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SUMMARY, 

In the introduction to a recent symposium on rolling contact fatigue, 

R.A.Smith stated that it was difficult to apply our greatly increased 

understanding of metal fatigue, to rolling contact fatigue, because of "the 

apparent lack of alternating tensile stresses to drive the cracks." He went 

on to say "alternating shear stresses are easily found, but the 

reproduction of continuous crack growth controlled by shear <Mode II in 

fracture mechanics terms), has proved to be near impossible." This project 

has demonstrated that under specific conditions this mode of growth does 

occur. 

The project began by studying rolling contact fatigue defects, in 

particular the 'squat' defect in railway lines, and the stress analyses that 

have been performed on them. It was concluded that the largest stress 

cycle experienced by the cracks must be a shear stress. It. series of tests 

were then performed that loaded a crack in pure shear, or a mixture of 

tension and shear, looking at the effects of using fully reversed shear 

loading, and the effects of applying tensile mean stresses to reduce the 

fr1ct ion on the crack flanks. However these tests all produced less than 

one millimetre of mode II growth, before the cracks arrested or branched. 

The final series of tests however applied a tensile load cycle before 

each shear load cycle. This time coplanar growth was produced, that is the 

crack grew in the direction of the maximum shear stress. This type of load 

cycle is a simplification of the load cycle calculated by Bower and Johnson 

of Cambridge University, where the tensile load is produced by fluid 

trapped in the crack. 

Two crack growth rate formulae were produced that fitted the data, 

indicating that the growth rate was dependent on both the tensile and the 

shear parts of the cycle. 
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NOMENCI..ATURE. 

Mode I stress intensity factor. 

Mode II stress intensity factor. 

Mode I strain intensity factor. 

K." Mode II strain intensity factor. 

Equivalent KI in maximum tangential stress criterion. 

K ... Equivalent KII in maximum shear stress criterion. 

R Minimum load I maximum load 

a, 1: Applied tensile and shear stresses. 

£, Y Tensile and shear strains. 

r. e Polar coordinates from the tip of the crack. 

x. y Rectangular coordinates from the tip of the crack. 

a"",.. ayy Tensile stresses across x and y planes respectively. 

't .. :y Shear stress across x and y planes. 

a Crack length. 

N Number of cycles. 

C, m Constants from Paris law. 

Plastic strain. 
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k,n Constants defining the cyclic stress strain curve, being 

the cyclic strength coefficient and the strain hardening 

exponent respectively. 

T 

M 

Q 

So 

The tensile strength of e meterial. 

Coefficient of friction. 

Bending moment. 

Sheer force. 

Distances of inner and outer supports from axis of 

asymmetry in four point bending. 

Distance of crack from axis of esymmetry in four point 

bending. 
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INTRODUCTION. 

In the introduction to a recent symposium on rolling contact fatigue. 

R.A.Smith stated that it was difficult to apply our greatly increased 

understanding of metal fatigue. to rolling contact fatigue. because of "the 

apparent lack of alternating tensile stresses to drive the cracks." He went 

on to say "alternating shear stresses are easily found. but the 

reproduction of continuous crack growth controlled by shear <Mode II in 

fracture mechanics terms). has proved to be near impossible" [ll. This 

project investigated the effects of alternating shear stresses. and more 

complex mixed mode loadings. in an attempt to resolve this dilemma. 

The subject is perhaps an ideal one to study for a Ph.D. in 

engineering. On the one hand it looks at one of the great paradoxes of 

fatigue, and it therefore provides much fascination to the academic. Every 

calculation on the crack tip conditions in rolling contact fatigue has 

predicted that the crack is loaded predominantly in shear. When fatigue 

tests have been performed on cracks in pure shear though, they have 

branched into cracks growing perpendicular to the tensile stress field on 

one side. 

On the other hand the subject is concerned with a very costly 

industrial problem, especially for the railway industry. Currently British 

Rail have to replace around 1000 lengths of rail each year. at a cost of 

around £1000 a rail. because of a rolling contact defect known as the 

'squat'. If the rate of growth of these cracks could be calculated, then 

appropriate action might be taken to save considerable sums of money. 

The starting point of this work was to look at what was known about 

the stresses at crack tips in rolling contact fatigue. and to compare that 

with the relevant literature on metal fatigue. The work of Bower and 

Johnson at Cambridge. which was finished during this project, has clarified 

the situation enormously. The aim of this work was then to perform fatigue 

tests to fill in the gaps in our understanding. and to reproduce 

continuous fatigue crack growth predominantly controlled by shear. 

The majority of fatigue crack growth tests have involved the 

application of uniform cyclic tensile or shear loads to simple specimens. 

The general philosophy behind it has been that the resulting crack growth 

laws can be used in a wide variety of situations, by using the maximum 
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stress intensity ranges in any complex cycle. In recent years there has 

been an increased awareness of how plasticity, multiaxial stress fields, 

variable amplitude loadings, and the environment can effect the fatigue 

crack growth rate and direction. In this project it was discovered that the 

complex stress cycle experienced by a real rolling contact fatigue crack 

tip produced a completely different form of growth to the first 

approximation that was made to it. 

Reference. 

1. R.A.Smith. 'Contact Fatigue'. Cambridge University Engineering Department. 

29 September 1988. 
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CHAPTER 1. 

LITERATURE SURVEY. 

1.1 The Problem of Failures in Roils. 

1.1.1 The 'Squat' Failure In Rails. 

There are 3 main types of failure in rails: 

1. Bolt hole cracks. In jointed track, bolt holes act as stress 

concentrations, and have frequently led to fatigue cracks. However the use 

of continuously welded track, and a programme of bolt hole cold expansion, 

have or will reduce this problem enormOUSly. The bolt hole expansion 

technique puts a compressive residual stress around the bolt hole, which 

inhibits fatigue crack growth. 

2. 'Taches Ovales'. In some rails hydrogen embrittlement causes a crack 

to initiate from the centre of the roil head. British Steel now Vacuum de­

gas the steel, so in modern lines this should be less of a problem. 

However at present there are still hundreds of miles of older track in use 

where such defects may be growing. In addition 'taches ovales' can start 

from inclusions, which do occur in modern rails. 

3. 'Squats'. 'Squats' are rolling contact fatigue defects. Before 1975 

they accounted for only about 3 failures per year. They now produce more 

than any other. Unlike the other failures they are not associated with one 

particular structural feature of roils, like bolt holes, but can occur 

almost anywhere. They have been found in all types of roil steel, and so 

are probably not associated with metallurgical defects. They occur most 

frequently on tracks with the highest speed trains and the highest annual 

tonnage, and are a particularly serious problem on the West Coast main 

line, and the London to Bristol line where the trains can travel at over 

100 mph. 'Squats' are the subject of this work. [1-5]. 

1.1.2 Causes of the initiation of the 'Sqyat' 

'Squats' tend to form on the high rails of curves, where the contact 

stresses are highest. These stresses produce plastic deformation involving 

metal flowing in the direction of motion of the train, and towards the 
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inside corner, the gauge corner, of the rail. 

'Squats' are also associated with three features of the running 

surface: 

1. Periodic holes. Indentations about 5mm across, can occur about every 

3m on rails which subsequently form squats. The exact cause of these holes 

is not known but it is assumed that it is because of something picked up 

on a wheel. The series of holes may go on for some miles. Plast ic 

deformation around these holes causes the lip of the hole to flow towards 

the centre, forming a starter crack for a squat. 

2. Corrugations. Plastic deformation of rails leads to the running 

surface becoming corrugated. In the running on side, that is the uphill 

side from the trains point of view, 'squats' can form. The mechanism is not 

fully understood. 

3. Welds. Welds often are the origins of 'squats'. The reasons are not 

fully understood, but the differential wear rates resulting from the 

increased hardness, and the possibility of weld defects may be involved, 

[ 1-5], 

1.1.3 The Deyel.opllent of a 'Sq.uat', 

'Squats' are three dimensional cracks, and the details of their 

geometry vary to a certain extent depending on how they start. Fig. 1.1 

shows how they develop from an angled crack on the high rail of a curve, 

and Fig. 1.2 is a photograph of a section through a 'squat'. The 'squats' 

growing from these angled cracks, start by growing down into the rail head 

8t an angle of 8bout 10· to· the upper surface, mainly growing 8way from 

the gauge corner, and in the "direction of the traffic. They then break out 

again having grown across the rail. 'Squats' starting from indentations, 

corrugations, or welds also grow at this 10· angle to the surface, but 

their shapes are different. 

In all the 'squats' these cracks then grow along the rail in both 

directions, but grow more quickly in the direction of motion of the train. 

Once they have reached a length of between 20 mm and about 100mm they 

start to form branch cracks at about 55· to the surface. The first 'squats' 

that were investigated seemed to branch later than more recent ones, 

though the reason for this is not known. The flatter crack can continue to 
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grow close to the surface, after a branch has formed. This crack 1s in 

itself not a great danger to trains as if it flakes off, then the worst 

that can happen is that the train will have a rougher ride. The 55· crack 

however will lead to catastrophic failure, if it is left to grow. The 

continued growth of the 10· crack will obscure the 55· crack from normal 

methods of ultrasonic detection. It is not known how long the whole 

process takes and therefore British Rail (B.R.) at the moment have a policy 

of removing all squats when they reach a size of about 25 mm. [1-5]. 

It appears that a large part of the life of a track 1s spent in the 

stage of growth where the crack is a few millimetres long. The very early 

growth may be quick because of the large scale plasticity under the 

contact loading of the wheel. When a crack starts to branch down, growth 

may be quick because the crack is long, and is subject to large bending 

forces. In the intermediate stage, where the crack is growing out of the 

high contact stress regime, the wear of the track, which removes some of 

the crack from the surface as it grows from the tip, may well be 

significant. 

1.1.4 Possible Solutions to the Problea. 

There are four main alternatives to inspection and rail replacement 

currently being considered, to try to reduce the occurrence of 'squats'. 

1. Grinding. B.R. have for some time been grinding the surface of the 

track to remove corrugations, and so to give a smoother ride. It has been 

suggested that by grinding more of the track away, in areas susceptible to 

squats, then the squats might be removed before they reached any great 

depth. The problems associated with this method are basically concerned 

with the amount of metal that would need to be removed. 113 mm was tried 

and it was found that the squats were still there. It is possible that lmm 

would need to be removed each time the rail is ground. This would involve 

an enormous amount of time, expense and inconvenience. It also has the 

problem of seriously reducing the life of the track, as a considerable 

quantity of the rail is removed. 

2. Planing. It was thought that it might be better to plane away lmm, 

rather than having to grind it all. However attempts so far have left an 

unacceptable surface finish, and so this method will probably be abandoned. 
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3. Reducing the Stresses. It is not possible to greatly reduce the 

weight of a diesel train, so the only way to reduce the stresses in the 

rails is to increase the area on which that weight is distributed. This 

might be done by using a lower modulus metal than steel in the tyre. Again 

this is being considered, but a suitable material has to be found. 

Alternatively a larger number of wheels might be used, though the dynamics 

of going round curves does create problems. 

4-. Changing the Steel. Rail steel is a fairly Simple medium carbon 

steel. It would be possible to change all the rails for a higher strength 

steel. However this would be very expensive. Also it would not necessarily 

improve the situation because the higher yield strength would result in 

smaller contact patches, and therefore higher stresses, [1-5] 

This work aimed to clarify the mechanics of 'squat' development, and 

thus provide insight into the best method of controlling the problem. 

1.2 Theoretical Stress Analysis. and Fat1aue Crack Growth. 

1.2.1 Hertzion Contact Stresses. 

The stresses between two curved surfaces in contact were first 

calculated by Hertz in 1881, for a purely elastic, static loading. Since 

then the theory has been expanded to consider the effects of friction in 

rolling and sliding contact, and the effects of plastic deformation, [61. 

The application to the fatigue of rails is obvious, and much work has been 

done on the stresses in a rail due to wheels. The details of this work are 

beyond the scope of this report, but it should be noted that large plastic 

deformations occur in the r8ils [1-10]. These deform8tions almost certainly 

cause the initi8tion of some SqU8ts, and have made the analysis of the 

crack loading much more complicated than would have been the case if a 

purely elastic situation could have been considered. 
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1.2.2 Fracture Mechanics. 

The basis of linear elastic fracture mechanics (LEFM) is that the in 

plane stresses around a crack tip, as shown in Fig. 1.3, can be expressed 

by the equations [11,12] : 

a QI 

yy 

a QI 

xx 

't QI 

xy 

Kr 
1(2nr) 

Kr 
1(2nr) 

KI 
1(2nr) 

Where 

and 

cos} [1 + sini sin~] + 
KII 

sini cosi cos~ 
2 2 1(2nr) 222 

cos} [1 - Sin} sin~] -
K II 

sin~ [2 + cos~ cos~] 1(2nr) 

sin! cosi cosn + 
KU e 

- sini sin~] I (2nr) cosl" [1 2 2 2 2 2 

Kr=a/(na) , 

KII='t/(na) 

(1. 1) 

a and 't are the applied normal and shear stresses acting on a plane 

parallel to the crack plane. 

These equations are the first terms in a series expansion containing 

an infinite number of terms in increasing powers of r. They are derived 

from the theory of elasticity, and so assume that the material remains 

perfectly elastic everywhere. The terms KIll (2nr) and Krrll (2nr) will tend 

towards infinity as r approaches zero, whereas terms in higher powers of r 

will tend to zero. The only exception is the T stress, a constant stress, 

independent of r which is added to the a .. ,.. stress. This will also be 

negligible compared to Kr and KII very close to the crack tip. The terms Kr 

and KII, called the stress intensity factors, can therefore be used to 

compare very different cracks. That is if two cracks have the same KI and 

KII then they will behave 1n a similar manner. 

However, real materials will yield near the crack tip where the stress 

is above the yield stress, and so these equations are not accurate. The 

stress needs to be redistributed, as shown in Fig. 1.3. If the 

redistribution is small, 'small scale yielding', then the stress intensity 

factors will st ill enable cracks to be compared. But if the plastic zone is 

too large, then other parameters are required. Elastic plastic fracture 

mechanics is then used, which considers among other things the total 

- 15-



strain, with elastic and plastic components, and the size of the plastic 

zone. The T stress, and the other terms in higher powers of r will become 

significant as they affect the size of the plastic zone. Strictly LEFM only 

applies where the plastic zone, r P' is less than 1/50 of the crack length 

a, and where the bulk stress. a.. is less than 1/3 of the yield stress a y • 

In reality LEFM has been found to work well up to when rp is less than 

1120 of a. [12-14]. 

1.2.3 F8t~ue Crack Growth Rates Under Progortloool Loadq. 
LEFM was first applied to metal fatigue by Paris and Erdogan in 1961 

[15], They were looking at crack growth rates under sinusoidal tensile 

loading. In the direction of crack growth the value of KI would have varied 

sinusoidally with the load, and the value of Kn would have been equal to 

zero. This is the simplest form of proportional loading. That is loading 

where the ratio between Kr and Ku is a constant. They produced the Paris 

law: 

(1. 2) 

where da/dN is the crack growth rate. C and m are material dependent 

constants derived from experimental crack growth tests. 

This law describes a period of stable crack growth as shown in Fig. 

1.4. At lower stress intensity factors the crack would not grow, and a 

threshold value of 6K can be found 6K~. At higher values of 6K 1 , 

approaching 6K rc when fracture occurs, the growth rate accelerates more 

quickly. This is because of the formation of very large plastic zones, and 

a Change in the mechanism of fatigue [13], 

When the plastic zone size is too large, and LEFM is not applicable. 

various other laws of crack growth have been formulated [14]. One of the 

simplest methods is the strain intensity approach[ 161. This is simply a 

modification of the stress intensity to take into account the amount of 

plasticity. The strain intensity for a uniaxial stress field is defined as: 

(1. 3> 

in general the strain is calculated using von Mises yield theory. More 

details can be found in Appendix 5. 

Alternatively. for highly plastic stresses, Tomkins [17] gives the 
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equation: 

<1.4) 

where: T is the tensile strength of the material, 

and 6E is the plast ic strain range. 
p 

Here k and n are constants that define the cyclic stress strain curve, 

being the cyclic strength coefficient and the strain hardening exponent 

respect ive1y: 

a = k Ile p 
n (1. 5) 

Crack growth laws have also been produced using the plastic zone size 

[18]. This has the advantage that it describes the conditions around a 

crack tip more directly than the other parameters, and it works well. 

However, calculating the size of the plastic zone is much more involved 

than the strain based approaches. Since these simpler approaches also 

appear to work well, they are much more widely used. 

Another important factor in the estimation of crack growth rate is 

crack closure. So far it has been said that crack growth rate depends on 

the range of stress intensity factor, 6K. However, if the crack is in 

compression there. will be no stress intensity at the crack tip. One 

solution is to neglect the compressive part of the cycle. However this is 

not a perfect solution as plastic deformation [19], oxide formation [20], 

and roughness {21] can all cause the crack to be closed, when the bulk 

stress is tensile. Also, residual stresses may cause the crack to be open 

when the bulk stress is compressive. 

Paris' work and the vast majority of the early work in fatigue was 

just concerned with the tensile mode of crack growth, mode I in fracture 

mechanics terms, under a uniaxial stress field. This was because the vast 

majority of the failures have occurred in mode I. However it is also 

possible to get at least limited amounts of growth in Modes II and III, 

shear and tearing modes, as defined in Fig. 1.5 [22,23]. All three modes may 

be involved in the squat failure in rails, but this project is primarily 

concerned with mixed modes I and II. This is because this two dimensional 

approximation needs to be understood before a three dimensional 
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representation can be considered. 

Currently there are no established crack growth rate laws for modes II 

and III. The work that has been done suggests that a law of the same form 

as the Paris law might be appropriate for mode II, but the lack of 

experimental data has made it impossible to define one. The reasons for 

this will be discussed in section 1.4. 

1.2.4 Direction Of Crock Growth in PrQPOrtionol Loo4q. 
A wide variety of theories exist that have been used to predict the 

direction of crack growth under mixed mode I and II loading, in fatigue 

and fracture. Generally they have only considered proportional loading, 

that is loading where the ratio between KI and KII is kept constant during 

a cycle. Mainly they involve the calculation of the maximum of a factor 

assumed to control the crack growth, and the assumption that the crack 

will grow in the direction of that maximum. In particular there are the 

maximum tangential stress [24], the maximum tangential principal stress 

[25], the maximum tangential strain [26], the maximum Kl [271, the maximum 

6K1 [271 and the maximum crack growth rate [27] criteria. There are also 

the minimum strain energy density theory [28], and KII=O criterion [271. 

Various modifications have been suggested, and certain limitations found to 

individual theories, but in general reasonable agreement is found between 

them, and also reasonable agreement is found between them and the 

experimental data available. However, they all predict the direction of a 

1Il0de I crack under whatever loading is used, [29-31]. 

Two theories exist in the literature that have been used to try to 

predict whether mode I or mode II growth should occur and the 

corresponding threshold or fracture loads. Firstly Otsuka et al [32-35] 

used a theory of the maximum shear stress, as well as the maximum 

tangential stress, saying that crack growth should occur when the critical 

stress is reached, and that the crack should grow in the mode whose 

critical value is reached first. The values are defined by: 
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(1. 6) 

Secondly Melin [36] looked at the fracture of plates under milCed mode 

I and II static loading, using the KI and Ku factors at the tip of an 

infinitesimal branch crack at an angle e to the main crack. He calculated 

these stress intensity factors for loadings from pure mode I to pure mode 

II based on the work of Khrapkov [37], His theory was that if the ratio 

between KIC and Kuc were known, then the mode of crack growth, and the 

load at which it should occur, could be calculated for any mixed mode 

loading. Chatterjee (38] carried out similar calculations for only mode I 

stress intensities, using branch cracks of finite length. This may be 

useful as a basis for refining Melin's theory because near threshold 

microstructural effects might produce a small branch crack. 

Fig. 1.6 shows that there is very little difference in the results 

obtained from these theories. From the point of view of fracture mechanics, 

Melin's approach would seem to have the more obvious theoretical base, but 

Otsuka's model is much simpler to use, because the calculations are much 

simpler. Both the theories however depend on the assumptions of LEFM. The 

local stresses under the wheel in a rail are highly plastic, however, and 

so an elastic plastic model of this type would be useful for further 

analysis. 

A basis for this might be the theory used by ·Gao Hua et a1 [22] who 

looked at the size of the plastic zone, and fracture ductility for pure 

mode II and pure mode I loading. They said that the plastic zone size at 

threshold should be a constant, independent of the mode of loading, and 

using the fracture ductility's were able to calculate the loads at which 

this should occur. This however considers that the crack growth would 

occur in a mixed mode manner. It will be shown later that under 

proportional loading crack growth always appears to be either mode I, mode 

II or mode III, not some direction in between. However Gao Hua's theory 

could be modified to account for this. 
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1.2.5 Crack Irowth directions and rates under non-proportional lood1n&. 

When the ratio between Kr and KII is not constant, then the above 

criteria run into problems. The maximum value of a factor may be in a 

different direction from the maximum change of that factor, but both the 

maximum value, and the range can affect the crack growth rate. In rails, 

the locomotive wheels which apply the driving force for the train, will 

produce a different stress cycle to the other wheels, and therefore a 

different crack growth direction. When the brakes are applied the stress 

cycle will change again. The only unambiguous approach used in such 

circumstances seems to be the maximum crack growth rate criterion, that 

is, presuming the crack will simply grow in which ever direction makes it 

grow fastest. 

Pineau et al used this quite successfully to predict crack directions 

for mode I cracks under non-proportional loads [271. He loaded cracks in a 

biaxial stress field so that the peak value of the maximum tangential 

stress criterion K ..... ,." .. >< for a given cycle occurred at a different angle to 

the maximum range, flK.,.. ..... ><. He showed that neither K.,.."'.... nor 11K.,..", .. >< alone 

could predict the crack angle, but rather that it was neccessary to find 

the combination of K.,.. and flK..... that would give the maximum growth rate, 

according to ordinary mode I crack growth laws. To apply this more 

generally however 1t would be necessary to develop non-proportional crack 

growth laws for the stress cycles involved. 

Under the non-proportional loadings looked at so far, certain 

modifications have been made to the growth rate laws. Socie et al 

suggested that the extra strain hardening in non-proport 10nal loading 

would produce different sized and shaped plastic zones, and different 

plastic strains [39]. M.C.Smith looking at mixed mode I and II, and Hay 

looking at torsion, both showed that friction can seriously reduce growth 

rates [40-42]. At the moment there is no widely accepted method for 

dealing with the very wide variety of non-proportional cycles that could 

be applied. It is hoped that this project will provide growth rate 

expressions for the loading occurring in 'squats', and therefore 

expressions that can be used in the maximum growth rate criterion to 

predict crack directions in 'squats'. 

Crack growth laws also do not accurately predict growth rates under 

variable amplitude loading. A large tensile load cycle will tend to blunt a 
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crack tip, and leave a large residual plastic zone. Subsequent smaller load 

cycles may then propagate a crack more slowly than would be predicted by 

the Paris law. This is also an area where much work is needed if growth 

rates are to be calculated for the combined loadings of heavy locomotives 

with high tractive forces, heavy freight trucks with no tractive force, and 

light coaches. 

1.3 Rolltna Contact Fatt&ue end Wear. 

1.3.1 Previous Experimental Work in Rollina Contact fot1Sue. 

In 1935 Way tested about 60 steel rollers in rolling contact fatigue, 

looking at the formation of pits (431. Pits are like squats in that they 

form by cracks growing at a shallow angle to the surface, but rather than 

branching down into the roller they branch up, to leave a pit in the 

surface. He showed that for pits to form it was necessary for a lubricant 

to be present, and that the viscosity of the lubricant had to be less than 

a critical viscosity, JIoc... The value of JIoc:.. was less than the viscosity 

that would stop metal to metal contact, ie for pits to form there was 

always metal to metal contact, but if there was metal to metal contact, 

pits did not necessarily grow. The conclusion he came to was that for the 

cracks to grow they had to be filled with lubricant. If there was no 

lubricant, or if the lubricant was too viscous, then the cracks could not 

be filled and so no pits formed. Recent work by Dawson [4-4], and Hill and 

Clayton (45] has confirmed this. The same appears to be true of 'squats' in 

rails: in Japan in the mid 1950's, the railway operators started putting 

water on the tracks to try to improve the fuel economy. They then suffered 

great problems with 'squat' like defects, until they stopped putting water 

on the track [3]. In Britain, with a temperate climate, this solution is 

unfortunately not possible. 

Hahn et al have carried out a series of experiments on rolling contact 

fatigue in Aluminium where the roller is shrunk onto a cylinder before 

testing so that the surface of the roller is always in tension [46]. This 

was to imitate the loading found in the inner race of an aircraft bearing. 

Sometimes the fatigue cracks turned into the roller like 'squats', rather 

than just forming pits. This suggests that the tension found in the 
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bearing race, and also that required in rails to stop them buckling. is 

necessary for the cracks to turn inwards. 

There are other features of rolling contact fatigue worthy of a 

mention at this point, which any satisfactory theory has to explain. 

Firstly the pitting cracks or squats only grow in the driven roller, not 

the driver, even if the driver is made out of a less fatigue resistant 

material. This is because cracks will not propagate under a braking force, 

ie the force experienced by the driver, rather than because they will not 

start to grow in the first place. This was shown by Nakajima et aI, who 

performed a disk machine experiment in which they first subjected a disk 

to a driving traction, and then reversed the tractive force when pits 

appeared. No more pits were formed after the forces were reversed. (47], 

Secondly, the cracks always grow more quickly in the direction of 

motion of the driver, ie the direction in which the train is moving (47,481. 

Fig. 1.2 shows this for a 'squat'. 

Finally experiments have shown that large residual shear plastic 

deformations occur in the surface of the rollers under driving traction. 

suggesting that the predominant loading of rolling contact fatigue cracks 

is mode II, when they are growing at a shallow angle to the surface (46]. 

1.3.2 The ARRlicetion of Fracture Mecbonics To RotH. Contoct Fat'aue. 
Much work has been done on the theoretical stress analYSis of surface 

cracks under Hertzian contact stresses. The earlier work. which ignored 

potential effects of fluid in the cracks, calculated that the cracks were 

predominantly loaded in mode II [46,49,50]. However attempts to grow mode 

II cracks in laboratories, in steel and under simple mode II loading, have 

only produced very limited quantities of mode II growth. followed by mode 

I branch cracks. Details of these experiments are given later in section 

1.4.2. Murakami et aI, and Bower then performed similor calculations but 

included the effects of the lubricant [51.52]. 

The most detailed work was done by Bower and Johnson, at Cambridge 

University, and so we will discuss that in more detail here. They used the 

method of distributed dislocations to look at experimental rolling contact 

fatigue, with simple rollers. Their analysis was purely elastic, and they 
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modelled the crack face interactions as coulomb friction with a coefficient 

of friction. ~. They considered three possible effects of water. Fig. 1.7. 

Firstly the water might simply lubricate the crack so that the 6Ku 

value is only moderately reduced by friction. Fig. 1. 7a. For this they used 

a value of ~ of 0'1 instead of 0'25 that they used elsewhere. The details 

of one of the load cycles calculated are given in Fig. 1.6. which shows the 

mode II cycle. The notation is explained in Fig 1.9. It should be noted that 

this notation is different from that used elsewhere in this thesis, with a 

being the contact patch radius rather that the crack length. and c being 

the crack length. With no fluid pressure. no significant mode I load is 

generated. If the maximum tangential stress (MTS) and maximum shear 

stress (MSS) criteria are applied to this loading, then three possible 

crack directions are predicted. Fig. 1.10 is a radial plot showing the 

relative magnitudes and directions of these maxima with respect to the 

crack. The method used to calculate the values in this plot was to first 

find the minimum value of K.... as defined in equation 1.6. that occurred 

during the cycle. for angles from -160' to +160· to the crack. The minimum 

of ~ was set to zero as a negative value could be found for all 

directions, and as the approximation was made that when the value was 

negative. no stress intensity occurred. The maximum range of ~ and K ... was 

then found for each point in the cycle. by calculating the range for each 

direction in turn. 

If the crack grows in mode I then the maximum tangential stress has 

two maxima. one for a crack growing up and one for it going down. The 

reason that there are two maxima is that the mode II loading is 

approximately fully reversed. and so in one half of the cycle one crack 

flank is in tension and the other in compression. and in the other half it 

is the opposite way round. If the crack grows in mode II. then the maximum 

shear stress predicts coplanar crack growth. The two mode I branch 

directions fit well with the two possible branch crack directions in 

rolling contact fatigue. either branching up to remove a flake of material 

as happens in normal pit formation. or branching down through the specimen 

as happens in 'squats'. The shallow angled growth would fit with the mode 

II growth direction if it is in some way possible to grow mode II cracks. 

The maxima are found in fixed directions throughout the cycle 

because there is only mode II loading applied. If there is both mode II and 
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mode I loading, and the ratio between them is not kept constant during a 

cycle, ie the loading is non-proportional, then the direction of the maxima 

will vary during the cycle, and the loci of the instantaneous maxima will 

be a loop of some sort. 

The second possible effect of water that they considered, was that the 

water might pressurise the crack so that the internal pressure was equal 

to the Hertdan contact pressure, Fig. 1.7 b. This produced very high 

values of 6K 1 , which would have given growth rates much higher than are 

found in experiments. It therefore had to be rejected as a model. 

The third" possible effect was that the water might be trapped inside 

the crack when the crack mouth shuts, giving a mode I loading, Fig. 1.7 c. 

This gave a complicated non-proportional cycle, as shown in Fig. 1.11. Fig. 

1.12 shows the MTS and MSS criteria. The two branching directions and the 

coplanar growth direction are again predicted by the tangential and shear 

stress maxima. The fact that the maxima occur in different directions 

during the cycle is due to the non-proportionality. 

Bower concluded both the lubrication and the fluid entrapment models 

give load cycles consistent with what is known about rolling contact 

fatigue growth rates. Also both predict that the crack would grow more 

quickly in the direction of motion of the loading as is observed in 

practice. The practical difficulty of growing mode II cracks under simple 

mode II loading led him to reject model the lubrication model as a likely 

explanation, and he suggested that model the fluid entrapment model 

required a better understanding of non-proportional loading before it 

could be properly evaluated. The next section will discuss the relevant 

types of fatigue - tests that have been performed, their results, and will 

compare the load cycles with the more complicated cycles predicted by the 

lubrication and fluid entrapment models. 

For completeness, it should be mentioned that Hahn et al also used 

fracture mechanics to try to predict crack growth rates under rolling 

contact fatigue [46]. Their model was much simpler, ignoring friction and 

possible effects of a lubricant. However they were looking at Aluminium 

for which mode II crack growth data have been produced [30-33]. Their 

results were of the right order of magnitude, 10 spite of the simplicity of 

their model. 
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1.3.3 Wear. 

Wear is the process by which material is removed from a surface, due 

to the action of another surface sliding against it. The material is 

removed in small thin fragments. Various workers [53-57] have tried to use 

fracture mechanics to describe wear, using the delamination theory of wear. 

It is generally believed that the process is dominated by mode II loading, 

though the actual cycle under gone by a wear crack will be different from 

a rolling contact fatigue cycle. The lack of mode II experimental data 

inhibits the analysis. 

1.4 Mixed Mode Fatjpe. 

1.4.1 Methods of Load1n& In Mixed Mode Fottpe. 

There are many methods of loading in mixed mode fatigue, but there 

are three main types that are relevant to this work. 

1.4.1.1. The Ans1ed Crack in a Tensile Specillen. 

Most of the early work on mixed mode fatigue or fracture was done on 

this type of specimen, Fig. 1.13 a, [24,58,59]. The mixed mode loading 

changes from being pure mode I when the crack is perpendicular to the 

applied tensile stress, to mixed mode I and II as the angle 8 increases. As 

8 approaches 90·, the loading approaches pure mode II, but the magnitude 

approaches zero, as shown by the Mohr's circle in Fig 1.13 b. Fig. 1.14-

shows the maximum tangent ial stress and maximum shear stress criteria 

plotted radially for these speCimens, as was done earlier for Bower and 

Johnson's rolling contact fatigue calculations. The loading used 1s for 9 = 

45·, giving KI/KII = 1·0. This predicts two possible growth directions. If 

the crack propagates in mode I then a branch would form growing at an 

angle of about 53· to the crack. If it propagates in mode II, a branch 

would grow at about 16· to the crack on the other side. The ratio between 

the maxima, K ... /K... = 0·60. Because the loading is proportional the maxima 

are at constant angles throughout the cycle. 
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1.4.1.2. Mixed .ode SjH!ciaens. 

A wide variety of specimens have been designed so that the crack is 

situated where there is pure mode II loading. The simplest is perhaps the 

asymmetric 4- point bend specimen [22,60-63], as shown in Fig 1.15. The 

crack can be placed in a position of zero bending moment for pure mode II 

loading, though it does need to be positioned very accurately with respect 

to the grips. Moving the specimen slightly to one side gives a mixed mode 

condition. The magnitude of the stress intensity factors can be calculated 

from M and Q using simple bending theory as shown, with the calculations 

of Wang et al- [64]. Here M and Q are the bending moment and shear force 

respectively. The Mohr's circle representation, and the maximum tangential 

and shear stress criteria are plotted in FigS. 1.16 and 1.17 respectively. 

Fig. 1.17 shows that in asymmetric four point bending there are also 

two possible growth directions, predicted by the MTS and MSS criteria. If 

the crack propagates in mode II, it will continue in the same direction. If 

it grows in mode I it will form a branch crack at about 70·. The ratio 

between K~ and Ka is this time equal to 0'67, so the mode II growth should 

be more likely to occur in these specimens than in angled crack ones. 

However, if the loading arrangement is further refined to allow fully 

reversed loading, the MTS and MSS radial plot has three maxima as shown in 

Fig. 1.18. 

There are two MTS maxima because both the tensile and the compressive 

parts of the loading produce peaks; one for each crack flank, the other 

crack flank being in compression at that point. It also gives two MSS 

maxima, which are both coplanar. Adding them together to give the range of 

K.. gives the maxima twice the size of the ordinary four point bending 

prediction. This 1s much closer to the loading predicted by Bower, as shown 

in Figs. 1.10 and 1.12. The ratio between AK .. and AK .. now becomes 1'74. 

This is an over estimation of the likelihood of mode II occurring compared 

to the ordinary asymmetric four point bending, because it ignores the fact 

that each mode I maximum will have an associated compressive stress cycle. 

Under simple mode I loading this extra compressive load would increase the 

growth rate. However this effect will only modify the criterion, and does 

not change the point that mode II growth is more Ukely in fully reversed 

mode II loading than in unreversed loading. 

A wide variety of other speCimens, as shown in Fig 1.19, work on the 
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seme principle as the asymmetric four point bending. They all place the 

crack in a plane of zero bending moment [66-71l. If carefully enough 

machined, and if deformations are negligible, they should all give pure 

mode II loading, and a limited number of other mixed mode conditions. 

Torsional loading of thin walled tubes has also been used to produce 

mode II loading [72,73], which is a simple method but it has the problem 

that the specimen distorts when the crack reaches a finite size. Cox and 

Field also loaded a square sectioned bar in combined bending and torsion, 

giving predominantly mode I loading at the corners, and mode II loading at 

the centre [74]. 

Mode II loading may also be obtained by loading through pins [24,75], 

However this seriously limits the load that can be applied, and perhaps 

does not produce a simple mode II load because of the effects of loading 

through a point. 

1.4.1.3. Biax101 5.pecillens. 

Biaxial Specimens allow more complicated stress fields to be created 

for non-proportional loading experiments, Fig. 1.20. Type A [61,62,76,77] 

will give an equibiaxial stress field if both axes are in tension, or a 

pure shear field if one is in tension and the other in compression. If a 

crack is at 45· to the axes in the pure shear field, then it will be in 

pure mode II loading. It is possible therefore to obtain all the types of 

stress field produced by the mode II specimens mentioned so far, and a 

wide range of others. It is possible to give a mode I cycle followed by a 

mode II cyclej or cyclic mode II loading with static mode I superimposed. 

The former type of loading is of interest because Bower's fluid 

entrappment model [511 predicted that a mode I load would be applied 

before a mode II load. The latter cycle is of interest because it opens the 

the crack, allowing the mode II displacement to reach the crack tip rather 

than being reduced by friction, in the same way as Bower suggested that 

the fluid in the rolling contact fat~ue cracks might reduce friction. 

However this cycle does not merely reduce the friction, but it also 

increases the MTS maxima because the static Kz loading keeps K... positive 

for more of the cycle. For example a specimen loaded under cyclic shear 

with a mean stress large enough to keep the appUed loads tensile all the 
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time, allowing the mode II load to reach the crack Up, also brings the 

raUo of 6K.., to 6KO' back down to 1'12 from 1·74. 

The types of non-proportional cycle that can be applied to type A 

specimens are still limited hpowever, because the principal stress axes are 

fixed. For example to attempt to produce mode II growth, a cyclic shear 

load, with a static uniaxial tensile stress perpendicular to the crack, is 

desirable. This would open the crack, and affect the MTS values in the 

same way as an equibiaxial load, but the stress intensity of branch cracks 

of finite length would be lower because they would be growing at an angle 

to the mean stress rather than perpendicular to it. However with this 

specimen, that is not possible. The tensile load has to be an equibiaxial 

load, not a uniaxial one. This puts a mean tensile stress across the branch 

cracks as well as across the initial crack. 

Type B [32-35,40,411 allows similar loading to A, and the actual 

specimen is much cheaper to manufacture. The mode II load is applied using 

just one axis, as in a conventional mode II speCimen, while the mode I load 

is applied by the other axis. The mode I load this time is a uniaxial load, 

not an equibiaxial one. However type B specimens have the disadvantages 

that the stress field is not so pure, due to the stress distribution in 

bending speCimens, and that there is not so much room for crack growth. 

Also type B is not nearly as good for investigating branch crack growth, 

because the stress state will change as soon as the crack has moved 

outside the plane of the original crack. 

1.4.2 Mixed Mode Fracture. 

Experiments have been carried out on the fracture of PMMA, a near 

perfectly elastic material, using axially loaded plates with central and 

edge cracks at an angle to the loading axis [24]; using point loading 

through pins [24], and using other mode II specimens [65,66,711. In all of 

these experiments only mode I branch crack growth was recorded. 

Melin compared his theory with some of the PMMA mixed mode fracture 

data [36], and found reasonable agreement, Fig. 1.21. The MTS criterion 

works equally well. He suggested that the reason that no mode II growth 

was found in those experiments was that the ratio between KIc and KIIC is 

about 1, This makes mode I more favourable, because even under pure mode 
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II loading, a mode I stress intenSity is formed at an angle of about 70· 

to the crack, 1'15 times the magnitude of the mode II stress intensity. See 

sections 1.2.4 and 1.4.1. 

Gao Hua et al tested a high strength steel, GC-4, a medium strength 

rotor steel, 30Cr2MoV, and nodular cast iron using asymmetric three point 

and four point bend specimens [601. Again only mode I branch crack growth 

was produced, but this time the mode I branch crack load was much higher 

than predicted by the MTS criterion or Melin's theory, as shown in Fig. 

1.22. The reason suggested by Gao Hua et al was that the plastic zones, 

and displacements near the crack tip were very different from those under 

pure mode I loading, and so it was unreasonable to use the same fracture 

criterion. Alternatively it may have been due to frictional effects 

reducing the true stress intensity at the crack tip. 

1.'.3 Mixed Mode Fat1pe Crack Growth Behaviour in SteeL 

Gao Hua, and Mao et al carried out mixed mode fatigue tests under 

pure mode II, and mixed mode I and II using asymmetric 4 point bending, 

and biaxial loading of a cruciform specimen with an angled crack [22,61,621. 

They were looking for thresholds, by starting at a load that produced no 

growth, and increasing the load in 10~ steps. The general behaviour that 

they recorded was that a mode II crack would grow for up to 400 ~m, that 

it would then arrest, and that the crack would then only start to grow 

again at a much higher load after it had branched into mode I, Fig. 1.23. 

The ratio of Ku-u-olKah was found to be about 0 '6. The MTS and MSS 

analysis in secUon 1.4.1.2 would suggest that mode II growth should 

occur, given this ratio of KU1oh/KJ:1oh' However it does not explain why the 

mode II growth arrests. Also it can be seen from Fig. 1.24, that the mode I 

branch crack occurs at a load much higher than that predicted by the 

theory. 

Gao Hua et al suggested that these effects are caused by crack 

closure. They suggested that the formation of oxide and wear debris in the 

crack during the mode II growth would wedge it shut, that this would 

prevent the mode II load from reaching the crack tip, and that this would 

also reduce the mode I loading on the crack flanks making the real stress 

intensity range lower than that predicted by the MTS criterion. This b 
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supported by their observation of oxide appearing at the sides of the 

crack, and also by the fact that the mode I branch line moved closer to 

the theoretical line as the R ratio increased, ie as the closure effects 

were reduced. The branching load is very important to an understanding of 

'squat' failures, because the branching down into the rail, causing rail 

fracture, appears to be a transition from an essentially mode II crack 

extension mechanism to a mode lone. See section 1.3.2. 

M.C.Smith [40,41] carried out similar tests using a mode II specimen 

designed by Richard [65], Fig. 1.19 a. He was investigating the effects of 

crack face friction. He pre-cracked his specimens using a constant value of 

6K II so that the crack path should be as straight as poSSible, and 

therefore should reduce friction effects to a minimum. He showed that 

friction locked the crack tip up when the loading was pure mode II, and so 

it would reduce the effective 6Ku: at the crack tip to zero, and prevent 

mode II growth. He observed no mode II growth, in spite of using a 

specimen that does give a reasonably pure mode II load, and in spite of 

deliberately looking for this type of growth. 

His results appear therefore to contradict Gao Hua's. However the 

difference is probably just that Smith's method produced greater locking 

effects, and so locked the faces before any measurable mode II growth 

occurred, rather than after a fraction of a millimetre. This may have been 

because Gao Hua tested under a mixed mode condition, with a small positive 

mode I component, whereas Smith looked at pure mode II. Another difference 

between these two types of experiment was that Smith prepared his 

specimens by pre-cracking at a constant 6K value, whereas Gao Hua et al 

pre-cracked by reducing the load down to threshold, as is normal in 

threshold tests. At threshold the residual plastic zone at the crack tip is 

as small as it can be, and so it should have a minimal effect on 

subsequent crack growth. 

R.A.Smith also examined mixed mode threshold behaviour in steel. He 

was looking at ball bearing steel, a very hard steel, and like M.e.Smith he 

observed no mode II growth [63]. 

M.C.Smith also carried out some mode II tests at high loads and 

produced around 500~m of mode II growth before branching occurred [40,41]. 

The higher load would have been able to overcome greater frictional forces 
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than the near threshold tests, so this result supports the crack locking 

arguments put forward so far. 

1.4.4 The Effects of Non-Proportional L08d1na on the Eat'aue of Steel. 

All the tests that have been described so far have been proportional 

loading tests. However Bower's calculations predict that 'squats' are loaded 

non-proportionally. Two types of non-proportional load are of particular 

interest. 

Firstly, where the mean load applied is different to the cyclic load 

applied. For example a static mode I load across a crack, and a cyclic mode 

II load, might produce mode II growth otherwise stopped by crack closure 

effects. In 'squats' this might be equivalent to the effect of a fluid 

lubricating the crack, or to the effect of the tensile load in the ra11. 

M.e.Smith tested with a static mode I load, using a modified version of 

the specimen designed by Richard [65], as shown in Fig. 1.20. However he 

observed no mode II growth at all [40,4ll. In his specimens cracks 

branched straight into mode I, and stayed there. As mentioned before, he 

pre-cracked at a constant 6K. and was loading under LEFM conditions. He 

was also only using positive R ratios, ie his rig was only producing 

tensile loads, so that the shear loading was not fully reversed. 

Otsuka et al tested mild steel and structural steel, using asymmetric 

four point bending with a static end load, and a specimen similar to 

M.C.Smith's, as shown in Fig. 1.20 [32-35], With this they produced 

continuous mode II growth. However the growth rate did not accelerate with 

crack length, as occurs under mode I crack growth in steels. 

Pascoe and Smith [76,77] used a cruciform specimen to produce a 

similar form of loading, on HY100 steel, a high yield, ductile, weldable 

steel, under EPFM conditions. The only difference was that the static 

stress field was equibiaxial rather than uniaxial. They were testing at 

loads well above threshold in the EPFM region. They produced some 

continuous mode II growth, though it sometimes branched into mode I, and 

sometimes branched back to mode II, as shown in Fig. 1.25, at B,C and A,e 

respectively. 

The second type of non-proportional loading of interest involves much 

more compUcated basic cycles, for example a mode I cycle followed by a 
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mode II cycle, as calculated by Bower for 'squats' [51]. It might be that a 

small mode I cycle would open a crack enabling mode II crack extension in 

the mode II cycle. No experiments of this kind have been found in the 

literature, and so it is impossible to predict the results. Nayeb-Hashemi 

however looked at the effects of a single mode II overload on mode I 

growth, and showed that such an overload could increase the crack growth 

rate by a factor of up to 2, over an increase in crack length of less than 

the mode II plastic zone size [78]. 

1.4.5 Torsion Test 1na. 
Torsional tests on solid cylindrical specimens are also mixed mode 

·ioadings. Cracks growing circumferentially or longitudinally extend by mode 

II at the surface, and mode III as they grow towards the centre of the 

specimen. Cracks growing at 45· are mode I. There is not room here to 

discuss the extensive research that has been done in full, but certain 

pOints should be noted because of their relevance to mixed mode I and II 

loadings, or because of their relevance to the three dimensional aspect of 

'squat' growth. 

Firstly, shear mode growth generally . occurs at higher stress levels, 

and at higher plastic strain ranges, while tensile mode growth occurs at 

lower loads [23,39,79-811. This is perhaps most clearly shown by Socie and 

various workers who have studied torsional loading quite extensively, and 

have produced damage maps for fatigue failures in two steels, AISI 304 

stainless and AISI 1045 steel, and in Inconel 718, a Nickel alloy, in both 

tension and torsion tests, Fig. 1.26 [79], The mode of crack growth was not 

merely dependent on geometrical and loading characteristics, but also on 

the material itself. In Socie's work Fig. 1.26 shows that Inconel is most 

likely to grow in shear mode, followed by AISI 1045, with AISI 304 

stainless most likely to fail by mode I. This suggests that shear mode 

growth may also be more likely to occur in mixed mode I and II situations 

at higher loads, and also that mixed mode fatigue results from one steel 

may be very different to those from another. 

Secondly, in torsional fatigue the growth rate can be affected by 

friction on the crack faces. For example Hay found that a tensile end load 

on solid torsional specimens could increase the growth rate of cracks 
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under torsional loading by a factor of up to 100 [42,82]. Without the end 

load the nominal AKuI value was not sufficient to correlate the growth 

rate. For the same 6K u1 value a long crack with a low torque grew much 

more slowly than a short crack with a high torque. The use of static mode 

I loads, to separate the crack flanks in mode II loading, will also affect 

the growth rate. 

The mode III crack growth is also relevant to the study of 'squats' 

because 'squats' are not 2 dimensional cracks. Parts of the crack are 

loaded predominantly in mode III rather than mode II, and so the mode II 

growth, and the interaction of the mode III with the mode II growth, must 

be understood before the growth direction and rate of 'squats' can be 

accurately predicted. Zachariah, for example, looked at the fatigue of 

hollow cylinders in torsion. He found that cracks started to grow in shear, 

and then branched into mode I cracks at about the time when they became 

through cracks [83]. The reason for this behaviour is not fully understood, 

but it may be that the mode III displacements in some way restrained the 

crack keeping it in a shear plane. When the crack became a through crack 

the change in geometry may then have changed the restraints allowing the 

crack to branch more easily. 

1.4.6 Mixed Mode Fat1sue and Fracture of Alua1nlY1l AUg,.. 

So far the fatigue of steel has been looked at, and it has been shown 

that mode II has only been produced for fractions of a millimetre under 

elastic proportional loading, and for a few millimetres by only Pascoe and 

Smith, and then only under elastic plastic non-proportional loading. 

However mode II growth ,has been produced in Aluminium and its alloys more 

frequently. Though these results cannot be used directly in this study, the 

loading conditions used in Aluminium do indicate where mode II growth is 

more likely to be produced in steel. 

Otsuka and various co-workers have studied mode II growth in 

Aluminium quite extensively (32-35]. They used a static mode I end load to 

reduce frictional effects on the crack faces, in most of their tests. Mode 

II growth was then produced under cycliC mode II loading. Some alloys 

always grew in mode II under this loading, some grew in mode I at lower 

stress amplitudes, and mode II at higher stresses. They showed that mode 
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II growth was favoured by a sharp pre-fatigue crack, whereas mode I 

growth was favoured by a blunt notch. 

1.4.7 Short Cracks. 

For completeness, it should also be mentioned that it is generally 

accepted that mode II fatigue crack growth occurs in the first stage of 

the fatigue of plain specimens. The cracks grow on the plane of maximum 

shear stress, for one or two grain sizes, and then either stop growing, or 

slow down until a mode I branch crack can grow, Fig. 1.27. It is thought 

that the cracks stop because they reach a micro-structural barrier {84-861. 

Gao Hua's work in stainless steel showed about 200J!m of mode II growth, 

about 5 grain diameters, so it seems unlikely that the reason for the 

arrest of those mode II cracks is the same. 

1.5. DisCUSSion. 

From the experiments recorded above, various factors can be picked out 

that may affect the type of growth that occurs under mixed mode loading: 

1. The amount of plasticity. Generally it seems that the greater the 

cyclic plasticity experienced by a specimen, the greater the chance that 

more mode II growth will occur. This is shown in that no mode II growth 

has been recorded in PMMA, and in the very hard steels used by R.A.Smith, 

and none when M.C.Smith was testing at low stress levels near thresholdj 

and yet Pascoe and Smith, and M.C.Smith at high loads both recorded at 

leas t some mode II growth. 

2. The type of pre-cracking carried out. One of the differences 

between Gao Hua's proportional mixed mode tests, and M.C.Smith's was that 

Gao Hua pre-cracked her specimens by reducing the load down to threshold, 

whereas M.e.Smith pre-cracked at constant l1K. It might be therefore that 

the larger residual mode I plastic zone in M.e.Smith's specimens, with its 

associated compressive residual stress near the crack tip, inhibited mode 

II growth. This is the opposite of Smith's equally logical argument that 

the larger residual opening left by pre-cracking at a higher value of 6K 

might be expected to reduce the friction and so assist mode II crack 
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growth. 

3. Closure or locking effects. Gao Hua et al commented that the reason 

the mode I branch load was so high might be a closure effect. It might 

also be the reason that mode II cracks stop, ie they start being open, but 

wear debris formed during the limited mode II growth might then wedge the 

crack shut, until a mode I branch crack can form. Also closure might be the 

reason for the difference between Gao Hua's results and M.C.Smith's. Gao 

Hua tested under a mixed mode condition in most of her tests, with a small 

positive 6K x component, whereas M.e.Smith tested under approximately pure 

mode II loading. It seems likely that the unstable mode of crack growth 

found by Pascoe and E.Smith is because of the lack of closure in their 

experiments. They tested with a static mode I load to open the crack, so 

the mode I threshold- line might be brought down to about the theoretical 

position. The mode I and mode II lines would then be close together so 

that cracks could jump between one mode of growth and another. 

A lack of closure might be the reason why mode II cracks grow in 

'squats'. As mentioned earlier, Way showed that a fluid was necessary for 

the propagation of rolling contact fatigue cracks. Bower et al have 

suggested that the role of water might be that it would lubricate the 

crack, and/or produce a mode I loading in the crack due to hydrostatic 

pressure, reducing any closure effects. 

4. Non-proportional loading. The effect of small mode I cycles followed 

by mode II cycles is at the moment unknown. It may be that the mode I 

cycle will open the crack, reducing the locking effects, and thus enabling 

mode II crack extension. However, as mentioned in point 2, a residual mode 

I plastic zone may under some circumstances inhibit mode II growth 

instead. 

5. Mean Stress effects. The type of mean stress field may also be of 

great importance. Otsuka produced continuous mode II growth by using a 

four point bending rig with a static end load, giving a uniaxial tensile 

load perpendicular to the crack. and a slightly compressive load parallel 

to the crack. Pascoe and Smith used a cruciform specimen giving a mean 

tensile load in all directions. It may be that the equibiaxial tensile load 

tends to give unstable mode I/mode II growth because the mode I cracks at 

an angle to the original crack are kept open, whereas in Otsuka's set up 

they were closed some of the time. In 'squats', it may be that the crack 
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tip will experience some compression, because of the compressive contact 

loading, but be kept open by the fluid inside. Mode II growth might then 

be possible, while mode I growth is inhibited by the compressive stress. 

6. Fully reversed shear loading. Gao Hua, M.e.Smith, and R.A.Smith all 

tested at positive R ratios. Pascoe and E.Smith tested at R=-1. The 

experimental results and the MTS / MSS analysis described in section 1.4.1 

both predict that testing at R=-l favours mode II growth, and Bower's 

analysis suggests that the loading on a 'squat' may be approximately fully 

reversed. 

1. Geometry Effects. In all the mixed mode tests in asymmetric four 

point bending specimens, and ordinary mode II specimens like M.e.Smith's, 

mode I branch cracks never branched back to mode II cracks. In cruciform 

specimens like Pascoe and Smith's they did. This is because in the mode II 

specimens the cracks are situated in a pOSition of pure mode II loading, 

and then experience mode I loading as soon as they move away from the 

original crack plane. In cruciform specimens there is a uniform stress 

across the working section, so the same does not happen. 

8. Material differences. Socie et al have shown that under the same 

loading conditions in torsion, one steel can grow in shear mode, while 

another can grow in mode I. The same is probably true in mixed mode I and 

II loading. 

1.6 Conclusions and the Test Pr~raJ!lme. 

The above discussion shows that mode II growth has been produced in 

limited quantities in the fatigue of steel, but that the conditions that 

will produce it are not well established. Slight differences in loading 

methods and materials have produced different results. Mode II growth laws 

have not been produced that could be applied to 'squats', and the effects 

of the non-proportional loads calculated by Bower are unknown. The 

following test programme was formulated to attempt to clarify the loading 

conditions under which mode II growth will be produced in rail steel, if it 

can be produced at all. 

The first series of experiments was designed to look at the 

proportional mixed mode loading of rail steel. by using asymmetric four 
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point bending, Fig. 1.15. The series looked at the effects of fully reversed 

loading, as opposed to testing at a positive R ratio, and looked at the 

effects of pre-cracking by reducing the load to threshold, as opposed to 

pre-cracking at a constant value of 6K 1 • The tests also provided a useful 

link with the previous work using asymmetric four point bending, showing 

the similarities and differences between rail steel and the other materials 

used. 

The second and third series of tests looked at the effects of 

combining mode I stresses to open the crack, with cyclic mode II stresses 

to propagate -it. They also looked at the effects of plasticity by 

performing similar tests at different load levels. The first of these 

looked at the effect of applying a mean equibiaxial tensile stress to the 

cycliC mode "II loading by using cruciform specimens. If mode II growth 

could have been produced by this method, confirming the results of Pascoe 

and Smith (section 1.4.4), then the aims of the project would have been 

mainly fulfilled. Branching conditions and growth rate laws could have been 

produced in terms of the applied mode I and II loadings and the length of 

crack, and compared with Bower's calculations. The cruciform specimen was 

chosen for these tests, as opposed to the other types of non-proportional 

biaxial specimens, because of its suitability for collecting a wide range 

of crack growth data in one test, and because of its suitability for 

finding branching conditions. A similar series of tests using one of the 

other types of specimen, and the different load cycles that it could 

produce, would make another useful research programme in the future. 

The third series of tests then looked at the effects of applying 

cyclic mode I and fully reversed mode II loads sequentially, to more 

closely resemble the more complicated non-proportional loads calculated by 

Bower, sections 1.3.2, and 1.4.4. Again growth rates, branching conditions, 

and crack directions at different load levels were examined. The details of 

the cycles looked at are discussed at the beginning of chapter 4. 
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OOPTER 2. 

PROPORTIONAL MIXED MODE LOADING TESTS. 

2.1 Introduction. 

The proportional mixed mode loading test series was designed to look 

at the effects of fully reversed, R=-1, mixed mode loading, as opposed to 

R=0·2. Section 1.4.1.2 showed that R=-1 loading is theoretically more likely 

to produce mode II growth than R=0.2, if the crack does not lock, thereby 

preventing the mode II load from reaching the crack tip. 

Pre-cracking methods were also investigated. M.C.Smith pre-cracked at 

constant AK, whereas Gao Hua pre-cracked by reducing AK in 10 ~ steps 

down to threshold [1,2]. Smith argued that his method should produce a 

straighter crack and therefore less friction. It should also leave a larger 

residual opening, which should again reduce the frictional forces. However 

he did not produce any mode II growth, whereas Gao Hua did. 

The effect of the ratio of KI to Ku was also looked at. Gao Hua used 

mixed mode loads with KI I Kn ~ 0, and produced mode II growth. whereas 

M.e.Smith used pure mode II loading and produced none. 

2.2 The Testina Method. 

All but one of the tests in this series were done using the 

asymmetric four point bending method. as described in section 1.4.1.2. Three 

different rigs were used: 

1. A '100 kN' Vibrophore resonance machine was used for all the tests 

carried out at British Rail Technical Centre Derby. The grips on this 

enabled the specimen to be loaded in a fully reversed manner, Fig. 2.1. The 

type of grips used by Gao Hua. Fig.2.2. restricted the cyclic load to R > 0 

because they could only load the specimen when the grips were in 

compression. The grips used here clamped the specimen on the top and the 

bottom at each loading point, rather than merely pUShing it. The 

compressive part of each loading arm included a wedge mechanism to 

prevent backlash occurring between the tensile and compressive parts of 

the cycle. A specimen was strain gauge tested by Brit 1eh Rail when the 

grips were first used to check that no residual stress was applied in 
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setting up. The machine unfortunately could not run at 100 leN, in spite of 

its specification, and instead only managed about 15 kN under the loading 

conditions used. The specimen dimensions are given in Pig. 2.3. The 

specimen was designed to be much longer and thinner than the specimens 

used by Gao Hua et al [2), in order to obtain reasonably high values of 

Ku. The frequency was about 56 Hz. 

The crack length was measured with a potential drop system using a 

single pair of leads, and using optical microscopes on the front and back 

faces of the specimen. Two different microscopes were used, one could 

resolve a change in crack length of about 0 '05 mm, the other about 0 ,02 

mm. The potential difference system could also theoretically measure a 

0·02 mm change. Details of the potential difference equipment and 

calibrations are given in AppendiX 3. 

2. A 100 leN Schenck servo hydraulic testing rig was used at Sheffield, 

using ordinary asymmetric four point bending grips that restricted the 

load to R > 0, Fig. 2.2. The crack was again measured using a potential 

drop system but this time using three pairs of leads, for greater accuracy. 

Two pairs of leads measured the potential dropped across the crack. The 

mean of these two was then taken. The other pair of leads also measured 

the potential dropped across the crack, but from 20 mm either side of the 

crack. The ratio between the two was then used to calculate the crack 

length. This gave a calibration that was independent of the current 

through the specimen, and the resistivity of the specimen, both of which 

will vary with temperature. 

An optical microscope was also used, capable of resolving 0 ·02 mm of 

crack growth. The specimen dimensions are given in Fig. 2.4. These 

specimens were shorter thicker and wider, so that higher loads were 

required to grow the cracks. These were chosen because servo-hydraulic 

machines do not work well when only a small percentage of their load 

capacity is used. The testing frequency varied between 10 and 20 Hz. 

3. The other test used a cruciform specimen, in one of the Sheffield 

servo-hydraulic biaxial test ing machines. The specimen, grips, and machine 

are described in Appendices 1 and 2. Again the crack length was measured 

using a potential drop system, this time with two pairs of leads. Both 

pairs again measured the potential across the crack, one from close to the 

crack, one from pOints 20mm away so that the crack length calculation was 
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not affected by temperature. The crack length was also measured using one 

optical microscope capable of resolving 0 ·02 mm of crack growth. 

In all these tests the initial mixed mode load was chosen to be below 

threshold. The load was then increased in 10 " steps until failure 

occurred. The load was only increased after 200 000 cycles during which no 

growth was observed. This enabled a crack growth rate of 1)(10- 10 m/cycle 

to be detected. One definition of threshold is 2·5)( 10- 1 0 m/cycle, which is 

approximately one atomic spacing per cycle [2], so it was assumed that 

200 000 cycles would be enough to detect this. 

Mode I threshold and crack growth data was also collected for use in 

the analysis. The mode I thresholds were given by: 

R = 0 '44, AK:t1:h = 6'0 MPaJ"m 

R = 0 '22, AK:t1:h = 9'4 MPaJ"m 

R = -1'0, AK:t1>t-o = 18·3 MPaJ"m 

The threshold values for R = 0 '44, and R = -1'0 came from just one 

test each and so their repeatability 1s unknown. However the pre-cracking 

down to threshold was done at R = 0 '2, and a mode I growth test was 

performed starting just above threshold, as well as the test designed to 

find the threshold accurately. These gave thresholds varying from 8·0 to 

12'1 MPaJ"m, and a mean of 9'4 MPaJ"m. The test designed to give the 

threshold accurately gave 8 ·34 MPaJ"m. The details of these tests and the 

data, and comments on this scatter can be found 1n Appendix 4. 

2.3 The Effect of Pre-cracldns Methods on Mode II Thresholds and Growth. 

Four tests were carried out under Ku/K% = 2, and R = 0·2. Two of 

these tests used spec1mens pre-cracked at a constant AK:t of 18 MPaJ"m, two 

used specimens pre-cracked by reducing the load in 10 " steps down to 

threshold, growing at least 0.5 mm each step. Both pre-cracking methods 

grew the crack about 5 mm from a 5 mm starter notch, the specimen height 

being 25 mm. 

The two specimens pre-cracked at constant AK:t produced no mode II 

growth, according to both the PD unit, and the microscopes, whereas the 

two pre-cracked by reducing the load to threshold, grew 0.15 mm and 0.17 

mm in Mode II, prior to branching into 

microscopes. 
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The PO unit did not give an accurate reading during these latter two 

tests because it picked up some electrical noise at the time when the 

growth occurred. The potential drop across the crack varied in this system 

with temperature, and because there was only one set of leads in these 

tests, it was not possible to obtain an accurate crack growth value from 

readings before and after the noise occurred. 

All four tests produced branch crack growth at mode II stress 

intensities varying from 10'1 to 11'75 MPaJ"m, as shown in Table 2.1. The 

pre-cracking method apparently made no difference to this. 

2.4 The Effects of R ratio and It to In ratio. 

. "Two tests were performed under R=-l loading, using fully reversed 

asymmetric four point bending. Both used the load reducing pre-cracking 

technique, as described in section 2.3. One used KII/Kx = 2, the other used 

. Ku/Kx = 8. Both produced mode II growth, the first produced 0'05 mm, the 

second produced 0'15 mm, as shown in Table 2.1. Another test was also done 

at R=-1, but using a cruciform specimen. Again the load reducing technique 

was used in pre-cracking, but this time the starter notch was only 0·18 mm 

wide having been cut by spark erosion using a 0.1 mm wire. This meant that 

the pre-cracking could begin at a lower stress, so a shorter pre-crack, 

1'5 mm long was produced. The notch half length was 2 mm. This time Kx/K:u 

was zero. No mode II growth was observed. 

Two tests were also performed using asymmetric four point bending at 

R=0·2, with Ku/Kx = 8, pre-cracked by the load reducing method. No mode II 

growth that could be detected. 

The mode I branch crack loading could not be produced by the 

Vibrophore for the R=-1 tests. The load was increased after the mode II 

cracks had arrested, but no growth occurred. The maximum theoretical 

values of Ku were 14·5 and 16·8 MpaJ"m. In the cruciform test, with R=-l 

loading and Kx/K:u=O.O, mode I branch crack growth did occur, but it did 

not start from the crack Up. Instead it started from the notch tip, 

forming four branches, two from each end. The true branching load for the 

crack was therefore not attained. 

Fig. 2.5 also shows the maximum theoretical Kx reached in each of 

these R=-l tests, and compares them with the maximum tangential stress 
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criterion and Melin's theory. Both predict that branching should have 

occurred at lower loads than the highest ones applied. 

The R=0.2 tests also all gave branch crack loads much higher than the 

theoretical predictions of MeHn, or the maximum tangential stress 

criterion, Fig. 2.6. Test No.6 at KIl/KI = 8 did not produce branch crack 

growth from the crack tip but from a point 2 mm before the tip, as shown 

in Fig. 2.7. 

Test R Pre-Cracking O.L.. Mode II Mode II Branching Test Rig 
No. Method ~KII Threshold Growth Threshold 

llKII llKu 
MPa/m mm MPa/m 

1 0.2 Const. ~K 0.5 - 0·00 10.5 Vibrophore 
2 0.2 Const. ~K 0.5 - 0·00 11. 7!5 Vibrophore 
3 0.2 Red. Load 0.5 5. 1 O. 15 10. 1 Vibrophore 
4 0.2 Red. Load 0.5 5.3 O. 17 11.3 Vibrophore 
5 0.2 Red. Load O. 125 - 0·00 16.7 Schenck 
6 0.2 Red. Load 0.125 - 0·00 >12.9 Schenck 
7 -1. 0 Red. Load O. 5 8. 1 0·05 >14.5 Vibrophore 
8 -1. 0 Red. Load O. 125 10.2 O. 15 >16.6 Vibrophore 
9 -1. 0 Red. Load 0'0 - 0,00 >19.6 Biaxial 

Table 2.1 Results of Proportional Mixed Mode Tests. 

2.5 Fracture Surfaces. 
Fig.2.6 shows a scanning electron microscope image of the fracture 

surface of test No. 4-. There was no clear difference between the mode I 

pre-crack region and the mode II growth region. Both have large areas that 

have been smoothed by the crack faces rubbing together. A magnified view 

of this is given in Fig. 2.9. This surface damage was less extensive nearer 

the branching point, where the mode II growth took place, but it was not 

possible to distinguish a boundary between the pre-crack and the mode II. 

Gao Hua et al [2] did see a difference between the mode II growth and 

the mode I growth. They described the mode II growth as being 

crystallographic, that is that the crack grew along crystallographic slip 

planes, rather than just growing on one flat plane. The difference may 

simply be because rail steel is fully pearl1tic and so the grains do not 

have the same highly favourable slip planes. 
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2.6 Discussion. 

The results of the investigation into pre-cracking are quite 

interesting. In the first place it offers one explanation as to why 

M.e.Smith recorded no mode II growth in his threshold experiments (1.4.3), 

when he was looking for it, and was using a good specimen. The 

implications are more far reaching than this though. One of the reasons 

that the method of pre cracking at a constant 6K value was used, was that 

it --was thought that the larger residual opening of the crack tip, and the 

straighter crack path, would reduce the friction on the crack faces, and 

therefore that it would increase the mode II growth. It was thought that 

friction attenuating the mode II loading at the crack tip was one of the 

major reasons for the arrest of mode II cracks. This may well be true, but 

it --appears that removing the frict ion by giving the crack a residual 

opening prevents mode II growth for some other reason. The residual stress 

left by the pre-crack would be compressive, and this might inhibit the 

growth. However the process of mode II crack growth is not understood well 

enough to give a definitive answer. 

The investigation into the effect of using fully reversed mode II 

loeding was inconclusive. It was thought that the fully reversed cycle 

should make mode II growth more favourable than a cycle at a positive R 

ratio. However the crack apparently locked up so much that the mode II 

loading did not reach the crack tip, and therefore the theoretical 

arguments, about mathematical frictionless cracks, have very little to do 

with the reality. 

The retio between the mode II thresholds, and the mode I thresholds in 

ordinery mode I tests at the same load retio, is about 0·5. This is similar 

to the retio found by Geo Hua et el [2]. The mode II threshold at R=-l is 

probebly higher than the threshold at R=O'2 beceuse the creck is 

completely locked for half the cycle at R=-l. 

The mode I branch crack load was alweys much higher then the MTS 

criterion or the theoretical calculations of Melin predict. This, and the 

fect that the branch formed away from the crack tip in one specimen, 

support the theory that crack locking also has a very lerge effect on mode 

I brench loeds, as explained in sect ion 1.5. 
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2.7 Conclusions. 

In conclusion it can be said that Rail Steel behaves in a similar 

manner to the other materials tested in asymmetric four point bending, 

producing around 0·1 mm of mode II growth, and forming a mode I branch 

crack at much higher loads. The mode II crack arrest, and the very high 

mode I branch crack loads are apparently caused by the crack locking up 

because of friction between the crack flanks. The extensive crack growth 

that occurs in 'squats' under a predominantly mode II load cannot be 

produced by asymmetric four point bending, and therefore more complicated 

non-proportional loading methods need to be investigated. The tests on 

pre-cracking methods showed that the residual plastic zone and the 

residual stress left by a pre-crack could retard or prevent mode II crack 

growth. Pre-cracks should therefore be produced by methods that leave 

plast ic zones which are smaller than those produced in the first cycle of 

a test. 
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Fig. 2.1 The Vibrophore Grips For Fully Reversed Loading. 
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Fig. 2.8 Fracture Surface in Test No. 4. 
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CHAPTER 3. 

EFftxiTS OF EOVIBIAXIAL MEAN fi11l6Sj AND STRESS RANGE 

ON FUlLy ftEYERSBP MIXED MODE FATIGUE, 

3.1 Introduction. 

This series of tests investigated three of the factors mentioned in 

the literature survey, that were thought to be important in deciding 

whether mode II rather than mode I crack growth occurred. See section 1.5. 

The first factor is the effect of mode I mean stresses. The crack face 

roughness, oxide formation, and the formation of wear debris can all act to 

close, and therefore lock the crack. This would prevent any applied mode II 

load reaching the crack tip and producing a stress intensity [11. The 

application of a mode I mean stress should unlock the crack. <However a 

mode I load may also make mode I branch crack growth more likely. See 

section 1.4.1.2.> 

The second factor is the load range. From the experimental evidence 

available it appears that higher loads, or higher stress intensities at the 

crack tip tend to favour mode II rather than mode I growth. In particular 

Socie et al have shown that shear mode growth normally occurs in torsional 

fatigue at higher stresses [21. 

The third factor is the effect of fully reversed loading. The MTS 8nd 

MSS criteria combine to predict th8t mode II growth is more likely if the 

mode II loading 1s fully reversed, see section 1.4.1.2. Pascoe and Smith 

produced mode II growth by using fully reversed l08ding, with a mode I 

load to open the crack, and at high stresses [31. 

The tests in this series were all conducted with fully reversed 

loading, looking at the effects of the other two factors. 

3.2 Testina Method. 

The tests were all carried out on Sheffield University's Mayes biaxial 

servo hydraulic test rigs. Details of these rigs can be found in Appendix 

1. They use cross or cruciform shaped specimens, loaded by four servo 

hydraulic actuators. The capacity of the machines is +/- 200kN. For these 

tests the equibiaxial mean stress was applied by using the built in static 
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load control, and the cyclic shear stress was applied by using a signal 

generator. A tensile load on one axis, with an equal and opposite 

compressive load on the other, produce pure mode II loading on a crack at 

45-. 

A new specimen design was required for these tests, because the 

design used in previous tests on these machines was too large to be made 

out of a rail. It was also prone to failing from the edge of the working 

section, end was very expensive to manufacture. The new design is smaller, 

cheaper to manufacture, and should not fail at the edges under normal 

circumstances. The details can be found in Appendix 2. 

The specUnens were all made from one of two rails, from the same cast 

of rail steel. The same rail was employed for the tests described in 

chapters 2 and 4. The average chemical composition, monotonic, and cyclic 

stress strain properties of rail steel are given in Appendix 4. The 

chemical composition, and mode I threshold and fatigue crack growth data 

for the cast used are also listed in Appendix 4. 

The crack lengths were measured on the front face by using a 

travelling microscope, capable of resolving 0 ·02 mm of crack growth. The 

crack lengths were also measured by using a direct current potential drop 

technique. with two pairs of leads, as described in Appendix 3. The two 

pairs of leads allow the crack lengths to be measured independently of the 

actual current, which varies with temperature. Theoretically this should 

allow a change in crack length of 0'02 mm to be resolved. This method has 

the advantage that it gives a measure of the average crack length across 

the crack front, rather than merely the crack length at the surface. The 

system e1so has the advantage that the crack lengths can be measured 

automatically. by using a data logger. 

Both types of crack measurement gave a measure of the distance 

between the crack tips, rather than an absolute measurement. In the PD 

system this is because in the calibration it is necessary to assume that 

the crack is symmetrical. With the microscope it is because the centre of 

the specimen 1s not kept exactly still during the test, and so absolute 

crack lengths would require extra readings and calculations. The cracks 

were near enough symmetrical that this was not thought to be worthwhile. 

All crack lengths and growth rates calculated are therefore average crack 

lengths and growth rates. 
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3.3 Threshold Tests. 

Two tests were carried out in which the specimens were loaded in 

cyclic mode II with a static mode I load, starting below threshold, and 

increasing in 10 ~ steps until growth occurred. About 1 000 000 cycles 

were done between load steps. The optical microscopes used had a 

resolution of approximately 0 '02 mm, so that in 1 000 000 cycles a growth 

rate of 2)(10- 11 mlcycle could be detected. One definition of threshold is 

2 '5)(10- 1 0 m/cycle, which is approximately equal to 1 atomic spacing per 

cycle, so 1 000 000 cycles should easily identify this, [4]. The specimens 

were all pre-cracked by reducing the load down to threshold in 10 ~ steps. 

Again about 1 000 000 cycles were left before it was decided that the 

threshold had been reached, and the crack was allowed to grow at least 

o ·2mm between load increments to grow it through the previous load's 

plastic zone. The frequency was 20 Hz. 

In the first test, RSB1, the equibiaxlal mean stress was equal to 1/16 

of the cyclic yield stress of the material, which was taken as 800 MPa. 

This corresponded to an initial K% value of 6 MPaim. ~K~ at R = 0'44 was 

found to be 6·0 MPaim, at R = 0 ·22 it was 9·(. MPaim, and at R = -1,0 it 

was 18·6 MPaim. It is possible to estimate a rough crack opening stress 

intensity, Kop' by assuming that the only effect of mean stress on 

threshold is to remove closure effects, and that at R = 0 ·44 no closure 

effects occur. This is essentially assuming that Kop, is less than or 

equal to 4'7 MPaim in the R = 0,(.4. test. The result at R = 0 '22 would then 

suggest a value of Kop equal to 6 MPaim, and the result at R = -1,0 a 

value of Kop of 3,2 MPa.im. As the maximum value of KI in the R = 0 '44 

threshold test is less than the maximum Kr for R=O '22 threshold test, this 

variation in the value of Kop is to be expected, and it can only be stated 

that the value is likely to be between 3 and 6 MPaim. 

Mode II growth occurred for about 0·03mm, at ~KII = 4·0 MPaim, and 

then arrested. A further 0.02mm occurred at 4·8 MPaim, and then no growth 

occurred until the load had been increased to ~KII = 6·3 MPaim. Mode I 

branch cracks then formed, but rather than growing to failure as occurred 

in the asymmetric four point bending tests recorded in the previous 

chapter, they arrested. Small quantities of growth occurred again at 7·6 

MPaim, and 9·2 MPaim, before continuous branch crack growth occurred at 

~KII = 11'2 MPaim, leading to failure, as shown in Fig. 3.1. 
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The second test, RSB2, had an equibiaxi81 mean stress equal to 1/3 of 

the cyclic yield stress, or 267MPa, corresponding to an initial K, of 32 

MPa.fm. This time 0'08mm of mode II growth occurred at AKu = 4·4 MPa.fm, 

and branches formed at 4·9 MPa.fm. These branches also arrested, but grew 

continuously to failure at 5·9 MPa.fm. The crack path is shown in Fig. 3.2. 

The threshold values are shown in Table 3.1 and are compared with the 

threshold from test RSB7. This test, recorded in the last chapter, was 

another cruciform test with fully reversed mode II loading, but it had no 

mean stress. 

Table 3.1 

The effect of mean stress on mode II and branch thresholds. 

Test No. Mean Stress Mode II Mode II Branch Crack R ratio at 
Growth Threshold Threshold branching 

AKu AK'I load 
(MPa) (mm) (MPal'm) (MPal'm) 

RSB7 0·0 0'00 - >19'8 -1,0 
RSBl 50·0 0'05 "0 6'3 ~ 11'2 0'5 ~ 0'03 
RSB2 267·0 0'08 4" 4'9 ~ 5'9 0·65 ~ 0'63 

The branch crack mode I growth rates were calculated and are shown in 

Fig. 3.3 and are compared with mode I growth rates in three point bending 

tests. Details of the K, calibration are given in Appendix 6. It should be 

noted however that the calibration is not exact. A calibration was only 

available for cracks growing at 45· to the original crack, as opposed to 

growing initially at about 70· after branching, and then bending round 

towards 45 -. The calibration predicts that initially the value of Ku will 

decrease as the crack length increases, but the magnitude of this decrease 

was not found accurately. 

3.4 Discussion of the Threshold Tests. 

It waS suggested in the introduction that the static mode I load and 

the fully reversed mode II loading might provide conditions under which 

continuous mode II growth would occur. The simple part of this discussion 

is to say that they do not. A fraction of a millimetre of mode II growth 

was produced, which is more than occurred in test RSB7 which had no mean 
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stress, but the cracks arrested as occurred in the mixed mode asymmetric 

bending tests recorded in the last chapter. The mode II growth threshold 

in the bending tests was found to be about 10 MPaJ"m, for the fully 

reversed mixed mode tests, in which the crack was probably locked for 

about half the cycle, and about 5 MPaJ"m for the R = 0·2 tests, where the 

crack was probably open for most of the cycle. The mode II growth 

threshold found here of around 4 MPa/m for a crack that should be open 

all the time, is therefore in agreement .. 

The mode I branch load was very different from the branch loads in 

the bending tests, and in the pure mode II test on a cruciform specimen 

without a mean stress. In all the bending tests branching occurred at a 

mode II load of 10 MPaJ"m or greater, and these tests all had a mode I 

stress intensity as well. The pure mode II loading in the cruciform 

specimen had not produced a branch crack at 19·8 MPaJ"m. The equibiaxial 

mean loads looked at in this chapter, reduced the initial branching loads 

to 6·3 MPa/m and 4·9 MPaJ"m. The maximum tangential stress criterion 

predicts that branching should occur at a mode II load of 5·2 MPaJ"m, for a 

mode I threshold of 6·0 MPaJ"m. The mode I threshold for R = 0 ·44 was 

found to be 6·0 MPaJ"m, though the uncertainty in the threshold values 

might be as much as +/- 2 MPaJ"m, see Appendix 4. The main reason for the 

difference between the two types of test must be that the equ1b1axial 

mean load prevents the crack locking. This then means that the MTS 

criterion can be applied. 

These arguments seem relatively straight forward, but in fact there is 

a problem. The work so far has assumed that the reason that the mode II 

cracks arrest, and the reason why the mode I thresholds were higher than 

the MTS criterion predicted, was that the cracks. locked. The mean stresses 

unlock the cracks, and bring the mode I threshold down to the MTS 

prediction, but they do not stop the mode II growth arresting. A definitive 

answer cannot be given without a better knowledge of crack growth 

mechanisms and crack tip deformations. 

One part of the answer though, may be given by the work of Kfouri and 

Miller [5]. They used elastic plastic finite element analys1s to model the 

growth of a crack from a starter crack that was opened by a large mode I 

load, where th1s mode I load was kept constant. Their model pred1cted that 

the new part of the crack would not open up to the same extent as the 
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starter crack. See Fig. 3.4. Some friction might therefore begin to 

attenuate the load at the crack tip, causing the growth to arrest. The 

relatively small increases in load might then allow mode I cracks to start 

to grow from just behind the crack tip. 

Another feature of these tests that initially seemed surprising, was 

that the mode I branches arrested. Three factors may be involved in 

causing this crack arrest. Firstly the KI calibration predicts that the 

value of KI will actually decrease as the crack extends. The calibration, 

shown in Appendix 6, is not accurate, but it predicted that the value would 

decrease by 6 " as the branch grew to 0'1 times the starter crack half 

length, and that it would then increase. Secondly the crack extension might 

cause the crack flanks to touch and so reduce the load by friction, and 

form oxide and wear debris that would increase this friction. When the 

crack extended further the mode I opening displacement would prevent the 

faces touching. Thirdly any increase in load decreased the R ratio in this 

test, because the mean stress was kept constant. This would not actually 

cause a crack arrest, but it would make the necessary increase in load 

higher because the threshold increases as the R ratio decreases. In RSB2 

with its 267 MPa mean stress only the first point applies, suggesting that 

the real decrease in KI with branch crack length may be around 10"' or 15". 

The use of mode I stress intensity factors, to correlate the branch 

crack growth in the threshold tests worked well when the branches were 

about half the length of the starter crack or greater. Fig. 3.3 shows that 

RSB1, at an R ratio of 0·03 grew at the same rate as the equibiaxial mode 

I test with a load ratio of 0 ·0. RSB2 with a load ratio of 0 ·83 grew at a 

rate in the middle of the bending test growth rates, whose load ratios 

varied from 0 ·22 to 0 ,44. 

;J.5 Tests with lorp scale plasticity. 

Four tests were then performed under mode II cyclic loading under 

much higher loads, with a variety of mode I mean stresses. Pre-cracking 

for these tests was carried out using a stress intensity lower than the 

initial stress intensity of the mixed mode part of the test. It was 

assumed that there was no point reducing the load down to threshold, when 

the first cycle would wipe out the effects of a higher stress intensity. 
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The frequency used in the first test, RSB3, was 2 Hz, and in the others 

was 0·5 Hz. 

The first two tests had a positive mean stress. The mean stress and 

the cyclic stress range in test RSB3 were both equal to 1/3 of the 

uniaxial cyclic yield stress, that is 267 MPa, for which Von Mises yield 

theory predicts a plastic strain range of 0'02 %, see Appendix 5. Test RSB4 

had a mean stress of 133 MPa, with a stress range of 450 MPa. Von Mises 

predicts that this gives a cyclic plasticity of 0 '23 "'. Both tests produced 

about 1 mm of mode II crack growth before mode I branch crack growth took 

over. The crack paths are shown in Figs. 3.5 and 3.6. 

Observation through a microscope while the test was running, showed 

that sometimes mode I and mode II cracks were growing at the same tima. 

However the mode I crack relieves the stress at the mode II crack tip, and 

the mode II crack relieves the stress at the mode I crack tip. In these 

cases the mode I cracks ended up dominating. 

The third test, RSB5, had no mean stress, and a shear stress range 

equal to 452 MPa. Initially mode II and mode I growth occurred together, 

the mode II growth branched to mode I, and the mode I growth at one time 

branched back to mode II. See Fig. 3.7. After the first millimetre of growth 

however the mode I became dominant, and grew until the test had to be 

stopped because of cracks growing from the edges. 

The fourth test, RSB6, had a compressive mean stress of 133 MPa, and IS 

cyclic shear stress of 452 MPa. This time about 0'15 mm of mode II growth 

occurred at one end and none from the other. Mode I growth then dominated, 

but the cracks did not accelerate. Instead they arrested, while other 

cracks started to grow from further up the pre-crack, as shown in Fig. 3.8. 

This time the test had to be stopped because the central section of the 

specimen began to buckle under the compressive stress. 

3.6. Mode I Branch Crock Growth. 

The branch crack growth data from these tests is plotted in Fig. 3.9, 

and is compared with the mode I data produced by British Rail at Derby in 

three point bending, and at Sheffield using cruciform specimens, see 

AppendiX 4. The crack length used at all times was the crack length 

perpendicular to the loading axis. Only the microscope readings from these 
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tests were used, because in the first two tests the cracks branched 

parallel to the current, and in the second two tests the readings were 

meaningless because of shorting across the crack. The growth rates were 

calculated by using the seven point fitting routine given in ASTM E647, 

and the 6K I values calculated by using the calibration given in Appendix 6. 

The accuracy of this calibration is uncertain for short branch lengths, but 

the ASTM routine does not calculate growth rates for the first three 

measured po~ts so stress intensities at these short lengths were ~nored. 

Fig. 3.9 shows that the branch crack growth data does not directly 

overlap with the mode I crack growth data. However it does suggest that 

the growth rates are too high for the given values of 6K I , and the given 

load ratios, apart from test RSB3 which had the lowest stress range. Test 

RS86, where R = -3 ·8, is growing faster than test RS814, where R = -1,0. 

Test RS85 with R = -1,0 is growing faster than test RSB13 where R = 0,0. 

Also the branch crack growth 1n test RSB4, with R = -0 '33, is faster than 

the branch crack growth in test RSS3 where R = 0·33. This is not 

surprising as LEFM no longer describes the crack tips at these loads. A 

mode I stress intensity of 50 MPaJm has a plastic zone of about 2,5 mm. 

At the onset of branch crack growth the cracks had half lengths of only 

about 5 mm. 

The branch crack growth data was therefore re-plotted, but this time 

against 6Kc ' 6Kc is an elastic plastic fracture mechanics term which is 

relatively simple to calculate, but still takes into account the amount of 

plasticity, see section 1.2.3, and Appendix 5. This plot is given in Fig. 

3.10. The effect of using 6Kc is to move the higher plasticity test data 

points to the right, because they have higher 6Kc values. RSBS now is 

below and to the right of the other tests, as one would expect. The use of 

6Kc is seen to improve the correlation of the data, however it is still an 

approximation. The branch cracks actually change their mechanism of growth 

from mode I to mode III in the branches, see Fig. 3.11. Also the effect of 

the finite width of the specimen has not been accurately modelled. However 

from an engineering point of view, this is not very relevant, as any 

component with a crack growing at anywhere near lxl0-a m/cycle needs to 

be removed from service fast. 
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3.7. Discussion. 

The results of this series of tests were in some ways rather 

surprising. When Pascoe and Smith tested HY100 steel cruciform specimens, 

under elastic-plastic cyclic shear loading, and with an equibiaxial mean 

stress they did produce continuous mode II growth. These results suggest 

that in rail steel this does not occur, but that instead the cracks will 

always branch into mode I. In section 1.4-.5 it was noted that in torsion 

under the same loading conditions, some steels will grow in shear while 

others will grow in mode I [1]. The difference between Pascoe and Smith's 

work, and the results reported in this chapter is presumably therefore a 

similar difference in the normal behaviour of the materials. 

These results do show that the fully reversed elastic plastic shear 

loading. with an °equibiaxial mean stress, does produce more mode II growth 

than any of the tests done at lower stresses, or the two tests at a high 

load without a positive mean stress. The behaviour is in some ways similar 

to the behaviour of 'squats' where a number of mode I branches can form. 

growing in competition with the shallow angled crack, before one of the 

branches manages to grow fast enough to dominate. See Fig. 1.1, in chapter 

1. However this loading does not produce the continuous shear mode growth 

that apparently occurs in ·squats·. 

The fact that mode I and mode II cracks were sometimes growing at the 

same time and in competition, suggests that the use of the maximum 

tangential stress and the maximum shear stress criteria to decide which 

mode a crack should grow in may be inappropriate. These criteria depend 

purely on the stress intensities, and ignore the effects of mean stresses. 

As well as unlocking the crack, an equibiaxial mean stress opens the 

branch cracks. A uniaxial mean stress, perpendicular to the initial crack 

would only open the initial crack, and a compressive mean stress parallel 

to the starter crack could close the branch cracks. However it is not 

possible to apply this sort of loading to the cruciform specimens, and so 

this could not be investigated further in this project. 
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3.8 Conclusions. 

In conclusion it appears that no combination of fully reversed mode II 

cyclic loading and equibiax1e.l mean stresses, at low or high stress levels, 

will produce continuous mode II growth in Rail steel. Near threshold the 

mode II cracks arrest and then mode I branch cracks form. At higher 

stresses a competition occurs between the mode I and the mode II cracks, 

but the mode I cracks always win. The maximum da/dN criterion, for 
--

deciding the direction of crack growth, see section 1.2.5, is therefore a 

good method for deciding which direction will dominate, if it can be 

applied over a finite crack length, and take into account the interactions 

of the different cracks. 

Tests with a uniaxial mean stress perpendicular to the crack, might 

produce continuous mode II growth, because the branch cracks would not be 

kept open in the way they are by an equibiaxial mean stress. 

A large equibiaxial mean stress appears to open the crack, so that the 

branch crack thresholds and growth rates can be predicted by normal mode I 

growth rate and threshold criteria. However it was also expected to stop 

the mode II cracks arresting, and this did not occur, the reasons for which 

are not fully understood. 
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Fiaures. 

Test RSB1. Threshold test, CTm ... ,., = 50 MPs. 

Fig. 3.1. 
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Test RSB2. Threshold test, a ....... .., = 267 MPa . . 

Fig. 3.2. 
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Test RSB3 . 6cr = 267 MPa, cr,nv_n = 267 MPa. 

Fig. 3.5 . 
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Test RSB4-. 6cr = 4-50 MPa, a rn ... n = 133 MPa. 

Fig. 3.6. 
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Test RSB5. 6a = ~52 MPa, am ... " = 0 MPa. 

Fig. 3.7. 
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Test RSB6. 6a = 452 MPa, am ... n = -133 MPa. 

Fig. 3.B. 
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CHAmR 4. 

5EOUENTIAL MODE I AM) MODE n TESTS. 

4.1 Introduction. 

The mode II tests with a static mode I mean load reported in the 

previous chapter, showed that the coplanar crack growth found in squats 

could not be produced by a simple mode II cycle, even with a mode I load 

superimposed to open the crack. A seriee of tests was therefore carried 

out that more closely resembled the crack tip conditions calculated by 

Bower [1]. Details of his results can be found in section 1.3.2. He 

suggested that fluid, which must be present if rolling contact fatigue 

cracks are to grow, might be trapped inside the crack, and might 

pressurise the crack tip. This would produce a mode I load at the crack 

tip just before the mode II load reached the crack tip, Fig. 4.1. No tests 

ustng load sequences of this type could be found in the ~iterature. 

Two types of cycle were used in this series in an attempt to 

understand the interactions between the mode I and mode II cycles applied 

sequentially. In the first, type A, the mode I load is applied and removed 

before the fully reversed mode II cycle is applied, Fig. 4.2. In the second, 

type B, the mode I load is held constant at its maximum value while the 

mode II load is applied, and then removed, Fig. 4.3. 

In type A it was anticipated that the mode I part of the cycle might 

leave a large enough residual opening for the mode II stress intensity to 

reach the crack tip. However it was thought that friction could still 

attenuate that stress intensity. Type B was expected to produce much 

higher growth rates because the maximum loads would be higher, and 

because the crack should be open for the whole of the mode II cycle. 

However it was also thought that branch crack growth might be dominant in 

type B, because of the tensile mean load on the crack flanks during the 

mode II part of the cycle, see section 1.4.1.3. 

4.2. Rxper1Mltol letbod, 

The tests used the Sheffield Mayes Biaxial servo hydraulic rigs, and 

the new cruciform speciJDen, as in the previous chapter. They are described 
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in Appendices 1 and 2. The command signal was produced using a V1glen I 

PC compatible computer, and a Blue Chip Technology digital to analogue 

output card. The details can also be found in Appendix 1. The tests all 

used a frequency of 2 Hz, which was slow enough to produce well defined 

stress cycles. The shape of the load waveform was checked by using a 2 

channel storage oscilloscope. All the tests were carried out under load 

control. The stress ranges for the mode I and and mode II parts of the 

cycle were kept constant during the tests, so that the stress intensities 

were dependent on the constant tensile and shear stress ranges, 6a and 6~, 

and on the variable crack lengths as defined in Appendix 6. 

A spark eroded 4.5· starter notch was put in the cruciform specimen, 

and it was then pre-cracked using equibiaxial mode I loading. The load was 

reduced during pre-cracking in 10~ steps until a fatigue crack growth rate 

of less than 10-a m/cycle was reached. This was to reduce the residual 

plastic zone size to less than that produced by the first cycle of the 

test. 

The crack length was measured by both a travelling microscope, capable 

of resolving 0 ·02 mm of crack growth, and the automatic potential drop 

system as described in Appendix 3. As in the previous chapter, two pairs 

of potential drop leads were used to cancel out the effects of temperature 

changes. Theoret ically this should also allow a change in the crack length, 

a, of 0 '02 mm to be resolved. Unfortunately the potential drop system had 

problems when co-planar crack growth occurred, because of shorUng across 

the crack in the early stages of growth. The optical microscope readings 

therefore had to be used for all the early growth, and the potential drop 

only used in the later stages where it was observed to agree with the 

opt ical readings. 

'.3 Results. 

Five out of the seven type A tests grew as co-planar cracks. The 

growth direction therefore corresponded to a pure mode II direction for 

the mode II part of the cycle. The other two branched into mode I fatigue 

cracks growing approximately perpendicular to one of the loading axes. 

Table 4..1 shows that the tests that branched were the tests where the 

ratio between the mode I and mode II parts of the cycle was smallest. 
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Three type B tests were performed all of which produced only branch 

crack growth. The details are again given in Table 4.1 

Table 4. 1 
Details of the Sequential Loading Tests 

Test No. Test Type lla M. Ini tial Crack Growth Type 
Len~th 

(MPa) (MPa) (mm) 

RSB12 A 104 156 6·2 Coplanar 
RSB18 A 156 156 6'4 Coplanar 
RSB9 A 52 208 7·0 Branch 
RSB8 A 104 208 5·7 Coplanar 

RSBI0 A 156 208 5·7 Coplanar 
RSBll A 104 312 5·0 Branch 
RSB20 A 156 312 5·0 Coplanar 
RSB15 B 104 208 5·0 Branch 
RSB16 B 156 208 5·8 Branch 
RSB17 B 104 104 4·9 Branch 

When the co-planar cracks in tests RSB18 and RSB20 were about 45 mm 

long. the mode I part of the cycle was reduced in lOS steps until 

branching occurred. In RSB18 the crack was allowed to grow about 0'3 mm 

between unloading increments. This was sufficient to ascertain whether the 

crack was branching or not, and it allowed the crack to grow through the 

mode I plast ic zone of the previous load. In RSB20 the crack began 

branching after the first unloading increment. In neither test was there a 

simple swap from co-planar growth to branch crack growth. Instead branches 

would appear and start to grow in competition with the co-planar cracks. 

Some of the branch cracks arrested as shown in Fig. 4.4 froll test RSB20, 

but new branches formed at the new co-planar crack tip, and eventually the 

branch cracks dominated. The stress intensities at which this transition to 

branching occurred are given by: 

RSB18: llKu = 39·8 MPal'm, llK1= 17-8 MPal'm. 

RSB20: 6K II = 82.0 MPaJ'm, 6K1= 36.9 MPal'm. 

Fig. 4.5 shows these results graphically in the form of a fatigue map. 

The four branch crack points show the initial loading that immediately 

produced branch crack growth in tests RSB9 and RSBll, and the stress 

intensities at which the transition to branching took place in tests RSB18 

and RSB20. The coplanar points show both the initial conditions and the 

loads at various points afterwards in tests RSB8, RSBI0, RSB12, RSB18, and 

RSB20 that produced co-planar growth. The figure shows that for a cycle of 
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type A coplanar growth will occur if the ratio of mode I to mode II stress 

range is about 0·5 or greater. Otherwise branch crack growth will occur. 

Two features of this co-planar growth are worthy of a mention at this 

point. Firstly large quantities of oxide were produced by the rubbing of 

the surfaces during the mode II part of the cycle. This oxide could easily 

be seen with the naked eye as it fell out of the crack. Fig. 4.6 shows 

some of the fracture surface from the co-planar part of test RSB20. It has 

been worn flat by the rubbing. 

The second interesting feature was that at times the crack path was 

much straighter and smoother than occurs in ordinary mode I tests, as 

shown in Fig. 4.7. This figure is from test RSB8 which showed the most 

extensive growth of this type. In general it occurred most frequently in 

the tests where the mode I load was smallest. 

i.i DisCussion. 

The co-planar growth produced in these testa is very significant. 

Until now rolling contact fatigue had seemed confusing because the shallow 

angled cracks were thought to be predominantly loaded in mode II, and yet 

nearly all the laboratory tests performed with mode II loading had only 

produced very small quantities of mode II growth before branching into 

mode I. What is more, when the tests of Pascoe and Smith who had produced 

mode II growth were repeated in this project, only branch crack growth 

occurred, see section 3.7. Bower's results predicted that there might be a 

mode I load before the mode II load in rolling contact, and yet it was not 

known how to interpret this sequential loading. These tests have shown 

that the sequential application of mode I and mode II loads can produce 

co-planar growth, even when the mode II stress range is twice the mode I 

stress range. 

However these tests cover only two types of cycle, and only a few 

different load ranges. It is necessary to try to produce more generalised 

crack growth laws and branching conditions if Bower's results, and the 

results of other non-proportional loading calculations are to be 

interpreted. 
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4.4.1. Coplanar Growth Rates. 

As a first step in the investigation of the co-planar crack growth 

rate, the growth rate was plotted against tlKII as shown in Fig. 4.8. This 

shows that the growth rate does increase with tlK m but that the mode I 

load also causes an increase in growth rate. 

The first attempt to model this behaviour used the approximation that 

the growth rate is simply the addition of the growth due to the mode I 

part of the cycle and the growth due to the mode II part, and that the 

rates are independent. The growth due to the mode I part of the cycle can 

then be predieted by the Paris law derived from the mode I crack growth 

test at R=O'O recorded in Appendix 4. This mode I growth rate was 

subtracted from each data point, and the resulting mode II growth rates 

were plotted against tlKIIt Fig. 4.9. The growth rates then fell much nearer 

to a single straight line than in Fig. 4.8. 

However test RS820 now appeared to be at a higher growth rate than 

the other tests. This was not surprising as tlKII was still being used. This 

is a linear elastic parameter, and yet the cyclic plasticity in test RS820 

was around 0·02"1. The graph was therefore re-plotted using a shear strain 

intensity factor, tlK-y, see Appendix 5. Fig. 4.10 shows that RS820 1s now on 

approximately the same line as the other tests. 

There are still differences in the growth rate of a factor of about 5, 

for some values of tlK-v, but this is mainly due to the scat ter in 

individual tests. For example both RS810 and RS818 start at a growth rate 

above the mean value for that tlK ... , and then drop down to it. Also tests 

RSBI0 and RSB12 have three or four points beneath the mean value, part 

way through each - test. Both of these features could be attributable to 

frictional or crack locking effects. At the start of a test there will be 

less oxide and wear debris between the crack faces, because there has not 

been any crack face rubbing due to the mode II displacements. As a result 

there would be smaller frictional forces reducing the mode II loading at 

the crack tip, and the growth rate would therefore be higher than that of 

an established crack. The reduced growth rates 1n RSBIO and RSB12 can be 

explained by saying that somet 1mes during the co-planar growth the crack 

would kink slightly as shown in Fig. 4.11. This would in turn increase the 

frictional forces, and therefore reduce the growth rate. Fig 4.11 shows the 

kink that occurred at a crack length of 13 mm in test RSBI0, corresponding 
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to the dip in the growth rate curve at ilK.y = 5·8 )( 10-4 1m. The feature 

was more distinctive during the test, before it was worn away by the 

sliding displacements. 

There is also a factor of 2 difference between the growth rates of 

RSB8 and RSB18. These two tests had the same applied shear stress, but 

RSB18 had twice as large an equibiaxial tensile stress. As RSB18 has the 

larger growth rate the difference may again be attributed to frictional 

effects. The larger mode I load would leave a larger residual opening, and 

should therefore reduce the frictional losses and increase the growth rate. 

This last point, and the fact that in the previous tests in this 

project coplanar growth was not produced, shows that the growth rate from 

the mode II part of the cycle cannot be completely independent of the mode 

I part. 

A general mode I mechanism growth law including the interactions of 

the previous mode II load, might be of the form: 

(

ilK A nJ 

(~)x = CxilK:x ilK:) 

And similarly a mode II law might be of the form: 

(:) = Cu l1Kmu (:~£\ nIl 
xx y y) 

These laws suggest that the increase in growth rate or the increase 

in effective stress intenSity at the crack tip is proportional to the 

strain intensity of the previous part of the cycle, to an unknown power. 

This is equivalent to saying that the increase in growth rate is dependent 

on the plastic zone size, or the crack tip opening displacement, of the 

previous cycle, as both are proportional to the strain intensity squared. 

Various values of nx and nJX might be suggested, but without a better 

understanding of the crack growth process, no definitive answer can be 

given. Also with four exponents, and two coefficients a complex curve 

fitting process would be required to determine them from the available 

data. This was not considered to be worthwhile because of the limited time 

available in the project, and because the scatter in the results would 

probably make any improvement negligible. 

Instead it was noted that if mI = mII = 2nx = 2nu, then the crack 
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growth law becomes: 

(da) = (da) + (dA) 
dN Tot dN I dN II 

= CI.~KnI.~KnI + CII.~KnI.~KnI 
£ y Y £ 

= C'.~KnI.~KnI 
£ y 

da/dN was plot ted against (~Kc.~K"y) on log-log axes and a straight 

line was produced with less scatter than any of the other laws used so 

far, Fig. 4.12. This suggests that the above Simplification is not 

unreasonable. The slope of the graph, which is equal to n l , is about 1·74. 

It should be noted that the growth rate rule is quite limited. As AKc 

or ~K"y tend to zero this law would prec1ct that the growth rate went to 

zero. However the actual cycle would tend to a pure mode I or pure mode II 

cycle, so a transition needs to be made either to the Paris law, or to the 

proportional mode II loading behaviour involving predominantly branch crack 

growth. At this point it is not possible to identify where that transition 

would take place. 

It was observed that at some points during the co-planar growth the 

crack grew in a very straight path, quite unlike normal mode I growth, 

while at other times the crack path was rough like a normal mode I crack. 

This suggests that two different mechanisms may produce the co-planar 

growth. However the growth rate curves do not show an obvious change in 

angle associated with this Change in crack appearance, and so the 

significance of this observation cannot be evaluated. 

4.4.2 Branch Crack Growth Rates. 
The branch cracks in the type A tests undergo a stress intensity cycle 

consisting of a large fully reversed mode I cycle from the mode II loading, 

followed by a smaller mode I cycle at R=O from the mode I loading. As the 

growth rate from the smaller cycles would be lower than that of the 

larger cycles by a factor of about 10 under constant amplitude loading, 

and as it would be further reduced by the residual plastic zones and the 

residual stresses of the larger cycle, the growth rates were plotted 

against the larger ~Kc only. ~Kc was used instead of ~KI because again 
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LEFM was beginning to break down in the higher load tests. The results are 

shown in Fig. 4.13, where they are also compared with the growth rate from 

tests RSB14 and RSB19, mode I tests under fully reversed equibiaxial 

tension and fully reversed shear loading, as described in Appendix 4. 

The graph shows that the branch crack growth rates from tests RSB9 

and RSB11 lie on the same line as the mode I data within the experimental 

scatter. The RSB18 data are below the line. RSB18 was initially a co-planar 
.-

crack test, but the mode I part of the cycle was reduced at the end to 

find the branching condition. The data are therefore taken from a longer 

initial crack than the other branch crack tests, and are for relatively 

short branch crack lengths. The data may be lower because of inaccuracies 

in the K calibration for short branch cracks, see Appendix 6 and the 

discussion in section 3;4. Alternatively the real mode II load may be 

reduced by friction on the crack flanks, which is likely to be more 

significant in this test than in the others. because of the length of the 

crack and the relatively low stresses. 

Test RSB20 also appears to be below the line through the mode I data, 

probably for similar reasons to RSB18. but the growth rates are so much 

higher than the rest of the data that a direct comparison cannot be made. 

The branch cracks of type B tests undergo a stress intensity cycle of 

the form shown in Fig. 4.14a. To compare the data with conventional mode I 

test data, this cycle was considered to be equivalent to a simple sine 

wave cycle with the same amplitude, as shown in Fig. 4.14b. The growth 

rates are plotted against l1K x in Fig. 4.15. and against l1Kc in Fig.4.16. In 

this case the conversion to l1Kc makes no not iceable difference to the 

shape of the graph because the plasticity is so low, but the figure was 

drawn for comparison with the rest of the work. The figures both show 

that the branch crack growth data fall on top of the mode I data. The Kx 

calibration is again given in Appendix 6. 

4.4.3 A Branchin& Criterion. 

In section 1.2.5 it was suggested that the crack growth direction 

under non-proportional loading might best be calculated by the 'maximum 

crack growth rate criterion'. In other words a crack would propagate by 

whichever mechanism. and in whichever direction it would grow most quickly. 
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In these tests then the boundary between the loads that cause branching 

to occur and the loads that cause co-planar crack growth should be given 

by a loading condition that would cause them to grow at equal rates. For 

the type A tests two different growth rate laws have been suggested for 

the co-planar growth, and one for the branch crack growth: 

The sequential growth rule: 

The 

(~) = 1.83x10
4 

Co-planar 

interactive growth 

(da) = 
dN Co-planar 

rule: 

4'85x105 (flK flK )1'74 mlcycle 
y I:: 

Branch Crack Rule: 

(:) 
Branch 

flKc for the branch cracks 1s related to flK." in the co-planar growth 

equation by the KI calibration. This predicts that for an infinitesimal 

crack: 

flKc = 1'15 flIt.. 12(1 + v) 

For a branch length of 0·1 times the co-planar crack half length: 

llK., = 1 ·08 flK." I 2 (1 + v) 

The calibration 1s only approximate for finite branch lengths however. 

As the relation between flKc and flK... varies with crack length, a 

boundary condition is not easy to define. It might be that initially a 

branch crack would grow faster, but when the crack has grown a fraction of 

a millimetre the co-planar crack would grow faster. In RSB20 this sort of 

behaviour was observed with co-planar and branch cracks growing 

concurrently. The branch cracks and coplanar cracks will also interact, by 

reducing the stress intensity at the other cracks' tips. 

Figs. 4.17 and 4.18 show the type A loadings that have produced co­

planar growth and the loads that have produced branches, and show the 

boundary condition where the growth rates should be equal for 

infinitesimal cracks and for finite cracks. Fig. 4.17 uses the sequential 

co-planar crack growth law. and Fig. 4.18 uses the interactive crack growth 

law. The sequential law predicts that no flKc 1s required until 11K... is 

greater than 5'2 x 10-4 1m, and then predicts that the required value 
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increases with llK-y more quickly than was observed. 

The interactive growth law however appears to work well in calculating 

the branching condition at llK-y levels below 6)(10-4 .fm, but then gives too 

high a value of llKc • This is not surprising as the branch crack growth 

rate rule that was based on data from mode I tests, does not fit the 

branch crack growth rates for tests RSB18 and RSB20, the tests with the 

highest llK.. values. The infinitesimal branch length criterion also fits the 

data better than the finite length criterion, for the lower AK-y values. 

,.,.,. Growth Rates and Directions Under Different Cycles. 

The aim of a series of tests such as these is not just to collect 

knowledge about one particular set of loading conditions. Rather it 1s to 

expand the understanding of fatigue so that eventually predictions of 

growth rates and directions from a wider variety of cycles can be made 

without resorting to such expensive tests. That point has not been reached 

yet, but a general approach to growth rate and direction calculations for 

other cycles may be suggested. 

Firstly any complicated sequence of loads should be examined to find 

peaks and troughs in the applied stresses, and 1n the maximum tangential 

and shear stress criteria. The peaks should correspond to possible growth 

directions. The sequence should then be split up into a number of discrete 

simplified cycles, like the two parts of the type A cycles, or into larger 

cycles like the approximation made to the branch loads in the type B 

cycles, Fig. 4.14. For each of the possible growth directions the growth 

rate may then be estimated by using one of the growth rate rules. 

The sequential rule 1s probably by far the easiest to use, as the 

interactions between different loads in different series of cycles are not 

understood. Further testing on different types of load sequences should 

enable refinements to be made to the laws, and therefore improve the 

accuracy of any prediction. The rain now technique for mode I growth uses 

an algorithm enabling a computer to produce these cycles [2,3]. This 

project however, points out that in rolling contact fatigue at least, a 

purely mode I based algorithm will not work. 

For example the approach may be used for the type B tests to try to 

predict whether co-planar growth should occur. Two different possible 
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growth directions exist. Firstly if the crack remains co-planar, it will 

experience a mode I cycle with R = 0.0, then a mode II cycle with an 

equibiaxial mean stress, as shown in Fig. 4.19. Alternatively the crack 

might branch at about 45· to the original crack. This time the loading 

could be simplified to one large mode I cycle at R = 0.0, as shown in Fig. 

4-.14b. The sequential growth law was used for the co-planar growth. This 

assumes that the mode II growth is independent of the mode I growth. This 

is not true in general because friction reduces the effective mode II load, 

however in the type B tests the mode II load was always accompanied by a 

mode I load to open the crack, so the frictional effects should be low. The 

interactive law was not used because the mean stress must Change any 

interactions upon which the law is based. The results are shown in Table 

4.2. The table shows that the criteria predict that branch crack growth 

should occur at RSB16 and RSB17 as it did, and that RSB15 is on the 

border, with the infinitesimal crack length criterion predicting branch 

growth, and the finite length criterion predicting co-planar growth. 

Table 4.2 
Predicted Coplanar and Branch Crack Growth Rates for Type B Cycles. 

Test No. lla ll't Coplanar Branch Growth Rate. 
Growth Rate Small Branch Finite BrancJ: 

MPa MPa mlcycle m/cycle m/cycle 
RSB15 104- 208 6-(6)(10-' 7-52)(10-' 6'46)(10 so 

RSB16 156 208 45-3)(10-' 82'4)(10-' 100'9)(10-' 
RSB17 104- 104 1'23)(10-' 2'27)(10-' 1'85)(10-' 

4.5 Conclusions. 

This chapter has shown that a simplified form of the stress cycles 

calcullited by Bower [ll for rolling contact fatigue can produce crack 

growth in all three possible directions in rolling contact. In particular it 

has shown that co-planar cracks can be produced from a crack loaded 

predominantly in shear, corresponding to the shallow angled crack in 

'squats' and other rolling contact fatigue defects. It has shown that the 

small mode I load produced by fluid trapped inside the crack is necessary 

for this growth to take place, as is observed in rolling contact fat igue 

experiments. Two branch crack laws have been formulated that agree with 

the co-planar crack growth data that was collected. The sequential law 

-111-



suggested that the growth rate may be derived from adding together the 

growth rates from the individual parts of the cycle, whereas the 

interactive law suggested that it is necessary to modify those growth 

rates to account for the effects of the previous part of the cycle. It was 

not possible to investigate the actual mechanism further within these 

tests, or to establish tha values of the exponents and coefficients of the 

interactive law. However a simplified version of the law provided a good 

fit to the data. 

These two formulae were then used in conjunction with the maximum 

crack growth rate criterion t~ predict the branching condition in the 

tests, and the interactive law was again a better fit to the data. However 

it was also noted that the sequential law would be more appropriate to 

use in finding a first approximation to the growth rates and direct ions in 

different types of tests, where the interactions between the cycles will be 

different. 
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Fig. 4.4 Arresting Branches in RSB20. 
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Fig. 4.6 Smoothed fracture surface 1n RSB20. 
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Fig. 4.7 Straight crack path in RSBB. 
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Fig. 4.11 Kink in co-planar growth 
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CHAPTER 5. 

DISCUSSION AND FU1VRE WORK. 

5.1 Introduction. 

At the end of each chapter so far there has been a discussion. The 

purpose of this chapter is not to repeat that, but to try to take a step 

back and look again at the industrial problem that provided the impetus 

for this work. The 'squat' fatigue cracks are st111 growing in the rails. 

Has the theoretical and experimental work anything to say to British Rail, 

that will help to solve the problem? There are two related questions that 

need to be addressed. 

Firstly how quickly are the cracks growing? If this was known it 

would be possible for British Rail to save money on inspection and 

replacement programmes without risking lives. They could also apportion 

the cost of damage to the elements of traffic that cause it. At the moment 

it is not known whether a high speed train does more or less damage than 

a heavy freight train. They could also assess the financial consequences of 

changing steel, of grinding the cracks away from the top of the track, or 

of other policies that might or might not save money. 

The second question is, can the fatigue crack growth be stopped? The 

advantages of doing so are obvious, but no real solution of any form has 

been suggested so far. 

5.2 Crack Growth Rates Under Rol~ Contact Fattgue. 

To find the crack growth rate in any form of fatigue it is necessary 

to have both a knowledge of the crack tip condit ions, and a knowledge of 

what effect those conditions will have on the rate of growth. The best 

work done so far in the calculation of those conditions 1s that done by 

Bower [1]. His work, discussed in section 1.3.2, appeared confusing initially 

because it predicted that the shallow angled crack 1n 'squats' was 

predominantly loaded in shear. At the time the vast majority of fatigue 

tests under in-plane shear had produced only branch crack growth, no crack 

growth data was available for shear mode growth, and many people thought 
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that it was not possible to produce any. 

This project has produced shear crack growth data. Combining it with 

Bower's calculations shows that all three possible directions of crack 

growth in rolling contact can be predicted, that is co-planar growth, 

branching up to remove a flake from the rail, or branching down to 

fract ure the rail. 

However Bower's model was much simpler than a real 'squat'. His model 

was elastic. whereas there is definitely plasticity under the wheel of a 

train. His model ignored mean stresses, and yet it is known that there is a 

compressive mean stress near the surface of a rail, and a tensile mean 

stress in the longitudinal direction at a few mill1metres depth. His model 

also only covers a very limited range of crack angles and lengths. The 

biggest problem however is that 'squats' are three dimensional, and Bower'S 

calculations only consider a two dimensional crack. It should be said as 

well that the reason these approximations were made was that the problem 

that he solved was still highly complex, and the programme used large 

amounts of computer time. Bower's approach therefore needs to be repeated 

to model 'squats' more closely, and to collect enough results to model the 

various different crack lengths, applied loads, and mean stresses. 

Alongside this work, considerably more fatigue crack data needs to be 

collected. This project only produced co-planar crack growth for one 

simplification of Bower's calculations. The mean stress, the over lapping of 

the mode I and mode II cycles, and applying uniaxial rather than 

equibiaxial mode I loads are all likely to affect the growth rate and, as a 

consequence, the branching criterion. 

5.3 Can the Cracks be StQRP8d? 
The work done so far suggests that it would be very difficult to stop 

the shallow angled fatigue cracks growing. They do not start from any 

metallurgical defect or stress concentration. Changing the steel to a 

stronger steel will not necessarily help because it will yield at a higher 

load, and therefore reduce the contact patch, and increase the stresses. 

The crack appears to be driven primarily by the combination of the weight 

and tractive forces of the train, and the action of water in the crack. The 

water cannot be removed, and the forces cannot be reduced if the train 
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speeds and carrying capacities are to be maintained. 

However, it is not the shallow angled crack that breaks the rail. The 

major problem is really due to the branch cracks growing down into the 

rail. The first two results chapters appeared to contain basically negative 

results, saying thelt mode II growth could not be produced, elnd the mode I 

branch crack load was much higher theln WelS predicted by the maximum 

tangential stress criterion. However if this branch crack growth can be 

stopped in the rails, the rail lives should increase dramatically. The 

results show that two factors are involved in deciding the branch crack 

threshold and growth rate. Firstly if the main crack is not opened by a 

mode I load, frictional forces will reduce the mode II loading at the crack 

Up which cause branching. In a rail this opening is apparently provided by 

water entering and being trapped in the crack. This cannot therefore be 

stopped. The second factor is the mean stress perpendicular to the branch 

crack. The branch crack growth is essentially a mode I crack. A compressive 

mean stress increases the threshold, and decreases the growth rate. The 

equibiaxial mean load applied in the tests of chapter 3, brought the 

threshold down to that of a mode I crack at that load ratio, and increased 

the growth rate to that of a normal mode I test. 

Currently branch cracks from 'squats' are under a tensile mean load on 

all but the hottest days of the year, because of the tension required in 

rails to prevent them from buckling. If that mean load was changed to a 

compressive load, the branch crack growth should stop. This is supported 

by the work of Hahn et 81, [2], who looked at the rolling contact fatigue 

of rollers that were shrink fitted onto cylinders before testing. This puts 

a tensile mean stress in the roller. In these tests the cracks branched 

down into the roller as occurs in 'squats'. In ordinary fatigue tests the 

cracks branch up to remove small flakes of metal. 

,.4- A Solution. 

It would be no good stopping 'squats' branching down into the track, if 

the rails buckled on hot days instead. However British Rail have considered 

alternative ways of preventing the rails buckling. In traditional 

engineering structures are prevented from buckling by using triangulation 

to make the structure rigid, and by pinning the struts at suitable 
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intervals to keep their effective length down. In rails this could be 

achieved by adding diagonal members to the sleepers to provide 

triangulation, and by pinning the rigid rail structure to the ground at 

suitable distances, with an appropriate quantity of concrete, as shown in 

Fig. 5.1. Alternatively concrete slabs might be used as an alternative to 

the ba1ast and sleeper arrangement. Increasing the second moments of area 

of the rails would also make them more resistant to buckling enabling the 

tensile stress to be reduced if not removed. 

There are major problems with these approaches. All of them would 

initia1ly cost more than the current methods, and the triangulation or 

concrete slab foundation approaches would create enormous problems if the 

track needed re-aligning due to earth movements. However no other 

acceptable alternative to track inspection and rail replacement has yet 

been found. 
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CHAPTER 6 

6.1 eoncemtns Mixed Mode FotJ&ue. 

6.1.1 Propodiooal. Lpod:lns. 

From the proportional mixed mode loading tests, using asymmetric four 

point bending and one biaxial test, it was concluded that only limited 

quantities of mode II growth could be produced, of the order of O· 1 mm, 

before branch crack growth occurred at a much higher load. This load was 

much higher than the maximum tangential stress prediction, based on the 

mode I threshold. The major-reason for this behaviour appeared to be that 

the crack locked, due to friction on the crack flanks, reducing the 

effective mode II stress intensity at the crack tip, and hence the mode I 

stress intensity for a branch crack. This behaviour was in agreement with 

the other proportional loading mixed mode tests, showing that rail eteel 

was similar in its general mixed mode behaviour to the other steels that 

have been tested. The tests also showed that fully reversed mode II 

loading produced similar quantities of mode II growth to the other testa, 

even though it had been postulated that it might produce more. 

6.1.2 Fully Reyersed Mode II Loodina with Eq.u1bl.axial Mean Stresses. 
The biaxial tests with an equibiaxia1 mean stress to unlock the crack, 

showed that in rail steel, no combination of fully reversed mode II loading 

and equibiaxial mean stress, at high or low stresses could produce 

continuous mode II growth. The equibiaxial mean stress brought the mode I 

thresholds down to the maximum tangential stress criterion prediction, 

presumably because it unlocked the crack. However it did not prevent the 

mode II crack arresting. The tests at high stresses, with fully reversed 

mode II loading and an equibiaxial mean stress showed that a competition 

occurred between mode I and mode II cracks which the mode I branch cracks 

won. This supports the proposal that the maximum growth rate criterion is 

the most appropriate one to use in deciding. which mode of crack growth 

will occur. 
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6.1.3 Sequential .ode I and Mode II Load1n&. 

The sequential loading tests showed that continuous co-planar growth 

could be produced in a crack loaded in cyclic mode II, if a mode I load was 

applied and removed before each mode II cycle. If the ratio between the 

mode I load and the mode II load was too small, branching occurred instead. 

The crack rate was shown to be dependent on both the mode I and mode 

II parts of the cycle, and two crack growth laws were suggested. It WaS 

also shown that a branching criterion can be produced based on these laws, 

and the maximum growth rate criterion. However these results have only 

scratched the surface of an area of fat~ue that has not been investigated 

before. They have probably produced more new questions than answers, to an 

area of great importance to the real problem of rolling contact fatigue. 

6.2 ConcerninS RollinS Contact Fattaue. 

In the introduction R.A.Smith's comment was mentioned, that it was 

difficult to apply our greatly increased understanding of metal fatigue, to 

rolling contact fatigue, because of "the apparent lack of alternating 

tensile stresses to drive the cracks." He also said "alternating shear 

stresses are easily found, but the reproduction of continuous crack growth 

controlled by shear <Mode II in fracture mechanics terms), has proved to be 

near impossible" [1]. This project has overcome that difficulty. 

It has done so by applying a mode I load before each mode II load, as 

predicted by Bower's calculations [2l. In doing so it has shown that Bower's 

calculations can permit three possible directions of fatigue crack growth 

under rolling contact fatigue, the two branching directions, and co-planar 

growth. Some crack growth data have been collected that might be used in 

conjunction with Bower's results for rough predictions of growth rates. 

More importantly though this work has shown that more detailed 

calculations and further fatigue tests could give much better predictions. 

6.3 Coocernins 'Squats' in Rails. 

As 'squats' are rolling contact fatigue cracks, this work suggests that 

growth predictions could be made if further calculations and fatigue tests 

are performed. The required calculations and fatigue tests would be 

extensive however, because of the complexity of the problem. 
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The work has also shown that the tension in the rail required to stop 

buckling is probably the major reason for branch cracks growing into the 

rail. from the original shallow angled crack. If this tension could be 

removed. and possibly even be replaced by a compressive mean stress. the 

branch cracks should stop growing. and the rail lives should increase 

dramatically. This would obviously require a major change in track design. 

and alternative methods of preventing the track from buckling. 
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APPENDIX I. 

THE BIAXIAL FATIGUE RIGS AND mE SIGNAL GENERATOR. 

Al.l The Biaxial Fattaue R:I&s. 

Al.1.1 The Requirement for Biexiol Fot1pe Rjp. 

Traditional fatigue testing has used machines and specimens capable of 

producing only very limited types of loading, predominantly uniaxial tension 

and compression, or bending. Real engineering components are subjected to 

much more complicated stresses. The cracks in rails discussed in this thesis 

are subject to both tensile and shear stresses. Aircraft components will have 

stresses in one direction caused by changes in pressure, and in other 

directions from turning, taking off and landing. A turbine shaft is subject 

to a bending stress cycle for each revolution, and torsional stresses during 

changes in loading. In general then it is necessary to consider the effects 

of these more complicated stresses if crack growth rates and thresholds are 

to be predicted for real engineering situations. To do this it is necsssary 

to perform experiments under laboratory conditions to measure the effecta. 

The biaxial fatigue rigs were built to enable some such tests to be carriad 

out. 

Section 1.4.1.3 gives details of the reasons for the use of biaxial rigs 

in these projects. Without them it would not have been possible to apply the 

stresses to the cracks predicted by Bower [11. Biaxial rigs have also been 

used 1n a wide variety of other tests. For example they have been used to 

show the effect on fatigue crack growth rates of a stress parallel to a 

crack loaded in mode I, both at room and high temperature [21. They have 

been used to look at composite materials whose properties can vary 

enormously depending on the loading direction [3]. They can be used to look 

at fretting fatigue where one pair of actuators move a specimen, while the 

other pair apply the required load to the fretting pads [4]. 

-139-



Al.l.2 'nle Specification of the Sheffield Mayes Biaxial RSp. 

The machines have four actuators, one pair apply a vertical load, one 

pair apply a horizontal load, Fig. ALL Each actuator has a capacity of +/-
200kN, and a stroke of 50mm. The maximum daylight between the actuators is 

550mm. 

There are three pairs of pumps supplying oil at a pressure of up to 200 

bar. One pair can supply 10 lUres/minute to each axis, or 5 litres/minute to 

each actuator. The other two pairs can each supply 45 l1tres/minute to each 

axis, or 22·5 litres/minute to each actuator. The maximum frequency is 

dependent on both the 011 flow rate, the displacement, and the load range. 

For example with one pair of 45 l1tres/minute pumps, a dynamic load of 50 

leN, and a displacement amplitude of 0'2 1lIl. a frequency of 18 Hz is possible. 

whereas a dynamiC load of 200 leN, and a displacement amplitude of 2 mm 

reduces the frequency to 2 Hz. It is possible to link both pairs of pumps to 

one machine which would roughly double the available maximum frequency. The 

smaller pump is useful in low frequency or slow fracture tests because it 

requires much less power to run it. 

The m8chines can run under displacement control, with 5 mm, 10 mm, 25 

mm, and 50 mm ranges. load control with 20 leN. 50 leN, 1001eN, or 200 leN 

ranges. or strain control, where the available strain range will depend on 

the transducer ~sed. In the experiments prior to this project cyClic loads 

were applied by using a Prosser Scientific Instruments function generator, 

model 03104. This could produce two outputs in the form of sine waves, 

square waves or triangular waves. at frequencies between 0.1 )(10-:11 Hz to 

1000 Hz. The phase angle between these two outputs could then be specified 

between t/- 180'. 

11.2 A S:!pal Generator for Non-ptQporUonal or yorloble Aapl1tude Load:lna. 

The experiments discussed in Chapter 4 required applied load cycles that 

could not be produced by the Prosser Scientific Instruments function 

generator. A new signal generator was therefore made from a Viglen I PC 

compatible computer. and a Blue Chip Technology AOP2 Analogue Output board. 

The analogue output board was fitted into the standard interface inside the 
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computer, and programmed using Microsoft's Quick Basic, a compiled basic. The 

output signal is simply produced by writing the required vOltages to the 

memory addresses associated with the output board. 

The type of cycle, load range, frequency, and the number of cycles 

required were input at the beginning of the programme, and then the cycle 

could be interrupted by pressing certain keys. The output voltage could be 

specified as a 12 bit number, or a resolution of 2'5 mV in a 10 V range. The 

maximum output frequency of the computer was around 250 signal increments 

to each channel per second. 

Any output signal between 0 and 10 volts could be specified in this 

manner, and so the same system could be used for any another non­

proportional load cycle or variable amplitude loading test, with minor 

modifications to the programme. 

A frequency of 2 Hz was used for all the non-proportional sequential 

tests discussed in chapter 4, as this was the frequency at which the biaxial 

rigs just began to distort the load cycles in the tests using the highest 

loads. 
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Fig. A1.1 The Biaxial Fatigue Rigs. 
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APPENDIX 2. 

SPECIMEN DESIGN. 

A2.1 Spedaen Des •• 

The Biaxial Specimen for the experimental work planned had certain 

requirements that meant a new design was necessary: 

1. It should produce a uniform biaxial stress in its central section. and 

that section should be as large as possible. 

2. It should be possible to load the central section up to yield. without 

the specimen or grips failing anywhere else by fatigue. Yield was defined 

as a cyclic plastic deformation of 0.2 ~. 

3. It should be possible to apply fully reversed loads to the specimen 

without any backlash effects. or buckling. 

4. The specimen must be made out of a rail. so the maximum dimension must 

be less than or equal to 158mm. the height of a rail; and the thickness 

must be 16mm or less. 

5. The specimen and gripe should cost as little as possible to manufacture 

with the above conditions fulfilled. 

No specimen found in the literature [1-20] fulfilled all these 

conditions, and so a new design was required. 

Monch and Galstedll in 1963 showed that it was necessary to h~ve 

slots in the arms of the specimen if a uniform stress was going to be 

applied, as shown in Fig. A2.1. If not each loading arm would restrain the 

stress in the perpendicular direction, giving a much smaller stress at the 

edge of the working section than at the centre. 

The most common method of loading the arms of the specimen is 

through a load splitting tree arrangement as shown in Fig. A2.2. This 

method is of no use for fully reversed loading however, as the tree cannot 

apply compressive loads. Two other alternatives for loading are obviously 

available. Firstly to load using friction. ie the specimen is clamped 

between the loading arms by as many bolts as can be fitted in. 

Alternatively, the tensile load is applied by loading through pins, the 

compressive load applied by pushing against the edge of the specimen, and 

the backlash removed by some sort of screw or wedge tightening mechanism, 

as shown in FigS. A2.3. The second method was chosen in this case, as it 
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was not possible to apply enough load through frict ion to achieve the 

yield stress. 

Because of the problem of these requirements, the limited size of the 

specimen, and manufacturing costs, it was decided to make the slots in the 

arms a part of the grips, not part of the specimen. That way they need 

only be manufactured once, reducing costs, and do not take up such a high 

proportion of the specimen size. The final design is shown in Figs. 1.2.3. 

M,2 Photo-E'-tic Test •• 

The spec1llen was tested photo-elastically under uniaxial tension, to 

check that the stress in the central section was uniform, and to check 

that the stress at the end of the notches in the specimen edges was low 

enough to prevent fatigue cracks starting from there. 

In the two corners in Fig. A2.4, marked A and B, the holes were drilled 

1 mm further back than the other holes. This was to reduce the stress at 

those points, where fatigue cracks were most likely to grow. The holes at 

corners C and D were drilled at the same distance from the working section 

as the other holes, so that the effect on the central section of moving 

the holes back could be investigated. 

Fig. A2.4 shows that the central section was all of the same fringe 

order, and therefore at the same stress. The fringe order was measured 

using a microscope at pOints along the centre line, and found to be the 

same at all points 10 mm in from the edge, to within +/- 3 %. It was 

shown that drilling the holes at A and 8 further back had little effect on 

the stress in the central section, and so these positions were chosen for 

the final specimen design. 

The stresses at the ends of the slots at A and 8 were calculated, and 

compared to the stress in the central section: 

1.=0.94 x stress in central section 

8=1.61 x stress in central section. 

When a spark machined notch is cut in the central section, the stress 

at its tip will be much greater than the stress at any of these points, 

and so the specimen should not fail from any of the edge notches 
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A2.3 Actual Speciaen Performance. 

The actusl performance of the specimen was in general satisfactory. 

The uniform nature of the biaxial stress field was indicated by the fact 

that the final crack lengths from either side of the notch were within 5 

mm of each other in all the tests except RSB14. RS814 was a mode I 

threshold test, and the initial growth rate on one side was about 25' 

higher than the other. This difference in growth rate then increased as 

the longer crack approached the edge of the specimen, producing final 

crack lengths of about 40 mm and 20 mm when the test stopped. As a 25"' 

difference in crack growth rate just above threshold could be caused by 

the natural scatter in the material properties, or by a difference in 

stress level of less than 5' this was not considered to be a great cause 

for concern. 

No backlash effects could be observed by examining the load cell 

output on an oscilloscope, and only test RS86 began to buckle. RSB6 had a 

compressive mean stress of 133 MPa, and a cyclic plasticity range of 0·6 I. 

As the specimen was only designed for fully reversed shear loading, not 

for cyclic plasticty with a compressive mean stress, this result was really 

just an illustration of the limitations of the speCimen, not a fault in the 

basic design. 

The grips themselves did not break, and in test RSB4 applied a load 

range of 206 kN. The only major criticism of them was that a load was 

needed in order to remove the wedges. This is no problem if the specimen 

can withstand the required load, but in test RS83 the specimen broke 

during testing and some clamps had to be built so that a load could be 

applied. If the design was modified so that the wedges were angled on both 

faces rather than just one, then disassembly would be much easier. 

The greatest problem with the specimens however was that in some 

tests fatigue cracks did form at the edges of the specimen causing the 

test to be finished prematurely. This in general occurred when the angled 

crack subject to shear loading was not opened by a mode I stress. This 

would have resulted in friction attenuating the mode II stress intenSity 

at the crack tip, while the mode I stress intensity at the edge notches 

was not reduced. The problem could be resolved in future tests by using a 

larger initial notch size, say 8 mm instead of 4 mm. For normal mode I 
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tests, or non-proportional tests where the crack does not lock up, the 

specimen should perform adequately. 
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Fig. A2.1 A Biaxial Specimen with Slots in the Loading Arms . 

P/4 P/4 P/4 P/4 

Fig. A2.2 A Load Splitting Tree. 
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Fig. A2.4. The Photo-elastic Specimen. 
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APPENDIX 3. 

POTENTIAL DIFFERENCE EQUIPMENT AND CALmRATION. 

63.1 Introduction. 

In chapters 2, 3 and 4 it was stated that the potential drop method of 

crack length measurement was used for the asymmetric four point bending 

specimens and the cruciform specimens. There are two advantages of this 

method as opposed to optical m1croscopy. F1rstly, the method gives a 

measure of the average crack length through the thickness of the whole 

speCimen, rather than just a surface measurement. Secondly, the vOltage can 

be read automatically by a data logger, or chart recorder. 

This appendix gives details of the method, of the theory behind it and 

of the relevant calibrations available in the literature. It also gives a 

new calibration, for cracks growing at an angle to the current in a finite 

plate, as occurred in some of the tests recorded in chapter 4. 

1..3.2 The Potential Difference Method. 

The basis of the potential difference method is the fact that the 

potential difference between two points on a conductor, is a function of 

its geometry, and in particular of the length of a crack lying between 

those two points. If that function 1s found, either by theoretical or 

experimental means, then the crack length can be found from the potential 

difference. 

It should be noted that the potential difference is also a function of 

the resistivity of the material, and therefore a function of temperature, 

and of the applied current. This fact has resulted in the common practice 

of using two or more pairs of leads, instead of one on a speCimen. Any 

change in current or resistivlty will produce the same proportional Change 

in potent lal drop across each pair of leads, and so the effect can be 

cancelled out. Also the potential will depend on the exact position of the 

leads. Spot welding allows them to be positioned to within about 0·5 mm of 

a marked point, but if the initial and final crack lengths are known, then 

at those lengths it is possible to treat the lead positions as unknowns, 

and calculate them. 
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In the experiments recorded in this project three different sets of 

potential drop equipment were used. In the tests at British Rail Technical 

Centre, Derby, a single pair of leads was placed across the crack in the 

bend specimens, as shown in Fig. A3.1. The output was then recorded on an 

x-y plotter, where the y axis recorded the potential difference, and the x 

axis recorded the time. Unfortunately the fact that only one pair of leads 

was used meant that the output was not constant when the crack was not 

growing, and so the method was not suitable for the very small amounts of 

mode II growth measured on the optical microscopes. 

In Sheffield, three pairs of leads were placed across the crack on the 

asymmetric four point bend specimens, Fig. A3.2, and two pairs on the 

cruciform specimens, Fig. A3.3. 

M·3 Theory. 

The electric potential f9 along a line of current flow, in a strip of 

metal of constant composition, with currents flowing only in the plane of 

the strip, obeys the equation [1]: 

-p (J - 1] ) = ~ - i ~ = ~ 
~ Y bx by dz A3.1 

P is the resistivity of the material, J x and J v are the current 

densities in the x and y directions respectively, and {) is a complex 

potential function equal to cp (x,y) + i'l' (x,y). 'V is a constant along a line 

current flow, equivalent to a stream line in fluid flow, or along a free 

surface. Lines of constant • are lines across which current does not flow. 

The complex variable z = x + 1y can be used to denote any position 

within (x,y) plane, or the z plane, and the real and imaginary parts of any 

analytical function of z will also be described by equation 1, [11. The 

calibration of the potential difference is performed using the method of 

conformal mapping. Another complex variable, t, is introduced which is a 

function of z. There is then a t plane in which each point will have a 

corresponding point in the z plane. The t plane is said to be a 

transformation of the z plane. A series of such transformations is found 

so that in the final plane the current 1s uniform everywhere. The potential 

of any point in the final plane can then be easily calculated. The 
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potential of any point in the initial plane can the be found because it 

will be equal to the potential at the equivalent point in the final plane. 

Al,i Previous Calibrations· 

Gilbey and Pearson [2] used this method to calibrate a crack in a 

plate of finite width, as shown in Fig. A3.4. Their calibration can be 

expressed as: 

cosh-1 {cosh(nY1 12W) } 
cos(na/2W) 

h- 1{coSh(ny2 /2W)} 
cos cos (na/2W) 

A3.2 

Clark and Knott [3] calibrated a crack growing from an elliptical notch 

in an infinite plate, Fig. A3.5. Their calibration can be expressed as: 

V, = 
).. (y, ) 

A3.3 
V2 )..(Y2) 

where )..<y) = (q2 + w2)1/2 I q 

w(y) = lHt + lit) 

t (z) = (d+b)-l (z+(z2+d2-b2) 1/2) 

q = w(d+s) 

Brown [4] then combined the two calibrations for a crack growing from 

a notch in a finite plate, where the notch is small compared to the width 

of the plate, Fig. A3.S. 

V, = cosh- 1 

V2 cosh-1 

where: 

(n(d+b)/4W)(t,-1/t,» sec (n(dtb)/4W)(Ttl/T) 
(n(d+b)/4W)(t2 -1/t2» sec (n(d+b)/4W)(T+I/T) 

A3.4 

t = (y t (y2 - b2 t d2 )1/2 I <a+b) 

T = (s t (S2 - b2 t d2 )1/2 I (a+b) 

In the cruciform specimens used in this project, the notch is at an 

angle of 45- to the current, in a finite plate, as shown in Fig. A3.7. It 

was thought that Brown's calibration could be adapted to calculate the 

lengths of cracks growing at an angle to the current, by assuming that the 

-155-



potential drop was purely dependent on the dimension of the crack 

perpendicular to the current. This method would therefore also allow 

branched crack lengths to be estimated, but the accuracy was unknown. 

A3.4 The New Calibration. 

As an alternative to the modification to Brown's solution given above, 

a new theoretical calibration was produced. The calibration modelled the 

starter notch as an ellipse, major axis d, minor axis b. This was assumed 

to make no difference to the calibration once the crack had grown a small 

distance away from the notch. As all the specimens were pre-cracked, the 

calibration for very short cracks was not of interest. The crack and the 

axes were inclined at an angle of 8 to the specimen edges, and therefore 

to the lines of current flow remote from the crack. The specimen width was 

2W. 

Using the first of Clark and Knott's transformations, the 

be changed to a unit circle in the t plane, Fig. A3.8, by using: 

t = (z + (Z2_ d2+ b2)~) 
(d + b) 

ellipse can 

A3.5 

Using Clark and Knot t 's second transformation, the circle is reduced to a 

line, Fig. A3.9: 

6) = ( t + lIt) 
2 

A3.6 

The last transformation can then be used in reverse, to transform the 

whole of the line back into a circle, 
2 

t = (~) ± {(!It) 
q q 

Fig. A3.10: 

- 1 }~ A3. 7 

where q is the transformed distance between the origin and the crack tips. 

The axes can then be rotated, Fig. A3.11 using the transformation: 

C' = c.ei8 
A3.8 

The circle can then be transformed back into a line, but this time 

perpendicular to the current, using Clark and Knott's transformation, 

Fig.A3.12: 

). = ( {' + lit' ) 
2 
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The line is then transformed to give a line parallel to the current flow, 

without further distortion of the specimen edges, by using Gilbey and 

Pearson IS transformation, Fig.A3.13: 

cos ~ = cos (~I) I cos (~I) A3. 10 

where: q 1s the transformed distance from the origin to the crack tip, 

and 1s equal to 1. 

WI is the transformed half plate width. 

Brown went straight from the second to the fifth transformation, as he 

was not dealing with a crack at an angle. 

A solution for a crack at an angle in an infinite plate can be found by 

using the substitution: 
,1 _, -i9 
'0 - 'o.e A3.11 

instead of equation A.3.5. This rotates the axes in the opposite direction, so 

that the next substitution, A3.6 gives a crack parallel to the current lines. 

However the solution is exactly the same as Clark and Knott's solution if 

only the component of current perpendicular to the crack at infinity is 

considered. This is because the component parallel to the crack will give no 

potential difference between points on a single line perpendicular to the 

crack. 

The actual calibration equation is then found as follows: 

We know that: 
!ID. _ dQ. ~ ~ ~ ~ Wit Q1. 
dz - d~ d~ d~' d~ d~ dt dz 

18 If we consider 8 point remote from the notch and crack, where z ~ me , we 

know that: 

from equation A.3. 1 

... n i8 
~ - -pJe dz -

18 
Also we know that as z ~ ~e 

dt _..L 
dz - d+b 

~ _ 1-
dt - 2 
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gf..= -2 
df.l) q 

~= 
dl: 

e 

QA _ 1. 
dt:'- 2 

i9 

n/2W' d.t _ .9.e __ _ 
d)' - cos (n/2W' ) 

and therefore 

~ - -pJ cos(n/2W') (d+b) 
d~ - nl2W' q 

e 
n = _ rcos(n/2W') (d+b) ~( ) 
~I P n/2W' q . ~ z 

e 
Because the field is uniform in the ~ plane, dQ/d~ will be a constant, and the 

above two equations will hold for the whole plane. As the potential is the 

real part of a, the ratio between the potentials at points (O,+I-y,) and 

(0,+I-Y2)' for a crack length s, can then be expressed as: 

!.L = Re<~{(s,O), (O,y,»} 
V2 Re<~ «5,0), (0, Y2»} 

Because of the number of transformations involved, this does not 

simplify down to a straightforward formula. In this project a computer 

programme was written to first calculate the values of y, and Y2 from the 

known values of crack lengths at the beginning and end of the tests, and 

then to calculate the unknown crack lengths from the voltages. 

A3eS Coaperlson With Experiaental Data. 

Figs. A3.14 and A3.15 show the new calibration and the modified 

version of Brown's calibration against the optical microscope readings for 

tests RSB8, and RSBIO. These two tests were ones in which co-planar growth 

was produced, with a mode I cycle followed by the mode II cycle. In neither 

case was there a satisfactory correlation between the optical and 

potential difference calibrations. The reason for this was almost certainly 

because current was shorting across the crack to some extent. In both 

tests the potential difference reading dropped as the crack began to grow, 

suggesting that the crack was not growing but shrinking according to the 

calibrations. It might have been possible to search through the potential 
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difference data, collecting the highest values when presumably the crack 

would have been open, but instead the optical microscope readings were 

used exclusively in the early stages of growth, and the potential 

difference values only used to span smaller gaps between opt ical 

microscope readings for longer cracks. If the technique 1s to be used in 

the future it would be advisable to have a logging system that only 

measures the potential when a tensile load 1s applied. This would be 

possible if the same computer was used to read the signals and send the 

data, but it was not possible during these tests. 

Fig. A3.16 shows the modified version of Brown's calibration against 

optical microscope readings for branch crack lengths in test RSB16. This 

time the crack was kept open by the predominantly mode I loading, and the 

calibration apparently worked well. The only significant difference between 

the calibration and the optical values occurred during the early stages of 

growth when the calibration over estimated the crack length by about 

O·5mm. 
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Fisures. 

One pair of potential difference leads on a bend specimen. 
Fig. A3.1 

Three pairs of potential difference leads on a bend specimen. 
Fig. A3.2 
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Two pairs of potential difference leads on a cruciform specimen. 
Fig. A3.3 

o 

Gilbey and Pearson's model. 
Fig. A3 .4 
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Clark and Knot t 's model. 
Fig. A3.5 

Brown's model. 
Fig. A3.6 
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APPENDIX 4. 

COMPOSlTIQN AND PROPERTII§ OF RAn. STm. 

The chemical composition, and static and cyclic stress strain 

propsrties quotsd here were all either taken from the Database at the 

British Rail Technical Centre. Derby. or were measured for this project, at 

the technical centre, using steel from the cast used in this project. 

A4.1 oww1cal Coapoait1m. 

Steel From Database. 
Used Mean Maximum Minimum 

~ Carbon 0'54 0'55 0'57 0'44 
~ Chromium 0·02 0·025 0·08 0·01 
~ Manganese 1·06 1·16 1·60 1·04 
~ Molybdenum <0'01 0'01 0'01 0'01 
~ Nickel <0'01 0'023 0'03 0'01 
~ Phosphorus 0'022 0'021 0'048 0'008 
~ Sulphur 0·019 0·028 0·040 0'024 
~ Silicon 0·3 0'19 0·35 0·11 

b4.2 MOnotonic PrQpert1es. 

Steel From Database 
Used Mean Maximum Minimum 

Ultimate Tensile Stress (MPa) 810* 195 921 612 
~ield Stress (MPa) 430 515 310 
~ Elongation 22'2 27 17 
tfoung's Modulus (MPa) 201000 

* This value was estimated from the Vickers Hardness, HV30 = 238 

b4.3 CycliC Properties. 

Mean Maximum Minimum 
~I (MPa) 1659 2166 1241 

,.' 0.214 0.295 O. 143 

Where k' and nl define the relationship between the true stress amplitude 
aa' and the plastic stress range 6£p: 
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Ai.4 Mode I Threshold and Crack Growth Data. 

Mode I threshold and crack growth data were collected for comparison 

with the branch crack growth data produced in the mixed mode tests. The 

effects of R ratio, and the effect of compressive and tensile stresses 

parallel to the crack at R=-1 loading were investigated. If there is a 

compressive load parallel to the crack, as occurs in branch crack growth in 

shear loading, it is expected to grow more quickly because of the 

increased plastic strain. Appendix 5 gives details of the strain intenSity 

calculations that predict this. Appendix 6 gives the stress intenSity 

calculations. The crack growth data from the tests are shown graphically 

in FigS. A4.1 and A4.2. and are given in detail in tables A4.1-8. All the 

specimens for the mode I data collection. and the mixed mode tests. were 

aanufactured from one of two lengths of rail from the same casting. 

The mode I data were collected by using two different types of 

specimen. The first four tests were done on bending specimens. They were 

performed by Mr R. Tomlinson. and the crack growth rates and 6Kz values 

were calculated by Dr.R.r.Allen. both from British Rail Technical Centre. in 

Derby. They used an Instron resonance fatigue testing machine. and three 

point bending, and tested at positive R ratios. The crack growth rates were 

calculated by using a quadratic fit to three crack length data points. The 

points were separated by about 0·5 mm to reduce potential errors from the 

uncertainty in crack length measurement. 

Three tests were then done at Sheffield on the Biaxial Mayes machines, 

using the cruciform specimen described in Appendix 2. In this case crack 

growth rates were calculated by using the 7 point fitting routine given in 

ASTM E647. Crack lengths in both tests were measured using the potential 

drop teChnique, and optical microscopes. 

The scatter in the results was worse than was expected. Two of the 

bending tests had a load ratio of 0.22, but test 1. had a threshold of 8.34 

MPaJm, while test 2. had a threshold of about 10·5 MPa/m. The thresholds 

found during the pre-cracking of the mixed mode tests however also varied 

from 8·0 to 12·1 Mpalm. The threshold was therefore taken as the average, 

9.4 MPa/m. The growth rate data from these tests also show a great deal 

of scatter above lxl0-e m/cycle. Both sets of results were therefore 

plotted when they were compared with branch crack growth data. 
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The data from the two tests at R=O and R=-l under equibiaxial loading 

appear to be much better, but the test at R=-l, under shear loading 

started to grow at about the same taK value as the equibiax1al test, and 

then stopped. It would then only start to grow again when the load had 

been increased. When it did start to grow again, it accelerated back to a 

growth rate above that of the equibiaxial test, as predicted by the strain 

intensity calculation. Fig. A4.2 compares the strain intensity calculations 

for the two tests at R=-1. It shows that for a given strain intensity 

range the growth rate under shear loading is greater by about 20~, during 

the stable growth area. For a given stress intensity factor the growth 

rate under shear loading is greater by about 50~. 
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Bending Test No.1. 
Load Ratio = 0,22, Load Range = 1·80 kN. 

6N a tlKI tlKc da/dN 
<10·) (mm) MPa.l'm .I'm mlcycle 
3·36 18,25 8·34- 4-,03)(10-· 0'26)(10-' 
1- 61 18-71 8·66 4'18)(10-· 0'64)(10-' 
0-81 19·28 8-99 4-34-)(10-· 1'37)(10-' 
0-43 19-82 9·35 4' 52)(10-s 2'26)(10-' 
0-22 20,26 9-69 4-'68)(10-· 3'67)(10-' 
0-21 20·61 10·50 5'07)(10-· 9'03)(10-' 
0-23 22-13 11'4-8 5-55)(10-· !4-'22)(10-' 
0'13 23-88 12'57 6-07)(10-· 17'50)(10-' 
0·06 24'37 14'15 6-84)(10-· 19-52)(10-' 
0·04 25'11 14·92 7,21)(10-· 29-55)(10-' 
0,02 25'67 15·80 7-63)(10-· 41-82)(10-' 
0·03 26-03 16-59 8' 01)(10-· 27-31)(10-' 
0·03 26'38 17-32 8'37)(10-· 31'20)(10-' 
0·02 26-81 18,06 8- 72)(10-· 43'78)(10-' 
0,02 27,19 18-86 9'11)(10-· 42'42)(10-' 
0·01 21,51 19·73 9,53)(10-· 47'59)(10-' 
0,01 27-88 20'69 10-00)(10-S 71, 30)(10-' 
0-01 28-33 21-91 10-601<10-· 92-73)(10-' 
0,01 28,90 23,31 11-291<10-· 95 . 45)( 10-' 

Table_ A4-. 1 

Bending Test No.2 
Load Ratio = 0'22, Load Range = 2-8 kN 

6N a tlKI tlKc da/dN 
<10·) (mm) MPa.l'm .I'm m/c~cle 

0'10 16,14 11- 26 5'43)(10-· 1- 48)(10-' 
0'42 16-81 11- 54- 5-57)(10-· 2'38)(10-' 
0·27 17,14 12,13 6,05)(10-· 4'00)(10-' 
0·23 17·87 12'45 6,01)(10-· 4'82)(10-' 
0-13 18·26 12·91 6,27)(10-· 6'04)(10-' 
0-15 18'64 13'51 6,53)(10-· 7'32)(10-' 
0'13 19'34- 13,91 6'72)(10-· 8'47)(10-' 
0·08 19·72 14·69 7,09)(10-· 12-82)(10-' 
0·10 20-4-3 15,54 7'51)(10-· 16'96)(10-' 
0·09 21- 45 16'45 7'95)(10-· 19· 65)(10-' 
0-06 22·12 17'83 8-61)(10-s 24-68)(10-' 
0-09 22'98 20'15 9'73)(10-· 33'03)(10-' 
0-07 25·01 21·61 10-441<10-· 40'46)(10-' 

Table. A4.2 
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Bending Test No.3 
load Ratio = 0'41, Load Range = 1'60 kN. 

6N a ~KJ: ~Kc 
(10·) (IIIID) MPa.rm I'm 
0'68 19'13 7·95 3' 84)(10-a 

0'47 19·62 8'17 3· 95)(10-a 

0'40 19'99 8'49 4'10)(10-a 

0·30 20'47 8'78 4' 24)(10-a 

0'16 20·92 9,09 4'39xl0-a 

0'17 21' 31 9·52 4'60)(10-a 

0·20 21·96 9·87 4· 77)(10-a 

0'13 22'42 10·31 4' 98)(10-a 

0·11 22·76 11·06 5' 34)(10-a 

0·10 23·87 11·77 5'69xl0-a 

0'04 24'86 12'68 6' 13)(10-a 

0'03 25·28 13'57 6' 56)(lo-a 

0·04 25·63 14· 41 6· 96)(lo-a 

0'04 26'35 15'28 7· 38)(10-a 

0·03 27'07 16'37 7'91)(10-a 

0'02 27'56 18'04 8' 71)(10-a 

0'02 28'45 19'33 9' 34)(10-a 

0'01 29·05 21·68 10'50)(10-a 

0·01 29·87 23·75 11'50xl0-a 

0'01 30'54 27'24 13'20xl0-a 

Table A4.3 

Bending Test No.4 
Load Ratio = 0'44, Load Range = 1·40 kN. 

6N a 
(10·) (DIll) 

3'16 17·28 
0·94 17·74 
0'93 18'13 
0·96 19'64 
0·39 20·24 
0·29 20'89 
0·24 21'60 
O' 15 22'44 
0'07 22'83 
0·11 23·21 
0·11 23'87 
0'08 24'30 
0·07 24'77 
0'04 25'19 
0·03 25'48 
0·03 26·11 

. 0·03 26'68 

~KJ: 
MPal'm 
6'04 
6·22 
6'69 
6·94 
7'56 
7'97 
8'48 
8'90 
9'39 
9'85 
10'24 
10'81 
11'27 
11'72 
12'38 
12'97 
13'83 

~Kc 
I'm 

2·92xl0-· 
3'00xl0-a 

3'23xl0-a 

3'35xl0-a 

3·65xl0-a 

3'85xl0-a 

4·10xl0-· 
4'30xl0-a 

4'54xl0-a 

4' 76)(10-a 

4'95xl0-a 

5·22xl0-a 

5'44xl0-a 

5' 66x1O-a 

5'98xl0-a 

6'27xl0-a 

6' 68)(10-a 

Table A4.4 
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da/dN 
m/cycle 

l' 26x1O-' 
1·84xl0-· 
2' 12)( 10-' 
3'09xl0-' 
5'09)(10-' 
6· 14)(10-' 
5·55xl0-· 
6· 15xl0-' 
12'61)(10-' 
22' 11)( 10-' 
35·25xl0-· 
23·33)(10-' 
23'78)(10-' 
34' 29xl0-' 
40' 33xl0-' 
57·50xl0-· 
93' 12xl0-' 
109· 23xl0-' 
135· 45xl0-' 
202·50xl0-· 

da/dN 
m/cycle 

0'27)(10-' 
0·90xl0-· 
2'04)(10-' 
2'20)(10-' 
3·22)(10-' 
4·69xl0-· 
6'40)(10-' 
8'48)(10-' 
11·67xl0-· 
9'45)(10-' 
9'56)(10-' 
12·00xl0-· 
13·09xl0-· 
18·68xl0-· 
36·08xl0-· 
38· lOx 10-' 
36·33xl0-· 



Biaxial Test RSB13. 
Load Ratio = 0-0 
Equibiaxial loading, Load Range = 58-3 kN. 

N a 
(106 ) (mm) 

1-105 3-07 
1-249 3·37 
1·393 3-66 
1·417 4,16 
1·561 4·75 
1-651 5-21 
1·689 5'65 
1-732 6,01 
1·768 6-61 
1,838 7-26 
1-901 8,12 
2-107 13-46 

2-1856 17-86 
2'2241 21'67 
2·2531 26·27 
2'2660 29-20 
2-2722 30'87 
2·2145 31·57 
2·2168 32'32 
2-2799 33'49 

Biaxial Test RSB14. 
Load ratio = -1,0 

l1KI l1Kc 
MPal'm I'm 
12-50 6-03)(10-a 

13-09 6· 32)(10-a 

13-64 6-59)(10-a 

14-54 7'02)(10-a 

15'55 7'51)(10-a 

16'29 7· 87)(10-a 

16-96 8· 19)(10-a 

17·50 8- 45)(10-a 

18-34 8-86)(10-a 

19-23 9-29)(10-a 

20-34 9' 83)(10-a 

26·27 12· 69)(10-a 

30-36 14· 61xl0-a 

33-57 16-22)(10-a 

37'17 11'96)(10-a 

39'33 19-00)(10-a 

40'54 19'58xl0-a 

41·04 19, 83x1O-a 

41-57 20'08x10-a 

42·40 20'48)(10-· 

Table. A4.5 

Equibiaxial Loading, Load Range = 88 kN. 

N a l1KI l1Kc 
(106 ) (mm) MPal'm I'm 
1·611 3-25 18-38 8-88)(10--
2'027 3'87 20'07 9'10)(10-· 
2'682 5·43 23'76 11· 48xl0--
2·761 5·71 24'37 11'17)( 10-· 
2·878 6-13 25-25 12'20)(10-· 
2·966 6-47 25·95 12·54)(10-· 
3-087 7'04 27'08 13' 08)(10--
3'302 8'45 29'67 14'33)(10-· 
3·531 10'56 33-21 16-04)(10-· 
3·193 16·30 41·41 20'00)(10-· 
3·848 18·84 44-61 21- 55)( 1O-a 

3'894 22'44 48'86 23'60)(10-· 
3-9459 28-25 55-21 26-67)(10-a 

3-9511 30-10 57-00 27-54)(10-a 

Table. A4.6 
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da/dN 
mlcycle 

2- 17)(10'~ 

3-15)(10-' 
4'20)(10-' 
4'52)(10-' 
6'26)(10-' 
8-54)(10-' 
10· 16)(10-' 
12-38)(10-' 
12-93)(10-' 
18-76)(10-' 
25-84)(10-' 
57'51)(10-' 
93'23)(10-' 
122'5)(10-' 
185'8)(10-' 
240'6)(10-' 
290'1)(10-' 
313· 1)( 10-' 
354'5)(10-' 
361'0)(10-' 

da/dN 
m/cycle 

1'24)(10-' 
1- 89)(10-' 
3- 12)(10-' 
3'48)(10-' 
4'39)(10-' 
4-64)(10-' 
5'49)(10-' 
10'20)(10-' 
19'50x10-' 
42'30)(10-' 
63 -60x 10-' 
96'40x10-' 
132'0)(10--
250'0)(10-' 



Biaxial Test RSBI9. 
Load Ratio = -1'0, Load Range = 94·8 kN. 
Shear Loading. 

N a liKE liKe: 
<10 &.) (mm) MPa.fm .fm 
0·392 2'46 18'31 9.20xl0 5 

0-490 2'52 18·53 9'31xl0-5 

3-984 3-52 21' 92 11-01 xl0-5 

4-005 3-55 21-94 11·02x10-& 
4·037 3·62 22'41 11'26xl0-5 

4- 111 3·83 22-80 11'46xl0-5 

4- 151 3'95 23'15 11' 66x10- 5 

4·202 4'06 23'49 11'81)(10-5 

4'234 4'16 23'83 11'97xl0- 5 

4·263 4·25 24'02 12'07xl0-5 

4·292 4·38 24'40 12'26)(10-& 
4·316 4·55 24'87 12'64)(10-· 
4·349 4'78 26·70 13'42xl0-5 

4·373 5· 12 28'38 14'25x10-& 
4'389 5·32 29·74 14'94x10-5 

4·392 5·42 30'96 15'55xl0-& 
4·406 5·70 31·74 15'94xl0-5 

4'426 6'24 34·34 17·25x10-5 

Table. A4.7 
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da/dN 
m/cycle 

0'86xl0-' 
O· 68xtO-' 
0-30x10-' 
1'59)(10-' 
2-49)(10-9 

2'64)(10-' 
2· 67 xtO- 9 

3 -OOx to- 51 

3,54)(10-9 

4'46)(10-9 

6 -05x to- 50 

7'58)(10-' 
10'80)(10-'5' 
14'62)(10-' 
19· 16)(10-9 

22'62x10-9 

24'26x10-9 

49' 30x to-, 



APPEHPlX 5. 

STRAIN INIENSlTY CALCULATION. 

The Paris law for fatigue crack growth is [1 l: 

d.A. _ m 
dN - C(f1KJ:) A5. 1 

Where 

f1KJ: = f1aJC7ta) A5.2 

and C and m are material constants. 

However this law does not work whsn the plastic zone becomes greater than 

about 1120 of the crack length. One simple, and widely accepted 

modification to this law, uses a strain intensity factor instead of the 

stress intensity factor [2]. This is defined by: 

A5.3 

where E •• c is the secant modulus as defined in Fig. A5. 1. 

When the loading is purely elastic. E •• c is equal to E. Young's modulus, 

and so the strain intensity is directly proportional to the stress 

intensity. When the loading becomes elastic-plastic, E..c is found using 

Von Mises yield criterion: 

E - a.q 
... c ---

£.q 
A5.4 

where: 
A5.5 

and: 

A5.6 

For 8S11 rail steel: 

k' = 1659 MPa (Mean value) 

n' = 0.214 (Mean value) 

E = 207000 MPa 
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The net section s tress amplitude was used in the calculation of O ",q ' to 

make some allowance for the finite width of the specimens, though it was 

recognised that this was only an approximate correction. 

An equivalent strain intensity for mode II is defined by: 

L'lKrr ---
G'I. I'ii' C 

A5. 7 

where: 

Strictly Y is not a constant, but increases from 0·3 to 0·5 as the stress 

changes from being elastic to fully plastic. For these tests the value of v 

was taken as: 

Y = 0·3 + (0·2 * 

c-
o 

U 
a a 

a 

Fig. A5.1 Definition of Em .. "" from cyclic a-I:: curve. 
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APPENDIX 6. 

sr"'*9 INTERSlTY CALCULATIONS. 

A6.1 4 point bendin&. 

For a straight crack in a bending specimen of width Wand thickness B, 

subject to a shearing force Q and a bending moment M, in the plane of the 

crack, K:r and Ku are given by [ll: 

K:r = ~ fb(i) 

KU = ~ f.(i) 
A6. 1 

where f. and fb are given in Table A6·1. It should be noted that as the 

above formulae are based on simple beam theory, the loading points should 

not be too close to the crack. .. In the tests in this project, the inner 

loading points were always at least a distance W from the crack. 

. 
a/W f ... (a/W) f __ (a/W) 

0'20 4'97 0'496 
0-25 5·67 0·667 
0·30 6'45 0·857 
0·35 7·32 1·080 
0'40 8·35 l' 317 
0·45 9'60 1'557 
0'50 11·12 1·838 
0·55 13'09 2'125 
O·SO 15'OS 2'441 
0·S5 19·17 2'794 

Stress intensity coefficients for asymmetric 4 point bending. 
Table AS. 1 

AS.2 The Cruc1fonp Sped.en. 

The cruciform specimen described in Appendix 2 is essentially a centre 

cracked plate. The stress intenSity for a crack of length 2a, perpendicular 

to one of the axes, in an infinitely long uniform plata of width W is 

given by: 

K:r = a./ (Ka.sec (JtalW» AS.2 
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Two corrections to this formula need to be considered. Firstly 

solutions have been provided by Isida [2] for the stiffened edges of the 

specimen. and the stiffness of the fingers. Changing W to 45614 mm. the 

equivalent cross sectional area divided by the thickness at the centre. 

corrects for this where 2aIW , 0'7. This equivalent cross section was 

calculated during the specimen design to produce the uniform stress field 

in the working section. The second possible source of error is the finits 

length of the specimen. Isida again has provided solutions to this problem 

[3). Assuming the boundary conditions at the edges of the specimen are 

those of uniform displacement without transverse shear loading. the 

reqUired correction is 1.5 , or less for 2a/W , 0.8. and SO this was 

ignored. These boundary conditions were assumed because the fingers in the 

grips are axially stiff compared to the specimen. and transversely 

flexible. 

The same width correction factors were used for cracks growing at an 

angle of 45 - to the axes. except that W was multiplied by '{2 to account 

for the crack angle. The same procedure was adopted by Gao Hua et al [4]. 

For a 45 - crack in a pure shear stress field. Ku is defined by: 

Ku = 't.{ {Ka.sec (nal U2W») A6.3 

For a 45- crack in equibiaxial tension. Kz is defined by: 

KI = a.{{na.sec(naIU2W») A6.4 

A6.3 Branch Cracks Under Pure Shear Loadins. 
In some of the cruciform specimens. the cracks branched under pure 

shear loading. as shown in Fig. A6.1. They then grew under a mode I 

mechanism. It was necessary to find a Kz calibration for this loading 

situation. Unfortunately none of the three standard books of stress 

intensity calibrations cover this configuration [5-7]. However the addition 

of the solutions of Vitek. and Kitagawa and Yuuki. [7.8). made a reasonable 

approximation to the real Situation. Fig. A6.2. The difference between the 

theoretical and the experimental cracks was that the branch cracks in the 

specimens did not grow out at 45- to the main crack. but started at about 
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70', and then curved round slowly tending towards 4-5 '. The result of this 

is that the addition of the two solutions predicts a mixed mode loading, 

not a pure mode I load. The mixed mode stress intensities, K:t and Ku , were 

then converted to an equivalent mode I stress intensity. Ker. by using the 

maximum tangential stress (MTS) criterion [9]. KI, Ku , 1<., and the angle 

the MTS maximum occurs at, 8, are all given in Table AS.2. 

The results are plotted in Fig. AS.3, and are compared with the value 

of KI found by the MTS criterion or Melin's calculations for a very small 

crack, [9,10]; and with the simple approach of treating the crack as an 

eqUivalent horizontal crack of length 2c, as shown in Fig. AS.l. 

In the light of these results, the MTS criterion was used in 

calculating the initial branching Kxi the combination of Vitek, and Kitagawa 

and Yuuki's work was used for finite branch lengths up to bla = 1.0, and 

the projection method was used for bla > 1.0. 

The dip in the value of Kx as the branch grew was initially thought to 

be surprising. However Chatterjee's work on cracks in shear fields with a 

branch at just one end, showed a similar but much larger dip [7,111. 

bla Kx K:tl K ... 8' 
a/efta) a/efta) a/efta) 

0·01 0·99 -0,30 1· 11 74-' 
O· 1 0·99 -0,26 1·08 71· 
0·2 1·03 -0,23 1'10 68· 
0·5 1·1S -0'15 1· 19 55' 
1· 0 l' 34- -0'09 1· 35 53' 

Stress Intensity Factors For Branch Cracks Under Pure Shear Loading. 
Table A6.2 

'6.4 Branch CraGg Under Uniaxial Tensioo. 

In tests RSB15, RS81S and RS817 the branch cracks occurred under 

approximately pure tension. This type of loading was the same as that used 

by Vitek, as shown in Fig. AS.2a [81. It was found that simply using an 

equivalent crack length c, the length perpendicular to the applied stress, 

in equation A6.4-, gave the same answer as Vitek's calculation. This method 

was therefore used in these stress intensity calculations. 
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Figures 

.~ r- b l 

2c 

Fig. A6 .1 Branch Cracks. 
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a . Vitek's Model. 

b. Kitagawa and Yuuki's Mode l. 

Fig. A6.2. 
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APPENDIX 7. 

CRACK GROwm DATA FROM 11£ NON PROPORTIONAL LOAPOO TESTS. 

RSSI. 

Equibiaxial mean stress = 50 MPa. 

Mode II threshold = 4'0 MPaFm 

Mode I threshold = 7·3 MPaFm 

N a 6.a 

10'" mm MPa 
13·719 3'17 53·5 
14' 675 3'19 58·9 
15·639 3·19 64'7 
16'595 3' 19 64'7 
17·635 3· 19 71· 2 
18·450 3·19 78·3 
21· 931 3·26 78·3 
23-956 3'31 78'3 
26'139 3'31 86'2 
28·174 3·35 94·8 
28·444 3.56 94·8 
28-624 3·63 94'8 
29'074 4·23 94'8 
29'524 4'50 94'8 
29·969 5·21 94·8 
30. 154 5.35 94-8 
30'335 5·77 94-8 
30·515 6'46 94·8 
30-695 6-75 94'8 
30-815 7'41 94·8 
31·055 8·04 94-8 
31- 235 8·99 94'8 
31' 415 10-03 94·8 
31- 595 11- 42 94-8 
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6.K x 6.Kc da/dN 
MPaFm Fm m!cycle 
7'3 3·5x10-· 0'039xl0-' 
7·8 3·8x10-· <0·0Ixl0-· 
8·7 4' 2x 10-· 0'031 xl0-' 
8-7 4'2x10-a <0'01xl0-' 
9·5 4·6xl0-· <0'01xl0-' 
10'4 5'Oxl0-a 0-021x10-' 
10·4 5·Oxl0-· 0'025xl0-' 
10'3 5·Oxl0-· O' 014xl0-' 
11'2 5·4x10-· (0'01 XI0-' 
11·4 5·5x10-· 0·59x10-· 
11· 4 5·5x10-· 0·57x10-· 
11· 5 5·6x10-· 0·78xl0-· 
11·9 5·7x10-· 1· 00x10-· 
12' 1 5· 8x 10-· 1·20x10-· 
12·7 6-1)(10-· 1-73xl0-· 
12·8 6·2xl0-· 2-04x10-· 
13·1 6·3)(10-· 2·38xl0-· 
13·5 6·5)(10-· 2·69xl0-· 
13'8 6-7x10-· 3·26x10-· 
14·3 6'9)(10-a 3-80)(10-· 
14·7 7· lxl0-· 4·56x10-· 
15·5 7' 5)(10-· 5·77xl0-· 
16-4 7·9xl0-· 6-73)(10-' 
17-5 8-5xl0-a 8-55)(10-· 



RSB2 
Equ1b1axial mean stress = 267 MPa 
Mode II threshold = 4·4 MPaFm 
Mode I threshold = 5·6 MPaFm 

N a fla 
10'" mm MPa 

4·123 2'85 43'0 
6·826 2'95 47·3 
8·363 3'07 47·3 
10·561 3'12 52·0 
11' 473 3' 15 52.0 
12·961 3'29 52.0 
13'394 3'43 52.0 
16'757 4'25 52.0 
17·813 (',79 52.0 
18' 176 5· 14 52.0 
19.340 7'19 52.0 
19'457 7'41 52.0 
19·718 8'08 52'0 
20·892 12·31 52·0 
21·025 12·98 52·0 
21' 128 13'59 52'0 
21' 209 14'03 52'0 
22'045 21,32 52'0 
22' 162 23·66 52·0 

RSB3 
Equ1b1axial Mean Stress = 267 MPa 

flK, 
MPaFm 
5'6 
5·9 
5'9 
6·4 
6'4 
6'4 
6'4 
6'6 
7·0 
7· 1 
7'9 
8'0 
8'3 
10'3 
10'6 
10'8 
11'0 
13'6 
14'(, 

Mode I Branch Crack Growth, Aa· 267 Mfa 

flN a flK x AKe 
DIll MPaFm Fm 

5200 10'08 55'0 31' (')(10-a 
1300 13-14 59'4 35, (')(10-a 

900 14·91 61· 2 37·6)(10-a 

900 17'07 65·9 ('2'4)(10-a 

900 20,38 73·4 51' 6)(10-a 

RSB4 
Equibiaxial Mean Stress = 133 MPa 
Mode I Branch Crack Growth, Aa = 452 Mfa 

AN a flKE AKe 
mm MPaFm Fm 

300 4'33 64'0 56·5)(10-a 

45 5-20 66'4 60'3)(10-a 
49 6'07 68'2 63'8)(10-a 
37 6'91 71' 7 69'2)(10-a 

67 9' 13 79'2 83'3)(10"",a 
19 14'12 100·0 133'5)(10-a 
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flKc da/dN 
Fm m/cycle 

2'7)(10-a 0'08)(10 -
2'9)(10-a 0'07)(10-' 
2'9)(10-a 0'02)(10-' 
3'1)(10-a 0'06)(10--
3'1)(10-a 0'12)(10--
3·1)(10-· 0'31)(10--
3'1)(10-a 0'50)(10--
3'2)(10-a 0'75)(10-' 
3'4)(10-a 1'1(.)(10-' 
3'4)(10-a 1·32)(10-· 
3'8)(10-a 2'(,4)(10-' 
3'9)(10-a 2'57)(10-' 
("0)(10-a 2'90)(10-' 
5'0)(10-a 4'86)(10-' 
5'1)(10-a 6'27)(10-' 
5'2)(10-a 6'98)(10-' 
5'3)(10-a 8'(,4)(10-' 
6'6)(10-a 10'1)(10-' 
6'9)(10-a 26'1)(10-' 

da/dN 
mlcycle 

0'8(.5)(10--
l' 33)(10--
2'01)(10--
2'79)(10--
4'58)(10--

da/dN 
mlcycle 

3'33)(10--
16'4)(10--
20'2)(10--
18'9)(10--
55'8)(10--

328'0)(10--



RSB5 
Equlblaxlal Mean Stress = 0 MPa 
Mode I Branch Crack Growth, Ocr = 452 MPa 

ON a OK, OKc da/dN 
mal MPa.rm .rm mlcycle 

45 1· 78 42·6 35'6)(10 - 4'4)(10--
199 1·94 43'0 36'0)(10-- 1'5)(10--
181 2·20 44·0 36'8xlO-- 1'2)(10--
109 2-45 45·8 38'3)(10-- 2·7)(10--
58 2·67 46'4 38'8)(10-- 2'6)(10--

RSB6 
Equlblaxlal Mean Stress = -133 MPa 
Mode I Branch Crack Growth, ocr = 452 MPa 

. 
N a OK, oKc da/dN 

IIlIIl MPa.rm .rm mlcycle 
319 l' 95 50'2 39'3xl0-- 0'21x10--
1168 2·09 49·5 38'7x10-- O' 16x10--
1505 2· 10 49·5 38·7x10-a 0'03x10--
1964 2·26 49'9 39'Ox10-a 0·39x10--
2889 2'38 50'4 39'4x10-a 0'13x10--
3400 2'48 50'8 39'7x10-- 0'20x10--
4000 2·57 51· 2 40'Ox10-a 0'15x10--

RSB7. 
Equlblaxlal Mean Stress = 0 MPa. 
No fatigue crack growth from the crack tips, mode I growth from the notch 
tip, and from the edge of the specimen. 
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RSB8. 
Sequential Mode I and Mode II loading. 
Type 1. 
Au = 104 MPa. A~ = 208 MPa. 
Pr d d 1 wth o uce co-po anar gro . 

N a AK:r:r 
10:11 mm MPal'm 
1'2 3,05 20,3 
24·4 3'19 20·8 
11' 2 3·13 22·5 
81·2 3·91 23'1 
108·6 4·25 24·0 
116·1 4·41 24·5 
120·6 4'46 24'6 
128·1 4·53 24·8 
131'9 4·11 25·3 
150·9 4·93 25·9 
155·8 5·02 26'1 
186·6 5·60 27·6 
223-9 6·39 29-5 
261-5 7-48 31·9 
214-4 1-98 33-0 
285·8 8'41 33-8 
294'6 8-86 34·7 
308-4 9'45 35·9 
331·0 11· 24 39-2 
357-0 14-03 43-8 
385·8 11-28 48·6 
391·0 19- 17 51' 2 
402-4 25-98 59-6 
414-7 32·74 66-9 

RSB9 
Sequential Mode I and Mode II loading 
Type 1 
Au = 52 MPa, A~ = 208 MPa 
P d d b h k wth ro uce ranc crae gro 

N a AKI 
10:11 mm MPa/m 

145-5 3'30 24-4 
211·6 3-63 25-2 
249'3 3·94 25-8 
274'2 4·12 26-0 
315·0 4·44 26·6 
416·6 5-41 28-4 
469-1 5-94 29-5 
494-3 6-19 30-0 
602-7 7-86 33·0 

AK ... 
I'm 

26'5)(10-· 
21'0)(10-· 
29'4)(10-· 
29,9)(10-&0 
31·2)(10-1!'· 
31·1)(10-· 
32·0)(10-· 
32·2)(10-· 
32'8)(10-· 
33,5)(10-10 

34'1)(10-10 

35-9)(10-a 

38-2)(10-· 
41' 6)(10-a 

42'9)(10-10 

43'9)(10-10 

45,2)(10-10 

46'8)(10-10 

51'0)(10-a 

58'5)(10-a 

65-6)(10-10 

69-9)(10-a 

87-1)(10-a 

106' 2)(10- 10 

AKc 
1m 

12-2)(10-· 
12'6)(10-a 

12'9)(10-a 

13'0)(10-a 

13'3)(10-a 

14-2)(10-· 
14-1)(10-· 
15-0)(10-a 

16-5)(10-· 
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da/dN 
m/cvcle 

1'51)(10-' 
9'40)(10-' 
12'8)(10-' 
14· 5)(10-' 
11'5)(10-' 
13'9)(10-' 
15'0)(10-' 
13'5)(10-' 
16'2)(10-' 
18'0)(10-' 
11'9)(10-' 
20'1)(10-' 
26'1)(10-' 
34-3)(10-' 
39'9)(10-' 
42'5)(10-' 
46'1)(10-' 
52'8)(10-' 
73'8)(10-' 
171' 5)(10-' 
368'2)(10-' 
459'5)(10-' 
540'8)(10-' 
618-1)(10-' 

da/dN 
m/c3cle 

4'14)(10-' 
6'13)(10-' 
7'45)(10-' 
1'63)(10-' 
8'59)(10-' 
10-0)(10-' 
12-2)(10-' 
11'4)(10-' 
17-2)(10-' 



RSSI0 
Sequential Mode I and Mode II loading 
Type 1 
6a = 156 Mfa, A~ = 208 Mfa 
p d 1 wth roduce co-p. anar gro 

N a 6Ku 
103 mm MPal'm 
11-2 3-38 21- 4 
18-3 3-58 22-1 
48-3 4-54 24-8 
61- 0 5-06 26-2 
98-3 7-23 31- 4 
121-2 9-85 36'7 
147'3 12·82 41'9 
154'3 14'14 44'0 
158-1 14·90 45·2 
163_5 16· 18 (.1·2 
111- 0 18·85 51'0 
111-0 21·13 54'9 
119·3 22·91 56·6 
181-1 24·85 59-0 

RSS11 
Sequential Mode I and Mode II loading 
Type 1 
6a = 104 Mfa, A~ = 312 MPa 
Pr d b h k wth oduce ranc crac gro 

N a AKI 
103 mm MPal'm 

21·8 2-28 29'9 
(.1·8 2-69 31·3 
62-0 3-10 33'8 

AK ... 
I'm 

21-8)(10-a 

28-6)(10-a 

32-2)(10-· 
34-1)(10-a 

40'8)(10-a 

41'8)(10-a 

55'9)(10-a 

59'3)(10-a 

61'9)(10-a 

6('·1)(10-a 

10-8)(10-a 

11'9)(10-a 

81'9)(10-a 

86-0)(10-a 

AKe 
1m 

11'2)(10-a 

18-1)(10-a 

19'5)(10-a 
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da/dN 
mlcycle 

. 3-S -0)( ro----.-
28-9)(10-' 
38-1)(10-' 
45-8)(10-' 
16'4)(10-' 
124'6)(10-' 
116'1)(10-' 
179'3)(10-' 
219'0)(10-' 
302'(')(10-' 
421' 9)( 10-' 
529'9)(10-' 
806'3)(10-' 
1368-0)(10-' 

da/c:Df ." 

mlcycle 
19'0)(10-' 
20'5)(10-' 
13-8)(10-' 



RSS12 
Sequential Mode I and Mode II loading 
Type 1 
~u = 104 MPa, At = 156 MPa 
p roduced cO-Dlanar a:rowt:1. 

N a 6K IX 

103 mm MPa.rm 
11' 7 3'15 15·5 
45'3 3·31 15'9 
126'3 3'85 17·2 
140·8 3'98 17'4 
157·6 4' 13 17·8 
162,2 4,19 17·9 
174,3 4'34 18'2 
202'7 4·82 19'2 
278·2 5,62 20·8 
296,2 5·91 21' 3 
313'2 6·18 21' 7 
383·6 7·86 24-5 
386·0 8'40 25'4 
391·3 8-75 25·9 
433·0 9·72 27·3 
516'8 11' 66 29'9 
525,6 11' 93 30·3 
546·9 12·61 31- 1 
562·4 13·05 31· 7 
613·1 15·03 34·1 
695·3 22-58 42-0 
702·9 23·82 43'2 
711·5 25·50 44-8 
721'3 27-98 47-1 
727·4 30·23 49·1 
731·5 32,01 50·7 
737'1 34·84 53-1 
738,8 36'11 54'2 

RSS15 
Sequential Mode I and Mode II loading 
Type 2 
Au = 104 MPa, ~t = 208 MPa 
Produced branch crack rowth 

N a AKI 
103 mm MPa.rm 

1 • 2 1-9 1 • 
57· 36 2 -32 17, 1 
140'46 '-30 21-0 
147-95 4·70 24-3 
148-73 4,80 25-3 

6K ... 
.rm 

19'410-· 
20-3)(10--
22'1)(10--
22'4)(10--
22'9)(10-a 

23-0)(10--
23'1)(10--
23'7)(10--
26'5)(10-a 

27'3)(10--
27'8)(10-a 

31'5)(10--
32'8)(10--
33'5)(10-a 

35'4)(10-a 

39'0)(10-a 

39'3)(10-a 

40'6)(10-a 

41'3)(10-a 

44'2)(10-a 

54'9)(10-a 

56'7)(10-a 

59,0)(10-· 
62-9)(10-a 

66-0)(10-a 

68'9)(10-a 

73'1)(10-a 

75")(10-a 

8-3)(10-a 

10'1)(10-a 

11-7)(10-a 

12'2)(10-a 
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da/dN 
mlcycle 
4' 7)( 10--
5")(10-' 
8'3)(10-· 
9'3)(10-' 
12'3)(10-' 
12'1)(10-' 
13'1)(10-' 
13'1)(10-' 
16'4)(10-' 
19'3)(10-' 
22'2)(10-' 
30'3)(10-' 
27'3)(10-' 
28'4)(10-' 
27'6)(10-' 
26'8)(10-' 
30'2)(10-' 
41' 0)(10-' 
34'0)(10-' 
65'2)(10-' 
145'9)(10-' 
179'0)(10-' 
253'0)(10-' 
336-2)(10-' 
417-6)(10-' 
475'1)(10-' 
559'0)(10-' 
644'7)(10-' 

7'6)(10-' 
17-8)(10-' 
53'4)(10-' 
121, 8)( 10-' 



RSB16 
Sequential Mode I and Mode II loading 
Type 2 
6a = 156 MPa. 6~ = 208 MPa 
P d h ~ roduce branc crack gro h 

N a AKJ: 
10" mm MPa/m 

16'67 2·65 23·7 
26'93 3·01 25'3 
34-'51 3'60 27·6 
51' 4-0 5·4-9 34-· 1 
62'14 7·73 4-0·6 
69' 11 9·65 4-5·3 
73'39 11·32 49·2 
71'58 13'4-9 53·7 
79'77 14·59 55·9 
81'58 16·22 59·0 
82'92 17·69 61· 7 
83'90 18'88 63·8 
85' 15 21'03 67·5 
85'82 23'39 71· 4 
85'98 24-'71 73·5 

AKe 
1m 

11· 6x10-1io 

12·4-xl0-a. 
13·5xl0-a. 
16·6xl0-· 
19·9xlO-a. 
22'lx10-1io 

24'Ox10-a 

26·3xl0-· 
27'4-xl0-1io 

28'9xl0-a 

30'2x10-1io 

31'3xlO-a 

33'lxl0-a 

35'OxlO-a 

35'8xl0-a 
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da/dN 
m/c"ycle 

34-'Ox10-' 
59'Oxl0-' 
102'5x10-' 
183·2xlO-· 
278·8xlO-· 
360·8xl0-· 
461'lxl0-tI 

623'lxl0-' 
786·2xl0-· 
l'035xl0-c 

1· 4-29xl0-c 

1· 906x10-c 

2· 352x10-" 
4· 401 x 10-" 
7· 411x10-c 



RSB17 
Sequential Mode I and Mode II loading 
Type 2 
6a = 104 MPa, 6~ = 104 MPa 
P d b k wth roduce ranch crac gro 

N a 6K 1 

103 mm MPal'm 
48'1 1·88 12·0 
145'9 2·14 12·8 
171'1 2'20 13'0 
186·2 2·24 13'1 
253·5 2·42 13·6 
329·0 2·70 14·3 
355·3 2'83 14'7 
466'3 3'24 15'7 
503'1 3·36 16· 1 
512·4 3·45 16·2 
561·6 3·84 17'1 
643'4 4·62 18·8 
662'5 4'88 19'3 
679'5 5'08 19·7 
131·6 6·08 21·6 
824·5 8'40 25'4 
836·3 8'88 26'1 
658·6 9·82 21,5 
872·6 10·52 28·4 
895·5 11' 84 30·2 
901·0 12·50 31·0 
914·1 13'14 31·8 
922·1 13·66 32·5 
932'2 14'33 33'2 
938·3 14·82 33·8 
941'4 15·65 34'8 
954'5 16·39 35'6 
964,9 17'47 36'8 
969'9 18'00 37'4 
914·2 16·55 31,9 
919·1 19·25 38'1 
983,1 19·81 39'3 
981'4 20'55 40'0 
995·7 21·96 41' 4 
1008'4 24'46 43·8 

6Kc 

I'm 
5'8)(10-· 
6'2)(10-a 

6'3)(10-a 

6'3)(10-a 

6'6)(10-a 

6'9)(10-a 

7'1)(10-a 

7'6)(10-a 

7·8)(10-· 
7'8)(10-a 

8'3)(10-· 
9'1)(10-a 

9'3)(10-a 

9'5)(10-· 
10'5)(10-a 

12'3)(10-a 

12'6)(10-a 

13'3)(10-a 

13'8)(10-a 

14'1)(10-a 

15'0)(10-a 

15'4)(10-a 

15'8)(10-a 

16'1)(10-a 

16'4)(10-a 

16'9)(10-a 

11'3)(10-a 

11'9)(10-a 

18'2)(10-a 

18'4)(10-a 

18'8)(10-a 

19'2)(10-a 

19'5)(10-a 

20'2)(10-a 

21'4)(10-a 
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da/dN 
m/cycle 

2'5)(10-' 
2'7)(10-' 
2'9)(10-' 
2'9)(10-' 
3'2)(10-' 
3'6)(10-' 
3'7)(10-' 
5, 0)(10-' 
6'5)(10-' 
6'8)(10-' 
8'3)(10-' 
12'6)(10-' 
15'0)(10-' 
16'0)(10-' 
21' 5)(10-' 
36'5)(10-' 
41' 8)(10-' 
48'6)(10-' 
52'7)(10-' 
61, 8)(10-' 
66'2)(10-' 
69'3)(10-' 
13'1)(10-' 
80'8)(10-' 
84'1)(10-' 
93'9)(10-' 
101'5)(10-' 
111'1)(10-' 
121'1)(10-' 
132'5)(10-' 
144'1)(10-' 
154'1)(10-' 
169'6)(10-' 
186'2)(10-' 
224'2)(10-' 



RS818 
Sequential Mode I and Mode II loading 
Type 1 
~a = 156 Mfa, ~~ = 156 Mfa 
Pr d 1 k wth oduce co ) anar crac ro 

N a AKtt 
103 DIll MPa.fm 
~'4 3'29 15·7 
18'5 3'52 16'2 
99'0 '("70 18·8 
109·8 5·04 19'4 
123'4 5'41 20·1 
131·3 5·63 20'6 
147'2 5'81 20'9 
182'1 7'64 24'0 
192'1 8·20 24·8 
199'7 8·70 25'6 
206'1 9'15 26'2 
227'4 10·82 28·5 
234·7 11' 57 29·5 
2.(.5,.(. 12·67 30·9 
252·1 13·66 32·1 
261·9 15·38 34'1 
266·9 16'39 35'2 
272'6 17·60 36'6 

RSB18 continued 
Sequential Mode I and Mode II loading 

AK .. da/dN 
I'm m/cycle 

20'Oxl0-a 19·8xl0-· 
20'5)(10-a 16'5)(10-' 
23'9)(10-a 23'4)(10-' 
2'('·7)(10-a 21'3)(10-' 
25'7)(10-a 30'1)(10-' 
26'3)(10-a 29'5)(10-' 
26'5)(10-a 35'0)(10-' 
30'4)(10-a 59'4)(10-' 
31· 7)( 10-a 63'9)(10-' 
32'8)(10-a 70· 1)(10-' 
33'5)(10-a 72'2)(10-' 
36'4)(10-a 95'8)(10-' 
37'7)(10-a 112'2)(10-' 
39·5)(10-a 137'3)(10-' 
'('1'1)(10-a 156'3)(10-' 
43'7)(10-a 195'0)(10-' 
45'0)(10-a 207'2)(10-' 
46'8)(10-a 312'9)(10-' 

~~ • 156Mfa, Aa starts at 156Mfa, and 1s reduced in 10~ steps 
Type 1 
Coplanar growth 

N a AK, AKc AK't AK .. 
10-3 mm MPa.fm Mfa.fm Mfai'm I'm 

274·0 18'09 33·76 16'4)(10-a 37·5 48' 9)(10-a 

276·2 18·49 30·6 14'9)(10-a 37'8 49'1)(10-a 

283'4 18·74 27'8 13'5)(10-a 38'1 49'7)(10-a 

290'1 19'07 25'6 12''(')(10-a 38'9 50'7)(10-a 

297·3 20'31 23'3 11'3)(10-a 39',(, 51'2)(10-a 

304'5 20'44 21'0 10'1)(10-a 39'5 51'5)(10-a 

318·9 20·75 19·1 9'2)(10-a 39'8 51'7)(10-a 

-197-

da/dN 
mlc~cle 

138'8)(10-' 
80'5)(10-' 
102'7)(10-' 
91' 6)(10-' 
37'8)(10-' 
19'2)(10-' 
27'3)(10-' 



RSB18 continued 
Sequential Mode I and Mode II loading 
Type 1 
6a = 60'4 MPa, 6~ = 156 MPa 
P d d b h k wth ro uce ranc crae gro 

N a 6K x 6Kc 

103 mm MPa.fm Jm 
456·5 19'36 52·7 25' 6)(IO~s 
463'4 19'70 52·7 25'6)(10-a 

468·5 19'84 52·7 25'6)(10-· 
483·4 20'18 52·7 25'6)(10-a 

500·5 20'38 52·7 25'6)(10-a 

507·8 20'58 53·7 26'2)(10-a 

519·4 20'85 54'2 26- 4)(IO-a 

530·0 20-90 54'2 26'4)(10-a 

543·2 21' 16 54-7 26·7)(10-a 

567·4 22'25 56·2 27'4)(10-a 

586·2 22'92 57-2 28'0)(10-s 

RSB20 
Sequential Mode I and Mode II loading 
Type 1 
6a = 156 MPa, 6~ = 312 MPa 
P d d 1 k wth ro uee cOP anar crae Irro 

N a 6K1X 6K .. 
lOla mm MPa.fm Jm 

2·72 3'20 31·3 48-5)(10-a 

6·96 3-45 32·5 50-4)(10-s 
13-17 4-17 35·7 55'7)(10-s 
17'96 4-44 36'9 57-6)(10-s 

21-50 5'04 39'2 61-4)(10-S 

28·86 6· ... 3 44-4 70'5)(10-s 

33'47 7'66 48-4 77'8)(10-S 

41' 45 10'55 56-9 94'2)(10-S 

43'76 11'73 60'1 101' 5)(10-a 

45'77 12'93 63·1 108·0)(10-s 
47·11 14'10 66·0 114- 2)(10-s 

47'96 14'87 67·8 119' 7)(10-S 

48-98 15'77 69'8 124' 9)(10-S 

49·71 16'69 71·9 130'4)(10-a 

50'60 17-42 73·5 136'1)(10-s 

51- 1~. 18' 45 75·7 143'0)(10-s 

51- 88 19'66 78-2 152'1)(10-S 

52·31 20-48 79-9 157'6)(10-S 

-198-

da/dN 
m/e'ycle 

42'2)(10-e 

34'8)(10-e 

27'3)(10-' 
21' 9)(10-' 
17·8)(10-· 
17'3)(10-e 

20'7)(10-e 

23'6)(10-' 
36'2)(10-' 
40'9)(10-' 
41'3)(10-' 

da/dN 
mI~ele 

74·7)(10-e 

83'2)(10-' 
109'0)(10-' 
139'7)(10-e 

170'5)(10-e 

249' 5)(10-' 
320'7)(10-' 
482'1)(10-e 

601'9)(10-' 
728-0)(10-' 
867'8)(10-' 
910-6)(10-e 

1'039)(10--
1'175)(10--
1-398)(10--
1'753)(10--
1'745)(10--
2-040)(10--



RSB20 continued 
Sequential MOde I and Mode II loading 
Type 1 
Au 93·6 MPa, A~ = 208 MPa 
P d d b h k wth ro uce rane erae ~ro 

N a AK, 
10:8 11m MPa.fm 

56'3 23'10 104 
56'58 25'01 104 

-199-

"Ale da/dN . 
.f11 IIlIcyele 

104)(10-· 5'57x10-& 
115x10-· 7· 47x10-& 


