! = 0, the particle dynamics is such 

that at the next time point, it will be non-zero except when the particle has reached 

equilibrium. To see this, consider the following scenarios: 

~ vt+! = ° implies that L~t - atYt W = ° which can be written as follows with 

substitution for Yt = C~t, 

( 4.49) 

If rank of (L - OtWC) = 0, then if any solution is to exist, it will be unique Ot = 0 •• 

Then for any 0t+l t a., ~ vt+l < 0, given Ot is random, it can be seen that the 

energy will only continue to decrease barring time instants when ~ vt+l = ° at which 

time it will temporarily stop decreasing. 

If rank of (L - OtWC) is rank deficient then this implies IL - otWCI = 0, which 

gives at most a quadratic equation in 0t for constant L, W, C. Hence, at most, 0t can 

take only two specific values, say oi, O2, Since Ot is random with probability density 

P(at)j Pr(Ot = oi) + Pr(Ot = ( 2) is infinitesimally small. Hence the probability of 

the event that Ot = oi or Ot = O2 is infinitesimally small. Therefore, the energy 

will stop decreasing only at infinitesimally small finite time instants implying that 

asymptotically zero energy state will be reached. 

If rank of (L - Ot WC) = 2 , then the only solution for (4.49) is {t = 0, implying that 

energy will stop decreasing only when the system reaches equilibrium. 

Hence, vt ~ Oast ~ 00. o 

Remark. The equilibrium point at the origin represents the particle position reach­

ing the minimum location p with zero velocity. Lyapunov stability results give only 

sufficient conditions and hence can be very conservative. Violation of the stability 

conditions do not imply instability - rather that stability cannot be guaranteed. 

When w > 0, the condition (4.47) reduces to K < 2(~::)2, and when w < 0, 

the condition (4.47) reduces to K < 2( 1 + w). The sufficient stability conditions 
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derived in the main theorem is illustrated graphically in Figure 4.2, which shows the 

maximum gain for a chosen inertia factor. 

Remark. Note that the maximum gain that gives sufficient guarantees for the stability 

of particle dynamics decreases with the increase in inertia factor when it is positive. 

This is in contrast to the results derived in {84J, /40J under non-random constant gain 

assumptions where the maximum gain increased with the inertia factor. 

4.5 Illustrative Examples 

The stability analysis given in this chapter can be interpreted in the frequency 

domain and time domain. Through an illustrative example, we demonstrate their 

utility and insight. 
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4.5.1 Nyquist plot and Circle criterion 

The main stability theorem and the proof are based on the discrete-time version 

of the circle criterion, which can be used as a frequency domain graphical method for 

stability analysis [86]. The result derived here is a special case when the lower limit 

for the feedback gain at is zero. 

The circle criterion when applied to the stability of particle dynamics simply states 

that the Nyquist plot of the linear plant in the feedback system representation should 

lie to the right side of the point --1< + jO in the Z-plane. 

For the general particle dynamics as represented in (4.7), the discrete-time Nyquist 

plots of G(z) in (4.19) with the inertia factor (design parameter) w = 0.8 is given in 

Figure 4.3 and with w = 0.2 given in Figure 4.4. The Nyquist plots showing the real 

and imaginary parts of G(z) clearly lie to the right of a limiting vertical line. The 

required conditions identified to satisfy positive realness in (4.46) then implies that 

the real value of this limiting line can be translated into a limiting condition on the 

gain K. The vertical lines on the figures show the limiting condition for the positive 

realness, which are 

-1/K < -22.5 for w = 0.8, 

-1/ K < -0.9375 for w = 0.2. 

The graphical results match those obtained from the results from the main theorem 

as expected. 

Note, however, the circle criterion can be applied to general sector conditions such 

as D:min ~ D:t ~ D:max and thus provides us flexibility in designing further parameters. 

4.5.2 Lyapunov function and particle trajectories 

The stability conditions derived are based on Lyapunov stability analysis and 

hence are overly conservative. It is therefore important to analyse the impact on 

the particle dynamics of the choices for the design parameters. In particular, it is of 

interest to analyse the case when the derived stability conditions are violated. 
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First, we will determine a candidate positive definite matrix P in the Lyapunov 

function for the chosen inertia factor w. Consider the system with w = 0.8 then, the 

system state matrix is 

A = (1 0.8). 
o 0.8 

(4.50) 

For this case, stability requires K < 0.044. A choice of K = 0.04 that satisfies this 

condition but is close to the limit is made for the analysis of this particle. However, 

any value satisfy this inequality for K will demonstrate the analysis. This is to ensure 

that while a worse case condition within limits is considered, it gives convenient 

rounded values for the matrices A and thus PI, P2. 

By solving for P from (4.42-4.44), the solutions are given by 

( 
0.008 0.032) 

Pl = , 
0.032 0.4372 ( 

0.008 0.032) 
P2 = 0.032 0.2108 . 

Likewise, for the system with w = 0.2, the state matrix is 

A = (1 0.2). 
o 0.2 

(4.51) 

(4.52) 

A convenient choice to demonstrate the result is K = 1, which satisfies the stability 

guarantees of the main results. The solutions for the positive definite matrix Pare 

given by 

I ( 0.8 0.2 ) p= , 
1 0.2 0.7905 

I ( 0.8 0.2 ) 
P2 = 0.2 0.1215 . 

(4.53) 

Having computed the Lyapunov function matrix for the two design choices, we 

can analyse how this function evolves over time. All the simulations are carried out 

based on equations (4.1), (4.2) and with initial conditions of x = 1, v = O. Figures 

4.5 and 4.6 show the Lyapunov energy function based on g and P{ decrease with 

time monotonically for the respective values of w. The trajectory of the particles for 

the two cases above are also given in Figures 4.7 and 4.8 demonstrating asymptotic 

stability of the particle dynamics. 

In order to analyse the behaviour of the particle under conditions that do not 

guarantee stability, the evolution of the Lyapunov function determined in (4.51) was 
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observed. As seen in Figure 4.9 for a single realization, the energy decreases, but 

not monotonically, showing an increase at various times. In fact, the results were 

consistently similar. The associated particle trajectory is given in Figure 4.10, and 

shows asymptotic stability despite the stability conditions not being satisfied. A 

similar analysis was carried out with the design choices of w = 0.2 and K = 2 

which also violate the required stability conditions. Figures 4.11 and 4.12 show the 

evolution of the Lyapunov function (4.53) and the corresponding particle trajectory. 

Again, the figures demonstrate the conservativeness of the stability result by showing 

asymptotic stability for the particle trajectory even when the design parameters do 

not meet the required conditions. 

However, instability does occur even at reasonable design parameter values when 

the stability conditions are violated as shown Figures 4.13, 4.14 and 4.15. It may 

appear at first sight that the conservative stability conditions derived here is not 

useful for design. However, the utility of such analysis is in providing insights into 

particular features of the algorithm and thereby guide design choices. In particular, 
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Figure 4.14: Particle trajectories with K = 3.5 and w = 0.9. (a) from initial time to 
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we have shown that for 0 < w < 1, decreasing w should be associated with increased 

K if we want to maintain the same level of exploration/convergence. It is also possible 

to arrive at adaptive designs in which parameters such as wand K are changed over 

time while stability is maintained, within the analytical framework such as those in 

control systems literature [86, 88, 90]. 

When -1 < w < 0 show stability and the particle trajectories have alternating signs 

which leads to large jumps in the particle motion, which is undesirable for local 

exploration. Ideally the choice for w is for it to lie in the region 0 < w < 1 as 

identified by [38, 84]. 

It is interesting to note that under instability conditions, the particle trajectories 

reach very high values suggesting that particles escape from the search region, not 

monotonically, but at various times. This effect has been observed in the literature 

and solutions such as imposing a limit on the particle velocity have been proposed 

albeit with further problems [37] to mitigate this effect. It is possible that the stability 

analysis provided here can not only be used to analyse such schemes but also can 
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provide a guide to deriving new stabilising particle dynamics algorithms. 

A characteristic feature of some of the selected particle trajectories with design 

choices in the region outside stability guarantees is that the particle position magni­

tudes were very large albeit temporarily. Such movement of particles outside relevant 

search region is undesirable which is one of the aims of addressing stability. In order 

to investigate the relationship of the number of times in a simulation the particle 

exceed some search region defined by a threshold for specific w values and varying K, 

1000 Monte Carlo simulations for each design choice were carried out. The relevant 

search region was defined as 

s = {x: Ixl < 8}, (4.54) 

where 8 is a threshold. Simulations were carried out for 8 = 10, 100, 1000, 10000 for 

three design choices that are outside the stability region identified in this paper but 

inside the stability region identified in [40, 38, 84]. The results are given in Table 

4.1 where the number of simulations in which the particle escaped the region S at 

some time during the particle motion referred to as instability count. A further set 

of experiments were carried out with with 8 = 100 and w = 0.8,0.9,0.95,0.99, while 

varying K in the region (0,5). Figure 4.16 shows the count of the simulations in which 

the particle escaped region S for these parameter choices. 

The results clearly show that the on-set of instability as defined by the count of 

simulations escaping some search region and how instability increases with increasing 

K. The results also show the conservative nature of the theoretical bounds derived 

here. However, it is also noteworthy that going from w = 0.8 to w = 0.9, to achieve 

the same level of stability, the choice for K has to be decreased. This trend is predicted 

by the theoretical results shown in Figure 4.2. The critical values of K for the on-set 

of instability as defined here is also in between the values predicted theoretically in 

this paper and that advocated in [40, 38, 84]. 
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Table 4.1: Threshold and Instability count for 1000 Monte Carlo runs 
Threshold w=0.8 and K=3.5 w=0.9 and K=2.5 w=0.95 and K=2 

10 93 240 817 
100 14 75 609 
1000 1 18 374 
10000 0 2 215 

1000 

900 

800 

700 

c: 800 :I 

8 
~ 500 
:0 
ra 
u; 400 
.E 

300 

200 

100 

0 
0 5 

Maximum gain 

Figure 4.16: Monte Carlo trials for different w values with threshold 100 
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4.6 Conclusions 

We have provided a different approach to the stability analysis of PSO with 

stochastic parameters. The passivity theorem [86] and Lyapunov stability [89] meth­

ods were applied to the particle dynamics in determining sufficient conditions for 

asymptotic stability and hence convergence to the equilibrium point. Since the re­

sults are based on the Lyapunov function approach, they are conservative and hence 

violation of these conditions do not imply instability. Nevertheless, the results can 

be used to infer qualitative design guidelines. Illustrative examples were given to 

demonstrate the application of the technique. 

The analysis provided in this chapter has addressed only the issue of absolute 

stability. The primary aim of PSO however is optimisation while maintaining stability. 

For instance, adaptation rules on K and/or w design parameters such that exploration 

is facilitated while maintaining stability is needed. 



Chapter 5 

Energy Efficient Sink Node 

Placement in Sensor Networks 

5.1 Introduction 

The evolution of sensor technology and wireless communication have led to the 

development of wireless sensor networks. Wireless Sensor Networks (WSN) consist 

of small nodes with sensing, computation and wireless communication capabilities. 

These small nodes are inexpensive, portable wireless nodes with limited power, mem­

ory and computational capabilities. The energy supply of the sensor node is one 

of the main constraints in the design of sensor networks. Many routing protocols, 

power management techniques and data dissemination protocols have been designed 

for WSN where energy awareness is an essential design issue in wireless sensor net­

works. Wireless sensor networks are capable of observing the environment, processing 

data, and making decisions based on these observations. These networks are impor­

tant for a number of applications in health monitoring, surveillance, target detection 

and environment monitoring [10]. 

In the past few years, intensive research has been carried out on the collaboration 

among the sensors in data gathering and processing and in the coordination manage­

ment of the sensing activity. However sensor nodes are constrained by energy supply 

where it is not feasible to replace the batteries after deployment, by bandwidth lim-
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itation and by limited computational and processing capabilities. Such constraints 

combined with typical deployment of a few hundreds of sensor nodes pose many 

challenges to the design and management of the WSN. It is highly desirable to find 

methods for energy efficient deployment, route discovery and relaying of data from 

sensor nodes to the sink node so that the lifetime of the network is maximised. 

WSN nodes and the sink node can be deployed in different ways such as random 

placement and controlled placement, depending on the application. Generally, fewer 

sensors are required to perform the same task in the deterministic deployment than 

a random deployment. Previous research in sensor networking has largely focused 

on routing problems [11, 12, 13] and has ignored other problems such as the sensor 

placement and sink node placement issues. 

In this chapter, we formulate a nonlinear optimisation problem to find the optimal 

sink node position for a given WSN where sensor nodes generate different amount of 

data to send to the sink node. The problem is NP-hard in general and so we use the 

particle swarm optimisation technique to solve the optimisation problem. 

5.2 Related Work 

Previous research in sensor networking has largely ignored the optimal node place­

ment issues. Recently, works have emerged which address the node placement problem 

in the WSN [16, 17, 65]. Most closely related to our work discussed here are papers 

relating to the optimisation models of multi hop wireless sensor networks [16, 17]. 

The ideas in this chapter build on the optimisation formulations of these literature. 

We briefly discuss the modelling work given in the literature in the following sections. 

5.2.1 Optimal information extraction in energy limited wire­

less sensor networks 

The current practice in wireless sensor networks is to develop functional system 

designs and protocols for information extraction using intuition and heuristics, and 

validate them through simulations and implementations. Optimal information ex-
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traction in energy limited wireless sensor networks was proposed in [16]. Here, the 

authors addressed the need for a symmetric methodology by developing formal non­

linear optimisation models of static WSN that yield fundamental performance bounds 

and optimal designs with respect to the energy constraints. They have addressed two 

problems, that of maximising the total information gathered subject to the energy 

constraints and minimising the energy usage subject to information gathering. 

It is assumed that n sensors are placed in fixed locations, each with limited energy 

supply Ei and dij denotes the physical distance between node i and j. The purpose 

is to extract as much as information as possible to the sink node (node n + 1 with 

unlimited energy resources -a reasonable assumption if the sink node is plugged in). 

Each node consumes C units of energy per-bit received and units of energy per-bit 

sensed. They also assume that the sensor node can adjust both the information flow 

rate and the transmission power, which are denoted by Jii and ~i for link between 

nodes i and j. The relation between the flow rate and transmission power on a link is 

given by Shannon's capacity equation for a white Gaussian noise channel, assuming a 

square-law signal decay d~2 and noise of TJ on the communication channel. The frac­

tion of the total information that reaches the sink node from node i is denoted by Cti. 

The objective is to find the coordinated operation of all nodes by setting transmission 

powers and flow rates in order to maximise the amount of information that reaches 
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the link. The problem is expressed by the following nonlinear programming problem. 

n 

maxLhn+l 
j=l 

Subject to 
n+l n 

Lfij - Lfji ~ 0 
j=l j=l 

n+l n n 

Lfij - Lhi ~ D:i Lhn+l 
j=l j=l j=l 

n+l n n+l n 

,6(Lfij - Lhi) + L~j + LChi ~ Ei 
j=1 j=1 j=1 j=1 

P.··d-2 

fij ~ log(1 + 'J ij ) 
TJ 

fij ~ 0, Pij ~ o. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

The constraint in 5.2 represents rate of data sensed by node i. The next constraint 

in 5.3 guarantees that each node sends a fraction of the total information to the sink 

node. The constraint in 5.4 limits the available energy Ei for each sensor node and 

equation (5.5) comes from the Shannon's capacity equation [47]. 

Adding the consumption of energy of every node i, the following expression can 

be obtained for the total energy consumed by the sensor nodes of the WSN: 

n n+l n n+l n+l n 
- I),B(Efij - Lhi) + LF{j + LF{j + ECfji) (5.7) 

i=l i=1 j=1 j=l j=l j=l j=l 
n n n 

- L(,Bfin+l + F{n+l + L L(Cfij + F{j). (5.8) 
i=l i=l j=l 

The formulation is a very interesting and incorporates the multi hop nature of the 

problem. In the simulation experiments, consideration is given only to line of topology 

and square topology of the networks which are easily configured for optimal routing 

in the network. The problem when the optimal multi-path information is not easily 

known, or extracted was not addressed. 
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5.2.2 Energy aware node placement in wireless sensor net­

works 

Energy aware node placement in wireless sensor networks was developed in [17], 

where the formulation of a constrained multi-variable nonlinear programming problem 

to determine both the locations of the sensor nodes and data transmission patterns. 

The sensor networks model considered there has a single static sink node located 

randomly in the sensor networks region. Optimal placement strategies are numerically 

calculated for the linear network where the multi-path connection patterns are easily 

known. The following section explain the modelling framework as in [17]. 

Let us first consider a linear network, which consists of a set of sensor nodes 

placed a long and narrow area with the sink node at the end. Each node collects 

the data within its sensing range, sending information to the sink node for control. 

Each sensor has a certain amount of initial energy Eo and a sensing range D. Let di 

be the distance between node i and i + 1, i = 1, .... n - 1, and do the area covered 

by node 1. A general scenario where each sensor node continuously or periodically 

collects constant bit data rate is considered. A further a..'5sumption is made so that 

the amount of data generated in a unit area per unit time is a constant denoted by c. 

If the sensor nodes are deployed using uniform placement in which sensor nodes 

are placed with equal distance in between, then the power consumption of sensor 

networks can be modelled as follows: 

Pi .L(L)m (5.9) - ~- - c 
n n 

T . (Eo) i=1,2, ... ,n-l (5.10) - miIn p'. 
t 

where 11 denotes the power consumption of the ith node to relay all the collected data, 

L the length of the linear network, n the number of nodes, Eo the energy allocated 

to each node and T the lifetime of the network. L / n is the sensing area of each node 

and m is the communication path loss index. In this type of placement technique, 

nodes closer to the sink node carry more loads, consume more power and lose all its 

energy quickly thus the total life time of the network is reduced. 

It is infeasible in practice to allocate energy arbitrarily among different nodes. 
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Hence, the assumptions are made that the sensor nodes have the same initial energy 

Eo and !ij is the amount of data rate to be sent directly from node i to node j for a 

unit time period. The corresponding power dissipation can be expressed by, 

j-l 

!ij(I: dk)m 
k=i 

The placement problem can be formulated as follows [17]: 

maxT 

Subject to: 
n i-I 

L !ij = L !ki + di_IC, i=2, ... ,n-1 
j=i+l k=l 

n 

L:fIj - doc 
j=2 

n j-1 
Eo 

I: !ij(~ dk)m < i = 1, ... , n - 1 
j=i+l k=i 

T 

n-l 

Ldi - L 
i=O 

0 < d i :5D, i = 0,1, .... , n - 1. 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

Equation (5.13) represents the flow constraint of the network and Equation (5.14) is 

the flow constraint at node 1. Equation (5.15) and Equation (5.16) present the energy 

constraints at each node and the length of the network respectively. The objective of 

this work is to place sensor nodes in an optimal way to maximise the lifetime of the 

sensor networks consisting of n sensor nodes with the same initial energy deployed in 

a certain area. As this type of problem has no analytical solution, the authors use a 

numerical algorithm to maximise the network lifetime. The simulation results show 

that using the above optimal node placement and data transmission pattern leads to 

a significant benefit over the other placements techniques. 
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5.2.3 Sink node placement methods 

N odes closer to a sink node will experience heavier traffic load since they not only 

collect data within their sensing range but also forward data to the sink node or 

to the next node. Such an unbalanced traffic load introduces an asymmetric power 

consumption among the sensor nodes. Hence, sink node placement methods will have 

considerable impact on the life time of the WSN. 

The idea of exploiting the mobility of the sink node for the purpose of increasing 

the lifetime of WSN was developed in [93]. Here the authors formulated a linear 

optimisation model to determine which nodes should be visited by the sink in order 

to maximise the lifetime of the WSN. They consider WSN nodes that are arranged 

in a two dimensional grid and the one sink node travels along the grid line. These 

assumptions lead easily to a formulation of a linear programming problem that can 

be solved using existing linear programming methods. 

Deploying multiple, mobile sink nodes idea was proposed in [94]. The experimental 

results demonstrate that nodes which are one hop away from a base station drain 

energy faster than other nodes in the network. This is attributed to the fact that 

nodes which are one hop away from the sink node need to forward messages originating 

from many other nodes, in addition to delivering their own message. In doing so, 

these nodes deplete their energy quicker and become in-operational. A solution that 

determines the new location based on the residual energy of nodes is proposed based 

on the integer linear program [94]. It does not minimise the energy usage of the 

network but maximises the network lifetime by sharing the energy resources within 

the network. 

In [66], the energy provisioning for wireless sensor networks was investigated for a 

two-tier wireless network. Deployment of a relay node into the network was proposed 

to mitigate network geometric deficiencies and prolong the network lifetime. Optimal 

sink node locations in two-tiered wireless sensor networks can be found in [95]. The 

main contribution of this work is to algorithmically obtain optimal sink node position 

for given cluster head nodes. It includes an analytically derived upper and lower 

bound bounds of maximal topological lifetime by exploring some intrinsic properties 
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ofWSNs. 

5.3 System Models 

In this chapter, we define a system model based on the modelling work given in 

section 4.2 and we assume a sensor network model similar to those used in [12, 13] 

with the following properties: 

• The sensor nodes are energy constrained with a uniform energy allocation. 

• The nodes are equipped with power control capabilities to vary their transmit 

power 

• All sensor nodes are immobile and their locations are known. 

• Data sending rates of sensors are not the same. 

• The sink node has no energy constraints and it can be placed anywhere in the 

given sensor network region. 

5.3.1 Energy Model 

Energy efficiency is the vital design parameter for sensor networks. Power is 

defined by the rate of change in the energy. Therefore the amount of energy which is 

necessary to operate for time t consuming power P(t) can then be defined as, 

E = J P(t)dt (5.18) 

Power consumption in the sensor node in the sensor networks can be divided into the 

following components depending on the operations performed within the node: 

• Transmitter energy: The data gathered from the environment need to be trans­

mitted to the sink node. Therefore, the transmitter circuitry needs to be oper­

ated. For this process, transmitter energy is consumed which depends on the 

transmitter power, size of the data packet and data transfer rate. 
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• Receiver energy: Sensors not only collect and transmit their data within their 

sensing range but also receive and forward data to the sink node or to the 

next node. The receiver energy will be consumed during this process which 

is independent of the distance between the two sensor nodes. Receiver energy 

depends on the size of the data packet received and data transfer rate. 

From communication theory, the radio propagation model in a single path channel 

can be modelled as follows: 

(5.19) 

where Pt and Pr are the transmitted power and received power respectively. Gr and 

Gt are the receiver and transmitter antenna gain respectively. c is the velocity of the 

radio wave propagation in free space and f is the frequency of its waves. We can 

write the received power in terms of the transmitted power as [96], 

(5.20) 

where C is a constant, d is the distance between the transmitter and the receiver and 

m is known as path loss index. In many sensor networks application scenarios, path 

loss index m can be assumed to lie between 2 and 4 [96]. 

Our optimisation model considers the problem of finding optimal location for a 

sink node for a given WSN in the most efficient manner. Let us assume that N sensor 

nodes are placed in a region to collect data from a specific location. Each sensor has 

limited energy supply E j , with Xi and Yi denoting the Cartesian coordinates of the 

sensor locations and dik denoting the distance between nodes i and k. The purpose 

of this network is to extract required information from sensor nodes (which have 

limited power supply) to the sink node, which is possibly connected to a main power 

supply (no energy constraint, some road monitoring applications may have this type 

of scenarios). We also assume that sensor nodes can adjust their transmission power 

which is denoted ~(i, k) for the link between nodes i and k [12]. 

We assume that the rate of data generated at sensor node i (after data aggregation) 

is 9i constant bit rate. The power consumption in the data communication (by 
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receiving and transmitting) is the important criteria for consideration. The power 

dissipation at the transmitter can be modelled as 

(5.21) 

where lik is the bit rate transmitted from node i to k and Cik is the power consumption 

cost of radio link from node i to k, written as, 

(5.22) 

where Cl' is a distance independent constant term, (3 is a coefficient term associated 

with the distance-dependant term, and m is the path loss index, with 2 :$ m :$ 4. 

Typical values for these parameters are Cl' = 50nJ Ib and f3 = O.0013pJ Ib, and m = 3 

[96]. 

The power dissipation at a receiver can be modelled as, 

Pr (i) = P Llki (5.23) 
k"l'i 

where Lk;ii Iki (in b/s) is the rate of the received data stream at node i and p is a 

receiver constant with a typical value is 50nJ/b [96]. 

5.4 Energy Efficient Sink Node Placement 

For a network with N sensor nodes, where each node i senses and generates data 

with the rate of 9i. The data rates from node i to node k and to the sink node are 

lik and liS respectively. (Xi, Vi), 1 ~ i ~ N, are fixed coordinates for the placement 

of the sensor nodes and (x, y) are the coordinates of the sink node which is to be 

placed efficiently in the sensor network region (-L, L) x (-L, L). For each node in 

the WSN, the following flow balance equation and location constraint must be met 

[16]: 

k"l'i m"l'i 

liS + L lik - L Imi + 9i (5.24) 
l$k$N l$m$N 

-L :$ x:$L (5.25) 

-L :$ y:$L (5.26) 
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The goal here is to place the sink node in an optimal way so as to maximise the lifetime 

of a sensor network consisting of N sensors with the same initial energy deployed in 

a certain area. According to the problem setup, maximising the life time is achieved 

by minimising total power consumption of N sensor nodes. The power consumption 

of node i, Pi, can be represented as follows: 

k-:fi m-:fi 

~ = 2: Cik/ik + 2: P/mi + CiS/iS 
l$.k$.N 

The total power consumption of the WSN can be calculated as follows: 

N 

P=L~ 
i=1 

which can be expanded by substituting (7) 

N k-:fi m-:fi 

P = 2:( L Gidik + 2: P/mi + G iS/ iS ) 

i=1 1~k~N 

N k-:fi m-:fi N 

= 2:( 2: Gik/ik + L P/mi) + LGiS / iS 
i=1 1$.k$N 1~m$.N i=1 

The optimisation function can be rewritten as follows: 

N k-:fi m-:fi N 

min L( L qk/ik + 2: P!mi) + L G iS/ iS 
i=1 l$.k$.N l~m~N i=l 

subject to the following constraints, 

-L 5, x 5,L 

-L 5, Y ~L 
k-:fi m-:fi 

/iB+ L /ik - 2: /mi + 9i 
lS:k$.N lS:m~N 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

There is high level of complexity in the equation (5.31) to determine the optimal 

location for sink node. In the following sections, we propose three different suboptimal 

strategies to place the sink node in the given sensor network region. 
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5.4.1 Strategy 1 

This strategy minimises the total radio link power consumption cost between every 

node and sink node and does not take data rate into account. This strategy does not 

consider optimal multi hop connection pattern to the sink node from each sensor 

node. The optimisation function in 5.31 can be simplified to, 

N 

P = 2::CiS 
i=l 

The optimisation function for strategy 1 can be written 

N 

min 2::(0 + j3«Xi - x)2 + (Yi _ y)2)m/2) 
i=l 

(5.35) 

(5.36) 

Here, the sub optimaIity comes in the way that multihop communication between each 

node and sink node and data rate of individual sensor node are not considered. This 

simplifies the optimisation task but becomes suboptimal. In most cases suboptimaIity 

gives better solution where optimal solution is not easily obtained. 

5.4.2 Strategy 2 

This strategy minimises the total radio link power consumption cost between 

every sensor node and the sink node. This strategy takes the data rate into account 

where each node needs to generate different data rates but does not consider the 

optimal multi hop connection pattern to the sink node from each sensor node. The 

optimisation function in 5.31 can be simplified to, 

N 

P = 2:: GiS/iS 
i=l 

The optimisation function for strategy 2 can be written 

N 

min 2::(0 + j3(Xi - X)2 + (Yi - y)2)m/2)/iS 
i=l 

(5.37) 

(5.38) 

Here, the sub optimality comes in the way multihop communication between each 

node and sink node is not considered. This simplifies the optimisation task but 

becomes suboptimal. 
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5.4.3 Strategy 3 

This strategy minimises the multi hop communication transmission problem. Here, 

we consider the multi hop nature of the sensor node to the sink node where direct 

communication is not simply possible in sensor networks. Here, the sub optimality 

comes in the way the region is partitioned for sink node placement and as long as 

the sink node stays in the cluster region, no re-routing is needed. This simplifies the 

optimisation task but becomes suboptimal. However, this strategy is more accurate 

than strategy 1 and strategy 2. 

The optimisation function for strategy 3 can be written as, 

N k#i m#i N 

min L{ L qk!ik + L P!mi) + LCiS!iS (5.39) 
i=l l$.k$.N l$.m$.N i=l 

To find the optimal location of the sink node in the proposed three strategies we 

have to perform search algorithms such as genetic algorithms or particle swarm op­

timisation as the problems are NP-hard in general. Here we choose particle swarm 

optimisation because its implementation is simple and gives better results in most 

cases than genetic algorithms for these types of optimisation problems [37, 22]. 

5.5 Optimisation Strategies 

Particle swarm optimisation is a recently proposed optimisation techniques that 

poses several highly desirable attributes, including the fact that the algorithm is very 

easy to understand and implement. It is similar in some ways to genetic algorithm 

and evolutionary algorithms, but requires less computational cost. The following 

sections explain the particle swarm optimisation and genetic algorithm. 

5.5.1 Particle swarm optimisation 

Particle swarm optimisation (PSO) is a swarm intelligence based technique devel­

oped by Kennedy and Eberhart [20], inspired by social behaviour of bird flocking or 

fish schooling. The PSO formulation defines each particle as a potential solution to 
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a problem in d-dimensional space with memory of its previous best position and the 

best position amongst all particles, in addition to a velocity component. At each it­

eration, the particles are combined to adjust the velocity along each dimension which 

in turn is used to compute the new particle position. The position vector and the 

velocity vector of the ith particle can be represented as Xi = (Xil,Xi2,Xi3 ..... Xid) and 

Vi = (Vil, Vi2, Vi3 ..... Vid) respectively. According to the optimisation function to be op­

timised, let say the particle best position at iteration t is p(l)(t) = (Pil,Pi2,Pi3 ..... Pid) 

and the best global position or the best solution amongst all particles at iteration (t) is 

p(g)(t) = (P9l,P92,P93 ..... Pgd). Then the new velocities and positions of lh dimension 

of the particle i for the next fitness evaluation are calculated: 

Vij{t + 1) - W * Vij{t) + Cl * rl{p~;)(t) - Xij{t)) + C2 * r2{p1~){t) - Xij{t))(5.40) 

Xij(t + 1) - Xij(t) + Vij(t) (5.41) 

where Cl and C2 are constants known as acceleration coefficients, W is known as inertia 

factor and rl and r2 are two different uniformly distributed random number in the 

range [O,lJ. 
psa is initialised with a population of particles (initial solutions) with random 

positions and velocities. The fitness of each particle is then evaluated according to 

the optimisation function. At each iteration the velocity and position of each particle 

is calculated according to equations (5.40-5.41). Each time a particle finds a better 

position than the previously found best position, its location is stored in a memory. 

Generally, a maximum velocity Vmax for each dimension of the velocity vector of the 

particles is defined in order to control excessive roaming of the particles outside the 

search region. Whenever Vij exceeds the defined limit, its velocity is set to vmax • 

For the best performance of psa algorithm, the condition for design parameters 

were derived in the literature [84, 40, 38J, 

w < 1 and 

K < 2{w + 1). 

where K = Cl + C2. 

(5.42) 

(5.43) 

The suitable selection of inertia factor w provides a balance between global and 
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local explorations. Shi and Eberhart [37] have found a significant improvement in 

the performance of the PSO method with a linearly varying inertia factor over the 

iteration. In general, the inertia factor w is set according to the following equation. 

W max - Wmin I 
W = W max - I X 

max 
(5.44) 

where Imax is the maximum number of iterations, I is the current number of iteration, 

W max is the initial value of wand Wmin is the final value of w. 

5.5.2 Genetic algorithm 

The genetic algorithm (GA) [97] also begins its search from randomly generated 

population of designs that evolve over successive generations. To perform its opti­

misation process, the GA employs three operators to propagate its population from 

one generation to other. The first operator is the Selection operator that mimics the 

principal of Survival of the fitness. The second operator is the Crossover operator 

which mimics the mating in biological populations. The crossover operator prop­

agates features good surviving designs from the current population into the future 

population. The last operator is Mutation, which promotes diversity in population 

characteristics. The mutation operator allows global search of the design space and 

prevents the algorithm from getting trapped in local minima. 

The use of genetic algorithm (GA) requires the proper selection of a set of genetic 

operations between many possibilities. The number of generations and the popu­

lation size, crossover and mutation probabilities are values that must be given to 

initialise the optimisation process. All these parameters have great influence on the 

GA performance. Although, there is no clear indication about the population size in 

the GA, larger population size may increase the computational cost. However, for 

small population size the cross over and mutation operations can not be implemented 

properly. The probability of crossover is always greater than probability of mutation. 

Generally, the probabilities of crossover and mutation are taken as 0.75 to 0.9 and 

0.05 to 0.2 respectively. A real coded genetic algorithm and its parameter selection 

guidelines are discussed in [98]. 
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5.6 Sink Node Shortest Path Problem 

We use the centralised method for sink node shortest path placement problem. 

The static sensor networks need not to rely on the sensor network routing protocols 

which do not always find the optimal multi path to sink node from each sensor node. 

Although, many centralised algorithms have been devised for finding the shortest 

path problem, Dijkstra's algorithm is perhaps the earliest and also one of the most 

efficient algorithm for the shortest path problem [99]. 

Dijkstra's algorithm solves the single-source shortest path problem for a directed 

graph. To find the shortest path between the sink node and a sensor node, length of 

a path is calculated as the sum of the weights of the edges in the path. A path is the 

shortest path if there is no path from sink node to source node with lower weight. 

Dijkstra's algorithm finds the shortest path from sink node to sensor node in order 

of increasing distance from sensor node. That is, it chooses the first minimum edge, 

stores this value and adds the next minimum value from the next edge it selects. It 

starts out at one vertex and branches out by selecting certain edges that lead to new 

vertices. 

Let D(v) be the distance from the source s to a node v. Let l(v, w) be the given 

cost between nodes v and w. There are two main steps in the algorithms which are 

an initialisation step and a step to be repeated until the algorithm terminates [99] . 

• Initialisation: Set N = is}. For each node v not in N, set D(v) = l(s,v). We 

use 00 for nodes not connected to s. 

• Iteration Step: Find a node w not in N for which D( w) is a minimum and 

add w to N. Then update D(v) for all nodes remaining that are not in N by 

computing 

D(v) = min[D(v),D(w) + l(w,v)] (5.45) 

This step repeated until all nodes are in N. 

The Figure 5.1 shows the optimal multi path routing connection pattern between 10 

sensor nodes and sink node using Dijkstra's algorithm. 
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Figure 5.1: Optimal multi path routing connection pattern by Dijkstra's algorithm. 

5.7 Sink Node Placement in Sensor Networks 

We only consider the optimal placement of the sink node, so that the vector of 

design variables DV is of size 2. 

DV = [x y] (5.46) 

The design variables are x and y coordinates of the sink node. For strategy 1 and 

strategy 2, we do not need multi-hop routing path connection information to calculate 

the optimal sink node position and perform the particle swarm optimisation algorithm 

as normal with the constraints of x and y coordinates of the sensor networks region. 

For strategy 3, we need to know the optimal connection pattern for every single search 

point in the sensor networks region as the optimisation function in strategy 3 depends 

on the multi-hop optimal path connection pattern of every single node to the sink 

node. If we perform routing algorithms after every iteration (every possible point for 

the sink node in the region) online, it can be a computationally expensive process 

and adds more complexity to the optimisation algorithm. To alleviate this problem 
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Table 5.1: psa simulation parameters 

Parameter Value 

Wmin 0.1 
W max 1 
Cl 1.2 
C2 1.2 
Vmax 10 
Population 20 
Iteration Number 1000 

we consider the sensor networks region as being partitioned into several small clusters 

to reduce the computational complexity. We perform the optimal multi-hop routing 

algorithms off-line by assuming the sink node is placed in centre of each cluster. Then 

we calculate the cost function using the optimal routing connection pattern for each 

cluster. We assume that if the sink node is placed anywhere in the given cluster it 

has the same optimal routing path (a realistic assumption to calculate near optimal 

position). After each iteration, our optimisation algorithms identifies the appropriate 

cluster and the cost function for its cluster which depends on the multi-hop optimal 

routing connection from each sensor node to the sink node. 

We have also performed the optimisation process using genetic algorithm to com­

pare with the particle swarm optimisation. The results are compared after 1000 

iterations for strategy 1 using particle swarm optimisation and genetic algorithms. 

Table 5.1 and Table 5.2 show psa and CA parameter values which we use for the 

optimisation process respectively. We have performed the PSO and CA algorithms 

with the range of different parameter values and parameters given in Table 5.1 and 

Table 5.2 are the best parameter of this particular optimisation problem. 

5.8 Simulation Results 

A square network topology is considered for computational experiments that are 

easily scalable. In the square topology, a WSN is chosen in which all sensors lie in 
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Table 5.2: CA simulation parameters 

Parameter Value 

Size of the population 20 
Probability of crossover 0.8 
Probability of mutation 0.02 
Tournament probability 0.7 
Scale for mutations 0.1 
Number of runs 1000 
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the region of ([-lOOm, lOOm] x [-lOOm, lOOm]), with the liberty to place the sink 

node anywhere in the region. We performed our computational experiment with the 

particle swarm optimiser for the three strategies proposed in section 5.4. Experiments 

with 5, 10, 15, 20, 25 and 30 sensor nodes were carried out and the positions of the 

sensor nodes are given in Table 5.3. 

The sensor network region is divided into 16 different clusters (50m x 50m blocks). 

Without loss of generality we assume that the sink node placed in (25m,25m) for the 

random placement method. The total power consumption of WSN with 5, 10, 15, 20, 

25 and 30 sensor nodes for the three proposed strategies and the random placement 

method were calculated. The path loss index value m(2 ::; m ::; 4) was considered as 3 

for the calculations. We assume that each node has the same initial energy lOOK J[95]. 

Figure 5.2 shows that our proposed three strategies give better result than random 

placement. The strategy 3 gives better result than strategy 1 and strategy 2. The 

accuracy of the strategy 3 depends on the size of the cluster we have chosen. If we 

choose large number of clusters it becomes computation ally more costly and more 

complex to implement. 

We have also performed a simulation study with different parameter choices for 

strategy 1 using psa. The psa algorithm gave better performance for Cl = C2 = 1.2 

than Cl = C2 = 1.8. Figure 5.3 show the performance differences clearly and support 

the claim that the deterministic version of the convergence analysis does not always 

give good design choices [100]. 

In this work, an attempt was also made to examine the claim that psa has same 
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Table 5.3: Locations, data generating rate, and initial energy for each sensor nodes 

Sensor No 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

(Xi, Yi)(m) 9i(kb/ s) ei(K J) Sensor No (Xi,Yi)(m) 9i(kb/s) ei(KJ) 

(10,10) 1 100 16 (-60,-20) 5 
(90,12) 2 100 17 (-90,-90) 2 
(65,37) 4 100 18 (90,-90) 3 
(15,69) 5 100 19 (40,-40) 6 
(90,90) 3 100 20 (-80,40) 2 
(-30,30) 7 100 21 (65,85) 3 
(-40,60) 8 100 22 (35,48) 9 
(-90,90) 1 100 23 (55,5) 10 
(-90,-20) 1 100 24 (0,-100) 2 
(-10,-60) 5 100 25 (35,-85) 3 
(60,-60) 8 100 26 (-40,-40) 7 
(60,-90) 2 100 27 (30,-85) 1 
( -80,30) 6 100 28 (-12,18) 6 
( -20,20) 6 100 29 (17,-18) 5 
(-10,90) 1 100 30 (-40,10) 3 

x 10" 4.5f'i:==:=::=7==:=====;-----.----r-----,-----, 
~ Random placement 
-+- Strategy 1 

4 ..... - Strategy 2 
-*- Strategy 3 

3.5 

3 

1.5 

0.5 

5 10 15 20 25 30 
Number oIeenaa. 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

Figure 5.2: Comparison of the network total power for strategy 1, strategy 2, strategy 
3 and random placement 
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effectiveness as GA but with significantly better computational efficiency using less 

functions evaluations. The problem in the strategy 1 was solved using PSO and GA 

over 1000 iterations. The best values are used to find the optimal location of the 

sink node. The total power of the sensor networks are calculated based on those 

results. Figure 5.4 shows that PSO always finds a better solution than the GA for 

1000 iterations, with PSO taking significantly less time than GA over 1000 runs. 

In this work, PSO algorithm gives better result in most cases with comparatively 

less computational time. This results are interesting for online networking optimisa­

tion algorithms where computational cost and time may have significant performance 

differences in network operations. 

5.9 Conel us ions 

In this chapter we investigated the sink node placement problem in wireless sensor 

networks. The novel idea in this work is the placement of sink node in a given wire­

less sensor networks region rather than the placement of sensor nodes as commonly 

investigated. We formulated a nonlinear programming problem to determine the lo­

cation of the sink node inside the given sensor network region. Our simulation results 

show that the three proposed optimal strategies are of significant benefit over random 

placement scenarios where energy consumption is vital in wireless sensor networks. 

In this work we have also utilised the particle swarm optimiser which is effective in 

solving NP-hard nonlinear optimisation problems than GA. GA is a well established 

algorithm with many versions and many applications. In the other hand, PSO is 

a recently proposed algorithm and has become popular in many applications. Our 

results also shows that PSO is relatively better at finding solutions quickly than GA, 

as already established in the literature [20, 67]. 



Chapter 6 

Swarm Intelligence Based Routing 

for Mobile Ad Hoc Networks 

6.1 Introduction 

Without relying on any existing, pre-configured network infrastructure or cen­

tralised control, ad hoc networks are useful in many situations where impromptu 

communication facilities are required. Lack of a fixed network and the nature of 

the nodes give rise to the challenges such as reliable data routing, dynamic network 

topologies, changing environments, selfish nodes and scarce radio resources [2, 1]. 

Routing in ad hoc networks faces extreme challenges from node mobility, potentially 

very large number of nodes and limited communication resources (bandwidth and 

energy). Therefore routing protocols for ad hoc networks have to adapt to frequent 

and unpredictable topology changes and optimise the limited resources. Ad hoc net­

working protocols are typically subdivided in two main categories based on how they 

perform routing function: proactive routing protocols and reactive on demand routing 

protocols. 

Proactive routing protocols are derived from Internet distance-vector and link­

state protocols. The main characteristic of these protocols is the constant maintaining 

of route by each node to all other network nodes. The route creation and mainte­

nance are performed through both periodic and event driven messages. Destination 

92 
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sequenced distance vector (DSDV) [9] and optimised link state routing (OLSR) are 

proactive routing protocols. 

Reactive on demand routing protocols establish the route to a destination only 

when there is a demand for it. This technique reduced the overhead packets which 

is vital in the limited resources communication networks. Ad hoc on demand dis­

tance vector (AODV) routing [5] and dynamic source routing (DSR) protocol [7] are 

examples of reactive on demand routing protocols. 

In this chapter, we propose a Swarm intelligence based routing protocol for mo­

bile Ad hoc Networks (SwAN) to mitigate the problems in mobile ad hoc networking. 

Mapping the pheromone laying and following behaviour of biological ants, our algo­

rithm allows each node to choose the next node for packets to be forwarded on the 

basis of mobility influenced pheromone table. 

6.2 Related Work 

Swarm intelligence techniques are distributed, adaptive, robust and scalable solu­

tions to the complex systems management and control problems. It boasts a number 

of advantages due to the use of mobile agents and stigmergy for the communication 

network management problem. A new class of algorithms, inspired by swarm intel­

ligence, is currently being developed [101, 102, 32, 103] that can potentially solve 

problems of modern ad hoc mobile networks. In this section, we give an introduction 

to existing ant based routing protocols for mobile ad hoc networks. 

6.2.1 Ant-colony based Routing Algorithm (ARA) 

Ant-colony based routing algorithm (AM) was proposed for mobile ad hoc net­

works in [101]. The main goal in the design of the algorithm was to reduce the 

overhead for routing. The routing algorithm is similar to many other routing ap­

proaches and consists of three phases such as route discovery, route maintenance and 

route failure handling. The creation of new routes requires the use of a forward ant 

(FANT) and a backward ant (BANT). Forward ant is an agent which establishes 
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the pheromone track to the destination and backward ant establishes the pheromone 

track back to its origin. 

Route discovery phase 

Route discovery is the mechanism by which a node wishing to send a packet to 

a destination node obtains a source route to destination and it allows any node in 

the ad hoc network to dynamically discover a route to any other host in the ad hoc 

network. A FANT is an agent which is initiated at the source node to establishes route 

to the destination node and a BANT is initiated at the destination node to source 

node when any source node receives a FANT. A node which receives a FANT for the 

first time assign a value in its routing table. Every routing table has three values 

namely, destination address, next hop and pheromone value. The node interprets the 

source address of the FANT as destination address, the address of the previous node 

as the next hop, and calculates the pheromone value depending on the number of 

hops it took the FANT to reach the node. The node then forwards the FANT to its 

neighbour. The destination node extracts the information of the FANT and creates 

a BANT, and returns to its source node. The BANT follow the same path as the 

FANT but in the opposite direction as found in the FANT. When the source node 

receives a BANT from the destination node, the route discovery phase is completed, 

the source node can send the data packet to the specific destination. 

Route maintenance phase 

Route maintenance is another important phase in the routing algorithm and this 

phase is responsible for the maintenance of the routes during the communication. 

ARA does not use any control packet for route maintenance. Once the routes es­

tablished between a source and destination nodes regular data packets are used to 

maintain the path. In the self-organising systems, established paths do not keep their 

initial values forever. For example in the ant systems, the pheromone evaporate with 

time. When a node ni send a data packet to destination d to a neighbour node nj, it 

increases the pheromone value of the entry by 6.p. In other words, this path to the 
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destination is strengthened by data packet. The next hop ni increases the pheromone 

value of the entry by 6.p, i.e., the backward path to the source node is also strength­

ened. The evaporation process of the real pheromone is modelled by decreasing the 

pheromone values according to the following equation. 

Pi,j(t + 7) = (1 - q)'Pi,j(t) q E (0,1] (6.1) 

Route failure handling phase 

Route failure handling is another important phase especially in mobile ad hoc 

networks because node mobility causes frequent route failures. ARA recognise a 

route failure through a missing acknowledgement on the MAC layer. The ARA al­

gorithm was implemented in IEEE 802.11 on the MAC layer. If node receives a 

ROUTE_ERROR message from a broken link, the node searches for an alternative 

link in its routing table. If there is an alternative route to the destination then it 

will send the data packet through that path. Otherwise, the node will send this in­

formation through the neighbour. Then, the source node has to initiate a new route 

discovery. 

The main goals of the ARA was to reduce the necessary routing overhead while 

maintaining the other network performances. ARA uses a multi path and purely 

reactive scheme and this results in a reduction of in the number of control packets. 

However, ARA does not use any neighbour management techniques. Therefore other 

network performance metrics suffer. In ARA [101], a pheromone evaporation factor is 

used, i.e., decrease pheromone value with time, as found in biological systems, which 

does not utilise any information from the neighbouring nodes. 

6.2.2 Probabilistic emergent routing for mobile ad hoc net­

works 

Probabilistic emergent routing mobile ad hoc networks (PERA) was described in 

[102] and it uses an entirely proactive approach. This algorithm uses three kinds of 

agents: regular forward ants, uniform forward ants and backward ants. Uniform and 
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regular forward ants are agents that are of unicast type. These agents pro-actively 

explore and reinforce available paths in the network. They create a probability distri­

bution at each node for its neighbours. The probability or goodness value at a node 

for its neighbour reflects the likelihood of a data packet reaching its destination by 

taking the neighbour as a next hop. Backward ants are utilised for propagating the 

information collected by forward ants through the network and to adjust the routing 

table entries according to the perceived network status. Nodes pro-actively and peri­

odically send out forward regular uniform ants to randomly chosen destinations. Each 

routing table has the values of destination, next hop and probability. It contains the 

goodness values for a particular neighbour to be selected for particular destination. 

In addition to that each node also maintains a table of statistics for each destination d 

to which a forward ant has been previously sent; the mean and the variance (Jl~d,a'~d) 

for the routes between source node s and destination node d. Thus, regardless of 

whether a packet needs to be sent from a node to any destination in the network or 

not, each node creates and periodically updates the routing tables. 

PERA technique uses positive and negative reinforcement to manage the network 

multipath routes for the destinations. PERA uses regular forward ants to find new 

routes to the destinations even after a route has been established. This seems an in­

efficient way of maintaining the routes considering the fact that forward ants increase 

the number of control packets. 

6.2.3 Mobile agent based routing protocol for mobile ad hoc 

networks 

A routing algorithm for mobile ad hoc networks, which combines the on-demand 

routing algorithm capability of AODV routing protocol with a distributed topology 

mechanism using ant mobile agent is proposed in [104]. This method forms a hybrid 

of both ant based routing and AODV routing protocol to overcome some of their 

inherent drawbacks. In Ant-AODV ant agents work independently and provide routes 

to the source nodes. The nodes use on demand route discovery to find routes to 

destinations for which they do not have a fresh enough route entry. The use of ants 
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with AODV increases the node connectivity which in turn reduces the amount of route 

discoveries. As a direct result of providing topology information to the nodes using 

ants, the foundations for designing a distributed network control and management get 

automatically laid. Higher connectivity and reduced end-to-end-delay are achieved 

at the cost of extra processing of the ant message and the slightly higher overhead 

occupying some network capacity. 

6.2.4 An adaptive swarm-based distributed routing algorithm 

An adaptive swarm-based distributed routing algorithm, Adaptive-SDR, was pro­

posed for wireless networks in [103]. This algorithm clusters the network nodes into 

colonies. Then, it uses two types of ants like mobile agents called local ants (within 

the colony) and colony ants (between the colonies). The task of the colony ants is 

to find routes one cluster to other cluster and local ants are responsible for find­

ing routes within their colonies. In the colony routing table, all the neighbours of 

the nodes are included in the next hop list. The local routing table only includes 

the neighbour nodes belong to the colony. The routing table are updated similar to 

AntNet algorithm [18, 3], while adding some modifications. 

An ant colony system algorithm solving the minimum broadcast problem can be 

found in [105]. In [32, 103], authors summarised that many distributed time varying 

network communications problems are thus well suited to swarm-based optimisation. 

As the algorithms proposed in this sections are based on ant foraging behaviour 

and using distributed control to forward data to the destination. These types of 

algorithms are normally scalable and robust but these properties are not yet studied 

well. 



Chapter 6: Swarm Intelligence Based Routing for Mobile Ad Hoc Networks 98 

6.3 The SwAN Protocol 

6.3.1 Motivation 

Most of the proposed ad hoc networking routing protocols use proactive or hybrid 

(reactive and proactive methods) routing techniques. Normally, proactive routing 

causes high routing control packet overhead and bandwidth problems. The proposed 

swarm intelligence based routing protocols described in section 6.2 do not use any 

neighbour node update to maintain route connections. When established route con­

nections are broken, normally error messages are sent to the source node and route 

discovery phase initiated again - this process increases the number of control packets 

and affects the network performances (end-to-end delay and delivery ratio). In ARA 

[101], a pheromone evaporation factor is used, i.e., decrease pheromone value with 

time, as found in biological systems, which does not utilise any information from 

its neighbour node. This process may result in the loss of optimal path for data 

forwarding. In the route discovery process, ARA uses the number of hops to reach 

specific node for computing its initial pheromone value which is not efficient in mo­

bile ad hoc networks (frequent topology changes due to node mobility). SwAN uses 

an entirely reactive approach and also maintains possible neighbour nodes informa­

tion to forward data packets to the given destination in an efficient way. Each node 

which is participating in the transmission process, maintains next possible neighbour 

nodes information and its pheromone values. The pheromone values are assigned 

to be inversely proportional to the excess received packets power level. We also use 

pheromone evaporation factor, i.e., decrease pheromone values with time, as a func­

tion of node mobility. It is clear that mobility is one of the most important factors 

for route changes in mobile ad hoc networks. In SwAN, the rate of change of mobil­

ity information in the networks is predicted using received HELLO packets(HELLO 

packets are used for neighbour management in dynamic networks) power level which 

is then translated into a pheromone decay. By this mobility prediction techniques, 

we may increase the interval between HELLO packets broadcast and thereby reduce 

the control packets overhead, while still maintaining sufficient connectivity between 
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forwarding nodes. 

6.3.2 Packet design 

Sw AN protocol needs to maintain four types of control packets. These are forward 

ant (FANT) packet, backward ant (BANT) packet, route error (RERROR) packet 

and hello (HELLO) packet. 

FANT: Forward ant packet is sent when a node wants to send data packets to an 

unknown destination. This packet contains information of source address, destination 

address, message type and time to live (TTL). 

BANT: Backward ant is launched from destination node if route FANT packet is 

received by a destination node. This contains source address, destination address, 

message type and time to live (TTL). 

RERROR: Route error packets are sent to source node if any intermediate node can 

not forward a data packet to the next node. 

HELLO: Hello packets are sent to neighbour nodes by active nodes which are partic­

ipating in data forwarding with the default value of a packet in every 5s. 

6.3.3 Protocol description 

The algorithm for the SwAN protocol can be defined as a procedure involving the 

following steps: 

• Any source node (s) sends forward ant (FANT) as a broadcast in a control 

manner (with time to live (TTL)) if it wants to send packets to the destination 

node (d) and does not have any previous record in its routing table. 

• When a node receives a FANT, it forwards to neighbour nodes. If such a FANT 

has been received, the node silently discards the newly received FANT. 

• When the destination node receives a FANT from any source node, then it 

launches a backward ant (BANT) in the same way as the FANT broadcast. 

Nodes also discard a BANT if it has already received a BANT, but it records 

the information of where it is coming from. 
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• When nodes receive a BANT from any other node, it assigns pheromone val­

ues inversely proportional to the excess received signal power level associated 

with the neighbour node and destination node (all packets have the power level 

information) . 

• When the source node (s) receives the first BANT it starts to forward data 

packets to the destination node (d). 

• Each node's routing table contains neighbour node information and its pheromone 

values related to the specific destination. 

• Nodes which are participating in the forwarding process also send a HELLO 

packet to the neighbours. Any node hearing a HELLO packet sends back a 

HELLO packet to the neighbour node. 

• Mobility information of the node can be predicted from the sequential received 

HELLO packets power level differences. The pheromone table update is then 

made utilising this information. 

• When a node receives a data packet to be forwarded, it chooses the highest 

pheromone value from its routing table. 

• If a node does not receive acknowledgement (ACK) from next node, it selects 

the next highest pheromone value node to forward the data packet. 

• If the node routing table does not have an alternative neighbour node to select 

from, then it sends a route error (RERROR) packet to the source node. Then 

the source re-initiates path finding with FANT. 

6.3.4 Pheromone table initialisation 

Each node which is receiving the BANT maintains a pheromone table with respect 

to the destination (d) node. When node i receives a BANT packet from its sequential 

neighbour node j, it assigns initial pheromone value represented by rO(i,j, d), using 
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the following equation: 

0(' . d) 1 
T 1,,), = PO(' . d) D 

r 1,,), - Fthres 
(6.2) 

where P~ (i, j, d) is the received BANT packet power level at node i from node j with 

respect to the destination (d) and PthreIJ is the minimum power level for which a 

packet can be correctly received by node i. Note that P~(i,j,d) > Pthres. We assume 

that Pthres is equal for all nodes. We have modelled our pheromone values inversely 

proportional to the excess received power level to perform shortest path routing Le., 

possibly minimum hops intended to reduce end to end delay and re-transmission 

problems. 

6.3.5 Mobility information 

The SwAN protocol does not need any additional control packet to estimate mo­

bility information and it uses HELLO packets. Nodes check received power level 

differences in certain time period and predict the mobility factor of neighbour nodes. 

If a high difference in power level is found then node pheromone values decay are very 

fast. Pheromone values for each active nodes will be updated related to the estimated 

mobility factor as follows: 

1 
Prn(i,j,d) - Pthres 

T~(i,j, d) - T
n(i,j,d)(l- mn(i,j,d)) 

(6.3) 

(6.4) 

where Tn(i,j, d) is the current pheromone value without the effect of mobility factor 

and T~(i,j, d) is the current pheromone value with the effect of mobility factor. mn 

is defined as the current mobility factor computed at the last HELLO packet received 

and maintained until the next HELLO packet is received, given by, 

{ 

IP;'(i,j,d)-p:,--l(i,j,d)1 

mn(i, j, d) = Pt-Pthr. 

1 otherwise 

if i received HELLO packets 
(6.5) 

where P;:(i,j,d) and P;:-l(i,j,d) are received power level of two consequent HELLO 

packets by node i from j and Pt is the packet transmission power of each node. Note 
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that 0 ~ mn( i, j, d) ~ 1. The idea of introducing a mobility factor is to avoid high 

mobility node to participate in the forwarding process which can cause frequent link 

failure. HELLO packets broadcasting interval can be increased by predicting the 

neighbour node mobility, and this will significantly reduce control packet overhead 

which is crucial for energy constrained nodes. 

6.4 Simulation Model 

Simulations were carried out to compare AODV, DSR, DSDV, ARA and SwAN 

performances such as end-to-end delay, packet delivery ratio and routing overhead. 

We have implemented our protocol in NS 2.27 which is a common discrete event 

simulator used by the mobile ad hoc networks research community. MAC layer is im­

plemented using IEEE 802.11 Distributed Coordination function (DCF). The trans­

mission range of each of the mobile nodes is set to 250m. Our protocol evaluations 

are based on the simulation of 50 wireless nodes forming an ad hoc network, moving 

about over a rectangular 1500m x 300m fiat space for 600 seconds simulation time 

(This is a general simulation model used by the mobile ad hoc networking research 

community to compare the protocols). We pre-generated 60 different scenario files 

with varying movement patterns and traffic loads, and then ran all four routing pro­

tocols for each of these scenario files. The mobility model uses the random way point 

model in a rectangular area. The pre-generated movement scenario files we used for 

each simulation is characterised by a pause time. Each node station begins the simu­

lation by remaining stationary over the pause time seconds. It then selects a random 

destination in the 1500m x 300m space and moves to that destination at a speed 

distributed uniformly between 0 and a maximum speed. We ran our simulations with 

movement patterns generated for 6 different pause times: 0,30,60, 120,300 and 600 

seconds and with maximum speeds of 20ms-1 (high mobility) and 1ms-1 (low mobil­

ity). Constant bit rate (CBR) traffic sources were chosen, as the aim is to compare 

the performance of each routing protocol. The traffic used was 512 bytes sent from 

10 sources with a rate of 4 packets per second. The mean of the performance values 

were computed for comparing the five protocols. 
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Figure 6.1: Comparison of the delay as a function of pause time for node number 50 
and maximum velocity 20ms-1 

6.5 Simulation Results 

We have compared the proposed SwAN protocol end-to-end delay, packet delivery 

ratio and routing packet overhead with the de facto ad hoc routing protocol AODV, 

DSR and DSDV. We have also compared SwAN with AODV and ARA [101]. The 

results for each of the performance parameter is given below. 

6.5.1 Average end-to-end delay 

The average end to end delay includes buffering delay during route discovery, 

queueing delay at interface queue, re-transmission delays and transfer times. The 

Figures 6.1 and 6.2 show that end to end delay of SwAN protocol is better than 

AODV and ARA in most cases. But Figure6.1 shows a peak at pause time 3008 

where the SwAN end to end delay is higher than ARA and AODV. This due to the 

random components in mobility and traffic models. In the high mobility scenarios 
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in Figure 6.1 with 20 m/ s maximum velocity, SwAN gives better performance than 

AODV. The SwAN performs shortest path routing and gives each node an alternative 

route to packet forwarding which results in a better end to end delay. Use of mobil­

ity prediction in SwAN which chooses low mobility nodes to forward data, reduces 

frequent route failure. SwAN always gives better performance than ARA because 

ARA does not efficiently maintain routing tables which in turn causes frequent route 

failure and hence generates high end to end delay in packet forwarding. Figures 6.3 

and 6.4 show that SwAN always gives better performance than DSR because DSR 

uses source routing mechanisms that cause frequent route failure and hence generates 

high end to end delay in packet forwarding. Being proactive, DSDV on the other 

hand gives the better end to end delay. It can be seen in all Figures that there is a 

high differences in performance at 0 pause time(high mobile) and small differences in 

(low mobility). 
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Figure 6.5: Comparison of the throughput as a function of pause time for node number 
50 and maximum velocity 20ms-1 

6.5.2 Packet delivery ratio 

Packet delivery ratio is the ratio between the number useful packets received at 

all destination nodes and number of data packets sent by the CI3R source. Figures 

6.5, 6.6, 6.8 and 6.7 show the fraction of data packets received and data packets sent 

with maximum velocity 20 m/s and 1 m/so Comparing the five protocols (SwAN, 

AODV, ARA, DSDV and DSR) AODV and SwAN deliver between 94% and 100% 

of the packets in all cases. In high mobility scenario, SwAN gives better delivery 

ratio and is very close to the AODV. However in the low mobility scenario SwANs' 

performance is slightly lower than the AODV packet delivery ratio. ARA packet 

delivery ratio is lower than AODV and SwAN in all scenarios because ARA does not 

use any neighbour HELLO packets to update its next possible forwarding neighbour 

nodes. Figures 6.5, 6.6, 6.8 and 6.7 show unpredictable peak in some pause times 

due to the random components are used in networking simulations. To reduce this 

effect, we have performed the simulations number of times and have taken the average 
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values to plot the performance metrics. 

6.5.3 Routing overhead 

Routing overhead is the number of routing packets transmitted per data packet 

received at the destination. As seen in figures 6.11 and 6.12, ARA uses low number 

of control packets to establish a route due to ARA not broadcasting any HELLO 

packets. However, ARA performances like packet delivery ratio and end to end delay 

are very low. The SwAN makes lower use of overhead packets than AODV in all cases 

as demonstrated in figures 6.11 and 6.12. It is clear that the use of mobility prediction 

and multi-path for data packets could reduce the number of control packets. AODV 

normally requires that each node periodically transmits a HELLO message, with a 

default rate of once per second. SwAN on the other hand requires only 5s intervals 

because of the mobility prediction and it could be increased for the low mobility 

scenarios while maintaining similar performance levels. 
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As seen in figures 6.9 and 6.10, the total number of routing overhead packets 

in DSDV is independent of traffic patterns and is always sending control packets. 

However DSR uses very low number of control packets to establish a route. Its other 

performances like packet delivery ratio and end to end delay are very low. Figures 

6.13 and 6.14 show the performance measures packet overhead, end-t~end delay and 

throughput for maximum velocity 20ms-1 and lms-1 respectively. The normalised 

performance values in the parallel coordinate representation clearly show that SwAN 

gives better performance in all scenarios. 

The simulations results are reported in this section for SwAN HELLO packet 

interval of 5s. We have also carried out the simulations for other HELLO packet 

intervals (Is, 2s and lOs). However the best performances are obtained for 5s intervals. 

Some figures show unexpected peak values for particular pause time due to the many 

random parameters involved in the simulation model and the transience of the network 

links. 
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6.6 Conclusions 

In this chapter, a swarm intelligence based reactive routing protocol for mobile ad 

hoc networks (SwAN) was proposed. Mapping the pheromone laying and following 

behaviour of biological ants, our algorithm allows nodes to choose the next node 

for packets to be forwarded on the basis of mobility influenced pheromone table. 

The effectiveness of the proposed approach is demonstrated through an extensive 

simulation study. Simulation results show that SwAN gives better end to end delay 

than AODV. Interestingly, SwAN always uses a lower number of overhead packets to 

perform routing in all cases than AODV. On the other hand packet delivery ratio in 

SwAN is slightly lower than AODV in the low mobility case, but in the high mobility 

case SwANs' performance is significantly closer to AODV. 

Scalability in ad hoc mobile networks is an inherently difficult goal due to the mo­

bility of the nodes and the transience of the network links. Existing ad hoc network 

routing protocols, which experience some performance degradation when used in in­

creasingly large networks, is a challenge and a significant amount of work is needed 

to reach this goal. 



Chapter 7 

Swarm Intelligence Based Energy 

Aware Routing Algorithm 

7.1 Introduction 

Ad hoc mobile networks have received widespread attention in recent years. The 

node in an ad hoc mobile network is typically powered by batteries with a limited 

energy supply. One of the main important and challenging issues in ad hoc wireless 

networks is how to conserve energy for maximising the lifetime of its nodes which 

increases the lifetime of the whole network. 

As we discussed in chapter 6, a routing protocol is an essential and challenging 

function to facilitate communication within the networks. The dynamic nature (mo­

bility of nodes) of the ad hoc mobile network presents many challenges to routing 

function. When a node runs out of its available energy, it affects the network func­

tioning. Therefore, an important issue in ad hoc mobile networks is how to conserve 

energy. Limited energy resources in the ad hoc networks adds more challenges to 

efficient routing in ad hoc mobile networks [106]. 

The power required by each node can be classified into two main categories such 

as communication related power consumption and computation related power con­

sumption [107]. Communication related power consumption involves usage of the 

transceiver at the source, intermediate node and destination nodes. The transmitter 

116 
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is used for sending control, route request and response, as well as data packets orig­

inating at or routed through the transmitting node. The receiver is used to receive 

data and control packets. A typical mobile radio may use modes in their operation 

which are transmit, receive and stand by. Notably, maximum power is consumed in 

the transmit mode and the least in the standby mode. The computation power con­

sumption related with protocol processing aspects. It involves usage of the CPU and 

main memory and other components of the node [108]. 

Physical layer, data link layer and network layer in ad hoc networks are closely 

coupled to power consumption. We therefore briefly summarise the power conserva­

tion schemes for physical layer, data link layer and network layer below. 

At the physical layer, transmission power can be adjusted [109]. The use of ex­

cessive transmission power can increase the interference to other node and will cause 

an increase in transmission power by other nodes. Therefore, physical layer functions 

should include transmitting data at the minimum power level to maintain links and 

adapt to changes in transmission environment due to node mobility. Power control 

can maintain a link at the minimum power level, but can also prolong an existing 

link against interference by increasing the transmission power. 

At the data link layer, energy conservation can be achieved by using effective 

retransmission request schemes and sleep node operation. The data link layer is thus 

responsible for wireless link error control, mapping network layer packets into frames 

and packets retransmission. A node transmitting packets to its destination nodes 

will be overhead all neighbouring nodes. Hence, all neighbouring nodes will consume 

power even though the packets transmission was not directed to them. Therefore, to 

reduce power consumption a node transceiver should be powered off when not in use 

[59]. 

Finally, the network layer is responsible routing packets, establishing the network 

service type, and transferring between the transport and data link layers. In general, 

paths are computed based on minimising hop count or delay. Nonetheless, to max­

imise the life of the mobile nodes, routing algorithms must select the best path from 

the view point of power constraints as a part of route stability. Ad hoc networks 

will require a routing algorithm where power efficiency is considered that can evenly 
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distribute packet relaying loads to each node to prevent nodes from being over-used. 

In this chapter, we propose a Swarm intelligence based Energy Aware Routing 

(SEAR) algorithm for mobile ad hoc networks to mitigate the problems in mobile 

ad hoc networking. The neighbour node energy level and drain rate information are 

predicted and related to a pheromone decay as found in the natural foraging ant 

systems in the node routing table. 

7.2 Related Work 

In this section we present a brief description of the four main existing energy aware 

routing algorithms. 

7.2.1 The minimum total transmission power routing (MTPR) 

The Minimum Total Transmission Power Routing (MTPR) was proposed in [62]. 

MTPR makes use of a simple energy metric representing the total energy consumed 

along the route. If we consider a generic route Td = no, nl ........... nd, where no is 

the source node, and nd is the destination node and a function T(ni' nj) denoting 

the energy consumed in transmitting over hop (ni, nj), then the total transmission 

energy for a route is calculated as: 

d-l 

P(rd) = LT(ni,nHd (7.1) 
i=O 

The optimal route TO satisfies the following condition: 

(7.2) 

where r. is the set of all possible routes. This algorithm significantly reduce power 

requirements and interferences. The power saving translates directly into increased 

node lifetime and increased network capacity through reductions in interference. 
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7.2.2 The min-max battery cost routing (MMBCR) 

The Min-Max Battery Cost Routing (MMBCR) was proposed in [59]. The MM­

BCR considers a route with the best condition amongst paths impacted by each 

crucial node over each path is selected, whereas MTPR can only reduce the total 

transmission energy consumed per packets and MTPR does not reflect directly on 

the lifetime of each node which is crucial for determining the life time of the entire 

network. Let c.;(t) be the battery capacity of node ni at time t and fi(t) be a battery 

capacity function of each node ni. The less capacity a node has, the more reluctant 

it should be to forward packets, so that the proposed value is fi(t) = l/ci(t). If only 

the summation of battery cost is considered, a route containing nodes with little re­

maining battery capacity may still be selected. The Min-Max Battery Cost Routing 

(MMBCR) defines the route cost as: 

(7.3) 

The desired route ro is obtained so that R(ro) = minrjEr. R(rj), where r. is the set 

of all possible routes. 

7.2.3 The conditional max-min battery capacity routing (CMM­

BCR) 

The goal of the routing protocols is to maximise the lifetime of each node and 

use battery fairly. However, these two goals can not be achieved simultaneously by 

applying MTPR or MMBCR schemes. The MMBCR mechanism, for example, does 

not guarantee that the total transmission energy consumed per packet over a chosen 

path is minimised. The Conditional Max-Min Battery Capacity Routing (CMMBCR) 

[63] is a hybrid approach combining the MTPR and MMBCR mechanisms. The basic 

idea behind CMMBCR is that when all nodes in some possible routes between the 

source and destination have sufficient power remaining, a route with minimum total 

transmission power among these routes is chosen. The relaying packets for the low 

energy level nodes must be reduced because less total energy is required to forward 

packets for each connection and their lifetime is extended. However, if all have routes 
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with low battery capacity (Le., below a threshold 1'), a route including nodes with the 

lowest battery capacity must be avoided in order to extend lifetime of these nodes. 

The battery capacity for route rj can be defined at time t as Rj(t) = minn,Erj c;(t). 

For two nodes na and nb, this mechanism considers two sets of routes, namely Q and 

A. Q is the set of all possible routes between na and nb at time t, and A is the set 

of routes between any two nodes at time t for which the condition Rj(t) ~ l' holds. 

If all nodes in a given path have remaining battery capacity higher than 1', select a 

path applying MTPR scheme, otherwise choose a route ri with the maximum battery 

capacity. 

7.2.4 The minimum drain rate mechanism (MDR) 

The Minimum Drain rate (MDR) and the Conditional Minimum Drain Rate 

(CMDR) was proposed in [64]. MDR uses the drain rate as the metric that measures 

the energy dissipation rate in a given node. Each node ni monitors its energy con­

sumption caused by transmission, reception and overhearing activities and computes 

the energy drain rate, denoted by DRi , for every T sampling interval by averaging the 

amount of energy dissipation per second during the past T seconds. The DR; value 

can be calculated using the drain rate values DRold and DRsample which represent the 

previous and the newly calculated values. 

DRi = et X DRold + (1 - 0:) X DRsample (7.4) 

The value of a is set to 0.3 to give higher priority to the current sample. The 

corresponding cost function can be defined as: 

C. _ REI{ 
,- DRi (7.5) 

where RBI{ denotes the residual battery energy at node ni. The minimum value of 

Ci for the maximum lifetime of a given path rp can be defined as: 

(7.6) 

The minimum Drain Rate (MDR) mechanism is based on choosing the route rM, 

contained in the set of all possible routes r. between the source and the destination 
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nodes can be calculated as: 

rM = rp = max Li 
\friEr. 

(7.7) 

As seen above, MDR does not guarantee that the total transmission energy is min­

imised over a chosen route, as in MMBCR. A modified version of MDR called CMDR 

(Conditional Minimum Drain Rate) was then proposed. The CMDR technique is 

based on choosing a path with minimum total transmission energy among all possible 

routes with a lifetime higher than a given threshold, i.e., ~£i ~ fJ as in the MTPR 

mechanism. If there are no routes in this condition CMDR switches to the basic MDR 

mechanism. 

7.3 Swarm intelligence based Energy Aware Rout­

ing algorithm (SEAR) 

Since most of the mobile nodes of an ad hoc network operate on battery power. 

It is very important to minimize the power consumption of each node in the network 

to maximise the total lifetime of the network. Most of the existing energy aware 

routing algorithms in the literature were based on the source routing methods which 

are commonly impractical where the node mobility is high. Each source node has 

to decide all nodes in the path with the availability of the energy level or drain 

rate information, which is inefficient for nodes with high dynamic topologies. All 

existing energy aware algorithms do not perform any shortest path routing; rather, 

they make decisions based only on the energy level information of the nodes which 

does not guarantee any other important performance measures like number of control 

packets, end-to-end delay or throughput. Those algorithms do not use any neighbour 

nodes information when established route connections are broken, normally send error 

message to the source node and initiate route discovery phase again - this process 

increases the number of control packets. 

In this chapter, we propose a Swarm intelligence based Energy aware Routing 

(SEAR) algorithm for mobile ad hoc networks. Here, we use an entirely distributed 
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approach and maintain possible neighbour nodes information to forward data packets 

to the given destination in an optimal way. SEAR algorithm performs a shortest path 

approach to select the next node to forward to the destination. Each node which is 

participating in the transmission process maintains next possible neighbour node 

energy levels and drain rates information in a table called pheromone table. The 

pheromone values are assigned inversely proportional to the excess received packets 

power level to perform shortest path routing. It is clear that current node energy 

information is one of the most important actions for route changes in mobile ad hoc 

networks. In SEAR, the node energy level and drain rate information in the networks 

are predicted using neighbour HELLO packets and relate it to pheromone decay in 

the node pheromone table. By this energy prediction techniques, we may increase 

the network life time and interval between HELLO packets transmission and thereby 

reduce the control packets overhead, while still maintaining sufficient connectivity 

information between forwarding nodes. 

7.3.1 Protocol Description 

SEAR protocol needs to maintain four types of control packets. Those are forward 

ant packet (FANT), backward ant packet (BANT), route error packet (RERROR) 

and hello packet (HELLO). The algorithm for the SEAR protocol can be defined as 

a procedure involving the following steps: 

• Any source node sends forward ant (FANT) as a broadcast in a control manner 

(with time to live (TTL)) if it wants to send packets to the destination node 

and does not have any previous record in its routing table. 

• When a node receives a FANT, it forwards it to neighbour nodes. If such a 

FANT has been received, the node silently discards the newly received FANT. 

• When the destination node receives a FANT from any source node, it launches 

a backward ant (BANT) in the same way as the FANT broadcast. Nodes 

also discard a BANT if it has already received a BANT, but it records the 

information of where it is coming from. 

..... 
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• When nodes receive a BANT from any other node, it assigns pheromone val­

ues inversely proportional to the excess received signal power level associated 

with the neighbour node and destination node. Each node's pheromone table 

contains neighbour node information and its pheromone values related to the 

specific destination. 

• When the source node receives the first BANT it starts to forward data packets 

to the destination node. 

• Nodes which are participating in the forwarding process also send a HELLO 

packet to the neighbours. Any node hearing a HELLO packet sends back a 

HELLO packet to the neighbour with the information of current energy level. 

HELLO packets are broadcasted in a regular time interval of Ts. 

• Energy level information and the drain rate of the node can be predicted 

from the sequential received HELLO packets energy level information. The 

pheromone table update is then made utilising this information. 

• When a node receives a data packet to be forwarded, it chooses the highest 

pheromone value from its pheromone table. 

• If a node does not receive acknowledgement (ACK) from next node, it selects 

the next highest pheromone value node to forward the data packet. 

• If the node pheromone table does not have an alternative neighbour node to 

select from, then it sends route error packet (RERROR) the to source node. 

Then the source re-initiates path finding with forward ant (FANT). 

7.3.2 Pheromone table initialisation 

Each node (i) which is receiving the BANT maintains a pheromone table with 

respect to neighbour node (j) and destination (d) node. When nodes receive BANT 

packets from its neighbour node, it assigns a pheromone value represented by r°(i, j, d), 
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using following equation: 

D(' . d) 1 (7.8) 
T 't,), = P~(i,j,d) - Pthres 

where ~(i,j, d) is the received BANT packet power level at node i from node j with 

respect to the destination (d), Pthres is the minimum power level for which a packet can 

be correctly received by node i, so that ~(i, j, d) > Pthres. We assume that PthreB is 

equal for all nodes. We have modelled our pheromone values inversely proportional to 

the excess received power level to perform shortest path routing Le, possibly minimum 

hops intended to reduce end-to-end delay and re-transmission problems. 

7.3.3 Energy level information 

The SEAR protocol does not need any additional control packets to estimate 

energy level information and it uses neighbour HELLO packets. When any node 

receives a HELLO packet from its neighbour, it sends back a HELLO packet with 

current energy level information. Nodes get the current energy level and predict the 

energy drain rate (over Ts intervals). If a high energy drain rate is found then the 

node pheromone table values decay are very fast. Pheromone values for each active 

node will be updated relative to the estimated energy drain rate and its current energy 

level information as follows: 

Let En(i,j, d) be the current energy level information received from HELLO packet 

and En-l (i, j, d) is the energy level information of node j from previous HELLO packet 

information. The drain rate of node j can be calculated as, 

Dn( . . d) _ En(i,j,d) - En-l(i,j,d) 
't,), - T (7.9) 

Energy factor of node j can be defined by considering the current energy level 

En(i, j, d) as, 

{ 

En(i,j,d) 

Fn(i,j, d) = Dn(i,j,d) 

o if i has not received HELLO 
(7.10) 

where Fn(i,j,d) is the current energy factor computed at the last HELLO packet 

received. 
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The pheromone values for each active node will be updated relative to the esti­

mated energy factor as, 

(7.11) 

(7.12) 

where Tn(i, j, d) is the current pheromone value without the effect of energy factor 

and T;'( i, j, d) is the current pheromone value with the effect of the energy factor. 

The idea of introducing the energy factor is to avoid high drain rate and low 

remaining energy level nodes to participate in the forwarding process which can cause 

certain nodes to run out of energy faster than other nodes in the networks. 

7.4 Simulation Model 

We implemented the SEAR protocol in NS 2.27 which is a common discrete event 

simulator used by the mobile ad hoc networks research community. MAC layer is 

implemented using IEEE 802.11 distributed coordination function (DCF). The trans­

mission range of each of the mobile nodes is set to 250m. Our protocol evaluations are 

based on the simulation of 50 wireless nodes forming an ad hoc network, moving about 

over a rectangular 1500m x 300m fiat space for 900 seconds simulation time(Here we 

have choosen the same network model used by mobile ad hoc networking research 

community). The different scenario files were pre-generated with varying movement 

patterns and traffic loads, and then each routing protocol were run against each of 

these scenario files. The average of the performance values(node with empty battery, 

data packets delivered and number of control packets) were computed for comparison 

of the protocols. 

7.4.1 Mobility and traffic model 

The mobility model in our simulation uses the random way point model in a rect­

angular working area of 1500 x 300 meters. The pre-generated movement scenario 

files used for each simulation are characterised by a pause time. Each node begins 
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the simulation by remaining stationary over the pause time. It then selects a random 

destination in the 1500m x300m space and moves to that destination at a velocity dis­

tributed uniformly between 0 and a maximum velocity. We ran our simulations with 

5 different movement patterns generated for pause time of lOOs and with maximum 

speeds of 10ms-1 (high mobility) and 1ms-1 (low mobility, approximately equivalent 

to walking speed). 

Constant bit rate (CBR) traffic sources were chosen, as the aim is to compare the 

performance of each routing protocol. The traffic used was 512 bytes sent from 10 

sources with a rate of 4 packets per second. 

7.4.2 Energy model 

We have implemented a specific energy expenditure model in NS 2.27 based on 

the model and values predicted by Feeney and Nilsson [110]. The energy consumed 

by the network interface when a node sends, receives and discards a packet can be 

modelled using the linear equation E = m * p + n, where p is the packet size in 

bytes and m and n are constants. The experimental results confirmed the accuracy 

of the linear model and were used to determine values for the coefficient m and n 

for different mode of operation such as send, receive and discard. In our simulation 

model, 50 nodes were assigned full energy level at the beginning of the simulation 

experiment. 

7.5 Simulation Results 

We have compared the performance, using the number of nodes with empty bat­

tery, number of packet delivered to destination and routing overhead of proposed 

SEAR protocol with the de facto ad hoc routing protocol AODV. We have set HELLO 

packets broadcasting interval to 5s in SEAR. Figures 7.1 and 7.2 show the average 

number of nodes alive as a function of simulation time. It can be seen in the figures 

that AODV drains the battery of a large number of nodes faster than SEAR. This 

is because, AODV selects routes without considering the availability of the energy 
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Figure 7.1: Average number of nodes with empty battery for 50 total nodes with 
maximum velocity of 1ms-1 
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Figure 7.3: Average number of data packets delivered to destination for 50 total nodes 
with maximum velocity of 1ms-1 

level information of the nodes while SEAR considers the remaining energy and its 

drain rate. This will result in a low number of nodes with battery power completely 

depleted. When the node mobility increases to maximum velocity of 10ms-1, the 

number of nodes with empty battery is higher than when the maximum velocity is 

1ms- l , however SEAR still performs better than AODV. 

Figures 7.3 and 7.4 show the average number of data packets delivered to the 

destination with maximum velocity of 1ms-1 and lOms-1 respectively. Comparing 

the two protocols, SEAR always delivers more data packets than AODV. In high 

mobility scenario (1Oms- I
), the difference between SEAR and AODV is higher than 

in the low mobility scenario. The energy prediction and neighbour update present in 

the SEAR gives better performance than AODV. 

The SEAR makes lower use of overhead packets than AODV in all cases as demon­

strated in figures 7.5 and 7.6. It is clear that the use of energy prediction and multi­

path for data packets reduces the number of control packets. 
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7.6 Conclusions 

In chapter, we proposed a Swarm intelligence based Energy Aware Routing (SEAR) 

algorithm for mobile ad hoc networks. SEAR chooses the next for packets to be for­

warded on the basis of the pheromone table which is influenced by the energy level 

and drain rate. The pheromone table is mimicked by the foraging behaviour of the 

natural biological ants. The effectiveness of the proposed approach is demonstrated 

through an extensive simulation study. Simulation results show that SEAR gives bet­

ter network life time than AODV. Interestingly, SEAR always uses a lower number 

of overhead packets to perform routing in all cases than AODV. It is clear that the 

use of energy prediction and multi-path for data packets could reduce the number 

of control packets. AODV normally requires that each node periodically transmits a 

HELLO message, with a default rate of once per second. SwAN on the other hand 

requires only 5s intervals because of the energy prediction and it could be increased 

for the low mobility scenarios while maintaining similar performance levels. SEAR 
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Figure 7.5: Average number of control packets used for 50 total nodes with maximum 
velocity of Ims- l 

delivers more data packets than AODV because It has multi paths and reliable routes 

for each data packets. 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

Modern communication networks management and control problems become more 

complex and require solving in a distributed manner. The distributed problem solving 

techniques in swarm intelligence have numerous properties to solve communication 

network optimisation and control problems. This thesis investigated swarm intelli­

gence applications to wireless ad hoc and sensor networks. 

This thesis has provided a different approach to the stability analysis of PSO 

with stochastic parameters. The passivity theorem [86] and Lyapunov stability [89] 

methods were applied to the particle dynamics in determining sufficient conditions 

for asymptotic stability and hence convergence to the equilibrium point. Since the re­

sults are based on the Lyapunov function approach which are conservative and hence 

violation of these conditions do not imply instability. Nevertheless, the results can 

be used to infer qualitative design guidelines. Illustrative examples were provided to 

demonstrate the application of the technique. The analysis has only addressed the 

issue of absolute stability. The primary aim of PSO, however, is optimisation while 

maintaining stability. For instance, adaptation rules on K and/or w design parame­

ters is such that exploration is facilitated while maintaining stability is required. 

Investigation into the sink node placement problem in wireless sensor networks 

was also addressed. The novel idea of this research was the placement of sink node 
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in a given wireless sensor networks region, rather than the placement of sensor nodes 

for a given sink node position. A nonlinear programming problem was formulated 

to determine the location of the sink node inside the given sensor network region. 

The simulation results have shown that the three proposed optimal strategies are of 

significant benefit over random placement scenarios where energy is a vital design 

parameter in wireless sensor networks. This research also utilised the particle swarm 

optimiser, which is effective in solving NP-hard nonlinear optimisation problems and 

improves upon genetic algorithms. 

Next, a swarm intelligence based routing protocol for mobile ad hoc networks 

(SwAN) was developed. Mapping the pheromone laying and following behaviour 

of biological ants, SwAN allows nodes to choose the next node for packets to be 

forwarded on the basis of the mobility influenced pheromone table. The effectiveness 

of the proposed approach was demonstrated through an extensive simulation study. 

Simulation results have shown that SwAN gives better end to end delay than AODV. 

Interestingly, SwAN always uses a lower number of overhead packets to perform 

routing in all cases than AODV. On the other hand, packet delivery ratio in SwAN 

is slightly lower than AODV in the low mobility case, but in the high mobility case 

SwANs' performance is significantly closer to AODV. SwAN always looks for an 

alternative path to send the packet to destination rather than re-initiates the route 

discovery phase as in AODV. This may cause some loss in data packets. 

Finally, a swarm intelligence based energy aware routing (SEAR) algorithm for 

mobile ad hoc networks was proposed. The pheromone laying and following behaviour 

of biological ants was mimicked in the protocol design. SEAR allows nodes to choose 

the next node for packets to be forwarded on the basis of the pheromone table which 

is influenced by the energy level and drain rate. The effectiveness of the proposed 

approach was demonstrated through an extensive simulation study. Simulation results 

show that SEAR gives better network lifetime than AODV. Notably, SEAR always 

uses a lower number of overhead packets to perform routing in all cases than AODV. 

It is clear form this thesis that swarm intelligence methods have a very useful role 

to play in the optimisation problem associated with wireless ad hoc and sensor net­

works. This thesis has given a number of example applications and has demonstrated 
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its usefulness in improving performance over pseudo standards. 

8.2 Future Work 

The work reported in this thesis raises a number of questions that need to be 

addressed in future work. There are issues related to the analysis of swarm intelligence 

method as well as for performance improvement in wireless networks. 

The advent of particle swarm optimisation based on swarm intelligence techniques 

is a new resource for optimisation problem solving, which provides an efficient ap­

proach for complex real world problems. psa has been successfully applied in various 

real world problems. An analysis for the psa best particle dynamics was presented 

based on the Lyapunav and passivity theorem which does, however, prescribe highly 

conservative design requirements. An approach to mitigate this is the investigation of 

the condition for decreasing the Lyapunov energy function over a time interval rather 

than at every time instant, which is likely to lead to a less conservative condition 

for stability. The best particle dynamics in the psa have been considered and it 

would be desirable for a complete PSO systems analysis, which could result in design 

guidelines for a PSO algorithm that is linked to performance improvements. 

Sensor networks applications have the potential of significantly impacting the 

lives of people and their work environment. Three strategies were developed to place 

the sink node in an energy efficient way which results in saving significant amounts 

of energy, thus improving the lifetime of the entire network. The future direction 

of the research is in finding the optimal position for the sink node for large scale 

sensor networks based on the residual energy of the sensor nodes and their positional 

information. Therefore, the point of issue would become an online process and would 

require a faster real-time solution. This is linked to the need to develop an online 

PSO that is capable of adaptive sink node placement. 

The proposed SwAN protocol outperforms the de-facto mobile ad hoc networking 

protocol AODV in overhead control packets and end-to-end delay and lacks in packet 

delivery ratio. AODV was proposed in [5] and was later adapted for several modifi­

cations and improvements. The simulation studies were undertaken with the latest 
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version of the AODV. It is advised that a more rigorous investigation is required, thus 

enabling further enhancements to the SwAN protocol, such as on the improvement of 

packet delivery ratio. For example, mechanisms that limit the use of control packets 

while maintaining other performance measures require development. The scalability 

of the SwAN protocol also necessitates further investigation. 

The proposed SEAR protocol significantly improves the lifetime of the network 

while performing better than AODV. Hence, the potential of SEAR method is high 

because the energy is the vital design issue in the mobile ad hoc networks. The 

scalability of the SEAR protocol should be investigated thoroughly. SEAR opens 

new avenues for the QoS based routing and mechanisms need to be identified as how 

QoS parameters are incorporated into the pheromone table. 



Appendix A 

Ns2 Simulation Scripts 

This section gives the NS2 simulation script which is used for performance anal­

ysis in chapter 6 and chapter 7. 

set val ( chan) Channel/Wireless Channel 

set val(prop) Propagation/TwoRayGround 

set val (netif) Phy /WirelessPhy 

set val(mac) Mac/802_11 

#set val(ifq) CMUPriQueue i#for dsr 

set val(ifq) Queue/DropTail/PriQueue 

set val(ll) LL 

set val(ant) Antenna/OmniAntenna 

set val(x) 1500 i# X dimension of the topography 

set val(y) 300 i# Y dimension of the topography 

set val(ifqlen) 50 i# max packet in ifq 

set val(seed) 1.0 

set val(ragent) SWARM 

#routing protocol set val(nn) 50 i# how many nodes are simulated 

set val( cp) "cbr-50-10" 

#traffic pattern set val(sc) "sear10" 

# mobility pattern set val(stop) 200 ;# simulation time 
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set val(energymodel) EnergyModel 

set val(initialenergy) 0.5 ;# Initial energy in Joules 

# unity gain, omni-directional antennas 

Antenna/OmniAntenna set X_ 0 

Antenna/OmniAntenna set Y _ 0 

Antenna/OmniAntenna set Z_ 1.5 

Antenna/OmniAntenna set Gt_ 1.0 

Antenna/OmniAntenna set GL 1.0 

# Initialisee the tranceiver parameters 

Phy/WirelessPhy set CPThresh_ 10.0 

Phy /WirelessPhy set CSThresh_ 1.559e-ll 

Phy/WirelessPhy set RXThresh_ 3.652e-1O 

Phy/WirelessPhy set Rb_ 2*le6 

Phy/WirelessPhy set Pt- 0.2818 

#Phy /WirelessPhy set Pt- 0.1000 

#Phy /WirelessPhy set Pt- 7.214e-3 

#Phy /WirelessPhy set Pt- 8.5872e-4 

Phy jWirelessPhy set freq_ 914e+6 

Phy /WirelessPhy set L_ 1.0 

# Main Program 

# Initialize Global Variables 

set ns_ [new Simulator] ;# create simulator instance 

set topo [new Topography]; # setup topography object 

set val(nn) 50 j# number of numbers 

set tracefd [open swarm1.tr w] j# create trace object for ns and nam 

set namtrace [open swarm1.nam w] 

$ns_ use-newtracej # use new-trace format 

$ns_ trace-all $tracefd 

$ns_ namtrace-all-wireless $namtrace $val{x) $val{y) 

$topo loadJlatgrid $val{x) $val{y); # define topology 
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set god_ [create-god $val(nn)]; # Create God 

#global node setting; # define how node should be created 

$ns_ node-config -adhocRouting $val(ragent) 

-llType $val(ll) 

-macType $val(mac) 

-ifqType $val(ifq) 

-ifqLen $val(ifqlen) 

-antType $val{ant) 

-propType $val(prop) 

-phyType $val(netif) 

-channelType $val( chan) 

-topolnstance $topo 

-agent Trace ON 

-routerTrace ON 

-macTrace ON 

-movementTrace ON 

-energy Model $val( energymodel) 

-ini tialEnergy $val (ini tialenergy) 
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# Create the specified number of nodes [$val(nn)] and "attach" them to the channel. 

#[[lindex [$node_(O) array get netiL] 1] set initialEnergy _ 0.05] 

for {set i O} $i i $val(nn) iner i { 

set node_($i) [$ns_ node] 

$node_{$i) random-motion 0 ;#disable random motion 

} 

puts" Loading connection pattern ... " 

source $val( cp) 

# Define traffic model 
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puts "Loading scenario file ... " 

source $val(sc) 

# Define node initial position in nam 

for {set i O} {$i i $val(nn)} {incr i} 

# 50 defines the node size in nam, must adjust it according to yourscenario 

# The function must be called after mobility modelis defined 

$ns_ initiaLnode_pos $node_{$i) 20 

} 

# Tell nodes when the simulation ends 

for {set i O} {$i i $val{nn) } {incr i} 

$ns_ at $val(stop).O "$node_{$i) reset"; 

} 
$ns_ at $val{stop).OOOl "stop" 

$ns_ at $val(stop).0002 "puts NS EXITING .. :;' 

$ns_ halt" 

proc stop {} { 

global ns_ tracefd namtrace 

$ns_ flush-trace 

close $tracefd 

close $namtraee 

} 

puts $traeefd "M 0.0 nn $val(nn) x $val(x) y $val(y) rp $val(ragent)" 

puts $traeefd "M 0.0 se $val(sc) ep $val(cp) seed $val(seed}" 

puts $tracefd "M 0.0 prop $val(prop) ant $val(ant)" 

puts "Starting Simulation ... " 

$ns_ run 
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Sample Scenario File 

This section gives extract of node movement pattern for the NS2 simulator. We 

create a node-movement scenario consisting of 50 nodes moving with maximum speed 

of 20.0m/s with 300s pause time and the topology boundary is defined as 1500 X 300. 

$node_(O) set X_ 799.657336047088 

$node_(O) set Y _ 135.455153527360 

$node_{O) set Z_ 0.000000000000 

$node_(1) set X_ 390.085389287621 

$node_{l) set Y_ 194.243182754745 

$node_(1) set Z_ 0.000000000000 

$node_(2) set X_ 1428.986456880622 

$node_(2) set Y_ 165.457012368147 

$node_(2) set Z_ 0.000000000000 

$node_(3) set X_ 1259.848559985054 

$node_(3) set Y _ 19.517756593342 

$node_(3) set Z_ 0.000000000000 

$node_(4) set X_ 71.236765784502 

$node_(4) set Y_ 2.714858615000 

$node_( 4) set Z_ 0.000000000000 

$node_(5) set X_ 543.918916870638 
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$node_(5) set Y_ 46.356298365190 

$node_(5) set Z_ 0.000000000000 

$node_(6) set X_ 889.221664159118 

$node_(6) set Y _ 249.445444109070 

$node_(6) set Z_ 0.000000000000 

$node_(7) set X_ 317.271808277009 

$node_(7) set Y_ 262.459155333113 

$node_(7) set Z_ 0.000000000000 

node_(8) set X_ 881.277909573588 

$node_(8) set Y_ 236.994077031214 

$node_(8) set Z_ 0.000000000000 

$node_(9) set X_ 533.835494550360 

$node_(9) set Y_ 171.531909163724 

$node_(9) set Z_ 0.000000000000 

$node_(1O) set X_ 430.434439105532 

$node_(lO) set Y_ 220.956168570296 

$node_(10) set Z_ 0.000000000000 

$node_{ll) set X_ 681.693016503041 

$node_{ll) set Y_ 297.436216815080 

$node_{ll) set Z_ 0.000000000000 

$node_{l2) set X_ 1463.412884015097 

$node_(12) set Y_ 123.201256554076 

$node_(12) set Z_ 0.000000000000 

$node_(13) set X_ 1371.776557371375 

$node_{l3) set Y _ 93.848444339930 

$node_(13) set Z_ 0.000000000000 

$node_(14) set X_ 894.093436415176 

$node_{l4) set Y_ 298.113139487694 

$node_{l4) set Z_ 0.000000000000 

$node_(15) set X_ 1005.744923184380 

$node_(15) set Y _ 7.800207082751 
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$node_(15) set Z_ 0.000000000000 

$node_(16) set X_ 1364.456800233343 

$node_(16) set Y _ 167.252251549733 

$node_(16) set Z_ 0.000000000000 

$node_(17) set X_ 1089.633238884554 

$node_(17) set Y _ 156.497818313433 

$node_(17) set Z_ 0.000000000000 

$node_(18) set X_ 1219.839811261436 

$node_(18) set Y _ 128.401805764897 

$node_(18) set Z_ 0.000000000000 

$node_(19) set X_ 1035.049745298537 

$node_(19) set Y_ 261.406315740317 

$node_(19) set Z_ 0.000000000000 

$node_(20) set X_ 675.243439956251 

$node_(20) set Y_ 85.053898252363 

$node_(20) set Z_ 0.000000000000 

$node_(21) set X_ 1340.836036809230 

$node_(21) set Y _ 130.988983331646 

$node_(21) set Z_ 0.000000000000 

$node_(22) set X_ 994.109882687883 

$node_{22} set Y _ 95.679627848175 

$node_(22} set Z_ 0.000000000000 

$node_(23) set X_ 406.589047999708 

$node_(23) set Y _ 207.558301014855 

$node_(23) set Z_ 0.000000000000 

$node_(24) set X_ 1461.871272784012 

$node_(24) set Y _ 151.294652342165 

$node_(24) set Z_ 0.000000000000 

$node_(25) set X_ 689.892076537374 

$node_(25) set Y _ 107.747922863711 

$node_(25} set Z_ 0.000000000000 
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$node_(26) set X_ 614.799591451491 

$node_(26) set Y _ 201.998907424457 

$node_(26) set Z_ 0.000000000000 

$node_(27) set X_ 1215.101271458218 

$node_(27) set Y _ 135.232436849816 

$node_(27) set Z_ 0.000000000000 

$node_(28) set X_ 61.520854662251 

$node_(28) set Y _ 41.170834136087 

$node_(28) set Z_ 0.000000000000 

$node_(29) set X_ 1.046435608915 

$node_(29) set Y _ 25.126403715995 

$node_(29) set Z_ 0.000000000000 

$node_(30) set X_ 1135.784161333718 

$node_(30) set Y _ 175.997474046302 

$node_(30) set Z_ 0.000000000000 

$node_(31) set X_ 1325.058467479460 

$node_(31) set Y_ 123.590456276856 

$node_(31) set Z_ 0.000000000000 

$node_(32) set X_ 862.063971070877 

$node_(32) set Y _ 227.628113526536 

$node_(32) set Z_ 0.000000000000 

$node_(33) set X_ 297.552463689566 

$node_(33) set Y _ 152.464232992511 

$node_(33) set Z_ 0.000000000000 

$node_(34) set X_ 721.468381948169 

$node_(34) set Y _ 60.155041774793 

$node_(34) set Z_ 0.000000000000 

$node_(35) set X_ 614.914094890033 

$node_(35) set Y_ 156.806367499690 

$node_(35) set Z_ 0.000000000000 

$node_(36) set X_ 688.822053204055 
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$node_(36) set Y_ 60.670347167047 

$node_(36) set Z_ 0.000000000000 

$node_(37) set X_ 1474.305566902170 

$node_(37) set Y _ 245.368363763350 

$node_(37) set Z_ 0.000000000000 

$node_(38) set X_ 126.987960518686 

$node_(38) set Y _ 74.875615135331 

$node_(38) set Z_ 0.000000000000 

$node_(39) set X_ 291.958693118628 

$node_(39) set Y_ 108.356699333106 

$node_(39) set Z_ 0.000000000000 

$node_(40) set X_ 614.850166111448 

$node_(40) set Y_138.537673027216 

$node_( 40) set Z_ 0.000000000000 

$node_( 41) set X_ 260.377163686429 

$node_(41) set Y_ 100.772417350827 

$node_( 41) set Z_ 0.000000000000 

$node_( 42) set X_ 732.353791787659 

$node_(42) set Y_ 54.904015972287 

$node_( 42) set Z_ 0.000000000000 

$node_(43) set X_ 903.030079167862 

$node_(43) set Y_ 229.755005913098 

$node_( 43) set Z_ 0.000000000000 

$node_(44) set X_ 1471.847532816298 

$node_(44) set Y_ 172.553146325763 

$node_(44) set Z_ 0.000000000000 

$node_( 45) set X_ 380.209193817226 

$node_(45) set Y_ 244.563395778925 

$node_( 45) set Z_ 0.000000000000 

$node_( 46) set X_ 783.417730347926 

$node_(46) set Y_ 29.095895763474 
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$node_{ 46) set Z_ 0.000000000000 

$node_(47) set X_ 909.186948815101 

$node_{ 4 7) set Y _ 95.000044479968 

$node_{ 4 7) set Z_ 0.000000000000 

$node_(48) set X_ 719.281252033659 

$node_(48) set Y_ 68.662992069009 

$node_{ 48) set Z_ 0.000000000000 

$node_(49) set X_ 1104.597197439572 

$node_(49) set Y_ 276.670265278643 

$node_(49) set Z_ 0.000000000000 
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$ns_ at 300.000000000000 "$node_{O) setdest 1346.091719108419 65.207689363323 

12.349623574112" 

$ns_ at 300.000000000000 "$node_(1) setdest 1255.388488671930 74.220808813797 

13.088875348327" 

$ns_ at 300.000000000000 "$node_(2) setdest 565.457769812834 32.416526005286 

10.156625009276" 

$ns_ at 300.000000000000 "$node_(3) setdest 653.575681020446 76.046574888213 

4.481282297547" 

$ns_ at 300.000000000000 "$node_(4) setdest 1361.115842268825 268.092036355087 

8.454328509630" 

$ns_ at 300.000000000000 "$node_(5) setdest 498.263997058131 264.346803325260 

18.302900010488" 

$n8_ at 300.000000000000 "$node_(6) setdest 126.243104054259 55.346440992332 

2.804014846504" 

$ns_ at 300.000000000000 "$node_(7) setdest 192.972184423873 108.317456238445 

13.876785348722" 

$n8_ at 300.000000000000 "$node_(8) 8etde8t 1328.569386001311 68.946179570818 

15.286684413354" 

$ns_ at 300.000000000000 "$node_(9) setdest 275.760558284399 96.433042026607 

7.326701116737" 

$ns_ at 300.000000000000 "$node_(10) 8etdest 214.092789457948 28.034900648347 
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17.939423283422" 

$ns_ at 300.000000000000 "$node_(1l) setdest 361.998223069969 279.779753972355 

10.333207913047" 

$ns_ at 300.000000000000 "$node_(12) setdest 587.866233726073 201.139774391678 

5.395688335948" 

$ns_ at 300.000000000000 "$node_(13) setdest 524.159201892352 15.415055562354 

8.977936121498" 

$ns_ at 300.000000000000 "$node_(14) setdest 1138.959505805647 8.460045829343 

9.318060059602" 

$ns_ at 300.000000000000 "$node_(15) setdest 711.209456187572 116.446417155875 

18.879015386765" 

$ns_ at 300.000000000000 "$node_(16) setdest 287.461093578466 150.406869124768 

4.192334062421" 

$ns_ at 300.000000000000 "$node_{17} setdest 1411.454219506699 223.527606319110 

17.371409580403" 

$ns_ at 300.000000000000 "$node_(18) setdest 761.271230607391 48.879667922615 

1.584001399919" 

$ns_ at 300.000000000000 "$node_(19) setdest 1004.348658352280 186.722528431166 

9.999779057678" 

$ns_ at 300.000000000000 "$node_(20) setdest 707.590469782897 227.326777108007 

10.182360400895" 



Appendix C 

CBR Connection Pattern 

This section gives node connection pattern for the NS2 simulator. We create a 

CBR connection file between 50 nodes, having maximum of 10 connections, with a 

seed value of 1.0 and a rate of 4.0. 

# 1 connecting to 2 at time 2.5568388786897245 

# set udp_{O) [new Agent/UDP] 

$ns_ attach-agent$node_{l) $udp_{O) 

set nulL(O) [new Agent/Null] 

$ns_ attach-agent $node_(2) $nuIL(O) 

set cbr_(O) [new Application/Traffic/CBR] 

$cbr_{O) set packet Size_ 512 

$cbr-(O) set intervaL 0.25 

$cbr-(O) set random_ 1 

$cbr-(O) set maxpkts_ 10000 

$cbr-{O) attach-agent $udp_{O) 

$ns_ connect $udp_(O) $nuIL(O) 

$ns_ at 2.5568388786897245 "$cbr-(O) start" 

# 
# 4 connecting to 5 at time 56.333118917575632 

# 
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set udp_(1) [new Agent/UDP] 

$ns_ attach-agent $node_( 4) $udp_( 1) 

set nulL(l) [new Agent/Null] 

$ns_ attach-agent $node_(5) $nulL(1) 

set CbL(1) [new Application/Traffic/CBR] 

$cbr_(1) set packet Size_ 512 

$CbL(1) set intervaL 0.25 

$cbr -(1) set random_ 1 

$cbr_(1) set maxpkts_ 10000 

$cbr -(1) attach-agent $udp_( 1) 

$ns_ connect $udp_(1) $nulL(1) 

$ns_ at 56.333118917575632 "$cbL(l) start" 

# 
# 4 connecting to 6 at time 146.96568928983328 

# 
set udp_(2) [new Agent/UDP] 

$ns_ attach-agent $node_(4) $udp_(2) 

set nulL(2) [new Agent/Null] 

$ns_ attach-agent $node_(6) $nulL(2) 

set cbr_(2) [new Application/Traffic/CBR] 

$cbr_(2) set packet Size_ 512 

$CbL{2} set intervaL 0.25 

$CbL(2) set random_ 1 

$cbr_(2) set maxpkts_ 10000 

$CbL(2) attach-agent $udp_(2) 

$ns_ connect $udp_(2) $nulL(2) 

$ns_ at 146.96568928983328 "$cbr_(2) start" 

# 
# 6 connecting to 7 at time 55.634230382570173 

# 
set udp_(3) [new Agent/UDP] 
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$ns_ attach-agent$node_( 6)$udp_(3) 

set nuIL(3) [new Agent/Null] 

$ns_ attach-agent $node_(7) $nuIL(3) 

set cbr_(3) [new Application/Traffic/CBR] 

$CbL(3) set packetSize_ 512 

$cbr _(3) set intervaL 0.25 

$CbL(3) set random_ 1 

$CbL(3) set maxpkts_ 10000 

$cbr _(3) attach-agent $udp_(3) 

$n8_ connect $udp_(3) $nuIL(3) 

$ns_ at 55.634230382570173 "$CbL(3) start" 

# 
# 7 connecting to 8 at time 29.546173154165118 

# 
set udp_(4) [new Agent/UDP] 

$ns_ attach-agent $node_(7) $udp_( 4) 

set nuIL(4) [new Agent/Null] 

$ns_ attach-agent $node_(8) $nuIL( 4) 

set cbr_( 4) [new Application/Traffic/CBR1 
$cbr_(4) set packetSize_ 512 

$CbL( 4) set intervaL 0.25 

$cbr_(4) set random_ 1 

$cbr _( 4) set maxpkts_ 10000 

$cbr_(4) attach-agent $udp_(4) 

$ns_ connect $udp_( 4) $nulL( 4) 

$ns_ at 29.546173154165118 "$cbr_(4) start" 

# 
# 7 connecting to 9 at time 7.7030203154790309 

# 
set udp_(5) [new Agent/UDP] 

$ns_ attach-agent $node_(7) $udp_(5) 
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set nulL(5) [new Agent/Null] 

$ns_ attach-agent $node_(9) $nuIL(5) 

set CbL(5) [new Application/Traffic/CBRj 

$cbr_(5) set packetSize_ 512 

$CbL(5) set intervaL 0.25 

$cbr_(5) set random_ 1 

$CbL(5) set maxpkts_ 10000 

$CbL(5) attach-agent $udp_(5) 

$ns_ connect $udp_(5) $nulL(5) 

$ns_ at 7.7030203154790309 "$cbr_(5) start" 

# 
# 8 connecting to 9 at time 20.48548468411224 

# 
set udp_(6) [new Agent/UDP] 

$ns_ attach-agent $node_(8) $udp_(6) 

set nulL(6) [new Agent/Null] 

$ns_ attach-agent $node_(9) $nuIL(6) 

set cbr_(6) [new Application/Traffic/CBR] 

$CbL(6) set packet Size_ 512 

$CbL(6) set intervaL 0.25 

$CbL(6) set random_ 1 

$cbr_(6) set maxpkts_ 10000 

$CbL(6) attach-agent $udp_(6) 

$ns_ connect $udp_(6) $nuIL(6) 

$ns_ at 20.48548468411224 "$cbr_(6) start" 

# 
# 9 connecting to 10 at time 76.258212521792487 

# 
set udp_(7) [new Agent/UDP] 

$ns_ attach-agent $node_(9) $udp_(7) 

set nulL(7) [new Agent/Null] 
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$ns_ attach-agent $node_(10) $nulL(7) 

set CbL(7) [new Application/Traffic/CBRj 

$CbL(7) set packet Size_ 512 

$CbL(7) set intervaL 0.25 

$CbL(7) set random_ 1 

$cbr _(7) set maxpkts_ 10000 

$CbL(7) attach-agent $udp_(7) 

$ns_ connect $udp_(7) $nulL(7) $ns_ at 76.258212521792487 "$CbL(7) start" 

# 
# 9 connecting to 11 at time 31.464945688594575 

# 
set udp_(8) [new Agent/UDP] 

$ns_ attach-agent $node_(9) $udp_(8) 

set nulL(8) [new Agent/Null] 

$ns_ attach-agent $node_(11) $nulL(8) 

set CbL(8) [new Application/Traffic/CBR] 

$cbr_(8) set packetSize_ 512 

$cbr_(8) set intervaL 0.25 

$CbL(8) set random_ 1 

$cbr_(8) set maxpkts_ 10000 

$CbL(8) attach-agent $udp_(8) 

$ns_ connect $udp_(8) $nulL(8) 

$ns_ at 31.464945688594575 "$cbr_(8) start" 

# 
# 11 connecting to 12 at time 62.77338456491632 

# 
set udp_(9) [new AgentjUDP] 

$ns_ attach-agent $node_(ll) $udp_(9) 

set nuIL(9) [new Agent/Nu1l1 

$ns_ attach-agent $node_(12) $nuIL(9) 

set cbr_(9) [new Application/Traffic/CDR] 
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$CbL(9) set packetSize_ 512 

$cbr_(9) set intervaL 0.25 

$cbr_(9) set random_ 1 

$cbr_(9) set maxpkts_ 10000 

$cbr_(9) attach-agent $udp_(9) 

$ns_ connect $udp_(9) $nuIL(9) 

$ns_ at 62.77338456491632 "$cbr_(9) start" 

# 
#Total sources/connections: 7/10 

# 
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N s2 Trace Files for SwAN Protocol 

NS2 produces text-based output files that contain detailed simulation data when 

a simulation is finished. The data files is used for simulation analysis. This section 

gives extract of the NS2 simulation trace files. 

M 0.0 nn 50 x 1500 y 300 rp SWARM 

M 0.0 sc scenpause60 ep cbr-50-1O seed 1.0 

M 0.0 prop Propagation/TwoRayGround ant Antenna/OmniAntenna 

Request and Reply Packets 

s -t 2.573647828 -Hs 31 -Hd -2 -Ni 31 -Nx 1450.99 -Ny 271.03 -Nz 0.00 -Ne 0.488091 

-NI MAC -Nw - -Ma 0 -Md ffffffff -Ms 1f -Mt 800 -Is 31.255 -Id -1.255 -It SWARM 

-11 100 -If 0 -Ii 0 -Iv 26 -P swarm -Pt Ox2 -Ph 5 -Pb 1 -Pd 2 -Pds 0 -Ps 1 -Pss 22 -Pc 

REQUEST 

s -t 2.573753774 -Hs 32 -Hd -2 -Ni 32 -Nx 454.70 -Ny 218.48 -Nz 0.00 -Ne 0.490633 

-NI RTR -Nw - -Ma 0 -Md ffffffff -Ms 2e -Mt 800 -Is 32.255 -Id -1.255 -It SWARM 

-11 48 -If 0 -Ii 0 -Iv 27 -P swarm -Pt Ox2 -Ph 4 -Pb 1 -Pd 2 -Pds 0 -Ps 1 -Pss 22 -Pc 

REQUEST 

r -t 2.573800165 -Hs 9 -Hd -2 -Ni 9 -Nx 766.69 -Ny 217.42 -Nz 0.00 -Ne 0.486226 -NI 

MAC -Nw - -Ma 3c4 -Md 9 -Ms 0 -Mt 0 

s -t 2.573810165 -Hs 9 -Hd -2 -Ni 9 -Nx 766.69 -Ny 217.42 -Nz 0.00 -Ne 0.486226 -NI 

MAC -Nw - -Ma 13a -Md 2 -Ms 9 -Mt 806 -P arp -Po REPLY -Pms 9 -Ps 9 -Pmd 
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2 -Pd 2 

r -t 2.574448161 -Hs 44 -Hd -2 -Ni 44 -Nx 1427.46 -Ny 173.92 -Nz 0.00 -Ne 0.487260 

-NI MAC -Nw - -Ma 0 -Md ffffffff -Ms 1f -Mt 800 -Is 31.255 -Id -1.255 -It SWARM 

-Il 48 -If 0 -Ii 0 -Iv 26 -P swarm -Pt Ox2 -Ph 5 -Ph 1 -Pd 2 -Pds 0 -Ps 1 -Pss 22 -Pc 

REQUEST 

r -t 2.574448213 -Hs 41 -Hd -2 -Ni 41 -Nx 1396.52 -Ny 169.13 -Nz 0.00 -Ne 0.486641 

-NI MAC -Nw - -Ma 0 -Md ffffffff -Ms 1f -Mt 800 -Is 31.255 -Id -1.255 -It SWARM 

-Il 48 -If 0 -Ii 0 -Iv 26 -P swarm -Pt Ox2 -Ph 5 -Ph 1 -Pd 2 -Pds 0 -Ps 1 -Pss 22 -Pc 

REQUEST 

r -t 2.574448325 -Hs 42 -Hd -2 -Ni 42 -Nx 1320.49 -Ny 198.46 -Nz 0.00 -Ne 0.485975 

-NI MAC -Nw - -Ma 0 -Md ffffffff -Ms 1£ -Mt 800 -Is 31.255 -Id -1.255 -It SWARM 

-11 48 -If 0 -Ii 0 -Iv 26 -P swarm -Pt Ox2 -Ph 5 -Ph 1 -Pd 2 -Pds 0 -Ps 1 -Pss 22 -Pc 

REQUEST 

r -t 2.574448377 -Hs 43 -Hd -2 -Ni 43 -Nx 1429.93 -Ny 107.55 -Nz 0.00 -Ne 0.487260 

-NI MAC -Nw - -Ma 0 -Md ffffffff -Ms 1f -Mt 800 -Is 31.255 -Id -1.255 -It SWARM 

-11 48 -If 0 -Ii 0 -Iv 26 -P swarm -Pt Ox2 -Ph 5 -Ph 1 -Pd 2 -Pds 0 -Ps 1 -Pss 22 -Pc 

REQUEST 

r -t 2.574448380 -Hs 26 -Hd -2 -Ni 26 -Nx 1475.81 -Ny 107.27 -Nz 0.00 -Ne 0.487563 

-NI MAC -Nw - -Ma 0 -Md ffffffff -Ms 1f -Mt 800 -Is 31.255 -Id -1.255 -It SWARM 

-Il 48 -If 0 -Ii 0 -Iv 26 -P swarm -Pt Ox2 -Ph 5 -Ph 1 -Pd 2 -Pds 0 -Ps 1 -Pss 22 -Pc 

REQUEST 

r -t 2.574448405 -Hs 20 -Hd -2 -Ni 20 -Nx 1330.45 -Ny 146.64 -Nz 0.00 -Ne 0.486187 

-NI MAC -Nw - -Ma 0 -Md ffffffff -Ms 1£ -Mt 800 -Is 31.255 -Id -1.255 -It SWARM 

-11 48 -If 0 -Ii 0 -Iv 26 -P swarm -Pt Ox2 -Ph 5 -Ph 1 -Pd 2 -Pds 0 -Ps 1 -Pss 22 -Pc 

REQUEST 

r -t 2.574448498 -Hs 27 -Hd -2 -Ni 27 -Nx 1261.22 -Ny 204.59 -Nz 0.00 -Ne 0.485967 

-NI MAC -Nw - -Ma 0 -Md ffffffff -Ms 1£ -Mt 800 -Is 31.255 -Id -1.255 -It S\VARM 

-11 48 -If 0 -Ii 0 -Iv 26 -P swarm -Pt Ox2 -Ph 5 -Ph 1 -Pd 2 -Pds 0 -Ps 1 -Pss 22 -Pc 

REQUEST 

r -t 2.574448645 -Hs 47 -Hd -2 -Ni 47 -Nx 1334.80 -Ny 55.16 -Nz 0.00 -Ne 0.486278 

-NI MAC -Nw - -Ma 0 -Md ffffffff -Ms 1£ -Mt 800 -Is 31.255 -Id -1.255 -It SWARM 
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-11 48 -If 0 -Ii 0 -Iv 26 -P swarm -Pt Ox2 -Ph 5 -Pb 1 -Pd 2 -Pds 0 -Ps 1 -Pss 22 -Pc 

REQUEST 

r -t 2.574450737 -Hs 2 -Hd -2 -Ni 2 -Nx 604.13 -Ny 162.23 -Nz 0.00 -Ne 0.488281 -NI 

MAC -Nw - -Ma 13a -Md 2 -Ms 9 -Mt 806 -P arp -Po REPLY -Pms 9 -Ps 9 -Pmd 

2 -Pd 2 

s -t 2.574460737 -Hs 2 -Hd -2 -Ni 2 -Nx 604.13 -Ny 162.23 -Nz 0.00 -Ne 0.488281 -NI 

MAC -Nw - -Ma 0 -Md 9 -Ms 0 -Mt 0 

r -t 2.574473161 -Hs 44 -Hd -2 -Ni 44 -Nx 1427.46 -Ny 173.92 -Nz 0.00 -Ne 0.487260 

-NI RTR -Nw - -Ma 0 -Md ffffffff -Ms 1£ -Mt 800 -Is 31.255 -Id -1.255 -It SWARM 

-11 48 -If 0 -li 0 -Iv 26 -P swarm -Pt Ox2 -Ph 5 -Pb 1 -Pd 2 -Pds 0 -Ps 1 -Pss 22 -Pc 

REQUEST 

r -t 2.574473213 -Hs 41 -Hd -2 -Ni 41 -Nx 1396.52 -Ny 169.13 -Nz 0.00 -Ne 0.486641 

-NI RTR -Nw - -Ma 0 -Md ffffffff -Ms 1£ -Mt 800 -Is 31.255 -Id -1.255 -It SWARM 

-Il 48 -If 0 -li 0 -Iv 26 -P swarm -Pt Ox2 -Ph 5 -Pb 1 -Pd 2 -Pds 0 -Ps 1 -Pss 22 -Pc 

REQUEST 

Data Packets 

s -t 8.909172744 -Hs 1 -Hd 9 -Ni 1 -Nx 885.74 -Ny 24.43 -Nz 0.00 -Ne 0.283630 -NI 

MAC -Nw - -Ma 13a -Md 9 -Ms 1 -Mt 800 -Is 1.0 -Id 2.0 -It cbr -11 584 -If 0 -Ii 32 

-Iv 30 -Pn cbr -Pi 27 -Pf 0 -Po 2 

r -t 8.913845305 -Hs 9 -Hd 9 -Ni 9 -Nx 807.19 -Ny 173.15 -Nz 0.00 -Ne 0.265294 -NI 

MAC -Nw - -Ma 13a -Md 9 -Ms 1 -Mt 800 -Is 1.0 -Id 2.0 -It cbr -11 532 -If 0 -Ii 32 

-Iv 30 -Pn cbr -Pi 27 -Pf 1 -Po 2 

s -t 8.913855305 -Hs 9 -Hd -2 -Ni 9 -Nx 807.19 -Ny 173.15 -Nz 0,00 -Ne 0.265294 -Nl 

MAC -Nw - -Ma 0 -Md 1 -Ms 0 -Mt 0 

r -t 8.913870305 -Hs 9 -Hd 9 -Ni 9 -Nx 807.19 -Ny 173.15 -Nz 0,00 -Ne 0.265093 -NI 

RTR -Nw - -Ma 13a -Md 9 -Ms 1 -Mt 800 -Is 1.0 -Id 2.0 -It cbr -Il 532 -If 0 -Ii 32 

-Iv 30 -Pn cbr -Pi 27 -Pf 1 -Po 2 

f -t 8.913870305 -Hs 9 -Hd 2 -Ni 9 -Nx 807.19 -Ny 173.15 -Nz 0.00 -Ne 0.265093 -NI 

RTR -Nw - -Ma 13a -Md 9 -Ms 1 -Mt 800 -Is 1.0 -Id 2.0 -It cbr -11 532 -If 0 -Ii 32 

-Iv 29 -Pn cbr -Pi 27 -Pf 1 -Po 2 

r -t 8.914159865 -Hs 1 -Hd -2 -Ni 1 -Nx 885.74 -Ny 24.43 -Nz 0.00 -Ne 0.280426 -NI 
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MAC -Nw - -Ma 0 -Md 1 -Ms 0 -Mt 0 

s -t 8.914489305 -Hs 9 -Hd -2 -Ni 9 -Nx 807.20 -Ny 173.15 -Nz 0.00 -Ne 0.265093 -NI 

MAC -Nw - -Ma 14be -Md 2 -Ms 9 -Mt 0 

r -t 8.914842055 -Hs 2 -Hd -2 -Ni 2 -Nx 582.72 -Ny 156.99 -Nz 0.00 -Ne 0.307050 -NI 

MAC -Nw - -Ma 14be -Md 2 -Ms 9 -Mt 0 

s -t 8.914852055 -Hs 2 -Hd -2 -Ni 2 -Nx 582.72 -Ny 156.99 -Nz 0.00 -Ne 0.307050 -NI 

MAC -Nw - -Ma 1384 -Md 9 -Ms 0 -Mt 0 

r -t 8.915156805 -Hs 9 -Hd -2 -Ni 9 -Nx 807.20 -Ny 173.14 -Nz 0.00 -Ne 0.264741 -NI 

MAC -Nw - -Ma 1384 -Md 9 -Ms 0 -Mt 0 

s -t 8.915166805 -Hs 9 -Hd 2 -Ni 9 -Nx 807.20 -Ny 173.14 -Nz 0.00 -Ne 0.264741 -NI 

MAC -Nw - -Ma 13a -Md 2 -Ms 9 -Mt 800 -Is 1.0 -Id 2.0 -It cbr -Il 584 -If 0 -Ii 32 

-Iv 29 -Pn cbr -Pi 27 -Pf 1 -Po 2 

r -t 8.919839555 -Hs 2 -Hd 2 -Ni 2 -Nx 582.70 -Ny 156.99 -Nz 0.00 -Ne 0.305004 -NI 

MAC -Nw - -Ma 13a -Md 2 -Ms 9 -Mt 800 -Is 1.0 -Id 2.0 -It cbr -Il 532 -If 0 -Ii 32 

-Iv 29 -Pn cbr -Pi 27 -Pf 2 -Po 2 

s -t 8.919849555 -Hs 2 -Hd -2 -Ni 2 -Nx 582.70 -Ny 156.99 -Nz 0.00 -Ne 0.305004 -NI 

MAC -Nw - -Ma 0 -Md 9 -Ms 0 -Mt 0 

r -t 8.919864555 -Hs 2 -Hd 2 -Ni 2 -Nx 582.70 -Ny 156.99 -Nz 0.00 -Ne 0.304803 -NI 

AGT -Nw - -Ma 13a -Md 2 -Ms 9 -Mt 800 -Is 1.0 -Id 2.0 -It cbr -11 532 -If 0 -Ii 32 

-Iv 29 -Pn cbr -Pi 27 -Pf 2 -Po 2 

r -t 8.920154306 -Hs 9 -Hd -2 -Ni 9 -Nx 807.23 -Ny 173.11 -Nz 0.00 -Ne 0.261537 -NI 

MAC -Nw - -Ma 0 -Md 9 -Ms 0 -Mt 0 

s -t 9.059362578 -Hs 7 -Hd -2 -Ni 7 -Nx 292.11 -Ny 99.52 -Nz 0.00 -Ne 0.366999 -NI 

AGT -Nw - -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 7.2 -Id 9.0 -It cbr -11 512 -If 0 -Ii 33 -Iv 32 

-Pn cbr -Pi 5 -Pf 0 -Po 3 

r -t 9.059362578 -Hs 7 -Hd -2 -Ni 7 -Nx 292.11 -Ny 99.52 -Nz 0.00 -Ne 0.366999 -NI 

RTR -Nw - -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 7.2 -Id 9.0 -It cbr -Il 512 -If 0 -Ii 33 -Iv 32 

-Pn cbr -Pi 5 -Pf 0 -Po 3 

s -t 9.059362578 -Hs 7 -Hd 23 -Ni 7 -Nx 292.11 -Ny 99.52 -Nz 0.00 -Ne 0.366999 -NI 

RTR -Nw - -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 7.2 -Id 9.0 -It cbr -Il 532 -If 0 -Ii 33 -Iv 30 

-Pn cbr -Pi 5 -Pf 0 -Po 3 
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s -t 9.059517578 -Hs 7 -Hd -2 -Ni 7 -Nx 292.11 -Ny 99.52 -Nz 0.00 -Ne 0.366999 -NI 

MAC -Nw - -Ma 14be -Md 17 -Ms 7 -Mt 0 

r -t 9.059870293 -Hs 23 -Hd -2 -Ni 23 -Nx 448.23 -Ny 246.54 -Nz 0.00 -Ne 0.306465 

-NI MAC -Nw - -Ma 14be -Md 17 -Ms 7 -Mt 0 

s -t 9.059880293 -Hs 23 -Hd -2 -Ni 23 -Nx 448.23 -Ny 246.54 -Nz 0.00 -Ne 0.306465 

-NI MAC -Nw - -Ma 1384 -Md 7 -Ms 0 -Mt 0 

r -t 9.060185007 -Hs 7 -Hd -2 -Ni 7 -Nx 292.11 -Ny 99.52 -Nz 0.00 -Ne 0.366646 -NI 

MAC -Nw - -Ma 1384 -Md 7 -Ms 0 -Mt 0 

s -t 9.060195007 -Hs 7 -Hd 23 -Ni 7 -Nx 292.11 -Ny 99.52 -Nz 0.00 -Ne 0.366646 -NI 

MAC -Nw - -Ma 13a -Md 17 -Ms 7 -Mt 800 -Is 7.2 -Id 9.0 -It cbr -11 584 -If 0 -li 33 

-Iv 30 -Pn cbr -Pi 5 -Pf 0 -Po 3 

r -t 9.064867722 -Hs 23 -Hd 23 -Ni 23 -Nx 448.26 -Ny 246.54 -Nz 0.00 -Ne 0.304419 

-NI MAC -Nw - -Ma 13a -Md 17 -Ms 7 -Mt 800 -Is 7.2 -Id 9.0 -It cbr -11 532 -If 0 -Ii 

33 -Iv 30 -Pn cbr -Pi 5 -Pf 1 -Po 3 

s -t 9.064877722 -Hs 23 -Hd -2 -Ni 23 -Nx 448.26 -Ny 246.54 -Nz 0.00 -Ne 0.304419 

-NI MAC -Nw - -Ma 0 -Md 7 -Ms 0 -Mt 0 

r -t 9.064892722 -Hs 23 -Hd 23 -Ni 23 -Nx 448.26 -Ny 246.54 -Nz 0.00 -Ne 0.304218 

-NI RTR -Nw - -Ma 13a -Md 17 -Ms 7 -Mt 800 -Is 7.2 -Id 9.0 -It cbr -11 532 -If 0 -Ii 

33 -Iv 30 -Pn cbr -Pi 5 -Pf 1 -Po 3 

f -t 9.064892722 -Hs 23 -Hd 46 -Ni 23 -Nx 448.26 -Ny 246.54 -Nz 0.00 -Ne 0.304218 

-NI RTR -Nw - -Ma 13a -Md 17 -Ms 7 -Mt 800 -Is 7.2 -Id 9.0 -It cbr -11 532 -If 0 -Ii 

33 -Iv 29 -Pn cbr -Pi 5 -Pf 1 -Po 3 

r -t 9.065182437 -Hs 7 -Hd -2 -Ni 7 -Nx 292.11 -Ny 99.52 -Nz 0.00 -Ne 0.363443 -NI 

MAC -Nw - -Ma 0 -Md 7 -Ms 0 -Mt 0 

s -t 9.065551722 -Hs 23 -Hd -2 -Ni 23 -Nx 448.26 -Ny 246.54 -Nz 0.00 -Ne 0.304218 

-NI MAC -Nw - -Ma 14be -Md 2e -Ms 17 -Mt 0 

r -t 9.065904390 -Hs 46 -Hd -2 -Ni 46 -Nx 645.28 -Ny 210.89 -Nz 0.00 -Ne 0.297069 

-NI MAC -Nw - -Ma 14be -Md 2e -Ms 17 -Mt 0 

s -t 9.065914390 -Hs 46 -Hd -2 -Ni 46 -Nx 645.28 -Ny 210.89 -Nz 0.00 -Ne 0.297069 

-NI MAC -Nw - -Ma 1384 -Md 17 -Ms 0 -Mt 0 

r -t 9.066219057 -Hs 23 -Hd -2 -Ni 23 -Nx 448.27 -Ny 246.54 -Nz 0.00 -Ne 0.303866 
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-NI MAC -Nw - -Ma 1384 -Md 17 -Ms 0 -Mt 0 

s -t 9.066229057 -Hs 23 -Hd 46 -Ni 23 -Nx 448.27 -Ny 246.54 -Nz 0.00 -Ne 0.303866 

-NI MAC -Nw - -Ma 13a -Md 2e -Ms 17 -Mt 800 -Is 7.2 -Id 9.0 -It cbr -Il 584 -If 0 

-Ii 33 -Iv 29 -Pn cbr -Pi 5 -pr 1 -Po 3 

r -t 9.070901724 -Hs 46 -Hd 46 -Ni 46 -Nx 645.27 -Ny 210.88 -Nz 0.00 -Ne 0.295022 

-NI MAC -Nw - -Ma 13a -Md 2e -Ms 17 -Mt 800 -Is 7.2 -Id 9.0 -It cbr -11 532 -If 0 

-Ii 33 -Iv 29 -Pn cbr -Pi 5 -pr 2 -Po 3 

s -t 9.070911724 -Hs 46 -Hd -2 -Ni 46 -Nx 645.27 -Ny 210.88 -Nz 0.00 -Ne 0.295022 

-NI MAC -Nw - -Ma 0 -Md 17 -Ms 0 -Mt 0 

r -t 9.070926724 -Hs 46 -Hd 46 -Ni 46 -Nx 645.27 -Ny 210.88 -Nz 0.00 -Ne 0.294822 

-NI RTR -Nw - -Ma 13a -Md 2e -Ms 17 -Mt 800 -Is 7.2 -Id 9.0 -It cbr -Il 532 -If 0 

-Ii 33 -Iv 29 -Pn cbr -Pi 5 -pr 2 -Po 3 

r -t 9.070926724 -Hs 46 -Hd 9 -Ni 46 -Nx 645.27 -Ny 210.88 -Nz 0.00 -Ne 0.294822 

-NI RTR -Nw - -Ma 13a -Md 2e -Ms 17 -Mt 800 -Is 7.2 -Id 9.0 -It cbr -Il 532 -If 0 

-Ii 33 -Iv 28 -Pn cbr -Pi 5 -pr 2 -Po 3 

r -t 9.071216392 -Hs 23 -Hd -2 -Ni 23 -Nx 448.30 -Ny 246.54 -Nz 0.00 -Ne 0.300662 

-NI MAC -Nw - -Ma 0 -Md 17 -Ms 0 -Mt 0 

s -t 9.071645724 -Hs 46 -Hd -2 -Ni 46 -Nx 645.26 -Ny 210.87 -Nz 0.00 -Ne 0.294822 

-NI MAC -Nw - -Ma 14be -Md 9 -Ms 2e -Mt 0 

r -t 9.071998283 -Hs 9 -Hd -2 -Ni 9 -Nx 808.20 -Ny 172.05 -Nz 0.00 -Ne 0.256949 -NI 

MAC -Nw - -Ma 14be -Md 9 -Ms 2e -Mt 0 

s -t 9.072008283 -Hs 9 -Hd -2 -Ni 9 -Nx 808.20 -Ny 172.05 -Nz 0.00 -Ne 0.256949 -NI 

MAC -Nw - -Ma 1384 -Md 2e -Ms 0 -Mt 0 

r -t 9.072312841 -Hs 46 -Hd -2 -Ni 46 -Nx 645.26 -Ny 210.87 -Nz 0.00 -Ne 0.294469 

-NI MAC -Nw - -Ma 1384 -Md 2e -Ms 0 -Mt 0 

s -t 9.072322841 -Hs 46 -Hd 9 -Ni 46 -Nx 645.26 -Ny 210.87 -Nz 0.00 -Ne 0.294469 

-NI MAC -Nw - -Ma 13a -Md 9 -Ms 2e -Mt 800 -Is 7.2 -Id 9.0 -It cbr -11 584 -If 0 -Ii 

33 -Iv 28 -Pn cbr -Pi 5 -pr 2 -Po 3 

r -t 9.076995399 -Hs 9 -Hd 9 -Ni 9 -Nx 808.23 -Ny 172.01 -Nz 0.00 -Ne 0.254903 -NI 

MAC -Nw - -Ma 13a -Md 9 -Ms 2e -Mt 800 -Is 7.2 -Id 9.0 -It cbr -Il 532 -If 0 -Ii 33 

-Iv 28 -Pn cbr -Pi 5 -pr 3 -Po 3 
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s -t 9.077005399 -Hs 9 -Hd -2 -Ni 9 -Nx 808.23 -Ny 172.01 -Nz 0.00 -Ne 0.254903 -NI 

MAC -Nw - -Ma 0 -Md 2e -Ms 0 -Mt 0 

r -t 9.077020399 -Hs 9 -Hd 9 -Ni 9 -Nx 808.23 -Ny 172.01 -Nz 0.00 -Ne 0.254702 -NI 

AGT -Nw - -Ma 13a -Md 9 -Ms 2e -Mt 800 -Is 7.2 -Id 9.0 -It cbr -11 532 -If 0 -Ii 33 

-Iv 28 -Pn cbr -Pi 5 -Pf 3 -Po 3 

r -t 9.077309958 -Hs 46 -Hd -2 -Ni 46 -Nx 645.25 -Ny 210.86 -Nz 0.00 -Ne 0.291266 

-NI MAC -Nw - -Ma 0 -Md 2e -Ms 0 -Mt 0 

s -t 9.203030043 -Hs 1 -Hd -2 -Ni 1 -Nx 885.74 -Ny 24.43 -Nz 0.00 -Ne 0.273512 -NI 

AGT -Nw - -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 1.0 -Id 2.0 -It cbr -11 512 -If 0 -Ii 34 -Iv 32 

-Pn cbr -Pi 28 -Pf 0 -Po 2 

r -t 9.203030043 -Hs 1 -Hd -2 -Ni 1 -Nx 885.74 -Ny 24.43 -Nz 0.00 -Ne 0.273512 -NI 

RTR -Nw - -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 1.0 -Id 2.0 -It cbr -11 512 -If 0 -Ii 34 -Iv 32 

-Pn cbr -Pi 28 -Pf 0 -Po 2 

s -t 9.203030043 -Hs 1 -Hd 9 -Ni 1 -Nx 885.74 -Ny 24.43 -Nz 0.00 -Ne 0.273512 -NI 

RTR -Nw - -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 1.0 -Id 2.0 -It cbr -11 532 -If 0 -Ii 34 -Iv 30 

-Pn cbr -Pi 28 -Pf 0 -Po 2 

s -t 9.203385043 -Hs 1 -Hd -2 -Ni 1 -Nx 885.74 -Ny 24.43 -Nz 0.00 -Ne 0.273512 -NI 

MAC -Nw - -Ma 14be -Md 9 -Ms 1 -Mt 0 

r -t 9.203737595 -Hs 9 -Hd -2 -Ni 9 -Nx 809.04 -Ny 171.13 -Nz 0.00 -Ne 0.254563 -NI 

MAC -Nw - -Ma 14be -Md 9 -Ms 1 -Mt 0 

s -t 9.203747595 -Hs 9 -Hd -2 -Ni 9 -Nx 809.04 -Ny 171.13 -Nz 0.00 -Ne 0.254563 -NI 

MAC -Nw - -Ma 1384 -Md 1 -Ms 0 -Mt 0 

r -t 9.204052147 -Hs 1 -Hd -2 -Ni 1 -Nx 885.74 -Ny 24.43 -Nz 0.00 -Ne 0.273160 -NI 

MAC -Nw - -Ma 1384 -Md 1 -Ms 0 -Mt 0 

s -t 9.204062147 -Hs 1 -Hd 9 -Ni 1 -Nx 885.74 -Ny 24.43 -Nz 0.00 -Ne 0.273160 -NI 

MAC -Nw - -Ma 13a -Md 9 -Ms 1 -Mt 800 -Is 1.0 -Id 2.0 -It cbr -11 584 -If 0 -Ii 34 

-Iv 30 -Pn cbr -Pi 28 -Pf 0 -Po 2 

r -t 9.208734699 -Hs 9 -Hd 9 -Ni 9 -Nx 809.07 -Ny 171.09 -Nz 0.00 -Ne 0.252517 -NI 

MAC -Nw - -Ma 13a -Md 9 -Ms 1 -Mt 800 -Is 1.0 -Id 2.0 -It cbr -Il 532 -If 0 -Ii 34 

-Iv 30 -Pn cbr -Pi 28 -Pf 1 -Po 2 

s -t 9.208744699 -Hs 9 -Hd -2 -Ni 9 -Nx 809.07 -Ny 171.09 -Nz 0.00 -Ne 0.252517 -NI 
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MAC -Nw - -Ma 0 -Md 1 -Ms 0 -Mt 0 

r -t 9.208759699 -Hs 9 -Hd 9 -Ni 9 -Nx 809.07 -Ny 171.09 -Nz 0.00 -Ne 0.252317 -NI 

RTR -Nw - -Ma 13a -Md 9 -Ms 1 -Mt 800 -Is 1.0 -Id 2.0 -It cbr -Il 532 -If 0 -Ii 34 

-Iv 30 -Pn cbr -Pi 28 -Pf 1 -Po 2 

f -t 9.208759699 -Hs 9 -Hd 2 -Ni 9 -Nx 809.07 -Ny 171.09 -Nz 0.00 -Ne 0.252317 -NI 

RTR -Nw - -Ma 13a -Md 9 -Ms 1 -Mt 800 -Is 1.0 -Id 2.0 -It cbr -Il 532 -If 0 -Ii 34 

-Iv 29 -Pn cbr -Pi 28 -Pf 1 -Po 2 

r -t 9.209049250 -Hs 1 -Hd -2 -Ni 1 -Nx 885.74 -Ny 24.43 -Nz 0.00 -Ne 0.269956 -NI 

MAC -Nw - -Ma 0 -Md 1 -Ms 0 -Mt 0 

s -t 9.209218699 -Hs 9 -Hd -2 -Ni 9 -Nx 809.08 -Ny 171.09 -Nz 0.00 -Ne 0.252317 -NI 

MAC -Nw - -Ma 14be -Md 2 -Ms 9 -Mt 0 

r -t 9.209571458 -Hs 2 -Hd -2 -Ni 2 -Nx 581.73 -Ny 156.75 -Nz 0.00 -Ne 0.295766 -NI 

MAC -Nw - -Ma 14be -Md 2 -Ms 9 -Mt 0 

s -t 9.209581458 -Hs 2 -Hd -2 -Ni 2 -Nx 581.73 -Ny 156.75 -Nz 0.00 -Ne 0.295766 -NI 

MAC -Nw - -Ma 1384 -Md 9 -Ms 0 -Mt 0 
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