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ABSTRACT 

The thesis is a treatise of the quantity and quality aspects of potable water in distribution 

systems. The privatisation of the UK Water Industry in 1989 has seen the requirement 

for the Water Companies in England and Wales to be responsible for the delivery of good 

quality water that meets the demand of all consumers. In respect of the quantity of 

supply, there have been many previous studies that have examined the hydraulic 

performance of distribution systems and there are now many proprietary mathematical 

models that have been successfully used in this study. However, in respect of water 

quality the literature review has highlighted that the modelling approach is not so well 

advanced, as water quality is a function of many concepts, processes and parameters that 

include the source and age of water, the condition and deterioration of the assets in the 

system, the microbiological, chemical and physical processes and the network hydraulic 

performance, including pressure transients. These processes are highly interactive and 

complex. 

In an attempt to better understand these processes a programme of research has been 

completed that has involved a field evaluation of the performance of a live system, 

including the development of instrumentation to continually measure water quality, and 

the development of a mathematical model to describe the processes associated with the 

age of water and the propagation of conservative and non-conservative substances. An 

initial attempt has also been made to develop a micro-biological model and a sediment 

transport model. 

New original concepts developed by the author include age, biological and diagnostic 

models that may be used to identify the source of any incident (hydraulic or pollution) 

and the application of the model in near real time. 
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Chapter 1 - Introduction 

1.1 Background 

The Romans introduced the first water supply systems into the UK with the extensive construction 

of aqueducts to supply clean water to their fortresses with the subsequent construction of simple 

but effective sanitary waste disposal systems. However, the engineering feats of the Romans were 

not paralleled again until some 1500 years later when the religious communities, through their 

concern for personal hygiene, supplied their "lavotoriums" with water. For example, in Cambridge 

in 1325, the Franciscan monks developed a pipe and channel system to supply clean water from a 

remote spring to avoid having to use the contaminated water in the River Cam, and it was this 

system that remained the source of supply to Trinity College for 300 years - a testament to their 

engineering skills and forward thinking. (King & Angel, 1992). 

As the population in the UK continued to grow, more water was required and, on behalf of whole 

communities, enterprising individuals established water supply companies with the development 

of water supply systems. However, the increased use of water created a new problem: that of 

waste disposal. Flushing toilets, baths and showers were all developed and the rapid increase in 

the amount of wastewater and waste material caused widespread pollution problems. This was 

most famously highlighted in 1858 by the ''big stink" in London when the River Thames became 

unbearably odorous due to large quantities of decaying waste material. In addition, engineers and 

scientists began to prove the links between illness, the water supply and waste disposal. It was 

also observed that even clean water when passing through certain pipe systems could become 

contaminated by the pipe material itself or by ingress from the surrounding ground where faecal 

waste material was buried. Cholera, typhoid and diarrhoea epidemics were the result ofwaterbome 

disease organisms and it was recognised that there was a need to isolate sewage from drinking 

water. 

The 'potability' of water first became an issue in 1827 when the Government appointed Thomas 

Telford to report on the status of London's water supply. He reported that: 
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"The growth of the population and with it pollution, the establishment of gas works and factories, 

the hopeless disorganisation of supply and distribution, the ruinous rivalry between rival water 

companies, have brought matters to an impossible state ". 

(Sir Alexander Gibb, The Story of Telford, 1935). 

It was the perennial subject of petition and complaint and came before every session of Parliament. 

Certainly the situation was unsatisfactory and a series oflegislative steps followed in an attempt to 

resolve the problem. 

1.1.1 The Royal Commissions 

Many Royal Commissions were established to review the problem but it was not until the Public 

Health Act of 1936 and the disastrous Cholera outbreak in Croydon in 1937 that substantial 

progress was made to isolate sewage from potable water. The early systems have now been 

substantially developed to form a complex system of sewer pipes with relief overflows, storage 

and sewage treatment facilities, and water treatment plants supplying complex looped water 

distribution networks supported by pumps, valves and water storage facilities protected from 

pollution. 

1.1.2 Local Government Reorganisation 

In 1974 Local Government reorganisation resulted in the development of Regional Water 

Authorities. Many small water undertakings within regions were amalgamated and made 

responsible for the management of the supply and distribution of drinking water, waste disposal 

and all water resources within each region. 

The National Rivers Authority was responsible for the condition of the river systems and had the 

power to prosecute polluters. However, the Regional Water Authorities of England and Wales 

were responsible for the collection and analysis of river samples and hence were both policeman 

and poacher when it came to pollution of rivers and watercourses. The Regional Water 

Authorities were also responsible for the analysis of the quality of the drinking water that they 

supplied. 

1.1.3 Privatisation of the Water Industry and Legislation 

In 1989 the water industry in England and Wales was privatised with the Environment Agency 

assuming responsibility for water resources and the quality of rivers, estuaries and coastal waters. 
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Water Companies concentrated on the supply of drinking water and in some cases the treatment 

and disposal of wastewater. The newly formed Water Companies were controlled by new 

legislation, policed by OFWAT, the Office of Water Services, to ensure: 

The economic regulation of the water industry 

(Setting limits on what water and sewerage companies can charge customers) 

Water and sewerage companies carry out their responsibilities under the Water 

Act 1991 

Inter company comparisons 

Protection of customers' standards of service 

Encouraging companies to be more efficient 

Undertaking activities to allow effective competition to develop 

The most important statutory instruments included the Water Act (1989) and the Water Supply 

Regulations (1989). 

1.1.3.1 The Water Act (1989) 

The Water Act outlines the various powers given to Local Authorities, the National Rivers 

Authority and the Secretary of State. The Act requires that a water company should supply 

customers' premises with water at a minimum pressure and flow all times. The Act also stated 

that the water should be of an appropriate quality as well as quantity .. 

Areas of distribution networks may suffer from low-pressure problems because of their elevation, 

a combination of poor mains condition and sudden rises in demand resulting in high friction 

losses, or the inability of the network to support demand at times of peak: flow. This may be 

brought about, for example, by maintenance of the system or bursts/leak:s. 

The minimum standards of service as defined by the Regulators State that areas where the pressure 

falls below 18 metres water column (mwc) at any time during a 24-hour period are deemed to be 

failing. It is also required to provide a continuous water supply 24 hours per day and financial 

penalties are imposed for leaving customers without water for periods of time without prior 

warning (to permit repair and maintenance work to be undertaken on the system). 
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The water quality criteria in the Water Act are dictated by and detailed in The Water Supply 

(Water Quality) Regulations. 

1.1.3.2 The Water Supply (Water Quality) Regulations 1989 

For England and Wales, the drinking water quality criteria are set out in the Water Supply (Water 

Quality) Regulations 1989. They stipulate the maximum concentration or acceptable level of a 

large number of substances. These standards are shown in Table 1.1. 

Item Parameters Units of Measurement Concentration or Value (maximum unless 
otherwise stated) 

I. Colour mg/I PtlCo scale 20 

2. Turbidity (including suspended solids) Formazin turbidity units 4 

3. Odour (including hydrogen sulphide) Dilution number 3 at 25°C 

4. Taste Dilution number 3 at 25°C 

5. Temperature °C 25 

6. Hydrogen ion pH value 9.5 

5.5 (minimum) 
7. Sulphate mg S04/1 250 

S. Magnesium mgMg/1 50 

9. Sodium mgNa/1 150(i) 

10. Potassium mgKlI 12 

II. Dry residues mg/I 1500 (after drying at ISO°C) 

12. Nitrate mgN03/1 50 

13. Nitrite mgNOil 0.1 

14. Ammonium (ammonia and ammonium mgNH4/1 0.5 
ions) 

15. Kjeldahl nitrogen mgN/1 I 

16. Oxidizability (permanganate value) mgOil 5 

17. Total organic carbon mgC/l No significant increase over that normally 
observed 

IS. Dissolved or emulsified hydrocarbons flg/I 10 
(after extraction with petroleum ether); 
mineral oils 

19. Phenols flg C6HsOH/l 0.5 

20. Surfactants flg/I (as lauryl sulphate) 200 

21. Aluminium flg AVI 200 

22. Iron flg Fell 200 

23, Manganese flg Mnil 50 

24. Copper flg Cull 3000 

25. Zinc flg Znll 5000 

26. Phosphorus flg P/I 2200 

27. Fluoride flg F/I 1500 

2S. Silver flg Ag/I 10(ii) 

Table 1.la Prescribed concentrations and values Table A 

17 



Note (i) See regulation 3(5). 
(ii) If silver is used in a water treatment process, SO may be substituted for 10. 

Parameters Units a/Measurement Maximum Concentration 

I. Arsenic Ilg Asil 50 

2. Cadmium Ilg Cd/I 5 
3. Cyanide Ilg CNII 50 
4. Chromium Ilg Crll 50 

5. Mercury Ilg Hgil I 

6. Nickel Ilg Nill 50 

7. Lead Ilg Pbll 50 

S. Antimony Ilg Sbll 10 

9. Selenium Ilg Sell 10 
10. Pesticides and related 

Products: 
(a) Individual substances Ilg II 0.1 
(b) total substances(i) Ilg II 0.5 

II. Polycyclic aromatic hydrocarbons(ii) Ilg II 0.2 

Table l.lb Prescribed concentrations and values Table B 

Notes (i) The sum of the detected concentrations of individual substances. 

Item 

I. 

2. 

3. 

4. 

5. 

(ii) The sum of the detected concentmtions offluomnthene, benzo 3.4 fluomnthene, benzo 11.12 fluoranthene, 
benzo 3.4 pyrene, benzo 1.12 perylene and indeno (l,2,3-cd) pyrene. 

Parameters Units a/Measurement Maximum Concentration 

Total coliforms NumberllOO ml O(i) 

Faecal coliforms Numberl 100 ml 0 

Faecal streptococci Numberl 100 ml 0 

Sulphite-reducing clostridia Numberl 20 ml <=1 (ii) 

Colony counts Numberll ml at 22°C or 37°C No significant increase over that 
normally observed 

Table l.lc Prescribed concentrations and values Table C 

Notes (i) See regulation 3(6) to(S). 
(ii) Analysis by multiple tube method. 

18 



I 
I 
~ 

I 
I 

Item Parameters Units of Measurement Maximum Concentration or Value 

1. Conductivity /lS/cm 1500at20°C 

2. Chloride MgClI1 400 

3. Calcium mgCail 250 

4. Substances extractable mg/I dry residue I 
in chlorofonn 

5. Boron /lg BII 2000 

6. Barium /lg Ball 1000 

7. Benzo 3,4 pyrene ng/I 10 

8. Tetrachloromethane /lg II 3 

9. Trichloroethene /lg II 30 

10. Tetrachloroethene /lg II 10 

Table l.ld Prescribed concentrations and values Table D 

Note: (i) See regulation 3(3)(d). 

Item Parameters Units of Measurement Minimum Concentration (I) 

1. Total hardness mgCail 60 (Ed note: equiv 150 as CacoJ) 

2. Alkalinity mgHCOJ/I 30 ( Ed note: equiv 25 as CaCOJ) 

Table l.le Prescribed concentrations and values Table E 

Note: (i) See regulation 3(2). 

In addition to quality standards, the regulations also stipulate the minimum water sampling 

frequencies and describe the methodology for the creation of sampling 'zones'. (Section 3.1). 

Since the Water Supply Regulations came into force, amendments and a number ofEU Directives 

have supplemented them. The most important of these are the Water Supply (Water Quality) 

(Amendment) Regulations 1989 and 1999 that take account of the need for protection from 

Cryptosporidium, Nitrates and Pesticides. 

The newest EU legislation pertaining to drinking water is the EC Drinking Water Directive 1998. 

In order to implement the requirements of the EU Directive, the UK Government produced new 

drinking water quality standards, The Consolidated Water Quality Regulations that came into 

force in December 1999. The Directive concerns not only drinking water qualio/ standards, but 

also requirements for sampling and analysis, reporting, approval of materials for use in contact 

with drinking water, and necessary actions if the standards are breached. 

The Drinking Water Inspectorate has the power to prosecute those who fail to meet the required 

standards and it is feasible that a water company could loose its operating license for serious 
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breach of the water quality standards of service. It is required therefore to understand the reasons 

why water quality failures occur and there is a clear need to better understand how the quality of 

water changes as it moves through the distribution network. 

1.1.3 Water Quality 

Changes in water quality are a function of many parameters but most processes are related to the 

age of water, the assets within the system (Jones, 1993), the microbiological, chemical and 

physical processes and the network hydraulic performance characteristics (Kroon et al., 1990). 

Some of the many network interactions are shown in Figure 1.1. 

Physical constraints External corrosion 
Turbidity •• --Particulates I ~ 

'" Pressure _...J_L..-""~~ Burst t Leakage ~ I 

1 '" Sediment Weakening 
~____ ~ bUtiid up Corrosion 

Flow velocity AGEl N G 
Internal 

Diffusion 

1 
BDOC Water chemistry 

+ .-J 
Microbiological 

proliferation ............... 

Addir"'" "'" ! ~ Biofilm 

Taste an~ odou .. :...r ___ -------
Permeation Toxicity 

;JIl.._.--i'---""'-i!.!r~bonate 

Chlorine ~ 
Consumption Organic substances 

Figure 1.1 Some of the interactions within a water distribution network 

The diagram shows the importance of understanding the relationships between hydraulic operation 

and water quality if these are to be managed effectively. This was recognised ~y the Drinking 

Water Inspectorate in 1999 as the following statement demonstrates: 

"Companies have, or indeed should have, accurate simulation models of their distribution systems 

and these should be in use as an efficient tool for planning their operations" (Rouse, (D WI) 2000). 
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1.1.4 Simulation Models 

The best of the current suites of mathematical models that may be used to predict such changes are 

lacking in that they cannot, for example, be applied to large complex networks (EP Anet). Others 

have a lack functionality, for example, can not simulate certain dynamic network elements or do 

not have water quality simulation functionality, (EP Anet, Stoner, LICwater, Picollo), or they do 

not take account of important factors (EP Anet, Stoner, LICwater, Picollo). 

Where models are adequate for purpose, they tend to be applied in a manner designed to resolve a 

specific network issue, for example, to resolve a pressure problem. Rarely do they simultaneously 

take account of other important and related aspects of network performance such as water quality, 

leakage or surge effects all of which are subject to regulatory control and are important factors for 

effective financial management of distribution networks. 

This thesis therefore details the development of a mathematical model to obtain a better 

understanding of water quality within a distribution network by accurately calculating the age of 

water, and as to how the concentration of conservative substances change as the age related water 

travels through the network. As the change in water quality is clearly related to the hydraulic 

operation of the distribution network, the model that has been developed links the hydraulic and 

water quality functionality into a single entity. 

The focus of attention to improve and maintain the quality of water delivered to the point of use 

requires an understanding of changes in the quality of treated water as it is transported through the 

distribution network. Hence the model developed may also be used .to assist Scientists and 

Engineers to ensure the pipe networks used to deliver drinking water to the customer does not 

cause the treated water quality to deteriorate during transportation and that the system is operated 

in an efficient manner in order to provide appropriate service at minimum cost. 

1.2 What is a Drinking Water Distribution Network? 

The function of to day's distribution system is to convey drinking water from the she of treatment 

to the customer. There is now a statutory obligation on the water companies of England and 

Wales to provide users in all parts of their geographical areas with an adequate water supply, 24 

hours a day, which meets regulatory and industry water quality standards. (Water Act, 1989) 

(Water Supply (Water Quality) regulations, 1989), (Water Industry Act, 1991) 
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Following treatment, water is dispatched to the customers through a network of pipes called a 

distribution system or network. 

A distribution network consists of the following components: 

Storage devices such as service reservoirs andlor water towers 

Water mains 

Service pipes 

Pumping stations 

Valves and other fittings necessary to operate and control the system 

1.2.1 Service Reservoirs. 

The purpose of a service reservoir is threefold. 

It provides storage to balance fluctuations in user demand during the day that can 

reach peak flows of approximately twice the average. 

It provides strategic storage to safeguard supplies in the event of a system failure 

upstream of the reservoir. (This is usually twenty-four hours supply for the area it 

serves, but may be more in remote rural or strategic locations). 

It provides a facility for blending and balancing waters from different sources. 

Service reservoirs vary in size from a few cubic metres to over one hundred 

thousand cubic metres. They are constructed in a variety of materials including 

masonry, reinforced concrete, rigid plastic and coated steel. 

Service reservoirs are located as close as possible to the population area that they are designed to 

serve at an elevation that will provide sufficient pressure to provide an adequate supply. Where 

the topography of the countryside does not permit this, a water tower fed by pumps may be used in 

conjunction with a service reservoir. 

Service reservoirs must be covered to prevent pollution and must be water tight not only to inhibit 

leakage but also to prevent contamination by ingress water. Anti pollution measures such as 

secondary disinfection using chlorine or ultraviolet light are often used at service reservoir sites. 

1.2.2 Water Mains 

Water mains are categorised into trunk mains and service or distribution mains. 
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Trunk mains are usually defined as the strategic mains that supply storage facilities such as service 

reservoirs with water from treatment sites, and the larger mains downstream of service reservoirs 

that feed the service I distribution mains. 

In urban areas trunk mains are frequently up to 1200mm in diameter. They are often arranged as 

ring mains to permit flow in more than one direction which, with suitable cross connections and 

inter linking, can be of great value in maintaining supplies when pipe failures occur and at times of 

excessively high demand. 

Distribution mains range from 50mm diameter upward. The older main materials include cast 

iron, spun iron, asbestos cement and galvanised steel, and the newer materials are ductile iron, 

rigid plastics and medium density polyethylene. 

This network of pipes is expanded continuously to meet the needs of new developments. 

Replacement or relining to maintain hydraulic and water quality performance requires continuous 

rehabilitation of the older mains. Iron mains may suffer internal and lor external corrosion caused 

by inadequate water treatment and lack of internal or external protection. 

Modern techniques for rehabilitation include narrow trenching, pipe bursting, moling, slip lining, 

and pipe coating using concrete or epoxy resin linings. 

1.2.3 Service Pipes 

The water companies are responsible for that section of a service pipe to a property known as the 

communication pipe, which usually extends from the distribution main to the property boundary. 

The cost of maintenance and repair of these pipes can be almost as high as that of mains in some 

areas. 

Materials include lead, galvanised iron or steel, polythene and copper. Replacement strategies 

tend to favour medium density polyethylene. 

Many older properties are fed from joint service pipes where responsibility is shared between the 

various properties receiving a supply. 

Pipe sizes vary from 12mm for individual domestic property connections to large pipe connections 

for industrial users. 
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1.2.4 Pumps 

Water is often transferred to high-level service reservoirs and / or water towers using pwnps. 

Energy conscious management of networks usually dictates the use of cheaper night energy and 

this is a continuous process. 

Booster pwnps, normally operating only when demand requires, are sometimes employed to 

maintain a minimwn pressure in a network. Such systems would be used to service high-rise 

buildings and local geographical high points. 

1.2.3 Valves and other fittings 

Valves, pwnps and other facilities are used to control the operation of the network. For effective 

operation and control due regard is given to the following parameters: 

Flow 

Pressure 

Water quality 

Leakage & unaccounted for water 

Zone boundary adjustments 

The planning / design of new supplies 

Planning and carrying out main rehabilitation schemes 

Repairing mains and renewing / repairing services, valves and other fittings 

Cleaning, swabbing and flushing pipes 

Maintenance of fire hydrants 

Cleaning and repair of service reservoirs 

As well as being the vehicle with which to deliver drinking water to customers the nature of a 

water supply / distribution network makes it an additional stage of the water treatment process. It 

is necessary therefore to understand the complex relationships between the component parts and 

how they interact to affect hydraulic and water quality performance. Figure 1 shows some of the 

complexity of the interactions within a typical distribution network. 

Many of the processes have an influence on each other and hence an understanding of these 

interactions is required in order to ensure regulatory performance targets are met. Some are 

directly related and have to be understood and controlled if efficient operation is to be maintained. 
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For example internal corrosion may result in high roughness coefficients and hydraulic gradients 

and these may adversely affect the flow and subsequently the water quality at the customers tap. 

It is clear that with a high degree of understanding of each process / parameter / interaction there is 

a better chance of effecting efficient hydraulic operation and simultaneous water quality 

management. 

Mathematical models have traditionally been used to ensure that customers receive the required 

flow and pressure at their properties. In general however, modelling approaches that combine the 

use of hydraulic and water quality models in a holistic manner to facilitate network operation and 

control has not been implemented. The model developed in this thesis highlights how such an 

approach can be implemented to provide multiple operational benefits. 

1.3 Leakage and unaccounted for water 

Distribution networks suffer from leaks. Leakage may be defined as the water that is "lost" 

between two flow measurement points situated at the inlet and outlet of a network zone after 

legitimate use has been accounted for. Loss may be due to illegal or unaccounted for use or 

genuine loss through leaking joints or bursts. Leakage levels of30% were common. 

In 1995, Britain suffered its worst drought for many years and some of the water companies in 

England and Wales had difficulty in maintaining a water supply. Consequently, the Water 

Companies, the Environment Agency and the Office of Water Services collaborated to produce a 

ten-point plan for the water industry that addressed the need for demand management and careful 

long-tenn assessment of the balance between supply and demand. One outcome was that 

OFW AT imposed mandatory leakage targets on every water company. In general, these targets 

have resulted in an overall reduction of the level of leakage. However, with pressure on resources 

becoming ever greater it is important to continue to develop better and more efficient leakage 

detection and location methods to lower the economic level ofleakage. 

As leakage and unaccounted for water are both integral components of a mathematical model that 

is used to describe the behaviour of the hydraulic perfonnance of a distributioJ? network it is 

logical that modelling leakage should be part of the holistic approach to distribution network 

management. 
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The research described in the thesis identifies how the hydraulic model may be applied to monitor 

and minimise leakage in a network whilst simultaneously considering the effects on pressure 

management and water quality. 

A number of water companies have indicated that a significant amount of their leakage is caused 

by bursts that were thought to have originated as a result of transient pressure effects in their 

distribution networks. 

Such transients, or surge effects, occur when a sudden change takes place in the state of a pipe 

system, for example, a sudden change in flow associated with the stopping of a pump or the 

closing of a valve. When this happens the kinetic energy carried by the fluid is rapidly converted 

into strain energy in the pipe walls and fluid when the flow is halted. This results in a pulse wave 

(pressure wave with increased or reduced pressure) that travels along the pipes of the network, 

spreading out from the point of generation. As the pressure wave travels though the network, 

energy transfonnation losses such as fictional losses and expansion of the pipe walls act so as to 

cause the wave to gradually decay until nonnal steady state conditions are once again restored. 

In networks and pipelines, the movement of the pressure waves is complicated by the waves being 

reflected by closed valves, dead ends, reservoirs, pumps and other network assets so that complex 

patterns of waves develop. 

Such surge waves can cause pipes to fail by a number of methods; for example, if the transient 

pressure is sufficiently high it might cause the pipe to fracture. If the pressure is small, cavitation 

may result, and the pipe could buckle. In addition, repeated surge events can result it metal fatigue 

that ultimately results in a burst. 

Acceptable surge pressures are outlined in the British Standard (BS EN 1295) for the installation 

of plastic pipes such as PVC, HPPE, and MDPE. Pipes should not be subjected to surge pressures 

with amplitude greater than Yz of their upper pressure rating. For example, a pipe with a max 

pressure rating of 100 MWC should not be subjected to surge pressures with amplitude greater 

than 50 MWC. 

Historically, little regard has been paid to the control of surge effects within networks and this has 

led to many systems operating with surge pressures regularly stressing the pipe work and causing 

damage. To understand the impact of these waves on system perfonnance, it is necessary to have 

a simulation tool that describes the governing processes for transients. 
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Then, by the application of a mathematical model to predict the effects of surge it is feasible to 

implement simple changes to either the operation or design of the distribution network that could 

alleviate the problem. A model to predict the pressure changes due to surge has therefore been 

developed as part of research programme described in the thesis. 

1.4 The Asset Management Process 

The upkeep, control, and operation of drinking water distribution networks can account for up to 

80% of the capital costs credited to supply, treatment, and distribution of potable water. (Clark, 

1993). The Asset Management Process (AMP) controls the level of funding available to operate 

and maintain the necessary assets. 

During the early stages of the privatisation process, each water company had to declare their assets 

and their estimated value. Further, they had to put forward proposals for outlining future capital 

investment programs, which had to be supported by written evidence of need and cost. These 

proposals were scrutinised by the office of the Director General, Ofwat, to establish the 'K' factor. 

K is a factor in a mathematical formula. The formula is used to determine the level of price 

increase above inflation which water companies are judged to need to finance the capital 

programme for necessary improvement work to the network in order to meet the newly established 

statutory standards of service. 

Consequently, the water companies commissioned Asset Management Studies and, for drinking 

water distribution systems, four main areas of work were addressed. These work areas included: 

A list, and description, of the physical characteristics of all Underground assets 

(water mains, fittings and fixtures) 

Associated proposals for hydraulic rehabilitation in order to meet current and 

future (year 2015/16) pressure and flow requirements 

Proposals for structural rehabilitation where burst frequencies per unit length of 

main put customers at risk of supply interruptions 

Water quality rehabilitation schemes designed to make all supplies meet drinking 

water quality standards at the customer's taps by the year 2003 

Subsequently, capital schemes were implemented to address rehabilitation and maintenance needs 

of networks that were identified as deficient by these Asset Management studies. 
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It was realised that the development of appropriate mathematical models could playa vital role in 

the rehabilitation strategy adopted. Such modelling could be used to determine the balance 

between the hydraulic, structural and water quality requirements of a distribution network and 

deliver an integrated solution. Subsequent post project appraisal could then measure the 

effectiveness of any scheme against predicted benefits and costs, such that OFW AT could better 

determine if customers were getting value for money for a given capital investment. 

1.5 Industrial drivers 

Since privatisation, the water companies in England and Wales have seen significant changes in 

working conditions and practices. Staffing levels have been reduced significantly and different 

methods of working, supported by new technologies, are being introduced in an attempt to create 

more efficient (as required by OFWAT) and more profitable businesses (as necessary for 

shareholders). 

Research was seen as having an essential role to play in assisting the industry to meet the new 

legislative and efficiency requirements of the privatised business. However, there was a clear need 

for additional R&D to identify best working practices, the most available and appropriate of the 

new and emerging technologies, and as to how to exploit them to maximum effect. Some of these 

research initiatives and strategies formed essential components of an overall industry strategy and 

it was from within this framework that this research project was initiated. The application of the 

model developed as part of this thesis showed that it was possible to better understand all aspects 

of the water supply process and to identify ways of meeting the regulatory requirements whilst, at 

the same time, introducing operational efficiencies. 

1.6 Water Qua1i1y 

It has been show that discoloured or unpalatable water in a distribution network might arise from 

any, or a combination, of the following factors: 

A breakdown of a water treatment process 

Internal corrosion of iron pipes 

A reversal of flow direction within a pipe 

A disturbance of the sediment deposits in pipes 
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The ingress of polluting material 

Bacteriological activity 

Stagnation 

The impact of chemical dosing e.g. secondary chlorination 

Machell, (1996), demonstrated a link between water quality complaints in a distribution network 

and the hydraulic operation of the network. 

One of the key factors in determining the quality of water at a particular location within a network 

is the age of the water at that location. Age of water has been associated with loss of disinfectant 

residual, taste and odours, increased biological activity, corrosion, and discoloured water. (Banks 

1997, Zegerholm & Bergstrom, 1996, Boulos et a11992, Haudidier et ai, 1988, Mathieu et ai, 

1993, Blocketal, 1995 and Mallevialle 1982) 

Chlorine, used as the disinfectant at many water treatment sites, is a non-conservative substance. 

It decays over time because of reactions within the bulk water flow and at the pipe walls. The 

longer the time of travel between the point of chlorine addition and the point of use, the lower the 

level of chlorine remaining in solution. 

Chlorine is used as a disinfectant to kill bacteria and inhibit their future growth. Because long 

transit times decrease chlorine residuals, the likelihood of bacteriological re-growth is increased. 

Where chlorine residuals are constantly low, it is possible for bio-films to develop on the pipe 

walls. Material leaving the bio-film may increase the bacteriological activity in the bulk water 

flow leading to regulatory failures and, possibly, customer complaints. (Ke~il et ai, 1992) 

Areas of a distribution network where age is shown to be the greatest should be considered during 

network zone design and appraisal. Where possible, new network zone configurations should be 

such that the age of water in the network is minimised. If the overall age profile of water within a 

network is reduced it follows that associated water quality issues will also be reduced. 

When the overall age profile is minimised the remaining high age areas of the network (if any) 

may be targeted for water quality monitoring. These areas will be more susceptible to quality 

failures, will be indicative of the worst water quality within the zone under normal operating 

conditions, and so may be targeted for proactive maintenance such as flushing. Increasing the age 

of water because of refurbishment or rezoning should therefore be avoided where practicable and 

application of the model may be used to minimise age profiles across entire networks. 
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As well as financial penalties for delivering water of an unsatisfactory standard to conswners, 

there is a possibility of having an operators licence revoked. The cost associated with 

investigation of these incidents can also be relatively high so taking proactive action to minimise 

the risk of a failure event has multiple benefits. 

Bo:xall et al (2002) described an approach to predict the occurrence of discoloration events in 

distribution networks. In this study, impact of a flush event may be simulated and a model has 

been developed to predict how such discoloration events occur. This represents a major advance 

in respect of discoloration, but there are many other factors that influence water quality. 

1.7 Other Factors 

Because network perfonnance requirements change as housing and industry developments take 

place, it was clear that models need also to forecast the effect of growth in demand on 

perfonnance. This approach would ensure that a minimwn lifetime is engineered into network 

design, and that the design does not result in the deterioration of the quality of water contained 

within. Also, the effects of localised disruptions for repair or rehabilitation work could be 

investigated and a plan devised for any operational changes to ensure minimwn customer 

disturbance and cost. 

1.8 Summary to Introduction 

In summary, the combined model may be used to determine the effect of every operational change 

to the network including operating regimes in order that the effects of any work on customers is 

minimal and that best value for the investment is realised. 

Subsequently the software was applied in a different manner to that traditionally employed. 

Instead of analysing a single leakage control zone in order to address a specific issue, for example 

pressure reduction within the zone, all the components of the model were applied in a 

complimentary manner to simulate the hydraulic and water quality issues within entire water 

supply system simultaneously. 

Finally, the software was adapted to provide automatic reporting of the hydraulic and water quality 

characteristics of the distribution network, in near real time. The timely use of measured data and 
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subsequent analysis allows the step operational change from reactive to proactive network 

management. Proactive management has several advantages, for example, it allows more efficient 

leakage detection and location and the protection of customers from standards of service failures. 

In order to achieve this goal it was required to instrwnent the system. As part of the work 

presented in the thesis, specifications for appropriate instrwnentation were drawn up such that 

measurements of the hydraulic and water quality parameters could be made within the harsh 

environment and high-pressured distribution system. The specification also included appropriate 

instrwnents to measure surge and indicative of events such as bursts or discoloured water. The 

instrwnents were subsequently manufactured and successfully installed on the full-scale 

distribution network. 

The data collected by the instrwnents was validated and prepared in a fonnat appropriate for use 

by the modelling software. The necessary software developments undertaken are described. 

This introduction has highlighted the need for a holistic hydraulic and water quality model for 

potable water distribution systems. This thesis details the development and application of one 

such model. 

1.9 Aims and Objectives 

The specific aims of the thesis were: 

To enhance a hydraulic model to accurately simulate all the" dynamic elements in a 

distribution network, including the effects of transients. 

To develop a water quality model that can accurately detennine the age of water 

throughout a distribution network and to simulate the movement and 

concentration of conservative and non-conservative substances within the 

network. 

To describe the concepts, processes and modelling approaches that may be applied 

to biological activity and sediments in distribution. 

To combine the enhanced hydraulic model and new water quality model with 

existing transient modelling functionality. 

To calibrate and verify the combined model 

To validate the modelling software tools on a "virtual" distribution network 
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To apply the combined hydraulic, transient and water quality models to a real 

distribution network in a holistic manner 

To enhance the combined model to provide online functionality 

To specify (for manufacture) appropriate instrumentation to gather the necessary 

network data 

Subsequently, a further objective was to apply the model with a view to: 

Optimising the hydraulic performance of a water supply network by eliminating 

low pressures and reducing unnecessary high pressures and leakage. 

Better understanding the impact of transient pressure waves on water quality and 

mains bursts 

Improving the knowledge of age of water throughout the network 

Enhancing the understanding of non-conservative substance behaviour 

Predicting the propagation patterns of conservative substances throughout the 

network 

Illustrating the potential operational benefits of proactive distribution network 

management. 

1.10 Thesis content 

Following the introductory preamble ill Chapter 1 that provides an understanding of the 

background to the work, Chapter 2 of the thesis presents a review of the literature pertaining to the 

understanding of the performance of distribution networks. The review is broken down into 

several components including legislation, hydraulic modelling, water quality, water quality 

modelling, and asset management issues. 

Chapter 3 provides a physical description of the distribution network used in the study, why this 

network was chosen for the work and the geographical features. It provides details of the network 

assets and how they were operated before this work being undertaken. There is a summary of the 

performance of the network under this operational regime and a statement about how and why this 

could be improved. 

One of the key areas of the work involved gathering appropriate data from the distribution 

network. Chapter 4 discusses the instrumentation that was specified, designed, built and used to 

obtain the necessary data. The logical subject area breakdown describing hydraulic, transient and 
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water quality instruments have been designed to operate in separate sections. Design, perfonnance 

and installation characteristics for each type of instrument are discussed. 

Building the necessary network model(s) is described in Chapter 5. This includes a 

comprehensive account of how the mathematical models that were utilised in this study were built. 

The Chapter presents a comparison of the initial network hydraulic perfonnance (managed by 

traditional modelling methods) and after the implementation of the new, holistic, integrated 

modelling approach. 

Transient work is presented in Chapter 6, where the transient effects of switching on and off a 

pump are assessed, and repeated mains failures are addressed. 

Chapter 7 details developments made to improve the knowledge of water quality in a network by 

modelling the age of water and conservative / non-conservative substance propagation. Reducing 

the overall age of water and improving disinfection residuals are considered as a demonstration of 

water quality improvements. As well as determining substance concentrations throughout the 

network, the propagation utilities also facilitate contingency planning. This is clearly highlighted 

by showing how poor water quality incidents may be efficiently managed using the water quality 

model. The chapter is concluded by reference to the development of a biological model and a 

sediment transport model where concepts and ideas as to how such models might be used are 

presented. 

Chapter 8 portrays the details of an online modelling approach with case studies concerned with 

leakage and incident management. A summary of the findings of the work is presented in Chapter 

9 together with conclusions and recommendations for further work. 
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Chapter 2 - Literature Review 

2.1 Legislation 

The ageing of water supply infrastructures, and concerns over the safety of drinking water in 

general, has resulted in the introduction of comprehensive water industry legislation. 

The United States Environmental Protection Agency, (USEP A), the European Union (EU), and 

the UK Department of The Environment Transport and Roads (DETR) / Drinking Water 

Inspectorate (DWI) have introduced drinking water specific guidelines and regulations. In 1994, 

the USEP A proposed the Disinfectants / Disinfection By-products amendments to the Safe 

Drinking Water Act of 1986 (http://www.epa.govD that governs water quality standards in the US. 

The standards laid out in this legislation were applicable not only after treatment but at the point of 

use also. 

In 1998, the European Union adopted a new Drinking Water Directive (98/83/EC). This 

introduced values for water quality parameters that were generally more stringent than the existing 

ones (http://www.europa.eu.int/comm/environment/waterD although a small number of 

requirements were actually eased. As in the US, the EU legislation also included stipulations that 

water has to meet regulatory guidelines throughout the network and at the point of use, not only 

immediately after treatment as was previously the case. 

In the European Union, the legislation is designed to ensure a continuous supply of drinking water 

to all and, through the introduction of stringent drinking water standards, to safeguard water 

quality. Further, through economic regulation, it is designed to protect consumers from 

unnecessarily high costs being passed on by water companies because of inefficient production 

and delivery operations. Leakage from water supply systems is also under the legislative 

umbrella. At the time of the first mandatory reporting of leakage by UK water companies values 

of 30% of product were common, (OFWA1), and therefore mandatory leakage targets were 

imposed on the industry. 

Because of the industry regulation and to some degree competition, the distribution of drinking 

water has become a challenge to the water industry. Not only from a quantitative and qualitative 
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viewpoint, but also through the need to reduce leakage and operational costs and to improve and / 

or maintain standards of service. 

With regard to quantity, for England and Wales, the demand of consumers has to be continually 

met without interruption (Water Act 1989), (Water Industry Act 1991). In respect of quality, there 

is a need to comply with EU and UK drinking water regulations for aesthetic, bacteriological and 

chemical quality that are becoming ever more stringent (Water Supply [Water Quality ) 

Regulations 1989). Leakage targets are set annually on a company-by-company basis by the 

regulator. Also, through associated articles (The Water Supply (Water Fittings) Regulations 1999 

and The Water Supply (Water Fittings) (Amendment) Regulations 1999) that replace the water 

bylaws, requirements for avoiding contamination and waste on the customer's side, and for 

enforcement, which involves water undertakers, are laid down . 
.. 

The strengthened drinking water legislation and guidelines require an uninterrupted supply of high 

quality water at the point of use and include standards for aesthetic, chemical and microbiological 

parameters. This has led to investment in more advanced water treatment processes that have 

raised the quality of drinking water leaving the treatment site to the required standards. However, 

during the distribution process as much as 30% of the supply can be unaccounted for, (OFWAT), 

and the water quality often deteriorates becoming unacceptable by the time it reaches the point of 

use. As the regulations become more severe, water utilities will have to find solutions to help 

them manage this problem and the use of modelling tools is one technological approach that can 

provide benefits. 

2.2 Hydraulic Simulation Models 

Drinking water distribution networks are comprised of a complex layout of pipes of different ages 

and material types. The asset ageing process, storage capacity, action of corrosion cells, surge 

events, and the chemical and biological characteristics of the water within the network affect the 

quality of the water that emerges at point of use. 

To enable effective hydraulic operation, a distribution network has to be supported by dynamic 

elements such as storage reservoirs, pumps and valves. Flow and pressure throughout the network 

are determined by the way these dynamic elements are utilised. For example, the level of water in 

a storage reservoir will determine the pressure in certain parts of the network. The pressure can be 

35 



modified by the use of pumps and valves. However, the operation of pumps and valves may result 

in transient pressure effects that can damage network assets and reduce water quality. 

Flow is governed by pipe diameter, the condition of the internal walls of the pipe and the head of 

water available from storage and pumps. It can also be affected significantly by demand patterns, 

especially by large industrial users. In order to manage the hydraulics of a distribution network 

effectively it is necessary to create a mathematical model that can simulate pressure and flow in 

every element of the system. 

Since the early 1980's, there have been a large number of such models available to assist with 

distribution network planning and operation. Some of the early tools were relatively simple, used 

only to design small extensions to a network to supply, for example, a new housing development. 

Others were designed to enable pressure reduction schemes or design pump operation 

characteristics on more complex networks (Ginas, EPAnet, Stoner, LICwater, Piccolo) but none 

were capable of simulating large complex networks with numerous dynamic elements. This was 

partly due to the technology not being available but also because of computer processing 

constraints. In many cases, models were difficult to use and the results required expert 

interpretation. 

As computer power has increased over the years, so has the quality and complexity of the 

modelling tools available. It is now possible to simulate the operational characteristics of networks 

containing large numbers of dynamic elements and many thousands of pipes. However, models 

from different parts of the world have evolved differently because of local requirements. For 

example, early versions of Stoner had an engine that calculated fire-fighting flows as part of the 

general simulation. This was because fire flows have to be available by law in the United States. 

In the United Kingdom however, no specific account was taken for :fire flows, as their provision 

was not a statutory obligation. 

Machel/, 1991, undertook a survey of over thirty modelling packages available worldwide and 

their capabilities. The survey determined the state of the art at that time. It endeavoured to 

determine if any benefits could be obtained by using the tools for distribution network 

management and / or a collaborator willing to assist with the development of appropriate 

modelling tools. The survey revealed that there were only four "off the shelf' modelling tools that 

were suitable for this type application. Of these, only one company was willing to enter a 

collaborative agreement to modify the existing software and provide support over the research 

project timescales. This model therefore became the basis of the models developed for this thesis. 
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Advances in modelling software capabilities and associated technologies between 1983 and 1993 

were reviewed by Elton & Green, 1996. They highlighted that the industry was still a long way 

from reaching state of the art when it came to effective and efficient distribution network 

modelling. It was notable however, that modelling of dynamic network elements had improved 

greatly over that period. Network models had moved on from ''best fit", containing <100 pipes and 

nodes and only critical operational elements, to models containing > 1 000 pipes and nodes and 

numerous dynamic elements, that were calibrated to ± 1mwc and ± 5% flow. 

Advances were also being made to model build techniques over this time in that they were 

becoming more automated, and hence faster and cheaper, through links to Graphical Information 

Systems and databases containing operational information. Casey & Schindler, 1996, presented an 

historical perspective that they then brought up to date by discussing modelling/GIS application 

developments in a major water company. Mellor, 1996, described concurrent technological 

advances in client-server architecture and telemetry systems that would enable much of the 

automation of model building and data capture to take place. 

Model / user interfaces were also developing throughout this time period and some models were 

being made easier to interpret by using graphical presentation facilitated through other software 

such as Computer Aided Design (CAD) packages. The models developed in this thesis remove 

the need for third party add-ins such ad CAD packages by integrating the graphical user interface 

into the modelling software. The design of the interface allows easy access for entry of all model 

data, and a variety of output types for ease of interpretation of simulation output. 

Despite the many advances in hydraulic modelling, most of the available models are deficient in 

some way. In order to make them acceptable, work rounds have been developed by the software 

vendors or water companies. For example, every valve in the Stoner software had to have a 1-mm 

pipe bypass added in order that the network was not seen as "disconnected" at each valve. Work 

rounds such as this however, did allow companies to use the models to good effect for many 

aspects of hydraulic analysis and design. This thesis describes improvements that were made to a 

hydraulic model in order that it could be used to accurately simulate the operation of a large 

complex network without the need for work-rounds. 
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2.3 Water Quality 

Following a number of pollution incidents in the UK and the US, modelling was looked at as a 

tool that might provide water quality as well as hydraulic infonnation. The first development was 

to produce a model that could predict the movement of polluted water through a distribution 

network. Clarke et al., (1993), demonstrated the relationship between the distribution network 

itself and water quality at point of use and highlighted that the regulatory agencies were beginning 

to promote the use of water quality models to predict the movement of contaminants. The work in 

this thesis was promoted as a result of several tonnes of Aluminium Sulphate being introduced into 

a storage reservoir in Southern England, and hence into the distribution network. Hundreds of 

people received contaminated water and started legal proceedings against the Water Company 

responsible. Had appropriate modelling tools been available to the company and suitable 

instrumentation installed in the network, this unfortunate event would have been detected early, 

possibly even before any customers were affected. 

There are many other reasons for wishing to model water quality. Frequently, distribution 

networks are supplied from a number of different treatment plants each with different source 

water(s) and treatment process train. Blending of these disparate sources can lead to unwanted 

reactions occurring. For example, the mixing of chlorinated and chloraminated water leading to 

fonnation of strong taste and odour. Similarly, because a distribution network is, in effect, a large 

storage vessel, it acts as a further treatment stage. It is like a bio-chemical reactor, subject to 

continuous variations in flow and pressure that influence the physical, chemical and biological 

processes occurring within. For example, the growth and decay of bio .. film and its subsequent 

sloughing from the pipe walls and transport through the system or the fonnation of Tri-halo­

methanes (THM) or the decay of disinfectant residual. 

Modern water treatment produces high quality water that meets all relevant standards and criteria 

However, the quality of the water leaving the plants can deteriorate rapidly, and sometimes 

dramatically, within the distribution network due to the many complex and interrelated processes. 

Besner et al., (2001) reported that the factors influencing these processes were difficult to 

correlate. However, some of them are self-evident and are undoubtedly a result of the hydraulic 

operation of the network. Machell, (1996), determined the cause of 72 water quality complaints in 

two distribution networks. It was clearly shown that 68 of the complaints were generated as a 

direct result of network operations involving mains repair and the associated valve operations. 
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These complaints could all have been avoided if propagation models had been available to predict 

the movement of discoloured water following each network operation. 

Age of water is an important factor to take into account when trying to understand water quality 

issues in drinking water distribution networks. As water ages within a network, it may undergo a 

number of physical, chemical, and / or biological changes. The changes may thus render it 

unsatisfactory to the user, the Regulators, and the Water Company that owns or is responsible for 

the management and perfOlmance of the assets that comprises the network. 

Changes in water quality may be brought about by contact with the different materials that may be 

found in the network, including the pipe material, sediments or biological matter within the pipes 

or adhered to the pipe wall. Clarke et al., (1993), demonstrated the relationships between the 

distribution network materials and water quality at point of use. Van der Kooij undertook 

extensive work that related distribution network materials to the promotion of bacteriological re­

growth, release of organic and inorganic substrates, and penneation of contaminants through 

plastic pipes, all of which had a retrograde effect on water quality. Hopman et al., (1992) showed 

that Polyethylene pipe was more susceptible to penneation than PVC. 

Hulsmannet al., (1986) developed a methodology for understanding the causes of water quality 

deterioration within a distribution network. Much of this work relied on manual sampling and 

analysis of both the water and the pipes themselves, but they also developed a continuous monitor 

for water quality parameters that included oxygen, temperature, turbidity, pH, redox, conductivity 

and pressure. The equipment was large and inefficient and required a water stream to be diverted 

from the mains being monitored. However, in conjunction with the manual samples/analysis the 

approach provided good data that they used to promote the setting up of a research group to carry 

the investigations further. It would be of great benefit to water utilities and researchers alike to be 

able to gather network data via small instruments installed into the network itself and via remote 

methods. Failed standards frequently relate to taste, odour, discoloration and unsatisfactory 

bacteriological quality. Mallevialle, (1987); Burlingame and Anselme, ( 1995); determined these 

problems could be caused by chlorination, microbial intrusion during low-pressure and surge 

events, microbiological growth, by pipe corrosion or long contact time with the materials that 

comprise the network assets. 

Maier (1998), showed that the occurrence of Polycyclic Aromatic Hydrocarbons was linked to the 

presence of coal tar lined pipes and chlorine disinfectants. The longer the contact times with the 

materials of the network the greater the risk of deterioration of water quality. Because it is not 
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certain where such pipes have been placed in distribution networks they cannot simply be replaced 

or rehabilitated. The standards for P AH in drinking water are very low, so it is clear that 

minimising the time drinking water is in contact with coal tar lined mains is crucial to ensure low 

P AH levels therein. 

It is apparent that long residence times within a distribution network can lead to: 

Loss of disinfectant residual - this leads to diminished oxidation-reduction potential thereby 

lowering the bactericidal properties of the water. Olivieri, (1986), studied the stability and 

effectiveness of chlorine based disinfectants in water distribution networks and showed that 

combined chlorine, in the form of Chloramines, was the most persistent. Reduced disinfectant 

residual in turn increases the risk of bacteriological survival and re-growth. An increase in 

biological activity may generate tastes, odours, and promote corrosion, resulting in complaints and 

unsatisfactory regulatory samples. The ability to be able to model chlorine residuals would 

obviously be of great benefit for the management of some of the biological aspects of distribution 

networks. 

Much work has been done to understand bacteriological survival and re-growth in distribution 

networks. Prevost et al., (1992) identified that the main substrate responsible for microbiological 

re-growth in distribution networks was the biodegradable fraction of the available carbon in the 

system. This finding was supported by Piriou et al.,(1998) who also noted that this factor was 

more important than the Hetreotophic Plate Counts at the inlet to the system. In 1992 Lloyd, 

(DWI), presented evidence to an International group gathered in the UK that as many as 40% of 

all bacteriological samples that failed the standards were associated with bacteriological re-growth 

and biofilms. Other factors identified by contributors at the conference were high water 

temperatures, lowland supplies, treatment failure, and contamination of sample taps, inappropriate 

sample tap location, and service reservoir contamination. These factors can be controlled to some 

extent and Le Chevallier suggested that engineers should always use smooth surfaces, maintain 

circulation in the distribution networks and use materials that have no disinfectant demand and that 

are nutrient free. All these factors are afficted by the age of the water in the network 

Characldis, (1980), identified that fluid velocity (as shear stress) strongly influenced biofilm 

formation in that the water velocity influences the mass transfer rates from bulk water to bio film 

and the detachment rate of material from the bio film. He also showed that the available organic 

carbon governs the extent ofbio film growth. 
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Donlan, (1990), showed a negative relationship between flow velocity and heterotrophic plate 

counts, and a strong positive relationship between temperatme and plate count supporting these 

findings. Models can be used to calculate shear stress at the pipe wall and determine which pipes 

provide optimal shear stress conditions for growth ofbio film. Where practicable, the velocities in 

these pipes can then be altered by changing the flow regime of the network. 

To minimise microbial contamination it is common practice to disinfect drinking water by adding 

chlorine or chloramines before supplying the distribution network. Doses are sufficient to meet the 

chlorine demand of the supply and to maintain a certain residual of chlorine throughout the 

distribution network. All forms of chlorine however, are strong oxidising agents and they react 

with organic material to create disinfection by-products, some of which are potential carcinogens 

(Chang et al., 2001). They also react with iron to form corrosion by-products (Frateur et al., 

1999) that may result in discolouration of the supply. 

If chloramination is used, and the process is not carefully controlled, this method of disinfection 

can lead to excessive growth of nitrifying bacteria (Skadsen, 1993) (Holt et al., 1996). 

Nitrification decreases the level of disinfectant residual, oxygen, alkalinity and pH, and increases 

nitrite, nitrate and heterotrophic bacteria numbers (Wolfe et al., 1988; Cunliffe, 1991; Le 

Chevallier et al., 1991; Odell et al., 1996). 

The chemical and biological characteristics of the bulk water volume entering the network also 

contribute to the quality changes that occur because of residence time within the network. Le 

Chevalier 1992, identified three of the main causes of microbiological water quality problems as 

being breakthrough from the treatment process, cell growth within the network using available 

substrates, and disinfection for the control ofbiofilm. 

Micro-organisms such as anaerobic bacteria, protozoa, copepods and nematodes can be commonly 

found in bio-film, (Geld reich, 1996). The specific characteristics of the water distribution system, 

such as surface pipe-roughness, pipe-material and the hydraulic flow regime, can also have a 

significant influence on water quality particularly in respect of microbial bio-film growth. 

Uneven pipe surfaces support higher bio-film densities than smooth walled pipes by providing 

protection from detachment due to the effects of shear stress (Chang and Rittman, 1988) 

Pipe materials can be a problem in their own right. Corrosion of iron pipes generates products that 

react and destroy disinfectant. The process create tubercles that increase pipe roughness, become 

points of precipitation of organic compounds and provide cracks for bacteria shelter and even 
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growth (LeChevallier et ai, 1987; Prevost et al., 1998). Old corroded pipes provide excellent 

hospitable environments for micro-organisms. In fact, pipe corrosion processes release some 

constituents into the bulk water that actively promote microbial re-growth. Simultaneously, this re­

growth enhances corrosion rates (Emde et al., 1992; Korshin et al., 1996; LeChevallier et ai, 

1993; Pisigan and Singley, 1987). 

The literature on microbes in drinking water networks is very extensive. Much work is dedicated 

to predicting the numbers of micro-organisms present in a network. Machell, 1994, applied a 

different approach. He developed a model that took into account a number of operational factors 

including flow, changes in flow direction, chlorine residual, turbidity, age of water, and effects of 

pressure transients amongst others on each pipe within the network. He attempted to correlate 

hydraulic operation and its effects on water quality by determining which pipes in a network 

provided better conditions for bacteriological survival / proliferation and where the organisms 

would travel if they came into the planktonic phase. This simplified approach negates the need for 

in depth understanding of biological dynamics and, as most of the model input is produced 

automatically from the hydraulic model, simple chemical tests and the user, it is relatively 

straightforward to apply. 

Formation of disinfection by-products - as well as being potential carcinogens (Utsumi, 1992, 

Harren-Freund & Pereira), disinfection by-products such as Trihalomethanes (THMs) can 

provide food for micro-organisms (Block, 19), thereby promoting bacteriological re-growth in 

water distribution networks. The drinking water quality standards for Trihalomethane(s) are low. 

Table 1 shows individual THMs and their permitted values. 

Benzo 3,4 pyrene ng/I 10 

Tetrachloromethane ~g/I 3 

Trichloroethene ~g/I 30 

Tetrachloroethene ~g/I 10 

Table 2.1 - Maximum concentrations for individual THM's (See Table 1) 

It is therefore essential to minimise their production / development to avoid regulatory failures. 

Disinfection by-product formation of compounds such as Trihalomethane, (THM), is a relatively 

slow process. Because the formation process is slow, residence time (related to the age of water), 

and temperature, affects the formation of such species. In the presence of precursors, minimising 

the age of water therefore has a direct effect on reducing the level/risk ofTHM formation. 

For bacteriological indicator organisms such as Coliforms and E-coli the quality standards are 0 

per lOOml. 
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High contact times with pipe materials and sediments - imparts taste and odours to the water. 

Anyone who drinks water that has stood for some time in a polythene cup will notice the 

difference in taste when compared to that from a China cup under the same conditions for 

example. 

Reduced oxygen content - provides anaerobic conditions, tastes, and odours. 

An increase in colour and / or turbidity may be brought about by the dissolution of metals such as 

Iron that can also impart taste and odour to the water. Hussman et al., (1986), showed a negative 

linear relationship between oxygen content and turbidity and a significant linear relationship 

between iron and turbidity. 

Precipitation reactions - for example, the oxidation of manganese, causing it to be precipitated as 

black manganese dioxide. This phenomenon gives rises to turbid or discoloured water, and 

damage to articles of clothing caused by washing machines using the water. The vigorous wash 

cycle of modern washing machines is easily capable of oxidising manganese (Machell, 1989). It is 

thought that turbulent flow conditions within a network will also promote oxidation of certain iron 

and manganese species. 

Sedimentation - Areas of a distribution network where the age of water is high will by definition, 

be areas of low velocity. Consequently, particles entrained in the flow may be deposited and 

collect on the surface of the pipe. Gauthier et al., (1996) characterised the materials deposited in 

drinking water distribution networks. The work suggested that there were several different 

physical, chemical and biological mechanisms involved in the formation of the deposits, and that 

the relationship between particulate and dissolved phases was very dynamic and complex. 

Further, all the deposits studied were colonised with micro-organisms that were being sheltered 

and nourished by the deposits and were taking part in the particulate / dissolved state interchange 

mechanisms. Rooke, (1996) explained how the microbial fauna in a distribution network 

influences corrosion mechanisms and highlighted the most favourable conditions under which 

microbial corrosion would be most prolific. 

Following a prolonged period of undisturbed operation a distribution network reaches a state of 

hydraulic equilibrium. If the network configuration is altered, deposited materials may be re­

suspended leading to discoloured and turbid water that will, in tum, give rise to consumer 

complaints and unsatisfactory samples. It is required therefore to be able to establish where in the 

network re-suspended materials will travel. A conservative propagation model can be used for this 
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pwpose. Moreover, the model could also be used to determine travel times for pollutants from 

any point of ingress into the network. 

Some materials such as oxides of Iron and Manganese have a propensity to accumulate significant 

quantities of metal species when left undisturbed. Machell, (1988), showed that manganese oxides 

sorb, and can accumulate, large amounts of different metals such as lead and cadmium. This 

process leads to a build up of toxic metals that could be re-mobilised by physical or chemical 

action thereby reaching the point of use and / or causing regulatory failures. Hintelmann, (1993), 

found that biofilms also absorb toxic metals through the study of the accumulation of mercury 

compounds via a passive absorption mechanism. 

The Hydraulic flow regime - Within the network may have an influence on water quality due to 

re-suspension of deposited solids, bio-film detachment, and the erosion of corrosion by products 

and sediments due to shear stress changes, particularly those induced by surge, (Stewart, 1993; 

Skipworth et ai, 2000), and conversely sedimentation (which favours bacterial and metal 

accumulation) and build up of corrosion by products in pipes in which the flow is low, 

particularly dead ends. 

Environmental factors - Such as temperature, and chemical factors such as pH and dissolved 

oxygen influence corrosion mechanisms, taste and odour, microbial growth and hence significant 

changes in water quality within the system, (LeChevallier and Shaw, 1996). Machell & Banks, 

(1997), studied the temperature at fifty sites in a drinking water distribution network. It was 

shown that, in this particular network, the temperature was always higher within the network than 

the temperature of the incoming water thus providing enhanced conditions for microbial survival 

or growth. The ability to be able to monitor temperature at the inlet to and within distribution 

networks would provide a good indication of when this trigger is active. 

The problem is further compounded in complex networks where water from different parts of the 

network (and often from different water sources / treatment works) mixes, resulting in the 

occurrence of chemical reactions. 

It is clear from the above that a water distribution network can be considered to act as a further 

stage of water treatment. Many physical, chemical and biological processes influence changes in 

water quality during distribution and the distribution network is a complex ecosystem in its own 

right. Currently these processes are not fully understood and, to meet ever more stringent water 
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quality standards, the water industry needs tools and techniques to predict the quality of water as 

delivered to customer's taps. 

This project aims to address some of these needs through the development and application of 

integrated mathematical modelling tools designed to provide a better understanding, and hence 

facilitate some control, of these processes. 

2.4 Water Quality Simulation Models 

A number of water quality models have already been developed. These can be categorised in three 

groups: 

"First-order" models that describe water quality using simple first-order kinetic mass-balance 

equations, ''fundamental-process'' models that describe reactions using sets of inter-dependent 

mass-balances and "operational management process models" designed to assist water utilities in 

trying to, for example, reduce the number and consequences of discoloration events. 

One of the most commonly used ''first-order'' models for water quality is EP ANET (Rossman et 

al., 1994). This is a hydraulic model with first-order kinetics incorporated to predict the level of 

chlorine within the network. It is based on the extended period simulation approach. This and 

other commercially available ''first-order'' models such as Water-CAD, H2Onet, Stoner and 

Piccolo reasonably estimate disinfectant decay due to some biological and chemical reactions (Le 

Chevallier et al., 1990, Powell et al., 2000, Rossman et al., 1994). However, they do not take into 

account some important variables, which may explain why models of this type cannot be 

calibrated unless consistently high chlorine residual is maintained throughout the network being 

modeled. The models are not flexible in that most of the input is hard coded and so applied 

similarly to every situation. It is important to be able to change all the variables in a model, as they 

will be specific to individual networks. The model developed for this thesis allows all the 

variables to be user defined or maximum flexibility. 

Biswas, ( 1993), proposed a first order decay model that included axial and radial transport 

components to determine chlorine concentration in pipes. His model has been included into the 

model developed in this thesis and then improved by taking into account additional parameters 

including differential pressure and temperature changes. All the parameters in the new model 
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have user definable values to make the model more flexible then its predecessors and thus better 

calibration is achievable. 

"Fundamental-process" models describe, for example, bacterial metabolism (bio-film processes) 

and disinfectant decay by using sets of interdependent, multi-species, mass-balance equations 

based on the fundamental reactions and their interaction with each other. Several studies have 

begun to reveal the complex structure of bio-films attached pipes surfaces. Keevil & Walker, 

(1992), used Differential Interference Contrast Microscopy to show the true characteristics of 

biofilms. The results showed that biofilms were not a homogeneous medium and were, in fact, a 

mosaic of microenvironments that provided havens for microorganisms against biocide, extremes 

of oxygen content, eukaryotic grazing and other growth factors. Further work by this group 

demonstrated that biofilms grew "fronds" that reached out into the flow and were very resistant to 

shear pressure but susceptible to shock of the type generated by pressure transients. 

Attempts to model the bacterial growth in water distribution networks have been made. A typical 

example is Piccobio, a deterministic model, developed not only to predict bacterial growth but also 

to locate the zones of high risk of biological proliferation (Piriou et al., 1998). Piccobio appears to 

be the basis for a useful model for biological water quality modeling even though it does not 

incorporate the complex dynamic processes of the bio-film development (Loosdrecht et al., 1996; 

Picioreanu et al., 2000) or detachment from pipe-walls. One difficulty of application is that it 

requires a knowledge of existing biofilm characteristics that is very difficult to obtain. However, 

Okkerse et al., 2000, showed a new method for quantification ofbio-film thickness and variability, 

the Laser Triangulation Sensor that will assist in the Piccobio approach. The theory ofbio-film 

kinetics requires a gradient in concentration for a substance to be transported in and out of the bio­

film (Arshad et al., 1998). It is apparent that modeling biological systems is very difficult and 

complex and work will continue for many years. The water industry however, needs tools to help 

them achieve regulatory standards of service now. 

Machell, (1994), applied a different approach and developed a model based on distribution 

network operational factors, and variables that supported or did not support survival of micro­

organisms. The model assumes that organisms are present in the network at locations best suited 

to their survival and are mobilised by hydraulic phenomenon. The factors considered included 

flow, changes in flow direction, chlorine residual, turbidity, age of water, BDOC levels, and 

effects of pressure transients amongst others. Rather than attempt to model complex biological 

systems, he has attempted to correlate hydraulic operation and its effects on microbiological water 
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quality. By detennining which pipes in a network provide better physical and chemical conditions 

for bacteriological survival / proliferation and where the organisms would travel if they became 

entrained in the planktonic phase. This simplified approach negates the need for in depth 

understanding of biological dynamics and, as most of the model input is produced automatically 

from the hydraulic model, simple chemical tests, and the user, it is relatively straightforward to 

apply. 

Drinking water distribution networks have been shown to be ecosystems in their own right. They 

are complex and poorly understood due to difficulty of access and measurement of appropriate 

perfonnance parameters, system-to-system variation, and a high sensitivity to physio-chemical 

changes within the network. Each water distribution network has its own flow, pressure, leakage 

and bio-chemical features and develops unique chemical and microbiological characteristics. 

Given onerous water quality legislation, the inevitable short-term water quality deterioration due to 

bursts and network operations, the continuous ageing of network assets, and the failure of current 

water quality models to deal with all the interactions between physical, chemical and biological 

processes, a new generation of integrated water quality models is required. The way in which 

modelling is used within water companies also needs re-evaluating and moving from a reactive 

analysis to a proactive operational management tool through the timely acquisition and use of 

measured network data. 

Lu et al., (1995) developed a simple integrated model accounting for simultaneous transport of 

substrates, disinfectants and micro-organisms as well as for the major biological processes. This 

model applies to steady state conditions only. Modification of this model to an unsteady 

(dynamic) state, so that the accumulation of fixed bacteria vs. time, at a specified cross-section 

(i.e., at a specified distance from the inlet), can be monitored will be very important, or it will not 

be applicable to real distribution networks. 

2.5 Asset Management 

Asset management has now become the keyword within the water industry. As water utilities 

adopt operational methodologies based more and more on these techniques, and as competition 

within the industry drives companies to reduce their operating costs it is imperative that integrated 

modelling tools are developed that allow a more proactive measurement and management of flow, 
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pressure and water quality simultaneously. The level of "pro-activeness" will be detennined by 

the timing of the availability of measured data from the network. 

One of the major failings of current modelling techniques is that simulations rely on repeating a 

fixed set of hydraulic conditions over a given time period, the norm being a 24 hour cycle. The 

hydraulic data used to produce this repeating pattern of hydraulic conditions is ''normalized'' by 

the way it is collected and cleaned to remove pressure spikes and abnormal events. The resultant 

hydraulic basis is a continually repeating diurnal pattern of flow and pressure representing average 

performance characteristics over a single day. This approach is fine for design of network 

alterations such as pressure reduction schemes as, in general, the "average day" conditions 

reflected in the hydraulic basis have been proven accurate enough for this type of work. 

This approach is not valid however for proactive use because of, for example, changes in service 

reservoir levels or unusual demands on the network, the hydraulic characteristics will not be 

exactly repeated over any time period particularly with regard to flow. It is required therefore to 

have a model that can have real time data imposed as boundary conditions in order to produce 

accurate hydraulic simulation results over long periods. This is especially important for age of 

water and propagation calculations that rely for their accuracy on the flow information supplied by 

the hydraulic engine. 

Much of the work cited in this literature review has demonstrated or commented on the difficulties 

of maintaining chlorine residuals throughout a distribution network. Work by Car/son, (1991) 

suggests that measurement of the oxidation-reduction potential may be used as an indicator of 

chlorine disinfection efficiency. Hussman et a/., (1986) demonstrated the usefulness of collecting 

real time water quality data to better understand the hydraulic / water quality dynamics with a 

network. It follows then, that if suitable instrumentation were installed at key locations with in a 

network, it would be possible to monitor the effectiveness of the chlorination throughout the 

network and collect water quality data for modelling and proactive management. 

2.6 Basis of Thesis 

The literature review has highlighted that the understanding of water quality changes in 

distribution networks is not complete. 
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This thesis describes the development of this new generation of integrated water quality models 

simultaneously accounts for all the processes related to water quality deterioration in a single 

model. These processes include age of water, biological potential, conservative and non­

conservative propagation, disinfection by-product formation, and sedimentation characteristics as 

well as hydraulic parameters flow, leakage, pressure and transient pressure. 

It outlines the specification of the instrumentation used to gather the network data required for 

understanding network behaviour and calibrating the models, and describes how the instruments 

were installed and the data colleted, analysed, and used in the model. 

The thesis then explains how the model was applied to a real drinking water distribution network 

to demonstrate the methodology and the benefits gained by its application. The benefits to the 

water industry through real time acquisition and analysis of network data to 

Finally, the application of the model in real time has been shown to provide significant benefits 

with regard to leakage monitoring and detection. It has also been used to detect and determine the 

travel path of discoloured water. 
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Chapter 3 - The Study Distribution Network 

3.1 Distribution Network Zone IHerarchy 

A large water company may have thousands of kilometres of water supply mains. In order to aid 

regulatory performance reporting these mains are divided into a series of "zones". The largest of 

these zones is the Asset Management Planning Zone (AMP Zone) that contains supply, treatment 

and distribution assets for a single water supply where possible. The Director General, Ofwat, is 

informed of all performance-related issues associated with the assets within each AMP Zone. 

An AMP zone may comprise of one or more Water Supply Zones where a Water Supply Zone 

serves a population of 50,000 or less. Each Water Supply Zone is further split into what are 

termed 8B Zones. An 8B Zone serves a population of 5000 consumers or less. Her Majesty's 

Drinking Water Inspectorate monitors the quality of the water supplied into the 8B zones and has 

powers to prosecute water companies who fail to supply water to the prescribed quality. 

AMP zones are further sub-divided into Leakage Control Zones. This type of zone is used to 

determine the leakage within that part of the system. The total leakage for the company is 

calculated from the accumulated figures from the individual leakage control zones. Where 

possible, the boundaries of 8B and Leakage Control Zones are coincident. 

Figure 3.1 shows the inter-zone relationships within the study area. 
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Leakage Control Zone 

c::--_____ -::> 
An 88 Zone may contain one 
or more Leakage Control Zones 
but only 5000 or less population 

~ _______ 8_8_z_on_e _______ ~ 

Water Supply Zone 

Contains 50,000 or less population 

AMP Zone 

Contains one or more Water Supply Zones 

Also contains, where possible, treatment and distribution assets for a single supply 

Figure 3.1 Inter zone relationships 

The flow from each water treatment plant and service reservoir in any water supply system is 

measured and recorded by water meters. The flow into and out of each zone down to Leakage 

Control Zone level is also monitored and recorded to facilitate a water balance and hence calculate 

losses through leakage and unaccounted for water use. 

Each Leakage Control Zone also has a pressure logger that is generally located at a point 

indicative of the lowest pressure in that part of the network. The network chosen for this study is 

described in detail in the following sections. 
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3.2 Details of the Study Distribution Network 

The distribution network chosen for the research includes the towns of Keighley, Oakworth, and 

Haworth in West Yorkshire. Keighley is a medium sized town of some 60,000 population 

geographically situated between Bradford and Skipton in West Y orkshlre. 

The reason for choosing this distribution network for the study was that it contained a 

comprehensive range of network management problems that are encountered by most water 

companies within a relatively small geographical area In addition, this network is used for a 

variety of research and development projects concerned with distribution network management. 

As a result, there is a high confidence in the data associated with assets that comprise the network. 

3.2.1 Topography 

The topography of the area is that of a steep sided valley with domestic and industrial properties 

located both in the valley bottom and on the valley sides. A contour map highlighting the 

geography of the area is shown in Figure 3.2. 

52 



Figure 3.2 Contour map of the study network area 

There are significant variations in the ground level over the area of the study network. Elevation 

changes as much as 200 m in distances of 1 km. As a result, a number of pressure reduction 

schemes have been implemented to limit the occurrence of high mains pressures. 

3.2.2 Zone Layout and Interconnectivity 

As described previously in section 3.1, the network has been divided into a number of discrete 

Leakage Control Zones (LCZ). Figure 3.3 shows a diagrammatic layout of the 11 leakage control 

zones that comprise the study network that are listed in Table 3.1 . 
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Figure 33 Layout and connectivity of the Leakage control zone 
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_ZONE ID NAME NO. PRO PERTIES 

704 HA WORTH/CHU RCHIL.LS 11163 
706 HAINWORTH 2968 
707 OL.DF IEL D H IG H L. EV EL 1143 
708 OAKWORTH 2026 
716 WHIT E LA N E H IG H LEV EL 2338 
1710 BRACKEN BANK 3324 
711 QUEENS ROAD 1786 
1712 KIEGHL.EY NORTH 1095 
709 ALBERT ST. 2972 
l702 R IDDL. ES D EN 11534 
713 HIGHFIELD 1398 

Table 3.1 Leakage Control Zones within the study distribution network. 

The 11 leakage control zones are supplied by 7 service reservoirs, details of which are listed in 

table 3.2 

RESERVOIR NAME BWL ELEVATION CAPACITY DEPTH 

(m) (m3) (m) 

BRACKEN BANK 190.4 4750 4.57 

BLACK HILL 238 17195 5.97 

HIGHFIELDS 188 1344 4.5 

HAINWORTH 281 1150 7.28 

RIDDLESDEN 265.7 2560 3.5 

WHITE LANE 296.75 4256 4.75 

OLDFIELD 298.5 2553 4.78 
Table 3.2 Service Reservoirs supplying the study network 

The large variation in ground level necessitates the need for a number of pump sets to deliver 

water to the higher parts of the network. These are listed in Table 3.3. 
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PUMP METHOD OF AVERAGE PUMP COMMENTS 
LOCATION CONTROL FLOW 

Sladen Valley Level Control 601/see Pump to White Lane Reservoir 
WTW 

Sladen Valley Not In Use N/A Pump to Bracken Bank Reservoir 
WTW NOTE: Not operated at present 

Hill Top Booster Level Control 12 Usee Controlled by level from Hainworth 
Tanks 

Hainworth Pressure Control 0.1 Usee Very small booster 
Booster 

Table 3.3 Pump location and flow details 

The service reservoirs supply water to the customers through 150 km of pipe work. The water 

mains vary in size from 50 mm to 400 mm and span a range of ages from circa 1900 to new 

mains. The majority of the mains infrastructure is comprised of Iron pipes (circa 70%). The rest is 

a mixture of plastic including PVC and MDPE and a small number of steel pipes. Service pipes 

include copper, galvanised, and plastic. The internal condition of a pipe or its roughness is 

described by a "C" value. The higher the C value the smoother the internal surface of the pipe. C 

values within the iron pipes in the network range from 30 to 120 depending on age and location. 

The plastic materials are relatively new and therefore have high C values. 

In order to visualise the connectivity of the various operational elements Within the study 

distribution network, Figure 3.4 illustrates the layout of the water mains and the position of the key 

assets. 
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Figure 3.4 Layout of the water mains and position of key assets in the study network 
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3.3 Operational Features of the Study Network 

The majority of the network is supplied by two water treatment plants, Oldfield and Lower Laithe 

(W1W), which are located in the South Western corner of the geographic area. 

Water from Oldfield is gravity fed eastwards to White Lane service reservoir supplying a small 

number of properties in zone 707 on the way. From White Lane service reservoir the supply 

continues feeding zones 716 and 708 finally terminating as one of the inlets to Black Hill service 

reservoir, as shown in Figure 3.3. 

Zone 704 and Zone 706 are also fed from White Lane service reservoir. Most of Zone 704 is 

pressure reduced while the majority of Zone 706 is fed via a small booster pump, Hill Top 

Booster, which is operated by level control from the relatively small Hainworth service reservoir. 

Hainworth service reservoir actually comprises two circular above ground tanks. 

The water from Sladen Valley WTW can be pumped via two pump sets. One pump set pumps via 

a direct main through a metered inlet to White Lane Service reservoir. The other pump set is 

currently not in regular use, but can supply water to Bracken Bank Service reservoir. This main 

between Sladen Valley and Bracken Bank is currently operated under gravity feed, the pumps only 

being used when necessary. 

From Black Hill Service reservoir there are three supply outlets, one into Highfield Service 

reservoir, one into Shann Service reservoir and a bi-directional connection into the Aire Valley 

Trunk Main, all of which are individually metered. 

Highfield Service reservoir and Bracken Bank Service reservoir are the main supply reservoirs for 

the town of Keighley itself Highfield supplies Zone 713 and part of 709, and Bracken Bank 

supplies Zones 710, 711, 712 and the remainder of Zone 709. These latter four zones are arranged 

in a cascading manner with one Zone feeding the next, the order of the cascading system being 

710, 711, 709 and 712. 

Zone 702, situated at the eastern edge of the network, is fed by Riddlesden Service reservoir that 

takes its supply form Graincliff water treatment plant. Figure 3.5 shows the extent of supply of 

individual service reservoirs at the beginning of the study. 
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Figure 3.5 The extent of supply of individual service reservoirs 
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A recently installed 400-mm main connects Riddlesden Service Reservoir with Black Hill Service 

Reservoir. This main, at present, is only used to supplement the level in Black Hill Service 

Reservoir as necessary to meet variations in the daily demands. Its primary purpose is one of 

operational flexibility. It was commissioned to provide an alternative supply from the East of the 

region under drought conditions. 

The total demand for the network is 15 - 17 Ml / day. This demand is made up from industrial, 

domestic and special customer demands, and a leakage component. 

Pressures range from 12 to 200 mwc giving rise to low and high-pressure complaints and bursts. 

Recently network design has been dominated by the need for leakage control measures. 

The study network has evolved slowly over many years to meet housing and industrial 

developments in a piecemeal manner. Each time there is a need for a change to the network, for 

example, to cater for a housing development, the analysis is undertaken at Leakage Control Zone 

level or even a small part of a zone to determine if the local network can support the scheme. This 

approach has led to the wide range of flows and pressures (controlled to some extent by pressure 

reducing valves) within the system, and zone boundaries that do not reflect the optimal operational 

conditions. 

The piecemeal development also gives rise to water quality problems. The design of Leakage 

Control Zones by their nature involves the production of many "dead end" mains where valves 

used to isolate part of the larger network are closed. The water flows along critical routes where 

there can be relatively high velocities but the closer it gets to the customer the slower it travels. 

Residence times can become significant facilitating sedimentation, bacteriological re-growth, 

discolouration and corrosion, leading to complaints, including taste and odour. 

Leakage figures are being held at an artificially high level due to the way leakage is monitored and 

managed, especially with regard to leakage control zone design. 

Surge events have been shown to produce water quality problems as well as structural damage. 

There is a need therefore to better understand how surge influences such problems. It is clear from 

the above operational summary that the study network provides the ideal location for research to 

further explore an integrated modelling approach that includes transient analysis, improved 

understanding of water quality and improved operational practice. 
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The way this has been attempted is described in Chapters five through seven whilst Chapter four 

details the necessary instrumentation that was required to accompany the model development. 
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Chapter 4 - Instrumentation 

4.1 Background 

A model relies on good quality data for the purpose of model calibration and verification, so the 

instrumentation used to collect such data is one of the vital components of model development. 

Instruments provide raw data from which to derive information about the performance of a 

number of parameters of the system being measured. Analysis of the information allows informed 

decision-making resulting in more effective operation and control. 

For hydraulic design and monitoring purposes, and more recently the need to accurately determine 

leakage levels in distribution networks, manufacturers have developed flow and pressure 

instruments to a very high level of sophistication. Off the shelf instruments are capable of 

measuring flow and pressure to an accuracy of 0.1% and even 0.01% if the instruments are rated 

correctly for purpose and manufacturers installation procedures are strictly followed. 

Over the last 10 years, the water companies have invested heavily in improvements to water 

treatment works as a result oflegislative pressures and the needs to meet water quality standards of 

service and efficiency targets set by OFWAT. Water treatment processes rely heavily on 

instrumentation technology and continuous development of monitoring and control 

instrumentation has taken place. Allied to programmable logic, closed loop control technologies 

and SCADA systems much of the water treatment process is now fully automated and water 

leaving the treatment plants is generally of a very high quality. 

However, the good quality water leaving water treatment plants was found to be deteriorating as it 

was transported through the pipe networks to the customers. Therefore recent focus for improving 

water quality standards of service has shifted to the distribution network. In the past there has 

been little research and development for this instrument application compared to that for other 

water industry assets. The reason for this has been that the focus of water supply effort since the 

start of the century has been on providing quantity of water rather than quality. Also, distribution 

assets are mostly underground and access is difficult and expensive. There has been an "if it is 

running satisfactorily, leave it alone" philosophy and work is generally only undertaken as a 

reaction to some specific network event such as a burst, a customer complaint, or planned 

rehabilitation. 
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Although there are many water quality sensors available for laboratory and open channel 

applications, none could be installed directly into a water main. Collection of time series water 

quality data from a pressurised environment was never considered as an industry need. This 

attitude, the perceived development costs for instruments for such a hostile environment, and the 

lack of demand from the industry resulted in almost no development taking place for this 

application. 

For the purpose of this study and to understand the interactions between network hydraulic and 

water quality perfonnance it was required to take frequent measurements of both hydraulic and 

water quality parameters. The data was used for validation and calibration of the models. 

Traditional manual sampling techniques were considered impractical due to the high cost and 

logistics of physically taking the number of samples required, and of the transport to the laboratory 

and cost of analysis. In order to meet the data requirement therefore, commercially available 

hydraulic instrumentation was utilised but it was necessary, for the reasons outlined above, to 

develop suitable water quality instrumentation specifically for purpose. 

Pressure transients may affect an entire distribution network but usually large main laying or 

pumping schemes where surge may be a potential problem are not the subject of detailed surge 

analysis. The analysis completed often consists of first principal theory based hand calculations 

that, by their nature, have to be limited to the small number of pipes that are directly linked to the 

scheme. The calculations do not extend to the distribution mains either side of the scheme mainly 

due to time constraints in the completion of this type of calculation. Because of this approach and 

the general assumption that surge is not a global network issue, instrumentation is not well 

developed for this application. With the advent of computer based transient pressure mathematical 

modelling packages however, it is now possible to consider entire networks in a single calculation. 

Instrumentation to provide the necessary data are available but transient pressure loggers are 

expensive and their capability for extended time data capture is limited due to the sampling 

frequencies that are required to observe the shape and amplitude of transient events. Because of 

this, only 2 were deployed for this study and only a limited section of the study network was 

monitored and modelled. 
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4.2 Hydraulic Parameters 

"Spectralog" instrwnents were used to record flow and pressure at a number of key network 

locations, such as inlets to leakage control zones, zone interconnections or exports, as shown in 

Figure 4.1. All these points had flow meters installed as part of a leakage management project and 

data was recorded at 15-minute time intervals. 

Lower LaUhe 

Figure 4.1 Location of the hydraulic measurement locations 

D'strici meter 

Service reservoir 

Waler trcahncnl plan! 

Impounding reservoir 

• -

The Spectralog instrwnents are robust and compact, built to IP69 requirements and interface to 

many flow meter types. This makes them easy to install and capable of withstanding the harsh 

environment associated with distribution networks. Table 4.1 details the specification of the 

instrwnent. 
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Memory Cyclic, block or stop when full 

A minimum of 128 Kbytes (completely non-volatile) 
Up to 380 days (at IS-minute intervals) 

Logging Interval 1 second to 24 hours. 
All contact closure and opto pulse units supported with maximum inpu 

Digital Input pulse frequency 1000Hz. 
Ranges 0-lObar or 0-20bar. Accuracy ±O.S% FSR standard. Over 

Internal Pressure Transducer pressure is 3 times the full range. Auto-zero calibration function. 

Connection for a wide range of transducers for pressure and depth 
measurement. Typical range 0-3SOmbar to 2Sbar. Other inputs include 

External Analogue inputs 0-1OmA, 0-20mA, 4-20mA, O-SV, 0-10V. Accuracy ±O.l % FSR. 
Communications Software selectable. 

Local: 19200 baud via RS232 Comms. 
Telemetry: V22bis (2400 baud) 

Daily statistics for minimum, maximum and volumes. Five poin 
calibration and volume calibration for velocity inputs e.g. insertion 

On-board Functions probes 

Programmable alarms for high, high-high, low, and low-low. Telemetry 
Alarms variants will dial host on alarm (up to 4 host numbers may be stored) 
Interfaces Full protocol and technical support is available for system integration. 

Support for single and multi-channel water quality is available on some 
Water Quality variants of Spectralog data loggers for the Spectracense system. 

Lithium Thionyl Chloride primary cell with capacity for 10 years 
Battery continuous operation (under defined normal use). 

Required for high current applications only. Battery housing for local 
Auxiliary Battery purchased D-cell batteries. 

Spectralog data logger and optional PSTN connection box (fo 
Environmental telemetry version) fully submersible to IP68. 
Operating Temperature Range -10 to +600 Celsius 

Storage Temperature Range: -40 to +8So Celsius 
Humidity Range: S to 100% RH 

Dimensions IlOmm x 60mm x 27Smm Telemetry Logger. 

Weights I.Skg Telemetry Logger. 

Altitude The maximum operational altitude is SOOO metres un-pressurised. 

The shock is in accordance with a drop under gravity on to any flat 
surface from a height of 1 m. The vibration withstand is in accordance 
with BS2011 part 2.1 Fc - Sinusoidal Vibration with the following 

Shock and Vibration severity: 10-S7 Hz-0.07SmmDA, S7-1S0 Hz-lg pk. 

Table 4.1 SpectraLog instrument specification 

Figure 4.2 shows a picture of the instrument and its installation at a flow meter site. 
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Spectralog instrument on 

Calibration certificates issued by the manufacturer certified that the instruments had been 

thoroughly tested and calibrated over their operational range. However, as a quality check and to 

avoid recording erroneous data, each instrument was subjected to laboratory "dead weight testing" 

of the internal pressure transducer before being installed in the field. This was thought to be 

important because if anyone instrument ( or more) was wrongly calibrated or damaged, this would 

pose extreme difficulties with the validation of the mathematical models that used the data as 

boundary conditions. 

Each instrument was equipped with onboard data logging and the analysis functionality was 

embedded in the firmware. Flow and pressure were recorded on separate programmable data 

channels. The programs allow the instruments to be matched to a variety of flow meter types to 

ensure the correct data was recorded as each meter has a different flow calibration factor / pulse 

unit. It also permitted calibration offsets to be applied to the pressure readings where the 

instrument had to be located at a different level to the water main. 
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4.3 Transient Pressure 

High-speed pressure instruments and data loggers were used to capture duration and amplitude of 

transient pressure surges in the network. 

Because of the large amount of data required to describe a transient event, samples had to be taken 

at between 10 and 20 times a second. This meant that, at the higher sample rate, the memory of 

the logger was filled in 24 hours. Because of this, and the high cost of the equipment, only two 

instruments were used during the study. 

As for the measurement of flow and pressure, commercially available equipment, Radcom 

Centurion, was utilised to measure the transient effects of surge events. These high-speed 

instruments were specified as in Table 4.2 

Logger type Single channel pressure 

Range o to 200 mwc 

Sensitivity 0.1 to 0.4 mwc (user defined) 

Operating conditions Operating temperature -10 to +50 °c 
1, 5, 10 and 20 samples a second 

2 million readings + data compression 
Memory (2 days data at 10Hz sampling frequency) 
Interface RS232c PC interface 

Table 4.2 Transient pressure logger specification 

In order to effect calibration, the pressure transducers were dead weight tested in laboratory 

conditions. The instruments were then installed above and below a booster pump, and starting and 

stopping the booster pump generated pressure surges to field test the instruments. Figure 4.3 

shows the layout of the pump house and the instrument loc:ations. 
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Figure 4.3 The pump house and instrument location 

The pumps undergo a three stage stepped change when started or stopped, to reduce the magnitude 

of the surge generated. The instrument tolerance band was set to the minimum value of 0.1 mwc 

in order to obtain maximum resolution over the recording time. A period of approximately five 

minutes was allowed to ensure the pressure had equilibrated before starting and stopping the 

pump. 

4.4 Water Quality Parameters 

The environmental conditions associated with distribution networks are extremely hostile. When 

inserted into a water main the water quality instruments had to be capable of withstanding 

continuous external pressures of up to 180 mwc with additional surge pressures reaching over 220 

mwc. The electronics had to be housed in wet conditions and be able to tolerate significant 

temperature changes (a 25°C shift is not uncommon). They had to be tolerant of residual chlorine 

and be protected from any solid material travelling in the bulk flow. As no such instruments 

existed at the start of the project, they were developed specifically for the task. The sensors were 

required to operate in a closed pressurised pipe system comprised of ferrous metals, non-ferrous 

metals, and plastics and they had to be able to withstand disinfection with a l00mg.l-l sodium 
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hypochlorite solution prior to installation. The measurement units and operational conditions are 

shown in Table4.3 

Channel Determinant Measurement Units Operating conditions 

1 Temperature o Centigrade 0> 25°C 

2 pH pH scale 5.5 >9.5 

3 Dissolved Oxygen % saturation (as mg/l) 0> 12 

4 Conductivity J.1S/cm 40> 1100 

5 Turbidity NTU 0.01> 4 

6 Pressure MWC <= 180m 

7 Redox Potential mV 0> 800mv 

8 Cabinet temperature o Centigrade 0> 25°C 

Table 4.3 Water Quality detenninants and operational conditions 

The perfonnance characteristics of the instruments are shown in Table 4.4. 

Determinant Accuracy Repeatability Resolution Response time 

Temperature ± 0.1 ± 0.1 % O.I°C < 5 seconds 

pH ± 0.1 ± 0.1 % 0.1 < 60 seconds 

Dissolved 
Oxygen ± 0.1 ± 0.1 % 0.1 mg/l < 60 seconds 

Conductivity ± 5 ± 0.1 % 5J.!S/cm < 5 seconds 

Turbidity ± 0.1 ± 0.1 % 0.01 NTU < 5 seconds 

Pressure ± 0.1 ± 0.1 % 0.1 m <5 seconds 

Redox Potentia ± 0.1 ± 0.1 % Best achievable < 5 seconds 
Cabinet 

temperature ± 0.1 ± 0.1 % 0.1 °C < 5 seconds 

Table 4.4 Perfonnance characteristics of the Water Quality instruments 
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Figure 4.4 shows the component parts of the water quality instrumentation. The design was 

modular in order that the user could combine any number of determinants and hardware 

functionality providing a very flexible tool. 

A.D.O 

8.1 
8.2 

Figure 4.4 The component parts of the water quality instrumentation. 

Each instrument could be used to log all or any individual channel at user defined time intervals 

down to 1 minute. Each channel incorporated high and low alarms that were set to trigger when a 

parameter exceeded normal operating boundaries. 

Forty eight water quality monitors were installed at strategic locations the Keighley Distribution 

Network, as detailed in Figure 4.5 shows the physical installation details of the instrument 

housings within the pipe-work. 
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Figure 4.5 Diagrammatic representation of the installation detail 

When the instruments are installed, the only visible component is a roadside cabinet that is used to 

protect the electronic control box from vandalism. The cabinet also housed a sample tap to 

facilitate manual measurement of any of the detenninants for secondary calibration checks. 

Figure 4.6 provides an overview of the complete instrument / logger / telecommunications site 

installation. 
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measurement 

4.5 Data Collection and Transfer 

The distribution network used in this project benefited from having a basic telemetry system. An 

operator at a central location could therefore remotely download network data from any number of 

different measurement sites. 

This facility was exploited to the fullest extent by developing communications software that could 

remotely access both the hydraulic and the water quality instruments. Data was then downloaded 

automatically at user-defined frequencies. The software contacts the measurement sites by PSTN 

lines using a modem. It can download the entire logged data set or capture the latest single 

measurement. 

This software made it possible to collect as much data as was required without the need for site 

visits or manual download to laptops and secondary transfer of data to PC for processing. Further, 

it provided a link between measured field data and the online functionality of the mathematical 

model facilitating a real time view of the hydraulic and water quality performance of the network 

at any user defined time and I or time interval. The communications software included 

functionality that permits the user to look at the data as it is transferred and to view data history 

, from any of the measurement sites. Figure 4.7 shows the main screen highlighting both hydraulic 
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and water quality data. Figure 4.7 Screen capture showing current hydraulic and water quality 

values. 
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Figure 4.7 Current hydraulic and water quality values 

As detailed earlier, the communications software was used to generate al~s on any of the 

determinants. This facility can then be used to generate on screen alarms for the user. The alarm 

status is shown in Figure 4.7 above. 

The software is programmable to allow the user to access only the data required at any particular 

time. Channels may be turned on or off as is required. Figure 4.8 shows the dialogue box where 

the individual parameters may be selected. 
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Figure 4.8 Communications software configuration screen 

Data downloaded from the instruments was stored in an Access database. The database held both 

historic and current network data. The modelling software used this data as boundary conditions 

for simulation. Table 4.5 shows the "current data" table within the database . 
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For simulations using historic data, i.e. simulations that reflect what happened over a specific 

period in the past, time series data for model boundary conditions is extracted from the database. 

When the model is running in real time, i.e. looking at what is happening now, only the most 

current data for each parameter is used. This type of simulation, which is discussed in more detail 

in Chapter 8 uses stored network states as the starting point of the simulation and automatically 

updates these to reflect the latest boundary conditions. In this way the model output shows both the 

current network state and any previous network state at a given time. 

The model stores results in order that the user can produce a variety of different output types to 

assist understanding and decision-making. The next chapter of the thesis describes the way in 

which the hydraulic performance of the system was established. 
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Chapter 5 - Hydraulic Analysis 

5.1 BuDding the Hydraulic Model 

5.1.1 Background 

Hydraulic models of the individual Leakage Control Zones comprising the study network had 

been constructed a number of years before this project using the Ginas software. However, 

changes to the distribution network assets and the network demands during the time between the 

construction of the models and the start of this project made them potentially no longer 

representative of the current network operation. It was necessary therefore to amend the models to 

incorporate the current network details and convert them into the Aquis framework. 

Amendments to the model included the addition of new housing developments, some water main 

rehabilitation and replacement, inclusion of pressure reduction schemes and network re-zoning. 

Initial preparation therefore began by rebuilding the Leakage Control Zone models to reflect 

current network assets, their configuration and associated demands. The individual leakage 

control zone models were re-built and then merged to produce a single model of the entire 

distribution network using the Aquis software. 

This "system" or Water Supply Zone model was then used to analyse ~e study distribution 

network using a traditional modelling approach whereby local problems in the network were 

solved without due regard to the impact on or from the complete network. This work consisted of 

an analysis phase and development of improvement schemes designed essentially to manage 

pressure locally whilst taking into account the need for adequate flow. The first section of this 

chapter presents the details of this analysis. 
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5.1.2 The Hydraulic Model Build Process 

Hydraulic model building is a complex task and the main activities undertaken in the building of 

the hydraulic model are highlighted in the flowchart shown in Figure 5.1. 
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Figure 5.1 The model building process flow chart 

The following sections describe how the process was used. 
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5.1.2.1.1 Asset Data 

The asset data, which is the static data representing the individual component parts of the network 

was acquired from a Graphical Information System (GIS). This information was supplemented by 

expert knowledge and physical measurement and observation where necessary. 

5.1.2.1.2 GIS Data 

The majority of the necessary water main records were stored on the GIS system. This system 

contained comprehensive details of the underground assets and their attributes. It was possible to 

retrieve single pieces of information, for example, the detail of the water mains or to have digitised 

background maps with any amount of asset information superimposed as an overlay. Figures 5.2 

and 5.3 show digitised background map and digitised background map with network details 

superimposed respectively. 

CarPark 

.~ \\ \ ' .... 
\ \ \ -, 

I 
\) \ ~ I I 

I I 
I Oub 

I 
I I 
I I 
I I 
I .... , :~-I 
I 
I III i 
l I ------

ALBERT ST 

---------- r;:-----l 

I I 11 
I I II 
I i 
I I 
: uw-. ~ 

I I II 

~ I : OJ : 
( I Iii I uw-. I 
~-___ J ~I~ _____ J 

Figure 5.2 GIS plot of digitised background map detalls 

I~ 
I~ 
Ijt---= 
I 
I 
I '-
I 
I 
I 0 

I 0 

I 
I 0 

I 0 

I 0 

r,gh'OY 
College 

o 
I r] 
\ ~ .:g':---¥-y-CC.L1 

C:J 

The digitised background map provides essential information about element connectivity and 

location of properties within the Leakage Control Zone boundary 
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The water network overlay highlights water mains, fire hydrants, valves, water storage reservoirs 

and any other asset information contained on the GIS system and each element has its 

geographical co-ordinates and element specific details attached. 

The GIS system was updated regularly with new element information. For example, information 

about new building developments and any rehabilitation and renewal work that had been carried 

out on the networks. This enabled properties to be allocated to the correct nodes in the model. 

The system also contained Ordnance Survey data providing an aspect of the topography of the 

zone that can be used as a backdrop for the water network information. Figure 5.4 shows the 

geographical detail of the Ordnance Survey data including contour lines . 
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Figure 5.4 GIS plot with Ordnance Survey background showing contour lines 

The GIS system was interrogated to obtain and export the model asset data. The data was 

extracted by "querying" the GIS dataset. The complete GIS data set included large amounts of 

infonnation not required for the hydraulic model such as, for example, many nodes that are 

superfluous to requirements, abandoned pipes and text and graphics which are not used in the 

model. The query was designed therefore to extract only the minimum detail essential for building 

the hydraulic model. This included: 

Pipes - Co-ordinates, length, diameter, material type, age. 

Valves - Boundary, pressure reducing, pressure sustaining, non-return aq.d their 

co-ordinates 

Pumps - Co-ordinates 

Service Reservoirs - Co-ordinates 
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and any other element that had an impact on the network model. The query also determined 

where nodes were placed in the model. Not all nodes in the GIS were transferred to the model. 

The higher the number of nodes the longer the simulation takes. 

Figure 5.5 shows how the query chose only nodes that were essential for the model, for example, 

where a pipe diameter changes or where two or more mains connect to each other. The green 

spots are the nodes chosen for the model. The diagram shows there are elements such as hydrants 

(red circles) that have not been turned into model nodes. This process allowed the production of a 

simple model schematic of the network that was then used for the planning of the rest of the model 

build and calibration process. 

Figure 5.5 Example nodes chosen for hydraulic model 

The model schematic was used to allocate properties to appropriate model nodes. Level 

information for the nodes was acquired partly from the GIS system and partly by using the as 
contour information to extrapolate the node levels. Data for elements such as pumps and service 

reservoirs was obtained from a diversity of data sources including manufacturers information, 

physical measurement and technical drawings. All this data was manually entered into the model 

via the graphical user interface. Figure 5.6 shows the data entry box for a pipe. 
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Figure 5.6 Data input box for a pipe in the model 

Infonnation that had not yet been entered onto the GIS system was obtained from the teams 

responsible for the day-to-day operation of the networks. Where new assets had been added, such 

as housing, ground and hydrant levels were obtained by using laser-levelling techniques. 

5.1.2.1.3 Pipe Roughness Coefficients 

Once the static asset data had been collated, it was necessary to estimate the internal condition of 

individual water mains in order to determine a friction coefficient for the head-loss fonnula. This 

was achieved by taking into account the material, age and diameter of each main and any 

infonnation regarding relining or other rehabilitation work. Each time a repair is undertaken, pipe 

samples are removed so an accurate assessment of condition is possible. Where data was 

unavailable, pipe samples were taken specifically for obtaining accurate friction coefficients. 

Through this process, quality infonnation was acquired to provide an accurate assessment of 

friction coefficient for the majority of pipes in the system. Groups of pipes in a particular area of 

the network with a given size and material were allocated the same friction coefficient. However, 

coefficients were varied for pipes in different parts of the network to allow for different rates of 

degradation due to water chemistry or other factors. The mains condition can be rep·resented by 

one of two factors depending on which head-loss fonnulas are utilised by the hydraulic engine. If 

the Colebrook-White relationship is used then a ''k'' factor is required. If Hazen-Williams 

equation is used then the coefficient is called a "C" value. For this study Hazen-Williams and "C" 
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values were used, as it has been shown to be the more appropriate for the sizes of mains modelled 

and their internal condition. Figure 5.7 depicts the Hazen Williams formula. 

G =3.58821x10-6.C .d2.63 

Where:-

d = diameter in mm 
L = length in m 
C = Hazen-Williams Coefficient 
G = Conductance 
Q = Flow IS·1 

hj = head upstream in m 
hi = head downstream in m 

Figure 5.7 Hazen Williams Formula 

Other heights were obtained from plans of, for example, service reservoirs and the pipe work 

associated with them. The rest of the levels were taken from Ordnance Survey maps using 

contour lines, extrapolation and knowledge of the depth of the mains in the ground. 

Once the static model data had been compiled it was required to input known performance data 

that have a significant impact on the hydraulic performance of the network. This included, for 

example, the dynamic data such as zone inflows and exports, large industrial users and domestic 

demands. The dynamic data was collected as part of an extensive field test. 

5.1.3 The Field Test 

Field test data included measurement of flow and pressure at specific locations across the network 

(Chapter 4 - Figure 4.1). Flows were measured to provide data with which to undertake a demand 

analysis and pressures were measured for model calibration purposes. Both flow and pressure 

measurements were used for model calibration purposes. (Section 5.1.4). 
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The exercise produced a data set that reflected the perfonnance of the network over a snapshot of 

time, i.e. the data was only relevant to the network configuration prevailing at the time the field 

test was undertaken. 

5.1.3.1.3 Flow Data 

Flow data for the model was collected from a variety of sources. These are detailed below. 

5.1.3.1.1 Zone Inflows and Exports 

All Leakage Control Zone inflows and exports were measured by flow meters or insertion probe 

flow meters and recorded by data loggers. Flow was also recorded at inlets to sub-zones (parts of 

the network isolated from the rest by a single device such as a pressure-reducing valve) where 

possible. A typical days data from all metered locations was then used to determine the industrial 

and domestic demands. This was achieved by allocating all the supply inputs onto the model, 

making an allowance for all measured demands and applying a demand analysis that used an 

estimated domestic demand along with nodal property allocations to calculate the domestic 

consumption profile and hence the overall nodal demands. The remaining ''unaccounted for" 

water was assumed to be leakage. The leakage volume was then allocated to all demand nodes 

proportionally to the number of properties at the nodes. 

Four basic demand profiles were allocated to nodes. Large industrial, major industrial, domestic 

and unaccounted for water. Unaccounted for water is assumed to be leakage but undoubtedly 

contains some legitimate demand. These standard demand profiles were ''nonnalised'' and 

factored by the average node flow in the model. The profile shapes were derived by the Water 

Research centre and are used by most (British) water companies. 

5.1.3.1.2 Industrial Demands 

All customers taking flows in excess of 400 m3 per annum, or those who have an unpredictable 

demand are metered as they can have significant impact on the hydraulic operation and 

perfonnance of the network. This type of consumption, nonnally industrial, tends to have the 

same usage profile every day, based on type of business, and so can be was imposed on the model 

as a standard demand curve at the appropriate model node. There are 5 different shapes of profile 

for this type of nonnalised demand. As an example, Figure 5.8 shows a typical industrial "10-

hour" flow profile. 
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Figure 5.8 A typical industrial demand profIle (10 br) 

All the metered customers were allocated a normalised profile of this kind in the hydraulic model. 

The overall demand allocated to this user type was adjusted by factoring this profile up or down as 

indicated necessary by the previous 12 months data. 

However, where the user was unpredictable or had very high flows, for example a major industrial 

user (usually >10,000 m3/annum), actual measured data was used to generate daily demand 

profiles. 

5.1.3.1.3 Domestic Demands 

Domestic demand was based on number of properties and occupancy rate using 132 litres per 

person per day. For example, if a node had 10 properties allocated to it and each property has 3 

residents the demand allocation was 10 x 3 x 132 = 3960 l/day. This value is sometimes adjusted 

for socio-economic groupings, although the primary information is now taken from domestic 

consumption monitors. As with the industrial demand a normalized profile was assumed and was 

factored up or down with the factor determined from the demand analysis. Figure 5:9 depicts a 

typical domestic demand profile . 
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Figure 5.9 A typical domestic demand profIle 

Unaccounted for Water 

Unaccounted for water was allocated at a flat rate across all demand nodes. The amount allocated 

at each node was detennined by the demand analysis. 

These nonnalised demands and measured data sets were allocated to appropriate nodes in the 

model and were used to "drive" the hydraulic simulation. Figure 5.10 shows a list of typical 

demand profiles for a model. 
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Demand Profile Time Series list 13 

Demand profiles New 

Number Name f.dit 
001 UFW 
002 HOUR24 Qelete 
003 HOUR16 
004 HOUR1O 
005 FARMS 
006 HOLS 
007 DOMET1 
008 DOMET2 
009 HSEDEM1 

OK Cancel Help 

Figure 5.10 A typical domestic demand profile 

5.1.3.1.4 Pressure Data 

Pressure data was collected form a variety of sources and these are detailed below. 

5.1.3.2.1 DG2 logged data 

There is a statutory requirement placed upon water companies to maintain minimum water 

pressure standards of service for their users and to report failures to comply. This is called DG2 

reporting because water companies have to report on a series of performance issues to the Director 

General, Water, and each performance indicator is prefixed with DG. DG3, for example, is 

unplanned interruptions to supply. 

Low-pressure areas were present within the study network at the onset of this project. One 

example was the streets around Bracken Bank Service Reservoir where high flows caused by bulk 

water transport combined with the effect of corroded mains generated high head loss in the water 

mains. 

As part of the standards of service monitoring exercise, DG2 data loggers recording pressure 

measurements were placed at critical nodes within each LCZ. DG2 loggers are usually located at 

the highest elevation points in a leakage control zone although, in some cases, properties are 

placed at risk of low pressure due to poor main conditions rather than because of their elevation. 
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The D02 pressure data was downloaded regularly to a central database and this data was used in 

the project by identifying the nodes corresponding to the D02 logger locations in the model, 

predicting pressures for these locations and comparing the values as part of the model calibration 

process. (Section 5.1.4). 

5.1.3.2.2 Low pressure register 

A database of those properties identified as being "at risk" of experiencing low pressure is 

maintained by water companies. The properties are identified from local knowledge, modelling 

studies, and customer complaints about low pressure. The number of such properties in the study 

network at the start of this project was found to be 203. 

5.1.3.2.3 Other pressure data 

As well as the above two methods of data collection an average of 20 pressure loggers were 

located in each Leakage Control Zone in order to obtain sufficient data to undertake the model 

calibration procedure. The pressure loggers were distributed evenly across a zone and usually 

located on fire hydrants. An accurate elevation for each node where pressure was measured was 

obtained using laser-levelling techniques. 

5.1.3.3 Data Smoothing 

The data used for model calibration was pre-processed using a bespoke software package called 

LACE. LACE imported the measured data files and was used to smooth the data. Smoothing is 

required because the hydraulic simulation engine cannot deal with sporadic changes that cause 

"spikes" in the data. Skipworth,( 1997), showed that these spikes could therefore prevent the 

validation process. 

Figure 5.11 shows a data set before and after 2 levels of smoothing of pressure data. 
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Figure 5.11 Effect of data smoothing 

Figure 5.11 clearly illustrates how the instantaneous measurements containing "noise" can be 

smoothed to minimise the noise whilst retaining the same overall shape time-series profile. Once 

smoothed, the data was stored in hourly intervals (represented by squares in Figure 5.11) 

representing a 24-hr period. 

Following simulation of the network during the model calibration process, these time-series were 

available for comparison by plotting measured (reference) values against simulated (predicted) 

values. Once all the necessary data had been merged within the model file, an initial simulation 

was undertaken to test the integrity of the model. This process automatically created 2 ASCII 

files. 

A * .DAT file that contained all pipe, node and dynamic element data (pumps, 

reservoirs, valves etc.) and demand allocations 

A *.CF1 file - Containing diurnal profiles associated with nodal demands and 

pressure/flow reference data 

Once generated the new model files were subjected to a number of validation 

checks for missing or incorrect data. Any errors were corrected manually. 
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The error checked DAT and CFt files were then re-imported into the simulation programme. The 

resultant model file, * .mdl, was a binary file and therefore contains only binary code so no figure 

showing the fonnat is included. 

In order that the model could accurately simulate the flow and pressure characteristics of the study 

network a calibration procedure was completed. 

5.1.4 Model Calibration 

Calibration was checked by comparing flow and pressure data measured at a number of locations 

in the field against data predicted by the model for the same locations. Figure 5.12 shows a 

flowchart for the model calibration process and highlights the data sources and how they were 

used. 
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Figure 5.12 Model calibration flow chart 

Knowing which nodes had properties allocated, the measured industrial flows, the leakage demand 

profile and the shape of the domestic profile, the demand analysis detennined the domestic 

demand profile and calculated the average demands from the measured zone flow. 

The model uses this infonnation to predict flow and pressure in every node and pipe in the 

network. The calibration procedure is then dependent upon agreement of predicted and measured 

pressures at nodes and in pipes. 

5.1.4.1 Use of flow data 

Measured flow data was used in the following ways: 

A flow into the system can be regarded as a negative demand and therefore allocated to the 

network inlet node(s) in the model. It was possible therefore to impose the measured network inlet 

flow(s) into the model at the inlet node(s). (This was also taken account of during the demand 

analysis). Flows along pipes were used for calibration of for example, reservoir or pump flows. 
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Where data was not already available, flows were also used, for example, to empirically derive 

pump curves, or to determine when pumps switched on and off. Figure 5.13 shows how measured 

flow data for a pump can be used to determine the switching times. It is clear from the plot that 

the pump turns on at 11 am and off at 2 am . 
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Figure 5.13 Measured pump flow 

5.1.4.2. Use of Pressure Data 

Pressure data from the loggers used in the field test was utilised in a number of ways. Like flow 

data, pressure time-series were imposed at sources, for example the service reservoirs, or inlet 

nodes. This ensured the driving force in the model reflected real network characteristics. For the 

parts of the model that were difficult to calibrate, pressures were imposed at nodes immediately 

downstream from pumps, pressure reducing valves and (where necessary) service reservoirs. In 

this way, it was possible to calibrate several small, discreet areas without having to worry about 

the knock on effects of these devices. When the small areas had been calibrated, the devices were 

re-introduced to the model. Any discrepancy between the predicted and measured results was then 

assumed to be due to the devices and the device characteristics amended accordingly. 
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re-introduced to the model. Any discrepancy between the predicted and measured results was then 

assumed to be due to the devices and the device characteristics amended accordingly. 

In order for this process to work it was necessary to impose a recorded flow across the device from 

the node on the upstream side of the device. Otherwise, it would not have been possible to 

calibrate the area upstream of the device. In order to do this the flow across the device was to be 

recorded, this was particularly important when the area downstream of the device had more than 

one feed of water because, not having calibrated the area downstream of the device, it was not 

possible to know what the flow across the device should have been without measured data. 

Pressure data was also be used for calculating pump and PRY curves where required. 

The majority of the pressure data however was used to provide a comparison between predicted 

and measured network pressures. The comparisons were made simple by adding the measured 

pressure time series to the model file. The measured and predicted curves were then be plotted on 

the same graph to easily identify discrepancies. Figure 5.14 shows an idealised comparison of 

measured vs. predicted pressure in a pipe. 
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Figure 5.14 Comparison of measured pressure vs. predicted pressure in a pipe 

There are a large number of graphs associated with the calibration process and, for brevity, only a 

small number are reported here, as shown in Figures 5.15 to 5.17. These demonstrate that the 

model was accurately calibrated 
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Figure 5.16 flow calibration at Highfield Service Reservoir 
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Figure 5.17 flow calibration at Node 6072 

5.1.4.3 The Model Merge Process 

- Measured 

All the leakage control zone hydraulic models were updated in the manner described. The 

individual models were then ''merged'' into a single model of the whole study network. To begin 

with, two leakage control zone models were joined together and checked to ensure the simulation 

results generated were the same to those predicted by the two individual models. Each model was 

then merged in turn and checked, until all the leakage control zone models were combined into a 

single representation of the complete distribution network. Figure 5.18 shows the completed study 

network model topography. 
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Figure 5.18 The study distribution network model 

The merged network model was then used to Wldertake hydraulic analysis of the study distribution 

network by a traditional approach whereby local hydraulic problems are resolved on an individual 

basis and without regard to water quality or surge analysis. 

It was also used as the basis for the new integrated approach promoted by this thesis. In the new 

approach the hydraulic problems are considered in an holistic and integrated way as that included 

simultaneous hydraulic, transient and water quality modelling. 

The manner in which the hydraulic component of the traditional model was applied is now 

described. 
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5.2 Hydraulic Analysis 

5.2.1 Background 

Hydraulic analysis of the study network was undertaken to identify standards of service failures 

relating to flow and pressure. Areas oflow pressure and areas of unnecessarily high pressure were 

identified, and solutions to the problems were designed using a traditional modelling approach. 

The traditional approach consisted of hydraulic analysis that identified areas suffering standards of 

service failure with respect to flow and / or pressure. Then, to reflect current practice, localised 

schemes were designed to correct or reduce the effect of the problems within a leakage control 

zone, one at a time, without consideration being given to the network as a whole. 

However, all significant current network constraints, for example, service reservoir storage, 

pumps, and pressure reducing valves remained in place, and new schemes had to retain these 

assets wherever possible. The configuration of the assets could be changed however, for example, 

the set point on a pressure-reducing valve could be manipulated if required. Connections to other 

mains in close proximity, installation of new pressure reducing valves and partial re-zoning by 

changing the location of zone boundary sluice valves were also considered where appropriate. 

Ordinarily, no modelling of leakage, surge or water quality was undertaken as the traditional 

approach was based on ensuring quantity and continuity of supply rather than quality. However, 

in this case, leakage was modelled to demonstrate the importance of understanding the relationship 

between flow / pressure management and leakage performance. The reference point for the 

leakage analysis was the official leakage figures reported for the zones determined by direct flow 

measurement. The reduction in leakage brought about by the traditional approach to the pressure 

problems was determined. 

The analysis and solution design was then repeated using the new integrated modelling approach. 

The integrated approach was applied differently to the traditional in that, where required, all 

current network constraints were removed other than service reservoirs, the majority of the pipe 

network itself, and the available supply from the water treatment plants. Parameters considered 

included: 
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Pipe C value 

Pipe diameter 

Installation of new mains (minimal) 

Removal of and installation of pressure reduction valves 

Pressure reduction valve settings 

Installation, or change of position, of sluice and boundary valves 

Installation of new pumps 

Objectives also included the addition of the minimal amount of new mains, the use of the 

minimum number of control assets, and to have the lowest possible amount of pumping to 

minimise scheme cost and overall network complexity. 

5.2.2 Hydraulic Analysis - Traditional Method 

5.2.2.1 Low Pressure 

Under nonnal operating conditions, areas of distribution networks may suffer from low-pressure 

problems because of their elevation, or a combination of poor mains condition and sudden rises in 

demand resulting in high friction losses. Areas where the pressure falls below 17 mwc at any time 

during a 24-hour period are deemed to be failing the minimum standards of service defined by the 

industry regulators. 

Areas "at risk" of suffering standards of service failure related to pressure are those locations 

where the pressure falls in a band between 17 and 23 mwc. These areas may suffer failures with 

the required standards, for example, if new customer developments are added to the network or 

when demand is higher than nonnal creating higher flows and head losses within the network. 

5.2.2.1.1 Identification of Low Pressure Areas 

The hydraulic model was used to undertake a 24-hour quasi-dynamic simulation to. predict the 

hydraulic characteristics of the study distribution network under the current operational regime and 

constraints. 
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The modelling software was used to automatically generate a list of all nodes that fall below a 

user-defined minimum pressure at any time during the period of the simulation. This functionality 

was used to produce a list of failing nodes at the time of peak flow conditions. 

The nodes on the list were then investigated and, where possible, solutions to the low-pressure 

problems were devised using a traditional modelling approach. 

5.2.2.1.2 Low Pressure: Results and solutions 

The Individual low-pressure pipes / areas were identified and a solution for each was proposed. 

The solutions were designed using a traditional modelling approach and engineering judgement. 

Figure 5.19 highlights the location of each low-pressure pipe. 
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Figure 5.19 Low-pressure areas within the network 

~, 

The plot highlighted a number of areas within the network that were below the standards 

of service levels all or some of the time throughout a normal 24 hour period. Each area is 

dealt with in turn by identifying the nodes where pressure is lowest, determining the 

magnitude of the problem and then designing a solution for each case. Figure 5.20 shows 

the areas where pressure schemes were undertaken. 
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Figure 5.20 Areas where pressure schemes were undertaken 

5.2.2.1.2.1 Area 1- Zones 716 and 710 

The model clearly showed that properties in Area 1 associated with model nodes A1230 

and A 1231 suffer from low-pressure. The nodes are "at risk" throughout most of the time 

and fail standards of service by a large margin for several hours a day. This was 

confirmed by gathering customer information from the area. 

The model predicted that during peak demand, at 08:00, pressures at nodes A1230 and 

A1231 would be approximately 12 mwc. Figures 5.21 and 5.22 show pressure variations 

over a normal 24 hr period at these nodes respectively . 
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Figure 5.22 Pressure profde Area 1 node A1231 

1bis problem will be exacerbated further at times of abnonnally high or peak annual consumption 

as head loss will increase with increased flow . 
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Solution 

The adjoining zone, 716, was found to have pressures in excess of 140m at the boundary with 

zone 710. Figures 5.23 and 5.24 show the pressure time series at nodes 4070 and 4090 

respectively. These were the nodes of highest pressure close to the zone boundary. 
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Figure 5.23 Pressure time series for node 4070 
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Figure 5.24 Pressure time series for node 4090 
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Because the pipes in zone 710 suffering low pressure were immediately adjacent to a zone with 

very high pressure, 716, it was logical to move the failing nodes into the high-pressure zone. The 

zone was then analysed to determine how best to manage the high pressures. 

The problem was resolved by moving the zone boundary valves in order that the properties 

associated with nodes A1230 and A1231 in zone 710 were transferred into zone 716. 

In order to maintain standards of service throughout zone 716, but to reduce unnecessarily high 

pressures therein, a three-stage pressure reduction model was designed. The solution was arrived 

at through an iterative process involving adding pressure reduction valves at suitable locations in 

the model to and simulating the effects to provide a tiered pressure system that maintained 

pressures around 30 mwc throughout the entire zone. 30 mwc was chosen, as it is not so low as to 

cause standards of service failures even at times of peak demand or unusually high demand. It also 

allows for some expansion of the network should it be required, and provides flexibility of control 

through the adjustment of the pressure reducing valves to fine tune the pressure control over a 

period of time until it reaches the minimum possible without causing low pressure problems. The 

resultant network should then not only comply with standards of service legislation but should 

have a reduced propensity for burst mains because of the lower overall pressure across the entire 

zone. 

The following changes were modelled for the final solution: 

A PRY on pipe 3645 - 3636 with a downstream fixed head of 39m. 

A PRY on pipe 3640 - 4180 with a downstream fixed head of 30m. 

Existing PRY on pipe 3860 - 3870 adjusted to a downstream fixed head of 30m. 

Figure 5.25 provides a visual overview of the 3 schemes. 
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Figure S.2S provides an overview of the whole scheme 

Figures 5.26 to 5.28 highlight the detail of each component part scheme. 
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Figure 5.27 Pressure reduction 2 
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Figure 5.28 Pressure reduction 3 

The closed valve locations required facilitating the three pressure reduction areas are shown in 

Table 5.1 

FROM TO FROM TO 
4000 4005 A1235 A1236 
3990 3995 A1244 A1242 
4015 A1461 A1256 A1237 
3545 3560 A1243 A1242 
3535 3530 A1227 A1225 
3530 3730 A1221 A1220 
3750 3755 A1387 3882 
3810 3885 

Table 5.1 Closed valve locations for Areal pressure reduction schemes 

Following the introduction of the schemes the hydraulic analysis was repeated to determine 

the effect of the changes. Figures 5.29 and 5.30 depict the modelled pressure time series for 

the failing nodes before and after implementation of the solution. 
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Figure 5.29 Area 1 at Node A1230 prior to and after scheme solution 
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Figure 5.30 Area 1 at Node A1231 prior to and after scheme solution 

Before 

The plots clearly demonstrate that the proposed solution would be successful and that the resultant 

pressure profile would be much more stable than was previously the case . 

108 



., 

The same approach was applied to each of the low pressure area to yield local solutions as that 

derived for Area 1. The rest of the results are summarised and, where appropriate, before and after 

pressure plots are shown for each scheme for brevity. 

5.2.2.1.2.2 Area 2 - Zone 710 

Figures 5.31 and 5.32 display pressure time series for the low-pressure nodes before and after 

implementing the solution. The plots clearly show that the proposed solution would be successful 

and pressures would be raised by 4 to 6 mwc. 
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Figure 531 Pressure time series for Area 2, Node AI049 

109 



... 

Area 1 - Node 1049 
29 

~~r---~~U-v----EJ ~ 

t-.......... 
'-.., 

r---

25 
'---1 

'\ Before 

\ l/ -r--- c........... /"-
r---- 'V 

20 

0 12 Time (Hrs) 24 

FIgure 5.32 Pressure time serIes for Area 2, Node AI007 

This is below the target, but increasing or decreasing the downstream pressure of the valve may 

now achieve any desired pressure within the operating bandwidth of the pressure-reducing valve. 

Adjustment can be made to accommodate times of higher demand and the optimum downstream 

pressure can be set for normal demand patterns thereby allowing flexibility of operation. 

5.2.2.1.2.3 Area 3 - Zone 704 

A small area in Zone 704 that is part of an area that is already pressure reduced was identified by 

the model as having pressures that fell to 14m at peak: flow conditions. 

Figures 5.33 and 5.34 show the pressure time series plots both before and after implementation of 

the proposed solution. It can clearly be seen that the solution lifts the pressure significantly . 
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Figure 5.33 Pressure time series for Node 1284 
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It is clear from the plots that the solution removes the low-pressure problem although the resultant 

profile is a little on the high side of optimal. Although the resultant pressure is greater than 50 

mwc, this is acceptable for such a low number of assets under this traditional approach. 

5.2.2.1.2.4 Area 4 - Zone 713 

The low-pressure nodes in Zone 713 are located on the boundary with Zone 701 (not modelled as 

part of this study). They are at a higher elevation that the rest of the zone and as a result suffer 

from low-pressure at times of high demand. The model indicated that pressures fell to below 20 m 

at peak flow. 

Zone 713 is fed from Highfield Service Reservoir via a recently laid 315 nun main and the 

majority of the mains within the zone have undergone refurbishment. However, the connections 

into the new main were not refurbished when the rest of the mains were scraped and lined. As a 

result, there is significant head loss through these connections at periods of high flow. 

Refurbishing these poor condition connections would undoubtedly improve the situation. 

However, if more significant increases in pressure are required then, because of the elevation of 

the streets in question, rezoning them into the adjacent higher pressure Zone 701 is the only other 

viable solution. Due to the fact that Zone 701 is not part of the modelled area for this study, this 

solution can only be hypothesised rather than demonstrated by the model. 

5.2.2.1.2.5 Area 5 - Zone 702 

Area 5 is fed by a service reservoir that has a bottom water level of 265.7m. Many areas of the 

zone are at elevations significantly below this and hence pressure reduction is already used 

extensively. In the lowest lying parts of the area pressures, without pressure reduction, would be 

in excess of 100m. 

Figure 5.35 shows one of the higher-pressure areas within the zone without pressure reduction. 
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Figure 5.35 The higher pressure area within Area 4 without pressure reduction 

With pressure reduction, these pressures are reduced to approximately 5Om. However, at the end 

of the main leading up to node 6038 there is a demand that is at an elevation such that, in when the 

pressure reducing valve is in operation, the pressure drops to 8m at peak flow at this point. It is not 

possible to re-adjust the PRY setting to increase the pressure to this highest property, without 

significantly increasing pressures throughout the pressure reduced parts of the zone thereby losing 

the benefits of the scheme. In order to resolve this, it was necessary to install a small booster 

pump to feed the demand as well as the pressure reduction scheme. 

Following implementation of all the schemes, the model was used to identify the results. Figure 

5.36 shows the remaining areas suffering low pressure highlighted in red, and 17 to 23 mwc in 

green . 
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Further investigations of these sites show that some are the mains directly beneath service 

reservoirs or in tnmk mains where no customers are connected so there are in fact no standards of 

service failures on these mains. However, there remain a number of sites where pressure is 

unsatisfactory all or some of the time and a whole area of the network that could be at risk of 

failure. Further work would be required to resolve these remaining problems and the resultant 

schemes could be complex and would not be likely to be cost effective due to the small benefit that 

would be gained for the capital outlay necessary 

5.2.2.2 High Pressure 

A significant number of properties within the study network were identified as suffering from 

pressures over 60 mwc and, in some cases, over 140 mwc. The cause of such high pressures is the 

topography of the area with ground levels ranging from 90m to 280m. 

High mains pressure in a distribution network is undesirable because of the effect on leakage and 

the increased likelihood of causing bursts. Once a leak occurs, the rate of water loss increases in 

relation to the pressure in the mains. If water escapes through a burst at high pressure there is high 

probability damage to the surrounding geographical area and properties in the vicinity. 

5.2.2.4.1 Identification of high pressure areas 

The model was used to highlight those areas of the network where the highest mains pressures 

were located and discussions were held with operational staff to identify areas of particular 

concern with regard to excessive mains pressures. 

Figure 5.37 shows the areas of the distribution network broken down into three pressure bands to 

highlight those areas with pressure in excess of 50 and 100 mwc. 
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5.2.2.4.2 High Pressure - Results and solutions 

5.2.2.4.2.1 Area 2 - Zones 711 and 709 

The mains pressures in the majority of Zone 711 and in the Eastern half of Zone 709 were, on 

average, greater than 80m (The West of Zone 709 is pressure reduced and fed from Zone 713). 

These two areas contain a large number of properties and a large number / length of pipes and 

hence, as well as removing unnecessary stress form the pies and fittings, lowering pressures within 

them would have a significant effect on reducing leakage levels in the study network. 

Zone 711 is fed from Bracken Bank Service Reservoir via Zone 710. The zone inflow meter is on 

the only open connection between 711 and 710. The Eastern half of zone 709 is fed from zone 

711. The highest properties in Zone 711 have pressures of approximately 50 mwc at peak flow 

and, due to the presence of blocks of flats at this location, it is necessary to maintain these 

pressures in this part of the zone to ensure demand is met at the highest property. 

Figures 5.38 and 5.39 show the high-pressure time series for two typical nodes. 
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Figure 539 High Pressure time series at Node A2134 
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Solution 

The solution involves two pressure reduction schemes. A primary scheme located at the 

connection of zones 710 and 711, and a secondary scheme that reduces pressures further to a sub 

section of zone 709. 

Figure 5.40 provides an overview of the scheme(s). The details can be seen in Figures 5.41 to 5.43. 

Figure 5.40 Overview of pressure reduction schemes for Area 2 
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Figure 5.43 Detail 3 for Area 2 pressure reduction scheme 

The primary pressure reduction scheme reduces downstream pressures by 45 mwc. It was 

recommended that a flow modulated pressure-reducing valve be considered here due to the large 

variations in flow through zones 711 and 709 and hence a variation in the frictional head losses 

observed at the extremities of the zones. A flow modulated pressure reducing valve controlled by 

a remote pressure signal would allow for these variations maintaining a constant pressure at the 

critical point in the pressure reduced area. 

A second PRY was installed in zone 709 to replace the existing pressure reducing valve. It was 

designed to reduce pressures in the area by a further 20 mwc. 

In order to maintain adequate pressure to highest properties, a re-zoning exercise was also 

modelled such that a non pressure reduced feed to the critical area was maintained, and a valve 

closed downstream of the properties to isolate this feed from the pressure reduced area. 

It was predicted that some nodes near the boundary between zones 710 and 711 that were within 

the proposed pressure reduced area, were at risk of experiencing low-pressures due to their 

elevation. It was therefore necessary to move the boundary valve locations between 710 and 711 

such that these higher elevation nodes were incorporated into zone 710. 
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The details of the changes made in the model to simulate the changes were: 

PRY installed on pipeA2001 - A2002 with a downstream setting of 45 mwc. 

PRY installed on pipe A3005 - A5465 with a downstream setting of 30 mwc 

Existing PRY removed from pipe A2130 - A5448 

The associated valve changes are listed in Table 5.2 

Valves From To 
closed 

A2150 A2166 
A2151 A2150 

Valves From To 

opened 
A5486 A5484 
A5463 A5461 

Boundary From To 

valves 

moved A2033 A2045 
A2055 A2057 

Table 5.2 Valve changes for pressure reduction Area 2 

The simulation predicted that by routing the water to supply the flats by rezoning them, large head 

losses of over 10 mwc would occur at peak flows. These head losses are due to a section of main 

in the new flow route being in poor condition. To prevent these low-pressure problems, it would 

therefore be necessary to replace or refurbish this main when the proposed pressure reduction of 

711 and 709 was implemented. Figures 5.44 and 5.45 show the 24-hour plots of the pressure 

variations at typical nodes before and after the implementation of the pressure reduction scheme. 

A reduction in mains pressure of between 45m and 35m is clearly apparent. 
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Figure 5.44 Pressure time series Node A2134 before and after pressure reduction. 
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Figure 5.45 Pressure time series Node B3265 before and after pressure reduction. 

The average mains pressure in Area 2 was reduced from 84m to 47m. 
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As in the previous section, because all the schemes are local and designed on the same principals 

as those for Area 2, the rest of the schemes are summarised for brevity with plots showing the 

resultant pressures following implementation of the pressure reduction schemes. 

5.2.2.4.2.2 Area 1- Zones 716 and 710 

This scheme was detailed in section 5.1 because it was part of a scheme to remove low-pressure 

problems. Figures 5.46 and 5.47 show the 24-hour plots of the pressure variations at these 

locations both before and after the implementation of the pressure reduction scheme. 
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Figure 5.46 Pressure time series showing effect of pressure reduction Node 4090 
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Figure 5.47 Pressure time series showing effect of pressure reduction Node 4070 

The reduction in mains pressures by approximately 70m is clear and represents a considerable 

improvement. . 

5.2.2.4.2.3 Area 3 - Zone 71 0 

The model predicted that an area of Zone 710 experiences average mains pressures of over 6Om. 

At minimum flow conditions these pressures approach 7Om. 

A pressure-reducing valve was installed on the 6 inch main between Nodes A1084 and A1080 to 

reduce the downstream pressures by approximately 30m. The downstream setting of the valve to 

achieve this was 35 mwc. In addition, a number of valves were closed to isolate the area from the 

rest of zone 710. Figures 5.48 and 5.49 show the 24-hour plots of the pressure variations at these 

locations before and after the implementation of the pressure reduction scheme. The reduction in 

mains pressures of approximately 35m is readily apparent. 
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Figure 5.48 Pressure time series showing effect of pressure reduction Node 1084 
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Figure 5.49 Pressure time series showing effect of pressure reduction Node 1080 
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Area 4 - Zone 706 

An area in Zone 706 had an average mains pressure of over 60 mwc, and in some locations 

pressure was over 120 mwc. However, some properties in the zone had pressure of 40 mwc or 

less due to their elevated positions. 

A solution was designed to reduce the highest pressures whilst maintaining the necessary pressure 

for the nodes situated at the highest elevations. 

A two-stage pressure reduction scheme was found to be suitable. The first pressure-reducing 

valve lowered the downstream pressures by 35 mwc. A second pressure reducing valve was then 

installed that lowered pressures in the North of the area by a further 25 mwc. 

Figure 5.50 shows the pressure at node 2985 that is in the area fed via the second pressure 

reducing valve. Pressures in this area have been reduced by over 60 mwc. 

Figure 5.51 shows the pressure variations at node 2925 where pressures have been reduced by 35 

mwc. 
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FIgure 5.50 Pressure time serIes for node 2985 before and after pressure reduction 
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Figure 5.51 Pressure time series for node 2925 before and after pressure reduction 

The plots clearly demonstrate the effectiveness of the solution. 

5.2.2.4.2.4 Area 5 - Zone 706 

The model predicted high pressures for two areas of the network in zone 706. At some nodes 

pressures exceeded 100 mwc. 

The amount by which the whole area could be pressure reduced was limited by a small number of 

nodes that were at higher elevations than the rest. A pressure-reducing valve was installed between 

nodes 1825 and 1827 with a downstream pressure set point of 80 mwc. This resulted in a reduction 

of downstream pressures of25 mwc. 

Figures 5.52 and 5.53 show the time series plots of the pressure variations at nodes 1840 and 1865 

before and after the implementation of the scheme. 
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Figure 5.52 Pressure time series for node 1840 before and after pressure reduction 
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Figure 5.53 Pressure time series for node 1865 before and after pressure reduction 

A reduction in pressure of approximately 15m is readily apparent, as is the smoothing effect of the 

pressure-reducing valve on the downstream pressure. 
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The effect of these schemes on the whole network was then plotted in order to enable a 

comparison with the effects ofthe schemes designed using the new approach (Section 5.3). 

Figure 5.54 shows the original pressure regime over the entire network prior to implementation of 

the scheme, and Figure 5.55 highlights the overall effects of the schemes. 
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Figure 5.54 High pressure areas prior to pressure reduction 
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Figure 5.55 High pressure areas after pressure reduction 

It is clear from the plots that much of the unnecessarily high pressure in the network has been 

removed_ However, much of the network still has pressures in excess of 75 mwc that is putting 

undue stress on the infrastructure and increasing the risk of burst mains. 

It will be seen in the following section that the new approach significantly improves the overall 

pressure regime across the study network. 

5.2.3 Hydraulic Analysis - New (Integrated) Approach 

5.2.3.1 Background 

Most distribution networks have evolved over long periods of time in a piecemeal manner and, as 

shown in the previous section, this leads to complex and difficult operational issues with, for 

example, pressure management in individual network zones. The new approach involved 

investigating a complete reconfiguration of the way that the whole study network was designed 

and operated. The nature of the method means that pressure schemes are designed for the entire 

network as part of a holistic approach and actually become the zones. Unlike the previous section 

therefore, low and high pressures are dealt with simultaneously. 

The existing zone structure was removed from the model of the original network, and the 

operational philosophy re-examined without reference to the existing network configuration other 

than to retain the major assets such as service reservoirs and the majority of the mains 

infrastructure. The reason for this was to develop a network configuration that was based only 
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upon the hydraulic, quality, and system security considerations. In this way, solutions were 

developed purely on their operational merit, and not as a result of piecemeal amendments in 

response to short term requirements or localised problems. 1bis new approach allowed optimal 

utilisation of the resources available within the network boundaries. 

All dynamic elements such as sluice valves, pressure reducing valves, and pumps, were removed 

from the model. Reservoirs and their inlet valves and pumps at water treatment facilities were 

retained, as it is unlikely that replacement of such elements would be considered practicable, 

economical or politically viable. Once all the elements had been removed, the topology and pipe 

geometry were examined in order to identify areas of similar elevation that could be supplied from 

a single service reservoir or trunk main. 

Removing all demands from the network model and setting a global flow factor of zero achieved 

this. Then, when a simulation was performed and a pressure plot of the whole network generated, 

the resulting output highlighted pressure variations due solely to the topography of the network 

and identified areas of similar elevation. 

A principle design factor was the need to avoid the creation of a cascading zone arrangement that 

is a feature of the existing network configuration. There are a number of reasons for this. For any 

operational change, for example adding a pressure reduction scheme to one of the zones, the 

impact of the change has to be taken into account in each of the cascaded zones downstream. 1bis 

can severely limit the operational flexibility and make the design and implementation of effective 

pressure management measures significantly more problematic. 

In addition, for incidents such as pollution ingress, because a cascading system has one zone 

feeding another, it is more difficult to contain an area affected by the pollutant whilst maintaining 

supplies to the other zones. 

Finally, when water has to pass through a number of zones, there is a potential for age related 

water quality problems, especially for those properties located furthest from the source. Because 

of their location towards the end of the supply system velocities will be low and sediments will 

settle in the pipes supplying these properties. The presence of the particulate matter and 

potentially increased biological activity may exacerbate corrosion, generate taste and odour, and 

discoloured or turbid water complaints. In such a situation, the time of travel for the water to reach 

the consumer is likely to be significant. Chlorine levels will therefore be low, resulting in a higher 

potential for biological re-growth. 

132 



An important consideration when modelling the zone reconfiguration was the role of trunk mains. 

For example, there was a 400 mm main connecting two major service reservoirs that was 

transporting relatively small amounts of water, around 12 l.sec-1
• As the main was not used to 

supply any of the leakage control zones it was considered to be an under utilisation of this 

resource, and that there was considerable potential for using this main to supply parts of the 

network directly. 

5.2.3.2 Methodology 

Using the model with only service reservoirs and pipe work present as the starting point, each area 

within the model was considered in terms of the best method of supplying water to it using the 

current system resources whilst optimising the pressure within the area and minimising water 

quality effects by analysing the age of water throughout the entire network.. A plot of the 

configuration of the revised network is provided in Figure 5.56. 
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Figure 5.56 The study network redesigned using the new approach 

The salient features of the network configuration compared to the existing configuration are 

described in the following section. The original network had areas that suffered both high and low 

pressure. The network was built up around a 'spine' of leakage control zones that cascaded into 

one another making pressure management and supply security difficult and in some cases 

impossible. The new approach that led to the solutions in 5.3.3 took a holistic view of the network 

and resolved all pressure problems simultaneously as opposed to the local solutions put forward by 

a traditional approach. 

134 



5.2.3.3 Results and Solutions 

5.2.3.3.1 Oldfield Area 

Twin pressure reducing valves were installed on the 200mm and 230mm mains in Tim Lane that 

supply Howarth in to reduce the downstream pressure to the town by 30 mwc. Within Haworth 

itself, a second pressure reducing valve was placed in the 200 mm main on Sun Street, to reduce 

pressures further for the properties located around Haworth Station at the lower elevations. 

The pressure-reducing valve on the 230mm main at Tim Lane also reduced pressures by 35 mwc 

for the supply to Hill Top booster and the properties leading up to it. 

In the original network configuration, a 4-inch main branched off from the supply to Hill Top 

Booster along Halifax Road. In the new approach this 4-inch main was made to feed along 

Hainworth Wood Road, as far as Parkwood Rise, supplying properties that were formerly part of 

Zone 711. To achieve this it was necessary to insert a 6 inch main with a length of 200m between 

nodes 2485 and A2261 , Halifax Road and Hainworth Lane. 

An existing pressure reducing valve in the 4-inch main on Halifax Road was retained to reduce 

pressures by 60 mwc, this pressure being dictated by the highest elevation properties downstream 

in the Woodhouse Way area. 

As there was no alternative means of supplying Thwaites Brow other than using the original 

regime of Hill Top booster and Hainworth service reservoir, pressure reduction was implemented 

in order to minimise the occurrence of high pressures in this area. 

The 12inch main (twin 12 inch mains for some sections) that runs between White Lane service 

reservoir and Black Hill service reservoir along Keighley Road, was used to supply a number of 

areas along its path. Each of these areas has been individually pressure reduced to deliver the 

optimum pressure dictated by its elevation. The model was amended to reflect installation of 

pressure reducing valves at the following locations: 

On Providence Lane, Oakworth, to reduce pressures by 70 mwc to the propertieS downstream 

close to the River Worth. 

On the 6 inch main on Colne Road, Oakworth, to reduce pressures by 50 mwc to properties in the 

Station Road area. 
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On the 6 inch main on Goose Cote Lane, to reduce pressures by 50 mwc to a relatively large area 

including Harewood Road, Greystones Drive, Valley View and Oakbank Broadway. 

At the junction of Oakworth Road and Wheat Head Lane, two pressure reducing valves were 

added, one to supply the Occupation Lane / Cambourne Way area, and the second to reduce 

pressures by 80 mwc to the area to the North of Wheat Head Lane as far as Fell Lane. 

At the junction of Fell Lane and Westfell Road a pressure reducing valve was added to reduce 

pressures by 100 mwc to an area that includes properties along Fell Lane towards Lund Park, and 

on the Eastern edge of Lund Park that was previously part of Zone 710. 

At the northern end of the 12-inch trunk main near Black Hill Service Reservoir, there is a branch 

that leads down Laycock Lane. In order for this area to be effectively pressure reduced, the main 

feeding the high elevation properties on Braithwaite Edge had to be valved so that it was not 

included in the pressure reduced area. This allowed a pressure-reducing valve to be added on the 6 

inch main on Braithwaite Road that reduced pressures downstream by 60 mwc. 

5.2.3.3.2 Keighley Area 

Significant changes were implemented within the Keighley area of the model. 

Zones 711 and 712 are no longer fed from Bracken Bank service reservoir in a cascading 

arrangement as they were before, but have pressure reduced connections into the trunk main 

between Riddlesden service reservoir and Black Hill service reservoir. One of the advantages of 

the construction of a single model covering the entire study network is that multiple sources are 

included in the model and hence all supply possibilities were investigated. 

In the reconfigured model, Bracken Bank service reservoir only supplies part of the area of the 

existing zone 710 and the properties off Worth Way and along Parkwood Street. The highest 

properties of the existing Zone 710 have been valved such that they are included within the area 

supplied by the pressure-reducing valve off the White Lane to Black Hill 12 inch trunk main 

located at the Junction of Fell Lane and Westfell Road. 

This allowed pressure reduction of the Northern half of the existing Zone 710 by the addition of a 

pressure-reducing valve on the 15-inch trunk main at the junction of Ingrow Lane and Ashbourne 

Road. This pressure-reducing valve reduces pressures by approximately 22 mwc. A second 

pressure-reducing valve was added on the Queens Road 15 inch main to further reduce pressures 
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by 30 mwc to the Worth Way and Parkwood Street area. The 15-inch main was valved off at the 

junction of Bradford Road and Dalton Lane. 

Highfield service reservoir now supplies a modified area of the existing Zone 713 and a significant 

proportion of what was originally Zone 711. Previously, the pressure-reducing valve on Albert 

Street supplied an area of Zone 709. This has been altered so that now the pressure-reducing valve 

supplies water to the northern half of the existing Zone 711 and also feeds back to supply 

properties that were formerly in Zone 713. As a result of these changes, the higher elevation 

properties in former Zone 713 are maintained on direct supply from Highfield service reservoir, 

while those properties of lower elevation have been re-valved so that they are within the area 

served by the Albert Street pressure-reducing valve. 

The area of Zone 709 known as the Albert Street area has been altered so that it now takes its 

supply from the new cross town trunk main that runs between Riddlesden and Black Hill service 

reservoirs. A connection into this new main has been made near the junction of Hard Ings Road 

and Skipton Road. This connection is pressure reduced to maintain the optimum pressure in the 

area it supplies and pressures have been reduced by 130 mwc. 

A second connection into the new cross-town main, already in existence close to the junction of 

Grange Road and Bradford Road has been modelled as a pressure reduced supply that feeds the 

remainder of the existing Zone 709 and all of Zone 712. This includes properties on Aire Valley 

Road, Dalton Lane, Marlow Street and Thwaites Lane, as well as the properties on Bradford Road 

between the River Aire and the Leeds Liverpool Canal. In the reconfigured model, a pressure­

reducing valve on the connection to the cross-town main regulates pressures such that they are 

kept below 50mwc over the whole area. 

Figures 5.50 to 5.52 are network plots of the whole of the study distribution network model 

displaying the pressure variations over the network. In each case the pressure bands are chosen to 

highlight the properties experiencing high pressures within the over 50 mwc and over 100 mwc 

bands. 

Figure 5.57 represents the current network configuration. 
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Figure 5.57 Pressure regimes with original network configuration 
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It can be seen that the current network regime produces a number of areas with pressures in excess 

of 100 mwc. Also, a significant proportion of pipes, especially in central area, experience 

pressures over 50 mwc. This situation is undesirable from a leakage point of view, both in terms 

of the rate of water loss through existing leaks, and also the increased likelihood of bursts due to 

the greater stresses on the pipe work. 

Figure 5.51 highlights the pressure changes with respect to Figure 5.58 seen in the study network 

follOwing reconfiguration of the network regime using the traditional approach. 
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Figure 5.58 Study network prssures following reconfiguration via the traditional method 
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It is clear that the pressure management schemes significantly reduce the number of pipes 

experiencing pressures over 50 mwc and almost eliminates any pipes where pressures of over 100 

mwc previously occurred. 

Finally, Figure 5.59 represents the pressure profile across the study network following 

reconfiguration using the new approach. 
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Figure 5.59 Study network pressures following reconfiguration by the new method 
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The reconfiguration of the network using the new method can be seen to have been similarly 

effective in eliminating the areas with pressures of over 100 mwc but has resulted in an much 

greater proportion of the network experiencing pressures ofless then 50 mwc. 

The advantages of the new approach are a network with much more effective pressure 

management. Removal of the cascading system lead to a more secure supply regime and reduced 

zone interdependence. Changes in pressure management can be implemented much more easily 

and water quality and incidents are easier to understand and control. Since the new approach 

allows for trunk main connections between all the storage reservoirs then bulk transport of water 

can be more easily facilitated. 

5.4 Leakage Analysis 

5.4.1 Background 

In the UK it is common for 20% to 30% of treated water to be lost through leakage (Ofwat, 2001). 

Considering that the UK water Industry supplies 20 billion litres of drinking water per day these 

losses represent a significant environmental and economical impact. As well as the loss of water, 

there is a cost in tenns of damage to infrastructure around the areas of the leaks, including roads 

and buildings, and the cost of power and chemicals required to treat the water. 

Although the mandatory targets set by Ofwat in the late 1980s have now been replaced by self 

imposed industry targets, the water companies still have a statutory duty to conserve water and 

publish details ofleakage reduction perfonnance. 

Two methods were used to determine leakage levels, the leakage index and a pressure dependent 

leakage modelling approach. 
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5.4.2 The Leakage Index 

The leakage index provided a comparison of relative leakage rates due to changes in the average 

zone or network pressure brought about by the proposed schemes. Figure 5.60 shows the 

relationship between leakage index and average zone pressure. (Technical Working Group on 

Waste of Water, Leakage Control Policy and Practice. National Water Council Standing 

Technical Committee Report No. 26, July 1980). It shows an almost exponential relationship 

between increasing pressure and loss of water. 
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Figure 5.60 Relationship between Leakage mdex and Average Zone Pressure 

Average network pressures were calculated for each of the models of the study network i.e. the 

model of the network in its original configuration, the model of the network after schemes 

designed by traditional methods, and the model reflecting the zone reconfiguration designed by the 

new integrated approach. 
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This was done by importing simulation output data from the models into a spreadsheet and 

averaging the pressure, at time of minimum flow, i.e. when pressure is highest, at each demand 

node. The results of these calculations are shown in Table 5.3 

MODEL AVERAGE LEAKAGE INDEX 

NETWORK VALUE 

PRESSURE 

Original Model (current network) 65.15m 5l.0 

Pressure Reduced Model 55.65m 42.25 

Reconfigured Model 44.70m 3l.0 

Table 53 Leakage Index Values for the three models 

The ratio of the original leakage index to the two revised index values were then determined from 

the calculated leakage index values. 

Pressure Reduced Index = 42.25 0.828 

Original Model Index 51 

Reconfigured Index = 31 0.608 

Original Model Index 51 

The figures indicate that in the case of the traditional approach model, the expected leakage rate 

will be 0.706 of its original value and for the new approach model the value would be 0.608 of the 

original leakage rate. 

The leakage rate in the original study network was estimated to be 20% of the total consumption. 

The total daily consumption is 16,000 m3 per day, therefore 3,200 m3 of water are lost each day 

due to leakage. The traditional approach would reduce this to 2650 m3 
, and the new approach to 

1946 m3
. 
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5.43 Pressure Dependant Leakage 

For a leak of fixed size, the higher the pressure at the location of the leak, the greater the rate of 

leak flow will be. It is therefore useful to compare relative leak flow rates, for leaks of constant 

diameter at a number of different points within the network before and after network changes to 

observe the effects of pressure reduction. 

The rate of pressure dependant leakage through an orifice of specified diameter at a number of 

different nodes within the network was therefore determined using the three models i.e. current 

network configuration, the network modified by traditional approach, and the model of the 

network reconfigured by the new approach. Three leaks were introduced into each of the 

pressure-reduced zones (9) within each model. Their locations are shown in Figure 5.61. 

Figure 5.61 Leak locations for pressure dependent leakage 

The leaks were all given the same nominal diameter (IOmm). For each model, a 24-hour 

simulation was run and a plot of the predicted leak flow for selected nodes was generated. 

A summary of the results can be seen in table 5.4. 
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Leakage Node Maximum Leakage flow rate I.see-I
) 

Control 
ZONE 

Original Traditional New approach 
network approach 

704 1415 1.79 1.73 1.23 

704 1638 1.16 1.16 1.15 

704 1445 1.73 1.31 1.18 

706 1940 2.01 1.72 1.23 

706 3165 2.29 1.57 1.57 

706 2885 1.76 1.22 1.22 

708 565 2.06 2.05 1.44 

708 845 1.83 1.8 1.15 

708 615 1.81 1.8 1.12 

709 A5460 1.73 1.18 1.24 

709 A5500 2.03 1.14 1.19 

709 A5051 1.41 1.31 1.34 

710 Al125 1.74 1.25 1.46 

710 A1315 1.68 1.68 1.4 

710 A1399 1.38 1.35 1.35 

711 A2282 1.78 1.73 1.62 

711 A2044 1.77 1.1 1.04 

711 A2122 1.98 1.41 1.34 

712 B3147 2.05 1.52 1.25 

712 B3231 1.74 1.38 1.13 

712 B3258 1.6 1.22 0.95 

713 A4222 1.85 1.86 1.2 

713 A4198 1.79 1.8 1.1 

713 A4058 1.53 1.53 1.53 

716 1085 1.91 1.89 1.32 

716 4090 2.46 1.71 1.57 

716 3730 2.22 1.31 1.18 

Table 5.4 Pressure Dependant Leakage Rates 
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The table shows a significant reduction in leakage flow rate. Figures 5.62 to 5.73 show time 

series pressure dependant leakage flows at specific nodes in the model. 
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Figure 5.62 Time series of leak flow at node 1940 - Original network 
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Figure 5.63 Time series of leak flow at node 1940 - Traditional approach 
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Figure 5.64 Time series of leak flow at node 1940 - New approach 
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Figure 5.65 Time series of leak flow at node 3165 -Original network 
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Figure 5.66 Time series of leak flow at node 3165 -Traditional approach 
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Figure 5.67 Time series ofleak flow at node 3165 -New approach 
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Figure 5.68 TlDle senes ofleak flow at node 3147 - Ongmal network 
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Figure 5.69 Time series of leak flow at node 3147 - Traditional approach 
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Figure 5.70 Time series ofleak flow at node 3147 - New approach 
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Figure 5.71 Time series of leak flow at node 4090 -Original network 
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Figure 5.72 Time series of leak flow at node 4090 -Traditional approach 
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Figure 5.73 Time series ofleak flow at node 4090 -New approach 
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An accumulated total of the volume of water lost due to the leaks placed on the nodes in each 

model, in m3
, were obtained from the simulation output files. For the three models described in 

Table 5.4, the leakage volumes for a typical 24-hour period were: 

for the original network model 

for the traditional approach model 

for the new approach model 

A significant reduction in leakage, particularly in Zones 712 and 709 is apparent for the traditional 

approach model. However, the figures for the new approach model demonstrate that even greater 

improvements were achieved when the study network was considered as whole rather than 

individual zones. These figure are higher than for the Leakage Index method but in good 

agreement with regard to percentage of volume lost. 

5.4.4 Relating Leaks to High Mains Pressure 

High mains pressure puts unnecessary stress upon elements of the network especially pipe work 

and pipe joints thereby increasing the probability of a structural failure or seepage. 

? mains bursts were repaired in the study network between June 1996 and June 1997. These bursts 

represent a significant cost in terms of lost water, the manpower required to find the bursts and 

repair them, and possible compensation payments for damage caused by the escaping water. 

Figure 5.74 shows the pressure levels with the original network configuration. In this 

configuration, there is a significant proportion of unnecessarily high pressure. Superimposed upon 

this plot are the locations of mains bursts, taken from maps of burst occurrences plotted on a GIS 

system. 
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Figure 5.74 Burst data overlaid on original network pressure plot 

There is an obvious correlation between the occurrence of bursts and the location of high-pressure 

mains. Figure 5.75 shows a similar network plot (the pressure band divisions are the same), of 

predicted values following implementation of pressure reduction designed by the traditional 

approach. 
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Figure 5.75 Pressure plot of the traditional approach network 

It is clear that the extent of the areas of high pressures is significantly reduced_ Figure 5_76 is the 

same plot for the network reconfigured by the new approach. 
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Figure 5.76 Pressure plot new approach network 

A further reduction in the extent of the high-pressure areas is clear. 

5.5 Summary Remarks 

It has been shown that the new approach produces significantly better results than the traditional 

approach with regard to design of pressure control for leakage management - 23% saving using 

the traditional approach, and 41 % via the new approach. 

It is a logical conclusion that if the network were reconfigured using the new approach it would be 

less prone to mains bursting because of excessive pressure than would the original or that 

reconfigured by a traditional approach. 
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Chapter 6 - Transient Analysis 

6.1 Background 

As well as having a statutory obligation to minimise the effects of pressure transients, (Water 

Fittings Regulations, 1999) the occurrence of transient pressure waves within a distribution 

network is important to water companies both in terms of hydraulic integrity and water quality. 

Previous transient related work has shown that the flow changes that give rise to transients are 

caused by, for example, pumps switching on and off or the operation of valves either to storage 

tanks or in the water mains and can be significant even when surge vessels are present. (Machell et 

al.,1996) 

Significant transient pressure waves are undesirable because of the stress such effects place upon 

the pipe work and other assets, and the resultant increased probability of structural failure 

(Woodward, 1964). Pipe sections have a maximum pressure rating, and a maximum excursion 

pressure, which may be exceeded by the temporary pressure variations created during a surge 

event. Although there is a margin for safety built into the excursion pressure rating, repeated 

infringements impart a "toffee hammer" effect and can lead to structural failure. (Jaeger, 1963) 

Recent work has shown that transient pressure waves can be responsible for sudden increases in 

turbidity. This may be caused by disturbance of sediments and / or biofilm in the network. Keevil 

& Walker, (1995) showed biological material that grows on the internal wall of the pipe being 

disrupted by pressure waves and hence becoming suspended within the bulk flow. This effect 

could be one of the reasons why most water companies have unexplained sporadic bacteriological 

failures. The shock of a pressure transient may also disturb material deposited within a main 

leading to discolouration and unpalatable water. It is therefore desirable to be able to model the 

effects of the operation of dynamic network elements that are likely to generate surge events 

leading to such problems. Even sudden changes in pressure caused by normal network demands 

can lead to increased turbidity from the re-suspension of sediment in the pipe network. Machell, 

1996, recorded this effect. Figure 6.1 shows a turbidity response to the morning peak demand in 

the study network. 
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The modelling software used in this study included routines for transient analysis. These existing 

routines were used to examine the impact of transients across a whole leakage control zone within 

the study network. It is stressed that the author did not undertake any research to improve or 

modify the existing routines but the functionality was used to demonstrate the effects of the 

operation of a dynamic element, a pump, within the study distribution network. The author made 

measurements of pressure at locations upstream and downstream of a pump to compare observed 

and model predicted pressure effects for calibration purposes (6.2.4). 

The software simulated the magnitude and distribution of transient pressure waves generated by 

the operation of the pump. 

The operation of a booster pump was chosen as the event to model. The selection of this booster 

was dictated by the availability of accurate and up to date pump curve data. In addition, 

examination of burst information for the sub system containing the pump, had indicated that there 

were locations where repeated pipe I service bursts had been occurring. 

Burst frequency data was plotted against the areas predicted by the model to be worst affected by 

the surge event in order to identify any correlation. 

The pumping station transfers water, which originates from a service reservoir on one side of the 

network to another service reservoir on the opposite side. A level indicator in the second service 

reservoir controls pump operation. 
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The booster set is part of a discrete sub system of the study network. This sub system was 

therefore modelled separately in order to facilitate efficient analysis. Figure 6.2 shows the network 

sub system, from its source to the booster station, the second service reservoir, and the areas fed. 

Figure 6.2 The sub network used for transient analysis 

Having created the sub network model, a quasi-dynamic hydraulic simulation was run in order to 

provide the appropriate hydraulic description from which to begin the surge calculations. This 

initial set of hydraulic characteristics, in ASCII format, described a snapshot of the calculated 

pressures and flows for all pipes and nodes for the time the pump was switched. 

The booster pump was switched on and off two minutes into the simulation, and the pressure 

waves generated by the event were plotted for a number of selected locations within the network 

where transient effects were manifest. 
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6.2 The Transient Model BuDd Process 

The hydraulic model architecture was designed such that it also provides the basis for transient 

modelling. However, additional data beyond that required for normal hydraulic analysis is 

required to emulate the transient pressure effects of a surge event. 

6.2.1 Pipe Data 

The wall thickness and Young's Modulus or pipe celerity (speed of pressure wave travel) had 

to be allocated for each pipe. This data is based on the pipe material and class and may be 

found from literature (Picliford, 1969). In the model the variables may be allocated in any 

one (or combination of) the following ways: 

1 Globally - a single wall thickness and Young's Modulus or celerity value to every pipe in 

the model. This method is efficient, but is very inaccurate because it takes no account of 

material, pipe diameter or pressure class. 

2 Apply a wall thickness and Young's Modulus or a celerity value to pipes based on the 

diameter of the pipe. Using this method a file (a *.DPD file) containing a table of pipe 

diameters, their wall thickness and associated Young's Modulus is imported into the 

model. This again is a simple, efficient process and is more accurate than a global value, 

but it does not fully take material and pressure class into consideration. Additionally, 

where a model contains a pipe(s) with diameters not included in the *.DPD file, a wall 

thickness' and Young's Modulus value will have to be applied individually or using 

default values. Figure 6.3 shows the basic * .DPD file format. 
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DPD FILE - Created at: 10/24/01 10:40:08 

= Additional Property Data = 

*DAPD 
*DAPD 
*DAPD 
*DAPD 

*STOP 

Pipe ID 

"L-0001" 
"L-0002" 
"L-0003" 
"L-0004" 

Thickness E-modulus Pipe Celerity 
[mml [N/mm21 [mlsl 

10.00 
10.00 
10.00 
10.00 

2.9000e+005 * 
2.9000e+005 * 
2.9000e+005 * 
2.9000e+005 * 

Figure 6.3 A *.DPD file 

3 Individually - Apply specific wall thickness and Young's Modulus or celerity value to 

each pipe. This is by far the most appropriate method but is also very time consuming. 

Every modelled pipe must be cross-referenced against the base data in the GIS system 

(TRAMS) to determine the pipe characteristics, with the characteristics required for 

transient analysis being manually entered into the model at pipe level. 

For this study it was decided to apply all the data manually to every pipe. Tables of Young's 

Modulus and graphs of celerity values that were collated for the purposes of the study are 

shown in Table 6.1 and Figure 6.4 respectively. 
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Pipe Material Young's Modulus 

(N/mml) 

Mild Steel 210,000 

"Default" Pipe 205,000 

Wrought Iron 197,000 

Cast Iron 110,000 

Concrete 14,000 

PVC (rigid) 2,800 

MDPE 1,100 

HDPE 1,200 

Table 6.1 Young"s Modulus for a variety of materials 

Celerity of Pipe Materials 

0 20 40 60 80 100 120 140 

Diameter/wail thickness ratio 

Figure 6.4 Celerity of pipe materials 

- Steel 

Ductile Iron 

- Cast ron 

- Asbestos Cement 

- PVC 

Because of the large amount of time required to complete this process, and the expense of data 

collection the transient analysis was restricted to a leakage control zone within the study network 

which contained a pump. The pump was switched on and off a number of times to create the 
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transient effects at a time when the data loggers were recording. Figure 6.5 shows the area of the 

network modelled for the transient analysis. 

!PU1iiii Iocatio4 

Figure 6.5 The area of the network used for the transient model 

6.2.2 Operationallnfonnation (Surge Data) 

Accurate data was obtained by installing high frequency data logging (10 Hz) equipment at the 

pwnping station. The specification and details of the instruments used are detailed in Section 4.3 

Figure 6.6 shows a typical pressure time series measured over a 40-minute period. 
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Figure 6.6 Time series flow data at 10 Hz for a typical pump trip 

6.2.3 Pump Data 

The moment of inertia and impeller diameter were allocated as pump characteristics in the model. 

Inertia data is usually obtained from the pump suppliers but in this study this data was not 

available. The inertia of the pump was derived from information for approximately 300 pumps 

from five different manufacturers used to produce equation 6.1. 

Where: 

1 = 0.03768 (PIN3)0.9556 

I = Inertia of pump 

N= pump speed in 1000's of RPM 

P = shaft power which is given by: 

(6.1) 

P= (Density* g * Rated Flow in m3/s * Rated Head in m)/(Efficiency * 1000) 
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Equation 6.1 is for the pump assembly only and the inertia associated with the motor has to be 

added where: 

I = 0.0043 (PIN)1.48 
motor 

(6.2) 

Where: I to = Inertia of motor mo r 

Experience in the use of the model applied to some 40 networks has shown that values resulting 

from the above equations produce acceptably accurate results for most types of pump when 

substituted into the transient model. 

The run-up and run-down times for the pump were also input into the model. This is important, as 

there is a large difference in transient effect generated by an instantaneous pump start and a pump 

start that comprises of, for example, a three-stage process. The operating regime used in this study 

was an instantaneous switch on / switch off of the pump. 

6.2.4 Model Calibration 

The transient model build on the calibrated steady state hydraulic model that provides a steady 

state representation of the flow and pressure characteristics of the network at any given time. The 

transient model uses this data as the starting point for a dynamic simulation, i.e. the steady state 

hydraulic model provides the flow and pressure at every point in the model at the moment when 

the surge event is initiated. 

To calibrate the model it was required to match the shape and magnitude of the observed and 

predicted pressure plots from each of the logger locations over the simulation period. However, 

unlike steady state hydraulic modelling where the calibration process is well understood and relies 

predominantly on adjusting the pipe roughness coefficients, calibration of a dynamic model can be 

affected by a wide range of factors. These include pipe connectivity, wall thickness, diameter, and 

class, Young's Modulus, pump behaviour (and pump data accuracy), valve definition and 

operation, and network demand variations. Relatively small changes in any of these variables can 

have a major effect on the way in which surge waves are generated and propagated throughout the 

network by the model. 

The approach to calibration of a dynamic model therefore needs to be different to that nonnally 

employed on a steady state model. There are additional considerations when attempting to 
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generate a match between modelled and measured results for a transient model; for example, the 

. shape of the pressure curve needs to be equivalent. Also, the pipe topography, material, size and 

physical condition and the character and behaviour of each of the dynamic assets such as pumps 

and valves affect the rate of damping of the initial pressure change and the superimposition of 

reflected pressure waves on the original wave, amongst other factors. 

As a pipe's celerity value is a function of a number of factors including material, wall thickness, 

bedding, joint flexibility and proportion of entrained air, then adjusting the celerity is a useful 

method for matching simulated model results to measured values when one or more of the above 

factors is not accurately known. 

In order to make result presentation simpler, the sub network containing the booster pump was 

divided into several areas. Figure 6.7 shows the location of each of the areas. 

Figure 6.7 Location of the areas for surge analysis 

A question to be answered concerns 'what is an acceptable level of calibration. for a transient 

model?' Experience gleaned from the use of steady state hydraulic models has led to a typical 

standard of ± 1m for pressure and ± 10% for flow. 

However, for transient models there are no such precedents and hence the calibration procedure 

proceeded by changing variables on a trial and error basis. 
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6.3 Results 

Figures 6.8 to 6.14 show the predicted variations in pressure, following the pump switching off, 

for a selection of the areas listed above. Each plot shows the pressure profiles for a number of 

pipes within an area. 
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The largest magnitude pressure changes were predicted to occur in area 6, immediately 

downstream of the booster. Here, the pressure dropped from 97 mwc to 65 mwc in approximately 

10 seconds. Further downstream from the booster in areas 8, 9, and 11, the magnitude of the 
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pressure variation was smaller, 10 mwc or less, due to the pressure wave being dissipated by the 

pipe work and the damping effect of the service reservoir. 

Upstream of the booster, a pressure variation of between 10 mwc and 12 mwc was observed in 

areas 5, 1 and 2. The pressure was approximately 5 mwc higher at the end of the simulation than 

at the start, this is due to there being less head loss in the trunk main between the service reservoir 

and the booster station when the pump is off than when it is operating. 

Similar plots were generated to demonstrate the effect of the pump starting. Figures 6.15 to 6.21 

show the predicted pressure time series. 
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From this plot it is clear that the surge effects are minimal and it would appear that the bursts 

might be due purely to the very high mains pressures occurring at these locations. The relatively 

small pressure increases due to the pump switching may simply exacerbate the situation created by 

the high mains pressures. 

It would be expected that, for an area experiencing very high mains pressures, bursts would occur 

at different locations within the high-pressure area rather than repeated failures at a single location. 

However, two locations within the booster sub system were identified as experiencing multiple 

mains or service failures in the same locations. Figures 6.22 and 6.23, taken from the maps of 

burst information, indicate the location of these multiple burst sites. 
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Figure 6.23 Location of Multiple Burst Occurrences - Elm Tree Close 

The first location is in the Long Lee area of Thwaites Brow, and comprises Elm Tree Close and 

Willow Tree Close. Over 30 repeated service failures have been recorded here, indicating that the 

failures are linked to system operation rather than to static mains pressures. 

Plots of the transient pressure variations generated for the 2 nodes most closely corresponding to 

the burst location can be seen in Figure 6.24. 
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Figure 6.24 Transient pressure variations at Willow Tree Close and Elm Tree Close 

It is apparent from the plot that, although the amplitude of the pressure change is not great, 

approximately 8 mwc, the pressure traces display a significant amount of high frequency pressure 

fluctuation. It is likely therefore that the repeated sudden pressure changes at these nodes are 

causing unusual and repeated stresses in the service pipes thereby contributing to their failure. 

In contrast, plots for other nodes located a short distance away display a significantly reduced 

amount of high frequency pressure variation. Plots for three of the nodes can be seen in Figure 

6.25. 
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Figure 6.25 TranSient pressure varIations nearby Willow Tree Close 

The second location was upstream of the booster near its junction with Lingfield Drive. Pressure 

variations at this location were generated and can be seen in Figure 6.26. 
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These plots show that significant, high frequency, pressure changes are occurring at these nodes. 

However, plots of the pressure variations at nodes 2390 and 2510, located relatively short 
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distances upstream and downstream of the location of the repeated mains failure, demonstrate a far 

lower frequency of variation, as shown in Figure 6.27. 
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It appears that localised pressure wave reflection is taking place and in some locations these 

reflections are constructively interfering to produce the high frequency fluctuations observed at 

both multiple burst locations. 

6.4 Correlation with bursts and water quality events 

Once the dynamic model had been calibrated, the modelled surge pressure variations and 

frequencies at specific locations were compared against pipe burst and water quality complaint 

information. This was done in order to determine if there was any observable relationship 

between the presence of transients, burst mains and water quality complaints. 

The graphical representation of the burst and water quality data was only located at the street 

centroid, and this proved to be a problem where the street was long or if there were more than one 

main in the street. Where a zone boundary crossed a street, there was no way of determining 
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which of the recorded events applied to which zone. This was further complicated as zone 

boundaries may have changed in the thirty-six month period. 

TRAMS overlays were created that display, in addition to the water network, the following 

information: 

OMS Data 

Damaged Washing 

Discoloured Water 

Milky / Air 

Animals 

Taste / Odour 

Illness 

Other Water Quality 

High Pressure/Flow 

Low Pressure/Flow 

DJRData 

MR30 

MR35 

MR39 

SE30 

SE35 

Repair Main Using Dowel Piece 

Repair Main - Other 

Repair Major Burst 

Repair Existing Service Pipe 

Repair Leak in Chamber 

The above data were displayed as points on a map background of the study network (at best to the 

street centroid). Figure 6.28 is an example of burst data plotted over a background map 

highlighting "clusters" of bursts 
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Data was obtained as an MS-Access text data file created using an application that lists, based on 

Water Supply Zone, Post Code and LCZ, the following infonnation: 

OMS Discolouration Complaints 

OMS Low Pressure Complaints 

OMS Taste/Odour Complaints 

OMS Burst Incidents 

DJR Mains Repairs 

This data contained the actual address where the complaint(s) / incident(s) occurred, and it was this 

data that was used for correlating the recorded events to surge pressures and frequencies. 

Associating individual burst or WQ records to specific surge events proved to be a problem 

because there was no way of knowing exactly when a burst or WQ incident actually occurred. 

The recorded incident time is dependent upon the time that the event was noticed, and the time the 

problem was recorded. 

Given the above, in order to correlate surge effects with bursts and water quality events, the total 

number of burst and water quality incidents within the modelled area were identified. Then, where 

surge effects had been confirmed by logging and or modelling, and where a higher than expected 

number of burst / dirty water incidents had occurred, the surge effects were assumed to be the 

cause. 
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Figure 6.29 shows the pressure variations for the nodes corresponding to these burst locations. 

6.5 Solutions 

In order to reduce the number of bursts occurring in the booster sub network, two measures can be 

taken. 

1 The pressure reduction schemes could be implemented (Chapter 5, Scetion ?). By 

implementing the pressure reduction schemes, the stress placed upon the mains and 

service pipes will be considerably reduced and hence they will be less likely to fail 

under the added pressure fluctuations created by the pump switching. 

2 In order to reduce the surge waves resulting from the pump switching, it is suggested 

that a 'soft start / stop' mechanism is fitted to the booster pump. This will have the 

effect of slowing the rate of change of the pump speed as it starts up or stops and in 

turn this will reduce the high frequency pressure transients. 

A simulation was carried out with the pump defined to start up from zero revolutions to normal 

operating revolutions over a period of 30 seconds. The results of the pressure variations caused by 

such a soft start have been plotted for the locations where previously the high frequency pressure 

variations were observed. As can be seen from Figures 6.29 and 6.30 there is no longer any 

evidence of the high frequency variations. 
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Figure 6.29 Pressure variation at multiple burst site after introduction of soft start pump 
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For those zones where the study has indicated that significant transient effects are present within 

the system, irrespective of direct correlation with burst data, a possible solution to alleviate the 

observed surge problem in the system was detennined by using the model. This will be one of, or 

a combination of, the following: 

Alterations to the pump controls so that run-up / run down times are sufficiently long to 

prevent significant pressure surge being generated. 

Introduction of a surge tank, or surge relief valve, at some point in the system. 

Changes to the way water is taken by large users. 

Alterations to the closure or opening times of control valves. 

6.6 Summary Remarks 

It is clear that the application of the transient model has demonstrated that the impact of transients 

may be significant. These impacts are generally not well understood and the model developed 

allows the user to easily identify where transients may be a problem and allows an assessment of 

the likely magnitude of the problem. Hence the inclusion of a transient model should greatly 

enhance existing operational strategies to minimise their impact and to reduce unnecessary stress 

on the network assets, reduce adverse water quality effects and increase the design life of the 

network. 

Aspects associated with water quality are now discussed. 
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Chapter 7 - Water Quality Analysis 

7.1 Background 

This section of the thesis describes the developments that were made in order to produce a 

mathematical model to determine the spatial and temporal concentration of a substance in any part 

of a water distribution network 

Figure 7.1 again highlights the complex nature of the some of the interactions between network 

asset characteristics, water chemistry and biology and some of the physical properties of the 

materials within the distribution network. 

Dtagram1 

Permeation 

1 /Br 
Additives Microbiological I \ proII1rat1on 

Taste and odour 
Toxicity 
Chlorine 
on um ion 

Physical constraints External 
corrosion I 

L-__ ~~~ Bu~t~~~--~ 

AGEING 

Figure 7.I.Some physical, chemical and hiological interactions within a pipe 

A better understanding of these processes may result in better operational practice. For example, 

should a particular water treatment process fail and allow unsatisfactory water to enter the 

distribution network, it is then possible to predict which consumers would receive the 

unacceptable water and when. Action may then be taken to prevent the customers being subject to 
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the poor quality water by the implementation of an appropriate control, or operational strategy, to 

maintain adequate quality at the consumers' property(s). 

The same philosophy would apply to discoloured or turbid water generated as a result of 

operational changes that might, for example, have disturbed sediment accumulated in the pipes 

over many months or even years. Similarly, discoloured water generated because of corrosion 

mechanisms or any other phenomenon may also be traced as it travels through a network. Also, 

substances utilised to stimulate a chemical or physical process, e.g. the use of phosphate for the 

sequestering of iron, it is possible to determine where and at what concentration the phosphate 

should be introduced into the network to achieve the desired dose at all locations. By modelling 

propagation in this manner, it is possible to determine the optimal location for the introduction 

of remedial chemicals. This alleviates the problem of dosing large amounts of chemical in order 

to achieve a given minimum concentration in one part of the network while customers in other 

areas are overdosed. (In the case of fluoride, the concentration would be limited to 1.0 mg.r l by 

regulation). Dependant on the topography of the network, it may be possible to introduce an 

optimum dose at two or three key locations within the network to achieve a homogeneous 

concentration throughout rather than rely on a single source such as a water treatment plant. 

This approach is particularly important if the network has more than one source of supply 

because of the resulting dilution effects, or if there are exports from the network that result in 

changes in the boundary of mixing between different sources. 

If a substance such as nitrate has a source concentration in excess of that recommended by the 

current legislation, propagation modelling becomes a tool for blending calculations. Work of this 

kind has resulted in resources that had previously been condemned being re-instated by blending 

with other, low nitrate supplies. As well as promoting re-commissioning of abandoned resources, 

this approach can save millions of pounds that would have been spent on engineering schemes 

designed to bring alternative supplies to the areas affected. 

The benefits of such a model are clear. This chapter describes the development of a model to 

predict water quantity, and to demonstrate its applicability it has been applied to a study network 

in which a hypothetical incident where polluting material enters the Service Reservoirs feeding the 

network was simulated and in order to compare contingency plans. 

To model the concentration and transport of a substance, it was necessary to fully understand the 

hydraulic characteristics of the network. This information was obtained from the output file of a 
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hydraulic simulation of the network, as this provided the essential details of network connectivity 

and the velocity and direction of flow in each pipe at all simulation time-steps. 

7.2 Basic Water Quality Equations 

7.2.1 Background 

The basis of the 'substance propagation' model has followed the conventional approach as 

reported in the literature. A number of refinements and additional functions have been developed 

to improve model performance, results presentation and usability. 

7.2.2 The Basic Water Quality Equation 

The concentration of a substance C(x,t) may be given by equation 7.1: 

de de 
de = - dt+- dx 

dt dx 
(7.1) 

Dividing (1) by dt gives: 

de de de dx 
--=-+--
dt dt dx dt 

(7.2) 

For a water particle flowing in the pipe the tenn dx / dt is V, the velocity, hence 

de = de +v de 
dt dt dX 

(7.3) 
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Where: 

V is the velocity of water. 

C is the concentration 

x is position 

t is time 

k is the decay rate constant 

If the change of concentration is a function of the concentration itself then: 

dC 
--=-k Cn 

dt 

Equation (4) is solved by integration. For exponent n equal to 0 and 1 respectively: 

n = 0: C(t) = C(to) - k (t - to) 

n = 1 : C(t) = C (to)e- k 0(1-10) 

Where: 

t is the actual time (s) 

(7.4) 

(7.5) 

(7.6) 

to is the latest reference time (s), corresponding to a known / calculated 

concentration. 

These solutions are only valid for particles / substances flowing with the speed of water, i.e. when: 

dx / dt = V (7.7) 
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7.2.3 Numerical Solution 

The numerical solution is based on equation (7.5) and (7.6) ensuring equation (7.7) is fulfilled. 

The solution takes place on a position / time grid. Figure 7.2 shows a representation of the 

position-time grid. 

Slope = I IV 

o 

x 

o Calculation point 
+ Interpolation point 

Figure 7.2 Position / time grid 

Each pipe is subdivided in a number of calculation points, each of which is described by the 

position x (chainage [length of main] in meters). 

A pipe in the simulation model is aligned with the x-axis, the upstream calculation point being 

located at x = 0, where: 

dx is user defined spacing between calculation points along the x-axis (m). The 

distance from point K to point J. 

~t is the time-steps between successive simulations (simulation time-step). 

Distance between point J and point I. 

V is numerical value of flow velocity of water (mls). 

The solution technique assumes that all concentrations are known at time to (at point K and J). For 

a first order equation, the solution is defined by equation 7.6 along the slope line, therefore the 

concentration at time t + dt can be calculated for point I. 
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The concentration in point A is calculated via interpolation between concentrations at points K and 

J. The concentration at x = 0, and t = 0, must be defined as a boundary condition in a node or 

calculated via a mixing formula from upstream pipes. 

The model must have defined starting values from which to work. In this case, these are 

concentrations at a location at a time zero, or they can be calculated from information upstream of 

the zone inlet nodes if available, or from sub-net nodes. The user defines the time step between 

each simulation. 

Depending on the actual conditions and selected values of dt and dx, the relation dt / dx can either 

be greater or less than the velocity. If Ax / 8t < V, Figure 7.3, interpolation is made at point A. 

o 

Slope= I IV 

x 

o Calculation point 
+ Interpolation point 

Figure 7.3 Position-time grid for Ax /.:1t < V 

If L\x / 8t > V, Figure 7.4, interpolation is made either in space, interpolation point A, or in time, 

interpolation point B. 
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o 
Slope = I IV 

x 

o Calculation point 
+ InterpoLation point 

Figure 7.4 Position-time grid for Ax / At > V 

In the latter case, the optimum choice is made automatically by the programme at each time step 

considers maximum adaption, i.e. a qualitative measure for the relative amount of interpolation, 

where adaption is given by: 

Where: 

Where: 

ADAPT/ON = (1- (f 05) 100% 
(N-Np )· 

N is the total number of calculation points at a time. 

Np is the number of pipes. 

cr is a function of the relative amount of interpolation made: 

_ (~ 2)0.5 
(f - .L.r; 

(7.8) 

(7.9) 

rI is the distance between the actual interpolation point and the nearest (i'th) 

calculation point relative to spacing dx. 

It follows by definition that the adaption is within the interval from 50% to 100%. 
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7.3 Substance Propagation 

73.1 Background 

For conservative substances, for example Nitrate or Fluoride, it is possible, knowing the 

concentration and load of the substance and its point of entry into the distribution network, to 

predict where and at what concentration the substance will be in relation to individual nodes and 

pipes with time. The basic equations were coded into the model such that the conservative 

substance may be propagated through the network. For example, Figures 7.5 and 7.6 shows how 

Nitrate, that enters the network at the supply service reservoir for a period of 2 hours between 8 

and 10 am. 

t~ No det,lY node 4UUO n,tli AOUtS I!!lIi) E3 

Show ,...... r l ogend 

Show... r ~~ 
ShowJogend " y, j"«i261 
H .... oIleveh f12 
~~~ 

NITRATE ~ 
Time : 00·13:00 

t<XX) 
1.(0) . 2<XX) 

2.<XX) · ' .<XX) 

".em . ~<XX) 

S.<XX) · a<XX) 

a<XX) · m<XX) 

10.(0) . 12<XX) 

12<xx) · 1I.<XX) 

lUXX) · 1~<XX) 

16.(0) . 18.COl 
18.00) · 2O.<XX) 
2{).<XX) . 

Figure 7.5 A slug of nitrate ricb water entering the network 

Figure 7.5 indicates how the slug has propagated after 16 hours. 
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Figure 7.6 Propagation of Nitrate through the network 

It is clear to see how the Nitrate is split into a number of separate slugs that propagate into separate 

areas of the network. This explains why it is possible to take water samples from a network that is 

polluted and get results that appear to be perfectly acceptable. It also demonstrates how it is 

possible to sample in a particular location and find everything satisfactory but, on repeat sampling, 

discover polluting material. If this functionality is 'online', or near real time modelling, it is 

possible to detect polluting material very early and take samples from appropriate locations in 

order to determine whether the pollutant presents a health risk or otherwise and to use the model to 

isolate the polluting material with minimum impact on consumers. 

Figure 7.7 is a time series of the concentration of Nitrate at a number of nodes in the model. 
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Figure 7.7 Time series of nitrate concentration at a number of nodes 

It is clear from the diagram that 20 mgll of Nitrate entered the network between 8 and lOam (blue 

trace). The other traces are the resulting concentrations of Nitrate at nodes across the network 

moving away from the source. Dilution effects reduce the concentration and the profile is 

flattened due to dispersion effects with distance from source. This functionality was used to 

calibrate the age and the propagation models by introducing a tracer material (Sodium Chloride) 

into the network and measuring its time of arrival at a number of nodes across the network. In this 

way, it was possible to compare modelled against actual travel times and thereby obtain a 

calibrated model. 

7.3.2. Model Calibration 

The calibration methodology chosen was an adapted / enhanced version of a method tried in the 

USA. Clark et al., and Skov et aI., (1993), used fluoride as a tracer substance to measure travel 

times through a network to demonstrate the effects of storage in the network on water quality with 

a view to better design of storage, its location and management. The method provided data fit for 

purpose but because of data collection and tracer input methods was not accurate enough for the 
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work required in this thesis. The method was therefore amended to ensure that a continuous tracer 

concentration was maintained over a given time period at the point of injection. This resulted in 

the coincidence of the temporal and volumetric centroid of the injection plume, and allowed the 

relatively simple estimation of its temporal centroid. In addition, as the addition of fluoride is the 

source of much controversy in the UK it was decided to use a more acceptable tracer substance, 

Sodium Chloride. 

7.3.2.1 The Tracer Study Location 

Three contiguous leakage control zones 710, 711 , and 712 within the network were chosen for the 

calibration work. Figure 7.8 highlights the location and orientation of these relatively highly 

meshed zones. 

o 

.. .. . . ~ , 

Figure 7.8 The Leakage Control Zones used for the tracer studies 

The zones were fed exclusively from a single Service Reservoir for the period of the study. The 

network was therefore operated as a closed system with a single source of supply thereby 
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eliminating complexity caused by, for example, mixing with water from other parts of the 

network. 

Water quality instruments installed in these zones (Chapter 4) were set to measure and record 

conductivity at 5-minute intervals. The concentration of tracer entering, and within, the network 

was therefore measured as a true time series using the conductivity channel on the water quality 

instruments. Each measurement was time stamped by a data logger and all the data logger clocks 

were synchronised to the system time on the computer controlling the logger set up criteria 

Analysis of the data made it possible to obtain accurate time of travel data to a number oflocations 

with in the network from the point of injection. 

7.3.2.2 The Tracer Solution 

Sodium chloride, (NaCl), solution was chosen as the tracer chemical because of its innocuous 

nature. It has similar physical properties to water. It is easily obtained and, because of its ionic 

nature, when added to water in low concentration results in a measurable increase in conductivity. 

Sodium Chloride solution was being used at the Water Treatment plants supplying the study 

network for on site electrolytic generation of chlorine (OSEC). This opportune supply of food 

grade solution was utilised for the experiment. Samples of solution were taken from the OSEC 

plant and tested to ensure it was of acceptable bacteriological quality. The samples were analysed 

for 3-day and I-day heterotrophic plate counts, faecal colifonns and total colifonns. All proved 

negative, as few bacteria are able to survive the high osmotic potential of a saturated salt solution. 

The solution was confirmed to be 98% saturated using a brine hydrometer. This concentrated 

solution was then diluted down to 15% by weight (42% saturation), using tap water. The solution 

was diluted for a number of reasons: 

At 15 % the volume of solution required did not cause transport, storage or 

pumping problems. 

A 15% solution has a freezing point of -10°C, which would allow the solution to 

stay liquid throughout the coldest temperatures likely to be experienced at the 

Service Reservoir site. (At concentrations above 15 %, very low temperatures 

could cause re-crystallisation). 
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Machell 1994, demonstrated that an increase in conductivity of 30 JlS was required in order to 

show an obvious rise against background variance in the water supplying this network. The 

concentration of Sodium Chloride producing a 30 JlS rise was calculated as 20 mg.r l as NaCl. 

7.3.2.3 Tracer Solution Injection 

The flow out of Bracken Bank Service Reservoir is monitored routinely for leakage monitoring 

purposes in the pipe immediately below the reservoir outlet. The flow data is captured as 15-

minute time series, downloaded, and stored in the modelling system (Chapter 4). Because the 

pump that was used to inject the Sodium Chloride did not have flow proportional control, the 

flow patterns from the Service Reservoir were studied over a number of days to determine if 

there were periods when there was a steady flow in order to maintain a constant Sodium 

Chloride concentration throughout the period of tracer injection. 

The flow data highlighted that a period from 12.10 to 13.10 each day provided the required 

window of stability of flow. Figure 7.9 shows 3 days flow data over this time. 
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Figure 7.9 Flow from Bracken Bank Service Reservoir between 12:00hrs and 13:00hrs 

The average flow for this time of day over a four-day period was calculated to be 50.5 lIsec- l
. This 

figure was therefore the assumed flow leaving the Service Reservoir for calculating the tracer 

solution pump rate. From the assumed flow rate and the required Sodium Chloride concentration, 

it was possible to calculate the required pump delivery rate of7.33 ml.sec-1
• 

The tracer solution was injected into the Service Reservoir outlet main via a Watson Marlow 505 

Du!RL peristaltic pump operating at constant flow rate of 7.33 ml.sec-I against a pressure of 20 

mwc head. Figure 7.10 shows the location relative to the service reservoir and start of the 

network. 
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Figure 7.10 Tracer injection point 

The delivery pipe from the pump was connected to the main via an existing fitting formerly used 

for pressure measurement. An isolation valve beneath the fitting allowed installation of the 

equipment to be carried out under pressure. 

Before the tracer studies were carried out, a trail injection of tracer was undertaken. It was found 

that the water quality instrument at the Service Reservoir site did not give a representative profile 

of the Sodium Chloride profile entering the system. This was due to insufficient mixing time to 

produce a homogeneous Sodium Chloride concentration before reaching the monitor. The next 

site downstream was therefore chosen located on the 12-inch main feeding the network. Traces 

from this site showed that the injection rate was ideal for purpose. 

7.3.2.4.1 Results of Tracer Study 

The conductivity was measured downstream of the injection point at a number of key 

measurement locations distributed throughout the network. This data was recorded and transferred 

to a spreadsheet for subsequent analysis. 

Although there was a water quality monitor at the Service Reservoir three metres downstream of 

the injection point, this was found not to give a representative profile of the Sodium Chloride 

loading entering the system, due to insufficient mixing time failing to produce a homogenous 

Sodium Chloride concentration. An alternative site, Greengate Road (site ID 71007) was therefore 
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chosen as a suitable site to represent the Sodium Chloride profile entering the network. Greengate 

Road site is located on a direct 12-inch main, approximately 1.5 Ian in distance and one hour in 

duration from Bracken Bank Service Reservoir. The rise in conductivity experienced at this point 

was an average of 30 ~ over a period of approximately one hour. The period of increased 

conductivity lasted for approximately one hour, which was the duration over which the tracer was 

injected. The gradient of the increase and decrease in conductivity was near vertical indicating 

maximal mixing and minimum dispersion had occurred, subsequently the rise observed at 

Greengate Road was assumed to be representative of the rise experienced in the main at the point 

of injection. 

Based on the above assumptions, conductivity verses time was plotted for the point of injection. 

Figure 7.11 clearly demonstrates the centroid of the input profile was at 11 :40 hours. 
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Figure 7.llCentroid of tracer input profile 

201 



7.3.2.5 Calculation of Travel Time 

Travel time to a particular measurement site is defined as the time from the centroid of the input 

profile to the time of the centroid of the increased conductivity profile for that site. 

7.3.2.6 Calculation of Centroid 

The rise in the conductivity was analysed at a number of sites downstream of the tracer injection 

point. 

A baseline was established beneath the period of conductivity increase, to indicate what the 

conductivity level would be without the tracer input. This was determined as the base level 

conductivity before the rise and the base level conductivity after the rise. 

The area between the conductivity profile and the base line was divided into elemental strips and 

the area of each strip was calculated in ~ seconds. The sum of the moments of these elemental 

strips about a given point was equated to the total moment of the area enclosed by the two curves. 

In this way, the centroid of period of increased conductivity was found. 

The travel time was found by subtracting the time of the occurrence of the centroid of the input 

conductivity profile, from the time of the occurrence of the centroid of the increased conductivity 

profile at the particular site. 

Figures 7.12 to 7.15 show the conductivity profiles for five of the measurement locations and 

clearly shows how the input profile is modified as it travels through the network. 
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Figure 7.15 Measurement point 4 

An Excel spreadsheet was designed to calculate the centroid. 

204 



7.3.2.7 Interpretation of ProfIles 

In the initial study the 20 mg rise in Sodium Chloride concentration only produced a 30 J.1S rise in 

conductivity, not the 50 J.1S rise as expected. However, in subsequent tracer studies, (the results 

not included in this report) a 40 J.1S rise was detected. The lower rise seen in the initial trial could 

have been caused by one of two events. Either the flow out of the Service Reservoir at the time of 

the initial trial was higher than expected, or the pump tubing had been compressed causing a 

reduction in the pump dose rate. Both these events would lead to a reduced concentration of 

Sodium Chloride in the main, and hence a lower conductivity. Whatever the cause of this lower 

conductivity, the 30 J.1S rise was easily detected by the water quality monitors, and did not cause 

any problem in the data analysis. 

The shape of the conductivity profile observed at anyone site is partially dependent on the flow at 

that site. Whilst the leading or trailing edge of the slug of tracer is passing the measurement site, 

any sudden changes in flow will be alter the gradient of the slope, making the conductivity rise and 

fall either steeper or more gradual. 

The calculation of the centroid is done in an attempt to estimate the time at which the mid point of 

the slug of tracer passes over the water quality monitor. Because the x-axis (time) approximates 

flow in 1. sec-1 , the calculation assumes a steady flow of water over the monitor; any deviation from 

this will affect the accuracy of the result. Although the transit times are calculated to the nearest 

minute, this precision of this method is obviously greater than its accuracy. 

At Oakworth Road (Petrol Station), Site 4, Figure 7.15, where the water is greater than five hours 

old, the conductivity profile changed from a symmetrical rectangular shape to. a more irregular 

peak. One explanation for this could be a decrease in water velocity between 17:00 and 18:00 

hours, prolonging the rate of conductivity decay. 

The site on Oakworth Road is close to a dead end and in an area with many commercial and 

industrial customers. To illustrate the typical flow profile for such a site, Figure 7.15 shows a 10-

hour demand curve used to model this particular pattern of water usage. Being clo~e to a dead end, 

the site would have a low flow, and what flow there was would decrease rapidly between 17:00 

and 18 :00, thus producing the conductivity profile observed. 
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Figure 7.16 10 Hour demand curve used at commercial and industrial premises 

The shape of the conductivity profiles can be affected by a number of other hydraulic conditions in 

the network.: 

A site containing a number of water fractions with different ages could reduce the 

overall conductivity rise. 

Changes in the direction of flow at a site could result in a number of conductivity 

peaks, or a single rise extended over a longer period, depending on the nature of 

flow. 

Sites with older water will tend to deviate more from the input profile, because the 

slug of tracer has been in the distribution system longer and the chances of it 

encountering hydraulic condition with the potential to cause deviations are 

greater. In addition, older water tends to lie at the ends of systems where there is 

increased meshing and mixing of water. 

A highly meshed network would increase dispersion and mixing in the water 

making the profile less symmetrical, this mayor may not affect the overall 

conductivity rise. 
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Calibration of complete water quality models will never be achieved unless all demands are 

measured and accounted for. The assumptions made in the hydraulic model, for example, that a 

particular main supplies ten households, each with a normalised demand, will never be true. 

Accurate calibration in mains with low flows therefore will not be achieved. However, for the 

larger mains in the network, certainly down to six inch, where there is a reasonable flow twenty­

four hours per day, it should be possible to obtain a very good calibration and the lower main sizes 

should provide data that is fit for purpose. 

As the technology improves, and if metering becomes more widely acceptable in the UK, model 

accuracy in pipes with lower levels of flow will improve significantly. This will be aided by the 

fact that the demand currently bulked onto an end node of a main will be 

7.9 Diagnostic Model 

The author developed the functionality of the conservative propagation model in reverse, to 

determine the origin of where a concentration of substance entered the distribution network, the 

Diagnostic Model. 

The Diagnostic model is used for calculating possible points of origin of polluting material. The 

diagnostic module uses the same basic input as the propagation simulation, but simulates 

backwards in time. The simulation is based on a user specified time dependent concentration of a 

substance measured at a single location in the network. 

The measured concentration or concentration profile is used as a boundary condition together with 

the velocity profile from the basic quality simulation. At the start time of the simulation, the 

concentration of the substance to be traced is initialised by setting the values of the measured 

concentration in the downstream end of the inlet pipe(s) attached to the corresponding node. 

Values elsewhere are set to zero. 

The diagnostic model uses the propagation functionality but the simulation is made using 

decreasing time, i.e.: 

Periodic hydraulic conditions to start the diagnostic simulation are taken from the 

end time of the basic hydraulic simulation period 

Periodic hydraulic conditions to end the diagnostic simulation are taken from the 

start time of the basic hydraulic simulation period 
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Existing propagation functions (equations (7.5) and (7.6» were adapted, i.e. the concentration at 

time t-dt is a function of the concentration at time t. 

For a zero order reaction, 

n = 0.' C(t - M) = C(t) - kM 

For a first order reaction: 

Where: 

n = 1 .' C(t - M) = C(t).e Mt 

K is overall decay rate constant (s-I). 

C is concentration (-). 

(7.10) 

(7.11) 

The concentration at a time (t-dt) is then a function of the concentration at time t. The propagation 

functionality solves along the lines in the t-x (time-chainage) plane with slope: 

dx -=v 
dt 

(7.12) 

Because the concentration is the only unknown variable, the linear equation for each calculation 

point between nodes is: 

C
I 
(t) = f(CI (t - dt) + (C2 (t - dt) - cI (t - dt». V ~t) (7.13) 

208 



Where: 

CI and Cz are substance concentration in neighbouring calculation points 

f is the propagation function 

Using the same principal backward in time the equation becomes: 

(7.14) 

Where, fl is the inverse propagation fimction 

Therefore the concentration at time t-dt, C1 (t-dt) was found by solving equation 7.14. 

In the diagnostic simulation, all points are considered as possible points of ingress. The method is 

applied in a loop over all nodes. The solution is found by calculating the concentration of 

substance in the downstream end of each inlet pipe. These concentrations are referred to as Cj in 

the ith inlet pipe. 

If the node is the one with the known / measured time series, Cj is set to the actual value(s) entered. 

Otherwise, Cj is calculated from: 

L,(Qj.Cj) 
Ci=~!.----

Qi 
(7.15) 
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Where: 

Qj is the flow rate in the j,th outlet pipe 

Cj is the concentration in the j' th outlet pipe 

Qi is the flow rate in the ith inlet pipe 

The summation includes all outlet pipes attached to the node and the local consumption. The 

numerical solution method is similar to the one described in section 7. However, for the 

diagnostics module, the simulations are perfOImed backwards in time. 

The Diagnostic model can be used to identify where a substance or a discoloured water event 

originated, or, almost as importantly, where it did not. 

7.4 Basis of the Propagation model 

The propagation model can calculate the concentration of up to nine substances simultaneously. 

However, one of the 'substances', by default, must be age. The diagnostic model can only 

simulate one substance at a time. 

7.4.1 Conservative and Non-conservative propagation, and Age 

All the functionality has been coded into a single model entity and the output depends on what the 

user tells the model to do e.g. how the substances are defined; trace, linear or exponential decay. 

Conservative propagation is a trace substance, non-conservative propagation is linear or 

exponential substance and Age is a growth law using negative linear decay. 

The simulation includes diffusion and convective transport of substances in a network. Further, the 

interconnected changes in concentration of different substances are included. 

The simulation is made via two steps. The first step is a quasi-stationary simulation of the water 

flow in the network using the hydraulic engine. This creates a database that includes the 

calculated velocity for all calculation points, in all pipes, at all time-steps. 

The second step is the simulation of the substance flow. This simulates the concentration of 

substances with respect to time and location. 
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The following asswnptions are made in order to calculate the concentration as a function of 

position and time: 

The decomposition rate of a substance per unit length and per time can be 

described by the term -k A Cn. Further, it is assumed that the decomposition rate 

can be related to the volume of water. 

It is asswned that growth of one substance (B) may be due to a proportional 

decomposition of another substance (A). In other words, it is possible, due to 

chemical reactions, that the concentration of one substance B is increased per unit 

length and per time by the term -ktrans kA A Cn . 

The decomposition of substance concentration along the pipe is ignored (only in 

this section). 

If these asswnptions are combined and defined as the left side of equation (7.2), the basic equation 

expressing the coupled decay / growth of two non-conservative substances A and B is expressed 

as: 

Where: 

a(ACB) + 1 a(QCB) A + (A) - kB C"l ktrans kA CAA at p ax 

A is the cross-sectional area of pipe. 

Q is the mass flow rate. 

p is the density of water. 

CA is the concentration of substance A. 

CB is the concentration of substance B. 

kB is the decay rate constant, kv,n, for substance B. 

nA is the exponent (order reaction) for substance A. 

nB is the exponent (order reaction) for substance B. 

t is time. 

x is the 'chainage' (the accwnulated length of pipe) 
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ktrans is the transformation factor expressing the increased amount of 

substance B relative and due to the decomposed amount of substance 

A (representing the stoichiometry of the reaction) 

With reference to section 7.2, it is seen that the solution to equation 7.16 along a particle path: .:h / 

.1t = V is respectively: 

nB = 0: CB(t) = CB(to) - kB (t - to) - ktrans .1 CA (7.17) 

1: CB(t) (7.18) 

Where: 

t is actual time (s) 

o is latest reference time (s), corresponding to a known / calculated 

concentration 

.1CA is the decomposed amount (concentration) of substance A between 

time to and time t. 

If the last term in equations 7.17 and 7.18 is ignored, and subscript B substituted by A, the 

decomposed amount of substance A due to time is: 

(7.19) 

(7.20) 
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is decay rate constant for substance A. 

The last term in Equation 7.19 or 7.20 is included when condition (a) and (b) below are both 

fulfilled: 

Where 

(a) ~CA > Cmin 

(b) ~CA<O 

Cmin is the minimum concentration of substance A necessary for the 

transformation process from substance A, into substance B, to take place. 

Condition (b) is always fulfilled, when kA > 0, which is the normal case. 

Figure 7.17 and Figure 7.18 show the 0 and 1st order of reaction for a substance provided that no 

interconnected changes are taking place, i.e. where k trans = O. 
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N=O 

Ct = C(to) - Kv,n (t-to) 

100 

KV,n<O 

50 

KV,n>O 

o 
o 50 

Time 
100 

Figure 7.17 Zero order reaction. 

n = 1, Kv,n = +1- 0.05 

C (t) = C (to) - exp (Kv,n (t - to)) 

150 

KV,n<O 

100 

50 

Kv,n> 0 

o 
o 20 40 60 80 100 

Time 
Figure 7.18 I" order of reaction. 

Figure 7.19 shows an example for three substances at a point in the network with zero velocity 

relative to bulk flow (i.e. where there is stagnant water). 
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Figure 7.19. Coupled decay / growth of substances. 

Where: 
n = 1 for all three substances (1 ' st order reaction) 

Cmin = 20 for both substances 1 and 2 

ktrans,1 = (transformation from subs, 1 into subs 2) 

ktrans ,2 = (transformation from subs, 2 into subs. 3) 

kl = 0.0005 

k2 = 0.002 

k3 = 0.003 

In the example, substance 1 decays creating substance 2. When the concentration of substance 2 

exceeds 20 mg.rl , substance 3 is formed via the decay of substance 2. When the concentration of 

substance 2 is reduced to below 20 mg.r
l 

again, substance 3 decays exponentially. The model can 

be used, for example, to determine Trihalomethane residuals or how much nitrate will be produced 

form a given amount of ammonia by nitrifying bacteria (or any other mechanism). 
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7.4.2 Temperature, Pressure and Transport to Pipe Wall 

Temperature, pressure and substance transport from the bulk flow to the pipe wall has been 

included within the model. Temperature and pressure are both assumed to add proportionally to 

the decay rate constants. If equation 7.16 is expanded, the equation that expresses the one­

dimensional conservation of mass for a concentration of substance in water flowing through a 

section of pipe is given by: 

dCB + V dCB 
dt dX 

Where: 

C is the concentration of substance in bulk flow (-). 

t is time (s). 

V is the velocity (mls). 

x is the chainage (m). 

kb is the decay rate constant in the bulk flow (s-l) (Equation 11). 

kf is the mass transfer coefficient (m2/s). 

d is the inner pipe diameter (m). 

Cw is the concentration of substance at the pipe wall (-). 

A, B as indexes, refer to substances A and B respectively. 

The additional terms in equation 7.21 as compared to equation 7.16 accounts for transport of the 

substance between bulk flow and pipe wall. The remaining part of the expression is in agreement 

with equation 7.4 except that kv,n has been added the effect of pressure and temperature as follows: 

kb = kv.n + arT - To) + f3(P - Po) (7.22) 
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Where: 

kv,n is the decay rate constant (user defined) 

T is the measured (or user defined) temperature (OC). 

To is a user defined global reference temperature (OC). 

p is the actual (measured) pressure (mwc). 

Po is a user defined global reference pressure (mwc). 

The user may specify the temperature and, or, pressure to be less than the global reference 

values. This is so the user can define a decay or growth law or positive or negative effects of 

temperature / pressure in same equations. 

The mass transfer coefficient kf (Liou and Kroon.,1987) in Equation (7.19) is calculated from: 

D 
kr = Shd 

Sh = 0.023 ReO.83 SCO. 333 for Re ~ 2300 

0.0668(d / L)(ReSc) 
Sh = 3.65 + 1 + 0.04((d / L)(ReSc) //3 for Re < 2300 

Re = 

Sc = 

Vd 

V 

V 

D 
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Where: 

Sh is the Sherwood Number (Dimensionless). 

Re is the Reynolds Number (Dimensionless). 

Sc is the Schmidt Number (Dimensionless). 

D is the molecular diffusivity of substance in water (m2/s). 

v is the kinematic viscosity of water (m2/s). 

L is the pipe length (m). 

Note that for a particular substance, kris a function of pipe diameter, flow velocity, and 

temperature as kf affects diffusivity and viscosity. Assuming that the reaction of substance at 

the pipe wall is first order with respect to the wall concentration Cw, and that it proceeds at 

the same rate as substance is transported to the wall, results in the following mass balance for 

substance at the wall: 

(7.28) 

Where: kw is pipe wall decay rate constant (mls). 

Solving equation (20) for Cw and substituting it into equation (13) for each pipe in the network 

gives: 

aCB,; + v. acB,; --
at I ax; 

- K B,; CB~ + ktrans K A,; CAA (7.29) 

Where: is a subscript indicating the i'th pipe in the network. 

K is the overall decay constant (S-I). 

Equation (21) is similar to Equation (4) with kA and kB (kv,n) substituted by the overall decay 

constants for substance A and B respectively: 
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(7.30) 

Where: is mass transfer coefficient for the i lh pipe (mls ), (equation 7.18). 

7.4.3 Effect of Variables 

This section provides a sensitivity analysis for the variable parameters within the model. By 

definition, the properties of a conservative substance are such that its concentration does not 

change with time or location other than because of dilution effects. The model therefore does not 

permit the user to apply k values or any other of the factors that would affect concentration via 

reactions or increased decay due to temperature or pressure variations. Figure 7.20 shows the 

substance properties configuration dialogue box. All the variable parameters are greyed out and 

are therefore not accessible to the user. 

Substance PropertIes f3 

~ubstance: IConservative Substance 

Process model ~--""""'''''''''''''''--='''' 

r l.inear r f."ponential r. l race 

Decompos~ion parameter8J 
Q,ecay constant (k) (1 Is): I 
J.!nit: I 
Eventli~s 

Ma~limit: 

Min limit: 

!n~ial default value: 

Physical properties -....,..,....--."",."..,......,.......-~ .... · 

Mglecular dlfusivity Im'M I 
T em!!er ature dependence 11 1'CJ: rl -:,:-::-:~- r 

Plessure dependence 11/mwcJ: I 
T ,ansformation properties .....,.,...-=-""""",,,,,,,,,,-,,,---, 

Translormation factor: 

Minimt.lT1 goncentration: 

Sullsequent substance 10: 

Figure 7.20 The substance properties configuration dialogue box 

OK 

Cancel 

Help 

The model determines changes in concentration of a conservative substance therefore via dilution 

calculations from pipe and node flows obtained from the hydraulic engine. Figure 7.21 shows the 

flow time series for two pipes. Pipe P-0005 has a flow of 411s and P-0006 has no flow at all. 
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Figure 7.21 Time series for 2 pipes - one with and one without flow 

The blue trace shows that pipe P-0006 has no flow. The red trace highlights the 4.0 1. so l flow in 

pipe P-OOOS. Both pipes were given an initial concentration of conservative substance of 100%. 

Figure 7.22 shows a time series of concentration of conservative substance in the two pipes over a 

24-hour simulation . 
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Figure 7.22 Plot of concentration of conservative substance 
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The figure clearly shows that for the pipe P-0006 with no flow, i.e. no dilution, the concentration 

of conservative substance remains constant over the simulation period. The dilution effect in pipe 

P-0005 is clear. The conservative substance concentration is gradually reduced to zero. Although 

the plot looks like exponential decay this is a coincidence brought about by the nature of the 

dilution process in the pipe. 

Figures 7.23 and 7.24 show similar plots for two nodes. The first highlights the flow in a number 

of pipes and nodes and the second demonstrates that the concentration of the conservative 

substance is halved when two equal flows, one with conservative substance and one without are 

mixed at a node . 
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Figure 7.23 Flow time series for a number of pipes 
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Figure 7.24 Reduction of substance concentration by 50% when flow is doubled 

The dilution process can also be seen if an initial concentration of conservative substance is 

introduced into a service reservoir. If the substance concentration is monitored at different 

locations along a path through the network, the dilution and dispersion effects can be observed. 

Figure 7.25 presents time series of concentration at a number of locations in the network that 

clearly shows the dilution and dispersion effects . 

• T imeseries II!!~ f3 
file g raphs Earameter 1ayout 

Kl09 Propagation 
Tracer in SeNice Res eNoir 

TRACER 
~ 

W(ldo - A4IDI 
W(ldo -ASJ61 
W(ldo -!IS:nl 
W(ldo -AS.a:J 
W(ldo -ASBI 

lrnDDD ~------,--------r-------r------~-------.-------. 

mDDD +-~~~~--~",-r-------t-------t-------i------~ 

25JDl !.'DJDl 75JDl 125JDl l!.'DJDl 

Figure 7.25 Substance concentration at a number of locations in the network 
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The conservative substance propagation functionality can be used to follow the progress and 

concentration of a substance through the network with time. Figure 7.26 is a network plot of a 

conservative substance travelling through part of the study network. 
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Figure 7.26 Conservative substance location and concentration 

The model can be used therefore to simulate the movement of polluting material or discoloured 

water to determine which pipes will be affected and when. 

It can also be used to determine the extent of supply from specific sources such as treatment plants 

or service reservoirs. Figure 7.27 shows the different sources of supply and the extent of their 

contribution to the network as a whole for part of the study network. 
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Figure 7.27 Source contributions within part of the study network 

Figure 7.28 shows how this functionality can be utilised to identifY where water travels from a 

single source. 
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Figure 7.28 Identification of extent of supply from a single source. 
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Because age of water simulation is based upon the movement of a particle, it is also conservative 

propagation. However, as the age model is the subject of its own section it is not presented here. 

7.4.3.1 Linear Decay of a Substance 

The properties of a substance that undergoes linear decay are such that its concentration changes 

with time, because of reactions with other materials, and because of dilution effects following a 

zero order process model. The model parameters are user definable. Figure 7.29 shows the 

substance properties dialogue box where the model can be configured. 

Substance Properties f3 

ILinear Decay 

Process model~-----­

r. linear r &"ponential r Irace 

Decomposition parameter-,...-----..., 

Qecay constant (k) [l Is): 0.00003 

[mg/ l) 

Eventlimits---------

!n~ial default value: I 0.00000000 

Physical properties-----------. 

MQlecufar diifusivity [m'/s): 0.20 

T e"'l1er ature dependence [1 rC): 0.00001 

P!esswe dependence [l/mwc): OJKlOOl 

Transformation properties--------. 

T rans!ormation factor: 

Minimum l<oncen~ation: 

SuQsequent substance 10: 

Figure 7.29 The substance properties dialogue box for linear decay 

OK 

Cancel 

Help 

The dialogue box is used to define the identity, the initial default value, the decomposition process, 

and the physical and chemical properties of the substance. The maximum number of substances is 

four and the programmable characteristics for each substance type are described below. 

7.4.3.1.1 Process model 

There are three process model types available in the model, conservative substance (trace), linear 

decay and exponential decay. 

7.4.3.1.2 Decomposition parameter 

The Linear and Exponential process models have a basic decomposition parameter, i.e. a basic 

decay constant, kv,n 
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7.4.3.1.3 Physical properties 

Values can be entered for the molecular diffusivity, temperature and pressure effects. These three 

values are automatically incorporated with the basic decay constant into an actual decay constant 

for the bulk flow. 

It is possible to assign the units of the substance concentration by entering a text string. However, 

this unit is only used as a label for the output data. The calculation is not affected by the choice of 

unit. 

7.4.3.1.4 Transformation properties 

If the concentration of one substance is dependent on the concentration of another substance i.e. 

one substance is transformed into a new substance, a transformation factor can be specified and a 

minimum concentration value. The minimum concentration is the concentration required for the 

transformation to occur and the transformation factor reflects the stoichiometry of the reaction. 

Figure 7.30 highlights a classic linear decay pattern produced from the default settings. 
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Figure 7.30 A linear decay pattern produced from the process model default settings 

The decay constant detennines the rate of decay, i.e. the slope of the line. Figures 7.31 to 7.36 

demonstrate the effect of varying the decay constant. 
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The variance in the decay constant required to produce the changes seen in the figures is six orders 

of magnitude. This makes the decay constant extremely flexible with almost infinite configurable 

values. 

Temperature and pressure can both be accounted for in the model. 
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Temperature and pressure are both assumed to add proportionally to the decay rate constants. This 

is achieved by adjusting KV,n to include tenus for temperature and pressure as shown in equation 

7.31 below. 

Where: 

kb = kv.n + arT - To) + P(P -Po) 

kv,n is the decay rate constant (user defined) 

is the temperature dependency factor 

~ is the pressure dependency factor 

T is the measured (or user defined) temperature (OC). 

To is a user defined global reference temperature (OC). 

p is the actual (measured or calculated) pressure (mwc). 

po is a user defined global reference pressure (mwc). 

(7.31) 

The effect of global reference temperature on the bulk flow decay rate is shown in figures 7.37 to 

7.42. 
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The dependency effect of temperature is also configurable, as the true effects are not yet fully 

understood. This pennits the user to apply a range of effects due to differing temperature and 

pressure and to apply real values when they are detennined. Figures 7.43 to 7.48 demonstrate the 

effect of temperature dependency. 
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Figures 7.49 to 7.54 demonstrate the effect of pressure dependency 
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Reactions with I at the pipe wall are accounted for by inclusion in the model of a pipe wall 

coefficient Kw. 
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Assuming that the reaction of substance at the pipe wall is first order with respect to the wall 

concentration Cw, and that it proceeds at the same rate as substance is transported to the wall, the 

mass balance for substance at the wall can be represented by: 

(7.32) 

Where:kw is pipe wall decay rate coefficient (m.s- l
). 

Figures 7.55 to 7.60 demonstrate the effect of varying the pipe wall coefficientKw 
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As explained earlier, because the mass transfer coefficient kr ,7.19, is calculated using the equation 

Where: 

Where: 

D 
kr = Sh d 

Sh = 0.023 Rl·83 Se°.333 for Re ;::: 2300 

Sh = 3.65 + 0.0668(d / L)(ReSe) fi R 
1 + 0.04((d / L)(ReSe))213 or e < 2300 

Vd 
Re = 

v 

v 
Se = 

D 

Sh is the Sherwood Number (Dimensionless). 

Re is the Reynolds Number (Dimensionless). 

Sc is the Schmidt Number (Dimensionless). 

D is the molecular diffusivity of substance in water (m2/s). 

v is the kinematic viscosity of water (m2/s). 

L is the pipe length (m). 

For a particular substance, kr is a function of pipe diameter, flow velocity, and temperature as it 

affects diffusivity and viscosity. The effect of the molecular diffusivity value therefore will be 

minimal when viewed as an incorporated change in the decay constant %. Figures 7.61 to 7.63 

highlight this. 
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The above effects can be combined to provide more model flexibility thereby making it easier to 

calibrate models for different networks with differing properties. Figure 7.64 shows the combined 

effect of the decay constant and pipe wall coefficient at a temperature of20 DC. 
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Figure 7~64 The combined effect of the decay constant and pipe wall coefficient at a temperature of 20°C 

Figure 7.65 demonstrates the effect of changing the temperature to 30 °c 
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The effect is clear as the decay is seen to increase significantly. Figure 7.66 shows the 

superimposed effect of adding a pressure dependency . 
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Figure 7.66 The superimposed effect of adding a pressure dependency 

7.4.3.2 Exponential Decay of a Substance 

The properties of a substance that undergoes exponential decay are such that its concentration 

changes with time, reactions with other materials following a 1 st order process model, and as a 

result of dilution effects. The model parameters are user definable. Figure 7.67 shows the 

substance properties dialogue box where the model can be configured. 
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Figure 7.67 Shows the substance properties dialogue box where the model can be configured 
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The exponential process model has a basic decomposition parameter, i.e. a basic decay constant, 

kv,n that can be modified by the cumulative effects of a number of other parameters including pipe 

wall coefficient, temperature and pressure. 

Figure 7.68 highlights a classic exponential decay pattern produced from the default settings of the 

linear decay model. 
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Figure 7.68 Classic exponential decay pattern produced using the linear decay model default settings 

The decay constant determines the rate of decay, i.e. the slope of the curve. Figures 7.69 to 7.74 

demonstrate the effect of varying the decay constant at a given temperature and pressure. 
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The change in decay rate constant reduces the slope of the curve and increases the rate of decay. 

The effects demonstrated are over five orders of magnitude thereby making the number of possible 

values of the decay constant almost infinite providing a high degree of model flexibility. 

Temperature and pressure are both accounted for in the model and are both assumed to add pro­

portionally to the decay rate constant. This is achieved by adjusting the bulk flow decay rate 

constant, Kvn, to include terms for temperature and pressure as shown in equation 7.33 below. 

Where: 

kv.n + arT -To) + P(P -po) 

kv,n is the decay rate constant (user defined) 

T is the measured (or user defined) temperature (OC). 

To is a user defined global reference temperature (OC). 

p is the actual (measured) pressure (mwc). 

Po is a user defined global reference pressure (mwc). 

(7.33) 

The decay rate constant in the bulk flow is allowed to be negative due to the last two terms in the 

following equation: 

(7.34) 

In this case the concentration will increase during a simulation i.e. the decay constant is converted 

into a growth constant. The user may over ride this effect by specifying the temperature / pressure 

to be less than the global reference value. The effect of global reference tempemture is shown in 

figures 7.75 to 7.80 
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A temperature chang~ is assumed to add proportionally to the decay rate. However, as this may 

not be the case for all reactions, applying a temperature dependency coefficient can modify the 

effect. This factor changes the magnitude of effect a given change in temperature has thereby 
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making the overall temperature effect completely user definable for any gIVen set of 

circumstances. The effect of the temperature dependency can be seen in figures 7.81 to 7.85. 
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Similar functionality is available for pressure. Figures 7.86 to 7.89 show the effect of the pressure 

dependency coefficient. 
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Reactions with / at the pipe wall are accounted for by inclusion III the model of a pipe wall 

coefficient Kw. 

Assuming the reaction of substance at the pipe wall is first order with respect to the wall 

concentration Cw, and that it proceeds at the same rate as substance is transported to the wall, the 

mass balance for substance at the wall can be represented by: 

(7.35) 
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Where: is pipe wall decay rate coefficient (m/s). 

Figures 7.90 to 7.93 demonstrate the effect of varying Kw 
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The effect of the molecular diffusivity value therefore will be minimal when viewed as an 

incorporated change in the decay constant Kb. Figures 7.94 through 7.98 highlight this clearly. 
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The much larger effects of the other coefficients swamp the small effect of the contribution from 

the molecular diffusivity when combined in the overall decay constant. 
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The above effects can be combined to provide extreme model flexibility thereby making it easier 

to calibrate models for different networks with differing physical, chemical and biological 

properties. Figure 7.99 shows the effect of the default exponential decay constant on a non­

conservative substance at a temperature of 10°C. 
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Figure 7.99 The effect of the decay constant at a temperature of 10 C 

Combining the decay constant and the pipe wall coefficient reduces the substance concentration, in 

the case shown in Figure 7.100, by 1 mgll. 
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Increasing ,the temperature has a significant effect speeding up the rate reaction. Figure 7.101 

highlights the effect of increasing the temperature from 10 to 20 cc . 
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Figure 7.101 The effect of increasing the temperature from 10 to 20 °c 
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If a pressure coefficient is now superimposed, the effect on the overall decay rate is significant. Figure 7.102 depicts 

the effect of increasing the pressure dependency coefficient. 
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Figure 7.102 The effect of increasing the pressure dependency coefficient 

7.4.4 Summary of the Water Quality Model 

The water quality model has conservative (and a diagnostic reverse (',onservative) and non­

conservative substance propagation models, and a prediction of mean age, true age and maximum 

age. Age was based on time of travel. Subsequently the model was calibrated using a tracer 

solution. 

A sensitivity analysis was then completed to assess the effect of different variables 

(decomposition, physical and transfonnation) on the perfonnance of the model. The outputs from 

the model are subsequently used in the work outlined in Chapter 8 where an on-Ime approach to 

system management is proposed. 
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7.5 Age of Water 

7.5.1 Background 

Age is an important water quality parameter. Newly treated water may have a potential for water 

quality problems that may only become evident when the water ages within the distribution 

network. The problems manifest themselves as, for example, unpalatable tastes and odours, 

Trihalomethane formation, bacteriological activity, heightened corrosion rates and precipitation 

effects. A change in water quality may be brought about by chemical reactions, biological activity 

or contact with various materials as the water is travelling through the distribution network. The 

longer the contact with materials the higher the propensity for the problems to become evident, 

and contact time is a function of the age of water. 

Research has shown that older water is more corrosive to iron pipes than relatively fresh water. 

(Zagerholm, 1996), Mallevialle, (1987), Burlingame,( 1995). Most water companies suffer a 

consistent number of unaccounted for bacteriological sample failures in their distribution networks 

every year, (Various contributors, 1992) It is hypothesised that there is a correlation between the 

age of water and the occurrence of these unsatisfactory samples and poor water quality in general. 

Machell (1991), undertook a review of existing modelling packages which highlighted that, in 

general, only simple mathematics were used whereby the mean of the individual water ages 

merging at the node were used to represent the age of water at the node. In reality however, it is 

not possible to mix ages in this way to produce a mean age. If water 10 hours old is blended with 

an equal amount of water of 2 hours old the resultant mixture is not 6 hours old. The important 

thing is that half the water is five times as old as the rest of the water reaching the node and will 

have different characteristics. 

Mean age calculated in this manner may be a useful guide in that it might provide some evidence 

of older water within the network (if for example the mean is much higher than expected) but it 

does not allow the identification of the older water components or where or how they originate. 

Nor does this simple approach allow for flow reversals within pipes or water entering the network 

that has already aged, for example, in a service reservoir or long transmission main. 

Taken to its logical conclusion, by using this simple method volumes of water with a high age, that 

may have extremely poor quality characteristics, can be present in, or moved around, a network 

and not be identified using current age calculation models. 
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The objective of developing the age functionality in this study was therefore to provide a model 

that could more accurately assess the age of water within a distribution network by providing 

information about the constituent age components that contribute to the mean age. The model 

takes into account flow reversals and ageing in service reservoirs and along transmission mains. 

Because several flows with several individual age components may combine at many different 

nodes, the computational power required to identifY all component ages simultaneously would be 

a major constraint. In order to get round this problem, a limit of nine user-defined age component 

bands that may be determined at each node was introduced. Also, initial age conditions can be 

imposed as global or individual pipe characteristics in order to reduce the number of iterations 

required to attain a solution and to lower simulation time. 

It is proposed that an entire network can be assigned a component age profile and that the shape of 

the profile can be used to predict whether a network might suffer problems such as taste and odour, 

higher than normal corrosion rates or bacteriological activity. 

In order to further the understanding of the hydraulic I age of water I bacteriological activity 

relationships a 'biological' model has also been proposed and is being developed (7.6.1). 

The information gleaned by applying the models will provide new insights into the relationships 

between the hydraulic and water quality characteristics of any water distribution network. 

7.5.2 Age Calculations 

7.5.2.1 Retention Time 

If a water particle enters a pipe at time to, and the bulk flow velocity in the pipe is known, the 

computational power required to calculate how long it takes the particle to travel down the pipe is 

very small. The mathematics involves only a pipe length I flow rate relationship to determine how 

long the particle of water takes to go from one end of the pipe to the other. If the time at which the 

particle emerges from the pipe is tJ, then (tJ - to) is called the retention time of the water particle in 

the pipe. The model can determine retention times in individual pipes. Figure 7.103 shows a plot 

of part of the study network with individual pipes coloured to reflect the retention times depicted 

in the key. 
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Figure 7.103 Plot of retention times in pipes 
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It can be seen that the first three pipes from the outlet of the service reservoir have the following 

retention times: 

1 

2 

3 

4 

51 - 52 minutes 

3 -4 minutes 

2 - 3 minutes 

2 - 3 minutes 

1bis gives a total retention time for of between 58 and 62 minutes. 

7.5.2.2 Age of Water 

To obtain the total time a water particle has been retained in a series of pipes is a question of 

summing the retention times in all the pipes the water particle has travelled through. 1bis sum of 

times is called the age of the water particle. 
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The propagation model functionality allows the age of water to be calculated by introducing the 

'substance' age at all inlets. Age is characterised as a substance particle with the following 

parameters and constants: 

Order of reaction Zero 

Decay rate constant = - 1.0 

Using the above data the age 'concentration' will increase with the time spent from the 

introduction at the inlet, and the time at a calculation point will equal the age of the water at 

that point. 

Substituting ky,n = -1 into equation 7.6 we get: 

C (t) = C (to) + (t - to) 

Figure 7.104 depicts how this relationship is translated into a linear growth law relating time to 

age concentration. 
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Figure 7.104 Simulated age of water 
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It is necessary to specify the age of the water in all nodes supplying the network as model 

boundary conditions; this includes inlet nodes and service reservoirs. The boundary conditions 

are defined using dialogue boxes. The default value is zero for all boundary conditions. 

Using the default setting provides information on how the water ages purely as a function of the 

network modelled and not as a result of transmission time to the network or storage prior to 

reaching the network inlet node. 

If the inlet to the network is at a node connected to another network or transmission main the 

incoming water age can be input as a boundary condition via the node dialogue box shown in 

Figure 7.105. 
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Figure 7.105 Dialogue box for age boundary condition at an inlet node 

The water age at an inlet node can be a constant value or a time series. Because age is treated as a 

substance, an age profile can be defined for the incoming age 'concentration' as a substance inlet 

characteristic as shown in Figure 7.106. 
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Figure 7.106 Substance (age) configuration at an inlet node 
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Figure 7.107 shows the detail of a configured inlet age time series . 
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Figure 7.107 Age time series defmition at an inlet node 

Figure 7.108 shows how a constant inlet age of 48 hours can be applied to one node . 
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Figure 7.108 Effect of initial age time series at inlet node 
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The figure shows how an age of 48 hours at the inlet node and an initial age of 24 hours for 2 other 

nodes. After 24 hours the inlet age is reset to zero and the age in the other two pipes decreases to 

the mean age. 

A similar dialogue box, Figure 7.109 is used to configure the initial age of water in a service 

reservoir. 
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Figure 7,109 Dialogue box for initial age condition at a service reservoir 

The effect of introducing an initial age in a service reservoir can be seen in Figure 7.110 
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Figure 7.110 Initial age in a reservoir resolving to mean age 

Because the initial age has been set artificially high, the age leaving the .service reservoir 

decreases until it stabilises at its true mean value. In this case the mean value is 50 hours. This 

indicates a long turnover time and potential water quality problems. 

The configured age time series can be a constant value or varied to reflect the incoming age 

profile. Initial age conditions can also be applied to pipes either globally or at individual pipe 

level. Figure 7.111 shows the dialogue boxes for application at pipe level. 
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Figure 7.111 The dialogue boxes for application of initial age at pipe level 
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Global application of a pipe level boundary condition is used to speed up simulations. If the user 

already has some indication of the age of water through knowledge or previous simulations 

applying this knowledge at pipe level will allow the simulation engine to arrive at a solution more 

quickly that it otherwise could. Figure 7.112 shows the dialogue box for global application of a 

water age in pipes. 
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Figure 7.112 The dialogue box for global application of water age in pipes 

Figures 7.113 and 7.114 highlight the effect of applying a global pipe factor . 
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Figure 7.113 Age of water with no initial age conditions applied 
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Figure 7.114 Effect of global application of an initial water age to pipes 

The first figure is a time series of mean age in three pipes. The second is the same time series after 

a global application of an initial pipe age of 24 hours. To demonstrate how the individual pipe 

level condition can be applied Figure 7.115 shows the effect of changing the initial age of one of 

the pipes to 30 hours . 
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Figure 7.115 Effect of changing initial pipe age at pipe level 
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A combination of globally applied pipe conditions along with specific inlet node, service reservoir 

and pipe conditions, increases the speed of model configuration and lor amendment as well as 

decreasing simulation times. 

The initial age data entered will be the starting point(s) for the simulation engine for age 

calculations starting at these locations. 

Because distribution networks differ greatly in size and complexity, determining the age of water 

accurately can be a resource intensive and time-consuming task even when using a powerful 

computer. In order to make the task less onerous the age model can be tailored for three specific 

types of age information and a number oflevels of complexity. 

7.5.3 Mean Age 

Mean age is calculated from steady state information about retention time and volume of all the 

water(s) merging at a node from one or more different pipes. In case of quasi-dynamic 

simulations the procedure is repeated for each time step. The mean age of water in a service 

reservoir is based on the assumption that the water in the reservoir is completely mixed at all 

times. The model automatically calculates the mean age in every pipe during every simulation for 

all time steps. 

Mean age is a simple solution where two or more volumes of water of different ages are mixed 

into a single volume. The new volume is then tagged with a new age value calculated from the 

average of the two original ages weighted proportionally to the volumes of each original age 

category. 

For example, 20 litres of water with an age of6 hours, mixed with 20 litres of water with an age of 

2 hours, would result in a volume of 40 litres with a mean age tag of 4 hours. Mean age 

simulation results can be presented within twelve user defined age bands for pipes. The model 

will calculate the range of mean ages and, by default, split the range into the number of configured 

reporting bands. Figure 7.116 shows the dialogue box for presenting flow data. 
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Figure 7.116 The dialogue box for configuration of the presentation of flow data 

By choosing the MaxIMin button and entering the required values the age reporting bands can be 

configured. Figure 7.117 
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Figure 7.117 The dialogue box for configuring mean age reporting bands 

Figure 7.118 is a representation of the mean age in the same pipes in the study network as those 

shown for retention time. 
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It can be seen from the age bands in the key that the mean age of the water in each pipe is: 

1 0 - 56 minutes 

2 56 - 58 minutes 

3 58 - 60 minutes 

4 60 - 62 minutes 

/ 

This is in agreement with the summed retention times (58 to 62 minutes) for the three pipes. This 

type of presentation of results is adequate for a rapid overview, even of the entire network, but not 

specific enough for detailed analysis. Each plot represents results for a single time step. Time 

series graphs show how the mean age changes with time in the pipes (or at nodes) reflecting 

changing flow conditions. The mean age for any time step can be obtained from this time series 

output. Figure 7.119 is a time series plot for the same four pipes in Figure 7.118. 
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Figure 7.119 Time series plot for the four pipes showing mean age of water 

The results are more specific but still reqUITe extrapolation from the graph. At 02:00 the 

extrapolated figures for mean age of water are: 

1 0.8 hours 

2 0.825 hours 

3 0.89 hours 

4 0.94 hours 

These figures equate to mean age values of: 

1 48 minutes 

2 50 minutes 

3 52 minutes 

4 55 minutes 

The results therefore are in good agreement with retention time calculations and mean age network 

plots results. Actual mean ages for individual pipes may be obtained from results dialogue boxes 
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for individual pipes or nodes. Figure 7.120 shows the dialogue boxes that present mean ages 

specific to the four pipes. 
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Figure 7.120 Dialogue boxes presenting mean age specific to the four pipes 

The retention time calculation was between 58 and 62 minutes and the mean age calculations gave 

a result of 54 to 62 minutes, which agrees. These results are for a series of pipes with only one 

inlet and outlet, so no mixing of different flows or ages of water occurs. 

Meshed distribution networks however contain, by definition, a large number of pipes that are 

interconnected and mixing does occur. 

7.5.3.1 Mixing of Flow and Age 

The model calculates the mean age of the water particles at points where mixing occurs. This can 

be clearly demonstrated using the model. Figures 7.121 to 7.126 show how the -model, to give a 

mean age, mixes flows and age. 

Figure 7.121 is the hydraulic component of the calculation comprising of two equal flows 

combining to make a single flow twice the magnitude of the original. 
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Figure 7.121 flow of 2.0 l.s- mixes with a flow of2.0 l.s- giving a flow of 4.0 l.f 

Figure 7.122 shows how two equal flows of water with the same age combine . 
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Figure 7.122 Age 2.2 bours mixes with age 2.2 bours giving mean age of 2.2 bours 

Because th~ two combining flows are the same magnitude and the individual ages are the same, 

the mean age is the same as the individual ages. Figure 7.123 shows how two equal flows of 
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different age combine. Age of 2.2 hours is mixing with age of 8.2 producing a mean age of 5.8 

hours. 
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Figure 7.123 Combining two equal flows of different age 

It is clear from the time series that the mean age of 5.8 hours is calculated from the mean of a flow 

with an age of2.2 hours with an equal flow with an age of8.2 hours. 

Figure 7.124 shows two unequal flows mixing to form single flows equal to their sum. 
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Figure 7.124 A flow of 3.0 I.s- mixes with a flow of 1.0 I.s- giving a flow of 4.0 I.s" 

It is clear from the time series that a flow of 3 1.s-J has combined with a flow of 1.0 1.s-J to give a 

combined flow of 4.0 1.s-J
• Figure 7.125 shows how the different flows with the same age 

combine. 
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Figure 7.125 Age of two equal flows with same age (0.72 hrS) mix to give mean age (0.72 hrS) 
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The model correctly calculates that the age of the flow before and after mixing occurs are the 

same. Figure 7.126 shows how the different flows with different ages combine . 
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Figure 7.126 Age of 7.45 hours mixes with age of 2.70 hours giving mean age of 6.25 hours 

The mean age of 6.25 hours is obtained by calculating the mean of a flow of 1.0 I.s·/ and an age of 

2.70 hours and a flow of 3.0 I.s·\ with an age of 7.45 hours weighted to reflect the difference in 

flow. 

Where a pipe has no flow, or very low flow, the age will increase according to a straight-line 

growth law with a slope of 45° as depicted in Figure 7.127. 
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Figure 7.127 Mean age in a pipe with no flow (brown trace) 

The diagrams above demonstrate that the model correctly calculates the mean age for the different 

possible combinations of flows and age. 

7.5.3.2 Flow Reversals and Age 

It is possible to have an area of the network where the water is held in a specific pipe, or pipes, 

some of which is unable to escape because demands in more than one direction compete against 

each other resulting in a tidal flow and associated flow reversals. As a rule, cOnsumer demands 

vary little from day to day because of habitual use so overall network hydraulic conditions do not 

vary to a great extent over a 24-hour period thereby making these tidal areas semi permanent. In 

such areas the water can attain high age values resulting in associated aesthetic, chemical, and 

biological deterioration. The model can be used to identify such areas and the effect they have on 

the age of water. Figure 7.128 shows a flow reversal site in the study network. 
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Figure 7.128 Flow reversal site within the study network 

_",.x. 

This is important because an unusual demand, such as a burst or higher than normal industrial use, 

or operational change may break this tidal behaviour releasing water to blend with that contained 

in other parts of the network resulting in a mixture of waters of very different ages and 

characteristics. This type of event can also cause a long-lived water quality event such as turbid or 

discoloured water. Figure 7.129 shows turbidity data measured during and following a burst 

event. 
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Figure 7.129 Turbidity effects of a burst event 

It can be seen that the turbidity generated lasts for several days in some pipes. These are the pipes 

with low flow characteristics and sediments oflow specific gravity that are easily suspended in the 

bulk water flow. 

The model has calculated that the two pipes coloured green in Figure 7.128 suffer two flow 

reversals per 24-hourperiod. Figure 7.130 is a time series of flow in the two pipes concerned that 

confirms the model prediction. 
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Figure 7.130 Flow time series confrrming the model prediction of flow reversals 

The model can demonstrate the effect of flow reversals on the age of water. Figure 7.131 

highlights the difference in age pattern in a pipe with and without flow reversal . 
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Figure 7.131 Age of water at sites with and without flow reversals 

273 



The blue trace is a pipe with similar flow rate but no flow reversal compared to the pipe with the 

red trace that does have a flow reversal. This simple case generates a difference of around ten 

hours in mean age. If the flow reversals are small in terms of volume and the pipes in which they 

occur are large the mean age difference can be significantly more; sometimes days. Figure 7.132 

is another example in the study network. 
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Figure 7.132 Age of water at sites with and without flow reversals 

7.5.4 True Age Distribution 

If a pipe is 1 Ian in length, and the flow rate is 0.8 ms-
I
, the age of the emergent water particles 

will be 1250 s, 208.33 min, or 3.472 hrs. This value is considered to be the true age of the water 

particles leaving the pipe, and it is applicable to all particles, as no mixing with water of another 

age(s) has occurred. 

Whilst it would be interesting from a scientific point of view to determine the true age of every 

particle of water in a network, at locations where mixing occurs the information is complex. The 

computational resource required to resolve every age component would be prohibitively high and 

simulation times would be excessive. In order to minimise calculation time therefore, all age 

categories at a particular node are assigned to one of up to nine user-definable "age bands". The 

user is allowed to choose up to 9 different age intervals that define the upper and lower limits of 

the bands. Figure 7.133 shows the dialogue box used for age band configuration. 

274 



I 

I 
I 
I 
I 

.. 

Bge categories------, 

Time 
[dd-hh:mmJ 

00-00:00 

00-00:05 

00-00:10 

00-00:15 

00-00:20 

00-00:25 

00-00:30 

00-00:35 

00-00:40 

00-00:45 

Extremevalues--------------, 

Minimum: Maximum: 

Mean age [hours]: 96 

Mal! age [hours]: 

Stop criteria--,--..-,..-...----,..-----------, 

~odes [%J: 

Beservoirs [hours]: 

OK Cancel ' __ H_el_p 
--f 

Figure 7.133 The dialogue box used for age band configuration 

The model calculates the fraction of the bulk water flow in each age category at each node within 

the network. In this example, Figure 7.133 shows that the model will determine nine age bands, 

each five minutes wide. I.e. all water that is calculated to be 22 minutes old will be placed in the 

20 - 25 minute band. If, after a simulation, it is found that all the water in the network falls into 

just 2 or 3 categories the bands can be adjusted to resolve to a higher resolution within these 

categories only. Also, individual or unusual age bands can be located and investigated in detail. 

By an iterative process, it is therefore possible to get very detailed analysis of the age of water in 

any part of a network. 

In order to minimise simulation time the age dialogue box also allows the configuration of age 

simulation stop criteria. The stop criteria may be applied to nodes and / or service reservoirs and 

are used to halt a simulation when the stop criteria are met. 

For Nodes 

The simulation will be stopped automatically when the model identifies that, at !illY time step, the 

configured percentage of nodes has a mean age that is not less than the previous simulation period. 

I.e. the model has resolved the mean age in the configured percentage of nodes. The model takes 

into account dead end nodes with no demand, where the actual age criteria will never be satisfied . 
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For Reservoirs 

The simulation will be stopped automatically when the maximum variation of the mean age at a 

particular point over a given time period is less than the configured criterion. For example, the 

differences between mean age at 12:00 on two consecutive days. 

The criteria options are used to limit the simulation time when high accuracy is not the most 

important reason for the simulation. For example in a first pass simulation that may be very long. 

In order to decide if a simulation is going to be too long progress it is presented on screen along 

with the percentage compliance for any configured criteria and a simulation completion time. 

These . are presented in Figure 7.134. In this example both criteria have been applied. 
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Figure 7.134 Presentation of simulation progress and completion time scale 

It can be seen that, at the moment of the screen capture, the node criteria had been met but the 

simulation was continuing because the reservoir criterion had not yet been met. The ten hours 

reported against this criterion means that over a 24-hour simulation period the. mean age in the 

reservoir had changed by ten hours. I.e. the model had not yet resolved the age in the reservoir to 

the required accuracy. 
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Using this more detailed age analysis in conjunction with mean age analysis it is possible, via an 

iterative process, to obtain very accurate age information for a particular area of a network. 

Figure 7.135 shows the proportion of water in each configured age band for a number of nodes in 

the study network. 
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Figure 7.135 Different age components of water at nodes 

Although this is not strictly the true age of the water particle as described previously, it is a 

significant improvement on other models providing much more infOlmation about age 

components distributed around a network. Figure 7.1 36 depicts the component part fthe mean 

age represented as pie charts superimposed on the nodes. 
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Figure 7.136 Mean age components presented as pie charts superimposed on the nodes 

In this example, mixing of two flows of different ages gives rise to the different age components at 

node 1015. The complex age mix at node 1010 is brought about by a combination of mixing and 

ageing in the pipe leading to the node. Figure 7.137 highlights how the age components of the pie 

charts at nodes 1015 and 1010 relate to age time series at the nodes. 
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Figure 7.137 The relationship between age components and age time series for 3 nodes 
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The peaks and troughs in the time series are brought about by flow patterns. The higher the 

magnitude of a peak the more age components it is made from. 

Because the model works by 'tracking' water particles it cannot resolve the age in any pipe until 

the whole volume of water in the pipe has been displaced. The following Figures, 7.138 to 7.141 

show how the process propagates gradually through each of the pipes resolving the age in an area 

of the study network. 
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Figure 7.138 Age resolution after 1.0 hour of simulation time 
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Figure 7.139 Age resolution after 2.0 hours of simulation time 
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Figure 7.140 Age resolution after 3.0 hours of simulation time 
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Figure 7.141 Age resolution after 4.0 hours of simulation time 

The figures show how the model sees many different ages and complex mixes at the beginning of 

the simulation_ This is because many of the pipes have different flow rates so take different 

lengths of time to displace their contents. As the simulation progresses each pipe is resolved in the 

direction of the flow until a stable age profile for each pipe is reached. This is better explained by 

a time series for two of the pipes in the study network. Figure 7.142 indicates the difference in 

time required to resolve the age in two different pipes, 
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Figure 7.142 The difference in time required to resolve the age in two different pipes 

It is evident that the age at node 4191 is resolved after just a few minutes whereas the age reaching 

node 4046 is not fully resolved for over 40 hours. It is necessary therefore to ensure all the water 

in the network has been displaced at least once before using simulation results for the pipes and 

nodes at the extremities. 

7.5.4.1 Relationship between Mean and True Age 

In order to demonstrate how the model resolves the age of water, and how the mean age and true 

age components are related, a series of screen shots following a simulation is presented on the 

following pages. Figures 7.143 to 7.149. 
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Figure 7.143 Age components at Node 4001 after 2 days 12 hours simulation 

The figure shows that both pipes are colour coded blue, indicating that the mean age, after 2 days 

12 hours of simulation time, is between 1 day 6 hours and 1 day 16 hours. The mean age in the 

node dialogue box shows that the mean age at the node is in fact 1 day 3 hours and 56 minutes. 

The pie chart on the node that reports the true age contributions to the mean has three components: 

o days 10 hours to 0 days 20 hours 

1 day 6 hours to 1 day 16 hours 

2 days 2 hours to 2 days 12 hours 

The node results dialogue box also shows that the mean age is comprised of three components 

with percentage compositions of 0.42215, 0.25993 and 0.31793 respectively. 

A 24-hour delay was added before Node 4001. Figure 7.144 shows how this is translated by the 

model. 
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Figure 7.144 Age components at Node 4001 after 3 days and 12 hours of simulation 

The figure shows that both pipes are colour coded brown, indicating that the mean age, after 2 

days 12 hours of simulation time, is between 2 days 2 hours and 2 days 12 hours. The mean age in 

the node dialogue box shows that the mean age at the node is in fact 2 days 3 hours and 56 

minutes. 

The pie chart on the node that reports the true age contributions to the mean has three components: 

1 day 6 hours to 1 day 16 hours 

2 days 12 hours to 2 days 22 hours 

3 days 8 hours to 3 days 18 hours 

The node results dialogue box also shows that the mean age is comprised of three components 

with percentage compositions of 0.42215, 0.25993 and 0.31782 respectively. It is clear that the 

model has calculated the age component percentages exactly as for the previous example and the 
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12-hour delay has been correctly applied. Figure 7.145 is a plot of age after twelve hours of 

simulation time following an increase of the initial age in the service reservoir to ten days. 
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Figure 7.145 Age components at Node 4001 after 12 hours of simulation 

After 12 hours simulation time the mean age at Node 4001 is 7 days 10 hours 3 minutes. The 

fraction of water in 1 O-day age band (original service reservoir water) is 0.81. The faction is 

reflected in the green portion of the pie chart on the node. 

The simulation was continued to monitor how the age and the fraction of water in the 10-day age 

band changed with time. Figure 7.146 shows the results after 24 hours of simulation . 
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Figure 7.146 Age components at Node 4001 after 24 hours of simulation 

With a ten-day initial age in service reservoir, and after 24 hours simulation time, the mean age at 

Node 4001 is 5 days 2 hours 51 minutes. The fraction of water in lO-day age band (original 

service reservoir water) is 0.556. 

Figure 7.147 shows the results after 48 hours of simulation. 
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Figure 7.147 Age components at Node 4001 after 48 hours of simulation 

With a ten-day initial age in service reservoir, and after 28 hours simulation time, the mean age at 

Node 4001 is 3 days 2 hours 12 minutes. The fraction of water in lO-day age band (original 

service reservoir water) is 0.32. 

Figure 7.148 shows the age results after 72 hours of simulation. 
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Figure 7.148 Age components at Node 4001 after 72 hours of simulation 

• • x 

With a ten-day initial age in the service reservoir, and after 72 hours simulation time, the mean age 

at Node 4001 is 2 days 5 hours 40 minutes. The fraction of water in 10-day age band (original 

service reservoir water) is 0.19. 

Figure 7.149 shows the age results after 192 hours of simulation. 
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Figure 7.149 Age components at Node 4001 after 192 hours of simulation 

With a ten-day initial age in the service reservoir, and after 192 hours simulation time the mean 

age at Node 4001 is 1 day 21 hours 31 minutes. The fraction of water in 10-day age band (original 

service reservoir water) is 0.02. Essentially, the age has now stabilised following an exponential 

decay of the original water volume in the service reservoir. The decay is clearly highlighted in the 

time series plot on each of the figures. 

As well as the mean age and true age components of the mean age, the model can detect where the 

oldest water in the network can be found. 

7.5.5 Maximum Age 

The maximum age identifies where the oldest water may be found within the network. The output 

design includes a table of the ten oldest occurrences of water within the network but the ages are 

not calculated. Figure 7.150 shows an extract from the simulation output file identifying the ten 

occurrences of the maximum aged water in the network. 
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MAXIMUM AGE - TOP TEN 

pipe pipe upstream downstream age time distance 

no. name node node dd hh:mm dd hh:mm from end (m) 

--------------------------------------------------------------------------------------------

3 AL-0904 A4000 A4001 09 23:59 09 23:59 0.0 

84 AL-1266A N-0492 A5519 0923:59 0923:59 200.0 

222 AL-1406 A5242 A5708 0923:59 0923:59 0.0 

267 AL-1453 A5281 A5283 09 23:59 09 23:59 0.0 

298 AL-1486 A5310 A5355 0923:59 0923:59 0.0 

299 AL-1488 5311 A5346 0923:59 0923:59 0.0 

337 AL-1526 A5346 A5347 0923:59 0923:59 0.0 

372 AL-1561 5384 A5385 0923:59 0923:59 0.0 

436 AL-1624 5447 A5448 0923:59 0923:59 0.0 

464 AL-1655 A5478 A5479 0923:59 0923:59 40.0 

------------------------------------------------------------------------------------------

Figure 7.150 Maximum age top ten occurrences from output file 

Maximwn age is calculated from the age of water entering a node from all pipes connected to it. 

In the case of quasi-dynamic simulations, this procedure will be repeated for each time step, but 

the maximwn age of water in service reservoirs is updated based on knowledge about the size of 

the actual time step. During a quasi-dynamic simulation, the maximwn age that occurred at each 

node is stored thereby allowing the oldest water to be tracked. 

The parts of the network containing water of the maximwn age therefore can easily be located. 

Figure 7.151 shows how a network plot can be used to study an entire network. 
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Figure 7.151 Maximum age across part of the study network 

It is relatively simple to identify that the zone to the NorthEast has older water than any other 

section of this part of the network. TIlls is because the service reservoir has a low turnover rate 

and the water ages considerably before entering the network. It ca be seen from Figure 7.152 that 

the mean age in the service reservoir supplying this part of the network is 150 hours. 
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Figure 7.152 Age of water in service reservoir 

The difference between mean and maximum age at a particular location gives an indication of 

where pockets of older water are travelling. Figure 7.153 is a time series of mean age in two pipes 

in the study network. 
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Figure 7.153 Time series of mean age in two pipes 
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The highest mean value is around 42 hours. Figure 7.154 is a time series of the maximum age in 

the same pipes . 
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Figure 7.154 Time series of maximum age in two pipes 

It can be seen that the maximum age is over 50 hours, an increase of 10 hours when compared to 

the mean age. The maximum age of water travelling through these two pipes is some 20% older 

than the maximum of the mean age. This indicates that some of the water flowing into this pipe 

does so via an indirect route. 

A second example is presented in Figures 7.155 and 7.156 that show a difference between the 

maximum and mean water ages of over 360 %. 
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The maximum of the mean age in pipe 4142 is 2.4 hours. Figure 7.156 shows the maximum age 

profile in the same pipe. 
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The maximum age can be seen to be 8.7 hours. 
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Clearly, the model functionality can be used to identify where the oldest water in a network can be 

found. With this information, it will be possible to study the chemical and biological 

characteristics of these parts of a network to determine whether the older water is affecting the 

overall water quality, corrosion rates and biological activity. 

7.5.6 Sub Net Nodes 

Water entering a distribution network from a source other than a Water Treatment Plant (after 

receiving full treatment) may have aged in some way prior to reaching the entry point to the 

network. Service reservoirs, for example, may be many miles away from the source of supply and 

the age of water arriving at them could be several days. Water leaving large transmission mains 

may also have aged significantly prior to entering the local distribution network. 

Water entering a network directly from a water treatment plant may be designated an age of zero 

as it can, for all intents and purposes, be declared to be "new" following clarification, filtration and 

disinfection. However, water from a service reservoir or source other than the treatment works is 

also assumed to have an age of zero in most current models. The calculated ages of water in a 

network where this occurs can therefore be very misleading. 

In order to overcome this problem and allocate all sources a realistic age at the beginning of a 

water quality simulation, a Sub Net Node was developed. 

A sub net node is a model utility that can be used to impose a time delay or an age profile any 

node where water enters a network or a source / service reservoir. It is possible to simulate a 

whole area with inflow, outflow and time dependent consumption in a single or multiple nodes. 

Specific delays associated with each inflow to the node may be imposed on the model. Figure 

7.157 shows the Subnet Node dialogue entry box for a node and a reservoir. 
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Figure 7.157 Subnet Node dialogue boxes for node and reservoir 

Figure 7.1 58 shows age time-series for three nodes in series when no delay is imposed on the first 

one. 
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Figure 7.158 Subnet Node with no delay 

Figure 7.1 59 shows the same three nodes but with a 12-hour delay imposed on the inlet node. 
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Figure 7.159 Subnet Node with a 12-hour delay imposed 

It can be seen that the age profiles have all been shifted by 12 hours. The use of a sub net node 

does not alter the age profile. It adds a delay constant that is applied over the whole profile and to 

every node downstream. 

7.5.7 Summary of Age Model 

The age model has been shown to be accurate, through calibration and testing, using tracer studies 

and empirical retention time calculations. 

The model is useful in that it can provide comprehensive age analysis for an entire distribution 

network. 

The sensitivity of the analysis can be set by the user and can range from very coarse, to extremely 

fine, providing an extremely versatile tool to help with the understanding of the relationship 

between age of water and water quality problems such as discolouration, taste and odour or 

bacteriological issues. 

297 



7.6 Other Models Still in Development 

7.6.1 The Biological Model 

7.6.1.1 Background 

Modelling numbers of micro-organisms in a distribution network is an extremely complicated 

task. There are a large number of variables to consider in an environment that is continuously 

changing physically and chemically. In addition, the number of organisms entering the network 

varies greatly, and some recover after being damaged by the disinfection chemicals during the 

water treatment process, after a period of residence within the network. 

It is impossible to monitor biological activity by detecting specific numbers of bacteria at a rate 

that would provide a window of opportunity for process control via feedback to the water 

treatment process above that which already exists through regulatory sampling. However, 

research effort has been put into continuous high speed bacteriological monitoring (Joret et al., 

1989), (Colin, 1994), but the technology is not yet fully developed and, because it depends on 

growing live organisms, there will always be a significant minimum time delay before a result can 

be obtained making it inappropriate for process control loop technologies. 

It would be useful however, if the conditions that favour bacteriological growth / re-growth could 

be monitored to provide surrogate information that could be used to model a network to provide a 

better understanding of where in the network micro-organisms might be more active. Operational 

controls or changes could then be made to minimise the conditions that favour biological activity. 

The biological model described in this section attempts to do exactly that. 

It is possible for organisms to enter a distribution network by other means other than the water 

treatment process, for example as a result of burst pipes. If the burst is sufficiently large, the 

resulting pressure drop in parts of the network may result in cavitation and draw foreign material 

into the network. 

The different species of micro-organisms present in the network are opportunistic and population 

dynamics can change very quickly depending on conditions prevailing at a given time (Banks, 

1998). The vast majority of organisms in a distribution network are harmless, but routine 

sampling often results in the isolation of organisms that is indicative of faecal contamination. 
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Water utilities worldwide suffer from these unsatisfactory bacteriological samples, often for no 

apparent reason. Machell, 1993, found that water utilities in France experienced almost identical 

bacteriological failure patterns as those in the UK. 

In the United Kingdom, the bacteriological quality of drinking water has improved tremendously 

over the last decade due to improved water treatment processes and control and the sealing, regular 

cleaning and management of service reservoirs. However, each year many companies still suffer 

unsatisfactory bacteriological samples in their distribution networks. 

The biological model for this study was developed therefore as an attempt to try to better 

understand the reasons for the sporadic failures. It was designed from first principals taking into 

account several important factors that are related to the basic survival needs of micro-organisms 

such as food supply, and turbidity that provides protection from disinfectant. Environmental 

elements, for example, temperature and the level of disinfectant residual are included. It relates to 

hydraulic parameters also. These include shear stress, transient pressure fluctuations and 

cavitation, and the 'roughness' of the internal pipe surface. 

The model differentiates between the potential for biological activity in different pipes by applying 

a positive or negative bias to the growth constant in an exponential growth equation. The need for 

the exponential relationship is to provide a large difference in the characteristics of each pipe in 

order to classify the pipes into groups with different relative activity potentials. 

The potential model has not been designed therefore to predict numbers of organisms in the 

network, rather how probable it is that a pipe will be more biologically active compared to other 

pipes in the same network. Good reasons for not trying to predict numbers of bacteria include: 

The majority of bacteria in a distribution network live in the biofilm phase. The 

relationship between density ofbiofilm and the numbers of cells found in the 

planktonic phase is not fully understood, nor is the mechanism for this cell 

release. 

A distribution main is very difficult to sample methodically. Variables such as tap 

type, length and material of sample line, flow out of tap whilst sampling, length of 

time tap is flushed before sampling, and tap disinfection method will all affect the 

final number of bacteria collected in the water sample. 

299 



7.6.1.2 

Many methods are available to count bacteria in a water sample, and all give 

significantly different results. 

Model Description 

The potential for biological activity is given by equation 7.36. 

Where: 

N = No l(T-To) 7.36 

No is the configured potential at T = To (-) 

k is a constant calculated by the model. The initial value is 1.0 (OC1) 

T is the temperature (OC) 

To is a configured reference temperature, at which change in growth 

potential approaches zero eC) 

The potential is calculated at each time step for every pipe. 

7.6.1.3 Model Configuration 

The model is configured by accessing a number of different dialogue boxes from the main screen 

shown in Figure 7.160. 
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Figure 7.160 Menu structure to the Biological model dialogue boxes 

The model takes account of the effect of a combination of any, or all, the following factors: 

Pipe roughness coefficient 

Dissolved oxygen drop 

BDOC 

Free chlorine 

Bulk flow reversal(s) 

Transient pressure effects 

Cavitation 

Velocity 

Turbidity 

Age of the water 

Temperature 

(Indication of bacteriological re-growth) 

(Bio-degradable organic carbon) 

(As shear stress) 

The factors are included in the model by using pre programmed default values and / or user 

specified values for each parameter. 
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7.6.1.4 Configurable Factors 

The configurable factors are applied via tables and conditional rules to calculate the growth factor 

in Equation 7.36. 

The factor, k, is calculated for each simulation time step, for every pipe, and will vary because of 

the changes in particular measured or calculated values. The factor has an initial value of 1.0 

however, this initial value is user definable for flexibility. Figure 7.161 shows the dialogue box 

with the definable reference growth potential default. 

Basic Constants 13 

Beference growth potential [.]: 

2ero growth temperature [T]: 

flow reversal time significance level [dd·hh:mm]: 

QBOC effects above [micro gIl]: 

0.00000 

00-01:00 

J 400.00000
J 

Figure 7.161 The default reference growth potential, k. 

OK 

Cancel 

Help 

During the simulation, the factor is successively multiplied by sub-factors that are defined below 

(7.6.1.4.1). The final growth factor includes effects of temperature, turbidity, mean age, pipe 

roughness, dissolved oxygen drop, assimilable organic carbon, level of corrosion, free chlorine, 

flow reversals (within the last user defined time period), transients, cavitation, shear stress and 

maximum age. 

7.6.1.4.1 Sub Factors 

Each sub factor has an individual effect on the overall growth factor k. All are user definable 
in the model. 

7.6.1.4.1.1 Temperature 

Water temperature was accurately measur~ throughout the study distribution network using a 

Platinum Resistance Temperature Detector incorporated into water quality instruments. (Chapter 

4). 

Although most temperature variation occurs seasonally, increased water temperature is also seen 

as a function of age and therefore location (Banks. 1997). Between-site variations of three to four 

degrees Centigrade were detected in the study distribution network. 
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Because temperature increases the rate of biological and chemical reactions, higher water 

temperature will decrease the generation time for bacteria and increase the decay rate of free 

chlorine. Both these factors contribute to potentially higher nwnbers of bacteria in the biofilm and 

planktonic phases. Temperature can be allocated globally or at individual pipe level. This 

flexibility was necessary because it was observed that some water mains are coincident with 

sewers or other assets containing hot effluents that heat up the surrounding ground. Water mains 

very close to such a sewer can suffer local heating up to more than 40 degrees Centigrade. 

Temperature can be assigned globally as a default temperature or at individual asset level. 

Figure 7.162 shows the global default input dialogue box and service reservoir temperature 

dialogue box respectively as examples. 

Default Values 

Eipe wall coeff. [mls): J--
D.!!OC level [micro gIl]: I 0.00000 

Temperature rC): 110.00000 

T Jdrbidity level [FT U]: I o. 00000 

Default gge [dd-hh:mm]: I 00-00:00 

Initial .§ediment fraction: I 0.00000 

Unspecified parameter [conc/value]: I 0.00000 

r Boughness dependency 

OK Cancel Help 

Qua~y Data I Rewls AeserlfO' I 

W/!J.er queily specificaticm--,..----cfj 

Iempefature 11:): 

l ... tioIl!!le ldd·hh:nvn]-

Figure 7.162 Global default, and service reservoir temperature dialogue boxes 

7.6.1.4.1.2 Pipe Roughness Coefficient 

Pipe material is a significant factor-when considering the biological colonisation -of a water main. 

In the initial stages of a colonisation, an unlined cast iron main will provide an uneven surface that 

is easier for bacteria to adhere to compared to a synthetic pipe such as plastic or MDPE. (Verran, 

1997). 
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Corroded cast iron mains have a larger surface area and a higher chlorine demand than a 

synthetic main. (Chevallier et aI'J 1990) 

The pits and cavities in a tuberculated iron main offer the biofilm physical, as well as chemical 

protection from chlorine. The extent of corrosion in a water main may be expressed as a 

roughness coefficient. This value of the coefficient is indicative of the level of tuberculation in 

the water main. 

The roughness of the internal pipe wall is a very important factor because new iron pipes with 

smooth internal surfaces have relatively fewer sites for microbial colonisation than do corroded 

iron pipes. The available surface area increases dramatically as the corrosion mechanism begins, 

reaching a maximum when the corrosion products reduce the internal diameter of the pipe to a 

point beyond which further corrosion actually reduces the available surface area again. Figure 

7.163 shows the relationship between surface area versus roughness coefficient. 

SURFACE AREA vs ROUGHNESS COEFRCIENT 

Roughness coeffi ci ent 

Figure 7.163 Hypothetical surface area vs. roughness coefficient profIle 

A similar argument would apply to other pipe materials such as plastics to whiCh, for example, 

manganese and iron salts adhere. Thes~ pipes will also be colonised by bio-film that will affect the 

available surface area and will provide protection for organisms. The effect may however be 

much less for these materials than for iron. The first set of parameters therefore specifies the 

dependence on pipe roughness coefficient. 
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The default table entries for this parameter can be seen in Figure 7.164 below. 

Roughness a 
r:~f~~[-is or C - Value r-rtor ~ I L:::::::::g:~:::::::::::JI 

1.00000 Cancel I 
~ Help J 
I 

-+--

Figure 7.164 Default look up table for roughness coefficient factor 

Figure 7.165 shows a configured look up table for roughness coefficient factors. In this case, the 

table relates to Hazen Williams 'C' coefficients. Alternatively, Colebrook White roughness 

coefficients may be used. The choice is detennined by the use of the head loss formulae in the 

hydraulic model. 

Roughness 13 

,<_R:-:O:-::u_g_h_ne_s_s_o_r _c_-_v_a_lu_e-jc..,-F a-=c_t_or_-,~ ! .--:[mm] or [-] [-] j--1 -
140 11_0 

OK I 

Cancel _ I 
120 2_0 U::::::::::8.~ip.::::::::::l1 
100 3_0 

80 

60 

5_0 

2_0 

Figure 7.165 Completed look up table for roughness coefficient 

The model detennines the roughness coefficient for each pipe from the hydraulic model and looks 

up the relevant factor from the table. 

7.6.1.4.1.3 Turbidity 

Measurements in the study network highlighted a number of areas where the turbidity exceeded 

the bulk flow turbidity by a significant amount (Khan et ai, 2000). This was thought to be due to 
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the accumulation and the continual disturbance of corrosion by-products and colloidal matter by 

unusual demand patterns. 

Turbid water indicates high levels of suspended matter that, if organic in nature, could indicate 

a high nutritional content. Turbid water containing suspended organic matter will also have a 

higher chlorine demand. 

Turbidity protects biological organisms from the effects of disinfectant and provides sites for 

colonisation. It is therefore an important parameter to consider. The dependency dialogue box for 

turbidity allows the user to compile a relationship between turbidity and its contribution to the 

overall affect on biological activity. Figure 7.166 depicts a configured table for dependence on 

turbidity. 

T urbidily EJ 

TurbidilY FaciOl 
[FlU) [-I OK I 
.1 1.00000 Cancel _ J 
.2 1.1 l.r ....... · .. R'eip· .. ·· .... ·11 

... ... ...................... _ ... , 
.5 1.2 

1 1.3 

2 1.4 

Figure 7.166 A configured table for dependence on turbidity 

The table is configured by entering the appropriate values in both columns. If the table is used 

with·the default values, a factor of 1.0 is used for all levels of turbidity. 

The bulk flow turbidity in the water entering the network is specified as a default value, obtained 

from measurement or user defined. It is entered into the model via the dialogue box shown in 

Figure 7.167 

306 



Default Values 

Eipe wall eoeff. [m/sJ: I 1llllilliiji[i 

D!!OC level [micro gIl]: I 0.00000 

Temper ature [' C): I 10.00000 

T wbidity level [FT U J: I 0.00000 

Default £lge [dd-hh:mmJ: r 00-00:00 

Initial .§ediment fraction: J 
0.00000 

Unspecified parameter [cone/value): I 0.00000 

r Boughness dependency 

OK Cancel .1 r Help 

Figure 7.167 The Default Values dialogue box where bulk flow turbidity is entered 

If there is a valid reason why the turbidity in any pipe(s) differs from the global value, individual 

pipe values may be entered at pipe level via the dialogue box depicted in Figure 7.168. 

Pipe Dialogue EI 

Dot. il noliol Condolion. I 

fipe"..... ~ 

Inttlal sedment fraCtion] 
Qepos~ed fraction 

r--: 

r
Ba;ic water QUality data 

IniliaI _ ldd·hh:mml 

l1>e rial coell. ImI.~ 

D.O. diop leyel 

I r- High 

r. Defaul 

I r- Low 

l 
cavilot;on] DllOC levellmiclo gAl" 

r- High 

"Delaul ~ 
r low Unspecified parameter 

IConcNaluei 

~ 

OK Cancel I Help 

Figure 7.168 Pipe level data entry dialogue box 

This dialogue box allows the user to over ride the global configuration data. 
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7.6.1.4.1.4 Mean Age Dependence 

Age has an indirect effect on biofilm growth. For example, free chlorine residuals in water decay 

with time. Laboratory studies have shown that a chlorine level of 1.0 mg.r l will decay to <0.1 

mg.r l over a period of one to two hours. 

However, in real distribution networks, free chlorine can be found in parts of the network where 

the age of water is several hours old. Although the mechanisms for chlorine decay are not fully 

understood, it is thought there are a number of active sites on a pipe wall, some with a high 

reactivity and some with a relatively low reactivity. If the highly reactive sites are saturated with 

chlorine, then chlorine decay will occur at lower rate. This could explain why free chlorine 

residuals occur in parts of the network where the water is several hours old. (UKWIR, 1997). 

Water temperature has been seen to increase with age (Banks, 1997). Consequently, the rate of 

biological and chemical reactions will also increase. 

Some research has shown older water to have a lower Biodegradable Organic Carbon 

concentration, the biofilm at the head of the system having utilised the available carbon first (LE 

Chevallier et at., (1991), Carter et al. , (1997). 

As discussed previously, the age of water has been related to unsatisfactory bacteriological 

samples, and poor water quality. The model therefore calculates the mean age at every time step 

for every pipe and sorts them into the user categorised age 'bins' defined in column one of Figure 

7.169. 

Mean Age Dependancies £J 

Time Factor I ... OK 
[dd-hh:mm] [-] 

01-00:00 1.000 Cancel 

02-00:00 1.2 Ir ... · ... Heip· .... · ... ·ll , ............................... , 
03-00:00 1.4 

04-00:00 1.6 

05-00:00 1.8 

06-00:00 2.0 

07-00:00 2.2 ... 

Figure 7.169 Configured mean age dependency table 
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7.6.1.4.1.5 Maximum Age Dependence 

Because the age of the water is related to poor water quality, it is a logical assumption that the 

oldest water will produce the maximum effect. The maximum age is calculated in the same 

manner as for the mean age. Figure 7.170 shows a configured dependency table. 

Max Age Dependencies 13 

Time OK 
[dd-hh:mmJ 

04-00:00 Cancel 

08-00:00 2 

12-00:00 3 

1'······························"1 
!L.. ....... ~.~I!? .......... ! 

16-00:00 4 

20-00:00 6 

24-00:00 8 

Figure 7.170 Configured maximum age dependency table 

7.6.1.4.1.6 Dependence on shear stress 

Shear stress is determined in N.m-2 and is calculated using: 

r = PgRS 7.37 

Where: 

r = Shear Stress 

P = Density of Water 

g = Gravity 

R = Hydraulic Radius i.e. the wetted perimeter D/4 

S = Hydraulic Gradient mmlm 

Very high shear stresses can reduce the growth ofbiofilm on a pipe surface. However, stresses of 

this magnitude are not common in a distribution system. Pipes have a design capacity of around 1 

m.sec- I ; above this, the head losses are excessive. Networks are usually designed so ideally, 

velocities do not exceed 0.7 m.sec-I
. Where growth does occur in an environment with high shear 
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stresses, the structure of biofilm will adapt to these conditions. The intracellular matrix will 

become denser and the bonds stronger, making the cells in the biofilm less prone to sloughing. 

If a biofilm is grown in low shear stress conditions, and is suddenly subject to greater stresses, 

more cell loss will occur (Stoodley, 1997). 

Shear stress at the pipe wall is responsible for sloughing ofbiofilm and corrosion products. A high 

shear stress will limit the growth of biofilm and minimise localised particulate build up from 

corrosion mechanisms. The model at each time step for each pipe calculates the shear stress in 

column one. The shear stress values are sorted into user ranges defined in column one. Figure 

7.171 depicts a completed dependency table for effect of shear stress. 

Turbidity f3 

~ ____ ~_~~~ __________ ~~~, ___ O_K __ ~ 
Cancel 

Turbidity Factor 
[flU) [-I 

.1 1.00000 

.2 1.1 1 ! r::::::::::H~ip.:::::::~::;1 

.5 1.2 

1 1.3 

2 1.4 

Figure 7.171 Dependency table for effect of shear stress with default settings 

The values in column one of the tables are upper limits to which the factor in column two is 

applied to the factor k. The band width (difference between individual upper limits, or column one 

values, can be as small or as large as the user wishes thereby increasing or decreasing the 

sensitivity as required for individual applications. The last factor value in column two is applied to 

any value in column one above the last numerical entry. 

The tables approach allows the user to define any type of relationship between the measured 

parameter and the applied factor. This means that as new data becomes available the model can be 

modified accordingly. 

It is possible to calibrate a model of this kind and get a very good match between predicted and 

measured re~ults. There is a chance however, that such results are correct for the wrong reasons or 

even by chance. One use of such a model is to continually fine-tune model data and the 

contributions of individual parameters by using increasingly real data from the field to ensure 
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correct cause effect relationships for the parameters. For example, if turbidity is measured 

continuously at many sites in a network, and the relationship between level of turbidity and 

biological activity is accurately defined over a period, this data can be entered into the model. 

Doing this may result in erroneous model predictions that have to be amended by changing 

another parameter to make the predictions accurate again. By an iterative process, the model 

continually evolves until it is certain as is practicable that the correct results are being obtained for 

the right reasons i.e. all the defined relationships are corrected to reflect measured data thereby 

calibrating the model. 

All the above factors can be applied globally or at individual pipe level. There are other factors 

accounted for by the models that are only applied globally because they relate to all pipes in a 

network simultaneously. 

7.6.1.4.2 Miscellaneous Dependencies 

The model considers the remaining parameters as miscellaneous dependencies. The effects of 

these parameters are complex and may be positive or negative. For example, high :free chlorine 

residual will have a significant positive effect on reducing biological activity therefore the factor 

value may be a fraction say, 0.2, that will reflect this in the model. Similarly, low chlorine residual 

would have a much lesser effect on the biological population and may have a factor value of 0.8 

that still produces an overall negative effect on the growth potential. 

Therefore, each parameter has two user-definable factors: one for a high level impact and one for 

low-level impact providing for maximum model flexibility. Figure 7.172 shows the high and low 

factors defined in the Miscellaneous Dependencies dialogue box. 
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Miscellaneous Dependencies 13 

High level Low level 

factor: factor: 

.!d..O. drop: iIiMD 0.50000 

DftOC: 1.00000 0.20000 

free chlorine: 0.20000 1.00000 

Flo.\:':! reversal: 1.00000 0.50000 

Iransients: 1.00000 I 0.50000 

!;;avitation: 1.00000 I 0.50000 

OK " Cancel I Help 

Figure 7.172 Miscellaneous Dependencies dialogue box 

Table 7.1. shows how this configuration infonnation is translated into the model input file. 

Dissolved Oxygen DBOC Free Flow Transient Cavitation 
drop Chhlorine reversal pressure 

Yes 1 1 0.2 1 1 1 

No 0.5 0.2 1 0.5 0.5 0.5 

Table 7.1 Miscellaneous dependency information from the model input file 

In some networks, the individual dependencies for each factor will differ because of pipe material, 

age of network and the source of water, corrosion propensity and for many other reasons. The 

dependency dialogue box is therefore fully user configurable allowing any size of high or low 

factor to be applied. 

The definition high or low is at the user discretion, because what is regarded for example, as high 

free chlorine in some networks would be regarded as quite modest in others. Similarly, a network 

that is used to relatively high chlorine residuals may have a biological explosion should that 

residual drop to a level that in other network would be considered high. Due consideration must 

therefore be given to the magnitude of the factors. 

The constant 'k' in the growth potential equation, 7.36, is multiplied successively by the user 

defined values depending on whether, in reality, a parameter level is high or low. 
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Free chlorine, BDOC residual, transient and cavitation effect high and low levels relate to the 

actual (measured / calculated) concentration or frequency of the parameter. For example, 

concentration of chlorine measured in the field, or the number of flow reversals determined by the 

hydraulic engine. 

High and low effect for each parameter is switched on (or oft) using the dialogue box shown in 

Figure 7.173. 

Default Values 

J:ipe wall coeff. [m/s]: rmImD Eree chlorine level 

r High r- Low 

D,!!OC level [micro gIl): 0.00000 

Temperature [OC): 10.00000 
[ Q.O. drop level 

(" High r- Low 

TJdrbidity level [FTU]: 0.00000 Iransient effects 

(" High r- Low 
Default ilge [dd-hh:mm): 00-00:00 

I nitial ~ediment fraction: 0.00000 J;;avitation 

(" High (0 Low 

Unspecified parameter [conc/value): 0.00000 

r Boughness dependency 

OK Cancel Help 

Figure 7.173 High and low effect switches 

This dialogue box is also used to define the incoming turbidity level in the bulk water flow. The 

reason for inclusion of the miscellaneous dependencies is presented in the following sections. 

7.6.1.4.2.1 Free Chlorine 

The bactericidal effect of free chlorine is well documented and chlorine has been the most widely 

used disinfectant for water treatment since the mid 20th Century. The presence of free chlorine 

will inhibit the re-growth of micro-organisms and the effect in tenns of equation 7.36 needs to be 

negative so the applied factor will be less than 1.0. The higher the free chlorine the more negative 

the growth effect should be so the nearer to zero the factor will be. 

Free-living bacteria are more sensitive to chlorine than those living within a biofilm are. The 

polysaccharide matrix, holding the biofilm together, is thought to offer protection to the 

bacteria living within the film (Wingender, 1997). Networks with well-established biofilms 

might therefore require a low effect factor compared to those with sporadic or weakly established 

biofilms. 
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Free chlorine decays as a function of time and pipe material at a rate dependent on water 

temperature. Where the water is relatively old, higher factors may be required compared to areas 

of the network where the flow rate is relatively high. 

7.6.1.4.2.2 Biodegradable Organic Carbon (BDOC) 

Biodegradable organic carbon is a food source for micro-organisms and, if there is only a low 

level of food available, growth will be limited. The main reason for the inclusion of this parameter 

is that the availability of BDOC will be reflected in the microbiological population dynamics. The 

more food the more probable that micro-organisms can proliferate provided other environmental 

factors are also favourable. 

An investigation measured BDOC throughout the study network from the treatment plant, 

through to the end of the system (Banks, 1993). The decrease through the system, from a level 

leaving the works of2000 J.1g.r1 was no more than 200 J.1g.r1
• This limited utilisation of nutrients 

may have been related to a relatively low seasonal temperature at the time of the study. 

Other research has shown levels of BDOC to decrease as a function of travel time through a 

network, the BDOC being utilised by the biofilm in early parts of the network. (UKWIR, 1995). 

It is important therefore to determine whether BDOC levels are constant or diminishing 

through the network. 

The effect of BDOC concentration on the model is determined by two switches. The first, a 

simple on / off switch is defined based on the overall level of nutrient availability. If the 

incoming bulk water flow has a level of BDOC that does not support or enhance bacteriological 

growth the effect can be switched off completely using the dialogue box shown in Figure 

7.174. 
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.. 

Basic Constants EJ 

Beference growth potential [.): 

~ero growth temperature [0C]: 

flow reversal time significance level [dd·hh:mm): 

QBOC effects above [micro gIl): 

0.00000 

00.01:00 1 

1400.00000 

Figure 7.174 Basic Constants dialogue box. 

I OK 

Cancel 

Help 

In this case the BDOC residual must exceed 400 mg.r l to have any effect at all. Above this value 

the high and low level factor boxes are used as before. A high BDOC will attract a high level 

factor that will be > 1.0 to produce an increased biological potential and a moderate BDOC 

residual would attract a factor that produced a more modest effect on the overall biological 

potential. 

7.6.1.4.2.3 Transient effects and Cavitation 

Pumps, particularly those without surge damping devices can cause pressure transients when 

switching on and off. Valve operations or any phenomenon that can cause a sudden change in 

flow may also generate transient pressure effects. These pressure surges may be capable of 

"exploding" biofilm into the planktonic phase and into supply. 

The effects of transient pressure waves can cause disruption to biofilm layers within the pipe 

network and disturb accumulated sediments entraining them in the bulk flow (Keevil, 1995). 

Figure 7.175 shows the effect on turbidity of a sudden pressure change in the study network. 
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Figure 7.175 Pressure vs turbidity 

The water quality instruments detailed in Chapter 4 collected the data depicted in this figure. The 

resultant increase in turbidity may last for several hours in low flow velocity pipes as shown in 

Figure 7.176. (Khan, 2000). 
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Figure 7.176 Tune series showmg duration of turbidity event foUowmg a burst mam 
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The application of the pressure transient factor requires careful consideration, as the effect of 

continually repeated transient events might result in reduced effect compared to an unusual or low 

frequency event transient event in the same pipe. In pipes with a high-density biofilm, this effect 

may even be reversed. Further research is required to accurately determine the effect of pressure 

transients on biofilm and sediments for differing pipe environments. 

The model is further enhanced to allow for significant transients that cause cavitation. 

Under normal operating conditions, the pressure exerted by the water in the pipes prevents ingress 

from external sources. However, during cavitation, parts of the network may encounter negative 

pressures and it might be possible to draw foreign material in. If cavitation occurs therefore, a 

second set of factors can be applied in the model to allow for the effects. 

7.6.1.4.2.4 Flow Reversals 

The hydraulic model determines the number of flow reversals for every time step for every pipe in 

a network. Figure 7.177 highlights the pipes in a section of the study network that suffer flow 

reversals and the number of times the flow reverses direction over a 24-hour period. 
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Figure 7.177 Flow reversals in pipes over a 24-hour period 
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Reversals in flow can re-suspend sediments, increasing the turbidity, and potentially redistributing 

a food source. If the changes in velocity are severe enough, they can also disrupt the biofilm and 
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transport cells into the planktonic phase. Water in pipes experiencing frequent reversals in flow, 

can also suffer from excessive age, this can have the effect of increasing water temperature, 

decreasing chlorine residual and increasing biofilm formation. 

The relative effect of a flow reversal( s) will be dependent on the time between successive reversal 

events. If there are several flow reversals per day in a pipe the effect will be negligible as the 

frequency of the events make it a continuous characteristic of the pipe. A very low frequency, or 

an unusual flow event, will have a much more significant impact, especially in low velocity mains 

where sediments may have accumulated and biofilm may have colonised to a greater extent than 

would be the case in a pipe with higher flow velocity. This factor therefore requires analysis of the 

flow reversal patterns in the network and a scientific approach to the magnitude of the relative 

effect entered in the look up table before its application. 

7.6.1.4.2.5 Dissolved Oxygen 

Dissolved oxygen can affect the rate of growth and respiration in aerobic bacteria. However in 

an environment of low oxygen, the species present in the biofilm will change to adapt to the 

low or absent oxygen, i.e. the proportion of anaerobes will increase. 

Dissolved oxygen can also affect the rate of corrosion in a main, which will have an indirect 

effect on biofilm growth in a pipe. The instruments described in Chapter 4 were used to obtain 

dissolved oxygen data from the study network. 

7.6.1.4.2.6 Relevant Research 

Research carried out by WRC and the UK water companies has provided some insight into the 

relevance of some of the factors included in the model. These include the identification of: 

1 A negative relationship between chlorine and numbers of viable bacteria. This 

would undoubtedly be due to the bactericidal effect of free chlorine. 

2 A positive relationship to flow. This may be because Heterotrophs require a 

constant source of organic carbon and a reasonable supply of dissolved oxygen. 

Therefore, a pipe with a relatively high flow will satisfy these requirements better 

than a pipe with a low flow. 
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(On the other hand, pipes with reasonable flow rates are more likely to contain the 

younger water in the system and have higher free chlorine residuals so the effect 

will be different in any particular network). 

3 A strong negative effect with respect to velocity. This is because biofilm that 

develops in high velocity mains tend to be more resilient to sloughing and 

releasing cells, than those grown in lower velocity mains. 

4 The higher bacteriological failure rates appeared in the summer months when 

the water was warmer supporting the knowledge that temperature is a key factor 

in biological growth dynamics. 

The variables that were shown to have a significant impact are all taken into account in the 

Biological model. However, further work is required to obtain a more comprehensive set of data 

and determine the effect of the other variables that are in the Potential model that were not 

considered in this first analysis. 

7.6.1.5 Model Output 

The most useful output from the biological model is a network plot highlighting the difference in 

biological potential between individual pipes. Figure 7.178 shows a plot where all the pipes have 

the same characteristics. 
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Figure 7.179 is the same plot when the temperature is raised in a single pipe to highlight how pipes 

with higher biological activity potential are easily identified. 
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Figure 7.179 Pipes with higher biological activity potential 
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7.6.1.6 Summary of Biological Model 

Although the model is quite well developed, a significant amount of work is still required to obtain 

network data from which to identify the relationships between the various factors. However, even 

in its current form, it is a useful tool to identify where biological activity is likely to be using the 

well-proven factors of temperature, BDOC concentration, chlorine residual, flow and velocity 

data. 

As the data becomes available, the model can be amended to reflect the current state of the art in 

this area because of the flexibility built into its design. 

7.6.2 Sediment Transport Model 

7.6.2.1 Background 

The sediment transport model differentiates between the following forms of particle transport: 

Settlement of suspended particles (precipitation) - no bed load transport 

Transport in suspension and by bed load movement 

Transport in suspension 

Flushing (Scouring) 

The approach assumes that the transition between the different transport mechanisms is 

determined by a number of pipe wall shear stress conditions. 
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7.6.2.2 Model Description 

7.6.2.2.1 General 

The sediment transport model is a box model. The box model is shown in Figure 7.180 

Where: 

Q 

Q 
s,i 

b,1 

Ms 

Mb 

Md 

dx 

Figure 7.180 The sediment transport box model 

Ms Is the mass of sediments in suspension (kg) 

Mb Is the mass of sediments in bed load movement (kg) 

Md Is the mass of deposited sediments (kg) 

Qw Is the water flow (kg.s- I) 

Qs,i Is the flow of suspended sediments entering the box (kg.S-I) 

Qb,JS the flow of bed load movement entering the box (kg.s-I) 

Qs,oIs the flow of suspended sediments leaving the box (kg.S-I) 

Qb,o Is the flow of bed load movement leaving the box (kg.S- I) 

dx Is the length of box, dx = L1x (m) 

Each pipe in the model is divided into a number of boxes. The model will calculate the mass of 

sediment entering the box, leaving the box, and present within the box in the three phases; 

suspension, bed load and deposited mass, at every simulation time step . 

7.6.2.2.2 Numerical Solution 

The velocity of a sediment particle is a function of the actual time step and the length of boxes: 
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V particle = 0.5 . 8x /8t 7.37 

Because a sediment particle may be expected to travel with the speed of the bulk flow, the actual 

time step may be optimised before each successive simulation, provided that default time step is 

accepted: 

8(= 7.37 
V mean 

Where: V mean is mean velocity of bulk flow in all pipes 

In order to utilize all the infonnation contained in the hydraulic database, the user defined time 

step may be overridden by automatic adjustment of the time step. At each time step the adaption, 

a measure for the relative agreement between velocity of bulk flow and sediment particles, is 

calculated from equation 3. 

Where: 

Where: 

ADAPT ION = (1 - ;.5) -100% 
p 

7.38 

Np is the number of pipes 

cr is a function of the relative error in the distance travelled by a sediment 

particle: 

_ (~ 2)0.5 a - ,{,.;ri 

is the relative error: 

7.39 
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Where: 

Vbulk,I 

8tj 

= . (VbUIk. j8(j - 0.5Ax 1) 
r; mIn , 

Vbulk. j8(j 

is the bulk flow velocity corresponding to time step no. i 

is actual time step 'i' 

7.40 

The summation in equation 4 is undertaken for all pipes at every time step. It follows by definition 

that the adaption is within the interval from 50% to 100%. During the simulation, the adaption is 

presented on screen in order that the user may determine whether to continue the simulation or 

amend the conditions to improve the results. 

7.6.3 Forms of Particle Transport 

7.6.3.1 Precipitation 

Under conditions of low flow velocity, the forces acting on the particles will be such that most 

particulate matter will settle over a certain period to the bottom of the pipe and fonn a 'deposited 

bed'. This precipitation phase occurs when the flow velocity is below a minimum, V min. 

In this phase, the mass flow of sediment leaving a box can occur only as suspended transport. No 

bed load transport occurs out of the box and no new particles will be suspended in the bulk flow. 

The suspended mass 'settles' by being transfonned into bed load mass, via the decay law in 

equation 7.41. 

M -K,(t-Io) 
s,o e 7.41 

Where: is suspended mass at time t. 

Ms,o is suspended mass at time to. 
Ks is a user defined decay rate constant 

If any particles in the box exist in the bed load phase, these will settle by being transfonned into 

deposited mass, following a similar decay law: 
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7.42 

Where: is bed load mass at time t 

Mb,O is bed load mass at time to 
Kb is a user defined decay rate constant 

A large value for ~ will cause all bed load mass will settle in one time step. 

7.6.3.2 Bed Load Transport 

When the flow velocity increases, some entrained particles will not be lifted into the flow, but the 

forces exerted upon them will cause them to be transported by rolling and / or sliding over the 

surface of the material in the deposited bed. This phenomenon is called bed load transport. In 

this phase, bed load is the dominant type of transport. 

Some suspended particles may exist at this time and these will precipitate in a manner described 

by a decay law. Existing particles in the bed load phase may be suspended, and existing particles 

in the deposited phase may be entrained into the bed load phase. 

Bed load transport occurs, if the velocity, V, is in the interval: 

V min < V < V max, and the ratio 

Uf < 0.4 7.43 

Where: 

Ur is shear velocity 

W s is particle fall velocity 
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The maximum possible mass flow of sediments leaving a box during the bed load phase is: 

Where: 

is the maximum suspended concentration (May's fonnula) 

is mass flow of water 

7.44 

The actual mass removed from a box by bed load transport is limited by the amount of sediments 

present in the bed load and deposited phases. If particles exist in suspension, these will settle into 

the bed load phase following a decay law, and no new particles will be suspended. The maximum 

possible mass flow of sediments leaving a box is for the suspended phase: 

Cs,max Qw 7.45 

Where: 

Cs,maxis the maximum suspended concentration (Mackes fonnula). 

The actual mass removed from a box by suspension transport is limited by the amount of 

sediments present in the suspension and bed load phases. 

7.6.3.3 Suspension Transport 

As the velocity increases further, hydrodynamic lift and drag forces act upon the particles that 

constitute the deposited bed. The forces cause the particles to be lifted and held in suspension to 

be transported within the bulk flow. In this phase, the transportation occurs only in suspension. 

Existing particles in both the bed load and deposited phases may be suspended in the bulk flow. 

This phenomenon is called suspension transport. 
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Suspension transport occurs if the velocity, V, is in the interval: 

V min < V < V max, and the ratio 

7.46 

Since particles are transported exclusively in suspension, the maximum flow of sediment leaving 

the box is calculated using equation. (9). The actual flow is limited by the amount of sediments 

present in any phase. 

7.6.3.4 Flushing 

At a certain level of flow velocity all particles within the pipe will be transported in suspension due 

to the high level of forces acting upon the material. This last phenomenon is defined as flushing. 

In this case particles can exist only in the suspension phase, and no bed load or deposited sediment 

exist. 

Flushing occurs, if the velocity: 

V>Vrnax 7.47 

7.6.4 Transport Criteria 

7.6.4.1 Basic Parameters - General 

The transport criteria are velocity based for both the settlement phase and the flushing phase. If 

the velocity is below a configured limit, V min, settlement occurs. If the velocity is above a 

configured limit V max, flushing occurs. 

If the velocity is between V min and V max, either suspended transport or simultaneous bed load and 

suspended transport occur. A criterion to distinguish between suspended transport and transport 

in suspension and in bed load is defined using the ratio of shear velocity to fall velocity. 
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7.6.4.2 Criterion for Bed Load I Suspension 

The criterion to distinguish between sediment transported in suspension or in both bed load and 

suspension are as follows: 

The fall velocity of a particle of a given specific gravity and size is calculated from equation 13, 

(May, 1993). The fall velocity Ws is given by: 

Ws 
~9V + d 2 g X 10-

9 

(s-1) (0.03869 + 0.0248 d) - 3v 

(0.11607 + 0.074405 d) x 10-3 7.48 

Where: 

Ws is fall velocity (m/s). 

v is kinematic viscosity (m2/s). 

d is a user defined particle size (Om). 

g is gravitational acceleration (9.81 m/s2). 

s is a user defined specific gravity of sediments (-). 

The shear velocity is related to the velocity and the friction factor by: 

Where: 

Ur max (V H. Uo) 

Ur is shear velocity. 

V is mean flow velocity of water. 

f is friction factor. 

Uo is a configurable minimal shear velocity. 

7.49 

The friction factor is obtained from the hydraulic model database of pressure drop, velocity and 

levels at pipe ends: 
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7.50 

Where: 

L is the pipe length (m) 

Dp is the internal pipe diameter (m) 

p is the density of water (kg.m -3) 

~p is the pressure drop due to friction (which may include single losses 

and calibration factors): 

tlp = PIIP - P dw + pg( zrtp - Zdw) 7.51 

Where: 

pup is the upstream pressure from hydraulic database (Pa abs) 

pdw is the downstream pressure from hydraulic database (Pa abs) 

zupis the upstream level from hydraulic database (m) 

zdw is the downstream level from hydraulic database (m) 

The criterion for sediments transport in the model as exclusively suspension is: 

VI > 0.4 7.52 

If the ratio is below 0.4, the transport will primarily take place as bed load transport, but 

suspension exists too. 
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7.6.4.3 Maximum Suspension Transport 

Macke, 1983, produced the following equation that describes the maximum limit of sediments that 

can be transported in suspension phase in pipes. The formula is dimensionless. 

f 3 5 
V L K" 7.53 

30.4 (s -1) W~·5 A P 

Where: 

Cs,max is maximum sediment concentration (kg sediments/kg water). 

VL is a configured limiting flow velocity without deposition-input (m/s). 

A is cross sectional area of the part of pipe without deposited sediments (m2). 

Ku is a unit conversion factor mg.rl to kg.m-3 

7.6.4.4.1 Maximum Bed Load Transport 

The maximum bed load transport is calculated using May's equation, developed from 

experimental data describing the relationship between volumetric sediment concentration and the 

flow velocity at the limit of deposition: 

Where the threshold velocity is given by: 

0.125 ~g(s-1)d (~ /47 7.55 

and Cb, max is maximum volumetric sediments concentration 
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The fonnula assumes that the sediments are transported as bed load, i.e. that the limit Uri Ws < 0.4 

is not exceeded. 

7.6.5 Model Output 

The model was used to simulate a hypothetical scenario on a single leakage control zone within 

the study network. 

The following plots, Figures 7.181 to 7.189 clearly demonstrate that the model is valid (but not 

calibrated). 

Calibration of this type of model would have been impossible a few years ago. However, with 

online water quality instruments turbidity measurement would be an excellent surrogate for 

suspended particle flow (BOJcal/, 2000). Measurements that are more precise could be made using 

particle size analysis but this technology remains expensive for multiple site application. 
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Figure 7.181 Bedload flow in LCZ K709 
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Figure 7.186 shows a time series of the mass (kg) of bedload material. The Peak bedload flow is 

when the hydraulic conditions and hence the pipe wall shear stress conditions are favourable. It 

can clearly be seen that at the peak flow velocity (08:00) the sediment transport mode switches to 

suspended mass flow . 
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Figure 7.186 Bedload Mass Flow in LCZ K709 
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This is confinned by the time series of suspended mass flow in Figure 7.187 
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Figure 7.187 Suspended Mass Flow in LCZ K709 

Figure 7.188 highlights the sudden change in deposited sediment fraction (fraction of the cross 

sectional area of the pipe) that occurs because of the particles being eroded into the bulk flow . 
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Figure 7.189 Shows the same sudden change but in terms of the deposited sediment mass . 
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Figure 7.189 Deposited Sediment Mass in LCZ K709 

In this case, all the deposited mass in this particular pipe was eroded after which new deposits 

started to accumulate. 

The plots above show the validity of the model. The following section shows the effect of the 

main variables. 

7.6.6 Effect of the variables 

7.6.6.1 Bedload Transport - Specific Gravity. 

The model configuration for this simulation are shown in Figure 7.190. The pipe wall shear stress 

conditions were fixed and the specific gravity of the particles was varied between 1.005 and 1.009. 
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Figure 7.190 The model configuration for this simulation 

These conditions resulted in a flow velocity profile in three pipes shown in Figure 7.191 

", 
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Figure 7.191 Flow velocity profIle in three pipes 

The effects on bedload are shown in terms of deposited sediment mass and bedload mass flow in 

Figure 7.192 and 7.193 for a particle specific gravity of 1.005 
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Figure 7.192 Bedload mass flow for a particle specific gravity of 1.005 
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Figure 7.193 Deposited sediment mass for a particle specific gravity of 1.005 

Under the same conditions, the specific gravity of the particles was changed from 1.005 through 

1.009 in steps of 0.001. The final value of 1.009 shows the upper limit of the effect of changing 

the specific gravity in Figures 7.194 and 7.195 
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Figure 7.194 Bedload mass flow for a particle specific gravity of 1.009 
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Figure 7.195 Deposited sediment mass for a particle specific gravity of 1.009 

340 



... 

7.6.6.2 Bedload Transport - Particle Size 

Under the same bedload transport conditions as for previous section the specific gravity of the 

particles was varied from 140 to 190 microns. Figures 7.196 and 7.197 show the effects on the 

deposited sediment mass and the bedload sediment flow . 
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Figure 7.196 Deposited sediment mass with particle size of 140 microns 
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Figure 7.197 Deposited sediment mass with particle size of 190 microns 
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7.6.7 Summary of Sediment model 

The model that has been developed has been set up in a flexible way to include aspects of 

settlement of suspended particles (precipitation) - no bed load transport, transport in suspension 

and by bed load movement, transport in suspension and flushing (scouring). The thesis has 

presented details of the bed load model but further work is required to obtain network data against 

which the model may be calibrated/validated. However, in its current form the model may be used 

in predictive mode to examine suspended mass flow, bed load transport and total sediment load. 

The model is therefore able to simulate the total mass of sediment in any pipe and of the change in 

cross sectional area due to the deposited sediment. 

The advantage from an operational viewpoint is that the model allows the prediction of those pipes 

that will remain free of sediment and those pipes where the risk of discoloration due to sediment 

movement may be high. 
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Chapter 8 - Online Monitoring and Modelling 

8.1 Background 

There are many uncertainties to contend with when dealing with a dynamic system such as a 

distribution network. Even carefully planned work can produce unexpected hydraulic and water 

quality effects. This is because there is a lack of understanding about the prevailing hydraulic and 

water quality characteristics of the network at the time the work is being undertaken. The result is 

that simple operations such as changing the status of a valve can lead to, for example, 

discolouration of the water or pressure problems. 

The day-to-day operation of a distribution network depends, largely, on a monitor and react 

philosophy. When something goes wrong, the performance monitors, usually consumers, inform 

the Water Company responsible. Then, operational staff investigates to determine the reason for 

the service failures or the customer complaints. This type of reactive management is neither 

effective nor efficient. By the time the company is made aware of a problem, customers are 

already affected and the company incurs standards of service failures that may attract legal action 

and, if serious enough a breach of regulations, loss of operating licence. 

To demonstrate that a step change in the way distribution networks are managed is possible, the 

software described in the previous chapters of this thesis has been developed into an on-line 

network management toolkit. The toolkit is designed to provide a much greater understanding of 

real time distribution network performance characteristics and facilitate proactive and, ultimately, 

automatic control of certain essential dynamic network elements such as valves, pumps, and 

service reservoirs. 

The system provides the operator with hydraulic and water quality information in near real time. 

Having such timely information permits the asset managers the luxury of knowing an event has 

occurred, usually before the customers are affected. In many cases distribution staff can be 

mobilised with prior knowledge of what they are going to deal with armed with an effective action 

plan. Consequently, the necessary resources are utilised efficiently and any impact on customers, 

the assets, and the environment are minimised. The models developed for this research were 

applied to the study network and used to support the management of the water supply system for 

the study area. 
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The work has clearly demonstrated the benefits of a real time modelling approach to network 

monitoring and management. It has also highlighted a number of issues, which need to be 

addressed if online, and, or, real time systems for control of distribution networks are to be viable 

and the potential benefits of using this technology are to be fully realised. 

8.2 The Benefits of Online Modelling 

Daily distribution network management and operation is mostly reactive in nature. This approach 

is time consuming, inefficient, and resource intensive. 

For example, when a water main fails and a leak occurs, it could be a long time before the network 

manager is made aware from information provided by someone that actually sees or hears the 

water escaping. Analysis of flow measurements could highlight the presence of a burst but the 

frequency of data acquisition and analysis may be such that the leak may run for a month or more 

before being detected. Even then, analysis of flow measurement alone may not detect the presence 

of a leak, (Mounce, 2002). 

Online modelling provides near real time analysis of hydraulic performance and the system can 

usually detect a burst main immediately it happens. 

South West Water suffered a pollution incident at the Camelford Water Treatment Plant. 

Aluminium Sulphate was accidentally introduced into the final water tank at the works from where 

it entered the distribution network causing health related problems to many customers. It appears 

also; that some customers who were not affected claimed that they were, probably out of fear and, 

in some cases, the hope of compensation. The company is still in court and there is an ongoing 

public inquiry. The cost to the Water Company has been very high in terms of both cash and 

credibility. 

If the company had water quality monitors installed in their networks and had the benefit of an 

online modelling system, they would have detected the pollution before customers were affected. 

This would have allowed them to proactively manage the isolation and removal of the polluting 

material from the network. They would have minimised the number of customers affected and 

been able to· identify those who were affected with a high degree of certainty. This would have 

saved a great deal of money and embarrassment. 
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When planning distribution R&M work packages, it is of great benefit to be able to model the 

effects of the operations before they are undertaken. Rehabilitation, re-valving, pipe repairs and 

many other activities benefit from knowing exactly how the work will affect the network hydraulic 

and water quality characteristics. Careful planning using real time knowledge of the network 

characteristics enables the network manager to identify the best methodology for approaching the 

work. hnpact of the effects of the work on customers and assets could be minimised and 

customers affected would be accurately identified allowing prior notification to be given. 

As Nitrate residuals increase in source waters in the UK, the need for blending within service 

reservoirs and the distribution system itself are becoming a regular requirement. Water quality 

modelling permits the operator to calculate what proportion of which supply needs to be mixed in 

order to maintain water quality standards of service. 

The above are just a few examples of the benefits of real time modelling and there are many more. 

Taken fully, a real time monitoring and modelling system can provide hydraulic and water quality 

information form raw water sources to the customers tap. Having this knowledge allows the 

company to protect resources, water treatment plants, distribution assets and customers from the 

effects of incidents. It will detect bursts and pollution events, predict where polluted or 

discoloured / turbid water will travel with time, facilitate emergency and contingency planning and 

allow informed decision making for network management. 

The oil and gas utilities have benefited from the use of real time monitoring and modelling 

technologies for many years, and have developed closed loop control systems to automatically 

manage many of their network operations thereby significantly reducing operating costs. This 

chapter clearly demonstrates that the technology is transferable to water pipe networks. Examples 

of real events detected and managed using the study network online system are detailed in 

Appendix A, and examples of pollution incident management are presented in section 8.10. 

8.3 Online System Development 

8.3.1 Model Development 

Prior to the development of this online system, distribution network modelling was predominantly 

a desktop exercise using historic network data that represented a specific time window of network 
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characteristics, usually a twenty-four hour period or less. Figure 8.1 Shows the workflow 

associated with the traditional desktop approach. 

Manual Interface 
with operation of 
network 

Predictions Manual data collection 
and model input 

Figure 8.1 Data flow for traditional desktop approach to modelling 

Integrating the hydraulic, water quality and transient models achieved the first stepped 

improvement and automatic network data capture was then added. The data gathering consisted of 

a single reading from each measurement site to capture the current network status at these points. 

This data was used to simulate the network characteristics at every other point, thereby obtaining 

an overall picture of the characteristics of the entire network. 

Figure 8.2 highlights the difference this made to data handling for modelling purposes when 

compared to Figure 8.1 
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Manual Interface 
With Operation 

Of Network 

Current Status Predictions 

Transient Model 

Hydraulic Model 

Data Pre processing 

Data Reception 

Figure 8.2 Data flow for offline modelling via new approach 

One of the most important features of the improved system was the ability to automatically gather 

network data at anytime from a central location. Effort was still required however to manage the 

system and input data into the models. Much of the data pre-processing was manual. It was found 

that, because single readings were taken from the measurement points that the hydraulic model 

sometimes failed to converge on a solution. The cause was found to be inadvertently capturing 

one or more transient values that were not representative of the true state at the point of 

measurement or in the network in general. This problem was overcome by introducing automatic 

data pre-processing that smoothed the data capturing transient measurements replacing them with 

other, average values, or using the last known good measured value. 

The final stage of development resulted in complete integration of models, data pre-processing and 

model input. Alarm handling was developed and added to provide early warning of system events 

and to make running of specific simulations automatic under certain circumstances for example, 

when the field instruments detected polluting material. Alarm handling was made very flexible 

and programmable in order that disparate system events could be associated with each other to 

produce a 'complex' alarm. For example, if a pressure fluctuation in one part of the system 
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corresponded with the change of direction of flow in another part of the network the probable 

cause would be a burst or discoloured water detection might be associated with flow reversals in 

certain pipes. 

Figures 8.3, 8.4 and 8.5 show the model structure and the data handling associated with the new 

approach and highlights the difference between this and the traditional approach shown in Figure 

8.1. 

Transient Model 

Interface 
Scada 
System 

Distribution Network 
With Devices and monitors 

Figure 8.3 Data flow for online modelling in new approach 
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Figure 8.6 highlights the detail of the measurement currently being processed, in this case 

turbidity, clearly showing the historic, current future data split and the alarm and warning levels for 

this parameter. 
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Figure 8.6 Detail of the turbidity data currently being processed 

8.3.2 Mode of Operation 

The online system may be configured to run as an offline or an online application or both 

simultaneously. 

In off line mode it uses historic network data and does not automatically update model boundary 

conditions provided by the field instrumentation. The data however, instead of being a snapshot 

on one day can be continuous time series, measured at some time in the past, that can be read into 

the model to re-live a whole period of the networks historical characteristics. This is useful when 

trying to understand an event that occurred at some time in the past. One of the assumptions made 

when undertaking a traditional desktop modelling exercise is the start and finish level in service 

reservoirs. The level in a particular service reservoir may differ significantly from day to day for a 

number of reasons. These include rehabilitation work, main bursts or unusual demands. Whilst 

no low-pressure problems may exist when a reservoir is full providing a good head to drive the 

system, there may be problems when the reservoir levels are constantly low. This effect may be 

magnified if there are multiple reservoirs supplying a network. 

In online mode, all the modelling functionality is available, but the system additionally 

automatically gathers, pre-processes and uses data from the instrumentation continually updating 

the user screen with the latest network characteristics and, based on 'normal' operational patterns, 
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The model is used in offline mode to detennine if the network can support extra development such 

as new houses or industrial demand flows. 

8.4.3.3.1.2 Changes in the Direction of Flow. 

Provide extra flow information that may be indicative of bursts, unusual demands or zone 

breaches. Figure 8.24 shows a typical plot of the network highlighting pipes suffering flow 

reversals. Figure 8.25 presents the detail of the magnitude of the flow reversal in two of the pipes. 
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the predicted future network states. Online modelling uses actual reservoir levels where measured, 

or computed levels were not measured, over extended period simulations thereby taking into 

account a much wider variation of network characteristics during a simulation period. 

The online process is automatic and continuous, controlled by a timer that detennines how often a 

simulation is initiated. The timer always initiates a hydraulic simulation but water quality, 

sedimentation and diagnostic simulations are optional. The operator's screen is automatically 

updated each time a simulation cycle is completed. 

When one machine is configured to run online and the other ofiline, data may be transferred from 

the online machine directly to the ofiline machine in order to obtain the most up to date boundary 

conditions for off-line simulations and to undertake 'what if?' scenarios for planning. 

As with traditional desktop modelling the simulation uses a relatively small number of measured 

values from the network as boundary conditions for the model to work from and predicts the 

characteristics for all the network elements (pipes, nodes, service reservoirs, pressure reducing 

valves etc.). However, it also takes into account how the values at the measurement points are 

changing with time and updates predictions for future network status. Because the online model 

detects and applies changes in values at the measurement points in a continuous fashion, the 

predictions for future network states are more accurate than for those calculated using a set of 

'standard day' values. This is important because it provides the user with a more accurate 

predictive capability that can be used to pre-empt failure in standards of service hours before they 

occur. This capability generates a time window for a pro-active response that may well allow the 

network operators to prevent the event from having an impact at allor, at the least, minimise the 

effects of the event on the network. 

Figure 8.7 depicts an online screen shot of the showing the historic, current and future (predicted) 

flow at a particular node in the study network. The screen background displays the pressure 

profile across the entire network. 
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Figure 8.7 Online screen showing a time series of historic, current and future predicted pressure 

Having this capability also allows the detection and location of mains bursts. The author proposed 

further development of the study network model in order to concentrate on this aspect of online 

modelling, (Machell, 1997). The proposal was incorporated into an EPSRC WITE Framework 

project and the development and the findings were reported in a PhD Thesis, (Mounce, 2002) 

Figure 8.8 depicts how the online model manages data when network characteristics are within 

normal operating parameters. 
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Figure 8.8 Online model data management under normal operating conditions 

Figure 8.9 shows how this data management changes when an alarm condition is active. 
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Under certain alann conditions, transfer to offline and initiation of hydraulic and water quality 

simulation is automatic. Table 8.1 shows the rule table that the model uses to decide the probable 

cause and the priority of the alann. 

Alarm prlorltiser PoUutlon Treahnent failure Service Res failure Discoloarediturbid ... ter Burst 

I~~sme High 
No change x x 
Low x 

IflOW 

High x 
No change x x 
Low 

IReservOir level 

High 
No change x x 
Low x 

IReservOir inlet flow 

High 
No change x 
Low 

IR~rvOir ouUet flow 

High x 
No change x x 
Low 

IR~rvOir overflow 

Overflow 

Nonna! 

IPr~re High 

No change 
Low x 

ITurbldlty 

High x 
No change x 
Low 

IcondUCtlVlty 

High 
No change x x 
Low 

IRedOX potential 

High 

No change x x 
Low x x x 

IDIssOlved oxygen 

High 

No change x 
Low x 

IPH 

High 
No change x x x 
Low 

Iwater temperature 

High 

No change 
Low 

Icablnet temperature 

High 

No change x 
Low 

Table 8.1 Alarm handling rule table 



High priority alanns result in automatic transfer of the latest boundary condition to the offline 

model and automatic hydraulic, age and propagation simulation activation. Whilst this action is in 

process, the online system continues to operate and present the current network characteristics. 

This provides the user with a regular update of the current network characteristics and allows the 

use of offline modelling to undertake scenario planning. For example, if a burst occurs how to 

minimise the impact on the network, isolate the burst and continue to feed the rest of the network 

with minimal loss of water. In the case of pollution ingress, the user can identify how to isolate the 

pollutant in a particular area of the network, how to maintain supply to the rest of the network, and 

how to flush the polluting material out of the isolated part of the network. As the system can be 

used for 'what if?' scenarios, it can be used for contingency planning. Scenarios such as pollution 

of a service reservoir may be simulated and operational tasks pre-recorded for use in such an 

event. This allows rapid identification of critical assets such as valves and timing of their opening 

or closure in order to manage the event effectively and efficiently. 

Simulation results are output in tabular or graphical output styles. Tabular information output is 

useful in that it can be configured to provide just the output required for example, all pipes with a 

water age in excess of three days or, all nodes where pressures fall below the regulatory limit 

value. Output files contain summary statistics for each time step of a simulation. As output files 

are very large and contain a wide variety of information, it is not realistic to try to present one here 

and an extract is not meaningful. 

The graphical output is a representation of tabular output that can take a number of forms that 

allow the user to assimilate information that would be impossible from a tabular output file. 

Figure 8.10 For example, shows a part of the study network. 
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Figure 8.10 Graphical output for part of the study network 

_Io'xl 

On this one screen, the user can determine the magnitude and direction of flow in the pipes, where 

the pressure reducing valve and hydrants are located. Other output styles viewed simultaneously 

provide specific information. Figure 8.11 for example, shows the pressure drop associated with a 

pressure-reducing valve. 

356 



... 

e .. £ci MQinI;N- Bvid N_work Q--.dI 51fda1:ion R-.l1 ~ CgrilgISetup I:l~ 

~ ~ ~i2l±J 1Q E( 1 ~ lf.3H -LJ.!J ~ l liIl o l .iliJ ~.!.I 
ffi"ill · 1 - ITI~i~l©I IEII®I®I®I e>I;;-I'; I . I .I ~ I I 

ii ~: ;; --~- . -----Ii ~: _~ . 
~:~~~oo 17~ VrJ------------ + 
• WIXXl ~1XXl , , 

II 1::: l 00:~ 1- .. ....,_~..,.. ----- ....... -..... ....... . 
~~~--~ ~ 

Study Nllwo'" Online Model 
J.Macheli 

( ~.- .. ...• '.'. ". -........ .: 

----- -- - ,----

....... _- ..... - ..... -

• X toselectlhe.ea · • · /ZOOIIIW'rIdowt . oo.oo.OOHydI_ )oIffN 

~sl.11 m MOOloftpowetPorit [Pr ~ IIES,udyH.I- .. Online ... $7r.{)lII~ 

Figure 8.11 Pressure drop associated with a pressure-reducing valve 

The timely collection of network data and this graphical output of information gleaned from the 

data is the key to rapid assimilation of very large amounts of operational data that give the user the 

capability to better understand and proactively manage the network. 

8.3.3 The Online Model 

The online model comprises of three sub models: Hydraulic, Transient and Water Quality. The 

following section describes each in detail. 

8.3.3.1 The Hydraulic Model 

A hydraulic network model of the system is the minimum prerequisite for online modelling. The 

hydraulic model, Chapter 5.1, describes the hydraulic model building process. - Facilities are 

available to import models from other systems or to build new models from scratch . 
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8.3.3.2 The Transient Model 

The transient model is also an enhanced hydraulic model. As with water quality the enhancements 

comprise of extra configuration data pertaining to the dynamic elements of the model such as 

pumps and valves, see Chapter 6. The simulation timescale for transient analysis using the model 

is very different from that for the hydraulic analysis. Normal hydraulic analysis uses time steps as 

large as an hour. Transient analysis requires time steps of fractions of a second. 

The transient model needs the flow and pressure characteristics of the network at a specific 

moment in time as the starting point for its calculations. It is necessary therefore to run a quasi­

dynamic hydraulic analysis before using the transient model. 

8.3.3.3 The Water Quality Model 

The water quality models use output from the hydraulic model as the basis for their calculations. 

The more accurate the hydraulic model the more accurate the water quality calculations. 

Water quality models are enhanced hydraulic models. It is not necessary to build a special model 

for water quality modelling. The enhancement is in the form of additional data that is input via the 

graphical user interface or by writing directly into the input files. There are occasions when this 

method is appropriate. 

8.4 The On-line System 

The study network online system consists of four mam parts: field instrumentation, 

communications hardware and software, online hardware and software, and oflline hardware and 

software. 

8.4.1 Field Instrumentation 

Two types of field instruments gather network data for the online system. 

The hydraulic instruments were Spectrascan Microlog 4T, originally installed for leakage control 

purposes. They provided flow and pressure data at pre-set intervals on a continuous basis. They 

are standard products commercially available. The instruments are programmable from a remote 

location. 



Water quality instruments gather water quality data (and also pressure). The water quality 

instruments were developed in conjunction with Solomat, a subsidiary of Neotronics, later to 

become part of the Zellweger Empire. These instruments are sophisticated. They are multi 

channel, can be programmed to take readings at any time period down to 1 second, and they have 

alarm handling and, in conjunction with the data management software, pollution fingerprint 

identification capabilities. A full description of the instrumentation is presented in Chapter 4 of 

this document. A local P.S.T.N based telemetry system contacted the instruments and 

downloaded data. 

For this application, the instruments were all configured to take measurements every 15 minutes 

for each parameter. This was because the cycle time of the online system was been set to 30 

minutes to allow the outstations to be contacted individually. 

The water quality instruments measure pH, conductivity, redox potential, pressure, turbidity, 

dissolved oxygen and temperature. The determinants were chosen because they were the most 

robust / reliable measurements readily available at the time, which could be applied in the hostile 

environment of distribution networks with minimal development costs. Figure 8.12 shows how 

the instruments are installed into a water main via an under-pressure T and valve assembly. 
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Figure 8.12 Instrument installation detail 

Detailed installation requirements are shown in Figure 8.13 

3 section Gloucester cover 
Bed i mortar 

0 0 
/ foncrete section 

MIN 900 mm 600 X 900mm 
Ducting FROM TOP OF MAIN V TO BASE OF COVER 

100 mm Valve 

ferrule ( 
I ~ I I f'--/ 

~ I SPECIAL TEE I ~ PIECE 

II ~ ~ 

"" 'f / VJ MaXI its 

Figure 8.13 Detail of mstallation 

The instruments can generate high and low alarms for all channels. An alarm results in the 

instrument ringing the operator and, or, initiating an automatic sampling machine which can take 

water samples at any time throughout the incident which generated the alarm. Full details of the 

instrumentation are described in Chapter 4. 
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The online study has highlighted that this generation of water quality instruments was not wholly 

suitable for support of an online modelling environment. The technology is old, not robust, 

requires a high level of expert maintenance, and is expensive to install. 

A new generation of instruments is therefore being produced. This equipment will be based on 

thick film technology, will be maintenance free, and cheaper and simpler to install. Figure 8.14 

shows the detail of the new type of solid-state sensor chip. 

T Erq:.:suure 

Co fliEr E I E.drc..d9 

Figure 8.14 The new style thick mm sensor chip 
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The instrumentation development is the subject of a separate project with its own comprehensive 

report and is therefore not discussed here . 
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8.4.2 Computer Hardware 

Three separate, networked computers ran the online system, Figure 8.15. 

Control 
Room Terminal 

Local Comnmications 
Terminals Control 

Offline 
Application 

Network connection 
to other 

corporate systerrE 

Oiline 
Application 

Figure 8.15 Online system hardware network 

A desktop PC was used to run the field communications software. This software handled all 

communications with the field instruments via modem links and P.S.T.N. lines. 

The main system comprised of two Professional Workstations. The first Workstation was 

configured to run online in a continuous cycle of taking in network data, reporting the current 

network condition, and predicting future network characteristics. 

The second Workstation waited in standby mode until required for off-line simulations. Offline 

simulations are automatically initiated by an incident alarm, or manually by the need to plan work 

on the distribution network. In either case, the user benefits from the most up t9 date network 

information available . 
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8.4.2 Online Software 

The online system uses three separate software modules, a communication module, a data 

management module and the online modelling software module. 

8.4.3.1 Communications software 

The communications software was designed, written and used for the study to contact the field 

instrumentation and download network data for preparation for use by the online system. The 

software downloads data from both hydraulic and water quality sites using modems and P.S.T.N 

lines. Figures 8.16 and 8.17 show examples of raw flow and water quality data respectively. The 

data is presented in graphical form for ease of interpretation. 

Raw Flow Data 
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Figure 8.16 Raw flow data 
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Figure 8.17 An example of raw water quality data (Turbidity) 

In this particular case, a turbidity event that exceeded the (water quality) regulatory value of 4 F1U 

is clearly visible and would generate an alann from the measuring instrument or the data 

management software module. 

It was possible to change the time interval between data downloads, add new or delete 

unnecessary instrument sites, and to view configuration data used in the current download cycle. 

The software transfers the data from instrument site to the Data Management software module. 

The ASCII files created for the online system to use contain a site identifier and appropriate 

hydraulic or water quality parameters in sequential format. 

8.4.3.2 The Data Management Software 

The Data Management software requests a new file from the Communications Workstation before 

a model simulation cycle, and converts it into a format acceptable to the modelling engine. Figure 

8.18 shows the main Data Management screen. 
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Figure 8.18 The data management module main screen 

The diagram shows the pre-processed, the processed data, and the current state of the pre­

processor module. 

It is possible to add or delete sites from the current outstation list. Current and historic hydraulic 

and / or water quality data may be viewed and system paths for on-line data files may be 

configured. If data is in alarm condition, it displays in red in an Event Log window. Figure 8.19 

shows the alarm box popped up on the main screen . 
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Figure 8.19 Event Log window showing current data and alarm conditions 

The data software generates alarms when any measured parameter(s) fall outside user defined 

upper and / or lower bounds or when instruments cannot be contacted for some reason. 

Empirical research was undertaken as part of this study and showed that certain substances, such 

as Aluminium Sulphate, will produce specific, repeatable changes in the measured water quality 

parameters. These changes provide a "fingerprint", defined by Table 8.1, of the substance that is 

programmed into the alarm-handling algorithm. 

Water quality alarms are allocated a status dependent upon how the vanous water quality 

measurements are affected. High priority alarms, such as those indicative of pollutant ingress or 

failure / unavailability of instrumentation, are displayed on the users online screen in an Event 

dialogue box and highlighted in red text. Figure 8.20 shows the Event Log dialogue box. 

366 



Real time Simulated Message 
time 

1998-05-,;m12:01 H 70222 Logger not re.ponding correclly! 

1998-05-ID12:00 H 70912 Logger not responding correclly! 

I 1998-05-1;09:56:42 H 
1998-05-k09:55:11 H 
1998-05-1;09:55:11 H 
1998-05-1;09:47:16 H 
1998-05-1;09:45:50 H 
1998-05-k09:45:49 H 
1998-05-1;09:45:44 H 
1998-05-k09:45:44 H 
1998-05-k09:45:44 H 
1998-05-1;09: 45:44 H 
1998-05-k09: 45: 44 H 
1998-05-1;09:45:44 H 

Iqual-3v: Endi ng quality sim" ation 

Iqual·3v: Starting quality siruation 

Iqual-3" Number of tim. steps: 180 

Iqual-3" Ending quality sirualion 

Iqual-3" 51arting quality simU ation 

Iqual-3" Number of time steps: 165 

Co"d not find Measurement '71OO5i se' in Mea. Config 

Could not find Measurement '7lOO5dep' in Meas Config 

Could not fi nd Measurement '71005tur' in Meas Config 

Could not find Measurement '7lOO5con' in M ... Config 

Could not find MeaslXement '71OO5DO in Mea. Config 

Coul d not find Measurement '71005pif in Mea. Config 

Figure 8.20 Event dialogue box showing high priority alarms in red. 

Delete 
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Help 

Cancel 

The same dialogue box presents information about other, lower priority alarms, but in black as 

opposed to red indicating the alarm is of a less serious nature. The data-handling module 

processes the network data before its use by the online module. A configuration file allows the 

user to dictate how to deal with missing or corrupt data. It is possible to replace the missing data 

with a standard value or to force the system to use the last known good value. 

8.4.3.3 The Simulation Software 

The software has hydraulic, water quality and dynamic modules integrated into one suite shown in 

Figure 8.21. 

The online fimctionality was integrated into the modelling software developed for this study as 

detailed above. The online module calls on all three models as and when required / configured. 

The system provides the user with the facilities to obtain distribution network information using 

the following models: 
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Application Software 

Hydraulic Analysis Water Quality Transient Simulation 
module module module 

I 

Figure 8.21 the software suite 

8.4.3.3.1 The Hydraulic Model 

Provides infonnation about the hydraulic characteristics of the network including: 

8.4.3.3.1.1 Flow 

The reasons for wishing to monitor flows include operation of service reservoirs, detection of burst 

mains and unusual or illegal demands on the network. Figure 8.22 shows the users screen zoomed 

in on part of the network to see the detailed infonnation . 
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Figure 8.22 Magnitude and direction of flow 

I 

It is useful to be able to continually monitor the flows from service reservoirs. Figure 8.23 shows 

a user screen highlighting the reservoir, the magnitude of flow and the flow pattern from the 

reservoir. 
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Figure 8.23 highlighting the magnitude of flow and the flow pattern from a service reservoir 
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Figure 8.25 Flow time series showing magnitude and frequency of flow reversal in 2 pipes 

The effects of a flow reversal on the age of water can be quickly determined. Figure 8.26 shows 

how the age of water in a pipe with a regular flow reversal differs to that in a pipe with 

unidirectional flow . 
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371 



," 

This information has not previously been available and is providing a much better understanding 

of water quality in distribution networks. 

8.4.3.3.1.3 Pressure, Pressure gradient, Maximum and Minimum Supplemental 

Pressure 

The various types of pressure information may be viewed in the same manner as flow information. 

However, other useful presentation types are available. Figure 8.27 shows a contour plot 

identifying locations of equal pressure. 
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Figure 8.27 Pressure isocurves 

Figure 8.28 presents the same data only as a 3D-pressure contour map. 
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Figure 8.28 A 3D pressure contour map 

Both these types of output are very useful for rapid identification of pressure peaks and troughs in 

a network. 

8.4.3.3.1.4 Source contribution 

Source contribution data clearly identifies where water from a specific source such as a service 

reservoir travels, i.e. which pipes contain water only from that source. The model will also 

identify where different waters mix. Figure 8.29 highlights the various source contributions to 

parts of the study network. 
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Figure 8.30 shows how this plot can be enhanced to highlight water from a single source. 

o 

.. 
~ . . ' . 

Figure 830 Extent of supply of a single source in a multi-sourced network 
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This information is very practical as it can be used to identify which consumers are supplied by 

which source and when. It is a statutory obligation for water companies to be able to supply this 

information on request from any consumer or the Regulators. 

It is useful to identify the maximum area of impact of a source that is contaminated for example 

and, in online mode; it can be used to continually check for breach ofleakage control zones. 

Figure 8.31 is a detail view at a location in the study network where three differing supplies 

converge. 
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8.4.3.3.1.5 Retention time 
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Retention time is the amount of time a particle of water is held within a particular pipe. If all the 

retention times within all the pipes along a given route to a particular location were summed, this 

would be the age of water at that location. The retention time is therefore useful for identifying the 

largest contributions to age of water along a route through the network. With this knowledge 

operational staff have an opportunity to reduce the age of water at a particular location should the 

connectivity of the pipe work and valves permit. Figure 8.32 presents a plot of retention times in 

individual pipes. 
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Figure 832 Retention times in individual pipes 

Reynolds number 
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Although a hydraulic parameter, Reynolds number is used to identify where turbulence occurs that 

might stir up sediments causing discoloured water. Figure 8.33 shows a plot of Reynolds numbers 
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Figure 833 Reynolds numbers for each pipe 
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8.4.3.3.1.7 Roughness coefficient 

Having an overview of roughness coefficients helps the user to plan rehabilitation schemes. 

Figure 8.34 shows how the plot can be used to get a rapid overview of the hydraulic condition of 

the mains. 
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Figure 8.34 Roughness coefficients for overview of the condition of the mains 

Velocity 

Velocity information can be also be used for planning rehabilitation schemes. High velocity flows 

will scour pipes and prevent sediments settling. Very high velocities such as those sometimes 

associated with pumping can cause erosion corrosion weakening the structure of the network, and 

these locations can be determined. 

Figure 8.35 is a velocity plot of the study network. 
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Transient Model 
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Transient functionality is integrated into the online software but is not yet available as an on line 

function. However, it can be accessed and used for offline simulations and will be fully integrated 

at a future time. 

8.4.3.3.3 Water Quality Model 

8.4.3.3.2.1 Age of water 

The mean age of water in the network can be monitored. Figure 8.36 shows how the age of water 

information may be presented 
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The background information in Figure 8.36 includes the mean age represented as different 

coloured pipes. Where the pipes connect at nodes, the node is enhanced to include a breakdown of 

the various age components presented as a pie chart. The key details the age bands into which the 

simulator resolved the component age fractions. Superimposed in the foreground is time series 

data of the age of water at three locations within the study network. Also visible is the flow 

direction in individual pipes represented by arrows. The relative magnitude of flow in each pipe is 

represented by the size of the arrows. 

Maximum age information is available on a similar plot and is written to the simulation output file 

as a maximum age 'top ten' table. This is very useful to quickly identify problem areas within a 

network. Figure 8.2 is an example of a Maximum Age 'Top Ten'. 
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MAXIMUM AGE - TOP TEN 

pipe pipe upstream downstream age time distance 

no. name node node dd hh:mm dd hh:mm from end (m) 

3 AL-0904 A4000 A4001 0923:59 0923:59 0.0 

84 AL-1266A N-0492 A5519 0923:59 0923:59 200.0 

222 AL-1406 A5242 A5708 0923:59 0923:59 0.0 

267 AL-1453 A5281 A5283 0923:59 0923:59 0.0 

298 AL-1486 A5310 A5355 0923:59 0923:59 0.0 

299 AL-1488 5311 A5346 0923:59 0923:59 0.0 

337 AL-1526 A5346 A5347 0923:59 0923:59 0.0 

372 AL-1561 5384 A5385 0923:59 0923:59 0.0 

436 AL-1624 5447 A5448 0923:59 0923:59 0.0 

464 AL-1655 A5478 A5479 0923:59 0923:59 40.0 

------------------------------------------------------------------------------------------

Figure 8.37 Maximum age 'Top Ten' table 

In this example, it is clear that pipe number 84 has an age of water problem. The pipe is 200 m 

from the end of the network, that is, before a dead end is reached in the direction of flow. At this 

time, the simulator reports dead ends - those pipes that are zero metres from the end of the 

network, but it is intended to exclude these from the output. 

8.4.3.3.2.2 Conservative substance propagation 

Conservative substance concentration, for example, Nitrate or Fluoride, may be tracked using the 

online system. Figure 8.38 shows how a conservative tracer has propagated through the network 

after sixteen hours. 

380 



'" 

ShowjOe: r 
5 ..... _ 17 

tfl.l'll.oIleve1r f12 
~~~ 

.. .. 
x 

NETWORK PLOT 
TRAC£R t 
Time : 00-1&00 

• O.1lI) 

0 ,1lI) . 10.(0) 

• 10.(0) . ,"Ill) 

'"Ill) . JIlIll) 

• JIl.IlI) . "'.1lI) 

• 40.(0) . SO.1lI) 

• SO.1lI) • GO.IlI) 

0 GO.IlI) . 701lI) 

• 70.(0). eo.1lI) 

• eo.ooo . "'.000 • "'.000 · 100.000 

0 100.(0) . 

-_. -~- p-",--

Figure 838 A conservative tracer propagated through the network for sixteen hours. 

This functionality is the basis for the online pollution incident management detailed in section 8.9. 

8.4.3.3.2.3 Non-conservative substance propagation 

Non-conservative substance concentrations such as Chlorine can be simulated. Figure 8.39 is a 

plot of Chlorine concentration in part of the study network. 
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Figure 8.39 Chlorine residual in part of the study network 
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If a calibrated model were used in conjunction with chlorine monitoring at key locations, deviation 

from the normal residual in any location following a simulation would indicate a problem. This 

will be possible when a network has had its Chlorine demand satisfied and a continuous low level 

residual is being maintained. 

8.4.3.3.2.4 Substance conversions 

These simulations are undertaken offline. For example, the conversion of Ammonium via Nitrite 

to Nitrate. The stoichiometry of individual reactions may be varied and if Ammonia was to enter 

the network is possible to determine how much Nitrite and Nitrate would be formed. The 

propagation functionality can then be utilised to determine where the Nitrogen would travel and 

when. The same functionality can be used to calculate Trihalomethane production from organic 

pre-cursors such as Colour, and Chlorine. Details of this simulation can be seen in Chapter 7. 

Figure 8.40 shows how a substance (Subsl) is decaying to create a new substance (Subs2). As this 

grows it reacts with another substance to produce Subs3 that then decays with time, as all three are 

non-conservative. 
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Figure 8.40 Substance conversion and decay 

8.4.3.3.2.5 Diagnostic 

The diagnostic model can be used to indicate the possible points of ingress of a polluting material 

after it has been detected in the network by instrumentation (or as a hypothetical input) and its 

propagation simulated by the model. The model runs the hydraulic database in reverse and the 

number of locations where a pollutant could have originated from is minimised. It is not yet 

possible to determine exactly where a pollutant would have entered but work is continuing to 

develop the model to do exactly that. Polluting material may not always be harmful. It would be 

of great benefit to be able to track down the location of the source of discolouration for example. 

Figure 8.41 shows the time series of a pollutant measured at node A6280 superimposed upon the 

user screen highlighting the possible sources of the pollutant. 
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Figure 8.41 Time series of pollutant at a node and possible sources of the pollutant 

8.4.3.3.2.6 Flushing 

_'"I xl 

The flushing model was developed to determine which hydrants to open, in what order, to remove 

polluting material with least waste of water during an incident. Again, this would include 

discoloured or unpalatable water. 

The opening of the end hydrant was simulated to show how the pollutant would be expelled from 

the network. Figure 8.42 represents the hydrant flow imposed for this example. 
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Figure 8.42 Hydrant flow during the flushing procedure 

The hydrant flow can be adjusted for flow rate so that different flushing velocities can be achieved 

in the pipes_ If there is enough pressure scouring velocities might be attained. Figure 8.43 

highlights a slug of polluting material in a piece of main near the end of the network. 
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Figure 8.43 Pollution slug in a main near end of network. 
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The time series of pollutant concentration shown in Figure 8.44 clearly shows that when the 

hydrant is opened, the pollutant is pulled towards the end of the network. 
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Figure 8.44 Pollutant level time series 

The individual peaks represent the pollutant arriving and leaving nodes along the main towards the 

hydrant. Tabular output includes the flows from each hydrant (when more than one is opened) and 

the total volume flushed. 

8.4.3.3.2.7 Biological activity 

A simulation highlighting which pipes in the network are potentially more biologically active 

relative to the other pipes in the network is available. Full detail of this biological model is 

presented in section 7 .. 6.1 

Figures 8.45 and 8.46 show how biological potential changes because of a lowering of chlorine 

residual . 
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Figure 8.46 Biological potential where a single pipe has reduced chlorine residual 
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8.4.3.3.2.8 Sediment Transport 

The sediment transport model is used to predict the movements of particulate matter throughout 

the network. Figures 8.47 To 8.51 represent the different views of sediments the user can obtain. 
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Figure 8.48 Sediment entrained in the bulk flow 
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All this information is available at individual pipe level. Figure 8.52 is a time series of bedload 

flow in a pipe as an example . 
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Figure 8.52 Bedload flow in a pipe 
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These simulations provide the user with information about where and when sediments will be in 

the network. This is important for understanding water quality, for example, when a valve is 

opened and velocities in pipes change sediments may be mobilised causing water quality problems 

where previously there were none. For rehabilitation purposes, the model identifies those pipes 

where scouring or pigging might be required and those areas of the network that my need 

continuous pro-active operational action such as passive flushing to prevent sediment 

accumulation. 

8.4.3.3.2.9 Zoning 

The user can extract a small hydraulic model from within a larger one - this process is called 

Zoning. This application is designed to aid the user whilst dealing with isolated areas of the 

network brought about, for example, by ingress of polluting material. The extracted model brings 

with it the latest boundary conditions at the points where it is severed from the larger model so it 

can be used for simulations immediately. Figure 8.53 shows a large model with the smaller model 

required highlighted in red. 
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Figure 8.53 Identification of small model within a large model 

Figure 8.54 is the newly extracted, smaller, model. 
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Figure 8.54 The reduced model. 

The smaller model allows the user to undertake more rapid model configuration, and to run 

scenarios more rapidly. Some detailed age simulations can take a significant time on a very large 

model and, if detail of only a particular area within the model is required, there is little point 

simulating an entire network. When the model is extracted, all boundary conditions where the 

reduced model is severed from the main model are brought with it. 
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8.5 System Functionality 

All functionality is accessible from the main screen via menus and toolbar icons. Hydraulic and 

water quality functionality are separated for ease of understanding and use. A toolbar button 

allows the user to switch between hydraulic, water quality and transient (dynamic) modes. The 

switches apply to both programme input and results output. 

In hydraulic mode, the current model may be edited, or new models can be built. Only hydraulic 

parameters may be entered into the model in this mode. Similarly, the quality mode and transient 

modes allow the user to configure the network model for water quality and dynamic simulations. 

8.5.1 The Main Screen 

The opening (main) screen can be seen in Figure 8.55 

[Je Edit MappngIY- iuldN!JhooiC:rl; Q.-dt $mt.Mhon B .. t.t, c.r~, CQrIVISell4I !:IeID 
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~ill ol-ITII!!>I®I@I !!!!I®I®I®lel .1 ·1 ·1·1-1 1 . 

Figure 8.55 The main screen of the online system 

From the opening screen, it is necessary to open an existing model or create a new model before 

any functionality, other than certain configuration options, is available. In Figure 8.55 it can be 

seen that most menu items are 'greyed out' . 

393 



II 

Figure 8.56 shows the main screen and the availability of functionality once a model has been 

opened. 
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Figure 8.56 Main online system screen with the study network model 'opened' 

Once the model is open, all modelling functionality is available. 

8.5.2 Hydraulic Functionality 

The system has a comprehensive set of hydraulic modelling utilities. It is possible to import or 

amend existing models or build new ones. Existing models can be opened in order to continue 

working on them. Models from other systems can be imported. Once a model is opened it can be 

edited and or configured and then used for simulations. 

The hydraulic module can handle up to 200 different demand type profiles. Figure 8.57 is the flow 

factor dialogue box showing some of the different flow time series 
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Demand PlOfile Time Series List 13 

Demand profiles Hew I 
Name .E.dit ] 

001 UFW 
I 002 HOUR24 Q.elete 

003 HOUR16 
004 HOUR10 
005 FARMS 
006 HOLS 
007 DOME T1 
008 DOMET2 
009 HSEDEM1 

Figure 8.57 Flow profIle types used in the study model 

Demand profiles can be specified in hours or minutes and, for each demand type, the profile can 

be multiplied by a factor (such as holiday or time of year). With a general factor for all demand 

types, consumption can be adjusted for seasonal demand or for consumption in future years or to 

plan network extensions such as large housing estates or new industrial demand. 

Where a user has access to measured values, these can also be used as input to the model. This 

input can be based on water meter data (over a number of months), pressure sensor information or 

water quality data. Also, time series from SCADA systems can be input directly from appropriate 

databases. 

8.6.3 Leakage 

A leak can be simulated by the model using the diameter of the 'hole' in the pipe that has burst, 

and the pressure-dependant leakage flow is calculated. Figure 8.58 shows the dialogue box where 

leaks are defined. 

Leak E3 

~omment: Leak OK 

Q.iameter [mm]: 10.00 Cancel 

Help 

Figure 8.58 The leak dialogue box 
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8.6.5 Pumps 

Fixed and variable speed pumps are supported. The standard configuration supports 300 pumps, 

and the pump controls offered are time switched, pressure switched, and level switched, and 

include time-controlled speed regulation. Figure 8.59 and 8.60 show the menu item and the 

configuration dialogue boxes. 

8.6.5 

Figure 8.59 Pump menu items 

Pipe Dialogue Ef 

Data I Results Pump Data 1 Pump Results I 
.c;omment: 

Pump operation----,-r Pump definition------------, 

8ctual speed [rpm]: Pump name t1'pe: IM odified 

30 

Pymp speed time series: 

3.J 
Price factor time series: 

. 3.J 
Energy costs [£lkWh]: 

10.000 

y: aive included: P-

Reservoir control 
Reservoir placed in node: 

~tart level [m]: 

Stoll level [m]: 

Definition speed [rpm]: 26 

Flow I Pressure I Ener!ll' consumption ~ 
(lis) (mwc) (kIN) ..:J 
0.00000 197.00 415.00 

16.00000 130.00 587.00 

18.00000 120.00 761 .00 ~ 

_·-1.1 __________ .... 1 ~' .. 

16166 ~ Pump initially Qn: 

I 040 S tart time series: I 
I 3.90 Stop time series: 1 

OK Cancel 

Figure 8.60 Pump configuration dialogue 

Variable Volume Reservoirs 

Help 

Variable volume reservoirs water towers can be modelled. Figure 8.61 shows how a reservoir 

volume / shape relationship is defined. 
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Reservoir E3 

Position 
Reservoir I Results I homment: Out 

1'1 iddlesden 5 R r ', 
homment: 

tlode name: 

nI 
Initial pressure [mwcl: 

6166 
3.20 

2upplementarl' level [m]: 
Ma~ pressure [mwcl: 4.00 

I 0.00 nj 

~ [m]: 2350.75 n 
l: [ml: 2371 .19 

_H~e~ig~h_t~~V~ol~um_e ____________ ~~ ~m] 1m3] [] 

1.00 500 
~[ml 265.90 4.00 1500 

Zoning 

Qemand :1 Default ::] 
1eakage: I 3 Altitude valves· net flow model-----, 

;e,daption: I . 8 1 1!pper [ml: 

ril Extracted 1ower [m]: 

Help 

Figure 8.61 Reservoir volume / shape relationship defmition 

8.5.3 Extended Simulations 

The model can run simulations with time step intervals of several hours or fractions of a minute 

automatically controlled by a dynamic time step facility. This function ensures that all dynamic 

changes are taken into account in the hydraulic database. The program will add a calculation point 

any time that consumption changes, or when dynamic elements such as pumps are started or 

stopped, or altitude valves are opened or closed and (at the same time) during night hours, when 

little or no change is occurring, the program will run with a larger time step. Figure 8.62 shows 

the simulation initiation screen. 

Run Hydraulic Srmula tron i.3 

litle: 

J K 709 Age of water Bun I 
IN 0 delay at node 4000 It: ~ii!~ii~ : 'JI 

5 imulation time Output control 
Wr~e input data to CH K file: r 

~talt [dd·hh:mml: I 00·00:00 
Write input data to OUT file: r 

End [dd·hh:mml: I 01 ·00:00 Write output data to OUT file: ~ 

Close Cancel I! Help 

Figure 8.62 The simulation initiation screen. 
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8.5.4 Friction Formulas 

Both Hazen-Williams and Colebrook-White friction calculation methods are supported. Figure 

8.63 shows the dialogue box where the switch between formulae is made. 

Ilydraulic Simula tion Clilelia f3 

[~Demand profile 
lienelal: I 1111,111111 

Pressure dlOp correcl ion~ 

Factor 1: !ToO 
Factor ~: ro:oo 

U ,ictian factor 

E actor: I 1. 0000 

r Zone factors 

r !;:nable LCZ factors 

Dimensioning critelia .---.. 

I- Veloc~~ 

r Gra>!ient IToOO 
Valve criteria 

Backflaw Cv: JD.05O 
Fllctlon calculalion method 

r Coleblools· White 

r. H a~en -Williams 

Extreme values 
Minimum Maximum 

f ressure [mwct . 
!:lead [mwc): ~ :J ".~". 

konsumptian [Vs): 

Gradients (0100): 

.s.upp. pressure [mwc): 

~elocity [mls): 

Iteration 
Basic ADJ. Hydrant etc. 

SIQP: I 0.10000 I 0.05000 

R ela~ation: I 0.900 I 0.800 

Inlet pump I- G enUe Slope r Sleep Slope 
charactelistic: 

Mlscellaneous------, OK 
~ J.oad 01 hydraulic ,esuRs 1...... __ .... 

r Check negatjve pressure 
~ Calc\!late production zones 

Cancel 

Help 

Figure 8.63 Hydraulic simulation criteria screen 

The hydraulic and water quality models were configured as described in Chapter 7, however, there 

is an option to run online regardless of being in hydraulic or water quality mode as shown in 

Figure 8.64. 

Figure 8.64 The online simulation option 

8.5.5 Output Presentation 

Results are presented graphically or in tabular form and can be exported in DXF format for import 

to CAD / GIS programs. Table 8.2 is an extract from an output file . 

398 



No Nod@ Flow U@l. 1.0. Pressure H@ad Frict. 
Ups. Dws. Ups. Dws. Ups. Dws. Loss 

1/5 "'/5 "'''' ",wc """C ",wc MC 00/0 

51 6045 6061 2.1 0.12 150.0 89.27 81.44 270.29 270.27 1.53 
52 6045 6661 1.9 0.11 150.0 89.27 81.44 271.29 271.27 1.38 
53 6045 60116 0.3 0.04 110.0 89.27 96.26 270.29 271.28 1.19 
54 6046 6047 0.0 0.01 75.0 96.26 95.26 270.28 271.28 0.01 
55 6046 6048 0.0 1.01 75.0 96.26 111.62 271.28 271.27 1.12 
56 6046 6050 0.2 1.03 111.1 96.26 119.25 271.28 271.26 1.11 
1:7 ~OJ.O II;. R •••• ~ 0 o 17 11:0 0 ao J.o ao J.') ')70 1:1 ')70 J.J. o ~a 

Table 8.2 Extract form a tabular output fIle 

Many of the figures presented in this thesis are from the graphical output so none will be repeated 

here. 

8.5.6 Configuration 

Before operating the On-line system, it had to be configured. The configuration file, Table 8.3, 

tells the system which hydraulic and water quality parameters should be used as boundary 

conditions to drive the on-line simulations. 

70201 Flo 6166 Reservoir Flow 712 T2 C2 1 3.4 2.9 1 o 000 
71201 Flo P·2185 Pipe Flow 712 T2 C2 1 20 ·8 ·1 o 000 
71002 Pre 3000 Node Pressure 712 T2 C2 1 100 92 1 o 0 0 0 
70901 Pre 5000 Node Pressure 709 T2 C2 1 60 42 1 o 000 
70902 Pre 5448 Node Pressure 709 T2 C2 1 50 32 1 o 000 

Table 8.3 Extract form a configuration fIle 

The configuration file contains measurement site identifiers that relate them to the associated 

downloaded form that site. In addition, it must also contain a node or pipe identifier to tell the 

system where the measurements are located in the model and the measurement type, for example 

pressure or flow. Each measured flow is associated to a Leakage Control Zone to ensure that the 

flow for that particular zone is attributed correctly to the various flow components. 

Upper and lower measurement limits can be set for each measured parameter. If these limits are 

exceeded, a default value specified by the user will be used and the system will warn the user by 

initiating an alarm and popping it up on screen. Offset values and conversion factors for incoming 

data are also configured in this file. 
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The online software looks for and, if found, opens the data file containing hydraulic and water 

quality data created by the Data Management module. After data integrity and validation checks 

are completed, it performs simulations for current and predefined future timesteps. During the 

hydraulic simulation initialisation, the measured flows are adapted for each individual leakage 

control zone and the nodal allocation for demand scaled appropriately. During the simulation 

process, all input measurements and their status are on screen in a dialogue box. Figure 8.65 
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Figure 8.65 Operators screen showing field measurements dialogue box 

8.6 Hydraulic Model Upgrade 

The model upgrade process is described in Chapter 5. 

8.7 Online Hydraulic Model Validation 

_ " X 

The validation process involved comparison of measured pressure and flow data from the field-test 

against predicted results from the model. Result comparison from over one hlll1:dred pressure­

mOnitoring points proved to be a time consuining task, but worthwhile, as it highlighted several 

network anomalies . 

. ' One of the key findings of the validation process was a suspected closed valve on the 250mm 

main from Albert Street feeding zone 709. A fit between predicted and measured pressures could 

not be achieved other than by placing a closed valve on the model along the length of main from 
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the bottom of Albert Street to Alice Street. Once the valve was closed in the model, an exact fit 

was achieved when comparing the predicted output from the model to the measured pressures 

gathered during the field test. The closed valve caused a resulting pressure loss of 6 mwc because 

the water had to travel down a smaller diameter pipe to other consumers in the zone. 

In order to prove the model results were correct, loggers were placed at two monitoring points 

downstream of the location of the supposed closed valve. A member of the Operations staff then 

checked the valves on the stretch of main were the model had predicted the closed valve had to be 

present. The investigation confirmed that the valve was closed. When the valve was opened, the 

pressure increase was 6 mwc confirming the model prediction. 

A second anomaly found during the validation process was the pressure-reducing valve in Albert 

Street. Logged data from the site showed that the pressure produced on the outlet was moving 

around erratically, therefore not producing the output expected in the model. Investigation showed 

the pressure-reducing valve to be faulty and it was replaced. Following replacement further data 

lOgging showed the output to be far more stable. 

Several mains in the model that were supplied via the 315 mm trunk main in Highfield Lane in 

zone 713 had to be given very low C-values in order to achieve calibration. This was of concern 

because records had shown that scraping and lining had been undertaken in the area five years 

earlier so the mains should be in reasonable condition with relatively high C-values. Samples of 

the main were therefore taken from sites off Highfield Lane. One of the samples from a 3" cast 

iron main at Highfield Street showed a marked reduction of the internal diameter to less than an 

inch. Another sample from Belgrave Road was in much better condition clearly showing evidence 

of scraping and re-lining. 

Finding operational anomalies of this nature gave an increased confidence in the predictive 

capability of the model. The validation process was completed following final amendments of the 

model to integrate the information obtained during the network investigations. 
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8.8 Hydraulically Thning the On-Hoe Model 

8.8.1 Background 

Validation of the model using historic data only proved its validity at the time the historic 

measurements were made. Dynamic changes in a distribution system mean that the pressure and 

flow characteristics change every minute of every day. To ensure the hydraulic base data used in 

water quality and online simulations was correct, the current network state presented by the online 

model was compared to field measurements over a period of two weeks. 

All available measured flow and pressure data were used as boundary conditions in the online 

model. Checks on the validity of the hydraulic data were made over a number of days at different 

times. The validation information forms a large report in its own right and is available if required 

and not included in this thesis. 

8.8.2 Results 

The hydraulic results highlighted that some of the pressure readings from the water quality 

instruments differed by up to 5 mwc from the results predicted by the model. The reasons for this 

were: 

The transducers in the water quality instruments were only accurate to 1 % over a 

100 mwc pressure range as opposed to 0.1 % in the hydraulic instrumentation. 

The flow distribution method used in the model may cause differences in pressure 

due to allocation of flow to areas were there is actually little in reality. 

All measurements were subject to fluctuations brought about by sudden changes 

in demand. 

The pressure readings from Leakage Control Zone 709 were subject to 

fluctuations from the pressure-reducing valve. 

8.9 Pollution Incident Management 

To show how the online model may be used for proactive network management a series of studies 

were undertaken to provide contingency plans for pollution events. 
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In the late 1980s, a serious incident occurred at a water treatment plant in Southern England. A 

delivery of Aluminium Sulphate was erroneously tipped into a final water tank at a water 

treatment plant resulting in pollution of the associated distribution network and many people 

suffered illness as a result. This incident initiated a court case that lasted for over ten years. In the 

1990s, the water industry was strongly criticised by OFW AT and others for not being prepared for 

this type of incident, or indeed any similar incident, and for not having contingency plans in place 

to consult should problems arise. 

To demonstrate how contingency plans can be created with the help of the water quality model, it 

was used to investigate how much time would be available before consumers were affected should 

any part of the network become polluted. The infonnation was used to detennine how best to 

isolate the polluted water, how much time would be available to close appropriate valves and, 

where necessary, open others whilst maintaining a water supply to those users not affected. 

The design of the network using the new approach was based upon zones being as independent as 

is practicably possible making isolation of a zone feasible without the need to shut off supplies to 

other associated zones. It is also possible to isolate a portion of a single zone should the 

topography of the network be favourable. Before this approach was applied however, the network 

had cascading zones that presented the problems highlighted in this example. 

8.9.1 Methodology 

It was not practical within the scope of this project to look at all possible pollution scenarios for the 

study network, so a selection of some important possibilities was investigated. 

As example scenarios, the model was used to simulate the movement of a tracer substance through 

sections of the study network supplied by two of the service reservoirs and one of the water 

treatment plants. In the scenarios, the pollutant was defined as a conservative substance of known 

concentration. Because the input concentration of pollutant was known, the variation of the 

concentration of the substance with time was predicted for all pipes in the network. This 

infonnation was used to highlight where water from the individual reservoirs· travelled with 

respect to each other, at what concentrations, and where any mixing of water occurred. 

Knowing which consumers would be affected, when, and at what concentration, provided valuable 

information enabling the impact of such events to be minimised through effective contingency 

planning. 

403 



Knowing where a pollutant will travel from a particular point in the network with respect to time 

allows the identification of key valves that can be closed in order to isolate the polluted water 

before it reaches the consumers. The model was used therefore to define hypothetical incidents in 

order to study how they develop with time, and to determine the most effective way of managing 

them thereby providing information from which to design contingency plans. 

Functionality still being developed within the model is a flushing programme. This model allows 

the identification of valves in the network that should be opened to remove the polluting material 

most effectively and calculates how much water would be used during the flushing process. The 

model was used to determine how long it would take to remove the polluting material and how 

much water would be used during the operation for the zones fed by one of the service reservoirs. 

8.9.2 Scenario 1 Bracken Bank Service Reservoir 

Bracken Bank Service Reservoir is a major storage facility supplying the study network. At the 

time of the study, it received water directly from a water treatment plant and supplied zones 709, 

710, 711, and 712. These zones were in a cascaded configuration at that time, and comprised a 

significant proportion of the study network providing a good example for the demonstration of this 

functionality. 

Initially, the model was used to simulate network hydraulic and water quality characteristics over a 

48-hour period to predict the extent of the effects of a polluting material entering Bracken Bank 

Service Reservoir at a concentration of 200 mg.l-l , over a 2-hour period beginning at midnight. 

The results of the simulation indicated that, in less than 24 hours, the pollutant would affect 7,700 

consumers. Figure 8.66 represents the distribution of the pollutant after 2 hours. 
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Figure 8.66 Pollutant distribution after 2 hours 

Figure 8.67 shows the pollutant distribution after 12 hours. 
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Figure 8.67 Pollutant distribution after 12 hours 
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A number of simulations were then carried out to detennine the time taken for a pollutant entering 

at Bracken Bank to reach the boundary between Zone 710 and Zone 711 (Queens Road), and the 

boundary between Zone 711 and Zone 709 (Gresley Road). The results are shown in Table 8.4 

and relate to minimum and maximum network flow conditions. 

Time to reach Zone Time to reach Zone 

711 boundary 709 boundary 

Lowest Flow 1 hour 45 min 2 hour 55 min 

Conditions 

Peak Flow Conditions 50 min 1 hour 40 min 

Table 8.4 Time of travel for pollutant at low and high flow conditions. 

The time required to react to an incident of this nature is composed of two elements, the time to 

detect that an incident has taken place, and the time to mobilise resources to take action to contain 

the problem. Once the first customers were affected, the Control Room would receive customer 

complaints. Operational staff would then have to be notified, and they would have to decide 

how to isolate the affected area using network drawings and local knOWledge. 

The Figures in Table 8.4 indicate that by the time the customer complaints have been received and 

processed, it would probably be too late to isolate the pollutant from the rest of the network. This 

clearly indicated that a more effective means of protecting consumers was required. Had on-line 

monitoring and modelling been available it would have been possible to protect the majority of 

consumers from the effects of the pollutant. Detection of the pollutant would have been at the 

service reservoir outlet providing time to close off the supply and isolate the pollutant in a small 

part of the network. This in tum would have made removal of the polluting materia]. much simpler 

and efficient. 
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8.9.2.1 Associated hydraulic considerations 

Because of the cascading nature of the leakage control zones in this example, when sluice valves 

between zones were closed to contain the pollutant, an alternative means of supplying the then 

isolated downstream zones had to be found. Hydraulic investigations were therefore carried out to 

determine the feasibility of using the Riddlesden to Black Hill main to back feed to zones 709 and 

711 and, if necessary, use water from this main to flush the contaminant from the affected pipes, 

including those in zone 710. 

Pressures available from the Riddlesden to Black Hill main were such that there was a potential to 

cause bursts by opening a connecting valve between the main and leakage control zones 709 and 

711. A pressure-reducing valve was therefore required at the connection point with a downstream 

setting of 70 mwc if zones 709 and 711 were to be supplied from this source. However, if zone 

710 were also to be supplied, then the setting would have to be increased to 105 mwc. 

The flow required to supply the three leakage control zones from the Riddlesden to Black Hill 

main was 30 1.s-l
• This equated to a bulk flow of 2592 m3 per day. The water treatment plant 

supplying the service reservoir had the capacity to provide the water volume but the implications 

of this quantity of water being taken from Riddlesden Service Reservoir had to be assessed. 

Re-zoning work necessary to manage an incident in one area may have an adverse effect upon the 

supplies to other areas. To effectively manage the incident all these effects would have to be 

calculated. In this example, it would be possible to supply the extra demand from GraincliffWater 

Treatment Plant. 

8.9.2.2 Summary of the fmdings for the peak flow condition 

08.00 Pollutant leaves Bracken Bank Service Reservoir 

08.20 Half of Zone 710 affected - 1,600 properties. 

08.30 First complaints received. 

08.50 Pollution reaches boundary to next zone (711) - 3000 properties 

affected 

09.00 Local Distribution staff notified of problem. 

09.40 Pollution reaches boundary to Zone 709 - 4500 properties affected. 

09.45 Zone valve between Zone 710 and Zone 711 closed - too late. 
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10.40 Pollution reaches Zone 712 - all zones supplied by Bracken Bank now 

affected - 7,700 properties. 

8.9.2.3 Flushing 

The model was used to determine the most effective flushing regime and the length of time 

necessary for the pollutant concentration to fall to a pre-defined lower concentration limit. (The 

minimum acceptable pollutant concentration to which the model should resolve, can be set by the 

user). By running this scenario, it was possible to develop an efficient action plan that optimised 

the use of the incident management resources and minimising impact on consumers. 

The model was configured to calculate of the length of time required for the pollutant to be flushed 

from the network to an acceptable level. This was done by identifying the locations at which 

water was to be flushed from the network and defining demands at the selected locations that were 

representative of the orifice of the hydrants or washouts to be used to flush the contaminated water 

from the network. 

A hydraulic simulation was then run to determine the resultant network hydraulic characteristics. 

A quality simulation, based upon these hydraulic results, was then initiated starting with a defined 

concentration of the pollutant within the pipe work. The simulation stops when this concentration 

has been reached in all pipes. 

An important point considered was that the flow from a number of open hydrants can be 

considerable, and could have resulted in low water levels in the service reservoirs feeding the area 

being flushed and low pressures within the network. The results of the hydraulic simulation were 

therefore carefully examined to assess the impact upon the supply in general and, when necessary, 

the hydrant flows were throttled in the model by reducing the defined orifice size. 

This then defined the maximum flows that could be imposed on the network in order to effect 

flushing without causing secondary problems. 

In this particular scenario, flushing was achieved by back feeding towards Bracken Bank service 

reservoir (assumed to be isolated) from the cross-town main connection. It was found that to flush 

the pollutant out 12 hours after its introduction, 10 throttled hydrants (lOmm orifice diameter) 

Were required at the flushing points. 



This number of hydrants being flushed simultaneously resulted in the use of2360 m3 of water over 

a 24-hour period. The impact of supplying this considerable volume of water from the Riddlesden 

to Black Hill trunk main had to be assessed. It was found however that the main could support the 

necessary flow, as it was under-utilised in its current role in the operational regime of the network. 

The online model is a useful tool for assisting with the design of contingency plans. The flushing 

functionality identifies pipes from which where pollutant cannot be removed. New flushing 

locations can then be identified to remove the remaining contaminant. It can give an indication of 

the flows from each hydrant required to achieve flushing in a certain period, and it can indicate the 

volume of water required to achieve the flushing. The object of the exercise is to find out exactly 

which hydrants to open at what flow automatically - otherwise we might as well open them at 

what we feel is right and save time. 

The time for the pollutant to leave the network with hydrants located at the positions in figure 

6.3.5 was just under 24 hours. However, the program did identify a small number of dead end 

mains that would have to be individually flushed. 

By closing the valves that separate individual leakage control zones, it was possible to isolate the 

pollutant. For example, valves at Queens Road and Gresley Road, which separate zones 710/711 

and 711 /709 respectively. In this scenario, it was fortunate that a single valve could be closed 

in order to stop the further spread of the contaminant. 

8.9.3 Scenario 2 Highfield Service Reservoir. 

Highfield Service Reservoir feeds by gravity directly into Zone 713 then, via a flow modulated 

pressure reducing valve, feeds part of zone 709. If a pollutant enters the Service Reservoir, it 

would be necessary to close the boundary valve between Zone 713 and Zone 709 at the point 

Where the pressure-reducing valve was located. 

Model simulations were undertaken to determine the travel time of the pollutant between the 

service reservoir and the boundary valve to zone 709. The results are shown in Tabl.e 8.5 
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Time to reach Zone 709 boundary 

Minimum Flow Condition 50 min 

Peak Flow Conditions 30 min 

Table 8.5 Travel time for pollutant at low and high flow rates 

The results show that if the pollutant could not be contained within the times taken to reach the 

boundary with 709, then the whole area would be contaminated and flushing would be the only 

remedy. Given that the length of time before consumers are affected by the pollutant is very short 

in this case, particularly at peak flows, it is highly unlikely that anything could be done reactively 

in time. If however on-line monitoring and modelling were in operation, it is feasible that 

proactive management could significantly minimise the effects on consumers. This is particularly 

true if both inlet and outlet of the service reservoir were monitored and the pollutant was 

introduced from the upstream supply to the service reservoir. 

8.9.4 Scenario 3 Sladen Valley Water Treatment Plant 

Sladen Valley Water Treatment Plant provided a water supply to both Bracken Bank service 

reservoir and to White Lane service reservoir. This source was therefore critical to the supply of 

water for much of the study distribution network and, if a pollution incident occurred, it would be 

vital to prevent the contaminated water from reaching the Service Reservoirs. 

The supply to Bracken Bank service reservoir from the water treatment plant was by gravity, and a 

small number of properties are fed directly from the trunk main connecting the two sites. A 

simulation predicted that the time taken for the pollutant leaving the outlet of Sladen Valley Water 

Treatment Plant to reach Bracken Bank service reservoir would be 2 hours and 15 minutes. 

Once the pollutant was present in the whole of the transfer main, the volume of water to be flushed 

out was calculated as 500 m3. This was required to be flushed out from the lowest point on the 

main and would take 3 hours at a flushing rate of 50 l.sec- I
. 

The supply to White Lane service reservoir was pumped, controlled by the level in the service 

reservoir. The travel time of water from the treatment works to the service reservoir was therefore 

dependant on the operation of the pumps. With the pumps operating, the time taken for water to 



reach the White Lane site is approximately 1 hour 30 minutes and the quantity of water required to 

flush the whole main was 375 m3
. 

In the reconfigured network, the cascading arrangement of Zones 710, 711, 709 and 712 fed from 

Bracken Bank service reservoir was removed. The reservoir therefore only supplies a reduced 

area of zone 710 in the reconfigured network. This has implications in terms of the severity of the 

effects of a pollution incident at Bracken Bank. The number of properties that could be affected 

by such an incident is much lower than in the case of the cascading zone arrangement, but the time 

available to react is decreased. However, isolating the zone would not result in loss of supply to 

the other zones. 

8.10 Summary of on-line monitoring and modelling 

The development on the on-line monitoring model effectively brings together the component 

models into a tool that may be used for operational decision-making. This allows the management 

of systems to change from one of incident reactive management to one of controlled proactive 

management. This therefore describes the most novel and original element of the thesis. 

The model will usually be applied to networks that operate normally but the major advantage is 

that, should an incident occur, for example major bursts, pollution incidents, unauthorised uses, 

pump failures, zone boundary breaches, changes in source water etc, the model may be used to 

provide detailed information to manage the system in near real time and thereby to minimise 

customer impact. 

In addition the application of the diagnostic model based on the outputs of the near real time model 

may be used to retrospectively assess the location of the source of, for example, a pollutant or a 

discoloured water event. 

The other major value of the model is the development of contingency plans for any hydraulic or 

chemical event that may be hydraulically simulated 
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Chapter 9 - Conclusions and Further Work 

9.1 Conclusions 

A review ofliterature identified a shortfall in the understanding of the concepts and the processes 

associated with water quality in distribution. The aim of this thesis was to develop such a quality 

model with a view to its application in near real time. 

A study distribution network was selected that contained seven service reservoirs, four pumping 

stations, and one hundred and twenty kilometres of pipe made of a variety of materials of different 

ages and condition. 

The network was selected because it contained all the problems associated with a typical 

distribution network. These included leakage control zones suffering from low and high pressure, 

a variety of water quality problems such as taste and odour, discolouration, biological problems, 

and a significant number of main bursts. The network had a mixture of domestic and industrial 

users having a variety of demand types and was supplied from three different water treatment 

plants. 

The network was constructed over a long period of time, in a piecemeal fashion, with little regard 

to how new, local changes, would impact on the system as a whole. Little, if any, regard was 

taken of the effects of the schemes on surge generation or water quality. 

9.1.1 Instrumentation and Monitoring 

The network was monitored for flow at twenty-eight locations using ABB flow-meters and 

Specrtalog data-loggers. As well as these network flows, a number of major industrial flows were 

also measured. 

In the case where pressure transients were recorded, use was made of two sophisticated, high 

speed, Radcom Centurion instruments, logging at a frequency of 10Hz, positioned at key 

locations identified using the model. 

Forty-eight locations were also monitored using water quality instrumentation designed 

Specifically for this study. Measurements of pH, conductivity, dissolved oxygen, turbidity, redox 



potential and water and air temperature were taken continually over a period of a year. These 

measurements were taken at fifteen-minute intervals over a period of one year. 

This instrwnentation provided some excellent quantitative and qualitative data that was 

subsequently used to calibrate and verify the model and to provide near real time boundary 

conditions for the online application of the model. 

9.1.2 Existing network problems 

The network was known to have the following problems; 

Low-pressure areas 

High-pressure areas (some unnecessarily very high) 

And to alleviate these problems intervention strategies were required. Traditionally these 

interventions were completed at a local level whereby only that part of the network local to, and 

influenced by, the intervention was modelled. No regard of how this may impact all the other parts 

of the supply system were taken. 

9.1.3 Hydraulic analysis 

Hydraulic analysis of the network was completed in two ways. First, a traditional approach was 

used to assess what changes to the network would be required to alleviate the problems outlined 

above at a local scale. 

This was followed by a similar analysis, in which the entire network was simulated as a complete 

system. 

The results of this analysis showed that a traditional approach to network scheme design was not 

able to accurately represent the effects oflocal network interventions, and could not resolve the 

network problems as effectively as an holistic approach. It was concluded therefore, that to 

accurately describe the hydraulic perfonnance of the system for all interventions, for all pipes in 

the system, a fully integrated complete network model was required. The integrated approach was 

shown to produce a far more effective solution and, at the same time, take due cognisance of the 

effects of surge generating events and overall water quality. 



9.1.3 Leakage 

It has been shown that the new integrated produces significantly better results than the traditional 

approach with regard to design of pressure control for leakage management. A 23% saving was 

achieved using the traditional approach and this was increased to 41 % using the new approach. 

9.1.4 Transient Analysis 

The model included a routine to simulate pressure transients within the network. By recording 

pressure data at high frequency upstream and downstream of a pumping station and upstream and 

downstream of sluice valves, the model was shown to be able to accurately predict the shape of 

recorded pressure transients but not always the magnitude. 

It was concluded that the latter discrepancies were due to the lack of information concerning the 

pipe material and its characteristics, and the moments of inertia of the pump sets. Acceptable 

figures for the moments of inertia were calculated by accurately measuring the transient effect of 

Switching a pump on and off at a number of speeds and using them to configure the model. 

9.1.5 Water Quality Analysis 

Previously, distribution network management has taken little regard to the quality of water being 

transferred through the pipes. Historically it was quantity, not quality, that was of concern. More 

recently, water quality has become a high priority and the thesis has described the development of 

a comprehensive suit of water quality models to predict the propagation of conservative and non­

conservative substances. The concept of the model is based on the age of the water and travel 

time, taking due regard of the conservative processes of dilution and dispersion, and the decay of 

non-conservative substances. 

Tracer studies using Sodium Chloride have been used to calibrate the model and excellent 

agreement was obtained between measured and model predicted values. 

The advantage in the use of this model is that an integrated holistic approach can ~ow be adopted 

that allows not only solutions to be derived base don pressure and flow but also solutions that take 

into account the implications on water quality. 

A sensitivity analysis was completed to assess the effect of different variables (decomposition, 

physical and transformation) on the performance of the model. From this analysis, it was 
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concluded that within the range of parameters found in practice the primary variables to influence 

the model were: 

The decomposition (decay) rate constant but mainly a function oftemperature and 

bulk decay 

Pipe wall coefficient (a function of disinfection history) 

Temperature and pressure 

Bulk water volume decay is a function of the source water 

The decomposition (decay) rate constant determines the slope of the decay curve. The effects 

have been demonstrated over five orders of magnitude thereby making the nwnber of possible 

values of the decay constant almost infinite providing a high degree of model flexibility 

Reactions with and / or at the pipe wall are accounted for by inclusion of a pipe wall coefficient 

and a molecular diffusivity component. The much larger effect of the pipe wall coefficient and the 

other factors swamp the small effect of the contribution from the molecular diffusivity when 

combined in the overall decay constant. 

Temperature and pressure are both accounted for in the model and are both asswned to add pro­

POrtionally to the decay rate constant. There are also factors for temperature and pressure 

dependency that multiply the effects of both variables making the model extremely flexible with 

respect to range of configuration. The magnitude of the temperature and pressure effects can 

therefore be set by the user. 

The age model has been shown to be accurate, through calibration and testing, using tracer studies 

and empirical retention time calculations. The model is useful in that it can provide 

comprehensive age analysis for an entire distribution network. 

The sensitivity of the age of water analysis can be set by the user and can range from very coarse, 

to extremely fine. This provides an extremely versatile tool to help with the understanding of the 

relationship between age of water and water quality problems such as discolouration, taste and 

odour or bacteriological issues. 
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The above effects can be added in any combined to provide extreme overall model flexibility 

thereby making it easier to calibrate models for different networks with differing physical, 

chemical and biological properties. Figure 7.98 shows the effect of the default exponential decay 

constant on a non-conservative substance at a temperature of 10°C. 

None of the variables in the model are fixed; they are all user definable so, as better infonnation 

becomes available, any constant value can be input to the model without the need to re-code. 

An original feature of the model that has been developed is the diagnostic capability, whereby it is 

possible to use the infonnation on measured water quality and to link this back to the source of 

occurrence. 

9.1.6 Online Monitoring and Modelling 

The hydraulic and water quality models have been utilised in the development of an online 

modelling tool that describes a new and original approach to the way in which water networks 

may be operated and managed. 

The application of the model has been demonstrated to show that it is feasible to move from a 

reactive to a pro-active network management philosophy. 

For example, the model has been successfully used, although not described in the thesis, to detect 

and locate bursts as they occurred, thereby avoiding the expensive and time consuming use of 

manual data collection and analysis, and leakage location teams. Also, discolouration events have 

been tracked as they travelled through the system. 

Artificial intelligence has since been used to enhance these model capabilities developed as part of 

this thesis. (Mounce 2000). 

9.2 Future Work 

Although the biological model is quite well developed, a significant amount of work is still 

required to obtain network data from which to identifY the relationships between the various 

factors, Particularly the relationship between biofilm and organisms in the planktonic phase and 

their overall impact on the general water quality within the network. The model identifies the 

pipes that are more biologically active than others are, but does not automatically trace where the 

active material will travel, although the propagation functionality could be used as a second step to 
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detennine where the biological material will travel. However, even in its current fonn, it is a 

useful tool to identifY where the risk of biological activity is likely to be highest. 

As the data becomes available, the model can be amended to reflect the current state of the art in 

this area because of the flexibility built into its design. 

The sediment transport model that has been developed has been set up in a flexible way to include 

aspects of settlement of suspended particles (precipitation) with no bed load transport, transport in 

suspension and by bed load movement, transport in suspension and flushing (scouring). The thesis 

has presented details of the bed load sub model but further work is required to obtain network data 

against which the model may be calibrated I validated. 

The diagnostic model in its current form is very useful however; further work is required to enable 

the model to accurately pinpoint the location of an event such as discolouration or pollution 

ingress. The online monitoring and modelling system could provide the necessary data. 

Clearly there is a need for much further work to assess the interactions between the biology, 

chemistry and the physical characteristics of both the network and the water within the network. 

For example, little is known about the role of quality within service reservoirs and the way in 

which the outputs of these interact with the distribution network. 

Ultimately, it should be possible to monitor and model from source to tap providing the water 

companies with a much enhanced capability to shift from reactive to proactive management of 

entire water supply systems. 
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