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Abstract 

Compared with elastic deformation analysis techniques, limit analysis methods that 

are amenable to computerization have yet to reach the same level of developmel1t. 

Yet such work has important practical value. The present work is primarily COI1-

cerned with the development of a general model for the limit analysis of reinforced 

concrete (RC) and masonry structures. A novel limit analysis method for RC slabs 

and bridge decks that overcomes the problems encountered by previous workers ill 

this field has been developed. Ultimate load analyses have been carried out by dis­

cretizing the slab deck into a large number of rigid elements. Novel mathematical 

rules to describe how adjacent elements should interact with each other have been 

used in the formation of the requisite Linear Programming (LP) tableau. Appro­

priate state-of-the-art algorithms have been employed to solve the underlying linear 

programming problem. The results obtained agree quite well with known exact so­

lutions for various different slab configurations, boundary conditions and loading 

arrangements. An attempt to obtain a rigorous upper-bound solution (i.e. satisfy­

ing kinematical admissibility criteria) using the method ability to identify sensible 

failure patterns has also been made, and rigorous upper-bound solutions have been 

obtained for a number of problems. 

In the context of masonry structures, a new computational limit analysis procedure 

for rigid block assemblages comprising non-associative frictional interfaces has been 

developed in this thesis. The procedure involves the successive solution of simple 

LP sub-problems. Behaviour of a contact in each sub-problem is governed by a 

Mohr-Coulomb failure surface with an effective cohesion intercept and an initially 

negative angle of friction. Both these parameters are updated at each iteration 

by referring to the real problem, with the angle of friction also being successively 

relaxed towards zero (thereby implying zero dilatancy). The procedure has been 

applied to a wide variety of example problems, including benchmark problems from 

the literature and also to much larger problems. For one such problem contained ill 
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the literature, it has been found that the load factor computed using the proposed 

procedure was virtually identical to that computed previously but this has been 

obtained two orders of magnitude more quickly. 

Recent developments to the RING cornputationallimit analysis software for masonry 

arch bridges are also described (non-associative friction, gross-displacement analysis 

features). A number of examples of local authority bridge problenu:i are rc-assessed 

in the light of the new features. The Ilew versioIl of RING (version 1.5) has beell 

found to be much faster with execution speeds up to 200 times faster thall the 

previous version. 
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Chapter 1 

Introduction 

1.1 Background 

Reinforced concrete (RC) and masonry structures need to be regularly checked, 

particularly as the design variables under which these structures were originally 

designed are continuously changing such that the capability of these structures to 

survive into the future becomes questionable. 

One ancient type of structures is the bridge. Masonry arch bridges and RC bridges 

together represent the majority of the bridge stock in the UK. There are over 110,000 

masonry arch bridges ranging from small remote bridges over mountain streams 

to major viaducts carrying arterial mainline railways. Whilst masonry arch bridges 

were mostly designed using 'rules of thumb', RC bridges (the majority of which were 

built in the last century) were often designed using conservative design methods 

based on linear elastic theory. 

When these bridges were built, the nature and volume of modern traffic could not 

have been envisaged by their designers. The continuous increase in vehicle weights 

means these bridges need to be regularly assessed. Uncertainties regarding the 
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Chapter 1 : Introduction 2 

capability of existing bridges to carry increasing vehicle weights may well lead to 

weight restrictions being imposed on these bridges. To avoid the need for such 

measures to be taken, either (i) costly strengthening works must be carried out or 

(ii) more sophisticated structural analysis must be undertaken to demonstrate that 

a given bridge has the adequate load carrying capacity. 

Structural analysis offers many options to address the problem in hand. Two weth­

ods are often referred to: finite element methods and plastic analysis methods. 

Elastic finite element methods can now be employed to carry out a linear elastic 

analysis of bridges. One of the weaknesses of linear elastic analysis is its inabil­

ity to reflect the real behaviour of structures under abnormal or ultimate loading 

conditions. Almost all structures behave nonlinearly before attaining their limit 

of resistance. Therefore, if a finite element approach is chosen for ultimate load 

analysis, non-linear finite element methods should be applied. However, non-linear 

finite element methods are more suited to in-depth, specialized assessments of major 

structures or for laboratory research, and this is not presently considered to be a 

practical option for use in assessing large numbers of existing bridges. Although this 

situation may change in the future, as computing developments continuously result 

in decreasing costs and increasing speed execution, the comprehensive mechanical 

characterization of the materials that is required, the need for calibration and t.he 

requirement of adequate knowledge of sophisticated non-linear solution techniques 

by the practitioner are still likely to limit their application. 

In contrast to non-linear finite element methods, plastic analysis methods are con­

ceptually simple, easy to apply and allow quick estimates of the ultimate load t.o 

be made. Despite this, plastic methods have not been adopted widely for use in 

practice, partly because of the misconception amongst engineers that such methods 

are difficult to apply and are not amenable to automation. This has limited their 

development and the extent to which they are currently applied in practice. How-
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ever, if it is possible to develop user friendly computer programs capable of treating 

a wide variety of problems with minimal computational effort, then plastic anal­

ysis methods could find many applications in everyday civil engineering practice. 

Bearing this in mind, here the aim is to demonstrate that plastic methods can be 

computerized and that the computerized forms of these methods can be efficient in 

comparison with other methods, such as non-linear finite element methods. 

1.2 Objectives and methodology 

The fundamental objective of the research described in this thesis is to develop a 

general model for the limit analysis of RC and masonry structures, and to apply 

this model to a variety of practical problems. This will be achieved through the 

following: 

1. Developing novel limit analysis methods for RC slabs and bridge decks, over­

coming the problems encountered by previous workers in this field. Ultimate 

load carrying capacity analyses will be carried out by discretizing the slab deck 

into a large number of rigid elements. Novel mathematical rules to describe 

how adjacent elements should interact with each other will then be used in the 

formulation of the requisite LP tableau. These rules will differ in important 

respects from the over-restrictive rules adopted by previous workers in this 

field, to ensure that safe estimates of structural strength are obtained. Appro­

priate state-of-the-art algorithms will be employed to solve the underlying LP 

sub-problem. 

2. Developing a novel method for the limit analysis of rigid block assemblages 

comprising non-associative frictional interfaces based 011 a computationally ef­

ficient rigid block analysis formulation. The method will involve solving a 

series of LP problems with successively modified failure surfaces (rather than 
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working directly with the full Mixed Complementarity Problem (MCP) as oth­

ers have done). The proposed method will be capable of quickly ascertaining 

whether associative and non-associative solutions differ and identifying 'good' 

estimates of the load factor for a wide range of problems. 

3. Applying the above methods to a variety of practical case study problems ill 

the field of RC slabs and masonry gravity structures. 

1.3 Summary of the thesis 

The thesis is arranged in seven core chapters. Three of these (chapters 4, 5 and 6) are 

presented as self-contained manuscripts suitable for submission as journal/conference 

papers. The fourth chapter, which currently comprises a single paper, will be split 

into two and submitted to academic journals. The first of these will introduce the 

Sheffield method and its application to problems with known exact solutions. The 

second will cover the application of the Sheffield method to selected study cases from 

literature and the possibility of obtaining upper-bound solutions from the method. 

The paper which is presented in the fifth chapter has already been submitted to Com­

puters & Structures. Results appeared in the six chapter intended to be published 

in journals accessible to practising engineers. As a result of using the three-paper 

format, some overlap in the content may occur. 

In addition, two computer programs were also developed by the author. The first 

program concerns the limit analysis of RC slabs based on an automated form of 

the yield line method and the second program is for the limit analysis of masonry 

structures based on the rigid block method of analysis. These programs are intended 

to be the basis for the development of analysis tools which will be useful ill the 

assessment/design of RC and masonry structures. 

Apart from the fifth chapter which was a result of collaborative efforts, and Ap-
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pendix A which contains a joint conference paper, all work presented in this thesis 

is the author's own work. The author contribution to the paper presented in the 

fifth chapter is that he developed the original algorithm and implemented this in a 

computer program. He then investigated a number of case study problems from the 

literature and showed that the method performed well. This evolved into a confer­

ence paper. Other authors have contributed to this work in the form of additional 

examples and a literature review. 

In chapter 2, a summary of basic limit analysis concepts is provided. Application 

of mathematical programming to limit analysis is also reviewed. The kinematic 

and static approaches to limit analysis are discussed and presented in a general 

vector-matrix form. 

Chapter 3 reviews the background to the yield line method of analysis. The useful­

ness of the yield line method as a design tool is examined. Yield line theory is then 

presented and theoretical considerations are discussed. 

Chapter 4 presents a novel limit analysis method for RC slabs and bridge decks 

that overcomes the problems encountered by earlier workers in this field. Previous 

work in the field of automated yield line analysis is reviewed and shortcomings of 

this work are identified. The Munro and Da Fonseca yield line analysis formulation 

for RC slabs is presented and its performance characteristics are discussed. A new 

LP formulation for yield line analysis of RC slabs is presented and a computer 

program based on this formulation is developed. The computer program is tested 

with benchmark problems and case study problems from the literature. A new 

algorithm to obtain rigorous upper-bound solutions using the proposed method is 

developed and implemented. 

Chapter 5 presents a new computational limit analysis procedure for rigid block 

assemblages comprising non-associative frictional interfaces. The development of 

computational models for masonry structure is discussed. A discrete block model 
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with frictional constraints is presented. The associative friction problem formulation 

is discussed and presented in vector-matrix form. An algorithm for non-associative 

friction problems is developed and incorporated into a computer program. A number 

of example problems are then investigated using the proposed method. 

Chapter 6 is devoted to practical application of computational limit analysis to 

masonry arch bridges using the RING software which has been greatly enhanced 

following the work undertaken by the author. Some of the practical requirements 

that a bridge analysis program has to fulfil in order to be useful to practitioners 

and the position of the current version of RING (version 1.5) with respect to these 

requirements are discussed. Recent developments to the software are described. A 

number of typical local authority bridges are re-assessed in the light of the new 

features. 

In chapter 7, issues which have arisen during the development of the different meth­

ods of analysis are discussed and observations are made. In chapter 8, conclusions 

are drawn and recommendations for further research are given. 

Additionally, three appendices are also included: 

Appendix A is a paper presented at "The Ninth International Conference on Civil 

and Structural Engineering Computing" , Egmond-aan-Zee, the Netherlands, Septem­

ber 2003. Here the computational efficiency of two rigid block analysis formulations 

for application to masonry structures is discussed. An alternative 'joint equilib­

rium' formulation developed by the author is presented. The new formulation is 

then compared with the 'redundant forces' formulation already in use in RING l.1. 

Appendix B reviews the basics of mathematical programming with the main focus 

on linear programming. The Simplex method and the interior-point methods as 

solution techniques are examined. The concept of duality is discussed and the dual 

of a linear program in standard form is presented. The Lagrangian function and 
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Karush-Kuhn-Tucker conditions are reviewed. 

Appendix C is devoted to computer code for SLAB. The basic features of object ori­

ented programming are discussed. The different classes used in SLAB are reviewed 

and computer flow chart is presented. 



Chapter 2 

Structural Mechanics and 

Mathematical Programming 

2.1 Background 

Structural mechanics is concerned with the study of the structural response to an 

action or loading applied upon a structure. The structural response is described 

by defining the relations between external forces, internal forces and deformations 

of structural materials in the form of relationships which involve variables such as 

the structural loading, the structural material properties, the stress and the strains 

developed in the structure and the displacement undergone by the structure. 

Within the field of structural mechanics, plastic analysis methods stand as an in­

tegral part of the structural engineer's toolbox, having for many decades served to 

estimate the collapse load of structures. Plastic analysis is concerned with the de­

termination of the maximum load amplification (or load safety factor) which can 

be sustained by a perfectly-plastic structure subjected to given loads. Information 

on the stress-state at collapse and the collapse mechanism may be obtained as a 

8 
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by-product. Plastic collapse takes place when a suitable number and disposition of 

plastic zones are formed, converting the structure into a mechanism. For perfectly­

plastic materials, a further small change in configuration of the structure can be 

induced without any change in the applied loads, and the mechanism motion that 

follows is that of a set of adjacent rigid bodies with deformations concentrated ex­

clusively in the plastic zones. 

In recent years, plastic analysis methods have received increased interest. Perfect 

plasticity models were extensively used in the new Eurocode for concrete struc­

tures [1]. Many of the plastic analysis methods are based on hand calculation meth­

ods, and numerous methods such as the strip method and the yield line method 

for RC slabs were developed. However, the scope of limit state calculation is wider 

and other applications include the limit analysis of masonry arches. The success 

of plastic analysis methods lies largely on the ability of these methods to provide 

relatively accurate results (with minimal computational effort) for problems that 

may have complicated geometries and loading conditions. 

Limit analysis has a simple mathematical basis yet describes a reasonably realistic 

non-linear behaviour. When an exact solution is obtainable by the analysis, it gives 

the ultimate load limit of a structure. Approximate solutions provide bounds on the 

limit loads. 

Connections between limit analysis and mathematical programming theory were rec­

ognized as soon as the fundamental theorems of limit analysis were established, and 

the limit analysis/design problem for trusses, beams and frames was rather straight­

forwardly cast in linear programming form [2, 3, 4]. Since then, the application of 

mathematical programming to limit analysis has been extensively researched. 

In this chapter a summary of basic limit analysis concepts is made. The application 

of mathematical programming to limit analysis is reviewed. The kinematic and static 
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approaches to limit analysis are discussed and presented in a general vector-matrix 

form, to be used in later chapters. 

2.2 Limit analysis basics 

Limit analysis relies on the use of a rigid-perfectly plastic material model. A per­

fectly plastic material may be defined as a material which undergoes uulilllited 

plastic deformations under constant stress when it is subjected to a homogeneous 

state of stress. Although rigid-perfectly plastic materials do not exist in reality, it is 

still a valid assumption when the plastic strains are much higher than elastic strains. 

The basic assumptions for limit analysis theory are that brittle failures due to shear, 

bond loss, and sudden flexural compression are prevented. That is, it is assumed 

implicitly that no section in the structure might lose its strength before all the hinges 

have formed. For example, in the case of a RC slab this means that all yield lines 

must be capable of reaching the boundaries of the slab before any portion loses its 

moment-carrying capacity due to excessive rotation. 

2.2.1 Static, kinematic and constitutive relations 

The two essential theories underlying limit analysis had been developed ill full gener­

ality and rigour by the early 1950s in the form of the static (or 'safe' or 'lower-bound') 

theorem and the kinematic (or 'unsafe' or 'upper-bound') theorem. Static relations 

express the equilibrium of forces and kinematic relations express the compatibility 

of deformations. Static relations and kinematic relations can be better explained in 

the light of the mechanics of deformable structures as discussed by Smith [5]. In 

basic terms, three types of mechanical laws represent the basis of the mechanics of 

deformable structures: 



Chapter 2 : Structural Mechanics and Mathematical Programming 11 

1. The laws of kinetics which define the relationship between the internal forccs 

in a structural member and the applied loads by the changes in moments 

of the masses involved in the motion. These laws arise from the balance of 

moment a of a system of mass particles in motion as defined by Newton's law. 

The laws of statics or of equilibrium replace the laws of kinetics whcn thc 

path of motion of the structure is changed in such a way that the changes in 

moments are approaching zero. Equilibrium equations, which are based on the 

original un-displaced structure, can be used to define the relationship between 

the applied loads and the internal forces within the structural system when 

the current total displacement is small. 

2. The laws of kinematics which link the deformation in each of the structural 

members to the current total displacements of the whole structure. Kinematic 

relations implicitly define the concept of compatibility. The compatibility of 

any structural system implies that the structural elements all remain prop­

erly connected within the whole system during the entire process of system 

deformation. 

3. The constitutive relations which relate the strain rates produced in the mate­

rial to imposed stress rates. 

Within the context of perfectly-plastic materials, the constitutive equations consist 

of two parts: the yield condition and the flow rule. The yield condition describes 

the combinations of stresses or internal forces that can produce yielding, and the 

flow rule describes the relationship between these and the resulting plastic strains 

during yielding. 

2.2.2 Upper-bound methods 

Upper-bound methods postulate a collapse mechanism and ensure that: 
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1. The equilibrium condition is satisfied throughout the structure. 

2. The collapse mechanism is compatible with the boundary conditions. 

Since there is no consideration given for elements lying between the postulated 

failure zones to examine whether the yield conditions there have been violated, the 

collapse load factor obtained using this method will be greater than or equal to the 

true load factor. However, if all possible collapse mechanisms are examined, the Olle 

giving the lowest collapse load factor will be the correct mechanism. 

2.2.3 Lower-bound methods 

Generally, lower-bound methods involve finding a distribution of internal actions 

(forces and moments) at collapse to ensure that: 

1. The yield conditions are not violated anywhere in the structuret . 

2. The equilibrium equations are satisfied at all positions. 

As the name indicates, the collapse load factor given by this method will always be 

lower than the actual one unless the most critical distribution of internal actions is 

identified. 

2.3 Mathematical programming application to limit 

analysis 

Mathematical programming techniques and their application to structural mechan-

ics have been through a period of intense research development. A vast body of 

t This implies that in the case of a RC slab the moment is less than the plastic moment of 
resistance; in the case of an arch the thrust-line lies wholly within the arch barrel. 
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information on the subject has been built up by a number of researchers working in 

the field of structural mechanics and it has now reached the stage where it can be 

applied to real world problems. In itself, mathematical programming is the science 

and art of the optimization of functions under constraints which are generally in­

equalities but for special cases where the constraints are exclusively equations, the 

mathematical programming problem reduces to a classical (Le. Lagrangian) opti­

mization problem (for further information on the subject, the reader is referred to 

Appendix B). 

Over the past few centuries, great efforts have been made towards obtaining exact 

analytical solutions for problems in the field of structural mechanics. However, eveu 

when the assumption of linear behaviour for the material and geometrically linear 

deformations are assumed to hold true, the need to turn to numerical techniques 

to obtain solutions has been recognized if general problems are to be successfully 

considered. Whilst analytical solutions began to lose their appeal with the advent 

of fast and powerful computing machines, numerical techniques became more pop­

ular and matrix-based methods for structural mechanics were regarded as powerful 

techniques to automate the process of finding numerical solutions. 

On the face of an almost impossible task of generating analytical solutions with some 

degree of generality for two and three dimensional structures, the development of 

numerical solution schemes became the logical response. This prompted the idea 

of discretizing the structure into finite elements which has been seen as leading to 

a most versatile formulation that fits perfectly with the available matrix methods 

previously developed for framed structures. As soon as finite element methods were 

developed, the connection between the limit analysis methods and mathematical 

programming was established. This has been seen as a perfect way to encode the 

structural behaviour. 

Historically, mathematical programming has been motivated and fostered by the 
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presence of real-life problems in fields such as strategy, economics and III <tll age-

ment rather than structural mechanics problems. Structural mechanics and linear 

programming were anticipated simultaneously in an 1823 rnemoire to the Freudl 

Academy of Sciences by Fourier [6], but it was over a century later before these 

ideas were fully developed [7]. 

Linear programming and limit analysis re-emerged almost simultaneously, but sepa­

rately, in the work of Kantorovich and Gdovzev, respectively, just before the second 

world war (for example see [8]). The subsequent contributions of Dantzig's aud 

Prager's schools soon after that time gave linear programming significant recogni­

tion and positioned it in an important place within the field of mathematics and 

mechanics. The introduction of mathematical programming techniques first to prob-

lems of plastic collapse and then to a much broader range of elasto-plastic problem 

was then recognized as leading to a convenient framework for the formulation of a 

wide variety of structural mechanics problems. 

In the early 1950s, limit analysis of frames was treated as a problem in linear pro­

gramming and debated as such, sometimes jointly by research workers in the fields of 

structural mechanics (Greenberg, Zienkiewicz) and applied mathematics (Charnes, 

Lemke) [9]. This paved the way for much work to be done on the application of 

mathematical programming techniques to the formulation and solution of structural 

analysis problems [10, 11, 12, 13, 14]. The significant trend displayed there con­

cerned the establishment of a unified and comprehensive formalism through which 

all problems can be conveniently described and in which a central role is played by 

the Karush-Kuhn-'IUcker theory of mathematical programmingt [15, 16]. 

Naturally, plastic analysis problems take the form of vectorial relations involving 

t Kuhn and TUcker generalized the theory of optimization to the case of inequality constraints 
in 1951. However, Karush had already described the optimality conditions in his dissertation in 
1939. For this reason, the conditions arising from the Kuhn-Thckel' theorem are usually referred 
to as the Karush-Kuhn-TUcker conditions. 
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equilibrium, compatibility, and constitutive laws. If it is possible to cast these equa­

tions in the form of Karush-Kuhn-Thcker conditions and with certain conditions of 

convexity also being satisfied, dual mathematical programs can be derived. 

Generally in limit analysis problems static and kinematic constraints occur in a 

naturally uncoupled form, and by applying the Karush-Kuhn-Thcker theorelll, et 

pair of primal-dual linear programs is obtained [17]. These programs encode the 

limit analysis theorems and the uniqueness theorem is obtained directly from the 

duality theorem of linear programming. Static and kinematic relations for lilllit 

analysis are usually linear equations. If there is no stress-resultant interactiou, the 

yield equations also take the form of linear equations. In some situations, piece-wise 

linearization may be adopted to substitute non-linear relationships with an increased 

number of linear relationships. 

The discrete nature of mathematical programming implies the discretization of C011-

tinuum structures. For two dimensional structures, some early work used a finite 

difference representation or a series expansion of the independent variables. Oue of 

the drawbacks of the finite difference formulation was its inability to guarantee true 

bounds but only approximations to the actual collapse load [18]. The versatility 

of the finite element method led to its general preference in subsequent work. One 

important advantage of the finite element approach is that the static and kinematic 

admissibility of stress (displacement) fields can be rigorously guaranteed, thus pre­

serving the bounding nature of the solution. The first finite element formulation 

was for a compatible model in plane stress [19]. Finite element formulations for 

planar limit analysis have since been developed extensively and applied to a wide 

range of problems in structural engineering [20, 21, 22, 23, 24]. The static theorem 

was used to formulate the problem as a mathematical program for use in finite el­

ement models which are expressed in terms of stress functions [25, 26, 27, 28]. In 

a similar fashion, the kinematic theorem is invoked to formulate the corresponding 
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mathematical program for compatible models which are expressed in terms of nodal 

displacements [29, 30, 31, 32]. 

Initially, not much attention was paid to limit analysis/finite element formulations of 

plate bending problems. Hodge and Belytschko's [33] work appeared to be the first 

of its kind in this area, soon followed by a number of other workers [34, 35, 36, 37], 

developing similar techniques. 

The special case of Johansens' yield line method for RC slabs has been given par­

ticular attention and Munro and Da Fonseca's yield line analysis method, which 

used finite elements and linear programming [17], was a break-through in the area 

of the application of mathematical programming to limit analysis of RC slabs. It 

opened the door for much work to be subsequently done in this area. A number of 

researchers attempted to improve the performance of the method by applying differ­

ent techniques such as sequential linear programming [38, 39, 40J and/or geometrical 

optimization [41, 42, 43, 44]. 

Mathematical programming techniques have not only been restricted to the analysis 

of steel and concrete structures. The analysis of masonry structures is another area 

where mathematical programming techniques have been successfully applied. The 

application of limit analysis to the study of masonry structures was pioneered in 

modern times by Heyman [45] who placed masonry arch analysis securely within 

the bounds of the plastic theory. Livesley [46] made the link with mathematical 

programming and presented a general method for the analysis of masonry arches 

based on an 'equilibrium' formulation. Following Livesley's work, a number of re­

searchers have developed procedures to model masonry structures. Most notable 

contributions in recent years include the work of Boothby and Brown [47, 23, 48], 

Melbourne and Gilbert [49, 50, 51, 52, 53], Fishwick [54], Baggio and Trovalusci [55], 

Livesley [56], Ferris and Tin-Loi [57]. 
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The significant outcome of the research undertaken in the area of the application 

of mathematical programming to limit analysis of structures is that the importance 

of mathematical programming is not confined to its computational aspects, but 

it has also a theoretical role to play. The way that mathematical programming 

unifies discrete problems of structural plasticity and continues formalism through 

which primal-dual external principles may be generated means that mathematical 

programming yields not only a unified formalism for discretized structural rnechall­

ics problems but also algorithms for their automatic numerical solution [58]. The 

refined mathematical foundation and the richness of theorems of mathematical pro­

gramming present interesting and useful structural interpretations. The integration 

of these distinct features of mathematical programming with well-constructed algo­

rithms through which numerical solutions may be obtained for such formulation sets 

practical problem-solving in structural plasticity within a strong scientific discipline 

[5]. 

Despite the fact that the possibility of obtaining minimulll weight designs automat­

ically using plastic theory and linear programming has now been appreciated for a 

long time, such techniques have not been used much in practice until recently. Lim­

ited computing power, coupled with the relatively primitive algorithms available in 

the past meant that other solution methods at that time found favour. The vast im­

provement in computing power and the dramatic enhancements in the optimization 

algorithms available has the potential to change this. 

2.4 Limit analysis formulations 

Whilst the use of plastic theory as a means of predicting the collapse load of steel 

frames has been extensively investigated, in parallel, a considerable effort was de­

voted to hand computational methods. Two methods emerged: the upper-bound 
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method and the lower-bound method. The upper-bound method involves identify­

ing all the possible collapse mechanisms and then, using virtual work consideratiolls, 

establishing the lowest load at which any of these will be activated. This has beclI 

described as the 'upper-bound' or 'unsafe' method because, if all the possible col­

lapse mechanisms have not been identified, the predicted collapse load may be above 

the theoretical value and hence unsafe to use in an analysis or design context. On 

the other hand, 'lower-bound' or 'safe' procedures involve exarnillillg force systems 

in equilibrium with the applied loads and which do not violate the yield couditiolls. 

The correct theoretical collapse load is the minimum of all possible 'unsafe' solutiolls 

or the maximum of all the possible 'safe' solutions. The advancement of powcrful 

computers made it possible to reformulate the hand calculation methods in terms 

of methods suited for large numerical computations. As with the hand calculation 

methods, the numerical computations can be based on either the upper-bound (killc­

matic approach) or the lower-bound (static approach) theorem of plasticity, awl are 

carried out as optimizations. 

2.4.1 The kinematic approach 

Generally, if structural rotations and displacements correspond to a possiblc collapse 

mechanism that satisfies the conditions of geometric compatibility, then the work 

done at all sections in the structure will be positive (in the case of skeletal struc­

tures the value of moments at hinge points are equal to the fully plastic resistance 

moments). According to the upper-bound theorem of limit analysis, the load factor 

is obtained by minimizing the kinematic ally admissible load multiplier. This call 

be stated as a problem of linear programming. Thus, the kinematic formulation in 

general terms for a structure discretized to n elements with m interfaces betwecn 

these elements may be presented as follows: 
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(2.1 ) 

where). is the collapse load factor and where the whole structure live load, dead 

load, element displacement rates, interface forces and displacement rat CH vectorH 

are denoted respectively fl = [fLllfL2 , ... ,fLn], fb=[fDpfD2)" .. ,fDn]' dT =[d j ,d2 , ... ,dn]' 

gT=[gl,g2, ... ,gm] and UT=[Ul,U2, ... ,Um] and where the element live load, dead load 

and displacement rates vectors are denoted respectively fl =[h.r' h .. , h., 'TnLr , 
J ) U) J ) 

where c5xj , c5yj , c5zj , c/JXj' c/JYj and c/JZj represent, respectively, the element trallslatiolls ill 

x, y and z directions and the element rotations about the x, y and z axes and where 

the interface displacement rates and forces vectors are denoted respectively uT = 

y and z-translational displacement of interface i, and the local rotation about the 

ml% are respectively the force and the bending moment limits at interface i ill the • 
x, y and z directions. 

Subject to constraints which impose: 

1. Geometric compatibility: 

(2.2) 

where BT is a suitable (6m x 6n) geometric compatibility matrix derived from 

the geometry of the structure. 

2. A unit work: 

Displace the structure according to the live load such that: 

(2.3) 



Chapter 2 : Structural Mechanics and Mathematical Programming 20 

2.4.2 The static (equilibrium) approach 

In the static (equilibrium) approach the aim is to find a set of internal forces which 

maximizes the intensity of an external load. These are in equilibrium with a certain 

multiple of the applied loading and should not violate the yield conditions at plastic 

failure zones within the structure. According to the lower-bound theorem of lilllit 

analysis, the load factor is obtained by maximizing the load multiplier. This call 

be stated as a problem of linear programming. For a discrete structure, this can be 

written in matrix notation as : 

Maximize ). (2..1) 

Subject to constraints which: 

1. Equilibrium: 

)'fL = fD + Bq (2.5) 

where). is the collapse load factor and where the whole structure live load, 

dead load and resulting forces at interfaces are denoted respectively fE =[fL1 ,f1-2 

, ... ,fLn], fb=[fD1 ,fD2, ... ,fDn ] and qT=[Ql,q2, ... ,qm]' And where the clement live 

load, dead load and the interface forces and moments are denoted respectively 

fL=[JLXj' !Luj ' !L.j , mLxj , mLlIj , mL.), f];j=[JDxj , !DIIJ , !D'j' mDxj , mDy)' TnD) 

and q;=[!Xj, !Yj, !Zj,mxpmypmzJ where !Xj'!YP!Zj,TnXj,mYj and 1nZj are re-

spectively the forces and the bending moments at interface i. 

2. Yield conditions: 

(2.6) 
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Considering both formulations; Charnes et al. [9] showed that when 'mcchanism' 

and 'equilibrium' formulations of the limit analysis are linearized they give rise to 

dual linear programming problems. These concepts are shown in Fig. 2.1 together 

with the static-kinematic analogy. It worth mentioning here that static formulations 

obtained as dual to the kinematic formulations (as has been done herc) do not 

necessarily lead to true 'lower-bound' solutions. 

Kinematic 
formulation 

I Displacements I I Rotations I 

Problem Linear programming Solution 
formulation solver 

I Forces 
I : Moments I I 

Equilibrium 
formulation 

Figure 2.1: Static-kinematic analogy 

The above representation presents plastic analysis in forms amenable for computer­

ization. Making use of this, a variety of plastic analysis problems may be addressed. 

In this context, the yield line analysis of RC slabs is investigated in the fourth chap-

ter. The problem of analyzing masonry structures can also be tackled using this 

approach; this is carried out in the fifth chapter of this thesis. 
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Chapter 3 

Yield Line Analysis of RC Slabs: 

Background 

3.1 Introduction 

Structural engineers are most often concerned with designing a new structure or 

assessing an existing one. The main task of the structural design engineer is to 

decide the materials to be used in the structure to be designed and the disposition 

and the nature of the elements of the structure. All elements need to work together 

so that the structure can withstand efficiently the expected conditions during its 

life-time, whilst bearing in mind the criteria of economy and safety. 

The design procedure involves selecting of the initial sizes for the structural members, 

performing analysis using these sections and properties and iterative modification 

of the member sizes accordingly. The design criteria are often selected to suit the 

theory employed in the analysis and design of the structure. 

Based on the analysis result, structural engineers can judge whether the members 

29 
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meet the requirements and provide an adequate resistance to the loading combina­

tion under consideration. 

On the other hand, the main task of an assessment engineer is to check whether the 

structure to be assessed has an adequate load carrying capacity. 

The philosophy behind the structural assessment process differs from the philosophy 

adopted for the structural design process. Whilst the main interest of assessmellt 

engineers is generally to check whether the structure is adequate at the ultimate 

limit state, design engineers have also to check whether the structure is adequate at 

the serviceability limit state. 

Despite this difference, it can be seen that in both cases a major aspect is structural 

analysis; that is the determination of stresses, strains, internal forces and displace­

ments of a given structure under given loading conditions. 

Linear elastic analysis is mostly used as the results obtained from such analysis have 

been used primarily as the input for the calculation of actions and displacelllellts 

and for sizing the structural members. However, in some situations when design­

ing/ assessing RC slabs, complex shapes, support conditions and/or the presence of 

openings or unusual loading conditions may be encountered. Consequently, simpli­

fied design/analysis using linear elastic approaches may not be useful. 

The available plastic approaches for the problem are the yield line method and the 

strip method. The yield line method is particularly suitable for slabs with consid­

erable complexity of geometry or loading patterns. On the other hand, the strip 

method is valuable when the slab contains openings. One distinct advantage of the 

yield line method is that solutions are possible for any shape of a slab, where as most 

other approaches are applicable to rectangular shapes, with rigorous computations 

for boundary effects for other shapes. The engineer can, with ease, find the required 

moment capacity for a triangular, trapezoidal, rectangular, circular and any other 
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conceivable shape provided that the failure mechanism is known or predictable. 

There has been a recent revival in interest in the yield line method. One of the 

outcomes from the European Concrete Building Project at Cardington is that yield 

line design of concrete flat slabs was found to be 'easily the best oppor·tun'ity identi­

fiable to the concrete frame industry' [1]. In the same context, the British Cement 

Association, on behalf of the industry sponsors of the Reinforced Concrete CouIlcil, 

has recently published a document covering practical yield line design [1] to pro­

mote better knowledge and understanding of RC analysis and design by using more 

efficient and effective analysis tools such as the yield line analysis method. 

Structural design of RC slabs based on the yield line method appears to be eco­

nomic, simple and versatile. The majority of RC slabs designed using the yield line 

method are quick and easy to construct [1]. These slabs are usually thin and pos­

sess very low amounts of reinforcement distributed regularly across the slab. This 

regular reinforcement simplifies detailing and makes reinforcement easy to fix on 

site, speeding-up the construction process. Furthermore, yield line design further 

produces very economic RC slabs as it exploits the full capacity of the steel at the 

ultimate limit state. 

Among the many possible methods for RC slabs design, yield line design appears 

to yield the minimum weight of reinforcement combined with least complication. 

This argument was exemplified on the in-situ building of the European Concrete 

Building Project at Cardington. In the Cardington project, three different methods 

of design and detailing were used. The floor slabs were designed in accordance with 

EC23 (DD ENV 1992-1-1) by various designers using: 

1. The equivalent frame method as described in BS 8110 

2. Elastic finite element analysis 
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3. Yield line analysis 

Each floor was uniquely designed, detailed and constructed. The resulting output 

in terms of reinforcement weight and arrangement was then compared. Each of 

these methods has advantages and disadvantages with respect to the rest. For 

example, the sub-frame method with BS 8110 is best suited to be used in the design 

when tackling irregular frames. However there is no guarantee that the method will 

produce the most efficient design. A resort to a computerized version of the method 

may also be necessary. 

For floors with irregular supports or geometry, large openings or carry concentrated 

heavy loads the finite element method is the most suitable for the job. However, 

experience and an extra care is needed when modelling geometry, material properties 

and loads on the structure. An additional advantage of the method is that it will 

facilitate the performance of a cracked section analysis to predict deflections and 

crack widths. 

Using the yield line method in design will produce the most economic and uniform 

distribution of reinforcement. The method will enable efficient use of uniform loose 

bar in one or two way spanning slabs attractive particularly for sagging moment 

reinforcement. 

In the Cardington project, the yield line method was used to design the 4th floor 

and it was found to give rise to the least amount of reinforcement. As shown in 

Table 3.1, for a complete floor, 14.5 tonnes of reinforcement would have been used 

using yield line theory compared to 16.9 tonnes using conventional elastic design 

methods. 

Apart from the heavy blanket cover solution, the design based on the yield line 

method at Cardington [1] also led to the least bar marks being required. 
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Figure 3.1 shows the 4th floor at Cardington [1] during the construction phase. The 

half in the foreground was designed using yield line design and needed T12@200mm 

(565mm2/m) for reinforcing. The other half towards the top of the picture was 

elastically designed and required a reinforcement of T16@175mm (1148mm2/m). 

Thus the comparative economy of yield line design is clearly evident. 

Floor No. Flexural reinforcement Tonnes No. of bar 
/ft.oor* marks/ft.oor 

1 Traditional loose bar - Elastic Design 16.9 
2 Traditional loose bar 17.1 
3 Rationalised loose bar 15.3** 
4 Blanket cover loose bar - 1/2 Yield Line Design 14.5* 

1/2 Elastic Design 23.2* 
5 One-way mats - Elastic Design 19.9 
6 Blanket cover two-way mats - FE Design 25.5 
7 Not part of the particular research project 

.. 
* Rates given are for a whole floor. ** 1.6 tonnes additlonal remforcement would 

have been required to meet normal deflection criteria. 

Table 3.1: Configurations of ft.exural reinforcement in the in-situ building 
at Cardington 

Figure 3.1: European Concrete Building Project at Cardington 

75 
76 
54 
22 
33 
42 
20 
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3.1.1 Yield line design and serviceability limit states 

One concerning issue with the yield line method, when used in the design of RC 

slabs, is that as a limit analysis method, it does not provide any information about 

the serviceability limit state behavior of the structure. In order to produce a reliable 

design using the method, the designer has to ensure that the relevant serviceability 

requirements, in particular, the limit state of deflection and cracking are satisfied. 

These may require a separate elastic analysis of deflection and cracking. 

3.1.1.1 Deflection 

Span/(effective depth) in conjunction with yield moments may be used to ensure 

that the actual span/ (effective depth) ratio is less than the allowable span/ (effective 

depth) ratio as specified in design codes. In the case where the actual deflection is 

required, simplified analysis methods or finite element methods may be ernployed. 

3.1.1.2 Cracking 

The yield line method offers the freedom of choosing arrangements of reinforcement 

that lead to simple detailing. However, it has to be taken into account that such 

arrangements should not result in a distribution of ultimate moments of resh,tallce 

at the various sections throughout the slab which differ significantly from the distI·j­

bution of moments given by the elastic theory. This is necessary to avoid excessive 

cracking at the service load, which takes place when low steel ratios at highly stressed 

sections are used. To limit cracking, bar spacing should be chosen to comply with 

the design code. 
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3.1.1.3 Ductility 

The yield line method assumes that the slab has sufficient ductility to allow the 

full mechanism to be developed before crushing or any other failure modes is occur. 

The requirements of section ductility should be considered when detenuiuillg the 

maximum amount of steel that can be placed in the slab. To ensure that the rein­

forcement will yield before the concrete fails, design codes usually provide provisiollS 

for the allowable ratios and also restrict the type of reinforcement call be used. 

Ensuring that the slab has a sufficient ductility is also important from a safety 

point of view. Slabs with sufficient ductility will show warning signs before collapse. 

Adequate ductility is also economically feasible as it enables better load distributioll 

through out the structure (load sharing). 

3.2 Yield line theory 

Yield line theory was originated by Ingerslev [2] who in 1922 presented a paper to the 

Institution of Structural Engineers in London on the collapse modes of rectangular 

slabs. The theory was substantially developed by Johansen [3], who published his 

PhD thesis on the subject in 1943. Researchers such as Kemp [4], .lones [5],[6], 

Wood [7],[6], Park [8], Morley [9] and many others have extended Johansen's idea.-;, 

perhaps further than he envisaged. Their intention has been to place yield line 

theory within the domain of classical and rigorous plastic theory. Their collective 

efforts led the validity of the theory being well established and made it a formidable 

international design tool. During the second half of the last century, the method and 

its application to slabs and slab-beam structures has been exposed to an intensive 

period of research all over the world. The results of this research have been widely 

reported. 

• 
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Yield line method applications have not just been restricted to RC slabs; it ha.'l 

also been used to assess the structural performance of bolted and welded joints in 

steel plates [10]. However, its main application is to RC slabs (in particular 'under­

reinforced' concrete slabs) where the yielding of the steel reinforcement is dominant. 

3.2.1 Basic assumptions of the yield line method 

The yield line method has traditionally relied on a number of assumptions. The 

basic assumptions are: 

1. The slab is under-reinforced and collapsing because the moment capacity is 

met; not by other failure modes such as shear or loss of bond 

In order to apply the yield line method, the slab has to behave as a perfectly­

plastic structural element. This requires the idealization of the momcnt­

curvature relationship as the elastic perfectly-plastic curve with a long hor­

izontal portion. This implies that the percentage of reinforcement in the slab 

has to be small enough for the slab not to fail by crushing of the com pressed 

concrete before the collapse mechanism is formed. Consequently, the use of 

other material apart from the mild steel in concrete structures such a.'l the 

use of high tensile steel may result in slabs which are not compatible with the 

basic assumptions. 

2. The span/depth ratio is high enough such that the slab will fail in bending 

The failure mode is strongly dependent on the span/depth ratio. The higher 

the ratio, the more likely the slab will fail in bending. 

3. Elastic deflections are negligible compared with plastic ones 

If the elastic deflections can be ignored in comparison with the plastic ones, 

the individual parts of the slab can be considered as plane (rigid regions) and 
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their intersections, the yield lines, as straight lines. That is, all rotations take 

place in the yield lines only. The assumed collapse mechanism is defined by a 

pattern of yield lines along which the reinforcement has yielded. Along these 

straight lines, the bending moment is the principal moment and the torsional 

moment is zero. Accordingly, all the shear forces at the yield line become zero. 

4. The reinforcement is isotropic and orthogonal 

The yield line method applies to slabs with orthogonal isotropic reinforce­

ments. However, the difference in the effective depth due to the fact that 

bars in any side of the slab cannot be placed at the same level is neglected. 

Orthotropic slabs may be transformed to equivalent isotropic slabs, for which 

analysis is usually easier, by invoking the affinity theory. 

The assumption of isotropy I orthogonality reinforcement means twisting mo­

ments are zero, in other cases where the moment in one direction does not 

equal the moment in a direction which is perpendicular to this, it is assumed 

that the twisting moment is zero. 

5. Columns are considered to act as simple supports 

This is valid for long slender columns where a considerable rotation of the 

slab at the column is allowed [3]. Usually, the column will meet the slab 

rotation with a moment of some value, which should be incorporated into 

the equilibrium equation. However, column failures are not plastic; they may 

be due either to crushing or cracking. With long slender columns, colmrln 

moments have negligible values compared to slab moments and can be safely 

disregarded completely from the calculations. 

6. The effect of strain hardening of the reinforcement is negligible 

When calculating the moments of resistance of RC slabs, strain hardening ill 

the reinforcement is not accounted for. This strain hardening can be respollsi-
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ble for increasing the moment of resistance of a section up to 10% [11] above 

the calculated value due to its increased effect when the percentage of steel is 

low, as in slabs. 

7. The effect of changes in geometry due to deflection is negligible 

The yield line method is based on the assumption that the mid-planc rClllains 

unstrained subsequent to bending. This assumption is valid provided that 

there are no relatively large deflections compared with the slab thickncss in­

duced by loading. 

For relatively large deflections, appreciable deformations of the middlc surface 

will occur and membrane or arching action will take place. The more a slab 

deflects, the more significant is the membrane action. 

Membrane action enhances the strength of a RC slab because of the in-plane 

forces developed at the supports or mid span. A typical load-deflection curve 

of a rectangular slab uniformly loaded and fixed along all the edges is shown 

in Fig. 3.2. 

Uniformly 

distributed 

load 

Central deflection 

C 

Figure 3.2: Typical load-deflection response of a restrained concrete slab 

Referring to Fig. 3.2, crushing of the concrete in the central zone and the 

instability of the dome formed within the slab results in the peak at (A). 

The maximum compressive force induced in the supports occurs at/or after 

this peak. As deflection increases, the supported load decreases rapidly due 
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to the reduction in compressive membrane forces, and a stage is eventually 

reached near (B) where the membrane forces in the central region change from 

compression to tension. Beyond (B), the load is carried almost entirely by the 

reinforcement acting as a tensile membrane until fracture of the steel fina.lly 

occurs at (C). 

Based on the load-deflection response described above, two types of mem­

brane action in RC slabs have been identified: tensile membrane action aIlli 

compressive membrane action. 

Tensile membrane action occurs after the slab has exceeded its compressive 

membrane capacity and has begun to undergo large deflections. For simply 

supported edges where the edges provide little or no restraint, horizontal ten­

sile and compressive stresses have to form in the slab to ensure horizontal 

equilibrium. The effect of the tensile stresses is to reduce the moment of re­

sistance of the slab, whereas the compressive stresses increase the mOlllent 

of resistance. The increase in moment of resistance in the compression zone 

outweighs the reduction in the tension zone, with a consequent increase in the 

load-carrying capacity above the yield line load. If sufficient lateral restraiut 

is provided, the tensile strength of the steel sections can provide additional 

capacity that will delay the progressive collapse of the slab. Full-depth crack­

ing, inward support movement, and large deflections usually accompany the 

tensile membrane action. 

Compressive membrane action takes place in slabs that have effective horizoIl­

tal edge restraint (as is often the case with fixed supported edges). It occurs as 

a result of the great difference between the tensile and compressive strengths 

of concrete. The opening of cracks cause the slab to become lodged between 

the restraining edges and instigate a migration of the neutral axis, accompa­

nied by in-plane expansion of the slab at its main boundaries. If this natural 

tendency to expand is restrained, very large compressive stresses in the slab 
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will be induced and across the slab the moment of resistance becomes very 

large. This may increase the load carrying capacity by 200% or morc above 

the yield load. An idealized illustration of the arching effect in a slab strip is 

shown in Fig. 3.3. 

Load 

I 
\ / 

Thrust ........ .- ~\ ,"'" - - _ .. Thrust 
... --- \I --_ 

Lateral r,""'s ........ · ....... ~JJ 

Cracking 

Figure 3.3: Arching action in a RC slab strip 

It is worth mentioning in this regard Ockleston's observations [12]. Frolll 

his monitoring of the demolition of an old hospital, he observed that it was 

virtually impossible to collapse a slab surrounded by other slabs (providing 

horizontal restraint) by vertical loading. Tests carried out on slabs through to 

failure have shown that the actual mode of failure is often a form of buckling. 

Recently, a number of small scale tests have been carried out in the Departrncllt 

of Civil and Structural Engineering, at the University of Sheffield [13]. III all 

tests, higher load factors than predicted using the yield line method have UCCll 

obtained. However, in the majority of these tests, the mechanism of collapse 

load does not appear to be significantly affected by the membrane action, and 

corresponded closely to that predicted by the yield line method. 
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3.2.2 Yield line analysis of slabs 

As an analysis tool for RC slabs, the yield line method looks at the condition of Cl 

slab just prior to collapse, when the slab can take no more increments of loading 

without failing. At this stage, cracks have occurred in the slab at positions where 

the ultimate moment of resistance of the section has been reached and where the 

reinforcement has yielded, owing to the fact that the slab is under-reinforced. These 

cracks form lines, along which the ultimate moment of resistance perpendicular to 

it have also been reached. These are known as yield lines. Initially, only the an'c\.-') 

of highest moment will crack, causing a localized loss of stiffness in the section 

and leading to redistribution of moments within the slab. The areas adjacent to 

the cracked sections then have to take an increased moment, which causes them to 

crack also. This crack propagation continues until the yield line reaches a boundary 

or a free edge. At this point there can be no more increase in loading as the slab is 

at incipient collapse. This is shown for a square sided slab in Fig. 3.4. 

(a) (b) 

Figure 3.4: A simply supported square sided slab subject to UDL: (a) 
initial cracking; (b) final yield line pattern 

The formation of yield lines must obey the square yield criterioIl. According to 
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the square yield criterion shown on Fig. 3.5, a yield line will form along the axis 

of a bending moment that has reached the moment of resistance of the slab. The 

square yield criterion imposes certain restrictions on how the yield lines can form. 

For example, a positive yield line and two negative yield lines cannot meet at the 

corners of a fixed edged slab. This is attributable to the fact that the intersection of 

true yield lines having different signs is only possible when there are only two awl 

these cross each other at a right angle (a condition which is impossible to satisfy at 

corners). It is known that, at true yield lines, only the greatest principle moment 

acts and accordingly, torsional moments vanish. However, if there exist one sagging 

and two hogging yield lines, torsional moments will exist. This can be explained with 

the help of Mohr's circle, as shown in Fig. 3.6 for the case where one sagging and 

two hogging yield lines intersect. Here it is clear that there are generally torsional 

moments in the yield lines. 
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Figure 3.5: The square yield criterion 

The method enables prediction of the load required to activate a pre-specified yield 
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Figure 3.6: (a) Intersection of two sagging and one hogging yield lines; 
(b) corresponding Mohr's circle 

line mechanism. This may be achieved either by the method of virtual work or by 

the equilibrium method. Both methods are related to each other and lead to an 

upper-bound solution to the collapse load for the slab. In the virtual work method, 

the load which activates the pre-specified yield line mechanism is determined by 

equating the work done by the external loads to the internal energy dissipated at 

the yield lines during a small motion of the mechanism. 

Using the equilibrium method, the equilibrium of each segment of the yield line 

pattern under the action of its bending and torsional moments and shea.r forces is 

considered. A number of equilibrium equations are written by taking the moment 

about a suitable axis. These are then solved simultaneously to obtain the unknown 

dimensions of the yield line pattern under investigation. 

III 
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3.3 Yield line method basics 

3.3.1 Notation 

The convention used throughout the thesis to illustrate types of supports, axes of 

rotations and yield lines is shown in Fig. 3.7. 

Free edge 

~ Fixed edge support Axis of rotation 

• Column 

Postive yield line Negative yield line 

Figure 3.7: Convention for illustrating slab boundary conditions, axes of 
rotation, and yield lines 

3.3.2 Moment of resistance 

To perform a yield line analysis it is crucial to know the moment of resistance along a 

yield line. A yield line will not normally coincide with the line of reinforcement, but 

will usually make some angle () to the line as shown in Fig. 3.8. Johansen's stepped 

yield criteria is used to solve the problem of having the yield line at an arbitrary 

angle to the reinforcement by dividing the line into a Humber of steps orthogonal t.o 

the reinforcement, as shown in Fig. 3.8 (b). 

The moment per unit length normal to the yield line, Tnpn ' is made up of two 

components, as shown in Fig. 3.8 (c). 

(3.1 ) 

where II =lcos () and l2=lsin () 

Hence 
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Figure 3.8: (a) Yield line inclined at angle () to the reinforcement; (b) 
Johansen's stepped yield line; (c) moment of resistance 

(3.2) 

For cases when () = 0, the transverse reinforcement is not needed and Tnpn = m p1 ' 

When mp1 = mP2 = mp the value of mPn is also mp, i.e. the moment of resistance 

of the slab is uniform in whichever direction is chosen, i.e. whatever value e takes. 

When a slab has equal moments of resistance in two mutually perpendicular direc­

tions it is said to be isotropically reinforced. For simple slab geornetries it is not t.oo 

difficult to find the rotations of the yield lines, but when the geomet.ry of the slab 

is more complex, this may not possible. In this situation, it is convenient to split. 

the slab vectorially into components in the x and y directions and use the following 

equation: 

(3.3) 

where mp", and mpy are the yield (plastic) moments in the x and y direct.ions, Lx and 

Ly are the projection of the yield line onto each axis and ex and ey are t.he rotations 

about each axis. 
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3.3.3 Pattern rules 

The patterns that yield lines make are easily identified for simple shapes such H." the 

simply supported square slab shown in Fig. 3.9, but are not so apparcnt for more 

complex shapes. For this reason rules or guidelines have been sct-out for pattern 

determination. 

When choosing a pattern of yield lines for the analysis of a Hlab, it lllust be dOlle 

so that the rigid regions bounded by the yield lines are allowed to remain rigid and 

uncracked. As the rigid regions that rotate are plane sectiolls, then the illtcrsectioll 

of two rigid regions, i.e. a yield line, must be straight. Therefore, all yield lines are 

straight. 

If a rigid region rotates, it must do so about an axis. In Fig. 3.9, a rigid region 'a' 

rotates about line AB, region 'b' rotates about BC, 'c' about CD and 'd' about DA. 

From this example, it is clear that when a and b rotate, their line of intcrsectioll, 

yield line EB, also intersect with the axis of rotation of a and b, lines AB and BC 

respectively. This is a condition that must always be fulfilled. 

A 

--T---~-_ rigid regions 

D c 

Figure 3.9: Axis of rotations of rigid region 
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A yield line itself does not have to intersect directly with another axis of rotatioll, 

it can intersect on an extension of one, as shown in Fig. 3.10. The illt.ersectioll of 

the three yield lines is not constrained to be exactly at point. A on the diagram, it 

could be at point B, but in this case, the yield line extension must st.ill pass t.hrough 

point C. The actual point where the yield lines meet depends on the reinforccmcnt 

and the loading present. 

Figure 3.10: Axes of rotation and extension of yield line intersecting at 
a point 

In some cases, such as where a slab is simply supported at. two ends only, (\''i shown 

in Fig. 3.11, the axis of rotation intersects with the yield lines at infinity. 

Figure 3.11: Axes of rotation and yield line intersecting at infinity 
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As well as line supports, simple and fixed, columns can also act as all axis of rotatioll 

i.e. an axis of rotation passes over the column, as shown in Fig. 3.12. 

I' \ 
I ' 
I \ 

\ 
\ 

---- ------. 
I 

Figure 3.12: An axis of rotation at a column 

Any symmetry in a slab is also present in the yield line pattern, as ill the square-

sided slab of Fig. 3.9. 

The rules covered here can be explicitly stated as follows: 

• Yield lines are straight. 

• Yield lines terminate at slab boundaries. 

• Yield lines (or their extensions) pass through the intersection of the axe:,; of 

rotation of the rigid regions which the yield line lies at the intersectioll of. 

• Axes of rotation lie along lines of support, on columns or along the yield lines 

themselves. 

• Symmetry of the slab is maintained in the yield line pattern. 

3.3.4 Fan mechanisms 

A special form of mechanism is produced when concentrated (point loads) are in­

troduced or when a slab rests on a column, as shown in Fig. 3.13. This is called a 
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fan mechanism, for obvious reasons. Here cracks propagate radially from the poiut 

of loading and may extend as far as they can until it is llot possible to do so, for 

instance up to a free edge as shown in Fig. 3.14. 

.Radial cracking 

Figure 3.13: A fan mechanism 

Free edge 

Figure 3.14: A fan mechanism near a free edge 

The negative (hogging) yield line, which occurs around the perimeter of a fan mcch­

anism, may seem to be an arc although it is in fact a number of straight lilles. 

3.3.5 Corner levers 

Corner levers are another special case which result from the square yield criterioll 

(Fig. 3.5). The square yield criterion forbids one positive and two negative yield 

lines meeting at a corner in a slab, meaning that diagonal patterns such as those for 

a square slab with fixed supports cannot occur as this criterion is contravelled allt! 

an alternative mechanism must therefore occur. One mechanism involving COl'llcr 
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levers is shown in Fig. 3.15, where corner levers form instead of the diagonal yield 

line intersecting the corner of the slab. 

Figure 3.15: Corner levers set up so as to prevent violation of square 
yield criterion at corners 
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3.4 Example 

The slab shown in Fig. 3.16 is simply supported on all four sides with equal reinforce­

ment in both the x and y directions (therefore also having equal plastic moments 

mp per unit length). There is only bottom reinforcement. The slab is subject to a 

uniform pressure of intensity p per unit area. The problem is to find the load factor 

which if applied to the live load will lead to collapse. For this example the yield liue 

pattern is assumed to be as in Fig. 3.16(a). Using a modified version of equation 2.1 

and assuming that each segment between the yield lines is an "element" and each 

yield line between the segments is an "interface", rn will be 4 and n will also be 

4. As the pattern and its dimension is known in advance, there is no need for the 

minimization process. 

Applying the principle of virtual work and assuming that the self weight of the slab 

is negligible compared to the live load, equation 2.1 can be re-written as: 

~----~------~'I ® 

L L 

@ ~I --------~[--------~ 

(a) (b) 

Figure 3.16: Example 1: (a) yield line pattern for a simply supported 
slab; (b) section normal to AC or BD 
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(3.4) 

where .xrId represents the internal work and gTu the external work. 

The internal work and the external work can be evaluated as follows: 

1. Internal work 

For a slab element, moments are limited to the slab plastic moments. This 

means: 

for each interface, i = 1, ... ,4 (3.5) 

and as there are no translational movements between elements at this iuterface 

=} 

U Xi = uYi = uZ; = 0 
} for each interface, i ~ 1, ... ,4 (3.7) 

(3.8) 

Equation 3.6, 3.8 can be compactly rewritten by combining the rotations at 

each interface as follows: 

(3.0) 



Chapter 3 : Yield Line Analysis of RC Slabs: Background 53 

(3.10) 

where m pi is the ultimate moment of resistance at yield line 'i and ()i is the 

same yield line rotation. As the slab is isotropically reinforced, m pl =mp2 = 

mp3 = m p4 = mp and m pi = mpli where li is the length of yield linc i, II ---

L 
l2 = l3 = l4 = )2' Also from symmetry (h = ()2 = ()3 = ()4' 

Fr b ·· () 2(3/26%1) 6)26z1 
om aslC tngonometry, 1 = L L 

Re-arranging all equations: 

Internal work= [r~ ~ n~ T~] 

2. External work 

6)28z1 

6A8z1 

6A8z1 

6A8z1 

L 

(3.11) 

(3.12) 

The uniformly distributed load is assumed to act at the cent er of each of the 

four elements. Accordingly, the vertical load Pj at the center of element j call 

be calculated as pjAj , where Aj is the total area of element j. 

Considering that only the vertical loads are applied, this implies: 
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mL = mL = mL = 0 for each element, j = 1, ... ,4 (3.13) 
Xj Vj Zj 

(3.11) 

Supposing that the slab surface lies in the x-y plane, this entails: 

8x = 8y . = 0 } 
J _ J for each element, j = 1, ... ,4 

rPzj - 0 
(3.15) 

And as there are no applied moments in the live load, cPx
J

, cPYj' rPz
J 

call be 

omitted from the element displacements vector. 

(3.16) 

Because of symmetry, PI = P2 = P3 = P4 and 8Z1 = 8Z2 = 8Z3 = 8Z4 ' Also 

PI = PIAl = O.25PI L 2 

(3.18) 
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Equating internal work to external work gives: 

If mp is taken as 1 and P1L2 as 1 => A = 24 . 

The static approach can also be used to find A. Consider the equilibrium of element 

1. Taking the moment about DC gives: 

2 (L) (L L) 24mp APl (0.25L) "6 = mp "2 +"2 or A = Pl£2 

3.5 Closing remarks 

Having reviewed yield line analysis basics, the next chapter is devoted to automated 

yield line analysis methods. Previous and on-going research into yield line optimiza­

tion will be reviewed. The static and kinematic approaches for yield line analysis 

formulations will be discussed and presented. A computer program based 011 the 

modified static and kinematic formulations will be developed and implemented. Salll­

pIes of the program output will be presented and discussed. 
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Chapter 4 

Automated Yield Line Analysis of 

RC Slabs 

4.1 Abstract 

A novel limit analysis method for RC slabs and bridge decks tha.t overcomes the 

problems encountered by previous workers in this field is developed. An ultimate 

load carrying capacity analysis is carried out by discretizing the slab deck iuto aiarRe 

number of rigid elements. A kinematic approach is adopted aud llovcllllatlwlllat.icnl 

rules to describe how adjacent elements should interact with each other are Ilsed 

in the formation of the requisite linear programming tableau. These rules differ in 

important respects from the over restrictive rules adopted by previous workers ill this 

field. This ensures that safe estimates of structural strength are obtained. Onc(' a. 

work equation has been set up, a solution is then sought using a. linea.r pl'Ograllll!ling 

algorithm. Appropriate state-of-the-art algorithms have been employed to solve 

the underlying LP problem. The results obtained agree quite well wit.h known 

exact solutions for various different slab configurations, boundary conditions alld 

loading arrangements. An attempt to obtain rigorous upper-boulld solutions (i.e. 

58 
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satisfying kinematical admissibility criteria) using thc mcthod has also bePII llla.de, 

and rigorous upper-bound solutions have been obtained for a llumber of problems. 

Keywords: Automated yield line analysis; Shear forces; Linear programming 

4.2 Introduction 

Although yield line theory is long established, it is still not that widely 11sed in 

practice. This may partly be due to engineers being concerned that they have fnil('d 

to identify the critical failure mechanism and partly because of the 11ufmuili<ll" natll\"(' 

and possible complexity of the calculations for all but the simplest ca..,es. III this 

respect, the method would therefore appear to be well-suited to COlllplltNizatioll. 

If it were possible to develop an automated yield line analysis/design software, it is 

likely that the method will be regularly used by practicillg engineers. 

4.3 Literature review: research into yield line op­

timization 

In order for the exact solution to the problem of finding the critical load factor for 

RC slabs to be found, the correct mechanism must first be ident.ified. For silllple 

slabs, the choice will be limited to only a few possibilities and the solution may 

easily be obtained using hand calculation by setting out the problem ill tenns of the 

geometry of a particular pattern with unknown variables (such Il .. 'l ratios or angles) 

and then differentiating the load factor with respect to the unknowns. This form of 

analysis requires the selection of possible mechanisms and then refinement of them, 

which is done here by finding the turning point of the load factor parameter. 
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For more complex slab layouts it becomes increasingly difficult to idclltify pot('[ltial 

mechanisms and thus the refinement may lead to the optimulll for the lIleChalli~11l 

selected, but the critical mechanism IIlay have been neglected entirely. It is this an'ct, 

the identification of critical yield line patterns, that is the major problem whcll yield 

line analysis is implemented into computer programs. For the program to bc effec­

tive, a general approach should be considered whereby all possible mechallisllls an' 

considered and the overall optimum values of all potentiallllechanisllls arc ltllalysed. 

This can be achieved by automating the process of mechanism selection. 

Before discussing in detail the computerization of upper-boil lid limit allalysis of 

RC slabs using the yield line method, it is worthwhile to review previolls work 

undertaken on the computerization using lower-bound formulations. Procedurl's 

combining lower-bound methods and linear programming were initially proposed to 

automate RC slabs analysis. Hodge and Blelytschko's [1] work on llumcrical IIwth­

ods for limit analysis of plates appeared to be the first of its kind ill this lU"Pll. 

With particular consideration of RC slabs, Anderheggcll and Knopfel's work [2] WH.'i 

the first attempt to computerize the limit analysis of RC slabs. Linear eqllilib­

rium or kinematic compatibility equations were formulated and parametric st ress 

fields and displacements fields had to be assumed prior to the analysis. There were 

approximated by means of finite elements. Two plate-bending models were pro­

posed: (i) a linear-linear model where linear deflections and linear bClIding 1ll0l1lt'lltS 

was assumed, and (ii) a linear-constant model where linear defiectiolls and a con­

stant moment distribution was assumed. Qne of the drawbacks of this mcthod was 

the slow convergence of the load factor, which is attributed to t.he model's poor 

representation of the internal forces. 

Krenk et al. [3] presented a finite element formulation for the limit analysis of 

perfectly-plastic plates using triangular equilibrium elements. Elements wcre for­

mulated using three moment components at each corner. Equivalent corner forces 
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including shear and torsion moment contributions were derived ill a silllple vector 

format. A static formulation was adopted and the problem was lillearized by ap­

proximating the non-linear yield surface with eight planes. As a linear progralllmiug 

problem, duality theory [4] was invoked to obtain displacements and rotations. From 

the examples they presented it appears that the method produces lower-boulId so­

lutions. However, nothing is mentioned about the outcomes of the method if the 

number of elements is increased above 8 per side. However, ill a subsequellt. paper 

[5] the same authors acknowledged that, in the case of fixed edged slahs, the load 

factor obtained with this method actually converged to a value which was higher 

than the exact solution. This clearly means this method is not a rigorous lower­

bound method; indeed this was acknowledged in their conclusions. They concluded 

that a lower-bound can not be guaranteed because of the assumptions made about 

the load distribution and the corresponding restrictions on the moment field. 

Recently, Krabbenhoft and Damkilde [5], presented a finite element formulatioH for 

the limit analysis of perfectly-plastic slabs. An element with linear Illomellt. fields, 

for which equilibrium is satisfied, was proposed. Equilibrium equations for the 

triangular plate bending element were derived using area coordinates. Both load and 

material optimization problems were formulated and by means of the duality thl'ory 

of linear programming, the displacements were extracted from the dual variables. 

From the examples they presented, the method may seem promising, however there 

are a few concerns. Firstly, special solvers had to be employed. For et method to 

be practically usable, ordinary linear programming solvers, preferably, should he 

used. Also, nothing is mentioned about the method performance when the number 

of divisions per side is higher than 14 . 

For upper-bound methods, automated techniques for the yield line method have 

focused on the evaluation of the collapse load factors for specified trial mechanisms 

by computerizing traditional hand techniques. However this tends to be of lirn-
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ited applicability. A more general automated approach is to apply lIlatll('lIlatical 

programming techniques. 

Early work on an automated method was carried out by Munro and Oa Fonseca 

[6]. In the Munro and Da Fonseca method, the slab to be analysed is discretizl'd 

as a mesh of rigid triangular elements and yield lines are cOllstmined to develop 

only along inter-element boundaries and boundary edges. The displacements of till' 

nodes at the corners of the triangles are used to describe the slab deformations due 

to external loading. Since the finite elements are a.'isumcd to act a...,; fiat plates, 

the angle of rotation across any interface between any two elements, or all eiellll'lIt 

and an edge, is constant along this interface. Depending on which forlllulation is 

adopted, geometric compatibility or equilibrium conditions, yield constmillts and 

an optimization function based on virtual work arc developed and assembled using 

Karush-Kuhn-Tucker conditions giving a mathernaticalmodcl in the form of et linear 

programming problem. 

The yield line analysis automation procedure developed by Munro and Oa Fonsl'm 

enables simultaneous investigation of a number of potential yield line mechanisms. 

Thus with this method, many potential mechanisms, each having a different collapse 

load factor are defined by a single mesh. The yield line mechanism which gives the 

lowest load factor is likely to be the critical collapse mechanilml. The idcntificat ion 

of the critical yield line pattern is carried out automatically as part of the linear 

programming solution process. The collapse mechanism does not need to he specified 

or known initially since the procedure will identify the critical yield pattcm. 

Whereas the automation of the yield line analysis method by M UllfO and Da FOIl­

sec a represented a considerable advance, the stipulated mesh size awl oriclltatioll 

does affect results and remains a matter of judgment of the user. For the exalllples 

they presented, the critical mechanism was already known in advance so they se­

lected the mesh to coincide with the yield line pattern aud as such no attempt for 
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selecting the correct topography of the problem was necessary. Bala ... mbralll<tnyalll 

and Kalyanaraman [7] developed a similar method to M uuro and Da FOllscca and 

examined ways of defining the mesh geometry in order to avoid particularly poor 

predictions. Depending heavily on previous work in the field of plastic thcory and 

on the work carried out by Colm et al. [8], they assumed that a failure lllechallislll 

of a slab can be considered to consist of a number independent mechauisllls, with 

linear programming being used to find the optimulll combination of these. 

Bauer and Redwood [9] proposed a computerized numerical method bcl."cd OIl the 

virtual work technique. In order to find the critical yield line pattern, the method 

generates a series of yield line patterns and the pattern giving the minimulll yield 

load is retained as the solution. Around the same time, Dickcns ami .JOlH>S [10] 

developed a method to automate the traditional hand approach; howevpr this is 

restricted to a limited range of boundary conditions. 

Shoemaker [11] developed a computer program to analysc RC rectangular slabs 

under different combinations of edge conditions. Here the geometric a1l<1 strength 

data have to be supplied by the user. Once the data are provided, the program will 

iterate through a number of pre-defined yield line IJatterns evaluating the nOlllillHl 

load for each one by equating the internal work and the external virtual work. Tl\(' 

smallest nominal load is assumed to be the upper-bound solution for the collaps(' 

load. The program was applied to the case of a balcony rectangular floor with 

free and simple supports. The program identified the fourth yield line pattern as 

being critical and the slab capacity a..') 222.31psf (1O.7kN/I1l:.l). However this vallll' 

was incorrect and led to grossly underestimate the quantity of reinforcemeut !l(>(>dcd 

for the slab as demonstrated by Hillerborg [12]. Using a simple calculation, lIP 

demonstrated that for the same yield line pattern, the slab capacity is actllally IV·lpsf 

(9.33kN/m2). This value is 13% less than the answer given by Shoema.ker's progralll. 

He went further and showed that another yield line pattern will produce It 177psf 
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(8.47kN/m2 ). A complicated version of this pattern will reduce the ~lab capacity 

to 117psf (5.6kN/m2
) which is 47% lower than the value given by Shoemaker. This 

clearly demonstrates the importance of identifying the most critical yield line pat.tom 

when designing slabs, as the identification of wrong failure patterns lIlay re~ult ill 

unsafe designs. It also highlights the importance of calibrating cumputer progralll~ 

against known solutions, or performing simple checks to ensure that the progralll i~ 

producing reliable results. 

Islam et al. [13] presented a computer-oriented procedure for the yield line analysis 

of slabs. Here they employed the procedure described by Dickens awl Jones [10] 

with the modification of replacing the arbitrary method of deciding the new yidd 

line pattern in successive iterations by a search direction determined un the basis 

of a non-linear Simplex algorithm. They based their procedure on t.he cOllcept of 

calculating the ratio of the slab moment m and the uniforlllly distribut.ed loa.d Jl, 

i.e. m/p, for the yield line pattern by virtual work and equilibrium methods awl 

by making the m/p values obtained by the two methods converge. The nOli-linear 

Simplex algorithm was employed for this reason. 

All of these methods generally make prior assumptions about the yield line pat.lprH 

or require the user to define the likely yield line pattern. This rcstrict.~ tilpir ra.ugt' 

of application and does not produce general, versatile, analysis tools. 

Although the automated yield line method proposed by Munro and Da F()n~e('a is 

generally able to identify the critical yield liue pattem, provided t.hat a suitable 

mesh is chosen, in many cases optimizing the geometry of this pattern call ll'a{\ 

to further reductions in the load factor. The geometric optimizatioll of yield lilll' 

patterns has been tackled Johnson [14, 15, 16] and Jerlllings d at. [17, 18]. 

Johnson [14] attempted to tackle the problem by using a scqucntial linear program­

ming procedure. After having postulated a conventional Munro and Da Fonseca 

analysis he then considered geometric variation of the chosen yield liuc pa.tterns by 
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using linear geometric sensitivities or so called 'move limits', which arc variables 

that control how far the portions of yield lines can move. The drawbacks a."isociate<1 

with this method are: 

• Direct generation of critical collapse modes is not generally possible. 

• The geometric variables are only likely to have a significant effect on collapse 

load in the case of yield line systems which are geometrically variable ill, or 

close to, region of hogging bending. 

In a similar vein, Johnson [15J addressed the problem of identifying the critical 

geometry of yield line patterns and he presented a two-phase solutioll. The first 

phase was to set up a "fine" mesh using the triangulation of the M unro alld Oil 

Fonseca method. Once the program produced a viable solution, t.he secoud phase 

was to optimize the phase 1 pattern by adjusting the geometry of the yield liue 

pattern previously identified to obtain a lower load factor. Although it Illay seelll 

that this approach will lead to an optimal solution for the problem, there are lIIany 

doubts about this. The postulated yield line pattern is restricted to the assumed 

mesh and consequently it is not capable of modelling yield line patterns that do 

not coincide with the presumed mesh. For example, the lIlesh shown in Fig. .1.1 

cannot model a yield pattern involving a hogging yield line AB!; instead it would 

probably model the yield line as the dashed lines in the figure, where this mechanislll 

is critical. Alternatively, the mechanism may involve a yield line frol11 A t.hrough C 

to B. In both cases, the resulting load factor will likely be higher tha.1I the critical 

one. Additionally, the mesh used means it is virtually impossible to Illodel fan type 

mechanisms no matter what the level of refinement. 

Sloan et al. [17J presented a semi-automatic method to predict the l11echanisms 

which are most likely to cause collapse. Here they adopted a. comput.ational t.ech­

t Of course other yield lines are needed in positions where the hoggillg yield c1ulIlgcs direct.ioll. 
However these are omitted here for clarity. 
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Figure 4.1: Example of inaccurate size/orientation 
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nique employing linear programming to evaluate the Munro and Da Fonseca solutioll 

for any given trial element geometry. Non-linear optimization techniques, based 011 

a modified conjugate gradient method, were used to control the optimizat.ioll of the 

nodal geometry. Analytically linearized constraint equations were developed to be 

used with the conjugate gradient method, in order to overcome problems caused by 

the existence of discontinuities in the slope of the objective function. COllstraillts 

were applied to ensure that no node could cross an edge, 110 triangular clelllellt 

could disappear and no element could be created during the lllesh adjustmcut pro-

cess, i.e. restricting the search area to regions having the same yield lille topology. 

The method however suffers from severe disadvantages. Firstly: the proccdmc is 

'semi-automatic'; only configurations having the same topology are considered in the 

optimization process. Secondly: the method lacks generality, it is restricted ollly to 

isotropic slabs subjected to uniformly distributed loading and therefore it ClUlIlot 

be used in situations where line loads are present. Thirdly: the user is reqllired to 

input triangular element meshes having different topologies where it is ellvisaged 

that these could yield more critical mechanisms. This leads to a situatioll where the 

decision of choosing the mesh remains one of user-judgment. 
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The same authors later presented a similar approach but this time the computer wa.s 

used to generate the starting triangular mesh [18]. Although it may seem like OJIe uf 

the shortcomings of their previous work had been overcome, the modified approa('h 

effectively depends on the basic assumption that local minima do not exist. This is 

known not to hold true. 

Recently, Liu [19] developed another automatic computational method for yield 

line analysis. The basic procedure is based on considering the three dimcnsional 

geometric compatibility of the slab elements at collapse. He adopted Cl radical 

approach which recognizes that all yield lines inside the slab JIlIlSt bc COllllllon t () 

pairs of rigid slab elements and each of these elements IIlUSt have rotated plastically 

about a common axis. These axes of rotations may be detenuincd using ha .. 'iic l'Iil('s, 

which govern the prediction of yield lines patterns; meanwhile the whole systelJl 

must satisfy geometric compatibility criteria. 

The overall work equation is expressed in terms of yield line PllttCl'Il parameters, the 

loading arrangement and the moment capacity due to reinforcement arrangemellt. 

Once the work equation is set up, the required ftexural resistance can then be dder­

mined by the maximization of the virtual work equation using an iterative cOllj\lgat(~ 

gradient method. The iterative procedure starts with an initial guess aut.oJllatica.lly 

generated by the program assuming that the relative rotations in all sla.b elements 

are unity. 

Although the procedure can be applied to variety of slab configurations and loadillg 

combinations, two shortcomings can easily be identified: (i) the proposed method 

is not suitable for slabs which have reflex internal angles at any cOl'llers (ii) the 

proposed method cannot identify fan-type yield line patterns. 
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4.4 Linear programming and yield line analysis of 

RC slabs: A new approach. 

4.4.1 Introduction 

From the previous review of work undertaken ill the field of yield line analysis 

automation, the shortcomings of existing methods can be classified into two main 

groups: 

1. Methods which cannot identify some yield liue patterns such as the feW IIH'ch­

anism or patterns involving corner levers. This is primarily because the yidd 

lines are restricted to develop only along the element boundaries. This in­

cludes the methods of: Munro and Da Fonseca [6], Balasubramallyam and 

Kalyanaraman [7], Johnson [14], Johnson [15], Liu [19]. 

2. Methods which place some restrictions on the geometrical configuration, r('ill­

forcement arrangement and loading patterns that can be handled. This applied 

to the methods proposed by Sloan et al. [18], Liu [19]. 

Having identified the drawbacks associated with previous approaches, the ohj('c­

tive here is to develop a new automatic computational method to perform yil'ld 

line analysis. The proposed method will be applicable to a variety of geometrical 

configurations, reinforcement arrangements and loading patterns. Furtilermore, tilt' 

proposed method will be capable of identifying failure mechanisms which involve fan 

mechanisms or corner levers. These two characteristics represent a major ad VIl,IlCl' ill 

the field of yield line analysis and overcome the previously identified shortcomings. 

Since the new method builds on the method originally proposed by M unro and On 

Fonseca, the latter will be first studied in some details. 
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4.4.2 Yield line analysis of RC slabs: the Munro and Da 

Fonseca method 

As previously mentioned, in the method proposed by Munro and Da FOllseca [G], 

the slab to be analysed is divided into triangular elements with yield lines beillg 

restricted to develop only along the edges of the triangular mesh and/or at support­

ing edges. Out-of-plane deformations are governed by element nodal displacemcllt 

variables. The angle of rotation between adjacent elements is COllstant ba.sed 011 

the assumption that triangular elements behave as flat plates. A typical clcmcllt is 

shown in Fig. 4.2. 

hI I 
" / 

" 1 
"" I , / 

,1 __ ------y, ------ /, 
/ " side 1 
I ' 
1 " 
1 
/ 

h2 
1 
I 
I 
I 

Figure 4.2: Geometry of a triangular element 

The kinematic equation defining the rotation Of based on the geometry showlI ill 

Fig. 4.2 can be written as: 
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where 01 represents the rotation at edge 1, WI represents the displacement at node 1. 

Edge rotations and nodal displacements for a slab discretized to Tt elements with 111 

interfaces between these elements can be presented in vector-matrix form as follows: 

se=Ew (/1.2) 

where se is a 3n-vector of edge rotations, E is a suitable (3n x 3rt) transfol'lllatioll 

matrix and w is a 3n-vector of nodal displacements , To differentiate betwceu pos­

itive (sagging) and negative (hogging) edge rotations, it is convenient to replace 0;' 

with oe+ - oe- where oe+ oe- > 0 
" 1'1-' 

Thus, the kinematic formulation for the Munro and Da Fonseca method call lw 

stated as follows: 

minimize >,pIw = m~e ('1.3 ) 

where>. is the collapse load factor and where PL is a 3rt-vector of the applied lIoda.l 

S=Nse where N is a suitable (2m x 6rt) transformation matrix, 

Subject to geometric compatibility and unit work constraints. These collstraints 

can be defined as follows: 

ee - Ew = 0 
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T 
PLW = 1 (-1.5 ) 

The above formulation has been incorporated into a computer program. In order to 

validate the program output, two examples are presented in the next section. 

4.4.2.1 Simply supported square slabs 

Consider a simply supported square slab with unit side length, unit moment of 

resistance per unit length and subject to a uniformly distributed pressure of unit 

intensity. The critical load factor for this problem is known to be 21. The progralll 

successfully identified this load factor and the corresponding failure pattern a.s shown 

in Fig. 4.3. 

Figure 4.3: Yield line pattern for a simply supported square slab 
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4.4.2.2 One-way simply supported slab 

The one-way simply supported slab shown in Fig. 4.4 which is subject to uniformly 

distributed pressure of unit intensity and it has a unit moment of resistance per Ill, 

has been analysed using the same computer program. The known load factor for 

this slab is 2. The program gives the exact load factor as well as the correct failure 

pattern as shown in Fig. 4.4(b). 

I. 4m 

(8) 

(b) 

Figure 4.4: (a) One-way simply supported slab; (b) yield line pattern 
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4.4.3 Yield line analysis of RC slabs: A new linear program-

ming formulation 

To illustrate the performance characteristics of the classical procedure based 011 the 

Munro and Da Fonseca approach, and in particular the strong influence of the mesh 

orientation on the computed load factor, consider the case of the simply supported 

slab which has been dealt with in section 4.4.2.1. Depending on the number and the 

orientation of elements; different results and failure patterns are obtained as showll 

in Fig. 4.5: 

, '" , " 

I///>(~ 

(a) Load factor =28.8 (b) Load factor =24.0 

(c) Load factor =24.75 

Figure 4.5: The effect of mesh size/orientation: (a) 3:5 ratio; (b) 1:1 
ratio; (c) 5:6 ratio 
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The reason that the load factors obtained in the case of Fig. 4.5(a) and Fig. 4.5{c) 

are higher than the exact solution may be attributed to the fact that, in these two 

cases, the boundaries of the finite elements in the mesh do not coincide with the 

actual critical yield line pattern. Consequently, in these cases the maximum moment 

resides inside the elements rather than on the element boundaries. As the bending 

moment at these lines is less than the maximum moment, shear forces will exist in 

practice. If shear forces at yield lines are incorporated into the formulation, this 

will potentially enable the formulation to predict the correct load factor regardless 

of mesh orientation, as demonstrated by the following simple example. 

Suppose the beam/one-way slab shown in Fig. 4.6(a) is discretized into 3 ele­

ments, each having a length of 2m, and subjected to a uniformly distributed load p 

=l.OkN/m2 and the yield moment of the slab mp = 4.5kN.m/m. At collapse, the 

bending moment at the interface between elements 1 and 2 can easily be shown to 

be = 4.0kN.m. 

(a) 

(b) 

\'.'L/ 
(c) 

Figure 4.6: (a) One-way simply supported slab; (b) shear force dia­
gram; (c) bending moment diagram 
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If this is now modelled using three elements, an optimization procedure will identify 

the collapse mechanism shown in Fig. 4.7(a) as being critical. Accordingly, the load 

factor will be calculated as 9m/(p£2). As m =mp at these sections, the load factor 

will be equal to (9)(4.5)/(1 x 62)= 1.125. However, the correct failure mechanism, 

which is shown in Fig. 4.7, will produce a lower load factor, equal to 8mp /(1 x 62)=1. 

(b) 

Figure 4.7: (a) Predicted failure mechanism associated with the 3-element 
idealization of Fig. 4.6; (b) correct failure mechanism 

Now suppose the yield conditions at the interface boundary between adjacent ele-

ments are modified so that : 

m + s.d :5 m~ or m:5 m~ - s.d (1.6) 

where s is the shear force and d is some distance from the interface where the shear 

force exists. Suppose this distance is taken as half the distance between the element. 

centroid and the interface under consideration: 

m :5 4.5 - (3 - 2) x (1.0 x 0.5) ::} m :5 4.0 

Now, the load factor will be 9x4/(1 x ( 2)=1 as it should be. Here the exact solution 



Chapter 4 : Automated Yield Line Analysis of RC Slabs 7G 

is obtained despite the fact the element boundaries do not coincide with points of 

maximum moment. 

Thus this simple example illustrates the possibility of correcting solutions obtained 

using the Munro and Da Fonseca method. From this point forward, the new method 

will be referred to as the "Sheffield method". 

The basic principle behind the Sheffield method, from a kinematic prospective, is to 

discretize the slab to be analysed as a mesh of triangular or quadrilateral elements 

with inter-element boundaries and simple, fixed, or free boundary edges to provide 

a variety of directions and positions for potential yield lines. The slab deformations 

due to externalloadings are defined in terms of the displacement of element cent raids 

and the geometric compatibility between adjacent elements is considered. 

This approach differs from the method put forward by Munro and Da Fonseca 

in the way that constraints impose geometrical compatibility criteria between ele­

ments. Thus in the proposed method, relative translational displacement variables 

are added to constraint equations which govern the movement between element.s at 

the interfaces (such translational displacement variables correspond in a virtual work 

sense to the inter-element shear forces referred to previously). This provides greater 

freedom of relative movement between adjacent elements. In this way, yield liues 

are not restricted to be only developed along element boundaries. This is import.allt 

as it should reduce the mesh dependency of the results. 

Having developed compatibility (or equilibrium) conditions between elements, the 

next stage is to apply the principle of virtual work. Based on this, a mathematical 

model can be developed and posed in linear programming form. 
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4.4.4 Problem formulation 

The problem of finding the minimum load factor which will lead to global collapse 

of a slab at the ultimate limit state can be formulated by adopting an approach 

based on kinematic admissibility or static equilibrium. Although duality principles 

mean that there is actually no need to physically incorporate both formulations into 

a computer program, the intention here is to present both formulations to facilitate 

a better understanding of the overall problem. 

4.4.5 The kinematic approach 

As previously mentioned, if the rotations and displacements correspond to a possible 

collapse mechanism that satisfies the conditions of geometric compatibility, then the 

virtual work done at all sections in the structure will be positive. In the case of RC 

slabs, the value of the moment along an axis of rotation will equal the fully plastic 

moment of resistance. According to the upper-bound theorem of limit analysis, the 

load factor is obtained by minimizing the kinematically admissible load multiplier. 

This can be posed as a linear programming problem. Thus, the kinematic formula­

tion in general terms for a slab discretized to n elements with ffi interfaces between 

these elements may be presented as follows: 

Minimize AfE d=m; e (4.7) 

where A is the collapse load factor and where the whole slab live load, elements dis­

placement rates, interfaces plastic moments and rotations are denoted respectively 

fl =[IL.1, mL"'I' "~Llll' IL.2, ffiL"'2' ffiL 1I2 , ... , IL'n' mL"'n' mLlln ], dT 
= [8Z1 , CPX1' CPY1' 8Z2 , 

CPx2,CPlJ2,· .. ,8zn,CPxn'CPYnj, m~ = [m:l,m;l,m;;,m~, ... ,m:m,m;J and eT = [ot,ol' 

ot, 0;, ... , O!, O;;J 
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Subject to constraints which: 

1. Stipulate geometric compatibility between elements i.e. 

where Ai· k and Ci are suitable (6 x 3) transformation matrices derived frolll t.he 
). 

geometry of the structure; and where d~.k = [8zj , CPx j' CPYj , eSz/c' CPXk' CPYk 1 rcprCHcllt 

elements j,k rotations about the x and y axes and the translational displa.ce­

ment of the element centroid and where r r = [eSt, 8~ , 8~, eS~, ot, 0;] represent 

the translational displacements between these elements at interface i a.nd the 

rotation of interface i. 

The above constraint is established by considering the relative displacelllmt 

between the centroids of adjacent elements which share interface i throllv,h 

node 1 and node 2 on this interface and the final rotation of this interfacl' a.s 

shown in Fig. 4.8(a). 

To derive these matrices, consider the two adjacent elements in a certaiu dis-

cretization of a slab with n elements and m interfaces shown in Fig. 4.8(a) 

with the dimensions shown in 4.8(b). Suppose that the centroid of (>H.ch elc­

ment is defined as the local origin of each element. When the slab is suhjected 

to a small (virtual) displacement, these elements will rotate about the :1: Clllcl 

y axes as well as about element boundaries. 

Using basic trigonometry, it can be shown that the relative displaccmcut be­

tween the centroids of element j and element k, as shown in Fig.4.8(b), throll~h 

node 1 and node 2 on interface i and the final rotation at this iuterfacl' call 

be written as: 
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-1 -x· tit -Yiit 1 Xikl Yik l 
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Where dnij and dnik are the normal distances, respectively, from the cClltroicis 

of element j and element k to interface i. 

Thus it follows from equation 4.9 that the transformation matrices Ai) .• and 

Ci will be of the form: 

-1 -x· tit -Yih 1 Xikl Yi kl 

A j ' k = 
). -1 -xih -Yih 1 Xik2 1Jik2 

0 -dni' sin O'i 
J 

dnij cos O'i 0 -dnik sinai -dnik cos eti 
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Figure 4.8: Two adjacent elements in a discretization: (a) rotations and 
displacements; (b) dimensions 
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To prevent interface translational displacements from being relatively large 

and leading to zero load factors being obtained, an additional constraint is 

needed. Basically with this constraint, no translational displacements at any 

interface can take place unless there is a relative rotation between the two 

elements shared by this interface. This can be done intuitively by linking the 

translational displacements at each node on interface i to the actual rotatioll 

(Oi) at this interface through a function which accounts for the worst ca~e 

for a yield line position encountered in a given mesh whilst considerillg the 

geometrical properties of the mesh Le.: 

dijO: + dikOi - O.5(8t + 8~ + 8~ + 8;;) ~ O}for i = 1, ... ,rn between j and k 

(4.10) 

where dij = SJijdnij and dik = SJikdnik and where SJij and SJik are referred 

to as shear factors. dij and dik are similar to d in 4.6. For the derivatioll of 

these factors, the reader is referred to Appendix I. 

3. Apply a unit work 

Displace the slab according to the live load such that: 

fId = 1 (1.11) 
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4.4.6 The static (equilibrium) approach 

In the static (equilibrium) approach the aim is to identify the internal forces corre­

sponding to the maximum possible external load intensity. All equilibrium equations 

must be fulfilled and yield condition must not be violated at interfaces. Thus, the 

static formulation for a slab with n elements and m interfaces between these ele­

ments can be expressed as: 

Maximize (4.12) 

Subject to constraints which impose: 

1. Equilibrium: 

where A is the collapse load factor and where the whole slab live load and re­

sulting forces at interfaces are denoted respectively rE =[h.
1

, rnL;"I' rnLY1 ' h%~, 

mL"'2' mL~2' ... , fL.n, mLxn' mL\lJ and qT =[m1, SI, t1, rn2, 82, t2, ... , .,¥tm, 8m , t7llJ where 

m1, SI and t1 are respectively the bending moment, shear force and torque at 

interface 1. B is a suitable (3n x 3rn) equilibrium matrix. 

2. Yield condition: 

Equivalent to translational displacements at interfaces in the killelllat.ic for­

mulation, shear forces at interfaces are assumed to exist. Accordingly the 

modified yield condition will be: 

(4.14) 

Where mi and Si are respectively the bending moment and shear at iuterface 

i. 
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4.4.7 Status of solutions 

To understand better the proposed method, considf'r the following: 

1. If inter-element translational displacements (shear forces ill the static fOrIIllI­

lation) are all zero, then the obtained solution must be a genuine upper-boulld 

solution (as the collapse mechanism then becomes kinernatically admissihle). 

Hence as these displacements tend towards zero (e.g. as elemellt size is re­

duced) it can be expected that the solution will tend towardt:i all upper-houlld 

solution. 

2. However, as the element size is reduced, it might be expected that the solutioll 

will tend towards a lower-bound solution .. This is because by illcreasillg the 

number of elements (and hence decreasing the clement size) a bettcr l"('prcs(,lI­

tat ion for the stress distribution will be achieved. 

3. If (2) is true then it implies that as the element size becomes infinitely slllCtll, 

the solution tends towards the exact value. 

4. Choosing different values for the shear factor, will alter the relative impor­

tance of (1) and (2). Thus if reducing the mesh size increa.ses the load factor, 

the indication is that (2) dominates and the solution will be Cl. lower-boulld. 

Conversely if reducing the mesh size reduces the load factor, the iwlicatioll is 

that (1) dominates and the solution will be an upper-huulld. 

Thus with shear factor = 0 the Munro and da FOIlscca solution will be obtained; 

with shear factor = 00 the solution obtained will be o. There IllUt:it therefore be 

some value of shear factor at which the load factor will be the exact. solutioll. 



Chapter 4 : Automated Yield Line Analysis of RC Slabs 81 

4.5 Examples 

Based on the approach described above and by adopting an object-oriented ap­

proach, a C++ program called SLAB has been developed by the author to evaluate 

the collapse load factor for RC slabs and bridge decks. To demonstrate the effec­

tiveness and the versatility of the approach described in the previous section, and to 

test the program's capabilities, a variety of example problems have been attempted. 

A number of these problems have a known exact solution. Other problems studied 

were case study problems presented by various authors. The load factor A quoted in 

all examples has been obtained by taking the slab plastic moment Tnp as unity per 

unit length and pL2 as a unity, where p is the uniformly distributed load per ullit 

area and L is the characteristic length. The definition for the number of divisiolls 

in the x and y directions is shown in Fig. 4.9. In any given mesh, the number of 

elements is a function in the number of divisions in the x and y directions. Both 

terms (Le. the number of divisions and the number of elements) will be used to 

describe the mesh size. 

div'sinn 

No. of divisiolls = 3 

No. of division.f = 4 

Figure 4.9: Number of divisions 

A brief description for the program is presented in Appendix C. 
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4.5.1 Benchmark problems with known exact solutions 

4.5.1.1 Simply supported square slabs with uniformly distributed load 

The first example is possibly the simplest slab which can be analysed: a simply sup­

ported square slab with uniformly distributed loading. Suppose the slab is isotrop­

ically reinforced, thus giving equal moment of resistance in every direction. This 

example has been widely studied in the past and a load factor of A = 24 obtained 

with the square yield criterion is the exact solution. 

I· .\ 

L L 

I LI 

<a) (b) 

/ 
I // 
,y 

/1 
i 

Figure 4.10: (a) A simply supported square slab subject to uniformly 
distributed load; (b) yield line pattern 

Using triangular elements, the exact solution (Fig. 4.1O{b)) is obtained with allY 

number of divisions provided that the finite element mesh contains elements with 

45° angles to the horizontal as in Fig. 4.1O{b). It is easy to see that the collapse 

pattern is easily mapped by the mesh as the diagonal yield lines of the first element 

to the last element map exactly on the actual collapse yield lines. 
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With quadrilateral elements, the real advantage of t.he method becollles obviolls. 

No actual mapping or matching-up of allY sort between the mesh and t.he actual 

yield line pattern, which corresponds to the known exact solution, is possible; .vd 

the program manages to home in on the exact solution and to successfully identify 

the correct fracture pattern at failure, as shown on Fig. 4.11. With t.he numlwr of 

divisions per side increased, the load factor converged towards t.he exact solution. 

Once the exact solution has been attained, refining the mesh further dol'S not aff('ct 

the resulting load factor, which remains constant at 21, as in Fig. 4.12. This ha." 

only been tried with square elements. 
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Figure 4.11: (a) Displacement contours for one quarter of a simply sup­
ported square slab using quadrilateral elements; (b) legend 
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Figure 4.12: Variation of load factor with number of divisions for a simply 
supported square slab using quadrilateral elements 
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4.5.1.2 Fixed edged square slabs with uniformly distributed load 

Consider an isotropic fixed edge square slab with equal positive and negative yidd 

moments. The cl8.'3sical solution for this problem varies with the mechanism adopted 

for the solution. Whilst a load factor of 48 will be obtained when a simple diagollal 

mechanism is 8.'3sumed, the fan mechanism gives a lower value of 43.5. The exact 

load factor of 42.851 W8.'3 found by Fox [20]. The stress distribution ill the slab 

corners is rather complicated and the example serves to illustrate the perfonnallC'c 

of the method. 

Using the Sheffield method; a value of >'=42.845 was obtained when modelliug ouly 

1/8 of the slab (utilizing symmetry) and discretizing this part of the slab usiug it 

mesh of 400 by 400 divisions. The program identified the failure mechanism in terms 

of displacement contours shown on Fig. 4.13. Although only 1/8 of the slab WH." 

modelled, the displacement contours for the whole slab are shown for clarity. 

The load factor converged rather slowly towards the exact solution 8.'3 shown ill Fig. 

4.14. This is probably due to the complexity of moment distribution in the vicinity 

of the slab corners. 

4.5.1.3 Hexagonal slabs subjected to uniform loads 

A uniformly loaded hexagonal slab, 8.'3 shown in Fig. 4.15(a), W8.'3 considered next. 

The slab material was isotropic and the positive and negative yield rnomeuts were 

equal. The exact solution is known, for this C8.'3e, to be >.=21.9962 [21]. As can 

be seen from Fig. 4.15 (b), the actual yield line form an angle of 65° to the x-axis, 

making it unlikely that the exact solution would be obtained using the traditional 

Munro and Da Fonseca approach, unless the geometry of the critical yield line 

pattern W8.'3 known in advance. With the Sheffield method, a load factor of >.= 

21.9953 W8.'3 obtained using only one quarter of the slab due to symmetry and a 
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Ca) 

Cb) 

Figure 4.13: (a) A fixed edged square slab with uniformly distributed 
load; (b) displacements contours 
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Figure 4.14: Variation of load factor with number of divisions for a fixed 
edged square slab 

discretization of 140x 140 divisions. All elements in the discretization had an aspect 

ratio of 1. 

4.5.2 Other benchmark problems 

In this section a number of slabs previously analysed by other re earchers will be 

studied. 

4 .5.2.1 Fixed edged irregular slab 

Figure 4.17{a) shows the geometry of a lab studied in the past fir tly by Regan 

[22] and subsequently by Johnson [15]. They both suggested th yield line pattern 
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(a) (b) 

< 

(c) 

Figure 4.15: (a) A simply supported hexagonal slab subject to uniform 
loads; (b) the critical yield line pattern; (c) displacement contours 

shown in Fig. 4.17(a) with a load factor of 37.0. The traditional Munro and Da 

Fonseca finite element approach indicated a load factor of 38.4 for the yield line 

pattern shown in Fig. 4.17(b) with the displacement contours shown in Fig. 4.18( a) . 

Using the Sheffield method, the load factor converged to a value of 35.0 as shown 

in Fig. 4.19. The corre ponding yield line pattern is represented by displacement 

contours in Fig. 4.18(b). 

4.5.2.2 Irregular slab with simple and fixed edges 

Figure 4.20(a) shows the geometry of a slab considered by John on in hi 1994 paper 

[15]. Based on Regan's assumed yield line pattern, he founded a load factor of 32.5. 
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Figure 4.16: Variation of load factor with number of divisions for a simply 
supported hexagonal slab 

The traditional Munro and Da Fonseca finite element approach indicated a load 

factor of 33.1 and the yield line pattern shown in Fig. 4.20(b) with the displacement 

contours shown in Fig.4.21(a). More recently, Jennings et al. [18] predicted a load 

factor of 29.20 based on a geometry optimization approach. Using the Sheffield 

method, the load factor also converged to a value of 29.2 as shown in Fig. 4.22. The 

corresponding yield line pattern which is represented by displacement contours is 

shown in Fig. 4.21(b). 

4.5.2.3 Uniformly loaded floor-slab 

The uniformly loaded floor-slab shown in Fig. 4.23(a) contains much of the com­

plexity of a real design problem. The cut-out area is for stairs. The boundary 
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Figure 4.11: Fixed edged irregular slab: (a) yield line pattern suggested 
by Regan [22]; (b) Munro and Da Fonseca solution 
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Figure 4.18: Fixed edged irregular slab: (a) Munro and Da Fonseca 
method: displacement contours; (a) Sheffield method: displacement con­
tours 
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Figure 4.19: Variation of load factor with number of divisions for fixed 
edged irregular slab 

edges are built in. The slab is isotropically reinforced. This example has be n pre­

viously studied by Johnson 1967 [23]. Recently, Liu [19] has re-analysed the slab. 

He predicted a value of ~ = 0.95 for the ultimate load capacity with the yield tin 

pattern shown on Fig. 4.23(a). Using the Sheffield method, the solution converged 

to a value of ,\ = 0.845 for the ultimate load capacity as shown in Fig. 4.25. The 

program identified the yield line pattern represented by the displacem nt contour 

shown on Fig. 4.24(b) 
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Figure 4.20: Irregular slab with simple and fixed edges: (a) yield lin 
pattern suggested by Regan and Johnson [15]; (b) Munro and Da Fonseca 
solution 
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Figure 4 .21: Irregular slab with simple and fixed edges: (a) Munro and 
Da Fonseca method: displacement contours; (b) Sheffield method: dis­
placement contours 
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Figure 4.22: Variation of load factor with number of divisions for irregular 
slab wit h simple and fixed edges 

4.6 Obtaining rigorous upper-bound solutions 

Clearly the results documented in the previous sections are very promising. Un-

fortunately however, the status of the Sheffield method, within the framework of 

plastic analysis, is unclear. As stated in section 4.4.7, the solution r pr ent neither 

true upper nor true lower-bound solutions. However, as has b n d mon trated in 

the previous examples, the Sheffield method appears, in the majority of cas , to 

identify sensible failure patterns in terms of displacement contours. The reason for 

this may be attributed to the fact that the lements used here hav a gr at r fre dom 

to deform. Linear programming solvers will alway try to find th olution (or in 

other words, the failure pattern) which gives the lowest load factor. In the majority 

of these cases, the predicted failure pattern clo ely match that corr ponding to 

the exact olution. 
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Figure 4.23: Typical RC floor: (a) yield line pattern propos d by Liu 
[19]; (b) predicted yield line pattern and FE mesh b as d on th Munr 
and Da Fonseca approach 
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Figure 4.24: Typical RC floor-slab: (a) Munro and Da Fonseca m thod: 
displacement contours (b) Sheffield method: displacement contours 
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Figure 4.25: Variation of load factor with number of divi ion for fio r 
slab 

A new method or 'the two-phase Sheffield method' compri e two ph . In ph 

1, the problem is set-up and solved using the Sheffield m thod. On vi bl 

solution has been obtained, then phase 2 is executed. In phas 2, th d form d 

shape of the slab at failure is analysed and the slab is re-m h d in u haw 

that the boundaries of elements are selected so as to permit th ob rv d d fl 

shape. This is simply done by finding the location of the point in t.h lab wit.h h 

maximum displacements and then discretizing the slab into a number of gm nt 

starting radially from these points. A 2D mesh of triangular 1 m n 

the intersection of these radial segments and th displac m nt ontour. 

There are number of issues to consider. For example, a tol ran for z ro di pI 

ment contours (tolo) is introduced. A typical valu for thi tol r n i 10- 4 . Thi 

means that a contour with a displacement which is les than 10- 4 x h maximum 

displacement is considered to be a zero displacement contour. Thi in r du d 
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because in some situations, such as the case of fixed edged square slabs, a number 

of elements near a corner will have zero displacement. The arrangement of these 

elements makes it impossible to define a contour line with zero displacement. 

The new discretization of the slab at any iteration is done automatically by thc pro­

gram, as the displacement contours obtained from the Sheffield mcthod arc stored 

in the computer's memory. The method currently uses only two displacemcnt con­

tour lines in creating the new discretization: the zero displacement contour awl thc 

closest contour lines to the maximum point of displacement (although this munhcr 

can be increased). 

Once the slab is discretized, the Munro and Da Fonseca method is then used to find 

the failure load for the slab under consideration. If required, the program lllay be 

run several times until the arrangement of elements that gives the lowest load factor 

is found. The key thing is that the lowest load factor obtained will still be a gelluiuc 

upper-bound on the true load factor. 

4.6.1 Creating a new mesh using a Sheffield method solution 

Crucial to this method is the development of a means to automatically geucrate 

a new mesh from a Sheffield method solution. Simplified intuitive rules may be 

developed to generate the mesh to be used in phase 2 of the Sheffield method. 

These rules are explained with the help of Fig. 4.26 and Fig. 4.27 which shows the 

different construction stages of the new mesh from the Sheffield method solution for 

the two cases which will be investigated in this section. 

Figure 4.26(a) shows the first case, where there is only one point with the maxilllulll 

displacement. Also the last contour line is symmetric around this point. Therefore, 

this point is used as the origin of the radial segments to be used in the ncw dis­

cretization. Points of intersection between these segments and the contour lincs arc 
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Figure 4.26: Construction stages of the new mesh for case 1 (a) dis­
cretizing the slab into a number of segments; (b) creating points; (c) con­
necting points to create quadrilateral elements; (d) dividing quadrilateral 
elements into triangular elements 

established and then connected to create quadrilateral and triangular elements as 

shown in Fig. 4.26(b) and Fig. 4.26(c), respectively. 

In the slab shown in case 2 (Fig. 4.27) the last contour line is a,'3ymmetric around 

the point with the maximum displacement therefore a simple intuitive rule is uspd 

to establish the new mesh. The point with the maximum displacement is used as thl' 

origin of the radial segments. However, because the closest contour line to this point 

(shown in red) is in a shape of ellipse with the major axis in the x-direction, the x 

coordinates of the origin of the radial segments are replaced by the x coordinates 

of the point of the intersection between the radial segments and the contour lines 

as shown in Fig. 4.27(a). Points of intersection between these segments and the 

contour lines are established and then connected to create quadrilateral elements 

as shown in Fig. 4.27(b) and Fig. 4.27(c). These quadrilateral elements are then 
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divided into triangular elements as shown in Fig. 4.27(d). 

(a) (b) 

(c) (d) 

Figure 4.27: Construction stages of the new mesh for case 2 (a) dis­
cretizing the slab into a number of segments; (b) creating points; (c) con­
necting points to create quadrilateral elements; (d) dividing quadrilateral 
elements into triangular elements 

It has to be stressed here that this rule is based on the authors experience and the 

slab geometry. Broadly speaking, the pattern suggested is likely to take place as 

the horizontal side is greater than vertical side in the Case of the slab shown in Fig. 

4.30 and the slab shown in Fig. 4.31. Also the asymmetry of the last contour line 
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indicates that the construction lines are likely to meet at a point outside the slab. 

Accordingly, these lines will intersect the free edge at a number of points which call 

be determined intuitively by projecting points from the inner contour. This will 

potentially provide possible locations for yield lines which are likely to result ill a 

lower load factor being obtained. 

4.6.2 Algorithm for the two-phase Sheffield method 

The suggested procedure for the two-phase Sheffield method involves carrying out 

an initial analysis using the original Sheffield method and then performing a llulllber 

of analyses using the Munro and Da Fonseca method. A step-by-step descriptioll 

for the procedure is as follows: 

1. Set iteration count k = 1. Set-up a standard LP problem using the Sheffield 

method. 

2. Solve LP problem. 

3. Find the maximum displacement and the points with the maximum displace­

ment. Store the displacement contours and the coordinates of the poillts with 

the maximum displacement. 

4. Delete the old discretization from the computer memory. 

5. Use the iteration number (k) to decide the number of segments and the zero 

displacement contour tolerance (tolo) to be used in the new discretization of 

the slab and discretize the slab accordingly. 

6. Set-up a standard LP problem using the Sheffield method with translationa.l 

displacements at all interfaces being set to zero. 
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7. Solve the LP problem. If k=2, set the current load factor as the millimlllll 

and store it in the computer memory along with the iteration number. If k 

>2, compare the current load factor with the minimum load factor. If the 

current load factor is less than the minimum load factor, thell set t.his (\.'i thl' 

minimum load factor and store it ill the computer memory alollg with the 

iteration number. 

8. k = k + 1; if k < the maximum number of iterations; repeat from step 4, else 

output the minimum load factor and plot the corresponding mesh. 

It is worth mentioning here that, the Munro and Da Fonseca method can also hl~ 

used in phase 1 to set-up the problem. 
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4.6.3 Examples 

To demonstrate the capability of the two-phase Sheffield method, a number of prc-

viously examined examples are re-visited. 

4.6.3.1 Simply supported square slabs with uniformly distributed load 

The simply supported square slab dealt with in 4.5.1.1 was rc-analysed. Quadrilat-

eral elements were initially used and a discretization of 20x20 divisions was llsed to 

set-up the problem in phase 1. A new mesh consisting of triangular clemellts wa.s 

created and the exact load factor was obtained after one iteration. The progralll 

also identified the correct yield line pattern, as shown in Fig. 4.28. 

Figure 4.28: The critical yield line pattern for a simply supported square 
slab with UOL 

4.6.3.2 Fixed edged square slabs with uniformly distributed load 

The problem of a uniformly loaded, isotropic fixed edged square slab is more compli­

cated. Sobotka [24] proposed various kinematic upper-bound solutions with yield 

line fans at the corners. Symmetry may be used so that only one eighth of the 

slab needs to be analysed. Using a mesh of 20x20, a load factor of 42.9827 wa.s 

obtained compared with 43.8375 when the Munro and Da Fonseca method was llsed 
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to initially set-up the problem by identifying the initial failure pattern in tead of th 

Sheffield method. The displacement contours shown on Fig. 4.29 are very similar to 

those corresponding to the exact solution derived by Fox [20]. 

(a) 

(c) 

( 

\ 

\ 

( 

I 
\ 

o 

(b) 

1 0 

(d) 

Figure 4.29: Fixed edged square slab with UDL: (a) y ield 
line pattern: the Sheffield method; (b) displacement contours: the 
Sheffield method; (c) yield line pattern: the Munro and Da Fons ca 
method; (d) displacement contours: the Munro and Da Fonseca m ethod 
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4.6.3.3 Fixed edged irregular slab 

This example problem has been studied previously in section 4.5.2.1. Here t.lw 

two-phase Sheffield method was used to find the critical failure pattern and t.he 

corresponding load factor. A true upper-bound load factor of 35.8 was obtained 

with the yield line pattern and displacement contours shown in Fig. 4.30 (a) and 

Fig. 4.30(b). The same value has been obtained by Jennings et al. [18] IIsillg 

geometry optimization. 

4.6.3.4 Irregular slab with simple and fixed edges 

The irregular slab with simple and fixed edges has been re-analysed usiug the Iwo­

phase Sheffield method. A true upper-bound load factor of 29.2 was obtaincd. TIlt' 

same value has recently been quoted by Jennings et al. [18] based on a geome­

try optimization approach. The program identified the yield line pattcrn awl the 

displacement contours shown in Fig. 4.31(a) and Fig. 4.31(b). 

4.7 Discussion 

4.7.1 Modifications to the basic method 

The efficacy of a variety of modifications to the basic procedure has been iuvestigat.ed 

with a view to improve convergence characteristics and to reduce the number of 

divisions required in order to converge to a solution. Thus the effect.iveness of 

introducing adaptive discretization was investigated initially. However, apart from 

the case of the simply supported slab modelled with square elements, this was fOllnd 

not to perform well in the majority of the cases which have been studied. There was 

no clear trend showing how the load factor converges towards the exact solution. 
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(b) 

Figure 4.30: Fixed edged irregular slab: (a) FE mesh and yield lin 
pattern; (b) displacement contours 
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(a) 

(b) 

Figure 4.31: Irregular slab with simple and fixed edges: (a) yield lin 
pattern; (b) displacement contours 
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In the same context, a method for obtaining a true upper-bound solution Hsillg t.he 

Sheffield method was also investigated. The two-phase Sheffield method developed 

was found to perform well in the majority of cases which have beell investigated. A 

true upper-bound solution which is equal to or very close to the exact solution is 

found with a small number of divisions. 

It is worth pointing out that the main intention in presenting the two-phase Sheffield 

method goes beyond the interest in the method itself. It is intended primarily 

to show the potential of the Sheffield method and how it is possible to obtain Cl 

rigorous upper-bound solution from it. Although the two-phase Sheffield method 

in its current form has performed well so far, further work is certainly needed to 

improve the method. 

4.7.2 Limitations of the Sheffield method 

So far, the Sheffield method is restricted to only deal with slabs which do not contaill 

columns or are loaded with point loads. However, the method has the potent.ial to 

be applicable to more general problems. This can be achieved by re-establishing 

translational displacement constraints to prevent excessively large translational dis­

placements at columns or point load positions. This also should be accompanied by 

a rigorous derivation for shear factors. 

4.7.3 Influence of shear factor 

Central to the concepts behind the Sheffield method is the idea of allowing shear 

forces to exist at interfaces. The yield condition is modified with these foret's lIIul­

tiplied by the normal distance from element centroid to the interface under consid­

eration and the shear factor. As stated in section 4.4.7, the Sheffield method rc:-;ts 
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largely on the correct choice of shear factor. However, when the 'right' shear factor 

is chosen the method seemed to perform well. The derivation of the shear factor 

has been performed only for elements with aspect ratio of 1. Therefore, it is crucial 

to a develop a general expression for the shear factor so that elements with aspect 

ratios different from 1.0 can be considered. 

4.8 Conclusions 

A computerized yield line analysis method for slabs has been presented. A kinematic 

analysis approach is adopted for the problem formulation. Translational displace­

ments at interfaces between elements are allowed in order to account for the fact 

that critical yield lines may reside inside elements rather than on elements edges. 

The Sheffield method appears, in the majority of cases, to be capable of: 

• Producing a satisfactory solution using a variety of different element geOlue­

tries, unlike other methods such as the Munro and Da Fonseca method. For 

example, there will no feasible solution if the Munro and Da Fonseca method 

is used to find the critical yield line pattern for simply or fixed edged square 

slabs if quadrilateral elements are used instead of triangular elements. 

• Converging to the exact solution regardless to the element type, provided that 

a sensible value for the shear factor is used. 

It was also found that it is possible to obtain true upper-bound solutions using a 

two-phase version of the method. 
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Appendix I 

Derivation of shear factors 

To prevent uncontrolled interface translational displacements an additional con­

straint is needed. This constraint can be established by liIlking the translatiollal 

displacements at each node on any interface to the actual rotation ((}i) at this in-

terface via a function which accounts for the worst case for a yield line position 

encountered in a given mesh and considers at the same time the geometrical p1'Op-

erties of the mesh i.e. 

where dij and dik are the normal distances from the actual yield line indicated by a 

dashed line, and the closest possible yield line which can represent this yield line a.'i 

shown in Fig. 4.33 for triangular elements. d ij = S!i)dnij and dik = S!ikduik' where 

S!ij and Sfik are the shear factors. 

To derive this relationship, consider the two adjacent elements shown in Fig. 4.32. 

The total displacement of element j (at the mid point on the interface i) with respect 

to the location of the yield line in its worst position, considering the location of the 

true yield line in a certain mesh, is equal to 0.5(6:1- + 6:1-)-0+ d;. 
t 1 t2 t • J 

Similarly, the total displacement of element k at the same node is equal to e:; dik -

0.5(6i;" + 6;;;). As translational displacements at any interface can only occur if 
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Figure 4.32: Translational displacements at the mid-point in a certain 
interface (a) 3D view; (b) section A-A 
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there is a rotation at this interface, the translational displacement between these 

two elements at this point should always be equal to or greater than zero ill order 

to satisfy the above condition. The translational displacement between these two 

elements at this point can be expressed as the difference between the elements' total 

displacement at this point. Therefore, the translational displacemeut at the middle 

point on the interface i is : 

(4.16) 

(4.17) 

For a certain mesh, the shear factors s fij and s fik' for interface i between element j 

and element k, can be evaluated using basic trigonometry. It has to be mentioned, 

that the derivation of these factors is based on an intuition and learning from ex-

perience approach rather than via a rigorous mathematical approach. For example, 

It appeared that, for the case shown in Fig. 4.33(a), the worst case scenario for the 

actual yield line is to lie in the middle i.e. when di = 0.5h where h is the normaJ 
J 

distance from the triangle head to the interface as shown in the figure. 

These factors can be evaluated for triangular elements with internal angles of 45° ,'15° ,90° 

like the elements shown in Fig. 4.33(a),(b) as follows: 

For interfaces with 0° ,90° as shown in Fig. 4.33(a): h - 2dij 

h = 3dnij '* slij =1.5 

Similarly, for interfaces with 45° as shown in Fig. 4.33(b) 

= 28f· tin also I J I) , 

Furthermore, dij and dik can also be evaluated for quadrilateral elements. It ha..., 



Chapter 4 : Automated Yield Line Analysis of RC Slabs 

(a) 

ossible yield line i 
I 

possible yield line 

(b) 

120 

ual yield line 
---------~--------

c.CLJ 
r~ T dJ, 

'dn i 
" 1 

possible yield line 

d I il,' / 

-------- - ~- -/- - ~ --

ctual c.G ! Ydn" 
yield line i h possible yic 

I 

Figure 4.33: Actual yield lines and possible yield lines in a certain dis­
cretization: (a) geometry of two adjacent elements: a horizontal interface; 
(b) geometry of two adjacent elements: an inclined interface 

been shown in section 4.4.3 that if these distances have been taken as half the 

normal distance from the element center to the interface under consideration, the 

correct load factor will be obtained, as shown in Fig. 4.34. However, this valid only 

for one-way spanning slabs. In the case of one-way slabs, for each element in the 

mesh, there are only 2 sides which are active (as the sides on the free edges are Hot 

involved). Generally, for an interface between two quadrilateral elements, Sfi) and 

Sfik can be evaluated as follows: 
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where n is the number of active sides. 

For example, for the case where the four sides are active, Sfi j = (4xO.5/2) => sh 
= 1.0 or di =dni. This agrees with the fact that the distance froUl the yield line 

) ) 

position at the worst case scenario is equal to the llormal distance between t lw 

interface under consideration and the centre of gravity of the quadrilateral clement 

as shown in Fig. 4.35(a),(b) where the yield liue at the worst case scellario has 

equally-possible two locations. 

possible yield line 

___ ...... ~~t~~l):~e}~. ~~~_ •.•. __ •.. 
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Figure 4.34: A quadrilateral element with possible yield lines at two edges 
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Chapter 5 

Limit Analysis of Masonry Block 

Structures with Non-Associative 

Frictional Joints Using Linear 

Programming 

5.1 Abstract 

t Although limit analysis has been found to be a valuable tool for analysing the 

stability of masonry gravity structures, modelling non-associative Coulomb sliding 

friction can be problematic. A simple iterative procedure which involves the succes­

sive solution of simple linear programming sub-problems is presented in the paper. 

The procedure involves the use at each contact interface of a specially modified 

Mohr-Coulomb failure surface, which is modified at each iteration until a converged 

solution is obtained. The procedure is applied to problems from the literature and 

t This chapter forms the basis of a journal paper manuscript co-authored with M. Gilbert 
(University of Sheffield) and C. Casapulla (University of Naples). 
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also to new, considerably larger, benchmark problems. 

Keywords: Masonry structures; Limit analysis; Non-associative frictioIl; Flow rulc; 

Coulomb friction; Linear programming 

5.2 Introduction 

Kooharian and Heyman [1, 2] were amongst the first to consider (vaulted) block 

structures in the context of the plastic limit analysis theorems which emerged during 

the last century. Initially the assumptions were simple: constituent blocks possess 

infinite compressive strength, joints have zero tensile strength and sliding failures 

are not permitted. Whilst such a simple idealization is undeniably attractive in that 

it simplifies a hand or computer-based analysis, it is also problematic. For example 

in the case of fiat arches, failure simply cannot occur without some sliding and/or 

crushing of the material. 

Ignoring crushing at present, it is clearly necessary to study the mechanics of ma­

sonry structures assuming that sliding failures can occur. However, it is well-known 

that the bounding theorems of plastic limit analysis do not in general provide unique 

solutions for the collapse load factor if a non-associative flow rule is specified. Unfor­

tunately the standard Coulomb sliding friction model is clearly non-associative since 

it does not require that sliding at frictional interfaces is accompanied by movement 

normal to the interface (Le. dilatancy). A practical consequence is that satisfying 

equilibrium and yield conditions alone is not sufficient to guarantee that a struc­

ture is safe (because the dilation implied by the limit analysis theorems may not Le 

present in reality). 

Drucker [3] was amongst the first to identify the difficulty of treating Coulomb slid­

ing friction. He stated modified upper-bound conditions assuming either complete 
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attachment or dilatancy and a lower-bound condition assuming a zero coefficient of 

friction. 

With reference to a generic non-standard material, other authors [4, 5, 6, 7] provided 

lower and upper-bounds on the exact solution by using Radenkovic's theorelIls. 

However, such bounds will often be too wide to be of use in practice. For example, 

if a zero coefficient of friction is used the collapse load factor for a simple masonry 

arch rib (a particular, but extremely common, assemblage of blocks) will typically 

be bounded from below by a load factor of zero. 

More recently Livesley [8, 9], using a lower-bound approach, developed a formal 

linear programming (LP) procedure to compute the load factor for two and three­

dimensional structures formed from rigid blocks, assuming initially an associative 

friction model. Since Charnes and Greenberg [10] had shown many years previously 

that when "mechanism" and "equilibrium" limit analysis formulations are linearized 

they give rise to dual LP problems, Livesley was also able to plot a collapse mech­

anism directly after performing a lower-bound analysis. In doing so, he identified 

apparently anomalous failure mechanisms, and also demonstrated cases when the 

associative friction load factor over-estimated the Coulomb sliding friction load fac­

tor. Consequentially he proposed a post-optimality analysis to test the validity of 

the solutions obtained (applicable to simple masonry vault problems), although no 

remedy was proposed in cases of load factor overestimation. 

It should perhaps be mentioned that for certain classes of problems the assumption 

of associative friction has been found to provide numerical predictions which are in 

broad agreement with experimentally observed results. For example, in a study of 

the behaviour of multi-ring arches Gilbert [11] established the importance of failure 

modes involving sliding for this structural form but also observed that associative 

friction solutions appeared to agree reasonably well with experimental results. 



Chapter 5 : Limit Analysis of Masonry Block Structures 125 

Nevertheless, Livesley's pioneering initial study of non-associative friction stimu­

lated a line of research [12, 13, 14, 15, 16] concerned with developing numerical 

procedures for such problems. One of these was given by Lo Bianco and Mazzarella 

[12], followed by Baggio et al. [13, 14]. Here the non-associative problem wa.s solved 

using procedures which involved identifying load factors simultaneously satisfying 

the kinematic and static conditions. However the procedures were found to be rather 

onerous in terms of time and memory requirements, because of the non-lillcar awl 

non-convex optimization procedures required. 

Others have identified particular non-associative problems which are amenablc to 

simplification and which will hence furnish solutions in favour of safety which are 

both statically admissible and which satisfy the normality rule [17, 18]. Then Cas­

apulla [19, 20, 21] identified important problem types, depending on loading ami 

geometry conditions, for which unique solutions can be found. For certain other 

problems, procedures have been suggested to get closer to the exact solution moving 

from the bounds given by two associative kinematic models [22]. However, such 

different lines of research are still far from a general method of analysis for non­

associative problems of arbitrary geometry. 

Most recently the problem has been posed as a mixed complementarity problem 

(MOP) and a mathematical programming with equilibrium constraints (MPEC) 

formulation has been proposed for masonry limit analysis problems involving nOIl­

associative frictional sliding [23, 24, 25, 26]. Unfortunately relatively specialised 

non-linear programming solution methods must be employed and it also seems that 

solving the MPEC formulation in the way proposed may for practically large prob­

lems be prohibitively computationally expensive. 

The inherently non-linear problem of analysing the stability of structures composed 

of rigid blocks in the presence of material crushing has been tackled with SOIIle suc­

cess by using an approximate procedure which involves the solution of a series of suc-
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cessively modified LP problems [27]. A key aim of the present study is to determine 

whether a similar approach can be applied to problems involving non-associative 

friction (which are both non-linear and non-convex). Breaking the problem dowll 

to the solution of a series of successively modified LP problems is attractive since 

modern interior-point based LP solvers are efficient, robust and now very widely 

available. Additionally such a solver is already used in the RING rigid block analy­

sis software for masonry arch bridges, originated by Gilbert (www.shef.ac.uk/ring) 

and significantly improved by the author. 

5.3 Discrete block model with frictional constraints 

Since the specific bonding pattern of masonry structures often influences the failure 

mode and load factor, there is some justification for modelling masonry structures 

as assemblages of discrete blocks. This is assumed hero, along with the following 

assumptions: constituent blocks are rigid and infinitely strong; no tension may be 

transmitted across joints and blocks may slide and/or rock relative to each other. 

In order to develop the governing equations for this model we consider, as in [9], 

the block interfaces as elements and the blocks as extended nodes connecting the 

elements. Here three degrees of freedom are associated with the celltroid of each 

block and three stress resultants (Le. normal force n, shear force s and bending 

moment m ) act at each contact interface, as shown in Fig. 5.1 for a typical block 

j. Assuming there are b blocks and c contact surfaces then equilibrium of the whole 

structure can be expressed as: 

(5.1) 

where B is a suitable (3bx3c) equilibrium matrix and q and f are respectively 3c and 

3b vectors of contact forces and block loads. Thus qT = [nl, SI, ml, n2, S2, Tn2, ... , ne, Se, n~e]; 
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f = fD + AfL where fD and fL are respectively vectors of dead and live loads; A is 

the load factor. 

-~------'--=C- J 
ITL 

block} ... Jj 
I I" .. 
·1 , 

contacti~ 
. , 
i rn, 

Figure 5.1: Block j and contact forces for interface i 

Alternatively considering the failure mechanism, geometric compatibility requires 

that: 

(5.2) 

where u is a 3c-vector of all such contact displacement rates describing joint sepa­

ration, sliding and rotation (E,')',/,\:) (related to q in a virtual work sense) and d is 

a 3b-vector of nodal unconstrained displacement rates corresponding to the nodal 

loads f. 

Furthermore, for each contact interface yield conditions in the Tt - s - m domain are 

required to define the failure criteria governed both by sliding and rocking. Although 

there is no interaction between the generalized shear force s and bending moment 

m it appears meaningful to represent the overall yield domain as shown in Fig. 5.2 

together with the relevant flow rules to enable detailed consideration of the model. 

In this figure, since the resultant displacement rates Vi and 'fi are normal to the 

corresponding limit surfaces an associative flow law is indicated for both (b) sliding, 

and (c) rocking. Thus in the associative sliding model 'P? = 'Pi. However, when 

a Coulomb friction model is instead adopted, 'P? = O. The figure also indicates a 

possible cohesion intercept, Ci. Associative flow is however maintained for rocking, 

as indicated by the equality of angles 1]i. 
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Limit volume 
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Figure 5.2: Yield domain for contact interface i 

Hence, the yield domain for a generic contact interface i can be expressed compactly 

as: 

(5.3) 

or in explicit form, with Si and mi now each represented by two LP style non-negative 

variables: 



Chapter 5 : Limit Analysis of Masonry Block Structures 129 

ni 0 
Z~+ - sin 'P? cos 'P? 0 0 0 0 , 

s+ , Ci 
s- - sin 'P? 0 cos 'P? 0 0 0 zi 

= si Ci < 
ZT+ - sin TJi 0 0 cos TJi 0 0 , 

m+ 0 
T- t 

0 Zi - sin TJi 0 0 0 cos TJi 
mi 0 

(5.4) 

Furthermore, for the same contact interface, the displacement rates contained in 

Ui are related to the respective non-negative resultant displacement rates in Pt as 

follows: 

(5.5) 

or in explicit form, with /i and Ki now each represented by two LP style non-negative 

variables: 

The normality rule is satisfied when Ci = D i , i.e. when 'P? = 'Pi. 

The system of governing equations is completed by the following two conditions: 

fId> 0 (5.7) 

(5.8) 
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that represent respectively the positive work of live loads and the complcmentarity 

condition (in this problem the complementarity condition basically stipulates that 

flow cannot occur unless the contact forces are located on the failure surface). It is 

the complementarity condition which makes this problem inherently difficult whcn 

'P? -=1= 'Pi· 

The contact interface level relations (5.3-5.6 and 5.8) can easily be extended to the 

whole structure. 

5.4 Associative friction problem formulation 

On the basis of the above assumptions, the static (equilibrium) LP problem may he 

stated as follows: 

Maximize A 

subject to: 

(5.0) 

Using this formulation the problem variables are clearly the contact forces: ni, Si, mj 

(where, using LP style non-negative variables: Si = st - si, rni = mt - mi, and 

where ni, si, Si, rnt, rni 2 0). 
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The kinematic LP problem formulation may be expressed 80.<;: 

subject to: 

fEd = 1 

BTd-Cp=O (5.10) 

p~O 

Using this formulation the linear programming problem variables are the nodal 

absolute and contact relative displacement rates. 

Duality theory means that whichever formulation is solved, the other is automati­

cally solved too. Additionally conditions 5.7 and 5.8 are automatically satisfied. 

5.5 Treating the non-associative friction problem 

As indicated previously, the standard LP formulation will not necessarily lead to 

good estimates of the collapse load factor for problems which involve non-associative 

frictional sliding. What is required is a procedure which is both capable of identify­

ing safer non-associative friction solutions (should they exist) and is also numerically 

tractable for reasonably large problems. Hence what follows is a description of a COll­

ceptually simple heuristic method which involves merely the solution of a succession 

of simple LP sub-problems. 

The difficulty with the standard LP formulation is that flow is by default normal 

to the yield surface (i.e. because the so-called 'normality rule' holds). It is however 

possible to modify the yield surface for each interface in a sub-problem so as to 

ensure that the required flow when the problem is solved again is parallel to the 

shear force axis, as indicated on Fig. 5.2(b) when <Pi = <p? = 0 (this was actually 
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first proposed by Livesley [8] to correct his anomalous failure mechanisms). III 

other words, behaviour of a contact becomes governed by a Mohr-Coulomb failure 

surface, with an effective cohesion intercept but a zero angle of friction. However, 

this transformation then leads to a loss of dependency of the limiting shear force 

on the normal force, as indicated on Fig.5.3(a). This dependency can however he 

re-imposed if an iterative analysis is performed, with the normal forces computed in 

the current iteration being used to define the failure criteria for the next iteratioll. 

The starting values for the normal forces in the iterative procedure may be obtained 

in a number of ways, but it will often be convenient to start with the values from 

an initial associative friction solution. 

Thus, denoting the computed normal force during this iteration (k=l) at interface 

i as nf, the limit surface for sliding may be rotated about a point (nf,n: tan !.pi) so 

as to become horizontal, with this newly modified LP problem then being solved at 

the next iteration. If for each interface nf = n:+l then this implies that the problem 

being considered is not influenced by the particular flow rule selected. Alternatively, 

if nf =1= n7+1 for one or more interfaces then the flow rule may be influencing the 

solution. In this case the current solution, which may well be highly inaccurate 

because of the transformed failure surface, should be improved by revising the failure 

surface again such that the limiting shear force at the next iteration is correct for 

the current normal force. This process can continue until any inaccuracy becomes 

acceptably small. 

However, the aforementioned procedure appears to work much more effectively in 

practice if behaviour of a contact in a sub-problem is instead governed by a Mohr­

Coulomb failure surface with an effective cohesion intercept and a negative angle of 

friction (Fig. 5.3 (b)). The normality rule then indicates that contraction at each 

failing interfaces will occur and a lower load factor will generally result, for reasons 

which will be explained. To subsequently remove this unwanted, kinematically in-
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Figure 5.3: Modified yield domains for a typical contact interface i 

admissible, response, the angle of friction may be successively relaxed towards zero 

as the iterative procedure progresses. 

In fact, the rationale behind the method is to identify low values of the normal 

forces at contact interfaces, noting that these are more likely to be identified if there 

is contraction at active sliding interfaces, rather than expansion (as there is in the 

associati ve friction solution). 

As described in [19], let it now be supposed that at every contact interface in a 

masonry structure the absolute minimum value that the normal force can take on 

(among all the statically admissible solutions) has been successfully identified. Then, 

assuming Coulomb friction, it can be assumed that at each interface the masonry 
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behaves essentially as a standard rigid-plastic material, taking the cohesion to be the 

identified minimum normal force multiplied by the friction coefficient. This would 

mean that the internal virtual work done cannot be greater than the interIlal work 

done by the true shear forces. As a consequence, the load factor cannot be greater 

than the true collapse factor and hence the solution must be safer than the exact 

one. 

Of course the assumption of a negative angle of friction by no means guarantees 

that the forces at all contact interfaces will necessarily take on absolute minilllulll 

values, but it does mean that the solution so obtained is likely to bound from below 

the majority of the many solutions which are both statically and killcmatically 

admissible when non-associative friction is present (Fig. 5.4(b)). 

KinematicaIly 
admissible solutions 

Static ally & 
kinematic ally ---1--- Aassoc 
admissible solution 
(unique load factor) 

Staticallyadmissible 
solutions 

(a) 

Kinematically 
admissible solutions 

Asafe -+---1-
} 

Range of statically & 
kinematic ally 
admissible solutions 

(b) 

Statieallyadmissible 
solutions 

Figure 5.4: Static and kinematic admissibility of (a) associative, and (b) 
non-associative solutions 

Note that when a problem is being idealized as a linear program, duality principles 

ensure that it is immaterial whether the static (maximizatioll) or kinematic (mini­

mization) problem is formulated and solved; both will lead to the same solution. 

The likely correspondence between the minimum normal force at interfaces and 

the assumption of negative angle of friction (contraction) in early iterations can be 

demonstrated practically by studying the kinematics of a simple two-block problem. 
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5.5.1 Simple two-block problem 

Consider the simple two block assemblage shown in Fig. 5.5(a). Each block is of 

the same size (3x1 units) and weight (1 unit). One of the blocks, A, is also subject 

to a horizontal load. Suppose also that the interfaces underneath and at the top 

of block A possess a relatively low angle of friction <p but that the contact between 

block B and its support is sufficiently rough to prevent sliding. Hence failure will 

involve sliding along the interfaces lying at the base and top of block A. 

Now if dilatancy at the interfaces is present (Le. as it will be when the normal LP 

formulation is used) then block A effectively expands, ensuring that block B has to 

rock, as indicated on Fig. 5.5(b). Here the normal force at the interface between 

blocks is clearly determinate and hence the load factor may easily be determined by 

considering the equilibrium at (1) and (3) as in Fig. 5.6: 

Equilibrium of moments about (3) implies: 

2n2 -1 x 1.5 = 0 => n2 = 0.75,82 = 0.75tan<p 

Vertical equilibrium at (1) requires: 

nl = n2 + 1.0 => nl = 1.75 and 81 = 1.75 tan <p 

Horizontal equilibrium of the structure yields: 

Al = 0.75tan<p + 1.75tan<p = 2.5 tan <p. 

If there is zero dilatancy it becomes more difficult to determine the load factor since 

the force transmitted from block B onto block A becomes indeterminate. However, 

alternatively suppose that block A contracts slightly, as indicated in Fig. 5.5(c). In 

this case the normal force transmitted between blocks clearly becomes determinate 

again, and a considerably lower computed load factor results (A2 = 1.5 tan <p). It 
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Figure 5.5: (a) Two-block example: (b) expansion; (c) contraction. (d) 
relationship between load factor and angle of dilatancy rpo 

will typically be the case that stipulation of negative dilatancy (i.e. contraction) 

will lead to lower load factors. 

Now consider this problem in the context of the proposed LP based iterative solutioll 

procedure. First consider the case when the modified limit domain is of the form 

shown in Fig. 5.3{a), i.e. no expansion or contraction is implied. Thus Fig. 5.7{a) 

shows a plot of the normal and shear forces present at the interface between blocks 
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Figure 5.6: Two-block example 

A and B when tan<p = 0.1, at iterations 1,2 and 3. The load factors at each iteration 

are also indicated, together with the active failure surfaces (the starting sub-problem 

is the standard associative friction problem). At the first iteration, the standard LP 

problem is solved based on the associative friction model (failure surface 1 ill Fig. 

5.7(a) and Fig. 5.7(b)) and the normal force Ttl is determined and used to establish 

failure surface 2. The problem is then reformulated based on this failure surface and 

solved and the normal force Tt2 is computed and is used to determine failure surface 

3. Again, the problem is re-formulated and solved. 

It is clear that the procedure identifies a normal force somewhere between the upper 

and lower limitst. Consequentially the load factor obtained using the procedure lies 

somewhere between Al and A2 (A = 1.9535tan<p). 

Figure 5.7(b) shows the comparable situation when the modified limit domain is 

t This is actually a natural consequence of using an interior-point based LP solver, which will, 
in cases where there are multiple optimal solutions, provide a solution comprising parts of all these. 
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of the form shown in Fig. 5.3(b), i.e. contraction is initially present. In this ca.se 

it is evident that the procedure correctly identifies the minimum possible value of 

the normal force at the interface, and consequentially also the lowest load factor 

(..\ = 1.5tan'P). Note that the amount of contraction is successively reduced as the 

iterative procedure proceeds, as indicated on the figure. 

Thus this example illustrates the likely promise of a modified procedure which in­

volves the use of a negative angle of friction in early iterations (i.e. imposition of 

net contraction at sliding interfaces). 

It is also evident that there is an abrupt discontinuity in the relationship between 

the computed load factor and the dilatancy angle 'Po when the latter changes from 

just below to just above zero, as indicated on Fig. 5.5(d). However this is in fact a 

problem-specific feature and if the interface between blocks A and B were inclined 

at some angle <j) to the horizontal, so that block A effectively forms a wedge (but all 

other details remain the same), then the discontinuity would occur at ±<j)/2t . 

5.5.2 New algorithm for non-associative friction problems 

The proposed algorithm to enable non-associative friction problems to be tackled 

can be described in terms of kinematic or static (equilibrium) problem formulations; 

here a static formulation will be used. Using this formulation the objective function 

and equilibrium constraints of (5.9) are maintained, as are the limits on the mo­

ment variables. However, the limits on the shear variables are modified as outlined 

previously following the first iteration. The algorithm developed is as follows: 

t In such cases it is the wedge geometry which instead often governs whether net dilution or 
contraction occurs. Here the abrupt change in load factor occurs when 'PO = -</1/2 if movement of the 
wedge causes expansion, or 'P0= </1/2 if this leads to contraction (of the space originally occupied 
by block A). This might explain why many arch forms containing wedge shaped blocks, and which 
cause expansion when pressed in, are often insensitive to the particular flow rule specified, provided 
'Po :2: O. 
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1. Set iteration count k = 1 and set up a standard initial LP problem, e.g. t.he 

limiting sliding resistance in this problem could be given (as failure surface 1 

Fig. 5.7(a) and Fig. 5.7 (b)) by: 

ISk ·1 < nk . tan Ill· ,1 _ ,t ..,.,1 

or alternatively, to provide an initial solution without dilatancy, the iuit.ial 

shear resistance could simply be specified to be: 

Is ·1 < c~rial k,~ _ ~ 

where c~rial is some (arbitrary) trial initial cohesion intercept. 

2. Solve the LP problem. At each interface i the computed normal force at 

collapse is denoted nk,i' 

3. If k > 1 and IAk - Ak-lll Ak < tol, the prescribed convergence tolerance, then 

the algorithm stops. 

4. Formulate new sliding friction failure criteria for the next LP iteration (as 

failure surfaces 1,2 in Fig. 5.7(a) and Fig. 5.7(b)), so that at each interface 

the new limiting sliding resistance is given by 

where: 

Ck+l,i = c? + (1 + a) nk,i tan <Pi 

and where a is an algorithm parameter which, together with the angle of 

friction, determines the slope of the n - s surfaces (see Fig. 5.3(b)), taken 

as some small value, say initially 0.3, and where c? is a very small interface 

cohesion value. 
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5. k = k + 1; if U>Umin then U = U / 2 else U=Umin; repeat from step 2. 

6. Correct >'k by subtracting the total energy dissipated by the presence of the 
c 

small cohesion: Le? bil 
i=l 

Additionally, to reduce the tendency for oscillating about a value without COllvcr-

gence, an additional algorithm parameter {3 may be introduced ::;0 that Uk,i ill st.ep 

4 is replaced with: 

where {3 may typically be taken from 0.1 to 0.9 (a smaller value generally leads 

to more likelihood of convergence, but to more iterations being required). This 

approach was previously applied to problems involving masonry crushing [25J. 

The small cohesion value c? is required to avoid uncontrollable penetration poten­

tially resulting when the normal force at a contact is zero (this could occur since 

otherwise the two n - s failure surfaces would be simultaneously active, with the 

normality rule then permitting uncontrollable contraction). 

5.6 Numerical examples 

A variety of different problems have been run using the proposed procedure. Unless 

stated otherwise the associative friction problem was specified as t.he starting prob­

lem and the algorithm parameters were set as follows: a=0.3 (um in=1O-3); {3=O.G; 

convergence tolerance t.ol = 10-5; small cohesion c?=1O-5nmax , where nmax is the 

largest normal force in a given problem. 

The Mosek (version 2.5) interior-point LP solver which uses a homogeneous and self­

dual algorithm (www.mosek.com) was used for the numerical studies. The problem 
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was passed to the solver in memory using the supplied subroutinc library. Problems 

were run on an lntel Pentium-M 'Centrino' based PC (running at 1.4GHz) with 

768Mb of RAM, running under Microsoft Windows XP Professional. The CPU 

time identified later in this paper is the cumulative time required to solve all the LP 

sub-problems. 

5.6.1 Livesley's classic two block problem 

Livesley [9] presented a problem involving two wedge shaped blocks to illustrate 

when an associative friction model is unrepresentative of Coulomb sliding friction. 

Each block is of the same size and weight (No). The left hand block is subject to 

vertical load as shown in Fig. 5.8. 

Physical intuition indicates that the correct failure mechanism is shown in Fig. 5.a(b) 

with the free body diagram shown in Fig. 5.8(b). The corresponding value can be 

evaluated by considering, respectively, horizontal and vertical equilibrium for thc 

loaded block and the right hand block as follows : 

Also 

-nl cos 10 - 81 sin 10 + n2 = 0 

ANo - 82 + nl sin 10 - 81 cos 10 = No 

n3 cos 10 - 83 sin 10 - n2 = 0 

82 + n3 sin 10 + 83 cos 10 = No 

81 = nl tan 9 = O.15838nl 

82 = n2 tan 9 = O.15838n2 

83 = n3 tan 9 = O.15838n3 

(5.11) 

(5.12) 
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Ci)i ~n2 
. No 

~2 1 

(a) (b) 

Figure 5.8: Free body diagrams for two-block wedge problem: (a) asso­
ciative friction; (b) non-associative friction 

Substituting 5.12 in 5.11 gives: 

-1.01230nl + n2 = 0 

>.No - O.15838n2 + O.01762nl = No 

-n2 + O.9573n3 = 0 

O.15838n2 + O.32957n3 = No 

Solving the equations in 5.13 gives: 

>.No=1.28No => >. = 1.28 

(5.13) 

If associative friction is assumed as in Fig. 5.8( a), 83 in 5.11 will have an opposite 
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sign, accordingly 5.13 becomes: 

-l.01230nl + n2 = 0 

AND - 0.15838n2 + 0.01762nl = No 

-n2 + 1.0123n3 = 0 

O.15838n2 + 0.017669n3 = No 

Solving the equations in 5.14 gives: 

ANo=1.8No =} A = 1.8 

(5.14) 

Figure 5.9(a) shows the associative friction solution, which is clearly implausible 

if Coulomb friction were present. Furthermore, a relatively high upward force is 

predicted to be required in order to free the left hand block and the uuloaded right 

hand block also unexpectedly moves upwards. 

Figure 5.9(b) indicates the reduced predicted uplift force required and also the more 

realistic failure mechanism when the new procedure is employed. The solution ob­

tained (1.28No) is identical to that computed by Fishwick [25] and to what has beell 

computed here. 

5.6.2 Arch rib problems 

Casapulla and Lauro [20] have identified a special class of non-associative friction 

problems for which provably unique solutions exist. The class comprises arches with 

symmetrical loading and geometry. The proposed procedure was applied to arches 

of this sort to both verify that the numerical and analytical solutions coincide and 

to investigate the convergence characteristics of the method. 

Figure 5.10 shows the relationship between the predicted minimum arch thickness 

required for stability and the coefficient of friction in the case of a semicircular arch 
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Figure 5.9: Solutions for a two-block wedge problem: (a) associative so­
lution; (b) non-associative (zero dilatancy) solution; (c) relationship be­
tween load factor and angle of dilatancy 'Po 

of lam centreline radius, containing 27 discrete blocks. It was found that Heymau's 

theoretical minimum thickness assuming hinging only of 10.7% of the centrelille 

radius was approximately reproduced with this discretization (10.68%) and that 

this held providing tan'P 2:0.396. When tan'P <0.31 it was found that the required 

minimum thickness rose rapidly. These results coincide with those in [20] ill terms 
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Figure 5.10: Symmetrical arch problem: influence of friction coefficient 
on minimum arch thickness 

of kinematic mechanisms, while there a little discrepancy is about the limiting value 

of the friction coefficient between the mode I and mode 11. There was found to be 

no difference between the associative and non-associative results in the case of this 

example. 

Considering next arch ribs which are not symmetrically loaded. Those originally 

tested by Pippard and Ashby [28] were subsequently modelled numerically by Gilbert 

and Melbourne [29] using an associative friction model. A numerical study of the 

predicted influence of the coefficient of friction on the computed collapse load of the 

arch ribs was also performed. This study has now been repeated using the proposed 

procedure, adopting a non-associative friction model. It was found that provided 

tan<p was greater than approximately -0.11, then the non-associative and associative 

friction load factors coincided. 

These limited studies appear to suggest that for many single ring arch problems, 

the flow rule will have no influence on the computed load factor. 
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5.6.3 Walls subject to in-plane horizontal loading 

Ferris and Tin-Loi [23] provided sufficient details of 6 benchmark wall problems 

to allow these to be re-run using the proposed procedure. Each example problelll 

comprises a freestanding wall supported on a base and subject to in-plane horizontal 

forces applied to the centroid of each block (to represent earthquake-type loading). 

Thus each full block had a weight of 1 unit, face area of 4 x 1. 75 units, and wa..., 

subject to a unit horizontal live load (for half blocks these quantities were reduced 

by half); tantp was taken as 0.65. Results are shown in Table 5.1 and on Fig. 5.11. 

The associative friction solutions obtained in the present study were identical to 

those obtained in [23] with one exception: a completely different solution was ob­

tained for example 3. This different solution was also obtained independelltly using 

different software and it thus seems likely that the results quoted in the table in 

[23] actually related to a different wall configuration (or coefficient of friction) to 

that published in the paper. From Table 5.1 it is clear that in all cases the com­

puted load factors are less than or equal to published Mep values and withill a few 

percent of published MPEC values. Additionally all failure mechanisms (Fig. 5.11) 

were visibly identical to those obtained by Ferris and Tin-Loi. In some ca.'ies the 

computed non-associative friction load factors are more than 20 percent lower than 

the corresponding associative friction load factors. 

The influence of changing the starting conditions and the algorithm parameters 0' 

and f3 on the convergence characteristics was also investigated. Figure 5.12 shows 

the results from such a study in the case of example problem 6. It was found that 

for this problem the computed load factor was remarkably insensitive to both the 

choice of starting condition and to the choice of algorithm parameters. Converged 

solutions equal or very close to the solution of 0.29649 given in Table 5.1 were always 

obtained, even when a = O. However, when f3 was set to 1.0, oscillating about a 

value during repeated iterations prevented a solution from being obtained (the plot 



Table 5.1: Computational results for Ferris and Tin-Loi examples 
Example Size Associative Ferris & Tin Loi [23] Proposed Diff: ). proposed vs. DifI: ). proposed 
no. [23] friction ,\ method assoc. friction vs. MPEC 

MCP MPEC MPEC time ,\ time 
,\ oX (sec) * (sec) 

1 33 x 83 0.64286 0.64285 0.63898 1.2 0.63982 0.7 0.5% 0.1% 
2 55 x 141 0.58000 0.56368 0.55742 2.2 0.56262 0.9 3.1% 0.9% 
3 46 x 102 0.40369 - - - 0.35582 1.0 13.5% -
4 55 x 116 0.33195 0.26374 0.26374 1.3 0.26374 0.6 25.9% 0.0% 
5 61 x 120 0.23964 0.21584 0.20863 1.5 0.21455 1.1 11.7% 2.8% 
6 146 x 345 0.34782 0.29725 0.29577 55.1 0.29649 4.3 17.3% 0.2% 

*normalized to a 1400MHz PC (multiplied by 333/1400) 

Time ratio, pro-
posed: MPEC 
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Figure 5.11: Ferris and Tin Loi example wall problems: failure modes 
using the proposed procedure. 
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for this case is omitted from Fig. 5.12 for clarity). When {3 was set to 0.2 a solutioll 

was eventually obtained but many (a total of 85) iterations were required. 

For these problems the proportion of the total energy (virtual work) dissipated ill 

Coulomb sliding friction during the analysis was also studied. For example, Fig. 5.13 

shows the situation for example problem 6. 

Figure 5.13 indicates that in the initial associative friction solution the presence of 

dilatant friction means that all energy is recorded simply a..'i an increase in pot.ential 

energy. At subsequent iterations the increase in potential energy reduces, with SOllle 

sliding friction energy being dissipated at sliding interfacest . 

When developing the method it was found to be impractical to prescribe that strictly 

zero violation of the actual Mohr-Coulomb yield surface occurred ill the final solu­

tion. Instead a somewhat less rigorous, energy based, check was used: the actual and 

corrected sliding interface energies were computed and compared, wit.h the corrected 

energy being obtained by multiplying the sliding displacement (taken from the dual 

problem solution) by the normal force multiplied by the friction coefficient (over all 

contact interfaces). In all cases tried it was found that the difference between these 

energies was suitably small (e.g. when expressed as a proportion of the tota.l energy 

dissipated, always < 0.1%). 

It is also apparent from Table 5.1 that for the smaller problems (examples 1 to 5) 

the CPU times for the proposed method are of the same order as those presented in 

[23]. In the case of example 6, which is slightly larger, the difference is greater, with 

the implication that the proposed procedure may be increasingly efficient compared 

with other methods as the problem size increases. Thus it is of interest to also study 

a much larger problem recently presented by Ordulla and Lourenco [24], solved using 

the same method as that proposed by [23]. The wall chosen for study was subjected 

t In the case of examples 3 and 4, the algorithm both converged to rocking only solutions, 
with zero Coulomb friction energy dissipation. This also explains why in the case of example 4 all 
solution procedures converged to the same value. 
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Figure 5.12: Characteristics for example 6, showing influence of modi­
fying: (a) starting conditions; (b) algorithm parameter 0; (c) algorithm 
parameter f3 
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Figure 5.13: Breakdown of total energy vs. iteration no. (example 6 with 
default parameters) 

to the same horizontal live loading as in the previous examples, but the length:height 

ratio of the constituent blocks was 3:1 and tancp was taken as 0.75. 

Assuming the masonry possesses infinite compressive strength, for this problem 

Orduna and Lourenco obtained a non-associative solution of 0.539 in 15 hours and 

46 minutes when using a 551MHz PC [30]. Using the propo ed method for the same 

problem, a solution of 0.53886 was obtained in 122 seconds on a 1.4GHz PC. i.e. 

a near identical solution was obtained more than two orders of magnitude more 

quickly, even taking into account the differences in CPU speed. Figure 5.14 shows 

the predicted collapse mechanism of the wall using the proposed method (note that 

the computed associative friction load factor for this problem was 0.545034). 

To investigate increasingly large (and potentially increasingly realistic) problems, a 

pattern of blocks around a representative opening was created and this was then 

repeated to create a notional facade comprising nx openings horizontally and ny 

openings vertically. The same block aspect ratio, loading conditions and coefficient 

of friction as adopted in Orduna and Loureneo' example were u ed. For simplicity 

the lintels were al 0 assumed to weigh 1 unit, and were also subject to unit hori-
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Figure 5.14: Solution to Orduna and Loureneo's wall problem 

zontal live load. Also note that the uppermost block OIl the left-hand side of the 

facade was always omitted, as this could be locally unstable under dead load alollc. 

Additionally, to ensure a solution was obtained even in the largest problems tried 

the convergence tolerance was relaxed slightly, to 2 x 10-5 . 

Figure 5.15 shows the predicted collapse mechanism for the case when nx =2 alld 

n y=6. The non-associative friction analysis was completed ill 203 seconds and t.he 

computed load factor was 0.20550. In comparison, the computed load factor for the 

equivalent associative friction problem was 0.21306, obtained in just 5.6 seconds. 

Figure 5.16 shows the predicted collapse mechanism for the case when nx=4 and 

ny=12. This may be considered to be a real life scale problem, albeit one modelled 

only in 2D. The non-associative friction analysis was completed in 694 seconds and 

the computed load factor was 0.21161. In comparison, the computed load factor for 

the equivalent associative friction problem was 0.21870, obtained in 55 seconds. 

Figure 5.17 shows the CPU times for increasingly large problems of the same c1Spect 

ratio (i.e. containing 1 x 3, 2 x 6, 3 x 9 and 4 x 12 openings). 



Chapter 5 : Limit Analysis of Masonry Block Structures 15,1 

~. -r 

1= .::J 

~-:r~ 
f-=;::= 

::J 

~.::J 

...., 

~ 
:J 

J 

-r--'-,--

~ 
;=-

~ 
c-:r=;:=r~ 

'-
.r-=;:::r: 

~ 
e:,;=:r::;::r 

r' 

-T~ 

Figure 5.15: Example problem comprising 2 x 6 openings 

The indication from Fig. 5.17 is that the proposed method can be applied to rea­

sonably large problems (significantly larger than have hitherto been described ill 

the literature), with the CPU time being between one and two orders of magnitude 

greater than that required for an associative friction solution (i.e. between 10 awl 

100 LP iterations required to obtain a solution). 
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Figure 5.16: Example problem comprising 4 x 12 openings 
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5.7 Discussion 

5.7.1 Comparison with other numerical methods 

156 

1000000 

It appears to be generally accepted that the full non-associative friction problem is 

difficult to solve using direct methods. Thus although Fishwick [25] was able to solve 

small problems using direct enumeration, other workers have chosen to temporarily 

relax one or more of the problem constraints, before then iteratively solving a series 

of simpler sub-problems. 

For example Ferris and Tin-Loi [23] temporarily relax the complementarity term t 

and then solve a series of non-linear programming sub-problems with the comple-

mentarity condition gradually imposed. The same technique was used by Orduna 

and Lourenco[24] , although more recently Orduna [26] has proposed an alternative 

'load path following procedure' in which MCP problems with successively increasing 

limiting compressive stresses are solved. This has been found to sometimes lead to 

t The scalar product of yield functions vector and flow mUltipliers vector. 
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lower load factors (though sometimes higher too), and also appears to pcrllli t. sOllle 

understanding of structural behaviour prior to collapse to be gained. 

In that a simpler sub-problem is identified and then solved as part of an iterative 

process, the proposed method is similar to the methods mentioned above. The maiu 

difference is that the sub-problem chosen to be solved here is simply a standard LP 

problem, which can be solved rapidly using well developed and widely availabk LP 

solvers. 

5.7.2 Status of solutions 

Most workers in this field indicate that their ultimate goal is to obtain the low­

est possible failure load factor for non-associative friction masonry block problems. 

However, practically speaking, it is of course very difficult to obtain a load fac­

tor which provably represents the true, global minimum, since the non-!kssociative 

friction problem becomes essentially a combinatorial one, with considerable compu­

tational expense required to identify minimum load factors for real-world problems. 

However recent studies by Orduna [26] have indicated that even the locally millilllulll 

load factors obtained using recently developed methods may in fact sometimes Hig­

nificantly underestimate the true load factor of a loaded structure. In reaching this 

finding he also performed parallel non-linear finite element studies to obtain load 

factors. Thus there may be a paradox: although, except ill trivial cases, computed 

load factors cannot be guaranteed to represent true lower-bounds on the actual load 

factor, at the same time, there is a danger that they may in fact grossly umiercs­

timate the capacity of a real structure which, to use a suitable anthropomorphislIl, 

is not necessarily 'clever enough' to identify the worst case load path identified 

numerically. 

Thus, from a practical engineering perspective, the computed globally minimal load 
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factor may effectively be unreachable (or perhaps only observed oncc when, say, 

a billion structures are tested, with most other structures failing at much higher 

loads). In other words, although having a rigorous lower-bound certainly has somc 

value, the high associated computational effort coupled with the likelihood that the 

globally minimum solution is unrepresentative, means that the latter is likely to be 

of academic rather than practical interest. 

In optimization terms, the present method involves use of a problcm sJlccific hcuris-

tict to identify a 'good' solution to the Mep problem (there being 110 attclllpt to 

tackle the more difficult underlying combinatorial problem). The heuristic, which 

involves prescribing a negative angle of friction and thereby contraction at all failing 

interfaces at the early stages of an iterative procedure appears to work remarkably 

effectively and seems to permit much larger problems to be solved thall ha.'> hitherto 

been the case. 

5.1.3 Starting conditions and convergence characteristics 

As indicated on Fig. 5.12, the procedure appears relatively insensitive to the starting 

conditions used. However, one advantage of specifying joints as purely cohesive 

rather than frictional in the starting problem is that it overcomes the problem of all 

initial solution potentially not being obtainable because of volumetric lockillg due 

to (erroneous) dilatancy at interfaces. 

Several problems which are larger than those documented in this paper have abo 

been tested. However, it has been found for very large problems that convergclIce 

is often difficult to achieve, with cycling occurring. This seems to be most common 

when there are several alternative load paths which correspond to solutions with 

very similar load factors. This issue requires further study. 

t Heuristic relates to exploratory problem-solving methods that utilize self-educatillg techniques 
to improve performance. It has come to emphasize techniques for searching a space of possibilities 
quickly-not necessarily finding the optimum possibility but finding one that is "good ellough". 
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5.7.4 Modifications to the basic method 

The efficacy of a variety of modifications to the basic procedure has been investigated 

with a view to reducing the number of iterations required in order to ohtain a, 

solution. Thus the effectiveness of introducing move limits was iuvestigated initially, 

with limits set on the percentage and/or absolute change in the magnitude of the 

normal contact force permitted. However, this was found not to work well: the 

required computational effort was not reduced and also the risk of converging to all 

artificially high load factor appeared to be increased. 

Additionally the effectiveness of only modifying the failure surface for a contact 

interface with forces lying on the failure surface was iuvestigated (rather theUl auto­

matically modifying the failure surface for all contacts, which is the default). In fact 

it was found that this modification made very little difference to the convergence 

characteristics of the procedure. 

5.7.5 Including dilatancy as a function of normal stress 

Attention has so far focussed on removing unwanted dilatancy, so 3..<; to model cla.s­

sical Coulomb sliding friction. However it has been observed in practice that sOllle 

dilatancy does occur (e.g. [31]), and that this is particularly pronounced wheu 

normal stresses are low. Using the proposed numerical procedure it is in principle 

perfectly possible to take account of this, and, as well as being arguably lllorc re­

alistic, it may even be advantageous computationally to do so. This feature will 

therefore be implemented in the future. 
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5.8 Conclusions 

A new computational limit analysis procedure for rigid block assemblages cOJllprising 

non-associative frictional interfaces has been presented. The procedure involves 

solving a series of LP problems with successively modified failure surfaces (rather 

than working directly with the full Mixed Complementarity Problem (Mep) "I." 

others have done). In the procedure the behaviour of a contact is governed by 

a Mohr-Coulomb failure surface with an effective cohesion intercept and, in curly 

iterations, a negative angle of friction. Both these parameters are updated at e<tch 

iteration by referring to the real problem, with the angle of friction also nOrIllally 

being successively relaxed towards zero (thereby implying zero dilatancy). 

The proposed method appears to be capable of identifying reasonable estilllatps of 

the load factor for a wide range of problems. In all the cases tried, the computed 

load factors were less than or equal to published MCP values and within a few 

percent of published MPEC values. The method appears to be particularly suited 

to comparatively large problems. For one such problem contained in the literature, it 

was found that the load factor computed using the proposed procedure was virtually 

identical to that computed previously but was obtained two orders of magnitudp 

more quickly. 
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Chapter 6 

Practical Application of 

Computational Limit Analysis: 

Masonry Arch Bridges 

6.1 Abstract 

Although the rigid block analysis formulation for masonry arches was first put for­

ward by Livesley [1] more than two decades ago, few researchers or practitiollers 

have had access to software based on the rigid block analysis forIUulation despite 

the apparent advantages of the method. 

Since 2001 the RING [2] limit analysis software for IUasonry arch bridges has been 

publicly available via an internet site. The author has been responsible for re-writing 

the kernel. 

This paper describes recent developments to the software which is currently being 

completely revised again, including: order of magnitude improvements in its COIll­

putational efficiency; a non-associative constitutive model for sliding friction and a 
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gross displacement analysis facility. A number of example local authority bridges 

are re-assessed in the light of the new features. The recent increase in the exeCll­

tion speed of the program enables the use of a larger number of blocks per riug 

than previously. This means more possibilities for collapse mechanisms and hence 

potentially lower load factors. 

Keywords: Limit analysis; Masonry arch bridges; Rigid block; Linear programming 

6.2 Background 

Despite the fact that the widespread building of masonry arches ceased around 

hundred years ago in the UK, masonry arch bridges still represent a crucial part of 

the transport system. 

During the 18th and 19th centuries, engineers were required to provide bridges for 

firstly the canal network and later the rail network. These bridges represent Cl large 

proportion of the bridges in use today. Due to the extensive programme of building 

bridges for the rail network over a short period of time, there existed all acute 

shortage of skilled stonemasons in the construction industry. This led to an increa.se 

in the popularity of brickwork in the fabrication of bridges. 

Today there are more than 40,000 masonry arch bridge spans in the UJ( alone, 

which represent approximately 40 percent of the UK's bridge stock. The majority 

of these bridges were built during the 19th century. The current levels of loading are 

beyond those envisaged by their designers. In some ca.<;es a small increase in loading 

on a given bridge leads to rapid deterioration in condition, and so a high level of 

maintenance is needed. 

It was estimated in 1986 that the cost of replacing all of the masonry arches carrying 

Britain's roads with modern equivalents would be approximately £7 billion [3]. 
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Almost two decades latter, the cost will have significantly increased. Taking this 

into consideration, an improved and rational assessment procedure to extelld the 

useful life of these structures is of paramount importance. 

Historically, the analysis and design of masonry arch bridges has been condllcted 

according to empirical rules. Generally, not much attention was paid to material 

properties; instead rules were based on observation of traditional bridges which had 

proved to be safe through the years. Although this approach may be effective in 

designing new bridges, it is not of great use for assessing existing ones. 

The established method of assessment as recommended by the UK Highways Agency 

is the modified Military Engineering Experimental Establishment (MEXE) Illethod 

[4]. The method evolved from an early elastic method proposed by Pippard [5]. 

The maximum load which can be supported is calculated based 011 the geometry 

of the arch. Modification factors are then applied to account for the fill depth, the 

type of material used, the condition of the arch and other characteristics. 

Although the method is easy to use, it cannot be relied upon. It has been noted that 

in many cases the method underestimates the bearing capacity of bridges [3]. Con­

versely, the method can sometimes lead to unsafe assessments of bridges capacity. 

Research carried out at Bolton Institute by Gilbert and Melbourne [6, 7], COllllllis­

sioned by British Rail, concluded that the MEXE method greatly overestimated thl' 

load bearing capacity of bridges with the defect of ring separation. 

In recent years, very active research aimed at developing and applying advanced 

computational models to masonry gravity structures has been conducted. Qne par­

ticularly important practical application has been the determination of the ultimate 

carrying capacity of masonry arch bridges. Here the objective of Illost limit analy­

sis procedures is to determine the magnitude of the load which just transforms t.he 

structure into a mechanism. 



Chapter 6 : Practical Application of Computational Limit Analysis 168 

The mechanism analysis procedure utilizes the concept of plastic hinges. The basic 

method assumes that a masonry arch ultimately fails by forming at least four hillges. 

Assuming that the masonry possesses infinite compressive strength and with the 

applied load being increased, the thrust line (Le. the line through the resllltallts 

of the compressive stresses in successive cross sections) approaches the edges of the 

cross-section. Eventually, this line alternately touches the extrados and the iIltratios. 

Since at the hinge points bending moments are zero, it is then possible to use statics 

to determine the magnitude of the applied load which will cause the arch to collapse. 

This was demonstrated by Pippard [5] and the approach was later placed securely 

within the framework of plastic limit analysis by Heyman [8]. Thus, a 'mechanism' 

(or 'upper- bound') limit analysis involves an assumed hinge configuratioIl with the 

lowest upper-bound solution being the correct one since in this case the thrust line 

between hinges will lie entirely within the arch. Thus, in this case, the 'safe' (or 

'lower-bound') theorem is also satisfied (the latter states that if a thrust line call 

be found for the complete arch which is in equilibrium with the external self weight 

and which lies every where within the masonry of the arch ring, then the arch is 

'safe'). 

However, because of the complexity of arch bridge geometry coupled with the com­

plex loading patterns typically found in practice, hand-based limit analysis is not 

generally practicable. Additionally, some of Heyman's original assumptions are no 

longer considered generally acceptable (e.g. infinite masonry crushing strength; 

no sliding failures). Hence various computer-based methods have been proposed 

[1, 6, 9, 10]. These methods use either rigorous or 'ad-hoc' optimization techniques 

to identify the critical failure mode. Among these methods, the rigid block method 

of analysis [1, 6] is the most generally applicable and may, for example, easily be 

applied to arch problems involving multiple arch rings and/or spans. 

Currently the only widely available software based on the rigid bloek computational 
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limit analysis method is the RING software which was originated by Gilbert [11, 12]. 

It was created originally as a research tool. The first publicly available version 

of RING was released in January 2001 (version 1.1). The software has proved 

remarkably popular and now is widely used by practitioners worldwide to analyse 

masonry arch bridges. 

However, parts of RING version 1.1 dated back more than a decade and it became 

difficult to enhance and extend the existing software without expending effort dis­

proportionate to the benefit gained. Hence, the decision was taken to rewrite the 

software from scratch. This has also stimulated a review of all parts of the existing 

software. Thus there were two main issues which were identified as priorities for t.he 

current and forthcoming releases of RING: 

1. Improved speed of execution (particularly for multi-ring arch problems). This 

has already been achieved in RING 1.5. 

2. Enhanced realism of the computational model (e.g. better modelling of fric­

tion, soil-structure interaction etc). This will be incorporated in RING 2.0. 

After briefly describing the key elements of the rigid block analysis formulation, 

some of the practical requirements that a bridge analysis program has to fulfil in 

order to be useful to practitioners and the position of the current version of RING 

(version 1.5) with respect to these requirements are discussed. Problems associated 

with fulfilling these practical requirements are also identified. 



Chapter 6 : Practical Application of Computational Limit Analysis 170 

6.3 The rigid block analysis method 

6.3.1 Basic method 

The problem in hand concerns an assemblage of rigid blocks comprising c contacts 

separating b blocks. The constituent blocks may initially be assumed to be both 

rigid and infinitely strong. The block interfaces are considered as elements and thc 

blocks as extended nodes connecting the elements. Here three degrees of freedom are 

associated with the centroid of each block and three stress result ants (i.e. bcnding 

moment m, normal force n and shear force s) act at each contact interface, as shown 

in Fig. 6.1 for a typical block j. 

The objective here is to find the maximum load factor, which when applied to live 

loading, will lead to collapse. Thus, the problem formulation may be concisely stated 

as follows: 

subject to: 

Maximize A 

f=Bq 

mi ~ O. 5ni li 

mi 2 -O.5nili 

Si ~ {Lini 

Si 2 -/1in i 

for each contact, i = 1, ... , c 

(6.1 ) 

(6.2) 

where A is the load factor, B is a suitable (3bx3c) equilibrium matrix derived from 

the geometry of the structure and q and f are respectively vectors of contact forces 

and block loads. Thus qT = [nl,Sl,ml,n2,S2,m2,,,.,ne,se,me]; f = fD+ AfL where 
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fD and fL are respectively vectors of dead and live loads. Using this formulation the 

linear programming problem dependant variables are clearly the contact forces: ni, 

Si, mi (where ni 2: 0; Si, mi are free variables). 

It should be noted that implicit in the above formulation is an associative, or 'saw-

tooth' type friction model (i.e. stipulating that dilatancy accompanies sliding). This 

issue will be returned to in section 6.5.2. Additionally, in order for masonry crushing 

to be accommodated, an iterative analysis in which the effective contact length is 

modified at successive iterations is required (as discussed in [12]). 

-4h 
blockj 

/ contact i (length Ij , friction ~j) 

If 
,7~j 
Wm j 

nj 

Figure 6.1: Block j and contact forces for interface i 

6.4 Practical issues: 

6.4.1 Execution speed 

RING 1.1 used a redundant forces limit analysis problem formulation [13]. This 

produces a very compact but potentially very densely populated linear programming 

(LP) constraint matrix. Although most simple single and multi-span problems could 

be solved almost instantaneously, as far as the user was concerned, on a modern PC, 

it was noticed that execution times for more demanding multi-ring problems were 

often undesirably long, even when a state-of-the-art PC was employed. 
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The problem partly stemmed from the fact that the original formulation developed 

by Gilbert et al. [6, 7] was intended to be used in conjunction with the Simplex LP 

algorithms [14] dominant in the early 1990s, yet RING 1.1 was necessarily distributed 

with a freely available interior-point LP solver, more suited to solving large, sparse, 

problems. 

In recent investigations by the author [15] it has been found that although the 

conventional joint equilibrium formulation [13] presented in section 6.3.1 produces 

a large number of constraints and variables, the proportion of non-zero elemellts is 

generally extremely small, which means that it can be solved very efficiently using 

modern interior-point based LP algorithms. 

The significant improvements in computational efficiency attributable to the use 

of a joint equilibrium formulation when used in conjunction with an interior point 

LP solver has meant that this has now been implemented in a new RING release, 

version 1.5. 

In order to demonstrate the comparative computational efficiency of RING 1.5, the 

3m and 5m span single-span arch ribs and bridges, previously tested by Melbourne 

and Gilbert [16], were modelled numerically. The bridges of interest here conta.ined 

detached spandrel walls and the defect of ring separation, this being achieved ill the 

laboratory by using dampened sand in place of mortar between the riugs. 

Table 6.1 shows sample RING analysis results for these bridges. To obtain the RING 

results, a standard coefficient of lateral earth pressure was specified (rather thall the 

back-substituted experimentally recorded pressures, as used in the original publica­

tions [16]). A lateral earth pressure coefficient value of 4.5 was used (approximately 

equal to Kp/3 when Kp is calculated using classical vertical wall passive pressure 

theory with the measured backfill internal angle of friction of 60 0). Additiollally, a 

Boussinesq type model was used to simulate dispersion of the applied load through 

the fill. 



Chapter 6 : Practical Application of Computational Limit Analysis 173 

Table 6.1 contains the run times obtained using a 1.4GHz PentiulIl 'M' (Centrino) 

PC. In all cases the PCx [17J interior point linear programming solver distributed 

with RING was used, rather than a commercial solver as used in the original pub-

lications. In general, commercial solvers are more efficient, particularly in the case 

of redundant forces formulation problems. 

Bolton arch Expt. RING 1.1 RING 1.5 Difference: 
ribl bridge Failure {redundant (joint equilibrium RING 1.5 vs. 1.1 
ref. load forces formula- formulation) 

(kN) tion) 
Failure CPU Failure CPU Failure CPU 
load time load time (s) load speeduI 
(kN) (s) (kN) increase factor 

Arch 2 1.5 1.44 6.1 1.45 0.16 0.7% 38x 
Bridge 3-2 360 252 7.9 253 0.25 0.3% 31x 
Bridge 5-2 500 482 236 486 0.98 0.8% 241x 

Table 6.1: Multi-ring arches: experimental and infinite crushing strength 
analysis results with redundant forces and joint equilibrium formulations 

From Table 6.1 it is evident that when using PCx, the speedups associated with the 

use of a joint equilibrium formulation are very significant, more than 200 x in the 

case of Bridge 5-2. It is also notable that the computed failure loads are slightly 

greater when using the joint eqUilibrium formulation. This is because whereas pre-

viously a joint between adjacent rings was idealized using a series of point contacts, 

in the joint equilibrium formulation all contacts in the problem are treated identi­

cally, whether these lie in radial or circumferential joints (i.e. these are all treated 

as surfaces). In all cases the computed capacities are lower than the experimentally 

recorded values. This is likely to (at least partly) result from the simplified soil 

model employed. Apart from the case of bridge 3-2, experimentally recorded col­

lapse loads were a few percent higher than RING predictions. According to Gilbert 

[16J there are no clear reasons why the experimentally recorded collapse load in the 

case of bridge 3-2 is very high, given that a nominally identical bridge tested with 

attached, rather than detached, spandrel walls failed at a much lower load (320kN). 
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For problems involving finite masonry crushing strengths, the reduced solution times 

have also meant that in RING 1.5 finite masonry crushing strength calculations can 

now be performed for all load cases in multiple load case problems in a reasonable 

time. Previously a crushing analysis was just performed for the load case found to be 

critical following initial, infinite crushing strength, analyses for all load cases. ThiH 

sometimes led to a non-conservative load factor being computed. Fig. 6.2 shows an 

example recently encountered in practice. 

200~----------~----------------------~--~ 
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-~ 160 
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..2 140 
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'jij 120 
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critical loading 
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load position I span 

Figure 6.2: Computed axle load at collapse vs. position 

Examining Fig. 6.2 reveals that here the critical load positions for the (J = 00 and er 

= 2.3N/mm2 cases do not coincide. Taking the critical load position for the (J = 00 

case and performing crushing calculations only for this load case leads to a predicted 

capacity of 105.5kN, overestimating the actual carrying capacity of 98.4kN by 8.5 

percent. 
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6.5 Realism of computational model 

In terms of complexity, computational limit analysis models are positioned midway 

between traditional (hand-based) methods and (non-linear) elastic analysis tools. 

Computational limit analysis has the advantage of simplicity, as relatively modest 

operator expertise is required, and certain classes of problems regarded as 'difficult' 

(e.g. uniaxial contact problems) can be solved very simply and quickly using LP 

solvers, which are widely available and improving in efficiency year-on-year. 

However, computational limit analysis models are not always linear. For example, 

when finite material strength is involved, the problem formulation becomes non­

linear and hence, if LP solvers are still to be used, an iterative analysis procedure 

must be used. Additionally, whilst RING versions 1.1 & 1.5 are capable of lIlodellillg 

sliding failures, it is inherently assumed that associative (or 'saw tooth') friction 

exists between the constituent blocks. This is not entirely realistic. If the problem 

is re-formulated to obey the non-associative rule it becomes non-linear. Again, an 

iterative analysis procedure is required. 

In the next section, material crushing analysis, non-associative friction analysis a,nd 

gross displacement analysis are discussed. The very important but rather neglected 

issue of soil-structure interaction is also briefly considered. 

6.5.1 Material crushing analysis 

Real materials have finite compressive strength. The effect of material crushing 

on the load carrying capacity for masonry arches can be studied by performing an 

iterative analysis. Gilbert [12] proposed an iterative procedure to determine the 

influence of crushing. The procedure starts by performing an initial analysis without 

material crushing being considered to provide an estimate of the force in the arch at 
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failure. The magnitude of the force of a given section is then used, in conjunction 

with the crushing strength and the width of arch, to determine the required depth of 

material to transmit the force. A number of iterations are generally required before 

a converged solution is obtained. 

6.5.2 Modelling sliding failures 

Drucker [18] pointed out that assuming associative (or 'saw tooth') friction between 

smooth blocks will, in general, lead to upper-bound (unsafe) load factors. Despite 

this, it was previously found by Gilbert [16] that when modelling multi-ring brick­

work arch bridges, reasonably good agreement between experimental and llumerical 

results could be obtained when associative friction was assumed (in fact it was found 

that the numerical multi-ring model always under-estimated the experimentally ob­

served carrying capacity). 

Since then, a number of workers have proposed algorithms to model non-associative 

friction (e.g. refer to reference [19] for details). Unfortunately the non-associative 

problem becomes essentially a combinatorial one, with considerable computational 

expense required to identify minimum load factors for real-world problems. Further­

more, except in trivial cases, these load factors cannot be guaranteed to represent 

true lower-bounds on the actual load factor yet, at the same time, may in fact grossly 

underestimate the capacity of a real structure. 

In spite of these difficulties, the author, jointly with other researchers, have recently 

developed a conceptually simple and comparatively computationally inexpensive 

procedure for treating non-associative friction problems [20, 21], with a view to 

offering this as an option in RING 2.0. What follows is a brief description of the 

method and its application to multi-ring arch problems. 
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6.5.3 A simple procedure for non-associative friction 

In the proposed procedure, rather than make use of highly complex and specialized 

mathematical programming algorithms as others have done, only a standard LP 

solver is required. Central to the thinking behind the method is the fact that, when 

using linear programming to solve limit analysis problems, flow will always occur 

normal to the specified failure surface (i.e. according to the so-called 'normality 

rule'). The proposed procedure starts with an initial associative friction analysis. 

Then, to avoid unwanted dilatancy, a subsequent analysis is performed using a llew 

failure surface, formed by rotating the original failure surface about point (n, I1U) 

until it is orientated horizontally (where n is the normal force from the previoHs 

iteration; refer to Fig. 6.3). The procedure continues, using successively modified 

failure surfaces, until a converged solution is obtained. Details of a number of minor 

modifications to this basic procedure in order to improve convergence are provided 

elsewhere [20J. 

6.5.3.1 Non-associative friction examples 

The benchmark in-plane block wall problems used by Ferris and Till-Loi [19] were 

initially investigated using the procedure [20]. For these problems it was found that 

when using a non-associative (and zero dilatancy) friction model, predicted load 

factors were up to approximately 25 percent lower than their associative friction 

counterparts. Whilst the load factors obtained using the proposed method were 

never as low as the published MPEC results [19], they were always within 2 or 3 

percent of these. 

The proposed method is here applied to multi-ring arch problems for the first time. 

Thus the arches considered in section 6.4.1 are now re-analysed assuming nOIl­

associative friction (and zero dilatancy). Table 6.2 presents the main results whilst 
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obvious visible differences in the failure modes are highlighted in the case of bridge 

5-2 on Fig. 6.4. 

Shear force, S 

Direction of flow 

New failure surface 
...................................................... -..,,~-

Original failure surface 

Normal force, n 

Figure 6.3: Non-associative (zero dilatancy) sliding friction: original and 
modified failure surfaces 

For the cases detailed in Table 6.2 it is evident that modest reductiolls in the eOlll-

puted collapse load result from the use of the non-associative friction model (up to 

6%). It is also evident that considerable extra computational effort is required in 

order to obtain the results (up to 25x more CPU time required). 

6.5.4 Gross displacement analysis 

Field and laboratory tests carried out over the last two decades in the UK have shown 

that the presence of the backfill pressures significantly enhance the ultimate bridge 

strength. Mechanism analysis programs generally assume that backfill pressures 

are mobilized by infinitesimal structural displacements although in practice, peak 

horizontal backfill pressures can only be mobilized by relatively large displacements. 

The assumption of infinitesimal displacements will therefore lead to nail-conservative 
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(a) (b) 

Figure 6.4: Bridge 5-2 predicted failure modes: (a) associative friction; 
(b) non-associative friction 

results, Indeed, the UK Department of Transport bridge assessment memorandulIl 

BA16/93 [22] states that: 

'the mechanism method .. may not be appropriate where soil 1'csistance is imp01'tunt, 

which found to be the case even for relatively flat arches "these (mechani.ml.) pro­

grams may therefore produce arbitrary results' 

The assumption that peak horizontal pressures are mobilized by infinitesimal struc­

tural displacements can also lead to erroneous failure mechanism being identified 

when the mechanism method is applied to multi-span arch bridges, Though this 

problem can be overcome by manually adjusting the fill pressures until a correct 

mechanism is obtained, a more elegant way to deal with this problem is to use all 
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Bolton arch Expt. RING 1.5 RING: output Difference: 
rib/bridge Failure (associative from non- non-associati ve 
ref. load friction formu- associative vs. associative 

(kN) lation) friction proce-
dure 

Failure CPU Failure CPU ReductiO! CPU 
load time load time (s) ill failure slow-
(kN) (s) (kN) load down 

factor 
Arch 2 1.5 1.45 0.16 1.44 1.6 0.7% lOx 
Bridge 3-2 360 253 0.25 248 1.3 2% 5.2x 
Bridge 5-2 500 486 0.98 457 24.1 6% 25x 

Table 6.2: Multi-ring arches: experimental and infinite crushing strength 
analysis results with associative and non-associative friction models 

iterative gross displacement analysis, as proposed by Gilbert [23]. 

For a gross displacement analysis, it may be assumed that the build-up in soil 

resistance pressures occurs gradually. In a study performed by Gilbert [23], it was 

found that the recorded build up in pressure, in the case of 3m single and lIlulti­

span bridges tested at Bolton Institute, was non-linear but could approximately be 

described by the empirical relationship p = Ppeak(1 - (1 - 2R)5), where R is net 

barrel rotation in degrees. The suggested procedure for gross displacement. analysis 

involves carrying out 'standard' mechanism analyses sequentially. A step-bY-Htep 

description for the procedure is as follows: 

1. Perform 'standard' mechanism analysis of structure. 

2. Perform material crushing analysis to determine the effect of material cl'UHhillg 

at hinges. 

3. Magnify infinitesimal displacements to determine Hew positioIlS for the blocks. 

4. Modify soil-structure pressures as necessary. 

5. Repeat from step 1. 
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The success of the above procedure relies on the use of relatively small displacement 

increments in step 2. 

6.5.5 Soil-structure interaction 

In addition to the issue of the amount of displacement required in order to mobilize 

soil restraining pressures, there are other problems: the backfill acts both to dis­

perse the applied loading and to restrain sway of the barrel into the fill. However, 

conventional limit analysis (and many other) models often suffer froIll the fact t.hat 

unless the backfill is modelled explicitly, backfill pressures restraining the masonry 

generally need to be stipulated in advance of an analysis (yet in reality these will be 

a function of the failure mode, which is not known in advance). 

To illustrate this point it is worthwhile to consider SOIIle sample problems u:;ing 

RING. This software, in common with other masonry arch bridge analysis programs, 

has been calibrated against results from full-scale bridges which, for various reaSOllS, 

have tended to fail in 4 hinge mechanisms. In RING the presence of unia..xial backfill 

elements [12] means that although it is unnecessary to specify in advance the :;Cllse 

of the pressures, the magnitudes of the pressures do need to be specified in advance. 

Thus, in order to approximately reproduce the results from full-scale tests, horizontal 

passive zone restraining pressures might commonly be entered as Kp/3 where Kp= 

(1 + sinr/»/(1 - sincl», and where cl> is the internal angle of friction of the backfill 

material. However, RING chooses the critical failure mechanism from a multitude 

of possible ones and a 4 hinge failure mechanism is by no means always identified 

as being critical. For example, Fig. 6.5 shows two failure modes encountered when 

recently assessing a number of local authority-owned field bridges. 

Both the predicted failure modes shown in the figure involve sliding failures (non­

associative failure modes are shown, but in these cases the predicted nOll-associative 
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(a) (b) 

Figure 6.5: Standard predicted failure modes: (a) 3 hinges and abutment 
sliding; (b) sliding only mechanism 

failure loads were identical to their associative friction counterparts). In the case of 

the bridge shown in Fig. 6.5(a), despite the fact that horizontal restraining prcs:mres 

were in this case applied to the back of the skewbackt , the latter was predicted to 

slide. However, the magnitudes of the pressures specified were calculated using 

modified classical vertical retaining wall theory as outlined above, whereas in reality 

such a failure mode would almost certainly mobilize significantly larger soil presslll'Cs. 

The same is also true for the mechanism indicated in Fig. 6.5(b). Thus ill both ca.ses 

the RING strength predictions are likely to be quite conservative. 

One way to address this issue properly is to move away from an indirect modelling 

strategy for the soil towards, instead, modelling the soil explicitly (Le. usillg solid 

elements to represent the soil). Though this is, in principle, relatively straightfor­

ward since RING is designed to be a rapid analysis tool, an important challenge is to 

implement the capability in a computationally efficient manner. Whilst it is unlikely 

that sufficient validation will have been performed to enable explicit modelling of 

the soil to be implemented in RING 2.0, it is anticipated this will be incorporated 

in a subsequent release. FUrther discussion of the important issue of soil-structure 

interaction is provided in [24]. 

t The inclined support at each end of a segmental arch. 
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6.6 Practical application of computational limit 

analysis to masonry arch bridges 

Three local authority bridges (A, B and C) have been selected in order to test the 

capability of RING. The following section identifies why the particular bridges were 

chosen. 

Firstly, in the case of many bridges studied here, the depth of the fill above crown t 

is greater than the barrel thickness. Hence, according to BD21/01, an alternative 

method of analysis to the modified MEXE must be applied. All these bridges have It 

relatively short span. In short span bridges, stresses will generally be comparatively 

low and the effect of second order elastic shortening is negligible, consequently sllch 

bridges will likely to fail in mechanisms involving predominantly rigid body rotations 

and/ or translations. Other modes of failure are less likely to take place. Additionally, 

the self weights of these bridges, are relatively small compared with potential live 

loads. In these circumstances RING is an ideal tool. 

Secondly, all the example bridges comprise a number of rings of brickwork. The 

inter-ring mortar joints in these bridges are potential surfaces of weakness and lllay 

conservatively be modelled as friction-only joints. Previous assessments of these 

bridges have been conducted using RING 1.1, which inherently assumes associa­

tive friction. A research version of RING 1.5 has the capability to perform a 11011-

associative friction analysis and hence it is of interest to see the effect of the flow 

rule on the predicted load capacity and the corresponding failure mechanism. 

Thirdly, all these bridges incorporated backfill material to fill the spandrel void 

areas. The research version of RING 1.5 also has the capability of performing a 

gross displacement analysis, which allows the influence of the build up ill restrainiug 

soil pressures to be investigated. 

t The highest point along the external surface of the arch rib. 
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6.6.1 Parameters used in the RING analyses for the present 

study 

Unless stated otherwise, the following values have been used in the rc-a."iSCSSlllellts: 

Parameter Value Note 
Characteristic brickwork strength 2.3 From BD21/01, assulIlillg LOlldoll 
(N/mm2

) Stocks 
Coefficient of friction between units 0.6 Value used in BS5628 pt 1 
Brickwork unit weight (kN/m") 20 
Fill unit weight (kN /m3

) 18 
Loaded length (m) 0.3 BD21/01 value used for tro\lgh 

decks (see BD21 para.. 6/11) 
Limiting load dispersion angle (de- 30 For use with BOllssinesq tyP(' dis-
grees) tribution 
Coefficient of passive pressure, Kp 1 Equivalent to olle third of the cia."i-

sical value when cp = 30° 
N umber of blocks per arch ring 40 
Load dispersion type Boussinesq 

Table 6.3: Parameters used in the RING analyses for the present study 

Fill depth refers to the distance between the arch supports levcl ami thc road Jewl. 

6.6.2 Bridge A 

Bridge A comprises two brickwork arch spans supported on brickwork abut.mcnts 

as shown in Fig 6.6. Geometrical and material propcrties arc given in Tabl(~ GA. 

A number of different analyses were performed using RING 1.1 alld the research 

version of RING 1.5. Results are presented in Table 6.7 and in Fig. 6.8. 

As expected, modelling the arch using two rings rather than a single ring had it 

large impact on the predicted carrying capacity. It is also evident that when nOll­

associative friction is assumed, the predicted carrying capacity reduceli by ahnost 

25% (from 24.7 to 18.63kN/m). Failure mechanisms are shown ill Fig. 6.7. 

-
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Figure 6.6: Bridge A 

Parameter Value 
Number of spans 2 
Span 3.5m,2.5m 
Rise l.090m, O.6m 
Number of rings 2 
Ring thickness O.1175m, O.1175m, O.345m 
Fill depth 1.56m, 2.15m 

Table 6.4: Bridge A: geometrical and material properties 

6.6.3 Bridge B 

Bridge B, which is shown in Fig. 6.9, is a very short (1.8m) span, three-ring thick, 

brick arch bridge which has an approximately semicircular profile. Geometrical and 

material properties are given in Table 6.5. Unlike most of the other bridge in th 

current study, this bridge does not have a depth of fill above crown greater than the 

barrel thickness. RING predictions for this bridge are shown in Table 6.7 and Fig. 

6.11. 

In the case of this bridge, the influence of the choice of friction model on carrying 

capacity was less pronounced, though the associative and non-associative failure 
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Load factor = 24.7 c=J 

Ca) 

Load factor = 18.6 c=J 

(b) 

Figure 6.7: Bridge A failure mechanisms: (a) associative friction analysis; 
(b) non-associative friction analysis 

mechanisms were visibly different (Fig. 6.10). 

Very significant difference in failure modes were also in evidence when this bridge 

was modelled as a single ring (Fig. 6.12) though in this case the associative and 

non-associative friction load factors were identical. 
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Figure 6.8: Variation of bridge carrying capacity with the gross displace­
ment of the block with the maximum vertical displacement for bridge 
A 

Figure 6.9: Bridge B 



Chapter 6 : Practical Application of Computational Limit Analysis 188 

Parameter Value 
N umber of spans 1 
Span 1.81m 
Rise O.91m 
N umber of rings 2 
Ring thickness O.122m, O.243m 
Fill depth 1.395m 

Table 6 .5: Br idge B: geometrical and material properties 

Load factor = 50.6 

Load factor = 44.7 

(b) 

Figure 6.10: Bridge B: (a) associative friction analysis; (b) non-associative 
friction analysis 
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Figure 6.11: Variation of bridge carrying capacity with the gross displace­
ment of the block with the maximum vertical displacement for bridge B 

6.6.4 Bridge C 

Bridge C shown on Fig. 6.13, is an attractive, grade II listed, three span brickwork 

arch bridge. The arch barrels of each span contain headers which means that ring 

separation is unlikely to occur. Geometrical and material properties are given in 

Table 6.6. RING predictions for this bridge are shown in Table 6.7 and Fig. 6.15. 

Parameter Value 
N umber of spans 3 
Span 3.92m, 5.565m, 3.91m 
Rise 1.681m, 1.962m, 1.765m 
Number of rings 1, 1, 1 
Ring thickness O.34m, O.335m, O.334rn 
Number of piers 2 
Pier thickness l.05m, 1.15m 
Pier heights O.5rn, O.4rn 
Number of blocks per pier 5, 4 
Fill depth User defined: 1.960rn, 2.556rn, 

7.753rn, 2.695rn, 1.3640rn, 
2.545rn 

Table 6.6: Bridge C: geometrical and material properties 
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Load factor = 88 

(a) 

Load factor = 88 

(b) 

Figure 6.12: Sliding failure mode for bridge B: (a) associative friction 
model; (b) non-associative friction model 

This bridge was found not to be exceptionally sensitive to gross displacements or to 

the particular friction model used. However, an interesting finding was that when 

backing was included in the model this led to two spans being involved in the failure 

mechanism, despite the stocky piers (Fig. 6.14). 

To facilitate the subsequent discussion and to enable comparisons to be made, the 

analysis results are pre ented in Table 6.7. 



Bridge No. No. RING assessment (load capacity in kN/m) 
of of 
rings blocks 

per 
ring 

RING RING RING RING 1.5: 
1.1 1.5 1.5: gross-

non- displacemen 
associative analysis 
friction 
analysis 

A 1 40 43.3 43.3 - -
2 40 24.2 24.7 18.63 19.6 
2 140 - 24.1 - -

B 1 40 88 88 88 -
1 140 - 87 - -
2 40 51 51 44.69 46.3 

C 1 40 103.5 103 103 -
With 1 140 - 105 - -

• backing 1 40 88.3 87.45 87.45 85 
Without- 1 140 - 87.43 - -

backing 
I 

--

Difference: Difference: 
non- mechanism 
associative- vs. gross 
vs. associa- displacement 
tive analysis 

RING 1.5: 
combined 
non-associative 
gross displace-
ment 
analysis 
- 24.57% 20.65% 
19.39 
-
- - -
- - -

41.43 12.37% 9.22% 
- - -
- - -

85 0 2% 
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Figure 6.13: Bridge C 

Load factor - 88 

Load factor - t 03 

(b) 

Figure 6.14: View of failure mechanisms for bridge C: (a) without back­
ing; (b) backing included 
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Figure 6.15: Variation of bridge carrying capacity with the gross displace­
ment of the block with the maximum vertical displacement for bridge C 

6.7 Discussion 

Recent changes to the problem formulation used in RING, outlined in this paper , 

have been shown to significantly increase its computational efficiency. This enabled 

the author to re-assess a number of bridges belonging to a local authority (which 

have been previously assessed by the author using RING 1.1) using a higher number 

of blocks. This was shown, in many cases, to make a small difference to the answers 

obtained using RING 1.1. The slight decrease in predicted load carrying capacity 

due to the use of more blocks being counter-balanced by the slight increase in the 

load capacity obtained using RING 1.5 because of the different inter-ring constraints 

used. 

When a research version of RING 1.5 was used to re-assess these bridges with the 

assumption of a non-associative model for friction it was found that reductions from 

0-25% in the predicted capacity resulted. Additionally, in many cases, different 

failure mechanisms, which looked visibly more sensible, were obtained. It was also 
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observed that there was a local distinct change in soil pressure direction (Fig.6. 7(1)) 

and Fig.6.1O (b)). This can be attributed to the fact that the arch moves less to the 

fill in the cases when non-associative friction model is assumed. Consequently, the 

direction and the value of pressure exerted on the arch by the fill will change. 

The gross displacement analysis feature in the research version of RING 1.5 ha.s 

been put to the test and a gross displacement analysis has been performed for all 

the bridges presented in this paper. When these bridges were re-analysed llsing 

the gross displacement analysis, a lower load capacity was obtained in all cases. 

The difference between the gross displacement analysis and the ordinary mechanism 

method analysis predictions varied between 9-20%. This compares well with till' 

8-12% reductions previously found by Gilbert [23]. 

The current method which uses rotation of the arch barrel(s) to detennillc the 

magnitude of passive resistance pressures is not general. In the future it wOllld hp 

preferable to model the soil explicitly in a coupled analysis. 

6.8 Conclusions 

Recent developments to the RING masonry arch bridge analysis software arc de­

scribed in this paper. Additional features such as a non-associative constit.utive 

model for sliding friction and a gross displacement analysis capability have been 

discussed. The software was applied to a number of typical local authority bridges. 

The significant improvements of the computational efficiency of RING 1.5 with its 

predecessor RING 1.1 have been demonstrated. 

The rigid block analysis method was found to provide a conceptually simple, yet 

powerful and efficient means of determining the critical collapse mechanism awl 

associated load factor, whether the bridge contained single or multiple spans awl/or 

arch rings. 
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Although arguably more realistic, it was found that non-associative friction alld 

gross displacement analysis were computationally expensive. It will remain up to 

the judgment of the assessment engineer as to whether this additional expense is 

justified. It was also found that the gross displacement analysis predicted a lower 

load capacity. 
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Chapter 7 

Discussion 

7.1 Introduction 

The overall objective of the research leading to this thesis was to develop a general 

model for limit analysis of RC slabs and masonry structures and to apply this to a 

variety of practical problems within the context of reinforced concrete and masonry 

structures. As an assessment or design tool, the developed model should be suitable 

to be used in practical engineering projects, oriented to assess the load capacity of 

RC slabs/masonry structures. 

Structural engineers are presently assessing more structures than designing new ones. 

With many assessment indications suggesting that current bridges have insufficient 

load carrying capacity, bridge owners are faced with a problem. The resources 

needed for strengthening/or reconstruction, or the economic impact of imposing 

weight restrictions, have prompted the search for more efficient and accurate meth­

ods for assessment. This has stimulated a line of research focusing 011 developing 

efficient and practically useable analysis tools. The current research presented in this 

thesis can be considered to follow this line. Furthermore, the continued advances in 

199 
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computing power has enabled treatment of problems which have been only few years 

earlier would have been considered to be intractable, or only solvable by researchers 

rather than practicing engineers. 

The particular applications that have been considered in the thesis are reinstated 

below. 

7.2 Automated yield line analysis of RC slabs 

As second order effects for short span slabs are negligible, the appropriateness of 

using non-linear analysis methods for the determination of load carryillg capacity uf 

RC slabs becomes questionable. Hence, there is need to develop techniques which 

are more suitable for the assessment of RC slabs, whether these form floors slabs or 

bridge decks. To be practically useable, the developed techniques should be easy to 

use, conceptually simple and applicable to a large number of structures. 

In the UK, the assessment code provides scope for ellgineers to use a variety of 

methods to assess the load carrying capacity of structures. Although the main 

emphasis in the code is on the elastic analysis methods, engineers are free to use 

other methods such as plastic analysis methods, non-linear finite elemeut met.hods 

or load testing in appropriate circumstances [1, 2]. 

Elastic methods found favour for many reasons: they are well established and sup­

ported by many computer software packages. Engineers also feel they can trust 

these methods as they are effectively lower-bound methods which produce conser­

vative results. This may be acceptable for design purposes, however, it may be less 

justifiable for assessment purposes. 

A typical approach for assessing RC slabs is to use a linear elastic analysis. This 

can be carried out by using the finite element method or the grillage method. Using 
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these techniques, locations of maximum moment and shear forces are identified. 

In fact, in RC slabs, cracks would form at these locations which would result ill 

moment distribution since these slabs are usually under-reinforced. A linear ela...,tic 

analysis is incapable of accurately modelling moment distribution. Accordingly, 

elastic methods are very conservative as the failure of one part of the structure is 

taken as the failure for the whole slab. 

There is a large body of evidence from model and full scale tests that RC slabs 

are able to carry loads well beyond their predicted capacity using elastic meth­

ods [3]. This means engineers should consider other methods which are efficient and 

economical. Three options can be considered: performing a more sophisticated anal­

ysis using non-linear finite element methods, conducting load tests on the structure 

itself to verify its load capacity or performing a plastic collapse analysis. 

Non-linear finite element modelling is more suited to in-depth, specialized assess­

ments of major structures or for laboratory research and is not presently considered 

to be a practical option for use in assessing large numbers of existing structures. 

Load testing can be carried out on individual cases, but it is not a practical option 

for the volume of structures expected to be involved. 

Plastic collapse analysis in the form of a yield line analysis [4] cau be used to 

assess the strength of RC slabs/bridge decks. Yield line analysis, in comlllon with 

other plastic analysis methods, considers the failure of the whole slab rather than 

failure of a part. This fully utilizes the distributed strength capacity of a structure. 

Consequently, the method is less conservative than elastic methods. 

Traditional "hand" yield line methods are somewhat cumbersome to apply to all but 

the simplest structural geometries, reinforcement arrangements and loadings. Hence, 

the complex nature of most real world structures has limited its use. The imple­

mentation of plastic collapse methods in computer software allows design/assessment 
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engineers to analyse more complicated structures in seconds and the optimization 

of a collapse pattern under many different loading configuration becomes possible. 

In this context, the Highways Agency in the UK commissioned the Department of 

Engineering at Cambridge University to develop a yield line analysis program for RC 

bridges. The resulting program is called COBRAS [3, 5]. The COBRAS program 

contains a library of pre-defined failure patterns for RC bridges. The progralIl 

iterates through these to find the one which gives the lowest load. Although the 

program has been successfully applied in many cases, it cannot be considered gelll~ral 

enough as it is restricted to a range of geometrical configurations. 

The goal of the present work has been to formulate a more generally applicable 

approach. The 'Sheffield method' developed is promising but Olle issue of concern 

with the new formulation is the derivation of the shear factor used to modify yield 

condition constraints. Values used here were derived geometrically based on intu­

ition rather than mathematically; it cannot be claimed that they are rigorous but 

it seemed the method is working with them and appeared to give sensible results. 

For example, one problem which has been extensively studied in the past is the case 

of a fixed edged square slab. The exact solution for this case consists of complicated 

field moments near the slab corners and therefore serves well to test the program 

capability and the method performance. A value which is less than 0.2% from the 

exact solution was obtained with fairly small number of divisions. A solutioll with 

a higher number of divisions per side was sought, however the limitations of the 

available computer power/hardware made it impossible to run such big problems 

on a 32 bit desktop computer running Windows XP and therefore a move to 64 bit 

UNIX system was necessary. This enabled modelling of the slab problem using a 

higher number of divisions per side. Fully utilizing the symmetry of the slab in hand, 

only 1/8 of the slab may be modelled. Using a discretization of 400x400, a load 

factor of 42.845 was obtained, which is within 0.01% of the exact solution (42.851). 
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The problem could not be solved when the number of divisions exceeded 400 per 

side due to an unforseen problem with the optimizer (Mosek 2.5) [6]. It appeared 

that the load factor was converging towards the exact solution and, if it becomes 

possible to use the same or an alternative optimizer to model this slab with a finer 

mesh, the exact solution may eventually be obtained using identical hardware. 

For all cases presented in the thesis, the load factor was found to converge towards 

the exact solution from below when the number of divisions per side was increased. 

For many of the examples considered, a fairly small number of elements is needed 

in order to obtain the exact solution. However in a few cases, for example the 

case of fixed edged square slabs, a large number of elements are needed to achieve 

close approximations of exact solutions. However, as previously explained, the com­

puting resources available then became the limiting factor. Therefore an adaptive 

discretization strategy may be useful. 

Although it is not documented in the thesis, the author experimented with adaptive 

meshing, and found that (apart from the case of simply supported slab modelled 

with square elements) this did not perform as well as expected in the majority of 

cases tried. The simple idea was to examine the translational displacements at 

interfaces: as it is known in advance that the solution will converge towards the 

exact solution when these displacements tend to zero, so, elements which share in­

terfaces with a given translational displacement were refined. This should minimize 

the translational displacements and consequently allow the load factor to converge 

towards the exact solution. Although preliminary results for the case of a simply 

supported slab modelled with square elements were encouraging, as in Fig. 7.1, this 

approach could not be fully utilized without rigorously deriving shear factors, as the 

element aspect ratios are constantly changing. Shear factors need to be derived ill 

a way that fully considers all types of elements. 

Another approach, which can be followed to predict load factors at a higher number 
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Figure 7.1: Adaptive meshing for a simply supported square slab mod­
elled with square elements 

of elements without actually performing the analysis with this number of elements, 

is to extrapolate results at the required mesh size. This can be carried out using 

Richardson's extrapolation. Other researchers have tried this approach [7, 8] to 

confirm that their solution is converging to the exact solution. 

So far, the method has performed well for the problems that have been investigated. 

However, one important issue remains to be resolved: the method developed has 

H1; ~ 
M fit-



Chapter 7 : Discussion 205 

no formal status within the framework of plastic analysis. In other words, before 

performing initial analyses with different number of elements, one cannot define t!H~ 

status of the solution obtained (Le. whether it is an upper-bound or lower-bound 

solution). In order to establish the status of the method, an attempt has bccn 

made to obtain kinematic ally admissible solutions and thus rigorous upper-bound 

solutions using the method. 

The 'two-phase Sheffield method' relies on the fact that previous examples have 

demonstrated that the original Sheffield method appears, in the majority of cascs, 

to identify sensible failure patterns in terms of displacement contours. The mcthod 

appeared to perform well and has promise; however the time available did not allow 

the method to be fully investigated. It can be considered as a minor step towards 

obtaining genuine upper-bound solutions from the Sheffield method. 

Finally, it is worth mentioning here that analogous techniques (Le. using finite ele­

ments with discontinuities) have been used in formulating problems of limit analysis 

in the geotechnical field [9, 10, 11]. Here the technique has been found to perform 

reasonably well e.g. overcoming the disadvantage of traditional finite element for­

mulations. The main differences between the Sheffield method and these metho(is 

is that, unlike in the case of the Sheffield method, in-plane rather than out-of-planc 

problems have been considered. 

7.3 Limit analysis of masonry block structures 

with non-associative frictional joints using lin­

ear programming 

Environmental changes and increasing axle loads accelerate the rate of detcrioratioll 

of masonry arch bridges. This resulted in an acute demand for reliable assessment 
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methods for bridges. Elastic methods here are widely used for the same aforcmcIl­

tioned reasons. 

In recent years, non-linear finite element analysis has been applied to masonry prob­

lems. However, in the case of masonry arch bridges there are many ullcertaillties 

regarding the properties, constructional details and initial stress states. This mcallS 

that the wisdom of using sophisticated, computationally expensive and highly sen­

sitive finite element packages becomes questionable. 

It is also well known that masonry structures do not deform elastically. Collapse 

of masonry structure usually occurs without significant prior elastic dcfonnations 

which means that there are few warning signs that failure will take place. Such 

characteristic behaviour is more like a rigid block behaviour. 

Well established methods for masonry arch bridge analysis such as the 'mechanism' 

method and the 'thrust-line' method inherently assume that frictional failures do 

not happen. This is ,perhaps, justifiable in the case of voussoir arches, as failure 

mechanisms mainly involve rotations at hinges. However, for other masonry aSSCIll­

blages such as masonry walls, the friction plays an important role and therefore such 

an assumption is not valid. 

Modelling Coulomb sliding friction mathematically can be problematic and bence 

the role of the friction in the assessment of rigid block structures has been largely 

neglected until recently, when sophisticated new mathematical programming meth­

ods have been applied to the problem. Whilst undoubtedly promising, specialized 

non-linear programming solvers have had to be employed to obtain solutions. There 

is also a concern that the methods proposed may be prohibitively computationally 

expensive when applied to even moderately large problems. 

For these reasons, a much simpler iterative procedure, which involves the successive 

solution of simple LP sub-problems, has been considered in the fifth chapter. 
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The method has generally been found to perform well, although some improvements 

are needed, particularly the convergence performance for very large problems. 

A number of issues related to the proposed method, such as the solution status and 

the influence of the choice of starting problem, have already been discussed in this 

chapter. The next section is devoted to application of computational limit analysis 

to real-world problems. 

7.4 Practical application of computational limit 

analysis: masonry arch bridges 

So far, it has been shown that it is possible to develop relatively computationally 

inexpensive limit analysis computer programs for RC slabs and masonry structures. 

To fulfil the aim of applying limit analysis to practical applications, the sixth chapter 

in the thesis was devoted to masonry arch bridge case study problems. It was initially 

intended to use the automated yield line method, developed in the fourth chapter, 

in the assessment of real RC bridges. However, time constraints meant this was not 

possible. 

The bridges which have been considered in the re-assessment exercise were primarily 

chosen to illustrate the newly developed features of RING. Another important cou­

sideration was that these bridges should have relatively short spans so that they will 

likely to fail in a mechanism involving predominantly rigid body rotations aud/or 

translations. 

The implementation of the non-associative friction analysis feature in RING 1.5 

shown to affect the computed load factor by between 0-25% with the largest differ­

ences being found when multi-ring brickwork arches were considered. 
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When a gross displacement analysis was conducted, a lower load capacity W8.'l ob­

tained in all cases. However, gross displacement analysis will only be useful if the 

user has an appropriate knowledge of the behaviour of the backfill when the arch 

sways into this. 

RING 1.5 does have some limitations. For example, although the program call be 

used to assess the load capacity of multi-ring arch bridges with the defects of ring 

separation, it cannot detect the ring separation which may take place during the 

loading process. The program is also limited to short and medium spall bridges, 

where second order effects are negligible. 

The purpose of RING, as any software, is to remove the burden carrying out COlIl­

putations manually. It is intended to be user friendly and efficient; accordingly, 

the software has been programmed so that only simple data is required in order 

to give a solution. With RING, assessments are automatically obtained once the 

geometry, material properties and the nature of loading are identified, removing the 

need for tedious manual calculations. Although the RING software is fully auto­

mated, engineering judgement or intuition in some situations is needed ill order to 

fully utilize the software. For example, the issue of ring separation: RING cannot 

detect whether ring separation is likely to occur. The user has to specify ill ad­

vance in the input section, based on engineering judgment, whether the arch under 

consideration should be modelled as a multi-ring or single ring arch. Similarly, all 

appropriate knowledge of the likely behaviour of the backfill is required to ensure 

reliable results are obtained. Also a judgement needs to be made as to whether the 

rigid block method of analysis can be applied to the problem in hand at all. The 

decisions made by the individual, extending from the analytical description of the 

structure, the judgement on the correctness of the numerical analysis and through 

to the interpretation of the results, are not acquiescent to computerization. Que 

must understand the principles of the analysis and use own's judgelllents. Comput-
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erization has relieved the burdens of the rote operations in structural analysis, but 

it cannot relieve the responsibility of using such results. 

7.5 The future of mathematical programming ap­

plications to limit analysis 

For all methods presented in the thesis, a unifying element ha." been the use of 

mathematical programming, in the form of linear programming, to find the optimulIl 

solution for the structural analysis models developed. For any structural analysis 

model the main components are structural model and material constitutive model. 

The structural model adopted here consists of assemblages of finite elements. These 

may be assemblage of finite elements interacting through interfaces with transla­

tional displacements, in the case of RC slabs, or rigid blocks interacting through 

non-tensional interfaces in the case of masonry structures. The constitutive models 

considered have included the square yield criterion and Mohr-Columb model. 

The importance of mathematical programming has been recognized for some time, 

However, despite this importance, mathematical programming is seldom used in 

structural analysis. This is partly attributed to the computer power and the rela­

tively primitive algorithms available when computer based methods were first devel­

oped in 1960s and 1970s. However there are signs that mathematical programming 

will be used in limit analysis problems more in the future. Interior point optimiza­

tion algorithms are now robust, powerful and scale well to large problems. 
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Chapter 8 

Conclusions and 

Recommendations for Further 

Work 

8.1 Introduction 

The work described in this thesis can be divided into three sections: limit analysis 

of RC slabs, limit analysis of masonry structures and application of computational 

limit analysis to masonry structures. Conclusions related to each section will be 

grouped together. 

8.2 Limit analysis of RC structures 

1. A novel limit analysis method for RC slabs has been developed (the 'Sheffield 

method'), and implemented in a computer program. The method uses a dis­

crete description of the slab as an assemblage of elements. A kinematic ap­

proach is adopted in the problem formulation. Translational displacements at 

212 
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interfaces between elements are permitted in order to account for the fact that 

critical yield lines may reside inside elements rather than on elements edges. 

2. In order to evaluate the merits of permitting translational displacemcnts (or 

non-zero shear forces in the static (equilibrium) formulation), results from the 

program have been compared with existing solutions from the literature for 

a number of cases. The results obtained agree quite well with known exact 

solution for different slab configurations and boundary conditions. 

3. The fixed edged square slab case demonstrated how regular meshes can capture 

complicated displacement contours near to the slab corners. 

4. The Sheffield method appeared, in the majority of cases, to be capable of 

producing a solution using a variety of different element geometries, unlike 

other methods such as that proposed by Munro and Da FOllseca. For example, 

no feasible solution will be found if the Munro and Da Fonseca method is used 

to find the critical yield line pattern for simply or fixed edged square slabs if 

quadrilateral elements are used instead of triangular elements. 

5. Using the Sheffield method a close estimate of the exact solution can normally 

be obtained. 

6. In most cases the solution converged to the exact solution regardless to the 

element type, provided that a sensible value for the shear factor is used. 

7. In the cases where the exact solution for the load factor is obtained, refining 

the mesh further does not lead to any change in the load factor. 

8. The Sheffield method was found, in the majority of cases, to identify sensible 

failure patterns in terms of displacement contours. 

9. It was found that it is possible to obtain true upper-bound solutions using a 

two-phase version of the method. 
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10. It was also found that solutions obtained, when the Sheffield method wa.."l ini­

tially used to set-up the problem for phase 2, gave lower load factors cOlIlpared 

to solutions obtained when the Munro and Da Fonseca method WH.':i initially 

used to set-up the problem for phase 2. 

8.3 Limit analysis of masonry structures 

l. A new computational limit analysis procedure for rigid Llock assemLlages COIll­

prising non-associative frictional interfaces has been presented. The proposed 

method involves solving a series of LP problems with successively lllodified 

failure surfaces. 

2. The proposed method appears to be capable of quickly ascertaining whether 

associative and non-associative solutions differ. 

3. The method was also found to identify 'good' estimates of the load factor for a 

wide range of problems (in all cases tried the computed load factors were less 

than or equal to published MCP values and within a few percent of published 

MPEC values). 

4. The method appears to be particularly suited to comparatively large prob­

lems. For one such problem contained in the literature it was found that the 

computed load factor was virtually identical, but this was obtained two orders 

of magnitude more quickly. 
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8.4 Practical application of computational limit 

analysis: masonry arch bridges 

1. Recent developments to the RING masonry arch bridge analysis software have 

been described. Additional features such as a non-associative cOllstitutive 

model for sliding friction and a gross displacement analysis capability have 

been discussed. 

2. The software has been applied to a number of typical local authority bridges. 

Significant improvements of the computational efficiency of RING 1.5 COlll­

pared with its predecessor RING 1.1 have been demonstrated. 

3. The rigid block analysis method has been found to provide a conceptually 

simple, yet powerful and efficient means of determining the critical collapse 

mechanism and associated load factor for arch bridges, whether the latter 

contain single or multiple spans and/or arch rings. 

4. Although arguably more realistic, it was found that non-associative friction 

and gross displacement analysis were computationally expensive. It will re­

main up to the judgment of the assessment engineer as to whether this addi­

tional expense is justified. 

5. It was found that the gross displacement analysis procedure will always predict 

lower load capacities than the normal (infinitesimal displacement) analysis 

procedure. 

8.5 Overall conclusions 

1. The numerical procedures for limit analysis methods presented here are con­

ceptually simple, computationally efficient, yet describable. 
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2. The computer programs which have been developed based on these methods 

have shown that the limit analysis approach has the potential for becoming a 

powerful and a widely used numerical analysis tool for RC slabs and masonry 

structures. The approach can be used by non-specialists as the results of the 

analyses do not require the kind of interpretation normally required when post. 

processing finite element program result.s. Limit analysis should certainly be 

considered in situations where the use of more complex analysis tools is not. 

justified. 

8.6 Recommendations for further work 

Numerical procedures developed based on the concepts of limit analysis can be 

extended and modified. Particular suggestions and amendments are as follows: 

8.6.1 Limit analysis of RC structures 

A rigorous derivation of the shear factor used in the Sheffield method is an obvious 

initial step to be taken. This will facilitate other amendments to the method. In 

detail these are: 

8.6.1.1 Investigating methods to reduce computer time 

In the majority of the cases which have been investigated using the Sheffield method, 

the load factor which has been obtained when using a moderate number of divisions 

per side was usually between 0-10% different to the exact load factor. There is 

a belief that the exact load factor will be obtained when the size of the elements 

tends to zero. This is however clearly not a practical option. Therefore, adaptive 
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discretization strategies to reduce computer time can be useful. Adaptive mesh 

refinement in limit analysis has been investigated by Christiansen and Pederscn 

[1] and it has been found to generally perform well. Another approach is to use 

Richardson's extrapolation to extrapolate the load factor at very small element 

sizes. It can also be used to estimate errors [2]. 

8.6.1.2 Investigating other techniques to improve the overall perfor­

mance of the Sheffield method 

Including allowances for the enhancement to the ultimate load capacity of laterally 

restrained slab strips offered by the membrane action in the Sheffield method will 

make the predictions obtained by the method more reliable. Ideas developed in 

the limit analysis of masonry structure can be utilized to develop a method which 

combines membrane analysis and yield line analysis in one formulation. 

8.6.1.3 Applying a similar technique to in-plane analysis of slabs 

The idea of allowing discontinuity in the velocity fields between elements at interfaces 

can be applied to in-plane slab analysis problems. For instance, work carried out by 

Poulsen and Damkilde [3] could provide the basis for such a method. 

8.6.1.4 Material optimization 

As mentioned in the third chapter, one of the outcomes from the European Con­

crete Building Project at Cardington was that the yield line design of concrete flat 

slabs was found to be 'easily the best opportunity identifiable to the concrete fmme 

industry'. Therefore, an automated method for an optimum of design of RC slalls 

will be practically useful. 
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A computer program for an optimum design of RC slabs based on the yield line 

method can be developed by extending the formulation of the Sheffield method to 

consider material optimization. Material optimization using limit analysis has been 

considered by Borkowski [4], Da Fonseca et al. [5], Krenk et al. [6] and has been 

shown that considerable material savings can be achieved. 

8.6.2 Limit analysis of masonry structures 

8.6.2.1 3D analysis of masonry structures 

Extending the rigid block method of analysis capability to three dimensions is all 

obvious next step. A 3D model will enable the computer program to tackle problems 

involving asymmetric loading on an arch barrel, and could also be adapted to model 

skew bridges, presently difficult to analyse accurately in 2D. It will also enable the 

assessment of masonry domes and vaulted structures. 

8.6.2.2 Improving soil-structure interaction model 

Gross displacement analysis has been found to provide a way of improving the 

modelling of soil-structure interaction. However, in common with similar simplified 

elastic models, a problem is that the method requires that pressure distribution are 

known in advance of an analysis. This is unsatisfactory and a more detailed model 

in which the arch and the soil are both modelled explicitly is really required. 
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formulations of the rigid block analysis method have been proposed, with lillear pro­

gramming (LP) generally being used in the solution process. However, there appears 

to be little information in the literature on the relative computational efficiellcies of 

the various formulations (when used either with traditional Simplex or newer interior 

point LP solvers). Thus a 'redundant forces' formulation put forward previously by 

the second author is here compared with an alternative 'joint equilibrium' formula-

tion. It is found that the joint equilibrium formulation is the IllOSt cornputationally 

efficient formulation when applied to complex geometrical arrangements of blocks, 

such as those found in multi-ring arches. 

Keywords: limit analysis, masonry arch bridges, rigid block, linear programming, 

joint equilibrium, redundant forces. 

A.2 Introd uction 

In recent years limit state analysis methods for masonry gravity structures have 

been extensively studied. One particularly important practical application has been 

the determination of the ultimate carrying capacity of masonry arch bridges. This 

is also the main application considered in this paper. In the case of masonry arch 

bridges the objective of most limit analysis procedures is to determine the magnitude 

of the load which just transforms the structure into a mechanism. Thus the simplest 

limit analysis methods for single-span arches typically assume that ultimate failure 

occurs when four hinges form. Assuming the masonry possesses infinite cornpressive 

strength, these hinges can be assumed to form on the extrados (outer surface) and 

the intrados (inner surface) of an arch, with, at failure, the thrust line (Le. the 

line through the resultants of the compressive stresses in successive crosS sections) 

passing through the hinges which form alternately on the extrados and intrados. 

Since at the hinge points bending moments are zero, it is then possible to use 
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statics to determine the magnitude of the applied load which will cause collapse. 

This was demonstrated by Pippard [1] and the approach was later placed securely 

within the framework of plastic limit analysis by Hcyman [2]. Thus, a 'mechanislll' 

(or 'upper-bound') limit analysis involves an assumed hinge configuration with the 

lowest upper-bound solution being the correct oue sillce ill this case the thrust liue 

between hinges will lie entirely within the arch. Thus in this ca:;;e the 'safe' (or 

'lower-bound') theorem is also satisfied (the latter states that if CL thrm-it liue call 

be found for the complete arch which is ill equilibrium with the external self weight 

and which lies every where within the masonry of the arch ring, then the arch is 

'safe'). However, because of the complexity of arch bridge geometry coupled with 

the complex loading patterns typically found in practice, hand-based limit analysis is 

not generally practicable. Additionally, some of Heyrnan's original assumptions aTe 

no longer considered generally acceptable (e.g. infinite masonry crushing strength; 

no sliding failures). Hence various computer-based methods have been proposed 

[3, 4, 5, 6J. These methods use either rigorous or ad-hoc optimization techniques 

to identify the critical failure mode. Among these methods, the rigid block method 

of analysis [5, 6J is the most generally applicable and may for example easily be 

applied to arch problems involving multiple arch rings and/or spans. The simple 

rigid block analysis software 'RING', which was originated by the second author 

[7, 8], is now widely used by practitioners worldwide to analyse rna..<;onry bridges. 

However, although the RING software can solve most simple single and multi-span 

problems almost instantaneously as far as the user is concerned on a modern PC, 

it has been found that execution times for more demanding multi-ring problems are 

often undesirably long, even when a state-of-the-art PC is employed (e.g. see Fig. 

A.l for sample multi-span and multi-ring analysis screen displays). Exploring ways 

of reducing execution times has been the main stimulus for the present study of 

alternative rigid block analysis problem formulations. 
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A.3 Rigid block analysis: alternative problem for-

mulations 

Most researchers working on rigid block analysis have presented lower-boullll 'cqui-

librium' formulations, as first proposed by Livesley [5]. Conversely, Gilbert awl 

Melbourne presented a 'mechanism' formulation [6, 9]. However, the choice H..'i tu 

whether an 'equilibrium' or 'mechanism' formulation is used is essentially merely 

a matter of preference since when these formulations are lillearized they give rise 

to dual linear programming problems (and modern linear programming solvers eau 

easily switch between these, or solve both simultaneously). More importaut. is the 

particular choice of problem variables and constraints. According to the classifica.­

tion of LP formulations presented by Tarn and Jennings for plastic frame design [10], 

Livesley's original equilibrium formulation may be classified as a 'joiut equilibriulll' 

approach. In this approach the problem variables comprise both the interface forces 

and the resultant forces acting on each and every block. Conversely, Gilbert alld 

Melbourne's formulation for single and multi-span arch bridges may be classified a.s 

a 'redundant forces' approach (though the dual form of this was actually present.ed). 

In this approach the problem variables are both the interface forces and (only) t.he 

redundant forces. 

In general the redundant forces method will produce LP tableaux containing fewer 

variables and constraints than the joint equilibrium method, a feature which made 

it attractive to the second author when developing a rigid block method for masonry 

arches some years ago [6J. However, in the case of multi-ring arch problems, a prob­

lem with the redundant forces method is that the presence of inter-ring coutacts 

leads to numerous redundant forces (i.e. additional forces at every coutact point. 

on the interface between rings). Hence the resulting tableaux, although compact, 

will be very heavily populated with non-zero elements; this can be quite cornputa-
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tionally expensive to solve. A recent reappraisal of the situation has also indicated 

that modern LP methods (Le. interior-point based LP methods) may in fact be 

well suited to the solving the type of large sparse tableaux produced by the jOillt. 

equilibrium method; this will be investigated in this paper. 

A.4 Rigid block analysis: two dual LP formula-

tions 

This section identifies similarities and differences between joint equilibrium and rc-

dundant forces formulations. However, maintaining the authors' previolls preference 

for mechanism (or 'kinematic') formulations, the dual of these will be presented. 

The problem in hand concerns an assemblage of rigid blocks comprising m interfaces 

separating n blocks (this includes notional boundary support blocks in the case of 

the joint equilibrium formulation and [only] redundant support blocks in the ca.'>e of 

the redundant forces formulation). 

The constituent blocks may initially be assumed to be both rigid and illfinitely 

strong. Suppose also that the assemblage is subjected to both dead load p and 

live loading q. The dual problem is to find the minimum load factor). which when 

applied to live loading will lead to collapse. This problem can be formulated using 

an approach based on virtual work, as: 

Minimize ).Iql [IJ = pT d (A.l) 

where the whole structure live load, dead load and displacement vectors are denoted 

respectively qT ={ QbQ2, ... ,qn}, pT ={PbP2, ... ,Pn}' and dT ={ d} ,d2, ... ,d,,}. And 
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F~iu,e Io4d foctor· 9.28 
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Figure A.I: Sample RING output: (a) Multi-span; (b) Multi-ring arch 
analysis 
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where the block live load, dead load and displacement vectors are denoted n~spec­

tively q; = {qx,qy,mq}j, p; = {px,py,mpb and d; = {u,v,4>}j. Block displace­

ment and force components are shown on Fig. A.2. 

Subject to a unit displacement constraint: 

(A.2) 

Next geometric compatibility constraints are required. The nature of these depends 

on which formulation is being considered. 

initial position 
~-----------r----,-~--~---l 

_~/-J---- 11 displaced position 
,--------
1 

1 

I 
I 
1 

\VkL 
1 
1 
I 
I Block k 
1 

--I 
11 1 
11 1 
1 \ 1 
1 1 \ 
1 \ \ 

: \ T,-v_1 ----0 \ 

1 \ UI 1 
1 \ , 
1 \ , 

1 \ \ 
1 1 Block I 1 
1 \ _J 

I I \ -- ---
L ___________ J ~----

(a) 
(b) 

Figure A.2: Block displacement components (a), and force components 
(b) 

A.5 Red undant forces formulation (dual) 

In this formulation the problem variables are the relative displacements at each 

interface i. The absolute displacement components of block j are in this formulation 

not defined as problem variables. However, the displacement of block j can be 

expressed as a function of the relative rotations between adjacent units lying between 
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the block and a datum fixed support. Le as: 

8 

(A.3) 

where Aj and Bj are suitable transformation matrices derived from the geollle­

try of the structure (see reference [9] for further details); r T ={ rI, r2, ... , rm}, where 

r; ={ O~, Of} and where O~, Of respectively represent rotations about elldpoints A 

and B of interface i (Of, Of 2:: 0). And where sT ={ SI, S2, ... , sm},where st={vt, Yi} 

and where yt, Yi are the positive and negative sliding displacernents on interface 'i 

(yt, Yi 2:: 0). Note also that B j is formed using the usual LP limit analysis asSUlllP­

tion that the normality rule holds when sliding occurs. i.e. normal displacements of 

magnitude Sb(yt + yn occur, where Sb is the coefficient of dilatant friction between 

blocks. 

With the dual redundant forces formulation the number of geometrical compatibility 

constraints required equals to the number of redundant forces. e.g. for a single span 

arch the requisite compatibility constraint is: 

(AA) 

(where block n is a fixed abutment block remote from the datum fixed support). 

A.6 Joint equilibrium formulation (dual) 

In this formulation the problem variables comprise both the relative displacemcuts 

at each interface and the absolute displacements of each block. Thus for an interface 

i between two blocks k and l(e.g. see Fig. A.2), the requisite joint compatibility 
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constraint may be defined as follows: 

(A.5) 

where C j and Di are suitable compatibility matrices. Note that Dj is formed using 

the usual LP limit analysis assumption that the normality rule holds when sliding 

occurs. Finally, boundary conditions may readily be prescribed using this formula­

tion. e.g. if block n is to be fixed in space then constraint (AA) should be ilIlposed. 

A.7 Solution 

Once the objective function, variables and constraints have been defined, any stan­

dard linear programming technique can then be used to obtain a solution for A. 

Note though that if it is found that there is 'no feasible solution' to the problem this 

is likely to be because the structure is geometrically locked. Alternatively the solu­

tion may be found to be 'unbounded' which indicates that the structure is unstable 

under dead loads alone 

A.8 Case study problems 

A.S.l Multi-ring brickwork arch rib problem 

A fictitious multi-ring arch problem containing a reasonably large number of rings 

and units per ring was set up in order to test the efficiency of both the redundant 

forces and joint equilibrium formulations. The problem specification is given in Fig. 

A.3. To solve the problem three different LP solvers were used. These were: the 

commercial Xpress MP Simplex based solver (version 12); the publicly available 
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1 kN 

Figure A.3: Case study problem: multi ring arch subject to a concen­
trated load 

PCx interior point solver (version 1.1) used currently by RING and the commercial 

Mosek interior-point solver (version 2.0). Figure A.4 shows the predicted collapse 

mechanism for this problem. Note that the load factor and associated mechanism 

were essentially identical irrespective of problem formulation or solver used (load 

factor = 47.7). Finally, Fig. A.5 shows the execution times for both the joint equi­

librium and the redundant forces formulations (all problems were run on a 800MHz 

Pentium III PC running Microsoft Windows NT). 

It is evident from Fig. A.5 is that a very substantial saving in CPU time is realisable 

when the joint equilibrium formulation is used. This is because although a much 

greater number of variables and constraints are present ill this case, the proportion 

of non-zero elements in the LP tableau is much reduced compared with that in the 

redundant forces formulation. This greatly speeds the solution process when using 

most modern linear programming solvers, particularly those based on interior point 

methods. 

It is also evident that for this type of problem that whilst the Simplex solver solves 
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Parameter Value 
N umber of rings 6 
N umber of blocks 90/100/110/120/130/140 
Ring thickness 0.2m 
Arch width l.Om 
Friction coefficient 0.6 (radial), 0.0 (tangential) 
Unit weight 18.0kN/m'J 

Table A.1: Multi-ring brickwork arch rib: geometrical and material prop­
erties 

the redundant forces problem approximately 8 x more quickly than the two interior­

point solvers tried, conversely the interior-point solvers solve the joint equilibriulll 

problem up to 8x more quickly than the simplex solver. 

47.7kN 

Figure A.4: Benchmark problem: predicted collapse mechanism and load 

A.8.2 Multi-span arch rib problem 

As mentioned previously, it is known that the redundant forces method works well 

with simple 20 single and multi-span arch problems. However, a case study problem 

was set up to check the performance of the joint equilibrium formulation for such 

problems. A fictitious problem containing several hundred blocks was selected so 

as to represent the upper end of the size of problem likely to routinely ta.ckled 

by assessment engineers. The problem specification is given in Fig. A.6. In this 
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Figure A.5: Case study problem: execution times for different problem 
formulations & LP solvers 

case the problem was solved quite quickly whichever formulation was used. The 

redundant forces formulation was solved in 0.05 and 0.1 seconds using the PCx 

and Mosek solvers respectively. When the joint equilibrium formulation was used 

run times were somewhat longer, being 0.22 and 0.20 seconds using the PCx and 

Mosek solvers respectively (these problems were solved using a 1.6GHz Athlon PC 

running Windows XP Professional). The computed failure load for this structure 

was 91.3kN. 

Figure A.6: Case study problem: multi span arch rib subject to a con­
centrated load (at midspan of span 1) 
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Parameter Value 
N umber of spans 6 

Span 5m 
Rise 1.25m 
N umber of rings 1 
N umber of blocks per ring 100 
Ring thickness 0.33m 
N umber of piers 5 
Pier thickness 0.75m 
Pier heights 2.5m/3.5m/5m/3.5m/2.5m 
N umber of blocks per pier 25/35/50/35/25 
Arch width 1.0m 
Coefficient of friction 0.65 
Unit weight 18.0kN/m;J 

Table A.2: Multi-span arch rib: geometrical and material properties 

A.9 Discussion 

The greater efficiency of the joint equilibrium formulation in solving 'difficult' multi­

ring problems means that this has now been incorporated into a new version of the 

masonry arch bridge analysis software RING [7]; this will be made publicly available 

via the website [8] shortly. Using the joint equilibrium formulation it is also much 

easier to automatically set up and solve general two and three dimensional rigid 

block problems. However, there is an important proviso: the formulation described 

here assumes the principle of normality holds true when blocks slide relative to each 

other [i.e. an associated flow rule is assumed]. Drucker [11J has shown that results 

from an analytical model in which frictional interfaces are modelled in this way will 

be upper-bounds on the 'exact' values whilst Livesley [5] discussed this issue ill the 

context of rigid block analysis. In many cases the difference between computed load 

factors obtained when an associated flow rule is, or is not, assumed to hold true 

will be small. Unfortunately though, this cannot be guaranteed and the magnitude 

of the difference will generally be highly problem dependent. Thus in the case of 

multi-ring brickwork arch bridges it has been found that a rigid block analysis which 



Appendix A : The computational efficiency of two rigid block analysis 
formulations for application to masonry structures 14 

incorporated associative friction produced computed results which agreed quite well 

with experimental results [12] (in fact the analysis typically slightly underestimated 

actual bridge strength). However, when some other geometrical configurations of 

blocks are considered the importance of modelling friction as non-associative is likely 

to be greater. For example, consider the block wall problem shown in Fig. A.7. 

Here the computed (associative) load factor was 0.33195, yet Ferris and Tin Loi 

[13] have obtained a non-associative load factor for this problem of 0.26374. This 

lower load factor is some 20 percent lower; it is also possible that an even lower 

non-associative load factor will be found for this problem in the future. In fact 

this is very much an active research area at present, with useful work being carried 

out recently by workers such as Baggio and Trovalusci [14] and Ferris and Tiu­

Loi [13]. Unfortunately the methods proposed to date have tended to rely 011 the 

use of rather specialised solution algorithms (not LP). It is also generally observed 

that when using such algorithms, problems quickly become intractable as their size 

increases. However, a new method for treating non-associative friction is currently 

under development by the authors. The method involves successively solving a 

series of modified LP problems. Initial results are extremely promising and details 

will be published soon. Finally, a note about the assumption of infinite material 

strength made in this paper. Though methods of including material crushing have 

not been discussed here, crushing can readily be included in most formulations, e.g. 

see reference [15]. 

Parameter Value 
Block dimensions 4 x 1. 75 (2 x 1. 75) 
Dead load per block 1 (0.5) 
Horizontal ('earthquake') live load per 1 (0.5) 
block 
Coefficient of friction 0.65 

Table A.3: Typical masonry wall analysis problem: geometrical and ma­
terial properties 
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Figure A.7: Typical masonry wall analysis problem: (a) initial geome­
try, (b) predicted collapse mechanism (assuming normality at frictional 
interfaces) 

A.10 Conclusions 

This paper has compared joint equilibrium and redundant forces rigid block analysis 

formulations. For multi-ring masonry arch problems the joint equilibrium formula­

tion appears to be much more computationally efficient than the redundant forces 

formulation. Consequently a joint equilibrium formulation is currently being incor-

porated into the now widely used RING software and a new version of this should 
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be publicly available later in 2003. The joint equilibrium approach is also much 

easier to apply to arbitrary assemblages of blocks. However, if frictional interfaces 

are modelled using an associated flow rule, as is common in LP limit analysis, then 

results must be treated with some caution. A new iterative LP based method of 

treating non-associative friction in rigid block analysis is currently being tested by 

the authors; further details will be published shortly. 
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Appendix B 

Mathematical Programming 

B.1 Introd uction 

Broadly speaking, Mathematical Programming (MP) is a mathematical technique 

applied to a special class of problems, where the main concern is to minimize or max­

imize a real function of real or integer variables, subject to certain constraints. The 

scope of mathematical programming is wider than just the calculation of the mini­

mum or the maximum value for a real function in a certain problem, it also includes 

the study of these problems; their mathematical properties, the development and 

implementation of algorithms to solve these problems, and the application of these 

algorithms to real world problems. It should be noted that "programming" does 

not specifically refer to computer programming. In fact, the term "mathematical 

programming" antedates computers and means 'preparing a schedule of activities'. 

Mathematical programming embraces algorithms and heuristics specifically designed 

to address certain problems. The main features of MP [1] are shown graphically in 

Fig. B.1. 

The MP model which has been abstracted from a real world (or artificial) problem 

comprises: 

1 



Appendix B : Mathematical Programming 

Optimise 

Model ---========----+~ Optimum 

Abstract Project 

Problem - - - - - - - - - - - - - - - - - -... Solution 

Figure B.1: Mathematical programming features 

• a set of decision variables, whose values are to be determined; 

• the relationships between these variables, known as the constraints; 

2 

• a means of comparing the quality of solutions which satisfy the constraints, 

the objective function. 

Mathematical programming models include linear programming, quadratic program­

ming, and dynamic programming. However the main focus will be on linear pro­

gramming (LP) as it has been used exclusively in this work. 

A full explanation of LP theory can be found in a number of good books, most 

notably, Dantzig [2], Nash et al. [3], Luenberger [4], Garvin [5] and Bazaraa et al. 

[6]. Recently, Vanderbei [7] published a good textbook which covers interior point 

LP algorithms. 

B.2 Linear programming 

Linear programming is a mathematical technique, in which a linear function is max­

imized (or minimized) subject to given a set of linear constraints on these variables 
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(equalities or inequalities). An LP problem can be expressed as follows (the so-called 

'standard form'): 

minimize: 

(B.1) 

subject to 

AX=b} 
x~O 

(B.2) 

where x is the vector of variables to be solved for, A is a matrix of known coefficients, 

and c and b are vectors of known coefficients. The expression h(x) is called the 

objective function, and the equations A are called the constraints. All these entities 

must have consistent dimensions. 

The matrix A is generally not square, hence LP cannot be solved simply by just 

inverting A. Usually A has more columns than rows, and Ax=b is therefore quite 

likely to be under-determined, offering great latitude in the choice of x which will 

minimize h(x). 

The importance and the success of linear programming derives in part from its nu­

merous applications. Many real-world phenomena can be approximated reasonably 

well by linear relationships. There are robust solvers which find the best solution 

to LP problems rapidly. These solvers are fast and reliable over a substantial range 

of problem sizes and applications. Unlike non-linear programming, the LP compu­

tation time does not increase rapidly as the problem size increases. 

B.3 Methods of solution 

Two different solution techniques are widely in use nowadays: the Simplex method 

and interior-point methods. Both methods visit a progressively improving series of 
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trial solutions, until a solution is reached that satisfies the conditions required of an 

optimum. 

B.3.1 The Simplex method 

One of the important properties of linear programmes is that the optimal solution 

can be found among the extreme points of the convex set of 'basic feasible solutions'. 

which represents the extreme boundary points of the feasible region defined by Ax 

= b, x ~ O. The Simplex methods, as introduced by Dantzig [2], systematically 

evaluate "basic" solutions by setting the value of enough variables to their bounding 

values to convert the constraints Ax = b to a square system, which can then be 

solved for unique values of the remaining variables. The process continues until a 

terminal status is reached. This occurs when either (i) a finite optimal solution 

is found (ii) an infinite optimal solution is positively identified, or (iii) conclusive 

evidence is obtained that the problem has no feasible solution. 

B.3.2 Interior-point methods 

Although interior-point methods (in some form) have been used by McCormick and 

Fiacco [8] in solution techniques adopted for non-linear programming, which were 

developed and popularised in the 1960s, they were not applied to linear program­

ming problems until the 1980s. The first interior-point method was introduced by 

Karmarkar [9] in 1984. In contrast to the Simplex method, 'barrier', or 'interior­

point', methods visit points within the interior of the feasible region defined by Ax 

= b, x 2: O. The method is based on an algorithm which generates iterates that 

lie in the interior of the feasible region. Interior-point methods are now generally 

considered competitive with the Simplex method for small problems and superior 

for large problems. 
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B.4 The concept of duality 

Associated with any standard LP problem is another LP, called the 'dual' problem. 

The concept of duality is fundamental in connection with linear programming and 

is of great theoretical and practical importance. Knowledge of duality allows one 

to develop a better understanding of LP models and their results and an increased 

insight into LP solution interpretation. Knowing the relation between an LP prob­

lem and its dual is vital to understanding advanced topics in linear and non-linear 

programming and enables a better interpretation/physical meaning of results when, 

for example, structural analysis/optimization problems are tackled using linear pro­

gramming. Duality also provides an alternative way of solving LP problems as 

solving the dual of any problem also simultaneously solves the primal. 

B.4.1 The dual of a linear program in standard form 

Consider the linear program (in standard form): 

minimize: 

subject to 

Ax=b 

x;::: 0 

(P) (B.3) 

With each constraint i (i =l, ... ,n), a positive, negative or zero variable Ci, is asso­

ciated (called a 'dual variable'). Consider also the linear program: 
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ma.ximize: 

subject to 

g(y) = dTy 

Zy:S b 

y~O 

6 

(D) (B.4) 

The dual LP (D) is closely related to the primal LP (P). The constraint matrix of 

(D) (Le. Z) is the transpose of the constraint matrix of (P) (Le. A). In this case, 

both the primal and dual solutions can be obtained by solving either one of the 

two problems system (D) or (P). This is because the solution of the minimization 

problem is given by the negative of the 'Simplex multipliers' in the solution to the 

maximization problem. Conversely, the solution of the maximization problem is 

given by Simplex multipliers in the solution to the ma.xirnization problem. 

Generally, the dual for any LP can be found using the following steps: 

• If the primal problem is a ma.ximization problem, then the dual problem is a 

minimization problem and vice versa. 

• The coefficients of the objective function of the dual problem are the right­

hand side terms of the constraints of the primal problem. 

• The right-hand side of the constraints of the dual problem are the coefficients 

of the objective function of the primal problem. 

• The sign constraints of the dual problem as well as the type of each constraint 

(:S, ~ or =) can be deduced from the sign conditions inside the Karush-Kuhn­

Tucker conditions of both primal and dual problems. 
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B.5 The Lagrangian function and Karush-Kuhn-

Tucker conditions 

The Lagrangian function is an important tool in the analysis and design of algorithms 

in constrained optimization. It is a linear combination of the objective fUllction and 

the constraints resulting in an unconstrained function whose optimum coincides with 

the optimum of the LP problem. Calculus can then be used to find the optimum 

solution. It also ensures that the imposed constraints are satisfied. Lagrallgiall 

function generally takes the following form: 

m 

L(x, A) = f(x) - L AiCi(X) (B.5) 
i=l 

The coefficients Ai are called Lagrange multipliers. 

More specifically, consider the general LP, with m variables and n constraints: 

minimize 

subject to: 

i=m 

i=m 

h = LCiXi 
i=l 

LaijXj ~ bj (j = 1,2, ... ,n) 
i=l 

Or, with slack variables included: 

i=m 

L aijXj - bj + kj = 0 (j = 1,2, ... , n) 
i=l 

Another way to find the solution for the above LP is to find the solution of: 

(B.6) 

(B.7) 

(B.8) 
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minimize: 

i=m j=n i=m i=m 

L{x, k, A) = L CiXi + L Aj{L aijXj - bi + k j ) + L Vi{ -Xi + t i ) (B,!)) 
i=1 j=1 i=1 i=l 

Which is the Lagrangian function for the problem. Whatever method is used to 

minimize the above function, the constraints will be satisfied, 

The Lagrangian function makes it possible to state the necessary and sufficient op­

timality conditions for problems which contain inequality constraints and/or sign 

restricted variables, namely, the Karush-Kuhn-Tucker conditions [10, 11 J. The 

Karush-Kuhn-Tucker conditions can be written as follows: 

(B.1O) 

(B.Il) 
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Computer Code 

An object oriented programming approach has been adopted for the computer pro­

grams developed. In this chapter, a brief review of the basic features of object 

oriented programming will be made. 

C.l Object-oriented programming 

In recent years, object oriented programming languages have been increasingly 

adopted when developing analysis and design software. Unlike established pro­

gramming languages (procedural languages) such as Fortran, Pascal and C, object­

oriented programming is a completely different way of approaching the idea of en­

coding a problem within a computer program. In the object-oriented programming 

approach, the computer program is defined as a collection of objects. The object ill 

itself, it is a powerful structure that contain data and functions, and can communi­

cate with other objects. Thus clearly the program can be described as a collection 

of interacting objects. In this project, by using an object-oriented language such as 

C++, a natural way of manipulating objects relevant to structural engineering such 

as elements, points etc can be developed. 

1 
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C.2 Classes 

Literally, a class is defined as a "set, collection, group, or' configumtion containing 

members regarded as having certain attributes 01' tmits in common; a kind 07' crdc­

gory". Within the context of object-oriented programming, an object is all installce 

of a class. A class in C++ is a very flexible data structure, it associates several data 

items with each other. The fields of the class are divided into public and private 

fields. Access to classes can be restricted, so that only member functions can ma­

nipulate the data in it. This enables one to hide information (and protect it). This 

gives the programmer confidence that other routines not directly associated with 

the class cannot change the state of the data. Also a field can be a function. This 

enables one to have special input and output functions to handle the data that are 

stored in the class. 

Two distinct categories of classes are usually encountered in numerical modelling: 

mathematical classes and geometrical classes. Mathematical classes/objects may be 

used to represent matrices and vectors permitting high level mathematical opera­

tions such as multiplication, divisions ... (usually required in finite element models). 

Geometrical classes are usually used to describe aspect of a physical problem: its 

domain, its boundary conditions.... Normally, these classes consist of elements, 

nodes, members .... 

Having reviewed object-oriented programming basic concepts, the next section is 

devoted to the program code and computer flow chart for the program. 
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C.3 The program code 

The SLAB program used for yield line analysis contains a number of classes these 

are: 

C.3.1 Class 'Element' 

The most significant class in the program is the element class. An element contains 

nodal data, has an area and a centroid. It also stores the element variables used in 

setting up LP problems whether these are displacements or forces. 

C.3.2 Class 'Node' 

An element contains nodes, so these are defined as self contained classes. A node 

class stores a node number, co-ordinates and global functions for distance between 

nodes, the angle between two nodes .... 

C.3.3 Class 'Interface' 

An interface class stores the interface type and interface variables used in setting up 

LP problems. It also stores the shared elements related geometrical functions. 

C.3.4 Class 'Contour-line' 

It contains lines and nodes and it stores displacement contours. 

C.3.5 Class 'Mesh' 

The mesh class is a container class for elements, nodes, contour-lines and interfa.ces. 
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C.3.6 Class 'Input' 

Reads geometrical, material properties and mesh data and discretizes the slab ac­

cordingly. 

C.3.7 Class 'Output' 

Generates Autocad script files for yield line patterns and displacement contours. 

C.3.8 Class 'Adapt' 

Is only used with the two phase Sheffield method. It generates the new discretization 

based on the displacement contours obtained using the Sheffield method or the 

Munro and Da Fonseca method. 

C.3.9 Mathematical programming classes 

These contain variables and constrains classes and Solve fUllction based all three 

different LP solvers: (Mosek 2.5, PCx and Xpress 14). 
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constraints 

Computer code 

Set-up unit displacement constraint 

Create displacement 
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Figure C.l: Computer flow chart for SLAB 
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