
A SECURITY ORIENTED APPROACH IN THE DEVEWPMENT OF

MULTIAGENT SYSTEMS:

APPLIED TO THE MANAGEMENT OF THE HEALTH AND SOCIAL

CARE NEEDS OF OLDER PEOPLE IN ENGlAND

By Haralambos Mouratidis

Department of Computer Science

University of Sheffield, U.K.

January 2004

,

Dissertation submitted to the University of Sheffieldfor the degree of

Doctor of Philosophy in Computer Science

No portion of the work referred to in this dissertation has been submitted in

support of an application for another degree or qualification of this or any other

university or any other institution of learning.

Declaration

Mr. Haralambos Mouratidis

January 22od
, 2004

Security can play an important role in the development of some multi agent

systems. However, a careful analysis of software development processes indicates

that the definition of security requirements is, usually, considered after the design of

the system. This approach, usually, leads to problems, such as conflicts between

security and functional requirements, which can translate into security

vulnerabilities. As a result, the integration of security issues in agent oriented

software engineering methodologies has been identified as an important issue.

Nevertheless, developers of agent oriented software engineering methodologies have

mainly neglected security engineering and in fact very little evidence has been

reported on work that integrates security issues into the development stages of agent

oriented software engineering methodologies.

This thesis advances the current state of the art In agent oriented software

engineering in many ways. It identifies problems associated with the integration of

security and software engineering and proposes a set of minimum requirements that a

security oriented process should demonstrate. It extends the concepts and the

development process of the Tropos methodology with respect to security to allow

developers, even those with minimum security knowledge, to identify desired

security requirements for their multi agent systems, reason about them, and as a result

develop a system that satisfies its security requirements. In doing so, this research

has developed (1) an analysis technique to enable developers to select amongst

alternative architectural styles using as criteria the security requirements of the

system, (2) a pattern language consisting of security patterns for multi agent systems,

and (3) a scenario-based technique that allows developers to test the reaction of the

system to potential attacks.

The applicability of the approach is demonstrated by employing it in the

development of the electronic single assessment process (eSAP) system, a real-life

case study that provided the initial motivation for this research.

Abstract 11

q'o my parents 1Jasili ana Ourania 9douratUfi

Por giving me opportunities you never Iiatf. ••

Por your lOve ana support ...

I tlianRJou . ..

~TOV~ yov~ pov (B«t1'i.A1J 1Cal Ovpccvi« 9dovptnibtJ

l£ux ~ £V1Calpiet; XOV pov 6';'utn:£, XOV £O'dt; 6cv dXtn:£ :;r;ur£ •••

f£ux 'rIJ'J) ocyb1J 1Cal '"CI}'Jl wrocmjpJ(tj u«t; •••

'X«t; roxtXpurrdJ ...

XtXP1J~

(JanUllry/I~ 2(04)

Dedication 111

This thesis is the product of hard personal work. However, as any other research

thesis, it would have never been completed without the help of some people.

Although it is quite difficult to express in few paragraphs the gratitude I feel for these

people, I will try my best.

First of all, I am grateful to my supervisors Gordon Manson and Ian Philp. Thanks

to both for their patience (especially with my use of the English language), their

guidance (Gordon on the computer science and Ian on the health and social care

issues), support and for being available when I needed them. My thesis owes much to

this unique combination of supervisors.

I would like to thank the financial support of the RANK Foundation and especially

its representative Sq. Leader Larry Parsons for our cooperation throughout this

research.

Thanks are also due to the members of my research panel Robert Gaizauskas,

Gerald LUttgen, and Anthony Simons for their useful comments and feedback

throughout all the stages of my research project.

My special thanks goes to Paolo Giorgini for introducing me to the Tropos project

and for the (many) discussions via e-mail or in person to clarify technical points.

Furthermore, thanks to the members of the Centre For Mobile Communications

Research (C4MCR) for the long technical but also (more importantly) social

discussions. Especially, thanks to Erika Sanchez for providing comments on my

work and most importantly for being a good friend.

Thank you to all the academic and administrative staff of the Computer Science

Department and the Sheffield Institute for Studies on Ageing (SISA), both at the

University of Sheffield, for providing me with various types of help throughout my

research.

Also thanks to Cos Tingle and Olivia Sarpong for proof reading my thesis, and to

John Mylopoulos, Paolo Bresciani, James Odell, Michael Weiss, Michael

Acknowledgements
IV

Schumacher, Paola Turci, for discussing various bits of my work and for providing

valuable feedback.

Moreover, I would like to thank the various anonymous reviewers, of the papers

that I have submitted to various journals and conferences, who have provided me

with valuable feedback and interesting comments on how to improve my work.

The biggest part of everything I have achieved so far in my life, including this

research, would not have been possible without the love and the support that I

receive from my parents and my sister Chrysa. Ma/la, /l7ta/l7ta, Xpucra cra~

wxaptcrtW yta Ott EX€t€ KaV€t, KaV€t€ Kat ea O"UV€Xicr€t€ va KaV€t€ yta /lEva. N1.wero

roX€p6~ 1IlJV EXro tEtata atKoyEv€ta.

I would like to thank my wife, Karina. Gracias por tu paciencia, apoyo y amor

durante los muchos meses que he necesitado para terminar esta tesis y por proveer

una dimensi6n diferente (placentera) a mi vida.

The chain of my gratitude would be definitely incomplete if I would forget to thank

the Lord for keeping me in good health and providing me with the necessary courage

to face the difficulties that happened during the time of this research.

Acknowledgements v

Excerpts of this thesis and in general work resulted from the presented research

have been published in journals, conferences and workshops. Most notably the

following:

• H. Mouratidis, I. Philp, G. Manson
"A Novel Agent-Based System to Support the Single Assessment Process for
Older People", in the Journal of Health Informatics (9) 3, pp. 149-163,
September 2003.

• H. Mouratidis, G. Manson, I. Philp
"Testing the suitability and the limitations of agent technology to support
integrated assessment of health and social care needs of older people", in
Informatica Medica Slovenica 8 (1), pp. 57-65, January 2003 (Invited paper. This
is an extended version of the paper presented in CBMS 2002)

• H. Mouratidis, I. Philp, G. Manson
"Analysis and Design of eSAP: An Integrated Health and Social Care
Information System", in the Journal of Health Informatics 9 (2), pp. 93-96, June
2003.

• H. Mouratidis, P. Giorgini, G. Manson
"Using Security Attack Scenarios to Analyse Security during Information
Systems Design", (to appear) in the Proceedings of the 6th International
Conference on Enterprise Information Systems (ICEIS-2004), Porto-Portugal,
April 2004.

• H. Mouratidis, P. Giorgini, G. Manson
"An Ontology for Modelling Security: The Tropos Approach", in the
Proceedings of the 7th International Conference on Knowledge-Based Intelligent
Information & Engineering Systems (KES 2003), Invited Session on Ontology
and Multi-Agent Systems Design (OMASD'03), Oxford-England, September
2003.

Publications VI

• H. Mouratidis, P. Giorgini, G. Manson
"Modelling Secure Multiagent Systems", in the Proceedings of the 2nd
International Joint Conference on Autonomous Agents and Multiagent Systems,
Melbourne-Australia, ACM press, July 2003.

• P. Bresciani, P. Giorgini, H. Mouratidis, G. Manson
"Multi-Agent Systems and Security Requirements Analysis", book chapter in
Advances in Software Engineering for Multi-Agent Systems, Carlos Lucena,
Alessandro Garcia, Alexander Romanovsky, Jaelson Castro, Paulo Alencar
(editors), Lecture Notes in Artificial Intelligence, Springer-Verlag, 2003 (in
press). (Revised and extended version of the paper appeared in SELMAS '03)

• H. Mouratidis, P. Giorgini, M. Schumacher
"Security Patterns for Agent Systems", in the Proceedings of the 8th European
Conference on Pattern Languages of Programs (EuroPLoP), Isree-Germany,
June 2003.

• H. Mouratidis, P. Giorgini, G. Manson
"Integrating Security and Systems Engineering: Towards the Modelling of
Secure Information Systems", in the Proceedings of the 15th Conference on
Advance Information Systems (CAiSE 2003), Velden-Austria, June 2003.

• H. Mouratidis, P. Giorgini, G. Manson, A. Gani
"Analysing Security Requirements of Information Systems Using Tropos", in the
Proceedings of the 5th International Conference on Enterprise Information
Systems (lCEIS-2003), Angers-France, April 2003.

• H. Mouratidis, P. Giorgini, M. Weiss
"Integrating Patterns and Agent Oriented Methodologies to Provide Better
Solutions for the Development of Secure Agent-Based Systems", in the 6th
ChiliPLoP Annual Conference, Hot Topic: Expressiveness of Pattern Languages,
Arizona-USA, March 2003.

• H. Mouratidis, P. Giorgini, G. Manson, I. Philp
"A Natural Extension of the Tropos Methodology for Modelling Security", in the
Proceedings of the Agent Oriented Methodologies Workshop (at the OOPLSA
2002), Seattle-USA, November 2002.

• H. Mouratidis, G. Manson, I. Philp, P. Giorgini
"Modelling an agent-based integrated health and social care information system
for older people", in the Proceedings of the International Workshop on Agents
Applied in Health Care (at the 15th European Conference on Artificial
Intelligence). Lyon-France, July 2002.

Publications Vll

• H. Mouratidis, P. Giorgini, G. Manson, I. Philp
"Using Tropos methodology to Model an Integrated Health Assessment System",
in the Proceedings of the 4th International Bi-Conference Workshop on Agent­
Oriented Information Systems (AOIS-2002), Toronto-Ontario, May 2002.

• H. Mouratidis, G. Manson, I. Philp
"Testing the suitability and the limitations of agent technology to support
integrated assessment of health and social care needs of older people", in the
Proceedings of the 15th IEEE Symposium on Computer Based Medical Systems
(CBMS-2002), Maribor-Slovenia, June 2002 (Best Student Paper Award).

• H. Mouratidis
"An Agent-Oriented Methodology for the Development of Secure Agent-Based
Systems", in the Proceedings of the PREP 2003, Exeter-England, April 2003.

• H. Mouratidis, I. Philp, G. Manson
"Towards a mature and complete agent-oriented software engineering
methodology", in the Proceedings of the PREP 2002, Nottingham-England, April
2002.

Moreover, two journal papers (one based on the analysis and design of the electronic

single assessment process system and the other on chapters 4 and 5 are in

preparation.

Publications Vlll

Declaration .. i

Abstract .. ii

Dedication .. iii

Acknowledgements ... iv

Publications resulted from this research .. vi

Table or contents .. ix

List Of figures ... xiv

List of tables ... xvii

CHAPTER 1 Introduction .. 1

1.1 Motivation of this research ... 1

1.2 The problem ... 2

1.3 Related work: existing approaches and their limitations 4

1.4 Research aims and approach .. 8

1.5 Structure of the thesis ... 9

CHAPTER 2 Agent oriented software engineering and security modelling

.. 11

2.1 A brief review of basic concepts in software engineering 11

2.1.1 Requirements engineering .. 13

2.1.2

2.1.3

Design stage ... 15

Development methodologies .. 15

2.2 Agent oriented software engineering ... 17

2.2.1 Agents and multiagent systems .. 17

2.2.2 Defining the agent oriented software engineering paradigm 19

Table of Contents ix

2.2.2.1

2.2.2.2

paradigm

Agents as a modelling construct .. 20

The arguments for the use of agent oriented software engineering

.. 21

2.2.3 Agent oriented software engineering methodologies 22

2.3 Security modelling ... 26

2.3.1 Basic security concepts and ideas .. 26

2.3.2 Security in software engineering .. 28

2.3.2.1 Problems of modelling security during the development of a

system .. 29

2.3.2.2 Requirements of a security-oriented approach 30

2.4 Agent oriented software engineering and security engineering 31

2.4.1.1 Identification of a suitable methodology 32

2.5 Summary .. 37

CHAPTER 3 An overview of the Tropos methodology 38

3.1 An introduction to the Tropos methodology .. 38

3.2 A review of Tropos concepts and notations ... 40

3.3 The stages of the Tropos methodology .. 42

3.4 The modelling language of Tropos .. 43

3.5 Modelling activities in Tropos ... 44

3.6 A set oftransfonnations ... 52

3.7 An example of using Tropos .. 53

3.7.1 Early requirements analysis stage .. 53

3.7.2 Late requirements analysis stage .. 58

3.7.3 Architectural design stage .. 60

3.7.4 Detailed design stage .. 65

3.8 Limitations of Tropos with respect to security modelling 67

3.8.1 Limitations on the concepts of the methodology 68

Table of Contents x

3.8.2 Limitations on the Tropos' process of modelling security 69

3.8.3 Discussion with respect to the limitations 71

3.9 Summary .. 72

CHAPTER 4 Secure concepts and modelling activities 73

4.1 Integrating security in the Tropos methodology 73

4.2 The secure concepts ... 74

4.2.1 Constraint and security constraint.. .. 74

4.2.2 Secure dependency ... 78

4.2.3 Secure entities .. 80

4.2.4 Secure capability .. 81

4.3 Modelling activities .. 81

4.3.1 Security reference diagram modelling ... 82

4.3.1.1 Nodes of the security reference diagram 83

4.3.1.2 Links of the security reference diagram 85

4.3.1.3 An example of a security reference diagram 85

4.3.1.4 A transformation system for the construction of the security

reference diagram ... 86

4.3.1.5 Algorithm for the construction of the security reference diagram

4.3.2

4.3.2.1

4.3.2.2

4.3.3

4.3.4

.. 89

Security constraint modelling .. 91

Security constraint delegation and assignment 92

Security constraint analysis .. 93

Secure entities modelling ... 95

Secure capability modelling ... 95

4.4 Summary .. 95

CHAPTER 5 A security-oriented process ... 97

5.1 Identifying the security requirements of the system 97

Table of Contents Xl

5.2 Selecting amongst alternative architectural styles 98

5.3 Towards a design that satisfies the security requirements 100

5.3.1

5.3.2

5.3.2.1

Security patterns for agent systems .. 101

The pattern language .. 102

A description of the patterns .. 105

5.3.2.2 An example of using the pattern language 113

5.4 Attack testing of the multi agent system under development 114

5.4.1 Scenario creation .. 117

5.4.1.1 Identify the intentions of possible attackers 117

5.4.1.2 Identify possible countermeasures ... 118

5.4.2 Scenario validation ... 119

5.4.3 Testing and redefinition of the system ... 120

5.5 Checking the consistency of the security process 121

5.5.1 Consistency rules ... 122

5.6 Refining the Tropos stages to include the security-oriented process ... 123

5.7 Summary .. 124

CHAPTER 6 Applying the extensions: the eSAP case study 126

6.1 The single assessment process and the motivation behind the electronic

single assessment process .. 126

6.2 A typical scenario ... 127

6.3 developing the eSAP .. 130

6.3.1 Early requirements analysis ... 130

6.3.2 Late requirements analysis ... 140

6.3.3 Architectural design ... 143

6.3.3.1 Interception Scenario ... 154

6.3.3.2 Modification Scenario .. 157

6.3.3.3 Interruption Scenario .. 160

Table of Contents Xli

6.3.3.4 Discussion regarding the security attack scenarios 161

6.3.4 Detailed design ... 163

6.4 Discussion regarding the security extensions 167

6.4.1 How the proposed security-oriented approach helps towards the

development of secure multi agent systems .. 167

6.4.2 The key features of the proposed approach 169

6.5 Summary .. 170

CHAPTER 7 Conclusions ... 171

7.1 Does the proposed approach satisfy the requirements set in section

2.3.2.2? .. 171

7.2 Discussion on how the research objectives were met 173

7.3 Integration to other methodologies .. 178

7.4 Research contributions ... 180

7.5 Significance of this research .. 181

7.6 Directions for future work .. 183

7.7 Summary .. 1 86

Appendix A: Consistency rules .. 187

Appendix B: Supported material for chapter 6 .. 190

References .. 205

Table of Contents Xlll

Figure 3-1: Graphical representation of the Tropos concepts 42

Figure 3-2: An example of an actor diagram ... 47

Figure 3-3: An example of a goal diagram .. 48

Figure 3-4: An example of a capability diagram ... 50

Figure 3-5: An example of a plan diagram .. 51

Figure 3-6: An example of an agent interaction diagram .. 52

Figure 3-7: The actor diagram for the given example .. 54

Figure 3-8: Part of the goal diagram for the Older Person ... 55

Figure 3-9: Part of the goal diagram for the Department of Health 57

Figure 3-10: Part of the goal diagram for the eSAP ... 58

Figure 3-11: Partial decomposition of the eSAP actor ... 61

Figure 3-12: Part of the extended actor diagram with respect to the Obtain

Information about Care Plan task of the Older Person 63

Figure 3-13: Extended diagram with respect to the Authorisation Manager 64

Figure 3-14: Capability diagram for the authorisation status capability 65

Figure 3-15: Plan diagram for the evaluate authorisation status plan 66

Figure 3-16: Example of an agent interaction diagram .. 67

Figure 4-1: UML metamodel for the concept of constraint 76

Figure 4-2: Graphical representation of a constraint and a security constraint.. 78

Figure 4-3: Graphical representation of secure dependencies 79

Figure 4-4: Graphical representation of secure entities ... 81

Figure 4-5: Graphical representation of a capability and a secure capability 81

Figure 4-6: Graphical representation of nodes used in the security reference diagram

.. 84

Figure 4-7: Positive and Negative Contribution links ... 85

Figure 4-8: Example of a security reference diagram .. 86

Figure 4-9: Example of a security constraint delegation ... 92

List of Figures XIV

Figure 4-10: Example of a security constraint assignment .. 93

Figure 4-11: Example of security constraint decomposition 94

Figure 4-12: Example of secure goal introduction ... 94

Figure 5-1: An example of selecting amongst architectural styles 100

Figure 5-2: Relationships between the patterns of the language and other existing

patterns ... 104

Figure 5-3: The AGENCY GUARD dependencies ... 106

Figure 5-4: The AGENT AUTHENTICATOR dependencies 109

Figure 5-5: The SANDBOX dependencies .. 111

Figure 5-6: The ACCESS CONTROLLER dependencies 113

Figure 5-7: Example of a goal diagram analysing the intentions of an attacker 118

Figure 5-8: An example of a security attack scenario .. 119

Figure 6-1: Security reference diagram .. 131

Figure 6-2: The actor diagram .. 135

Figure 6-3: Goal diagram for the Nurse actor .. 137

Figure 6-4: Goal diagram of the Older Person actor .. 138

Figure 6-5: Refined actor diagram ... 139

Figure 6-6: Actor diagram including the eSAP actor ... 141

Figure 6-7: Goal diagram for the eSAP actor .. 142

Figure 6-8: Client/Server versus Mobile Agents architectural styles 144

Figure 6-9: Decomposing the eSAP system .. 146

Figure 6-10: Using the AGENCY GUARD, the AGENT AUTHENTICATOR and

the ACCESS CONTROLLER patterns in the development of the eSAP 148

Figure 6-11: Decomposition of the authorisation and integrity managers 149

Figure 6-12: Extended diagram for the eSAP .. 150

Figure 6-13: Extended actor diagram with respect to the Assessment Evaluator 151

Figure 6-14: Interception attacks scenario ... 154

Figure 6-15: Modification attacks scenario .. 157

Figure 6-16: Interruption attacks scenario ... 160

Figure 6-17: Partial Class Diagram with respect to the Meeting Scheduler 164

Figure 6-18: Capability diagram for the Receive Care Plan Request capability of

the Care Plan Broker agent ... 164

List of Figures xv

Figure 6-19: Plan diagram for the evaluate care plan request plan 166

Figure 6-20: Interaction diagram for the Social Worker system access clearance .. 167

Figure 7-1: A global architecture for a Tropos tool ... 185

L1st of F1gures xvi

LIN OP rtftlB£PS

Table 2-1 :Evaluation of the methodologies ... 35

Table 3-1: Actors and their capabilities with respect to Figure 3-13 64

Table 5-1: Example of consistency rules ... 123

Table 6-1: Actors and their capabilities with respect to the extended diagram of

Figure 6-13 ... 152

Table 6-2: Agent types and their capabilities ... 153

Table 6-3: The agents of the eSAP System .. 162

List of Tables xvii

This thesis reports on novel work, in the area of agent oriented software

engineering, which integrates security issues in agent oriented development. The

main novelty lies in the fact that the same concepts and notations are used throughout

the development process and a clear and well-structured security-related process is

provided (applicable even by less security-oriented developers) to consider security

issues during the development of multi agent systems. In particular, this thesis

presents security-related concepts, notations, models and procedures and their

integration within the development stages of the Tropos methodology [Giu02], a

widely known agent oriented software engineering methodology. Additionally, this

thesis describes how the extended, with respect to security, Tropos methodology can

be applied in the development of a real-life agent oriented information system for the

assessment of the health and social care needs of older people in England.

This introductory chapter forms an overview of the thesis. Section 1.1 describes the

main motivation behind the presented research, and section 1.2 presents the problem

that this research addresses. Section 1.3 provides an overview of the state of the art

by discussing work related to this research and section 1.4 outlines the research aims

and the approach followed in order to successfully complete the identified aims.

Moreover, section 1.5 presents the structure of the rest of the thesis.

1. 1 MOTIVA TlON OF THIS RESEARCH

This research started as an effort to develop an information system to deliver the

single assessment process, an integrated assessment of health and social care needs

of older people in England [PhiI97, Doh03]. Such a system is considered very

important by the English Department of Health since it has the potential to improve

efficiency and effectiveness in the collection and sharing of assessment information

regarding older people.

Towards the development of the electronic single assessment process (eSAP)

system, this research project identified agent oriented software engineering [WoolDl]

Introduction 1

as a suitable paradigm. This is mainly due to the fact that the level of abstraction that

agent oriented software engineering brings in the development of complex

computerised systems, such as the electronic single assessment process system, helps

in better mutual understanding between system developers (computer scientists) and

system users (health and social care professionals, and older person in the case of

eSAP). This is because system developers can better explain the functionalities of the

system, by decomposing it to smaller autonomous entities (agents) that possess

characteristics similar to humans, such as mobility and the ability to communicate,

and the system users can use the concept of an agent to describe more precisely the

needs of the system.

However, in trying to employ agent oriented software engmeenng m the

development of the electronic single assessment process system very little help was

found. Current agent oriented software engineering methodologies are neither

complete nor adequate for the development of the electronic single assessment

process system. The main deficiency identified was the lack of models and a

structured process, which uses the same concepts and notations, to model security

issues throughout the whole development lifecycle.

Having identified the fundamental problem, the motivation of this research was

directed towards its solution.

1.2 THE PROBLEM

In software engineering, the common approach towards the inclusion of security

within a software system is to identify security requirements after the definition of a

system [DevOO, Lod02]. This typically means that security enforcement mechanisms

have to be fitted into a pre-existing design. This approach leads to serious design

challenges that usually translate into the emergence of computer systems afflicted

with security vulnerabilities [AndOI, Sta99]. However, security is of particular

importance to multiagent systems as these are, by design, built as open systems and

interactions will take place between agents of different systems that are not known to

the developers during design. As a result, security is considered one of the main

issues to be dealt for agent technology to be widely used outside the research

community [JanOO, Mou03].

Introduction 2

However, research efforts so far have been mainly focused on the solution of

individual security problems of multi agent systems, such as attacks from an agent to

another agent, attacks from a platform to an agent, and attacks from an agent to a

platform [Jan99]. Developers of agent oriented methodologies have mainly neglected

security and although the agent oriented software engineering is progressing rapidly

and many agent oriented methodologies [EvaOl, Giu02, Ig197, Ig199, WoodOl,

Woo199] have been developed during the last few years, agent oriented software

engineering practises and methodologies do not meet the needs for resolving the

security related problems, and fail to provide evidence of successfully integrating

security concerns. As a result, multi agent system developers find no help when

considering security during the development of multi agent systems.

The problem is stated as follows:

The lack of an agent oriented software engineering methodology to assist

developers in considering security issues during the development of multiagent

systems throughout all the development stages.

Observations related to this problem have been presented in the literature. Tryfonas

et al. [Try97] note that existent methodologies for information system development

fail to include specialised handling of the security requirements, and they do not

create a control environment early in the development process. Fischer et al. [Fis02]

indicate that little research has been carried out to integrate individual security

techniques into a global methodology for agent technologies and multi agent systems.

Moreover, Devanbu and Stubblebine [DevOO] argue that security should inform

every phase of software development, from requirements engineering to design,

implementation, testing and deployment. They point out that a major challenge is to

unify security and systems engineering in order to deploy available resources and

build the right combination of customer features and security measures.

On the other hand, factors such as the involvement of non-security experts in the

development of multiagent systems, which do require knowledge of security, and the

difficulty of moving from a set of security requirements to a design that satisfies

these requirements, contribute to the difficulty of the above mentioned problem.

Therefore a solution to this problem should allow even non-security specialists to

reason about security when developing a multiagent system, and also it should use

Introduction 3

the same concepts and notations throughout the development process in order to limit

possible inconsistency that appear due to the translation of concepts when the

software process moves from one development stage to another. By considering the

above mentioned observations and factors, the problem can be re-stated as follows:

The lack of an agent oriented software engineering methodology to assist (even

non-security oriented) developers in considering security issues during the

development of multiagent systems using the same concepts and notations

throughout all the development stages.

1.3 RELATED WORK: EXISTING APPROACHES AND THEIR LlMITA TIONS

This section describes existing state of the art approaches and indicates why these

approaches are limited and do not adequately solve the problem.

As mentioned above, current agent oriented methodologies do not meet the needs

for resolving the security related problems, and fail to provide evidence of

integrating successfully security concerns throughout the whole range of the

development process. Nevertheless, recently, some work has been initiated towards

the solution of the problem.

Liu et al. [Liu02] have presented work to identify security requirements during the

development of multi agent systems. In this work, security requirements are analysed

as relationships amongst strategic actors, such as users, stakeholders and potential

attackers. Liu proposes three different kinds of analysis techniques: agent oriented,

goal oriented and scenario based analysis. Agent oriented analysis is used to model

potential threats and security measures, whereas goal oriented analysis is employed

for the development of a catalogue to help towards the identification of the different

security relationships on the system. Finally, the scenario based analysis is

considered an elaboration of the other two kinds of analysis.

In addition, Yu and Cysneiros [Yu02] provide an approach to model and reason

about non-functional requirements (with emphasis on privacy and security). They are

using the concept of a soft-goal to assess different design alternatives, and how each

of these alternatives would contribute positively or negatively in achieving the soft­

goal.

Introduction 4

Both of these works are mainly focused only in the requirements analysis area and

not in the whole development process. In addition, both Liu and Yu employ the

concept of a soft-goal to help them in their analysis. Although soft-goals provide a

good idea regarding the security of the system during the requirements analysis, they

do not provide enough detail when considering security in the other stages of the

development process. Therefore, as it has been argued in the literature [Mou02] (and

presented in section 3.8.1), the concept of a soft-goal does not adequately model

security issues throughout the development process.

Moreover, Huget [Hug02] proposes a new agent oriented methodology, called

Nemo and claims that it tackles security. In his approach, security is not considered

as a specific model but it is included within the other models of the methodology.

Nemo is a new methodology and as a result it has not been extensively presented on

the literature. However, from the point of view of this research, the methodology

tackles security quite superficial and as the developer states ''particularly, security

has to be intertwined more deeply within models" [Hug02]. Therefore, more

evidence will be required to satisfy the claim of the developer that the methodology

tackles security.

The above presented attempts are focused on the integration of security issues

within the agent oriented software engineering paradigm. Most of the attempts,

however, to integrate security and software engineering come from close disciplinary

areas such as requirements engineering, object oriented software engineering and

patterns. In the current state of the art, security properties are mainly supported by a

qualitative reasoning rather than a formal reasoning within the requirements

engineering process.

Chung applies a process-oriented approach [Chu95] to represent security

requirements as potentially conflicting or harmonious goals and using them during

the development of software systems. The proposed framework, which is called the

NFR (Non-Functional Requirements) framework, represents and uses security

requirements as a class of non-functional requirements and it allows developers to

consider design decisions and relate these decisions to the represented non-functional

requirements.

Introduction 5

Rohrig [Roh02] proposes an approach to re-use existing business process

descriptions for the analysis of security requirements and the derivation of necessary

security measures. The proposed approach consists of four main steps. During the

first step, the general security objectives of the business process are defined, whereas

during the second step the security objectives of all the constructs, such as actors and

artefacts, are examined. The third step examines whether these specifications are

consistent and during the fourth step a list of necessary security measures for each

process component is generated.

In addition, Jurgens proposes UMLsec [JurOI, Jur02], an extension of the Unified

Modelling Language (UML), to include modelling of security related features, such

as confidentiality and access control. In his work, Jurgens uses four different UML

diagrams; class diagrams to ensure that exchange of data obeys security levels, state­

chart diagrams to prevent indirect information flow from high to low values within

an object, interaction diagrams to ensure correctness of security critical interactions

between objects and deployment diagrams to ensure that security requirements on

communication are met by the physical layer.

Lodderstedt et al. [Lod02] also extend UML to model security. In their work, they

present a security modelling language called SecureUML [Lod02]. They describe

how UML can be used to specify information related to access control in the overall

design of an application and how this information can be used to automatically

generate complete access control infrastructures.

McDermott and Fox [Mcd99] adapt use cases to capture and analyse security

requirements, and they call the adaption an abuse case model. An abuse case is

defined as a specification of a type of complete interaction between a system and one

or more actors, where the results of the interaction are harmful to the system, one of

the actors, or one of the stakeholders of the system.

Sindre and Opdahl [SinOO] define the concept of a misuse case, the inverse of a use

case, which describes a function that the system should not allow. They also define

the concept of a mis-actor as someone who intentionally or accidentally initiates a

misuse case and whom the system should not support in doing so. In their approach

security is considered by analysing security related misuse cases.

Introductlon 6

Scheneir [SchOO] describes attack trees as a useful way to identify and organise

different attacks in an information system. According to Scheneir, attack trees

represent a set of intrusion scenarios and allow the refinement of attacks to a level of

detail chosen by the developers. The root of the tree represents the compromise of a

function of the system, whereas the nodes indicate a sequence of attack steps,

represented as an AND-Decomposition, or alternative ways of executing the attack,

represented as an OR-Decomposition.

Schumacher and Roedig [SchuOl] apply the pattern approach to the security

problem by proposing a set of patterns, called security patterns, which contribute to

the overall process of security engineering. As they argue [SchuOl], security patterns

help security novices to act as security experts, and allow security problems to be

solved in a structured way.

The concept of obstacle is used in the KAOS framework [Dar91] to capture

undesired properties of the system, and define and relate security requirements to

other system requirements. In this work, two set of techniques, based on a temporal

logic formalisation, are employed to reason about obstacles to the satisfaction of

goals, requirements, and assumptions elaborated in the requirements engineering

process.

These (above-mentioned) approaches provide a first step towards the integration of

security and software engineering and have been found helpful in modelling security

requirements. However, they only guide the way security can be handled within a

certain stage of the software development process. For example, McDermott and

Fox's approach is used only during the requirements analysis, whereas Jurgen's

analysis take place in a fairly low level and it is suited to a more operational analysis.

In other words, Jurgen's approach is only applicable during the design stage.

Differently than them, this research proposes an approach that covers the whole

development process using the same concepts and notations. As argued in this thesis,

considering security issues throughout the development process by using the same

concepts and notations is very important when developing multi agent systems with

security on mind. By considering security only in certain stages of the development

process, more likely, security needs will conflict with functional requirements of the

system. On the other hand, considering security throughout all the development

Introduction 7

process helps to limit the cases of conflict, by identifying them very early in the

system development, and find ways to overcome them.

Moreover, some of the above mentioned approaches only deal with specific

security issues. For example, SecureUML is focused more in access control policies

and how these policies can be integrated into a model-driven software development

process. Although such an analysis is important, it is very specific and it is applicable

only on the design stage of the modelling process. In contrast, the approach presented

in this thesis considers the whole range of security issues, from access control to

authentication and integrity.

In addition to the above approaches, existing formal methods [Ban89, RyaOO]

support the verification of a security protocol, which has already been specified

[Mea94]. However, such approaches are only applicable by security specialists and

cannot be easily applied by software developers. On the other hand, the approach

presented in this thesis uses concepts and notations derived mainly from the (agent

oriented) software engineering area and as a result can be applied by software

developers with minimum knowledge of security engineering.

1.4 RESEARCH AIMS AND APPROACH

The main aim of this research is to provide an answer to the problem mentioned in

section 1.2. In other words, this research aims to provide an agent oriented software

engineering methodology to assist (even non-security oriented) developers in

considering security issues during the development of multiagent systems using the

same concepts and notations throughout all the development stages.

To accomplish this aim the following objectives have been identified:

• Identify problems of integrating security and systems engineering and

provide a set of minimum requirements necessary for a security oriented

process.

• Extend the concepts and notations of an existing agent oriented software

engineering methodology with respect to security modelling.

• Develop a clear, well guided process of integrating security and systems

engineering throughout the software development process of multiagent

systems, using the same concepts and notations throughout the process.

Introduction 8

• Integrate the security oriented process within the methodology's

development stages.

• Evaluate the proposed solution by applying it for the development of the

electronic single assessment process system.

As indicated by the above objectives, instead of developing a new methodology,

this research project extends an existing agent oriented software engineering

methodology. Mainly this decision took place in order to take advantage of existing

work in agent oriented methodologies and focus on the integration of security and

systems engineering rather than the development of a new methodology. To this

extend, several agent oriented software engineering methodologies were reviewed

and the Tropos agent oriented methodology was identified as the most suitable for

the purposes of this project. Then the limitations of Tropos with respect to security

were identified and new security related concepts were introduced to the

methodology. Also, existing concepts were identified with security in mind and a

security oriented process was developed and integrated within the development

stages of the Tropos methodology.

To evaluate the proposed solution, the extended Tropos methodology has been

applied in the development of a real life health and social care information system

that provided the initial motivation for this research.

1.5 STRUCTURE OF THE THESIS

The structure of the rest of this thesis is as follows.

Chapter 2 introduces some basic software engineering concepts, such as

requirements engineering and development methodologies, and it describes the agent

oriented software engineering paradigm. Furthermore, the problems of modelling

security issues during the development lifecyc1e are outlined, and a set of

requirements, developed by this research project, necessary for a security-oriented

process is presented. This chapter also identifies the methodology to be used by this

research project for the integration of the proposed security-oriented process.

Chapter 3 provides a necessary overview of the Tropos methodology. The basic

advantages and the key features of the Tropos methodology are presented and the

methodology's main concepts, notations and development stages are introduced. To

Introduction 9

facilitate better understanding of the methodology, an example is used. In addition, a

critical discussion of the methodology's limitations with respect to security

modelling is presented.

Chapter 4 describes security-oriented extensions to the concepts and the modelling

activities of the Tropos methodology. Thus, this chapter discusses how this research

approached the issue of integrating security in the Tropos methodology and it then

describes the newly introduced and the extended concepts as well as the modelling

activities with respect to the security modelling.

Chapter 5 describes the security-oriented process proposed by this research. This

process includes the identification of security requirements of a multi agent system,

the selection amongst alternative architectural styles for the system-to-be according

to the identified security requirements, the development of a design that satisfies the

security requirements of the system, and the attack testing of the multi agent system

under development. Moreover, the chapter describes how the proposed process has

been integrated within the Tropos development stages.

Chapter 6 describes how the security-aware Tropos methodology can be employed

in the development of the electronic single assessment process (eSAP) system, a real­

life case study that provided the initial motivation for this research. An introduction

to the single assessment process is provided and the motivations behind the

development of the electronic single assessment process system are outlined.

Moreover, the chapter describes a typical scenario regarding the single assessment

process and a description of developing the electronic single assessment process with

the extended security-aware Tropos methodology. In addition, the chapter provides a

critical discussion/evaluation regarding the proposed security-oriented approach.

Chapter 7 concludes this thesis. It discusses how the presented approach

successfully satisfies the requirements, regarding a security oriented approach, set on

section 2.3.2.2 and also how this research project met its objectives. Moreover, it

discusses the contributions and the significance of this research and it describes

directions for future work.

Introduction 10

The previous chapter fonned an introduction to this thesis. This chapter aims to

provide readers with the necessary background to better understand the rest of this

thesis. The problems of modelling security issues during the development lifecycle

are outlined, and a set of requirements, developed by this research project, necessary

for a security-oriented process is presented. This chapter also identifies the

methodology used by this research for the integration of the proposed security­

oriented process.

The chapter is divided into four main sections. Section 2.1 introduces readers to

some basic concepts of software engineering, such as requirements engineering, the

design development stage and software development methodologies, and it provides

enough background to proceed to section 2.2 of the chapter, in which the concepts of

agent and multi agent systems are described and the agent oriented software

engineering paradigm is defined. A discussion regarding agent oriented software

engineering methodologies concludes this section. Section 2.3 introduces security

modelling and it identifies the problems of modelling security during the

development of a system. In addition, a minimum set of requirements of a security

oriented approach is outlined. Section 2.4 discusses the suitability of the agent

oriented software engineering paradigm for the integration of security modelling in

software engineering, and it identifies a suitable agent oriented software engineering

methodology for the integration of security modelling during the development stages

of a multiagent system. Finally, section 2.5 summarises the chapter.

2. 1 A BRIEF REVIEW OF BASIC CONCEPTS IN SOFTWARE ENGINEERING

Trying to explicitly and accurately define something as wide and dynamic as

AOSE and Security Modelling 11

software engineering is a very difficult task. Therefore, there is a tendency from

researchers to keep inventing new definitions according to a particular research

project. As a result of this, various different definitions regarding software

engineering appear on texts [SomOl, Mac90, Vli93]. These definitions often use

different words and different ideas to describe software engineering and range from

very simple ones, such as software engineering is what software engineers do (a

phrase that came up some times in discussions the author had with different people

about software engineering), to very complicated ones.

The rest of this section presents some of the existing definitions and concludes with

a definition of software engineering, within the context of this project, that uses

existing terminology and captures the essentials of the presented definitions.

An early definition about software engineering was given at a NATO conference

held at 1968. According to the final report of this conference [Nau68], "Software

engineering is the establishment and use of sound engineering principles in order to

obtain economically software that is reliable and works effiCiently on real

machines".

Extending this definition, Macro and Buxton [Mac90] claim "software engineering

is the establishment and use of sound engineering principles and good management

practice. and the evolution of applicable tools and methods and their use as

appropriate, in order to obtain - within known and adequate resource provisions -

software that is of high quality in an explicitly defined sense". A definition closely

related with the one presented by Macro and Buxton is presented by Fairley [Fai85].

According to this, software engineering is the technological and managerial

discipline concerned with the systematic production and maintenance of software

products that are developed and modified on time and within cost estimates [Fai85].

Similarly to the above definitions, the IEEE Standard Glossary of Software

Engineering Terminology [IEEE90] defines software engineering as "the application

of systematic, disciplined. quantifiable approach to the development operation and

maintenance of software; that is the application of engineering to software".

On the other hand, Morven Gentleman argues that software engineering is the use

of methodologies, tools, and techniques to resolve the practical problems that arise in

the construction, deployment, support and evolution of software

AOSE and Security Modelling 12

[http://wwwsel.iit.nrc.ca!sedefnlSEdefu.html]. whereas David Fisher defines

software engineering as the study of systematic and effective processes and

technologies for supporting software development and maintenance activities

[http://edlab-www.cs.umass.edulcs320/lectures/lb-intro.PDF].

In this research, software engineering is defined as an engineering approach to

the software systems development that provides methodologies, tools and

techniques to help software system developers in the analysis, design,

implementation and testing of software systems.

2.1.1 Requirements engineering

An early step of the software engineering process is the requirements analysis

stage. This section aims to describe requirements engineering, a term that covers all

the activities involved during the requirements analysis stage, and also to point out

why requirements engineering is an important part of the software engineering

development process.

Requirements are defined during the early stages of a system development as a

specification of what should be implemented [Som99]. Usually requirements are

divided into two main categories, functional and non-functional requirements

[SomOI]. Functional requirements describe what the system should do, whereas non­

functional requirements introduce quality characteristics and represent constraints

under which the system should operate. Non-functional requirements usually include

performance, accuracy, user-friendliness, availability, and security.

To help developers to correctly acquire requirements, a relatively new term that

covers all of the activities involved in discovering, documenting and maintaining a

set of requirements for a computer-based system has been invented: Requirements

Engineering. According to Axel van Lamsweerde [LamOO] "Requirements

engineering is concerned with the identification of the goals to be achieved by the

envisioned system, the operationalisation of such goals into services and constraints,

and the assignment of responsibilities for the resulting requirements to agents such

as humans, devices and software".

Eric Yu [Yu97] argues that requirements engineering involves two main stages, an

early requirements analYSis and a late requirements analysis. Early

AOSB and Security Modelling 13

requirements analysis considers how the system would meet the organisational goals,

why the system is needed, what the implications of the alternatives are for the

various stakeholders 1 and how the stakeholders' interests and concerns might be

addressed. Therefore, the emphasis during the early requirements analysis is on

understanding the whys rather the what the system should do.

The what the system should do is considered during the late requirements analysis.

This involves the precise and detailed specification of what a system should do. In

other words, during the late requirements analysis a detailed description is provided

on how the system should behave and/or what are its properties.

This research adopts the above views of both Axel van Lamsweerde, with respect

to requirements engineering, and Yu with respect to the differentiation between early

and late requirements analysis. Moreover, throughout this research, requirements

engineering is treated as an important and crucial stage for the successful

development of a system. This is mainly because when mistakes take place during

this stage, these mistakes are usually propagated in the following stages of the

development. This argument is supported by an estimation presented by Boehm,

[BoeS1] and according to which, the late correction of requirements errors could cost

up to 200 times as much as correction during the requirements analysis.

Moreover, requirements engineering plays an important role during the later stages

of the development process. This is due to the fact that the requirements of the

system might determine the technology that is to be used for the system design and

implementation. This approach, widely known as requirements driven development

approach, aims to analyse the requirements of the system-to-be and determine, based

on this analysis, if a technology is suitable for the development of a particular

system.

I The term stakeholders refer to anyone who might be affected by the system and who have an

influence on the system requirements. This might include organisations, users, managers, customers,

and authorities.

AOSE and Security Modelling 14

2.1.2 Design stage

When the requirements analysis phase is completed and an accurate description of

the requirements of the system has been produced, the next stage involves the

transformation of those requirements to design.

The belief of this research is that a design essentially forms a complete description

of the system-to-be, which must be independent of implementation platforms. As a

result, the design stage is considered as important as the requirements analysis phase

since a well-designed system is easy to understand, implement and maintain.

Design involves the specification of the system's software architecture and the

components within the system. Therefore, the design stage must define explicitly the

architecture of the system as a whole as well as the individual components of it. In

addition, the complexity of the design, even if the system is quite complex, must be

kept manageable. To do this, the design stage must provide techniques to decompose

the complexity of the system and thus make the final design easier to understand.

Although this research treats the requirements analysis and design stages as two

separated phases of the software engineering process, it also considers them closely

related. This is due to the fact that the requirements analysis stage should be in

consistency with the design stage, and one should fulfil the other. This is very

important since producing a design that is in inconsistent with the requirements

means the developed system will not operate according to the user needs.

2.1.3 Development methodologies

In both the requirements analysis and the design stages developers use guidelines,

notations and follow structured processes to help them go through these stages faster

and more efficiently. In other words, they are using methodologies (guidelines,

structure processes) and modelling languages (notations) to analyse and design a

software system.

To emphasise the need of employing a methodology in the development of a

system, Birrell and QuId argue [Bir86] "anyone undertaking software development,

on no matter what scale, must be strongly advised to establish a methodology for that

development -one or more techniques that, by careful integration and control, will

bring order and direction to the production process".

AOSE and Secur1ty Modelling 15

According to Booch [Bo094] "a methodology is a collection of methods applied

across the software development life cycle and unified by some general,

philosophical approach ".

Hubmann [Hub97] argues that a methodology always consists of the following four

components:

). A definition of the problem space to which the methodology is applicable.

,. A set of models that represent different aspects of the problem domain or the

solution at different stages.

,. A set of methods that transform instances of one model into another model.

,. A set of procedural guidelines that define an order for the systematic

application of the methodological steps.

On the other hand, Russel claims [RusOO] that a methodology usually consists of

two parts, a modelling language (that forms the ontology of the methodology), which

is usually graphical, and a collection of integrated techniques that help in the analysis

and the design.

A modelling language is effectively a collection of elements that helps to model

and document the system. As a result, a modelling language gives the designer the

opportunity to develop a system without limiting the creativity with any constraints

of a particular programming language. Furthermore, a graphical representation of the

system presents a much clearer idea of the system than a programming language. A

well-known modelling language is the Unified Modeling Language (UML) [FowOO].

On the other hand, an integrated technique provides a set of well-defined steps that

gives developers the opportunity to split the system in several sub-systems making

the analysis and design easier. It must be noticed that there are different techniques

for the analysis and the design phases. Analysis techniques help to develop models of

why and what is required from the system, whereas design techniques help to model

how the system will achieve its requirements.

Although Russel's argument is true for most of the analysis and design

methodologies especially the well-known ones such as the Object Modelling

Technique (OMT) [Rum91] and Booch [Bo094], the author of this thesis believes

that it cannot be taken as a general rule for all the methodologies.

AOSE and Security Modelling 16

In this research, a development methodology is considered as a pre-defined series

of steps that helps developers to understand a problem and model a solution. As a

result, an analysis and design methodology should provide methods, guidelines,

descriptions, and tools for each of the analysis and design phases in the life cycle of a

system. In addition, a good analysis and design methodology should identify errors

and encourage modifications at the earliest possible time of the analysis and design

phases. Although a methodology must guide through its steps, at the same time it

must be flexible and allow creativity. In other words, although a methodology must

be well defined, it should not dictate every aspect of the development.

2.2 AGENT ORIENTED SOFTWARE ENGINEERING

2.2.1 Agents and multiagent systems

Agent oriented software engineering is based on the concept of an agene. The

term agent derives from the present particle of the Latin verb agere, which means to

drive, act, lead or do [Bra97]. Although the term software agent is widely used, there

is not a standard definition of what is a software agent. According to Nwana

[Nwa96], "there are at least two reasons why it is so difficult to define precisely what

a software agent is."

A first reason is the fact that the word agent is not owned by the software agent

researchers. It is a term that it is widely used outside the agent community.

According to the Cambridge International Dictionary of English the word agent

means "a person who acts for or represents another". Thus, the term is widely used

in estate agents, or travel agents just to name a few of the cases.

A second reason is that a software agent can play many roles. There are software

agents that help to navigate, to search, or even software agents that can act as

personal assistants. Therefore, inside the agent community the term agent has

different definitions for different people. Wooldridge & Jennings define an agent as

[WooI95] A hardware or (more usually) software based computer system that

enjoys the following properties:

1 In this thesis the term agent refers always to a software agent.

AOSE and Security Modelling 17

1. Autonomy. Agents operate without the direct intervention of humans

or others, and have some kind of control over their actions and internal state.

2. Social ability. Agents interact with other agents (and possibly

humans) via some kind of agent communication language.

3. Reactivity. Agents perceive their environment, (which may be the

physical world, such as a user via a graphical user interface, a collection of

other agents, the Internet, or perhaps all of these combined), and respond in a

timely fashion to changes that occur in it.

4. Pro-activeness. Agents do not simply act in response to their

environment; they are able to exhibit goal-directed behaviour by taking the

initiative".

On the other hand, according to IBM (as quoted in [Fra96]) " intelligent agents are

software entities that carry out some set of operations on behalf of a user or another

program with some degree of independence or autonomy, and in so doing, employ

some knowledge or representation of the user's goals or desires", whereas according

to P. Maes [Mae95] agents are computational systems that inhabit some complex

dynamic environment, sense and act autonomously in this environment, and by doing

so realize a set of goals or tasks for which they are designed.

Throughout this thesis, the definition of Wooldridge and Jennings is used, that is,

an agent represents a software having properties such as autonomy, social ability,

reactivity, and proactivity.

Despite the many different definitions, it is widely agreed that the true power of the

agent paradigm is realised from the use of multiagent systems3
• These are systems

that contain more than one software agent. In a multi agent system a task is divided

into a set of subtasks and distributed amongst the different software agents of the

system.

The area of multiagent systems has its roots in several disciplines with the two

most important and relevant being the "Distributed Artificial Intelligence (DAI)" and

) In fact it has been stated that "it can been argued that there is no such thing as a single agent

system: everything involves multiple agents" [Jen99].

AOSE and Security Modelling 18

"Artificial Life (AL)". The former deals with creating systems capable of solving

problems and the latter tries to understand and model systems possessing life.

The influence of "Distributed Artificial Intelligence" field to the multiagent

systems came mainly from one of the most important figures in the Artificial

Intelligent (AI) field, C. Hewitt. Hewitt [Hew77] used in his research active entities

called actors. He thought of the idea of problem solving as an activity of many

different expert individuals. This thought gave birth to ideas such as languages for

actor communications. These languages are still considered as being good bases for

the creation of multi agent systems [Fer99].

The area of "Artificial Life" has influenced the multiagent systems research since it

provided the underlying principles of the organisation of living things. These

principles are now being studied and tested in a computer environment, giving very

useful results for the multi agent systems research community.

Later than Hewitt, Kinny et al. [Kin96] claimed that in specifying a multi agent

system, it is highly desirable to adopt a more specialised set of models, which

operate at two distinct levels of abstraction. In the first level (external viewpoint) the

system is decomposed into agents modelled as complex objects characterised by their

purpose, their responsibilities, the services they perform, the information they require

and maintain, and their external interactions. In the second level (internal viewpoint)

the individual elements required by the particular agent architecture, such as beliefs

and goals, must be modelled for each software agent of the multi agent system.

2.2.2 Defining the agent oriented software engineering paradigm

Work within the agent research community has lead towards the development of

agent oriented software engineering (AOSE) paradigm. AOSE introduces an

alternative approach in analysing and designing complex distributed computerised

systems [JenOl, WoolOl, Ig199], according to which a complex computerised system

is viewed as a multiagent system [WoolOI] in which a collection of autonomous

software agents (subsystems) interact with each other in order to satisfy their design

objectives. Therefore, developers view the system as a society, similar to a human

society, consisting of entities that possess characteristics similar to humans such as

mobility, intelligence and the capability of communicating [Mou03].

AOSB and Secur1ty Model11ng 19

2.2.2.1 Agents as a modelling construct

Most of the current work in agent oriented software engineering originated from

the programming and the AIIDAI systems constructions perspective [YuOl]. As a

result, early work in Agent oriented software engineering was focused around the

concept of an agent as a concrete artefact rather than a modelling construct.

However. an important point of the agent-oriented software engineering is that its

use for the analysis and design of a system does not necessarily impose the use of

agents as the implementation choice. Towards this direction, efforts have been made,

in the last few years, to define the concept of an agent as a modelling construct rather

than a concrete artefact. Yu [YuOIa] proposes that the concept of an agent as a

modelling construct should have the following properties: autonomy, intentionality,

sociality. identity and boundaries, strategic reflectivity and rational self-interest.

Although most of these properties have been mentioned earlier in the various

definitions of the term agent (section 2.2.1), their significance when considering

agents as a modelling paradigm is quite different [YuOI].

Autonomy does not refer to the ability of a software agent to act without the direct

intervention from humans, but rather to the adoption (from the view point of

developers) of a less simplistic view of the world, in which uncertainties are taken

into account when considering possible different alternatives for achieving a

system's obj ecti ves.

Intentionality allows developers to provide a higher-level description of the

behaviour of the components of a system by employing intentional concepts such as

goals, tasks, beliefs and capabilities.

Sociality refers (from the developers' point of view) to the modelling of the

different agents of a system in terms of their relationships, commitments and

dependencies. The property of sociality allows the better definition of these

relationships since it allows the creation and usage of new and close to real world

abstractions, such as actors, roles, and positions, to guide the development of a

system.

The property of identity refers to the perception of a software agent. A software

agent as a modelling entity is not necessarily a physical agent but rather an abstract

entity that exhibits agent behaviour. It is up to the developer to distinguish between

AOSB and Security Modelling 20

the physical and the abstract entities that will constitute the system. In addition, the

boundaries of an agent are contingent and changeable according to the relationships,

dependencies and commitments that the agent participates.

Strategic reflectivity refers to the process of reasoning about design choices by

considering different alternative ways rather than modelling a specific way. This

process is strategic because agents (abstract agents and not physical) determine

which alternatives would better serve their strategic interests.

Rational self-interest means developers try to model the preferences and the

decisions of the system's stakeholders in terms of those options that best serve their

interests. This allows drawing conclusions (limited sometimes) about their behaviour

in the system.

2.2.2.2 The arguments for the use of agent oriented software

engineering paradigm

It is early to say that the agent oriented software engineering (AOSE) paradigm

will become widely successful, since no evidence yet exists to suggest that agent­

oriented software engineering will actually improve the software engineering

productivity. However, there are convincing arguments for believing that agent

orientation will be of benefit for engineering certain complex software systems

[Jen99].

According to Jennings and Wooldridge [Jen99], there are three main arguments for

an agent oriented approach. First of all, the effectiveness of agent oriented

decompositions in partitioning the problem space of a complex system. A complex

computerised system can be decomposed into smaller components, the same way

that a multiagent system can be decomposed into the elements that constitute the

system (software agents). Secondly, the suitability of the key agent oriented

abstractions, such as agents, (social) interactions and organisations, in modelling

complex systems, and thirdly the appropriateness of the agent oriented philosophy

for dealing with the dependencies and the interactions that exist in a complex system.

Furthermore, as Lind [linD 1] notes, agent oriented software engineering provides

"an epistemological framework for effective communication and reasoning about

complex software systems on the basis of mental qualities. It provides a consistent

AOSB and Secur1ty Model11ng 21

new set of terms and relations that adequately capture complex systems and that

support easier and more natural development of these systems".

To the above points argued by Wooldridge, Jennings and Lind, this thesis adds that

the factor that really makes agent oriented software engineering distinct from any

other software engineering paradigm is the higher level of abstraction employed in

the development of software systems. The idea of modelling a system in terms of

autonomous entities with characteristics similar to humans introduces a close-to-real­

life modelling of the system, and therefore makes the development of the software

system natural.

The higher level of abstraction that agent oriented software engineering introduces,

together with the reasoning in terms of mental qualities that Lind discusses, provides

a software engineering paradigm that naturally helps to narrow the gap between real

life and modelling, by allowing developers to reason about the software system using

concepts and mental qualities known to them from the real life.

However, as mentioned by Kinny et al. [Kin96], "if agent oriented software

engineering is to become widely accepted as a paradigm for the development of

large-scale applications, adequate agent-oriented methodologies and modelling

techniques will be essential. This is not just to ensure that systems are reliable,

maintainable. and conformant, but to allow their design, implementation, and

maintenance to be carried out by software analysts and engineers rather than

researchers ".

This argument summanses what is well known within the agent research

community [www.agentlink.org]: The existence of mature and complete

methodologies, to help developers to model software systems by taking into account

the unique characteristics that agent orientation introduces, is an important issue for

the success and wide acceptance of agent oriented software engineering.

The next section provides a discussion with respect to agent oriented software

engineering methodologies.

2.2.3 Agent oriented software engineering methodologies

Attempts to develop agent oriented software engineering methodologies have been

mainly divided into three categories. Those inspired by object oriented

AOSB and Security Modelling 22

methodologies, those that consider knowledge engineering methodologies and those

that have been developed with agent orientation in mind.

This diversity has naturally raised the question if the current methodologies, which

are customised to object oriented systems (see for instance [Bo094, Fic98, Eri98,

Jac99]), knowledge-based systems (see for instance [Schr99]) or another, can be

used as agent oriented software engineering methodologies, if they need to be

extended or slightly change or if they are totally inappropriate to help the analysis

and design of systems with agent orientation in mind.

An answer to such a question is not simple. On one hand, current methodologies

are based on software engineering rules and ideas, and as mentioned in section 2.1.3,

any methodology must follow some basic rules and ideas of software engineering,

independent of the paradigm used. Therefore, considering the question only from this

point of view, the answer is that the object oriented or knowledge engineering

methodologies can indeed be used for the development of agent oriented systems.

On the other hand, the different ideas and characteristics of each paradigm must be

taken into consideration. For instance, the different level of abstraction employed by

the agent oriented software engineering in analysing and designing complex systems

introduces characteristics that object oriented and knowledge engineering based

methodologies fail to adequately model. Because of this, it has been argued

[WooIOO], that "if agents are to realise their potential as a software engineering

paradigm, then it is necessary to develop software engineering techniques that are

specifically tailored to them". From this point of view, the answer to the above

question is that non agent oriented methodologies are inappropriate when

considering an agent oriented view of a system.

Nevertheless, both of the views just described are quite extreme, either black or

white. This is not always the case and in providing a mature answer to the given

question, the rest of this section provides a discussion on the suitability of object

oriented and knowledge engineering methodologies for the development of complex

systems with agent orientation in mind.

As mentioned by Iglesias [IgI99], several reasons can be cited that justify the

extension of current object oriented methodologies for the development of systems

with agent orientation in mind. These include, the similarities that can be found

AOSB and Security Modelling 23

between the two main concepts, namely object and agent [WoolOI, Kin96] , the

commonly usage of object oriented languages, such as JAVA, for the implementation

of agent oriented systems [IgI99], and the familiarity of many software engineers

with object oriented methodologies [Ig199]. In addition, both the object oriented and

the agent oriented paradigms emphasize the importance of interactions between the

entities of the system [Jen99].

However, many shortcomings can be identified on the extension of current object

oriented methodologies for the development of software systems with agent

orientation in mind.

When employing agent orientation in the development of a system, the system is

modelled consisting of entities (agents) that are autonomous, and have intentions.

Therefore, techniques and models are required to model these characteristics.

However, the level of abstraction and the models provided by object oriented

software engineering methodologies are not adequate to model these characteristics.

Another crucial difference is that, in the object oriented paradigm, there is no

programming construct that supports the realisation of a subsystem, whereas in the

agent oriented paradigm, software agents are used to realise particular instances of

roles, which then take on a separate identity and existence [ZamOI].

Furthermore, object oriented software engineering fails to provide an adequate set

of concepts and mechanisms for modelling complex systems [JenOI]. As mentioned

by Booch [Bo094] "for complex systems we find that objects, classes and modules

provide an essential yet insufficient means of abstraction". The Object Model that is

the primary specification [WooIOO] of an object oriented system, fails to capture the

dynamic nature of the interactions between the agents since it captures static

dependencies and paths of accessibility which are irrelevant in multi agent systems

[WooIOO].

In addition, according to Wooldridge and Ciancarini [WoolOI] "object oriented

methodologies consist of an iterative refinement cycle of identifying classes, specify

their semantics and relationships, and elaborating their interfaces and

impleme1llation. At this level of abstraction, they appear similar to typical agent

oriented methodologies. which usually proceed by identifying roles and their

responsibilities and goals, developing an organizational structure, and elaborating

AOSB and Security Modelling 24

the knowledge and behaviours associated with a role or agent. However this

similarity disappears at the level of detail required by models. as the key

abstractions involved are quite different. For example. the first step of object class

identification typically considers roles. organizations. events and even interactions

as candidate objects. whereas these need to be clearly distinguished and treated

differently in an agent-oriented approach". The point made by Wooldridge and

Ciancarini is very important since such a distinction is essential in order to model the

sociality property (section 2.2.2.1) of the agents of the system.

Moreover, object oriented methodologies lack of models and techniques to capture

the metal states (such as goals, tasks and capabilities) of the agents of a system, as

well as the social relationships that the agents demonstrate in a multi agent system

environment.

Apart from object orientation, another paradigm that agent researchers use as the

basis for developing analysis and design methodologies for agent oriented systems is

knowledge Engineering (KE).

KE methodologies (see for instance [Schr99]) are used for the analysis and design

of knowledge-based systems. The main argument for the usage of knowledge

engineering methodologies is that most of the problems, such as knowledge

acquisition, modelling and reuse, subject to knowledge engineering methodologies

are present in the development of systems with agent orientation in mind. Therefore,

knowledge engineering methodologies can provide the techniques for modelling the

knowledge of the agents of the system. In addition, both the existing tools and the

developed ontology libraries and problem solving method libraries can be reused

[lgI99].

On the other hand, the main limitation comes from the fact that although these

methodologies can provide techniques for modelling in detail the knowledge of the

different agents that are included in a multiagent system, they fail to capture the

autonomous, intentional and social behaviour of these agents. In addition, most of the

knowledge engineering methodologies lack flexibility and as a result, it is difficult to

adequately extend them to capture agent concepts.

A third category of agent oriented software engineering methodologies includes

methodologies specifically developed with agent orientation in mind. Efforts towards

AOSB and Security Modelling 2S

this direction have grown rapidly the last few years, and as a result many

methodologies based on the agent oriented software engineering paradigm have been

developed (see [IgI99] for a review and [EvaOl, Giu02, Ig197, WoodOl, Woo199] for

more details of some of the methodologies). The main advantage of these

methodologies is the inclusion of models and notations to capture all the unique

characteristics that agent orientation introduces. In particular, such methodologies

can model the system in terms of agents that have properties such as autonomy,

intentionality, identity and boundaries, strategic reflectivity and rational self-interest,

and as a result take full advantage of the abstraction that agent oriented software

engineering provides when developing systems with agent orientation in mind.

However, one of the main disadvantages is that, as with any new methodology, time

is required before the methodology can be considered mature and complete.

From the above discussion this research concludes that object oriented or

knowledge engineering methodologies are inappropriate, as they are, to adequately

model software systems with agent orientation in mind. The best solution is to

develop new methodologies tailored to agent oriented software engineering, but at

the same time, the knowledge obtained from the object oriented, knowledge based or

other methodologies should be taken into consideration. This means, that agent

oriented software engineering methodologies should be able to adopt, where suitable,

existing methods and take advantage of the work that has taken place in the fields of

object oriented and knowledge engineering methodologies.

2.3 SECURITY MODELLING

2.3.1 Basic security concepts and Ideas

Physical security systems have been around for many thousands of years, ranging

from castle fencing, to window bars and door locks. Computer security, on the other

hand, although newer in comparison with physical security is definitely not a new

topic since its history starts in the 1960s [SaI7S]. Nevertheless, it was until the advent

of distributed systems and computer networks that security of software systems has

become an issue of huge concern.

As software systems, agent oriented, object oriented or otherwise, become more

and more critical in every aspect of human society, from the health sector to military,

AOSE and Security Modelling 26

so does the demand to secure these systems. This is because private information is

stored in computer systems and without security, organisations are not willing to

share information or even use the technology.

Take as an example a health and social care information system containing health

data of different individuals. Security in such a system, as in any health and social

care information system, is very important since security breaches might result in

medical history to be revealed and this could have serious consequences for

particular individuals.

Security of computer based information systems is concerned with methods

providing cost effective and operationally effective protection of information systems

from undesirable events [Lan85]. Thus, security is usually defined in terms of the

existence of any of the following properties:

• Confidentiality: The property of guaranteeing information IS only

accessible to authorised entities and inaccessible to others.

• Authentication: The property of proving the identity of an entity.

• Integrity: The property of assuring that the information remains

unmodified from source entity to destination entity.

• Access Control: The property of identifying the access rights an entity

has over system resources.

• Non repudiation: The property of confirming the involvement of an

entity in certain communication.

• Availability: The property of guaranteeing the accessibility and usability

of information and resources to authorised entities.

Failure of any of the above-mentioned security properties might lead to many

dangers ranging from financial losses to sensitive personal information losses. The

existence of the above security properties within a system is defined in terms of the

security policy. A security policy can be defined as "the set a/rules that state which

actions are permitted and which actions are prohibited" [GolD!]. A security policy

determines the limits of acceptable behaviour and what the response to violations

should be and it might define possible mechanisms, widely known as security

mechanisms. designed to detect, prevent or recover from a security attack. A security

AOSB and Security Modelling 27

attack is defined [Sta99] as an action that compromises the security infonnation

owned by an organisation.

According to Anderson [AndOI], "security engineering is about building systems to

remain dependable in the face of malice, error or mischance". To design a secure

system it is important to know what the potential threats are so that appropriate

counter-measures can be taken. However, no matter how good the protection is,

possible attackers will (and have up to now) find possible vulnerabilities to expose

the system. In addition, during the analysis and design the developer assumes the

infrastructure is 100% trustworthy. However this might not be the case, making the

prediction of every possible attack during the development of the system impossible,

and allowing a potential attacker to attack the system with types of attack that the

developer cannot identify during the development of the system.

Because of this, a well-known axiom of computer security states that the only

completely secure computer system is the one that has never been turned on.

Therefore, usually the goal will be to provide as much security as possible trading

sometimes security requirements with other functional and non-functional

requirements.

2.3.2 Security in software engineering

A security requirement is defined as "a manifestation of a high-level organisational

policy into the detailed requirements of a specific system" [DevOO]. Agent oriented

software engineering considers security requirements as non-functional requirements

[Chu95]. Non-functional requirements introduce quality characteristics, but they also

represent constraints under which the system must operate [Rom85, SomOl].

Although software developers have recognised the need to integrate most of the non­

functional requirements, such as reliability and perfonnance, into the software

development processes [Dar91]; security still remains an afterthought.

Therefore, the usual approach towards the inclusion of security within a system is

to identify security requirements after the definition of a system or consider security

only in certain stages of the development process. However, these approaches often

lead to problems [AndOl], since security mechanisms have to be fitted into a pre­

existing design, therefore leading to serious design challenges that usually translate

AOSB and Security Modelling 28

into software vulnerabilities [Sta99]. Literature provides many examples of security

disasters that happened while trying to upgrade a non-secure system to a secure

system (see for instance [Bay95]).

Thus. this research argues that security should be considered during the whole

development process and it should be defined together with the requirements

specification. By considering security only in certain stages of the development

process, more likely, security needs will conflict with functional requirements of the

system. Taking security into account along with the functional requirements

throughout the development stages helps to limit the cases of conflict, by identifying

them very early in the system development, and find ways to overcome them. On the

other hand, adding security as an afterthought not only increases the chances of such

a conflict to exist, but it requires huge amount of money and valuable time to

overcome it, once they have been identified (usually a major rebuild of the system is

needed). This argument has also been supported many times in the literature [DevOO,

JurOl, Try97].

However. to consider security issues throughout the development process of a

software system. software engineering methodologies must provide developers with

models and processes to help them model security concerns. Nevertheless, as

mentioned in section 1.4, current methodologies do not meet the needs for resolving

the security related problems [Try97] , and fail to provide evidence of integrating

successfully security concerns throughout the whole range of the development

process. In other words, they fail to adequately provide a security-oriented approach

in the development of software systems.

2.3.2.1 Problems of modelling security during the development of a

system

The development and the definition of such an approach is a demanding and

difficult task. It is demanding because there are many problems associated with the

consideration of security issues during the analysis and design stages that must be

overcome and difficult because there are requirements that such a security-oriented

approach must satisfy. The aim of this section is to discuss the problems associated

with the consideration of security issues during the whole development process.

AOSB and Security Modelling 29

Integrating security lssues within the development stages of a development

methodology is difficult mainly due to the following reasons, [Mou03a, Mcd99,

Chu95, SchuOl]:

1. Developers, who are not security specialists, usually need to develop

multi agent systems that require knowledge of security;

2. Many different concepts are used between security specialists and software

engineers. As a result, there is an abstraction gap that makes the integration of

security and software engineering more difficult;

3. There is an ad hoc approach towards security;

4. It is difficult to define together security and functional components and at the

same time provide a clear distinction. For instance, which components are

part of the security architecture, and which ones are part of the functional

specification;

5. It is difficult to move from a set of security requirements to a design that

satisfies these requirements, and also understand what are the consequences

of adopting specific design solutions for such requirements;

6. It is difficult to get empirical evidence of security issues during the design

stage. This makes the process of analysing security during the design stage

more difficult;

7. It is difficult to fully test the proposed solutions at the design level;

2.3.2.2 Requirements of a security-oriented approach

To successfully overcome the above-mentioned problems, a security-oriented

approach should comply with the following requirements:

1. Must allow novice security developers to successfully consider security

issues during the analysis and the design of multi agent systems (response to

problem 1).

2. Must employ the same concepts and notations during the whole development

process (response to problem 2).

3. Must be integrated within a methodology. The guidelines and the structural

processes of the methodology will allow the explicit definition of the

AOSE and Security Modelling 30

applicability of the security process within the stages of the methodology

(response to problem 3).

4. Must be clear and well guided (response to problem 3).

5. Must provide means to check that the development process is consistent

(response to problem 3).

6. Must define together security and functional requirements but also provide a

clear distinction (response to problem 4).

7. Must allow developers to identify possible conflicts between security and

other functional and non-functional requirements (response to problem 4).

8. Must allow developers to understand the consequences ofthe application of a

particular design (response to problem 5).

9. Must allow developers to move to a design that successfully satisfies the

security requirements (response to problem 5).

10. Must allow developers to analyse security requirements and base design

solutions on such an analysis. In other words, it should allow developers to

explore different architectural designs according to the identified security

requirements (response to problem 6).

11. Must allow developers to evaluate the developed security solution (response

to problem 7).

2.4 AGENT ORIENTED SOFTWARE ENGINEERING AND SECURITY

ENGINEERING

The agent oriented software engineering paradigm presents a feasible approach for

the integration of security to software engineering. This is mainly due to the

appropriateness of agent oriented philosophy, for dealing with the security issues that

exist in a computer system.

Security requirements are mainly obtained by analysing the attitude of the

organisation towards security and after studying the security policy of the

organisation. As mentioned in [Jen99] agents act on behalf of individuals or

companies interacting according to an underlying organisation context. The

integration of security within this context will require for the rest of the subsystems

(agents) to consider the security requirements, when specifying their objectives and

AOSE and Security Modelling 31

interactions therefore causing the propagation of security requirements to the rest of

the subsystem.

In addition, the agent oriented view IS perhaps the most natural way of

characterising security issues in software systems. Characteristics, such as autonomy,

intentionality and sociality, provided by the use of agent orientation allow developers

first to model the security requirements in high-level, and then incrementally

transfonn these requirements to security mechanisms.

However, as mentioned in chapter 1, none of the existing agent oriented software

engineering methodologies have demonstrated enough evidence to support claims of

adequately integrating security during the whole development process.

2.4.1.1 Identification of a suitable methodology

As mentioned in the Introduction, this research project aims to extend an agent

oriented software engineering methodology, rather than developing one from scratch,

to enable it to model security issues throughout the development lifecycle.

As a result, different methodologies were compared in order to identify the one that

is most suitable for this project. During this evaluation/comparison the following

criteria4 were used.

1. Support. Is the methodology well supported? Is material related to the

methodology published? Are there any tools available?

2. Accessibility. Are the models and the processes of the methodology easily

understandable?

3. Expertise. Does the methodology assume knOWledge/expertise III a

particular discipline?

4. Implementation-targeted. Is the methodology restricted to a particular

implementation choice?

5. Development coverage. How much of the development lifecycle the

methodology covers?

6. Extensibility. Is the methodology easily extensible?

4 Some of these criteria are loosely based on criteria proposed by Sturm and Shenory [Stu03].

AOSE and Security Modelling 32

7. Security-aware. Does the methodology consider any security issues within

its development processes and models?

To evaluate the methodologies a scale of 1-4 has been decided, where 1 indicates

the methodology does not address the specific property, 2 indicates the methodology

partially addresses the specific property, 3 indicates that the methodology addresses

the specific property but some minor deficiencies still exist, and 4 indicates the

methodology fully addresses the specific property.

From a large amount of existing agent oriented software engmeenng

methodologies (see [IgI99] for a review and [EvaOl, Giu02, Ig197, WoodOl,

Woo199] for more details on some of them), four methodologies were chosen and

compared, namely GAIA, Tropos, MaSE and MAS-ComrnonKADS.

The following paragraphs provide the reasons for choosing these methodologies,

and a brief introduction to each of them together with references for readers

interested in obtaining more information about these methodologies. It must be

noticed that the aim of these paragraphs is not to provide a detail description of these

methodologies; this is out of the aim ofthis section.

The GAIA methodology [WoolOO, ZamOl] was chosen because it is a well-known

methodology developed by leading researchers in the field of software agents. The

methodology deals with both the societal (macro) level and the agent (micro) level

aspects of the design [WoolOO] and it borrows some terminology and notation from

the FUSION [CoI94] object oriented methodology. Nevertheless, it is not just an

agent based extension of the FUSION. GAIA was developed having in mind that

most of today's analysis and design methodologies fail to capture the complexity of

an agent system's organisational structures as well as the flexibility of agents. It is

worth mentioning that the methodology views the requirements phase as separate

from the analysis and design phases. In the analysis phase the system is identified

using the notion of organisation, whereas design aims to transform the analysis

models into a sufficiently low level of abstraction that traditional design techniques

may apply in order to implement the agents.

Tropos [Giu02, Bre02, Bre02b] was chosen because it is a widely known and

published agent oriented software engineering methodology and one of the few that

provides some kind of security modelling. Tropos is a requirements driven

AOSE and Security Modelling 33

methodology that describes both the environment of the system and the system itself.

Its main advantage is that it covers the whole development process, from the early

requirements to design, using the same concepts and notations. Tropos adopts the i *
modelling framework [Yu95], which uses the concepts of actors, goals, tasks,

resources and social dependencies for defining the obligations of actors to other

actors.

The Multi-agent Systems Engineering Methodology (MaSE) [ScoOI, Sco02,

WoodOll was chosen, although it is similar to the GAIA methodology, because it is

more specialised than GAIA for its use in the distributed agent paradigm and goes

further by providing support for generating code using the MaSE code generation

tool (http://www.cis.ksu.eduJ-sdeloachiai/agentool.htm). One of the main differences

between this methodology and other agent based methodologies is that in the MaSE

methodology the general components of the system are designed before the system

itself is actually defined. Although the diagrams of the methodology might look

similar to Unified Modelling Language (UML) diagrams, they have been modified in

order to model notions of agents as well as their cooperative behaviour.

MAS-CommonKADS (MAS-CK) [IgI97] was chosen because fonns an extension

of the knowledge engineering CommonKADS methodology [Schr99] that is

considered a European standard for knowledge modelling. This methodology extends

the CommonKADS methodology by adding object oriented techniques. It also

"borrows" protocol engineering in order to define the agent protocols. Apart from the

analysis and design phases, the methodology also provides a conceptualisation phase,

in which the user requirements and a first description of the system are defined. The

conceptualisation phase is the first step in the MAS-CommonKADS methodology.

Then the methodology defines models for analysing and designing a system. In each

of these models the methodology defines the "constituents" (entities to be modelled)

and the relationships between these entities. It must be noticed that the process is

"risk driven". That is, "in every cycle the states of the models to be reached are

defined by reducing the perceived risks" [Ig197].

Table 2-1 indicates the evaluation of the above methodologies with respect to the

evaluation criteria defined in the beginning of the section.

AOSE and Security Modelling 34

Support. Although the GAIA methodology is well known, it is not well supported.

There are only two main papers [WooI99, WoolOO] that describe the methodology

and there are no automatic tools or any support group. On the other hand, the Tropos

methodology is an international project and support is provided either through the

Tropos project [http://www.troposproject.org] or through the many papers published

about Tropos. However, tool support is provided only in the form of a diagram editor

[Bre03]. Although, there is no support group for the MAS-CommonKADS,

information about the methodology can be found in terms of the publications [Ig196,

Ig197, Ig197a] related to the methodology. There is no tool support for the

methodology, although the developers claim that they are working towards the

development of a tool [Ig196]. The MaSE methodology is supported by the group

members of the Multiagent and Cooperative Robotics Lab (see the web page in

http://www.cis.ksu.edul-sdeloachlai/mase.htm) and information can be found in

terms of many publications about the methodology [ScoOl, Sco02, SelO3, WoodOll

In addition, a tool, as mentioned above, exists to support the methodology.

Table 2-1:Evaluation of the methodologies

Property/ methodology GAIA TROPOS MAS-CK MaSE

Support 1 3 1 4

Accessibility 3 3 3 3

Expertise 2 2 2 2

Implementation-targeted 4 4 4 4

Development Coverage 2 4 3 3

Extensibility 4 4 3 4

Security Aware 1 2 1 1

AOSE and Security Modelling 35

analysis, decomposition, and means-ends analysis. MAS-CommonKADS reqUIres

background knowledge related to knowledge engineering as well as use-cases

engineering, whereas MaSE mainly requires knowledge of object oriented analysis

and design techniques, such as OMT, modelling languages, such as UML, and use­

cases engineering.

Implementation-targeted. None of the presented methodologies are targeted

towards a particular implementation choice.

Development coverage. With the exception of the Tropos methodology, which

covers the whole development process, from the early requirements analysis to

implementation, the other three methodologies cover only specific parts of the

development process. GAIA only considers analysis and design, ignoring

requirements and implementation stages. On the other hand, both MAS­

CommonKADS and MaSE start their development processes from the late

requirements analysis missing the early requirements analysis stage.

Extensibility. GAIA, Tropos and MaSE allow improvements and extensions to be

made with relative ease. On the other hand, the fact that MAS-CommonKADS is

based on concepts from knowledge engineering makes it a bit more difficult to apply

any extensions regarding agent oriented concepts.

Security Aware. The only methodology that provides some kind of support for

security modelling is the Tropos methodology. Tropos employs the concept of soft­

goal to model some security issues [Mou02]. However, the security modelling

provided is very limited and the methodology fails to provide a security-oriented

approach in the development of multi agent systems.

Taking into account the above evaluation, the Tropos methodology was chosen as

the methodology to be extended to enable the modelling of security issues

throughout the development process. This decision was mainly based on the fact that

Tropos spans in all the development stages using the same concepts, it is easily

extensible and also it is more security aware than the other methodologies. In

addition, the Tropos methodology is well integrated with other approaches, such as

the UML, in which some security work has taken place [JurOl, Jur02, Lod02], and

therefore existing work can be considered and incorporated within the proposed

approach. Moreover, the modelling concepts of Tropos are well suited to model

AOSE and Security Modelling 36

security requirements, which are usually expressed using notions such as agents and

high level goals such as confidentiality and authentication [Gio03].

2.5 SUMMARY

This chapter aimed to establish a common language for the understanding of the

next chapters and discuss issues that form the basis for the achievement of the aims

of this thesis.

Thus, this chapter defined software engmeenng and it provided discussions

regarding requirements engineering, the design stage of the development process,

and software development methodologies. Moreover, agents, multi agent systems and

the agent oriented software engineering paradigm were defined, and a critical

discussion was presented regarding agent oriented software engineering

methodologies. In addition, this chapter discussed security modelling by providing

basic security concepts and ideas, and by examining how security is considered

within agent oriented software engineering. It then argued the necessity to consider

security issues during the whole development lifecycle.

Moreover, an outline of the problems of modelling security during the development

of a system was given and a minimum set of requirements that a security-oriented

approach should meet was proposed.

This chapter also identified the Tropos methodology as the appropriate

methodology to proceed in this research project. Thus, it is important before

describing the proposed security extensions to provide a detailed description of the

Tropos methodology. The next chapter provides such description.

AOSE and Security Modelling 37

tIlRJ)tPOS 9tt.P/J!J{CYDO£oqrf

Chapter 2 provided a discussion of (some) development methodologies for

multi agent systems and it identified the Tropos methodology as the candidate

methodology for integrating a security-oriented approach during the development of

multi agent systems. However, before describing how the Tropos methodology can be

extended to enable the development of multi agent systems with security in mind, it is

necessary to provide an overview of the Tropos methodology and also provide a

critical discussion of its limitations with respect to security modelling. These are the

aims of this chapter.

Section 3.1 provides a basic introduction to the Tropos methodology indicating its

advantages and its key features. Section 3.2 reviews the main concepts and notations

of the Tropos methodology and section 3.3 defines the Tropos development stages.

Moreover, the modelling language of the methodology is described in section 3.4 and

the Tropos modelling activities are introduced in section 3.5. In addition, a set of

transformations, which enable developers to refine the development models, is

described in section 3.6 and section 3.7 presents the methodology with the aid of an

example. Section 3.8 discusses the limitations of the Tropos methodology when

modelling security issues during the development of multi agent systems and section

3.9 summarises the chapter.

3.1 AN INTRODUCTION TO THE TROPOS METHODOLOGY

Tropos5 is a novel agent oriented software engineering methodology tailored to

describe both the organisational environment of a multi agent system and the system

itself. Tropos is a requirements driven methodology, in the sense that it is based on

concepts used during early requirements analysis, such as actors, goals and tasks, and

S The name Tropos derives from the Greek "Tp61to~" which means "way of doing things" but also

has the connotation of "easily changeable. easily adaptable".

An Overview of tbe Tropos Metbodology 38

the novelty of the methodology lays on the fact that those concepts are used to model

not just early requirements, but also late requirements as well as architectural and

detailed design [Cas02]. Using the same concepts during the development stages of a

multi agent system provides the advantage of reducing impedance mismatches

between different development stages, and therefore streamlines the development

process [Cas02].

Tropos is characterised by three key aspects [Cas02, PerOl, Giu02, Bre02b].

Firstly, it deals with all the phases (requirements analysis, system design and

implementation) of a system development, adopting a uniform and homogeneous

way that is based on the notion of agents and all the related mentalistic notions, such

as actors, goals, tasks, resources, and intentional dependencies. According to

Bresciani et al. [Bre02b], the decision to use mentalistic notions in all the phases of

analysis has important consequences, since it helps to reduce to a minimum the

conceptual gap from what the system must do and why, and what the users

interacting with it must do and why. This provides (part of) the flexibility needed to

cope with multi agent application's complexity. Secondly, Tropos pays a great deal

of attention to the early requirements, emphasizing the need to understand not only

what organisational goals are required, but also how and why the intended system

would meet the organisational goals. This allows for a more refined analysis of the

system dependencies, leading to a better treatment not only of the system's

functional requirements but also of its non-functional requirements, such as security,

reliability, and performance [PerOI]. Thirdly, Tropos is based on the idea of building

a model of the system that is incrementally refined and extended from a conceptual

level to executable artefacts, by means of a sequence of transformational steps

[Bre02, Bre02a]. Such transformations allow developers to perform preCIse

inspections of the development process by detailing the higher level notions

introduced in the previous stages of the development. In addition, since the

methodology employs the same notation throughout the development process, such a

refinement process is performed in a more uniform way as compared, for example, to

UML-based methodologies where the graphical notation changes from one

development step to another (for example, from use cases to class diagrams).

An Overview or the Tropos Methodology 39

It must be noted that Tropos is not a "laboratory" methodology but it has been

motivated and illustrated with a number of case studies [Cas02, Bre02b, Mou02a].

3.2 A REVIEW OF TROPOS CONCEPTS AND NOTATIONS

Tropos adopts the i* modelling framework [Yu95], which uses the concepts of

actors, goals and social dependencies for defining the obligations of actors

(dependees) to other actors (dependers). This means the multi agent system and its

environment are viewed as a set of actors, who depend on other actors to help them

fulfil their goals.

An actor [Yu95] represents an entity that has intentionality and strategic goals

within the multiagent system or within its organisational setting. An actor can be a

(social) agent, a position, or a role. Agents can be physical agents, such as a person,

or software agents. In Tropos a classical definition of software agent [Bra97] is used,

that is, a software having properties such as autonomy, social ability, reactivity, and

proactivity. A role represents an abstract characterisation of the behaviour of a social

actor within some specialised context or domain of endeavour [Yu95]. A position

represents a set of roles, typically played by one agent. In Tropos, an agent can

occupy a position whereas a position is said to cover a role [Bre02b].

A (hard) goal [Yu95] represents a condition in the world that an actor would like to

achieve. In other words, goals represent actor's strategic interests. In Tropos, the

concept of a hard-goal (simply goal hereafter) is differentiated from the concept of

soft-goal. A soft-goal is used to capture non-functional requirements of the system,

and unlike a (hard) goal, it does not have clear criteria for deciding whether it is

satisfied or not and therefore it is subject to interpretation [Yu95]. For instance, an

example of a soft-goal is "the system should be scalable". According to Chung et al.

[Chu95], the difference between a goal and a soft-goal is underlined by saying that

goals are satisfied whereas soft-goals are satisficed6
•

A task (also called plan) represents, at an abstract level, a way of doing something

[Giu02]. The fulfilment of a task can be a means for satisfying a goal, or for

6 The notion of satisficing assumes that development decisions usually contribute only partially

towards (or against) a particular goal, rarely "accomplishing" or "satisfying" goals in a clear-cut sense

[Chu95].

An Overview of the Tropos Methodology 40

contributing towards the satisficing of a soft-goal. In Tropos different (alternative)

tasks, that actors might employ to achieve their goals, are modelled. Therefore

developers can reason about the different ways that actors can achieve their goals and

decide for the best possible way.

A resource [Giu02] presents a physical or informational entity that one of the

actors requires. The main concern when dealing with resources is whether the

resource is available and who is responsible for its delivery.

A dependency [Yu95] between two actors represents that one actor depends on

the other to attain some goal, execute a task, or deliver a resource. The depending

actor is called the depender and the actor who is depended upon is called the

dependee. The type of the dependency describes the nature of an agreement (called

dependum) between dependee and depender. Goal dependencies represent

delegation of responsibility for fulfilling a goal. Soft-goal dependencies are similar to

goal dependencies, but their fulfilment cannot be defined precisely whereas task

dependencies are used in situations where the dependee is required to perform a

given activity. Resource dependencies require the dependee to provide a resource to

the depender. By depending on the dependee for the dependum, the depender is able

to achieve goals that it is otherwise unable to achieve on their own, or not as easily or

not as well [Yu95]. On the other hand, the depender becomes vulnerable, since if the

dependee fails to deliver the dependum, the depender is affected in their aim to

achieve their goals.

A capability [Giu02] represents the ability of an actor of defining, choosing and

executing a task for the fulfilment of a goal, given certain world conditions and in

presence of a specific event.

Figure 3-1 depicts a graphical representation of the above-mentioned concepts as

used in the Tropos methodology.

An Overview of the Tropos Methodology 41

8880
(:) B G I Resource I

Figure 3-1: Graphical representation of the Tropos concepts

3.3 THE STAGES OF THE TROPOS METHODOLOGY

Tropos methodology covers five main software development stages, starting from

the early requirements analysis stage and ending in the implementation stage. Each

of these stages is furthered described in the following paragraphs.

During the early requirements analysis stage, developers are concerned with

the understanding of a problem by studying an existing organisational setting. This

involves the identification of the domain stakeholders and their modelling as social

actors. In particular, developers model the stakeholders as actors, their intentions as

goals, and their relationships as dependencies. Through a goal-oriented analysis

[Bre02a], the actors' goals are decomposed into more precise goals and sometimes

into tasks that if performed by the actor, allow for goal achievement. The output of

this phase is an organisational model, which includes relevant actors and their

respective dependencies.

In the late requirements analysis stage, the system-to-be is specified within its

operational environment, together with relevant functions and qualities. This

description models the system as an actor, who has a number of dependencies with

the actors identified during the previous stage. These dependencies indicate the

obligations of the system towards its environment, and therefore define the system's

functional and non-functional requirements.

During the architectural design stage, the system's global architecture is

defined in terms of subsystems, interconnected through data and dependencies. In

particular, subsystems are represented as actors and data/control interconnections are

represented as (system) actor dependencies. This stage is divided into three steps.

An Overview of the Tropos Methodology 42

The first step includes the definition of the overall architectural organisation by

introducing new actors to the system and delegating to them some of the goals of the

system. The second step includes the identification of the capabilities needed by the

actors to fulfil their goals and tasks and the third step involves the identification of a

set of agent types and the assignment of capabilities to those agents. The final output

of this stage is a set of software agents corresponding to the actors of the system,

each characterised by its specific capabilities.

In the detailed design stage, each architectural component is defined in further

detail in terms of inputs, outputs, control, and other relevant information. This stage

is based on the specifications resulting from the analysis of the previous stages and

therefore the reasons for a given element at this stage can be traced back to the early

requirements analysis. For this stage, Tropos is using elements of the Agent Unified

Modeling Language (AUML) [BauOl] to complement the features ofi*.

During the implementation stage7
, the actual implementation of the system

components takes place according to the design produced in the previous stage. It is

worth mentioning that Tropos (as well as other agent-oriented methodologies) does

not force the use of Agent Oriented Programming (AOP) as the implementation

technology.

3.4 THE MODELLING LANGUAGE OF TROPOS

Tropos defines its own modelling language [Bre02b] In terms of a UML

metamodel. The Tropos metamodel is organised into four levels. The meta­

metamodel level, which provides the basis for metamodel extensions; the metamodel

level, which provides constructs for modelling knowledge level entities and

concepts; the domain level, which contains a representation of entities and concepts

of a specific application domain; and the instance level, which contains instances of

the domain level. For instance, consider an entity as an example of the meta­

metamodel, an actor as an example of the metamodellevel, a doctor as an example of

the domain level and John as an example of the instance level.

7 This work only considers the first four stages. Implementation is not considered since the

proposed security-oriented approach is independent of implementation languages.

An Overview of the Tropos Methodology 43

The metamodel level of the modelling language allows the more precise (more

fonnal) specification of the Tropos concepts [Giu02]. As an example, consider the

concept of actor. Using the Tropos modelling language, an actor is represented as a

UML class that can have zero or more (0 ... *) goals [Bre02b] and zero or more

(0 ... *) beliefs8 [Bre02b]. Moreover, an actor can depend on another actor (or be the

dependee) for a goal, resource, and/or task (plan).

In addition, the meta-metamodel level of the language allows the inclusion of

constructs for the fonnal definition of the Tropos concepts. In particular a fonnal

specification language, called Fonnal Tropos, is under development [Fux03]. Fonnal

Tropos [Fux03, FuxOl] offers all the concepts of graphical Tropos, such as actors,

goals and dependencies, supplemented with a rich temporal specification language,

inspired by KAOS [Ber98].

3.5 MODELLING ACTIVITIES IN TROPOS

Following the definitions of the levels of the Tropos modelling language, aTropos

model [Bre02b] is defined as a directed labelled graph whose nodes are instances of

meta-classes of the metamodel, namely actor, goal, task and resource, and whose

arcs are instances of the meta-classes representing relationships (dependencies)

between them.

For the development of Tropos models, vanous activities, such as actor,

dependency, goal, task, and capability modelling, and different kinds of graphical

diagrams, such as actor, goal, capability and plan diagrams, are used in the Tropos

methodology. The rest of this section provides a description of the modelling

activities and an introduction to the graphical diagrams of the methodology.

Actor modelling [Giu02] consists of identifying and analysing the system's

domain actors as well as the actors of the system together with their goals. During

the early requirements stage, actor modelling is focused on identifying the system's

domain actors and model them as social actors that have strategic intentions (goals).

Later, during the late requirements stage, the system-to-be is introduced as another

actor and it is analysed in order to define its functional and non-functional

requirements. Actor modelling during the architectural design focuses on providing a

8 Beliefs represent the actor's knowledge of the world.

An Overview of the Tropos Methodology 44

more precise definition of the system by decomposing the system into sub-systems

(system's internal actors) and on specifying their relationships in terms of data

resources and control flows. In detailed design, the actor modelling involves the

definition of the system's agents in terms of the notions required by the

implementation platform.

As mentioned earlier, sometimes actors depend on each other to accomplish some

goals that they would not be able to accomplish (or not in the same degree) without

the help of another actor. For this reason Tropos uses dependency modelling

[Giu02], which involves the identification of the dependencies between the different

actors. Dependency modelling spans over the first three Tropos stages namely early

and late requirements analysis and architectural design. During the early

requirements analysis stage, dependency modelling is focused on identifying

dependencies between the actors of the organisation setting in which the system will

operate. In late requirements analysis stage, the dependencies between the system

and the actors of its organisation setting are identified and some of the actors

dependencies identified in the previous stage are refined due to the system

introduction. During the architectural design the data and control flows between the

different actors of the system are modelled in terms of dependencies providing the

basis for mapping the system's actors to software agents.

Goal modelling involves further analysis of particular actors' goals, from the

viewpoint of the actor. In other words, the internal goals of each actor identified

through actor modelling are furthered analysed in order to provide a more precise

definition of the actor. During the early requirements analysis, goal modelling helps

to refine the initially identified actors by further analysing their goals and identify

new dependencies, or refine existing ones, whereas during the late requirements

analysis, goal modelling helps to further analyse the goals of the system. In

architectural design, goal modelling motivates the first-decomposition of the system

actors into a set of sub-actors [Bre02b].

Soft-goal and task modelling are considered complimentary to the goal

modelling activity and they employ similar reasoning techniques.

Goal, soft-goal and task modelling are mainly based on three reasoning techniques,

means-end-analysis, contribution analysis, and AND/OR decomposition. Means-end

An Overview of the Tropos Methodology 45

analysis is a mechanism aimed to direct a search process by reducing the difference

between a current state and the goal state [Jack90]. In the context of design, means­

end analysis drives the design process in a direction that is the shortest distance

towards the goal [Sha98]. In Tropos means-end analysis is employed to identify

goals, soft-goals, tasks, and/or resources that can provide means for reaching a goal

[Yu95].

Contribution analysis can be thought of as a special case of means-end analysis in

which means are goals or soft-goals. Such analysis identifies goals that can

contribute either positively or negatively to the achievement of other goals (or soft­

goals).

On the other hand, decomposition refers to the systematic breakdown of a

component into simpler more specific components. Therefore, during goal

modelling, goal decomposition refers to the systematic breakdown of an actor's goals

(called root goals) into simpler, more specific sub-goals that may be used to generate

tasks, whereas during task modelling, task decomposition results in the

decomposition of a root task to sub-tasks. In Tropos, AND/OR decomposition

allows developers to consider alternatives when decomposing the goals/tasks of an

actor into sub-goals/sub-tasks. Whereas AND decomposition means all the sub­

goals/sub-tasks must be achieved for the root goal/task to be achieved, OR

decomposition means that the achievement of one of the sub-goals/sub-tasks leads to

the achievement of the root goal/task.

Capability modelling [Bre02b] takes place during the latest steps of the

architectural design and it involves the identification of capabilities for each of the

actors of the system according to the goals, tasks and dependencies of each actor.

"Individual" capabilities are assigned to the actors of the system to enable them to

define, choose and execute tasks for achieving their goals together with "social"

capabilities that allow actors to manage dependencies with the other actors.

Capabilities can be identified by analysing the dependency relationships of the

actors. In particular each dependency relationship can give place to one or more

capabilities triggered by external events [Bre02b]. When the agents of the system

have been identified, the capabilities corresponding to each of these agents are

furthered specified.

An Overview of the Tropos Methodology 46

Agents assignment [Bre02b] takes place during the last step of the architectural

design and it involves the identification of a set of agent types and the assignment on

each one of those of one or more capabilities. This process is not unique and it

depends on the analysis that takes place during the previous steps of the architectural

design as well as the perspective of the developer for the system in terms of agents.

For example, developers might decide to assign one agent for every actor of the

system identified in the previous steps of the analysis, or they might assign two

agents to a particular actor.

Graphical representations of the models obtained following the above-mentioned

activities are given through actor, goal, capability, plan and agent interaction

diagrams.

A graphical representation of the model obtained following actor and dependency

modelling is illustrated with the aid of an actor diagram [Bre02b]. In such a

diagram, actors (graphically represented as circles9
) are modelled together with their

goals (represented as ovals) and soft-goals (represented as bubbles) and their

dependencies (represented as links between the actors indicating the dependum).

An example of an actor diagram is given in Figure 3-2.

Figure 3-2: An example of an actor diagram

In this example three actors, Patient, Doctor and Nurse are modelled together

with some of their dependencies. For example, the Patient depends on the Doctor to

9 For a reminder of the graphical representation of the Tropos concepts please refer to Figure 3-1.

An Overview of the Tropos Methodology 47

achieve the goal Receive Appropriate Care whereas the Doctor depends on the

Nurse to achieve the goal Manage Patient Care. Moreover, the Patient actor

depends on the Doctor to Maintain Good Health. However, maintairung good

health is realised differently by different patients. In other words, there are no-clear

criteria on the defirution of good health and as a result this dependency is modelled

as a soft-goal dependency.

Additionally to actor diagrams, Tropos defines goal diagrams to represent the

models resulting from goal, soft-goal and task modelling activities. In a goal

diagram, each actor is represented as a dashed-line balloon within which the actor's

goals and dependencies are analysed. The nodes of the diagram represent goals,

soft-goals, and/or tasks whereas the links identify the different kinds of

relationships between those nodes. Moreover, these links can be connected with

external dependencies (identified in the actor diagram) when the reasoning of the

analysis goes beyond the actor's boundary [Yu95] . Figure 3-3 shows a partial goal

diagram for the Doctor actor presented in the previous example .

G.-.-._.,.
'(J \ . .

I \

i i
• I
\ .
• I
\ . . ,
' _ ".

. , .

.
\ .

. , ,. . ' ,

.. ' --._---_ ... , .

"
" . ,

\ .
\ --....--...... "

,. .. " .'

. ,
"

.
\
• ,
• ,
I . , . , .

I . , .
I

Means-Ends AND decomposition OR decomposition ConJrlbUlJon

Figure 3-3: An example of a goal diagram

An Overview of the Tropos Methodology 48

The main goal of the Doctor is to Provide Care. This can be achieved (amongst

other goals) by obtaining patient information and manage the patient's care. To

achieve the first goal, the doctor can visit the patient, ask the nurse or call the patient.

In order for the Doctor to visit the Patient, the patient's address must be obtained

and also a meeting must be set up. Moreover, the Provide Care goal of the Doctor

receives a positive contribution from the Work Efficient soft-goal. In other words,

the more efficient the Doctor works, the better care they will provide. On the other

hand, one of the means of achieving the Manage Care goal is to manage the

patient's care plan. However, for this goal the Doctor depends on the Nurse.

Apart from analysing the internal goals/tasks of an actor, goal diagrams allow

developers to introduce new dependencies between the actors according to the

goals/tasks derived from the internal analysis that takes place in each actor. This

activity is a common task in Tropos and it is very important since it helps to identify

clearly the relationships between the actors and also indicates how the analysis of the

goals of one actor can influence the dependencies between this actor and any other

actors. When an actor is analysed, new goals and/or tasks are discovered, which

sometimes the actors are not able to accomplish by themselves. As a result, new

dependencies are introduced to enable an actor to delegate to another actor the

goals/tasks that cannot accomplish on their own. Refining the dependencies and the

social relationships of the actors this way, leads to a more precise definition of the

why of the system functionalities, and as a last result, helps to verify how the final

implementation matches the real needs [PerOl].

In addition to the above-presented diagrams, to represent the capabilities of the

agents of the multi agent system, identified during the architectural design, Tropos

defines capability and plan diagrams. For this purpose, Tropos adopts a set of Agent

Unified Modeling Language (AUML) diagrams proposed by Odell et al. [Ode99]. In

particular, Tropos adopts AUML activity diagrams to model a capability from the

viewpoint of a specific agent (capability diagram) and to further specify each plan

node of the capability diagram (plan diagram).

In a capability diagram, the starting point is an external event and the end point

the termination of the capability. Activity nodes model plans, transition arcs model

events and beliefs are modelled as objects. An example of a capability diagram is

An Overview of the Tropos Methodology 49

given In Figure 3-4. The capability Receive Service Request of a Receiver

Agent (RA) is triggered by an external event (EE). According to this event the

Receiver Agent (RA) receives a Service Request from the Sender Agent (SA).

The first plan of the capability is for the RA to evaluate the Service Request. If the

Service Request is valid an internal event (IE) triggers the Accept Service

Request plan and then the termination of the capability, whereas if the Service

Request is invalid the Reject Service Request plan is activated and then the

capability ends.

EE: Receives (SA. RA. Service Request)

IE: (Service Request Valid)
IE: (Service Request Invalid)

Figure 3-4: An example of a capability diagram

The starting point of a plan diagram is the initiation of a plan and the end point is

the termination of the plan. The different actions required by the plan are modelled

(as activity nodes) together with the transitions (modelled as arcs) from one action to

a subsequent one. Consider, for example, the plan Evaluate Service Request

presented in Figure 3-5.

The Receiver Agent receives the Service Request from the Sender Agent. To

evaluate the Service Request the Receiver Agent first reads it. If the Service

Request is readable the Receiver Agent continues by checking its integrity,

otherwise the plan is terminated (Fail To Read Service Request). If the integrity

check fails, the Receiver Agent considers the Service Request invalid (this is the

internal event (IE) identified in Figure 3-4), otherwise the Service Request is valid.

All Overview of the Tropos Methodology 50

EE:Receives (SA. RA. Service Request)

Service Request Not Readable

Pass Integrity Check

Fail Integrity Check

Figure 3-5: An example of a plan diagram

In addition to capability and plan diagrams, Tropos adopts AUML sequence

diagrams [Ode99] to model the interactions between the agents of the system. This

kind of diagram, which in Tropos is known as agent interaction diagram,

captures the structural patterns of interactions between the agents of the system by

emphasizing the chronological sequence of communications. As an example (see

Figure 3-6) consider the sequence of the interactions between the Sender Agent and

the Receiver Agent. First the Sender Agent sends the Service Request. Then the

Receiver Agent replies with an acceptance of the request or a rejection of the

request.

An Overview of the Tropos Methodology 51

I -:-1 1-:-,1
I

o
I

S8IVice Request

ACCept Service Request (Valid)

x

Reject Service Request (Invalid)

Figure 3-6: An example of an agent interaction diagram

3.6 A SET OF TRANSFORMA TlONS

Different ways of visualising an actor and/or a goal diagram can be introduced

[Bre02a]. This is due to the fact that different developers have different perspectives

of a multiagent system and its environment. Therefore, Tropos introduces a set of

transformations, which help developers to refine an initial Tropos model to a final

one. Three different categories of transformations are defined: goal, soft-goal and

actor.

Goal transformations are divided into four sub-categories [Bre02a]. Goal

decomposition, which allows for the decomposition of a goal into AND/OR sub­

goals; precondition goal, which allow to list a set of necessary (but not sufficient)

preconditions in terms of other goals; goal delegation, which allows to express the

assignment or a change of responsibility in goal fulfilment; and goal

generalisation, which allow the introduction of an ISA hierarchylo among two

goals.

Soft-goal transformations [Bre02a] allow developers to perform soft-goal

analysis and are very similar to the goal transformations. The only difference is the

10 An ISA hierarchy denotes a generalisation relationship between two entities. For example if

entity A ISA entity B then B is a generic entity and A is a specialisation of it.

An Overv1ew of the Tropos Methodology 52

lack of a precondition transfonnation and the addition of a contribution

transformation. Contribution transfonnations [Bre02a] allow developers to specify

whether a goal or soft-goal contributes to some other soft-goal or whether there is a

goal or soft-goal that contributes positively or negatively to the soft-goal

satisficement.

Tropos provides two types of actor transformations [Bre02a], actor

aggregation and actor generalisation. Actor aggregation [Bre02a] involves the

recognition of different actors as part of an organisation or a system, whereas actor

generalisation [Bre02a] allows developers to introduce taxonomic structure among

actor types. As an example consider a medical system that contains the National

Health Service (NHS) as an actor. Aggregating NHS means the actor is decomposed

into different departments and responsibility for different NHS goals is delegated

into those departments. On the other hand, NHS could be classified as Government

Institution (generalisation-ISA hierarchy). Therefore, the NHS actor could inherit

goals that could be identified on a previous analysis regarding Government

Institutions.

Moreover, the above-mentioned transfonnations are fonnally defined by adopting

notions of Graph Transfonnation systems [Bre02]. In particular, a set of rules and an

algorithm have been developed [Bre02] that allow developers to perfonn a precise

inspection of the models development.

3.7 AN EXAMPLE OF USING TROPOS

In this section, the Tropos methodology is illustrated with the aid of an example. In

this example, a simplified version of an agent based system to deliver the single

assessment process [Mou03c] is considered.

3.7.1 Early requirements analysis stage

As it was mentioned in section 3.3, the first step in the Tropos methodology is to

represent the system's domain actors and the dependencies between them with the

aid of the actor diagram. In the presented example five actors are taken into account:

• Older Person: The older person actor represents patients aged 65 or above,

who wish to receive appropriate health and social care.

An Overv1ew of the Tropos Methodology 53

• Professional: The professional actor represents any pnmary care

professional, such as general medical practitioners, nurses and social workers,

involved in the older persons' care.

• DoH: The DoH actor represents the English Department of Health.

• Benefits Agency: The benefits agency actor represents a financial agency

that helps older persons financially.

• R&D Agency: The R&D Agency actor represents a research and

development agency interested in obtaining older person clinical data to

perform analysis.

The actor diagram for the above actors is shown in Figure 3-7. The Older Person

actor has a main goal to Receive Appropriate Care and a soft-goal to Maintain

Good Health. However, the Older Person cannot achieve these two goals on their

own so they depend on the Professional actor to accomplish them. In addition, the

Older Person depends on the Benefits Agency to Receive Financial Support.

On the other hand, the Professional actor depends on the Older Person to Obtain

Older Person Information and on the Department of Health (DoH) to help them

Provide Services to Older Person.

Figure 3-7: The actor diagram for the given example

One of the main goals of the R&D Agency is to Obtain Clinical Information in

order to perform tests and research. To get this information, the R&D Agency

depends on the Professional. The DoH actor has a main goal to Provide Health

An Overview of the Tropos Methodology 54

and Social Care to Elderly. However, differently than the other presented actors,

the Department of Health is able to accomplish this goal without help from any of

the other actors (this is the reason the goal is attached to the DoH, Figure 3-7, and

does not involve any dependency).

When the actors, their goals and the dependencies between them have been

identified, the next step of the early requirements analysis stage involves in depth

analysis of each of the actors. As mentioned earlier (section 3.5), for this purpose

Tropos employs goal diagrams.

A part of the goal diagram for the Older Person actor is shown in Figure 3-8.

I .
I .

I .
I

. , .
\ . , .

\ .
\ .

.'

\

. ,,-' ,.
,.~.-.-.-.-.-.-.~

". , . . ,'

\ .--..... ,
"

Figure 3-8: Part of the goal diagram for the Older Person

As mentioned, the main goals of the Older Person actor are to Receive

Appropriate Care, and to Maintain Good Health. For these goals the Older

Person depends on the Professional. However, the satisfaction of the Receive

Appropriate Care goal, does not only depends on the Professional, but also on the

Older Person. To accomplish the Receive Appropriate Care, the Older Person

must perform the tasks Set Up Appointments with Professionals, Undertake

Assessment and Provide Information. Moreover, the Older Person must satisfy

An Overview of the Tropos Methodology 55

the Follow Care Plan goal. To achieve this goal the Older Person needs to obtain

infonnation about the given care plan (Obtain Information about Care Plan task).

To Set Up Appointments with Professionals, Undertake Assessments and

Obtain Information About the Care Plan, the Older Person must use an

electronic system. This introduces three more dependencies of the Older Person to

the Department of Health. For the Older Person to use the electronic system,

the DoH must make the system available (Electronic System Available goal),

make available the technology infrastructure that the system will be deployed

(Technology Infrastructure Available goal), and also make the system easy to use

since most of the older people are not familiar with computer systems (Usable

Electronic System goal).

Introducing new dependencies between the actors according to the goals/tasks

derived from the internal analysis that takes place in each actor is a common task in

Tropos and it is very important since it helps to identify clearly the relationships

between the actors and also indicates how the analysis of the goals of one actor can

influence the dependencies between this actor and the other actors. When an actor is

analysed, new goals are discovered, which sometimes the actors are not able to

accomplish them by themselves. Thus, new dependencies are introduced to enable

an actor to delegate to another actor the goals that cannot accomplish on their own.

Refining the dependencies and the social relationships of the actors this way, leads to

a more precise definition of the why of the system functionalities, and as a last result,

helps to verify how the final implementation matches the real needs [PerOl).

Another important actor of the system is the Department of Health (DoH). Part of

the goal diagram for the DoH is shown in Figure 3-9. The main goal of the

Department of Health is to Provide Health and Social Care to Elderly. To

accomplish the Provide Health and Social Care to Elderly goal, the Make Care

Person Centred sub-goal has been identified. This is essential for the DoH, since

the Older Person is the most important participant of the whole procedure. The

Make Care Person Centred sub-goal can be fulfilled by promoting the single

assessment process (Promote Single Assessment Process goal) and also by

involving elderly in their care (Involve Elderly in their Care goal). The later sub­

goal depends on the task Provide Guidelines for Older People to be fulfilled. To

An Overview of the Tropos Methodology 56

promote the single assessment process, the Department of Health must computerise

the process and also provide guidelines to the professionals. Therefore, the goal

Promote Single Assessment Process is realised by the fulfilment of the Provide

Guidelines for Professionals task. This is further decomposed into four sub-tasks:

Provide Guidelines for General Practitioners (GPs), Provide Guidelines for

Social Workers, Provide Guidelines for Nurses and Provide Guidelines for

Other Professionals .

. , ,
I . ,
· I

· , · , . , .
\ ,

\ .
\ ,

\

\ ,

Figure 3-9: Part of the goal diagram for the Department of Health

In addition, to help professionals to Provide Services to Older Person, the

Department of Health must fulfil the Assist Professionals goal. To accomplish

this goal the sub goal Compute rise SAP (single assessment process) has been

identified. Computerising the single assessment process will help health and social

care professionals to automate some procedures required while caring for the Older

Person and therefore help to Provide Services to Older Person. To accomplish

the Computerise SAP sub goal, Technology Infrastructure must be provided, the

electronic system must be available (Build Electronic System goal) and also the

system must be usable (Make Electronic System Easy-to-Use goal).

An Overview of the Tropos Methodology 57

3.7.2 Late requirements analysis stage

During the early requirements analysis, the development of an electronic system

was identified as one of the main goals of the Department of Health. During the

late requirements analysis this system, named the electronic single assessment

process (eSAP) system hereafter, is described within its operation environment,

along with relevant functions and qualities. The system is presented as one or more

actors, who have a number of dependencies with the other actors of the organization.

These dependencies define all the functional and non-functional requirements for the

system-to-be.

The eSAP system is introduced as another actor that receives the responsibility for

the fulfilment of some of the goals identified during the early requirements analysis

for the Department of Health. In other words, some goals that the Department of

Health cannot fulfil are delegated to the eSAP System as shown in Figure 3-10.

/:J , ,. ,.

.
\ .

\

\
\

\
\
".

Figure 3-10: Part of the goal diagram for the eSAP

~. ,
" ". ,

" \ \
\
\

,­,. ,
.'

.
\ .

\

.'
I ,.

The Department of Health depends on the electronic single assessment process

(eSAP) actor to fulfil its two main sub-goals (Assist Professionals and Make

Care Person-Centred). To guarantee the satisfaction of these dependencies, the

eSAP must Provide Services to Professionals and Provide Facilities to Older

Person. With the aid of means-end analysis (section 3.5) it has been identified that

An Overview of the Tropos Methodology 58

for the eSAP system to fulfil the Provide Services to Professionals goal (end),

the following sub-goals (means) must be accomplished: Identify Patient Needs,

Manage Care Plan, Coordinate Care, Access to Medical Records, Access to

Medical Libraries, and Schedule Appointments. Each of those sub-goals can be

furthered analysed employing means-end analysis. For example, the Manage Care

Plan can be accomplished with the fulfilment of the Manage Care Plan

Appointments, Manage Previous Assessments and Manage Future Care Plan

Actions sub-goals.

Another important goal of the eSAP is to Provide Facilities to Older Person. To

achieve this goal the eSAP system must allow older people to be actively involved

in their care by providing facilities. Thus, the Make Care Person-Centred goal is

fulfilled with the achievement of the Provide Facilities to Older Person goal. This

is decomposed into two further goals Access to Care Plan Information and

Access to Medical Info.

As it was mentioned in section 3.2, soft-goals are mainly used to describe non­

functional requirements of the system-to-be. In the running example, the main soft­

goal of the system is to be usable (Usable eSAP System). This soft-goal receives

three positive (+) contributions from the Easy-to-Use soft-goal, which contributes

positively because the system must be easy-to-use to be usable, from the Mobile

soft-goal because the system must be mobile to be usable, and also from the Secure

eSAP soft-goal, which contributes positively since it makes the system secure.

The Easy-to-Use soft-goal has two positive contributions from the System

Provides Help and the User Friendly Interface soft-goals. The former contributes

positively since the system must help the user, and the latter contributes positively

because the system must have a user-friendly interface. In addition the Easy-to-Use

soft-goal has a negative (-) contribution from the Secure eSAP soft-goal, since

usually trying to make the system secure makes it more difficult to use.

The Mobile soft-goal accepts two positive contributions from the Portable and the

Synchronise Data soft-goals. The former contributes positively because the system

must be portable to be mobile, and the latter because the system must be able to

synchronise data in order to be mobile.

An Overview of the Tropos Methodology 59

Furthermore, the Secure eSAP soft-goal receives three positive contributions.

The first positive contribution comes from the Authorise Access soft-goal, which

contributes positively because the system must be able to Authorise Access to be

secure. The other two positive contributions come from the Secure Exchange of

Data and the Secure Communications soft-goals. The former acts positively

because the exchange of data must be secured, and the latter because any

communication of the system must be secure. In addition, the Secure eSAP soft­

goal has a negative contribution from the Portable soft-goal because a portable

system is more difficult to secure.

As it can be seen from the analysis presented in this section, the late requirements

analysis stage follows the same analysis techniques used in the early requirements

analysis. The main difference is the idea of introducing the system as another actor.

Such an approach is very important and provides advantages since it helps to identify

clearly the relationships and the dependencies between the system and the

environment that the system will be situated. Medical information systems, such as

the electronic single assessment process system, more often are introduced to

environments in which non or very little computer expertise is found. Defining

clearly the roles and the dependencies of the actors and the system helps to identify

the functional and non-functional requirements of the system-to-be according to the

real needs of the actors. Also, analysing the system itself within its operational

environment helps to delegate responsibility for the achievement of goals to the

system and also identify new dependencies between the system and the other actors.

This leads to the definition of functional and non-functional requirements for the

system, which would be very difficult to identify otherwise. In addition, the way the

system is analysed within the late requirements stage, provides developers with the

ability to consider different alternatives for satisfying the system's goals and decide,

by checking for example if the alternative contributes positively or negatively to the

other goals of the system, which of these alternatives is the best solution.

3.7.3 Architectural design stage

When the system goals and soft-goals have been identified, the next step of the

development cycle involves the definition of the system's global architecture in

An Overview of the Tropos Methodology 60

terms of subsystems (actors) interconnected through data and control flows

(dependencies).

As mentioned in section 3.3 the first step of the architectural design stage is the

identification of actors to take responsibility to fulfil one or more goals of the system

and to contribute positively to the fulfilment of some non-functional requirements.

Figure 3-11 shows a partial decomposition of the eSAP actor into sub-actors that

have been delegated the goals of the system 11. The eSAP system depends on the

Coordinator Manager to coordinate the care of the older people, on the Medical

Library Manager to Provide Access to Medical Libraries, on the Medical

Records Manager to Provide Access to Medical Records, on the

Appointments Manager to Schedule Appointments, on the Care Plan Manager

to manage the care plans, on the Needs Identifier Manager to identify the needs of

the patients, and on the Security Manager to fulfil the Secure eSAP System goal.

Figure 3-11: Partial decomposition of the eSAP actor

These newly introduced sub-actors can be furthered decomposed as shown m

Figure 3-11 to provide more details about the system and allow developers to

e plicitly define the actors of the system. For example, the Care Plan Manager

II In thi figure only a partial decomposition is illustrated (not aU the goals of the eSAP have been

delega ted to sub-actors).

An Overview of the Tropos Methodology 61

depends on the Care Plan Appointments Manager to Manage Care Plan

Appointments, on the Assessments Manager to Manage Previous

Assessments and on the Future Actions Manager to Manage the Future

Actions required by the care plan. Furthermore, the Security Manager depends on

the Authorisation Manager to Authorise Access to the system, on the

Communications Manager to Secure Communications and on the Secure

Exchange Manager to provide security during the exchange of data.

Decomposing the system to sub-systems (sub-actors) and delegate system

responsibilities (goals) to those actors help to define more explicitly the system. As

argued by Jennings and Wooldridge [Jen99] "Decomposition helps tackle complexity

because it limits the designer's scope: at any given instant only a portion of the

problem needs to be considered".

New actors and their dependencies with the other actors are presented with the aid

ofthe extended actor diagram [Bre02b]. Such a representation is important since

it helps developers to identify dependencies between new and existing actors, and, as

a result of this, possibly introduce new goals to the system, which would be very

hard to identify otherwise. Figure 3-12 shows the extended actor diagram with

respect to the Obtain Information about Care Plan task (see Figure 3-8) of the

Older Person. For example, when the Older Person tries to obtain information

about their care plan the Care Plan Manager depends on the Security Manager to

obtain Security Clearance, and the Security Manager depends on the

Authorisation Manager to obtain Authorisation Status (GrantlDeny

Authorisation).

An Overview oL the Tropos Methodology 62

Figure 3-12: Part of the extended actor diagram with respect to the Obtain Information about

Care Plait task of the Older Person

On the other hand, the Authorisation Manager depends on the Older Person to

provide their Authorisation Details.

The actors introduced in the extended actors diagram can be furthered decomposed

with respect to their goals and tasks. For example, Figure 3-13 shows a partial

decomposition of the Authorisation Manager actor into two sub-actors, the

Authorisation Granter and the Authorisation Checker. The former is responsible

for checking the Authorisation Data and the Authorisation Privileges and provide

(or deny) Authorisation Clearance, and the latter is responsible for checking the

user 's (in this example the Older Person) Authorisation Details and provide the

Authorisation Granter with the Authorisation Data and the Authorisation

Privileges of each user.

Th architectural design also involves the capabilities identification sub-stage, in

which the capabi lities needed by each actor to fulfil their goals and tasks are

modelled. The extended actor diagram is used to identify the capabilities, since each

depend ncy relationship can give place to one or more capabilities triggered by

eternal events.

For e ample the resource Authorisation Privileges (modelled in Figure 3-13) calls

for the capability Obtain Authorisation Privileges for the Authorisation Granter

actor nd Provide Authorisation Privileges for the Authorisation Checker actor.

An Overview of the Tropos Methodology 63

. ,
•

I
•
I
• ,
, ,
•
\ ,

\ • ,
• ,
".

' .

. ,
• ,

• ,
•
\ , , .

I , , , , ,
I

~,----..,,'

............ _._.-
Figure 3-13: Extended diagram with respect to the Authorisation Manager

Later on the detailed design, each agent's capabilities are further specified and then

coded during the implementation phase. Table 3-1 reports the actors of Figure 3-13

and their capabilities as derived from the dependencies that exist between them.

Table 3-1: Actors and their capabilities with respect to Figure 3-13

Actor Capability

Security Manager Obtain Authorisation Status

Authorisation Granter Obtain Authorisation Privileges

Obtain Authorisation Data

Provide Authorisation Status

Authorisation Checker Provide Authorisation Data

Provide Authorisation Privileges

Obtain Authorisation Details

Older Person Provide Authorisation Details

The last step of the architectural desIgn IS the agents' assIgnment. During this step

a set of agents are defined and each agent is assigned one or more different

capabilities identified in the previous step. In the presented example, it was decided

(for reasons of simplicity) to allocate capabilities corresponding to each actor

An Overview of the Tropos Methodology 64

identified in Table 3-1, to corresponding agents. For example, the Authorisation

Granter agent is assigned the Obtain Authorisation Privileges, Obtain

Authorisation Data, and Provide Authorisation Status capabilities.

As mentioned by Castro et al. [CasOl], an interesting decision that comes up during

the architectural design is whether the fulfilment of an actor's obligations will be

accomplished through assistance from other actors, through delegation, or through

decomposition of the main actor into component actors. Tropos helps developers

towards this direction, by allowing them to decompose existing actors, and/or add

new actors and redefine the dependencies between the existing actors and the new

introduced actors and sub-actors.

3.7.4 Detailed design stage

As mentioned in section 3.3, detailed design stage aims at specifying agent

capabilities, plans, and interactions and it is intended to introduce additional detail

for each architectural component of the system. For this reason Tropos employs

capability, plan and agent interaction diagrams (for a reminder see section 3.5). For

example, the Obtain Authorisation Status capability (see Table 3-1) of the

security manager agent is illustrated in Figure 3-14.

EE: Receives (AGA, SMA, Authorisation Status)

IE. (Authorisation Status Valid)
IE: (Authorisation Status Invalid)

Figure 3-14: Capability diagram for the authorisation status capability

An Overview of tbe Tropos Metbodology 65

The Security Manager Agent (SMA) receives (external event - EE) the

Authorisation Status from the Authorisation Granter Agent (AGA), it evaluates

the Authorisation Status and either accepts it or rejects it.

Moreover, each capability depicted on the diagram can be furthered analysed with

the aid of the plan diagram. Figure 3-15 illustrates the plan diagram for the Evaluate

Authorisation Status plan belonging to the capability depicted in the diagram of

Figure 3-14. The plan is activated with the receipt of the Authorisation Status from

the Authorisation Granter Agent and it ends by deciding if the Authorisation

Status is valid or invalid (In addition the plan can be terminated if Authorisation

Status is not readable). The integrity of the Authorisation Status is checked. If the

check is successful the Authorisation Status is received as valid, else the

Authorisation Status is considered invalid from the Security Manager Agent.

Authorisation Status
Readable

Fail Integrity Check

EE:Receives (AGA, SMA, Authorisation Status)

Authorisation Status Not
Readable

Pass Integrity Check

Figure 3-15: Plan diagram for the evaluate authorisation status plan

In addition, an example of an agent interaction diagram is shown in Figure

3-16. This diagram illustrates interactions (shown as arrow-lines) between the

Security Manager, the Authorisation Granter, the Authorisation Checker and ,
the Older Person asents 'whicallv illustrated as rectansles at the top of the
An Overview of the Tropos Methodology 66

diagram). The Security Manager requests an Authorisation Status from the

Authorisation Granter. When the Authorisation Granter receives the request it

requests the Authorisation Data and the Authorisation Privileges from the

Authorisation Checker. Then the Authorisation Checker sends a request to the

Older Person for its Authorisation Details. When the Older Person replies with

the Authorisation Details, the Authorisation Checker sends the Authorisation

Data and the Authorisation Privileges to the Authorisation Granter, who replies

to the Security Manager with the Authorisation Status.

Authorisation
Granter

Authorisation
Checker

Older Person

Request Authorisation Status

Request Authorisation Data

Request Authorisation Privileges

Request Authorisation Details
>1 o

Authorisation Data

Authorisation Privileges

Authorisation Status

Figure 3-16: Example of an agent Interaction diagram

In Tropos the detailed design stage is based on the specifications resulting from the

architectural design phase and the reasons for a given element, designed at this level,

can be traced back to early requirements analysis, a very important advantage of the

methodology.

3.8 LIMITATIONS OF TROPOS WITH RESPECT TO SECURITY MODELLING

The decision of choosing Tropos for the integration of security issues was based, as

described in chapter 2, on the potential that Tropos demonstrated, in comparison with

other existing methodologies, in being extended with respect to security modelling.

An OVerview of tbe Tropos Methodology 67

On the other hand, the Tropos methodology demonstrates some limitations with

respect to security modelling. This section aims to identify these limitations. The

criteria for the evaluation of the Tropos will be based on the requirements identified

in the previous chapter, section 2.3.2.2.

3.8.1 Limitations on the concepts of the methodology

As mentioned, the Tropos methodology partially tackles security modelling by

allowing developers to capture security requirements, as well as any other non­

functional requirements, as soft-goals. The concept of soft-goal is "used to model

quality attributes for which there are no a priori, clear criteria for satisfaction, but

are judged by actors as being sufficiently met" [Yu95]. However, security

requirements relate to system's quality attributes, or alternatively may define

constraints on the system [SomOl, Rom85]. Qualities are properties or characteristics

of the system that its stakeholders care about, whereas constraints are restrictions,

rules or conditions imposed to the system and unlike qualities are (theoretically) non

negotiable. Therefore, although the concept of a soft-goal captures qualities, it fails

to adequately capture constraints. However, possible constraints might be imposed

on the system representing restrictions (global or for each individual agent). For

example, security constraints might be imposed on the system representing

restrictions related to its security. Such constraints might affect the analysis and

design of the system, by restricting some alternative design solutions, by conflicting

with some of the requirements of the system, and also by refining some of the goals

of the system or introducing new ones that help the system towards the satisfaction

of its requirements.

To further illustrate the need to introduce constraints in the Tropos methodology,

consider the actor diagram presented in Figure 3-7. By analysing the actor diagram

of this example, it is observed that although the dependencies between the actors are

clearly shown, some possible constraints that might be imposed to some of the actors

are not present. For example, the Older Person depends on the Benefits Agency to

Receive Financial Support but the Older Person most likely introduces a

security-related constraint to the Benefits Agency to keep their financial

information private. On the other hand, the R&D Agency actor depends on the

An OVerview o£ tbe Tropos Metbodology 68

Professional actor to Obtain Clinical Information but the Professional might be

restricted (for example by the DoH or the Older Person) to provide only

anonymous clinical information. In addition, the Older Person might restrict the

Professional by imposing a constraint to share medical information only if the older

person's consent is obtained.

Therefore, the above-mentioned actors have to achieve their goals while having to

satisfy different security constraints imposed to them. By analysing the constraints

that actors might impose to each other, developers are able to identify security goals

that can be used later in the development process and which (the goals) help towards

the identification of the security requirements of the multiagent system. However,

currently the Tropos methodology fails to adequately model such constraints, and

therefore the modelling of security issues during the development of a multiagent

system is restricted.

In addition, the usage of soft-goals to model general non-functional requirements

although it allows developers to define together security and other functional and

non-functional requirements, it does not help in providing a clear distinction between

the security and the other requirements of the system (requirement 6 in section

2.3.2.2). Such a distinction is made even harder by the lack of definition of the

Tropos concepts, such as goals, tasks, and dependencies, with security in mind.

3.8.2 Limitations on the Tropos' process of modelling security

In addition to the above limitations regarding the concepts of the Tropos

methodology, there are limitations regarding the process of modelling security

issues. The current process, of the Tropos methodology, of modelling and reasoning

about security issues throughout the whole range of the development stages of

multiagent systems is quite ad hoc. Developers are allowed to capture security

requirements with the aid of soft-goals, and then propagate them throughout the

development stages. Also, the methodology allows developers to (partiallyI2) identify

conflicts between security and other requirements. However this process is neither

clearly nor well guided (requirement 4 in section 2.3.2.2). It is unclear how

I~ Partially because the methodology identifies conflicts only between security requirements

captured by soft-goals and not any security constraints that the system could be imposed.

An OVerview ot the Tropos Methodology 69

developers can systematically capture security requirements (expressed as soft-goals)

and how they can develop a design that successfully meets those requirements in a

systematic way (requirement 9 in section 2.3.2.2). For example, it is not defined by

the methodology how soft-goals related to security and identified during the analysis

process can be transformed to security goals of the system during the design and how

these soft-goals can be traced back in the early requirements analysis stage.

In addition, the methodology does not provide any process to allow developers to

reason about the consequences of the application of a particular design to their

system (requirement 8 in section 2.3.2.2) and also fails to provide a process that

allows developers to evaluate the developed security solution (requirement 9 in

section 2.3.2.2). Consider for instance the example presented in section 3.7. How can

developers know that the proposed design actually meets the security requirements?

Moreover, the methodology assumes developers demonstrate in-depth security

knowledge. This is due to the fact that in order to express security requirements as

soft-goals, developers have to identify these security requirements. For instance,

consider the security analysis of the eSAP system (see Figure 3-1O). The security

soft-goal (Secure eSAP) receives positive contributions from three soft-goals

(Authorise Access, Secure Communications and Secure Exchange of Data).

However, currently, the introduction of these soft-goals depends only on the

knowledge of security that each developer has and there is no a systematic way to

introduce them to the system according to any kind of analysis. For novice-security

developers, who lack knowledge of security, this is a very difficult task since the

methodology does not provide any particular process to help them to identify such

security requirements (requirement 1 in section 2.3.2.2).

In addition, the methodology fails to integrate security modelling during the early

requirements analysis stage. For instance in the example presented in section 3.7,

security is introduced only on the eSAP system analysis. However, all the actors

play an important role with respect to the security of the system and all of them

should be analysed with security in mind. Someone might argue that the same way

security was (partially) considered during the eSAP analysis, could be considered

for all the actors. However, the point here is that Tropos fails to provide a process

An Overv1ew of the Tropos Methodology 70

that will guide security-novice developers in identifying that such an analysis should

take place not only for the eSAP system but for all the actors related.

3.8.3 Discussion with respect to the limitations

From all the above it is concluded that the Tropos methodology does not provide a

structured approach towards security modelling (requirement 3 in section 2.3.2.2)

and therefore needs to be extended in order to adequately model security issues.

Extensions are required to the ontology of the methodology as well as in the

development process. Extensions on the ontology should involve the introduction of

the concept of constraint and the definition of the current Tropos concepts with

security in mind.

An alternative way (than extending the ontology) in modelling security in the

Tropos methodology would be to introduce goals (related to security) to the actors

without first imposing any constraints. For instance, in the electronic single

assessment process example, a goal such as Obtain Older Person Consent could

be introduced to the Professional actor without analysing any constraints that could

be imposed to this actor. This would be possible, but it would represent a totally ad

hoc process, depending only on the experience and the capability of the developer.

Therefore, such an approach restricts the use of the methodology only to security

expert developers and it would be in contrast with one of the important requirement

of a security oriented approach, which is to allow novice security developers to

successfully consider security issues during the analysis and the design of a

multi agent system. Moreover introducing goals without defining them by taking into

account security it makes the distinction between the security and the other

requirements ofthe system extremely difficult.

On the other hand, someone might argue that constraints could be captured as

goals. Nevertheless, the concept of a constraint is different from the concept of a

goal. A goal represents a desired state of the world, while a constraint represents a

condition, rule, or restriction towards the achievement of a goal. Although a goal can

be achieved with various ways, a constraint defines a set of restrictions on how the

goal will be achieved. For example, the Benefits Agency could have a goal to keep

financial information private. However this is not a goal of the Benefits Agency,

An Overview of tbe Tropos Methodology 71

the goal is to provide financial support, but rather a restriction imposed in

achieving the goal.

Therefore, as derived from the presented discussion, the ontology of the Tropos

methodology should be extended to include the concept of constraint (and also define

the concept with security in mind) and in addition the Tropos concepts should be

defined with security in mind. In addition, extensions to the development process of

the methodology are essential to enable a structured security-oriented approach in the

development of multi agent systems. In particular extensions regarding the

development process should satisfy the requirements identified in the previous sub­

section (3.8.2) that currently Tropos fails to meet.

3.9 SUMMARY

Tropos is an agent oriented development methodology based on intentional and

social concepts inspired by the early requirements analysis. The architecture and

software design models produced in Tropos are intentional in the sense that system

components have associated goals that are supposed to fulfil and they are also social

in the sense that each component has obligations/expectations (expressed in terms of

dependencies) towards/from other components [Cas02].

This chapter provided an overview of the Tropos methodology. The concepts and

notations, the stages and the modelling language of the methodology were presented.

Furthermore the modelling activities and a set of transformations defined by the

Tropos methodology were introduced.

This chapter also provided a critical discussion, evaluation, of the methodology

with respect to security modelling. The limitations of the Tropos methodology, as

derived from an evaluation against the requirements presented in chapter 2, were

identified and a preliminary discussion on the required extensions took place.

The aim of the next two chapters is to introduce those security-oriented extensions

and discuss how they can be integrated within the development stages of the Tropos

methodology. More specifically, chapter 4 introduces the proposed security concepts

and security-oriented modelling activities, whereas chapter 5 describes the proposed

security-oriented approach and it explains how the approach can be integrated within

the Tropos development stages.

An Overview of the Tropos Methodology 72

The previous chapter introduced the concepts, the modelling activities and the

development process of the Tropos methodology. Furthermore, it identified the

limitations of the methodology with respect to security modelling. To overcome

those limitations, this research has extended the Tropos methodology to enable it to

model security issues during the development process of a multiagent system.

The purpose of this chapter is to describe security-oriented extensions to the

concepts and the modelling activities of the Tropos methodology. Section 4.1

outlines how this research approached the issue of integrating security in the Tropos

methodology. The newly introduced and the extended concepts are presented in

section 4.2, and section 4.3 describes the modelling activities with respect to the

security modelling. Finally, section 4.4 summarises the chapter.

4. 1 INTEGRATING SECURITY IN THE TROPOS METHODOLOGY

The main challenge when integrating security modelling issues in a development

methodology is to provide a security-oriented approach that will allow developers to

provide as much effective security as possible, by systematically analysing the

security issues of the multiagent system, and successfully integrate such an approach

in the development stages of the methodology.

Having this in mind, the extensions provided by this research to the Tropos

methodology, in order to accommodate a security-oriented approach during the

development of multiagent systems, can be divided into two main categories: (1)

extensions related to the ontology and the modelling activities of the methodology;

and (2) extensions related to the development process of the methodology.

The first category involves the introduction of new security-related concepts such

as security constraints and the definition of current concepts, such as goals, tasks,

Secure concepts and Modelling Activities 73

resources, capabilities and dependencies, with and without security III mind.

Consider, for example, the difference between a goal and a secure goal. The latter

representing a goal that specifically affects the security of the system.

The second category involves the development of a security-oriented process and

the integration of this process into the development stages of the Tropos

methodology. Towards this direction, this research has developed processes that

allow developers to identify the security requirements of a multi agent system, to

select amongst different architectural styles with respect to the security requirements

of the system, to transform a multi agent system's security requirements to design,

and to evaluate the security of the system. In addition, these have been successfully

integrated within the development stages of the Tropos methodology.

The rest of this chapter focuses on the first category 13 • Therefore, it introduces

extensions to the Tropos ontology, by describing the concept of security constraints

and the definition of existing Tropos concepts with respect to security modelling. In

addition, the chapter describes security-related modelling activities involving the

presented security concepts.

4.2 THE SECURE CONCEPTS

As derived from the analysis presented in chapter 3, the current ontology of the

Tropos methodology fails to adequately model security during the development

process of a multiagent system. To enable developers to adequately capture security

requirements this research introduces the concept of constraint and it extends it with

respect to security. In addition, the Tropos concepts of dependency, goal, task,

resource, and capability are also extended with security in mind. This section aims to

describe these concepts, which are defined within the Tropos project as secure

concepts.

4.2.1 Constraint and security constraint

As discussed in chapter 3, section 3.7, the current ontology of Tropos fails to

adequately model security constraints related to the development of multi agent

systems. However, before defining the concept of security constraints within the

13 Extensions related to the development process of the methodology are presented in Chapter 5.

Secure Concepts and Modelling Activities 74

Tropos methodology, the concept of constraint has to be defined within the Tropos

context.

Constraints can represent a set of restrictions that do not pennit specific actions to

be taken or prevent certain objectives from being achieved and more often [Ste95]

are integrated in the specification of existing textual descriptions. However, this

approach can often lead to misunderstandings and an unclear definition of a

constraint and its role in the development process. Consequently, this results in errors

in the very early development stages that propagate to the later stages of the

development process causing many problems when discovered; if they are

discovered.

Therefore, it is important to define constraints, as a separate concept of the Tropos

ontology. To this end, the concept of constraint has been defined within the context

of this project as follows:

A restriction that can influence the analysis and design of the multiagent system

under development by restricting some alternative design solutions, by conflicting

with some of the requirements of the system, or by refining some of the system's

objectives.

Additionally, to fully integrate the concept of a constraint in the Tropos

methodology, this research has extended the metamodel of the Tropos modelling

language by introducing the construct for modelling constraints. The portion of the

Tropos metamodel concerning the concept of constraint is shown in the Unified

Modelling Language (UML) class diagram of Figure 4-1.

A constraint restricts zero or more (0 ... *) dependencies, goals and/or tasks.

Conversely zero or more (0 ... *) dependencies, goals and/or tasks are restricted by

one or more (1 ... *) constraints. When a constraint is imposed to a goal (or task), two

analysis processes are employed: Constraint decomposition, which aims to further

decompose the constraint; and goal introduction, which identifies possible goals

that the constraint might introduce to the system.

Secure concepts and Modelling Activities 75

Task ~ 0 . .*

restricted by

Goal
0 . .*

1."
introduced

[D~S§8
1."

0." 0." Dependency

introduces

restricted by

Security
Constraint

Figure 4-1: UML meta model for the concept of constraint

Perfom1ing these types of analysis, the developer goes from a very high level

definition of a constraint to a more detailed and precise definition. In the same time,

constraint analysis allows designers to check and refine the goals of an actor

according to the imposed constraints, and decide how these goals can be better

satisfied.

A constraint can be decomposed into one or more (1 ... *) sub-constraints. Sub­

c nstraints define more precisely a constraint. The decomposed constraint is called

the "root" constraint. However, unlike a goal in which the decomposition provides a

set of necessary sub-goals (AND-decomposition) and/or alternatives sub-goals (OR­

dec mposition) the fulfillment of which has to be considered as necessary and

ufficient condition for the fulfillment ofthe higher goals, a constraint decomposition

implies the satisfaction of the root security constraint, if and only if all the sub­

con traints are satisfied.

More er, constraints can introduce goals to an actor. This is known as goal

introduction. The purpose of these goals is to help towards the achievement of the

constraint. In other words, during the process of goal introduction, the developer

r fine the goals of an actor to allow the satisfaction of a constraint.

Secure Concepts and Modelling Activities 76

Defining constraints as a separate concept does not imply their isolation from the

rest of the Tropos concepts. Constraints are closely related with the part of the

system they restrict, which is called the context of the constraint [Ste95]. In Tropos

methodology, the context includes a different number of goals, soft-goals, tasks and

dependencies of the system.

Although, constraints can be valuable in modelling vanous non-functional

requirements, such as performance, reliability and security, this project is interested

in security-related constraints imposed to the multi agent system. For this reason, the

above constraint definition is further extended regarding security constraints.

A security constraint is defined as a restriction related to security issues, such as

privacy, integrity and availability, which can influence the analysis and design of a

multiagent system under development by restricting some alternative design

solutions, by conflicting with some of the requirements of the system, or by refining

some of the system's objectives.

A security constraint contributes to a higher level of abstraction, meaning that

security constraints do not represent specific security protocol restrictionsl4
, which

restrict the design with the use of a particular implementation language. This higher

level of abstraction allows for a generalised design free of models biased to particular

implementation languages. Regarding the constraint metamodel, a security constraint

is captured through a specialisation of constraint into the subclass security constraint

(see Figure 4-1).

Security constraints can influence the security of the system either positively or

negatively. Therefore, this research differentiates between positive and negative

security constraints. Positive security constraints contribute positively towards the

achievement of the security of the system, whereas negative security constraints

might put in danger the security of the system. An example of a positive security

constraint could be allow access only to personal information and an example of

a negative security constraint could be send information plain text (not encrypted).

14 Such security restrictions should be specified during the implementation of the system and not

during the analysis and design.

Secure Concepts and Modelling Activities 77

ecurity constraints can be categorised into two main categories, human-imposed

or n ironment-imposed. The first category includes security constraints imposed by

th stakeholders or the users. As an example consider a security constraint imposed

b on actor to another. The second category involves security constraints imposed

b organi ations security policies, laws, rules or regulations. For example consider a

security constraint imposed to an actor of a system because of the security policy of

the organisation. ecurity constraints imposed by humans can either positively or

negati Iy contribute towards the security of the system, whereas the security

con traints imposed by the environment mainly contribute positively. This is due to

th f: ct that humans can impose constraints related to the security of the system

regardless i r these constraints help or put in danger the security, whereas security

on traints imposed by, for example, security policies aim to help towards the

s curit of the system.

on traint and security constraints are depicted, as illustrated in Figure 4-2, as

louds " ithin which the description of the (security) constraint is shown. The only

differ nee i an (ecurity) within brackets that appears in the beginning of the

urity con traint description to indicate that the constraint is related to the security

of th multiag nt system.

Figure 4-2: Graphical representation of a constraint and a ecurity constraint

4.2.2 Secure dependency

ure d pendency introduces security constraint(s) that must be fulfilled for the

p nd n y to be satisfied. Both the depender and the dependee must agree for the

fulfilm nt of the security constraint in order for the secure dependency to be valid.

That mean the depender expects from the dependee to satisfy the security

n traint() and also that the dependee will make an effort to deliver the dependum

b ati ring the security constraint(s).

h r ar thr different types of a secure dependency:

Secure concepts and Modelling Activities 78

- Dependee Secure Dependency, in which the depender depends on the

d pendee and the dependee introduces security constraint(s) for the

dependency. The depender must satisfy the security constraints introduced by

the dependee in order to help in the achievement of the secure dependency.

This type of secure dependency is graphically represented with a security

constraint at the side of the depender (see Figure 4-3-a).

Depender Secure Dependency, in which the depender depends on the

d p ndee and the depender introduces security constraint(s) for the

d p ndency. The dependee must satisfy the security constraints introduced by

the depender, otherwise the security of the dependency will be in risk. This

type f secure dependency is graphically represented with a security constraint

at th side of the dependee (see Figure 4-3-b).

- Double Secure Dependency, in which the depender depends on the

dependee and both the depender and the dependee introduce security

c n traints [or the dependency. Both must satisfy the security constraints

introduced to achieve the secure dependency. This type of secure dependency

is repre cnted with security constraints on both sides (see Figure 4-3-c).

Figure 4-3: Graphical representation of secure dependencies

Secure Concepts and Modelling Activities 79

4.2.3 Secure entities

As mentioned above, the entities of the Tropos methodology need to be extended

with security in mind. Therefore, in this research the term secure entity describes

goals, tasks, and resources related to the security of the system. In other words, a

secure entity represents a secure goal, a secure task or a secure resource.

A secure goal represents the strategic interests of an actor with respect to

security. Secure goals are mainly introduced in order to achieve possible security

constraints that are imposed to an actor or exist in the system. However, a secure

goal does not particularly define how the security constraints can be achieved, since

alternatives can be considered. As an example, consider an actor that is imposed a

security constraint to provide information only if authorisation has been

obtained. A secure goal (check authorisation) could be introduced to this actor to

help towards the achievement of the imposed security constraint. However, this goal

does not precisely define how the security constraint can be achieved. The actor

could check the authorisation with many different ways.

The precise definition of how the secure goal can be achieved is given by a

secure task. A secure task is defined as a task that represents a particular way for

satisfying a secure goal. Consider, for instance, the above-introduced secure goal

check authorisation. This goal can be satisfied by different security tasks such as

check password or check digital signatures.

A secure resource can be defined as an informational entity that is related to the

security of the multiagent system. Secure resources can be divided into two main

categories. Those that display some security characteristics, imposed by other

entities, such as security constraints, secure goals, secure tasks and secure

dependencies. As an example, consider an actor who depends on another actor to

receive some information (resource dependency). However, this dependency is

restricted by the constraint only encrypted information. Therefore the resource

involved in this dependency is considered secure since it is an encrypted resource.

On the other hand, the second category of secure resources involves resources

directly associated with the security of the system. For example, consider the

authorisation details file of an agent of the system.

Secure Concepts and Modelling Activities 80

In addition, the graphical representation of the Tropos entities has been extended to

enable it to model the secure entities. Secure entities are indicated by the presence of

an S within brackets before the description of the entity as shown in Figure 4-4.

(8) Resource
: Label

'"----...... 1

Figure 4-4: Graphical representation of secure entities

4.2.4 Secure capability

A secure capability represents the ability of an actor/agent to achieve a secure

goal, carry out a secure task and/or deliver a secure resource. For example, consider

an agent that is responsible for providing cryptographic services in a multiagent

system. This agent should possess secure capabilities to decrypt incoming data and

encrypt outgoing data. Another example is an actor responsible for providing

authorisation services to an agency. Such an actor should be provided with secure

capabilities to allow her to provide authorisation clearance or reject an

authorisation request. A graphical representation of a secure capability is given in

Figure 4-5. It must be noted that Tropos did not provide a graphical representation

for the concept of capability. Therefore, this research introduced a graphical

representation for capability and extended this representation, by following the same

technique of introducing an S within brackets before the capability label, to depict

secure capabilities as shown in Figure 4-5.

Capability Label (S) Capability

Label

Figure 4-5: Graphical representation of a capability and a secure capability

4.3 MODELLING ACTIVITIES

The above-presented secure concepts form the basis of modelling security within

the Tropos methodology. However, to make use of the above concepts different

modelling activities contribute to the capturing and the analysis of the security

Secure Concepts and Modelling Activities 81

requirements of a multi agent system. Security-related modelling activities are

divided into two main categories. Those newly introduced to the Tropos

methodology, and those based on Tropos existing modelling activities that have been

extended with respect to security modelling.

The first category includes the security reference diagram modelling, and the

security constraints modelling, whereas the second category includes the secure

entities modelling and the secure capability modelling.

The security reference diagram modelling involves the identification of

security needs of the system-to-be, problems related to the security of the system,

such as threats and vulnerabilities, and also possible solutions (usually these

solutions are identified in terms of a security policy that the organisation might have)

to the security problems.

The security constraint modelling involves the modelling of the security

constraints imposed to the actors and the system, and it allows developers to perform

an analysis by introducing relationships between the security constraints or a security

constraint and its context.

The secure entities modelling involves the analysis of the secure entities of the

system, and it is considered complementary to the security constraints modelling.

The secure capability modelling involves the identification of the secure

capabilities of the actors and the agents of the system to guarantee the satisfaction of

the security constraints.

These four modelling activities are presented in the following four sections.

4.3.1 Security reference diagram modelling

The security reference diagram modelling activity involves the construction of the

security reference diagram. The security reference diagram represents the

relationships between security features, threats, protection objectives, and security

mechanisms. A security reference diagram is constructed after analysing the security

requirements of the system-to-be and its environment and it is similar to the security

catalogue first introduced by Yu and Cysneiros [Yu02]. The main difference lies in

the concepts, such as security features, protection objectives and security

mechanisms, introduced by the security reference diagram and also on the integration

Secure concepts and Modelling Activities 82

of the security reference diagram within the development stages of the Tropos

methodology.

The main purpose of the security reference diagram is to allow flexibility during

the development stages of a multi agent system and also to save time and effort.

Many systems under development are similar to systems already in existence.

Therefore the security reference diagram can be used as a reference point that can be

modified or extended according to specific needs of particular systems.

The analysis done during the construction of the security reference diagram can be

used later in the development process to identify security constraints that must be

introduced to the system-to-be (by taking into account the security needs of the

system) and also by identifying possible means (security mechanisms) that contribute

towards the satisfaction of the security constraints that are introduced to the system.

The notation of the security reference diagram can be adapted to reflect the

notation of the methodology that the diagram is integrated. This is very useful since

it allows developers to work with well-known concepts and allows them to use the

same concepts throughout the development process. In this work, concepts from the

Tropos methodology such as soft-goals, goals and tasks are used to model security

features, protection objectives and security mechanisms respectively.

4.3.1.1 Nodes of the security reference diagram

For the construction process of the security reference diagram the developer

considers the security features of the system-to-be, the protection objectives of the

system, the security mechanisms, and also the threats to the system's security

features.

Security features (also protection properties) represent features associated to

security that the system-to-be must have. In this work the concept of a soft-goal is

used to capture security features on the security reference diagram. This decision was

taken because the concept of soft-goal is used, in the Tropos methodology, to model

quality attributes for which there are no a priori, clear criteria for satisfaction but are

judged by actors as being sufficiently met [Yu02]. In the same sense, security

features are not subject to any clear criteria for satisfaction. Examples of security

features are privacy, availability, and integrity.

Secure Concepts and Modelling Activities 83

Protection objectives represent a set of principles or rules that contribute

towards the achievement of the security features. These principles identify possible

solutions to the security problems and usually they can be found in the form of the

security policy of the organisation. In this work, protection objectives are modelled

using the concept of goal. This has been decided because in the Tropos methodology

a goal defines desired states of the world. In the same sense, a protection objective

represents desired security states that the system must have. Examples of protection

objectives are authorisation, cryptography and accountability.

Security mechanisms represent standard security methods for helping towards

the satisfaction of the protection objectives. Some of these methods are able to

prevent security attacks, whereas others are able only to detect security breaches. In

this project, the concept of a task is used to model security mechanisms. This

decision took place because in Tropos a task represents a particular way of doing

something, such as the satisfaction of a goal. In the same sense, a security

mechanism represents a particular way of satisfying a protection objective. It must be

noticed that furthered analysis of some security mechanisms is required to allow

developers to identify possible security sub-mechanisms. A security sub-mechanism

represents a specific way of achieving a security mechanism. For instance,

authentication denotes a security mechanism for the fulfilment of a protection

objective such as authorisation. However, authentication can be achieved by sub­

mechanisms such as passwords, digital signatures and biometrics.

Threats represent circumstances that have the potential to cause loss; or problems

that can put in danger the security features of the system. Since Tropos notation does

not provide any related concept to model threats, a new notation has been introduced

(see Figure 4-6). Examples of threats are social engineering, password sniffing and

eavesdropping attacks.

A graphical representation of the above-mentioned concepts of the security

reference diagram is depicted in Figure 4-6.

Figure 4-6: Graphical representation of nodes used in the ecurity reference diagram

Secure Concepts and Modelling Activities 84

4.3.1.2 Links of the security reference diagram

The above-mentioned nodes of a security reference diagram are associated with the

aid of two types of links (similar to the contribution links that can be found in the

Tropos methodology): positive and negative contribution links. A positive

contribution link associates two nodes when one node helps in the fulfilment of the

other. Consider, for instance, a protection objective that contributes positively to the

satisfaction of a security feature. A negative contribution link, on the other hand,

indicates that a node contributes towards the denial of another node. As an example,

consider the contribution of a threat to a security feature.

As a result, in every security reference diagram, each security feature identified

receives positive contributions from different protection objectives and negative

contributions from different threats.

Graphically a positive contribution link is modelled as an arrow, which points

towards the node that is satisfied, with a plus (+) whereas a negative contribution link

is represented as an arrow with a minus (-) as shown in Figure 4-7.

+

Figure 4-7: Positive and Negative Contribution links

4.3.1.3 An example of a security reference diagram

An example of a security reference diagram is given in Figure 4-8. Privacy is the

only security feature identified in this example, and it receives positive contributions

[rom the Authorisation and Cryptography protection objectives and negative

contributions from the Password Sniffing threat. Additionally, the protection

objectives are furthered analysed in terms of security mechanisms. Thus,

Secure Concepts and Modelling Activities 85

Cryptography can be achieved by different security mechanisms such as

Encryption and Decryption. On the other hand, Authorisation can be achieved by

Authentication. The Authentication security mechanism can be furthered analysed

into sub-mechanisms such as Passwords, Digital Signatures and Biometrics.

Figure 4-8: Example of a security reference diagram

4.3.1 .4 A transformation system for the construction of the security

reference diagram

The main aim of this section is to provide the definition of a transformation system

for the construction of the security reference diagram in terms of a graph

transformation system [Andr99] . Graph transformation allows the progressive

derivation of the final diagram through subsequent more and more precise versions

of it, according to the application of a set of rules to the diagram. Such an approach is

very useful since it allows developers to precise inspect, by checking whether or not

the diagram follows the construction rules, the development of the security reference

diagram. The proposed transformation system is based on the graph transformation

Secure concepts and Modelling Activities 86

system introduced by Andries et al. [Andr99], and the analysis proposed for Tropos'

actor and goal diagrams by Bresciani and Giorgini [Bre02].

The security reference diagram can be seen as a graph that consists of a set of

labelled nodes and a set of labelled directed edges, each of which connects a pair of

nodes. Formally, this can be represented as a special case of a labelled directed

diagram. That is a 5-tuple graph G, G =< N,E,s,t,l >, where N is a finite set of

nodes that can be connected by one or more edges of the finite set E, and sand t are

two functions that assign the source and the target node to each node respectively

s, t : E ~ N and I represents a label function for each of the nodes and edges. In

addition, for the security reference diagram we can assume that l: E U N ~< T, L >

where T = {SecurityFeatures(soft-goals), SecurityThreats (threats), Protection

Objectives (goals), SecurityMechanisms (Tasks)} and L represents a set of

identifiers.

As mentioned above, a graph transformation involves the application of a rule to a

graph. Such a rule is called a graph transformation rule and a precise definition can

be found in [Andr99]. However, for the construction of the security reference

diagram the, less general, notion of a graph transformation rule proposed by

Bresciani and Giorgini [Bre02] for Tropos diagrams is sufficient.

A graph transformation rule is a pair r = (L,R) , where Land R are graphs called

the left-hand-side (LHS) and the right-hand-side (RHS) of the rule. From the analysis

done by Bresciani and Giorgini [Bre02] it derives that the application of rule r to a

r

graph G results in a new graph H, G ~ H according to the following three steps:

1. Chose an occurrence isomorphism from L onto a sub-graph G' of G,

where G' is a sub-graph of a graph G if and only if G '(1 G is well defined

and G'nG = G'.

2. Delete from G the images of L with no counter-images in L (1 R, and

obtain the context graph D = G \ i (L \ R) .

3. Add to D the images of the terms of R not already in D. This results in

H=Dui(R\L).

Secure Concepts and Modelling Activities 87

Therefore, a graph H can be obtained from a graph G by the application of a set of

p p

transfonnation rules P = {fj, ... , rn} as G => H or => in the case G is the empty graph.

However, the derivation process is non-detenninistic due to the choice of a

particular rule, at each step. Additionally, the chosen rule might be applicable to

several occurrences of the graph's LHS [Andr99]. Therefore, to control this kind of

non-detenninism during the construction of the security reference diagram, priority

rules have been assigned. These rules, in priority sequence, are presented below.

Rule 1: Introduce the security features to the diagram

LHS :< {}, {}, {}, {}, {} >

RHS:< {n,},{},{},{},{n, ~< SF,* >} >

The application of this rule results in the introduction of a new security feature (SF)

in the RHS graph.

Rule 2: Introduce the security threats and associate them with the security features

LHS:< {n\ },O, 0,0, {n\ ~< SF,* >} >

RHS:<{n\,n2 },{e,},{e\ ~n2},{e\ ~n\},{n\ H<SF,*>,n2 ~<ST,*>e\ H<NegCon,G>}

The application of this rule results in the introduction of a security threat (ST) in

the RHS graph and the introduction of new edge(s) associated with this node.

Rule 3: Introduce the protection objectives and associate them with the security

features

LHS:< {n\}, {}, {}, {}, {n\ ~< SF, * >} >

RHS:< {n\,n2 },{e\},{e\ ~ n2},{e\ H n\},{n\ ~< SF, * >,n2 ~< PO, * > e\ ~< PosCon,G >}
The application of this rule results in the introduction of a protection objective (PO)

in the RHS graph and the introduction of new edge(s) associated with this node.

Rule 4: Introduce the security mechanisms and associate them with the protection

objectives

LHS:< {n,},{}, {},{ },{n, ~< PO, *>} >

RHS:< {n"n2 }, {e.}, {e. ~ n2 },{e, H n,},{n. ~< PO, *>,n2 ~< SM, *> e. ~< PosCon,G >}

The application of this rule results in the introduction of a security mechanism (SM)

in the RHS graph and the introduction of new edge(s) associated with this node.

Rule 5: Decompose the security mechanisms to security sub-mechanisms

LHS:< {n"n2 }, {}, {}, {}, {n j ~< SM, * >} >

RHS:< {n"n2 },{e,},{e. ~ n2 },{e. ~ n.},{n j ~< SM, II< >,e, ~< AND-DEC,G >}

Secure Concepts and Modelling Activities 88

The application of this rule results in the introduction of new node(s) and edge(s)

associated with the security mechanisms of the diagram.

4.3.1 .5 Algorithm for the construction of the security reference diagram

Taking into account the above transformation system rules, the algorithm for the

construction of the security reference diagram is given below.

BEGIN

Initialise Graph G (**should be empty in the initialisation

process**)

REPEAT

REPEAT

'choose rule 1';

'choose an occurrence' i for the application of rule 1;

G: = {G\i (L\R)+ i (R\L)

UNTIL G = desired graph or no rule 1, for no occurrence i,

remains;

RBPBAT

'choose rule 2';

'choose an occurrence' i for the application of rule 2;

G: = (G Ii (LIR) + i (RIL)

UNTIL G = desired Graph or no rule 2, for no occurrence i,

remains;

RBPBAT

'choose rule 3';

'choose an occurrence' i for the application of rule 3;

G: = (G Ii (LIR) + i (RIL)

UNTIL G = desired Graph or no rule 3, for no occurrence i,

remains,·

RBPBAT

'choose rule 4';

'choose an occurrence' i for the application of rule 4;

G: = (G I i (LIR) + i (RIL)

Secure Concepts and Modelling Activities 89

UNTIL G desired Graph or no rule 4, for no occurrence i,

remains;

RBPEAT

'choose rule 5';

'choose an occurrence' i for the application of rule 5;

G: = (G I i (LIR) + i (RIL)

UNTIL G = desired Graph or no rule 5, for no occurrence i,

remains;

UNTIL all rules are satisfied for all occurrences;

BND

The general idea of the algorithm is to apply first all the security features, then the

threats related to these features, then the protection objectives applicable to the

security features, then the security mechanisms for the identified protection

objectives and then the security sub-mechanisms.

Sometimes it might be the case that some extra nodes such as extra security

features or extra threats are identified after the application of a particular rule. To

avoid a delay in the analysis, it is convenient sometimes to allow some simple

exceptions. Thus, it may be preferable to introduce the new node (by applying the

corresponding rule) and then continue with the rest of the rules. For this reason, the

outer RBPEAT loop is necessary, since the application of one rule for a particular

node, might require the application of a rule for another node.

As an example of how the proposed algorithm can be applied in the development

of a security reference diagram, consider the security reference diagram of Figure

4-8. The application of the algorithm, for the construction of this security reference

diagram is shown below, in which n) = privacy node, n2 = password sniffing node,

n3 = authorisation node, f4 = cryptography node, ns = authentication node, nb =

encryption node, n7 = decryption node, ns = passwords node, n9 = digital signatures

node, nlO = biometrics node.

BBGIN

OUTER RBPEAT

Rule 1 Loop

Secure Concepts and Modelling Activities 90

Rule 2 Loop

Rule 3 Loop

R3

~ ({ nl' n2 ' n3} , {n2 ~ nl' n3 ~ nl })

R3

~({nl'n2,n3,n4},{n2 ~nl'n3 ~nl'n4 ~nl})

Rule 4 Loop

R4

~({nl'n2,n3,n4,nS},{n2 ~nl'n3 ~nl'n4 ~nl'nS ~n3})

R4

~({ nl' n2,n3,n4,nS ,n6}, {n2 ~ nl'n3 ~ nl'n4 ~ nl'nS ~ n3, n6 ~ n4})

R4

~({nl,n2,n3,n4,nS,n6,n7},{n2 ~nl,n3 ~nl,n4 ~nl,nS ~n3,n6 ~n4,n7 ~n4})

Rule 5 Loop

RS

::::)({ nl ,nZ,n3,n4,nS,n6,n7,nS}'{ nZ ~ n"n3 ~ nl ,n4 ~ n"nS ~ n3,n6 ~ n4,n7 ~ n4,nS ~ nS})

Hs

~ ({"" "2,"),"., "5."6' "7' "S'''9}' {"2 ~",,") ~",,"4 ~",,"s ~"),"6 ~ ".,"7 ~ "4'''S ~ "5,"9 ~ "s})
Hs

~({ ",,"2,"3''' •. ''5.''6' "7' "S."9' "IO}' {"2 ~ "1''') ~ ",,"4 ~",,"s ~ "3'''6 ~ "4,"7 ~ ".,"S ~ "5,"9 ~ "5,"10 ~ "S})

BND OF RBPBAT

BND

It is worth mentioning that the proposed security reference diagram transformation

system is sound with respect to term graph rewriting in that for all term graphs G and

H, G~H implies (G)-fl-Herm(H) where n is the number of paths from rootG to

"
each node u (proof given in [Plu02]).

4.3.2 Security constraint modelling

The security constraint modelling involves activities such as security

constraint delegation and assignment, and also involves analysis that results in the

identification of more detailed and precise security constraints and in the discovery

Secure concepts and Modelling Activities 91

of secure goals that are introduced, to the actors, to help towards the satisfaction of

security constraints.

More likely a developer will employ these activities in an iterative way, and will

combine them with other modeling activities, such as goal, soft-goal, or tasks

transformations, to allow the definition of the system-to-be according to the security

constraints imposed. It depends on the designer to decide which activity must be

employed at which stage of the system development. This is because the main aim of

these processes is not to restrict the designer to a step-by-step development of the

system-to-be, but rather to provide a framework that allows the developer to go from

a very high level design to a more precise and defined version of the system.

4.3.2.1 Security constraint delegation and assignment

Security constraint delegation and assignment activities regard cases in which a

security constraint is delegated from one actor to another (delegation) and when a

security constraint is assigned to a specific goal of an actor (assignment).

When security constraints are imposed to a dependency, restrictions can be

introduced to the actors that are part of this dependency. However, it can be the case

that an actor delegates a security constraint imposed to them to another actor

(through a dependency). This situation is known as security constraint delegation.

As an example, consider a Patient that depends on their general practitioners to

Receive Care as shown in Figure 4-9. A security constraint could be imposed to the

General Practitioner to Keep Patient's Data Anonymous. However, the

General Practitioner delegates the responsibility of providing care to a Nurse

along with the security constraint Keep Patient's Data Anonymous .

......... - ' ---.,..---

Figure 4-9: Example of a security constraint delegation

In case the security constraint is not delegated to another actor, further analysis is

required to identify the goals of the actor that the security constraints restrict. This

case is known as security constraint assignment. The assignment of a security

Secure Concepts and Modelling Activities 92

constraint to a goal is indicated with a contribution link that carries the "restricts"

tag. Consider, for instance, the above example in which the Nurse has been imposed

the security constraint to Keep Patient's Data Anonymous. Such security

constraint could restrict some possible goals of the Nurse such as Share Patient

Information. Therefore, the security constraint is assigned to this goal as shown in

Figure 4-10.

\
\

\
\ , , , ,

~ , .
~ ... , .
I

, . . , , .
• I
\ .
\ .'

" ; .. .,-'..... .; _ -."

Figure 4-10: Example of a security constraint assignment

4.3.2.2 Security constraint analysis

When a security constraint is imposed to a goal (or task), two analysis processes

are employed. Security constraint decomposition, which aims to further

decompose the security constraint, and secure goal introduction, which identifies

possible secure goals that the constraint might introduce to the system.

A security constraint can be decomposed to security sub-constraints, which define

more precisely a security constraint. As an example, consider the security constraint

Keep Care Plan Data Private. Such a constraint can be furthered decomposed into

the Allow Access Only to Personal Care Plan and Allow Only Authorised

Access sub-constraints as shown in Figure 4-11.

Secure Concepts and Modelling Activities 93

------..;.-

Figure 4-11: Example of security constraint decomposition

Furthennore, security constraints can introduce goals to an actor. This is known as

secure goal introduction. The purpose of these goals is to help towards the

achjevement of the security constraint. In other words, during the process of secure

goal introduction, the developer refines the goals of an actor to allow the satisfaction

of a security constraint. Consider, for example, a Social Worker actor who is part of

a health and social care infonnation system as depicted in Figure 4-12. This actor has

a goal to Share Patient Information. However, this goal is restricted by the security

constraint Share Information Only If Consent Obtained. A secure goal, Obtain

Patient Consent, is introduced to the actor to help towards the achievement of the

security constraint (and therefore to help towards the achievement of the goal of the

actor without endanger the security constraint). Since the secure goal helps towards

the satisfaction of the security constraint, a positive contribution link is used .

..... -.-.- ,
• , ,

\ ,
I • ,

\
•

• I
\
•

• ,
•
I
• , • ,

* I
•

I
• ,

•
~

~.

Figure 4-12: Example of secure goal introduction

Secure Concepts and Modelling Activities 94

4.3.3 Secure entities modelling

Secure entities modelling involves the analysis of secure goals, tasks and

resources identified in a multiagent system. Such an analysis is considered

complementary to the security constraints modelling and follows the same reasoning

techniques, presented in chapter 3, that Tropos employs for goal and task analysis

[Bre02a], such as means-end analysis, contribution analysis and AND/OR

decomposition.

In particular, means-end analysis aims at identifying secure tasks and resources that

provide means for achieving a secure goal. Contribution analysis permits developers

to identify secure goals that contribute positively or negatively to the secure goal

being analysed and AND/OR decomposition provides an AND/OR decomposition of

a secure goal and/or task into sub-goals and sub-tasks respectively.

4.3.4 Secure capability modelling

The modelling of secure capabilities involves the identification of the secure

capabilities of the multiagent system's actors to guarantee the satisfaction of the

security constraints. Secure capabilities modelling takes place together with the

capabilities modelling during the architectural design. Secure capabilities can be

identified by considering dependencies that involve secure entities in the extended

actor diagram. When identified, the secure capabilities are furthered specified in

terms of plans of particular agents of the system.

4.4 SUMMARY

The purpose of this chapter was to describe security oriented extensions to the

concepts and the modelling activities of the Tropos methodology to enable it to

model security issues during the whole development process of a multi agent system.

To fulfil this aim this chapter introduced new concepts, such as the concept of a

constraint, and it extended the new and the existing concepts of the Tropos

methodology with security in mind. In addition security-oriented modelling activities

that enable developers to model security issues by considering the previously

presented security concepts were introduced and described.

One of the challenges that this research faced in the extension, with respect to

security, of the concepts and the modelling activities of the Tropos methodology was

Secure Concepts and Modelling Activities 95

the necessity to keep the modifications to the concepts and the modelling activities of

the methodology to a minimum, in order to make the extensions easily

understandable by developers familiar with the Tropos methodology and also to

allow the usage of the same concepts and notations throughout the development

process.

To meet this challenge, only the concept of a security constraint was newly

introduced whereas the rest of the security concepts were extensions (redefinitions

with security on mind) of Tropos existing concepts. On the other hand, extending the

current notation by adding an S within brackets on the root concepts of the Tropos

methodology to enable the modelling of the concepts related to security is a

technique often used in this research. Such an approach introduces two important

advantages. Firstly, it imposes minimum modifications in the notation of the

methodology and therefore makes it easy to understand by developers familiar to the

Tropos methodology and secondly, extending the notation like this allows further

extensions. For instance some developers might find it useful to analyse constraints

related to the performance of multi agent systems. Such constraints could be indicated

by introducing, in the standard constraint notation, a P within brackets. This allows

developers to differentiate the different categories of constraints and therefore

analyse more precisely the multi agent system-to-be.

However, as mentioned in chapter 2, a security-oriented approach is required to

guide developers in employing the presented concepts and modelling activities when

developing multi agent systems. The following chapter illustrates such a process and

it describes how it can be integrated within the Tropos methodology.

Secure Concepts and Modelling Activities 96

The previous chapter introduced concepts and modelling activities that enable

developers to model security issues during the development of multi agent systems.

However, a process is required to guide developers in employing the presented

concepts and modelling activities when developing multi agent systems. The main

aim of this chapter is to describe such a process.

The security-oriented process proposed by this research is mainly divided into four

sub-activities; (1) The identification of security requirements of a multi agent system;

(2) the selection amongst alternative architectural styles for the system-to-be

according to the identified security requirements; (3) the development of a design

that satisfies the security requirements of the system; (4) and the attack testing of the

multiagent system under development. The first four sections, 5.1 to 5.4, of this

chapter provide information about each of these activities.

Moreover, this chapter describes in section 5.5 how the consistency of the security­

oriented process can be checked, and also it outlines in section 5.6 how the Tropos

methodology stages can be refined to include the proposed security-oriented process.

Section 5.7 summarises the chapter.

5. 1 IDENTIFYING THE SECURITY REQUIREMENTS OF THE SYSTEM

The first step in the proposed security oriented process is to identify the security

requirements of the system. Security requirements are identified by employing the

modelling activities described in the previous section, such as security reference

diagram construction, security constraints and secure entities modelling.

The process of identifying the security requirements of the system is basically one

of analysing the security needs of the stakeholders and the system in terms of

security constraints imposed to the system and the stakeholders, and identify secure

goals and entities that guarantee the satisfaction of the security constraints.

A Security Oriented Process 97

The first step in the security process consists of the construction of the security

reference diagram according to the principles and the techniques described in section

4.3.1. When the security reference diagram is complete, the analysis of the actors of

the multiagent system takes place and security constraints are imposed to the actors

of the system. In addition, security constraints are imposed to the system-to-be, with

the aid of the security reference diagram.

When the security requirements of the system-to-be and the involved actors have

been identified, the next step in the process consists of identifying an architectural

style for the system that will satisfy the security requirements. The following section

describes such a process.

5.2 SELECTING AMONGST AL TERNATIVE ARCHITECTURAL STYLES

As mentioned in section 2.3.2.2 an important requirement of a security-oriented

approach is to allow developers to explore different architectural designs or in other

words, to allow developers to reason about alternative design solutions according to

the security requirements of a multi agent system.

For this reason, this research has developed an analysis technique to enable

developers to select among alternative architectural styles l5 using as criteria the non­

functional requirements of the multi agent system under development. The proposed

technique is similar to the evaluation process for organisational styles proposed by

Kolp et al. [KoIOI]. The main difference is that Kolp's process is based on a

qualitative reasoning, while the technique proposed by this research is based on an

independent probabilistic model, which uses the measure of satisfiability proposed

by Giorgini et al. [Gio02]. Satisfiability represents the probability that a non­

functional requirement will be satisfied. Therefore, the analysis involves the

identification of specific non-functional requirements and the evaluation of different

architectural styles against these requirements.

The evaluation results in contribution relationships from the different architectural

styles to the probability of satisfying the non-functional requirements of the system.

To express the contribution of each style to the satisfiability of each non-functional

IS To avoid confusion it must be noted that architectural styles differ from architectures in that" a

style can be thought of as a set of constraints on an architecture" [Bas98].

A Security Oriented Process 98

requirement of the system, a weight is assigned. Weights take a value between 0 and

1. For example, 0.1 means the probability that the architectural style will satisfy the

non-functional requirement is very low (the style is not suitable for satisfying the

requirement). On the other hand, a weight of 0.9 means the probability that the

architectural style will satisfy the non-functional requirement is very high (the style

is suitable for satisfying the requirement).

The weights of the contribution links are assigned after reviewing different studies,

evaluations, and comparisons involving the architectural styles under evaluation.

When the contribution weights for each architectural style to the different non­

functional requirements of the system have been assigned, the best-suited

architectural style is decided. This decision involves the categorization of the non­

functional requirements according to the importance to the system and the

identification of the architectural style that best satisfies the most important non­

functional requirement using a propagation algorithm, such as the one presented by

Giorgini et al. [Gio02].

In case that two or more non-functional requirements are of the same importance,

the presented technique can be integrated with other analysis techniques, such as the

Software Architecture Analysis Method (SAAM) [Kaz94], to indicate which

architectural style is best suited for the system-to-be.

Although the presented technique can be employed for the evaluation of

architectural styles according to different non-functional requirements of a

multiagent system, this research investigates the integration of security analysis

within the development cycle of multi agent systems, and as a result security

requirements are considered the most important, in this thesis, and the basis for the

choice of the architectural style. Therefore, the technique has been focused on

evaluating different architectural styles by considering security as the most important

non-functional requirement of a multi agent system.

To demonstrate the above-presented technique, consider two architectural styles, a

hierarchical style - client/server - and a mobile code style - mobile agents. In

addition, for this example, consider that privacy is the most important security

requirement of the multiagent system-to-be and the one that the architectural styles

are evaluating against. As shown in Figure 5-1, in this example, the architectural

A Security Oriented Process 99

style that satisfies most the privacy requirements of the system is the client/server

style because it contributes higher towards the privacy requirement than the mobile

agents style. Consider, for example, the Information Flow property. This property is

easier to be damaged by employing mobile agents (weight 0.4) since possible

platforms that a mobile agent could visit might expose sensitive information from the

agent. This is due to the fact that the mechanisms focused on the protection of mobile

agents from a server cannot prevent malicious behaviour from occurring [Jan99].

I
I
I
I ,
\
\
XLB

~,
....

....
...............

, -,.'
..... l .. \

- - - i1:lientJSe~t. . \-
... .. I L-_____________________ .~-~_. ___ .. __________ ~

Figure 5-1: An example of selecting amongst architectural styles

On the other hand, in the case of the client/server style (weight 0.8) sensitive

information is stored in the server and existing security measures could be taken to

satisfy the Information Flow attribute.

5.3 TOWARDS A DESIGN THAT SATISFIES THE SECURITY REQUIREMENTS

s mentioned in section 2.3.2.1 one of the main reasons that security is not

int grat d within the development process of multi agent systems, is that developers

who lack security expertise are involved in the development of multi agent systems.

This situation gives rise to two critical questions. How it can be assured that non-

A Security Oriented Process 100

securi(v specialists will have the knowledge to successfully transform security

requirements to design? And how the developer can be sure the proposed solution

satisfies the security requirements of the system? In projects that are stressed on time

and budget developers must "acquire" security knowledge within a short timeframe

and make sure that the system developed will work according to the requirements. A

developer should know which designs are suitable for the problem, and any

sequences an existing design will force to their system.

To provide answers to the above-mentioned questions this research proposes a

pattern language consisting of security patterns for multi agent systems and the

integration of this language within the development process of the Tropos

methodology. The purpose of this section is to argue the suitability of the approach

and to describe the pattern language.

5.3.1 Security patterns for agent systems

"A security pattern describes a particular recurring security problem that arises in

specific contexts and presents a well-proven generic scheme for its solution"

[SchuO 1]. In other words, security patterns document proven solutions to security

related problems in such a way that are applicable by non-security specialists.

Therefore, the application of security patterns in the development of multi agent

systems can provide effective answers to the above-mentioned questions, since non­

security specialists can rely on expert knowledge and apply well-proven solutions to

solve security problems in a structured and systematic way. The use of security

patterns enables non-security specialists to identify patterns for transforming the

security requirements of their system into design, and also be aware of the

consequences that each of the applied security patterns introduce to their system.

Additionally, because security patterns capture well-proven solutions, it is more

likely that the application of security patterns will satisfy the security requirements of

the system.

Nevertheless the advantages of security patterns have been mainly neglected during

the development of multiagent systems [Mou03b]. One of the reasons is the lack of

documented security patterns for the development of multiagent systems. As stated

by Deugo [DeuO 1], documenting some techniques as patterns, does not mean to

A Security Oriented Process 101

document the problem and the solution, since such documentation can be found in

many papers describing the techniques, but rather to provide a deeper understanding

of the forces and the context of the problems that give rise to the proposed solutions.

As a result, the literature provides only references [F ernO 1, F ern02, Y od97] to

object oriented security patterns. Although these patterns show similarities with

possible agent oriented security patterns, the social nature of agent-based systems

and the di fferent security requirements due to unique characteristics in multi agent

systems, such as autonomy, mobility, openness and trust, introduces a void that

existing patterns have not filled [Mou03b].

Therefore, it is important to develop a pattern language consisting of security

patterns for multiagent systems. The next section describes a pattern language

consisting of security patterns for multi agent systems.

5.3.2 The pattern language

A pattern language is a set of closely related patterns that guides the developer

through the process of designing a system. Using a pattern language, a design starts

as a "fuzzy cloud" that represents the system to be realised. As patterns are applied,

parts of the system come into focus, each pattern suggesting new patterns to be

applied that refine the design, until no more patterns can be applied [Bec94]. The

quality of a pattern language itself depends, among other things, on its cohesion (how

closely the patterns are related), coverage (how many of the designs in its application

domain it can generate), and navigability (how easy to use and understandable the

links between patterns are).

Therefore, a good pattern language for the development of secure multiagent

systems should contain security patterns that are based on agent-oriented concepts,

described in section 2.2.2.1, such as intentionality, autonomy, sociality and identity.

Each of the patterns of the language should be explicitly defined and also the

relations between them must be precisely identified. Additionally, the structure of the

patterns should be described not only in terms of the collaborations and the message

exchange between the agents, but also in terms of the social dependencies and the

intentional attributes, such as goals and tasks, of the agents involved in the pattern.

A Security Oriented Process 102

This allows for a complete understanding of the pattern's social and intentional

dimensions, two factors very important in agent-based systems.

It is important to mention that the presented language consists of design patterns.

The main difference between this kind of patterns and others, such as analysis

[Fow97], and architectural [8us96] patterns, is mainly the detail and the abstractions

used to describe each pattern. For instance, an analysis pattern captures a conceptual

model in an application domain in order to allow reuse across applications [Fow97],

whereas an architectural pattern expresses a fundamental structural organization or

schema for software systems, and it provides a set of predefined subsystems,

specifies their responsibilities, and includes rules and guidelines for organizing the

relationships between them [8us96]. In contrast, a design pattern provides a scheme

for refining the subsystems or components of a software system, or the relationships

between them. It describes commonly recurring structure of communicating

components that solves a general design problem within a particular context [8us96].

Having these factors in mind, the pattern language developed by this research

contains four new agent design patterns (only patterns hereafter) and also describes

the relationship of these patterns with other existing patterns. In particular the

language contains the AGENCY GUARD16 that provides a single, non-bypassable,

point of access to an agency, the AGENT AUTHENTICATOR that provides

authentication services to an agency, the SANDBOX that allows an agency to

execute non-authorised agents in a secure manner, and the ACCESS CONTROLER

that allows an agency to provide access to its resources according to its security

policy.

Figure 5-2 describes the relationship of the patterns of the language as well as their

relationship with existing patterns. The diagram is a slight variant of a Unified

Modelling Language (UML) class diagram (the analogy to UML breaks down sooner

or later. For example, the pattern name often echoes the solution and can be about

dynamic actions, while a class name tends to be a ''thing'', not an action). Each box

indicates a pattern, where a solid-line box indicates a security pattern that belongs to

16 Capitalisation indicates reference to patterns in the language developed by this research

A Security Oriented Process 103

the language developed by this research and a dashed-line box indicates a related

existing pattern.

Agency
Guard

j---- ---I
, Embassy , , , , ,
1 _________ 1

,
: Proxy

: - - - - - - - - .1

Sandbox

Agent
Authenticator

Access
Controller

..----------.,
t-----I' Checkpoint :

~ __________ J

.- - -- -- - -- - - -.
, Session :
1 ______ ----_ ..

,-----------,
, Crypto Key :
:_ 5~~n:~ti_o,!l ___ :

,------------
I ' , Crypto Key :
, Exchange :
1 ___________ _

Figure 5-2: Relationships between the patterns of the language and other existing patterns

White triangles depict generalisations/ specialisation and solid lines associations of

type uses/ requires. That way a hierarchy or a sequence of the security patterns is

build, respectively. The AGENCY GUARD is the starting point of applying the

patterns of the language and it is a variant of the Embass/ 7 [KolOl] and the Proxy

[Nor96] patterns. It uses the AGENT AUTHENTICATOR pattern to ensure the

identity of the agents, the SANDBOX pattern in order to restrict the actions of

agents, and the ACCESS CONTROLER pattern to restrict access to the system

resources.

On the other hand, the SANDBOX pattern can implement the Checkpoint [Yod97]

pattern, and the AGENT AUTHENTICATOR pattern can use the Session [Yod97]

pattern to store credentials of the agent. Moreover, the AGENT AUTHENTICATOR

employs the Cryptographic Key Generation [Leh02] and the Cryptographic Key

Exchange [Leh02] patterns for further cryptographic actions.

For each of the patterns, the language provides the pattern name, the intent of the

pattern, the context of the pattern, the description of the problem in which the pattern

is applicable, the forces, the solution to the problem, the social dependencies, the

consequences of applying the pattern, and any patterns related. These sections are

mainly derived from sections proposed by Gamma et at. [Gam95], Buschmann et at.

[Bus96], and Alexander [Ale79]. In particular, the name, intent, problems, solution,

17 The use of italics in this section indicates patterns not developed by this research

A Security Oriented Process 104

and consequences sections are based on the definitions gIven by Gamma et al.

[Gam95], the context and the forces sections are based on the definitions given by

Alexander [Ale79], and the related patterns section is based on the definition given

by Buschmann et al. [Bus96]. In addition to these, the proposed agent security design

pattern template includes a social dependencies section that describes the social and

intentional dimensions of the pattern.

The following section provides an analytical description of the four patterns of the

language.

5.3.2.1 A description of the patterns

5.3.2.1.1 AGENCY GUARD (A G)

Intent: Provide a single, non-bypassable, point of access to the agency. The

AGENCY GUARD defines a structure that makes unauthorized access to the agency

difficult.

Context: A number of agencies exist in a network. Agents from different agencies

must communicate or exchange information. This involves the movement of some

agents from one agency to another or requests from agents belonging to an agency

for resources belonging to another agency.

Problem: Many malicious agents will try to gain unauthorized access to agencies. If

a malicious agent gains such an access, it can disclose, alter or destroy the data

resided in the agency. Additionally, depending on the level of access the malicious

agent gains, it might be able to completely shut off the agency or exhaust the

agency's computational resources resulting in a denial of service to authorised agents

of the agency. The problem becomes worse if many "back-doors" are available in an

agency enabling malicious agents to attack the agency from many places. On the

other hand, not all agents trying to gain access to the agency must be treated as

malicious, but access should be granted based on the security policy of the agency.

Forces:

- The agencies provide access to subsequent resources. All of the corresponding

resources have to be protected accordingly.

- More interfaces increase the flexibility and usability of an agent system,

however, this also could result in duplicate code.

A Security Oriented Process 105

- A single interface can become complex when there are different types of

authorization.

Solution: There must be a single point of access to the agency. When a Requester

Agent wishes to access resources of an Agency or even move to this agency, its

request is forwarded to the Agency Guard that is responsible to grant or deny the

access requests according to the security policy of the agency. The Agency Guard is

the only point of access in an Agency and it is always non-bypassable, meaning all

the access requests are going through it.

ocial Dependencies: A graphical representation involving the actors of the pattern

and their social dependencies is shown in Figure 5-3. The Agency depends on the

Agency Guard to grant/deny access to the agency. The Agency Guard grants /

denies access according to the security policy. To obtain the security policy the

Agency Guard depends on the Agency. The Requester Agent depends on the

Agency Guard to obtain access to the Agency. For the Agency Guard to provide

access to the Agency, a request must be sent from the Requester Agent.

Figure 5-3: The AGENCY GUARD dependencies

on quences:

+ nly the guard should be aware of the security policy of the agency, and it is

the only entity that must be notified if the security policy changes (Not all the

agents ofthe agency).

A Security Oriented Process 106

+ Only the guard must be tested for correct enforcement of the agency's

security policy.

+ There are no many backdoors since there is only one point of access to the

agency.

- Only one point of access to the agency can degrade performance of the

agency.

- Only point of security, if it fails the security of the whole agency is in danger.

Related Patterns: The AGENCY GUARD has concepts of both the Proxy [Nor96]

and the Embassy patterns [KolOl]. In addition, the AGENCY GUARD depends on

the AGENT AUTHENTICATION pattern, in order to authenticate (verify the

owner's identity) the agent requesting access. On the other hand, even if the agent is

not authenticated the agency might decide to allow it to move to the agency but

restrict its actions. For this reason the SAN BOX pattern can be used. In traditional

terms the concept of an AGENCY GUARD is related to the Single Point of Access

[Yod97] and it is referred to as the Reference Monitor [Am094, Fern02].

5.3.2.1.2 AGENT AUTHENTICATOR (AA)

Intent: Provide authentication services to the agency.

Context: Agents send requests to gain access to an agency or to the resources of an

agency; different than the one they belong. To allow access they must be

authenticated, i.e. they must provide information about the identity of their owners.

Problem: Many malicious agents will try to masquerade their identity when

requesting access to an agency. If such an agent is granted access to the agency, it

might try to breach the agency's security. In addition, even if the malicious agent

fails to cause problems in the security of the agency, the agency will loose trust of

the agent/agency the malicious agent masqueraded the identity.

Forces:

- Not all agents have to be authenticated or need all privileges.

- Both agencies and agents should be able to determine the identity of each

other.

- Only weak authentication mechanisms, such as passwords, will not work in

agent environments.

A Security Oriented Process 107

- Public authentication algorithms are widely tested and usually they are

cryptanalysed. On the other hand, secret algorithms can (and usually will) be

reverse-engineered.

- Cryptography is costly. More secure mechanisms usually lead to more

expensive systems.

Solution: Agents have to be authenticated by the agency. By authenticating the

agent; the Agency Guard makes sure it comes from an owner that is trustworthy for

the agency. Each agent's owner and each agency have a public/private key pair. The

Agent Authenticator can authenticate the agent on two cases: Firstly, when the

agent is digitally signed with the owner's public key and secondly when the agent is

digitally signed with the key of the agency that the agent resides. In the second case,

the agent's agency would have authenticated the agent either if the owner signed the

agent or if the agent was signed by the sending agency. In order for the second case

to work, mutual trust must be involved between the sending and receiving agencies

(each agency can be set up so it has a list of "trusted" agencies). In case that the

Agent Authenticator does not trust the agency from which the agent comes from, it

can reject the agent, or accept it with minimal privileges.

Social Dependencies: The graphical representation of the pattern dependencies is

shown in Figure 5-4. The Requester Agent depends on the Agency Guard to

obtain access to the agency. However, the Agency Guard cannot authenticate the

Requester Agent by itself, so it depends on the Agent Authenticator to

authenticate the agent. As a result, the Agent Authenticator receives a request for

authentication from the Agency Guard when needed. In order for the Agent

Authenticator to authenticate the Requester Agent, the Requester Agent should

provide evidence of its digital signature. The Agent Authenticator has to send the

noti fication to the Agency Guard when the agent is authenticated.

A Security Oriented Process 108

Figure 5-4: The AGENT AUTHENTICATOR dependencies

on equences:

+ Authentication concerns are only dealt once. It is not necessary to make the

agents of the system more complex by providing each one with an

authentication mechanism.

+ Ensures that an agent is authenticated before actually request a resource from

the agency.

+ During the implementation of the system, only the AGENT

AUTHENTICATOR must be checked for assurance.

A single point of failure. If the AGENT AUTHENTICATOR fails, the

se urity of the whole agency is in danger.

R tat d Patterns: This pattern has some relations to patterns of the pattern language

for cryptographic key generation [Leh02]. For example, a Cryptographic Key

G neration is required. It is also important to have an appropriate Cryptographic Key

Ex hange. FUlihermore, a Session can be used to store the credentials of an agent for

ubsequent requests [Yod97]. Moreover, the application of the SANDBOX pattern

can be used to restrict the set of resources available to the agent.

A Security Oriented Process 109

5.3.2.1.3 SANDBOX

Intent: Allow the agency to execute non-authorised agents in a secure manner.

Context: An agent requests to move to an agency but it is unable to provide

authentication certificates. This can be the case when the agent either is not

authenticated or it has been authenticated by an un-trusted agency.

Problem: An agency is more likely exposed to a huge number of malicious agents

that will try to gain unauthorised access. Although the agency will try to prevent

access to those agents, it is possible that some of them might be able to gain access.

Thus it is necessary for the agency to operate in a manner that will minimise the

damage that can be caused by an unauthorised agent that gains access. In addition,

some unauthorized agents might be allowed access by the agency in order to provide

services the agency's agents cannot provide. Thus, the agency must be cautious to

accept such unauthorised agents without put in danger its security.

Forces:

- An agent might need specific privileges to perform its task. However, it

should not be allowed more rights than necessary.

- Not all agents are "security aware" and might act against the system's global

policy.

Solution: Execute the agent in an isolated environment that has full control over the

agent's ingoing and outgoing messages. Implementing such a sandboxing principle

prevents any malicious agent from doing something is not authorised to do. The

agent is allowed to destroy anything within the restricted environment but it cannot

touch anything outside. The concept is similar to the Java programming language's

use of a virtual machine environment and the chroot environment in UNIX.

Malicious agents cannot do anything without first interacting with the operating

system. Thus, SANBOX observes all system calls made by the agent and compare

them to the agency-defined policy. If any violations occur, the agency can shut down

the suspicious agent.

Social Dependencies: The graphical representation of the pattern dependencies is

shown in Figure 5-5. The agency depends on the Sandbox agent for observing and

controlling the agent's activities, and the Sandbox agent depends on the Agency to

know adopted policies.

A Security Oriented Process 110

Figure 5-5: The SANDBOX dependencies

onsequences:

+ Agents not authorised but valuable for the agency can be executed

without compromising the security of the agency.

+ Agency can identify possible attacks (by observing the actions of the

agents in the SANDBOX).

- Some computational resources of the agency might be taken for non­

useful actions (when non-useful agents are sandboxed).

- Introduce an extra layer of complexity on the agency.

Related Patterns: A checkpoint should be implemented within the SANDBOX in

order to keep track of the exceptional actions and to decide what actions have to be

taken based on the severity of the violation of the security policy (which defines

what is allowed and what isn't). The SANBOX pattern is related to a similarly­

named Java pattern [JawOO].

5.3.2.1.4 ACCESS CONTROLER (AC)

Intent: Allow the agency to provide access to its resources according to its security

policy.

ontext: Many different agents exist in an agency. Those agents most likely will

require access to some of the agency's resources in order to achieve their operational

A Security Oriented Process 111

goals. However, different agents might have different access permissions and are

allowed access only to specific resources of the agency.

Problem: Agents belonging to an agency might try to access resources that are not

allowed. Allowing this to happen might lead to serious problems such as disclosure

of private information or alteration of sensitive data. In addition, more likely

different security privileges will be applied to different agents on the agency. The

agency should take into account its security policy and consider each access request

individually. How can the agency make sure that agents access resources that are

allowed to access?

Forces:

- It is unlikely that the access control facilities of all internal resources are

activated and configured appropriately. In particular, out-of-the box installations

offer standard services that can be misused by malicious agents. Even if there are

access restrictions it is unlikely that they are consistent, especially when more

than one administrator is involved and there are no "global" guidelines.

- Even worse, it could be assumed that most internal resources are not hardened.

Experience shows that patches are not applied in time and that many, often

unneeded services are running.

- Furthermore, it might happen that attacks cannot even be detected, as one cannot

ensure that the audit facilities of the internal resources are activated and

configured appropriately.

Solution: An Access Controler agent exists in the Agency. The Access Controler

controls access to each resource. Thus, when an agent requests access to a resource,

this request is forwarded to the Access Controler agent. The Access Controler

checks the security policy and determines whether the access request should be

approved or rejected. If the access request is approved the Access Controler

forwards the request to the Resource Manager.

Social dependencies: The graphical representation of the pattern dependencies is

shown in Figure 5-6. The Requester Agent depends on the Resource Manager

for the resource, and the Agency depends on the Access Controler for checking the

request. The Access Controler depends on the Agency for receiving the security

A Security Oriented Process 112

policies and for forwarding the request, which IS forwarded to the Resource

Manager in case it is approved.

Figure 5-6: The ACCESS CONTROLLER dependencies

on equ nee:

+ Agency's resources are used only by agents allowed to access them.

+ Different policies can be used for accessing different resources.

One point of attack, if this fails the system access control system fails.

Related Pattern : The ACCESS CONTROLER pattern has been inspired by the

Rol -Ba d Access Control pattern presented by Fernandez [FerOl]. It is very similar

(it can be thought of as a specialisation) to the AGENCY GUARD, but it focuses on

access t resources within the agency rather than access to the agency.

5.3.2.2 An example of using the pattern language

sane ample of employing the above presented pattern language in the

de elopment of a multi agent system, consider a system that must perfonn

auth ntication and access control checks. In the case of the authentication checks, the

multiagent system should be able to authenticate any agents that send a request to

ac c s information of the system, whereas in the case of the access control checks,

th y t m hould be able to control access to its resources.

A Security Oriented Process 113

To meet these goals, the AGENT AUTHENTICATOR pattern can be used to

provide authentication checks and the ACCESS CONTROLER pattern can be used

to perfonn access control checks. The AGENT AUTHENTICATOR satisfies the

goal by authenticating each agent that tries to access the system, whereas the

ACCESS CONTROLER is used to control access to the resources of the system.

The use of these two patterns helps developers to delegate responsibilities of

particular system security goals to particular actors defined by the patterns.

Moreover, developers know the consequences that each pattern introduces to the

system. In the presented example, for instance, the application of the AGENT

AUTHENTICATOR pattern means that during implementation only the Agent

Authenticator agent must be checked for assurance, whereas the application of the

ACCESS CONTROLER means that different policies can be used for accessing

different resources.

5.4 A TTACK TESTING OF THE MULT/AGENT SYSTEM UNDER

DEVELOPMENT

The previous three sections of this chapter introduced a security-oriented process

that allows the Tropos methodology to consider security issues during the

development of multi agent systems. In particular, this process allows developers to

identify the security requirements of a multi agent system, reason about a suitable

architectural style, and successfully transfonn security requirements to design.

However, an important issue is to test how the system under development copes with

any possible attacks.

According to the IEEE Standard Glossary of Software Engineering [IEEE90],

testability defines "the degree to which a system or component facilitates the

establishment of test criteria and the performance of tests to determine whether those

criteria have been met ". Testing is widely considered an important activity that helps

to identify errors in a system and techniques such as control and data flow testing,

fonnal specifications, special testing languages, and test tools have been used for

many years, in testing systems, and they are considered valuable solutions for many

projects. However, most of these approaches are difficult to apply, they require

A Security Oriented Process 114

special training and skills, and they employ their own concepts and notations

[Rys99].

Such requirements conflict with some of the requirements presented in section

2.3.2.2, according to which, a security-oriented approach should be clear and well

guided, allow non-security specialists to consider security issues in the development

process and it should employ the same concepts and notations throughout the

development cycle of multiagent systems. Therefore, a technique, which is based on

the use of scenarios and uses the same concepts and notations as the aforementioned

in section 4.4 security-oriented process, has been developed and integrated within the

security-oriented process to enable developers to test the system under development.

A scenario approach has been chosen since scenarios can be easily integrated

within development methodologies and can be adapted to the methodology's

notation and concepts. This is due to the fact that scenarios can be represented in

various ways [RysOO]. In this research, scenarios are represented as enhanced Tropos

diagrams.

Scenarios have increased in popularity among software engineers and have proven

to be valuable for eliciting information about systems requirements, communicating

with stakeholders and providing context for requirements [RysOO]. As a result,

scenarios have been applied in many different areas of computer science research,

such as software engineering [Pot94], business-process reengineering [Ant94], and

user interface design [Car91]. In particular, many cases can be found in the literature

[Rys99, RysOO, La195], where scenarios have been used for the validation of

requirements.

In this research a scenario aims to test how the system copes with different kinds of

security attacks. Therefore a scenario should include enough information about the

system and its environment to allow validation of the security requirements. As such,

a Security Attack Scenario (SAS) is defined as an attack situation describing the

agel/ts of a multiagent system and their secure capabilities as well as possible

attackers (J1ll1 their goals, and it identifies how the secure capabilities of the system

pre\'C1l1 (if they prevent) the satisfaction of the attackers' goals.

The presented approach aims to identify the goals and the intentions of possible

attackers. identify through these a set of possible attacks to the system (test cases),

A security Oriented Process 115

and apply these attacks to the system to see how it copes. By analysing the goals and

the intentions of the attackers the developer obtains valuable information that helps

to understand not only the how the attacker might attack the system, but also the why

an attacker wants to attack the system. This leads to a better understanding on how

possible attacks can be prevented. In addition, the application of a set of identified

attacks to the system contributes towards the identification of attacks that the system

might not be able to cope and this leads to the re-definition of the agents of the

system and the addition of new secure capabilities to enable them to protect against

those attacks.

The proposed scenarios-based analysis is similar to the work presented by Liu et a1.

[Liu02] that was discussed in the Introduction. However, there are many important

differences. Liu's work is basically used to identify security requirements; the

security attack scenarios in this work are used to test the security requirements of the

system identified in the previous development stages. So a very similar idea is

applied in a different stage of the development lifecycle. Liu argues that when the

intentions of the attackers are identified the system can be equipped with

countermeasures. However Liu does not mention how such countermeasures can be

identified neither she provides a kind of process for applying these countermeasures

to the system. Moreover, Liu's analysis takes place in a higher level than the one

proposed by this research.

In this research, the secure capabilities of the actors of the system are known (and

therefore a more precise idea of what security measurements the system has is given)

and this allows the reasoning of possible security attacks according to those

capabilities. In addition, in the presented approach test cases are considered. A

process is provided that test each scenario for specific test cases, reason about the

reaction of the system and take a final decision if the system can react to the specific

attack. In cases that the system cannot react to the attack, possible countermeasures

are discussed and extra secure capabilities are introduced to the actors of the system.

A security attack scenario involves possible attacks to a multi agent system, a

possible attacker, the resources that are attacked, and the agents of the system related

to the attack together with their secure capabilities. An attacker is depicted as an

agent who aims to break the security of the system. The attacker intentions are

A Security Oriented Process 116

modelled as goals and tasks and their analysis follows the same reasoning techniques

that the Tropos methodology employs for goal and task analysis. Attacks are

depicted as dash-lined links, called attack links, which contain an "attacks" tag,

starting from one of the attacker's goals and ending at the attacked resource.

For the purpose of a security attack scenario, a differentiation takes place between

internal and external agents of the system. Internal agents represent the core agents

of the system whereas external agents represent agents that interact with the system.

Such a differentiation is essential since it allows developers to identify different

attacks to resources of the system that are exchanged between external and internal

agents of the system.

The process is divided into three mam stages: creation of the scenario,

validation of the scenario, and testing and redefinition of the system according to

the scenario. Even though the presented process is introduced as a sequence of

stages, in reality is highly iterative and stages can be interchanged according to the

perception of the developers. The following three sub-sections describe each of

these stages.

5.4.1 Scenario creation

There are two basic steps in the creation of a scenario. The first step involves the

identification of the attackers' intentions and the possible attacks to the system and

the second step involves identification of possible countermeasures of the system to

the indicated attacks. The next two sections provide information about these steps.

5.4.1.1 Identify the intentions of possible attackers

During the first step, Tropos goal diagram notation is used for analysing the

intentions of an attacker in terms of goals and tasks. Some of these goals can be

identified by the threats modelled on the security reference diagram in Figure 4-8.

For example, the threat Password Sniffing can introduce a goal Perform

Password Sniffing to a potential attacker. However, other goals (apart from the

ones introduced by the threats identified in the security reference diagram) could be

derived from the analysis of a possible attacker's intentions. This is due to the fact

that an attack is an exploitation of a system's vulnerability, whereas a threat is a

circumstance that has the potential to cause loss or harm [SchOO]. Therefore, an

A Security Oriented Process 117

attack can lead to a threat only if the exploitation of the vulnerability leads to a

threat. This means that some attacks can be successful but do not lead to threats as

other system features protect the system. Figure 5-7 illustrates an example of the

analysis of a possible attacker.

• ,
.

• I
\ .
• I
\ . . , '. . , .~

...... ,_fill' _

Figure 5-7: Example of a goal diagram analysing the intentions of an attacker

The main aim of the attacker presented is to attack the system privacy. Moreover,

in this example the attacker employs a simple form of eavesdropping, by trying to

read any information that is transmitted between the system and any external agents,

to achieve their aim.

When the analysis of the attacker's intentions has been completed, possible attacks

to the resources of the system are indicated using attack links.

5.4.1.2 Identify possible countermeasures

The next step in the creation of a security attack scenario involves the identification

of the agents of the system that posses capabilities to prevent the identified, from the

previous step, attacks. Therefore, the agents (internal and external) of the system

related to the identified attack(s) are modelled. The secure capabilities, of each agent,

that help to prevent the identified attacks are identified and dashed-links (with the tag

"help") are provided indicating the capability and the attack they help to prevent. An

example, of a security attack scenario is depicted in Figure 5-8. A System Internal

Agent depends on the External Agent to obtain some Private Information. An

Attacker aims to read the transmitted data (eavesdropping). However, the external

and the internal agents have been assigned secure capabilities, such as encrypt and

decrypt data, which helps towards the privacy of the data.

A Security Oriented Process 118

.-.- -, . ., , ,. .
,. '. . ,

! \
! "
I •
. I
I • .
\

\

8········ . ,. .~

/ \ . .
! \
I • ".

'. ' _._ '-7-.....-.... - 1,jIC. 1..5 ,
~

.... ~ .
"'- I \. ,.
'. . '. .~.;

'.,.-._

. .
\ , . .
'. .'
'. .' '.""',.'

Figure 5-8: An example of a security attack scenario

5.4.2 Scenario validation

When the scenarios have been created, they must be validated. Therefore, the next

stage of the process involves the validation of the scenario. Software inspections are

proved as effective means for document-based validation [Kos97] and as such are the

choice of this research for the validation of the security attack scenarios. The

inspection of the scenarios involves the identification of any possible violations of

the Tropos syntax and of any possible inconsistencies between the scenarios and the

models of the previous stages. Such an inspection involves the use of validation

checklists. onsider, for instance, the following checklist.

1. Is a name defined for each scenario?

2. Are agents represented using the correct notation?

3. Are attack links and help links correctly denoted?

4. Do the attack scenarios capture all possible attacks?

5. Do different scenarios exist for the same kind of attacks?

6. Are there any missing parts on the identified scenarios? (Any links missing or

any agents missing?)

7. Are there any secure capabilities identified in the previous stages not present

in the scenarios?

A Security Oriented Process 119

8. Are there any agents, identified in the previous stages, related to the attacks

not present in the scenarios?

9. Are there any threats identified on the security reference diagram not present

on the scenarios?

10. Are all the resources that can be attacked present in the scenarios?

11. Are the non-prevented attacks correctly marked?

Although inspections have been proposed by this research for the validation of the

security attack scenarios, other techniques could also be applied depending on the

developers' experience and the nature of the system. For instance, two well known

validation techniques for requirements specification are walkthroughs and

prototyping [Kos97].

5.4.3 Testing and redefinition of the system

When the scenarios have been validated, the next step aims to identify test cases

and test, using those test cases, the security of the system against any potential

attacks. Each test case is derived from a possible attack depicted in the security

attack scenarios. Each test case includes a precondition (the state of the system

before the attack), a system expected security reaction (how the system reacts in

the attack), a discussion that forms the basis for the decision regarding the test case,

and a test case result that indicates the outputs ofthe test case.

The test cases are applied and a decision is fonned to whether the system can

prevent the identified attacks or not. The decision whether an attack can be prevented

(and in what degree) or not lies on the developer. However as an indication of the

decision it must be taken into consideration that at least one secure capability must

help an attack, in order for the developer to decide the attack can be prevented.

Attacks that cannot be prevented are notated as solid attack links, as opposed to

attacks that the system can prevent and which are notated as dashed attack links.

For each attack that it has been decided it cannot be prevented, extra capabilities

must be assigned to the system to help towards the prevention of that attack. In

general, the assignment of extra secure capabilities is not a unique process and

depends on the perception of the developer regarding the attack dangers. However, a

good approach could be to analyse the capabilities of the attacker used to perform the

A Security Oriented Process 120

attack and asSlgn the system with capabilities that can revoke the attacker's

capabilities.

5.5 CHECKING THE CONSISTENCY OF THE SECURITY PROCESS

The previous sections introduced a security-oriented process that helps developers

identify security requirements, provide capabilities to the agents of the system to

satisfy them, and test the system against possible attacks.

However, it is important, as described in chapter 2, to check that the process is

consistent. Checking the consistency of the process is an important activity when

developing software systems, multi agent or otherwise, and it is especially valuable

when applied early in the development process, i.e. before implementation, as errors

found during the analysis and design stages are much cheaper and easier to correct

than errors found in later stages [Boe81]. The IEEE standard Glossary of Software

Engineering Terminology [IEEE90] defines consistency as "the degree ofuniformity,

standardisation and freedom, from contradiction among the documents or parts of a

system or component".

A number of different techniques [Boe84] are available to check consistency.

These include manual techniques 18 such as manual cross-referencing, manual

models, checklists and detailed scenarios and automated techniques such as

automated cross-referencing, automated models and prototypes. According to an

evaluation performed by Boehm [Boe84], manual cross-referencing constitutes an

effective way to check the consistency. However, a set of consistency rules is

required to allow cross-reference checking of a process.

Therefore, this research introduces a set of rules to help developers manually check

the consistency of the security process.

18 In this research, a manual approach has been chosen. To automate a process the manual process

must be first defined. This is the aim of this project whereas automating the process and developing a

tool is another project within the Tropos project initiative [Bre03).

A Security Oriented Process 121

5.5.1 Consistency rules

As mentioned by Nuseibeh et al. [NusOl] consistency rules can be identified by the

definition of notations, the development methods, the development process model,

local contingencies, and the application domain.

The rules, proposed by this research are expressed in a natural language and they

can be applied more than once when checking the models and the process. This is

due to the fact that the security-oriented process is iterative, and therefore the rules

can be applied whenever iteration occurs.

Although, the presented set of rules provides a very good indication and

substantially helps to check the consistency of the security models as well as the

security process, it is not complete. As Nuseibeh et al. claim [NusOl], "we do not

expect to ever obtain a complete set of rules covering all possible consistency

relationships in a large project. Rather, we regard the rule base as a repository for

recording those rules that are known or discovered, so that they can be tracked

appropriately" .

Consistency rules can be divided into inter-model rules, which help to check the

consistency inside a model, and outer model rules, which help to check the

consistency between the different models of a process.

It must be noted that this work considers only consistency rules that apply on the

security related models and process and not rules for all the Tropos models and

processes I 9. Therefore, this work provides consistency rules for all the security

related modelling activities (inter-model rules) and for the whole security oriented

process (outer-model rules).

The identified set of consistency rules helps developers to check the relationships

between the components of the different security related models, such as the

relationship between the security features and the threats in the security reference

diagram, the consistency between same components appeared in more than one

models, such as a security constraint that appears in the actors' model as well as in

19 Readers interested in such rules please refer to [PerOl, Giu02, Bre02b].

A Security Oriented Process 122

the goal model, and the consistency when delegation of components between actors

takes place. Table 5-1 provides as an example20 three consistency rules.

Table 5-1: Example of consistency rules

Rule Category Rule

Security reference diagram Each protection objective and each threat that appear

rule

General process rule

Security constraint rule

on the diagram must be associated with at least one

security feature of the graph.

Any security components that appear throughout the

diagrams must have consistent names across the

diagrams.

A security constraint modelled in the actors' diagram

should appear in the appropriate actor's goal diagram.

5.6 REFINING THE TROPOS STAGES TO INCLUDE THE SECURITY­

ORIENTED PROCESS

The previous sections introduced a security-oriented approach for the development

of multiagent systems. However, to successfully complete the aims of this research,

this process must be integrated within the development stages of the Tropos

methodology.

For this reason, the Tropos development stages have been refined to accommodate

the proposed security extensions. This section aims to discuss the integration of the

security-oriented approach into the Tropos methodology stages.

- Early requirements analysis stage: During the early requirements analysis

stage the security reference diagram is constructed and security constraints are

imposed to the stakeholders of the system (by other stakeholders). In the actor's

diagram, imposed security constraints are expressed in high-level statements. In

the goal diagram the security constraints are furthered analysed as described in

section 4.3 and secure goals and entities are introduced to the corresponding

actors to satisfy them.

20 Readers interested in the complete list of the rules please check Appendix A.

A Security Oriented Process 123

- Late requirements analysis stage: During the late requirements analysis

stage, security constraints are imposed to the system-to-be (by reference to the

security reference diagram). These constraints are further analysed according to

the analysis techniques presented in section 4.3 and security goals and entities

necessary for the system to guarantee the security constraints are identified.

- Architectural design stage: During the architectural design any possible

security constraints and secure entities that new actors might introduce are

analysed. Additionally, the architectural style of the multi agent system is defined

with respect to the system's security requirements and the requirements are

transformed into a design with the aid of security patterns. Furthermore, the

agents of the system are identified along with their secure capabilities and

security attack scenarios are used to test the security of the system under

development.

- Detailed design stage: During the detailed design stage, the components

identi fied in the previous development stages are designed with the aid of Agent

Unified Modeling Language (AUML). In particular, agent capabilities and

interactions taking into account the security aspects are specified with the aid of

AUML. The important consideration, from the security point of view, at this

stage is to specify the components by taking into account their secure

capabilities. This is possible by adopting AUML notation.

5.7 SUMMARY

The purpose of this chapter was to introduce a security oriented process in the

development of multiagent systems and integrate such a process within the

development stages of the Tropos methodology, to enable it to model security issues

during the whole development process of a multi agent system. To fulfil this aim this

chapter described a security-oriented approach comprising of four main sub­

procedures; (I) the identification of the multiagent system's security requirements;

(2) the selection amongst alternative architectural styles; (3) the development of a

design to satisfy the security requirements; (4) and the attack testing of the

multiagent system under development.

A Security Oriented Process 124

In addition the chapter described a set of rules that enables developers to check the

consistency of the security process, and it described how the proposed security

extensions are integrated within the development stages of the Tropos methodology.

However, the proposed security approach can never be accepted if it cannot prove

its validity in practise in a real-life case study. Employing the approach in a real life

case study will enable to evaluate its successfulness, and the advantages it provides

towards the development of secure multiagent systems.

Therefore, the following chapter illustrates how the proposed security extensions

are applied in the development of the electronic single assessment process (eSAP)

system, a real-life case study and also it provides a critical discussion/evaluation

regarding the proposed security extensions.

A Security Oriented Process 125

The previous two chapters introduced extensions to enable the Tropos

methodology to model security issues during the development of multi agent systems.

However to evaluate the proposed security-oriented approach and better understand

its advantages, the approach must be applied to a real-life case study.

The aim of this chapter is to employ the proposed security-oriented approach in the

development of the electronic single assessment (eSAP) system, a real-life case study

that provided the initial motivation of this research. Section 6.1 describes the single

assessment process and it outlines the motivations behind the development of the

electronic single assessment process. A typical scenario regarding the single

assessment process, which forms the basis for the development of the electronic

single assessment process system, is presented in Section 6.2 and section 6.3

describes how the proposed security-oriented approach can be applied in the

development of the electronic single assessment process system. Section 6.4 provides

a critical discussion/evaluation regarding the proposed security-oriented approach

and section 6.5 summarises the chapter.

6.1 THE SINGLE ASSESSMENT PROCESS AND THE MOTIVATION BEHIND

THE ELECTRONIC SINGLE ASSESSMENT PROCESS

The assessment of health and social care needs is at the heart of good practice in

the care of older people. Older people often have multiple impairments and health

problems, and complex support systems involving several health and social care

practitioners and family carers. Sharing of assessment information is important to

avoid unnecessary repetition and to ensure that all relevant information is available

to support effective care planning. Recognition of the need to share assessment

information has stimulated standardisation of assessment methods. These in tum

have been used to help standardise care planning and referrals following assessment.

Applying tbe Extensions: Tbe eSAP Case Study 126

In March 2001, the (English) Department of Health published its National

Service Framework (NSF) for Older People's Services [Doh03]. The NSF sets

national standards for the health and social care of older people, with an

implementation plan, to be completed by 2005.

Standard 2 of the National Service Framework, which refers to person-centred care,

includes requirements to establish a single assessment process for integrating the

assessment of health and social care needs of older people. Local health and social

care communities have to introduce standardised shared systems for assessing needs,

with convergence towards a fully integrated and electronically based national system.

The Department issued further guidance in February 2002, listing requirements for

contact, overview, specialist and comprehensive assessment, and a range of

assessment instruments, which could be used for these types of assessment.

Contact and overview assessments would typically be undertaken by front-line

primary health and social care practitioners, with specialist and comprehensive

assessments undertaken by secondary care specialists or multi-disciplinary teams.

Contact and overview assessments would provide the basis for specialist and

comprehensive assessment, with the breadth and depth of all assessments undertaken

according to the perceived needs of the older person. It should be noted that elements

of self-assessment are to be encouraged, and there is a strong emphasis on including

the older person's views in establishing the focus of attention in assessing need and

planning care.

Information technology has the potential to improve efficiency and effectiveness in

the collection and sharing of assessment information. An information system, called

hereafter the electronic single assessment process (eSAP) system, to support

integrated assessment of the health and social care needs of the older person, should

therefore bui ld on contact and overview assessment in primary care, with maximum

involvement of the older person in prioritising the assessment domains and in care

planning.

6.2 A TYPICAL SCENARIO

Modelling the whole setting surrounding the single assessment process remains a

major challenge not only for this research project, but also for everyone involved in

health and social care. It is not only the large context that such a setting involves,

Applying tbe Extensions: Tbe eSAP Case Study 127

ranging from hospitals to police stations and jails, but also the variety of models and

procedures that health and social care professionals employ in performing their

duties.

On the other hand, it is widely known that when developing an electronic system,

its boundaries should be precisely defined. Therefore, it was decided that in this

research the development of the electronic single assessment process system should

not be based on the whole setting but rather on a real-life scenario of the single

assessment process. Such a development would identify the major actors of the

system, and it will provide an analysis and design that would be the basis for a

successful modelling of the whole setting. The following scenario has been used in

this research for the analysis and design ofthe electronic single assessment process.

"An 81 years old lady, widow, lives in her house. Her daughter lives nearby but

she has children of her own and therefore she is unable to provide full care to her

mother. However, she sees her mother everyday.

The daughter visits the mother's General Practitioner (GP) to describe her

cOl/cern about her mother's health. Her mother has become unsteady on her feet and

may have had a number of falls. Single assessment process has been introduced, so

the GP asks the daughter to complete the EasyCare [Phi97] contact assessment and

the information is entered into the GP's computer. The GP sees the daughter

concerned about her mother's health and asks his practice nurse to visit the old lady

to perform an overview assessment.

The old lady's information is transferred to the nurse's computer along with

referrals and instructions, e.g. the daughter of the patient is concerned about her

mother's health so please perform an overview assessment. The nurse receives the

information and arranges to visit the old lady by generating and sending a letter to

the old lady and her daughter giving details about visit and ask availability. The

daughter replies (also provides her mother's response) that the date/time is suitable.

The nurse visits the old lady and completes most of the EasyCare assessment

except from the health promotion module. From the evaluation of the other modules

the nurse concludes the old lady has a number of problems with her house, which

increase the risk of falls, she needs help with dressing and also she is not getting the

appropriate financial benefits. Then the nurse asks the old lady if the information

Applying tbe Extensions: Tbe eSAP Case Study 128

can he shared. and the old lady accepts. The nurse then produces a care plan

summarising all the problems identified and the actions to be taken. She also makes

two referrals one to a Social Worker (SW) - to check for a care assistant to help the

old lady with dressing and to check about financial benefits- and a second to an

Occupational Therapist (OT) -to perform a house assessment for need and

adaptation. She then forwards the care plan and a summary of the problems to the

General Practitioner and the care plan and contact information to the Social Worker

and the Occupational Therapist. In addition, a copy is produced for both the old lady

and her daughter and the care plan is signed.

Later, the old lady is visited by the Occupational Therapist who performs the house

assessment and decides that the house needs to be adapted to the old lady's needs.

The 0. T. then makes a referral to the Equipment Services for equipment and also

provides the contact information of the old lady. In addition, the o.T.forwards to the

GP, nurse and the S. W a copy of the house problems, needed equipment and informs

them that a referral has been made to the Equipment Services.

The Social Worker visits the old lady and identifies that the old lady must apply for

financial benefits. A form is produced, filled in, and sent to the Benefits Agency

together with old lady's contact and bank information. In addition, the Social

Worker agrees to employ a Care Assistant (CA.) to help the old lady with dressing.

A Care Assistant is identified and the Social Worker asks the old lady if she feels

comfortable with the identified Care Assistant and the old lady agrees. Contact and

overview assessment information is sent to the Care Assistant by the Social Worker.

Also, because of the employment of a Care Assistant, the benefits must be adjusted.

The social worker informs the benefits agency about it.

While the Care Assistant visits the old lady, she realises that the health promotion

module of the overview assessment is not completed. She notifies the nurse and

prompts the old lady to fill in the module. When the module is complete, the CA.

sends the information to the General Practitioner, the nurse and the Social Worker.

One of the ohservations of the Care Assistant was that the old lady didn't have her

blood pressure taken for the last 5 years, so she alerts the nurse and the G.P' The

Gel/eral Practitioner receives the alert and makes a referral to the nurse to go and

check the hlood pressure of the old lady. The nurse visits the old lady to review all

Applying the Extensions: The eSAP Case Study 129

the actions of the care plan and also check the old lady's blood pressure. The care

plan is updated and for the time being the old lady gets everything she needs. "

6.3 DEVELOPING THE ESAP

The above scenario provides the basis for the development of the system. As

mentioned in previous chapters the first phase of the Tropos methodology is the early

requirements analysis. It must be noticed that the presented development process is

focused on the security-oriented extensions described in the previous chapters.

6.3.1 Early requirements analysis

During the early requirements analysis, the security reference diagram is

constructed as described in section 4.3.1. For the construction of the diagram, the

security features of the system must be identified together with protection objectives,

security mechanisms and threats.

Security is a very important factor in the development of the electronic single

assessment process, since security of personal health information is considered a

priority by many health care unions in different countries of the world including

England. This is due to the fact that in cases where patients (in the case of the eSAP

older people) do not trust the security of the system, they will refuse to provide

complete information about their health and social care needs, and this could lead to

many problems such as wrong assessment of needs, which could lead to wrong care

plans.

The advances on information technology and the introduction of nationwide

networks have caused concerns about security to the health and social care

professionals and the patients. The electronic single assessment process lies in this

category, as it is intended to be used nationwide in England. Health and social care

professionals and older persons are worried that using such a system introduces risks

for the privacy (it is privacy that empowers the patient, rather than confidentiality

that empowers the organisation. This distinction, although it is familiar to medical

ethicists, is less familiar to the computer security world [AndOI]) of personal health

and social care information. Therefore privacy of health and social care information,

such as the health and social care plans used in the electronic single assessment

process, is the number one security concern in such a system. According to the Good

Applying the Extensions: The eSAP Case Study 130

Medical Practice, patients have a right to expect that you will not pass on any

personal information, which you learn in the course of your professional duties

unless they agree. In addition to that, the English government and health and social

care unions have agreed that electronic health care records should be as well

protected as the paper ones.

Other important concerns are integrity and availability. Integrity assures that

information is not corrupted and availability ensures the information is always

available to authorised health and social care professionals. If assessment

information is corrupted or it is not available the care provided to the older people (in

the case of the eSAP) by the health and social care professionals will not be efficient

or accurate. Therefore, it is necessary to find ways to help towards the privacy, the

integrity and the availability of personal health and social care information.

Fr m the above discussion it is derived that the main security features for the

electronic single assessment process system are privacy, integrity and availability as

shown in the security reference diagram in Figure 6-1.

Figure 6-1: ecurity reference diagram

On the other hand, security threats to the electronic single assessment process

(e P) are mainly the same as in any other medical system. According to Anderson

[ndO I] the main threat to medical privacy is social engineering [Gra02].

According to this, a typical attack on a health and social care information system

in 01 es a private detective (or someone interested in obtaining personal health

inC! nnation) that calls in the health professional's office, introduces himself as a

Applying the Extensions: The eSAP Case Study 131

doctor in an emergency or acute hospital and asks information about the medical

record of a particular patient [AndOl]. One such case that had a big impact in

England was the case that private health records were sold from as little as £ 150

[Ec099]. Private agencies were able to reveal complete medical files within three

hours. The only information they required was the name, address, and the date of

birth of the patient they were investigating. It was thought they were obtaining the

records by the method of social engineering.

Furthermore, the size of the electronic single assessment process system and the

large number of health and social care professionals that might be involved

introduces the problem of data aggregation and increases the risk of social

engineering or unauthorised access. The risk factor of private data to be accessed by

unauthorised personnel increases by the number of people that have access to it and

aggregating information increases this risk factor. It is easier to secure the data in a

hospital that has records for 10,000 patients than secure a system, such as the

electronic single assessment process, that will contain data of almost all the older

people in England.

From the above example it is concluded that the main threat usually comes from

insiders who are either careless or manipulated, and the more access they have on

personal health and social care information, the more harm they can cause. External

threats must also be considered. People who want to obtain medical information will

also try to break the system security. Capable hackers can use different ways, such as

password sniffing or eavesdropping, in order to gain access to a medical record.

Therefore measures must also be taken in this direction.

Apart from the threats to the privacy of the data, there are threats to the integrity

and the availability of it. From the integrity point of view, malicious attackers might

change the content of medical care plans. In addition, cryptographic attacks can be

used to manipulate messages sent between actors of a system or viruses can be

created in order to affect the integrity of the information. From the availability point

of view, physical attacks to the system are a main threat. An attacker tries to make

the system unavailable by physically destroying a part of it. Moreover, denial of

service attacks form a popular threat to the availability of the system. According to

this, a number of compromised systems attack a single target. This initially results in

Applying the Extensions: The eSAP Case Study 132

denial of service to the users of the targeted system, and later in the shut down of the

system, therefore making the system unavailable.

When the security reference diagram for the system has been developed, the main

actors should be identified. From the scenario presented in 6.2, the following actors

are derived.

Older Person: The Older Person actor represents patients aged 65 or above,

assessed for their health and social care needs. In the presented scenario, the old lady

plays this actor. The Older Person must provide infonnation about their health and

social care situation, and also receive infonnation such as a summary of their needs

and a copy of their care plan. To provide infonnation, the Older Person must

undertake assessments. This requires the Older Person to agree with the health and

social care professionals on the date/time that the assessments will take place. In

addition, the Older Person must understand the procedures clearly, have access to

information regarding their care 24 hours every day, and also decide if their

information will be shared between the professionals' (and possibly other people)

involved in their care. Also, the Older Person must follow the care plan indicated

by the health and social care professionals. Therefore, the help of carers (informal­

like the daughter- and paid-like the care assistant-) is required.

Nurse: The Nurse perfonns the overview assessment to the Older Person. To do

this, the Nurse must contact the Older Person and arrange a meeting. After

performing the assessment the Nurse identifies the care needs of the Older Person,

and according to those needs she provides referrals. Also the Nurse must ask for the

older person's consent in order to share information with others who may be

involved in the care of the Older Person. She generates a care plan and produces a

copy of it for the Older Person. In addition, the Nurse infonns everyone involved

(taking into account the consent of the Older Person) about the care plan and the

condition of the Older Person. The Nurse is also responsible for regular review of

the care plan.

General Practitioner: The General Practitioner performs the contact assessment,

provides referrals to the Nurse to perform an overview (or any different kind she/he

thinks is appropriate) assessment, and provides the older person's contact

information. In addition, the General Practitioner receives alerts and infonnation

Applying the Extensions: The eSAP Case Study 133

regarding the Older Person, such as the care plan, possible referrals, and updates of

the care plan.

Social Worker: The Social Worker receives referrals (indicating the problems

occurred) and the actions to be performed, and also information about the Older

Person such as contact information and a copy of the care plan. According to the

referrals, the Social Worker identifies the needs of the Older Person and takes

actions. The Social Worker is usually responsible for identifying a suitable care

assistant (if necessary) and also dealing with benefits problems that the Older

Person might have. After identifying particular problems the Social Worker

provides referrals, informs the other professionals involved in the care of the Older

Person and updates the care plan. In addition, the Social Worker manages the care

assistant.

Secondary Care Professional: Secondary care professionals (or specialists)

undertake assessment and care following referral by primary care professionals.

Some secondary care professionals such as community psychiatric nurses work at the

interface between primary and secondary care. During the single assessment process,

secondary care professionals, usually, do specialist and comprehensive assessments.

In the presented scenario, the Occupational Therapist plays this role. The

Occupational Therapist receives referrals from the Nurse along with the contact

and overview assessment information of the Older Person. She performs a

specialist assessment and identifies specialist needs of the Older Person. According

to the identified needs, the Occupational Therapist provides referrals, informs the

other professionals involved in the care of the Older Person and also updates the

care plan.

Care Assistant: The main aim of the Care Assistant is to help the Older Person

with everyday needs. The Care Assistant receives information about the Older

Person, such as contact and overview assessment, and updates any of those if

necessary by providing to the Nurse possible needs of the Older Person. In

addition, she informs the General Practitioner, the Social Worker and the Nurse

of any updates regarding the older person's information.

Informal Carer: Informal carers include unpaid family members, friends, and

neighbours who help meet older persons' needs for care and support, including

Applying the Extensions: The eSAP Case Study 134

meeting emotional (visiting and support), financial (help with managing bills),

domestic (help with shopping) and personal (help with dressing) care needs. In the

presented scenario the daughter of the old lady plays this role.

Care Manager: A Care Manager, usually a Social Worker or a Nurse,

coordinates the delivery of care to the Older Person and plans the work of the care

assistants. In the presented scenario, the Social Worker plays the Care Manager.

Benefits Agency: The Benefits Agency actor represents a financial agency that

helps older persons financially.

The dependencies, goals and security constraints of the above actors are modelled

in Figure 6-2.

Figure 6-2: The actor diagram

For instance, the Older Person depends on the General Practitioner to Receive

Appropriate Care and on the Informal Carer to Receive Support. On the other

hand, the Nurse depends on the Secondary Care Professional to Identify

SpeCialist Needs, on the Care Manager to Coordinate Care Delivery, on the

Social Worker to Identify Social Needs and on the Older Person to Obtain

Applying the Extensions: The eSAP Case Study 135

Overview Assessment Information. However, one of the most important and

delicate matters for the Older Person is the privacy of their personal medical

information and the sharing of it. Therefore, the Older Person imposes a security

constraint (share information only if consent is Obtained) on the Nurse for the

Obtain Overview Assessment Information dependency to be valid. In addition,

the Social Worker imposes a security constraint (Keep Financial Information

Private) on the Benefits Agency for the Provide Benefits dependency to be valid.

Modelling the security constraints of the individual actors allows developers to

model the security requirements of the system according to the real security needs of

its stakeholders. In the presented analysis, the lack of identifying the security

constraints between the Nurse and the Older Person, or the Social Worker and the

Benefits Agency would result in a design that would miss important information

regarding the security of the system. Even if experienced security aware developers

would have identified these issues during the late requirements stage of the

development process, such an approach would have been based solely on their

expertise and it would not be possible to trace the development back to the

stakeholders needs.

When the security constraints have been identified, the next step (from the security

point of view) involves further analysis of the security constraints and the

introduction of secure goals and entities to satisfy them. As mentioned in section 4.3,

goal diagrams are used to further analyse the security issues of each actor. As an

example, consider the Nurse actor shown in Figure 6-3.

The main goal of the Nurse21 is to Manage the Care Plan. To satisfy this goal

the Nurse must Generate the Care Plan, Review the Care Plan and Provide

Information. From the security point of view, the security constraints imposed on the

Nurse are furthered analysed by identifying which goals of the Nurse they restrict.

As mentioned in section 4.3.2.1 the assignment of a security constraint to a goal is

indicated using a constraint analysis link (a link that has the "restricts" tag). For

example, the Share Information only if Consent Obtained security constraint

21 To keep the complexity of the figure as minimum as possible, an asterisk • has been used to

indicate that the same actor, goal, or entity has been modelled more than once in the figure.

Applying the Extensions: The eSAP Case Study 136

imposed to the Nurse by the Older Person (see Figure 6-2) restricts the Share

Older Person Information goal of the Nurse. For the Nurse to satisfy this

constraint, a secure goal is introduced Obtain Older Person Consent.

Furthermore, the analysis indicates that the Use of eSAP will enable the Nurse

actor to work more efficiently, with less effort, convenient and faster. However, the

security reference diagram presented in Figure 6-1 indicates that Authorisation is

required for the eSAP system (in order to help towards the Privacy security feature).

,. .' I

.'

,
,.~ .

.//0
.' -*''-_1

! ,
! ,
i
I

I

i
! ,
~
'. '. ,

..
'.

Figure 6-3: Goal diagram for the Nurse actor

Therefore, the security constraint Allow Access Only to Authorised Users,

which restricts the Use eSAP task, is imposed to the Nurse actor. To help towards

the satisfaction of the imposed security constraint the secure goal Provide

Authorisation Details is introduced to the Nurse.

From the Older Person point of view (see Figure 6-4), an important security

constraint is to keep their information private. To satisfy this constraint the secure

goal Restrict Access to Personal Information has been introduced.

Applying the Extensions: The eSAP Case Study 137

In addition, the internal analysis of the Older Person indicates that the Use of

eSAP allows Older Person to obtain information easier, faster and at anytime and

therefore helps towards the involvement of the Older Person in their care. However,

similarly to the Nurse actor, the Use of eSAP imposes a security constraint (Allow

Access Only to Authorised Users) to the Older Person. To satisfy this security

constraint the Provide Authorisation Details goal is introduced to the Older

Person actor.

,. ,. ,. ,.
.'........ ,.,.'.,.

.......... -,-

I . , . . ' , ,. ,. ,. ,.

.......... .~.'
....... -._._._ -:o,..._-_.-___________J

Figure 6-4: Goal diagram of the Older Person actor

Modelling security constraints when analysing the actors internally leads to a more

precise definition of the why of the system security, and this subsequently helps to

verify how the final security implementation of the system matches the stakeholders'

real needs.

When all the actors have been further analysed22
, the actor diagram is refined, as

shown in Figure 6-5, and any possible new dependencies identified during the

internal actors' analysis are modelled.

22 Goal diagrams for the rest of the actors of the eSAP system identified during the early

requirements analysis are provided on Appendix B.

Applying the Extensions: The eSAP Case Study 138

This is important since during the actors' internal analysis it is possible that new

goals are discovered, which the actors might not be able to satisfy by themselves.

Therefore, new dependencies are introduced to enable an actor to delegate to another

actor the goals that cannot accomplish on their own. From the security point of view,

refining an actor's goals and dependencies could result in the redefinition of the

security constraints imposed to particular dependencies or the addition of new

security constraints. As an example, consider the security constraint Share

Information Only if Consent Obtained. This security constraint was imposed to

the Nurse, as shown in Figure 6-3, by the Older Person as part of the Obtain

Overview Assessment Information dependency. However, the internal analysis of

the Nurse indicated that this security constraint restricts in fact the Share Older

Person Information goal of the Nurse. Therefore, in the refined actor diagram, the

security constraint has been imposed to all the newly discovered (after the internal

analysis of the actors) dependencies that involve the Share Older Person

I nformation goal.

Figure 6-5: Refined actor diagram

Applying the Extensions: The eSAP Case Study 139

6.3.2 Late requirements analysis

As described in section 3.3, during the late requirements analysis the system-to-be

is introduced as one or more actors who have a number of dependencies with the

other actors.

Therefore, the eSAP system has been introduced as another actor that receives the

responsibility for the fulfilment of some of the goals identified during the early

requirements analysis for the actors of the system. In other words, some goals that

the actors of the system cannot fulfil or are better fulfilled by the eSAP system are

delegated to the eSAP System. For example, during the Nurse analysis, modelled in

Figure 6-3, it was identified that the Nurse can achieve some of the goals either

manually or by using the electronic single assessment process (eSAP) system.

Consider for example, the Arrange Meeting goal of the Nurse actor. This can be

fulfilled either by the task Use eSAP or by the task Arrange Meeting Manually.

However, the analysis, presented in Figure 6-3, showed that using the eSAP system

the Nurse would be able to work more efficiently, with less effort, faster and more

conveniently than trying to achieve the task manually.

Similar conclusions were drawn for all the actors of the system. For example, for

the Older Person actor, modelled in Figure 6-4, it is easier and faster to obtain their

care plan information using the eSAP than trying to obtain the information

manually. In addition, the use of eSAP means that information will be available

whenever the Older Person needs it.

Therefore, it was decided that the use of eSAP provides advantages over the

manual achievement of most of the actors' tasks, and as a result the responsibility for

the achievement of those tasks was delegated to the eSAP system.

The actor diagram including the eSAP system and the refined dependencies is

shown in Figure 6-6. It is worth mentioning that the dependencies of the Informal

Carer actor are not delegated to the eSAP system, since it is assumed that at this

point of the project the Informal Carer does not interact with the system.

Since dependencies are delegated from the actors to the eSAP system, possible

security constraints regarding those dependencies are also delegated.

Applying the Extensions: The eSAP Case Study 140

Figure 6-6: Actor diagram including the eSAP actor

For example, before the introduction of the eSAP system, the Social Worker was

depending on the Nurse to Obtain Older Person Information. However, this

secure dependency involves the security constraint (restricting the Nurse) Share

Information Only if Consent Obtained. With the introduction of the eSAP system,

the Social Worker actor depends on the eSAP to Obtain Older Person

Information, therefore the eSAP becomes responsible for satisfying the Share

Information Only if Consent Obtained security constraint that is delegated

together with the secure dependency.

To satisfy all the delegated dependencies, the main goal of the eSAP system has

been identified as to Automate Care. By performing a means-end analysis,

presented in Figure 6-7, it was identified that for the eSAP System to fulfil the

Automate Care goal, the following sub-goals must be accomplished: Assist with

Assessment Procedures, Provide Older Person Information, Manage Care

Plans and Schedule Meetings. Each of those sub-goals can be furthered analysed

employing means-end analysis. For example, the Manage Care Plans goal can be

Applying the Extensions: The eSAP Case Study 141

accomplished with the fulfilment of the Generate Care Plan, Manage Care Plan

Updates, Provide Care Plan Information, Manage Referrals and Identify Care

Assistants sub-goals.

.'
I

,. ,. ,.

'8
\ ...

Figure 6-7: Goal diagram for the eSAP actor

An important issue at this point is to check whether the goals assigned in the eSAP

system satisfy all the goals delegated to the system by the other actors. Thirty (30)

goals were delegated to the eSAP system as shown in Figure 6-6. From these goals,

fifteen of them are satisfied by the Manage Care Plans goal (and its sub-goals), six

of them are satisfied by the Provide Older Person Information goal, five are

satisfied by the Assist with Assessment Procedures goal (and its sub-goals), and

four of them are satisfied by the Schedule Meetings goal.

From the security point of view, and taking into consideration the security

reference diagram there are three main constraints imposed, by the desired security

features of the system, Privacy, Integrity and Availability, to the eSAP's main goal.

These are Keep System Data Private, Keep Integrity of the Data and Maintain

Data Availability. In addition, the eSAP system must satisfy the Share

Information Only if Consent Obtained security constraint imposed to the eSAP

by the secure dependencies delegated by the other actors.

Applying the Extensions: The eSAP Case Study 142

Each of these secure constraints can be satisfied with the aid of one or more secure

goals. For example, the Keep System Data Private security constraint can be

fulfilled by blocking access to the system, by allowing access only from a central

computer, or by ensuring system privacy. However, the first two contribute

negatively to the usability of the system, i.e. the system will be secure but it will not

be used. On the other hand, the Ensure System Privacy secure goal is considered

the best solution since it provides security to the system and it doesn't affect

(dramatically) its usability.

Thus, for the eSAP to satisfy its security constraints the following secure goals

have been identified as shown in Figure 6-7: Ensure System Privacy, Ensure

Data Integrity, Ensure Data Availability and Ensure Consent has been

Obtained. These can be furthered analysed. For example, the Ensure System

Privacy goal is further analysed into the Perform Authorisation Checks and

Perform Cryptographic Procedures secure goals. Both of those goals must be

fulfilled for the Ensure System Privacy goal to be satisfied.

An important point to mention here is that although the security constraints

imposed by the delegation of some secure dependencies to the eSAP system actually

restrict particular goals/ tasks of the system, the security constraints imposed with the

aid of the security reference diagram actually help, without restricting, towards the

achievement of the system's secure goals.

6.3.3 Architectural design

As mentioned in section 5.6, during the architectural design stage the architectural

style of the multiagent system is defined with respect to the system's security

requirements and according to the analysis technique presented in section 5.2 for

selecting among alternative architectural styles.

In this research, for the eSAP system, two architectural styles are considered. A

hierarchical style -client/server - and a mobile code style -mobile agents. The

decision to consider these two styles took place because the client/server is the most

frequently encountered of the architectural styles for network-based applications,

whereas mobile agents form a growing and quite different architectural style. In the

client/server style, a node is acting as a server that represents a process that provides

Applying the Extensions: The eSAP Case Study 143

services to other nodes, wruch act as clients. The server listens for requests upon the

offered services. The basic form of client/server does not constrain how the

application state is partitioned between client and server components. Client/server

architectural style is also referred to by the mechanisms used for the connector

implementation such as Remote Procedure Call (RPC). RPC is appropriate for

client/server arcrutectural styles since the client can issue a request and wait for the

server's response before continuing its own processing. On the other side, in mobile

agents style, mobility is used in order to dynamically change the distance between

the processing and source of data or destination of results. The computational

component is moved to the remote site, along with its state, the code it needs and

possibly some data required to perform the task.

As shown in Figure 6-8, each of the two styles satisfies differently each of the non­

functional requirements of the system. For instance, the mobile agents style allows

more scalable applications (weight 0.8) 23, because of the dynamic deployment of the

mobile code.

\
\
\
\
\
\
I
I
I

I
I

I

\
\ \ ~ ; ..

" \ :,',' ~,; .. " #I - --

, .. -:~~~:.:::..:.-:-~-~~~~~;;;;;;;;;;:;;;~~~~~~~ lItr'ltlu.,..,i> - - - - - - - -- --------

Figure 6-8: Client/ erver versu Mobile Agents architectural styles

118 ",,""
~-,,'

",

, I ,

onsider, for instance, that the Nurse actor wishes to access a large number of

medical information (Older Person's care plan), filtered according to the content. In

23 The weight of the contribution links reported in Figure 6-8, of each architectural style to the

different non-fun tional requirements of the system, have been assigned afler reviewing different

studies, evaluation , and comparisons involving the architectural styles.

Applying the Extensions: The eSAP Case Study 144

the (pure) client/server architectural style (weight 0.4), the Nurse would access the

server data and all the retrieved medical information would be transferred to the

client. Then the filtering would be performed at the Nurse site.

On the other hand, in the mobile agents architectural style, such a filtering can be

performed in the server site, where redundant information can be identified early and

therefore it is not transferred to the client. Therefore, this approach is more scalable

since the required filtering is distributed and can be performed close to the

information sources.

In the eSAP system, the security of the system is one of the most important factors

and it is the criterion that will guide the selection process, in this thesis, for the

appropriate architectural style. As derived from the analysis of the eSAP, presented

in Figure 6-7, security is decomposed to privacy, integrity and availability.

As concluded from the analysis presented in Figure 6-8, the client/server style

satisfies more the privacy requirements of the system than the mobile agents style.

This is mainly because mobility is involved in the mobile agents style. Therefore,

although protection of a server from mobile agents, or generally mobile code, is an

evolution of security mechanisms applied in other architectural styles, such as

client/server; the mechanisms focused on the protection of the mobile agents from

the server cannot, so far, prevent malicious behaviour from occurring but may be

able to detect it [JanOO]. Consider for example, the Check Information Flow secure

task of the eSAP. The information flow property is more easily damaged by

employing mobile agents (weight 0.4) since possible platforms that a mobile agent

could visit might expose sensitive information from the agent [Jan99]. In the case of

the client/server style (weight 0.8) sensitive information is stored in the server and

existing well-proven security measures could be taken to satisfy the information flow

attribute.

On the other hand, the mobile agents style satisfies more, than the client/server

style, the availability requirements of the system. Consider for example the

recoverability secure task of the eSAP. The Mobile agents style contributes with a

weight of 0.8. This is due to the fact that mobile agents adapt dynamically. Mobile

agents can react to changes in their environment and maintain an optimal

configuration for solving a particular problem [Lang99].

Applying the Extensions: The eSAP Case Study 145

From the integrity point of view, the client/server style contributes better than the

mobile agents style. In the mobile agents style mobility is involved and therefore

checking the integrity of the data becomes a more difficult task. This is because

mobile agents cannot prevent a malicious agent platform from tampering with their

code, state or data, but they can only take measures to detect this tampering [JanOO].

Moreover, in the mobile agent style, the integrity of both the local and remote agent

platforms must be checked.

From the above, it can be concluded that the client/server styles contributes more

towards the privacy and integrity of the eSAP, whereas the mobile agents style

contributes more towards the availability. Since privacy and integrity are more

important (in the case of the eSAP) than availability (most of the times, not real-time

information is needed), the client/server style has been chosen as the architectural

style of the system.

When the architectural style has been chosen, the next step of the architectural

design stage aims to decompose the system in order to identify internal actors who

will satisfy the system's (secure) goals. In the presented example, the eSAP actor is

decomposed, as shown in Figure 6-9, to internal actors and the responsibility for the

fulfilment of the eSAP's goals is delegated to these actors.

Figure 6-9: Decomposing the eSAP system

For instance, the Evaluate Assessment Information goal is delegated to the

Assessment Evaluator, whereas the Provide Assessment Information goal is

delegated to the Assessment Broker. In addition, the Older Person Broker and

the Consent Manager actors have been introduced to the eSAP system to fulfil the

responsibility (identified during the late requirements analysis - see Figure 6-6) of the

Applying the Extensions: The eSAP Case Study 146

eSAP system to satisfy the secure dependency Obtain Older Person Information

together with the Share Information Only if Consent Obtained security

constraint.

However, the new introduced actors must be furthered analysed and their

dependencies with the other (existing and new) actors must be furthered investigated.

Such an analysis is important since it helps developers to identify dependencies

between new and existing actors, introduce new actors to the system-to-be and, as a

result of this, refine the goals of the system or even possibly introduce new goals to

the system, which would be very hard to identify otherwise.

As mentioned in section 3.8.2 with respect to security the identification of some of

the actors is a difficult, especially for developers with minimum knowledge of

security, task. To help developers this research has developed, as described in section

5.3, a security pattern language. Security patterns can greatly help to identify the

required actors in a structured manner that does not put in danger the security of the

system by providing a solution customised to the problem.

For example, from the internal analysis, presented in Figure 6-7, of the eSAP it

was concluded that Information Flow, Authentication and Access Control checks

must be performed in order for the eSAP system to satisfy the secure goal Ensure

System Privacy. In the case of the information flow secure task, the eSAP should

be able to control how information flows within the system, and between the system

and other actors. For example, the system should be able to control who requires

access to the system and, by considering the security policy, to grant or deny access

to the system. With respect to the Authentication checks, the system should be able

to authenticate any agents that send a request to access information of the system,

and in the case of the access control, the system should be able to control access to

its resources.

The proposed pattern language can be used to fulfil the above-mentioned secure

goals of the eSAP system. Consider, for example, three of the patterns presented in

section 5.3.2.1. The AGENCY GUARD pattern can be used to check grant/deny

access to the system according to the security policy, the AGENT

AUTHENTICATOR pattern can be used to provide authentication checks and the

ACCESS CONTROLER pattern to perform access control checks. The use of

Applying the Extensions: The eSAP Case Study 147

these patterns not only satisfies the fulfilment of the secure goals of the system but

also guarantees the validity of the solution.

To apply a pattern, the developer must carefully consider the problem to be solved

and the consequences that the application of each particular pattern will have on the

system. Figure 6-10 shows a possible use of the AGENCY GUARD, AGENT

AUTHENTICATOR and ACCESS CONTROLER patterns in the eSAP system .

.
I

• , . ,
•
\ .

\

• I
/ . , .

I

\ .
\ .

,. , .
. ". ,

.
~I

I
.

. , . , .
I

.
I .

I

Figure 6-10: U ing the AGENCY GUARD, the AGENT AUTHE TIC AT OR and the

A CES CONTROLLER patterns in the development of the eSAP

In particular it shows how the secure goals Check Information Flow (problem),

Check Authentication (problem) and Check Access Control (problem) can be

satisfied. The AGENCY GUARD satisfies the goal by providing a single non­

bypassable point of access to the system (solution), the AGENT

AUTHENTICATOR satisfies the goal by authenticating each agent that tries to

access the system (solution) and the ACCESS CONTROLER controls access to the

resources of the system (solution). The use of the patterns helps developers to

delegate the responsibilities of particular system security goals to particular actors

defin d by the patterns. In addition, the developer knows the consequences that each

pattern introduces to the eSAP system.

The application of the AGENCY GUARD means that only the AGENCY

GUARD must be tested for correct enforcement of the agency's security policy

Applying the Extensions: The eSAP Case Study 148

(consequence), the application of the AGENT AUTHENTICATOR means that

during implementation only the AGENT AUTHENTICATOR must be checked for

assurance (consequence), whereas the application of the ACCESS CONTROLER

means that different policies can be used for accessing different resources

(consequence).

Therefore, as derived from the application of the pattern language, the eSAP

delegates responsibility for the fulfilment of the Perform Authorisation Checks

security goal to three new actors, the eSAP Guard (delegated the Check

Information Flow secure task), the Authenticator (delegated the Check

Authentication secure task), and the Access Controller (delegated the Check

Access Control secure task) as shown in Figure 6-11.

Figure 6-11: Decomposition of the authorisation and integrity managers

In addition the Tropos methodology introduces extended actor diagrams, in which

the new actors and their dependencies with the other actors are presented. As an

example, consider the extended diagram depicted in Figure 6-12.

Applying the Extensions: The eSAP Case Study 149

Figure 6-12: Extended diagram for the eSAP

In this diagram24 the resource dependencies between the Social Worker, the Older

Person Broker, the Care Plan Updates Manager, the Nurse, the Cryptography

Manager, the Care Plan Broker, the eSAP Guard, the Access Controller, the

Availability Manager, the Auditing Manager, the Integrity Verification Manager,

and the Authenticator are modelled. An important point to consider is the addition

of new actors, such as the Professional Database Manager, the eSAP Security

Policy Manager, and the Trusted Agencies Database as derived from the

analysis of the other actors in order to fulfil the delivery of specific resources such as

the Professional Information, or the system's security policy.

In addition, the extended diagram can be further analysed in order to model more

precisely the actors. Consider for instance, the extended diagram with respect to the

Assessment Evaluator actor, as depicted in Figure 6-13. The Assessment

Evaluator has been delegated the responsibility to satisfy the goal Evaluate

Assessment Information. To fulfil this goal, the Assessment Evaluator depends

2~ In order to keep the diagram simple, only some of the actors of the eSAP system have been

inc1ud din thi diagram. xtended diagrams with respect to the other actors can be found in Appendix

B.

Applying tbe Extensions: Tbe eSAP Case Study 150

on two internal actors, the Assessment Analyser and the Evaluation Synthesiser.

The first is responsible for obtaining the Assessment Information secure resource,

identify the problems of the Older Person according to the Assessment

Information and provide the Problems to the Evaluation Synthesiser. The latter is

responsible for obtaining the Evaluation Request, and the Problems and providing

the Assessment Evaluation secure resource to the actor requesting the information

(in the presented analysis to the Social Worker) after considering the Problems, the

Available Professionals, the Required Skills and the Proposed Actions

resources.

In addition, at this stage, the capabilities identification, in which the capabilities

needed by each actor to fulfil their goals and tasks are modelled. Each actor's

capabilities can be identified with the aid of the extended actor diagram, since each

resource dependency relationship can give place to one or more capabilities triggered

by external events. For example the resource Evaluation Request. shown in Figure

6-13, calls for the capability Obtain Evaluation Request for the Evaluation

Synthesiser actor and Provide Evaluation Request for the Social Worker actor.

Figur 6-13: Extended actor diagram with respect to the Assessment Evaluator

In ad ition secure capabilities are identified taking into account the secure

resources of the c tended actor diagram. For example, as identified in the early

re uir ment analysis in section 6.3.2, for the eSAP system to satisfy the Ensure

System Privacy secure goal, only encrypted data transfers across the network

Applying the Extensions: The eSAP Case Study 151

should be allowed. Therefore, the Assessment Information resource sent from the

Social Worker to the Assessment Analyser must be encrypted. Because of this the

Social Worker actor should be provided with capabilities to encrypt and decrypt

data. Later in the detailed design, each agent's capabilities are further specified and

then coded during the implementation phase. Table 6-1 reports the actors of Figure

6-13 and their capabilities as derived from the dependencies that exist between them.

Table 6-1: Actors and their capabilities with respect to the extended diagram of Figure 6-13

Actor Capability Capability

Id.

Assessment Analyser Get Assessment Infonnation 1

Provide Problems 2

Evaluation ~ynthesizer Get Problems 3

Get Evaluation Request 4

Provide Assessment Evaluation 5

Get Required Skills 6

Get Available Professionals 7

Get Proposed Actions 8

Skills Manager Provide Required Skills 9

Professional Database Provide Available 10

Manager Professionals

Actions Manager Provide Proposed Actions 11

Assessment Broker Get Assessment Evaluation 12

Social Worker Provide Assessment 13

Infonnation

Provide Evaluation Request 14

Get Assessment Evaluation 15

Encrypt Data 16

Decrypt Data 17

Applying tbe Extensions: Tbe eSAP Case Study 152

When all the actors and their secure capabilities have been identified, the next step

of the architectural design is the agents' assignment. During this step a set of agents

are defined and each agent is assigned one or more different capabilities, as shown in

Table 6-2. The capabilities are assigned according to the actors that the agent

represents.

Table 6-2: Agent types and their capabilities

Agent Capabilities

Assessment Evaluator 1,2,3,4,5,6,7,8

Skills Manager 9

Professional Database Manager 10

Actions Manager 11

Assessment Broker 12

Social Worker 13,14,15,16,17

The last step of the architectural design involves the application of security attack

scenarios to the agents of the system. The main aim of these scenarios is to analyse

the security of the system by considering the intentions of possible attackers and the

secure capabilities that have been assigned to the agents of the system and provide

recommendations to improve the system's security.

The security reference diagram plays an important part during this step since it

helps to identify threats to the security features of the system. As derived from the

analysis of the eSAP system, the three main security features are privacy, integrity

and availability. According to Stallings [Sta99], the following categories of attacks

can be identified that can endanger the above security features.

1. Interception, in which an unauthorised party, such as a person, a program

or a computer, gains access to an asset. This is an attack on privacy.

2. Modification, in which an unauthorised party not only gains party to but

also tampers with an asset. This is an attack on integrity.

3. Interruption, in which an asset of the system is destroyed or becomes

unavailable or unusable. This is an attack on availability.

Applying the Extensions: The eSAP Case Study 153

Therefore, scenarIOS that involve each of these categories of attacks will be

considered .

6.3.3.1 Interception Scenario

Lets consider an interception attack scenario in which a possible attacker wishes to

attack the privacy of the system, in other words to obtain information such as

assessment information or a care plan. As identified in the analysis of the security

reference diagram, social engineering, password sniffing and eavesdropping are

the main threats to the privacy of the system.

Therefore, the attacker's main goal can be decomposed to Read Data and Get

Access to the System sub-goals as shown Figure 6-14. The first sub-goal involves

the attacker trying to read the data that it is transmitted to and from the eSAP

system, whereas the second sub-goal involves the attacker trying to break into the

system and gain access to it.

Figure 6-14: Interception attacks scenario

Applying the Extensions: The eSAP Case Study

,
-'

,.'

. , . , .
I . ,

/
/

./

154

With respect to Figure 6-13, to accomplish the first sub-goal the Attacker should

try to read the data transferred between the Social Worker and the eSAP system's

actors such as the Assessment Evaluator and the Authenticator. To accomplish

the second sub-goal, the Attacker might use password sniffing or social

engineering. In the first case, the Attacker scans all the resources that flow in the

network looking for passwords whereas in the case of social engineering, the

Attacker tries to deceive the Social Worker in order to obtain valuable infonnation,

such as their authorisation details that will allow them to gain access to the system.

Therefore, for the presented attack scenario, the reaction of the system should be

tested against three test cases, read data, password sniffing and social

engineering.

Test Case 1: read data

Precondition: The Social Worker actor tries to obtain an assessment evaluation.

The Attacker tries to read the transmitted data.

System expected security reaction: The system should prevent Attacker from

reading any important infonnation.

Discussion: The Attacker will try to read the data from any resource transmitted

between the external agents and the eSAP system. However, curerntly the system

and its external agents have capabilities to encrypt and decrypt data. As a result all

the important data is transmitted across the network encrypted and therefore it is

difficult for the Attacker to read it. However, the Attacker might try to obtain (or

sometimes even guess) the encryption key.

Test Case Result: The system is protected against read data attacks. However, a

recommendation would be for the system to have capabilities to change the

cryptographic algorithm often.

Test Case 2: Password sniffing

Precondition: The Social Worker tries to obtain access to the eSAP system by

providing their authorisation details. The Attacker tries to intercept the authorisation

details.

System expected security reaction: prevent the Attacker from obtaining users'

passwords

Applying the Extensions: The eSAP Case Study 155

Discussion: the main target of the Attacker would be all the resource transmitions

between the Social Worker and the eSAP system that contain any kind of

authorisation details. Although authorisation details are enrypted, this is not enough

since password sniffing takes place from a compromised computer belonging to the

network. As a result, the Attacker is able to decrypt any message. A good technique

to defend against password sniffing is to use one-time-passwords. A one-time­

password is a password that is valid for only one use. After this use, it is not longer

valid, and so even if the Attacker obtains such a password it is useless. However,

the users must be able to gain access to the system more than once. This can be

accomplished with what is commonly known as a password list. Each time a user

tries to access the system they provide a different password from a list of passwords.

Test Case Result: Currently the system fails to adeqautely protect against password

sniffing attacks. For the eSAP system to be able to react in a password sniffing

attack, the external agents of the system (such as the Nurse, the Social Worker, the

Older Person) must be provided with capabilities to provide passwords from a

password list.

Test Case 3: Social engineering

Precondition: The Attacker tries to obtain system information directly from the

Social Worker.

System expected security reaction: help towards the prevention of social

engmeenng.

Discussion: The Attacker will try to deceive any external agents (such as the Social

Worker in the presented scenario) into giving any confidential, private or privileged

information. It is worth mentioning that the Attacker will not directly ask for this

information but they will try to gain the trust of the agents and then exploit this trust.

Test Case Result: Currently the system helps towards the prevention of social

engineering by requesting consent for any information to be shared. However, this

alone does not guarantee the successful prevention against social engineering. A

primary defence measurement against software engineering is security awareness

Applying tbe Extensions: Tbe eSAP Case Study 156

training. Good resistance training will help to prevent agents from being persuaded to

give information away.

6.3.3.2 Modification Scenario

The modification scenario involves an Attacker that wishes to attack the integrity

of the eSAP system. As identified in the analysis of the security reference diagram,

three main threats are involved in this kind of attack, cryptographic attacks, care

plan changing and viruses.

Therefore, the Attacker's main goal, Attack eSAP Integrity, can be decomposed

to Modify Content of Messages, Change Values in Data Files, and Alter

Programs to Perform Differently as shown in Figure 6-15.

-.- .. -.- .. -...... ~
......... ,

W """
\J \, ,

I
I e

Figure 6-15: Modification attacks scenario

\
\ . , . , .

I
I

The first sub-goal involves the Attacker trying to modify the content of any

messages transmitted over the network. To fulfil this goal, the Attacker might try to

employ cryptographic attacks to any resource transmitted between any external

actors and the eSAP system. The second sub-goal indicates the Attacker trying to

change the values in data files of the system. The fulfilment of this goal can be

satisfied by means of changing the data of resources stored in the eSAP system. The

third sub-goal indicates the attempt of the Attacker to alter a program so it performs

Applying the Extensions: The eSAP Case Study 157

differently. Mainly this can be achieved using viruses that can alter the behaviour of

specific programs (agents) in order to enable the attacker to gain access to the system

or to system's information.

As an example, consider the scenario in which the Social Worker wishes to obtain

an Assessment Evaluation. Three main test cases are identified, cryptographic

attacks, data changing attacks and viruses attacks as shown in Figure 6-15.

Test Case 1: cryptographic attacks

Precondition: The Social Worker actor tries to obtain an assessment evaluation.

The Attacker tries to modify the content of the messages/resources exchanged

between the Social Worker and the Assessment Evaluator.

System expected security reaction: The eSAP system should be able to detect any

kind of modification to the exchanged resources.

Discussion: modification attacks belong to a category called active attacks (as

opposed to passive attacks). This kind of attack involves modification of a data

stream or the creation of a false stream [Sta99]. Active attacks are quite difficult to

prevent, since this would require physical protection. Therefore, the goal is to detect

them. In the presented scenario, the Attacker will try to modify the resource

transmitted between the Social Worker and the Assessment Evaluator. Although

the system does not provide any mechanism or any security protection towards the

prevention of such an attack (as mentioned above this is very difficult to achieve), it

provides measures to detect them. For instance, when resources are sent from the

Social Worker to the Assessment Evaluator their integrity is being checked. As

mentioned during the analysis of the eSAP (see Figure 6-7), hash functions, message

digest and message authentication codes are employed by the eSAP to satisfy the

integrity of messages exchanged between the eSAP and external actors.

Test Care Result: The system provides mechanisms to detect any modifications

resulting from cryptographic attacks.

Test Case 2: changing data

Precondition: The Attacker tries to change values of data stored in the eSAP

system.

Applying tbe Extensions: Tbe eSAP Case Study 158

System expected security reaction: The system should prevent attacks towards the

unauthorised manipulation of its data.

Discussion: The Attacker will try to gain access to the system in order to change

values of resources stored in the system. For instance, it might change the name of

the General Practitioner allowed to view an Older Person's care plan. Towards

this kind of attack, the system basically offers three layers of protection. First of all,

only authorised users are allowed access to the system. But even if the Attacker

manages to obtain somehow access to the system (through social engineering for

example) access control checks are in place to make sure that every authorised user

has access only to necessary resources. In addition, auditing tests are performed by

the eSAP system. This involves the collection of data relating to the behaviour of

authorised users. Then users are observed to determine any sudden changes to their

behaviour.

Test Case Results: The system provides mechanisms to protect against possible

attacks aiming to change the data ofthe system.

Test Case 3: Viruses

Precondition: The Attacker tries to change the system behaviour by using some

kind of virus.

System expected security reaction: The system should be able to prevent viruses.

Discussion: Viruses consist one of the most sophisticated threats to computer

systems. It is quite common for attackers to send viruses to computer systems they

want to attack in order to exploit vulnerabilities and change the behaviour of the

system. Although many effective countermeasures have been developed for existing

types of viruses, many new types of viruses are also developed frequently.

An ideal measurement against viruses is prevention. In other words, viruses should

not get into the system. However, this is almost impossible to achieve. Therefore, the

best approach is to be able to detect, identify and remove a virus. Auditing helps

towards the detection of the virus. However, apart from this the eSAP system is not

protected against viruses.

Test Case Results: The eSAP system needs to be integrated with an anti-virus

program to enable it to effectively detect, identify and remove any possible viruses.

Applying the Extensions: The eSAP Case Study 159

Such a program, which could be another internal agent of the eSAP system, should

be able to monitor the system and take effective measurements against any possible

viruses.

6.3.3.3 Interruption Scenario

As mentioned above, interruption attacks mainly aim the availability of the

system. From an Attacker's point of view, such attacks can be mainly categorised

into two main categories, physical attacks and electronic attacks (see Figure

6-16). Physical attacks include any attacks to the infrastructure of the system,

whereas electronic attacks involve attacks such as denial of service attacks.

Figure 6-16: Interruption attacks scenario

Therefore, the Attacker's main goal (Attack eSAP Avai lability) can be

decomposed to physical and electronic attacks. Physical attacks involve the cutting

of a communication line, or the destruction of a part of the system. On the other

hand, one of the most popular electronic attacks to the availability of a system is

denial of service attacks. Since physical attacks to the eSAP system are outside

the focus of this research project, only a test case involving a denial of service attack

is consid red .

Te t Ca e: denial of service

Pr condition : The Attacker tries to make the eSAP system unavailable by

Applying the Extensions: The eSAP Case Study 160

perfonning a denial of service attack.

System expected security reaction: the eSAP should be able to detect the attack

and recover.

Discussion: During a denial of service attack, the Attacker tries to prevent the

nonnal operation of the communication facilities of the system [Sta99]. Since a

denial of service attack is an active attack, the main goal of the eSAP system is to

detect the attack and recover from any disruption it may cause as fast as possible.

Towards this direction, the agents of the system must have capabilities to operate

even if some other agents have become unavailable. Mostly denial of service attacks

require from Attackers to steal an administration account of a hose computer in the

network. Therefore, an efficient way to prevent such attacks is to secure the

administration account as much as possible. In addition, the Attacker might make

use of spoofed source address. To stop this, the system must perform filtering mainly

when internal agents communicate with external ones.

Test Case Results: The eSAP system provides authorisation mechanisms and

therefore helps towards the effective security of the system and in tum the prevention

of denial of service attacks. However, filtering is required to make the protection

against denial of service attacks even better. Therefore, an agent should be

introduced to the system that will perfonn such filtering.

6.3.3.4 Discussion regarding the security attack scenarios

In order to test the security of the system, three different kind of scenarios were

identified involving seven different test cases. By applying these test cases many

useful results were obtained about the security of the eSAP system. First of all, it

was identified that the system provides enough protection against some of these

attacks. Secondly, for the attacks that the system did not provided adequately

protection, extra agents and extra secure capabilities were identified and the

following modifications took place in the eSAP system.

I. Capabilities were given to the external agents and to the Cryptography

Manager to enable them to change the cryptographic algorithm often. The

Applying tbe Extensions: Tbe eSAP Case Study 161

lack of such capabilities was identified during the read data test case of the

interception attack scenario modelled in Figure 6-14.

2. The external agents of the system were given the capability to provide

passwords from a password list, and the Authenticator was given capabilities

to successfully process such passwords. The lack of such capabilities was

identified by the application of the password-sniffing test case of the

interception attack scenario.

3. An agent, called Viruses Monitor, is introduced to the system to monitor the

eSAP and take effective measurements against any possible viruses. The lack

of such an agent was identified by the application of the viruses test case of the

modification attack scenario presented in Figure 6-15.

4. An agent, called Filter Agent, is introduced to the system to filter the eSAP in

order to help towards the protection of denial of service attacks. The lack of

such an agent was identified by the application of the denial of service test case

of the interruption security attack scenario presented in Figure 6-16.

Table 6-3 illustrates the agents of the eSAP system as derived from the analysis

presented in the previous sections together with the agents identified from the

analysis of the security attack scenarios. The capabilities of each of these agents can

be found in Appendix B.

Table 6-3: The agents of the eSAP System

Assessment Care Plan CA Information Access Cryptography

Analyser Updates Collector Controller Manager

Manager

Assessment Care Plan CA Information Authenticator Skills

Synthesiser Broker Provider Manager

Assessment Referral Assistant eSAP Guard Professional

Broker Provider Proposer Database

Manager

Older Referral Meeting Auditing Actions

Person Constructor synthesiser Manager Manager

Broker

Applying the Extensions: The eSAP Case Study 162

Care Plan Referrals Meeting Integrity eSAP Sec.

Generator Database Notifier Verification Policy

Manager Manager

Care Plan Assistants Consent Availability Trusted

Format Database Manager Manager Agencies

Database Manager Manager

Filter Agent Viruses Social Worker Older Person Nurse

Monitor

General Care Assistant Care Manager Secondary

Practitioner Care

Professional

6.3.4 Detailed design

When the attack scenarios stage has been completed and the capabilities of the

agents have been refined to provide as much security from possible attacks as

possible, the next step involves the specification of the system's components.

The important consideration, from the security point of view, during the detailed

design stage is the specification of the system components by taking into account

their secure capabilities.

For instance, a partial class diagram related to the Meeting Scheduler is shown in

Figure 6-17. The important consideration regarding security is that the eSAP Guard

must check the security privileges of any possible Meeting Initiator or Meeting

Participant before allowing them to interact with the Meeting Scheduler.

Moreover, as mentioned in section 3.5, to represent the capabilities of the agents,

Tropos employs capability diagrams to model a capability from the viewpoint of a

specific agent and plan diagrams to specify each node of the capability diagram. The

same diagrams are used to represent the secure capabilities of the agents.

Consider for example, the Receive Care Plan Request secure capability of the

Care Plan Broker. This can be depicted as shown in Figure 6-18.

Applying the Extensions: The eSAP Case Study 163

«-oent»
ts.<PGuard

hecIo.IOIuiorStcunl)Pn';lege ()
htdJ"rlOP'"'ISecunl)Pn~leg,.O

etjng Database

~.ngIO
~" lngNAm'

I ngLocuon
~elngPt"Opanls

Tlm, Slo1

110
IT)Ile

~ta'tTime
~ndTlm.

<<agent»
Meebng Schedule'

. AddMeelngO
~tNeJdMeebng()
~~,eMeebngO
. SetConftlCt()

1 ~ancelMeetingO
~oll)t.ieelngParbclpanlsO
~escheduleMeeting() t ~obfyConftlctR.soh,er()

Meeting Equlpmenl
~qulpm.nUD
¥qulpmentName
~"only
~elnglnlti.~'

'SetMeetingEqUipmen~)

\

f:

«agenl»
Meeting Inltia~,

Inltia~rName

~,oposedMeetingName
~ropoSedMeelngnme
~ropoSedMeelngLocation
~ropoSedMeetingLenglh

1 . ~ropoSedMee'ngParlclpanls

' SetMeellngOetalisO
'AddMeebngEqulpmenlO
~eplanMeetingo
W'OI'deAulho~sationOetalls()

1 •

«agent»
Meeting Particlpanl

~articlpanlName
ParticipanUmponance

~,e'eredMeetingOelalis

W'OI'deP,efe,edMeelngOetalls()
~eplanMe.tingO
Wro~deAuIho"sallonOetalls()

<<agent»
Conftlct Resol""

~eSOlwConftlct()
~tMeetingConftlCtsO
~obl)t.ieetingSchedule,()

j
Figur 6-17: Partial la Diagram with re peet to the Meeting Scheduler

IE: (Care Plan Request Valid)

I PI~rovide Care
\::n Information

EE: Receives (Nurse, Care Plan Broker, Care Plan Request)

IE: (Care Plan Request Invalid)

Figur -18: apability diagram for the Receive Care Plan Request capability of the Care

Plan Broker agent

Applying tbe Extensions: Tbe eSAP Case Study 164

The Care Plan Broker initially accepts a Care Plan Request from the Nurse.

Then the Care Plan Broker evaluates the request and either provides the requested

information or notifies the requester (the Nurse in this case) that the request is

invalid.

Furthermore, as mentioned above, plan diagrams are used to model each node of

the capability diagram. For instance, the Evaluate Care Plan Request plan

depicted in Figure 6-18, is modelled as shown in Figure 6-19. The Care Plan

Broker firstly tries to decrypt the incoming request. If the request is not encrypted

then the agent categorises the request as not valid (all the incoming requests must be

encrypted) and the plan is terminated. If the request is successfully decrypted the

next step involves the integrity check of the request. In case the integrity of the

request is not verified the agent categorises the request as not valid and the plan is

terminated. The last step involves reading the request in order for the agent to

respond to it. It must be noticed that every incoming request follows a specific

format, in order for the agent to be able to read it. If the request is readable the Care

Plan Broker categorises it as valid request and the plan terminates, in any other case

the request is categorised as invalid and the plan terminates.

Applying the Extensions: The eSAP Case Study 165

EE: Receives (Nurse, Care Plan Broker, Care Plan Request)

Not Encrypted

Integrity Check Failed

Request not readable

Figure 6-19: Plan diagram for the evaluate care plan request plan

In addition, agent interaction diagrams are used to model the interactions of the

agents. Consider for example, the interactions that take place when the Social

Worker tries to obtain access to the system.

The Social Worker sends an encrypted message to the eSAP Guard requesting

access to the system. The eSAP Guard forwards the request to the Cryptography

Manager for decryption. After the Cryptography Manager decrypts the request it

forwards it plain text to the eSAP Guard. Then the eSAP Guard checks the

authentication privileges of the Social Worker with the aid of the Authenticator.

Then the Authenticator requests from the Social Worker to send their

authentication details. When the Authenticator receives the authentication details of

the Social Worker either provides an authentication clearance or rejects the

authentication of the Social Worker. After the authentication clearance has been

granted, the eSAP Guard provides system access clearance to the Social Worker.

Applying the Extensions: The eSAP Case Study 166

1 """~'I 1 -,·"'1 [J ______ S~~_t~ __ A_CC_e$ __ ~_q_U~_t ____ ~)~[]

IF
Authentication Clearan is

Provided then Acce
S~t~ Ac~s Requa t

ELSE
Reject System Acc

Requ~t

Reject S~tem Access Request

Send Encrypted Request ...
.,.

Plain Text Roouest

I
I
I
I
I
I
I
I

,L

'--

Send Authenticatilm Request

I
I
I
I
I

Ask for Authentication Details I
I
I

Provide Authentication Details :

I
I

Provide Authentication CI$rance I
I

J
I
I

: IF
Aut e~tication Details Valid
the P10vide Authentication

: Clearance
I ELSE

ej~ct Authentication
: Clearance
I

Figure 6-20: Interaction diagram for the Social Worker system access clearance

6.4 DISCUSSION REGARDING THE SECURITY EXTENSIONS

Chapters 4 and 5 introduced security-oriented extensions to the Tropos

methodology to enable it to model security issues throughout the whole development

process of a multi agent system. In addition, the previous section of this chapter

presented how the proposed security-oriented extensions can be employed for the

development of a real-life health and social care information system for older people.

The main aim of this section is to provide a critical discussion/evaluation of the

presented approach.

6.4.1 How the proposed security-oriented approach helps towards the

development of secure multiagent systems

By modelling the security constraints of the individual actors, developers are able

to model the security requirements of the system according to the real security needs

of its stakeholders. For example, during the eSAP system analysis, the lack of

Applying tbe Extensions: Tbe eSAP Case Study 167

identifying the security constraints between the Nurse and the Older Person, or the

Social Worker and the Benefits Agency would result in a design that would miss

important information regarding the security of the system.

Furthermore, by imposing security constraints, and differentiate between security­

related and non-security-related goals and entities, developers can define together

security and other functional and non-functional requirements of a multiagent system

and at the same time provide a clear distinction between them. This distinction helps

towards the detection of possible conflicts between security and other requirements,

and therefore allows developers to analyse those conflicts and propose possible ways

towards a design that will overcome them, leading to the development of a more

secure system.

Moreover, the introduction of the security reference diagram allows the

identification of desired security requirements very early in the development stages,

and helps to propagate them throughout the development stages. This introduces a

security-oriented paradigm to the software engineering process. In addition, the

security reference diagram helps to discover, by taking into account the security

requirements of the system, possible security constraints that must be introduced to

the system-to-be as well as possible security mechanisms that contribute to the

satisfaction of the security constraints that are imposed on the system. This and the

fact that security expert developers can expand the security reference diagram,

provides security novices with a valuable reference point when considering security

issues during the development of multi agent systems.

In addition, the transformations developed for the construction of the security

reference diagram, the modelling activities for the security-related concepts, the

identification of security-related stages, and the successful integration of the

approach within the development stages of the Tropos methodology contribute

towards a clear and well guided security-oriented process that allows even non­

security oriented developers to consider security in their design.

Moreover, the integration of the pattern language within the development stages of

the Tropos offers a suitable solution for the development of secure agent based

systems. The modelling language of the methodology provides a framework that

forms the base for the development and application of the pattern language, since the

Applying tbe Extensions: Tbe eSAP Case Study 168

patterns of the language and the relationships between them are expressed and

described by employing concepts from the methodology ontology. Furthermore, the

integration of the pattern language within the Tropos methodology allows novice

security developers to reason about the consequences a particular design will have on

their system, and therefore develop a design that will satisfy the security

requirements of the system.

In addition, the technique for selecting amongst different architectural styles and its

integration within the Tropos methodology allows the explicit definition of the

technique and allows developers to evaluate and select between different designs

according to the system's security requirements. This, in tum, allows developers to

analyse security requirements and base design solutions on this analysis. On the other

hand, the introduction of security attack scenarios to test the system's response to

potential attacks and the definition of a set of consistency rules to check the security­

oriented approach allows developers to test the developed security solution and also

check the consistency of the development process.

In addition, the proposed approach employs the same concepts and notations

throughout the development process. Therefore, the developer is not concerned with

the "translation" of a concept from one stage to another. This allows a uniform

development, leading to a better definition of the multiagent system.

6.4.2 The key features of the proposed approach

An important key feature of the proposed approach is that the security requirements

of the system can be traced back to the requirements of the stakeholders. For

example, in the eSAP analysis presented in the previous section, the secure task of

the eSAP system Check Data for Consent can be traced back to the early

requirements analysis of the Older Person actor and their secure goal to Restrict

Access to Personal Information.

In addition, the concept of constraints IS a natural extension of the Tropos

methodology. This, together with the minimum changes on the notation, allows

developers familiar with Tropos to easily model security issues. The notation used,

an S within brackets, to indicate security related concepts can be easily adopted or

Applying tbe Extensions: Tbe eSAP Case Study 169

ignored if the developers wish, and also it can be easily extended to indicate other

non-functional requirements.

On the other hand, the iterative nature of the presented security-oriented process

allows the re-definition of security requirements in different levels and as a result it

provides better integration with the modelling of the system's functionality, whereas

the consideration of the organisational environment for the modelling of security

issues facilitates the understanding of the security needs in terms of the security

policy and the real security needs of the stakeholders.

The usage of the attack scenarios provide developers the ability to realistically

check how the developed system will react to possible security attacks. This, in tum,

allows developers to re-consider particular system functions with respect to security

until the system under development satisfies all the security requirements.

6.5 SUMMARY

The main aim of this chapter was to illustrate how the proposed security-oriented

extensions can be applied in the development of a real life information system. To

fulfil this aim, this chapter described how the extended Tropos methodology was

employed for the development of the electronic single assessment process (eSAP)

system, a health and social care information system for the effective care of older

people. The presented illustration analytically described how the extensions are

applied in each step of the development process.

Although, at each step of the development process discussions took place to

indicate the strengths and the important points of the security-oriented approach, the

chapter also provided a critical discussion that indicates how the proposed approach

helps in the development of more secure systems. In addition, this chapter described

the key features of the proposed security-oriented approach as derived from the

application of the approach to the development of the electronic single assessment

process system.

The following chapter concludes this thesis.

Applying the Extensions: The eSAP Case Study 170

The preceding three chapters have described an extended version of the Tropos

methodology to enable developers of multiagent systems to consider security issues

throughout the development of a multi agent system using the same concepts and

notations throughout. Chapter 4 described security-oriented extensions to the

concepts and the modelling activities of the Tropos methodology, whereas chapter 5

described a security oriented process and it outlined how the Tropos methodology

stages can be refined to include the proposed security-oriented process. Finally,

chapter 6 described how the proposed approach can be employed in the development

of the electronic single assessment process system and it also provided a critical

discussion indicating how the proposed approach helps towards the development of

secure multi agent systems.

The final chapter of this thesis starts, in section 7.1, by evaluating whether the

presented security-oriented approach meets the minimum set of requirements, set in

section 2.3.2.2, that a security oriented process should satisfy. Then, section 7.2

revisits the objectives set at the beginning of this thesis, presented in section 1.4, and

discusses whether the developed approach satisfies them. Moreover, the main

contributions and the significance of this research are discussed in sections 7.4, and

7.5 respectively. Finally, directions for future work are outlined in section 7.6 and a

summary of the thesis is provided in section 7.7.

7.1 DOES THE PROPOSED APPROACH SATISFY THE REQUIREMENTS SET

IN SECTION 2.3.2.27

Section 2.3.2.2 identified eleven requirements that a security-oriented approach

must satisfy. The following paragraphs discuss how the presented approach has

successfully met them.

• The introduction of the concept of security constraints and the extension of

the existing Tropos concepts with security in mind greatly helps towards the

satisfaction of requirements 4, 6 and 7 described in section 2.3.2.2 since it

Conclusions 171

allows for a systematic approach towards the modelling of security

requirements.

• The differentiation between security-related and non-security-related goals

and entities allows developers to define together security and other

functional and non-functional requirements of a multi agent system and at

the same time provide a clear distinction between them. This introduces a

security-oriented paradigm to the software engineering process and

therefore contributes towards the satisfaction of requirement 4 of section

2.3.2.2.

• The introduction of the security diagram, and the fact that the diagram can

be expanded by security aware developers, provides security novices with a

valuable reference point when considering security issues during the

development of multi agent systems and as a result such an approach

contributes towards the satisfaction of requirement 1 of section 2.3.2.2.

• The adoption of current Tropos concepts for the development of the

diagram allows the usage of the same concepts and notations throughout the

development process and therefore contributes towards requirement 2 of

section 2.3.2.2.

• The introduction of the security oriented process and the successful

integration of the approach within the development stages of the Tropos

methodology contribute towards a clear and well guided security-oriented

process that allows even non-security developers to consider security in

their design and therefore satisfies requirements 3 and 4 of section 2.3.2.2.

• The technique for selecting amongst different architectural styles allows

developers to analyse security requirements and evaluate and select a design

according to the system's real security requirements and as a result it

satisfies requirement 10 of section 2.3.2.2.

• The integration of the pattern language within the development stages of

Tropos offers a suitable solution for the development of secure agent-based

systems and contributes towards requirements 3, 8, and 9 of section 2.3.2.2

• The introduction of security attack scenarios to test the system's response to

potential attacks and the definition of a set of consistency rules to check the

Conslusions 172

security-oriented approach allow developers to test the developed security

solution, and therefore satisfies requirement 11 of section 2.3.2.2, and it

also checks the consistency of the development process, and as a result

satisfies requirement 5 of the section 2.3.2.2.

From the above, it is concluded that the proposed approach satisfies all the

requirements presented in section 2.3.2.2.

7.2 DISCUSSION ON HOW THE RESEARCH OBJECTIVES WERE MET

An important issue when concluding a project is to identify whether the work that

took place satisfies the objectives (and therefore the aim) set at the beginning of the

project. Thus, the following paragraphs review one by one the objectives set at the

beginning (although some of them have been evolved during the project) of this

project, and present a discussion on each one of these.

Objective 1: Identify problems of integrating security and systems engineering and

provide a set of minimum requirements necessary for a security oriented process.

To satisfy the first part of this objective, this research identified seven mam

problems (presented in section 2.3.2.1) associated with the integration of security and

software engineering. Amongst others, these include the involvement of non-security

experts in the development of multiagent systems that require knowledge of security,

the diversity of concepts used by software engineers and security engineers, and the

difficulty to move from a set of security requirements to a design that satisfies these

requirements. In addition, to satisfy the second part of the above objective, this

research identified a set of minimum requirements (eleven requirements) that a

security oriented process should demonstrate (presented in section 2.3.2.2). These

requirements indicate (amongst other things) that the process should allow novice

security developers to successfully consider security issues, employ the same

concepts and notations throughout the whole development lifecycle, and be

integrated within a methodology.

Conslusions 173

Objective 2: Extend the concepts and notations of an existing agent oriented

software engineering methodology with respect to security modelling.

This research project reviewed different agent oriented software engmeenng

methodologies and it identified their strengths and limitations with respect to security

modelling, as presented in section 2.4.1.1. Then it identified the Tropos methodology

as a suitable methodology for the security oriented extension. This decision was

mainly based on the fact that the Tropos spans in all the development stages using

the same concepts, it is easily extensible and also it is more security aware than other

methodologies. In addition, the Tropos methodology is well integrated with other

approaches, such as the Agent UML, in which some security work has taken place,

and therefore existing work can be considered and incorporated within the proposed

approach.

However, the Tropos methodology demonstrated a number of significant

limitations in its concepts and notations with respect to security modelling (section

3.8), such as the inadequacy of the soft-goal concept to model security issues, and the

lack of definition of current concepts with security in mind. Therefore to satisfy this

objective, the concept of a security constraint was introduced, and existing concepts

such as goals, dependencies and capabilities were defined with security in mind. For

example, the concept of secure goal was identified, which represents the strategic

interests of an actor with respect to security. Moreover, notation for the security

related concepts was added at the methodology's notation. To keep the notation

simple and easy to understand, security related concepts are modelled by adding an S

within brackets "(S)" on the root concepts of the Tropos methodology. As it was

described, in chapter 4, this allows minimum modifications in the notation of the

methodology and therefore makes it easy to understand, especially by developers

familiar to the Tropos methodology, and also it allows developers to introduce other

concepts, such as performance, easily in the current notation.

Objective 3: Develop a clear, well guided process of integrating security and

systems engineering throughout the software development process of multiagent

systems, using the same concepts and notations throughout the process.

Conslusions 174

To satisfy this objective this research developed, as presented in chapter 5, a

security oriented process that is divided into four main activities. (1) The

identification of security requirements of a multi agent system; (2) the selection

amongst alternative architectural styles for the system to be according to the

identified security requirements; (3) the development of a design that satisfies the

security requirements of the system; and (4) the attack testing of the multi agent

system under development.

Security requirements are identified by employing the modelling activities

developed by this research such as security reference diagram construction, security

constraints and secure entities modelling, presented in Chapter 4. The process of

identifying the security requirements of the system is basically one of analysing the

security needs of the stakeholders and the system in terms of security constraints

imposed on the system and its stakeholders and identifying secure goals and entities

that guarantee the satisfaction of the security constraints as described in section 5.1.

When the security requirements have been identified the second step of the process

involves the selection of an architectural style for the system according to the

specified security requirements. For this reason, this research has developed, as

presented in section 5.2 an analysis technique, which is based on an independent

probabilistic model, to enable developers to select among alternative architectural

styles using as criteria the non-functional requirements of the multi agent system

under development.

To allow the development of a design that satisfies the security requirements, this

research proposes in section 5.3 the use of patterns. Towards this direction a pattern

language consisting of security patterns for mUltiagent systems was developed. The

use of such a language enables non-security specialists to identify patterns for

transforming the security requirements of their system into design, and also be aware

of the consequences that each of the applied security patterns introduce to their

system. Additionally, since security patterns capture well-proven solutions, it is more

likely that the application of security patterns will satisfy the security requirements of

the system.

To test the reaction of the system under development to potential security attacks,

this research proposed in section 5.4 a technique that is based on the use of scenarios.

Conslusions 175

A scenario, called Security Attack Scenario, includes enough infonnation about the

system and its environment to allow validation of the security requirements. This

approach identifies the goals and the intentions of possible attackers, identify through

these a set of possible attacks to the system (test cases), and apply these attacks to the

system to see how it copes. By analysing the goals and the intentions of the attackers

the developer obtains valuable infonnation that helps to understand not only how the

attacker might attack the system, but also why an attacker wants to attack the system.

This leads to a better understanding on how possible attacks can be prevented. In

addition, the application of a set of identified attacks to the system contributes

towards the identification of attacks that the system might not be able to cope with

(failed test cases) and this leads to the re-definition of the agents of the system and

the addition of new secure capabilities to enable them to protect against these attacks.

Moreover, in section 5.5, a set of consistency rules was developed to allow

developers to check the consistency of the security-oriented development process.

Objective 4: Integrate the security oriented process within the methodology's

development stages.

To satisfy this objective, the Tropos development stages have been refined, In

section 5.6, to accommodate the proposed security extensions. During the early and

late requirements analysis stage the security requirements are identified. The security

reference diagram is constructed and security constraints are imposed to the

stakeholders of the system (by other stakeholders). These security constraints are

furthered analysed (with the aid of goal diagrams) and secure goals and entities are

introduced to the corresponding actors to satisfy them. In addition, security

constraints are imposed to the system-to-be (by reference to the security reference

diagram) and these constraints are analysed.

In the architectural design, the architectural style of the multiagent system is

defined with respect to the system's security requirements and the requirements are

transfonned into a design with the aid of security patterns. Furthennore, the agents

of the system are identified along with their secure capabilities and Security Attack

Scenarios are used to test the security of the system under development. Then, at the

Conslusions 176

detailed design stage, the components identified in the previous development stages

are designed with the aid of Agent UML.

Objective 5: Evaluate the proposed solution by applying it for the development of

the electronic single assessment process system.

To satisfy this objective, the proposed security related approach was employed for

the development of the electronic single assessment process system, a real life

complex health and social care information system, and also a critical discussion of

the approach was presented in section 6.4 together with the key features of the

proposed approach.

Although the presented approach cannot claim that by employing it a totally secure

system will be developed25
, the application of the approach in the development of the

electronic single assessment process indicated that the proposed approach provides

valuable help and allows (even non security aware) developers to consider security

issues throughout all the development stages when developing systems with agent

orientation in mind.

This is mainly due to two main reasons. Firstly it provides a well guided process

that enables even non-security specialists to reason about the security of the system,

and secondly it provides a process to check the security of the developed system and

redefine it according to a set of security attack scenarios. This leads to the

development of a more secure system.

It is worth mentioning that the developed system presented in this chapter

corresponds on the scenario identified in section 6.2. As such, the identified set of

actors and their (secure) capabilities is not complete with respect to an electronic

system to deliver the single assessment process taking into account the whole setting

surrounding the single assessment process. However, the presented development

provides a very good basis for which a complete design for the single assessment

process can be developed. The actors identified in this chapter can be employed and

the only difference would be the identification of extra actors and their (secure)

25 Such a claim would be false and in fact none can claim something like this because, as

mentioned earlier (section 2.3.1) in this thesis, there is no such system as a totally secure system.

Conslusions 177

capabilities required by the system in order to deliver the extra functionality and also

the definition of the relationships (dependencies) between the already identified

actors and the newly introduced ones.

Although the proposed approach was applied in the development of an information

system for the health care domain, it is also applicable to any other information

system that demonstrates similar characteristics. However, there are some limitations

and the approach is not suitable for any kind of software development. First of all,

because the proposed approach is based on the Tropos methodology, it follows the

same limitations imposed by the Tropos methodology [Bre02b]. As a result, it is not

applicable for the development of embedded software or system software (operating

systems for instance) since in such systems there are no identifiable stakeholders.

Moreover, the approach is not suitable for performing specific security related

analysis activities, such as check that exchange of data obeys the security levels

[JurOl], analyse security requirements at the physical layer [JurOl], and specify and

verify security protocols [Ban89, Mea94]. Such activities imply the consideration of

a particular implementation and are out of the scope of this work.

7.3 INTEGRATION TO OTHER METHODOLOGIES

As mentioned in chapter 4, the proposed security oriented extensions are mainly

divided into two categories. Concepts related and process related extensions.

Although, the proposed security concepts and notations have been specifically

developed for the Tropos methodology, the proposed security oriented process can

be integrated to other methodologies with few modifications. The following

paragraphs discuss how the proposed security oriented process could be integrated

within the agent oriented software engineering methodologies discussed in chapter 2,

i.e. GAIA, MAS-Common KADS, and MaSE.

During the analysis stage of the GAIA, the security reference diagram could be

constructing, and the security requirements of the system could be identified taking

into consideration the identified roles and their permissions. However, some

concepts related extensions would be necessary to allow this process. For instance,

although permissions help to model security related permission that the system might

have, they fail to model possible security restrictions of the system or the associated

Conslusions 178

roles. Then during the design stage, the security design pattern language could be

employed to help in the aggregation of the roles to agents, and the architectural style

of the system could be identified using the proposed process for selecting

architectural styles. Finally, security attack scenarios could be developed from the

agents, services and acquaintance models.

A more substantial effort would be required to integrate the approach to the

MAS-Common KADS methodology. The conceptualisation stage of the

methodology is appropriate for the construction of the security reference diagram.

However, new security related concepts should be introduced to help the

identification of the security requirements of the system, since the current

methodology concepts are very limited for this activity. Then, during the agent

design phase the security pattern language could be used to help the identification of

the most "security" related architecture for each agent, and the information modelled

in the agent network design, such as information related to the network facilities sub

activity, could be used to construct the security attack scenarios. On the other hand,

the methodology does not address the issue of designing the system's architecture

and as a result, the selection of and architectural style according to the security

requirements of the system proposed activity cannot be integrated in the

methodology.

The MaSE methodology starts its requirement analysis by capturing the system's

goals. As such, most of the security related concepts, such as security constraints,

and secure goals/tasks, proposed by this thesis can be integrated within the

methodology to help developers during the security requirements identification

activity, which in turn can be integrated within the analysis stage of the MaSE

together with the security reference diagram. The security design pattern process

could be integrated within the design stage and in particular in the assembling agent

classes activity, whereas the selection of the architectural style according to the

security requirements of the system could be integrated within the system design

activity. Finally, the security attack scenarios could be constructed by obtaining

information from the previous stages ofthe analysis and design.

Conslusions 179

7.4 RESEARCH CONTRIBUTIONS

This thesis introduced an agent oriented approach in the development of

information systems, which considers security issues as an integral part of the whole

development process. The Tropos methodology has extended to allow developers to

consider security throughout all the development process. As a result, this research

advances the current state of the art in agent oriented software engineering in four

important ways:

• It identifies limitations of current agent oriented software engmeenng

methodologies with respect to security modelling.

• It points out a set of problems in the integration of security and software

engineering, and identifies a set of requirements for a security oriented

approach.

• It extends the Tropos methodology, a widely known agent oriented software

engineering methodology, with respect to security modelling.

• It employs the extended methodology in the development of a real life

health and social care information system.

Therefore, the contributions of this research project can be summarised in the

following points:

• It introduces a security-oriented paradigm to the software engineering process

using the same concepts and notations throughout the development process.

• It provides a systematic, clear, and well guided approach towards the

modelling of security requirements.

• It allows developers to define together security and other (functional and non­

functional) requirements of a system and at the same time provide a clear

distinction between them. This helps to limit the cases of conflict between

security and functional requirements, by identifying them very early in the

development process and find ways to overcome them.

• It allows the identification of desired security requirements very early in the

development stages, and helps to propagate them throughout the development

stages.

Conslusions 180

• It allows novice security developers to reason about the consequences (with

respect to security) a particular design will have on their system, and

therefore develop a design that will satisfy the security requirements of the

system.

• It allows developers to evaluate and select between different designs

according to the system's security requirements.

• It allows developers to test the system's response to potential attacks.

There are also very important contributions of this work, outside the computer

science area. This research argued that the software agent paradigm is suitable for

developing systems for the health and social care sector, since both of them (agent

paradigm and health and social care systems) exhibit a considerable number of

mutual characteristics, such as cooperation and share of information. On the other

hand, it identified the lack of security modelling as an important consideration for the

application of agent oriented software engineering methodologies in the development

of health and social care information systems. Therefore by extending current agent

oriented software engineering methodologies to help in the development of designed

solutions of health and social care systems with security in mind, this research

actually introduced a novel approach in developing systems for the health and social

care sector.

7.5 SIGNIFICANCE OF THIS RESEARCH

According to the Computer Crime and Security Survey, contacted by the Computer

Security Institute (CSI) with the participation of the San Francisco Federal Bureau of

Investigation's computer intrusion squad, during 2003 about (90) percent of

respondents, mainly large US corporations and US government agencies, detected

computer security breaches and seventy - five (75) percent acknowledged financial

losses due to those security breaches.

Security vulnerabilities have also been dramatically increased the last few years.

According to the CERT Coordination Center6 while during 1995, 171 vulnerabilities

were reported, this number increased to 1993 during the first two quarters of 2003. In

26 http://www.cert.org/

Conslusions 181

addition, the last 10 years the number of incidents reported has increased from 1334

(in 1993) to 76,404 (the first two quarters of2003).

All those figures prove that security is not considered as much as it should. A

reason for this is that for software developers, security interferes with features and

time to market. Although, security specialists use mathematical security models for

the development of secure information systems, these models are very complex and

difficult to understand by software engineers without security expertise. However,

software engineers have to develop multi agent systems that require security features.

Thus, the definition of security requirements is usually considered after the design of

the multiagent system. This typically means that security enforcement mechanisms

have to be fitted into a pre-existing design therefore leading to serious design

challenges that usually translate into software vulnerabilities.

By integrating security and systems engineering, this research provides an

alternative security-oriented approach in the development of multi agent systems.

Such an approach allows the identification of possible conflicts between security and

functional requirements before the actual implementation of the system. This, in tum,

enables developers to find ways to overcome these conflicts without rebuilding the

system and therefore save valuable industrial time and money. Furthermore, by

providing a structured, well understood development process using the same

concepts and notations throughout the development stages, this research allows

software engineers without security expertise to reason about security when

developing a multi agent system.

Moreover, the development of an agent based system to deliver the single

assessment process will have a major impact in the health and social care

professionals related to the delivery of care to older people in England. By analysing

and designing such a system with security in mind, this research work provides the

foundation in which a successful (future) implementation can be based on. An agent

would be allocated to each professional, and it would be given enough intelligence so

that it can negotiate with agents of other professionals to minimise the workload of

the professionals and maximise the cooperation required for the efficient care of

older people, thus improving the care of older people.

Conslusions 182

7.6 DIRECTIONS FOR FUTURE WORK

When a project is finished, a number of issues that pose new challenges appear.

There are many directions in which the work described in this thesis can be extended

to increase the chance of success of the proposed approach.

Modelling trust and ownership is a very important issue, in a multi agent system,

and it is closely related to the modelling of security. Recently, Giorgini et al. [Gio03]

proposed an enhanced version of the Tropos methodology to allow it to appropriately

model trust relationships. Their approach could be integrated together with the

approach presented in this thesis to allow a more complete analysis of security

relationships that exist in a multi agent system. Since both approaches have been

developed and integrated within the Tropos methodology the task of integrating the

two approaches is very feasible.

Another interesting area of investigation is the extension of the Tropos formal

specification language to include the security related concepts. Formal Tropos

complements graphical Tropos by extending the Tropos graphical language into a

formal specification language [FuxOl, Fux03]. Formal Tropos can be employed to

perform a formal analysis of the system and also verify the model of the system by

employing formal verification techniques, such as model checking, to allow for an

automatic verification of the system properties [FuxOl]. Although some work

[Mou03d] was initiated, as part of this research, towards the extension of the Formal

Tropos concepts to include security, it was later decided for this research to focus

only on the graphical Tropos. However, the initial work can be the basis for a full

extension of the formal Tropos to consider security issues.

In addition, an interesting area for future work is the area associated with the

modelling of mobile agents. Security is a very important issue when mobility is

involved [JanOO]. However, none of the existing agent oriented software engineering

methodologies provide concepts and notations to fully capture mobile agents.

Although some attempts [SelO3, KleOl, Mou02b, Pog03] have been made to consider

the modelling of mobile agents, such attempts are very limited and more work is

definitely required in this direction. An interesting direction would be to extend the

proposed framework to account for mobile agents, and identify the (more

complicated) security issues existing in such systems.

Conslusions 183

Moreover, although the extensions presented in this thesis are focused to security

modelling, some of the concepts introduced, such as the concept of constraint, could

be used to model other non-functional requirements. Thus, an interesting direction

would be the extension of the proposed approach to allow developers to consider

simultaneously many non-functional requirements such as performance and

reliability.

Although the pattern language presented in this thesis is complete for the purpose

of this research, more patterns can be added in order to extend the applicability of the

pattern language. In addition, the SKwyRL framework [Do03] could be used to more

precisely define and formalise the patterns according to social, intentional, structural,

communicational and dynamic dimensions.

Moreover, an important direction for future work is the development of a tool that

will assist developers in the development of a multiagent system by employing the

Tropos methodology. Especially with the introduction of security issues the necessity

of such a tool is very important. Apart from assisting developers in the development

of the system-to-be, this tool could perform more advanced functions such as check

automatically the syntax and the consistency of the developed models, automatically

produce some attack scenarios and check the system responses to possible attacks,

and generate code corresponding to the developed design. A global architecture for

such a tool is depicted in Figure 7-1. A developer interacts with the tool through a

Graphical User Interface. The Tropos Modeller component is the main component

used for the Tropos models and the modelling activities. It communicates with the

Syntax/Consistency Checker component, which is responsible for automatically

checking the syntax and the consistency of the models created by the developer

according to the Tropos syntax specification. Moreover, the Tropos Modeller

communicates with the Pattern Repository to allow developers to use existing

patterns during their development (such as the security design patterns proposed by

this research), and also with the Attack Tester component that automatically

generates Security Attack Scenarios and checks how the system copes against

possible attacks. Moreover, the XML Converter transforms the developed models to

eXtensible Markup Language (XML) [CleOt] syntax to allow the generation of

implementation code through the Code Generator component.

Conslusions 184

Graphical User

Interface

XML

Repository

Syntax

Specification

D
Syntax!

Consistency

Checker

Generated Code

Repository

Figure 7-1: A global architecture for a Tropos tool

Known

Attacks

Repositorv

Future work can also take place from the point of view of the development of the

electronic single assessment process. As mentioned above, the presented analysis and

design of the electronic single assessment process system is based on the Scenario

presented earlier in this thesis. Thus, a complete analysis and design could be

produced along with the implementation of the system. Then the system could be

tested on a real setting to prove the suitability of agent technology.

Conslusions 185

7.7 SUMMARY

Although agent oriented software engineering has advanced the last few years, it is

still a field in its infancy and many issues needs to be resolved. The integration of

security issues in agent oriented software engineering methodologies has been

identi fied as one of the important issues for this paradigm to become widely

accepted. Towards this direction, the main aim of this research project was to provide

an agent oriented software engineering methodology to assist (even non-security

oriented) developers in considering security issues during the development of

multiagent systems using the same concepts and notations throughout all the

development stages.

This aim has been met by extending the Tropos methodology to enable it to model

security issues throughout the development stages using the same concept and

notations. The applicability of the approach was tested by applying it to the

development of the electronic single assessment process, an agent based system to

deliver the single assessment process for older people in England. The application of

the proposed approach in the development of the electronic single assessment

process indicated that the approach does help developers to successfully consider

security issues throughout the development stages.

Conslusions 186

This appendix aims to provide a set of consistency rules discussed in section 5.5. It

must be noticed that the presented list of consistency rules cannot be considered an

extensive list of all the possible checks that a developer should apply when

developing systems with the proposed approach in mind.

The presented list only indicates a set of main rules that should be applied and

could help developers to check their design. However, it is more likely that different

developers would identify more rules to help them deal with their design and the

individual way of thinking and developing a system.

The illustrated rules are divided into two main categories, outer and inner model

rules. Outer-model rules describe consistency checks applicable to the security­

oriented process as a whole, whereas inner-model rules describe consistency checks

that are applicable to individual components of the security-oriented approach.

Consistency rules for the whole process (outer-model)

- All security components must be uniquely labelled.

- Any security components that appear throughout the diagrams must have

consistent names across the diagrams.

- If a component appears in a diagram more than once, such duplication

should be denoted with an asterisk *.
- Each pattern applied to the development process must be associated to at

least one security requirement identified.

- During decomposition, every secure goal of the system must be assigned

to at least one agent.

- All the secure goals that the actors delegate responsibility to the system

must be satisfied by the system (at least one system internal actor must

be assigned to satisfy those goals).

Appendix A: Consistency Rules 187

Security reference diagram consistency rules (inner-model)

- Only one security reference diagram is required for each system

development.

- A security reference diagram must have at least a security feature and

associated protection objectives, security mechanisms and threats.

- Each security feature identified receives only positive contributions from

different protection objectives and only negative contributions from the

threats. Positive contributions help towards the satisfaction of the security

feature while negative contributions put in danger the security feature.

- Each protection objective and each threat that appear on the diagram must be

associated with at least one security feature ofthe graph.

- Each security mechanism that appears on the graph must contribute (either

positively or negatively) to at least one protection objective.

- A security mechanism must contribute either positively or negatively to other

security mechanisms identified in the graph.

- A protection objective must contribute only negatively to the threats of the

security feature it is associated with.

Consistency rules related to security constraints and secure entities modelling

(inner model)

- In an actors' diagram, all security constraints must be linked appropriately to

at least one dependency.

- If a security constraint is delegated from one actor to another, then the related

secure goals must be also delegated.

- During the early requirements analysis, for each security constraint imposed

to an actor, a secure goal should be associated to help the actors towards the

achievement of the constraint.

- A security constraint modelled in the actors' diagram should appear in the

appropriate actor's rationale diagram.

Appendix A: Consistency Rules 188

- Security constraint decomposition implies the satisfaction of the root security

constraint if and only if all the sub-constraints are satisfied.

- In a rationale diagram, the entities that a security constraint restricts should be

clearly marked with a "restricts" link.

Selecting Different Styles diagram (inner model)

- In a selecting styles diagram, each security requirement appear should be

traced from the systems rationale diagram.

- In a selecting styles diagram, each link between a style and a requirement

should be assigned a weight.

- In a selecting styles diagram, the weights in the links should have a value

between 0 and 1.

Security Attack Scenarios (inner model).

- A name should be defined for each scenario.

- Agents should be represented using the correct notation.

- Attack links and help links should be correctly denoted.

- Only one scenario should exist for the same kind of attack.

- The attack scenarios should include all the agents related to any kind of

attack.

- The Prevented and the non-prevented attacks should be correctly marked.

Appendix A: Consistency Rules 189

CJ{~JP1.tE{]{ 6

Thi appendi is divided into three main sections and it provides supported

material to the analysis presented in chapter 6. The first section includes goal

diagram that analyse internally all the main actors that were not analysed in chapter

. The econd section presents extended diagrams that indicate the internal actors

(those who were not analysed in chapter 6) of the eSAP system and their

relationships. The third section provides a list of all the agents of the eSAP system

and their capabilities according to the scenario presented in chapter 6.

A) Goal Diagrams

General Practitioner
, , . ,

.' " I ,. ,
\

\ .
\ .

\ .
\ . , . , · I

· I · , . , .
I .

I .

Appendix B: Supporting Material for Chapter 6 190

Social Worker

\

...
\ ..
\ !
.. ' ", / , /

" ' ~ ~ .,'

""""~~---------------~----"-'-'-'-"--------~-------'

econdary Care Professional

App ndix B: Supporting Matterial for Chapter 6 191

f ,
•

I
•

I

•
I

I ,
I ,

I ,

Care Assistant

• ,

Informal Carer
, ,

Appendix B: Supporting Matterial for Chapter 6 192

Care Manager

B) Extended diagrams

Meeting Scbeduler

.-._.- ,o'

App ndix B: Supporting Matterial for Chapter 6

;.;.,
"

. ,­/

. ,
.
I
• ,
•
I .

I .
I . ,

193

Care Assistant Manager

. , .
\ .

\ . .
'. '. '.

'-'- '

Referrals Manager

Appendix B: Supporting Matterial for Chapter 6

... ~

"\, . ,
•

. • I

,.

\ .
\ . ,
· \ · I

•
I
• ,
•
I . , .

I

, ,.

... •
" •

• \
•
\
•
\
•
\ •
1

194

Care Plan Generator

.. -._ "
".

""'" ,

C) Agents and capabilities

Agent Name Capability

Assessment Analyser Receive Assessment Information

Provide Problems

Assessment Synthesizer Receive Problems

Receive Evaluation Request

Provide Assessment Evaluation

Receive Required Skills

Receive Available Professionals

Receive Proposed Actions

Asse sment Broker Provide Assessment Information

Receive Assessment Evaluation

Appendix B: Supporting Matterial for Chapter 6

.
\ • \

• \ •
\ .
\
• ,

•
I .

I
• ,

195

Older Person Broker Receive Older Person Infonnation

Request

Provide Older Person Infonnation

Care Plan Updates Manager Receive Updated Care Plan

Request Encryption of Data

Receive Encrypted Data

Request Decryption of Data

Receive Plain Text Data

Request Integrity Check

Receive Integrity Clearance

Receive Older Person Infonnation

Receive Professional Infonnation

Receive Care Plan Related Infonnation

Provide Updated Care Plan Infonnation

Provide Care Plan Infonnation Request

Care Plan Broker Receive Care Plan Infonnation Request

Provide Care Plan Related Infonnation

Request Encryption of Data

Receive Encrypted Data

Request Decryption of Data

Receive Plain Text Data

Request Integrity Check

Receive Integrity Clearance

Receive Updated Care Plan Infonnation

Receive Care Plan Request

Provide Care Plan

Appendix B: Supporting Matterial for Chapter 6 196

Receive Access Control Clearance

Receive Generated Care Plan

Care Plan Generator Receive Assessment Information

Receive Care Plan Request

Receive Assessment Details

Provide Care Plan

Provide Care Plan Copy

Care Plan Format Database Receive Care Plan Format Request

Provide Care Plan Format

Referral Provider Receive Constructed Referral

Receive Provide Referral Request

Receive Referral Recipient Information

Provide Referral

Referral Constructor Receive Assessment Evaluation

Receive Referral Format

Provide Constructed Referral

Referrals Database Provide Referral Format

Meeting Synthesizer Receive Meeting Request

Receive Meeting Information

Receive Older Person Information

Provide Older Person Infonnation

Request

Receive Re-synthesize Meeting Request

Provide Meeting Details

Meeting Notifier Provide Re-synthesize Meeting Request

Receive Meeting Details

Appendix B: Supporting Matterial for Chapter 6 197

Provide Meeting Agreement

Provide Proposed Meeting Information

Receive Meeting AcceptancelRejection

Information

CA Information Collector Receive Identification of Assistant

Request

Receive Assistant Request Specification

Receive Available Assistants

Information

Receive Rejected Assistant Notification

Provide Proposed Assistant

CA Information Provider Provide Assistant Details

Receive Assistant Information

Assistant Proposer Provide Assistant Information

Receive Proposed Assistant

Provide Rejected Assistant Notification

Provide Proposed Assistant Details

Receive ConfirmationlRejection

Consent Manager Receive Consent Request

Provide Consent AcceptancelRejection

Availability Manager Back up System Files

Recover System Files

Provide Back up System Files

Auditing Manager Monitor System

Monitor Network

Provide System Attack Detection

Integrity Verification Manager Provide Integrity Clearance

Appendix B: Supporting Matterial for Chapter 6 198

Receive Integrity Request

Cryptography Manager Receive Encryption Request

Provide Encrypted Data

Receive Decryption Request

Provide Decrypted Data

Change Cryptographic Algorithm

Access Controller Receive forwarded Care Plan Request

Receive Security Policy

Check Security Policy

Provide Access Control Clearance

Authenticator Receive Authentication Request

Receive Authentication Details

Provide Authentication Clearance

Receive Trusted Agencies

eSAP Guard Receive Access Request

Provide Authentication Request

Receive Authentication Clearance

Provide Access Clearance

Skills Manager Receive Skills Info Request

Provide Required Skills

Professional Database Manager Receive Professional Information

Request

Provide Professional Information

Actions Manager Receive Actions Request

Provide Actions Information

Assistants Database Manager Receive Assistant Information Request

Appendix B: Supporting Matterial for Chapter 6 199

Provide Available Assistant Infonnation

eSAP Security Policy Manager Receive Security Policy Request

Provide Security Policy Infonnation

Trusted Agencies Manager Receive Trusted Agencies Request

Provide Trusted Agencies

Filter Agent Scan eSAP

Provide Scan Results

Viruses Monitor Scan eSAP for Viruses

Provide Scan Results

Social Worker Provide Assessment Infonnation

Provide Evaluation Request

Receive Referral

Provide Updated Care Plan

Provide Care Plan Request

Receive Care Plan

Provide Consent Request

Receive Consent AcceptancelRejection

Provide System Access Request

Receive System Access Clearance

Provide Authorisation Details

Receive Updated Care Plan Infonnation

Change Cryptographic Algorithm

Provide Meeting Request

Provide Meeting Infonnation

Receive Meeting Agreement

Receive Proposed Meeting Infonnation

Appendix B: Supporting Matterial for Chapter 6 200

Provide Meeting AcceptancelRej ection

Infonnation

Encrypt Transmitted Data

Decrypt Received Data

Check Data Integrity

Nurse Generate Care Plan Request

Provide Assessment Details

Provide Assessment Infonnation

Provide Evaluation Request

Receive Assessment Evaluation

Provide Referral Request

Receive Referral

Provide Care Plan Request

Receive Updated Care Plan Infonnation

Provide System Access Request

Receive Care Plan

Provide Care Plan Request

Provide Consent Request

Receive Consent AcceptancelRejection

Provide Authorisation Details

Change Cryptographic Algorithm

Provide Meeting Request

Provide Meeting Infonnation

Receive Meeting Agreement

Receive Proposed Meeting Infonnation

Provide Meeting AcceptancelRejection

Appendix B: Supporting Matterial for Chapter 6 201

Information

Encrypt Transmitted Data

Decrypt Received Data

Check Data Integrity

Secondary Care Professional Provide Specialist Assessment

Information

Provide Evaluation Request

Receive Referral

Provide Updated Care Plan

Provide Care Plan Request

Receive Care Plan

Provide System Access Request

Receive System Access Clearance

Provide Authorisation Details

Change Cryptographic Algorithm

Receive Updated Care Plan Information

Provide Meeting Request

Provide Meeting Information

Receive Meeting Agreement

Receive Proposed Meeting Information

Provide Meeting AcceptancelRej ection

Information

Provide Consent Request

Receive Consent AcceptancelRejection

Encrypt Transmitted Data

Decrypt Received Data

Check Data Integrity

Appendix B: Supporting Matterial for Chapter 6 202

General Practitioner Provide Older Person Contact

Information

Receive Care Plan Updates

Provide Authorisation Details

Change Cryptographic Algorithm

Receive Contact Assessment Information

Encrypt Transmitted Data

Decrypt Received Data

Check Data Integrity

Provide System Access Request

Receive System Access Clearance

Older Person Receive Meeting Request

AcceptlReject Meeting Request

Receive Updated Care Plan Information

Provide Authorisation Details

Change Cryptographic Algorithm

Provided Contact Assessment

Information

Provide Overview Assessment

Information

Provide Specialist Assessment

Information

Provide Social Assessment Information

Receive Care Plan Copy

Encrypt Transmitted Data

Decrypt Received Data

Check Data Integrity

Append1x B: Support1ng Matterial for Chapter 6 203

Receive Consent Request

ProvidelReject Consent

Care Assistant Obtain Older Person Infonnation

Provide Older Person Infonnation

Updates

Provide Authorisation Details

Change Cryptographic Algorithm

Encrypt Transmitted Data

Decrypt Received Data

Check Data Integrity

Care Manager Provide Assistant Approval Request

Receive Care Assistant Approval

Provide Assistant Specification

Receive Assistant Details

Provide Older Person Consent Request

Receive Consent AcceptancelRejection

Receive Care Plan Updates

Receive Older Person Infonnation

Provide Authorisation Details

Change Cryptographic Algorithm

Encrypt Transmitted Data

Decrypt Received Data

Check Data Integrity
'---------

Appendix B: Supporting Natterial for Chapter 6 204

[Ale79] C. Alexander, The Timeless way of Building, Volume 1, Oxford University

Press. New York. 1979.

[Amo94] E. Amoroso. Fundamentals of Computer Security Technology, Prentice­

Hall. 1994.

[AndOI] R. Anderson, Security Engineering: A Guide to Building Dependable

Distrihuted .~l"stems. Wiley Computer Publishing, 2001.

[Andr99] M. Andries, G. Engels, A. Habel, B. Hoffinann, H-J Kreowski, S. Kuske,

D. Plump. A. Schurr. G. Taentzer, Graph Transformation for Specification and

Programmi"g. Science of Computer Programming, 1999.

[Ant94] A. I. Anton, W.M. McCracken, C. Potts, Goal Decomposition and

Scenario Analysis in Business Process Reengineering, In Proceedings of the 6th

Conference on Advanced Information Systems (CAiSE-1994), Utrecht-The

Netherlands, 1994.

[Ban89] M. Burrows, M. Abadi, R. Needham, A logic of authentication, In

Proceedillgs of the Royal Society of London A, 426, pp 233-271, 1989.

[Bas98] L. Bass. P. Clements, R. Kazman, Software Architecture in Practice, SEI

Series in Sojtl .. 'ure Engineering, Addison - Wesley, 1998.

[BauOI] B. Bauer, J. MUlier, J. Odell, Agent UML: A Formalism for Specifying

Multiagent Interaction, In Agent-Oriented Software Engineering, Paolo Ciancarini

and Michael Wooldridge (eds.), Lecture Notes in Computer Science, pp. 91-103,

Springer. Berlin. 2001.

[Bcc94] K. Beck. R. Johnson, Patterns Generate Architectures, In Object Oriented

Program"'ill~: 8th European Conference on Object-Oriented Programming

(EeOOp 1994). M. Tokoro and R. Pareschi (Eds.), Lecture Notes in Computer

Science 821. pp.139-149. Springer, Berlin, 1994.

References 205

[Ber98] P. Bertrand, R. Darimont, E. Delor, P. Massonet, A. Van Lamsweerde.

GRAILIKAOS: an environment for goal driven requirements engineering, In

Proceedings of the 2dh International Conference on Software Engineering

(lCSE'98), IEEE-ACM, Kyoto, April 98

[Bey95] Paul Beynon-Davies, Infonnation systems 'failure': case of the LASCAD

project, Europeall Journal of Information Systems, 1995

[Bir86] N. D. Birrell, M.A. Ould, A practical handbook for software development,

Campridge University Press, 1986

[Boe81] B. W. Boehm, Software Engineering Economics, Prentice Hall, 1981.

[Boe84] B. W. Boehm, Verifying and Validating Software Requirements and

Design Specifications, IEEE Software, Vol.l, No. I, January 1984.

[Bo094] G. Booch, Ohject-oriented analysis and design - with applications, The

Benjamin / Cummings Publishing Company, 1994.

[Bra97] M. Bradshaw, Software Agents, American Association Artificial

Intelligence Publication, 1997.

[Bre02] P. Bresciani, P. Giorgini, The Tropos Analysis Process as Graph

Transfonnation System, In Proceedings of the Workshop on Agent-oriented

methodologies, at OOPS LA 2002, Seattle, WA, USA, Nov, 2002.

[Bre02a] P. Bresciani, A. Perini, P. Giorgini, G. Giunchiglia, J. Mylopoulos,

Modelling early requirements in Tropos: a transfonnation based approach, In Agent

OriellIed Sofntlare Engineering II. M. Wooldridge, and G. Wei{3 (eds.). Lecture

Notes in Computer Science, Springer-Verlag 2222,2002.

[Bre02b] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos A. Perini,

TROPOS: An Agent Oriented Software Development Methodology, Submitted to

the Journal of AlIIonomous Agents and Multi-Agent Systems, Kluwer Academic

Publishers.

[BreOJ] P. Bresciani, F. Sannicolo, Requirement analysis in TROPOS: a self

referencing example, In Agent Technologies. Infrastructures. Tools. and Applications

for e-S(,rl'ict's, R. Kowalszyk, J. Milller, H. Tianfield, and R. Unland, (eds.), Lecture

Notes in Artificial Intelligence, Springer-Verlag 2592,2003.

Reference. 206

[Bus96] F. Buschmann, R. Meunier, H. Rohnert, P. Soomerlad, M. Stal, Pattern
Oriented Software Architecture: A System of Patterns, Willey, 1996.

[Car9I] 1. M. Carroll, M. B. Rosson, Getting Around the Task-Artifact Cycle: How

to Make Claims and Design by Scenario, IBM Research Report, Human Computer

Interaction, RC 17908 (75365), 1991.

[CasOI] J. Castro, M. Kolp, J. Mylopoulos, A Requirements-Driven Development

Methodology, In Proceedings of the 1 Jh International Conference on Advanced

Information ~)'stems Engineering (CAiSE'OI), pp. 108-123, Interlaken- Switzerland,

2001.

[Cas02] J. Castro, M. Kolp, 1. Mylopoulos, Towards Requirements-Driven

Information Systems Engineering: The Tropos project, In Information Systems (27),

pp 365-389, Elsevier, Amsterdam - The Netherlands, 2002.

[Chu95] L. Chung, B. Nixon, Dealing with Non-Functional Requirements: Three

Experimental Studies of a Process-Oriented Approach, In Proceedings of the 17th

Intemational Conference on Software Engineering, Seattle- USA, 1995.

[CleOl] 1. G. Cleaveland, Program Generator with XML and Java, Prentice-Hall,

2001

[CoI94] D. Coleman, P. Arnold, S. BodotT, C. DoUin, H. Gilchrist, F. Hayes, P.

Jeremacs, O~iect Oriented Development: The FUSION Method. Prentice Hall

International, 1994

[Dar9J] Dardenne, A. van Lamsweerde, S. Fickas, Goal-directed Requirements

Acquisition, Science of Computer Programming, Special issue on the 6th

Intemationlll workshop of Software Specification and Design, 1991.

[DeuOJ] D. Deugo, M. Weiss, E. Kendall, Reusable Patterns for Agent

Coordination, In Coordination of Internet Agents, Springer-Verlag, 2001

[DevOO] P. Devanbu, S. Stubblebine, Software Engineering for Security: a

Roadmap, In Proceedings of the conference of The future of Software engineering,

2000.

[Do03] T. T. Do, M. Kolp, T. T. Hang Hoang, A. Pirotte, A Framework for Design

Patterns for Tropos, 1n Proceedings of the J 7th Brazilian Symposium on Software

Engineering (SHES 2003), Maunas, Brazil, October 2003.

Reference. 207

[Doh03] Department of Health, Single Assessment Process for Older People,

hUp:llwww.doh.gov.uk/scglsap/. last accessed 16/12/2003

[Eco99] The Economist, Digital rights and wrongs, July 17, 1999

[Eri98] H. E. Eriksson, M Penker, Unified Modelling Language (UML) toolkit,

Wiley Computer Publishing. 1998

[EvaOI] R. Evans. P. Kearney, J. Stark, G. Caire, F. J. Carijo, J. J. Gomez Sanz, J.

Pavon. F. Leal. P. Chainho, and P. Massonet. MESSAGE: Methodology for

Engineering Systems of Software Agents, AgentLink Publication, September 2001

[Fai85] R. Fairley. Software Engineering Concepts, New York: McGraw-Hill,

1985

[Fer99] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial

Intelligellce. Addison-Wesley Publishing Company, 1999

[FernOl] E. B. Fernandez. R. Pan, A Pattern Language for Security Model,

Proceeciillgs of the 8tlr Conference on Pattern Languages of Programs (PLoP 2001),

Monticello. Illinois. USA. September 2001

[Fern02] E. B. Fernandez, Patterns for Operating Systems Access Control,

Proceeciillgs of the 9th Conference on Pattern Languages of Programs (PLoP 2002),

Monticello. Illinois, USA, September 2002.

[Fic92] R. G. Fichman, C. F. Kemerer, Object-Oriented and Conventional Analysis

and Design Methodologies, IEEE Computer, Vol. 25, No 10, pp 22-39, Oct 1992

[Fis02] K. Fischer, D. Hutter, M. Klusch, W. Stephan, Towards Secure Mobile

Multiagent Based Electronic Marketplace Systems, Electronic Notes in Theoretical

Computer Sciellce, Vol. 63, Elsevier, 2002.

[Fow97] M Fowler, Ana~vsis Patterns: Reusable Object Models, Object

Technology Series, Addison-Wesley Publishing Company, Reading, 1997.

[FowOO] M. Fowler, K. Scott, UML Distilled: A brief guide to the standard Object

Moc/el/illg /.allgllag£' (2nd Edition), Addison-Wesley, 2000.

[Fra96] S. Franklin. A. Graesser, Is it an Agent, or just a Program? A Taxonomy

for Autonomous Agents, In Proceedings of the Third International Workshop on

Age,,' Theorics. Architectures. and Languages, Springer-Verlag, 1996.

Reference. 208

[FuxOI] A. Fuxman. Formal Ana~vsis of Early Requirements Specifications, MSc

Thesis, University of Toronto, Canada, 2001.

[Fux03] A. Fuxman, L. Liu, M. Pistore, M. Roveri, J. Mylopoulos, Specifying and

Analyzing Early Requirements: Some Experimental Results. In Proceedings of the

Illh IEEE Imemaliollal Requirements Engineering Conference, 8th-12th September

2003, Monterey Bay, California U.S.A

[Gam95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements

of Rellsah/c Ohj£'cl-Oriemed Software, Addison-Wesley, 1995

[Gio02] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, R. Sebastiani. Reasoning with

Goal Models. In the Proceedings of the 21st International Conference on Conceptual

Modeling (ER2002), Tampere, Finland, October 2002.

[Gio03] P. Giorgini. F. Massacci, 1. Mylopoulos, Requirement Engineering meets

Security: A ('ase Study on Modelling Secure Electronic Transactions by VISA and

Mastercard, 111 Proceedings of Ihe 22nd International Conference on Conceptual

Modeling (ER'03). Chicago, Illinois, 13-16 October, 2003.

[Giu02] F. Giunchiglia, 1. Mylopoulos, A. Perini, The Tropos Software

Development Methodology: Processes, Models and Diagrams, Lecture Notes in

Computer Sciellce 2585, pp 162-173, Springer 2003

[GoIOI] D. Gollmann, Computer Security, John Willey and Sons, July 2001

[Gra02] Sarah Granger, Social Engineering Fundamentals, Part I: Hacker Tactics,

WWDocument http://online.securityfocus.comlinfocuslI527, Last Accessed:

30/912002

[Hew77] C. Hewitt, Viewing Control Structures as Patterns of Message Passing,

Arlijiciallllldligellce, Vol. 8, No 3, pp 323-374, 1977

[Hub97] H. Hubmann, Formal Foundations for Software Engineering Methods,

Leclure Noles ill Compltler Science J 322, Springer- Verlag, 1997

[Hug02] M.-P. Huget, Nemo: An Agent-Oriented Software Engineering

Methodology, III Proceedings of OOPSLA Workshop on Agent-Oriented

Methodologies, John Debenham, Brian Henderson-Sellers, Nicholas Jennings and

James Odell (cds), Seattle, USA, November 2002.

Reference. 209

[IEEE90] IEEE Stalldard Glossary of Software Engineering Terminology, IEEE

Std 729. 1990.

[lg196] Carlos A. Iglesias. Mercedes Garijo, Jose C. Gonzalez, Juan R. Velasco, A

Methodological Proposal for Multiagent Systems Development extending

CommonKADS. III Proceedings of the 10th Banff Knowledge Acquisition for

Know/edge-Hased ,\\st£'ms Workshop, pp. 25-1117, Banff, Canada, 1996.

[lg197J C. A. Iglesias. M. Garijo, J. Gonzalez, J. R. Velasco, Analysis and design of

multiagent systems using MAS-CommonKADS, Workshop on Agent Theories,

Archilecfllr('s and Lallguages, 1997.

[lgl97a] Carlos A. Iglesias, Mercedes Garijo, Jose C. Gonzalez, Juan R. Velasco,

MAS-CommonKADS: A comprehensive Agent-Oriented Methodology, Proceedings

of lire II th lilt. COI!fere1lce on Mathematical and Computer Modelling and Scientific

Computing. Washington. USA, 1997

[lg199] r. Iglesias. M. Garijo, 1. Gonzales, A survey of agent-oriented

methodologies. Imdligefl(Agents IV, Lecture Notes in Computer Science, Springer­

Verlag 1555. 1999.

[Jac99J I. Jacobson. G. Booch, J. Rumbaugh, The Unified Software Development

Process. Addison-Wesley Publishing Company, 1999.

[Jack90J P. Jackson. Introduction to Expert Systems, Addison-Wesley Inc. 1990

[JanOOJ W. Jansen. Countermeasures for Mobile Agent Security, Computer

Communications. Special Issue on Advanced Security Techniques for Network

Protectio1l. Elsevier Science BV, November 2000.

[Jan99] W. Jansen. T. Karygiannis, Mobile Agent Security, National Institute of

Slam/em/s alld Techllology, Special Publication 800-19, August 1999.

[JawOO] J. Jaworski, P. J. Perrone, Java Security Handbook, SAMS, Indianapolis,

IN. 2000

[JenOI] N. R. Jennings. An agent-based approach for building complex software

systems. Commullications of the ACM, Vol. 44, No 4, April 2001

[Jen99] N. R. Jennings. M. Wooldridge, Agent-Oriented Software Engineering, in

the Procccdi1ll(s of the 9th European Workshop on Modelling Autonomous Agents in

R.~.r.nc •• 210

a Multi-Agent World: Multi-Agent System Engineering (MAAMAW-99), Valencia,

Spain, 1999

[JurOl] Jan Jtirjens, Towards Secure Systems Development with UMLsec,

Fundamental Approaches to Software Engineering (FASEIETAPS) 2001,

International Conference, Genoa 4-6 April 2001

[Jur02] J. Jtirjens, UMLsec: Extending UML for Secure Systems Development,

UML 2002, Lecture Notes in Computer Science 2460, pp 412-425, Springer 2002

[Kaz94] R. Kazman, G. Abowd, L. Bass, M. Webb, SAAM: A Method for

Analyzing the Properties of Software Architectures, Proceedings of ICSE-i6,

Sorrento -Italy, May, 1994

[Kin96] D. Kinny, M. Georgeff, A. Rao, A Methodology and Modelling Technique

for Systems of BDI Agents, Agents Breaking Away: Proceedings of the Seventh

European Workshop on Modelling Autonomous Agents in a Multi-Agent World,

Lecture Notes in AI, Springer- Verlag, Vol. 1038, 1996

[KleOl] C. Klein, A. Rausch, M. Sihling, Z. Wen, Extension of the Unified

Modeling Language for Mobile Agents, In Unified Modeling Language: Systems

Analysis, Design and Development Issues, edited by Keng Siau and Terry Halpin,

Idea Group Publishing Book, 2001

[KolOl] M. Kolp, P. Giorgini, J. Mylopoulos, A Goal-Based Organizational

Perspective on Multi-Agent Architectures, in the Proceedings of the 8th

international Workshop on Agent Theories, architectures, and languages (AT AL-

2001), Seattle-USA, August 2001.

[Kos97] G. Kosters, B.v. Pagel, M. Winter, Coupling Use Cases and Class

Models, Proceedings of the BCS-F ACSIEROS workshop on "Making Object

Oriented Methods More Rigorous", Imperial College, London-England, 1997.

[La195] V. Lalioti, C. Theodoulidis, Visual Scenarios for Validation of

Requirements Specification, Proceedings of the 7th International Conference on

Software Engineering and Knowledge Engineering (SEKE'95), RochviIle, Maryland­

USA,1995.

References 211

[LamOO] A. van Lamsweerde, Requirements engineering in the year 00: a research

perspective, in the Proceedings of the 22nd International Conference on Software

Engineering (lCSE 2000), pp. 5-19, ACM, 2000.

[Lan85] V. P. Lane, Security of Computer Based Information Systems, Macmillan

education ltd, 1985

[Lang99] D. B. Lange, M. Oshima, Seven Good Reasons for Mobile Agents,

Communications of the ACM, Vol. 42, No 3, March 1999.

[Leh02] S. Lehtonen, J. Parssinen, A Pattern Language for Cryptographic Key

Management, Proceedings of the 7th European Conference on Pattern Languages of

Programs (EuroPLoP), Irsee, Gennany, June 2002.

[LinOl] J. Lind, Iterative software engineering for multi agent systems: the

MASSIVE method, Lecture Notes in Computer Science, Springer-Verlag, 2001.

[Liu02] L. Liu, E. Yu, J. Mylopoulos, Analyzing Security Requirements as

Relationships Among Strategic Actors, in the Proceedings of the 2nd Symposium on

Requirements Engineering for Information Security (SREIS'02), Raleigh, North

Carolina, October 2002.

[Lod02] T. Lodderstedt, D. Basin, J. Doser, SecureUML: A UML-Based

Modelling Language for Model-Driven Security, in the Proceedings of the 5th

International Conference on the Unified Modeling Language, 2002.

[Mac90] A. Macro, J. Buxton, The craft of software engineering, International

Computer Science Series, Addison-Wesley Publishing Company, 1990.

[Mae95] P. Maes, Artificial Life Meets Entertainment: Life like Autonomous

Agents, Communications of the A CM, 38, 11 ,pp. 108-114, 1995

[Mcd99] J. McDennott, C. Fox, Using Abuse Care Models for Security

Requirements Analysis, Proceedings of the 15th Annual Computer Security

Applications Conference, December 1999.

[Mea94] C. Meadows, A Model of Computation for the NRL protocol analyser,

Proceedings of the 1994 Computer Security Foundations Workshop, 1994.

References 212

[Mou02] H. Mouratidis, P. Giorgini, G. Manson, I. Philp, A Natural Extension of

Tropos Methodology for Modelling Security, In the Proceedings of the Agent

Oriented Methodologies Workshop (OOPSLA 2002), Seattle-USA, November 2002.

[Mou02a] H. Mouratidis, P. Giorgini, I. Philp, G. Manson, Using Tropos

Methodology to Model and integrated Health Assessment System, In Proceedings of

the Fourth International Bi-Conference Workshop on Agent-Oriented Information

systems (AOIS-02) at CAiSE2002, Toronto, Canada, 2002.

[Mou02b] H. Mouratidis, J. Odell, G. Manson, Extending the Unified Modeling

Language to Model Mobile Agents, in the Proceedings of the Agent Oriented

Methodologies Workshop (at the OOPSLA 2002), Seattle - USA, November 2002.

[Mou03] H. Mouratidis, P. Giorgini, G. Manson, Modelling Secure Multiagent

Systems, in the Proceedings of the 2nd International Joint Conference on

Autonomous Agents and Multiagent Systems, Melbourne-Australia, pp. 859-866,

ACM2003.

[Mou03a] H. Mouratidis, P. Giorgini, M. Schumacher, G. Manson, Security

Patterns for Agent Systems, Proceedings of the Eight European Conference on

Pattern Languages of Programs (EuroPLoP), Irsee, Germany, June 2003.

[Mou03b] H. Mouratidis, P. Giorgini, M. Weiss. Integrating Patterns and Agent­

Oriented Methodologies to Provide Better Solutions for the Development of Secure

Agent-Based Systems, Proceedings of the 6th ChiliPLoP Annual Conference, Hot

Topic: Expressiveness of Pattern Languages, Arizona, USA, March 2003.

[Mou03c] H. Mouratidis, I. Philp, G. Manson, A Novel Agent-Based System to

Support the Single Assessment Process for Older People, in the Journal of Health

Informatics (9) 3, pp. 149-163, September 2003.

[Mou03d] H. Mouratidis, P. Giorgini, G. Manson, An Ontology for Modelling

Security: The Tropos Approach, in the Proceedings of the 7th International

Conference on Knowledge-Based Intelligent Information & Engineering Systems

(KES 2003), Invited Session on Ontology and Multi-Agent Systems Design

(OMASD'03), Oxford-England, September 2003.

[Nau68] P. Naur, B. Randell, Software Engineering - Report on a conference,

Garmisch, NATO Scientific Affairs Division, 1968.

References 213

[Nor96] Nonnan L. Kert, John M. Vlissides, James O. Coplien, Pattern Languages

of Program Design 2, Addison Wesley Publishing, 1996.

[NusOI] B. Nuseibeh, S. Easterbrook, A. Russo, Making Inconsistency Respectable

in Software Development, Journal of Systems and Software, 58(2): 171-180, Elsevier

Science Publishers, September, 200 I.

[Nwa96] H.S. Nwana, Software Agents: An Overview, Knowledge Engineering

Review, Vol. 11, No 3, pp 205-244, 1996

[Ode99] J. Odell, C. Bock, Suggested UML extensions for agents, Technical

report, OMG, December 1999. Submitted to the OMG's Analysis and Design Task

Force in response to the Request for Infonnation enti-tled "UML2.0 RFI".

[PerOl] A. Perini, P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos,

Towards an Agent Oriented approach to Software Engineering, Proceedings of the

Workshop Dag/i oggetti ag/i agenti: tendenze evolutive dei sistemi software, Modena

- Italy, 4-5 Sept 2001.

[Phi97] I. Philp, Can a medical and social assessment be combined? Journal of the

Royal Society of Medicine, 90(32), pp 11-13,1997.

[Plu02] D. Plump, Essentials of Tenn Graph Rewriting, Electronic Notes in

theoretical Computer Science 5 J, 2002.

[Pog03] A. Poggi, G. Rimassa, P. Turci, J. Odell, H. Mouratidis, G. Manson,

Modeling Deployment and Mobility Issues in Multiagent Systems using AUML, in

the Proceedings of the 4th International Workshop on Agent Oriented Software

Engineering (AOSE-2003), Melbourne- Australia, 2003.

[Pot94] C. Potts, K. Takahashi, A.I. Anton, Inquiry Based Requirements Analysis,

IEEE Software, March 1994.

[Roh02] S. Rohrig, Using Process Models to Analyze Health Care Security

Requirements, International Conference Advances in Infrastructure for e­

Business, e-Education, e-Science, and e-Medicine on the Internet, L'Aquila, Italy,

January, 2002.

[Rom85] G.C. Roman, A Taxonomy of Current Issues in Requirements

Engineering, IEEE Computer, Vol. 18, No.4, pp 14-23, April 1985.

References 214

[Rum91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorersen, Object

Oriented Modelling and Design, Prentice Hall, 1991.

[RusOO] D. 1. Russel, FAD: A Functional Analysis and Design methodology, PhD

Thesis, The University of Kent at Canterbury, August 2000.

[RyaOO] P. Ryan, S. Schneider, Analysis and Design of Security Protocols, Pearson

Professional Education, 2000.

[RysOO] J. Ryser, M. Glinz, SCENT - A Method Employing Scenarios to

Systematically Derive Test Cases for System Test, Technical Report 2000.03, Institut

flir Informatik, University of Zurich, 2000

[Rys99] J. Ryser, M. Glinz, A Practical Approach to Validating and Testing

Software Systems Using Scenarios, Proceedings of the Third International Software

Quality Week Europe (QWE'99), Brussels, Belgium, November, 1999.

[SaI75] 1. Saltzer, M.D. Schroeder, The Protection of information in computer

systems, In the Proceedings of the IEEE 63 (9), pp.1278-1308, September 1975.

[SchOO] B. Schneier, Secrets & Lies: Digital Security in a Networked World, John

Wiley & Sons, 2000.

[Schr99] G. Schreiber, H. Akkermans, A. Anjewierden, R. Hoog, N. Shadbolt, W.

Van de Velde, B. Wielinga, Knowledge Engineering and Management, The

CommonKADS Methodology, The MIT press, December 1999

[SchuOl] M. Schumacher, U. Roedig, Security Engineering with Patterns, in the

Proceedings of the 8th Conference on Pattern Languages for Programs (PLoP

2001), Illinois-USA, September 2001.

[ScoOl] Scott A. DeLoach, Mark F. Wood, Clint H. Sparkman, Multiagent Systems

Engineering, The International Journal of Software Engineering and Knowledge

Engineering, Volume 11 no. 3, June 2001

[Sco02] Scott A. DeLoach, Modeling Organizational Rules in the Multiagent

Systems Engineering Methodology, Proceedings of the 15th Canadian Conference on

Artificial Intelligence (AI'2002), Calgary, Alberta, Canada. May 27-29,2002.

[SelO3] Athie Self, Scott A. DeLoach, Designing and Specifying Mobility within

the Multiagent Systems Engineering Methodology, Special Track on Agents,

References 215

Interactions, Mobility, and Systems (AIMS) at the 18th ACM Symposium on Applied

Computing (SAC 2003), Melbourne, Florida, USA, March 9 - 12,2003.

[Sha98] C. Shakeri, Discovery of Design Methodologies for the Integration of

Multi-Disciplinary Design Problems, PhD thesis, Worchester Polytechnic Institute,

1998.

[SinOO] G. Sindre, A. L. Opdahl, Eliciting Security Requirements by Misuse Cases,

Proceedings of TOOLS Pacific 2000, November 2000.

[SomOI] I. Sommerville, Software Engineering - Sixth Edition, Addison-Wesley

Publishing Company, 2001.

[Som99] I. Sommerville, P. Sawyer, Requirements Engineering: A Good Practice

Guide, John Wiley & Sons Ltd, October 1999.

[Sta99] W. Stallings, Cryptography and Network Security: Principles and Practice,

Second Edition, Prentice-Hall 1999.

[Ste95] E. Steegmans, 1. Lewi, M. D'Haese, J. Dockx, D. Jehoul, B. Swennen, S.

Van Baelen, P. Van Hirtum, EROOS Reference Manual Version 1.0, Department of

Computer Science, K.U.Leuven, CW Report 208,176 p. Leuven, B, 1995.

[Stu03] A. Stunn, O. Shehory, A Framework for Evaluating Agent-Oriented

Methodologies, Workshop on Agent-Oriented Information Systems (AOIS),

Melbourne, Australia, July 14,2003.

[Try97] T. Tryfonas, E. Kiountouzis, A. Poulymenakou, Embedding security

practices in contemporary infonnation systems development approaches, Information

Management & Computer Security, Vol 9 Issue 4,pp 183-197,2001.

[Vli93] H. Van Vliet, Software Engineering- Principles and Practice, John Willey

and Sons Publishing, 1993.

[WoodOI] Mark Wood, Scott A. DeLoach, An Overview of the Multiagent

Systems Engineering Methodology, in Agent-Oriented Software Engineering, P.

Ciancarini, M. Wooldridge, (Eds.), Lecture Notes in Computer Science. Vol. 1957,

Springer Verlag, Berlin, January 2001.

References 216

[WoolOO] M. Wooldridge, N. R. Jennings, D. Kinny, The GAIA methodology for

agent-oriented analysis and design, Journal of Autonomous Agents and Multi-Agent

Systems, Vol. 3, No 3, pp 285-312, 2000.

[WoolOl] M. Wooldridge, P. Ciancarini, Agent-Oriented Software Engineering:

The State of the Art, In P. Ciancarini and M. Wooldridge (eds.), Agent-Oriented

Software Engineering. Springer-Verlag, Lecture Notes in AI Volume 1957, January

2001.

[Woo195] M. Wooldridge, N. R. Jennings, Agent Theories, Architectures, and

Languages: A Survey, Intelligent Agents, Wooldridge, Jennings (eds.), Springer­

Verlag, pp 1-22, 1995.

[Woo199] M. Wooldridge, N. R. Jennings, D. Kinny, A Methodology for Agent­

Oriented Analysis and Design. In O. Etzioni, J. P. Muller, and J. Bradshaw (eds.),

Agents '99: Proceedings of the Third International Conference on Autonomous

Agents, Seattle, W A, May 1998.

[Yod97] J. Yoder, J. Barcalow, Architectural Patterns for Enabling Application

Security, Proceedings of the 4th Conference on Pattern Languages of Programs

(PLoP 1997), Monticello, Illinois, USA, September 1997.

[YuO 1] E. Yu, Agent-Oriented Modelling: Software Versus the World, in the

Proceedings of the 2nd International Workshop on Agent-Oriented Software

Engineering, Lecture Notes in Computer Science 2222, pp 206-225, Springer Verlag,

2001.

[YuOla]E. Yu, Agent Orientation as a Modelling Paradigm, Wirtschaflsinformatik,

43 (2), pp 123-132 April 2001.

[Yu02] E. Yu, L. Cysneiros, Designing for Privacy and Other Competing

Requirements, 2nd Symposium on Requirements Engineering for Information

Security (SREIS' 02), Raleigh, North Carolina, 15-16 November, 2002.

[Yu95] E. Yu, Modelling Strategic Relationships for Process Reengineering, Ph.D.

thesis, Department of Computer Science, University of Toronto, Canada, 1995.

[Yu97] E. Yu, Towards Modelling and Reasoning Support for Early-Phase

Requirements Engineering, Proceedings of the jrd IEEE Int. Symposium on

References 217

Requirements Engineering, pp. 226-235, Jan. 6-8, 1997, Washington D.C.-USA,

1997.

[ZamOl] F. Zambonelli, N. R. Jennings, M. Wooldridge, Organisational

Abstractions for the Analysis and Design of Multi-Agent Systems, P. Ciancarini and

M. Wooldridge (eds.), Agent-Oriented Software Engineering, Springer-Verlag,

Lecture Notes in AI, Vol. 1957, January 2001.

References 218

