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ABSTRACT 

A new theory is proposed for the full-information finite and infinite horizon­

time robust H 00 control that is equivalently effective for the regulation and/or tracking 

problems of the general class of time-varying nonlinear systems under the presence of 

exogenous disturbance inputs. The theory employs the sequence of linear-quadratic and 

time-varying approximations, that were recently introduced in the optimal control 

framework, to transform the nonlinear H 00 control problem into a sequence of linear-

quadratic robust H 00 control problems by using well-known results from the existing 

Riccati-based theory of the maturing classical linear robust control. The proposed 

method, as in the optimal control case, requires solving an approximating sequence of 

Riccati equations (ASRE), to find linear time-varying feedback controllers for such 

disturbed nonlinear systems while employing classical methods. Under very mild 

conditions of local Lipschitz continuity, these iterative sequences of solutions are 

known to converge to the unique viscosity solution of the Hamilton-lacobi-Bellman 

partial differential equation of the original nonlinear optimal control problem in the 

weak form (Cimen, 2003); and should hold for the robust control problems herein. The 

theory is analytically illustrated by directly applying it to some sophisticated nonlinear 

dynamical models of practical real-world applications. Under a r -iteration sense, such 

a theory gives the control engineer and designer more transparent control requirements 

to be incorporated a priori to fine-tune between robustness and optimality needs. It is 

believed, however, that the automatic state-regulation robust ASRE feedback control 

systems and techniques provided in this thesis yield very effective control actions in 

theory, in view of its computational simplicity and its validation by means of classical 

numerical techniques, and can straightforwardly be implemented in practice as the 

feedback controller is constrained to be linear with respect to its inputs. 

Research Head: Stephen Paul Banks 

Title: Professor of Systems Theory 
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ACRONYMS, NOTATIONS, AND SYMBOLS 

A standard conventional notation will be used throughout this thesis unless otherwise 

stated. This set of symbols which is very common in control theories' publications is 

presented hereunder. 

t Time 

to Initial (starting) time 

t f Final time 

J Cost (performance or payoff) functional to be minimized 

x n-dimensional state vector of a dynamic system (x I , ••• , X n) 

u m - dimensional (m::; n ) system control input vector ( U I , ••• , U m ) 

y /- dimensional (/::; n) measurement (or output) vector 

z / - dimensional desired output vector (or controlled variable) 

x(t) The derivative of x(t) with respect to time t 

w The exogenous disturbance input 

<l> The state transition matrix of a linear dynamical system 

A n x n dynamic coefficient matrix of continuous linear differential 

equations defining a dynamical system 

B 

C 

D 

[$] 
Q 

R 

P 

'­.-

n x m input coupling matrix of continuous linear differential equations 

defining a dynamical system 

/ x n measurement sensitivity matrix, defining the linear relationship 

between the states and the measurements that can be made 

/ x m input-output coupling matrix (throughput or feedthrough or 

feedforward matrix) 

The transfer function realized by D+C(sI - A) -IB (with respect to z) 

/ x / state weighting matrix 

m x m input weighting matrix 

n x n Riccati matrix 

The left hand side defined by the expression in the right hand side 

End of the proof 



in OR (~) Field of real numbers 

in * Adjoint of in 

~H -I Bounded inverse of in (for boundedly invertible 9t) 

L 2,m Hilbert space of square norm Lebesgue integrable in m_ 

L 2 ( -00,00 ) Time domain Lebesgue space 

L ,.,( -00,00) Ditto 

H 2 Hardy space 

H", OR (H"') Ditto 

(-,-) 

Ilxll 

11-112 

IHI ., 

Inner product (the Hilbert space is implicit) 

Euclidean norm of the vector x E in" 

Euclidean norm on L 2 

Euclidean norm on L '" 

n x n identity matrix 

A T Transpose of matrix A 

A-lOR (A') Inverse of matrix A (for A invertible) 

A * Complex conjugate transpose of matrix A 

AM - N Matrix pencil 
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CHAPTER! 

Introduction 

1.1. Overview 

Many control systems of practical importance are inherently nonlinear and so 

the need to take into account the nonlinearities of a system has become more and more 

important as the demands for better performances and more sophisticated requirements 

increased over the past few years. Additionally, it is without doubt that the last few 

decades have witnessed tremendous research efforts in analyzing and designing 

nonlinear control systems in broad areas such as aircraft and spacecraft control, 

robotics, process control, and biomedical engineering; to name only a few. In particular, 

many researchers and designers have recently shown an active interest in developing 

and applying nonlinear control methodologies to such various practical fields with the 

aid of the differential geometric approaches. Among the various state-of-the-art 

nonlinear synthesis techniques are the method of feedback linearization and the notion 

of zero dynamics with their applications to a variety of control problems such as in 

asymptotic stabilization of minimum phase systems, output regulation and feedback 

equivalence to a passive system (see [Banks, 1986a; Isidori, 1995; Isidori, 1999; and 

Marino, 1995]). 

Nonetheless, one of the mam driving forces behind such a rapid growth, 

particularly noticeable in modem control theory, was the realization that controllers 

designed solely from optimization concerns exhibited a lack of robustness with respect 

to modelling uncertainty, both in theory and in practice. Small mismatches from the 

model used for design to the actual plant could cause a serious loss of performance or 

even loss of stability. For linear control theory in the 1980's, a major field of research 

was H 00 control (and related topics), which addressed these robustness issues. The 

control algorithms, that were developed, amounted to sophisticated generalizations of 
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classical design methodologies, and have proven effective in practice, especially for 

mUlti-input multi-output systems. 

The nonlinear control theory, however, still lacks many of the mathematical 

tools which are available to the maturing and well-understood classical linear control 

theory. The robust control theory for linear systems is usually approached using 

input/output or operator theoretic methods, and so there has been renewed interest in the 

study of nonlinear input/output systems; and it would be groundbreaking research to 

make a nonlinear system appear linear. Of course, the success of linear robust control 

methods has led to an interest in extending such work to nonlinear systems mainly 

through local linearization techniques about an equilibrium or operating point. 

The most common difficulty of analyzing generic nonlinear systems leads to the 

idea of restricting the class of systems studied due to the key assumption in linearizing a 

nonlinear system in which the range of operation is assumed to be small for the 

linearized model to be valid (Slotine & Li, 1991). Unlike linear controllers, nonlinear 

controllers handle nonlinearities in a much larger operation range while compensates for 

the parametric model uncertainties that are often neglected in their counterparts. The 

advantage of nonlinear controllers not only depends on a simple design that is often 

deeply rooted in the physics of plants but also may permit their implementation with 

less expensive actuators and sensors that exhibit nonlinear characteristics. Therefore, 

inherent (natural) and intentional (artificial) nonlinearities, which can be referred to 

mathematically as continuous or discontinuous nonlinearities, should not be disregarded 

in the design of control systems, as it is common practice. 

As will be seen in later chapters of this dissertation, it appears that the key to 

extending H 00 methods to nonlinear systems, while taking full advantage of the 

classical linear theory, is the ability to solve various sequences of Riccati equations over 

the state space. Although global linearization techniques can be used (see for instance, 

[Banks & Yew, 1985; Banks, 1986b; Banks, 1992]) in this context, the problems seem 

to be generally quite difficult to solve numerically, and this constrains the practical 

effectiveness of such analysis. 

It is conjectured that the recently developed optimal nonlinear control theory 

(see [<;imen, 2003]) often seems over-idealized when it comes to dealing with 

stochastic disturbances and noisy measurements and may not always be as efficient in 
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dealing with exogenous uncertainties as its robust control counterpart. So the focus of 

the research in this thesis represents an elucidation to this problem. 

In the following sections a few aims of the present research will be highlighted. 

Starting with the motivations behind embarking upon a robust control theoretical 

framework is presented in § 1.2. The theoretical idea behind an existing approximation 

theory is given in §1.3. A brief historical account of the state-space H <Xl control is given 

in § 1.4; while the subsections to follow give both an overview of the current research 

efforts behind the nonlinear H 00 theory, and presents the reader with the general H 00 

control problem. Last but not least, § 1.5 gives an overvie"Y of the necessary 

prerequisites. Finally, a brief description of this dissertation along with the aims of this 

research are specified in § 1.6. 

1.2. Why Robust Control? 

Uncertainty and disturbances such as nOise are inherent to any real-world 

practical system. In the deterministic case, the signals and the mathematical model of a 

system are known without uncertainty and the time-varying behaviour can be 

reproduced by repeated experimentation. In the stochastic case, this is not possible due 

to the uncertainty that exists either in its model parameters or in its signals or in both. 

The values of the signals or the variables occurring in the system can only be estimated 

with the help of the methods of probability and statistics; and the results are presented 

as expected values together with the bounds of error. 

In reality, despite efforts by identification and parameter estimation, system 

models are neither precisely known nor are guaranteed to remain the same under the 

different conditions of operation. While adaptive techniques automatically tune the 

control action to meet mainly the latter contingency, the issue of uncertainty as well as 

noise is tackled by robust control techniques. Here, the controller is designed for a 

nominally specified plant model by taking uncertainties and un-modelled plant 

dynamics such that the resulting control guarantees satisfactory control under the 

limitations of knowledge of the plant model. Moreover, the control law is said to be 

robust if it is valid over the whole range of admissible uncertainty. 
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From a control point of view, when modelling systems, several sources of uncertainty 

can be classified as: 

A. non-parametric (unstructured) uncertainty 

1. un-modelled physical dynamics 

2. truncated high frequency modes 

3. nonlinearities 

4. effects of linearization and time-variation 

B. parametric (structured) uncertainty 

1. physical parameters vary within given bounds 

2. interval uncertainty (L 00 ) 

3. ellipsoidal uncertainty (L 2 ) 

4. diamond uncertainty (L 1 ) 

The first kind corresponds to inaccuracies or underestimation of the system 

order; while the second kind corresponds to inaccuracies in the terms actually included 

in the model. Note that the model imprecision may occur as a result of unknown plant 

parameters, or from a purposeful choice of a simplified mathematical representation of 

the system's dynamics, e.g. modelling friction as linear or neglecting structural modes 

in a reasonably rigid mechanical system. 

However, the sine qua non of robust control techniques is the ability to directly 

address the inheriting presence of such above-mentioned uncertainties while 

maintaining the system response and error signals to within prescribed tolerances 

despite the presence of noise. 

1.3. The Approximation Theory 

The ultimate objective of feedback control is to use the principle of feedback to 

cause the output variable of a dynamic process to follow a desired reference variable 

accurately regardless of the reference variable's path and of any external disturbances or 

any changes in the dynamics of the process. However, in order to meet this complex 

goal, a dynamical model of the process to be controlled has first to be physically and 

mathematically modelled. To a control engineer, a dynamical system, or a dynamic 

model, is a given process mathematically quantified with state, rate variables and 
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parameters that are functions of time. Because such variables can either be continuous 

or discrete in time, dynamical systems are mathematically expressed with either 

differential equations or difference equations. The state-space representation (also 

known as the "time-domain approach") provides a convenient and compact way to 

model and analyze systems with multiple inputs and outputs; making it a more 

appealing method of describing the dynamics of controlled processes over the high­

order differential equation representation. Hence, an nth -order differential equation can 

be conveniently written as a set of n first-order simultaneous differential equations in 

vector form. To abstract from the number of inputs, outputs and states, the variables are 

expressed as vectors and the differential and algebraic equations are written in matrix 

form lending itself to computer analysis. It is worth pointing out that a given dynamical 

system has a unique dynamical equation model whereas its state-space representation is 

not unique. 

Consider the following nonlinear control systems for continuous-time models 

which are modelled via finite dimensional deterministic ordinary differential equations 

of this general time-varying form: 

(a) x(t) = f(x(t), w(t),u(t),t); 
(b) y(t)=h(x(t),w(t),u(t),t) 

Alternatively, for discrete-time systems 

(a) x(k+l)=f(x(k),w(k),u(k),k); 
(b) y(k)=h(x(k),w(k),u(k),k) 

(1. 1) 

(1. 2) 

Linear models form special cases of the general continuous-time model of (1.1) 

and discrete-time model of (1.2) which can be given respectively by: 

(a) x(t) = A(t)x(t)+ B(t)u(t)+ E(t)w(t); 
(b) y(t)=C(t)x(t)+D(t)u(t)+E 2(t)W(t) 

(a) x (k + 1) = A (k) x (k ) + B (k) u (k ) + E (k ) w( k ); 
(b) y(k)=C(k)x(k)+D(k)u(k)+E 2(k)w(k) 

x(O)=Xo }; 

x(O)=xo}. 

(1. 3) 

(1. 4) 

Excluding the exogenous disturbance input, the solution of (1.3)(a) is usually known 

from the fundamental transition matrix solutions of the inhomogeneous equations (for a 

definition see §A.2.2). Conversely, the dynamical equations of the discrete-time 

systems, (1.4)(a), are usually derived from the corresponding synthesized model in the 

continuous-time domain, as in the general form. A difference equation of the form 
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(1.2)(a) can not be accurately synthesized in practice unless approximate discrete-time 

model-based techniques are used, such as the Runga-Kuta algorithm for instance. 

However, in view of such an approximation, discrete-time systems are not convenient to 

treat dynamical equations (Borrie, 1992). Note that the difficulty does not arise from the 

algebraic equation (1.2)(b) since it is plainly a discrete-time version of (1.1 )(b). While a 

large number of systems can be theoretically and practically modelled by means of the 

set of linear time-varying difference equations (1.4), the nonlinear difference equations, 

(1.2), form an ideal rather than a practical model. Thus, it is usually impractical to 

model either a stochastic or a deterministic nonlinear system by difference equations 

unless, of course, continuous-time models are discretized. It is for this reason that this 

dissertation will only focus on continuous-time nonlinear systems of the form (1.3). 

In order to give the reader an insight about the approximation theory, special 

attention is drawn around the historical perspective behind the optimal control setting in 

which this theory first emanated. 

Consider a general time-invariant nonlinear system of the form 

x=f(x,u) (1. 5) 

with a linear-quadratic cost function 

, f 

min J ( u ) = .!. x T (t f ) F x (t f ) +.!. f{ X T (t) Q x (t ) + u T (t) R u (t)} dt ; (1. 6) 
2 2'0 

this cost functional can be solved in principle by using the Lie series and infinite­

dimensional bilinear systems theory (Banks & Yew, 1985; Banks, 1986b; and Banks, 

1992). But due to the complexity in implementing this solution, some fundamental 

contributions took place in the past few decades to the theory of nonlinear dynamical 

systems especially in the field of pseudo-linear systems taking the form 

x= A(x)x+B(x)u. (1. 7) 

Since the early 1960's, a number of researchers have proposed nonlinear control 

algorithms which involve application of linear design methods to linear-like 'factored' 

representations of a nonlinear system for continuous-time, state feedback, input-affine, 

autonomous nonlinear dynamic systems in (1.7) (see [Pearson, 1962; Burghart, 1969; 

Wernli & Cook, 1975; Ehrler & Vadali, 1988; and Hammett, et al., 1998]). However a 

different approach using the so-called 'freezing' technique that was introduced by 

Banks & Mahana in 1992 to develop locally optimal and locally asymptotically 
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stabilizing controllers using fonn (1.7) proved very successful. This technique was 

further adopted by many authors to approximate nonlinear optimal controllers based on 

solving the "State-Dependent Riccati Equation" (SORE) while using it to regulate and 

control a variety of practical applications (see [Cloutier, et at., 1996; Mracek & 

Cloutier, 1998; Hammett, et at., 1998; and McCaffrey & Banks, 200 I b D. The only 

limitation to this SORE feedback is that it can only be applied to finite-time 

autonomous regulator problems as well as to tracking problems; and not to the more 

difficult infinite-time problem since this requires solving an infinite-time algebraic 

Riccati equation for which the theory is not available as yet. 

The recursive technique for the nonlinear optimal control problem that was 

introduced by Banks & McCaffrey (1998) considered systems of the fonn 

x = A (x) x, (I. 8) 

where the authors presented this system as the limit of linear time-varying (LTV) 

approximations 

X [i] (t) = A ( x [i-I] (t) ) x [i] (t). (I. 9) 

These sequences were shown to converge in the space of continuous functions under 

very mild conditions. Technically speaking, the convergence holds provided the 

function x ~ A (x) is locally Lipschitz, i.e. the minimum condition required for the 

uniqueness of solutions. The main advantage of this approximation theory which was 

also employed by Chanane (1998) is that nonlinear systems can be closely 

approximated by linear ones - a fact which brings all the classical linear tools and 

machinery to hand. Although LTV systems are much more complex when compared to 

autonomous systems, recent developments by Banks (2002) led to the representation of 

the solutions (1.9) by means of the Lie algebra of A ( x [i-I] (t)) (i.e. bracketed matrices). 

Note that the approximation theory can be readily applied to the dynamical 

nonlinear system given by the pseudo-linear systems in (1.7) 

x til (t) = A ( X [H] (t) ) X til (t) + B ( X [H] (t) ) u til (t), (1. 10) 

to detennine control actions by any classical or modem control techniques, such as 

optimal control (see [<;imen, 2003; Banks & Dinesh, 2000]), robust H"" control as 

considered in this thesis, and many other nonlinear problems. 
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The approximation theory is not simply a numerical method, instead it was 

extensively exploited in the study of chaotic motion, Lie algebras and even nonlinear 

delay systems (see [Banks & McCaffrey, 1998; and Banks, 2002]). With a range of 

appealing and demanding applications, (1.10) proved very effective in formulating and 

controlling aircraft systems (Banks, et al., 2000; and Salamci, et al., 2000) including an 

F8-crusader (C;imen & Banks, 2004); it was also applied to dynamic ship-positioning 

systems (C;imen, 2003; and C;imen & Banks, 2005); to controlling flexible space 

structures (Zheng, et at, 2005); and in nonlinear solitary wave motions (Banks, 2001a). 

Additionally, the approximation technique found its usage in the design of sliding mode 

controls with optimally selected sliding surfaces for an autopilot design for a missile 

(Salamci, et al., 2000). 

1.4. The H<Xl Control Theory 

1.4.1. The State-Space H<Xl Control Theory: A Historical Perspective 

Since the central subject of this thesis is the state-space H <Xl optimal control, 

similar, but not quite, to the book by Stoorvogel (1992): The 1I <Xl Control Problem: a 

State Space Approach, in contrast to the approach adopted in the famous book by 

Francis (1987): A Course in H <Xl Control Theory; it may be helpful to provide some 

historical perspective of the state-space H <Xl control theory. This section, however, is 

not intended as a literature review in H <Xl theory or robust control but rather only an 

attempt to outline some of the major work in this almost matured field. 

The state-space H <Xl techniques deal with providing the multi-input multi-output 

(MIMO) dynamical system with a feedback control verifying robust stability and robust 

performance. In the frame of these methods, a description must be done for both the 

nominal system and the uncertainties associated with the model. Consequently, in this 

context, Robust Stability means that whatever the real system inside the boundaries 

defined by the uncertainties around the nominal plant, the controller is able to stabilize 

it. Whereas Robust Performance means that whatever the real system inside the 
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boundaries defined by the uncertainties around the nominal plant, the controller is able 

to guarantee that the real plant satisfies the required performance. 

A fundamental problem in control theory is to design controllers which give 

satisfactory performance in the presence of uncertainties such as unknown model 

parameters and disturbances which enter the system dynamics. Consequently, one of the 

main motivations behind the original introduction of the II 00 theory in the frequency 

domain by Zames (1981) was to bring the plant uncertainty back into centre-stage. In 

other words, the H 00 control theory originated in an effort to codify classical control 

methods; where the frequency response functions are shaped to meet certain 

performance objectives. The linear H 00 control theory has developed extensively since 

the early 1980s, and effective numerical methods have been developed for practical 

implementation in engineering applications (see [Dym, 1994] for some historical 

remarks). 

The linear H 00 control theory can be considered in either a frequency domain, 

input-output formulation or a time domain, state-space formulation. Mathematical tools 

of the linear theory in an input-output setting involve such techniques from operator­

theoretic methods (see [Sarason, 1967; Adamjan, et aI., 1978; Ball & Helton, 1983]) 

and complex function theory involving analytic functions such as the Nevanlinna-Pick 

interpolation and inner-outer factorizations (see [Ilelton & James, 1999; and Zhou, et 

01., 1996]). Unfortunately, the standard frequency domain approaches to the II 00 

control problem can neither mathematically nor computationally deal with MIMO 

systems, much as the Linear Quadratic Gaussian (LQG) theory proved in the early 50s 

(Zhou, el ai., 1996). 

Not surprisingly, introduced by Doyle (1984), the first solution to the general 

M,IMO H 00 control was formulated in the state-space while heavily relying upon 

inner/outer and coprime factorizations of transfer function matrices that reduced the 

problem to a Nehari/Hankel norm. This method, although in a mathematical sense 

"solved" the general rational problem (Francis, 1987; and Francis & Doyle, 1987), it 

had a main disadvantage in the computational complexity of solving high-order Riccati 

equations which questioned its realism. As a remedy, model reduction techniques 

played a centre stage in addressing this problem in particular. The self-contained state­

space treatment exploiting the balanced realizations proposed for the model reduction 
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by Moore (1981) can be found in Glover (1984). While the dual realization, where the 

linear time-varying H co formulation is cast as a linear time-invariant frequency domain 

counterpart in terms of compensators' existence for example, proved highly successful 

in addressing a variety of H co control problems: e.g. the signature condition based on 

the Kalman-Popov-Yakubovich approach, and the minimum entropy formulation (see 

[Stoorvogel, 1992; and Ionescu & Stoica, 1999]). 

However, a simpler and more direct state-space H co controller formulae relied 

on solving an algebraic Riccati equation and completing the square (see [Khargonekar, 

et al., 1990; and Khargonekar, et al., 1988]). Matrix Riccati equations have also played 

a key role (see [Doyle, et aI., 1989; Barabanov & Ghulchak, 1996; and Ichikawa & 

Katayama, 1999]). Nonetheless, relations between the H co control and many other 

topics in control were also exploited: e.g. risk sensitivity control (see [Whittle, 1981; 

and Whittle 1990]); differential games (see [Ba~ar & Bernhard, 1991; Limebeer, et al., 

1992; and Green & Limebeer, 1995]); J-Iossless factorization (see [Green, 1992]); the 

maximum entropy methods (see [Dym & Gohberg, 1986; and Mustafa & Glover, 

1990]); Linear-Matrix-Inequality formulations (see [Chen, et al., 2004]); Hamiltonian­

based skew-Toepliz-type solutions to the H co problem (Hirata, et al., 2000); and 

infinite-dimensional II co Riccati equations (Ichikawa, 2000). In addition, more 

generalizations were undeniably noticeable in broadly expanding the II co formulation 

from time-invariant to time-varying, from finite-horizon to infinite-horizon, from finite­

dimensional to infinite-dimensional, and even from linear to nonlinear designs. 

1.4.2. The Nonlinear IleXl Control Theory 

In contrast to the linear II co control theory, the nonlinear II co control theory is 

formulated in the time domain much like the dynamical systems' setting. In their book 

Helton & lames (1999) showed that the key to expanding the H co control to nonlinear 

systems depended on ideas and methods of differential games and nonlinear partial 

differential equations (or partial differential inequalities). Where for the state-feedback 

setting, the available storage fitness function satisfies, in the viscosity sense, a first 

order nonlinear Partial Differential Equation of Hamilton-lacobi-Bellman (IIJB) type; 
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and where the central controller is obtained by taking argmax over possible controls in 

the Isaacs equation. While for the output-feedback setting, the problem is reformulated 

by defining an "information state" that evolves forward in time according to a HJB 

partial differential equation, also interpreted in the viscosity sense. The same problem, 

however, has been tackled previously from a different perspective in Isidori & Astolfi, 

(1992) by non-hyperbolic equilibria that were assumed for the Hamiltonian systems 

associated with the two Hamilton-Jacobi-Issacs equations; i.e. the problem is extended 

by means of a Hamilton-Jacobi-Inequality. 

Another technique is that of the inner-outer factorization, in which the inner 

factor is dissipative and the outer factor satisfies a weak invertibility condition (liehon 

& James, 1999). Another way to avoid the infinite dimensional PDE framework is to 

consider "certainty-equivalent" controllers; which corresponds to considering the 

solution of the infinite dimensional IUB equation; and under suitable assumptions, 

including uniqueness of the argmax, the certainty equivalent and central information 

state controllers agree (Helton & James, 1999). 

Nonetheless, the nonlinear extension of the J[ co optimization problem was 

further thoroughly investigated in the recent literature in the L 2 framework through 

polynomial expansions (Foias & Tannenbaum, 1989); dissipative techniques/nonlinear 

differential game arguments (Ba~ar & Bernhard, 1991); in terms of nonlinear matrix 

inequalities (Lu & Doyle, 1995); while linear H 00 methods were also applied to 

systems perturbed by nonlinear uncertainties (Becker, el al., 1993). 

Differentiable/incremental and the weighted incremental norms were also used to 

extend the }{ co approach to the nonlinear context (Georgiou, 1993; Formion, el al., 

1999; and Fromion, el af., 2001); as well as receding-horizon methodology is extended 

to design }{ 00 robust controller in Magni, el al., (2001). 

1.4.3. The II~ Control Problem 

The II 00 goal is usually as follows: Given a nominal LTV description of the 

control plant together with bounds on an appropriate uncertainty model and on the 

performance objectives, design a LTV controller thaI meets at least the nominal 
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performance requirements and that achieves robust stability. The fact that an 

optimization is involved enables the designer a certain amount of scope to investigate 

the inherent trade-offs between performance and robust stability, and to get some idea 

of how good a given design is, relative to what is theoretically possible. 

The H 00 optimization can be applied in a variety of different ways, so it is 

helpful to have a generalized framework in which most controller design problems can 

be formulated. Such a framework has been developed and widely researched, and is 

shown in Figure (1.1), 

Figure 1.1.: The H 00 Schematic Representation. 

where the continuous-time system or plant, L, considered in this thesis is linear time­

varying and is studied in the state-space domain. Note that L contains the nominal 

dynamics of the plant, combined within an interconnection which in general will 

incorporate one or more suitable uncertainty model structures and performance goals; as 

will become clearer in later chapters. 

The two kinds of inputs to the system are: 

• u is the control input to the system, containing all the inputs that are generated by the 

controller, 

• w is the exogenous input to the system, containing all the other signals entering the 

system (in particular the reference and the disturbances inputs acting on the system); 

and 

with the following outputs: 

• y contains the measurement outputs (used to choose u, the control input; which in 

turn is the tool to minimize the effect of w on z), 

• z contains all the outputs to the system that must be regulated and whose dependence 

on the exogenous disturbance input w is to be minimized. 

The mapping from y to u is usually constrained such that the closed-loop 

system is internally stable - a natural requirement that ensures the states do not become 
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too large while regulating performance requirements. Whereas the closed-loop effect of 

w on z is theoretically measured in terms of the supremum over all disturbances of the 

quotient of the energy that is flowing out of the system, and the energy flowing into the 

system; or in other terms by the H 00 norm. 

1.5. Prerequisites 

A number of mathematical preliminaries, results and techniques have been 

compiled in Appendix A for ease of reference. For an understanding of the materials 

contained in the chapters to follow the reader is required to have such mathematical 

preliminaries including an understanding of the description and analysis of dynamical 

systems in particular. Note that the treatment of these prerequisites are briefly compiled 

in the appendix, and can be considered as incomplete; in the sense that only the 

materials used in this thesis are covered. It is, however, assumed that the reader also has 

the necessary background knowledge in relation to the following alphabetically-sorted 

topics: 

• Advanced linear algebra 

• Basics of ordinary and partial differential equations and calculus 

• Classical control theory 

• Functional analysis 

• Linear operators norms theory 

• Mathematical analysis 

• Matrix algebra 

• Robust control theory 

1.6. Aims and Structure of this Research 

Theforemost objectives of this research are: 

(i) To solve the nonlinear deterministic robust regulator and/or tracking control 

problem for the general nonlinear form (1.5) under the presence of exogenous 

disturbance inputs. Where the affine state-space representation is considered in the 

form: x(t)=A(x,u)x+B(x,u)u+w(x,t) . 
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(ii) To extend the nonlinear H ex> optimal control problem by means of the 

approximating sequences of linear-time varying systems and solving the 

corresponding Riccati equations based on the defined H ex> -norm given some 

robust performance criteria. More specifically, this objective is met by studying 

the LTV systems of the form: 

x [i) (t) = A( X [i-I) (t),u [H) (t))x [I) (t) + B( X [/-1) (t),u [i-I) (t))u [i) (t); 

and applying classical deterministic linear H ex> theories to these approximations. 

(iii) To validate the theories by means of numerical simulations of the controlled 

responses of some practical nonlinear dynamical systems. 

This thesis is structurally divided into five main parts as listed below. 

PART I: GENERAL INTRODUCTION 

This part constitutes the introductory first Chapter. 

PART II: ROBUST STABILIZATION 

Chapter 2 introduces the reader to some of the basic theoretical robust control 

techniques for continuous-time and finite-dimensional deterministic systems; where 

particular attention is nominally placed on the general class of control problems that 

involve linear time-varying plants. It is recommended, however, to skip to the 

succeeding chapter provided that the reader is already acquainted with such concepts. 

In Chapter 3, the deterministic robust control problem is studied for generally 

perturbed linear time-varying systems. By means of a few realistic mathematical 

constraints, robust stability is proved while guarantying a robust performance of the 

devised state-feedback controller. The results are then extended to nonlinear systems. 

For a clearer insight of the proposed hypothetical nonlinear theory, a nonlinear 

oscillator example is provided to clarify the stated concepts. 

PART III: DETERMINISTIC nXJ CONTROL 

Chapter 4 is devoted to give a deeper technical insight behind the H <Xl control 

problem for linear time-varying systems. It also serves as an introductory chapter to the 
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continuous-time linear time-varying state-regulator optimal control problem while 

setting up the basic mathematical results that are needed in subsequent chapters. 

Chapter 5 extends some already published concepts, which appeared in the 

literature for the H 00 control of semi-linear systems in Hilbert spaces, to nonlinear 

systems. It turns out that only a full-information Riccati operator equation needs to be 

solved while completing the square to guarantee stability of the given state-affine 

disturbed nonlinear system. The renowned classical inverted pendulum on a cart control 

example is considered as a practical realization of the provided theory. 

While in Chapter 6 the approximation theory and the Approximating Sequence 

of Riccati Equations are directly applied to extend the Min-Max finite-horizon linear 

time-varying H 00 control problem to its nonlinear complement. This chapter is in fact a 

straightforward simple extension that yielded very promising practical results to the 

considered applications herein. 

PART IV: PRACTICAL ApPLICATIONS 

Although the deterministic robust control theory offers a range of wide 

applicability to problems from diverse areas of engineering, economics and 

management science only a few practical examples are included in Chapter 7 making 

use of the theories provided in Part II and III. The applications under study involve the 

stabilization of a magnetic levitation steel ball, the control of a highly nonlinear 

helicopter model at hovering condition, controlling the wing rock phenomenon 

including yawing motion, and the stabilization of a hypersonic aircraft about the trim 

condition. The computer simulated results of the developed theories, when applied to 

both simple as well as highly complex nonlinear systems, were shown to be equally 

very effective in providing efficient control signals. 

PART V: CONCLUSIONS & FURTHER RESEARCH 

The final part of this thesis consists of Chapter 8 where the reader is presented 

with a discussion about the contributions, results and propositions given in this research. 

Also some recommendations are specified as a possible extension to this research. 
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ApPENDICES 

While Appendix A is devoted to providing some essential background material 

relevant to this thesis' content and for the reader's convenience; Appendix E, introduces 

a theoretical study into representing nonlinear Ordinary Differential Equations by linear 

Partial Differential Equations, thus giving another possible approach to robust control of 

nonlinear systems (see for example [Curtain & Zwart, 1995]). 



PART II 

ROBUST 

STABILIZATION 
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CUAPTER2 

Robust Control of Linear Time-Varying Systems 

2.1. Introduction 

The mathematical techniques of the classical robust control theory have been 

elaborately discussed by many authors (see, for example, [Marino & Tomei, 1995; and 

Zhou, et al., 1996]). The approach of this chapter will be to introduce robust control 

concepts in a general setting and to summarize some of the main results for the 

continuous-time linear time-varying systems; for completeness. In §2.2 the robustness 

analysis control scenario is considered. A summary of some of the classical robust 

control mathematical methodology for linear time-varying systems is presented and the 

necessary and sufficient conditions for robustness are also given in §2.3. An account of 

the robustness control methodologies is presented in §2.4. While in §2.5 the 

mathematical treatment of the state-regulator robust control problem associated with 

dynamical systems is defined and summarized. 

2.2. Robustness Analysis 

In order to define the significance of robustness analysis in control theories a 

scenario is proposed in example (2.1); which can be found in Stoorvogel (2001). 

EXAMPLE 2.1. Assume a paper-making machine having four inputs: water-diluted 

wood-pulp, water, pressure and steam. The simplified process consists of having the 

water pressed out of the mixture to allow for the fibres' web formation to dry on steam­

heated cylinders; and where the final product is paper. More precisely, there are two 

outputs going out of the plant: the thickness of the paper and the mass of the fibres per 

unit area (indicating the desired paper's quality). Thus the control objective is to have 

both outputs regulated about some desired values while deviations from such values are 
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kept as small as possible to ensure a tolerable paper production to meet the ISO 

specifications. 

o 

The first step is to find a mathematical model describing the dynamical 

behaviour of the paper-making plant. The second step is to use the classical 

mathematical tools to find suitable inputs to the plant based on a subset or all output 

measurements. An inexact or rather simple plant description is inferred to allow for the 

mathematical manipulations of step 2 to be implemented. 

Once these inputs are identified they are applied to the plant and not to 

mathematical model. But because the mathematically predicted plant behaviour might 

significantly differ from the actual system response; the inputs will in general not be 

suitable for the plant and the obtained behaviour might be completely surprising. llence. 

it is vital to ensure that the control law is robust vis-A-vis the simplicity and inaccuracy 

within the mathematical model and the real dynamical model. 

This realistic constraint leads to the so-called 'robustness analysis' of the plant 

and the control action. It is, hence, desirable to ensure that the system stability will 

tolerate against structured and/or unstructured uncertainties; i.e. the robustness of the 

given plant is maintained over its entire operating range regardless of perturbations. 

2.3. The Concept of Robust Control 

2.3.1. The General Robust Control Problem 

In pure model-based robust control (such as, e.g., the sliding control 

methodology) the robust controller is designed based on the consideration of both the 

nominal plant and some characterization of the model uncertainties; and the concept of 

robust control can be stated as follows: Given the time-varying operator MEL ( f 2) 

and any bounded set of operators A c L ( f 2) , consider Figure (2.1) for any L!. EA. 
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= w 

Figure 2.1.: Interconnection of a Nominal Plant, M , with an uncertainty Block, Il. 

The closed-loop map from w to z is given by 

z = (I - Mil) -I Mw. (2. 1) 

Robust stability is related to the existence of the inverse of the (I - Mil) term in 

(2.1) for each Il E A: the nominal requirement is that (I - Mil) is invertible. However, 

if the system is additionally required to be well-defined when any exogenous input 

enters the uncertainty block then this requirement necessitates the invertibility of 

(I - Mil) on all of R. 2; leading to the closely related concepts of uniform stability and 

robust stability. 

DEFINITION 2.1. An operator M is robustly stable to the bounded set of uncertainty 

operators, A, iffor every Il EA, the inverse, (I -Mil )-1, exists. 

DEFINITION 2.2. An operator M is uniformly robustly stable to the bounded set of 

uncertainty operators, A, if in addition to definition (2.1), (i.e. the operator M is 

robustly stable), the following holds 

sup II( I - Mil) -III < 00 • 
6EIl 

(2.2) 

There are numerous robust control definitions and mathematical manipulations 

to recast the above-mentioned concept. In their paper, Hinrichsen, et al., (1989), for 

example, the authors introduced the concept of stability radius for time-varying linear 

systems where invariance properties of the stability radius are analysed for the group of 

Bohl transformations. The relationship between the stability radius, the norm of a 
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certain perturbation operator, and the solvability of a non-standard differential Riccati 

equation were also explored in Hinrichsen, et al., (1989). 

Another approach to robust control analysis for linear time-varying systems is 

the operator theoretic line of attack which is self-contained in Feintuch (1998), and 

where results from the theories of Toeplitz operators and Nest algebras lead to the input­

output operators definitions of LTV systems. Robustness in that case is considered from 

both a fractional representation and a 'time-varying gap' metric viewpoints; but is 

beyond the scope of this thesis. 

2.3.2. The Necessary and Sufficient Conditions for Robustness 

The necessary and sufficient conditions for the robustness of linear time-varying 

systems with structured norm-bounded uncertainty have already been considered in 

Khammash, (1993); and will be revisited in this section. 

The problem of robust stability for this class of systems is studied by 

considering, M, the part of the system resulting from the interconnection of the 

nominal plant(s) and controller(s) in Figure (2.2). 

M 

Figure 2.2.: Stability Robustness Problem for Linear Time-Varying Systems. 

AI is a linear map, but is allowed to be time-varying. It is also assumed to be causal. 

Connected to Mare n perturbation blocks, ~ 1''' ., ~ n' where each block, ~;, is linear 

and norm bounded (the norm is the induced Loo norm). Without loss of generality it is 

also assumed that II~,II ~ 1. Therefore, each ~; belongs to the class 
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A {A A' . I I d II~ull", < I} Ll:= Ll: Ll IS stnct y causa, an ~~r M. - . 
Following a vector notation, the class of admissible perturbations is 

:J) ( n ) := { ~ = diag ( ~ 1 , ••• , ~ n ) : ~ j E Do} . 
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(2.3) 

(2.4) 

THEOREM 2.1 (Necessary and Sufficient Conditions for Stability Robustness of Time­

Varying Systems). Given an interconnection of a linear time-varying stable system M 

and n norm-bounded perturbation blocks as in Figure (2.2) over the space of the set of 

all real valued function on [0,(0) , the following are equivalent: 

1) The system in Figure (2.2) is robustly stable. 

2) (I - M ~ tl is L 00 -stable for all ~ E.2'( n). 

3) The system of n inequalities: x i~ IIMY)XII, i=l, ... ,n; 

where X = diag (x \''''' X n) has no solution in (IR + ) n \ {O} which holds for all 

T>O. 

4) For some T> 0, sup, p ( M,(7')) < 1; where p (-) denotes the spectral radius and 

A (1') 
M, := 

5) inf REJR inf no lip ( R -I M(T) R )11 < 1. 

PROOF: See Khammash (1993). 

2.4. The Robustness Methodologies 

(i.e. belonging to the space ~) 

• 

Starting in the early 1960s, the classical approach to the robustness problem, 

discussed in §2.2 & §2.3, was with the assistance of the Linear Quadratic Gaussian 

(LQG) theory (see [Stoorvogel, 2001; and Garteur, 1997]). In this approach the 

uncertainty is added as an extra input to the system and is modelled as a white noise 

Gaussian process. The major drawback with this approach is that white noise cannot 

always accurately model this exogenous disturbance. 
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Although the measurement noise can, in theory, be quite suitably described by a 

random process, parameter uncertainty can not; in view of the deterministic nature of 

the error involved. Furthermore, the size of the errors in the parameter uncertainty is 

relative to the size of the inputs and can only be modelled as an extra input in a non­

linear framework_ a fact which adds to the unsuitability of the LQG techniques in 

dealing with robustness issues. 

In the last few years several approaches to robustness have been studied mainly 

for one goal: to obtain internal stability, where instead of trying to obtain this goal for 

one system, it is necessary to be fulfilled for a class of systems simultaneously. It is then 

hoped that a controller which stabilizes all elements of this class of systems also 

stabilizes the plant itself; leading to the convenient formulation of the post-modern H co 

robust control theory which resulted in many positive developments in robust control 

theory. 

2.5. Linear Time-Varying Systems with Quadratic Cost 

Because an H co optimal control problem can be reduced to the problem of 

designing a state-regulator for a linear system with quadratic constraints it is essential to 

cover this regulator problem in this section. The state-regulator problem for a multiple­

input multiple-output dynamical system is a special case of the general class of 

problems where the linear time-varying systems are subject to quadratic costs. In this 

section, the general problem is stated and the physical motivation behind the choice of 

the cost function is outlined; then the results for the finite-time linear-quadratic 

regulator problem are presented. While the tracking problem (servomechanism type of 

problems) can similarly be considered, it is not covered in this thesis. For the complete 

proof and a more elaborate discussion on the subject area considered in this section, the 

reader is referred to any standard textbooks in the field (see e.g. [Slotine & Li, 1991 D. 
First, consider the following system equations for a continuous-time linear time­

varying undisturbed system, 

x(t) = A(t)x(t)+B(t)u(t), 

y(t)=C(t)x(t), 

(2.5) 

(2.6) 
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where x(t) is the state, u(t) is the control input, y(t) is the measured output, and the 

system matrices, A (t), B(t) and C(t), are matrices of appropriate dimensions. Let 

z(t) denote the desired output, and define e(t) = z(t)- y(t) to denote the error. 

Define the quadratic scalar performance index or cost functional by, 

1 1 ' f 
J(u)=-(e(t f ),Fe(t f ))+- f(e(t),Q(t)e(t))+(u(t),R(t)u(t))d', (2.7) 

2 2, 
o 

where (-,.) indicates the inner-product, and to is the initial time and t f is the final 

time. 

ASSUMPTION 2.1. The weighting matrices F and Q(t) are positive semi-definite. 

ASSUMPTION 2.2. The weighting matrix R (I) is positive-definite. 

Each term in the cost functional mathematically captures various physical 

specifications. The first term ~ (e(t),Q(/)e(/)) is nonnegative for all e(t) and is zero 

for e (I) = 0; implying that the consequence of the quadratic nature penalizes large 

errors much more severely than small ones. Similarly, ~(U(t),R(t)U(/)) penalizes the 

system more severely for large control efforts compared to small controls. It is worthy 

noticing that the control effort is not constrained point-wise in time. While assumption 

(2.2) on R (I) ensures the physically realistic constraint that the cost of the control 

effort is always positive for u (I) :;to O. Finally, the so-called terminal-cost, 

~ (e(1 f ),Fe(t f))' guarantees that at the terminal time t f' the error e(t f) is small. 

It is now possible to tum to the state-regulator control problem. The solution of 

this problem leads to an optimal feedback control system. In different terms, this is the 

property where the state vector components, x(t), are kept as small as possible near 

zero without excessive expenditure of control effort or energy. In this particular case 

C(/) = I, and the system Equations in (2.5) & (2.6) reduce to, 
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X(t) = A (t )x(t) + B(/)u (I), 

y(t)=x(t). 

x(to)=xo; (2.8) 

(2.9) 

Because the desired output, or state, is to be maintained at zero then z (t ) = 0, 

and y (t ) = x (t ) = -e (t ). The cost function (2.7) then reduces to, 

1 1 ' f 
J I (u) = -( x(t f ),Fx(t f )) +- f(x(t ),Q(t )x(t)) + (u (t), R (/)U (t ))dt .(2. 10) 

2 2, 
o 

The solution to this problem has been classically obtained by resorting to the 

methods from the calculus of variation. Conveniently, a scalar function, ll, 
alternatively known as the Hamiltonian, can be defined as follows, 

II (x(t ),u (I ),A (t ),1) = L (x(t ),u (/),1) + (A (t ),f( x(t ),u (I ),/)), (2. 11) 

where L denotes the integrand in the cost function, A (I) can be thought of as a 

Lagrange-multiplier imposing that dynamical system (2.8) is satisfied point-wise in time 

when minimizing the cost function; and the right-hand-side of (2.8) is in fact 

f(x(t),u(t),/) representing the open-loop dynamics of the system. Dy excluding the 

dependence of the various terms on time for brevity, the Ilamiltonian in (2.11) therefore 

reduces to, 

II (X,U,A) = ~ [(x,Qx)+(u,Ru) J+ (A,Ax+ BU). (2. 12) 

A set of conditions known as the Euler-Lagrange equations can be obtained by 

considering the variation in J I due to deviations in the control law u (I), for fixed 

initial and final times, 10 and t f' and choosing the multiplier functions A (I) sueh that 

the coefficients of the variation in x disappear. So these Euler-Lagrange equations are 

given by, 

X(/)= oil =Ax+Bu, 
OA 

. all (af)T (OL)T A(t)=--=- - A--
aA Ox ox' 

where the control U (t) is determined by the optimal trajectory, 

oll =0. 
au 

(2. 13) 

(2. 14) 

(2. 15) 
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The boundary conditions for the Euler-Lagrange equations are split, i.e. some are given 

for t = to and some for t = t f' This problem is known as the Two Point Boundary 

Value Problem (TPBVP) and is expressed as 

x(t 0) given; 

x(t 0) = Fx(t f)' 

(2. 16) 

(2. 17) 

Most of the difficulty in solving the TPBVP anses from the boundary 

conditions; but in the case of the state-regulator the problem can be solved and the 

optimal control can be obtained. The optimal control is unique and is given by, 

u (t) = - R -I (t) B T (t ) P (t ) x (t ) , (2. 18) 

where the symmetric n x n matrix, P (t), is the unique solution of the Riccati equation 

(2.19) satisfying the boundary conditions, p(t / ) = F . 

P(t)=-P(t)A(t)-A
T 
(t)p(t)+P(t)B(t)R -I(/)B T (t)P(/)-Q(t). (2.19) 

It is obvious that the control is a linear time-varying feedback of the state and that the 

solution of the Riccati equation is independent of the state. By integrating the Riccati 

equation, that is subject to the boundary condition p(t f ) = F , backwards in time, the 

solution, P(t), of the Riccati equation is obtained. Figure (2.3) represents the block 

diagram of the optimal tracking configuration where the state-regulator configuration is 

contained by the dashed box. 

THEOREM 2.2 (LQR Optimal Control). Given the linear system (2.8) and the quadratic 

cost functional (2.10) where u (t) is unconstrained, the final time, t f' is specified, F 

and Q(t) are positive semi-definite, and R (t) is positive-definite; then a linear time­

varying optimal state-feedback exists and is unique. This feedback control is given by 

(2. J 8) where the n x n symmetric matrix p(t) is the unique solution of the Riccati 

equation (2.19). The state of the optimal system then becomes the solution of the linear 

differential equation: 

X(/) = [ A (t) - B (t) R -I (I) B T (I) P (I) ] X(/) , 
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REMARK 2.1. The optimal cost is a scalar function given by 

J ( x 0 ,t 0) = .!. x~ P (t 0 ) x 0 ' 
2 
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which is the solution of the Hamilton-lacobi-Bellman equation (Athans & Falb, 1966) . 

• 

z(t) 

Figure 2.3.: The State-Regulator Control System. 

There are, however, certain limitations in the calculus of variations approach 

discussed above making it unsuitable for application to problems of considerable 

engineering importance. Such limitations include the differentiability of L that restricts 

important choices for the cost functional, along with the unsuitability of this approach in 

handling inputs that are constrained point-wise in time. Accordingly, the Pontryagin's 

Minimum Principle resolved such limitations (for a mathematical treatment refer to 

[Athans & Falb, 1966; and Banks, 1986a] and the references therein). It is important to 

note that the Pontryagin's Minimum Principle, also known as Pontryagin's Maximum 

Principle, only gives the necessary conditions to be satisfied by the optimal controller; 

while it does not suggest a method to obtain such a control. In fact, the existence of the 

optimal controller that would not necessarily be a state feedback is not even guaranteed 

by the Pontryagin's Minimum Principle. 

It is for this reason, along with the difficulty in analytically solving the time­

optimal problems with the Pontryagin's Minimum Principle, that it is often preferred to 

formulate problems for linear time-varying systems with quadratic costs. Not only is 

this problem mathematically tractable using quadratic costs but it also results in a linear 

state-regulator optimal feedback controller; and hence very convenient for practical 

implementations. 
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CHAPTER 3 

Robust Stabilization of Disturbed Nonlinear Plants 

3.1. Introduction 

The fact that most systems in nature are nonlinear dynamical entities has 

concerned scientists as well as engineers over the last few decades in an attempt to 

devise the best control action. Unfortunately, as yet, even though modern control 

theories, and post-modern control methodologies, have become very sophisticated, there 

is no one best solution for this problem, and indeed a trade-off will usually be the case. 

There has, of course, been a great deal of work on both structured and 

unstructured uncertainties in the literature (see, for example, [Feintuch, 1998; 

Stoorvogel, 1992; and Slotine & Li, 1991]); and the stabilization of uncertain dynamical 

systems has also received lots of attention during the last few decades (see [Francis, 

1987; and Petersen & Urgrinovskii, 2000]). However, it is interesting to discern that 

nonlinearity and time-variations are often ignored in dealing with systems arising in 

practice. Nonetheless, due to the desire to achieve better quality and accuracy in a wide 

range of applications, there is an increased interest in including those particular effects 

when analyzing a system, or when designing controllers and observers. Hence, the main 

motivation behind this chapter is to consider a different mathematical technique to 

consider nonlinear time-varying plants in the presence of unstructured disturbances 

under the roof of the robust regulation concepts that were discussed in the preceding 

chapter. As it will become clearer, this proposed technique, straightforwardly employs 

the Approximation theory to guarantee the robust asymptotic stability of the devised 

feedback control system. 

The nonlinear control systems considered in this chapter are modelled via the 

standard finite-dimensional deterministic ordinary differential equations of this general 

form: 
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x(t) = /(x(t), w(t),u(t)); 
y(t)=h{x(t)) 
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(3. 1) 

in which x (t) E 9{ n is the state, x 0 is the initial condition, u (t): ~n + ~ ~H m is the 

control input, w (t ): 9{ + ~ 9{ P is the exogenous disturbance input, and y (t ) E ~H q IS 

the output vector of the controlled variables. 

But in order to consider the finite dimensional multi variable systems (3.1) while 

applying the Approximation theory, the linear time-varying systems will be first 

considered and stabilized by means of a conventional pole assignment technique. 

Accordingly, this chapter is organized as follows; in §3.2, the mathematical modus 

operandi is introduced to regulate and control the uncertain linear time-varying plants. 

While in §3.3, the results are extended to include the more general nonlinear case 

represented in (3.1). In §3.4, the method is being validated via direct application to a 

simple example of a nonlinear oscillator; the aim of which is to clarify the previously 

stated concepts by the help of some simulated results. The chapter then winds up with 

some conclusions and recommendations in §3.5. 

3.2. Control of Linear Time-Varying Uncertain Systems 

3.2.1. Eigenstructure Assignment 

Since the control methodology that is used in the following sub-section is based 

on the conventional pole placement by state-feedback techniques; it is essential to give a 

very brief preface on some of the most important research efforts in this control area. 

For many years researchers have attempted to generalize the conventional notions of 

eigenvalues and eigenvectors for linear time-invariant systems to linear time-varying 

systems. Starting with Wu (1974) who proposed the extended-eigenvalue (X­

eigenvalue) and extended-eigenvector (X-eigenvector) notions and where the essence of 

being 'eigen-' was lost. Richards (1983) gave better understanding of performance and 

stability of linear periodic time-varying systems; a method that involved Floquet 

characteristic exponent. Kamen (1988) developed notions on poles and zeros for linear 

time-varying systems; and Zhu & Morales (1992) introduced a notion of co-eigenvalue. 
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Tsakalis & Ioannou (1993) extended the pole placement control objective to linear time­

varying plants. While an expanded version of the Frobenius form was established for 

multiple-input multiple-output cases in VahiSek & Olgac (1995). Choi, el al., (2001) 

introduced a novel differential algebraic eigenvalue theory for linear time-varying 

systems, and proposed an eigenstructure assignment scheme for this class of systems via 

a differential Sylvester equation. It can be concluded that research efforts in the pole 

assignment for regulating linear time-varying systems is quite vast and inclusive. 

However, it turns out that by means of a standard mathematical assumption on the 

feedback control law, as studied in the succeeding sub-section, a more clear-cut and 

transparent classical approach to this pole assignment problem of this class of systems is 

achieved. 

3.2.2. Pole Assignment for Uncertain Linear Time-Varying Systems 

In the sequel, the general class of continuous-time linear time-varying systems 

under the presence of disturbances is considered: 

X(/) = A (I )x(t) + B(t )u(t)+ w(t), 

y(t)=C(t)x(t). 

(3.2) 

Here x (I) is the state, u (I) is the control input, y (t) is the measured output, and w (t ) 

is the disturbance input. Also the system matrices, A (t ), B (t) and C (t ) , are matrices 

of appropriate dimensions. 

The memory-less linear state-feedback control law is given by, 

U(/) = -F(/)x(t). (3.3) 

By feeding back all the system states to achieve the desired improvement in the 

system performance, the closed-loop system can be obtained. That is by substituting the 

feedback law of (3.3) into the general LTV system in (3.2), yielding 

x(t)={A(/)-B(t)F(t))x(/)+w(t). (3.4) 

The general state-regulator control system block diagram is given in Figure (3.1). 
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U (I) 

Figure 3.1.: The Robust State-Regulator Configuration. 

where the feedback control matrix F(t) can be written as an additive term of both a 

constant part and a time-varying one: 

(3.5) 

ASSUMPTIONS: In order to choose and design the feedback control matrix shown above 

in (3.5), two assumptions need to be made. 

A.1. The input matrix can be written in this form: 

A(t)=A, +A
2
(t), 

A.2. The control matrix can be written in this form: 

B(t)=B, + B
2
(t); 

and where (A" B,) is a stabilizable pair. 

While assumptions A.I & A.2 hold, the constant part F I of the control matrix in (3.5) 

can be chosen to arbitrarily place the poles of the system following the standard concept 

of pole assignment methodology. 

Following this logical realm of thought, the closed-loop system of (3.4) can be written 

in this compacted format: 

x(t)=&Jx(t)+9(t) x(t)+w(t), (3.6) 

with a linear time-invariant ~a, 

(3.7) 

and a linear time-varying 9(t), 
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The solution, x(t), of (3.6) is known by means of the variation of constants formula 

(please refer to Appendix A); and is given by, 

I 

x(t) = ej.JI x 0+ Je ,.,(I-r) (a( r)x( r)+ w( r)) dr. (3.9) 
o 

This solution can be expressed in an alternative normative expression by direct 

application of the triangle inequality (please refer to Appendix A): 

Ilx(t)II~11 el~lxoll+ ~I eIO(I-r)11 (1Ia(r)llllx(r)II+llw(r)ll)dr. 
o 

ASSUMPTION: The uncertainty w(t) satisfies the following assumption 

A.3. given any E > 0 , then there exists a r; > 0 such that: 

Ilw(t,x )11 < Ellxll; 

for all Ilx(t )11 < r; . 

(3. 10) 

(3.11) 

REMARK 3.1. Assumption A.3 is a common and standard assumption in the robust 

control theory where the disturbance is bounded by the system's states (see e.g. [Slotine 

& Li, 1991 D. 

Now, suppose that for a given J.1 ~ 1 , the following inequality holds, 

(3. 12) 

Then by substituting equations (3.12) & (3.11) in the solution expressed by (3.10), the 

following norm-bounded inequality is reached, 

I 

Ilx(t)II~J.1e-wI Ilxoll+ fJle-W(I-r) (lla(r)ll+ E)llx(r)11 dr. (3. 13) 
o 

However, in order to obtain the best estimate for Ilx(t)ll, F 2 (t) can be chosen 

to minimize Ila( r )11; i.e. by setting: 

o fo' = minlla(t)ll· 
2 F 2(1) 

(3. 14) 
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Recall the measured output equation, y(t) = C(t)x(t), that can alternatively be 

written as, 

(3.15) 

Fittingly, it can be seen that by making use of (3.13), the output, y (t ), in (3.15) is 

bounded by 

I 

//y(t)lI::;e WI I/x(t)II::;.ul/xoll+.u f(//.9(r)//+ c)e T //x(r)// dr. (3.16) 
o 

But 119( r)II from (3.14) can be directly substituted in (3.16) while noticing that 

I 

IIy(t)II::;.u Ilx 011 +.u f( 8 F2 + C )y( r) dr. (3. 17) 
o 

By applying the Gronwall-Bellman Inequality (please refer to Appendix A), 

(3.17) can be re-written as: 

or the following form is also attained, 

(3. 19) 

Similarly, the norm of the input signal (3.13) can be manipulated by the 

Gronwall-Bellman Inequality, 

I 

I/x(t)I/::; JI e-wl //x all + f JI e -w (I-r) (8 f.' 2 + c )llx( r )11 dr; (3.20) 
o 

i.e. 

or 

(3.22) 
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THEOREM 3.1. The linear continuous-time dynamical systems in equation (3.2) under 

the presence of the disturbance w(t) in (3.11) and which is subject to the given initial 

condition x 0' is stabilizable provided there exists a constant F. and a time-varying 

F 2 (t),' such that w> .u (" f'2+ C ) if the initial state Xo satisfies .u Ilxoll < S'. 

PROOF: Given that .u~l (from (3.l2)) and .ullxoll<S', it follows that XoEjJ(O,S') in 

Figure (3.1); in other words, the initial state belongs to the open ball of radius S' and 

centre 0. 

At this instant, suppose that the solution x(t) does not remain in P(O,S'). By 

continuity, there is a first time T when Ilx (T; x 0 )11 = S'. By the remarks preceding 

theorem 3.1 , recall that: 

Ilx(t)II~.u IIxoll e(-W+P(Of'l+&))', 

for tE[O,T). Since .ullxoll<S', this implies that Ilx(t)II<S' on [O,T] gIven that 

OJ> .u ( "f'2+ C ), which is a contradiction. lIenee the solution always remains in 

P(O,S'), which means that equation (3.22) is true for all t, and asymptotic stability is 

reached. 

• 

Figure 3.1.: P(O,S'). 
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3.3. Control of Uncertain Nonlinear Time-Varying Systems 

By making use of the recently introduced Approximation theory that was 

discussed in the Chapter 1 and which replaces a nonlinear system by a sequence of 

linear time-varying approximations, classical linear control techniques can be applied to 

solve the general nonlinear robust control problem. 

In this section, the previous results of §3.2.2 are extended and applied to the 

general affine nonlinear dynamical systems represented in the state-space factored form: 

x(t) = A (x(t) )x(t) + B(x(t))u (t) + w(t), 

Y(/) = C(/)X(/) 

The feedback control law is given by, 

U(/):;; -F(x(t))x(t). (3.24) 

The following sequence of approximations can be introduced (see Banks & McCaffrey, 

1998) to the dynamics of generalized plant in (3.23) as follows: 

x til (I) = A( x [HI (I) )x [il (/)+ B( x [HI (/))U [il(/)+ W(/), with x[iI(1 0):;; Xo' (3. 25) 

Note that, 

(3.26) 

and 

(3.27) 

While the linear control law is given by: 

[il() F( [i-I I ()) [il() u t:;;- x 1 xl; (3.28) 

with 

F( X [i-II (t)) = F ,+F 2 (x [HI (1)); (3.29) 

for j ~ O. 

It is essential to note that the factored representation in (3.23) is non-unique and 

the approximating sequences (3.24) can also accommodate for extra control terms in 

A (x [i-I] (t ),u [H)(t)) and B (x [i-I) (I ),u [i-I](t)), for instance. 
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For equations (3.25 - 3.29), the first approximation in these sequences, that is 

when i = 0 is given by, 

x[O] (t) = A( xo)x [0] (t)+ B(xo)u [0] (t) + w(t), with x [0] (t 0) = xO' (3.30) 

Here, for the first approximation, x [i-I] ( t) has been assumed to be x 0 as in 

Banks & Dinesh (2000). This is indeed the obvious choice given that only the states are 

available for measurement at the initial time. A second assumption required for the 

initialization is that u [i-I] (t) = 0 for i = o. However, other values may be chosen 

depending on available information regarding the initial control. 

Now each approximating problem in (3.25) is linear time-varying (with the 

exception of the first approximation) and quadratic. Hence any classical linear control 

technique can be used to devise a control law; but for convenience the robust pole 

assignment discussed in the previous subsection will be followed. 

So by redefining, 

.9(t)=A 2 (x(t))-B I F 2 (x(t))-B 2 (x(t))F t-B 2 (x(t))F 2 (x(t));(3.31) 

and where, 

t5 F = min 11.9(t)ll· 
2 F 2 (X{I)) 

(3.32) 

for each x(t)ep(O,(); then Theorem 3.1 can be directly generalized to prove 

stability. 

THEOREM 3.2. The nonlinear perturbed dynamical system in equation (3.23) is 

stabilizable provided there exists a constant FI and a time-varying state-dependent 

F2 (x(t)) such that W>,u(t5F2+& ) if the initial state Xo satisfies ,ullxoll«. 

PROOF: This result follows directly by applying Theorem 3.1 to the sequence of linear 

time-varying systems in equations (3.23 - 3.29). 

• 
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3.4. A Worked Example 

3.4.1 Control of a Nonlinear Time-Varying Uncertain Oscillator 

In this section a simple example is included to illustrate the effectiveness of this 

robust control method. However, a different but more practical example of a magnetic 

levitation ball is considered in chapter 7, §7.1, that makes use of the same proposed 

methodology. 

Suppose that a given nonlinear oscillator under the presence of an exogenous 

disturbance input w(t) is given by: 

x(t)+ K( x(t))x(t)+ g( x(t)) == u(t) + w(t); (3.33) 

where 

(3.34) 

To get the phase-plane portrait of the given oscillator in (3.33), the following direct 

substitutions are used 

(3.35) 

and 

(3.36) 

alternatively, 

( xl(t)J (0 1 J(xl(t)J (OJ (OJ x
2
(t) = -3+a(x(t)) 2+r(x(t)) x

2
(t) + 1 u(t)+ 1 w(t). (3.37) 

Where, for simplicity, B(t) is assumed to be constant; this, in fact, occurs in a wide 

class of real-life systems which only have a nonlinearity in A ( x, u ; t ) ; i. e. B 2 (t ) = 0. 

So [} (t) in (3.31) simplifies to, 

(3.38) 

Recall from (3.26) that 

(3.39) 
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Then by comparing equations (3.39) & (3.37), the system matrices can be written as 

(3.40) 

and 

(3.41) 

Also recalling from (3.29) that 

(3.42) 

then 

(3.43) 

and 

F2 (x(t))={/3 (x(t)) 14 (x(t))). (3.44) 

The state-feedback control law is assumed to be of the form 

u(t) =-F(x(t))x(t); (3.45) 

or 

(3.46) 

Hence from (3.46) & (3.38), .9(t) is, 

reducing to 

.9(t)~( a(x(t))-Of, (x(t)) r(x(t))-~. (x(t))). (3.48) 

Intuitively, from (3.48), 11.9(t)II=O by choosing 13 (x(t))=a(x(t)) and 

14 (x(t))=r(x(t)). 

Consider that the desired poles of the unstable open-loop linear system (AI' BI) 

are AI and A2 • Then the characteristic equation is expressed by 

(3.49) 
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The Eigenvalues of the closed-loop state feedback system are roots of 

then 

It follows that 

Now by setting 

A =A,-B,F,; 

to find a bound on eAt. A can be diagonalized. 

p- I AP=A. 

Thus 

i.e. 

where 

So 

Assuming that the uncertainty w (t. x) is bounded by the state. i. e. satisfying: 

Ilw(t. x )11 ~ Ilx(t )11. 

for all Ilxll ~ 1 ; for example. 

Then from the general theory in §3.2.2. 

where 

needs to be satisfied; and where. 
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(3.50) 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

(3.60) 

(3.61) 



Chapter 3 

REMARK 3.2. 

UNIVERSITV 
OF SHEFF/Ell" 

LIBRARY 

a) If min(ReAI, ReA2) > Ilpllllp-lll, then uniform stability is guaranteed. 

41 

(3.62) 

b) In the case of a hard constraint on the control, say I u I < U max' then there will be a 

relationship between the size of the control, the size of the uncertainty and the initial 

state, since setting 13 (x(t))=a(x(t)) and 14 (x(t))=r(x(t)) might be 

impossible. 

3.4.2. Simulations and Results 

Recall the nonlinear oscillator of equation (3.37), 

Then from the discussion in the previous section, §3.4.1, the closed-loop Eigenvalues 

can be placed at 

Al =-4 and A2 =-1. (3.64) 

And so (3.52) reduces to, 

11=1 and 12 =7. (3.65) 

By choosing: 

13 (x(t))=a(x(t))=acos(x(t)), (3.66) 

and 

b 
14 (x(t))=r(x(t))= l+(x(t)Y; (3.67) 

where a and b are constants chosen to be 2 and 5 respectively. Then by substituting for 

the control law of equations (3.65 - 3.67) in the state-space representation of the 

nonlinear oscillator (3.63), this alternative form is realized, 
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(3.68) 

Consequently, under the presence of white Gaussian noise w(t) and with initial 

conditions, say, 2 and 2, Figure (3.2) is obtained using MATLAB®. On the shown time 

interval from 0 to 7 seconds, it is obvious that the system is unstable . 

... 
i \ 
! ' 

~~---T----+---~----~----~---+--~ 
T-.l. ." 

Figure 3.2.: The unstable nonlinear oscillator. 

However, the disturbed nonlinear dynamical system can be stabilized by correct 

choice of the design parameters, II and 12 which are manipulated by hand. Figure 

(3.3) shows the controlled nonlinear oscillator for one plausible choice of II = 5 and 
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\ 

" \ 

\~ I 

.lSU.!-----!-----".----+---------!---+------i------{ 

Figure 3.3.: The stabilized nonlinear oscillator. 

3.5. Concluding Remarks 

It is known that eigenvalues and eigenvectors of a linear transformation (of its 

matrix representation) play very important roles in the analysis of linear time-invariant 

dynamical systems; but it is also well known that the eigenvalues of a linear time-

varying A (I) do not determine stability of the given dynamical system (Choi, el af. , 

2001). However, in this chapter, it has been shown that, by means of some standard 

mathematical inequalities, robust stability can be established for the general class of 

continuous-time multiple-input multiple-output dynamical systems. 

Furthermore, in this chapter the introduced linear time-varying robust 

stabilization technique was further extended to study nonlinear dynamical systems in 

the presence of unstructured uncertainty by means of the approximating sequences of 

linear time-varying problems. The proposed stabilization technique, however, relied 

heavily on the pole assignment and the eigenvalue notions; and more sophisticated 

classical control theories (such as the H 00 control methodology) can relax the proposed 

assumptions, and yield better performance requirements. 

It is to be noted that, as expected, there is a compromise between the control 

signal, the system's parameters, the size of the disturbance and the poles of the closed-



Chapler) 44 

loop system. This technique is simple to implement compared with geometric methods 

and requires mild conditions such as the local Lipschitz continuity condition. The 

drawback, however, is that the time-varying nonlinear state-dependent matrix A (x(t)) 

is assumed to be divisible into a constant linear time-invariant part and a nonlinear time­

varying one which might also be control dependent (i. e. A (x (t ), u (t ), t ); and as a 

remedy one can apply the approximation theory to include a wider class of systems (i.e. 

A(x[i-ll(t),u[i- IJ (t))). In short, by bounding the uncertainty, a state-feedback control 

can be obtained which ensures stability and robust performance. 



PART III 

DETERMINISTIC 

HooCONTROL 
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CHAPTER 4 

The Hoo Control Problem: A State-Space Approach 

4.1. Technical Introduction 

This chapter provides some preliminary but well-established results for the 

classical linear dynamical plants which follow the conventional modem state-space 

description, 

x ( t ) = A ( t ) x ( t ) + B ( 1 ) u ( I) + E ( I) W ( 1 ) , x (/0 ) = x 0 'j 
Z (I) = C 1 (t) X(/) + D 12 (I) u (t) + D II (t) W(/), 

Y ( t ) = C 2 (I) x ( t ) + D 22 (I) u ( I) + D 21 (t ) w ( t ) ; 

(4. 1) 

In which x (t) E IR n is the state, x 0 is the initial condition of the system, 

u (I) : IR + ~ IR m is the control input, W(/): IR + ~ IR P is the exogenous disturbance 

input, y (t) E IR q is the measured (or sensor) outputs, and Z (I) E IR q is the regulated 

outputs and sometimes called a penalty variable which may include a tracking error; i.e. 

Z(/) is the difference between the actual plant output and its desired reference 

behaviour, expressed as a function of some of the exogenous variables W(/), as well as 

a cost of the input u (I) needed to achieve the prescribed control goal. The system 

matrices, in the quadruple representation, (A, B, C 2 and D 22)' are assumed to have 

entries that are continuous functions of time; with a stabilizable (A, B), and detectable 

A few remarks on the feedthrough, or throughput, matrix, D 22 (t), appearing in 

the measurement output equation, y(t): 
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• Often the feed through happens to be a zero matrix as it is common in any given 

physical plant. 

• However, adding a feedthrough term to the truncated finite-dimensional mathematical 

and physical model compensates for the neglected dynamics in this particular model, 

which is important in ensuring the stability of the closed-loop response of the system. 

• In fact, this direct feedthrough term is related to the 'non-dynamic' variables of the 

system as pointed out in Verghese, et al., (1981); and is usually incorporated for 

robust H 00 performance requirements, if desired. 

As concisely described in Chapter 1, the H 00 techniques are devoted to the 

robust stabilization and control of systems affected by bounded energy inputs; i.e. by 

the disturbances w (t). Realistically, the perturbations affecting any real plants are 

mathematically modelled as either additive perturbations; or multiplicative perturbation 

at the input or output and are schematically represented in Figures (4.1) & (4.2) 

respectively; along with perturbations in the realization of the system. Note that the 

multiplicative perturbations at the input refer to sensor(s) uncertainty while the 

multiplicative perturbations at the output suggest actuator(s) uncertainty. 

Lerr 

u L .. + y 
~ 

Figure 4.1.: Additive Perturbations. 

Lerr 

u + L y 

Figure 4.2.: Multiplicative Perturbations at Input (or output). 
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In the above interconnections in Figure (4.1) & (4.2), Lerr is some arbitrary system 

representing the uncertainty affecting the original dynamical plant, L, and is by 

definition, unknown. Note that the unstructured uncertainty is only characterized by an 

upper bound on its magnitude, but no detailed information on its origin from the 

different plant parameters is available. This implies that no information is available 

about the form of the perturbation matrix. 

Each of these three types of uncertainties can be cast as an H ex) control problem 

(see [MacFarlane & Glover, 1990; Vidyasagar, 1985; and Hinrichsen & Pritchard, 

1990]). In general multiplicative perturbations as well as perturbations in the realization 

of a plant often result in the so-called singular H ex) control problems. Singular 

problems simply mean that the feedthrough matrix between the control input and the 

controlled output, D 22 (t), in not full column rank; in this case the original finite-

horizon state-feedback H <Xl control problem for linear time-varying systems, for 

instance, is equivalent to another H ex) problem related to a reduced order system. In 

their paper, Amato, et al., (2000) suggested an iterative reduction procedure to render 

the matrix full column rank; and where the trivially reduced order system is non­

singular, or regular, and can be solved by standard techniques. 

Once an H ex)- norm bound has been decided, provided a solution exists, the 

computational burden associated with finding all H <Xl controllers is essentially the same 

as that required in solving the linear quadratic Gaussian regulator problem discussed in 

§2.5. As in the deterministic optimal control theory, H ex) control problems in which 

perfect information is assumed may be solved using a single Riccati equation with 

dimension equal to that of the original system; while the output-feedback problem often 

requires the solution of two Riccati equations; known as the 'two Riccati equation' 

formula (Limebeer, et al., 1992). 

However, in this thesis only regular deterministic state-feedback II ex) problems 

are considered since singular problems can in principle be reduced to the former general 

class of problems. Accordingly, this chapter is organized as follows, in §4.2, the Hex) 

finite-horizon case is summarized for the finite-dimensional linear time-varying 
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continuous-time plants. Also a few practical examples from the literature that make use 

of the established H 00 methodologies are revealed in §4.3. 

4.2. The Finite-Horizon Hoo Problem 

The classical, relatively simple, ideas of the Linear Quadratic optimization were 

used in a time-domain treatment of the standard H 00 problem in Tadmor (1993); 

however, to clarify the standard H 00 problem, the finite-horizon case under the same 

LQ concepts, as in Tadmor (1990), is revisited in the discussion to follow. For a more 

elaborate discussion with further technical details the reader is referred to Tadmor 

(1990) where the author treats both the infinite-horizon time-invariant case and the 

finite-horizon time-varying one under the generic Linear Quadratic optimal control 

approach. 

w z 
.I S: a Linear System I 

U : K: a Linear Compensator :1+--Y_--1 

Figure 4.3.: Pictorial Description of the Standard Problem. 

Given the pictorial set-up of Figure (4.3), the designer's goal is to minimize the 

closed-loop effect of the disturbances w on the output z by an appropriately chosen 

compensator K. This impact is measured in terms of the induced operator norm relative 

to L 2 signal norms. In other words, the closed-loop stability must be satisfied by means 

of an optimal Yo' 

_. Ilzll 
Yo -mmmax-il II· 

K WEL 2 w 
(4.2) 

Rigorously, (4.2) can be expressed alternatively by the following definition, given 

y E IR, 

(4.3) 
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where x 0 is the initial state in Sand z is the output trajectory corresponding to the 

initial state, w is the disturbance and u is the control input. Note that J r in (4.3) is a 

quadratic form of its three variables. 

REMARK 4.1. r > r 0 if and only ifthere exists some internally stabilizing compensator 

K such that J r (x 0 = 0, W, U = Ky) becomes a uniformly positive definite form in w, 

such that, 

(4.4) 

for some fixed O;f= ° and all W E L 2 • 

This can be written as a MinMax problem, 

Min Max J r (x 0' W, u) , 
weL 2 ueL2 

(4.5) 

where good controls increase J r while bad disturbances penalize it. 

Let T be a bounded operator on L 2' having a linear time-varying admissible feedback 

operators that can be realized as input-output mapping of the following linear systems, 

over [to,/I]': 

P=MP+Nj, 

g =QP+Rj; 

where M,N,Q, and,R are Loo matrices. 

(4.6) 

(4.7) 

ASSUMPTIONS: Recall the dynamical system (4.1) that is restricted to some finite-time 

interval [/0' 11] where without loss of generality the following assumptions hold: 

A(i) D 22= 0, 

A(ii) D 11= 0, 

A(iii) D'12 [D 12' C 1] = [0,1], 

A(iv) D 21 [E',D' 21] = [0,1], 

A(v) C'1 C 1 ~ Ell for some E 1 > 0, 



Cllapfer4 51 

A(vi) E'E ~ 8 21 for some 8 2 > 0 . 

THEOREM 4.1 (Finite-Horizon, Time-Varying Case, Tadmor (1990». 

(i) The value r>O is strictly suboptimal in (4.1) over [to,/l] if and only if there 

exists uniformly bounded, negative definite solutions, P I and P 2' 10 the 

following two dynamic matrix Riccati equations: 

j> ,=C',C,-P,A-A'P,-P, (BB'- ;, EE) (4.8) 

(4.9) 

(iO An admissible compensator assures the closed-loop norm bound liT K" < r if 
and only if it can be realized in the form: 

j> ={A,+P ,C' ,C ,)P-(I + ;, P ,P, )BV+ P ,C' ,y, P(to}=O; (4.10) 

A ,=A+( BB' - ;, EE')P, , 

v=Koq, 

u =-B'PIP+v, 

where K 0 is an admissible feedback operator with 11K 011 < r. 

(4. 11) 

(4. 12) 

(4. 13) 

(4. 14) 

(iii) If the system's state is available; i.e., if Assumptions A(iv) and A (vi) are 

replaced by "C 2 = I and D II = 0 ", then r is strictly suboptimal if and 

only if P I exists, as claimed, in which case the state feedback: 

u = B'Plx; 

assures 11K oil < r in a closed loop. 

(4.15) 
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PROOF: See Tadmore (1990). 

• 

4.3. A Few Examples of Application 

This section is intended to simply reveal a few practical applications of the H <Xl 

control methodologies that the reader might find of significance. Without doubt the pool 

of applications is quite vast, and this section is by far restricted given that it only 

specifies a small selection of the many physical examples considered in the literature 

over the last few decades . 

• :. Balas, ef al., (1993) present how to use the H <Xl methodology for the Analysis and 

Synthesis of a controller for the longitudinal dynamics of an AlC, when using the 

MIMO H <Xl Direct Problem. Also, they present how to synthesize a lateral-

directional controller for a Space Shuttle using the Standard H <Xl Optimization 

Problem . 

• :. Biss & Woodgate (1990) provide an H <Xl control synthesis for a gas turbine . 

• :. Grimble (2001) considers a variety of practical advanced industrial control systems 

including power generation and transmission, metal processing, marine control, and 

aero-engines and flight control designs . 

• :. Jung, et aI., (2005) present a detailed investigation on the effect of the uncertainty 

parameterization type and the performance of H <Xl robust controllers for diesel 

engine air-path control. 

.:. Li, et al., (1992) present the methodology to work the mixed sensitivity problem as 

a standard disturbance rejection H <Xl optimization problem . 

• :. Lin (1994) provides useful examples about the application of the H <Xl 

methodologies for a pitch autopilot design, a roll-yaw autopilot design, a helicopter 

flight control system, and an integrated flight control system. 
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.:. Maciejowski (1989) provides also the synthesis of a flight control system using the 

H ex> methodology, and the results are compared with those obtained using the 

LQGIL TR technique . 

• :. Marcos, et al., (2005) applied an Hex> Fault detection and isolation to the 

longitudinal motion ofa LTI model ofa Boeing 747-100/200 aircraft . 

• :. McFarlane & Glover (1990) consider both a vertical plane dynamics of an aircraft 

and an attitude control of a flexible space platform using the H ex> control 

techniques . 

• :. Postlethwaite & Skogestad (1993) consider a case study of an advanced H co control 

of high performance helicopters with design objectives and handling quality 

assessments . 

• :. Ruiz-Velazquez, et al., (2004) provide the robust tracking Hex> problem for blood 

glucose control for type I diabetes mellitus . 

• :. Safonov, et al., (1988) & (1991) implement an Hex> control synthesis for a large 

space structure . 

• :. Safonov & Chiang (1988) and Safonov, et al., (1981) present an aircraft autopilot 

design . 

• :. Van Crevel (1989) provides a control design for a 90 MW coal fired fluidized bed 

boiler. 
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CHAPTERS 

Nonlinear Hoo Control in Hilbert Spaces 

5.1. Introduction 

Methodically speaking, the main objective of the H 00 control problem is to 

construct a filter that guarantees the optimization of the H 00 -norm from the exogenous 

uncertainty input to the filtered error output as previously signalized in different terms. 

Since the early 80's considerable effort took place to extend the II 00 control concepts 

and objectives to robustly stabilize the general description of affine nonlinear dynamical 

uncertain systems. With various rigorous and dogmatic mathematical theories covering 

finite-dimensional control systems, such as linear matrix inequalities or 

algebraic/differential Riccati-like equations, it seems that the infinite-dimensional 

nonlinear H 00 control problem is still under impelling scrutiny since this problem is, 

by nature, theoretically complex and requires advanced techniques from the semigroup 

theory (Phat, 2003). 

However, in this chapter, a novel approach is studied for devising control action 

for infinite-dimensional nonlinear uncertain systems. The work herein rigorously 

employs the simple and very effective Approximating Sequences of Riccati Equations 

(ASRE) technique to further extend the standard modern Riccati-based linear time­

varying H 00 control. The introduced sets of decoupled linear time-varying systems and 

Riccati operator equations enable the usage of standard linear H 00 control methods to 

robustly stabilize the general class of disturbed continuous-time state-affine nonlinear 

dynamical systems, where the choice of r ensures that the closed-loop H 00 -norm is 

minimized in the energy sense. 

The theoretical framework in this chapter builds on the bilinear setting that was 

proposed in Phat (2003) to obtain local solutions to the nonlinear II 00 control problem 
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in infinite-dimensional spaces by means of a linearization argument. That is to say that 

only the linear time-varying state-space H '" controller formulae is expanded while 

relying on solving a full-information Riccati operator equation and completing the 

square, i.e. a mathematically standard approach as it first appeared in Khargonekar, et 

al., (1990) and Khargonekar, et al., (1988). 

Firstly, a problem statement for the state-affine nonlinear II '" methodology that 

is used in the sequel is presented in §S.2. In §S.3, the linear time-varying H '" controller 

is derived based on the Riccati operator equation in the Hilbert space. A theorem is 

presented that ensures the robust stabilization of this class of continuous-time linear 

time-varying systems. In §S.4 the linear theory is extended to include nonlinear 

disturbed dynamical plants by means of the ASRE technique; it also includes an 

expanded theorem that ensures the robust stabilization of the given plants. A global 

convergence Lemma is also considered for the robust nonlinear H '" optimal control 

problems. A practical example of an inverted pendulum on a cart is considered in §5.S.1 

followed by some simulated results in §5.S.2. Finally, some concluding remarks are 

given in §S.6. 

5.2. Problem Statement 

Consider a continuous-time state-affine nonlinear uncertain dynamical system 
having the following form: 

x(t)=A(x(t))x(t)+B(x(t))u(t)+E(x(t))w(t); x(to)=xo; (S.l) 

z(t)=C(x(t))x(t)+D(x(t))u(t); (S.2) 

'dtE91+. 

Here x(t) E X is the state, u(t) E U is the control, w(t) E W is the input disturbance 

and z(t) E Z is the observation output; with X, U, Z & W being real Hilbert spaces 

(observe that although the theory is valid for infinite-dimensions, the operators can also 

be considered as real Euclidean spaces of appropriate dimensions for finite-dimensional 

problems). 

Then the H ex> control problem is as follows: 
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Given a scalar y>O, find a linear feedback control law u(t)=-B*(t)P(t)x(t) such 

that: 

1. The given disturbed nonlinear system is robustly stabilizable; 

2. There exists a scalar co> 0 such that 

00 

f Ilz(t)11 2
dt 

sup 0 00 ~ y; (5.3) 

Co Ilx(0)112+ f Ilw(t)112 dt 
o 

with the supremum taken over all x 0 E X and all non-zero admissible disturbances 

w(t). 

5.3. Robust 1100 Control of Linear Time-Varying Uncertain Systems 

In this section, an idea introduced by Phat (2003), is extended to design an 11 <Xl 

controller in a Hilbert space (see also [Phat, 2004; and Phat, 2001]). Initially, the 

following general dynamical linear system in the state-space representation is 

considered: 

x(t) = A (t)x(t) + B(t )u(t) + E(t )w(t); (5.4) 

with the observation output given by: 

z(t) = C(t )x(t) + D(t )u(t). (5.5) 

The unstructured disturbance w (t) is defined by W E L 2 ([ 0,00 ), w) . 

ASSUMPTION: 

A.t. The/unctions: B(.)u, E(-)w, COx and D(-)u areboundedanddefinedby 

b=sup!!B(t)ll. e=sup!!E(t)!!, c=sup!!C(t)!! and d=sup!!D(t)!! {:Jb,e,c,d>O}. 
leR+ leR+ leR+ leR+ 

The linear time-varying state-feedback control law is given by, 

u(t)=-BO(t)P(t)x(t); (5.6) 

with the operator (r referring to the adjoint. 
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Now consider the Riccati operator equation (ROE): 

P (t ) = -A· ( t ) P (I) - P (I) A (t ) + P (t ) B (I) B • (I) P (t ) - Q (t ) , (5. 7) 

with p(t) being the solution of the ROE defined by p = supllp(/)II; and where 
feR' 

Q(/) = C· (t)C(t)+I. (5.8) 

Letting 

v = (P(t)X(I),X(I)), (5.9) 

with the inner product (-, -) being defined over a complex or real field F as a map 

(-, -) : X x X ~ F. 

Differentiating (5.9), 

V (I, x(t)) = (P(/) X(/), X(/) + 2(P(/)i (t) ,x (I)); (5. 10) 

Expanding (5.10) by substituting Equations (5.7) & (5.4), 

V(I,X(I)) = (( -A • (I) P(I) - p(t) A (I) + P(/) B(t)B· (I )p(t) - Q(t) )X(I ),X(/)) 

+ 2( P(/)( A (I )X(/) + B(I )U(/) + E(I )W(/) ),X(I)). 

(5. 11) 

Alternatively, (5.11) simplifies to, 

V (t,x(t)) = (-A • (I) p(t )X(/) - p(t) A (I )x(t) + p(t) B(t) B· (t) P(I )X(I) 

-Q (I) x ( 1 ) , x ( I) ) + 2 ( P ( I) A ( I) x ( I) + P ( t ) B ( 1 ) U ( 1 ) + P ( 1 ) E ( 1 ) W ( 1 ) , x ( 1 ) ) . 

(5. 12) 

By substituting the control law (5.6) in (5.12), the following equality is obtained, 

V (I,X(I)) = (-A • (I) P(I )X(I)- p(t) A (I )X(I)+ P(I) B(/) B • (I) P(I )X(I) 

-Q(I)X(/),X(t))+(2P(t)A(I)X(I)-2P(I)B(I)B· (t)P(I)x(t) (5.13) 

+2P(t) E(t )w(t) ,X(I )). 

However, (5.13) can be further expanded, 

V(I,X(I)) = (-( A· (/)P(I)+ P(t)A(t) )X(I),X(I)) 

+( p(t) B(I) B· (I) P(t)x(t),X(/)) -(Q(t )x(t),X(/)) + (2P(/) A (I )x(t), x(t)) (5. 14) 

-( 2P(/) B(/) B· (I) P(I )X(/), x(t))+ (2P(t) E(t) W(I ),x(t )). 



Chapter 5 58 

By making use of P(/)=pO(/) and substituting (5.8), (5.14) reduces to the following 

equality, 

v (I, x (I) ) = - ( ( C 0 (I) C (t ) + I) x (I), x (I) ) - ( P (I) B (I) B • (I) P (t) x (I), x (I) ) (5. 15) 

+( 2P(/) E (I) W(I ),x(t )). 

By re-arranging (5.15), 

V (/,X(t)) = -(Ix(t ),x(t)) - (P(t) B(/) B· (t) P(t) X(I ),x(t)) - (C · (t) C(I )x(t), x(t)) 

+( 2P(t) E(t) w(t ),x(t )). 

(5. 16) 

By a further simplification, 

V (t,x(t)) = -llx(t )112_( p(t) B(t) B· (t) p(t )x(t ),x(t)) - (c ° (t)C (t )x(t), x(t)) 

+(2P(/) E(t) w(t ),X(I )). 

(5. 17) 

REMARK 5.1. 

(C ° (t)C (t )x(t ),x(t)) and (P(/) B(t) B ° (t) p(t) X(/) ,X(/)) are positive-definite 

since, 

(C· (t)C(t )X(I ),x(t)) = (C (t )X(I ),C (t )x(t)) = IIC(t )x(t )112~ 0, 
and 

( p(t) B(I) B ° (I) p(t) x(t) ,x(t)) = (B • (I) P(I) x(t), B ° (t) pO (I )x(t)) 

= liB ° (t )P(I )x(t )112~ 0 

So recalling (5.17) and substituting (5.18), 

(5. 18) 

V(t,x(t))::;; -llx(t)112+(2P(t)E(t)w(t),x(/)); (5.19) 

V (I, x(t))::;; -llx(t )11 2 +21I p(/) E(t) w(t )llllx(t )11; (5. 20) 

V(I,x(t))::;;-llx(t)r+21Ip(t)IIIIE(t)llllw(/)llllx(/)II, (5.21) 

conversely (5.21) reduces to, 
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V (t,x(t)) ~ -llx(t )112+2peIIW(t )IIIIX(t )11· (5.22) 

Integrating both sides of (5.22) from 0 to t, yields, 

I I I 

JV(s,x(s))ds~ J-llx(s)11 2ds+ J2pe Ilw(s)lIlIx(s)1I ds, (5.23) 
o 0 0 

or 

I I 

(P(t)x(t),x(t))-(P(O)x(O),x(O))~-6) ]lx(s)1I 2ds+26 2 ]lw(s)lIlIx(s)1I ds; 
o 0 

(5.24) 

with 6) = 1 and 8 2 = pe . 

REMARK 5.2. It follows from the definition of the 1\·11 that 

Given that WE L 2([O,oo),W), then by making use of remark (4.2), Equation (5.24) 

reduces to the subsequent inequality, 

I 26 I 1 1 
]Ix(s )1I

2ds ~ _2 ]Iw(s )lIlIx( s)1I dS--(P(t)x(t ),x(t)) +-(P( O)x(O),x(O)). 
o 8) 0 8) 8) 

(5.26) 

By making two definitions as follows, 

(i) 8 3 =_1 (P(O)x(O),x(O)), 
8) 

(5.27) 

and 

(ii) 8 4 =_2 ]lw(s)1I2 ds ; or Y' 8) 0 

(5.28) 

then, (5.26) can be re-written as, 

(5.29) 

By setting, 
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{
' }1/2 

a = ~Ix ( s )11
2 

ds ; (5.30) 

and substituting it back in (5.29), 

a 2 ~ 8 3 +284 a __ 1 (P(t)x(t),x(t)). (5.31) 
8 1 

REMARK 5.3. It is clear that 

(P(t )x(t ),x(t)) = (~ P(t )x(t), ~ p(t )x(t)) = II~ p(t )x(t )112~ O. (5.32) 

By making use of remark (4.3), the inequality in (5.31) reduces to, 

a 2 -284 a ~ 8 3 , 

So by completing the square, 

or equivalently, 

Recall the definition of a in (5.30) then (5.35) is in fact, 
, 
~\x( s)r ds ~ 8 4 + ~8 3 + 84 2

, 

o 

Now consider the following equality: 

(5.33) 

(5.34) 

(5. 35) 

(5.36) 

IT Ilz(t)1I2-rllw(t)1I2] dt = IT liz (t)1I 2-r\Iw(t)1I 2+V(t,X(t))] dt- jV(t,x(t))dt. 
o 0 0 

(5.37) 

Equally, 

00 00 

IT \\z(t)\\2-rllw(t)\\2] dt = IT \\Z(t)\\2_r\\W(t)\\2+V(t,X(t))] dt 
o 0 (5. 38) 

-(p(t )x(t),x(t)) + (P( O)x( O),x( 0)). 

Since the initial condition P ( 0) is chosen such that P ( 0) :;t: 0, Equation (5.38) can be 

written as, 
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00 00 

f[ Ilz(t)112-rllw(t)1I2] dt ~ f[ IIz(t)1I2_rIIW(t)1I2+V(t,X(t))] dt 
o 0 (5.39) 

+( p(O )x( O),x( 0)). 

Also recall that the closed-loop state-space representation of the observation output in 

(5.5) is 

z(t) = C(t)x(t)- D(t)B * (t)p(t)x(t). (5.40) 

Therefore, 

IIz(t )11 2 = (C(t )x(t) - D(t) B * (t) p(t )x(t ),C(t )x(t) - D(t) B * (t) p(t )x(t)). (5.41) 

By expanding (5,41), 

or 

IIz(t )11
2 = (C(t )x(t ),C(t )x(t)) -( c(t )x(t), D(t) B * (t) r(t )x(t)) 

-( D(t) B * (t) p(t )x(t ),C (t )x(t)) + (D(t) B * (t )p(t )x(t ),D(t) B * (t) p(t )x(t)), 

(5.42) 

IIz(t )11
2 = (c * (t )c(t )x(t ),x(t) )-( x(t ),c * (t) D(t) B * (I) p(t )x(t)) 

-( C * (t) D(t) B * (t) P(I )x(t ),X(/)) + (P(/) B(/) D * (I) D(t) B * (t )P(I )x(t ),x(t)). 

(5.43) 

ASSUMPTION: Two common assumptions are made as it is frequent practice in modern 

control (see/or example [Bittanti, J99J}), 

A.2. C*(t)D(t)=O, 

A.3. D*(/)D(t)=I, Vt~O. 

So under assumptions A.2 and A.3, Equation (5,43) reduces to 

II z ( t )11
2 = ( C * (t ) C ( t ) x (t ) , x ( t ) ) + ( P ( 1 ) B ( 1 ) B * (t ) P ( t ) x ( 1 ) , x ( t ) ) . ( 5. 44) 

Substituting both (5,44) & (5.16) in the inequality given by (5.39), 

(C * (t)C(t)x(t),x(t)) 

+( p(t) B(/) B * (I )r(t )x(t ),x(t)) 

IT IIz(t)1I2-rllw(t)1I2] dt ~ 00 -r(w(t), w(t))-(Ix(t),x(/)) dt (5.45) 
o 0 

-( p(t) B(t) B * (t) P(I )x(t ),X(/)) 

-( C * (/)C (t )x(t ),X(/)) + (2P(t) E(t) w(t ),x(t)) 

+ (P( O)x( O),x( 0)). 
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This leads to, 

IT Ilz(t )112-rllw(t )1I 2J dt ~ IT -rllw(t )112-lIx(t )112+2I1p(t )IIIIE(t )llllw(t )lIl1x(t )IIJ dt 
o 0 

+( p( 0 )x( 0 ),x( 0 )). 

(5.46) 

Finally, this inequality directly follows, 

THEOREM 5.1. Suppose that assumption A.I holds then the II co optimal control 

problem has a solution if: 

(5.48) 

PROOF: 

Recall from (5.46) that 

IT Ilz(t)1I2-rllw(t)112J dt ~ IT -rllw(t)r-llx(t)1I2+2pe llw(t)lIllx(t)IIJ dt 
o 0 (5.49) 

+lIp( O)llllx( 0 )11
2

• 

Then by completion of the square, 

~ -riH/)11'-llx(/)II'+2pellw(/)llllx(/)11J dl=-I [( JY iH/)II- J,IH/)IIr] dl 

+ I [p;' 1H/)II'-llx(/)~'] dl. 

(5.50) 

It follows that (5.50) reduces to, 

~ Ilz(/)~'-rllw(/)II'J dl ~ R [-1+ P;']ilx(/JII'] dl+llp(O)llllx(O)II'· (5.51) 
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Therefore, 

'" J[ Ilz(t)112-rllw(t)II2] dt < IIp(0)IIIIx(0)II2. 
o 

By dividing both sides of(5.52) by r and rearranging, 

and setting C 0= IIp(o)II, 
r 

then 

I '" '" - J liz (t )11 2 dt < J II w (t )11 2 dt + C 0 IIx ( 0 )11 2 , 

ro 0 

and finally, 

'" f liz (t)II 2dt 
o 00 <r. 

Co IIx(o)II 2+ f IIw(t)II 2 dt 
o 

5.4. Nonlinear Optimal It Xl Control 

63 

(5.52) 

(5.54) 

(5.55) 

• 

In this section both the sequence of time-varying linear approximations and the 

ASRE are applied to extend the previous section. These sequences converge to the 

solution of the nonlinear H ex> control problem. 

Consider the following nonlinear dynamical system under the presence of disturbance: 

X(I) = A( x(t))x(t)+ B( x(t ))u(t) + E( x(t)) w(t), 
z(t) = c( x(t) )x(t) + D( x(t))u (t); 

- 0 • (5. 56) x(o) - x } 

Then the following sequence of linear time-varying approximations can be introduced, 

x [01 (I) = A(xo)x [01 (1)+ B(xo)u [01 (1)+ E( x o)w [0] (I), x [0] (0) = x o. 

x til (I) = A ( x [i-l] (t) ) x [I] (I) + B ( x [i-I] (I)) u [/1 (I) + E ( x [i-I] (I) ) w [/1 (I), x [/1 (0) = x o. 

(5.57) 
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with the index "i" referring to the iteration. 

Now using the theory of §5.3 for each linear time-varying system in (5.57), the 

linear feedback control is updated while the ROE is solved backwards in time at each 

iteration. 

These sequences of robust feedback control laws are given by the limit of 

u [II (I) = -B • (x [i-I] (/))P [i] (/)X [il (I); i ~ 0,; (5.58) 

where the n x n symmetric matrix P (I) is the unique solution of the Approximating 

Sequences of Riccati Equations (ASRE): 

P [i] (I) = -A • (x [i-I] (I)) P [I] (I) _ P [i] (I) A (x [1-1] (I)) 

+p [iJ (t)B( x [i-1J (I)) B • (x [i-IJ (t)) P [I] (t)- Q(/) 
(5.59) 

THEOREM 5.2. Suppose that the conditions: b = supIlB(x)ll, 
xeR+ 

e = supIIE(x)ll, 
XER+ 

c = su~IIC(x)11 and d = supIlD(x)1I {:3b,e,c,d > o} hold. Then the H 00 optimal control 
xeR xeR+ 

problem has a solution if: 

(5.60) 

PROOF: This result directly follows by direct application of Theorem 5.1, and the 

convergence holds. 

• 

PROPOSITION 5.1. Given any initial state x(to)=xo' the sequence of linear-quadratic, 

time-varying approximations (5.57) obtained by classical linear-quadratic methods for 

the nonlinear H <Xl optimal control problem converges uniformly on some small lime 

interval [/0,1 f J, where the final time, If' might depend on x o' 

This in fact was proved in the space of continuous functions for a small compact 

time interval, under the local Lipschitz continuity condition of the nonlinear dynamical 
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operators A(x), B(x) and C(x) (see Tomas-Rodriguez & Banks, 2003). But because 

there were no clear indications on how small this interval should be taken for the 

method to hold, a global convergence theory was needed to remove this strong 

restriction; which in essence was obtained for the global nonlinear optimal control 

problem in <;imen, (2003) by applying the similar principle that appeared in Tomas­

Rodriguez & Banks (2003) for general nonlinear homogeneous equations. That is to 

say, if a solution to the nonlinear optimal control problem exists, for which the cost is 

finite and the trajectory is bounded on the interval [to, r] ~ lR, then the approximating 

sequences converge on this finite-time interval ( see [<;imen & Banks, 2004; and 

<;imen, 2003]). But for the convenience of the reader, the global convergence Lemma 

(5.1) for the nonlinear optimal control problem as appeared in <;imen & Banks (2004) is 

restated below since it should also hold for the nonlinear robust H 00 optimal control 

problems in this thesis. However, it should be pointed-out that the Lemma was slightly 

tailored to fit the context. 

Lemma 5.1 (Global Convergence). Suppose that the robust nonlinear H 00 optimal 

control problem has a continuous feedback control on the interval [t 0' r]. Then the 

controlled sequence of functions {x [I) (t )} ,{ Y [i] (t )} and feedback controls {u [I] (t )} 

defined by the linear-quadratic, time-varying approximations converge uniformly on 

[to,r]. 

PROOF: It is shown in <;imen & Banks, (2004), that for the nonlinear optimal control 

problem, t f can be chosen to be locally constant, that is, for any x there exists a 

neighbourhood B x of x such that the sequences of linear-quadratic, time-varying 

approximations with initial state x 0 E B x converge uniformly on some interval 

[t 0 ,t x], where t x is independent of x o. Now by contradiction, suppose that the result 

is false, so that there is a maximal time interval [t 0' T) such that for any t f < T, the 

quadratic and LTV sequences converge uniformly on [t 0 ,t f J. 
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Let us consider the controlled trajectory x (t; x 0) of the original nonlinear H co 

optimal control problem on the interval [/0' r]. 

Define the set 

s ~ {X(/;X 0 )11 E [/0' r]} . 

For each XES, choose a neighbourhood B x as above, that is, the sequences of 

LTV and quadratic approximations converge uniformly on the interval [/0,/:r] for any 

x 0 E B x and for t x independent of the initial state x o. Since S is compact and 

U xeS B x is an open cover of S, there exists a finite sub-cover {B x I , ••• , B x p} with 

corresponding times {t x I , ••• , t x p } • 

Let 

I min ~ min {t x I , ••• ,1 x J . 
Now since, by assumption, the approximating sequence of Riccati operators 

(5.59) and feedback controls (5.58) converge on [to ,t f J, the controlled sequence 

x [i] (I) converges uniformly on [/0,1 - 1 min 12] . 

Let 

b. [i] (- ) X O,i = x 1 - t min 12 . 

Since these converge to x (I - 1 min 12) , they can be assumed to belong to B x , 
p 

so that another sequence of solutions given by the linear-quadratic, time-varying 

approximations can be obtained from the initial states x 0,1 and which uniformly 

converge to the corresponding solutions of the nonlinear H co optimal control problem 

(with initial state X Oi ) on the finite-time interval [I -I min 12,1 +1 min/2]. Such 

solutions can be denoted: x [i,J] (I), which converge to x [il (I) on the interval 

[I -{ min 12,1 +1 min 12] as shown in Figure (5.1). 

Now let us use a Cantor-like diagonal argument. Consider the functions: 

I 0 ~ I ~ 1 - I min 12, 

1 - I min I 2 ~ I ~ 1 + I min 12. 
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Then ~ [I](/) converges uniformly to X(/) on [1 0,1 +/l11i,, /2 ] and is arbitrarily 

close to X[I](t) on [/ 0,1] , which contradicts the assumption that {X[I](/)}, and 

therefore {y [I] (I)} , is not uniformly convergent on [/ 0,1]. Also since the controls are 

expressed in a feedback form, it follows that {u [i] (I)} also converges on [1 0 ,1]. 

x(t) 
x(t - I "'" /2 ) 

T -~ 
2 

x 10.
01(1) 

x 10."(1) 

~--1t-----: x(I - T + I ,,,, / 2;x o.0 ) 

x ll.OI (I) 

x "·II(I) 

T+~ 
2 

Figure 5.1.: The Approximating Sequence. 

o 

_ I 



Chapter 5 

5.5. A Design Example: An Inverted Pendulum on a Cart 

Nomenclature 

M Mass of the cart in Kg 
m Mass of the pendulum arm in Kg 
r Distance between the centre of the hinge and the pendulum arm's 

centre of gravity in m. 
x The cart's position in m. 

68 

() The pendulum arm's deflection from the vertical aXIS (clockwise direction 
[positive]) in rad. 

j The pendulum arm's moment of inertia in Kg m 2 

f The cart's coefficient of friction in Kg / s 
c The coefficient of the viscous rotational friction in the hinge supporting the 

pendulum arm in Kg m 2 
/ s 

g The acceleration due to gravity in m / s 2 

F The input control force applied to the cart in N . 

5.5.1. Dynamical Equations 

Fittingly, inasmuch as the theoretical applicability of the proposed theory to 

real-life applications, it is immensely all-encompassing; and the reader is referred to the 

applications chapter, chapter 7, for more insights. However, for illustrative purposes the 

following renowned physical model of an inverted pendulum on a cart, shown in Figure 

(5.2), is considered and where all motions are assumed to be in the plane. 

m 

I----'F 

x 

Figure 5.2.: The Inverted Pendulum on a Cart. 
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This classical control problem which consists of a single pendulum arm attached 

to a motor-driven cart has indeed found its analogous usage in the 3-dimensional 

practical real world and is often used to test new controller designs; i.e. it is often used 

as a benchmark test system. With a main control objective to vertically balance and 

stabilize the pendulum arm while maintaining it in an upright position by moving the 

cart back and forth over a finite-length track by means of a force, F, the inverted 

pendulum on a cart system depicts the behaviour of many realistic applications. 

Some of these applications include, but are not restricted to, the following: 

• Controlling the vertical deviation(s) of space shuttles during take-offs. 

• Balancing rockets during launching. 

• Maintaining a walking biped robot in an upright position. 

• Balancing overhead cranes in an industrial environment. 

• Designing a control mechanism for earthquake-resistant buildings. 

• Controlling artificial limbs that are usually modelled by means of a double-inverted 

pendulum model. 

The nonlinear mathematical model describing the dynamics of the system is (see 

for instance [Cimen, 2003]): 

(M + m )x(t) + mrB(t )cosB(t) + f X(/) - mriJ 2 (I )sin B(/) = F. (5.61) 

mrx(/)cosB(t)+{j +mr2)B(/)+ciJ(/)-mgrsinB(/) = O. (5.62) 

By defining the state vector X(/) of the inverted pendulum as 

X 1 (I) X(/) 
x 2(/) I>. 8(/) 
X3(/) x(t) 
x 4 (I) 0(/) 

(5.63) 

and excluding disturbances for the time-being, the dynamical model {in Equations 

(5.61) & (5.62)} can be represented in the following factored state-affine form A(x)x 

as 

X(t) = f( x,u) = A (x )x(t)+ B(x )U(/). (5.64) 
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where t is an independent time variable, U = F , and the non-unique A and Bare 

nonlinear time-invariant matrices functions in x given by 

o 
o 

o 
o 

1 

o 
o 
1 

A(x)= 0 ( ) ( ) ( ) a 32 x a 33 x a 34 x 

o a 42 ( X ) a 43 ( X ) a 44 ( X ) 

and 

o 
o 

B(x)= b
3
(x) 

b 4 (x) 

where the parameters a ij (x) and b i ( x) are 

a 33 ( X ) = - r (j + mr 2 ) f 

a 34 ( X ) = r [ c cos X 2 + ( j + mr 2 ) X 4 sin x 2] mr 

a 42 ( X ) = r ( M + m) mgr sin cx 2 

a 43 ( x) = rmrf cos x 2 

a 44 (x) = -r[ (M + m )c+~m2r2x 4sin(2x 2)] 

b 3 ( X ) = r (j + mr 2 ) 

b 4(x)=-rmrcosx 2 

with 

and 
{

I, 

sin ex 2 = sin x 2 , 

x 2 

(5.65) 

(5.66) 

The measurement vector equals y (t) = ( x (t ), x (t ), B (t )). It is required that the 

controller yields a robustly stable system with respect to the several uncertainties that 

affect this given system: 

(i) Uncertainties in the parameters F, m, M & r . 
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(ii) Flexibility in the pendulum. 

(iii) Exogenous additive disturbance inputs. 

Also, the limits on the bandwidth and the gains of the controller have to be taken 

into account; this is essential due to limitations on the sampling rate for the digital 

implementation as well as the limitation in the speed of the actuators. 

The following interconnection can be extracted from Stoorvogel (2000), to clarify the 

setup and where the weighted integrated tracking error is to be minimized. 

z 

w + f e 

u y 

K 

Figure 5.3.: The Interconnection of the Physical Model. 

Here de is the command signal for the position d and W \ is a first-order weight of the 

form 

l+as 
W\(s):=c--. 

l+ps 
(5.67) 

The first-order weight, W \, expresses the interest in only tracking low-frequency 

signals and where a« p is chosen to obtain a low-pass filter. The incorporation of a 

scalar c in the weight is also used to express the relative importance of tracking over 

other goals that are to be met. Also to guarantee zero steady-state tracking error an 

integrator is used; particularly important for low frequencies. 

Similarly, W 2 has the same structure as W \ in order to minimize u w' which is 

the weighted control input. And conversely by choosing a» p a high-pass filter is 

obtained and which facilitates the digital implementation of the control law. Indeed this 
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high-pass filter also prevents pushing the actuators beyond their working range and 

capabilities. Finally, it also prevents the controller from capturing high-frequency 

uncertainties in the system dynamics, such as bending modes of the pendulum 

(Stoorvogel, 2000). 

Note that z and ware new inputs and outputs to be added to the system I to 

express robustness requirements, i.e. the system I is of the form: 

x(t) = A (x(t) )x(t) + B( x(t) )u(t)+ EW(/), 

Y(I)=[~ 0 0 

~ }(I)' I: 1 0 (5.68) 

0 1 

z(t) = C 2X(t). 

The matrices A and B are as defined before in Equations (5.65) & (5.66) 

respectively. On the other hand E and C 2 still have to be chosen. Stoorvogel (2000) 

used the technique of complex stability radii to design for such matrices. For instance, 

to guard against fluctuations in the parameters F and m, the friction and the mass of 

the pendulum, then E and C 2 are chosen as (see Stoorvogel, 2000): 

E ·-.-

o 
-11M 

o 
1/(rM) 

(5.69) 

Although a similar definition can be made to guard against fluctuations in all 

parameters of the two differential equations due to the discarded nonlinearities or the 

flexibility of the beam, it is not required in this context since all nonlinearities are 

already incorporated due to the approach of the quadratic linear time-varying sequences 

that is adopted. In other words, unlike Stoorvogel (2000), there is no need to design E 

and C 2 to guard against all fluctuations in the two differential equations. 

5.5.2. Simulations and Results 

On the basis of the above, the controller K is designed, based on the 

interconnection shown in Figure (3.2) to minimize the H ex> norm from W to z and not 
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as in Stoorvogel (2000) where the controller K was designed to minimize the H 00 

norm from (w,dJ to (z,uw,e w) and where the parameters of the weights WI and W 2 

were manipulated, by hand, on the basis of the properties of the designed controllers. 

That is to say that the filters WI and W 2' in Equation (5.67), are not included in the 

simulation results. 

Recalling the inverted pendulum model {in Equations (5.61) & (5.62)} in its 

factored form (5.64), 

x(t) = A (x )x(t)+ B( x )u(t) + E( x )w(t) (5.70) 

with the specifications shown in Table (5.1) (in Sf units); where it should be noted that 

the pendulum arm's moment of inertia, the cart's coefficient of friction, and the 

coefficient of the viscous rotational friction in the hinge supporting the pendulum arm, 

are all incorporated in the simulation results to follow. 

M 1 Kg 

m 0.1 Kg 

r 0.5 m 

g 9.81 m/s 2 

j 0.1 Kg m 2 

f 0.01 Kg/ s 

c 0.01 Kg m/ S2 

Table 5.1.: Specifications. 

The inputs to the system, i.e. the initial conditions to the plant, are given in Table (5.2). 

Xl (0) Initial value of the cart's position = 0 m 

X 2 (0) Initial pendulum's angle = Jr / 3 

x 3 (0) Initial value of the cart's velocity = 0 m / s 

x 4 (0) Initial value of the pendulum's angular velocity = 0 rad / s 

Table 5.2.: Inputs. 

By introducing the sequence of linear time-varying approximations (5.57) and 

the ASRE (5.59) to the nonlinear dynamical system of the inverted pendulum on a cart 

(5.70), as discussed in the previous sections, with the parameters of table (5.1) and the 

inputs of table (5.2), and initially setting the disturbance term to zero and assuming a 
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frictionless setting, then by using M ATLAB® Figure (5.4) is obtained. It is worth noticing 

that the nonlinear solution of the optimal H 00 controller is successively reached as the 

iterations proceed (hereunder, the simulated results are shown for i = 1, i = 2 and 

i = 6). 

5 4 "> 
~ 3 " 8. .. 
8 ' 

I 

5/ p

· 

°o~~, ~,~,~~. -75~6~,~78 ~'~1O 
Time (Iec) 

-, O:-----;-----:"""""!'-~-75 ---c:6----,,~78 ~9---:'1O· 
Tme (lec) 

, 5 6 1 8 9 10 
Tme (ut) 

2 J " 5 6 7 a 9 10 
TIfI1(! ( ux:) 

Figure 5.4.: The Optimal H <Xl Controller Responses. 

Now under the same inputs and parameters above, let us consider the more 

general case with the inclusion of the a x Ew term; with a being some scalar. 

Recalling Equation (5. 70), the following case is initially considered: 

Case 1: 

0 0 

-11M -1 
a=2 & E:= (5. 71) 

0 0 

11 (rM) 2 

The controlled nonlinear system is shown in Figure (5.5); however due to the large 

disturbance's magnitude, the pendulum's angle is virtually not controlled even though 

stability is only reached over an infinitesimal closed-time interval, which realistically 
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speaking, might not be realizable in vIew of the physical constraints. Note that the 

disturbance input, w , for the both cases shown below is taken as I J • 

Hence by decreasing the disturbance size to; say : 

Case 2: 

0 0 

-II M -1 
a =0.1 & E:= (5. 72) 

0 0 

I1(rM) 2 

a better response that matches the contro l objectives is obtained and is shown in Figure 

(5 .5). Note that these two simulated results are obtained after 5 iterations, i.e. i = 5. 

I , 

l 0 5 t j 

j 0 
..:' 

.o s ; 

5 9 10 5 9 10 
Ttrnt (Jet) TJmI! ( .ec) 

.;- 05 

( 
! 0 

~ . i .o s 
t: 1! ·1 

~ 2 • : t 'S 
ij 0 ~ ·2 

·2 
~ 25 
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'" 

.... 

5 9 10 
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Figure 5.5.: The Disturbed Inverted Pendulum on a Cart System. 

It is worth stressing that the above-mentioned designs incorporated a r -iteration 

to design for the robust controllers. It turns out that for implementing these controllers 

r is chosen to be approximately 10% larger than the infimum over all stabi lizing 

controllers of the closed-loop H ex) norm. 
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5.6. Concluding Remarks 

In this chapter, an infinite-dimensional nonlinear H <Xl optimal controller was 

devised using the machinery of the well-established approximation theory in a Hilbert 

space. The theoretical linear time-varying H <Xl credentials proposed in this chapter build 

upon the standard Riccati-like equation and completing the square to· prove robust 

stability and devise a linear time-varying state-regulator control law. The closed-loop 

norm-bounded H co controller then attenuates disturbances under appropriate design 

parameters. It turns out that, as expected, there is a compromise between robustness and 

optimality. In other terms, the larger r the more optimal the controller is and vice 

versa. The mathematical theory in Euclidean spaces was successfully validated via 

direct application to the highly nonlinear dynamical model of an inverted single-arm 

pendulum on a motor-driven cart. Of course, the finite-dimensional dynamical system 

considered in this chapter involved Euclidean spaces but Hilbert spaces can also be used 

for PDEs and delay systems. 

This chapter is concluded with a conceptual algorithm for a clarification of the 

proposed H <Xl methodology. 

Nonlinear State-Feedback Hoo optimal control algorithm: 

Given a nonlinear mathematical model describing the dynamics of a dynamical system 

with initial conditions x(t 0) = x 0' 

1. Express the dynamical system in a state-affine form as: 

x(t) = f(x,u, w) = A(x)x(t)+B(x)u(t)+Ew(t). 

Note that the general operators A(x(t),u(t),t) and B(x(t),u(t),t) are non­

unique. 

2. Design the disturbance input matrix, E, in the state-affine form in (1 ). 

3. Design the parameter(s), C and D, in the regulated outputs equation: 

z (t ) = Cx (t ) + Du (t ) . 

Note that C*(t)D(t)=O and D*(t)D(t)=I, 'vIt~O. 

4. Introduce the sequence of linear time-varying approximations 



Chapter 5 77 

Q. For i == 0: 

[0) ( ) x 0 == x o. 

h. For i > 0: 

X [i) (t) == A ( X [i-I) (t)) x [i] (t) + B ( x [i-I) (t) )u [i) (t) + Ew [I) (t) . 

5. Solve the Riccati operator equation backwards in time, 

P [i) (t) == -A· (x [i-I) (t))p [I) (t)-p [i)(t)A(x [i-1) (t)) 

+ P [I) (t) B( x [i-I) (I)) B • (x [i-I) (t)) P [I) (t)- Q(t) 

where Q(t) == c· (t)C(t)+ I. 

6. Update the control law, 

for i;::: O. 

7. Test that for a given sufficiently large r, the following holds: 

8. If (7) holds, the family of stabilizing controllers is reached; if not, change rand 

go to (5). 
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CHAPTER 6 

Nonlinear Hoo Control: A Game Theoretic Approach 

6.1. Introduction 

The study of the methods and means in which strategic interactions among 

rational players produce outcomes with respect to the preferences (or utilities) of those 

players is the essence of the Game theory. Similarly, in a control systems context, 

Differential Games concern the balance of optimal strategies utilized by two opposing 

players with conflicting notions of best performance of the dynamical system they are 

trying to control or to relinquish (as seen in chapter 5). Although the game theory found 

its initial usage in pursuit-evasion games in a military context, it is now playing a more 

essential role in the design of robust H 00 controllers. Because disturbances and model 

uncertainties can be interpreted as strategies of an antagonistic player playing against 

the controller that is trying to take into account the worst possible actions of such a 

hostile agent (disturbances), that the differential games approach gave the II 00 formulae 

a different meaning and a more general appeal. 

The first appearance of a connection between Differential Games and II 00 

control is found in Weiland (1989) and Khargonekar, et al., (1990). these papers. de 

facto, created the impetus for further research efforts in the interconnections between 

the two fields. The relationship between indefinite factorization, the game theory and 

the H <Xl control theory was thoroughly exploited (see [Ba~ar & Bernhard, 1995; Glover 

& Doyle, 1988; Green, et al., 1990; and Pertersen & Clements, 1988]). The connection 

between risk-sensitivity optimal control and game theory has also received renewed 

interest in the II 00 control theory setting (see [Ba~ar & Bernhard, 1995; Glover & 

Doyle, 1988; Bernstein & Haddad, 1989; and Tadmor, 1990]). While the discrete game 

theory to the state-feedback II <Xl control problem appeared in Ba~ar (1991), the 

continuous-time counterpart appeared in Limebeer, et al .• (1992). 
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However, the aim of this chapter is to develop a new and a practical approach to 

the design of state-feedback H"" controllers of nonlinear dynamical systems based on 

the theory of differential games. In explicit terms, this chapter builds upon the game 

theoretic approach to H "" control problems for time-varying systems which appeared in 

Limebeer, el al., (1992) as an extension to Tadmor (1990). The main difference, 

however, with chapter 5, is that a more inclusive theory is presented for both the state­

regulator and the output-feedback control problems. Accordingly, in §6.2 the 

representation formula for all linear time-varying controllers that satisfy an L"" -type 

constraint is derived and extracted from Limebeer, el al., (1992) and relying upon the 

state-feedback concepts. While in §6.3 the output-feedback formulation for the linear 

time-varying H "" control problems is summarized. In §6.4 the linear-quadratic time-

varying approximating sequences are employed to extend the linear framework to the 

more general nonlinear setting. Some computer simulated results of the nonlinear 

dynamical system of the inverted pendulum on a cart are given in §6.5. Finally, some 

closing remarks are presented in §6.6. 

6.2. A Representation Formula for alllt~) Solutions 

This section summarizes the more general finite-horizon linear time-varying 

H "" control problem discussed in chapter 4. That is, over an optimization horizon-time 

interval, [0, T], the representation formula for all state-feedback full-information 

control laws are studied. 

The conventional modern state-space realization is considered, 

X(/) = A (I) x (I) + B 1 (I) w(t) + B 2 (I) U (I), 
z(t) = C 1 (t)x(t)+ D 11 (/)w(t)+ D 12 (t)u(t), 

y ( t ) = C 2 (t ) x ( t ) + D 21 (t) w ( t ) + D 22 (t ) u ( t ) ; 

(6. 1) 

In which x (t) e IR n is the state, x 0 is the initial condition of the system, 

u (t ) : IR + ~ IR m is the control input, w (t ) : IR + ~ IR I is the exogenous disturbance 

input, y(t)eIRq is the measured (or sensor) outputs, and z(t)eIRP is the regulated 

outputs and sometimes called a penalty variable which may include a tracking error; i.e. 
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z (t) is the difference between the actual plant output and its desired reference 

behaviour, expressed as a function of some of the exogenous variables w( t), as well as 

a cost of the input u (t) needed to achieve the prescribed control goal. The realization in 

(6.1) can be written as: 

(6.2) 

The system matrices are assumed to have entries that are continuous functions of time. 

The goal is to characterize all linear time-varying controllers satisfying IIzl12 < r IIwil 2 for 

all w;t: o. 

REMARK 6.1. The antagonistic player, w, tries to maximize the energy in the output z, 

while the controller, u -player, is trying to minimize this energy simultaneously. 

REMARK 6.2. The time response of a linear time-varying system consists of a transient 

response (i.e. trajectory from the initial state to the final state) and a steady-state 

response (i.e. the manner in which the output behaves as t ~ 00). Note that since zero 

initial conditions were assumed by Limebeer, et al., (1992), in (6.1) & (6.2), hence it 

follows that the transient response is set to zero, as common in classical linear control 

(please refer to Appendix A). 

ASSUMPTION 6.1. It can be assumed without loss of generality that for all t E [O,T] (see 

Limebeer, et al., 1992), 

A.t. D'12D 12=Im (i.e. D12 has full column rank m), 

A.2. D' 21D 21= Iq (i.e. D21 has full column rank q), 

A.3. D 11= 0, 

A.4. D 22= O. 
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With the given system, in (6.1) or (6.2), under a leader-follower game sense, the H 00 

control problem is to find a linear admissible and causal state-feedback control 

u(t) = K(x(s), w(s),t), O~s~t, (6.3) 

such that: 

11f<J zwll = sup W {11f<J zw w11 2: w E '- 2 [0,T],llwI12~ I} < Y; (6.4) 

for some given y > O. The operator f<J zw is a mapping between wand z when the 

control, u (t) = K (.,.,), is in place. Note that if z(t) = f<J zw w(t), then 11f<J zwll < y, if and 

only if the finite-time linear-quadratic cost functional is: 

T 

J(K,w)= J(z'(t)z(t)-y2w'(t)w(t))dt~-Gllw(t)II;. (6.5) 
o 

for all WEe [0, T] and some positive G (see [Limebeer. et al., 1992]). 

The H 00 control problem consequently has a solution if and only if 

min max. {J(K(-,.,.), w(t))} ~ -ellw(t)II;; 
K( ..... )Ef w(/)EPl[O.lJ 

(6.6) 

is satisfied. 

THEOREM 6.1 (A representation formula for all solutions (Limebeer, et al., 1992)). 

Suppose that for the given system (6.1) with D 11= 0, the Game Riccati Differential 

Equation: 

P(t)=-P(t)(A(t)-B2 (t)D'12 (t)C) (t))-(A(t)-B 2 (t)D')2 (t)C) (t))' p(t) 

+P(t)(B 2 (t)B'2 (t)-y-2B) (t)B') (t))P(t)-C') (t)(I-D)2 (t)D'12 (t))C) (t). 

has a solution on [0, T]. 

Then 

u(t) = u * (t)+(U( w- w*)){t), 

(6.7) 

(6.8) 
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where 

resulting in 

Then 

PROOF: 

U *(1) = -( D' (I )C(I) + B' (t) p(t) )x(t), 

W*(t)=r-2B') (t)p(t)X(t); 

IIZ(I)II~- r21Iw(t)11 ~=llu(t)-u*(t)II;- r21Iw(t)-w*(t)ll; 

From Limebeer, et al., (1992). 

82 

(6.9) 

(6. 10) 

(6. 11) 

(6. 12) 

• 
All solutions to the H <Xl control problem with perfect information and given by (6.1) 

and (6.8) are shown in Figure (6.1). 

Proposition 6.1. As r tends to infinity, (r ~ 00), the algebraic Riccati equation (6.7) 

approaches the standard Riccati equation of the linear-quadratic and time-varying 

optimal control. This in fact is very satisfactory since that as r ~ 00 there is no 

constraint on the closed-loop H <Xl -norm. 

=(t) 

v 
...-_-+r ------(X!~- w(t) 

Figure 6.1.: All Solutions with Perfect Information. 
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REMARK 6.3. By examining Figure (6.1), it can be seen that r = (w- w*); and that 

u = (v + U *) is the input signal to B 2' However, if w = w* , i.e. no signal in the U (r) 

channel, then the feedback control law is simply u *. Whereas if w * w * the u * control 

does not have to be used. 

In essence the control-player, or the u * -player, is to ensure that for a given 

exogenous disturbance input, w * 0 E f 2 [0, T] , the cost functional is J ( K, w) < 0 . 

6.3. The 1100 Output-Feedback Control Problem 

The output-feedback control problem is the most practical and provides the most 

valuable solution. The methodology is in fact analogous to those in LQG control and 

often results in a controller with order equivalent to that of the dynamical plants and 

disturbance models, plus the order of any dynamic weighting term(s) in the cost 

functional. The technique is to transform the output feedback problem to a state­

estimation one having a remarkably simple observer structure. 

In the sequel the following plant is considered 

(i) x(t) = A(t)x(t)+ B 1 (t)w(t)+ B 2 (t)u(t), 
(ii) z(t)=C I(t)x(t)+D I2 (t)U(t), 

(iii) y(t) = C 2 (t)x(t)+ D 21 (t)w(t); 

X(O)=O'j 
(6. 13) 

where all matrices have entries that are continuous functions of time, and D 12 & D 21 

are full column rank and full row rank for all t E [0, T], i. e. the regular finite-horizon 

H <Xl problem is considered. 

Limebeer, et al., (1992) solved the problem for three different cases depending 

on D 12 & D 2\ ; that is if both matrices are square, or either is, or neither is. However, 

for simplicity, only the second case is considered when either DI2 or D2\ is square. In 

this case the generated feedback controllers are in fact characterized by a single Riccati 

Differential Equation based on the game theory of §6.2. 
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REMARK 6.4. If D 21 is assumed to be square then (6.13) (iii) can be replaced by 

y(t)=C 2(t)X(t)+w(t). (6. 14) 

THEOREM 6.2 (Problems of the Second Type (Limebeer, et al., 1992». Suppose thatfor 

the given system (6.13) with (6.13)(iii) replaced by (6.14) then there exists an output-

feedback, u(t)=~y(t), that guarantees IIg;Jzwll<r if and only if the Game Riccati 

Differential Equation: 

X oo(t)=-(A(t)-B 2(t)D' 12(t)C 1 (t))' X oo(t)-X oo(t)(A(t)-B 2(t)D' 12(t)C I(t)) 

+ X 00 (t )( B 2 (t) B' 2 (t) - r -2 B 1 (t) B' 1 (t)) X 00 (t ) - C' 1 (t) D .1 (t) D' .1 (t) C 1 (t), 

(6. 15) 

has a solution on [O,T] with terminal condition X 00 (T) = 0 (where Dol is a 

continuous extension to D 12 ); and generated by: 

; (t ) = ( A (t ) - B 1 (t ) C 2 (t ) - B 2 (t ) ( D' 12 (t ) C 1 (t ) + B' 2 (t ) X 00 (t ) ) ) x (t ) 

+B 1(t)y(t)+B 2(t)v(t) 

PROOF: 

u(t) = v(t)-( D' 12 (t)c 1 (t)+ B' 2 (t)x 00 (t))x(t), 

r (t ) = y (t ) - ( C 2 (t ) + r -2 B' 1 (t ) X 00 (t ) ) x (t ) , 

v(t)=U(t)r(t). 

See Limebeer, et al., (1992). 

6.4. Nonlinear Extension 

(6. 16) 

(6. 17) 

(6. 18) 

(6. 19) 

• 

In this section both the sequence of time-varying linear approximations and the 

Approximating Sequences of Riccati Equations are applied to extend the previous 

sections, §6.2 & §6.3, following the same mathematical theory that was proposed in 
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§5.4. As previously seen, these sequences converge to the solution of the nonlinear If 00 

control problem. 

Consider the following nonlinear dynamical system under the presence of disturbance: 

X(I) = A (X(I ))X(I)+ B( X(I))U (I) + E( X(I)) W(I), 

Z(I)=CI (X(I))X(t)+DI2 (x(t))u(t); 

y(I)=C 2 (X(t))X(I)+D 21 (X(I))W(I); 

X(o) = Xo 

(6.20) 

REMARK 6.5. The initial conditions, X(lo)' for the nonlinear dynamical model in (6.20) 

are taken as x 0 given that the transient response can not be ignored as in remark (6.2). 

With the following sequence of linear time-varying approximations, 

X [0] (I) = A (x 0) x [0] (I) + B (x 0) U [0] (I) + E (x 0) W [0] (I), 

X [I] (I) = A ( x [i-1] (I) ) x [i] (I) + B ( x [i-1] (I)) U til (I) + E (X [i-1] (1) ) W [I] (1), 

where the index "j" refers to the iteration step. 

x [i] (0) = xO. 

(6.21) 

Using the theory of §6.3 for each linear time-varying system in (6.14), it is known that 

the sequences of linear state-feedback H <Xl control are given by the limit of 

U [I] (I) = _( D~I ( x [i-1] (I)) C
I 
(x [i-1] (I)) + B' ( x [i-I] (I)) P [i] (1))X [I] (I); j ~ 0, 

(6.22) 

or a full-information output-feedback controller 

U [I] (I) = U [I] (1 )(Y( x [I-I) (t)) - ( C
2 

( x [i-I) (I)) + r-2 B; (X [i-1) (I) )X~) (I))X [I] (1)) 
(6.23) 

- ( D;2 (X [i-I) (t) ) C
I 

(X [i-I) (1) ) + E' ( x [i-I) (I) ) X~) (1) ) x [i) (I ) 

where the nxn symmetric matrices P(t) & X<Xl(I) are the unique solutions of the 

Approximating Sequences of Riccati Equations (ASRE), respectively 
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P [I) (t) = _p [I) (t)( A( X [i-I) (t))- B( X [i-I) (t) )D~I (X [i-1] (t) )C
I 

(X [I-I] (I))) 

(

A(X[i_I)(t)) J' . 
- -B( x ,'-I, (I))D;, (X ['-'1(1) )e, (X [0-11(1)) pI"~ (I) 
+ P Ii) (t)(B( X [i-I) (t) )B'( X [i-I) (t))- y-2 E( X [i-I) (t)) E'( X [i-I) (t))) P [,) (t) 

- C
I 

(X [i-I] (t ) )( I - D21 ( X [i-I] (t ) ) D~I (X [i-I] (t ) )) CI (x (i-I] (t) ), (6. 24) 

and 

THEOREM 6.2. Suppose that Assumptions 6.2 hold. Then there exists afamily of' 

(i) state-feedback H co controllers over t E [0, T], given by: 

U til (I) = - ( D~~'] (t) Cp (t) + B' ( X [i-1] (t) ) P [i] (t)) X [,] (I); i ~ 0, 

(U) output-feedback l/ co controllers over t E [0, r], given by: 

u [,] (t) = U [i] (I) (y( X [i-1] (t) ) - ( C
2 

( X [i-1] (t)) + y -2 B; (X [i-1] (t)) x~] (t) ) X [,] (I)) 

-( D;2 (x [i-1] (t) )CI (X [i-1] (I)) + E'( X [i-1] (I) )x~] (t))x [I] (I) 

that robustly stabilize the nonlinear system (6.20); with P til (t) & x~] (t) being the 

unique solution of the ASREs (6.24) & (6.25) respectively; and where the closed-loop 

system is given by: 
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( (

D'(X [i-1) (t ))C(X [i-l) (t ))]] 
x[\t)= A(x[i-l)(t))-B(x[i-1)(t)). X[/](t) 

+ B' ( X [I-I) (t ) ) P [I) (t ) 

+ E ( X [i-I] (t ) ) W [i) (t ). 

or 

A (X [i-I] (t)) - E ( X [i-I] (t)) C2 (X [i-l) (t)) 

;[/)(t)= [i-l) (D:2 (X [i-l](t))CI (X [i-l)(/))] ;(/)(1) 

-B(X (I)) +B'(X[H[(I))X~[(I) 
+ E( X [i-l) (/))Y [i] (/)+ B( X [i-I) (/))V [i] (I). 

Then Ihe operalor f.J zw is bounded by r for either case: (i) or (iiJ, such that: 

PROOF: This result directly follows by direct application of Theorem 6.1 and Theorem 

6.2, and the convergence from Lemma 5.1 holds. 

• 

REMARK 6.6. In Theorem 6.2 all operators, A,B,E,C pC 2,DI2 ,D 21 are glven In a 

nonlinear state-affine form to make the illustration more inclusive since the linear­

quadratic sequences can handle such nonlinearities which can also include a control 

dependence, i. e. A ( X (I), U (I), t) etc. But since the operators: E, C I & D 12 are design 

parameters, they are most often taken as linear time-invariant. 

6.5. A Design Example: An Inverted Pendulum on a Cart 

In this section the physical nonlinear model of the inverted pendulum on a cart 

that was discussed in §5.5 is re-considered in the sequel and is re-shown in Figure (6.2). 
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m 

x 

Figure 6.2.: The Inverted Pendulum on a Cart. 

Recall the nonlinear dynamical model {in Equations (5.61) & (5.62)} which was 

represented in the following factored state-affine form A (x) x as: 

x(t) = f(x,u) = A(x)x(t)+ B( x)u(t). (6.26) 

where t is an independent time variable, u = F , and the non-unique A and B were 

given by Equations (5.65) & (5.66) respectively. Then it would be vital to investigate 

the effect of the design parameters on the response of the open-loop unstable system, 

L , and generally represented as: 

x(t) = A (x(t ))x(t) + B( x(t ))u (I) + EW(/), 

L: Y(I)~[~ o 0 OJ 
1 0 0 x(t) 
010 

(6.27) 

z(t) = C 1x(t)+D I2 U(t). 

As discussed in chapter 5, to guard against fluctuations in the parameters F and 

m, the friction and the mass ofthe pendulum, then E and Clare chosen as: 

E ·-.-

o 
-11M 

o 
11 (rM) 

C 1:=(0 1 ° 0). 
° ° g ° 

(6.28) 

By applying Theorem 6.2, the family of state-feedback H 00 controllers over 

t E [0,10], can be devised: 
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i ~ 0, (6.29) 

by solving the Approximating Sequences of Riccati Equations backwards in time and 

subject to P(lO) = 0, 

(

A (x [i-I) (I)) J' 
P [i) (I) = _p [i) (I )(A (x [H) (I)) _ B (x [i-I) (I)) D~~i)CV)) - P [I) (I) 

-B( x [I-I) (I)) D~~/)CP 

-C;[/) (f - Dt)D~~i))cI/) + P [i) (t)( B( x [i-I) (I)) B'( x [i-I) (/))- y-2 E[/)E'[i))p [I) (I). 

(6.30) 

Using the Sf specifications in Table (5.1), the introduced sequences of linear 

time-varying approximations (6.21) and the ASRE (6.30), with the inputs to the system 

as in Table (5.2), are used to approximate the nonlinear dynamical system of the 

inverted pendulum on a cart (6.26) and robustly control it for a sufficiently large y 

(y = 8). Furthermore, the input matrix C 1 in (6.28) was not used since it resulted in 

poor control actions which are not shown, but instead it was assumed to take the same 

form as C 2 in (6.27). 

Initially, the disturbance input is taken as w = 0.1 ; while the variations in the 

system's response as a result of changing the disturbance weighting matrix, D 21' is 

studied. Consequently, eight different designs for the linear time-invariant D21 were 

considered as shown in Table (6.1). 

Design 1: D21 := [0 0 0]-1 Design 6: D21 := [1 1 ot 
Design 2: D21 := [1 1]-1 Design 7: D21 :=[0 1 1]-1 

Design 3: 
D21 := [1 0 0]-1 Design 8: D21 := [1 0 1]-1 

Design 4: 
D21 :=[0 1 0]-1 

Design 5: 
D21 :=[0 0 1]-1 

Table 6.1.: The various Designs for the Weighting Matrix D 21. 
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The simulations to fo llow were carried-out after fi ve iterations, i.e. i = 5 , using 

M ATLAB®; and where designs 1 & 2 are shown in Figure (6.3), designs 1-5 in Figure 

(6.4), and designs 7 & 8 in Figure (6 .5). 
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Figure 6.3.: The Inverted Pendulum on a Cart (Designs 1 & 2). 
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Figure 6.4.: The Inverted Pendulum on 

a Cart (Designs 1-5) . 



Chapter 6 91 

It appeared that the second design gave the most acceptable responses compared 

to the others; which logically implied that the larger the weighting on the exogenous 

disturbance input the better the robustness performance to meet the required 

specifications. 

10 

10 

Tirne ( .ec) 

Figure 6.5.: The Inverted Pendulum on a Cart (Designs 6-8). 

Having chosen D 21 := [1 1] -' , the next task would be to deliberately 

examine the relationship or rather the effect of D 21 on C I and vice-versa. Accordingly, 

two scalars, 5 and &, are introduced to study their corresponding effect on the 

measurement output. 

(6.31) 

where D II was chosen to be equivalent to D 21. 

Clearly, the previously shown design scenarios were carried-out with the scalars being 

set to one with: 
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(6.32) 

Allowing 6 varying from 0 ~ 2 and & from 0 ~ 1.5 , as shown in Tables (6.2) & (6.3) 

respectively, the different corresponding plots are illustrated in Figures (6.7-6.9). 
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6 = 0.5 

6 = 0.8 
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Table 6.2.: Variations in 6 . 
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It is clear that the weighting choices resulted in a family of state-regulator H 00 

controllers which had some pros and cons in terms of the robustness and stability 

requirements; for instance, it can be deduced that: 

• as 8 ~ 0 longer cart trajectory and time are required to stabilize both the pendulum' s 

arm and cart although the control effort decreases. 

• as 8 ~ 2 the control effort increases while the resulting responses seem faster even 

though the same amount of time is required to stabilize the pendulum' s arm and cart. 

• as E ~ 0 a longer cart trajectory is needed to stabilize the systems. However, a faster 

steady-state response for the pendulum' s angle is noticeable with a reduced control 

effort. 

• as E ~ 1.5 the plant reaches instability. 

As a final point, it is also imperative to investigate the performance of this 

designed controller against various realistic disturbances not only relying on the 

primarily chosen w = 0.1, and for this reason, five different values for the disturbance 

are considered. It is hence desirable to achieve a good level of disturbance attenuation 
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against the following disturbance inputs that were also considered In Pan & Ba~ar 

(1998): 

• Case 1: w=O , 

• Case 2: w = 0.1 , 

• Case 3: Band limited white noise signal with power 0.01 and sample rate 5 Hz, 

• Case 4: w(t) = O.lsin(2n/ /5) , and 

• Case 5: w(t)=O.lcos(lZ"I). 

Figure (6.10) reveals the disturbance attenuation levels achieved by the 

controller for the various disturbance cases considered above. While the controlled 

responses for the linear time-varying disturbance in case 5 mimicked the disturbance­

free ideal case, case 4 also showed good but oscillatory responses. However, the 

disturbance attenuations for the band limited white noise, in case 3, were unstable due 

to the friction coefficients that were already designed for and which added to the 

system' s instability. 
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6.6. Concluding Remarks 

In this chapter the continuous-time full-information finite-horizon linear time­

varying H OC! control that appeared in Limebeer, et al., (1992) was extended for 

nonlinear systems. As in the previous chapter, the approach uses the linear quadratic 

approximations to devise a state-feedback regulator. The proposed approach under a 

game theoretic framework takes into account the worst-case disturbances and path-wise 

constraints, if any. Although not considered in this thesis, constraints representing, for 

example, actuator saturation or the necessity to avoid dangerous operational regions in a 

process control or an aeronautics context can also be included in the design 

requirements if desired. 

In the case when the states are not available for feedback, an observer-based 

controller can always be constructed using similar theoretical arguments, and which will 

facilitate the implementation of the control algorithms. The explicit construction of the 

class of robust H '" controllers which asymptotically regulate nonlinear systems and 

achieve pre-specified disturbance attenuation levels with respect to exogenous system 

inputs proved to be very effective in controlling the pendulum-cart system. The 

attenuation of exogenous disturbance inputs to the desired performance level(s) over the 

finite-time interval was also achieved. To conclude this chapter, an algorithmic 

interpretation of the proposed state-regulation H '" technique is given below. 

Nonlinear Finite-Horizon State-Feedback 1100 control algorithm: 

Given a nonlinear mathematical model describing the dynamics of a dynamical system 

with initial conditions, 

1. Express the dynamical system in a state-affine form as: 

x(t) = f(x,u, w) = A(x)x(t)+ B( x )u(t)+ Ew(t). 

Note that the general operators A(x(t),u(t),t) and B(x(t),u(t),t) are non-

unique. 

2. Design the disturbance input matrix, E, in the state-affine form in (1). 

3. Design the parameter(s), C 1 and D 12' in the regulated outputs equation: 

z(t)=C 1 (x(t))x(t)+D I2 (x(t))u(t). 



Chapter 6 97 

4. Choose the output matrix, C 2' and design the disturbance matrix, D 21' in the 

measured output equation: 

y(I)=C2 (X(I))X(I)+D21 (X(/))W(I). 

5. Introduce the sequence of linear time-varying approximations 

a. For i =0: 

X [OJ (I) = A( xo)x [OJ (1)+ B(xo)u [OJ (1)+ Ew [OJ (1), x [OJ (0) = xO' 

h. For i> 0: 

X [ij (I) = A ( x [H] (1) ) x [i] (1) + B ( x [H] (I) ) u [i] (t ) + Ew [I] (I) . 

6. Solve the Riccati operator equation backwards in time for a sufficiently large y, 

P [i) (t) = _p [i] (/)( A( x [H) (1) )-B(X [i-I) (t)) D~I (x [i-I] (I) )C
I 
(x [H] (t))) 

[

A(X[i_I)(t)) J' . 
- -B(X [H) (t) )D;I (x,,-II(t))CI (x 1,-11 (t)) P ['lit) 

+ P [i) (t)( B( x [i-I) (I) )B'( x [i-l) (1))- y-2 E( x [i-I) (I)) E'( x [H) (I))) P [i) (I) 

- C
I 

(X [i-I] (I) ) ( 1- D21 ( x [i-I] (I) ) D~I ( X [i-I] (I) ) ) CI (X [i-1] (I) ). 

7. Update the control law over the finite-time interval 1 E [/0 ,t f J, 
U [i] (1) = _ ( D~~i]cii] + B' ( x [i-I] (t ) ) P [i] (t ) ) x [i] (I) ; for n~ o. 

8. If (7) results in an acceptable closed-loop response, the family of stabilizing 

controllers that meet the robustness requirements is reached; if not, change y and 

go to (5). 
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CHAPTER 7 

Some Practical Real-World Applications 

7.1. Introduction 

The aim of this chapter is to tackle a selection of model-based practical 

applications by means of the extended and/or developed theories that were proposed in 

previous chapters. It is intended, however, that the selected applications would give the 

reader a better understanding of the mathematical treatments considered in this thesis. 

Accordingly, this chapter is divided into four main sections followed by some 

concluding remarks. While each main section is divided into three subsections, i. e. an 

introduction about the dynamical system is considered in §7.x.l, followed by the system 

dynamics' representation and numerical simulations that are given in §7.x.2, and finally, 

in §7.x.3 some conclusions are discussed. 

In more details, the magnetic levitation control problem is considered in §7.2, 

and where the pole-placement robust stabilization technique of chapter 3 is proposed to 

stabilize the system. In §7.3 & §7,4 the wing rock lateral-instability model of a simple 

generic aircraft and a highly nonlinear helicopter model are considered respectively; 

while the 11 00 control law for both applications was devised by direct application of 

chapter 5. Last but not least, a hypersonic aircraft model is discussed in §7.5 and 

controlled with the more inclusive robust 11 00 control method of chapter 6. The chapter 

is then ended in §7.6 with a brief conclusion. 
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7.2. The Magnetic Levitation Control Problem 

Nomenclature 

x Distance separating the ball from the electromagnet 

x d Least admissible x (the threshold prior to being attracted by the electromagnet) 

u Input voltage of the amplifier in V 

J Current across the electromagnet in A 

e Voltage of the coil (electromagnet) in V 

R Resistance of the coil in n 
k Amplification gain from u to e of the amplifier 

g The acceleration due to gravity (9.81 m / s 2) 

m Mass of the steel ball (0.54 Kg) 

7.2.1. Introduction 
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The problem of robustly controlling (within sensor resolution) the height of a, 

25 mm in diameter, steel ball from ground level by levitating it by means of an 

electromagnet is considered, as schematically shown in Figure (7.2.1), while using the 

introduced robust stabilization theoretical framework provided in chapter 3. 

J 

R 
.~ _____ e __ ~~~~~ ___ t_{ __ __ 

L 

x 

y 

m 

Figure 7.2.1.: The Magnetic Levitation Schematic Representation. 
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The Electromagnetically levitated and guided systems which follow the same 

control objective(s) as in the model considered herein are commonly used in the field of 

high-speed maglev passenger trains, levitation of wind tunnel models, vibration 

isolations of sensitive machinery, tool machines frictionless bearings and conveyor 

systems such as in levitating metal slabs during manufacturing for example (see [Barie 

& Chiasson, 1996] and the references therein). This technology offers many advantages 

amongst which are a very silent motion in the case of a low and/or high speed people 

transport vehicles and reduced rail maintenance, for instance. 

With its great advantages and benefits, clean or 'green' maglev applications 

received lots of renewed interests particularly in transport technologies. In the world 

there are actually two working low speed systems: the Japanese IISST ([Seki, 1995], 

[Masaaki, 1995]) and the English BAMS (Birmingham Airport MagLev System 

[Nenadovic & Riches, 1985]). In both these magnetically levitated trains the guidance 

force needed to keep the vehicles on the track is obtained with the levitation 

electromagnets thanks to particular shapes of the rails and to a clever placement of the 

electromagnets with respect to the rails ([Fruechte, et al., 1980]). Nonetheless with both 

an air drag limitation and an aerodynamic noise generation, modem super-speed maglev 

trains with their supersonic speeds seemed to compete with airplanes as evident by the 

pioneered Japanese commercial-type superconductive train. 

7.2.2. System Dynamics & Simulations 

In fact, the principle behind these above-mentioned technologies, amongst many 

others, follows the classical open-loop unstable anti-gravity magnetic levitation 

dynamical nonlinear model that is modelled by the following nonlinear differential 

equation (see [Zayadine, 1996; and Barie & Chiasson, 1996]) 

"( ) k /2 
m x 1 = mg - x 2 (I) ; (7.2. 1) 

e = RI + ! ( LI) , (7.2.2) 

where L(x) = ~+ Loo with coefficients Q,x 00' Loo that are determined by 
xoo+x 

identification experiments. 
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It is common practise, to linearize this nonlinear system about its operating point 

(see [Barie & Chiasson, 1996] and the references therein). However, in the sequel the 

robust stabilization technique of chapter 3 is used to control the displacement of the 

steel ball that is governed by the electromechanical equation in (7.2.1), by defining the 

following relationship, 

y(t)=x(t)-x d(t). (7.2.3) 

To avoid the problem of phase compensation due to the high inductance of the 

electromagnet, the active drive to the electromagnet can practically be current driven; 

that is: 

(7.2.4) 

Indeed both position regulation and tracking controllers can be synthesized; 

however, only the regulation problem about a desired set-point is considered. Then by 

substituting Equations (7.2.4) & (7.2.3) in (7.2.1), 

(7.2. 5) 

Due to the forcing term in (7.2.5), being the gravity term (g), an air damping 

term -K (y) Y is included to render the application more suitable for the theoretical and 

practical implementation of chapter 3. Accordingly, (7.25) can be written as: 

(7.2.6) 

with 

K(y)=(l-y). (7.2. 7) 

The exogenous disturbance input affecting the dynamical system can In fact be 

expressed as: 

w(t) = g(l- y(t)). (7.2.8) 

By substituting Equations (7.2.8) & (7.2.7) in (7.2.6), 

Y(I) = -Y(I)(I-Y(I))-(:)[ (Y(I):X
d
)' J+ g(l-Y(I)). (7.2.9) 

REMARK 7.2.1. Equation (7.2.9) follows a damped harmonic oscillator general form 

y + v y = AY (see e.g. [Smith & Jordan, 1999]). 
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To get the phase-plane portrait, set 

& (7.2.10) 

and substituting (7.2.10) in (7.2.9), the following state-space representation is reached, 

and the operators, A(y(t)) & B(y(t)), can be written respectively as, 

(7.2. 12) 

and 

(7.2. 13) 

with 

& (7.2. 14) 

The Eigenvalues of the closed-loop state feedback system are roots of 

(7.2.16) 

Recall that the control matrix is expressed as, 

with 

Alternatively, the state-feedback control law takes the form 

u(t) =-F(y(t))y(t) =-(t, + 13 (y(t)) 12 + I. (y(t)))(~ :~:~} (7.2.18) 
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(7.2. 19) 

But, 

So by substituting Equations (7.2.14), (7.2.15) & (7.2.17) in (7.2.20) and re-arranging, 

the following equality is reached, 

(7.2.21) 

with 

9
11
(/)=9

12
(/)=0, 

.9" (I) = ~[ ((YI+~d)' :3)1 I +( (YI+~d )' )1, (Y(I)) l 
and 

It follows that to get 11.9 (t )11 = 0, the controller matrix can be chosen to arbitrarily set 

(7.2.22) 

and 

While the linear time-invariant part of the robust controller follows from the cIosed­

loop system i\'(A) ~ 1).[ -(AI-ElFl)1 ,i.e., 



Chapter 7 105 

_ 2 kl 2 kf I _ . 2 (1 1) 1 1 . (7 2 2 ) -A ---2 A-g---
2 

-5 - /l,1+/l, 2 S+/l,1/l, 2' .. 4 
m x" m x" 

resulting in, 

? 

I I = m x,i ( -A A _ ) k I 2 g , (7.2. 25) 

and 

? 

1 2 = m X,i (A I + A 2 ) • 

k 
(7.2. 26) 

Finally, Equations (7.2.22) & (7.2.23) can be expressed in tem1S of Equations (7.2.25) 

& (7.2.26) as follows, 

1 3 (y(t)) = mkx; (YI+X"V (( 1 r +~J(-AI A 2 -g); 
YI+X " Xci 

(7.2.27) 

and 

" 

, 5 

0 5 

°O~--~--~--~----~--~5L---~--~--~----~--~,O 
Tne.t.secoods 

Figure 7.2.2.: Controlled Nonlinear Maglev Problem. 
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Accordingly, by tuning the amplification gain of the amplifier, the response of 

the maglev system with zero initial conditions can be simulated using MATLAB® for the 

following Eigenvalues A 1= - 4 and A 2 = - 7 with a sufficiently small air damping 

constant. Figure (7.2.2) shows the controlled response of the system for two different 

desired set-points, i.e. x d =1.25cm and x d=3.25cm, over the finite-time interval [0,10]. 

7.2.3. Conclusion 

In this section the maglev nonlinear control problem was robustly controlled 

using the pole-assignment technique of chapter 3. In view of the simplistic but practical 

model considered in this section the recursive approximation theory was not employed 

but instead mathematical manipulations were accomplished by hand. However, in 

general, it is advisable to adopt the approximating sequences in case higher-dimensions 

or more sophisticated nonlinear systems are to be considered. As such, the practical 

implementation in a real-life setting would be rendered much easier. Furthermore, as a 

future work, servomechanism problems could be considered in case an input signal, e.g. 

a sinusoidal wave, is to robustly be followed. 
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7.3. The Lynx Helicopter 

Nomenclature 

u, v, w Fuselage x, y, z-axis velocity components respectively (m / s ) 
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p,q,r 

t/J, e, If! 

g 

Fuselage x, y, z-axis angular velocity components respectively (rad / s ) 
Fuselage attitude, Euler angles (rad ) 

X T , Y T , ZT 

XF,YF,ZF 

X,p, YIP , ZIP 

X,n'Y'n,Z'n 

LT ' M T , NT 

LF,MF,N F 
L,p' M,p ,N,p 

Lfn,M'n,N'n 

Acceleration due to gravity (m / s 2 ) 

Mass of helicopter ( Kg ) 

External aerodynamic forces acting along the x, y, z-axis (N ) 
Main rotor aerodynamic forces (N ) 

Tail rotor aerodynamic forces (N) 

Fuselage aerodynamic forces (N ) 

Tail plane aerodynamic forces (N) 

Fin aerodynamic forces (N) 

Aerodynamic moments about the centre of gravity (c.g.) 
Main rotor aerodynamic moments about the c.g. (Nm ) 

Tail rotor aerodynamic moments about the c.g. (Nm ) 

Fuselage aerodynamic moments about the c.g. (Nm ) 

Tail plane aerodynamic moments about the c.g. (Nm) 

Fin aerodynamic moments about the c.g. (Nm ) 

Main rotor collective pitch (rad ) 

Tail rotor collective pitch (rad) 

Lateral cyclic pitch (rad ) 

Longitudinal cyclic pitch (rad ) 

7.3.1. Introduction 

As commonly known, helicopters have a dynamical behaviour that is hard to 

control due to their minimum-phase behaviour. Unlike aircraft mechanisms, helicopters 

have the ability to hover as well as to move under a fully controlled directional motion. 

This in fact is due to their propulsive, lift and control forces that can be generated 

throughout their flights regardless of speed. It follows that helicopters represent a 

challenging control problem that is highly complex due to their high-dimensional, 

asymmetric, nonlinear dynamical models. 
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The complexity of this mechanical system is amplified due to the robustness 

requirements that are mainly imposed by the ability of those rotorcrafts to withstand the 

generated vibrations from their rotor assemblies without breakdown (see [Benson & 

Flowers, 1988]). The controlled physical nonlinear system must behave in a robust 

manner not only against transient resonances imposed by small perturbations but also 

against the more important large perturbations that are generated by wind gusts, for 

example, to avoid limit cycles. 

The three different flight modes that range from hovering, vertical flying or 

forward flying makes designing stable state-feedbacks for such autonomous flying 

systems, at a theoretical level, a difficult task. Nonetheless, there has been a great deal 

of publications to stabilize rotorcrafts. For some previous works that were developed for 

control problems in helicopters the reader is referred to Vii chis, et al., (1997) and the 

references therein. Additionally, some recent research directions can be found in Shin, 

et al., (2005) where the authors designed a model-based controller for a fully 

autonomous small-scale unmanned helicopter system based on the Kalman filter Linear 

Quadratic Integral (LQI) theory. A nonlinear sliding-mode controller structure for the 

design of a flight control system for a PUMA helicopter appeared in McGeogh, et al., 

(2004). Lozano, et al., (2004) presented a discrete-time prediction-based state-feedback 

controller for the yaw angular displacement of a 4-rotor mini-helicopter. Lee, et al., 

(2005) designed and evaluated a helicopter trajectory controller using feedback 

linearization technique relying on the two time-scale separation principle. Moreover, 

multivariable control of various helicopter motions was considered in Walker (2003); 

and nonlinear adaptive output-regulations for rotorcrafts appeared in Isidori, et al., 

(2003). While the H <Xl controllers also played an essential role in stabilizing helicopters 

(see, for e.g., [Luo, et al., 2003; Postlethwaite, et al., 2005; Postlethwaite, et al., 1998; 

and Turner, et al., 2001]). 

However, in this section, the multi-role Westland Lynx MK7 helicopter which is 

an under-actuated, highly-agile dynamical system due to its semi-rigid four-bladed main 

and tail rotor systems, and exhibiting highly nonlinear behaviour with inter-axis 

coupling (see [Turner, et al., 2001]) is considered using the theoretical approach of 

chapter 5. The general panorama of some of the aerodynamic forces and torques acting 

on this helicopter is depicted in Figure (7.3.1). 
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Figure 7.3.1.: The Lynx Helicopter. 

7.3.2. System Dynamics & Simulations 
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".,M.,N. 

The modelled flight mechanics in the sequel assumes rigid rotor blades with 

sprung hinges at the rotor's centre, as it is common in many other helicopter models 

(Turner, et aI., 2001), The Westland Lynx MK7 helicopter can be modelled by (see 

[Padfield, 1996; and Luo, et aI. , 2003): 

• Force Equations 

. X, e u = rv-qw+-- gSIl1 , (7.3, 1) 
m s 

. Y',I. e v=pw-ru+-+g sll1 'f'cos , (7.3.2) 
m s 

w = qu - pv + ~ + g cos ¢ cos e . (7.3.3) 
m .l· 

• Moment Equations 

p=(c,r+c 2 P)+c )L+c 4 N, (7.3.4) 

q = c 5 pr - c 6 (p 2 - r 2 ) + c 7 M , (7.3.5) 

(7.3.6) 
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• Attitude Equations 

¢ = p + ( q sin fjJ + r cos fjJ) tan () , 

iJ = q cos fjJ - r sin ¢ , 

. q sin fjJ + r cos fjJ 
'1/-- cos{) . 

With the coefficients appearing in the moment equations defined by: 

(I.vy-I ::)1 ::-1;: 
e)= r ' 

(I xx-I w+I zJI xz e = .. 
2 r ' 

I.. e ----==-
3- r ' 

1 .. -1.. e - --=-----'~::::... 
s- r ' 

Ix· e =--
6 I ' 

yy 

1 
e =-

7 I ' 
yy 

In e =-
9 r' 

r = I xxI zz-I;:. 
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(7.3.7) 

(7.3. 8) 

(7.3.9) 

The aerodynamic, gravity and propulsion contributions are described by five 

subsystems: 

x = X R + X T + X F + X Ip + X In' 

y = y R + Y T + Y F + YIp + Y In' 

z = Z R + Z T + Z F + ZIP + Z In , 

(7.3. to) 

(7.3.11) 

(7.3. 12) 

(7.3. 13) 
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M = M R + M T + M F + M Ip + M In' 

N = N R + NT + N F + N,P + N In· 

While the pilot's four primary control inceptors are: 
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(7.3. 14) 

(7.3. 15) 

• The cyclic stick which is used to control both longitudinal and lateral cyclic, 

influencing the pitch and roll. 

• The collective stick which is used to control the main rotor collective, influencing the 

vertical flight. 

• The pedals which are used to control the tail rotor collective blade angles, influencing 

the yaw. 

The helicopter model can be constructed in the state-space usmg the 

configuration data provided in Luo, et ai., (2003) and Equations (7.3.1 to 7.3.9) in the 

affine form: 

x(t)=A(x(t))x(t)+B(t)u(t). (7.3. 16) 

Where 

x(t)~ [u v w p q , ¢' B 'll'r (7.3. 17) 

with the non-unique operators A E ~H9x9 and BE 9i 9x4
; and plausibly expressed by: 

X' u X' +r v X'w-q X' P 
y' -r u 

y' v Y'w+P y' p 
Z'u+q Z'v-P Z' w Z' p 

L' u L' v L' w L' p+C2 

A(x(t)):= M' u M' v M' w M' p-c 6 p 
N' u N' v N' w N' p 

0 0 0 1 

0 0 0 0 

0 0 0 0 

X' q X' r 0 -g sincB 0 
y' q y' r g sinc¢,cosB 0 0 

Z' q Z' r -Z' -Z' -Z' -Z' -Z' -Z' u v w p q r 0 0 

L' q L'r+cl 0 0 0 

M' q M'r+c sP+c 6 , 0 0 0 

N' q+c g p-c 2r N' r 0 0 0 

0 cos¢'tanB q sinc ¢' tan B 0 0 

cos¢' -sin¢' 0 0 0 (7.3. 18) 

sin¢' cos¢' 

cosB cosB 
0 0 0 
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with a linear B(/), for simplicity: 

X' 8 0 
X' 8 1, 

X' 
81e 

X' 8 0T 

y' 
8 0 

y' 
8 1, 

y' 
8 1c 

y' 
8 0T 

Z' 8 0 
Z' 8 1, 

Z' 8 1c 
Z' 8 0T 

L' 8 0 
L' 8 1, 

L' 8 1c 
L' 8 0T 

B(t)= M' 8 0 
M' 8 1, 

M' 8 1c 
M' 8 0T 

(7.3.19) 

N' 8 0 
N' 8 1, 

N' 8 1c 
N' 8 0T 

0 0 0 0 

0 0 0 0 

0 0 0 0 

The constant subsystems contributions appearing in A(x(t)) and B(t) are gIven In 

Tables (7.3.2) & (7.3.2) respectively. 

X' u= -0.0191 L' u= 0.0130 

X' v= -0.0008 L' v= -0.2290 

X' w= 0.0170 L' w= 0 

X' p=-0.3371 L' p=-1O.6199 

X' q=0.3839 

X' =0 r 

y' u= 0.0010 

y' v= -0.0349 

y' w= -0.0017 

y' p = -0.4032 

y' q=-0.3381 

Y' r= 0.1168 

Z' u= 0.0136 

Z' v= -0.0017 

Z' w= -0.2994 

Z' p = -0.0257 

Z' q= 0.0237 

Z' =0 r 

L' q= -3.0470 

L' r= -0.0333 

M' u=0.0405 

M'v=0.0024 

M' w= -0.0026 

M' p= 0.5281 

M' q= -1.8394 

M' r= -0.0015 

N' u=0.0020 

N'v=0.0039 

N' w= 0.0060 

N' p= -1.8554 

N' q=-0.5412 

N' r= -0.3487 

Table 7.3.1.: Aerodynamic Subsystem 

Contributions. 

X' 8
0 
= 5.2424 

X' 8 = -10.3456 
I, 

X' 8 = 1.0793 
Ic 

X' 8 =0 
OT 

Y' 8 = -0.3885 
o 

Y' () = -1.082 
I, 

Y' 8 =-10.3713 
Ic 

Y' 8 = 4.7239 
OT 

Z' 8
0
=-87.010103 

Z' () = -0.7293 
I, 

Z' ()Ie = 0.0755 

Z' () =0 
OT 

L' 8
0 
= 7.5007 

L' 8 = -27.2884 
" 

L' 8
k 
= -156.4425 

L' 8 = -1.069 
oT 

M' 8 = -1.5019 
o 

M' 8 = 27.09 
I.. 

M' 8 = -4.7239 
Ic 

M' 8 = -0.1857 
OT 

N' 8
0 
= 17.7373 

N' 8 = -4.8969 
I, 

N' () = -27.9728 
Ic 

N' 8 = -12.9304 
OT 

Table 7.3.2.: Propulsion Subsystem 

Contributions. 
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The pitch control is: 

(7.3 . 20) 

REMARK 7.3.1. In view of the insufficient exact aerodynamic, gravity and propulsion 

contributions in the literature as relating to the Lynx helicopter model that is represented 

by Equations (7.3 .1 to 7.3.9), the author made use of the Fourier's linearized system 

provided in Luo, el af., (2003) based on the configuration data in Table (7.3.3) to 

calculate the coefficients shown in Tables (7.3.1) & (7.3.2), and include them in the 

state-affine nonlinear system (7.3.1 6). 

Main a or - 6.0 c - 0.391 m h , _ 1.274 III I , .. 27 12.36 Kg III 1 " . tH8 14 Kg", Z 

K , - IM352 " . _ 4 R . 6A m S - 0.0778 Cn. - 0.009 
Ralal" C n, - 37.983 y - 7.12 Y . - 00698 rutl .(, . I.()Q22 O. - 0 .14 rud l m 

" II, - 6.0 
C , - 0.180601 g I - 5.8 " r - 1.1 46 m '" • 0.7467 Kg ",1 

K - 16635.2 
Tail Rora,. " " 

.. 7.66 nJ * " _ 0 "., : 4 R , - 1.1061'1 
, .. 0.208 

Co., - 0.008 C Olt - 5.334 0 1 .. -O.78S4 md - 2.66 
A" . 1.2236 

y, 

' . - 2761.1 Kg ", l I ... .. 2034 R Kg ", I '" .. J 3<)04.5 Kg m J I , _ 20J4 . ~ Kg /Il l k _ 0 
Fuselage " 

S,. _ 19.6047", l S . .. 24.R70 1 ", : I , - 12.06 ", .l' ", .. -o.OI9R", III . - 4313 .7 Kg 

a •• - 3.5 
Tail Plane " .. • 0 m k ' . - 0 ' .. - 7.66 m s. - 1. 197 ni l 

a •• - - 0.0175 

Vel"lical 
a •• - 3.5 h ~ - 1.274 m l /llt - 7.48", S ,. . 1.107",1 {1 • • - - 0 0524 

Fin 

Engine 
K , . 10000 

n~ .. 35.63 Nul I s Q.~ 
r . , - 0.6 s 

. 459 1 N", r ., - 0.025 s r ., - 0.1 s 

Table 7.3.3.: Configuration Data (Sf units) for the Westland Lynx Helicopter. 

Recalling the theory of Chapter 5, then the nonlinear state-feedback H <Xl algorithm can 

be applied recursively to update the hovering controller: 

u U] (I) = -S' (x [i - I) (t))p [ i ) (/)X [i] (I). (7.3.21) 

Using MATLAS®, the simulation in Figure (7.3.2) shows the controlled responses about 

the hovering trim condition in (7.3.22) after seven iterations for y = 9 with an 

exogenous disturbance input matrix, E, that took the designed form of 1
9

; with a scalar 

time-invariant disturbance input of w = 0.5. Whereas, the controlled outputs were 

e,tjJ,r; with measured outputs e,tjJ,r,p,q with corresponding unitary weighting 

matrices. 
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0 

0 

0 

0 

0 

0 

- 3.15 ' (7.3.22) 

3.43 ' 

34.0261 

20630 

14.73 ' 

0.55 ' 

0.16 ' 

10.26 ' 

where n is the main rotor speed in (rad/sec) and Q e is the engine torque in (Nm). 

1 . 5 r-~-~-~-~----==~ 

.(J.50~---::-'0.5::--~--1c'::. 5-~---:-275 -~ 

TlfTle (s) 

0.3 r-~-~-~---.===" 

0.2 

II 0.1 , 
1;0 
.lj 0 --- - ==-=--

1.5 25 
Time (.) 

;'; 
I! .1 

·2 

.30!-----::-'0 5::----:---1c'::.5-~---=-275 ---: 

Tim, (s) 

Figure 7.3.2.: Controlled Response at Hovering. 

7.3.4. Conclusion 

The highly nonlinear six-degrees-of-freedom Lynx helicopter model, with very 

fast-response dynamics, was controlled using the developed and proposed H 00 

stabilization technique of chapter 5. The response proved highly robust against the 

disturbance input although some minute oscillations were noticeable at the initiation of 

the controller. With comparison to Luo, el al. , (2003), the simulated steady-state stable 
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responses of the 9-states herein were reached ten-times faster. In di fferent words, by 

means of the devised state-feedback, the Lynx helicopter reached its stable hovering 

condition in about two seconds as compared to twenty seconds in Luo, el at. , (2003) . 

Handling qualities ' requirements of ADS-33C (A VSCOM, 1989) have provided, 

over the years, a focus for research efforts with relation to rotorcrafts flight control 

problems from both industrial and academic perspectives; and it is believed that the 

proposed flight control architecture in this section would meet such minimum 

requirements due to the achieved robust stability and robust performance. Furthermore, 

by adjusting the weighting matrices in the H <Xl formulation extra requirements can be 

met for an actual implementation and to guard against any unwanted perturbations 

and/or limit cycles. 

The proposed state-feedback controller for the Lynx helicopter can equivalently 

be applied for an autopilot or a fly-by-wire setting as schematically illustrated in Figure 

(7.3.3); a setting which was proposed and successfully applied by Postlethwaite, el al., 

(2005) for the Bell 205 helicopter. 
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Figure 7.3.3.: Schematic Fly-By-Wire Representation. 

To conclude, rotor dynamics m a rotorcraft exhibit highly complex fluid 

dynamic unsteady behaviours due to vortex flow formations that are described by 

Navier-Stokes equations (see [Conlisk, 2001; and Le Bouar, el aI., 2004]); and as a 

future work, it would be motivating to include those fundamental aeromechanics in the 

control architecture for more sophisticated 12 degree-of-freedom models such as the 

Bell 205 helicopter in Postlethwaite, el aI. , (2005), for example, while studying different 

flight modes. 
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7.4. The Wing Rock Phenomenon Including Yawing Motion 

Nomenclature 

X 1 (I) Bank angle (rad ) 

x 2 (I) Roll-rate (rad / s) 

X 3 (I) Aileron deflection angle (rad ) 

x 4 (I) Sideslip angle (rad) 

x s (I) Sideslip-rate (rad / s ) 

k Aileron-actuator's time-constant 

7.4.1. Introduction 

Being one type of lateral-directional instability for airplanes flying at subsonic 

speeds and high angles of attack, wing rock occurs for both low and high-aspect ratio 

configurations as shown in Figure (7.3.1) (see [Hsu & Lan, 1985]). In fact, the onset of 

wing rock is often the limiting factor behind the maximum angle of attack an aircraft 

can exhibit in parts of their flight envelopes, instead of the stall occurrence (see 

[Konstadinopoulos, et al., 1985]). 

Roll 
Oscillations 

Figure 7.4.1.: The Wing Rock Phenomenon. 
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It is due to such a hindering aspect as well as the desire for 'super­

manoeuvrability', increased speed and efficiency of military aircrafts, in particular, (see 

for example [Nelson & Pelletier, 2003]) and/or crew return vehicles (CRVs), that 

research efforts have been pre-occupied with this phenomenal behaviour for the last few 

decades. 

There has been a constant effort for accurately determining the dynamical and 

complex model behind the wing rock mainly through flight-tests or wind-tunnel 

measurements since most available models are mostly constructed based on physical 

insight (see [Manor & Wentz, 1985; Guglieri & Quagliotti, 1996; Katz, 1999; Saad, et 

al., 2002; and Tan & Lan, 1996]). Generally speaking, flight dynamic phenomena that 

limit the aircraft's manoeuvring capability, such as wing rock, wing drop, nose slice and 

buffet are only discovered during flight testing and resolved using the "quick fix 

approach" (Nelson & Pelletier, 2003). In that sense, robustness has become essential in 

order to resolve the model error issue and avoid any plausible degradation of the 

vehicle's performance. 

So far, various control methodologies have been employed in the literature to 

control the wing rock motion regardless of the type of wings and/or the model's degree­

of-freedom. Singh, et al., (1995), used adaptive and neural control techniques for 

slender delta wings. Sreenatha, et al., (2000), used fuzzy logic for an approximate 

second order slender delta wing rock. Gain scheduling is used in Ordonez and Passino, 

(2003), to avoid the problem of fixed angle of attack. In Shue, et al., (2000), the robust 

control problem with state feedback is cast in terms of a Hamilton-jacobi-Bellman 

inequality. Shue, et at., (1996), used optimal feedback control. Aruajo, et al., (1998), 

used variable structure adaptive control. Monahemi & Krstic, (1996), used adaptive 

feedback linearization. Crassidis, (1999), used model-error control synthesis. Then 

again, the proposed H 00 theory of chapter 5 is employed in this framework to control a 

fighter aircraft's wing rock motion. 

Wing rock is an un-commanded roll-yaw oscillation which is initiated either 

with a sideslip or during a zero-sideslip flight with some asymmetries in the flow over 

the fighter aircraft (Hsu & Lan, 1985). In other words, the phenomenon is a self­

sustaining limit-cycle oscillation with a limited amplitude occurring as a result of the 

nonlinear coupling between the dynamic response and the unsteady aerodynamic forces 

as shown in Figures (7.4.2 to 7.4.4). The loss of damping in roll at high angles of attack 
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often characterizes the onset of wing rock. The wing rock motion is usually the result of 

the coupling of several degrees-of-freedom, adding to the complexity of the motion. 

Statistically, the wing rock phenomenon is traced back to some of the early 

swept-wing fighter airplane and not only limited to a few aircrafts; such as the F-4, F-S, 

F-14, X-29A, Gnat, Harrier, HP lIS, only to mention a few (for a historical account see 

[Hsu & Lan 1985; and Tan & Lan 1996]). Actually, there has been over thirteen modem 

aircrafts exhibiting this behaviour (Nelson & Pelletier, 2003). 

7.4.2. System Dynamics & Simulations 

The five states nonlinear dynamical equations modelling the wmg rock 

dynamics of a fighter aircraft are given by (see [Tewari, 2000]): 

• State Equations 

XI(t)=X 2(t), 

x 2 (t ) = - W 2 X I (I) + ,u I X 2 (I) + ,u 2 x~ (I) X 2 (I) + b I x~ (t ) + b 2 X I (I) xi (I ) 
+LoX 3(t)+Lpx 4(/)-L r x 5(t) 

X 3(t)=-kx 3(t)+ku(/), 

X
4
(/)=X 5(t), 

x s (I) = -N p x 2 (I) - N p X 4 (I) - N r x 5 (t). 

(7.4.1) 

(7.4.2) 

(7.4.3) 

(7.4.4) 

(7.4. S) 

The wing rock phenomena for this particular fighter aircraft can be constructed 

in the state-space using the configuration data provided in Tewari (2000) and Equations 

(S.4.1 to S.4.S) in the following affine and time-varying form: 

X(/) = A (x(t))x(t)+ B(t)u(t), (7.4.6) 

where A E ~H SxS and BE 9l 5X

I; and plausibly expressed by (which is obviously non-

unique): 

0 al2 0 0 0 

a21 a 22 a 23 a 24 a25 
A(X(/))= 0 0 a33 0 0 (7.4. 7) 

0 0 0 0 a45 
0 a 52 0 a 54 a 55 
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where 

a 12 = 1, 

a 24 =L p , 

a 25 = -Lr' 

a 33 =-k, 

a 45 = 1, 

a 52 = -N p' 

a 54 =-N p' 

ass = -N r; 

with a linear B(t), expressed by: 

B(t)=[O 0 1 0 Or (7.4.8) 

The constant contributions appearing in the system's dynamics matrix A ( x (t)) are 

given in Table (7.4.1) for a particular angle-of-attach (see [Tewari, 2000]). 

w = 0.0201 

PI =0.0105 

P2 = -0.1273 

hi = 0.0260 

b 2 =0.5197 

Lo =1 

L p = 0.02822 

Lr =0.1517 

N p =-0.0629 

Np =1.3214 

N r = 0.2491 

k = 20.2020 

Table 7.4.1.: Angle of attack Corresponding Constants. 
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Recalling the theory of chapter 5, the nonlinear state-feedback H 00 feedback control 

law is expressed as an iterative sequence: 

(7.4.9) 

whi le noting that for this particular model the control operator, B(t) , IS linear as 

expressed in (7.4.8). 

The simulations shown in Figures (7.4.2 to 7.4.4) depict the uncontrolled 

responses of the bank angle, the phase plane representation of the roll-rate versus the 

bank angle, and the phase-plane plot of the sideslip-rate versus the bank angle, 

respectively for this given nonlinear dynamical model. 
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Figure 7.4.2.: Uncontrolled Initial Response of the Bank Angle. 

Figure 7.4.3.: Phase-Plane Plot of 
the Roll-Rate vs. the Bank Angle. 

e · 'O'" 

-. 

., a 1 2 
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Figure 7.4.4.: Phase-Plane Plot of the 
Sideslip-Rate vs. the Bank Angle. 
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Now, for the following given initial conditions : 

x (0) = [1.0 rad. 0.5 rad./s 0 rad. 0 rad . 0 rad.! s r (7.4. 10) 

the ASRE can be solved backwards in time, as discussed in chapter 5, following the 

proposed algorithm, while at each iteration the feedback control law (7.4.9) is updated 

along with the state-affine nonlinear system in (7.4.6) . Figure (7.4.5), depicts the 

controlled response after six iterations using MATLAB®. Robust performance was 

achieved for r = 6 with an exogenous disturbance input matrix, E , that took the 

designed form of 15; with a scalar time-invariant disturbance input of w = 0.5 . Both the 

controlled outputs and the measured outputs were the bank angle, the aileron deflection 

angle and the sideslip angle (i. e. x 1(t) , X3(t) , and x 4(t) with corresponding unitary 

weighting matrices. Figure (7.4.5), shows the control input signal needed to suppress 

this model-based nonlinear aerodynamic phenomena. 
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Figure 7.4.5.: Controlled Response of the Bank Angle and the Roll-Rate. 
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Figure 7.4.6.: Nonlinear Controller Command. 

7.4.3. Conclusion 

122 

In this section, the nonlinear aerodynamic wing rock behaviour of a fighter 

aircraft's simple model was controlled and suppressed using the developed and 

proposed H 00 regulation technique of chapter 5. The simulated controlled responses 

seemed promising in view of the realistically small control effort as well as the fast 

response time to reach the steady-state behaviour. As a future work, more sophisticated 

analytical models for the wing rock motion can be investigated, such as the three­

degree-of-freedom model by Go, el aI., (2004) and/or the two-degree-offreedom model 

by Go, el aI., (2002). 
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7.5. A Hypersonic Aircraft 

Nomenclature 

a 

CD 
CL 

C M (q) 
C M(a) 

= speed of sound, ft / s 

= drag coefficient 

= lift coefficient 

= pitching moment coefficient due to pitch rate 

= pitching moment coefficient due to angle of attack 

C M (0 E) = pitching moment coefficient due to elevator deflection 

C T = thrust coefficient 

c = reference length, 80 ft 
D = drag, lbl 
h = altitude, ft 
I y.y = moment of inertia, 7 x 10 6 slug· ft 2 

J = cost function 
L = lift, lbl 
M = Mach number 
M y.y = pitching moment, lbl· ft 
m = mass, 9375 slugs 

q = pitch rate, rad / s 
R E = radius of the Earth, 20,903,500 ft 
r = radial distance from Earth's centre, ft 
S = reference area, 3603 ft 2 

T = thrust, lbl 
V = velocity, ft / s 
a = angle of attack, rad 
a 0 = angle of attack at trim condition, rad 

r = flight-path angle, rad 
o E = elevator deflection, rad 
o T = throttle setting, % /100 
fJ = gravitational constant, 1.39 x 1 0 16 ft 3 / s 2 

P = density of air, slugs / ft 3 

7.5.1. Introduction 

123 

Humans have long been fascinated with speed _ an allure that led to the 

development of the supersonic aircraft when the Bell Aircraft Corporation with its 

rocket propelled XS-I research aircraft was first to break the mythical sound barrier in 
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1947 (Williamson, 2005). And ever SInce, superSOniC flights received many 

technological developments both for civil passenger aircrafts, such as the Concorde, and 

for military fighters, e.g. the Mach-3 Blackbird spy plane. Nonetheless, the first-free 

flying hypersonic aircraft, NASA's X-43A, based on its scramjet engines recorded 

Mach 9.8 in 2004 (Williamson, 2005). While, for example, the Japanese Hypersonic 

Flight Experimental Vehicle (Hyflex) project in 1996 demonstrated great performance 

and highly successful with their hypersonic lifting conceptual vehicles (Sakurai, et al., 

1997) 

The future of hypersonic flights lies on having a fully reusable single-stage 

space-plane that could take off horizontally from an ordinary airport runway, to deliver 

its payload to orbit and land. While a sibling concept is a hypersonic passenger aircraft 

that could fly on a sub-orbital trajectory. Indeed the promise of a hypersonic travel will 

never cease to fuel humans' imagination. In addition, new advances in hypersonic 

propulsion systems and long-lived structural models are opening the way for the 

possibilities of developing "a new type of commercial aircraft-the hypersonic 

transport" (Kirkham & Hunt, 1977). In fact, NASA's Next Generation Launch 

Technology (NGL T) program with its conceptual flight vehicles is paving the way for 

more safer and economical launch systems in the not too distant future (Moses, et at., 

2004). 

Over more than six decades a remarkable achievement was accomplished in 

hypersonic flights owing to the rigorous research and development by multidisciplinary 

scientists and engineers. Operating in a 'harsh' and a 'non-forgiving' environment, 

hypersonic flights often face many unknown problems which designers were unaware 

of at the first place, e.g. the viscous/inviscid interactions and various other problems 

(Bertin & Cummings, 2003). 

Even so, new technological developments are still as promising in designing, 

building, testing prototypes in air-tunnel (Cox & Crabtree, 1965; Cox, 1964; and 

Holden, 1993) and flying hypersonic aircrafts albeit the complexity and costly 

endeavours that are involved with this technology (Bertin & Cummings, 2003). The 

current technological progress and findings with respect to propulsion systems have 

constantly improved over the years. Improvement of aerodynamics and jet-energetic 

parameters of air to-to-space aircrafts and their engines using plasmoid formation was 

discussed in Durdakov, et al., (1996). While more recent schools of thoughts focused on 
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air-breathing concepts using magneto-hydrodynamic (MHD) energy bypass injector 

ramjet engines (Lee, et al., 2004). 

But from a control standpoint, controlling hypersonic flights presents one of the 

most challenging and difficult challenges in existence especially for control designs to 

meet performance and robustness objectives. A hypersonic aircraft drastically differs 

with aircrafts of conventional subsonic and supersonic speed regimes. With a significant 

integrated airframe/propulsion system, hypersonic aircrafts, with their high kinetic 

energy levels at such speeds, feature a high nonlinear coupling between aerodynamics, 

propulsion and the vehicle dynamics (Sachs, 1998). And it is due to the high velocity 

flights that hypersonic aircrafts become very sensitive to attitude and velocity changes. 

For instance, at a speed of 15 Mach and an altitude of 110,000 ft , a I-degree increase in 

the aircraft's angle of attack generates a normal acceleration of 11.5 ft/ S2 which is 

equivalent to a 113 g load factor (Marrison & Stengel, 1998). The difficulties in 

controlling this highly nonlinear dynamical system are even further magnified due to 

the inaccuracy in measuring atmospheric properties and aerodynamic characteristics 

(Wang & Stengel, 2000). Nonetheless, hypersonic aero-elasticity and aero-thermo­

elasticity have constantly received considerable attention using piston theory and 

approximate aerodynamic models (see [Friedmann, et al., 2004; and Weiland, et al., 

1993] and the references therein); as well as using computational fluid dynamics (CFD) 

method (see [Papadopoulos, et al., 1999]). Hypersonic vortex formation and flow 

computations from a perturbed hypersonic flow also received closer rigorous studies 

and flow-field simulations (see [Lin & Shen, 1997; and Hemdan, 1990]); as well as 

interferometric experimental investigations of flow field formation around spheres in 

free flights (Sedney & Kahl, 1961). 

It consequently follows that robustness of the synthesized flight control system 

is crucial and essential to accommodate for unknown perturbations and uncertainties 

affecting this particular dynamical system both in theory and in practice. Most control 

theoretical research communications with relation to hypersonic vehicles revolve 

around robust methodologies. In their paper, Marrison & Stengel (1998) used the Monte 

Carlo evaluation (MCE) and Genetic Algorithms (GA) to design a robust controller for 

a hypersonic aircraft. While, in Wang & Stengel (2000), the authors combined nonlinear 

dynamic inversion (NDI) with stochastic robustness to produce a control system for a 
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hypersonic aircraft as an extension to the NDI approach in Lane & Stengel (1988). 

Sliding mode control designs for hypersonic aircrafts were also considered in Xu, et al., 

(200Ia) and Xu, ef al., (200Ib). A neural adaptive controller was devised for hypersonic 

aircrafts in Xu, et aI., (2003). 

In this section, however, the conceptual finite-horizon continuous-time state­

feedback nonlinear H <Xl theory of chapter 6 is used to control and robustly stabilize a 

hypersonic aircraft about its trimmed operating flying condition. Some of the main 

forces acting on the system are illustrated below in Figure (7.5.1). 

T 

Direction of 
Flight 

L • 

m 
y 

Figure 7.5.1.: Forces Acting on the Hypersonic Aircraft. 

7.5.2. System Dynamics & Simulations 

__ ----+ L .---

....... 
.......... 

...... 

The highly nonlinear system dynamics of a hypersonic aircraft can be modelled 

by fifth-order Ordinary Differential Equations for the velocity, flight-path angle, 

altitude, angle of attack, and pitch rate, respectively, as follows (see, e.g., [Marrison & 

Stengel, 1998; and Wang & Stengel, 2000]): 

. Tcosa-D J-lsmy 
V=----

m r2 

. L + T sin a (J-l- V 2 r) cos y 
y= mV - Vr2 ' 

h = Vsiny, 

. . 
a=q-y, 

(7.5. I) 

(7.5.2) 

(7.5.3) 

(7.5.4) 
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. M vv 
q =-"-" . 

! ' y.y 
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(7.5.5) 

where the lift, drag, thrust, pitching moment, and radius from the Earth's centre are 

modelled, respectively, by 

1 2 
L =-p V SCI' 2 ' (7.5.6) 

1 2 D=-p V SC D , 
2 

(7.5. 7) 

1 2 
T="2 P V SCT' (7.5.8) 

My'y =~pV2SC[CM (a)+C M (8E)+C M (q)], (7.5.9) 

r=h+R E • (7.5. 10) 

The thrust coefficient C r is a function of throttle setting 8 T, 

j
WlbO.0105[I-WI7164( a-a 0)2J(1 + w,s l7 / M)(1 + w,9 0.l5)8 T, if 8 T < 1 

C (7.5.11) 
r -

w,bO.0105[I-wI7164(a-ao)2J(I+w,sI7IM)(I+w,90.l58 T),if 8 T~1 

The aerodynamic coefficients and the atmospheric model, which are functions of 

the states and the control, are assumed uncertain, with w denoting an element of the 

uncertainty vector. These disturbed parameters are given by: 

m=wlm, (7.5. 12) 

! y.y=w2! y.y' (7.5. 13) 

S = w3S, (7.5. 14) 

C = w 4C, (7.5. 15) 

a = w 5 (w 68.99x 1 0-9h 2_w, 9.l6x lO-4h + 996), (7.5. 16) 

A,!=Vla, (7.5. 17) 

P = 0.00238 e-hlwK24000, (7.5. 18) 

C L = w9 a(0.493+w I0 1.911 M), (7.5.19) 
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C M (q) = (c 12V)qW24 (-w 2s O.025M + 1.37)x (-W 26 6.83a 2+W27 0.303a - 0.23), (7.5.21) 

C M (8E)=W 28 0.0292(8E-a). (7.5.22) 

The robust flight controller can be designed for this generic aircraft by first 

constructing the system dynamics in the state-space form using Equations (7.5.1 to 

7.5.5) in the following affine and time-varying form: 

all a l2 0 0 0 

a 21 a 22 0 0 0 

x(t) = A( x(t),u(t))x(t)+ B( x(t) )u(t) = 0 a J2 0 0 o 
o 
o 

o 0 a 4S 

o 0 0 

v(t) 0 

y(t) b 21 

h(t) + 0 

a(t) b 41 

q(t) 0 

where the non-unique nonlinear state and control dependent operator 

bsS (7.5.23) 

A (x(t),u(t)), 

and the state-dependent B( x(t)) operator are respectively defined as in (7.5.23) by the 

following terms: 

1 1 a 11= --p SC D \f(V)--p SC T \f (V)9(u )cos(a +a 0)' 
2m 2m 

a 12=- (h+h:+R E)2 ~(r), 

( 
1 cos (r + r 0) ) 

a 21= 2mPSCL+ (h+ho+RJ:) ~(V), 

a - JlIfI(r) 
22- (V+Vo)2(h+ho+RJi)2' 

a 32= (V + V o);(r), 

a 41=-a 21 , 

a 42= -a 22 , 

and 
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with the following functions, 

lfI(r):= cosr- l ; { 
° for r = 0 

for r;t: ° r 

{

sin (r ° ) for r = 0 

~(r):= sin(r+ro) , 
for r;t: ° r 

{ 

Vo 

'¥ (V):= V +VV o for V;t: 0' 

for V = ° 

{

Vo for V =0 

;(V):= Vvo for V;t: 0' 

and 
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The measurement output of this generic aircraft is in fact composed of both the 

altitude and velocity measurements, i. e., 

y_[V] - h . (7.5.24) 

As with previous sections, it is convenient to consider the exogenous 

disturbances from a stochastic viewpoint; that is by means of a white noise input to 

appropriate colouring filters to generate the disturbance spectrum. In the absence of 

good disturbance model information white noise was scaled by a gain matrix as also 

considered in Grimble (2001). Accordingly, the disturbance model had the form: 

w = diag {0.01,0.01,0.01, 0.01, 0.01} / s. (7.5.25) 

Now, recalling the nonlinear finite-horizon full-information state-feedback II 00 

control algorithm of chapter 6, the robust controller having the form: 
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U [i) (t ) = - ( D~\/)CI[/) + B' ( X [i-I) (t ) ) P [i) (t ) ) X [I) (t ); for i ~ 0, (7.5.26) 

can be synthesised; and where the designed disturbance weighting matrix, E, and the 

regulated output matrices, C I and D 12' took an identity unitary form of appropriate 

dimensions. While P [i) (t), the solution of the Riccati equation considered in chapter 6, 

was solved backwards in time for a sufficiently small Euler step-length of 0.002 

increments. 

The flight control system considered must provide the control demands for the 

elevator deflection angle and the forward thrust by means of the throttle setting, to 

stabilize the aircraft about its trimmed hypersonic cruising flight condition. The engine 

dynamics of this generic hypersonic aircraft takes a second-order form, 

JT = K IJT + K 20T + K 30T ('ommand' (7.5.27) 

where choosing K 1= K 2= 0 and K 3= 1 provides a suitable model (Wang & Stengel, 

2000); these dynamics, however, were not incorporated in the simulations to follow. 

Nonetheless, two simulated scenarios using MATLAB® are considered in the sequel to 

test the designed trim controller in (7.5.26) about the trim condition in Table (7.5.1); 

where the 28 inertial and aerodynamic uncertain parameters (Wi) were assumed to 

randomly vary from 0.10 ~ 0.0010. 

M =15, 

V = 15,060 fi / s , 

h = 11 0, 000 fi , 

a = 0.0315 rad, 

r = 0 rad, 

q = 0 rad / s, 

oT = 0.183, 

o£ = -0.0066 rad, 

T = 4.6853xl04 [hf, 

Table 7.5.1.: The Trimmed Cruise Condition. 
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• Scenario I: 

For a suffic iently large r , that is r = 10 , the fi rst control obj ecti ve is to stabilize 

the hypersonic aircraft about its operat ional trimmed cruise condition fo r any change in 

velocity and altitude. Accordingly, initiali zing the controller with a 4 fi / s ve locity 

change (i.e. V = 15, 056 fi / s) and an altitude change of 2000 fi (i.e. h = 11 2, 000 fi ); it 

is desirable fo r the controller to stabilize the system and bringing it back to its stable 

operational condition, as shown in (7.5.3) fo r two di ffe rent iterations (i = 2 & i = 4 ). 

While the thrust input control command is shown in (7.5.4). The responses of the close­

loop controlled system seemed realistic while the steady-state was reached within just 

5 sec and the angle of attack' s variation was also within an acceptable range fo r a 

realistic thrust and elevator deflection inputs. 
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Figure 7.5.3.: Response to an Altitude and a Velocity Change with a Nonlinear H <Xl 

Controller. 
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Figure 7.5.4.: Thrust Commanded Response . 

. Scenario 2: 

For only an altitude change of 2000 fi (Le. h = 112,000 fi) , the same flight 

controller is engaged to stabilize the system. The responses of this simulated scenario 

were carried out after four iterations (i = 4 ), and are shown in Figure (7.5.5), with the 

thrust command shown in Figure (7.5.6). The required thrust and elevator deflection 

inputs to stabilize the altitude change were sensibly small, and the responses also 

showed the coupling between the altitude and velocity changes. Overall, the controlled 

responses appeared to adhere to a good and a highly promising system response amidst 

the presence of uncertainty. Note that, Figures (7.5.3 to 7.5.6) depict the relative change 

between the actual system and/or controller response as compared to the trim condition. 
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7.5.3. Conclusion 

Under the regulation problem framework, the extended nonlinear method of 

chapter 6 was used to control the highly nonlinear longitudinal dynamical equations of a 

realistic hypersonic aircraft containing 28 uncertain parameters. With stability being of 

prime importance, the designed flight control system with its simple structure makes it 

suitable for a commanded input from both a pilot and/or an autopilot. Two simulated 

different scenarios of the controlled attitude and velocity responses of the hypersonic 

aircraft around the nominal cruising condition were provided to illustrate the 

effectiveness of the proposed technique in view of the realistically very fast and stable 

responses. Tradeoffs between using less thrust and tolerating longer rise times can also 

easily be examined. 

The devised robust control mechanism for the complete unrestrained generic 

hypersonic vehicle that resembles a reusable launch vehicle makes robustness profiles 

easily adjusted by tuning the weighting matrices. Accordingly, the theoretical 

framework of chapter 6 makes it more transparent to include such requirements into the 

design phase as compared to chapter 5. 

While the aerodynamic coefficients were extracted from the NASA Langley 

Hypersonic Vehicle Simulation Model (see [Marrison & Stengel, 1998; and Wang & 

Stengel, 2000]); they still represent a main source of parametric uncertainties affecting 

hypersonic vehicles. In fact, parametric uncertainty that arises in flight control problems 

also include engine and actuator models (see [Grimble, 2001]). And as a future work 

such models could be investigated more closely; along with un-modelled dynamics that 

can also be considered by means of relevant unstructured uncertainty models. In that 

case, a multiplicative uncertainty model for sensors and actuators may be considered 

(Grimble, 2001). 

Furthermore, without doubt, the ongoing efforts in modelling hypersonic 

vehicles of arbitrary any shape to directly incorporate within their mathematical and 

physical dynamical models the various structural, dynamical, aero-dynamical, and 

coupled aero-elasticity effects are promising. And it is believed that the general solution 

technique provided in this section makes it suitable to numerically simulate and solve 

the equations of motion of any other vehicle shape as made available. 
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7.6. Concluding Remarks 

In this chapter the reader was presented with four different practical model­

based nonlinear dynamical applications. The utilized control methodologies built upon 

the proposed theoretical frameworks of chapters 3, 4 & 5, not only for validation 

purposes but also to provide the reader with the all-encompassing possibilities of 

applying the proposed robust state-feedback modern theories to the practical real-world. 

Although most of the included applications within this chapter were revolving 

around aeronautical and space technologies, in fields where no man-made errors are 

tolerated and where robustness compensates for the unknown and where safety is of 

prime importance, other industrial fields can also be considered as discussed in the 

concluding chapter. 
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CHAPTER 8 

Conclusion of This Thesis 

8.1. Contributions of this Dissertation 

By its own definition the basic purpose of control is to modify an event, a 

process, or a plant to perform a desired task. In fact, the foundational developments by 

theoreticians such as Huygens, Maxwell, Routh, Minorsky, Nyquist and Black (to name 

a few) were motivated by real-world applications. In the 1950s and 1960s, in the hands 

of renowned mathematicians such as Wiener, Bellman, Lefschetz, Kalman and 

Pontryagin (again, to name a few) control theory developed as a branch of applied 

mathematics, i.e. independent of its potential application(s) to engineering problems. 

Historically speaking, some tenuous arguments were typically invoked to 

provide some practical motivation or real-life applicability to engineering contexts 

behind the research on this so-called mathematical control theory. For example, the 

study of the state-space triple operators, (A, B, C), was rationalized as the study of the 

linearization of an arbitrary nonlinear system about its local operating equilibrium point 

- an argument that had some truth, partially due to the inevitable loss of vital global 

nonlinear dynamical behaviours. But by the end of the 1980s, a fairly complete body of 

knowledge and theoretical understanding that included powerful techniques of 

controller synthesis for the general linear systems paradigm was reached; while 

spectacular applications that fitted practical situations were also reported. 

The Classical linear control theory has unquestionably developed extensively 

over the years. While the linear time-invariant frameworks with their broad concepts 

that are not only limited to transfer functions and loop-shaping techniques are still 

applied extensively, the linear time-varying school of thought also proved as effective. 

Nonetheless, many researchers were enticed to mimic the developments of linear 

systems theory by extending the basic linear concepts to the general and more 

comprehensive nonlinear case. Such basic extensions that included controllability, 

observability, and realizability (to name a few) were, in verity, crowned with great 
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success; but the controller synthesis problem, on the other hand, proved to be much 

more elusive and difficult. Despite some significant progress, to date, general 

techniques and methodologies for the stabilization and control of nonlinear systems 

developed over the years but proved to only be valid for special classes of nonlinear 

systems while required very restrictive assumptions and conditions to hold. This is, of 

course, due to the expected daunting complexity of the behaviour of nonlinear 

dynamical systems. 

Conversely, new technological developments had created engineering problems 

where certain nonlineararities and uncertainties had to be taken into account during the 

design phase. Namely, the robust control theory developed for general nonlinear 

systems could not successfully deal with them, basically because of the highly complex 

controller structures that not only involved a highly complex analytical manipulations 

and computations; but also the locally admissible control actions were not always 

guaranteed to work in practise. Accordingly, the material reported in this thesis is an 

attempt in this direction. 

The ultimate goal for a control system designer is to build a controller 

architecture that will work in a real environment (i.e. nonlinear) and in which operating 

conditions may vary with time. The control system must also be able to withstand other 

imposed factors such as noise, disturbances and uncertainties. The mathematical 

representation of dynamical systems, however, often involves simplifying assumptions 

on the system's nonlinearities and/or high-frequency dynamics, which in principle are 

either unknown and hence can not be mathematically modelled, or are modelled but 

ignored during the design stage for simplicity. As a result, in practice, control systems 

that are designed based on such simplifications may not work in real environments. The 

sine qua non of a control system to properly operate in a realistic setting irrespective of 

all sorts of exogenous disturbance inputs and modelling assumptions is dependent on 

the robustness characteristics of the closed-loop system. Mathematically speaking, the 

controller must perform satisfactory for a family of nonlinear plants and not only the 

plant under consideration. In that sense, if the designed controller stabilizes the system 

regardless of parametric changes within prescribed limits then robust stability is 

reached. Most often some control specifications are also to be satisfied, i.e. steady-state 

tracking, speed of response and disturbance rejection; and if met then the controller is 

said to have achieved robust performance. 
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The problem of designing controllers that satisfy both robust stability and robust 

perfonnance requirements has been addressed by means of one of the cornerstones of 

the modern control theory, the H 00 control theory. Over the past decades, since it was 

introduced by Zames (1981), a proliferation of literature was witnessed on the H 00 

control methodologies as previously discussed. 

While for general multi-input multi-output, or multi variable, nonlinear 

dynamical systems, feedback control and especially robustness issues are still research 

topics. The urgency of such a drift has been rendered more acute by the recent 

development of machines with challenging nonlinear dynamics, such as robot 

manipulators, high-perfonnance aircrafis, industrial processes, advanced underwater 

and space vehicles, for instance. It became noticeable that to meet the control objectives 

of these newly emerging and challenging engineering problems, the "find an 

application for my theory" approach had to be discarded due its invalidity; and a new 

tailor-made general nonlinear theory had to be worked out to globally and robustly 

stabilize any given technological problem irrespective of the application context. 

Accordingly, this Doctoral thesis is an elucidation to the above-mentioned 

challenge and an attempt to tackle it. More specifically, a new model-based nonlinear 

control methodology, which can be viewed as an extension to the 'Approximation 

Theory', was proposed to replace the nonlinear system with a sequence of continuous­

time, de-coupled, linear time-varying, non-autonomous, and quadratic ones which 

converge to the solution of the nonlinear dynamical problem, but are not only locally 

valid but also globally valid. This means that highly nonlinear problems were solved via 

a sequence of linear approximations. As such, the classical linear control theory tools 

were rigorously used throughout to obtain globally robust and optimal nonlinear 

dynamical controllers; and most often this involved iteratively solving Approximating 

Sequences of Riccati Equations (ASRE). 

Consequently, throughout this thesis particular emphasis was given to the state­

feedback controller type where an observer-based design structure was assumed for a 

practical implementation - this means that state(s) measurement(s) are accessible to 

achieve the control objectives. Under this architecture, various nonlinear robust control 

techniques and theories were proposed; ranging from a standard and a simple pole-
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placement controller technique to the more challenging and appealing H 00 controller 

type. 

Since the time-varying singular H 00 control problem, i.e. the direct-feedthrough 

matrix D(.) does not satisfy the full-column rank assumption, was already solved in the 

literature by means of a recursive procedure (Amato, et al., 2000); only the continuous­

time, linear time-varying, full-information H 00 control theory was extended relying on 

the Approximation Theory and solving the ASRE and completing the square. The 

control problem was investigated from both a finite-horizon time and infinite-horizon 

time H <Xl formulae. It can be concurred, however, that the full-information, finite-

horizon H <Xl -norm discussed in previous chapters makes it easier and more transparent 

to incorporate several performance requirements in the cost criterion, especially those 

performance requirements which are directly related to robustness. That is given a 

nonlinear finite-dimensional dynamical system on a bounded time-interval [0, r] 

together with a positive real number r, the necessary and sufficient conditions for the 

existence of a dynamic controller were ensured by the theoretical frameworks, i.e., the 

L 2 -induced norm(s) of the resulting closed-loop operator is smaller than r. 
Although most of the papers on the H <Xl control problem mentioned in the 

previous chapters discussed the "standard" H <Xl problem (that is minimize the 

L 2 [0,00) -induced operator norm of the closed-loop operator over all internally 

stabilizing feedback controllers), it is believed that the proposed theoretical framework 

herein that built upon the standard single full-information Riccati equation framework 

provided very efficient practical results to nonlinear dynamical systems under the 

presence of disturbance. The theory, in fact, gives the control engineer and designer 

more transparent control requirements to be incorporated a priori to fine-tune between 

robustness and optimality needs regardless of technological control problem in-hand. 

Furthermore, the proposed nonlinear H <Xl design methods in this thesis marked a 

significant stage in the development of control systems to practical real-world 

applications that worked in theory and is expected to comply in practice, since the 

following was obvious: 

• more consistent performance over wider operating conditions, 
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• very fast responses with minimal control efforts, 

• a simple controller structure that is constrained to be linear with respect to its inputs 

and hence more reliable software implementation and system integrity; although look­

up tables are to be calculated off-line, 

• less sensitive to faults and sensor or actuator degradation; 

• the possibility of using lower specification hardware but meeting the same 

performance requirements. 

There are, however, a few arguments for developing H 00 control systems (see 

[Grimble, 2001]). Namely, existing systems are designed assuming adequate models are 

available - in practice this argument has a grain of truth and is seldom ever true and the 

outcome is that either poor control or long tuning periods must be accepted. The counter 

argument is to allow for modelling errors and to then obtain more realistic model-based 

designs. Undeniably, the nonlinear H 00 optimal control in this thesis provided a simple 

method of achieving a robust controller and is expected to guard against such 

foreseeable parametric uncertainties. 

It is worth adding that the numerically simulated control systems in this thesis, 

(which included the following systems: the inverted pendulum, the magnetic levitation, 

the wing-rock phenomena, the Lynx helicopter, and a hypersonic aircraft), were 

conducted using commercially available software that facilitated the visualization of the 

proposed model-based controlled actions. Indeed, with a model-based controller design, 

today's engineering teams are building radically more complex systems faster and more 

reliably than through traditional and more conventional approaches - a fact which 

enables rigorous testing to the various designs prior to a real-life implementation. A 

good example is the Mars Rovers that were autonomously successfully landed - two 

missions that went exactly as simulated under thousands of atmospheric disturbances by 

means ofMATLAS® & SIMULINK® platforms (Petrosky & Flynn, 2004). 

It was shown in this thesis that the proposed linear time-varying ASRE robust 

controller designs are simple and effective. The simplicity is due to the applied well­

known classical integration techniques as opposed to the more tedious and laborious 

algebraic techniques from such controllers obtained by the conventional Hamilton­

Jacobi Bellman principle and Taylor series expansion, for instance. 
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Needless to say, practical implementations of the proposed nonlinear model­

based robust stabilization methodologies provided in this thesis are advantageous since 

the devised linear controllers are simple to put into practice but will involve more 

components to be incorporated for an actual implementation. 

In this thesis, various universal robust controllers were proposed in this thesis 

which stabilize and regulate problems of the general deterministic autonomous and/or 

non-autonomous nonlinear systems under the mild Lipschitz continuity condition and 

provided that the origin of the nonlinear system is an equilibrium point. The monolithic 

synthesis theory was based on a sequence of the linear time-varying approximation 

approach and the linear time-varying and quadratic modern control theory. 

To summarize, the main contributions of this thesis were to extend the already 

published 'Approximation Theory' to address and include robustness in general. It can 

be deduced that the all-inclusive Min-Max H <Xl theory that appeared in chapter 6 proved 

very efficient when compared with the optimal H <Xl theory of chapter 5 as well as the 

simple robust methodology of chapter3. More specifically, the Min-Max H <Xl theory not 

only yielded more robust results when applied to the inverted pendulum on a cart 

model, for instance, but also enabled the inclusion of more robust performance 

specifications. 

8.2. Recommendations for Future Work 

It is believed that the theoretical state-space time-varying H <Xl control problem 

and its structure are well understood at the moment and even reached a maturity state. 

However, the practical issue of the design of weights for multi-input, multi-output 

dynamical systems is still a research subject since it lacks a systematic approach. A lot 

of work still needs to be done to translate any robustness criteria into a well-formulated 

and a more systematic and coherent H 00 problem. Furthermore, another possible 

theoretical extension to the H <Xl theory given in this thesis would be to incorporate 

some other more specific performance constraints, such as: steady-state disturbance 

rejection or fast roll-off (to name a few). These conditions are all based on the 

requirement that the closed-loop system satisfies certain constraints. 
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There have been some efforts in addressing the choice of the weights for the 

H 00 problem. However, these methods are still relatively ad-hoc and need a more 

thorough foundation before guaranteeing the kind of problems for which these methods 

can be used. The loop-shaping design method with robustness requirements as well as 

the small gain theorem both can be classified under such efforts. It is believed, though, 

that the theoretical framework provided by these methods is only valid for linear time­

invariant systems and lots of work still needs to be done to extend the methodology to a 

linear time-varying context. 

The research established in this thesis on nonlinear robust control proved to be 

theoretically very effective and where particular emphasis was given to the state­

regulator problem. However, it is believed that another plausible theoretical extension to 

this thesis will be to consider the more realistic and more challenging output-feedback 

strategies which were not addressed herein. 

In addition, a constant matrix rank was assumed throughout this thesis mainly 

because all the considered practical applications conformed to this assumption although 

the rank variation was not noticed between the ASRE iterations regardless of neither the 

chosen compact time interval nor the Euler step-length. It is worth pointing out that only 

the control matrix which could be state- and control-dependent seemed to change ranks 

with iterations {i.e. i=l~rank(B(x,u,t))=2 & i=2~rank(B(x,u,t))=3 ). 

However, it can be argued that the constant rank assumption fails in most 

practical linear time-varying applications (a good example is a Coo function). So an 

extension to both the singular and regular H 00 control laws; the time-varying rank 

deficiency assumption can be taken into consideration. That is, the more general case 

where the ranks of the quadruple matrix representation, A,B,C,D, bounded, piecewise 

continuously differentiable functions over 1 E n:= [/ 0 ,1 f] can be assumed to vary in the 

n subspace. Of course there are various ways to resolve this problem with the most 

obvious choice would be by modifying the controlled variable of the original system by 

introducing a sufficiently small fictitious parameter E (at the point in time when the 

rank drops), so as to render the rank deficient matrix a full-column rank one. However, 

this approach, as known, leads to a bad conditioned (stiff) differential Riccati equation 

which renders this kind of approach impracticable (Amato, et al., 2001). And perhaps 

the techniques provided in the book by Dewilde & der Veen, (1998), could be used 
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instead to avoid this problem. In their book, the authors used the concepts of the linear 

time-varying system theory to treat and analyse a large class of basic algorithms in a 

more general setting; and where the time-varying rank deficiency was always avoided 

or even treated. 

With regards to the approximation theory, there are still some natural research 

directions to be considered. The non-uniqueness of the operators, A 0 & B (.) , is still 

to be addressed. That is, a systematic approach to the design of such operators needs to 

be researched - the choice of these operators undeniably affects the convergence rate of 

the quadratic sequences as well as the speed of the controlled response of the given 

system. Furthermore, the theory does not hold for infinite-dimensional systems, and 

hence a more comprehensive framework to include this generalization needs to be 

worked out and which might involve PDEs and HJB equations. Last but not least, the 

general robust control problems do not usually have continuous solutions and 

unfortunately, the convergence of the ASRE approach was only proved in the space of 

continuous functions and so is only valid for a set of control problems (i.e. continuous 

solutions are implicit). Finally, the difficulty arises in implementing the ASRE 

technique in real-time (i.e. on-line) and especially for fast-response dynamical systems; 

and it naturally follows that further research is essential to develop a more suitable 

technique for a real-time computer implementation and a real-life operation (in terms of 

hardware and software). 

In terms of practical engineering and technological applications, it is with no 

doubt that the range of the possible application of the proposed synthesis techniques in 

this thesis to realistic models is all encompassing. At a glimpse, there is a great deal of 

interest at the moment in the design of controllers for uncertain time-varying flexible 

structures, particularly in the area of satellites and where the dynamical equations are 

highly nonlinear and are usually linearised to apply classical linear design methods (see 

for example [Ballas, 2002; Bakker & Annaswamy, 1996; Kelkar & Joshi, 1996; and 

Zheng, et al., 2005]). These methods only apply in a small region around the operating 

point and it would be enticing to apply the theory in this thesis to such highly nonlinear 

systems. 

During the past few decades, more stringent robust performance requirements 

were posed by modem systems, such as flight vehicles, large space structures, 

unmanned air and ground vehicles (UAV/UaV), crew return vehicles (CRV), robots, 
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and chemical processes, for example. But with the availability of low-cost computing 

power, the successful applications of the proposed modem control theory in this thesis 

to solving such real-world problems will also be another expected direction with the 

hope of bridging the gap between academia and industry. 

To briefly conclude this thesis, it is worth mentioning a final research direction 

that will be significant to explore under the field of robust control. Since the early 1990s 

the linear matrix inequalities (LMls) have emerged as a functional tool for solving a 

number of control problems especially with the development of interior-point methods 

for solving semi-definite programming (SOP) problems. The basic idea of the LMI 

method in control is to cast the given problem as an optimization one with linear 

objectives and positive semi-definite constraints that involve symmetric matrices that 

are affine in the decision variables. In control theory, to borrow words from Doyle, et 

al., (1991): 

"LMls play the same central role in the postmodern theory as Lyapunov function and 

Riccati equations played in the modern, and in turn various graphical techniques such 

as Bode, Nyquist and Nichols plots played in the classicar'. 

Indeed the LMI-based approach constitutes the basis for a post-modem control 

theory which allows for robust and multi-criteria synthesis (see [Laurent & Niculescu; 

2000]). This approach combines both the benefits of classical and modem control 

methodologies in terms of clear physical interpretation of design parameters and 

simplicity of numerical solutions with competing specifications. 

It is, however, to the knowledge of the author that although LMI-based control 

methods have reached a certain degree of maturity there are still many control areas that 

are yet unexplored in this field. Although both theoretical grounds and efficient 

algorithms exist and leading to more and more industrial applications, it seems that lots 

of research efforts need to be placed on extending the theoretical framework to deal 

with time-varying multivariable linear and nonlinear systems which are contemporary 

starting to emerge. 
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ApPENDlxA 

Some Mathematical Preliminaries 

'A system is said to be deterministic when, given certain data e I' e 2' •.• ' en at times t I' t 2'· •• ' t n 

respectively, concerning this system, if E; is the state of the system at any time t, there is afunctional 

relation of the form E;= f( e .. t I' e 2' t 2' ..• ' en' tn' t). A system which is part of a deterministic 

system I shall call determined; one which is not part of any such system I shall call capricious '. 

Bertrand Russell 'On the Notion of Cause' 

A.O. Abstract 

This appendix is a very brief review of some of the fundamental materials that 

were directly or indirectly used in this thesis. Such concepts are very briefly discussed 

herein; and for more elaborate proofs and details the reader is referred to standard 

textbooks (e.g. [Desoer & Vidyasagar, 1975; Feintuch, 1998; Francis, 1987; Huston & 

Pym, 1980; etc. D. It is also worth citing <::imen (2003) since some fitting material was 

directly extracted from his doctoral thesis appendices. 

A.t. Linear Functional Analysis 

A.t.l. Normed Vector Spaces 

DEFINITION A.1. A metric space is a pair (~,d), where ~ is a set and d is a real­

valued metric (or distance) function on ~, that is, a function defined on ~ x ~ such that 

VX,y,ZE~: 

(i) d is real-valued, finite and non-negative, 

(ii) d(x,y)=O if!x=y, 

(iii) d(x,y)=d(y,x) (symmetry), 

(iv) d(x,y)::::;d(x,z)+d(z,y) (triangle inequality) 
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where d (x, y) is often referred to as "the distance between x and y ". 

DEFINITION A.2. A linear space (or vector space) over a field F (F is the real 

number field lR. or the complex number field IC) is a nonempty set of elements x,y, ... 

(called vectors) together with two algebraic operations. These operations are called 

vector addition and multiplication of vectors by scalars, that is, by elements of F (lR. 

or IC). 

DEFINITION A.3. A norm over a real vector space ~ (offinite or infinite dimension) is 

any non-negative real-valued function IHI: ~ ~ lR. +' which defines a metric d over ~, 

given by 

d(x,y)=llx- yll, X,YE~. 
A normed space is a vector space with a specified norm that is defined over it, and so 

all normed vector spaces are metric spaces. The normed space is denoted by (~, IHI) or 

simply by ~. 

For any scalar a E lR. and elements x and y of the linear space ~ (vectors), 

(i) II xii ~ 0 with Ilxll = 0 iff x = 0, 

(ii) Ilaxll = lalllxll, 

(iii) Ilx + YII $llxll + IIYII, 
where the quantity II xii is called the norm of x, which is a measure of the size or length 

of the vector x, over the normed vector space ~. 

Notice that inequality (iii) above is the triangle inequality. Hereafter, ~ is 

assumed to be a normed linear space. The norm induces a topology over the linear 

space, which is used to define continuity and convergence. Norms are also used in 

numerical analysis for establishing error bounds, and in sensitivity analysis for 

bounding sensitivities. 

The above constraints are rather loose, and many possible norms can be defined 

for a particular linear space. If ~ = lR. n , the p -norm of a vector x = (x I'"'' X n) is 

defined as: 
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And Ilxll 00 = max Ix J I. In particular when p = 2 , 
J 

is called the Euclidean norm. 

An m x n matrix A of real elements defines a linear mapping y = Ax from R n 

to R m • The (p-) norm of A is defined in terms of an associated vector norm by 

"Ax" is called the induced norm of the linear map A, which for p = 2 is given by 

I 

"All = [maxa( AT A)J2; 

where a( AT A) is the maximum eigenvalue of AT A. The important properties of the 

induced matrix norms are 

(i) IIAxll ~ IIAllllxll, 
(ii) lIaAIl ~ lalliAII, 
(iii) IIA + BII ~ II All + liB", 
(iv) IIABII ~ IIAIIIIBII· 

DEFINITION A.4. Suppose that the vectors x 0 ,x E t{ and r is a number such that 

0< r < 00. Then the set of points 

and 

B r (x 0) = B (x 0' r) = {x E t{ I IIx - x 0 II ~ r} , 

are called open and closed balls respectively with centre x 0 and radius r. 
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DEFINITION A.S. A subset S of ~ is said to be hounded iffit is contained in some ball 

of finite radius. If S is bounded, its diameter is the diameter of the closed ball of the 

smallest radius containing S. The distance of a point x 0 from S is the number 

dist(x o ,S) = infllx-xoI12. 
xeS 

Therefore, for a linear operator A, if IIAII < 00 then A is bounded. On the other 
hand, if IIAII = max II Axil = 00, then A is said to be unbounded. 

1<1=1 

A.1.2. Banach Spaces 

DEFINITION A.6. A sequence {x k } :=1 c ~ converges to x E ~ if 

limllx k -xii = 0; 
k-+oo 

where x is called the limit of the sequence and may be written as 

x k ~ X or lim x k = X. 
k-+oo 

The limit is unique, for if x k -+ x and x k ~ x', then by the triangle inequality 

Ilx-x'll = Ilx-x k +x k -x' II ~ Ilx-x kll+ Ilx k -x'll, 
and the right-hand side of the equality above tends to zero as k ~ 00, hence x = x' . 

DEFINITION A. 7. A sequence {x k } ==1 C ~ is called a Cauchy sequence iff 

lim Ilx k -x ,II = 0, 
k,'-+oo 

that is, providedfor each & > 0 there exists N = N (&) > 0 (depending on &) such that 

d ( X k ,x, ) = Ilx k ,x ,II < & , V k, I ~ N. 

It is an obvious consequence of the inequality 

Ilxk-x,11 = Ilxk-x+x-x,11 ~ Ilx k-xll+llx,-xll· 
If {x k } ==1 is convergent then it is Cauchy. Every convergent sequence is a Cauchy 

sequence but not vice-versa. 



Appendix A 151 

DEFINITION A.S. The normed vector space ~ is said to be complete if every Cauchy 

sequence in ~ converges, i.e. whenever {x k }:=I is a Cauchy sequence, there exists 

X E ~ such that {x k } :=1 has limit that converges to x. The Euclidean space IR n , for 

example, with the Euclidean distance function is complete. 

DEFINITION A.9. A Banach space ~ is a complete, normed linear space. Every 

sequence {x k } :=1 of ~ converges strongly to a point x of ~ : 

the limit of x ifi! exists is uniquely determinedfollowing the triangle inequality 

Ilx-x'll ~ Ilx-x kll+llx k-x'll· 

The simplest Banach spaces are Ilxk-x,11 = Ilxk-x+x-x,1I ~ Ilxk-xll+llx,-xll and, with 

any norm. 

A.1.3. Hilbert Spaces 

DEFINITION A.tO. Let ~ be a linear space over the field C of complex numbers. An 

inner product on ~ is a function (x,y)~(x,Y)from ~x~ to C, and having the four 

properties: 

(i) (x,x) is real and ~ 0, 

(ii) (x,x) = 0 iff x = 0, 

(iii) the function y ~ (x, y) from ~ to C is linear, 

(iv) (x,y) = (x,y). 

Such an inner product on ~ induces a norm, namely, II xii := (X,X)1/2. With respect to 

this norm ~ mayor may not be complete. A (complex) Hilbert space is a linear space 

over C which has an inner product and is complete. A mapping from one Hilbert space 

to another is called a Hilbert space isomorphism. 
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Note that a real symmetric matrix M is positive definite if (x,Mx) > 0 for all 

x;t:. 0 and M is positive semi-definite if (x,Mx) ~ 0 for all x'* o. 

DEFINITION A.l1. Let a signal x(t) be defined for all time -00 < t < 00, and taking 

values in en. Then x is a function (-00,00) ~ en; and by restricting x to be square 

(Lebesgue) integrable: 

'" J Ilx (t )11
2 

dt < 00 ; 

the set of all such signals is the Lebesgue space L 2 (-00,00) which equals to zero for 

almost all t < 0 is a closed subspace, denoted L 2 [0,00 ). Its orthogonal complement 

(zero for almost all t > 0) is denoted L 2 (-00,0] . 

A.2. Differential Equations 

A.2.1. Solution of Differential Equations 

DEFINITION A.12. (Vector-Valued Functions). Let 0 be a subset of lR n, and suppose 

that f is a complex-valuedfunction defined over O. Then f is said to be continuous 

at the point Xo En ifJor each & > 0 there exists 8> 0 such that V( x) - f(x 0)1 < & 

whenever XEn and Ilx-xoll<8, and Jor each {Xd~=1 in 0 with limit x o' 

limJ( x k) = J(x 0)' f is said to be absolutely continuous iff it is continuous at every 
k--.", 

point in O. f is said to be uniformly continuous in 0 iff for each & > 0 there exists 

8>0 such that If(x)- f(xo)I<& whenever x,xo EO and Ilx-xoll<8, i.e. & and 

8 are independent of x o' f is said to be piecewise continuous in 0 if for every 

bounded subinterval 0 0 cO, f is continuous for all x E 0 0 except, possibly, at a 

finite number of points where f may have discontinuities. 

Linear differential equations are often written in the form 
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x=Ax+Bu. (A.2. 1) 

The solution to the homogeneous portion of (A.2.1), that is Ax, is found by assuming a 

solution of the form 

for t ~ 0; 

co 

alternatively, the convolution integral y (t ) = J u (t - r) h ( r ) dr, can be used to write 

the total solution as: 

I 

x(t) = e A(/-lo)X(t 0)+ J eA(I-T)x(t 0) Bu( r) dr. 
10 

Note that the system output equation (with a Laplace transform Y(s) = G( s)U (s) can 

be written as: 

I 

Y = C T X = C T eA(/-lu)x(t 0)+ JeT eA(I-r)x(t o)Bu( r )dr, 
10 

this expression in fact represents an addition of the transient response CTeA(/-IU)X(t O) , 

I 

and the steady-state response JeT eA(/-r)x(t 0) Bu( r )dr , of the given system. llence for 
10 

zero initial conditions the first term cancels out. 

A.2.2. Lipschitz Condition 

The importance of absolutely continuous function (see Definition A.IO) lies in 

the fact that, for example, if f: [a,b] ~ lR is absolutely continuous, then its derivative, 

i (t ) , exists and is finite almost everywhere. 

A general set of nonlinear state-equations can be expressed as follows: 

x(t) = f{x(t),u(t),t); (A.2.2) 

where x(t) is the state-vector, u(t) is the input vector, and f{x(t),u(t),t) denotes a 

nonlinear function involving the state variables, the inputs, and time, t. The solution, 

x(t) of (A.2.2) with the initial condition, x(to)=xo may not always exist. The 

existence of solution of nonlinear differential equations requires that the nonlinear 
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function, I ( x (I), u (/),/), should be defined and continuous for all finite times, 1 ~ 10 . 

Also, it is required that I( X(I ),u (I ),1) must satisfy the following condition, known as 

the Lipschitz continuity or condition. 

jJ( X(I ),U(I ),t) - I( x· (I ),u(t ),t)/::; Klx(t) - x· (/)1, (A.2.3) 

where x· (t) is a vector different from x (t ), K is a constant, and I s I denotes a 

vector consisting of the absolute value of each element of the vector S. 

In fact, for a mathematical model to predict the future state of a given system 

from its current state at time 10 , the initial value problem of (A.2.2) must have a unique 

solution; raising the question of uniqueness of differential equations' solutions and 

which is resolved through the Lipschitz condition. The function definition in (A.2.3) can 

be written as 

III (x 1 ,t ) - I (x 2 ,I )11 ::; L /Ix I-X 2 /I ' (A.2.4) 

for all (XI'/) and (X2,t) in some neighbourhood of (xo,to) is said to be Lipschitz in 

x, and the positive constant L is called a Lipschitz constant. In one dimension, a 

function which satisfies a Lipschitz condition is absolutely continuous, and hence, 

differentiable almost everywhere (but not necessarily). The words locally Lipschitz and 

globally Lipschitz are also used to indicate the domain over which the Lipschitz 

condition holds. A function I (x, I) is said to be locally Lipschitz in x on a domain 

(open and connected set) D x [ a, b] c IR n xIR if each point XED has a neighbourhood 

Do such that I satisfies the Lipschitz condition (A.2.4) for all points on Dox[a,b] 

with the same Lipschitz constant Lo. Then I(x,t) is said to be locally Lipschitz in x 

on D x [t 0 ,00) if it is locally Lipschitz in x on D x [ a, b] for every compact interval 

[a, b] C [/0,00). A function I (x,/) is Lipschitz in x on W x [a, b] if it satisfies (A.2.4) 

Vt E [a,b] and all points in the set W, with the same Lipschitz constant L. A function 

l(x,/) is said to be globally Lipschitz if it is Lipschitz on IRn. 
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A.2.3. The Fundamental (Transition) Matrix 

Consider the linear homogeneous differential equation 

x(t) = A(t)x(t), (A.2.5) 

where x(t) E lR. n and A (t) is a continuous matrix-valued function. It is easily shown 

that (A.2.5) has a unique solution of the form 

X(I) = <1>(/,1 o)x 0; 

where <1>(1,10) is known as the transition or fundamental matrix of the equation, 

which has the following properties 

(i) <1>(/,10)=1, 

(ii) 

(iii) 

(iv) d<1> (1,10) = <i>(/,1 0) = A(/)<1>(/,1 0)' 
dl 

If A is L TI or constant as in the case of autonomous systems given by x (I) = Ax (I) , 

then the transition matrix takes the form 

<1> (t ,I 0) = exp [ A ( 1 - 1 0 ) ] 

and the solution becomes 

x (I) = exp [ A (t - to) ] x 0 • 

As for the inhomogeneous equation: 

X(I) = A(I)x(I)+ B(I)U(I), 

with a forcing term, U (I), it has a solution given by the variation of constants 

formula 

1 

X ( I) = <1> ( I, I 0 ) x 0 + J <1> ( I , s) B ( s ) U ( S ) ds , 
, 0 

Hence the solution, x(t), is the summation of the homogenous part of the system 

t 

<1>(I,lo)Xo and the forcing term <I> (1,1 0) J<I> -\ (s,1 o)B(s)u(s)ds. 
10 
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A.3. Inequalities 

A.3.t. Gronwall-Bellman Inequality 

The following lemma provides the general form of the Gronwall-Bellman 

inequality, which is extracted from Desoer & Vidyasagar (1975). 

LEMMA A.t. Let A: IR+ ~ lR be continuous (locally integrable, that is, A is integrable 

over any bounded interval such as [t 0 ,t] with ° ~ t o~ t < 00, g, II : lR+ ~ IR be 

continuous and non-negative, and gJ1 be locally integrable over IR+. Under these 

conditions, if a continuous function f: IR + ~ lR satisfies 

I 

f(t)~,.1.(t)+g(t) jJ1(s)f(s)ds, [to,t]eIR+; 
10 

then over the same time interval, [to ,t] e IR+, 

A special case of this inequality is reached if ,.1.(t) == A and g(t) = 0, 

I 

f(t)~,.1.+ jJ1(s)f(s)ds, Vt~to' 
'0 

Then 

/fin addition, p(t) == J1 ~ 0 is a constant, then 

f(t) ~ ,.1.exp[p(t-t 0)]. 

A.4. Partial Differential Equations 

A partial differential equation (PDE) is an equation that involves an unknown 

function of two or more variables and some of its partial derivatives. 
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DEFINITION A.13. If k ~ 1 is a fixed integer and n denotes an open subset of IR n , 

then the following expression 

F( Dkv(x ),Dk-1V(X ), ... , Dv(x), v(x ),x) = 0, (x En), (A.3. 1) 

is called a k'h -order partial differential equation, where 

with the unknown being 

v:n~IR. 

DEFINITION A.14. The PDE (A. 3. 1) is called linear ifit has the form 

L aa (x)Dav(x) = g(x); 
lal$k 

for the given functions a a (lal ~ k), g. The P DE is said to be homogeneous if g = o. 

DEFINITION A.IS. The PDE (A.3.1) is called semilinear ifit has theform 

L aa (x )Dav(x )+a o (Dk-1V(X), ... ,DV(X), v( x),x) = O. 
lal$k 

DEFINITION A.16. The PDE (A.3.1) is called quasilinear ifit has the form 

L aa (Dk-1V(X ), .. . ,Dv(x), v(x ),x )Dav(x)+ a o (Dk-1V(X), ... ,Dv( x), v(x),x) = 0 
lal$k 

DEFINITION A.17. The PDE (A. 3. 1) is calledfully nonlinear ifit depends nonlinearily 

upon the highest order derivatives. 
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ApPENDIXB 

Modelling Nonlinear Finite-Dimensional Systems by Linear 
PDEs 

B.l. Abstract 

In this appendix, a novel concept is introduced for representing nonlinear 

Ordinary Differential Equations (ODEs) by linear Partial Differential Equations (PDEs). 

Indeed the literature embraces various techniques for treating nonlinear ODEs (see for 

example [Banks & Moser, 1993; Grimshaw, 1990; and Smith & Jordan, 1999]); 

however, this technique is straight-forward and only requires mild conditions such as 

analyticity. 

B.2. Introduction 

The solutions of nonlinear ODEs are modelled by 'sections' of the solutions of 

linear PDEs with the hope of applying the known classical theory of control of linear 

PDEs to the control of nonlinear finite-dimensional systems. This is done by an 

appropriate choice of the spectrum of the linear PDE. In §B.3 the basic idea for 

approximating linear PDEs is given. Proceeding to §BA, the essential theory behind this 

appendix is covered where linear PDEs are related to nonlinear ODEs. Finally, in §B.5 a 

simple example is presented to clarify the stated concepts; and then some closing 

remarks are given in §B.6. 

B.3. Linear PDEs 

Consider the linear partial differential equation 

(B. 1) 
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where 

With the operator A being a strongly elliptic operator on n with some boundary 

conditions such that A has a spectrum {A n} and a corresponding complete set of Eigen 

Functions {VI' n (~)}, then by theorem (see for instance [Grimshaw, 1990]) the solution 

is given by 

(8. 2) 
n 

with 

(8.3) 

More specifically, the well-known dissipative parabolic heat equation can be chosen for 

illustrative purposes, 

a¢(~,t) a2¢(~,t) 

at a~2 

It is recognized that the solution of (BA) can be written in this form: 

So by substituting (8.5) into (804), 

By re-arranging (8.6), 

.9(t) p(~) 

.9(t) = .f.J( ~) =,u = constant. 

It then follows directly that 

.9(t)=-,u .9(t) , 

and 

The solutions of (B.8) and (8.9) can respectively be expressed as, 

.9(t)=-e-P1 , 

and 

.f.J( () = A cos ( ..r;; + B sin ( ..r;; . 

(8. 4) 

(8.5) 

(8. 6) 

(8. 7) 

(B. 8) 

(8.9) 

(8. 10) 

(8. 11) 
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It can then be easily shown that for the boundary curve C of rectangular solution 

domain defined by zero boundary conditions, i.e. Dirichlet boundary conditions (see, 

e.g., [Schwartz, 1959]), the spectrum is: 

And the Eigenvalues become: 

_;r2 0 0 

o -4;r2 

o -9;r2 

o 

(n = 1, 2, ... ). 

o 
o 

(8. 12) 

(ll.13) 

In general, it was shown that the solution of any PDE can be approximated by an 

infinite series (Schwartz, 1959) as 

which converges to the PDE's solution provided that 

• K 1 
hmK~'" I -=00. 

.t=1 A 

The solution of the heat equation, can also be expressed by means of(B.14) as, 

subject to the initial condition 

where B n has been deliberately written in this form to differentiate it from B. 

But condition (ll.I5) when applied to (B.16), as, 

• K 1. 1(' 1 
hmK~'" I-=hmK~'" I-2-2 =2, 

p=1 Ji n=1 n ;r 

converges to 2. 

However, by theorem, (8.18) can be made to diverge 

IFF: L ~ for s < 2 (see [Friedman, 1962]). 
n 

(ll. 14) 

(ll. 15) 

(ll. 16) 

(ll. 17) 

(B. 18) 
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But for simplicity, (B.16) can be tailored to satisfy the above stated condition to 

approximate the parabolic PDE in (B.4). That is, at a specific point ( inside the 

boundary curve C, one set of plausible solutions to (B.16) can be shown to be 

Alternatively, (B.19) can expressed as 

with 

And in that case 

where A. = JT: . 
Therefore, the equality in (B.20), the initial condition at time t = 0 is 

(6((,0)= LPn' 

B.4. Nonlinear ODEs 

Consider an analytic nonlinear ODE: 

x = f(x), 

subject to an initial condition 

the solution of (B.24) can be written in terms of the Lie series (Banks, 1988) as 

o /f(x)-
x(t;xo)=e ox x 

This solution in (B.26) can be expanded by Taylor formula (Friedman, 1962) as 

(B. 19) 

(B. 20) 

(B. 21) 

(B. 22) 

(B. 23) 

(8. 24) 

(8. 25) 

(B. 26) 
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(B. 27) 

Subsequently, x (t) can be written in terms of the spectrum (e -A n ') for appropriate 

choice of A. n ; and the formal expansion of (8.26) abridges to 

(B. 28) 

B.S. Relating Nonlinear ODEs with Linear PDEs 

At this instant, the coefficients of the linear PDE in (8.20) can be solved for by 

equating them to those of the nonlinear ODE in (8.28), as follows, 

for (n=l, 2, ... ), (8. 29) 

where B n can now be determined from Equations (B.20) & (8.21); which then 

specifies the initial function ¢((,O) of the POE, via the initial condition in (8.17). 

B.6. Exam pie 

Consider an analytic nonlinear ODE of the general form 

x = f(x), 

where, say (see for example [Grimshaw, 1990]), 

f(x,t)=tx 3
, 

with x (0) = xo' (8. 30) 

(B.31) 

is a continuous function for all x and t, and satisfies a Lipschitz condition in any 

bounded region. 

The solution of (8.31) IS known to take the following form (see [Smith and 

Jordan, 1999]): 

(8. 32) 

and is only defined for 

(B. 33) 
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But alternatively (refer to Equation B.28), it was shown that all such solutions in 

(B.32) are periodic and can be expressed by 

x(t;xo) = Iy n e-A
•

1 
, (B. 34) 

where A n= nJr. 

Setting 

s = e-f( '; (B. 35) 

or equivalently, t = - In s , then (B.28) can be considered as a polynomial expansion of 
1'{ 

the form 

(B. 36) 

and at a point x = t; , (B.36) is 

(B. 37) 

As a result, the Y n coefficients can be obtained from the polynomial expansion in 

(B.36). Over a specified time interval t E [ 0, XOI), the solution of the nonlinear ODE can 

always be model by the linear PDE. So, recalling that the target is to find the linear 

PDE's coefficients, then from (B.28), B n can be solved for, 

for (n = 1, 2, ... ); (B. 38) 

where 

(B. 39) 

Hence the necessary initial condition for the heat equation to model the system is 

(B. 40) 

Note that: 

t; must be chosen so that sin JT: t;:t 0, for all n. 

B.7. Concluding Remarks 

In this appendix, a simple technique is given to solve nonlinear ODEs by a linear 

parabolic PDE model. The enclosed example is indeed one-dimensional, but it is easy to 
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generalize the theory to higher-dimensional systems. It would also be of interest to 

study the regions of validity for the proposed approximations. Future research could be 

to devise controllers for such a class of systems making use of classical linear control 

theories for PDEs. 
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