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SUMMARY 

The range of possible uses of inflatable hydraulic structures 1S very 

great provided a suitable design and analysis technique is available. 

The object of this project was to study both theoretically and experi­

mentally the behaviour and performance of inflatable hydraulic structures 

under both hydrostatic and hydrodynamic conditions for dams inflated with air, 

water and a combination of the two. 

The theoretical anslysis was based on a finite element approach to design 

a dam under different inflation fluids in order to find the dam parameters of 

tension, profile of the dam, upstream slope, and elongation of the material 

under both hydrostatic and hydrodynamic conditions. 

A series of models of different sizes were constructed and tested under 

both hydrostatic and hydrodynamic conditions. A comparison of different 

output parameters was carried out between the experimental and theoretical 

results showing a good relationship between the two. 

Relationships were derived so that the length of the membrane could be 

found for the design of a dam to satisfy particular conditions. 

A new formula was derived for calculating the rate of flow and 

coefficient of discharge for all three types of inflation allowing the appli­

cation of inflatable dam as a device for measuring discharge. 

A range of computer programs was written for the analysis and design of 

all dams based on the finite element approach. 

This work was restricted to single anchor dams with the anchor located 

on the upstream side. 
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CHAPTER 1. 

INTRODUCTION 

1.1 General. 

The concept of fabric hyraulic structures is a relatively new idea and 

has a wide range of water engineering applications. 

The simplest and most common type of inflatable hydraulic structure 

consists of a single sheet of rubberised fabric folded into a tubular shaped 

bag which is then sealed in place during installation. The bag is attached 

by one fixed end toward the upstream side by means of anchor bolts set in 

a reinforced concrete slab. 

This type of structure was originally developed as an adjustable gate 

to control water levels in rivers and reservoirs. It can be more economical 

and practical than a conventional steel gate system which requires large 

concrete abutments and foundations. 

In general, according to Connor (1), the cost of an inflatable structure 

installation varies between one to two thirds of the cost of an alternative 

steel gate. 

The design techniques for inflatable hydraulic structures has been 

developed for many different considerations and assumptions but is still 

limited. 

The object of this study is to develop a design technique for a dam with 

a wide range of applications. 

Due to the lack of information on the effects of upstream and downstream 

head with relation to the type of inflation fluids and materials many 

failures have occurred during dam operations. Limited attention has been 

given to the theoretical analysis of inflatable structures. The early work 

on this concept has been carried out by Anwar (2), Owiwara (3), Harrison (4), 

Binnie (5), Parbery (6) and Alwan (7). 
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The theoretical analyses developed by the above investigators all have 

limitations, for example (1) not considering the base length; (2) limiting 

internal pressurehead to not more than the height of the dams; (3) not 

considering the weight and thickness of the material (i.e., properties of 

the materials); (4) using only one type of inflation fluid. The aim of 

this work was to overcome many of these limitations and hence to have a wider 

range of application of the method. 

In this project a theoretical analysis has been developed using the 

finite element approach with a computer solution in order to analyse a dam. 

In this analysis the possibility of a silt pressure has been considered 

as a static load on the upstream face of the dam. The theoretical develop-

ment is discussed in detail in Chapter 4 for static conditions and Chapter 5 

discusses the analysis of a dam under hydrodynamic conditions. 

A comparison of the theoretical and experimental work is discussed in 

detail in Chapter 6. When using an inflatable structure as a flow 

measuring structure it is necessary to determine the coefficient of discharge. 

The coefficient of discharge is determined experimentally and a series of 

relationships are given to compute the coefficient of discharge for different 

types of inflation as detailed in Chapter 7. 

The design for the length of the membrane is calculated theoretically 

with respect to a water inflated case, while the design of the length of 

the membrane for air or (air+water) cases are found experimentally, and are 

detailed in Chapter 8. 

Chapter 9 is a general discussion and recommendations for further 

studies on this type of structure are made. 

1.2 Applications of Inflatable Hydraulic Structures. 

An ever increasing demand for water use and control in most countries 

of the world requires the use of economic and simple structures in design 
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and construction. Inflatable hydraulic structures offer such an alternative 

solution to traditional structures for many such uses. 

The following description refers to the more important ones. 

1.2.1 Increasing the capacity of existing dams. 

Inflatable hydraulic structures can be used to extend the height of an 

existing dam to increase the storage capacity, by placing the inflatable 

structure on the top of the crest of the spillway to achieve the required 

elevation. An example of the extension of a spillway crest is in the 

Koomboolomba dam of the Tully falls hydro-electric power project in 

Australia (8) as illustrated in Fig. 1.1. 

1.2.2 Inflatable weir structures for the period of construction of a 

project. 

Inflatable hydraulic structures can be used as temporary weir controls 

during the period of construction of a project, therefore by this arrange-

ment the cost of temporary works can be reduced. This practice has been 

adopted in Pakistan in the temporary work for the construction of Mangla 

dam (9) which included an inflatable weir with three inflatable hydraulic 

structures to regulate the tail water level at the outlet of the tunnels 

used for the river diversion. The arrangement is illustrated in Fig.l.2. 

1.2.3 Flood control. 

The purpose of flood mitigation schemes is to reduce the damage caused 

by flooding and due to the low cost and flexibility of operation inflatable 

hydraulic structures have found considerable use on such schemes. An 

example of such a use is in Australia in New South Wales (1). 

1.2.4 Controlling the water table. 

An inflatable structure has been made in the South of the Netherlands 

(10) in order to prevent lowering of the ground water table and thus 

preventing the agricultural land from drying out. 
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1.2.5 Other possible uses of inflatable structures. 

Inflatable structures can be used for other purposes in addition to 

those listed above. 

1. To raise river water levels in the dry season by constructing a 

weir across a river to maintain the required water level. This solution was 

adopted in England by the construction of an inflatable weir on the River 

Avon (11) and the River Allen near Wibborne. Fig.I.3 shows the inflatable 

weir on the River Allen. 

2. Inflatable fabric structures can be used as cofferdams to protect 

the banks of rivers and reservoirs during renovation work (12). Fig.l.4 

illustrates an inflatable structure placed on the bank of a river to allow 

the repair of a concrete revetment. 

3. Diversion control in irrigation works to replace flashboards 

and sluice gates (13). 

4. Extending the level of the embankment along rivers to prevent flood­

ing of adjacent low land areas during periods of high tide. 

1.3 Economics of Inflatable Structures. 

One of the main reasons for constructing an inflatable hydraulic structure 

is the low cost compared with a conventional structure. Investigations were 

made to compare the alternatives on the Tuckambid f100dway scheme in New South 

Wales (1). The preliminary studies showed that the capital cost of the 

fabridam was approximately 50% of the cost of the cheapest steel gates available 

and also the service life of the inflatable structure was estimated as 20 

years. When it becomes necessary to replace the fabric the cost was estim-

ated as only about one third to one half of the price for the complete 

installation which was less than the maintenance cost of a steel structure 

over a 20 year period. 
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1.4 General Advantage and Disadvantage of Inflatable Hydraulic Structures. 

The main advantages of using inflatable structures are as below: 

1. low cost compared with conventional structure (See 1.3); 

2. little maintenance is required; 

3. easy erection; 

4. during a flood the dam can be deflated, so that it offers no resistance 

to the water flow and debris; 

5. easy water level control, particularly with two way flow access in tidal 

reaches; 

6. ice build up can be controlled in that as the thickness of ice increases 

a dam can be partially deflated; the ice will then break up and float 

away reducing the risk of ice jams. 

The disadvantages of this kind of structure are as follows: 

1. service life of the structure is not likely to exceed 20 years; 

2. the fabric material is vulnerable to vandalism; 

3. for high flows the structure is not suitable; 

4. it has been claimed that the fabric is not suitable for installation 

when it is subject to continuous dynamic loading, e.g., substantial 

and continued overflow of water; 

5. not suitable in water with high sediment loads due to the risk of 

abrasion. 

1.S Development of a New Design Technique. 

The development of a new design technique in this study consists of 

finding the length of membrane required and then to analyse the structure 

over the range of operational parameters to overcome the limitations of other 

techniques. 

The length of the membrane is designed for a maximum proportional factor 

alpha by assuming the maximum upstream head required. The total length is 
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calculated with respect to equations determined both theoretically and 

experimentally for different types of inflation fluids. The analysis is 

carried out to find the maximum height of dam for the maximum upstream head 

for a given proportional factor. 

Finding the maximum upstream head equal to the maximum height of the 

dam (for maximum proportional factor) the length of the membrane can be 

determined. Details of this procedure are given in Chapter 8. 

Additional analysis has been carried out for different proportional 

factors (i.e., 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.5) for a water inflated 

dam with constant length of membrane, the analysis has also been carried out 

for different inflation fluids i.e., water, air and the combination of the 

two (air+water). Analysis has also been carried out for different design 

lengths of membrane with different proportional factors. All of these 

analyses were achieved using a computer program (IHSIP) which is based on the 

finite element method. The main output parameters are:-

1. Tension along the membrane. 

2. Upstream slope (at the anchor point). 

3. Cross-sectional profile of the membrane. 

4. Maximum dam height. 

5. Cross sectional area. 

6. Elongation of the membrane. 

For dynamic conditions the length of membrane 1S based on the same 

design methods as for the static condition and the analysis 1S carried out 

for dams under different over flow heads to find the same output parameters 

as for static conditions. The details of this part of the study are given 

in Chapter 5. For dynamic conditions a technique for calculating the 

coefficient of discharge has been developed and is detailed in Chapter 7. 

Two types of materials were used in this study (material type I and II), 

see Table 3.1, and the details of the material properties are shown in detail 

in Chapter 3. 
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The inflation fluids used are water, air and a combination of the two 

as these fluids are most likely to be used in practice mainly due to their 

ease of availability, but the computer program developed can consider 

different fluids of known specific weight. 

The work is also solely related to single anchor systems as this type 

of system is the one that has received least attention and yet is the easiest 

to instal. 
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CHAPTER 2. 

REVIEW OF PREVIOUS WORK. 

2.1 General Historical Review. 

The idea of an inflatable hydraulic structure was first used in 1957 

by N.M. Ibertson (13) the Chief Engineer for the Los Angeles Department of 

Water and Power. This collapsible dam consisted of a flexible tube achored 

along its length to a concrete floor. The first of this type was installed 

at the end of a wooden dam and was 5 feet high and 90 feet long. A larger 

size dam was then designed as a large tube or bag, tear-drop in section. 

This tube, fabricated by the Firestone Tyre and Rubber Company, was 30 feet 

in circumference and 150 feet long. 

dam. 

Fig.2.1 shows the details of the first 

Later this type of dam was widely used in the U.S.A. under the trade 

name "Fabridam" operating mostly under hydrostatic conditions (no-overflow). 

The dams were usually inflated with water. but sometimes inflated with air or 

water and air and deflated when not required. 

In Pakistan a fabridam was used in 1965 for diversion work (9) for an 

irrigation project to maintain the water level in a tunnel (see Fig.1.2). 

Unfortunately this installation failed after a short period of operation and 

it is believed that this resulted from the dam having operated most of the 

time under vibration conditions (14). 

In 1967 Schofield (15) suggested and carried out some tests on a model 

of a type of flexible wall to be used as a temporary flood controlling device 

for the river Thames. The main early use has been for flood control or 

irrigation purposes mainly in Australia, U.S.A. (16) and Hong Kong (17). 

2.2 Construction of Inflatable Prototype Structures. 

An inflatable dam is usually constructed from sheets of rubberised 

fabric folded in a tubular shape and fastened to a reinforced concrete slab 
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with structural steel members (18). clamps or anchor bolts either or both on 

the upstream and downstream sides. 

are: 

The main parts of an inflatable structure 

2.2.1 

1. The fabric material. 

2. The clamping system. 

3. The control system (for inflation and deflation). 

The fabric material. 

Usually the fabric material is constructed from high strength nylon. 

There are many different types of fabric available in the way of weaves. cord. 

counts, weight and breaking strength although other materials could replace 

nylon such as metal fabrics. 

The properties of materials that can be used are summarised in Table 2.1 

this list being prepared by Clare (14). Materials such as bolyl, rubber, 

Heoprene, Hypalon, polythene and p.v.c. have all been used successfully in 

marine environments. Neoprene compounds have proved to be the best type of 

coating and their weathering characteristics are excellent. The life 

expectancy of such materials has been determined to be in the region of 20 

years. Hypolon can be used as another coating on the Heoprene, since it has 

very good resistance to abrasion. 

2.2.2 The clamping systems. 

Inflatable fabric structures are usually fixed with either one or two 

ends restrained by means of anchor systems or clamped to a concrete slab. 

Fig.2.2 shows the anchor bolt designed by the Firestone Tyre and Rubber 

Company (19) which they used on the upstream side of a dam in a single anchor 

system. This study relates to dams fixed only on the upstream edge. One 

of the high elements of the cost of construction is the anchor system and also 

by constructing a single system of anchor bolts it will assist the fabric to 

settle on the base without causing any obstruction to the flow during the 

- 13 -
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deflation condition and minimise the risk of puncturing the fabric by parts 

of the downstream anchor system. The single system of anchors may help to 

increase the life of a fabric structure. Alternatively an upstream sheet 

attached to the dam and lying upstream can rely on the hydrostatic pressure 

to hold the dam in place although this is likely to be limited to small 

structures. 

2.2.3 The control operation system. 

The successful operation of an inflatable fabric structure depends on the 

pressure inflation and control devices consisting of,for a water inflated dam, 

a water level control system and for other types a pumping system for the 

inflation or deflation of the dam. 

The control system used on the water inflated Koombooloomba fabric dam 

(8) is illustrated in Fig.2.3A. This consisted of forming the main header 

pipe used for filling and emptying into a siphon at an elevation just above 

the slab and equivalent to the internal pressure in the bag when fully inflated. 

As the pressure inside the fabridam increased with rising head, water deflation 

commenced and proceeded by siphonic action. 

The controlling system used for the Los Angeles dam (1) (see Fig.2.1) 

incorporated automatic inflation and needed 10 mins. for complete deflation 

in the case of a flood. The system consisted of a siphon installed in a 

spreading basin channel and connected through an 18" pipe to water inside the 

dam which controlled the pressure. 

The practice used for the control operation system in the Mangala dam 

(9) is illustrated in Fig.2.3B and included pumps and valves for water and 

a blower for air was installed in the abutment of the weir~ the pumps 

could be used to inflate or deflate the bags. 

protection against over inflation of the bag. 

- 16 -
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2.3 Construction of Inflatable Model Structures. 

In many instances it is very important to study the problems of inflatable 

dams from model tests. Most previous work on inflatable dams has incorporated 

the construction and testing of models to check dam behaviour under different 

conditions. Baker (20) used a (1/20) scale sectional model 0.46 m wide to 

check the performance of the fabridam to be used in the Mangala Schemes» in 

Pakistan to maintain the water level in the diversion tunnels. 

The model used was of a total perimeter equal to 0.60 m and was clamped 

to the model concrete sill on two longitudinal lines of 0.16 m length. 

The ratio of the perimeter length to the nominal height was 4.9 and the 

ratio of the base length to the nominal height equal to 1.3. 

was a thin flexible rubberised cloth. 

The material used 

Shepherd (8) constructed a model for the Koombooloomba fabridam to check 

the general hydraulic behaviour and the stability of the fabridam extension 

when installed on the crest and to determine what effect the fabridam would 

have on the discharge characteristics of the dam and in particular the dis-

charge capacity. Two different materials were used» a lightweight uncoated 

nylon material and a nylon fabric coated with neoprene. 

Anwar (2)>> Kunihiro Owiwara (3)>> Stodulka (21)>> Clare (14) and Alwan (7) 

all built models to compare experimental results with their theoretical 

analyses for the profiles. 

A description of each of the above models is given in Table 2.2. 

2.4 Theoretical Analyses of Previous Investigators. 

A theoretical analysis technique was first published in 1967 by Anwar (2). 

The aim of this work was to determine the behaviour of the upstream and down­

stream faces of air and water inflated dams under hydrostatic conditions and 

also to consider the dynamic condition for an air inflated structure. The 

analysis required certain assumptions to be made in order to determine the 

- 18 -
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No. 

1 

2 

3 

4 

5 

Investigator 

Baker 

Shepherd 

Kunitiro 
Owiwara et ale 

Anwar 

Stodulka 

Table 2.2 

Type of 
Material 

Rubber and cloth 

1. Uncoated nylon 
2. Neoprene coated 

nylon 
Consists of two 
sheets of 0.01 
inside and covered 
by 0.05 vinyl 
sheet inside 
Coomercial 
polythene 
Nylon fabric 

Properties of Model Materials. 

Size of model 

width height perimeter 
(m) (m) (m) 

0.1587 0.122 0.5969 
0.2223 0.170 0.706 

0.061 0.03 -

0.4 - 0.5 

0.3-
0.61 0.23 -
0.305 0.305 0.965 

Thickness Weight Tensile Purpose of 
in 3 strength the 
om Kg/m KN/m Models 

1.58 - - Checking the 
following 

1.Discharge and U/S 
water level. 

2. Tension in the 
fabric. 

3. Shape of the dam. 
- 0.081 To test the 

0.221 operation of the 
Koombooloomba dam. 

To check the - - - theoretical 
analysis. 

1.927 To check the 
0.254 0.239 4.201 theoretical analysis 

- I 0.221 - .To check the 
theoretical analysis 

I .To investigate the 
I coefficient of 
! discharge 

Continued ...•.•. 
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I 

Table 2.2 Continued. 

i No. Investigator 

6 Clare 

7 A1wan 

1 

Type of 
Material width 

(m) 

1) Po1ythene 0.254 
2) Rubber 0.203 
3) Rubber insert 
4) Combination of 

rubber and 
rubber insert. 

5) Rubber backed 
canvas. 

N.T. Fabric 1.03 

Size of model Thickness Weight Tensile Purpose of the 
~n 3 strength Models 

height perimeter nun Kg/m KN/m 
(m) (m) 

0.156 1.016 0.254 3.854 1. To check the 
0.254 1.016 0.792 6.008 theoretical analysis 

0.695 6.739 2. To investigate 
the vibration of 
the dam. 
3. To investigate 

0.381 3.678 the coefficient of 
discharge. 

0.300 0.787 0.36 0.391 27.36 To check the 
theoretical analysis 



behaviour of the upstream and downstream faces of the dam. 

In 1970 Owiwara et a1. (3) also worked on the analysis of dam behaviour 

for both static and dynamic conditions for air and water inflated conditions. 

The result of the analysis was in the form of elliptic integrals for the 

static conditions, which is similar to Anawar analysis. 

Also in 1970 Harrison (4) developed a method based on a finite element 

technique to be used on dams under static condition and inflated by air or 

water or a combination of air and water. 

In 1972 Binnie (5) also analysed a dam under static conditions to find 

the relationship between the internal pressure, height, base width and 

length of the perimeter of the dam. 

Anwar method. 

This analysis was a development of the 

Parbery (6) published a paper concerning the analysis of an inflatable 

dam inflated by air or water, the analysis taking the form of differential 

equations. A numerical method was used to find the shape of the dam and 

tension in the membrane. In 1978 a paper published by Parbery (22) detailed 

the analysis of an inflatable dam under static loads for an air inflated 

condition, and the analysis was based on the approach of Binnie (5). 

These different analysis techniques are detailed in the following 

sections. 

2.4.1 Theoretical analysis of Anwar's method. 

Anwar worked out the theoretical shape of an inflatable dam in air 

inflated cases for both the no-overflow and overflow condition and for water 

inflated case for the no-overflow condition only. 

analysis required the following assumptions. 

In all these cases the 

1. A weightless material and constant tension along the membrane. 

2. The downstream head equal to zero. 

3. The membrane length and base length are ignored. 

- 21 -



4. The max~mum upstream head is equal to the max~mum height of 

the dam. 

5. The dam is constructed on a horizontal slab. 

On the basis of the above general assumptions the theoretical approach 

required specific assumptions depending on the specific inflation condition 

considered. 

2.4.1.1 Analysis under hydrostatic conditions. 

2.4.1.1.1 Air inflated structure. 

i) Tension in the membrane. 

Fig.2.4A represents the air inflated case under hydrostatic conditions. 

In this case Anwar considered the air pressure inside the dam is proportional 

to the maximum upstr~am head i.e. the maximum height of the dam ~ can be 

represented by the following equation 

PI - P2 = a: p g ~ 2.1 

where 

Pl -P2 
= internal pressure. 

a: = proportional factor. 

p = density of water. 

g = acceleration of gravity. 

~ = maximum height of dam. 

By assuming that the downstream face of che dam is a semi circular 

curve of a diameter equal to the maximum height of the dam (~) and assuming 

that the base length and perimeter have no effect, then the horizontal force 

T (Fig.2.4A) acting on the dam for a unit length can be shown to be equal to 

T = 2.2 

ii) Shape of the dam. 

The shape of the dam is represented by the profile of the membrane 

under the effect of the maximum upstream head, and internal pressure head. 

- 22 -
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Hence to find the profile of the dam, the profile equations are worked out 

separately for the upstream face and downstream face and depend mainly on 

the type of inflation fluid. 

a) Upstream face of the dam. 

From Fig.2.4A the upstream slope of the membrane at any arbitrary point 

(p) is represented by the following 

= 

Hp 

Vp = 

TanS = ~ Hp 

the membrane upstream slope. 

2.3 

horizontal component of the tension in the membrane 

per unit length at an arbitrary point (p). 

vertical component of the tension per unit length at 

at arbitrary point (p) 

The values of Hp and Vp at an arbitrary point (p) per unit length are 

given by 

H 
P 

1 = _ a: 

2 
212 

pg(~) + 2 pgy -« pg ~ y 

Vp = Pg J f(x) dx - « pg(~) X 

2.4 

2.5 

In which x, yare the co-ordinates of the point (p) and f(x) is an analytical 

function describing the shape of the dam. substituting equations 2.4 and 2.5 

into equation 2.3 gives the general equation of the shape of the upstream 

profile. 

x 
,. (.r,; {c;) !l_ ';J .fb (2 E l2" - F 2")- E (arc cos 1) 

lIn « , 

1 [arc cos (~- 1), ~]} 2.6 + - F 
F 2 

in which 

n = L 
l1> 
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where 

F, E are the elliptic integrals of the first and second kind 

respectively and F, E represent the complete elliptic 

integrals of the first and second kind respectively. 

b) Downstream face of the dam. 

The downstream profile for an air inflated dam with zero downstream 

head is a semi circle with a diameter equal to the maximum height of the dam 

as the tension is constant around the membrane as shown in Fig.2.4A. 

2.4.1.1.2 Water inflated structure. 

i) Tension. 

In order to find the tension in the membrane the following assumptions 

are made: 

1. The anchor point B in Fig.2.4B on the downstream face of the dam 

is higher than the upstream face anchor. 

2. The downstream face lays tangential to the horizontal base at (B). 

3. The differential pressure head is proportional to the maximum 

storage head, i.e. 

where 

h -

h ex H 
D 

differential pressure head. 

2.7 

On the basis of the above assumption the tension of the membrane can be 

calculated by taking the moment at (0,0), see Fig.2.4B and since the horizontal 

component of the water force is 

w = 1+2« 2 
-2- pg 11> 

and this force has a line of action equal to (~:~:) ~ 
above the base, then the tension at the top of the crest is 

T = 2 
pg 11> 
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ii) Shape of the dam. 

The shape of the dam represents the profiles of the upst~eam and down-

stream faces and these profiles are different from those of air inflated 

dams. 

a) Upstream profile. 

The differential equation for the upstream profile is obtained by using 

the same concept of that for an air inflated case. The horizontal and 

vertical components of the hydrostatic forces acting on an arbitrary point 

p in Fig.2.4B for a unit length are 

The shape 

H 
P 

v p 

at 

= 

= 

the 

tanS ;z 

1+3ex 2 
-6- pg(~) _ex pgy 

- expg (l1»x 

point (p) can be written as 

V - ex9g(l1»x 
-..£. = H ¥- pg(l1»2 p -ex pgy 

2.10 

2.11 

2.12 

The general solution of the above equation gives the shape of the upstream 

face and can be written as follows 

- n 2.13 

X 
E = ~ 

Equation (2.13) represents a circle with radius (1+3ex )/6 and is 

tangential to the x-axis at the origin. 

b) Downstream profile. 

The downstream profile is obtained from the following relationship: 

T = 2.14 

where T is the tension in the membrane as given in equation 2.2, P is the 
r 

pressure at an arbitrary point of the membrane on the downstream face and is 

given by: 
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as: 

where 

p 
r '" pg [(1+« ~ - y] 

R is the radius of curvature and is given in the form 

R '" 

2.15 

2.16 

Substituting T, P and R in equation 2.14, the solution may be written 
r 

E '"' 
x 
~ , a 1 

1+3« 
::a -6-

c5 • «2 - « - 1/3 

c5 

Substituting the above values in equation 2.16 and the following 

2.17 

equation can be derived 

2.18 

in which C
2 

is a constant of integration and F, E are the elliptic integrals 

of the first and second kind. 

2.4.1.2 Analysis under hydrodynamic conditions. 

The analysis of this condition by Anwar only applied when the dam was 

inflated with air and the main parameters studied were the tension and the 

shape of the profile. In his study the solution was idealized by considering 

that the fluid flow jetted off the crest as shown in Fig.2.4C. The theoret-

ica1 concept for finding the profile and tension are similar to the hydrostatic 

condition of an air inflated case (see Section 2.4.1.1.1) except that allowance 

is made in the analysis of the upstream profile for an approach velocity and 

higher static pressure due to an increased head. 
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2.4.2 Theoretical analysis of Kunihiro Owiwara et a1. 

In this section the investigation for both the theoretical and experi-

mental work for hydrostatic and dynamic conditions for both air and water 

inflated cases is given. 

2.4.2.1 Analysis under hydrostatic conditions. 

2.4.2.1.1 Air Inflated Structure. 

i) Tension in the membrane. 

The basic equation used to find the tension in the circumference of the 

dam is as follows (see Fig.2.5). 

T = (P.-P ) R (2.18) 
1 0 

P. = Internal pressure. 
1 

P = External pressure. 
0 

R = Radius of curvature as defined in equation 2.16. 

ii) Shape of the dam. 

a) Down stream face. 

The main equation used to find the shape of the down stream face of 

the dam is 

2 2 (2T ) (n l > + (e: 1) "" 
2pg~ 

(2.19) 

where 

b) Upstream face of the dam. 

The shape of the upstream face is derived using elliptic integrals of 

the first and second kind as in the Anwar results. The equation is as 

follows: 

rza { E [Ia , arc cos (1 
n1 

- E [ ra , 0) e:
2 "" - -)] "2 2 a. 

!F [10. , arc cos (1 
n1 + 1 F ra , 0] - -)] 2" (2.20) 2 2 a. 2 

- 28 -



HD 

FIG.(2-S) DAM ANALYSIS BY OWIWARA 

Upstream 
water head 

Membrane 
weight 

Downstream 
waterhead 

(A) Forces acting on the membrane for 

dam analysis by Harrison 

HJ 

Element J 

/ J-1 

(B) Forces acting on nodes 

FIG. (2-6) DAM ANALYSIS BY HARRISON 
20 



where F, E are both elliptic integrals of the first and second kind. 

2.4.2.1.2 Water Inflated Structure. 

For the water inflated condition the derived equations for the down 

stream and upstream profiles are worked out under different assumptions. 

These equations are different from the Anwar analysis, but the form of the 

downstream equation requires the use of elliptic integrals. 

2.4.2.2 Analysis under hydrodynamic conditions. 

The shape of the curved surface in the case with overflow has to be 

solved with relation to the internal and external pressure, but since the 

external pressure varies with the condition of flow, it is necessary to 

consider the effect of the flow on the dam. Hence the analysis considered 

separately the flow condition at the upstream and down stream faces. 

i) Upstream face. 

The analysis is similar to the previous analysis for static conditions 

for both air or water but the following additional assumptions are made. 

1. The specific energy is constant. 

2. The flow at all sections will be uniform. 

3. Ignore the friction along the membrane. 

4. Static water pressure only is operating. 

By making these assumptions the investigator found two equations for 

the profile for the upstream face for both air and water inflated cases. 

ii) Down stream face. 

In the downstream case the flow descending over the curved surface is 

subjected to both a centrifugal force and to the weight of the water. 

For the down stream face in the state of equilibrium the external force 

per unit length of the dam can be written as 
2 

- Po R de = p v
R 

R de h - pR de hg Sin e 
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Since the flow volume (q) at the central point on the dam is already known 

and can obtain, hence 

v = flow speed = q/h. 

q - flow per unit width. 

h = depth of flow on the down stream face. 

e = inclination of the membrane on the D/S face. 

R - radius of curvature. 

Two equations for the down stream profiles for air and water inflated 

conditions are found subject to the following assumptions: 

1. The flow speed over the dam surface will not vary greatly from the 

mean flow speed. 

2. The water depth on the dam surface is approximately constant. 

3. Compared with the centrifugal force the weight of water on the dam 

is negligible. 

2.4.3 Theoretical Analysis of Harrison's method. 

The theoretical method developed by Harrison (14) in 1970 allowed the 

upstream and downstream tension and the profile of the dam to be found. The 

method is applicable for structures inflated by air or water and is based on 

the following assumptions. 

1. The behaviour of the three dimensional structure can be represented 

reasonably by the behaviour of a two dimensional transverse section of unit 

width. 

2. The perimeter of the dam is composed of a finite number of small 

straight elements and loads act on the nodes of each element. 

Iu this analysis the weight of the material is considered and it is 

necessary to specify the perimeter length, base length together with the 

thickness and elastic modulus of the material. The loads acting on the dam 

are as shown in fig.2.6 and are upstream water head, internal pressure head, 

downstream water head and membrane weight. 
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2.4.3.1 Method of obtaining the profile and membrane tension. 

To obtain the profile and tension in the membrane, the profile is 

divided into n elements giving n+l nodes. The forces acting on a particular 

node are as shown in fig. 2.6. The tension and profile of the dam can be 

found by assuming initial values of tension and slope for the first element 

of the upstream face of the membrane. The loads acting on each node due to 

the hydrostatic pressure are calculated 1n order to find the tension in the 

element and the co-ordinates of the nodes. This procedure is followed 

around the whole membrane to find the shape of the dam. 

In some cases the co-ordinates of the last node do not coincide with 

co-ordinates of the downstream anchor point. The procedure for determining 

the co-ordinate of the nodes of the profile, therefore needs to be repeated 

with adjusted values of initial tension and slope for the first element to 

eliminate this mis-close. 

A development of the above technique as detailed in Chapter 4 is used 

for the conditions of one end fixed used in this work. 

2.4.4 Theoretical analysis of Binnie's method. 

Binnie (5) in 1972 analysed a dam inflated by water and derived a 

relationship between the internal pressure and the height of the dam, the 

base width and the length of the curved perimeter of the dam were considered, 

while the ends effects were ignored. This analysis was based on the distortion 

of a strut into a curve known as the elastica (23). 

2.4.4.1 Shape of the Dam. 

a. Downstream profile analysis. 

From the expression of radial equilibrium, see fig.2.7 

,. (H-g) ds 2.22 

where 

T' 
pg T' equals the tension in the membrane . -

H - pressure head in base of dam. 

- 32 -



HO 

y 

y 

U/S 

HO 

FIG. (2-7) DAM ANALYSIS OF BINNIE 

u/S 

y 

\-

Air 
p 

Water 

.. I 
B 

.-x 

(A) Dam analysis of Parbery 

y 

w ds 

x node n 

H 

x 

Dis 

Inflation fluid 

(B) Load on element (C) Analysis method 

FIG. (2- 8) PARBERY'S ANALYSIS OF A DAM UNDER 

HY DROSTATIC CONDITIONS 

- 33 -

node 
(n+2) 

x 



The expression of the downstream profile is 

= 2.23 

where 

F and E are the elliptic integrals of first and second kind respectively 

and K and Ware constant. To simplify the equation, K and ware related by 

the expression 

K 

and K sin W 

where 

2 cj> l! 
cos 2' 

e 
cos '2 

cj> is the downstream fabric angle at the anchor point 

e is the slope of the fabric on the downstream side. 

From fig.2.7 

At point A e .. cj>, W ,., 
Wo 

K sin Wo .. cos cj>!2 

At point B 

e .. 0, W = WI 

K sin IjI .. I 

where 

W is defined in equation (2.25) 

Wo - value of W at downstream toe 

WI = value of W at crest. 

The ordinates of this curve are given by the fo 11 owing expression 

~!T = 2K (cos W - cos ~) 
0 

2.24 

2.25 

2.26 

2.27 

2.28 

and the expression which gives the length of the membrane on the downstream 

side is 
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( 1 

lJio 

The pressure head was written in the following form 

HIT = 2K cos lJi 
o 

2.29 

2.30 

Equations 2.28 and 2.30 are plotted for different values of (K) downstream 

anchor slope (lJi ) as shown in fig.2.9. 
o 

Values of K should be greater than 1.0 

(i.e. transformation to modulus of elliptics integrals should be done from 

greater than one to less than one). 

The length of the downstream base is given by the following equation 

2.31 

where F, E are the elliptic integrals of the first and second kind. 

b) Upstream face of the dam. 

The equation for the upstream side is an arc of constant radius because 

of the constant pressure difference (H-~) and is given by 

R .. dS 
- de 2.32 

From equation 2.22 and 2.32 the radius of the upstream face can be 

written as 

T H 
R .. T - -T 

The length of the curve Be, see fig.2.7, is given by 

where 

cos B 
R - Ii> 

R 

and the base length of the upstream side is given by 

Xl R. 
1: a lT sin B 
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2.4.5 Theoretical analysis of Clare's Method. 

The analysis carried out by Clare (14) on a series of model tests to 

compare the mathematical analysis for the shape of the water inflated fabric 

tube with the experimental profiles. The mathematical analysis was almost 

similar to Binnie (5) approach. Clare investigated the Mangela dam failure 

by constructing a model dam to observe the behaviour for different operating 

characteristics. 

2.4.6 Theoretical analysis of Parbery's Method. 

In 1977 Parbery (6 ) derived a differential equation for the equilibrium 

of an inflatable structure the method dealing with the analysis of air, water 

and (air + water) inflation conditions under hydrostatic states. The 

analyses allowed determination of the tension and the shape of the dam profile. 

2.4.6.1 Method of analysis. 

The analysis is carried out on a membrane divided into n straight elements 

givine (n+l) nodes. The resultant forces acting on each element due to 

internal and external pressures are determined in order to calculate the 

tension and slope of the first element as shown in fig.2.8. 

For loads acting on the elemental strip ds' of unit width, where p is 

the resultant internal pressure and T is the tension per unit width (assuming 

forces in the tangential direction) then 

where s' is the 

and dy/ds = 

hence 

where 
T -
T -0 

dT 
ds' - w sin ~ 

distance along the perimeter in the loaded 

sin ~ 

T = T +~ ..... 
0 

tension in the membrane per unit width. 

T(O) initial tension in the membrane of the 

(upstream anchor). 
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w = weight of the membrane per unit area. 

y = co-ordinate position. 

The initial tension and slope of the first element are calculated from 

a set of differential equations and by assuming the behaviour of the stress 

strain relationship of the membrane to be linear. 

The differential equations of equilibrium are: 

d4> f (p - w cos </» = ds' T+wy 
0 

2.40 

dx = f cos 4> ds' 2.41 

21. 
ds' = f s~n </> 2.42 

with boundary conditions 

x(O) = x(O) = 0 2.43 

x(L) = B, y(L) = 0 ..... 2.44 

where 

= inclination of the tangent in the Sl direction to the 

horizontal (see fig.2.B). 

s' = the length along the unstretched perimeter. 

f = extension ratio of the membrane under load. 

p = resultant of internal pressure. 

x. y co-ordinates of an arbitrary point on the profile. 

Equations 2.40, 2.41 and 2.42 are solved by using the Runge-Kutta method 

with estimated values of ,(0) and which can be refined by using the Newton-

Raphson method. 

If the membrane is assumed weightless and inextensible and the pressure 

is assumed constant, equation 2.40 will represent the arc of a circle the 

co-ordinates of the points on the profile are given by 
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where 

x 

y 

= R. {cos 

,. R. {sin 

eo 
1. 

,.. 

= 

eo 
1. 

eo 
1. 

2 
[2 _.2..(~) +E!! sin eo} 

12 T T 1. 

7 
2 

[2 - 12 
(Fl!) _ .El! cos So} 

T T 1. 

slope of element. 

length of element. 

2.4.7 Theoretical analysis of Alwan's Method. 

2.45 

2.46 

In 1979 Alwan (7) studied the inflatable dam for different inflation 

fluids and under static and dynamic cases. This study was carried out to 

analyse a dam with two ends fixed by developing the Harrison method. 

The developed method considered the variation of the stress-strain relationship 

as non-linear and the length of the membrane was designed for a particular dam 

by assuming a constant radius of curvature in the upstream and downstream face. 

2.5 Comparison of different analysis techniques. 

The comparison of the different methods of previous investigators can 

be made under three main headings. 

1. Condition of flow (static or dynamic). 

2. Type of inflation fluid. 

3. Design considerations and assumptions. 

On the basis of the above points, table 2.3 is produced to show the 

comparison of the different methods of analysis by the different investigators. 

In addition to the difference between the techniques shown in table 2.3, 

additional comments are presented according to the type of inflation fluid. 

1. Water inflated condition. 

Analysis techniques developed by Anwar, Kunihiro et al. and Binnie all 

given the upstream face of the dam is part of a circle, but the downstream face 

is related to the elliptic integrals and each method gives a profile. 

In the Binnie analysis the results of the modulus of the elliptic 

integrals is greater than one whereas normally it should be less than one and 
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Table 2.3 

No. I Condition I Anwar R.O. Kunihiro Owiwora 
et ale 

1 2 

I Condition 1. Static 1. Static 
of Flow 2. Dynamic 2. Dynamic 

2 Type of 1. Water 1. Water 
• I Inflation 2. Air 2. Air 

Fluid 
Design 1. Weightless 1. Weightless 

3. I consider- material. material 
ations 2. Constant 2. Constant 
and tension. tension. 
assumptions 3. No res- 3. Consider the 

triction base and length 
of the base of membrane. 

~ 
length 4. Upstream head 

0 I 4. Upstream equal to the 
head equal max. height of 
to the max. the dam. 
height of 5. Downstream head 
the dam. equal to zero. 

5. Downstream 6. Stress-strain 
head equal relationship is 
to zero. not considered. 

6. Stress-strain 
relationship 
is not 
considered. 

Comparison of Previous Works. 

H.B. Harrison A.M. Binnie and 
Clare 

3 4 

Static Static 

1. Water Water 
2. (Air + 

Water) 
1. Consider the I.Weightless 

weight and material. 
thickness of 2.Constant 
the material tension along 

2. Tension is the membrane 
not constant 3.Upstream head 
along the equal to max. 
membrane. height of the 

3. The upstream dam. 
head is not 4.Downstream head 
necessarily equal to zero. 
equal to the 5.Base length and 
max.height of length of peri-
the dam. meter is 

4. Downstream considered. 
head may 6.Stress-strain 
equal to zero relationship is 
or greater not considered. 
than zero, 

5. Base length 
and perimeter 
length is 
considered. 

6. Stress-strain 
Relationship 
have been 
considered. 

I R.D. Parbery 

5 

Static 

1. Air 
2. Air + 

Water 
1. Weightless 

material. 
2. Constant 

tension along 
the membrane 

3. Upstream head 
less than the 
max.height of 
the dam. 

4. Downstream 
head may equal 
to zero or 
greater than 
zero. 

5. Base length 
and total 

_ length have 
been 
considered. 

6.Stress-strain 
relationship 
have been 
considered 

A.D. Alwan 

6 

1. Static 
2. Dynamic 
1. Air 
2. Water 
3. Air + Water 
1.Consider the weight 

and thickness of the 
material. 

2.Tension is not 
constant along the 
membrane. 

3.The upstream head is 
not necessarily equal 
to the max.height of 
the dam. 

4.Downstream head may 
equal to zero or 
greater than zero. 

5.Base length and peri­
meter length is 
considered. 

6.Stress-strain relat-
ionship have been 
considered. 



in this case it is necessary to use spacial inversion formula (24) to 

transfer the value of the modulus of elliptic integrals to less than one. 

2. Air inflated condition. 

In the case of air inflated dams the results of Anwar, Kunihiro et ale 

and Parbery all give the shape of the upstream face as related to the elliptic 

integrals but the downstream face with zero downstream head is part of a 

circle. They give formulae in different forms. 

In the case of dynamic condition both Anwar and Kunihiro have worked out 

the shape of the dam for air inflated dams but the results are different. 

The Harrison and Alwan methods use a different approach by using the 

finite element technique to find the profile of the dam by considering the 

weight and thickness of the material. The analysis is achieved by a computer 

program the main output are tension, slopes and cross-sectional profile of 

the membrane. 

2.6 Developing a new technique of analysis. 

All previous work has related to double anchor systems whereas in this 

study a new technique based on the Harrison technique is developed applicable 

to a single anchor system. 

1. The dam is considered to be fixed at one end only at the upstream 

face of the dam. 

2. The effect of silt pressure on the upstream face of the dam is 

considered. 

3. A non-linear relationship in the stress-strain relationship of the 

material is allowed. 

4. The analysis applies to both hydrostatic and hydrodynamic conditions. 

In this analysis the length of the membrane is designed according to 

different proportional factors whereas in the Harrison method the length of the 

membrane is assumed or uses the trial and error method to select a certain 

length to satisfy the other parameters (Le., upstream head,internal . .ru:..~ssJ1re .. 

downstream head). 
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CHAPTER 3. 

EXPERIMENTAL WORK FOR STATIC CONDITIONS. 

3.1 Introduction. 

The object of the experimental work is to check the behaviour of the 

inflatable structure as given by the theoretical calculations, and to verify 

the design technique as realistic. 

The maximum size of the mode used was limited by the maximum upstream head 

that could be contained within the tank used for the test. The details of the 

calculations for the length of the material to give this size of dam are given 

in Chapter 8. 

Dams using inflation fluids of water, air and a combination of both were 

tested although the initial design was based on a water inflated dam. 

The maximum upstream head for static conditions was 0.230 m for a maximum 

proportional factor equal to 2.5 and the length of material for this dam was 

0.80 m. Different lengths were used to determine patterns of behaviour and 

different materials used to assess the significance of material properties. 

A detailed description of the construction of the models and inflation 

apparatus is given in this chapter. A technique for measuring the cross 

sectional profile is also detailed in this chapter. This allowed a comparison 

of the measured profiles with those obtained from the computer program as 

described in Chapter 6. 

3.2.1 Model Tank. 

A rectangular tank in which the inflatable models were installed was 

4267 mm long x 1030 mm wide x 380 mm deep constructed from 10 mm thick clear 

perspex. The tank incorporated a 12.5 mm thick perspex hinged gate for 

controlling the down stream level below the model. The flow from the tank 

passed into a rectangular galvanized steel channel, 220 mm wide and 250 mm deep 

with a rectangular sharp crested weir installed at the downstream end to allow 
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flow measurement for the tests in the hydrodynamic condition. The weir was 

calibrated by the volumetric method by collecting known volumes in known time 

in a tank 3040 mm long x 1219 mm wide x 711 mm deep. 

The water supply system was completely self contained and was circulated 

by a centrifugal pump of 30 tis maximum flow rate supplied to the tank through 

a 100 mm diameter delivery pipe which divided into two 50 mm diameter flexible 

pipes feeding the upstream end of the tank. The details of this arrangement 

are shown in fig. 3.1 and fig. 3.2A. 

3.2.2 Air Inflation Apparatus. 

The apparatus used for air inflation of the dams is shown in fig.3.2B 

and 3.3B. 

The air lines system was connected to the model structures by 8 mm plastic 

pipe into the upstream face of the dam on the lower side. The pipe was kept 

loose in the vicinity of the model dam in order to minimize any effect the 

pipe may have on the dam. 

The air was supplied from an existing laboratory compressed air supply 

2 
system with a maximum air pressure of 10.0 KN/m • 

Referring to figs. 3.2B and 3.3B the apparatus consisted of the following 

items: 

Valve No.1. 

Valve No.2. 

Valve No.3. 

Valve No.4. 

Valve No.5. 

Valve No.6. 

main valve used as an initial control of the air pressure 

from the compressor to the apparatus. 

coarse pressure control. 

used to release air from the system (safety valve). 

fine pressure control valve. 

control valve to isolate the gauges from the model dam 

under test. 

used to isolate the air pressure inside the model from 

the apparatus system. 
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Valve No.7. 

Valve No.8. 

Valve No.9. 

3.2.2.1 

coarse pressure control valve for air pressure inside 

the model. 

fine pressure control valve for air pressure. 

valve used to prevent high air pressures removing the 

water from the manometer. 

Operation of air inflation system. 

The sequence of operation for inflating a model using this air system 

was as follows: 

1. Before starting the inflation procedure all valves in the system were 

closed. 

2. Open valves 7, 8 and 9 in order to release the air inside the 

manometer and to adjust the U-tube manometer to atmospheric pressure. 

3. Close valves 7, 8 and 9. 

4. Open coarse pressure control valve No.2, then Valve No. 1 and in 

this case it was necessary to open the fine control valve No.4 until the dial 

gauge read 2.2 bars and then by this arrangement the air started to inflate the 

model. 

5. By opening valves 5 and 6 this allowed the air to pass through the 

plastic pipe to inflate the model dam until a required pressure was reached 

and then valve 5 was closed. 

6. To read the pressure head inside the dam valve No.9 was opened and 

the air pressure registered on the U-tube manometer and the difference in 

level in the tubes could be used to determine the pressure head. 

7. To lower the pressure inside the dam, valve No.7 was opened and by 

using the fine pressure control valve No. 8 to release air from inside the 

model, the pressure could be reduced down to the required level. 

A second system of control valves was placed near the dam to allow 

variations in the type of inflation fluid (i.e. air or water) in the dam. This 

system shown in fig. 3.2C and fig.3.4 consisted of the following parts: 
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a. main control valve in the dam, 

b. control valve for air inflation, 

c. control valve for water inflation, 

d. valve to pressure transducer, 

e. deflation valve. 

3.2.3 Water Inflation Apparatus. 

A column 200 mm in diameter by 1500 mm high made of plastic was used to 

create a water inflation system. Two piezometer tubes were connected to this 

column one to measure the pressure head inside the model structure and the 

other to measure the depth of water inside the column. Two valves were attached 

to the bottom of the column, one to supply the model structure with water 

(valve f, fig.3.3A) and the second valve (g) to lower the water or to drain the 

column. The arrangement is illustrated in figs. 3.2D and 3.3A. 

3.2.3.1 Operation of the water inflation apparatus. 

In order to inflate a model structure with water, it was necessary to use 

the water column and control valves as shown in figs. 3.2D, 3.3A and 3.4 in the 

following way. 

1. The bleed valve in the model dam was opened so that any air inside 

the dam was removed. 

2. Close valves d, b, and e (fig.3.4) and open valves a and c. 

3. Open valve f (fig.3.3A); this allowed water inflation to commence. 

4. When the pressure head reached approximately the required value: 

the bleed valve was closed and then continued inflation of the dam with water 

was made until the required pressure was reached, then valve (f) was closed, 

and pressure head in the model dam measured from the piezometer on the column. 

3.2.4 Depth and Profile Gauges. 

3.2.4.1 Point gauges. 

Two point gauges were installed in the test tank as shown in fig. 3.1, 

one 600 mm from the upstream face of the dam model and the other 450 mm down 

stream of the down stream edge of the base. 
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A third point gauge was used in the volumetric tank to measure the depth 

of water in this tank during the calibration of the rectangular weir. The 

accuracy of all point gauge measurements was within ± 0.5 mm. 

3.2.4.2 Profile gauge. 

The profile gauge was used to measure the profile of the dam and was 

constructed so that measurements could be both round a profile and transversely 

along the model. The range of movement of the gauge across the dam was 637 mm. 

Fig.3.4 illustrates the profile gauge and the technique of the measurement is 

explained in detail in Sec. 3.6.1. This gauge consisted of three arms, the 

vertical arm was used to measure the crest profile, the short horizontal arm to 

measure the profile of the upstream face of the dam and the long horizontal 

arm to measure the profile of the downstream face of the model. 

of measurements using this gauge was within ± 0.1 mm. 

3.3 Model Materials. 

The accuracy 

One aim of this study was to use different types of material to ascertain 

material property significance in the behaviour of a dam. The main parameters 

in the selection of the type of material were high tensile strength and high 

flexibility. Any difficulties with materials used in models constructed by 

other workers are not detailed by them. It was therefore necessary to contact 

a number of manufacturers to find suitable materials, and the following 

materials were eventually selected. 

1. N.T. Fabric. This material was available from "Flexible Structure 

Ltd." Company (25) and had been used by the company for dams comprising a 

water filled tube clamped to a concrete foundation for raising the level of 

river water during drought conditions. 

2. 'Story Butylite'. This material was suggested by Butyl Products 

Limited (26), the recommendation being based on the fact that it was a high 

quality synthetic rubber membrane manufactured under static test control 
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conditions to ensure reliable performance and life expectancy. The manufacturers 

maintained that it has excellent weathering, water and chemical resistance in 

addition to elastic recovery, puncture resistance, and a wide temperature range 

for practical application (i.e. 40
0
C to l40oC). and this material was considered 

suitable for the fabrication of dams. 

For this study only these two materials were used although other materials 

were suggested by manufacturers but were considered unsuitable because of high 

elongation of the material, low flexibility and low tensile strength. 

3.3.1 Properties of the materials. 

The properties of the materials selected and used ~n this study are g~ven 

in table 3.1. 

Table 3.1 Material properties. 

Type Materials Thickness Weight Tensile Max. 
mm 2 strength breaking Kg/m (KN/m) load 

(KN) 

I N.T. Fabric 0.36 0.391 29.20 0.73 

II Butylite 0.455 0.502 26.0 0.65 

In order to find the stress-strain relationship tests of the tensile strength 

according to B.S. 3424. 3411, 2576 (27.28,29) were carried out by taking several 

specimens 25 mm wide x 200 rom long from different positions of the fabric material 

and testing these in a tensometer machine as shown in fig.3.5. 

carried out at normal room temperature in the range" (10-250 C). 

The tests were 

The measurements 

made were the elongations of the material for a series of load increments up to 

failure of the strip. 

The results of these tests were analysed using a least square polynomial 

method to find the relationship between the stress and strain. An existing 
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computer program was used to fit the data and the results of the polynomial 

curve fitting show that the relationship is described by a third degree poly-

nomial and the appropriate coefficients are given in table 3.2. 

Fig.3.6 and 3.7 show the stress-strain relationship for the materials 

Type I and Type II. The form of the equation obtained by the polynomial 

fitting method is as follows: 

where 

= 

ilL 

L = 

CJ = 

= 

strain in the fabric ilL 
=-

L 

elongation of the fabric. 

original length of the fabric strip m. 

stress in the fabric (KN/m2) 

polynomial coefficients. 

3.1 

Table 3.2 Coefficients polynomial curve fitting. 

Type Materials Cl C2 
C

3 C4 

I N.T. Fabric O.40638E-02 O.85447E-05 -O.11483E-09 O.66118E-15 

II Butylite O.34260E-02 O.85838E-05 -O.12976E-09 O.82579E-15 

3.4 Model Design. 

The length of the material required for the model dam was determined 

according to the theoretical analysis as detailed in Chapter 8 and was based 

on the following considerations. 

1. Upstream head equal to the maximum height of the dam. 

2. Downstream head equal to zero. 

3. Inflation fluid used is water. 
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From these considerations the maximum U/S head of the model dam was equal to 

0.230 and maximum pressure head equal to 0.80 m for a maximum proportional 

factor equal to 2.5. The minimum total length of the membrane was found 

equal to 0.80 m including the minimum base length of the membrane equal to 

0.126 m. 

As shown in Chapter 8 the length of the dam membrane is initially 

calculated by ignoring the weight and thickness of the membrane and by consider-

lng a constant tension along the membrane. Once the initial length is found 

the dam is then analysed by using the program (IHSIP) to find the maximum 

height of dam for the maximum upstream head used and considering the weight and 

thickness of the material. Fig.3.B illustrates the output of the program 

(IHSIP) for minimum and maximum proportional factors (1.0-2.5) for a dam 

inflated with water. 

3.5 Construction of the Dam Model. 

The basic components of a dam model are as follows: 

1. Bag construction. 

2. Base of the model. 

3. Anchoring arrangement. 

4. Inflation technique. 

5. End constraints. 

The details of the above components are explained in the following sections. 

3.5.1 Bag construction. 

The same technique applied for both the materials used. A dam was 

constructed by cutting a single rectangular sheet of length 1500 rom (Sec.5.3.5) 

but the width of the sheet varied depending on the storage head (maximum upstream 

head). 

The single rectangular sheet was punched with two 14 rom holes, one 

located at a distance of 275 rom from the side of the sheet. An internal 
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threaded brass tube of 13 mm outside diameter and sealed with a washer in 

order to allow the connection of the inflation pipe to the model was fastened 

through this hole. 

The second hole was located on the crest of the dam near the side of the 

tank. This hole contained the bleed valve. Fig.3.9 illustrates the details 

of a single sheet for model construction. 

Sealing of the bag was achieved by using an adhesive glue material 

"Dunlop 1310". The overlap required was found to be 25 mm from a series of 

tests on the tensile strength of 10, 15 and 25 mm overlaps. The 25 mm overlap 

gave a bond strength equal to 2.5 KN/m. 

15 mm wide strips of silver foil were fixed at distances of 360 and 750 mm 

from the side of the bag around the profile before fixing the dam in the test 

tank. These silver foil strips were used in the measurement of the profile of 

the dam. The procedure for the sealing of a bag is described below and 

illustrated in figs. 3.9 and 3.10. 

1. Cut the sheet according to the design dimensions and punch the 

required holes for the outlet and inlet pipes. 

2. Seal the side AB (fig. 3.9 and fig. 3.l0B) to side CD to form a tube. 

3. Seal the side AC of the tube. 

4. Fit the bleed valve and the inlet valve. 

5. Seal the side BD of the tube. 

6. Fix the silver foil strips around the tube. 

At this stage the tube dam was ready for fixing in the test tank and the 

inlet pipe (for air or water) was connected to the dam. 

3.5.2 Base of the model. 

The model dam was anchored at one edge of a perspex base 12.5 lIII1 deep 

x 325 mm long which was of sufficient length to allow the dam to spread on the 

base under pressures or even in the deflation condition. 

the details of the base of the model. 
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3.5.3 Anchoring arrangement. 

Anchoring of the bag to the base was achieved by clamping the 30 mm 

flaps between the upstream edge of the base and a perspex strip 8 mm thick 

along the transverse length of the dam (width of the test tank). 

The clamping system consisted of 27 bolts at 40 mm centers along the 

edge. The 7 mm bolts were inserted through 7 rom diameter holes in the perspex 

strip. An illustration of this arrangement is given in fig.3.9. 

3.5.4 Inflation Technique. 

The inflation of the model was either by water» air or a combination of 

both (air + water). 

Inflation by air was made by connecting the valve b (see fig.3.4) with 

valve No.6 in the air apparatus system (see fig.3.3.B), with an 8 rom diameter 

nylon pipe. Air was supplied from the air compressor to the air control 

system and then to the controlling valve (fig.3.4) by adopting the sequence of 

valve operations described in Section 3.2.2.1. 

In the case of water inflation, the model was supplied with water through 

the valve c and by opening valve f in the water column (see fig.3.3A). Again 

the sequence of valve operations has been detailed in Section 3.2.3.1. 

Inflation by both air and water was achieved by using the procedure for 

water inflation to inflate the model to the required internal depth, then 

inflating the model with air with the same procedure for an air inflated model 

and then measuring and adjusting the pressure head using the peizometer and 

valves on the water column. 

A pressure transducer was connected to valve (d) and connected to the 

data logger and thus was also used to measure the pressures in the dam 

especially in the case of a small change in the pressure inside the dam. The 

pressure transducer was used especially for the dynamic conditions when the 
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changes of the pressure inside the dam cannot find it by the manometer 

reading. The pressure transducer registered the reading on the data logger. 

The detail of using the pressure transducer is shown in Chapter 5. 

3.5.5 End Constraints. 

In order to keep the dam stable under different inflation fluids, the 

ends of the dam were made with extra width that was folded inside the dam during 

the inflation. 

The folded length (extra width) was chosen by trying different folded 

lengths in order to find the most suitable length to give minimum leakage of 

water at the ends and for the dam to be stable during the operation. 

It was found experimentally that the best folded length was equal to 

1/4 the width of the dam on each side. 

Hence the width of the fabric wf which can be used to build a dam in a 

particular channel of width b is: 

= b + 2 } b 

= 1.5 b 3.2 

3.6 Testing of a Model. 

The purpose of the model tests was to check the theoretical work and 

prediction of the behaviour of an inflatable dam. 

For the three different inflation conditions, three dams all of the same 

size were built and three dams of different sizes were also built for each 

condition of inflation to avoid using a particular dam again after elongation 

had occurred when high pressures had been applied. 

The series of tests were divided into three parts for each type of 

inflation fluid for the total length equal to 0.80 m those covering low pressures 

(low proportional factor), medium pressures and high pressures (high proportional 

factor). 
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For water inflated dams, the tests were carried out from a lowest 

pressure of 370 mm to a highest pressure equal to 800 mm and with the downstream 

heads equal to 0.0,0.1 m. The test program is shown in table 3.3. 

Air inflated dams were tested under pressures from a lowest pressure of 

2 2 2.8 KN/m to a highest pressure equal to 5.73 KN/m for the downstream heads 

equal to 0 and 0.1 m. Details of the test program are shown in table 3.4. 

Similar tests were done for the (air + water) inflated dam under a 

lowest pressure of 1.5 KN/m2 to a highest pressure equal to 3.96 KN/m2 by 

keeping the depth of water inside the dam equal to 0.158 m. The tests were 

carried out for the downstream heads equal to 0.0, 0.04, 0.1 m. The details 

of the tests are given in table 3.5. 

3.6.1 Profile Measuring Technique. 

The profiles of the inflatable models were measured using a profile 

point gauge as illustrated in fig.3.ll. A small test meter was connected 

with the dam so that when the profile point gauge came into contact with the 

silver foil, the test meter indicated a full deflection, and from this 

indication, the reading of the dam profile can be taken. 

3.6.1.1 Procedure for measuring a profile. 

1. Place the point profile gauge at point A as illustrated in fig.3.ll 

so that the initial reading of the horizontal and vertical co-ordinate can be 

taken. (In this arrangement the initial readings were 0.0 and 180 mm for 

the vertical and horizontal co-ordinates respectively.) 

2. Inflate the dam with a particular pressure head for a certain type 

of fluid and readings of the profile of the upstream side were taken by 

raising the point gauge every 20 mm using the short pin arm at position (1) 

as illustrated in fig.3.ll. 
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3. Readings of the crest profile were taken by uS1ng the vertical pin 

arm as shown in fig.3.ll, position 2. 

4. Profile measurements of the downstream side of the model dam were 

taken by using the long pin arm by lowering the point profile gauge every 

20 mm and this technique is shown in fig.3.ll at position 3. 

3.6.1.2 Correction to the measurement of the profiles. 

The readings recorded from the profile measurements were not the actual 

co-ordinates of the dam profile as a correction was necessary because of the 

measurement system. This correction depended on the length of the pins arms 

of the profile point gauge and the origin of the point gauge with respect to 

the horizontal scale. The procedure for correction is described below. 

a) Upstream face of the dam. 

When the location of the profile point gauge was at position (1) as shown in 

fig.3.ll the correction was as follows: 

(1) The origin reading (180 mm) was subtracted from each horizontal 

reading (this applied to all conditions). 

(2) The length of the short arm pin (32 mm) was then added to the value 

obtained from (1) to give the correct co-ordinate. 

b) Crest face of the dam. 

When the location of the profile point gauge was at position (2), fig.3.ll, 

the correction was made by subtracting the origin reading from each horizontal 

x - co-ordinate, while the vertical y - co-ordinate measured by using the 

vertical pin arm remain unchanged. 

c) Downstream face of the dam. 

When the location of the profile point gauge was at position (3), fig.3.ll, 

the correction could be made by (1) subtracting the origin x - co-ordinate 

(180 mm) from each horizontal x - co-ordinate as before and (2) subtracting 

the.long pin arm length equal to 108 mm from the value from (1) to give the 

correct x co-ordinate. 
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After the corrections had been made to measured points, dam profiles 

could be plotted. A computer program (EW) was used to plot the profiles 

determined in the experimental investigation. 

The accuracy of the measurements was within ± 0.1 mm for the vertical 

reading and within ± 0.5 mm for the horizontal scale reading. The greater 

accuracy for the vertical reading was due to using the additional vernier 

scale attached to the profile point gauge. This increased accuracy was 

desirable because when the dam was inflated with high pressure and under over-

flow condition, the changes in the profiles were very small and the accuracy 

of the vertical gauge allowed measurement of these small changes in the profiles. 

3.6.2 Water Inflated Models. 

Six models of water inflated dams were built as detailed in table 3.3. 

Three were for tests on membranes of length equal to 800 mm and the other three 

on membrane lengths of 500, 600, 1000 mm. 

Table 3.3 Tests of water inflated models. 

Max. Water Total 

Model Test Proportional l~/s head DIS head 
pressure length 

head (nun) 
No. No. factor (mm) (mm) 

(nun) 

1 1.0 188 0.0 ')7') 800 1 
oJloJ 

2 1.2 200 0.0 430 800 

2 
3 1.6 216 0.0 560 800 
4 2.5 230 0.0 800 800 

3 
5 1.0 188 100 370 800 
6 1.6 216 100 560 800 

4 7 1.5 131 0.0 320 500 
5 8 1.2 148 0.0 320 600 
6 9 1.0 236 0.0 467 1000 . 

Profiles of all the dam models were measured experimentally and examples of 

the typical profiles are illustrated in fig.3.l2 for pressures equal to 370 rom 

and 560 mm under maximum upstream heads of 188 nun and 216 mm respectively with 

downstream head equal to zero. 
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It was observed that with the pressure equal to 370 mm the dam was in 

a condition with minimum leakage of water at the ends of the dam. For 

pressure heads greater than this value the effect of any minor distortion was 

diminished as the dam became more rigid. Fig.3.l3 shows the model of a 

water inflated dam under test, while fig.3.l4 shows the condition of a deflated 

dam with gradually decreasing height and water falling over the crest. 

3.6.3 Air Inflated Models. 

Six models were made and tested under different pressure heads and maximum 

upstream heads (i.e. different proportional factors). The test program was 

as shown in table 3.4. 

Table 3.4 Tests of Air Inflated Models. 

Model Test Proportional 
Max.U/S Dis head Air Length of 

head membrane 
No. No. factor (mm) pressure 

(mm) 
KN/m2 (nun) 

1 1 0.4 241 0.0 3.40 800 
2 0.75 252 0.0 4.42 800 
3 0.8 254 0.0 4.56 800 

2 4 1.0 257 0.0 3.15 800 
5 1.1 258 0.0 3.43 800 

3 6 0.4 242 100 3.40 800 
7 0.8 254 100 4.36 800 
8 1.1 259 100 5.40 800 

4 9 0.8 160 0.0 2.85 500 
5 10 0.8 190 0.0 3.42 600 
6 11 0.8 222 0.0 4.00 700 

Tests were carried out on three models with a membrane length equal to 800 

nun and three with lengths of SOD, 600, 700 mm respe~tively. 

For all models the profiles were measured and then plotted using the 

computer program (EW). An example of such experimental plots is shown in 

2 
fig.3.15 for pressures equal to 3.4 and 5.4 KNlm . 

Below a proportional factor of 0.4 the internal air pressure was not 

sufficient to eliminate significant distortion and leakage took place but as the 
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air pressure increased the dam became more rigid and for a proportional factor 

greater than 1.2 distortion was eliminated altogether under maximum upstream 

head. 

Fig.3.l6 illustrates the laboratory test of an air inflated model for a 

2 pressure equal to 5.286 KN/m • 

During deflation all dams deflated gradually resulting 1n a v-notch 

developing on one side of the dam. This resulted from the upstream head 

acting on the internal air pressure during deflation in addition to deflation 

that would occur just by opening the release valve without any upstream head. 

The v-notch probably occurred on one side rather than the centre of the dam 

as a result of non-symmetry in the construction of the model and unequal end 

effects. 

An illustration of a deflation effect is shown in sequence in fig.3.l7. 

3.6.4 (Air + Water) Inflated Models. 

The tes~for (air + water) models were carried out on six dams with the total 

length of membrane equal to 800 mm for three models and three with the lengths of 

membrane equal to 500, 600, 700 mm. The details of the tests are given in 

table 3.5. 

Table 3.5 Tests of (Air + Water) Inflated Models. 

Max.U/S DIS Head Air Water Length of 
Model Test Proportional head pressu2e pressure membrane 

No. No. factor (mm) (mm) KN/m (rmn) (mm) 

1 1 0.6 195 0.0 1.536 158 800 
2 0.8 200 0.0 2.000 158 800 
3 0.9 203 100 2.247 158 800 

2 4 1.0 206 0.0 2.500 158 800 
5 1.5 215 0.0 3.715 ISS 800 

3 6 0.7 198 40 1. 755 158 800 
7 1.5 215 40 3.715 158 800 

4 8 0.8 125.5 0.0 1.231 100 500 
5 9 0.7 148 0.0 1.292 120 600 
6 10 0.7 173.2 0.0 1.510 140 700 
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FIG.!3-17l AIR DEFLATION CONDITIONS 
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Profiles of the dams were measured for all tests and an example of the 

computer plot of the results is shown in fig.3.lS, for air pressures equal 

to 1.536 KN/m2 and 2.5 KN/m2 and depth of water inside the dams equal to 158 mm 

for all models of 800 mm length of membrane (i.e. 75% of maximum height of the 

dam). 

It was observed when a dam was inflated with water to more than 50% of 

the maximum height the deflation condition was similar to a water inflated 

dam (see fig.3.l4) whilst if the dam was inflated with water to less than 50% 

of the maximum height the deflation squence was similar to the air inflated 

condition as shown in fig.3.l7. 

The comparison between the profiles determined experimentally and 

theoretically is discussed in Chapter 6. 

From the experimental work of the different inflation fluids it was 

observed that for a particular internal pressure head, the maximum downstream 

head equal to 50% of the maximum height of a dam which can give a constant 

base width of a dam. 
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CHAPTER 4. 

THE DEVELOPMENT OF THEORETICAL ANALYSIS OF 

INFLATABLE HYDRAULIC STRUCTURES UNDER 

STATIC CONDITIONS. 

4.1 Introduction. 

The analysis of inflatable hydraulic structures under static conditions has 

been studied by several investigators as described in Chapter 2, each using a 

different approach and making different assumptions in order to find solutions. 

These solutions are generally long mathematical equations restricted by 

conditions which may not be practical over a wide range of applications. 

In this study it was decided to use the Harrison (4) approach and to develop 

his method by considering the condition of an inflatable structure fixed at the 

upstream side only which means that the dam can be flat on the downstream side 

with the downstream angle approaching to zero (21). This consideration has 

been assumed by other investigators (2~14) for dams fixed at two points which 

is not valid. 

In this analysis consideration of the possibility of a depth of sediment on 

the upstream side of the dam has been made to observe the effect on the different 

parameters of the dam. 

The length of material was designed under maximum proportional factor 

equal to 2.5 for water inflated condition in order to find the minimum length 

of material to hold the maximum head required. Other inflation conditions are 

considered later. The details of the design are given in Chapter 8. 

A computer program was written for the analysis of a dam under different 

combinations of inflation pressure (from low proportional factor equal to 1.0 

to the maximum proportional factor equal to 2.5), downstream head and silt 

pressure. The length of the material can be found with respect to the maximum 

proportional factor to be chosen for certain dams. Separate subroutines were 
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used to compute the initial tension and slope (detail in Sec.4.3.2). The 

program was also developed to take account of the dynamic condition of loading. 

The program can analyse a dam under different conditions of inflation 

fluid for a wide range of proportional factors alpha. 

The main output parameters of the program (IHSIP) are as fo110ws:-

1. Tension along the membrane of the structure. 

2. Upstream slope. 

3. Elongation of the material. 

4. Profile of the dam (shape). 

5. Cross-sectional area of the profile. 

A subroutine was developed in order to plot the profile of the dam under 

the developed conditions of inflation. 

A comparison of the results obtained from the experimental and theoretical 

work is detailed in Chapter 6. 

4.2 Details of the analysis. 

The analysis developed is based on the Harrison (4) method to analyse 

the inflatable structures to determine the tension along the membrane, the 

slopes and the profile of the dam. 

The analysis carried out by Harrison (4) depends on three main assumptions 

to analyse the stresses in the membrane of the structure and these are briefly 

listed below. 

a) The behaviour of the three dimensional structure can be represented 

by the behaviour of a two dimensional transverse section of unit width. 

b) The perimeter of the cross-section of the inflatable structure is 

composed of a finite number of small straight elements and the static loads 

are acting on the nodes of each element. 
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c) The material of the dam is elastic and that the stress-strain 

relationship of the material can be assumed to be linear. 

4.2.1 Application of the Harrison Method. 

The Harrison method can be used on a dam with two anchors at the upstream 

and downstream edge respectively, i.e. the downstream angle is not equal to 

zero. This technique also requires a trial and error solution to find the 

following parameters: 

1. Length of material, 2. Base width, 3. Internal pressure, 

and to obtain the best solution to find all the above parameters considerable 

computer time is needed. 

The range of application of the method is limited to the static condition 

i.e. the dam can be used only for the storage condition and not for overflow 

conditions. This therefore places a severe limitation on the application of 

the method to practical problems. 

4.2.2 Modification of the Harrison Method. 

The Harrison method has been developed to consider an inflatable structure 

fixed only at the upstream edge and to allow for the downstream angle tending 

to zero (21) with the material flat,i.e. tangential on the base. A second 

modification considers the effect of a static force on the upstream face 

representing a silt load. 

A third modification allows the design of the length of material required 

under a certain proportional factor alpha, so it is possible to design the 

length of the material and pressure head. Chapter 8 shows the details of the 

design length of material for different conditions of inflation fluid and 

inflation pressure. 

In this analysis non-linear stress-strain relationships are taken into 

consideration based on the test behaviour of the material. The new length 

of the material due to elongation caused by the effect of the loads, i.e. 

- 79 -



upstream head, internal pressure head, silt pressure and downstream head can 

be found from the stress-strain relationship as shown in detail in Chapter 3. 

In this technique a subroutine "Initial" can be used to compute the 

initial tension and slope based on the proportional factor as start values 

in the analysis compared with the difficult and time consuming approach of the 

Harrison method. 

In this study it is assumed that the effect of the variation of air and 

water temperature on the material properties is so small that it can be 

o ignored as the air temperature range in the laboratory varied between (15-25) C 

for air and (11-20)oC for water. 

4.3 The analysis of an inflatable Hydraulic Structure. 

4.3.1 Forces Acting on the Dam. 

The forces acting on an inflatable structure are the maximum upstream head, 

downstream head, silt pressure on the upstream face, the inflated air pressure, 

water pressure and the weight of the material of the dam, and downstream head 

on the downstream face, these are shown diagrammatically in fig.4.l. 

The method of analysis is based on dividing the total length of the 

material into (n) number of elements giving (n+l) number of nodes. The loads 

acting on each element are based on the location of the particular element 

within the dam itself, as some elements are influenced by the upstream head 

and the silt pressure, whilst other elements are only influenced by the down-

stream head. All the elements are affected by the internal pressure head, 

but some elements are flat on the base under the influence of the internal 

pressure head. 

The loads are transmitted from one element to the next by analysing the 

loads in the first element and progressively continuing the analysis to the last 

element. 
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Fig.4.1B shows the forces acting on the upstream and downstream face of 

the dam per unit width. 

The techniques to find the forces are shown be10w,these depending on 

whether it is an upstream or downstream element. The following equations 

assume that water is the liquid both internally and externally creating forces. 

If other inflation liquids are used the appropriate value of specific weight 

must be used. 

4.3.1.1 Upstream elements. 

The forces acting on an upstream element are listed below. 

1. R1 

where R1 

Y 

hl 

h1 

YI 

YII 

h u 

t 

F a 2. 

F a where 

p -a 

3. R2 = 

where R2 -
h2 = 

h2 -

= y h1 t 4.1 

= upstream hydrostatic force. 

= specific weight of the water. 

= depth of water from the centre of the element to 

the free water surface, i.e. 

= 

= 

-
= 

= 

= 

vertical co-ordinate of the lower node. 

vertical co-ordinate of the upper node. 

maximum upstream hydrostatic depth. 

length of the element. 

P x t a 

internal air force. 

2 internal air pressure in KN/m • 

internal fluid force. 

4.2 

4.3 

depth of fluid from the centre of the element to the 

free water surface, i.e. 

- 82 -



or h2 .. (Yr-Yrr)/2 + (dw - Yr) on the downstream side 

d = depth of fluid inside the dam. w 

Yl specific weight of fluid inside the dam. 

4. w ::z wt x 1 4.4 

where w .. weight of the membrane. 

wt = weight of the element per unit area. 

5. The silt load is calculated by using the Rankine (30) equations and 

where 

where 

shown below are the details of using this equation. 

= 

= 

W = s 

W = s 

where Wl = 

= 

= 

Tl 

.. 

upstream silt force. 

weight of silt submerged equal to 
\11 (ps-l) 

Ps 

4.5 

1600 Kg/m3 the assumed dry weight of solid particles 

of silt material 

2.6 (specific gravity of solid particles of the silt 

material. 

1 - sin n 
1 + sin n 

300 angle of internal friction for sand or clay. 

depth of silt from the centre of element to the free 

surface of the silt, i.e • 

H = depth of silt to be considered. 
s 

Knowing the relevant properties of the water, air and the material, the 

forces on each element can be calculated from the horizontal and vertical 

equilibrium equation (4.6) and (4.7). 

Horizontal equilibrium 

(4.6) 
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Vertical equilibrium 

4.7 

To find the values of TB and SB for the second node it is necessary to 

assume values of TA and SA for the first node. Based on these it is now 

possible to find all other values of tension and slope of the other elements in 

sequence as detailed in Section 4.3.3. 

4.3.1.2 Downstream elements. 

The analysis for the downstream elements ~s similar to that for the 

upstream elements except that the forces Ps (equation 4.5) and Rl (equation 

4.1) are equal to zero and it is necessary to take into account the effect of 

the downstream head as given by 

= 4.8 

where 

= downstream hydrostatic force. 

= depth of water from the centre of the element to the free 

surface level i.e. 

YI)' where 

= depth of water on the downstream side. 

4.3.2 Initial values of tension and slope. 

On the basis of previous work (2,14) the tension for the membranes is 

assumed constant along the length of the dam, by assuming a weightless material 

and the details of this analysis are given in Chapter 8. The relationship 

between tension and slope are found with respect to the proportional factor and 

can be used as initial values of tension and slope for the first element. It 

was found that this technique of obtaining the initial values of tension and 

slope was acceptable. The relationships used are 

T(initial) = (1+2a) 
pg ~ 
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and 

slope( initial} = = cos -1 2a-1 
1+2a 

These equations are explained in Chapter 8. 

4.10 

On the basis of the above equations the subroutine "Initial" was used to 

find the initial value of tension and slope. 

4.3.3 Procedure for finding the co-ordinate positions of the profile. 

Once the initial value of the tension and slope are computed by using 

equations (4.9) and (4.10), the value of the tension and slope in the next node 

can be calculated from equation (4.6) and (4.7) by considering the hydrostatic 

load applied to the first element. The elongation of the element can be 

computed by using the stress-strain relationships of the material, so that the 

new co-ordinates of the next node can be determined. The analysis of the 

second element can be made by using the results of tension and slope of the first 

element and the process can then be repeated for all elements. Using this 

method the co-ordinates of the profile can be found along the membrane. The 

details of this technique are explained below with reference to fig. 4.2. 

1. Divide the length of the membrane into (n) elements as shown in 

fig. 4.2 step (1). 

2. Obtain the initial estimates of tension and slope for the first 

element using the subroutine "Initial". 

3. Find the elongation of the element using the equation for the stress-

strain relationship. The stresses can be calculated from the 

following expression: 

stress .. T(J) 
t 

where t - thickness of the membrane. 

4.11 

As the co-ordinates of the first nodes are known (usually assumed 0.0), so 

the co-ordinates of the second node (J) can be calculated from equations (4.12) 

and (4.13), see also fig.4.2, step (4). 
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J) 

(j -1) 

Step 1. 

X(J-1) =0·0 
Y(j-1) =0·0 

QU -1) 

Step 3. 

X (J ) \.~ 
H(J) V(J) "\g(J) 
-----.~.A-~~ Tx 

Ty 

Q (J-1) 

Step 5. 

T X = T (J -1) cos (J -1 ) - H (J ) 

TY = T(J-1) sin (J-1)-V(J) 

Tan9 (j) = TY 
TX V 

T(J) = [(TX)2+(Ty)2) 2 

Step 2. 
J 

X (J ) = B L cas(J -1) 
Y (j ) = Bl sin U -1 ) 

Step 4. 

RH(J) 

Step 6. 

[ V(J -1 ) + V (J ) ] /2 = R V (J ) 

[HU-1)+H(J)]/2 = RH(J) 
,-

Tan9(J) = RV(J) 
R H(J) 

f (j) = [( R VU))2 +(R H(j )? ] V2 

AG.(4-2) PROCEDURE FOR FrNDING THE PROFILE AND TENSION 

ALONG THE MEMBRANE 
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X(J) = B1 cos(J-l) 4.12 

Y(J) a B1 sin(J-l) 4.13 

where B1 = 1 + 61 

B1 • new length of the element 

1 a original length of the element 

6L = elongation of the element 

and ~L can be calculated by equation 4.11 and equation of the stress-

strain relationships as shown in Chapter 3 for the particular material used. 

5. The forces acting on the element (J-l) can be found from equations 

(4.1), (4.2), (4.3), (4.4), (4.5) and the horizontal and vertical component of 

the forces can be determined i.e. H(J), V(J). 

6. From the equilibrium equation at the node (J), the horizontal and 

vertical component TY, TX of the tension T(J) in the next element are 

determined and the angle e(J) is found from the two force components TX,TY, 

so that the preliminary value for the co-ordinate of the node (J+l) can be 

calculated as shown in fig. (4.2) step (5). 

7. The forces acting at the node (J) are now adjusted by finding a 

better estimate for the co-ordinate of the node (J) and (J+l) by taking the 

average of the vertical and horizontal forces of the element (J+l)and element 

(J) to find the new adjusted value of T'(J) as shown in fig.4.2 step (6). 

This method is repeated for each element of the membrane to find the co­

ordinates of the profile of the dam and the tension. 

It was noticed that in some cases, the downstream slope of the membrane 

is not tangential with the base and may not satisfy the design base length, 

this condition is called the mis-close which is due to the estimate of initial 

values of tension and slope and is reduced by using the Netwen-iteration 

method to minimize the mis-close so that the membrane is tangential to the base 

with the downstream slope approaching to zero. 
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4.3.4 Newton Iteration Method. 

The Newton Method of iteration has been used to adjust the assumed initial 

values of tension and slope in the first element to minimize the mis-close. 

The technique is as described by Whittaker and Robinson (31) and applied in a 

similar approach to that by O'Brien, Francis and Harrison (32,33,34) to analyse 

the suspension of a cable. The procedure for adjusting the initial value of 

tension and slope is shown in fig.4.3. It is necessary to place a limit on the 

number of iterations to minimize the amount of computer use. 

The Newton Iteration method is applied by increasing the tension by a small 

amount (oT) and the new mis-close of x, y with respect to (T) may be evaluated 

as illustrated in fig. 4.3b. The procedure can be repeated for the slope by 

increasing the slope e by (6a) and hence the x, y mis-close can be calculated 

with respect to a as illustrated in fig. 4.3c. The procedure is repeated for 

various values of oT, oa, to minimize the mis-close within the specified 

allowable mis-close and the fabric will then be tangential to the "floor with the 

downstream slope approaching to zero. 

The adjusted values of T and 9 of the first element are determined 

numerically from the expression 

T(improved) = T - I X ~ - Y ax] /Z L aa aa 

S(improved) .., e - [Y ~~ - x it] jZ 

Z = 
ax ~ ay ax 
at . as - aT' aa 

and the above equation can be represented in the general form: 

_-1 
T (improved) T ax ax] aT aa x 

= 
e(improved) 9 

ay ay y aT ae 
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FIG.V.-3) ADJUSTMENT OF THE INITIAL ESTIMATES OF THE 

TENSION AND SLOPE TO MINIMISE THE MISCLOSE 
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4.4 Computer programs. 

4.4.1 General. 

In this study the analysis was carried out on the ICL 19065 computer at 

the University of Sheffield. 

The computer library (NAG FLIB) was used to provide subroutines to help 

with the analysis and computer plots of the profiles of the dam using an 

available graphical output. 

The program was written in FORTRAN IV language and a complete list of the 

program and a guide to its uses is available in the Department of Civil and 

Structural Engineering of the University of Sheffield. 

4.4.2 Main analysis program. 

The first program developed was under file name (IRS) to analyse a dam 

with one end fixed but a modified program was developed to consider the effect 

of silt on the upstream side and was stored under file name (IRSIP). The 

computation of the design length of the material was incorporated in the main 

program. Finding this length of material was based on the proportional factor 

alpha as described in detail in Chapter 8. Also the subroutine "Initial" was 

incorporated in the main program to find the initial value of tension and slope 

to be used. 

The programe was therefore capable of calculating initial values of 

tension and slope rather than adopting limited error solutions as required in 

Harrison's original method. 

A later modification allowed the program to be used for analysis in the 

dynamic condition of loading and stored under the file name (DYIHSP). In this 

program the overflow head, coefficient of discharge and discharge can be 

calculated. 

4.4.2.1 The program (IRSIP). 

The program was developed to analyse theoretically an inflatable hydraulic 

structure under hydrostatic conditions of load for different inflation fluids. 
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The results of the analysis gave values of the profile of the membrane, 

tension along the membrane, elongation of the material and the cross-

sectional area of the dam section. The analysis was carried out for air, 

water and a combination of both as inflation fluids. 

The input for the analysis consisted of 8 cards as detailed in Section 

(4.4.2.2) • 

4.4.2.2 Input cards. 

In program (IHSIP) the following details on the eight cards are required: 

CARD NO. 1. 

CARD NO.2. 

CARD NO.3. 

CARD NO.4. 

CARD NO.5. 

CARD NO.6. 

CARD NO.7. 

The number of structures to be analysed. 

The number of elements and the number of nodes to be 

considered. 

Properties of the material and the inflation fluid. 

1. Thickness of the membrane, 2. Weight of the membrane 

per unit area, 3. Specific gravity of the inflation fluids. 

Coefficients of the stress-strain relationship. 

Design considerations: 

1. Maximum upstream head. 

2. Allowable mis-close. 

3. Condition of the analysis, NTYPE:­

NTYPE = 1 static, NTYPE = 2, dynamic. 

4. Calculating the maximum height of dam, MHEAD. 

MHEAD = a if required, MHEAD = 1 if not required. 

5. Profile plot requirement, NPLOT. 

NPLOT ,. 1 required, NPLOT ,. 2 not required. 

6. Type of inflation fluid, NKIND. 

NKIND = 1 Air, NKIND .. 2 Water, NKIND = 3 (Air+Water) 

The co-ordinates of the first element of the dam (i.e. 

anchor point) normally equal to (0,0). 

The load condition: 

1. Upstream head, 2. Downstream head, 

3. Proportional factor alpha, 4. Percentage of the depth of 

water inside the dam with respect to the maximum height of 

the dam. 4. Depth of silt on the upstream face of the dam. 
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CARD NO.8. Horizontal and vertical scale to plot profile scale. 

The following table represents the arrangement of the cards as required 

by program (IRSIP). 

Table 4.1 Notation for the input cards. 

CARD NO. Notation of the input data. 

1 NS 

2 NEL, NN 

3 A, W, GAMMA 

4 Cl , C2, C3, C4 
5 HD, AC, NTYPE, MHEAD, NPLOT, NKIND 

i 
6 XCI), Y(I), 0.0, 0.0 I 

I 
7 UH, DR, ALFA, RA, HS 

8 SCALEX, SCALEY 

4.4.2.3 Output parameters of the program (IHSIP). 

The output of the program (IRSIP) is as follows: 

1. Number of iterations. 

2. Original design length of the membrane. 

3. New length of the membrane (stretch length). 

4. Maximum height of the dam. 

5. Length of the base. 

6. Cross-sectional area. 

7. Design air pressure. 

8. Design water pressure. 

9. x, y co-ordinates of each element (profile of the dam). 

10. Tension of the membrane for all elements. 

11. The slope of each element along the profile of the dam. 
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4.4.3 Range of application of the program IHSIP. 

The program (IHSIP) can be run for a range of values of the proportional 

factor alpha depending on the type of the inflation fluid. 

For the water inflated condition the proportional factor range is (1.0 

2.5) and for the air inflated condition (0.2 - 1.2). For (air + water) 

inflation with a water depth equal to 75% of the maximum height, the proportional 

factor ranges from (0.6 - 1.6). These limiting values of the proportional 

factor are found from the experimental work and for these values the dam will 

be stable. The values of the proportional factor are found from a relationship 

based on the differential pressure head as a proportion of the maximum storage 

head, i.e. 
H-H 

a = h/RO or = ___ 0_ as shown in fig.2.4B 
HO 

of the analysis of 

Anwar (2), where (H) represents the total pressure head, and RD is the maximum 

storage head. 

The analysis was performed for a series of depths of downstream head and 

silt depth for different proportional factors in order to find out the effect 

on the output parameters. 

In this study the maximum depth of silt was arbitrarily chosen as 0.05 m 

(for all inflation fluids), a spatial study is needed to find the maximum depth 

of silt that can be tolerated at the upstream face under different conditions 

of inflation fluids. 

The flow chart shown in fig. 4.4 for the program (IHSIP) details the 

general outline of the operation of the program. Figs. 4.5, 4.6 and 4.7 show 

typical graphical output for air, water and (air + water) inflated dams 

respectively. 

4.5 Influence of number of elements. 

To assess the significance in the analysis of the choice of the number of 

elements, analyses were carried out for numbers ranging between 20 to 180 

elements. From the results given in table (4.2) it can be seen that increasing 
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e 
I Dimension the array J 

(1) 
I 
~ 

Read No. of structures to be tested. I 
(2) 'IP 

Read and write the membrane input data, thickness 
of material, weight of material, specific gravity 
of the inflation fluids, stress strain relationship 

(3) + 
Read and write the loading data, maximum 
upstream head, downstream head, proportional 
factor, ratio of the depth of water with 
respect to maximum height, silt depth. 

(4, 
J ., 

Calculate the length of material, base 
length and internal pressure head. 

(5 
-~ 

Calculate the initial tension and slope using I the subroutine "Initial". 

Store the mis-
close and 
adjust the ~ 

NO Calculate the mix-close and determine if 
initial value the result is satisfactory 
of tension 
and slope 

(7) YES , 
Calculate the maximum height ot the structures 

if required 
(8) -- - . --

Calculate and print the new length of material, 
overflow, CD, Q, area, water pressure head, 

air pressure head. 

" Print the co-ordinates of the membrane, tension, 
and slopes along the membrane. 

.J., 

I PLOT the profile if required J YES Start H again 

NO , 

STOP 

Fig.4.4 Flow Chart for the program (IHSIP). 
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the number of elements reduces the calculated maximum height of the dam 

although this effect is small for elements in excess of 50. 

The data is for the behaviour of a water inflated dam with proportional 

factor alpha equal to 1.0 and the original length of membrane equal to 0.80 m. 

Table 4.2. 
Effect of number of elements on maximum height of dam. 

I No.of Max.Height I Average Upstream slope I No. elements (m) 

I 
tension degree 
(Kn/m) 

I 
1 20 0.21150 I 0.2510 I 120.35 

2 30 0.21100 I 0.2520 

I 
120.70 I I 

I 
I 3 40 0.21080 I 0.2522 

! 
121.03 

I I 
I 

I 4 50 

I 

0.21075 0.2524 121.19 I 
I 

I I 5 60 0.21075 0.2526 121.30 
I 6 80 I 0.21075 0.2530 

I 
121. 79 I 

I 

i 
7 100 0.21075 0.2531 122.10 ! i I 

i 8 140 0.21075 0.2533 ! 122.34 
I 

I 

i I 

9 160 0.21070 0.2536 i 122.65 ! 

10 180 0.21030 0.2538 I 122.98 ! 

Also it shows that the calculated tension increases with increasing number 

of elements as does the upstream angle at the anchorage. 

It can be seen from table 4.2 that for element numbers in excess of 50 

the variation in these parameters for greater element values are very small. 

Similar behaviour was also noticed in the case of the dams inflated with 

air and (air + water). 

This conclusion was also reached by Harrison (35). 

Fig.4.8 illustrates the print out for water and air inflated dams with 

initial length of membrane equal to 0.80 m and analysis under 50 elements. 

4.6 The effect of operational factors. 

The operational factors affecting the dam are as follows: 
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FIG.4-8 WATER AND AIR INFLATED STRUCTURES WITH 50 NUMBER OF ELEMENTS 



1. The proportional factor. 

2. Maximum upstream head. 

3. Downstream head. 

4. Depth of the silt on the upstream face. 

For different proportional factors (a) (ranges of alpha are given in 

Section 4.4.3) and under the maximum upstream head, the following conditions 

have been assumed to study the behaviour of the output parameter (see Sec. 

4.4.2.3) on an inflatable dam. 

1. 

2. 

3. 

4. 

Downstream head = 0.0 

Downstream head = 0.0 

Downstream head = O.lm 

Downstream head = O.lm 

depth of silt = 0.0. 

depth of silt = 0.05 m. 

depth of silt = 0.0. 

depth of silt = 0.05 m. 

The following output parameters were found from the program (IHSIP) for 

different ranges of proportional factor. 

1. Upstream and downstream tension. 

2. Upstream slope. 

3. Maximum height of dam. 

4. Elongation of the material. 

5. Cross-sectional area of the dam. 

Table 4.3 shows the ranges of the proportional factors under maximum 

upstream head for the different inflation fluids. 

From the study carried out, the results of the output parameters found 

are described in the following sections. 

4.6.1 Tension. 

The tension in the membrane was calculated for each element and the 

average of the tensions in the upstream elements found as the upstream tension 

and similarly for finding the downstream tension. The tension was calculated 
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o ...... 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Propl. 
factor 

(a) 

1.0 

1.2 

1.4 

1.5 

1.6 

1.8 

2.0 

2.2 

2.4 

2.5 

Table 4.3 Condition of analysis for different inflation fluids. 

WATER Inflated AIR Inflated (AIR+WATER) Inflated 

Max. DIs Silt . Prop1.1 Max. DIs Silt 
! Propl •. Max. DIS Silt 

u/S Head Depth N factorU/S Head Depth No. factor u/S Head Depth 
Head o. (a) Head (a) Head 

m m m m m m m 
m m 

0.1886 0.0-0.1 0.0-0.05 1 0.2 0.231 0.0-0.10 0.0-0.05 1 0.6 0.1944 0.0-0.1 0.0-0.05 

0.1978 0.0-0.1 0.0-0.05 2 0.3 0.238 0.0-0.10 0.0-0.05 2 I 0.7 0.1979 0.0-0.1 0.0-0.05 
I 

0.2085 0.0-0.1 0.0-0.05 3 0.4 0.2425 0.0-0.10 0.0-0.05 2 I 0.8 0.2009 0.0-0.1 0.0-0.05 

0.2094 0.0-0.1 0.0-0.05 4 0.5 0.246 0.0-0.10 0.0-0.05 4 0.9 iii 0.2035 10.0-0.1 0.0-0.05 

0.2160 0.0-0.1 0.0-0.05 5 0.6 0.249 0.0-0.10 0.0-0.05 5 1.0 i 0.2060 ! 0.0-0.1 0.0-0.05 i 

0.2192 0.0-0.1 0.0-0.05 6 0.7 0.2526 0.0-0.10 0.0-0.05 6 I 1.2 0.210 i 0.0-0.1 0.0-0.05 

0.2226 0.0-0.1 0.0-0.05 I 7 0.8 0.2536 0.0-0.10 0.0-0.05 7 1.3 0.212 0.0-0.1 0.0-0.05 

0.2257 0.0-0.1 0.0-0.05 8 1.0 0.2575 0.0-0.10 0.0-0.05 8 1.4 0.213 0.0-0.1 I 0.0-0.05 
I i I 

0.2284 0.0-0.1 0.0-0.05 I 9 1.1 0.2590 0.0-0.10 0.0-0.05 9 1.5 I 0.215 0.0-0.1 I 0.0-0.05 
i 

0.2297 0.0-0.1 0.0-0.05 I 10 1.2 0.2604 0.0-0.10 0.0-0.05 10 j 1.6 
i 

0.0-0.1 i 0.0-0.05 i 0.216 
! ! I 



for different proportional factors and under the maximum upstream heads listed 

in table 4.3 for different inflation fluids. 

4.6.1.1 Upstream tension. 

The upstream tension for the air inflated dam increases almost linearly as 

the proportional factor increases for all conditions. 

The tension for the air inflated dam for the case of the downstream head 

equal to zero and a zero depth of silt is more than with the effect of a silt 

depth e.g. the tension for the proportional factor equal to 0.80 under zero 

downstream head and zero silt depth~ is equal to 0.4212 Kn/m, while the tension 

for the same proportional factor but under zero downstream head and 0.05 m silt 

depth the tension is equal to 0.418 Kn/m. 

The reduction of the tension with a particular proportional factor for the 

condition of downstream head equal to zero and with silt depth equal to 0.05 m 

relative to the tension for the condition of zero downstream head and zero silt 

depth is due to the reduction of the resultant force T(J) of the vertical and 

horizontal components acting on the elements. 

The case of increasing tension with increasing the proportional factors 

or decreasing tension with decreasing the proportional factors under all 

conditions of downstream head (0.0-0.1) and silt depth (0.0-0.05) is due to the 

force (F ) which causes an increase in the resultant of the force with an 
a 

increase in the proportional factor and decrease in the resultant of the forces 

with low proportional factors. 

The above behaviour of the upstream tension under the different load 

condition is the same for the different dams under different inflation fluids 

and these effects are shown in fig. 4.9~ 4.10, and 4.11 for air~ water and 

(air + water) inflated structures respectively. 
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4.6.1.2 Downstream tension. 

The tension on the downstream side is greater than the upstream side for 

all proportional factors. 

The tension calculated for different conditions (as for the upstream 

tension) shows that the tension under the condition of downstream head equal to 

zero and zero silt is greater than the condition of zero downstream head and 

with a silt depth equal to 0.05 m. Also the tension is greater for the condition 

of downstream head equal to 0.1 m and silt depth equal to zero than the condition 

of downstream head equal to 0.10 m and with a silt depth equal to 0.05 m. 

The pattern of behaviour of the downstream tension is the same for all types 

of the inflation fluids. 

The reduction of the tension for the downstream head equal to 0.10 and 

silt depth equal to 0.05 m relative to the tension for the condition of the 

downstream head equal to 0.10 and zero silt depth is due to the reduction of 

the resultant of the force T(J). This reduction in the downstream tension under 

the above conditions is a similar behaviour as found for the upstream tension 

under the same conditions. 

The behaviour of the downstream tension with respect to different 

proportional factors and under different load conditions (D/S = 0.0,0.1), 

(H = 0.0, 0.05)for air, water and (air + water) inflated structures are shown 
s 

in fig.4.l2, 4.13 and 4.14 respectively. 

4.6.2 Upstream slope. 

The upstream slope is defined as the angle of inclination of the first 

element of the membrane to the base level (starting on the upstream side). 

The upstream slope was calculated for different conditions of downstream 

(D/S = 0.0, 0.01) and silt depth (H - 0.0, 0.05) for different types of s 

inflation fluids. Consider the air inflated structure of the downstream 
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head equal to zero and zero silt depth, the upstream slope ranged from 800 

o to 125 as the proportional factor increased from 0.2 to 1.2 while these 

variations of the slope will be greater if the downstream head increases 

from zero to 0.10 m and it was found the variation is from 880 to 1270 

under the same variation of the proportional factors. 

The degree of variation of the upstream slope changes as the proportional 

factor increases from 0.2 to 1.2, i.e. the rate of increase of the upstream 

slope for low proportional factors is higher than for high proportional factors, 

e.g. the difference in an increase in the upstream slope from a - 0.2 to a = 0.3 

is 5 degrees while the difference in the upstream slope from a = 1.1 to a = 1.2 

is 2.63 degrees. 

The variation of the upstream slope with downstream head equal to zero and 

with depth of silt equal to 0.05 m does not follow the above behaviour. The 

variation of the upstream slope is changed from 55 degrees to 120 degrees as 

the proportional factor increases from 0.2 to 1.2 
, 
The higher-reduction in the upstream slope is due to the distortion of the 

dam toward the downstream side as a result of the silt effect on the upstream 

face of the dam. Fig.4.l5 shows the behaviour of the upstream slope under 

different proportional factors for an air inflated structure. From fig.4.l5 

it can be seen that the maximum upstream slope of the dam is for the condition 

of downstream head equal to 0.1 m and with the silt depth equal to zero. The 

minimum upstream slope occurs when the downstream head is equal to zero and 

with silt depth equal to 0.05 m for all proportional factors varying from 

0.2 to 1.2. 

The pattern of behaviour is similar for a dam inflated with water, but the 

values of the upstream slopes are greater than for an air inflated structure. 

Also the variation of the upstream slope for an (air + water) inflated structure 
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is similar to both the air and water inflated structures, but the values of 

the upstream slope depend on the depth of water inside the dam. 

Figs. 4.16 and 4.17 show the variation of the upstream slope for 

different values of the proportional factor for water and (air + water) 

inflated structures respectively. 

A detailed comparison between different inflation fluids for the upstream 

slopes is given in Chapter 6. 

4.6.3 Elongation. 

The increase in the length of the material in excess of the original length 

results from elongation. The required original length of the material is 

calculated according to the maximum upstream head for maximum proportional 

factor for water inflated structures (a = 2.5),and the new length of the material 

can be found from the strain-stress relationships under the applied loads. The 

establishments of the stress-strain relationships of TYPE I and TYPE II materials 

was explained in detail in Chapter 3. 

The stretching of the material is due to the effect of the loads, i.e. 

maximum upstream head, downstream head, internal pressure head. silt depth 

and self weight of the material. 

Elongation of the material is also affected by the properties of the 

material, in particular the thickness of the material used (see equation 4.11), 

and a spacial study was carried out with respect to the effect of the thickness 

of the material (Section 4.8.3). 

The variation of elongation was investigated for a constant thickness 

(t = 0.36 mm) of material under different conditions (DIS = 0.0,0.1) 

(H = 0.0, 0.05) for different ranges of proportional factors for different 
s 

inflation fluids. The results show that the elongation increases with 

increasing proportional factor for all conditions of downstream head and silt 
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depth. The variation of the elongation for different proportional factors 

for air inflated structures is represented in fig.4.l8 from which one can see 

that the maximum elongation occurs for the condition of downstream head equal 

to zero and zero silt depth while the minimum elongation occurs for the 

condition of downstream head equal to 0.1 m and 0.05 m of silt pressure. 

A similar behaviour for the variation of elongation was found for the 

type II material for the condition of downstream head equal to zero and zero 

silt depth as shown in fig. 4.18. 

The variation in the elongation of the materials is similar for the water 

inflated structures if the maximum and minimum elongation occurring when the 

downstream head is equal to zero with zero silt depth and with downstream 

head equal to 0.1 with silt depth equal to 0.05 m respectively as the proportional 

factors increase from 1.0 to 2.5. Fig.4.l9 shows the variation of the elong-

ation of the material when the structure is inflated with water. 

A similar pattern for the variation of the elongation is found for the 

(air + water) inflated structure as shown in fig.4.20. 

From the above results then the elongation is a maXlmum under the condition 

of downstream head equal to zero and zero silt depth which coincides with the 

conditions for greater tension. 

4.6.4 Cross-sectional area. 

The area of the cross section of the inflatable structures was computed for 

different proportional factors under downstream head equal to (D/S = 0.0,0.1) 

and silt effect equal to H =(0.0, 0.05). s The area was computed from the 

following relationship: 

Area 
NN 
E 

NN=2 
[(y(J) + y(j-l)] • [x(J) - x(J-l)]/2 

where y(J), x(J) are the co-ordinate of the nodes. 
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The cross-sectional area increases for increasing proportional factor 

alpha for all conditions of downstream head and silt depth, and for the 

different types of inflation fluids. The maximum cross-sectional area occurs 

when the downstream head is equal to 0.10 m and zero silt depth whilst the 

minimum area is the condition of zero downstream head and with silt depth 

equal to 0.05 m on the upstream face. Fig.4.2l illustrates the variation of 

area with respect to different proportional factors (0.2-1.2) for an air 

inflated structure. 

The cross-sectional area also depends on the behaviour of the elongation 

of the material, i.e. high strain material will stretch to give high elongation 

giving a higher dam which results in an increase in the cross-sectional area. 

The cross-sectional areas for different materials (TYPE I, TYPE II) are shown 

in fig.4.2l for air inflated and under downstream head equal to zero and zero 

silt, the resulting cross-sectional area of type I material is less than the 

cross-sectional area of type II material under the same conditions, the 

difference being due to the differences in the elongation of the two materials. 

The variation of the cross-sectional area for a water inflated structure 

is similar to the air inflated structure but for high proportional factor 

(n > 2.2) the cross-sectional area is approximately constant. 

Fig.4.22 shows the variation of the cross-sectional area for a water 

inflated structure for different downstream heads (n/s = 0.0, 0.1) and silt 

depths (H = 0.0, 0.05 m). 
s 

The maximum cross-sectional area occurs at a 

downstream head equal to 0.10 m and silt depth equal to zero whilst the 

minimum cross-sectional area is when the downstream head is equal to zero and 

with the silt depth equal to 0.05 m. 

The cross-sectional area of the (air + water) inflated structure is 

almost similar to the water inflated structure. The cross-sectional area is 

dependent on the depth of water inside the dam. The variation of the cross-
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sectional area will be close to the variation of water inflated structure if 

the depth of water inside is high, whilst the variation will be close to that 

of an air inflated structure if the depth of water is low. 

Fig.4.23 shows the variation of the cross-sectional area of the dam for 

different proportional factors for different conditions of downstream head 

and silt depths on the upstream face. 

The different typical profile's behaviour under different conditions of 

downstream head and silt depth were shown in figs. 4.24, 4.25 and 4.26 for the 

dams inflated with air, water and (air + water) respectively. 

4.6.5 Maximum dam height. 

The maximum y(J) co-ordinate of the nodes around the membrane under 

different loading gives the maximum crest height of the dam. The maximum 

height increases as the proportional factor increases and the maximum height 

will be approximately constant for high proportional factor (a > 2.4) for water 

inflated structures. 

The maximum height of an air inflated dam is when downstream head is 

equal to 0.10 m and with zero silt depth whilst the minimum height 1S when the 

downstream head 1S equal to zero and with 0.05 m silt depth. The rate of 

increase in the maximum height is higher for low proportional factor than 

increases in the maximum height for high proportional factors, e.g., the maX1mum 

height for an air inflated structure under zero downstream head and zero silt 

depth increased from 0.23m to 0.24. m as the proportional factor increased from 

0.2 to 0.3 whilst the maximum height of the dam increased from 0.259 m to 

0.260 m as the proportional factor increased from 1.1 to 1.2. 

The maximum height of the dam is not dependent only on the internal 

pressure head, upstream head, downstream head and silt pressure, but also 

depends on the thickness of the material. Details of this effect are given 1n 
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Sec. 4.8.3. Fig.4.27 shows the variation of the maximum height of a dam for 

different proportional factors under different conditions of downstream head 

and silt depth. From this variation it can be seen that the type I material 

with downstream head equal to zero and zero silt depth is higher than for the 

type II material under the same condition, the differences being due to the 

thickness of the material. 

In the case of a water inflated dam the variation of the maximum height 

of the dam is similar to the air inflated case, i.e. the maximum height is when 

the downstream head is equal to 0.1 m and zero silt depth. Fig.4.28 shows the 

variation of maximum height of the dam for different proportional factors under 

different downstream heads and silt depths. 

In the case of the (air + water) inflated structure, the maximum height of 

the dam is similar to the water inflated structure as can be seen from fig.4.29 

which illustrates that the rate of change in the maximum height under the 

condition of downstream head equal to 0.1 m and silt depth equal to 0.05 m is 

similar to the rate of change in the maximum height of the dam under condition 

of downstream head equal to 0.10 m and zero depth of silt as the proportional 

factor increases from 1.2 to 1.6. 

As far as the maximum height and minimum height of the dam are concerned 

for this type of inflation, the variations are similar to the previous cases, 

i.e. the maximum height of the dam occurs for a downstream head equal to 0.1 m 

and zero silt pressure whilst the minimum height is when the downstream head 

is zero and with a silt depth equal to 0.05 m. 

4.7 Effect of the initial length of the membrane. 

The length of the perimeter of the membrane has a major effect on the 

output parameters of the dam i.e. tension, maximum upstream head, maximum 

height of dam, and cross-sectional area. In this study the length of the 
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membrane is found from the relationship as detailed in Chapter 8. The lengths 

tested were 0.50, 0.60, 0.70,0.80, 1.0 m under zero downstream head and zero 

silt depth for maximum upstream head for different inflation fluids under 

different proportional factors. This study of varying the length gave inform-

ation on the effect on the following parameters: 

4.7.1 

1. 

2. 

3. 

4. 

5. 

Tension. 

Upstream slope. 

Elongation of the membrane. 

Cross-sectional area. 

Maximum height of the dam. 

Tension. 

The tension in each element was calculated around the membrane and the 

average tension of the upstream face found as the average of the tension in 

the upstream elements and similarly for the downstream force. The tension 

was calculated for different inflation fluids, i.e., air, water and the 

combination of both for different proportional factors. 

4.7.1.1 Upstream tension. 

Variations in the upstream tensions are proportional to the length of 

the membrane, with increasing length of the membrane, tension increases for all 

the proportional factors for an air inflated structure, i.e., (a = 0.3, 0.4, 

0.5,0.8,1.0 and 1.2). Fig.4.30 illustrates this variation of tension 

with different length of membrane. 

From the above result one can conclude that a membrane which can be used 

for a small dam may not be suitable for a large dam as the tension may be 

higher and hence may exceed the breaking strength of the material. 

A similar pattern of behaviour exists for the variation of tension with 

respect to the different length of membrane for the water inflated structure. 
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Fig.4.3l illustrates the variation of tension with different lengths of 

membrane. The variation of tension increases with increasing the length of 

the membrane for different proportional factors (1.0, 1.2, 1.5, 1.8, 2.0, 2.5). 

So far as the (air+water) inflated structure is concerned, the variation 

of tension with respect to the different length of membrane is similar to 

the previous cases of inflation. Fig.4.32 illustrates the variation of 

tension with different length of membrane for an (air+water) inflated structure 

under different proportional factors (i.e., a ~ 0.7,0.8,0.9,1.0 and 1.5). 

The above result was also found by Parbery (22), who states that the 

profile length has a direct effect on the tension. 

4.7.1.2 Downstream tension. 

Variation of the downstream tension is similar to that of the upstream 

tension as the length of the membrane increases, the downstream tension 

increases. 

For the air inflated structure, the downstream tension was calculated for 

the same conditions as the upstream tension. Fig.4.33 illustrates the 

variation of downstream tension with respect to different lengtmof membrane. 

The variation of the downstream tension for water inflated structures 

and (air+water) inflated structures follow a similar pattern to the variation 

of the air inflated structure and fig. 4.34 and fig. 4.35 represent these 

variations. 

4.7.2 Upstream slope. 

From fig.4.36 it can be seen that there is no significant variation of 

upstream slopes with the length of membrane for particular proportional factor. 

This is better illustrated by the profiles for different lengths of membrane 

plotted for proportional factors alpha equal to 0.8 and 1.0 as in fig.4.37. 

The profiles have been plotted for lengths equal to 0.50, 0.60, 0.70, 0.80, 

1.0 m and it is seen that the upstream slope is constant for all dams for a 

particular proportional factor. 
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The behaviour of the upstream slope for the water inflated condition 

is also the same as can be seen in fig.4.38. 

Similarly, the profiles for different lengths have been plotted for a 

proportional factors equal to 1.0,1.2 as sho\m in fig.4.39. Fig.4.40 shows the 

behaviour of the upstream slope for an (air+water) inflated structure for 

proportional factors of 0.7, 0.8, 0.9, 1.0 and 1.5. The profiles for different 

lengths have been plotted for the proportional factors equal to 0.6 and 0.7 

as shown in fig. 4.41. 

4.7.3 Elongation. 

~elongation of the membrane for different initial lengths increases 

with increasing length of the membrane for all proportional factors as shown 

in fig.4.42 for an air inflated structure under different proportional factors 

and with downstream head equal to zero and with zero silt depth. 

The behaviour of a water inflated structure is similar to the air 

inflated structure, i.e. the elongation increases with increasing the length of 

the membrane as shown in fig. 4.43 and also for the (air+water) inflated 

structure as shown in fig. 4.44. 

These values of elongation are only for the Type I material and depend 

on the stress-strain relationship. 

This means that the elongation is dependent on the properties of the 

material used. 

4.7.4 Cross-sectional area. 

The cross-sectional area of the profile for different lengths was computed 

for different proportional factors and the cross-sectional area can be seen to 

increase with increasing length of the membrane for all proportional factors 

as shown in fig.4.45 for the air inflated structure and proportional factors 

of 0.3, 0.4, 0.5, 0.8, 1.0. Similarly in fig. 4.46 and fig.4.47 the cross-
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sectional area of the water inflated and (air+water) structures give variations 

of the same type. For all three cases the conditions are for a downstream 

head equal to zero and zero silt depth. The different typical profile 

behaviour of the dams of different lengths of membrane under different prop­

ortional factor are shown in fig.4.48, 4.49 and 4.50 for air, water and (air+ 

water) inflation fluids respectively. 

4.7.5 Maximum dam height. 

The maximum height of the dam is calculated as the maximum y(J) co-ordinate 

of the nodes around the membrane. The maximum height for an air inflated 

structure is illustrated in fig. 4.51 for proportional factors equal to 0.3, 

0.4, 0.5, 0.8, 1.0, 1.2. The increment in the maximum height between the 

proportional factor equal to 0.3 and 0.4 is greater than the increment of the 

maximum height for proportional factors equal to 1.0 and for all variations 

of length of the membrane i.e. from length of membrane equal to 0.50 m to 

1.0 m. 

Similar patterns of variation of the maximum height with respect to 

different lengths of membrane for a water inflated structure are illustrated 

in fig.4.52. The variation of the maximum height is calculated for proportional 

factors equal to (1.0, 1.2, 1.5, 1.8,2.0, 2.5) and, the results show that the 

increment in the maximum height for the proportional factor equal 1.0 to 1.2 

is more than the increment in the maximum height when the proportional factor 

increases from 2.0 to 2.5. 

Variations of the maximum height of the (air+water) inflated structure are 

of a similar form to the previous cases as represented in fig.4.53. The 

greater the depth of water inside the dam, the less will be the maximum height 

of the dam. The depth of water taken was equal to 75% of the maximum dam 

height. The maximum height is calculated for the proportional factors 0.7, 

0.8, 0.9, 1.0 and 1.5. 
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4.8 Effect of weight and thickness of the membrane on the output parameters. 

4.8.1 General. 

The variation of the weight and thickness of the membrane have been 

considered to see the effect on the output parameters (i.e., tension, upstream 

slope, maximum height, elongation, area, and the profile of the dam. 

Different thicknesses and weights have been assumed for the same stress 

strain relationship for Type I material and the analysis was carried out for an 

air inflated structure for proportional factors equal to 0.75 and 0.5 and 

under the conditions of downstream head equal to zero and zero silt depth and 

also under downstream head equal to 0.1 m and 0.05 m silt depth. 

A similar analysis was carried out for the water inflated structure for 

the proportional factor equal to 1.0 and 1.2 under same condition of downstream 

head and silt depth. 

4.8.2 Effect of weight of membrane. 

Different weights of membrane have been taken to establish the effect on 

the output parameters (Sec.4.8.l) for air inflated and water inflated structures. 

Weights of membrane of 0.15 KgJm2 to 0.50 Kg/m2, were considered and it was 

found out that tension decreased from 0.4063 KN/m to 0.4054 KN/m i.e. the 

difference in tension equal to 0.009 KN/m for a different in weight equal to 

2 
0.35 Kg/m • 

Downstream tension, upstream slope. maximum height. elongation and area 

all decrease with increasing the weight of the membrane. These decreases 

however are very small for both air or water inflated structures. 

Table 4.4 shows the effects of the weights of the membrane on the output 

parameters for air inflated structure for the proportional factors equal to 

0.75 and 0.5. 

The variation of all output parameters with changing weights of the 

membrane is similar to air inflated for water inflated structures and these 
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variations are represented in table 4.5. Profiles for different weights 

of membrane do not show any visible differences and are illustrated in fig. 

4.54 for both air and water inflated structures. 

4.8.3 Effect of thickness of membrane. 

Different thicknesses have been assumed ranging from 0.04 mm to 0.5 mm 

to find the effect on the output parameters. Although the thickness was 

changed the other properties of type I material were assumed constant. 

The variation of the thickness was carried out for the air inflated and 

water inflated structures under different downstream head and silt depths. 

The effect of changing thickness is more significant than changing the 

weight of the membrane and the variation is particularly high in the 

elongation of the membrane reflected in the maximum height of the dam for both 

air inflated and water inflated structures. 

Table 4.6 illustrates the variation of the output parameters as the 

thicknesses of the membrane change for an air inflated structure for proportional 

factors equal to 0.75 and 0.5 and Table 4.7 illustrates the variation of the 

output parameter as the thicknesses change for water inflated structures for 

the proportional factors equal to 1.0 and 1.2. 

The profiles of the dam of different thickness are shown in fig.4.55 for 

the air inflated structure and water inflated structure. 
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U/S HEAD 0.2460 METER U/S HEW - 0.1886 MEH:R 
DIS ;EAD '= 0.1000 METER DIS Ht'AD - O.GGGO MI:::Tf:R 

AIR PRESSuRE = 3.6900 KN/SQ.11 AIR PRE5'luRE ,. 0.0000 KN/SQ.11 
\lATf:R PRESSLIRE = 0.0000 M.\I.G. \lATER PRESSuRE = 0.3735 "I.\J.G. 

ORIGINAL L~NGTH ,. 0.S005 METER ORIGIN~L LENGTH ,. o.eoeo HETtR 
NEW LENGTH ,. 0.5086 METER NEw LENGTH = a.eOG? Mt:ltR 

U/S TELSIO. 0.3095 KN/M U/S TtNSTON 0.2155 KN/t1 

J/S S OPE 94.3066 DEGREE U/S SLOPt: ,. 120. rjl26 DEGREE 
DIS TENS rON = 0.1.169 KN/H DIS TtNSION = 0.2961 KN/t1 

BASE LF'4G-H 0.1306 METER B.A.5E LENGTH 0.174:" METER 
AL~A = 0.5000 MAX. HEIGrlT 0.1~56 METER 
AREA = 0·.0473 METER SO ALFA 1.0000 
SILT DEPTH,HS = 0.0500 METER AREA - 0.0464 METER SO 

SILT DEPTH.HS '" 0.0000 METER 

AIR WATER 

FIG. (4-54) PROFILES FOR DIFFERENT WEIGHTS OF MEMBRANE FOR AN AIR INFLATED AND A WATER 

INFLATED STRUCTURE 
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U/S HtAD 0.246G MtltR U/S 'HHD - 0.1978 METER 
DIS Ht:~D - 0.1000 MEitR DIS HEW = 0.0400 METI:R 
AIR PRE:SSUKE = 3.6900 KN/SQ.M AIR PReSSLlRE '" 0.0000 KN/SQ.M 
\lATER PRESSURE 0.0000 "I.\I.G. WATER PRESSuRE '" 0.4308 M.W.G. 
ORIGIN~~ LtNGTH = O. eoo<j MEIER ORIGINAL LENGTH = O.SOOO METER 
NEil LENGTH 0.816<; METf:R NEil LENGTH '" 0.5092 METER 
U/S TI:NSION '" O.3i24 KN/M U/S TENSION .., 0.26')3 KN/M 
U/S SLOPE .. 94."1457 DEGREE U/S SLOPE = 116.1355 DEG:)EE 
DIS TENSION = 0.4237 KN/M DIS TE:NSION = 0.3635 KN 'M 

8.~St: LENGTH 0.1301 METER BASE LENGTH '" 0.1648 METER 
ALFA = O. t.jOOO ALfA 1.2000 

AREA = 0.0463 MI:TER sa AREA 0.0488 MFTEr. .0 
SILT DEPTH,HS = 0.0500 METER SILT DEPTH,HS = 0.0500 METER 

WATER 

FIG.(l.-55) PROFILES FOR DIFFERENT THICKNESS OF MEMBRANE FOR AN AIR INFLATED AND A WATER 

INFLATED STRUCTURE 
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No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Air Inflated - Table 4.4 

Effect of weight of membrane on the other parameters. 

Weight Prop1.1 U/S D/S H U/S D/S Press. Max. Area ' U/S 
factor Head Head s Tension Tension Height slope 2 depth KN/m2 2 Kg/m a m (m) of silt KN/m KN/m m m degree 

(m) 

0.15 0.75 0.2526 0.0 0.0 0.4063 0.5582 4.4205 0.2536 i 0.04957 110.46 
0.20 0.75 0.2526 0.0 0.0 0.4062 0.5581 4.4205 0.2535 0.04957 110.45 
0.25 0.75 0.2526 0.0 0.0 0.4061 0.5579 4.4205 0.2534 0.04957 110.44 
0.30 0.75 0.2526 0.0 0.0 0.4059 0.5578 4.4205 0.2533 0.04956 110.44 

*0.35 0.75 0.2526 0.0 0.0 0.4058 0.5577 4.4205 0.2532 0.04956 110.43 
0.391 0.75 0.2526 0.0 0.0 0.4057 0.5576 4.4205 0.2532 0.04956 110.42 
0.40 0.75 0.2526 0.0 0.0 0.4057 0.5576 4.4205 0.2532 0.04956 110.42 
0.45 0.75 0.2526 0.0 0.0 0.4036 0.5575 4.4205 0.2532 0.04956 110.41 
0.50 0.75 0.2526 0.0 0.0 0.4054 0.25573 4.4205 0.2532 0.04955 110.40 

0.10! 
I 

0.15 0.50 0.246 0.05 0.3095 0.4189 3.690 0.24653 i 0.04730 I 94.31 
0.20 0.50 0.246 0.10\ 0.05 0.3095 0.4188 3.690 0.24652 0.04730 94.29 
0.25 0.50 0.246 0.10! 0.05 0.3093 0.4187 3.690 0.24651 0.04730 94.28 

0.246 
, 

0.3092 0.4185 3.690 0.24648 I 0.04729 94.26 0.30 0.50 () .10; 0.05 
*0.35 0.50 0.246 0.10

1 
0.05 0.3091 0.4184 3.690 0.24645 0.04729 94.25 

0.391 0.50 0.246 0.10 i 0.05 I 0.3090 0.4183 3.690 0.24663 0.04729 94.23 
0.40 0.50 0.246 I 0.10; 0.05 0.3090 0.4183 3.690 0.21642 I 0.04729 I 94.23 
0.45 0.50 0.246 I 0.10, 0.05 I 0.3089 0.4181 3.690 0.24638 I 0.04728 I 94.22 
0.50 0.50 0.246 0.10 0.05 ! 0.3088 0.4180 3.690 0.24635 0.04728 94.20 

i 
. ; __ L , , 

~-- - - -- --

* Weight of the material Type 1. 

Elongation 

mm 

10.24 
10.24 
10.24 
10.24 
10.24 
10.24 
10.24 
10.23 
10.23 

i 
8.29 
8.28 
8.28 
8.28 
8.27 
8.27 
8.27 

I 8.27 i 
I 8.27 
I 
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Water Inflated - Table 4.5 

Effect of weight of membrane on the other parameters. 

Weight prop1.: u/s I DIS H u/S DIS' Hax. Press. Area u/s E1 . 
f H d d s 0 0 0 h 1 ongat1on 

No. 2 actor ea Hea depth Tenslon TenS10n He1g t 2 2 S ope 
Kg/m a m I (m) 'f 01 KN/m KN/m KN/m m degree nun o 81 t m 

i (m) 

1 0.15 1.0 0.18862Io.0! 0.0 0.2155 0.2961 0.21009 0.3734 0.04813 120.51 6.21 
2 0.20 1.0 0.18862

1
0.0 0.0 0.2154 0.2961 0.21006 0.3734 0.04842 120.51 6.21 

3 0.25 1.0 0.18862

1

0.0 0.0 0.2153 0.2960 0.21003 0.3734 0.04842 120.51 6.21 
4 0.30 1.0 0.18862 0.0 0.0 0.2152 0.2959 0.20949 0.3734 0.04842 120.51 6.21 
5 0.35 1.0 0.18862

1
0.0 0.0 0.2151 0.2958 0.20996 0.3734 0.04841 120.51 6.21 , 

6 *0.39 1.0 0.18862 0.0 0.0 0.2131 0.2957 0.20994 0.3734 0.04840 120.50 6.20 I 

7 0.40 1.0 0.18862 0.0 0.0 0.2151 0.2955 0.20993 0.3734 0.08840 120.49 6.20 
8 0.45 1.0 0.18862 0.0 0.0 0.2150 0.2452 0.20989 0.3734 0.04839 120.48 6.19 
9 0.50 1.0 0.18862,0.0 0.0 0.2149 0.2949 0.20986 0.3734 0.04838 120.48 6.18 

I 
1 0.15 1.2 0.19779:0.040) 0.05 I 0.2655 0.3631 0.21491 0.431 0.04862 116.06 7.15 
2 0.20 1.2 0.19779;0.040' 0.05 I 0.2654 0.3631 0.21487 0.431 0.04862 116.05 7.15 
3 0.25 I 1.2 0.19779 0.040 0.05 ,'0.2653 0.3630 0.21484 0.431 0.04862 116.05 7.15 
4 0.30 1 1.2 0.19779 0.040 0.05 0.2652 0.3629 0.21481 0.431 0.04862 116.04 7.15 
5 *0.39 I 1.2 0.19779,0.040; 0.05 '0.2651 0.3628 0.21480 0.431 0.04862 116.03 7.15 
6 0.45 : 1.2 0.19779:0.040: 0.05 ,0.2650 0.3627,' 0.21478 0.431 0.04862 116.02 7.14 
7 0.50 ~ 1.2 0.19779;0.040: 0.05 0.2699 0.3626 0.21475 0.431 0.04861 116.01 7.14 

, , , I ' 
• l I ! 
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Table 4.6 

Effect of thickness of material on other parameter for Air Inflated. 
, • 

Thickness u/s DIs H u/s DIS Max. No. s Area a Head Head silt Tension Tension Height 
nun 

(m) (m) 
depth 

kn/m kn/m (m) m2 (m) 

1 0.15 0.75 0.2526 0.0 0.0 0.4115 0.5661 0.2558 0.05085 
2 0.20 0.75 0.2526 0.0 0.0 0.4090 0.5625 0.2580 0.05030 
3 0.25 0.75 0.2526 0.0 C.O 0.4075 0.5603 0.2548 0.04997 
4 0.30 0.75 0.2526 0.0 0.0 0.4065 0.5588 0.2543 0.04974 
5 0.35 0.75 0.2526 0.0 0.0 0.4058 0.5578 0.2538 0.04958 
6 *0.36 0.75 0.2526 0.0 0.0 0.4055 0.5575 0.2526 0.04951 
7 0.40 0.75 0.2526 0.0 0.0 0.4053 0.5570 0.2523 0.04947 
8 0.45 0.75 0.2526 0.0 0.0 0.4049 0.5564 0.2523 0.04937 
9 0.50 0.75 0.2526 0.0 0.0 0.4045 0.5559 0.2520 0.04930 

1 0.04 0.50 0.246 0.1 0.05 0.3310 0.4470 0.2620 0.05260 
2 0.15 0.50 0.246 0.1 0.05 0.3124 0.4237 0.2510 0.04826 
3 0.20 0.50 0.246 0.1 0.05 0.3112 0.4213 0.2490 0.04783 
4 0.25 0.50 0.246 0.1 O.Oj 0.3102 0.4199 0.2485 0.04759 
5 0.30 0.50 0.246 0.1 0.05 0.3096 0.4190 0.2473 0.04742 

i 6 , 0.35 0.50 0.246 0.1 0.05 0.3091 0.4184 0.2465 0.04731 
7 i *0.36 0.50 0.246 0.1 0.05 0.3090 0.4182 0.2462 0.04728 

I 
, I 

8 I 0.40 0.50 0.246 0.1 I 0.05 0.3088 0.4179 0.2461 0.04722· I 
9 I 0.45 0.50 0.246 0.1 I 0.05 0.3085 0.4175 0.2460 0.04715 

I 
, 

. 10 0.50 0.50 0.246 0.1 i 0.05 0.3083 0.4172 0.2460 0.04710 , 

*Thickn~ss of the material Type I. 

U/S Press. Elongation slope 
2 degree kn/m mm 

110.73 4.4205 20.51 
110.60 4.4205 16.13 
110.52 4.4205 13.49 
110.46 4.4205 11.72 
110.45 4.4205 10.45 
110.41 4.4205 9.92 
110.40 4.4205 9.49 
110.38 4.4205 8.75 
110.36 4.4205 8.15 

95.94 3.69 49.89 
94.75 3.69 15.98 
94.42 3.69 12.67 
94.34 3.69 10.70 
94.28 3.69 9.38 
94.24 3.69 8.43 
94.23 3.69 8.33 
94.21 3.69 7.72 
94.10 3.69 7.17 
94.17 3.69 6.72 i 

I 
I 
I 
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No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
3 
4 
5 

! 
6 
7 i 
8 

, 
Thickness 

a 
nun 

0.15 1.0 
0.20 1.0 
0.25 1.0 
0.30 1.0 
0.35 1.0 

*0.36 1.0 
0.40 1.0 
0.45 1.0 
0.5 1.0 

0.04 1.2 
0.15 1.2 
0.20 1.2 
0.25 1.2 
0.30 1.2 

*0.36 1.2 
0.45 1.2 
0.50 I 1.2 

Table 4.7 

Effect of thickness of material on other parameter for Water Inflated. 

Hs u/s DIS u/S DIs Max. u/s 
Head Head silt 

Tens~on Tension Height Area slope Press. Elongation depth 2 kn/m2 (m) (m) (m) kn/m kn/m (m) m degree mIl 

0.1886 0.0 0.0 0.2155 0.2972 0.21103 0.04901 120.75 0.3734 11.26 
0.1886 0.0 0.0 0.2153 0.2966 0.21057 0.04875 120.64 0.3734 9.11 
0.1886 0.0 0.0 0.2152 0.2962 0.21028 0.04860 120.58 0.3734 7.80 
0.1886 0.0 0.0 0.2151 0.2959 0.21009 0.04890 120.53 0.3734 6.93 
0.1886 0.0 0.0 0.2151 0.2956 0.20996 0.04842 120.50 0.3734 6.31 
0.1886 0.0 0.0 0.2151 0.2956 0.20996 0.04841 120.49 0.3734 6.30 
0.1886 0.0 0.0 0.2150 0.2955 0.20985 0.04836 120.47 0.3734 5.84 
0.1886 0.0 0.0 0.2150 0.2953 0.20477 0.04831 120.45 0.3734 5.47 
0.1886 0.0 0.0 0.2150 0.2952 0.20471 0.04828 120.43 0.3734 5.18 

0.19779 0.04 0.05 0.2728 0.3705 0.22293 I 0.05265 117.71 I 0.431 39.94 
0.14779 0.04 0.05 0.2657 0.3640 0.21530 0.04895 116.22 I 0.431 12.65 
0.19779 0.04 0.05 0.2655 0.3637 0.21526 0.04890 116.18 0.431 10.15 ! 

0.19779 0.04 0.05 0.2653 0.3635 0.21522 0.04885 116.14 0.431 9.14 
0.19779 0.04 0.05 0.2632 0.3631 0.21496 0.04872 116.08 0.431 8.05 
0.19779 0.04 0.05 0.2650 0.3628 0.21480 0.04870 116.06 0.431 7.89 
0.19779 0.04 0.05 0.l648 0.3621 0.21477 0.04856 116.02 0.431 6.24 
0.19779 0.04 0.05 0.2644 0.3617 , 0.21470 0.04851 115.98 0.431 5.87 

I I 
i ------ -



CHAPTER 5. 

THE ANALYSIS OF AN INFLATABLE HYDRAULIC STRUCTURE 

UNDER HYDRODYNAMIC CONDITIONS. 

5.1 Introduction. 

The analysis of an inflatable hydraulic structure under hydrodynamic 

conditions is more complicated than for the hydrostatic analysis. It is 

necessary to include in this analysis parameters additional to the effect of 

the upstream head, downstream head and internal pressure head. These 

additional parameters to be considered in the analysis are, on the upstream side 

the effect of the specific energy and on the downstream side the effect of the 

centrifugal force. 

Very few investigators have studied theoretically this condition for 

inflatable hydraulic structures. Anwar (2) in 1967 studied an inflatable 

hydraulic structure for the case of a hydrodynamic condition. This study 

was for a dam inflated with air and he determined a mathematical solution (see 

Chapter 2) to find the profile of the upstream face only with no indication of 

a solution for the shape of the downstream face nor for the shape with overflow 

1n the case when the internal pressure is due to inflation with water. 

Kunihiro Iwiwara (3) also studied a dam under hydrodynamic conditions but 

this solution depends on a number of assumptions as detailed in Chapter 2. 

Investigators who have made an experimental study of inflatable hydraulic 

structures under hydrodynamic conditions are Baker (20), Shepherd (8) and 

Stodulka (21). 

This chapter deals with the analysis of an inflatable hydraulic structure 

under hydrodynamic condition by using the technique of dividing the design 

length of the membrane into a specified number of elements and considering 

the effect of all forces on each element in turn. 
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A computer program was developed from that used in the case of static 

conditions the results from the program giving, tension, slopes, area~ maximum 

height and the profile of the dam. Plotting of the profile is also included 

in the output from the program if required. 

Experiments on different dams have been performed Ln order to check the 

theoretical profile and the tension in the membrane by fixing strain gauges 

inside the dam. 

5.2 Design of the dam model. 

The same basis for the design of the inflatable hydraulic structure 

under static conditions was used to design the length of the membrane. As 

the technique mentions in Chapter 8 the length of the material is based on the 

maximum proportional factor assumed to be considered and since this proportional 

factor is in relation to maximum storage head and the differential pressure 

head the relationship is as follows: 

h = a~ 5.1 

where h - differential pressure head inside the dam. 

a - proportional factor. 

~ 
~ maximum height of the dam. 

The above equation is used in order to find the length of the membrane, 

the detail being given in Chapter 8. 

In the preliminary study of the hydrodynamic condition created by allowing 

overflow to occur over the dam designed for the static condition it was noticed 

that as the overflow increased for a particular proportional factor alpha, 

the pressure inside the dam increased. However, the maximum overflow head has 

been considered up to the condition that the dam just starts to oscillate, and 

in this condition the internal pressure head is not significantly changed. 

Therefore it is considered that the criteria for the design length of the 
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membrane for the dynamic condition could be assumed to be similar to that 

for static condition as shown in table 5.1. This conclusion was also 

reached by Anwar (2) and Clare (14) as a result of their experiments. 

Table 5.1 Criteria for design length of membrane in order to test the 
dam under different overflow. 

Type of Max. Max. Length Length Pressure 
inflation proportional U/S of of 

fluid factor (m) membrane base Air Water 
(m) (m) (KN/m) (m) 

1. Water 2.5 0.2297 0.800 0.1259 - 0.800 

2. Air 1.2 0.2604 0.800 0.1124 5.728 -
3. Air+ 1.6 0.216 0.800 0.1615 3.944 0.1575 

Water 
I 

For those conditions the dams were analysed under different overflows in 

order to find the effect of overflow head on the different output parameters 

(s ee Sec. 5. 7) • 

A computer program (DYIHSIP) was used to analyse the dams in the hydraulic 

condition to find the magnitude of various parameters with respect to different 

overflow heads. 

5.2.1 Construction of the model. 

The construction of the models was as already described in Chapter 3 and 

the bags were constructed from two different materials with properties as shown 

in table 3.1. Also the systems used for inflation were the same as for the 

static condition except that the pressure created by the overflow was measured 

by a pressure transducer connected to a data logger. The pressure transducer 

was calibrated for both air and water pressures. 

In addition to the dam with a total length equal to 0.80 m, dams were 

tested with different material lengths in order to establish the behaviour of 

such dams. 
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5.3 Experimental Work. 

Tests on the dams inflated by air. water and (air+water) for different 

design lengths of membrane were carried out as follows:-

1. A dam was tested for different overflow and downstream heads with 

different proportional factors in order to find the profile of the sections, 

upstream slopes and area of the sections. 

2. The overflow was measured up to the limit when vibration occurred 

this being observed by a pick-up vibration technique. 

3. The tension around the profile was measured using strain gauges 

fixed inside the dam. 

5.3.1 

5.3.1.1 

Shape of the dam. 

Profile measurement. 

The profile measurements were made in exactly the same way as for a dam 

under static conditions of loading as described in Section 3.6.1 of Chapter 3. 

Using this technique the profile of the dam could be measured. However, 

during the measurements it was noticed that when lowering the point gauge 

into the water the test meter indicated a half deflection as water is a 

conductor of electricity, but the profile measurement was only made when the 

reading on the test meter was a full scale deflection indicating c.ontact 

between the point gauge and the foil. 

5.3.1.2 Measuring the shape of the dams. 

The shapes of the dams were measured under different overflows for 

different proportional factors with various inflation fluids. The test program 

is shown in table 5.2. The overflow head was found by subtracting the 

maximum height of the dam from the upstream head and the discharge was calculated 

from the calibration curve,details of which are given in Chapter 7. 

Typical profiles as measured experimentally for air, water and (air+water) 

inflated under different overflows are shown in fig.5.1. A computer program 

(EW) was used to plot these profiles. 
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Table 5.2 Experimental test program. 

Type Prop1. u/s Dis Max. Water Air Overflow Discharge 
Head Head dam Press. Press. head 

of No. factor height KN/m2 
Infl m 

9..15 m m rnrn 
m 

1 1.2 0.221 0.0 0.21 0.436 0.0 11 1. 79 
0.228 0.0 0.206 0.436 0.0 22 5.18 
0.233 0.0 0.205 0.436 0.0 25 7.95 

2 1.4 0.230 0.0 0.223 0.300 0.0 7 0.90 
0.236 0.0 0.221 0.500 0.0 15 3.10 
0.241 0.0 0.218 0.500 0.0 23 5.53 
0.251 0.0 0.215 0.500 0.0 35 11.30 

3 2.5 0.241 0.0 0.240 0.800 0.0 2.0 0.11 
0.248 0.0 0.239 0.800 0.0 9.0 1.15 

,... 0.256 0.0 0.238 0.800 0.0 18.0 3.45 
Q) 0.258 0.0 0.238 0.800 0.0 20.0 4.07 ~ 

t1 -, --
1 1.2 0.221 0.04 0.2122 0.435 0.0 8.8 1.30 

0.227 0.04 0.2093 0.435 0.0 16.7 3.82 
0.233 0.04 0.2061 0.435 0.0 26.9 7.30 

2 1.4 0.230 0.04 0.2234 0.500 0.0 9.6 0.73 
0.236 0.04 0.2217 0.500 0.0 14.3 2.730 
0.242 0.04 0.2196 0.500 0.0 22.4 5.55 
0.252 0.04 0.2155 0.500 0.0 36.5 12.12 
0.255 0.04 0.2149 0.500 0.0 40.11 14.11 

1 0.6 0.253 0.0 0.224 0.0 3.484 29 9.75 
0.256 0.0 0.224 0.0 3.984 32 11.9 
0.262 0.0 0.222 0.0 3.984 42 18.01 

2 1.0 0.258 0.0 0.240 0.0 5.15 18 4.28 
0.265 0.0 0.241 0.0 3.15 27.0 8.47 ,... 
0.268 0.0 0.237 0.0 5.15 28 8.81 .0-4 

<:: 0.273 0.0 0.235 0.0 5.15 38.4 14.78 

3 1.2 0.263 0.0 0.2610 0.0 5.73 2.0 0.11 
0.272 0.0 0.2595 0.0 5.73 12.5 2.12 
0.288 0.0 0.2583 0.0 5.73 29.7 8.44 

1 0.8 0.218 0.0 0.209 0.1575 2.040 9 1.46 
0.230 0.0 0.199 0.1575 2.040 31 11.42 

,... 0.233 0.0 0.198 0.1575 2.04 35.4 14.78 
Q) 
~ 

2 1.0 0.226 0.0 0.214 0.1575 2.04 12 2.23 t1 
~ 0.242 0.0 0.213 0.1575 2.04 29 9.21 + ,... 

0.248 0.0 0.2078 0.1575 2.04 40.2 16.15 .0-4 

<:: 
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5.3.2 Overflow head limit. 

At a particular overflow oscillation of the nappe started due to an 

alternating force which was created by the motion of the air trapped in the 

space beneath the nappe causing vibration. The oscillation of the nappe 

affected the downstream membrane face causing the dam to vibrate. This 

phenomenon of vibration was inita1ly noticed during high flow rates. Once 

started reduction could only be achieved by 

1. Decreasing the overflow. 

2. Aerating the nappe by inserting two pipes on both sides of the 

downstream face close to the dam. 

3. Vibration could also be reduced by tapping the model by hand or by 

using a trip rod of 8 mm diameter on the top near the crest to 

prevent the backward and forward movement of the crest. 

In this section the experiments concentrated on the limiting range of 

overflows to those below which vibration occurred 

The limit to the overflow before the vibration started was found by using 

a proximity vibration pick-up device which clamped on the top of a small 

aluminium channel fixed on the top of the crest of the dam with a (1-3) rom 

gap between the needle of the vibration pick-up and the aluminium channel. 

The proximity vibration pick-up was connected to a transducer oscillator 

and oscilloscope. 

The arrangement of this set up is shown in figs. 5.2 and 5.3 and to 

operate the system, the dam was inflated with particular pressure and water 

allowed to flow over the crest. The overflow was increased until it was 

found that the oscilloscope screen gave a vertical displacement, i.e., the 

vibration onset for this particular overflow. 

This method was used by allowing different overflows and once the 

vibration started, the overflow was not allowed to increase above the onset 
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of vibration value. This procedure was carried out for dams under different 

proportional factors and for different inflation fluids. 

A graph was plotted between the results of the ratio of the maximum 

overflow head just before vibration and maximum dam height, i.e. (H/~) and 

the different proportional factors, and this procedure was carried out for 

dams under different inflation fluids, i.e., air, water and (air+water). 

Fig.5.4 shows the result of the limit of the overflow head just before 

the onset of vibration. 

The pressure inside the dam was measured by using a pressure transducer 

connected to a data logger, the pressure transducer used was a Type PDCR 10 

with a maximum capacity of 10 psi with a temperature error less than ± 0.3% 

according to the information listed from the supply company. A calibration 

of the pressure transducer was made for both air and water pressures and the 

results of the calibration can be seen in fig.5.5. 

5.4 Measuring the Tension In the Membrane. 

5.4.1 Strain gauges installation. 

Two sets of experiments were carried out to measure the tension in the 

membrane by using strain gauges. The first experiment involved attaching 

strain gauges (Type KYOWA gauges) which were suitable for measuring the strain 

1n high elongation materials. The strain gauges were fixed in four groups 

of cells, each cell consisting of two strain gauges working as active strain 

gauges and connected with two other strain gauges as dummy gauges kept outside 

the dam but in conditions similar to the active gauges by keeping the dummy 

strain gauges in a container of water. The four cells were distributed 

around the perimeter of the dam. One cell was fixed on the upstream face, 

two cells fixed on the crest of the dam and the fourth cell fixed on the 

downstream face of the dam. The strain gauges were attached to the dam using 
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a cement type (CC-ISA) as recommended by the company and in accordance with 

the instructions provided. The gauges were attached after the dam tube was 

folded and then the gauges were covered with two layers of sealer, i.e, 

lVI-spray electrical sealar, to prevent the water coming into direct contact 

with the strain gauges. After installation of all four groups, tests could 

be started by connecting to a data logger, the tension in the membrane being 

recorded in the data logger as millivolts. 

It was found that when the level of the water was below the level of the 

strain gauges, the tension results give good agreement but once the water 

rose above the level of the strain gauges, the readings were not satisfactory. 

This initial arrangement of strain gauges on the inflatable dam is shown 

in fig.5.6 and 5.7 but due to the above problem an alternative technique was 

developed to eliminate this effect of water on the strain gauges. 

This second arrangement involved sticking the strain gauges inside the 

tube to avoid the effect of water on the strain gauges. 

out before the dam was folded. 

This was carried 

The strain gauges were mounted in two rows, the first row in the centre 

consisting of seven cells each cell containing four strain gauges connected 

to form a "Wheatstone Bridge" (47) as shown in fig.5.S. A11 the ce11s were 

attached 100 mm from each other. Each strain gauge required two 0.25 mm 

diameter wires so that each cell was connected to S wires. These S wires 

were connected as a Wheatstone Bridge resulting in four wires from each 

cell which were taken out of the dam through the valve B as shown in fig.5.S. 

A second row of strain gauges was attached close to the sides of the 

dam in the form of three cells 200 mm apart and wired ~n a similar pattern 

to the first row. 

All the cells of strain gauges were glued to the dam using the adhesive 

cement mentioned earlier. 
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(a) Dam under test 

(b) R~cording the results on the data logger 

FIG.(S-7) AN INFLATABLE DAM UNDER TEST 
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A total of 40 wires emerged from the dam and these were divided into two 

groups to pass from the tube through two valves designed and installed for 

this purpose and installed at distances of 230 mm and 280 mm from the ends 

of the side test tank located on the top of the dam crest. These two valves 

consisted of two rings 3.5 mm thick and sandwiched in between was a thin 

plate with twenty one holes to allow the wires to pass to the outside of the 

tube. One ring was fitted inside the tube and the other to the outside and 

these were ioined by 6 bolts. 

Once all the wires were passed through the holes each wire was checked to 

ensure that it was loose inside the dam to prevent any tension in the wire 

affecting the inflation of the dam. Once satisfied of this condition, the 

top ring outside the tube was filled with 5 minute "Epoxy" compound to 

prevent the leakage of water into the dam and also to prevent any deflation 

of the dam during a test. 

This arrangement is shown in detail in figs. 5.8 and 5.9. 

5.4.2 Stability and calibration of the strain gauges. 

Before commencing the tests two points were considered. The first was 

to check the stability of the strain gauges both before and after folding the 

tube. This was done by using the data logger to take readings from the 

strain gauges every hour for two days. The maximum differences for all cells 

was t 0.015 mv equivalent to 2% and this was probably due to a change in 

individual temperatu~e throughout the test period. In view of this very 

small change the stability was considered acceptable. 

The second point was the calibration of the strain gauges which was carried 

out using two different methods. 

Firstly, the calibration was achieved by taking a specimen of the dam 

material and attaching one cell of strain gauges. The specimen was prepared 
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according to the British Standard, BS 2576-1977 (29) and was fitted in a 

tensometer machine to find the tension under different loadings. Four speci-

mens were used and the readings from the data logger in mv' were plotted 

against tension in the membrane in KN/m. It was found that for small 

loading the tensometer could not be adjusted to give small reliable readings 

and therefore this system could only be used satisfactorily to find the breaking 

strength and tension in the high load ranges. The arrangement of the tenso­

meter is shown in fig.3.5, Chapter 3 as used to find the breaking strength of 

the material. 

A second method used to calibrate the strain gauges was to take (100x200mm) 

specimens of the two different materials and to suspend these from a hook and 

by using different weights hung from the bottom of the specimen as shown in 

fig. 5.10 to find the strain in the material, and hence the tension in KN/m. 

From each increment of loads, readings of the data logger were taken in 

mv and this continued until the breaking strength of the material was reached. 

The results of the above readings i.e. loads and readings of the data 

logger in mv were plotted to find the relationship between tension in the 

membrane and the reading from the data logger in (mv). A subroutine (EOZADF) 

was used to fit the data based on the Chebyshev-series. The results of the 

best polynomial fits are shown in fig.5.11 for the different materials and 

the different methods of testing. 

5.4.3 Results of the tension test. 

The test program for measuring the tension in the membrane was only applied 

to the air inflated condition as this gave higher tensions than for the other 

conditions of inflation considered. Two different pressures were used for two 

different conditions, one with the downstream head equal to zero and the 

second with the downstream head equal to 100 mm. Five different overflow 

heads were used for each condition. Readings from the data logger of the 
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strain gauge cells were taken every 10 minutes with each overflow head 

running for one hour to give six readings for each cell and by averaging 

these readings the tension was found from the calibration curve, fig.5.11. 

Tables 5.3 and 5.4 show the average tension for each cell for each 

condition. 

Comparison between the tension found by experiment and those found 

theoretically is discussed in Chapter 6 and the above tables only show the 

results of the tests. Fig.S.12 shows an air inflated dam under a tension 

test. 

5.5 Behaviour of an inflatable dam. 

5.5.1 Behaviour of an air inflated dam. 

To study the behaviour of an air inflated dam under different overflows 

a dam was built of total membrane length equal to 0.60 m and tested under two 

air pressures of 3.355 KN/m2 and 5.1 KN/m2• The study was carried out under 

different overflows for downstream heads of 70, 90, 100, 120, 140 mm. It 

was observed that for a particular air pressure the height of the dam decreased 

with increasing overflow (increasing the rate of flow) with an overflow 

resulting in a distortion of the dam toward the downstream side and a lowering 

of the crest. This pattern of behaviour was found for both the air pressures 

and all the different downstream heads. Fig.5.l3 shows this pattern of 

behaviour for different air pressure and different downstream heads. Also 

it was noticed that for the dam with an internal air pressure equal to 3.355 

KN/m2 under a downstream head equal to 140 mm, the maximum height of the dam 

was equal to 0.187 m whilst for a dam with an internal air pressure equal to 

5.1 KN/m2 under the same downstream head, the maximum height of the dam was 

equal to 0.186 m. This behaviour shows that under certain downstream heads 

that for a dam under a low internal pressure, the maximum height can be more 

than the same dam inflated with a higher pressure and this is clearly 
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Table 5.3 

Dam Information 

uls In/s Max. Over-
Head Head Height flow 
(m) (m) of Head 

dam 

(m) (tmn) 

0.253 0.0 0.2247 28.3 

0.256 0.0 0.2246 31.4 

0.262 0.0 0.222 40.0 

0.268 0.0 0.218 50.0 

* 0.270 0.0 0.201 69.0 

0.263 0.0 0.243 20.0 

0.266 0.0 0.2427 23.3 

0.272 0.0 0.240 32.0 
i 

0.275 0.0 ,0.2398 35.0 

0.278 i 0.0 i 0.2388 I 39.2 

*Vibration started. 

Results of the test for the tension for an air inflated dam with DIs E O. 

-CII ~ 0 Section at Centre of the dam Section at End ~ QJ '-' 
:I U 
(/):I.-4 

Part (1) Part (2) Part (3) uls DIs (/) '1j QJ Crest 
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• "" QJ 
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i1 ~."" KN/m KN/m KN/m KN/m KN/m KN/m KN/m KN/m KN/m KN/m 

10.02 3.984 0.368 0.771 0.382 0.393 0.429 0.4383 0.475 0.368 0.41 0.480 

11.82 3.984 0.360 0.362 0.375 0.394 0.402 0.437 0.476 0.366 0.43 0.440 

17.80 3.984 0.357 0.360 0.373 0.384 0.397 0.432 0.470 0.360 0.41 0.430 

26.05 3.984 0.355 0.358 0.368 0.377 0.391 0.425 p.463 0.358 0.401 0.430 

49.36 3.984 0.360 0.363 0.369 0.376 0.389 0.43 p.45 0.365 0.392 0.455 

5.11 5.728 0.541 0.58 0.61 0.60 0.63 0.69 0.735 0.548 0.62 0.745 

6.526 5.728 0.540 0.56 0.59 0.60 0.635 0.688 0.733 01740 0.628 0.742 

10.99 5.728 0.550 0.56 0.58 0.60 0.630 0.68 0.73 0.555 0.62 0.742 

112 •69 5.728 0.540 j 0.55 0.58 0.60 0.62 0.67 0.72 0.55 0.61 0.74 

!15.297 5.728 0.540 I 0._~5_~~.~7~JO~~~_ 0.62 0.67 0.74 0.56 0.60 0.7~ 
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Table 5.4 

Dam Information 

U/S D/S Max. 
Head Head Height 

(m) (m) of 
dam 
(m) 

0.263 0.1 0.231 

0.268 0.1 0.228 

0.271 0.1 0.226 

.279 0.1 0.223 

0.264 0.1 0.248 

0.268 0.1 0.247 

0.2725 0.1 0.246 

0.2777 0.1 0.2451 

0.281 0.1 0.244 

Results of the test for the tension for an air inflated dam with D/S = 0.1 m. 

"",- Section at Centre of the dam Section at End QlQIO 
"'" tJ""" 
~~~ 
Ul -0 QI Part (1) Part (2) Part (3) U/S Crest D/S Ul Ul = 
QI = = Upstream face Crest face Downstream face face face 
"'" I1S I1S 

Over- Disch. p..,""'..r:: face .j.J tJ 

flow 
Q 

.j.J Cell Cell Cell Cell Cell Cell Cell Cell Cell Cell 
Head = QlN (1) (12' (3) (4) (5) (6) (7) (8) (9) (10) 

QI "'" a .-4~_ 
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.~ QI KN/m KN/m KN/m KN/m KN/m KN/m KN/m KN/m KN/m KN/m ~ "'" = 0' Clo·~ 
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32.0 11.68 p.984 0.350 0.36 0.37 0.40 0.42 0.44 0.46 0.356 0.42 0.47 

40.0 17.00 ~.984 0.346 0.35 0.36 0.37 0.39 0.43 0.47 0':35 0.40 0.47 

45.0 20.78 3.984 p.34 0.35 0.36 0.37 0.39 0.42 0.46 0.34 0.39 0.47 

* 56.0 30.05 ~.984 p.33 0.34 0.35 0.36 0.38 0.42 0.45 0.335 0.38 0.46 
. 

16.0 3.47 ~. 728 0.55 0.56 0.59 0.61 0.64 0.69 0.74 0.555 0.65 0.75 

21.0 5.38 fj.728 0.54 0.55 0.58 0.60 0.63 0.68 0.73 0.56 0.63 0.73 

26.5 7.39 ~. 728 0.53 0.54 0.58 0.59 0.63 0.675 0.73 0.55 0.58 0.68 

32.6 10.95 5.728 p.53 0.54 ~.58 0.59 0.62 0.67 0.720 0.54 0.61 0.68 
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FIG (5-12) INFLATABLE DAM INFLATED BY AIR UNDER 

TEST TO MEASURE THE TENSION USING STRAIN GAUGES 
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reflected in fig.5.l3. This behaviour was not found in the case when the 

downstream head was lowered from 140 mm to 120 mm. This means that it is 

possible to get a high dam with low internal pressure, which results in a 

low tension in the material by increasing the downstream head. 

5.5.2 Behaviour of water inflated dam. 

In order to study the behaviour of a water inflated dam, two internal 

water pressures of 330 mm and 600mm were used for different downstream heads. 

The variation in the downstream head was over the same range as for the air 

inflated condition. It was noticed that the dam height increased with 

increasing downstream head and also that the height of the dam decreased with 

increasing the overflow head for a constant downstream head. 

The behaviour of the dam with an internal pressure head equal to 330 mm 

and the downstream head equal to 100 mm and increasing the overflow from 25 

to 30 mm was such that the crest height reduced by 5.10 mm whilst when the 

downstream head was equal to 140 mm the reduction in the height of the crest 

was equal to 1.4 mm. When the pressure inside the dam increased to 600 mm 

with all other conditions kept constant the result was that a reduction at 

0.7 mm for the downstream head equal to 100 mm and 0.5 mm for the downstream 

head equal to 140 mm. 

It was also observed that when the overflow head was equal to 25 mm, 

a dam of 330 mm internal pressure head and under a downstream head equal to 

100 mm, the maximum height was 155.3 mm whilst the height rose to 161.0 mm 

for the condition of downstream head equal to 140 rom with the same overflow 

head, giving a dam height increase of 5.7 mm. This condition can be repeated 

by changing the pressure head to 600 mm and keeping the other conditions 

constant the maximum height of the dam with downstream head equal to 100 mm 

is 169 mm whilst the maximum height of the dam with downstream head equal to 

140 mm is 172 mm, and hence the crest height increased by 3 rom. The results 
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show that the rate of increase in height of the crest is higher for low 

internal pressures and low for high internal pressure with increasing down­

stream head. 

Hence the height of the dam depends mainly on the internal pressure 

head, downstream head and the overflow head. 

The behaviour of a water inflated dam with different overflows and 

downstream heads is shown in fig.5.14. 

5.5.3 Behaviour of an (air+water) inflated dam. 

The behaviour of an (air+water) inflated dam was similar to the previous 

conditions for both air and water inflated dams, but the rate of change of 

the crest height was different depending on the depth of water inside the 

dam. In this study two dams with different depths of water inside but 

both with a total internal pressure head equal to 600 mm were used to 

observe the behaviour of the two cases as follows. 

For the dam with an internal water depth equal to 15 percent of the 

maximum height of the dam an overflow head equal to 25 mm and a downstream 

head equal to 100 mm the height was equal to 178.1 mm. The maximum height 

for the same condition but changing the downstream head to 140 mm was 181.6 mm, 

when all the above conditions were kept constant but the depth of water inside 

the dam was changed to 75 percent of the maximum height, the results showed 

that the maximum height with the downstream head eqqa1 to 100 mm was 171 mm 

while the crest height was 174.3 mm for a downstream head equal to 140 mm. 

The crest height of the dam reduced by 7.1 mm with the downstream head equal 

to 100 mm and reduced by 7.33 mm with the downstream head equal to 140 mm. 

This difference was due to changing the depth of water inside the dam from 

15 to 75 percent. 

Fig.S.15 shows in detail the above behaviour for the dam inflated with 

air and with different internal water depths and fig.5.l6 shows a dam inflated 

with air under observation. 
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FIG. (5-16) AIR INFLATED DAM UNDER OBSERVATION 
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5.6 Theoretical Analysis. 

The inflatable hydraulic structure under hydrodynamic conditions has 

been analysed in order to find the tension, slope, elongation, cross-sectional 

area, maximum height and profile of the dam in a similar way to that adopted 

for static conditions. 

On the upstream face it was assumed that the specific energy was 

constant and the average flow velocity at all sections was constant and 

frictional forces along the membrane were ignored. It was considered that 

only the static water pressure was operating (3). On the downstream face the 

flow was considered as passing down the lower surface of the dam without 

giving rise to any break away at all and this condition assumed the flow to 

be fully aerated. 

Naturally due to the fact that the flow descends over a curved surface, 

the flow is influenced by both a centrifugal force and the self weight of 

water. 

Since the volume flow rate (36) at the control point on the dam is 

already known one can obtain the average flow velocity v as the following: 

v • q/h e 

by assuming the flow over the dam surface has uniform flow velocity. 

5.2 

In this study the depth of water on the surface of the dam on the down-

stream face is approximately constant and it was found experimentally that 

this depth was related to the overflow head. 

It was found experimentally and from fig.5.17 that the depth of water 

over the crest (h ) was equal to 0.69 of the overflow head (H) and this 
e 

result was obtained by examining different heads for different inflation 

pressures for all inflation conditions. 
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On the basis of these results which can be seen in fig.S.17 and fig. 

5.18, the depth of water on the downstream face of the dam was considered 

in order to find the effect of the centrifugal force and the self weight of 

water. 

As mentioned earlier the analysis of the hydrodynamic condition was 

similar to the hydrostatic condition which required dividing the membrane into 

(n) elements with (n+l) nodes. The magnitude and location of the loads 

acting on each element due to upstream head, downstream head, internal pressure, 

weight of membrane and the centrifugal force were analysed, on each element 

in order to find the resultant of the forces on each element. From this 

procedure the shape of the dam can be determined. The analysis of the 

forces on an element are shown in fig.5.l9A. The co-ordinates of the final 

element did not always coincide with the base width resulting in a mis-close. 

This mis-close was overcome by the same procedure as in the static condition 

by using the Newton-Iteration method (31) to correct the tension and slope 

of the first element on the upstream side. 

This procedure was repeated to minimize the mis-close to within 

acceptable limits. It was noticed that for an air inflated dam under ten 

different overflows the maximum error of mis-close was 0.3 mm and minimum 

mis-close was 0.01 mm and these were found from a maximum number of iterations 

of 5 and a minimum number of iterations of 2. An increase in the number of 

iterations increased the time required on the computer, so the smaller the 

number of iterations the better. 

A computer program for the static condition (IHSIP) was modified for 

use in the hydrodynamic condition (DYIHSIP). The program of the dynamic 

condition used the same number of cards as shown in table 4.1, Chapter 4, 

except Card Number 5 which was changed to the form NTYPE = 1 to NTYPE = 2 in 

order to analyse a dam under hydrodynamic condition. Fig.5.l9B shows water and 

air inflated dams analysed under 50 number of elements. 
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From the study of the behaviour of the flow over the crest for different 

conditions and for different inflation fluids a range of calibration 

equations were obtained to calculate the rate of flow and coefficient of 

discharge (detail in Chapter 7). 

The program (DYIHSIP) calculated the rate of flow and coefficient of 

discharge in order to use this in the analysis for the dam shape and the 

following points needed to be considered. 

1. Analyse the dam by only considering the static forces on the 

upstream and downstream faces. 

2. Calculate the rate of flow and radius of curvature from the initial 

analysis by finding the ratio (H/~) for the particular proportional factor 

and type of inflation fluid. 

3. Re-ana1yse the dam to consider the effect of the centrifugal 

force on the downstream force after calculating the rate of flow. 

4. Using the iteration method minimize the mis-close and then find 

the shape of the dam and final maximum height of dam. 

Fig.S.20 A, Band C shows the output of the program (DYIHSIP) for dams 

inflated with air, water and (air+water) respectively and under different 

overflow heads ranges between 14 to 56 mm. 

5.7 Effect of the operational parameters on different output parameters. 

The main operational parameters of an inflatable hydraulic structure 

under hydrodynamic conditions are 

1. Overflow head (difference between the upstream head and maximum 

height of dam). 

2. Downstream head. 

3. Silt depth. 

4. Internal pressure head. 
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The above operation of parameters have to be known in order to find 

the output from the program (DYIHSIP) which are represented by the following 

parameters. 

1. Tension. 

2. Upstream slope. 

3. Elongation of the membrane. 

4. Maximum height of dam. 

5. Cross-sectional area and profiles of the dam. 

In this analysis type I material was used with design length equal to 

0.80 m and the results are discussion in the following sections. 

5.7.1 Tension. 

The study of the behaviour of the upstream tension and downstream 

tension for the dam under different overflows showed that the tension 

increased with increasing the proportional factor alpha and that the tension 

in the upstream face was less than the downstream face. However the tension 

decreased with an increase in the overflow. This pattern of behaviour was 

the same for the different inflation fluid as shown in fig.5.21 and fig.5.22 

for the upstream and downstream tension under different conditions of down­

stream heads and silt pressure for an air dam. Fig.5.23 shows the 

variation of the upstream tension and downstream tension for a water inflated 

dam and fig. 5.24 shows the variation of the upstream and downstream tension 

for an (air+water) inflated dam. 

The tension found considered the effect of silt on the upstream face 

of the dam and the effect of different downstream heads. The results show 

that for all three conditions of inflation fluids, tension decreased with 

increasing the downstream head and also tension was reduced by increasing 

the depth of silt on the upstream face of the dam. 
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The reduction in tension when increasing the overflow head has been 

observed in the experimental work shown in table 5.3 and 5.4 measured using 

strain gauges inside an air inflated dam for the conditions of downstream 

head equal to zero and 0.10 m respectively. 

The phenomenon of decreasing tension with increasing the overflow was 

also observed by Stodulka (37) in his experimental work. 

5.7.2 Upstream slope. 

The upstream slope of the dam decreased as the overflow head increased 

for all three conditions of inflation, but the slope of the upstream face 

increased as the proportional factor increased. When the downstream head 

and silt pressure were taken into consideration the upstream slope increased 

with increasing downstream head while the upstream slope decreased as the 

effect of silt pressure on the upstream face of the dam was considered. 

Fig.S.2S shows the variation of the upstream slope with different overflow 

heads for an air inflated dam and fig.S.26 shows the variation of the 

upstream slope with different overflows for a water inflated dam. When 

considering different downstream heads and silt pressures it was found that 

for a proportional factor equal to 2.5 and for a downstream head equal to 

zero and zero silt the upstream was always the same for all overflows due 

to the high internal pressure. The downstream head when increased to 40 mm 

still did not result in any change in slope. Fig.S.27 shows the variations 

of the upstream slope with different overflows for a dam inflated with (air+ 

water) and under different conditions of downstream head and silt pressure. 

The behaviour shown is similar to both and and water inflated conditions. 

5.7.3 The elongation of the dam material and maximum height of dam. 

The reduction in the tension with increasing overflow head also 

resulted in a smaller elongation of the material but the magnitude of the 
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elongation of the material changed with respect to the proportional factor, 

downstream head and the silt pressure. For a low proportional factor the 

elongation was less than for a high proportional factor under the same over­

flow and downstream head and with no silt pressure. These changes are 

shown in fig.5.28 for an air inflated dam for different conditions of down-

stream head and silt pressure. The behaviour was similar for the case of 

water and (air+water) inflated dams, i.e. the elongation was less for low 

proportional factors and higher for high proportional factors as shown in 

fig.5.29 and fig.5.30. 

The effect of silt on the upstream face was to cause a reduction in the 

elongation and also a decrease in the maximum height i.e. the dam was dis­

torted to the downstream side. It was also observed that a dam inflated 

with air with a proportional factor equal to 0.6 and with downstream head 

equal to 100 rom, the maximum height was higher than a dam inflated with 

air with a proportional factor equal to 1.0 and with downstream head equal 

to zero and even with silt depth equal to 30 mm. This behaviour was also 

found experimentally as described. Section 5.5 and fig. 5.31 shows the 

variation of the maximum height of a dam for the air inflated condition. 

Fig.5.32 shows the behaviour of the maximum height with respect to 

different overflows for the condition of a water inflated dam and shows that 

the maX1mum height increased with increasing downstream head and vice versa 

the maX1mum height of the dam reduced if the silt was included on the up­

stream face, and this behaviour was similar to the condition of an (air+water) 

inflated dam as shown in fig.5.33. 

5.7.4 Cross-sectional area and profile of the dam. 

The cross-sectional areas were calculated according to the equation 4.14 

in Section 4.6.4 for different proportional factors under different overflow 
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heads and the cross-sectional area was also determined experimentally by 

plotting the profile of the dam using the program (EW) and by using the 

same equation in order to calculate the area. The results of the theoretical 

cross-sectional area are compared with the experimental results in Chapter 6. 

This analysis showed that the cross-sectional area decreased with 

increasing the overflow head for all conditions of inflation and for all 

proportional factors. This behaviour was different when the effect of 

downstream head and silt pressure was considered as the cross-sectional 

area increased with increasing of the downstream head, while the cross­

sectional area decreased with an increasing effect of silt pressure. 

The behaviour of the cross-sectional areas with respect to the different 

proportional factors and under different overflow heads for air, water and 

(air+water) inflated are shown in figs. 5.34, 5.35 and 5.36 respectively. 

Different profiles under different overflow heads and for different 

proportional factors are shown in fig.5.37, 5.38 and 5.39 for air, water and 

(air+water) inflated dams respectively. 

5.8 Summary. 

This chapter has concentrated on dams inflated with different inflation 

fluids under hydrodynamic conditions and studied both experimentally and 

theoretically. 

The main experimental work was to find the maximum overflow head over 

the dam before vibration started and to determine the fabric tension experi­

mentally by using strain gauges inside the dam. 

The behaviour of the dam was studied under different overflow heads 

under different inflation fluids. 

Analysing the dam theoretically was done by using the same technique 

developed for the static condition except to take into consideration 

additional forces on the downstream face. 
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CHAPTER 6. 

COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL WORK. 

6.1 General. 

The comparison of the different results from the experimental and 

theoretical work is detailed in this chapter. A comparison between the 

experimental and theoretical work was made for the following parameters. 

1. Profiles of a dam for both the static and dynamic conditions. 

2. Average upstream and downstream tensions. 

3. Upstream slopes. 

4. Maximum height of a dam. 

S. Cross-sectional area. 

The comparison of theoretical work was also made for dams which had been 

inflated with different fluids. The main parameters compared are as follows: 

1. Tension, 2. Upstream slope, 3. Elongation, 4. Maximum height of 

dam, S. Cross-sectional area. 

Additional to the above, a comparison was also made for the different 

materials which were used for the construction of the dams. 

6.2 Comparison of experimental and theoretical work. 

6.2.1 Profile of the dam. 

The comparison of the profiles for the dams obtained from the theoretical 

and experimental work was carried out by calculating the average of the straight 

line distance of co-ordinate points from the anchor point for both the 

theoretical and experimental work in order to find the percentage differences 

between the two. These details of the comparisons are arranged in table 6.1 

for different dams under different inflation fluids for static conditions. 

The comparison shows that the maximum percentage differences between 

the experimental and theoretical work was only 1.3 which was considered 

acceptable for the range of characteristics studied. 
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Table 6.1 

Propl. 
Test factor 

No. a 

1 0.75 

2 1.1 

3 1.0 

4 1.0 

5 1.2 

6 0.6 

7 0.7 

8 0.8 

Table 6.2 

Propl. Test factor 
No. a 

1 0.6 

2 1.0 

3 1.2 

4 1.2 

5 0.8 

6 1.0 

A comparison of the profiles of dams obtained from 
experimental and theoretical work for static conditions. 

Orig. Air Water u/S DIs Average distances 
length Press. Press Head Head Theor- Experi-(m) KN/m2 (m) (m) (m) etical mental 

0.800 4.421 - 0.253 0.0 0.202 0.201 

0.800 5.439 - 0.259 0.0 0.198 0.147 

0.800 - 0.373 0.189 0.0 0.200 0.199 

1.000 - 0.467 0.236 0.0 0.250 0.248 

0.800 - 0.431 0.198 0.0 0.197 0.195 

0.800 1.621 0.146 0.195 0.0 0.208 0.208 

0.600 1.292 0.121 0.148 0.0 0.158 0.156 

0.500 1.23 0.10 0.126 0.0 0.131 0.130 

% 

Diff. 

0.5 

0.61 

0.4 

0.61 

0.72 

0.0 

1.3 

0.77 

Comparison of the profiles of dams obtained from experimental 
and theoretical work for hydrodynamic conditions. 

Orig. Air Water u/s DIs Average distances 
7-length Press. Press Head Head 

(m) KN/m2 Theor- Experi- Diff . (m) (m) (m) etical mental 

0.800 3.984 0.0 0.262 0.0 0.208 0.206 1.0 

0.800 5.150 0.0 0.265 0.0 0.200 0.199 0.5 

0.800 0.0 0.435 0.228 0.0 0.204 0.203 0.7 

0.800 0.0 0.435 0.239 0.04 0.207 0.203 1.97 

0.800 2.041 0.157 0.233 0.0 0.214 0.213 0.2 

0.800 2.545 0.157 0.248 0.0 0.211 0.210 0.4 
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Profiles from the experimental and theoretical work were plotted using 

a computer program "COMPARE" and are shown in figs. 6.1, 6.2 and 6.3 for air, 

water and (air+water) inflated dams respectively. The comparison of the 

plotted profiles covers aproportional factors - of 0.75 and 1.1 for air 

inflated dams, 1.0 and 1.2 for the water inflated dams and 0.6 to 0.8 for 

(air+waterl inflated dams. 

The profiles were also compared in the same way for the hydrodynamic 

condition and the results are shown in table 6.2. The maximum percentage 

difference between the theoretical and the experimental results was equal to 

2.0. 

This percentage difference for the dynamic condition is higher than for 

the static condition due to the effect of the overflow causing a vibration 

of the fabric of the dam resulting in a difficulty in measuring the profile 

as accurately as for the static condition. 

Fig.6.4 shows different profiles for the experimental and theoretical 

work for air, water and (air+water) inflated structures under hydrodynamic 

conditions. 

6.2.2 Comparison of the results of the output parameters for static 

conditions. 

The main output parameters which have been compared are as follows: 

1. Average upstream and downstream tensions. 

2. Upstream slopes. 

3. Maximum height of dam. 

4. Cross-sectional area. 

The results for the comparison of the above parameters are arranged 

in table 6.3 for different dams and different inflation fluids. 

The average upstream and downstream tension were only available for 

ai~ inflated dams and the results show that the maximum difference between the 
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experimental and theoretical work was 5.3% for a proportional factor equal 

to 0.4. This high difference between the experimental and the theoretical 

tensions is due to the fact that a dam with such a low proportional factor 

is not stable and the end conditions cannot prevent the leakage of water 

from the upstream side. 

The comparison of the other output parameter, i.e. upstream slope, 

maximum height and cross-sectional area shows acceptable results with the 

maximum differences between the experimental and theoretical work equivalent 

to 3.0, 1.5 and 2.8 percent respectively, the differences probably due mainly 

to experimental error. 

6.2.3 Comparison between experimental and theoretical work of 

tension for the hydrodynamic condition. 

The experimental technique for measuring the tension by using strain 

gauges attached inside the dam is explained in detail in Section 5.4, 

Chapter 5., and the results of the experiment are given in table 5.3 and 5.4. 

In this section a comparison is made between the tensions found by the 

theoretical and experimental work for the hydrodynamic condition. The 

results of this comparison are arranged in tables 6.4 and 6.5 for a dam 

inflated with air and for the conditions of downstream heads equal to 0.0 

and O.l.m. 

The comparison is divided into three parts depending on the location of 

the strain gauges inside the dam. 

Part (1) 

Part (2) 

Part (3) 

relates to the cells 1, 2 and 3 fitted on the upstream 

face. 

relates fo the cells 4 and 5 fitted on the crest face. 

relates to the cells 6 and 7 fitted on the downstream face. 

Additional to the above, a comparison was also carried out for the total 

average tension around the membrane length of the dam. Table 6.4 shows the 
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comparison of this tension for an air inflated dam with downstream head 

equal to zero, and the results of the comparison indicate that the maximum 

difference between the experimental and theoretical work was equal to + 4.7 

percent occurring on the crest face, while the maximum difference between the 

theoretical and the experimental work for the condition of downstream head 

equal to 0.10 m was + 5.5 percent again this occurring on the crest face. 

The main reason for the high differences between the experimental and 

theoretical results in the region of the crest face was due to the effect of 

the flow over the crest and down the downstream face. In some cases the flow 

over the crest will not be uniform along the dam which has been assumed in 

the theoretical analysis. Such differences between the theoretical and 

experimental results for the upstream region did not occur due to a stable 

static head on the upstream face of the dam. 

The details of the comparison for the tension are shown in tables 6.4 

and 6.5 for proportional factors equal to 0.6 and 1.2 with downstream heads 

equal to 0.0 and 0.1 m. The range of variation of the tension between 

the theoretical and experimental results was -3.0 to +4.7% for the condition 

of downstream head equal to zero whilst the range of variation was -1.8 to 

+5.570 for the condition of downstream head equal to 0.1 m. 

The maximum difference percentage between the theoretical and experi­

mental average of the total tension around the membrane were 2.5 for the 

condition of downstream head equal to zero and 2.9 for the condition of the 

downstream head equal to 0.1 m. 

6.3 Comparison of the theoretical results between dams inflated with 

different inflation fluids. 

Dams of different inflation fluids were compared by considering the 

main output parameters with different internal pressures. This comparison 

was made for different conditions of downstream head and silt pressures and 

with a total length of membrane equal to 0.8 m. 
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Table 6.4 Comparison of the tension obtained from experimental and theoretical work for an 
Air Inflated Dam with downstream head = 0.0 

Section at the centre of the dam 
Dam Details Part (1) Part (2) T--Part (3) 

P stream face Crest face I Downstream face 
ress T . . KN enSlon ln m DISI Max. 

Head Height 
Over I Disch. 
flow Q Cell Cell Cell % Cell Cell 

(1) (2) (3) (4) (5) (6) (7) 
Ex • Exp. diff Ex. diff Ex. Exp. 

Head 
KN/m

2 
tmIl I 9.1 s (m) I (m) 

Theor. Theor. Theor. Theor. Theor. 

1 10.2531 0.01 0.2247128.3 1 10.02 13.984 0.368 0.371· r 0 •382l-- 0 0 I 0.382-,· -Cf:3Qj--, +3 6 --no.438 0.475 
0.366 0.371 0.382 +. 0.382 0.398 • 0.462 0.484 

2 10.2561 0.01 0.2246131.4 1 11.82 13.984 
0.360 0.362 0.-3-7S +0 4 0.386 -O.qCrZ- +2 O---~0.437 

% 

diff 

Total 
aver 

% 
diff. 

+3.5 1 +2.0 

+0.6 I +1.0 0.360 0.365 0.377 • 0.394 0.410 • 0.440 
~ ~~----~--~----~--~----~----~~~~~~~~~~----~~~~~~~-+------~~~~~~~----~----~ 

• 0.357 0.360 0.373 +0 3 0.384 0.397 +3 6 0.432 +2 3 o 0.357 0.362 0.373 • 0.388 0.422 • 0.456 • 

4 10.2681 0.01 0.218 150.0 I 26.05 13.984 

1 10.2631 0.01 0.243 120.0 1 5.11 15.728 

2 10.2661 0.01 0.2427123.3 16.526 15.728 

0.355 I 0.358 I 0.368 I -0 31 0.377 I 0.391 I +4 0 0.425 0.463 
0.353 0.357 0.367 • 0.383 0.416 • 0.451 0.469 
0.541 0.580 1 0 •610 1 -3 0 I 0.600 I 0.630 I 4 7 0.690 0.735 
0.545 0.555 0.580 • 0.619 0.669 +. 0.719 0.754 

0.540 1 0 •560 1 0 •590 I _0.41 0 •600 I 0.635 I +3.7 1 0 •688 I 0.733 
0.543 0.557 0.583 ; 0.616 0.666 0.717 0.752 

+3.6 1 +2.2 

+3.3 I +1.2 

+3.3 1 +2.0 

0.550 0.560 0.580 1 I 0.600 I 0.630 +1 3 I, 0.680 I 0.73 
3 0.272 0.0 0.240 32.0 10.99 1 5 •728 0.539 0.553 0.579 -1.1 0.611 0.635 • 0.662 0.73 I J 

~ I 0.540 0.550 0.580 1 0.600 I 0.620 + ,0.670 I 0.72 

+1.3 1 +0.5 

.-I f 4 0.275 0.0 0.2398 35.0 12.69,5.728 0.538 0.551 0.577 -0.4, 0.608 0.660 4.0,0.710 I 0.74 i +4.3 I +2.5 

I 0.540 0.550 0.575 10.600 I 0.620 + 10.670! 0.74 I I 5 10.278! O.O! 0.2388; 39.2 ; 15.297: 5.728 ,0.536 0.549 0.575 I -0.4: 0.606 0.657 3.5 0.708· 0.743 I +2.9 I +1.81 
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Table 6.5 Comparison of the tension obtained from experimental and theoretical work for an 
Air Inflated Darn with downstream head = 0.1 

Dam Details Section at the centre of the darn , 
Part (1) Part (2) Part (3) 

DIs Max. Over Disch. Press. Upstream face Crest face Downstream face 
Head Height flow Q Tension in KN/m 

Head % % Cell Cell % (m) (m) lIs KN/m2 Cell Cell Cell Cell Cell 
(1) (2) (3) (4) (5) (6) (7) mm 

Exp. Exp. Exp. diff • Exp. Exp. diff Exp. Exp. diff 

Theor. Theor. Theor. Theor. Theor. Theor. Theor. 

0.1 0.231 32.0 11.68 3.484 
0.350 0.360 0.370 -1.1 

0.400 0.420 
-1.6 0.435 0.460 +4.0 

0.358 0.354 0.366 0.388 0.419 0.458 0.473 

0.1 0.228 40.0 17.00 3.984 0.346 0.350 0.363 -0.6 
0.370 0.390 +1.7 0.430 0.465 +2.6 

0.344 0.349 0.361 0.378 0.415 0.450 0.468 

+3.81 0.1 0.226 45.0 20.78 3.984 
0.340 0.350 0.360 

-0.2 
0.370 0.390 +4.2 0.420 0.460 

0.342 0.347 0.359 0.380 0.412 0.448 0.465 

0.1 0.248 16.0 3.47 5.728 0.550 0.560 0.590 -1.8 0.610 0.640 +4.3 0.690 0.740 
+2.51 0.542 0.556 0.583 0.616 0.617 0.720 0.746 

, 

0.1 0.247 21.0 5.38 5.728 
0.540 0.550 0.580 -0.06 0.600 0.630 

+3.8 0.680 0.730 I 
0.539 0.553 0.580 0.613 0.664 0.714 0.743 +3.3

1 

0.1 0.246 26.5 7.39 5.728 
0.530 0.540 0.580 +1.2 0.590 0.625 +4.4 0.675 0.725 

+3.61 0.537 0.553 0.576 0.609 0.660 0.711 0.739 

i 
0.1 0.245 32.6 10.015 5.728 0.530 0.539 0.577 +0.5 0.590 0.620 +4.2 0.670 0.720 +3.8 1 

0.535 0.547 0.573 0.605 0.656 I 0.707 0.735 

37.0 113.49 15.728 

, 

0.7101 l l' 0.525 j 0.540 I 0.570 
1

0 •600 0.590 0.670 
I 0.1 0.244 +5.5 i 

: 0.545 : 0.571 . +0.8 . 0.602 I 0.733 I +"f. : .0.533 0.653 ( 0.704 

Total 
aver. 

% 
diff. 

+0.5 

+1.8 

+2.4 

+1.1 

+2.1 

+2.9 

+2.6 

+0.8 



The main output parameters compared are 

(1) Tension, (2) Upstream slope, (3) Elongation, (4) Maximum height 

of dam and (5) Cross-sectional area. 

6.3.1 Tension. 

The tension in the membrane of the dam under different inflation fluids 

was compared for both the upstream and downstream faces. The results show 

that the tension in an air inflated dam for a particular internal pressure 

head is more than the tension of the same dam if inflated with water to 

the same internal pressure head. If the dam is inflated with (air+water) the 

values of the tension are lower than the tension for the air inflated dam but 

higher than for dams inflated with water. The ranges of values of the 

tension for a dam inflated with (air+water) depends on the depth of water 

inside the dam. A high depth of water results in the tension approaching 

the tension for a dam inflated with water only or if the depth of water inside 

the dam is low the resulting tension is close to the tension for a dam inflated 

with air only. 

Since in this investigation the depth of water inside a dam inflated by 

(air+water) was equivalent to 75 percent of the maximum height of the dam, 

the resulting tension was close to the tension of a dam inflated with water 

only. 

The theoretical variation of the upstream and downstream tension are 

plotted with different internal pressure heads for air, water and (air+water) 

inflated dams and under different downstream heads and silt pressures and 

these results are shown in figs. 6.5, 6.6, 6.7 and 6.8. 

6.3.2 Upstream slope. 

The upstream slope increased with increasing internal pressure head for 

all cases of inflation fluids and for all conditions of downstream head and 

silt depth. 
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The results show that the upstream slope for a water inflated dam are 

higher than for the equivalent air inflated dam for a particular pressure 

head for all conditions of downstream head and silt depth. 

As one might expect the upstream slope for a dam inflated with (air+ 

water) is less than the upstream slope of a water inflated dam and higher 

than for an air inflated dam. The values of the upstream slope for a dam 

inflated with (air+water) also depend on the depth of water inside the dam. 

The details of the comparison of the upstream slope with different 

inflation fluids under different downstream heads and silt depths are shown 

in figs. 6.9 and 6.10. 

6.3.3 Elongation of the material. 

Since the results show that the tension for an air inflated dam is 

higher than the tension of an equivalent water inflated dam the elongation 

should be higher for the air inflated dam for all conditions of downstream 

head and silt depth. Elongation for a dam inflated with (air+water) should 

be between the values of the elongation found for the above two conditions. 

These values also depend on the depth of water inside the dam. The 

details of the elongation for air, water and (air+water) inflated dams and 

under different conditions of downstream and silt depth are shown in fig. 

6.11 and 6.12. 

These show that the above comments on the elongation are true. 

6.3.4 Maximum height of dam. 

The maximum height of a dam increased as the internal pressure increased 

for all conditions of downstream head and silt depths. 

The highest maximum height for a particular internal pressure head was 

when the dam was inflated with air whilst the lowest height was for a dam 

inflated with water for the same internal pressure head. A dam inflated with 

(air+water) gave the maximum height of the dam in between the values for the 
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water and air inflated dams and also the maximum height depended on the 

depth of water inside the dam. Fig.6.13 shows the maximum height of dams 

under different inflation fluids for the condition of a downstream head equal 

to 0.1 m and silt depths equal to 0.0 and 0.05 m. 

6.3.5 Cross-sectional area. 

The cross-sectional area increased as the internal pressure heads 

increased for all inflation fluids and different conditions of downstream 

head and silt depth. 

The cross-sectional are~for water inflated dams were higher than for 

air inflated dams while the cross-sectional area for an (air+water) inflated 

dam was higher than an air inflated dam and lower than a water inflated dam. 

In the case of downstream depth equal to 0.0 and silt depth equal to 

0.0 the cross-sectional area of an air inflated dam increased more than an 

(air+water) dam when the internal pressure head increased to 500 mm this 

being due to the higher elongation occurring in the air inflated dam. More-

over the air inflated dam gave a higher cross-sectional area than an (air+water) 

inflated dam for low pressure head (i.e. 200-300 mm) for the condition of 

downstream head equal to 0.1 m and zero silt depth, this result being due to 

the effect of the downstream head pushing the dam toward the upstream 

position. 

The cross-sectional area was approximately constant for high pressure 

heads for all the dams inflated with different inflation fluids for the 

condition of downstream head equal to 0.0 and with silt depth equal to 0.05 m. 

Figs. 6.14 and 6.15 show the variation of the cross-sectional area of 

the dams for different inflation fluids under different conditions of 

downstream head and silt depths. 
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6.4 Comparison of the theoretical results of dams constructed from 

different materials. 

The resulting output parameters depend also on the type of material 

used for the construction of a dam. 

In this study two types of material were used, type I and type II, 

the details of the properties being given in table 3.1, Chapter 3. 

Results of the comparison of using these two materials are given in 

table 6,6. These results show that the values of the output parameters for 

the type I material are higher than output parameters for the type II 

material. The differences are mainly due to the variation in the thickness 

of the material and the behaviour of the stress-strain relationship. The 

effect of the weight of the material was not significant on the output 

parameter and this conclusion was found in Chapter 4, tables 4.4 and 4.5, 

while the thickness can be considered a significant parameter in the output 

parameter (see table 4.6 and 4.7). Hence, since the thickness of material 

type I is less than the thickness of the material type II~ the value of the 

output parameters of the type I material are higher than for the type II 

material. Increasing the thickness of the material will decrease the 

tension in the membrane but it will decrease the flexibility of the material 

which effects the construction of the dam. Therefore the chosen material 

should be of high flexibility and high strength for ease of construction and 

strong to avoid any damage due to high pressure heads. Table 6.6 shows the 

details of the comparison of material type I and material type II, and fig. 

6.16 shows different profiles of dams under different inflation fluids for 

the two materials. 

6.5 Summary. 

In this chapter a comparison of the theoretical and experimental work 

was made and the results were satisfactory. 
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Type Type of 
No. Inflation 

1 Air 

2 Water 

2 Air+Water 

- - ---- - ---

Table 6.6 

No. 
of Prop1. 

Test factor 

1 0.4 

2 0.8 

3 1.0 

4 1.1 

5 1.2 

1 1.0 

2 1.2 

3 1.4 

1 0.8 

2 0.9 

Comparison of Material Type I and Type II for different output parameters under 
the same conditions. 

vis Tension Dis Tension V/S Slope Elongation vis D/S H s KN/m KN/m degree (mm) 
Type Type Type Type Type Type Type Type (m) (m) (m) 

I II I II I II I II 
Mat. Mat. Mat. Mat. Mat. Mat. - Mat. Mat. 

0.2425 0.0 0.0 0.315 0.303 0.402 0.396 93.16 92.97 6.7 6.1 

0.2536 0.0 0.0 0.421 0.416 0.579 0.513 112.42 112.23 10.57 8.5 

0.2575 0.0 0.0 0.484 0.483 0.668 0.666 118.84 188.75 11.86 9.59 

0.2590 0.0 0.0 0.515 0.513 0.712 0.709 121.88 121.63 12.02 10.09 

0.2609 0.0 0.0 0.546 0.594 0.756 0.753 124.51 124.20 13.03 10.57 

0.1886 0.0 0.0 0.215 0.214 ' 0.296 0.295 121.19 121.2 6.21 5.06 

0.1978 0.0 0.0 0.267 0.266 0.367 0.367 128.07 127.96 7.23 5.88 

0.2085 0.0 0.0 0.330 0.329 0.455 0.454 133.27 133.64 8.56 6.93 

0.2000 0.04 0.05 0.218 0.218 0.286 0.285 97.65 98.19 5.94 4.84 

0.2035 0.04 0.05 0.246 0.245 0.322 0.321 103.39 103.86 6.47 5.27 
- - - - - - -- -- - --- --_ ... _-- - -- ---_._------ -- --

Cross 
Secti mal Area! 

rn 
Type Type 

I II 
Mat. Mat. 

0.0476 0.0469 

0.0498 0.049l 

0.0506 0.0503 

0.0509 0.0506 

0.0512 0.0509 

0.0480 0.0483 
, 

0.0494 0.0492 i 

0.0515 0.0512 

0.0466 0.0465 

0.0477 0.0476 
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Also a comparison was carried out for the results of the output 

parameter found theoretically for dams inflated with different inflation 

fluids. 

A comparison of using different materials has been carried out and it 

was concluded that the thickness of the material has a significant effect 

on the output parameters. 
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CHAPTER 7. 

DISCHARGE COEFFICIENTS FOR INFLATABLE 

STRUCTURES. 

7.1 Introduction. 

The coefficient of discharge for different types of structure varies 

depending on the type of structure, i.e. broad crested weir, sharp crested 

weir, sills, spillways. 

For inflatable structures it is necessary to find the coefficient of 

discharge for different values of the proportional factor and also for 

different inflation fluids. 

Several investigators have carried out experimental work to find the 

coefficient of discharge. Baker (20) and Clare (14) determined the coeffic-

ient of discharge (CD) from experimental work for a water inflated dam by 

using the following equation: 

q 

~ 
C = 7.1 

where q - discharge per unit width (ft3/s/ft). 

H = overflow head in ft. 

C = coefficient of discharge in ftl/sec. 

Both of the above investigators found the values of C to range between 

3.1 for low flows and 4.1 for high flows. 

Equation 7.1 is not dimensionless as the values of C include the term 

I2g , hence the dimensionless coefficient (38) can be found by the following 

relationship: 

= C/fig 7.2 

where = dimensionless coefficient of discharge. 

acceleration due to gravity. 
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Therefore the coefficient of discharge in dimensionless form ranges 

between 0.386 for low heads up to 0.510 for high flows. 

Anwar (2) and Stodu1ka (21) determined the coefficient of discharge by 

using the following equation: 

= 
q 

7.3 

The results for the coefficient of discharge determined by Anwar were 

in the range 0.35 for a low proportional factor to 0.5 for high proportional 

factors. 

Stodu1ka's investigations gave coefficient of discharges in the ranges 

3 0.25 to 0.40 for a range of low to moderate flows of 0.074 m Is/m. but no 

mention was given of the range of the proportional factors used for the dam. 

In this study attempts have been made to find a relationship between 

discharge and the coefficient of discharge data from the experimental work 

in order to develop an equation for other similar structures. 

These calibration equations were worked out for different inflation 

fluids (air, water, and the combination of the two) and under different 

proportional factors alpha. 

This chapter also includes a comparison of the values found by different 

investigators with those found from the calibration equation and also the main 

factors affecting the coefficient of discharge. 

7.2 Discharge Measurement. 

In order to measure the discharge flowing over the inflatable structure, 

a rectangular sharp crested weir was placed at the end of a rectangular channel 

connected to the outlet of the test tank as shown in fig.7.1A, B, C. 

1. Rectangular channel. 

This channel was connected to the test tank and incorporated the 

rectangular sharp crested weir. The channel was made from 1.5 mm galvanised 
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steel sheet and was 3000 rom long, 600 rom wide and 350 rom deep. 1000 nun 

upstream of the weir two baffle plates were fitted across the flow, each baffle 

consisting of three layers of hexagonal aluminium mesh, 16 mm thick. The two 

baffles were placed 400 rom apart. These baffles were used to create uniform 

flow across the section and hence improve the accuracy of the flow measurements. 

2. Sharp crested weir. 

The sharp crested rectangular weir was fitted at the end of the channel. 

The weir plate was made from 5 rom thick brass and was designed according to 

BS 3680 (39) part 4. The rectangular crested weir can be seen in fig.7.lB. 

3. Volumetric tank. 

A tank of dimensions (3040 mm x 1219 rom x 711 mm) was used to measure 

volumes of water collected in different time intervals in order to find the 

stage - discharge relationship for the rectangular weir by the volumetric 

calibration technique. A point gauge was used to measure the depth of water 

in the tank, while the head over the weir was measured by means of a piezo-

meter tube connected to the rectangular channel 400 mm upstream of the weir. 

The volumetric tank is shown in fig.7.le. 

7.2.1 Calibration of the weir. 

The general equation relating stage and discharge for a rectangular 

sharp crested weir is shown in equation 7.4 (48). 

Q 
2 I2g b C H 3/2 7.4 = 3" D r 

where Q discharge (M3/s). 

b = breadth (m). 

acceleration due to gravity 2 
g = (m/ s ). 

CD = coefficient of discharge. 

H = head of water above the crest level (m). r 
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For the maximum design discharge of 18 ~/s and maximum allowable head 

over the weir of 97 mm with a crest height of 100 mm, the necessary breadth of 

the wrie was evaluated using equation 7.4 as 320 mm assuming the coefficient 

of discharge is equal to 0.63. 

By considering i I2g b Co of equation 7.4 as a coefficient K this gave 

a theoretical stage discharge relationship 

Q 0.596 H 3/2 
r 7.5 

By finding the time for known volumes to accumulate in the measuring 

tank (see fig.7.lC) for different steady conditions of discharge and head 

over the weir it was possible to obtain an experimentally derived relationship 

between the head and the discharge. 

Fig.7.2 shows a plot of Hr3/2 against the discharge Q and from this 

relationship a value of K of 0.583 was found by using a computer program to 

find the best fit line. This gave an experimentally derived equation 

Q a 583 H 3/2 • r 7.6 

This difference in the K values in equation 7.5 and 7.6 is probably due 

to the estimated value of CD in equation 7.4 together with the scale of the 

weir being outside the limitations of the British Standard. In view of the 

difference in the K values the volumetric calibration equation was used in all 

future work. 

7.3 Experimental model test. 

The coefficients of discharge were found experimentally for the inflatable 

hydraulic structures for different inflation fluids under different proportional 

factors, with different downstream heads. The test program for the discharge 

coefficient is shown in table 7.1. The overflow over the dam was measured 

from low to high heads as shown in table 7.1. 
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Table 7.1 

Type of No. inflation fluid 

1 Air 

2 Water 

3 Air+Water 

! 
I i 

Test program for the coefficient of discharge 
determinations. 

Overflow head Downstream 

Proportional mm nnn 

factor Min. Max. Min. 

0.4 12.00 30.00 0.0 
0.6 18.00 32.50 0.0 
0.8 21.00 43.00 0.0 
1.0 18.13 47.40 0.0 
1.2 19.14 47.90 0.0 

0.8 12.54 44.57 0.0 
1.2 8.95 36.70 0.0 

0.8 18.00 46.00 0.0 
1.0 12.00 35.00 0.0 
1.2 10.72 27.75 0.0 
1.5 14.00 38.00 0.0 
2.5 3.45 24.62 0.0 
2.5 4.52 39.89 0.0 

0.6 18.17 40.58 0.0 
0.8 8.64 42.96 0.0 
1.0 7.22 44.10 I 0.0 
1.5 6.00 35.00 I 0.0 
1.8 8.00 40.00 I 0.0 
1.0 16.50 42.25 I 0.0 

I ! , 

7.4 Characteristics of flow over the crest. 

head 

Max. 

100 
100 
100 
100 
100 

100 
100 

100 
100 
100 
100 
100 
100 

100 
100 
100 
100 
100 
100 

From observations during the experimental work for the inflatable hydraulic 

structures for different inflation fluids it was noted that there was a limit 

to the overflow head beyond which the dam started to oscillate backwards and 

forwards and this phenomenon has been explained in Section (5.3.2). 

For the head over the crest before exceeding the limit beyond which the 

dam started to vibrate, the nappe was almost in complete contact with the 

surface of the dam. Fig.7.3 shows the flow of the nappe before the separ-

ation for low and high rates of flow. 

The lower nappe separation from the membrane may produce a negative 

pressure underneath the nappe due to the removal of air by the overfalling 

jet. This negative pressure will cause undesirable effects on the nappe 

behaviour. 
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(0) Low flow 

(b) Flow before seperation of the nappe 

FIG. (7-3) BEHAVIOUR OF THE FLOW OVER THE CREST 
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Chow (40) illustrated the effect of the separation of the nappe which 

caused the following effects: 

1. Increase in pressure difference on the crest of the dam. 

2. Change in the shape of the nappe. 

3. Increase in the discharge. 

4. Unstable performance of the dam. 

The above points have been studied by Hickoy (41) and on the basis of 

experimental tests to avoid this effect on the spillway of a dam he developed 

an equation to find the quantity of air required for aeration of the nappe, 

In this technique aeration of the nappe was achieved by inserting two 

glass pipes on both outer edges of the downstream side to allow atmospheric 

pressure to be created under the nappe. 

equal to 12 mm and bent to an L shape. 

The two pipes were of diameters 

With the relation to the downstream head, it was observed that the 

negative pressure decreased as the downstream head increased. 

7.5 Coefficient of discharge for an inflatable dam. 

The coefficient of discharge was determined experimentally under 

different inflation pressures and for different inflation fluids and it was 

found that the coefficient of discharge changes as the proportional factor 

changes and when the proportional factor changes, the shape of the crest of 

the dam changes. 

Hence it was considered that the coefficient of discharge Co changes 

with respect to the following parameters: 

CD III o (a, H, ~, v, p, p) 7.7 

where 
CD - coefficient of discharge. 

a = proportional factor. 
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H ... overflow head. 

l1> = maximum height of dam. 

v - velocity of approach. 

JJ = fluid viscosity. 

p = fluid density. 

Applying Rayleigh's method (42) of dimensional analysis, these variables 

can be re-grouped as follows: 

= fl (a, l1>, H, v, u, p) 7.8 

or = £2 [~J a (Re)c • • • •• 7.9 

The second parameter of equation 7.9 represents the Reynolds number 

which Rao (43) has extensively investigated and concluded in the case of an 

uncontracted sharp crested weir, the effect of Reynolds number has been found 

to be insignificant. 

Hence equation 7.9 can be written in the following form 

= · ... . 7.10 

Since the discharge Q is a function of the coefficient of discharge CD' 

one can derive a second equation which represents the discharge function in 

[~] terms of the ratio ~~ or 

Q = • • . •. 7.11 

By taking logs of both sides of equation 7.10 and 7.11, then 

log CD - log f3 + alog [~] • • • •• 7.12 

(H) 
log Q - log f4 + a l 10g l~J • • • •• 7.13 

and equation 7.12 and 7.13 represent linear relationships between log CD' 

log Q and log [~] with slopes of a and a l respectively. 
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In this analysis, the coefficient of discharge was computed using 

equation 7.3 for different proportional factors and the discharge was found 

by using the calibration curve for the rectangular sharp crested weir for 

different heads of flow over the inflatable dam. 

The results of the coefficient of discharge with the discharge found by 

the measurement are plotted on log-log scales for different inflation fluids 

and the coefficients of the equations 7.10 and 7.11 were found by using the 

least square method. A computer program was used for this purpose. The 

program can also plot the results of the best fit equations. 

Fig. 7.4 - 7.9 represent the results of the analysis for the discharge 

and coefficient of discharge for different inflation fluids. 

Coefficients of equations 7.10 and 7.11 are arranged in table 7.2 for 

the different inflation fluids. 

All the data for different inflation fluids was plotted in order to find 

the overall best fit equation for both the discharge and the coefficient of 

discharge. These equations 7.13 and 7.14 are illustrated graphically in 

fig.7.l0 and 7.11. These equations were called the combined equations. 

q -
-

(H) 1.5047 
186.84l~J 

[ 
HJO.095 

0.46 ~ 

..... 7.13 

7.14 

The values for the coefficient of discharge (CD) are plotted with 

different discharges found from the calibration curve. fig. 7.2, under different 

ratios of (H/~). The theoretical line of discharge and the coefficient of 

discharge of the equations which are found for water, air and air+water inflated 

dams are also plotted together with the combined equations 7.13 and 7.14. 

These graphical plots are shown in fig.7.l2, 7.13 and 7.14. 
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No. 

1 

2 

3 

4 

Table 7.2 Values of the coefficients of equations 7.10 and 7.11 
for different inflation fluids. 

Type of Equation Correlation 
Inflation coefficient 

fluid 

Water CD - 0.4338 [~]Oo0694 0.993 

q :II 194.04 
(H) 1.5727 

tHoJ 
0.936 

Air CD = 0.4866 ( aroll 
l~ 0.997 

q • 261.80 [~r588 0.957 

Air+Water CD = 
[H 100123 

0.479 HDj 0.996 

(H)1.6 
q = 223.79 lHDJ I 0.960 

! [H1OOO95 
I Combined, i.e., CD "" 0.46 ~J 0.994 

Water, Air 
(Air+Water) 

q = [H r050S 
186.84 ~ 0.944 

7.6 A comparison of Methods of Determining Discharge. 

In this section a comparison is made of the methods of discharge deter-

mination as found by Anwar (2), Clare (14) and by Skogero (44), with the 

equations determined in this study by the author (see table 7.2). 

7.6.1 Comparison between Anwar and the author's results. 

A comparison has been made by finding the values of the coefficient of 

discharge CD from the data of Anwar (2) and the values determined in this study. 

The dam model used by Anwar was 0.75 feet (229 mm) high and of 2 feet (610 mm) 

width. The details of the values used are arranged in table 7.3 for a water 

inflated dam and table 7.4 for an air inflated dam. 
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Table 7.3 Comparison of the discharge between Anwar and the author 
for a water inflated dam. 

Anwar Method Author Method 
No. H/~ 

Over % 
flow Co q(R./s/m) CD q(R./s/m) difference 
head in (q) 

(H) 
(mm) 

1 0.19 I 43.4 0.39 I 15.64 0.3866 14.24 9.80 

2 0.21 48.0 0.40 18.64 0.3892 16.66 11.87 

3 0.23 52.6 0.39 20.83 0.3917 19.23 8.30 

4 0.24 54.9 0.41 23.34 0.3930 20.60 13.30 

5 0.265 60.6 ! 0.42 27.68 0.3960 24.40 13.45 
, 

0.4040 6 0.36 82.3 I 0.42 43.93 38.90 12.90 I 

Mean difference I 11.6 

Table 7.4 Comparison of the discharge between Anwar and the author 
for an air inflated dam. 

Anwar method Author Method 
No. H/HO % 

H CD q(R./s/m) CD q(R./s/m) difference 
(mm) in (q) 

1 0.20 51.8 0.39 20.37 0.407 20.32 0.06 

2 0.25 64.7 0.42 30.67 0.418 28.97 1.71 

3 0.33 85.5 0.43 46.16 0.431 45.02 1.14 

4 0.40 103.6 0.44 65.03 0. 440
1 

61.00 4.03 

5 0.52 134.7 0.47 102.26 0. 453
1 

95.52 6.68 

6 I 0.55 167.6 ! 0.48 114.38 0.46°1 101.19 13.28 
: : . 

Mean difference I 5.9 
I 

7.6.2 Comparison between Clare's and the author's results. 

The discharge determined by the Clare method (14) and the author's method 

are shown in table 7.5 for a water inflated dam. The coefficients of discharge 

of Clare's method are taken from his original data. The discharges measured 

by Clare were determined from a flume of 4 feet (1219 mm) width and the 

width and the height of the dam were 1.5 feet (457 mm) and 1.125 feet (343 mm) 

respectively. 
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1 

i 
i 

I , 
i 

I 
I 
I 
I 

No. 

1 

2 

3 

4 

5 

6 

Table 7.5 

H/~ 

0.125 

0.225 

I 

0.250 

0.255 
I 0.325 I 
I 0.355 I 

Comparison of the discharge determination between 
Clare and the author for a water inflated dam. 

Clare method Author method 

C CD q(R./s/m) 
ftO. 5/sec 

q(R./s/m} 

3.45 17.49 ° 0.390 17.30 

3.55 19.258 0.391 18.58 

3.68 23.399 0.394 21.93 

3.69 24.170 0.395 22.61 

3.73 35.154 I 0.401 33.12 

3.78 40.670 I 0.404 I 38.05 

Mean difference 

i! diff. 
in (q) 

1.1 

3.52 

6.7 

6.8 

6.14 

6.87 

5.188 

7.6.3 Comparison of discharge between Skogerbland and the author's results. 

Discharge characteristics were investigated by Skogubo et a1. (44) 

using the data found experimentally by Anwar and their own calibration 

equation. This equation (7.15) gave considerable differences from the 

original data 

7.15 

where CH ranges between 3.6 - 4.0. The comparison shown in table 7.6 

is for the data of Anwar. Skogerb et a1. and the combined equation (7.13) 

of the author. 

Table 7.6 

i 
, 

No. 
I 
H/~ 

! 

I 

I 1 I 0.19 
I 

2 i 0.21 I 
I 0.23 3 
! , 

I 

Comparison of the discharge determination between Anwar. 
Skogerbo and the author's results. 

i! diff. J % diff. Anwar Skogerbo Author 
Eq. (7.13) between Anwar: between 

q(R./s/m) q (R./s/m) q(R./s/m) and Skogerbo ,Anwar and 
I Author 
, 

15.64 22.69 15.346 45 1 1.9 
I 

18.64 26.68 17.840 43 I 4.5 

20.83 30.93 20.458 48 I 
I 1.8 

: I 
! 

;4 0.24 23.34 33.13 21.810 42 6.8 I 

i i 
i 5 . I 0.265 27.68 38.90 

, 
25.725 40 7.6 , 

: 
'6 0.36 43.93 63.90 40.100 46 9.5 

Mean difference 44 5.35 
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7.6.4 Comparison of the analysis of the different method. 

The discharge and the coefficient of discharge for water, air and for 

the combination of inflation fluids are compared for different values of 

the ratio (H/~) as shown in table 7.7. 

Table 7.7 Comparison of the discharge for different inflation fluids. 

No. H/~ 
q(1/s/m) q(1/s/m) q (1 Is/m) CD CD CD 

Water Air Air+Water Water Air Air+Water 

1 0.15 9.82 12.88 10.75 0.380 0.395 0.380 

2 0.17 11.96 15.70 13.14 0.383 0.400 0.385 

3 0.18 13.08 17.19 14.40 0.385 0.403 0.388 

I 
4 0.20 I 15.44 20.32 17.04 0.388 0.408 0.393 

i 
I I I , 

i 

This shows that for particular values of H/Eu then the maximum rate of flow 

is found with an air inflated dam and then for (air+water) and the minimum 

rate of flow found for a water inflated dam. Also the coefficient of discharge 

is a maximum for an air inflated dam and minimum for a water inflated dam. 

These differences in the discharge and coefficient of discharge may be due to 

the changes in the shape of the crest which is of a low radius of curvature 

in an air inflated dam whilst of a high radius of curvature in the water 

inflated dam. The condition for the (air+water) inflated dam gives values 

in between air and water inflated dam and also the particular value depends 

mainly on the depth of water inside the dam. 

The conclusion is reflected in the results for the coefficient of dis-

charge of the (air+water) dam which is close to that for the water inflated 

dam, because the depth of water is equal to 75% of the maximum height. 

The results of the comparison of the different methods shows differences 

of the order of 5-11% between earlier work and the calibration method found 

by. the author. The difference may be due to this analysis being for a dam 
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with one end fixed instead of both ends fixed. The single fixing gives 

the dam more flexibility to tend to being tangential with the floor and 

this behaviour will increase the radius of curvature at the crest. So 

comparing this behaviour with the condition for different inflation fluids. 

the results show the dam with the highest radius of curvature (i.e. water 

inflated dam) gives less discharge and a lower coefficient of discharge, than 

the dam with the lowest radius of curvature (i.e. air inflated dam) which can 

give high discharges and higher coefficient of discharge. Since the one 

fixed end dam gives a high radius of curvature the discharges are less than 

for two ends fixed, (see table 7.3, 7.4, 7.5). 

It was also noticed that the rate of flow is affected by the elongation 

of the material, the discharge over the crest was calculated by using the 

different calibration equations for two cases, one by considering elongation 

of the material and the other under constant material length (no elongation). 

It was observed that the coefficient of discharges was different for the two 

conditions. 

Table 7.8 shows the comparison of the coefficient of discharges and 

the rates of flow for material considered extensible and inextensible. The 

results show the difference in the rate of flow for an air inflated dam is 

10% more for an inextensible material, 13% for water inflated and 5.56% for 

an (air+water) inflated dam. The main reason is due to the change in the 

ratio (H/~) due to a change in the radius of curvature which increases for 

an extensible material relative to an inextensible material. All previous 

investigators have considered their material as inextensible. 

Fig.7.15 shows different profiles of air, water and air+water inflated 

dams for materials considered as inextensible. 
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..J 
}:) 

..J 

No. 

1 

2 

3 

Table 7.8 

Type of Prop1. Inflation factor 
(a) 

Air 0..8 
1.0. 
1.0. 
1.2 
1.2 
0..6 
0.6 
1.2 

-

Water 1.2 
1.2 
1.4 
1.4 
1.2 
1.2 
1.4 
1.4 

(Air+Water) 0..8 
0..8 
1.0. 
1.0. 

Comparison of discharge for extensible and inextensible material. 

Membrane (weight and extensible) Membrane (weightless and inextensible 

u/s DIs Max. O.ver Max. O.ver 
'Head Head Height flow CD Q Height flow CD Q diff. % 

Hn head 
~/s/m HD head R.Is/m 

Q m m (nun) H 

0..270 0.0 0.227 42.80. 0..40.0 16.43 0. 224 45.76 0..410. 18.32 11.5 
0..270 0.0 0.236 34.30. 0..395 11.47 0.231 38.55 0..40.0. 13.85 12.0. 
0..280 0..0 0.232 47.40. 0..410 19.30. 0.228 51.04 0..414 21.80. 12.9 
0..285 0.0 0..237 47.90. 0..40.9 19.63 0.233. 51.69 0..414 22.20 13.0. 
0..288 0.0. 0..236 51. 70. 0..414 22.19 0.233 54.9 0..417 24.47 10.3 
0..279 0..1 0..223 56.28 0..420 25.61 0..220. 58.92 0..423 27.61 7.8 
0..282 0..1 0..221 60..52 0..424 28.80. 0..221 60..52 0..424 29.0.0. 0..6 
0..280 0..1 0..244 35.49 0..395 12.04 0..240. 40..0. 0..40.1 14.54 12.0. 

Mean difference 10..0. 

0..221 0..0. 0..210. 10..72 0..353 1. 79 0.208 12.22 0..356 2.20 22.0. 
0..230 0..0 0..20.6 24.0.6 0..373 6.35 0..20.4 25.54 0..375 6.98 9.92 
0..239 0..0. 0..219 19.96 0..367 4.72 0.217 22.16 0.369 5.57 18.0. 
0..244 0.0 0..217 26.53 0..374 7.38 0.215 28.97 0..376 8.25 11. 7 
0.230 0..04 0..208 22.28 0..371 5.63 0.207 23.47 0.373 6.11 8.5 
0..239 0..0.4 0..20.4 34.66 0..382 11.26 0..202 36.64 0..384 12.29 9.0. 
0..245 0..0.4 0..219 26.30 0..374 7.28 0.216 28.63 0..376 8.31 14.0. 
0.248 0..0.4 0..217 30..41 0..377 9.14 0..216 32.38 0.379 10..0.9 10..8 

Mean difference 13.0. 
, 

0..230 0..0. 0..199 30..82 0..365 9.0.2 0.198 32.13 0..366 9.63 6.7 
0..233 0..0 0..197 35.55 0..368 11.28 0.195 37.50 0..370. 12.34 8.5 
0..248 0.0 0..20.8 40..21 0..371 13.63 0.206 41.82 0..372 14.50 6.3 
0..250 0.0 0.20.6 44.10. 0..373 15.76 0.205 44.32 0..373 15.88 0..76 

Mean difference 5.56 
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7.7 Computer program (DYIHSIP). 

The rate of flow and the coefficient of discharge were calculated from 

the subroutine called "Dynamic" and the radius of curvature was calculated 

from the general equation (45) 

R 7.16 

The input of data for the program is similar to the input for the 

dynamic condition. Examples of the shapes of the profiles given by this 

subroutine are shown in fig.7.15 for an inextensible material. The equivalent 

profiles in figs. 5.37, 5.38 and 5.39 shown in Chapter 5 are on the basis of 

an extensible material. 

7.8 Factors affecting the coefficient of discharge. 

The coefficient of discharge (CD) changes rapidly initially as the over­

flow increases and then for ever higher overflows the rate of change decreases 

as can be seen in figs. 7.12 to 7.14. 

In this analysis the coefficient of discharges were calculated for 

different proportional factors and it shows that the coefficient of discharge 

increases when increasing the proportional factor. This phenomenon was also 

observed by Anwar (2). This behaviour also may be due to variations in the 

radius of curvature with high proportional factors giving low values of radius 

of curvature, thus giving a high coefficient of discharge and the results will 

be reversed for low proportional factors. 

As already discussed the coefficient of discharge for an air inflated 

dam is higher than for a water inflated dam (see table 7.7) and the main 

reason is due to changes in the shape of the crest which can be represented 

by the proportional factor. So for low proportional factor the shape of the 

crest gives high values of radius of curvature and for high proportional 
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factor gives low radius of curvature. The radius of curvature was calculated 

under different conditions of inflation fluids and for different proportional 

factors. It was found that as the overflow increased the radius of 

curvature decreased for an air inflated dam for the condition of downstream 

head equal to zero and also for the downstream head equal to 100 mm as shown 

in fig.7.16. 

A similar behaviour for the radius of curvature for a dam inflated with 

water is shown in fig.7.l7. The results show that the radius of curvature 

for an air inflated dam are high with downstream head equal to zero than 

with downstream head equal to 100 mm. It was also noticed that the radius 

of curvature had a small increase with increasing the overflow for the 

condition of silt load on the upstream face of the dam as shown in fig.7.l6. 

Fig.l.17 shows the results of the radius of curvature for a water 

inflated dam and it appears that the radius of curvature is higher for low 

proportional factor and vice versa. Also the effects of the downstream head 

on the radius of curvature reduces as the proportional factor increases. This 

may be due to the dam becoming more stiff as the proportional factor increases 

the downstream head will then become less significant. As shown in fig.7.l7 

for the proportional factors equal to 1.2, 1.4 and 2.5 and for downstream 

heads equal to zero and 40 mm it can be seen that for a - 1.2 the radius of 

curvature is higher for the condition of DIs = 0.0 than the condition of DIs. 

40 mm but as the proportional factor increases to 1.4 the difference in the 

radius of curvature will be small and as the proportional factor increases 

to a high of 2.5 the radius of curvature for the two conditions of downstream 

head is the same. 

The behaviour of silt on the upstream face for a particular overflow 

increases the radius of curvature as shown in fig.7.l7. For example for 
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proportional factors equal to 1.4 and 1.S the silt causes an increase in the 

radius of curvature while this effect becomes less significant as the 

proportional factor increases to 2.S. An increase in the radius of curv-

ature causes a reduction in the coefficient of discharge. 

The behaviour of the radius of curvature is similar with respect to the 

ratio (H/~) for a downstream head equal to zero and 40 mm as represented in 

fig.7.1S and fig.7.19 for both the air and water inflated dams respectively. 

Since the ratio (H/~) changes as the proportional factor changes therefore 

the ratio H/~ varies the coefficient of discharge as mentioned earlier in 

this chapter. 

Fig.7.20 shows the variation of the coefficient of discharge with overflow 

head for water and air inflated dam under different downstream heads. For 

the air inflated dam it can be seen that for low proportional factors the 

effect of the downstream head on the coefficient of discharge is very pronounced 

for low heads, but as the overflow head increases the effect of the downstream 

head on the radius of curvature will be small and the coefficient of discharge 

will be constant for both cases of downstream head equal to zero and 100 mm. 

The coefficient of discharge for a water inflated dam under different 

downstream head, shows for low proportional factor (a - 1.4) and for a 

downstream head equal to 40 mm, the coefficient of discharge will be higher 

than the coefficient of discharge for the same proportional factor but under 

downstream head equal to zero. As the overflow head increases more, the 

coefficient of discharge will be the same for both conditions of downstream 

head. Once the proportional factor increases (a = 2.5) the coefficient of 

discharge will be the same for the condition of downstream head equal to 

zero and 40 mm which may be due to the dam becoming more stiff and the effect 

of the downstream head will be less significant on the radius of curvature. 
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7.9 Effect of downstream head on the upstream head. 

One aspect of the experimental work was to study the effect of the 

downstream head on the upstream head. This study was carried out for a dam 

under different pressures and for different inflation fluids. 

For an internal air pressure of 3.355 Kn/m2 for an air inflated dam, the 

flow was kept constant' at 5.56 l/s and the downstream head varied to 70, 90, 

100, 120,140 mm and measurements were taken of both upstream head and the 

maximum height of the dam. It was noticed that as the downstream head 

increased from 70 mm to 140 mm, the overflow head decreased from 20 tmll to 

18.5 mn for this particular flow rate. When this procedure was repeated for 

several rates of flow (7.5, 9.66, 10.67, 11.97 1/s) for the same variation of 

the downstream head, it was also observed that as the downstream head 

increased, the upstream head increased. This behaviour causes an increase 

in the height of the dam and thus decreases the ratio (H/l1» such that the 

overflow head decreases, and increases the downstream head causing distortion 

of the dam on the upstream side decreasing the radius of curvature. This 

causes an increase in the coefficient of discharge to maintain the constant 

rate of flow. Similar effects were found for inflation condition changes 

for water and (air+water) inflated dams. 

Fig.7.2l, 7.22 and 7.23 show the variations of the upstream head with 

downstream head under different rates of flow and internal pressures for the 

condition of air, water and (air+water) inflation respectively. 

As the downstream head varied from 70 tmll to 140 mm the mean difference 

of the upstream head and the overflow head for an air inflated dam under a 

pressure of 3.55 KN/m2 are 3.1% and 8.64% respectively. While the mean 

differences reduce to 1.6% for upstream head and 6.17. for the overflow head 

for a dam inflated with air pressure equal to 5.1 KN/m2 These variations 

can be seen in detail in table 7.9. 
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The variation for a water inflated dam are similar to those for the 

air inflated dam, the percentage differences of the upstream head and the 

overflow head are 3.47. and 7.97. respectively for the condition of water 

pressure head equal to 370 mm while the differences reduced to 1.6% and 3.4% 

for the dam inflated with 600 mm head. 

shown in table 7.10. 

The details of these differences are 

The differences of the upstream head and overflow head for the condition 

of (air+water) inflated follows a similar pattern to the previous conditions. 

Table 7.11 shows the detail of the percentage differences in the upstream 

head and overflow head for a dam inflated to a pressure head equal to 370 mm 

with a depth of water equal to 15% of the maximum height of the dam. Table 

7.11 also shows the difference in the upstream head and the overflow head for 

a pressure head equal to 600 mm including the depth of water equal to 75% of 

the maximum height of the dam. 
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Table 7.9 

No. 

1 

2 

3 

4 

5 

1 

2 

3 

4 

Effect of downstream head on the upstream and overflow 
head for an air inflated dam. 

Air Rate u/s Over 7- 7-Press. of D.S flow difference difference 

KN/m2 flow Head Head head in u/s in overflow 
tIs (mm) (mm) (mm) 

3.355 5.56 199 70 20.0 
5.56 207 140 18.5 4.0 8.1 

3.355 7.50 205 70 25.0 2.9 11.1 
3.355 7.50 211 140 22.5 

3.55 9.66 209 70 30.0 
3.55 9.66 215 140 28.0 2.8 7.1 

3.55 10.67 213 70 34.0 2.7 9.6 
188 140 31.0 

3.55 11.97 213 70 35.0 3.05 7.6 
195 140 32.5 

meap 3.09 8.64 

5.1 5.56 202 70 20.0 
206.6 140 18.0 2.2 11.1 

5.1 9.66 206 70 29.5 
215 140 27.5 0.48 7.2 

5.1 10.67 213 70.0 32.0 
217 140.0 31.0 1.8 3.1 

5.1 11.97 215 70.0 34.0 1.86 3.0 
219 140.0 33.0 

Mean 1.585 6.075 
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Table 7.10 

Water 
No. Pressure 

(mm) 

1 370 
370 

2 370 
370 

3 370 
370 

4 370 
370 

5 370 
370 

1 600 
600 

2 600 
600 

3 600 
600 

4 600 
600 

Effect of downstream head on the upstream and overflow 
head for a water inflated dam. 

Rate u/s DIS Overflow 
of Head Head i. diff. % diff. 

flow in u/s overflow 
tis (rom) (rom) (rom) 

5.56 175.0 70.0 21.50 
5.56 182.0 140.0 18.50 4 16.2 

7.50 170.0 70.0 26.50 
7.50 186.0 140.0 25.00 3.9 6.0 

9.66 182.9 70.0 31.25 2.7 5.9 
9.66 188.0 140.0 29.50 

10.67 183.9 70.0 33.50 3.3 6.3 
10.67 190.0 140.0 31.50 

11.97 186.5 70.0 38.50 3.3 5.4 
11.97 192.8 140.0 36.50 

Mean 3.40 7.96 

5.56 189.0 70.0 20.50 
5.56 192.0 140.0 19.00 1.6 7.8 

7.50 195.0 70.0 26.00 1.2 4.0 
7.50 197.3 140.0 25.00 

10.67 199.0 70.0 31.25 1.6 5.9 
10.67 202.2 140.0 29.50 

11.97 201.0 70.0 35.05 1.9 3.8 
11.97 205.0 140. 0 33.75 

Mean 1.575 5.37 

in 



No. 

1 

2 

Table 7.11 Effect of downstream head on the upstream and overflow 
heads for (air+water) inflated dam. 

(Air+Water) Rate u/s Dis Overflow 7.diff. 
of Head Head Head u/S Pressure flow 
tis (nun) (nun) (nun) 

370 rmn 5.56 196.0 70 20.0 
depth of water = 5.56 200.8 140 18.3 2.4 
15% max. 
Height of the 7.50 201.0 70 25.0 

dam. 205.5 140 23.5 2.2 

9.66 204.9 70 29.0 
209.4 140 28.0 2.2 

10.67 207.0 70 32.0 
211.5 140 30.1 2.2 

11.97 209.4 70 34.5 
213.8 140 32.5 2.1 

Mean 2.22 

600 rmn 5.56 18.9 70 19.8 
depth of water 193.0 140 18.0 1.8 
= 75% of the 9.66 197.8 70 29.5 max. height of 200.5 140 28.0 1.36 the dam. 

10.67 199.8 70 32.0 
205.0 140 30.0 2.6 

11.97 202.5 70 34.5 1.7 
206.0 140 32.5 

Mean 1.865 

- 100 -

~ diff. 
in 

overflow 

9.3 

6.3 

3.5 

6.4 

6.15 

6.33 

9.7 

5.3 

6.6 

6.15 

6.9 



CHAPTER 8. 

THE DESIGN LENGTH OF THE MEMBRANE OF AN 

INFLATABLE STRUCTURE. 

8.1 Introduction. 

The techniques of other investigators have all been restricted by various 

limiting conditions. 

Anwar (2) has produced closed form solutions for a particular geometrical 

configuration and for either air inflation or water inflation. 

solution the membrane is assumed weightless and inextensible. 

In his 

Binnie (5) developed a more general closed form solution for a dam inflated 

by water pressure which takes account of the physical restriction of base and 

perimeter length ignored in Anwar's olution. Both these formulations consider 

only the case where the water level is at the crest of the dam and apply to an 

idealized weightless inextensible membrane. In addition Binnie considered 

only an inflation head equal to the height of the dam, i.e. zero pressure at 

the crest. 

In order to avoid these limitations a study was carried out to design 

the dam using a computer program based on a finite element approach. 

The derivation of the design length for the membrane used for an 

inflatable hydraulic structure is based on two main steps. 

1. Find the total length of membrane for a certain maximum upstream head 

and maximum proportional factor. 

2. Using the results from point (1) then design the dam by using a 

computer program (IHSIP) and by considering the weight and the material as 

extensible and when the maximum upstream head equals the maximum height of the 

dam, then the desired length of the membrane has been achieved. (See Sec. 

8.5.0. 
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8.2 Theoretical method of design. 

The theoretical method for the design of an inflatable hydraulic structure 

consists of two parts. The first part is to find the length of the membrane 

with respect to the maximum proportional factor as described in the following 

section and the second part deals with a finite element method to design a 

dam for given conditions (i.e. maximum upstream head and maximum proportional 

factor) in order to find the condition of maximum upstream head equal to the 

maximum height of dam by taking into consideration the weight and extensibility 

of the material. 

8.2.1 Design length - assumptions and considerations. 

The design length of the membrane is designed by considering the character-

istics as shown in fig.8.1 and also makes the following assumption. 

1. Material is weightless. 

On the basis of this assumption, the tension will be constant around the 

membrane and using the Parbery (6) equation 

i.e. 

2. 

3. 

T = T o 

T o 
= T + wy 

for a weightless material. 

8.1 

The fabric dam is inflated by water and with zero downstream head. 

The differential pressure is proportional to the maximum storage 

head (2, 14) and this assumption can be expressed in the following form: 

h .. . .... 8.2 

where 

h .. differential pressure head (see fig. 8.1). 

a - proportional factor. 

maximum storage head. 
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On the basis of the above assumptions the design for the initial tension 

and membrane length can be considered in two parts i.e. 

(1) Downstream side. 

(2) Upstream side. 

a.3 Downstream side. 

The design of the downstream side consists of evaluating the tension and 

length of membrane in the downstream section. 

a.3.l Tension. 

The tension is evaluated by using the general form of the distortion of 

a strut into a curve known as elastica (23) as was used by Binnie (5) in the 

following form: 

where 

T 

e 

g 

p 

y 

= 

= 

= 

= 

= 

T 
de 
dS2 

= pgy 

tension ln the membrane. 

angle of an arbitrary point on the downstream fabric and 

tangent through this point (fig.a.l). 

length of membrane at the downstream side. 

acceleration due to gravity. 

density of water. 

co-ordinate (see fig.a.l). 

and the general geometric equation can be written as follows: 

dy sin e ~ 

dS 2 
= 

Substituting equation 8.4 in 8.3 and integrating for the condition 

e = 0 to e 

Hence equation 8.3 can be written in the following form 

2T 
pg 

(1 - cos e) = y2 _ h2 
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and by substituting the assumption h = a~ in equation 8.5 and also a 

y ... h+~, a = n, hence equation 8.5 can be written in the following form: 

or 

where 

4T 
Pg 

2 2 = (a~ +~) - (a~) 

4T 
pgM2 -

1 -

M - ~(l+a) 

a 2 

(l+a) 2 

8.6 

8.7 

and by considering the value 1 -
2 a 

(1+a)2 
... F 

c equation 8.6 can be written 

in the following form: 

T = 
2 Pg M FC 
4 8.8 

or if substituting the value of M and Fc in the equation 8.8 these can be 

written as: 

T = 
2 Pg (1+2a)~ /4 8.9 

Equation 8.9 is used to find the initial value of tension to analyse 

the dam by using the finite element method by taking into consideration the 

weight and thickness of the material in the analysis. 

8.3.2 Length of the downstream side membrane. 

The length of the downstream membrane was divided into two parts as shown 

in fig.8.1. 

a. Length of the base towards the downstream, B
2

• 

b. Length of the perimeter towards the downstream, 52. 

The length of the membrane of a dam inflated with water was calculated 

by Clare (14) from the following equation (see Appendix A). 

2 
F A A c 

B/~ = (l+a) (1 - -2-) F - E 
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where 

BZ = 

Sz = 

F "" c 

~ = 

a = 

F, E = 

Sz'11> 
l+a = --2 

length of base toward the downstream side. 

length of perimeter towards the downstream side. 

modulus of elliptic integrals = 

maximum height of dam. 

proportional factor. 

l+Za 

(1+a) 2 

complete elliptic integrals of the first and second kind 

respectively. 

8.4 Upstream side. 

8.11 

For the upstream side of the dam it is also necessary to find the tension 

and length of the membrane towards the upstream side. 

8.4.1 Tension. 

It was concluded from previous investigations (2,5) that the upstream 

face of a dam is a part of a circle and the tension can be found by the 

following equation: 

T = PR 

Since the tension is assumed constant along the membrane, so it can 

be possible to substitute equation 8.9 in 8.lZ to obtain the following: 

where 

R = 

P = 

T 

8.4.Z 

R 
T 

= p -

2 
(1+2a) pg ~ 

4 pg a~ 

radius of curvature. 

= 

differential pressure - pg ~ 

tension in the fabric. 

Length of the upstream side of the membrane. 

8.lZ 

8.13 

From fig.8.1 the length of the membrane towards the upstream side consists 

of two parts - see fig.B.l 
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a. Length of the base towards the upstream side, B
l

. 

b. Length of the perimeter towards the upstream side, Sl' 

Therefore the length of the base Bl can be found from the relation: 

where ~ is the angle of the upstream slope of the fabric from the base. 

8.14 

The angle is found from the equilibrium equation for the upstream side 

of the dam, i.e. 

T + T cos ~ = difference in the hydrostatic load per unit width 

and can be calculated (see fig.8.l) as the following, 

if the difference in the hydrostatic force is ~F, so 

12121 2 
~F = 2" pgM - 2" pgh -"2 pg~ 

substituting M = (l+a) ~, h=a~ 

Equation 8.16 becomes 

2 
~F = pga(l1> ) ..... 

If one substitutes equation 8.17 in equation 8.15 it becomes 

Substitute equation 8.9 in equation 8.18 

the angle ~ is found in the following form: 

= cos -1 2a-l 
1+2a 

..... 

8.15 

8.16 

8.17 

8.18 

8.19 

Equation 8.19 is used to find the initial slope of the membrane in the 

analysis of a dam using the finite element method. 

Now substituting equation 8.19 in equation 8.14, the length of base BI 

can be found from the following: 
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B = 1+2a l1> 2a-l 2 

1 4a 1 - (l+2a) which simplifies to the 

following form: 

1+2a 2a-l 2 
Bl/l1> = --z;a- 1 - (l+2a) 8.20 

The length of the perimeter in the upstream side can be found by considering 

this part as a part of a circle as concluded by Anwar and Binnie (2,5) and 

it can be calculated from the following relationship: 

= (n/2 + 0) R 8.21 

where 

= the length of the arc AFC (see fig.8.l) 

angle of the arc AF in radin. 

Therefore 

8.22 

Since the length of the perimeter Sl on the upstream side and the length 

of the perimeter 52 on the downstream side are now known, hence the total 

length S of the perimeter (AFCGD) can be found from the following equation: 

S/l1> 8.23 

Similarly for the length of the base, which is equal to 

B/l1> 8.24 

Equations 8.10, 8.11, 8.20, 8.22, 8.23 and 8.24 are solved for different 

proportional factors ranging from 0.1 to 10 in increments of 0.05. The 

calculations were carried out using a computer program the flow chart of which 

is given in fig. 8.2. The plotting of the results is shown in figs. 8.3 and 

8.4. 
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Fig.S.2 
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PRINT THE VALUES AND PLOT WITH DIFFERENT VALUE 
OF THE PROPORTIONAL FACTOR ALPHA (a) 

STOP 

Flow chart for calculating the perimeter length 
ratios. 
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The results of the 8/"n and S/"n determined experimentally and compared 

with those theoretical results are shown in fig.8.S which demonstrates a 

very good fit. 

8.5 Length of the membrane using the least square fitting method. 

The results found by the computer program of the lengths ratios (i.e. 

8l/"n, 82/"n' 8/"n' Sl/"n, S2/"n' S/"n) were analysed using a least square 

method in order to find an equation as a function of proportional factor only 

and avoiding the use of the modulus of elliptic integrals. So to achieve 

this purpose, the results of the above equations were fitted using the poly-

nomial fitting technique by using the subroutine available as a central 

computer subroutine facility to find the best fitting equation with minimum 

residual between the original data and the values of the fitted equations. 

The data was analysed for all length ratios with different values of 

proportional factors and required high degree polynomial equations with 

degrees of between 10-13 which is not a very practical form of equation for 

finding the length ratio for a particular proportional factor. 

of the curve fitting are shown in figs. 8.6 and 8.7 for a water inflated dam. 

The results have been plotted on Log-L08 Scale and by using the leaat-

square method. A computer program was used to fit and plot the values And 

the curve fittings were in the form of the following equation: 
n

1 
y • m a ••••• 8.2~ 

The results of fitting the parameters in the form of the above eqUAtion 

can be seen in figs. 8.8 and 8.9 also the values of the coefficients in 

equation 8.25 are arranged in table 8.1 according to the type of inflation 

pressure and the limitation of the proportional factors. 

The theoretical calculations were compared with the experimental work 

by using the same form of equation 8.25 and these results were satisfactory .a 

shown in fig.S.lO. 
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I 
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I 3 

I 1 I 

I 2 

I 3 

I 4 
I 

5 
, 

II 

I 
1 I 

I , 
0 

: 2 
! 
I 

I 
0 

I III 
; 

1 

I 

2 

3 

Table 8.1 

I 

n1 Constants of the equation 8.25 of the form y a rna 

I 

I Limitation of 
1 Parameters I n1 

Correlation , m alpha (a) factors I 
I (y) I 
I : 

Water inflated 

I I 
I 

i B1/H 0.707 I -0.500 0.4 =:;: a =:;: 10 0.978 

I , B2/H 0.277 -0.852 0.6 =:;: a =:;: 10 0.972 
! 

B/H 0.973 -0.571 0.4 =:;: a ~ 10 0.999 

Sl/H 1.427 
I 

-0.132 0.5 ~ a ~ 1.0 0.845 

Sl/H 1.423 -0.039 1.0 ~ a ~ 2.5 0.852 I 
I 

S2/H 1.625 I -0.035 0.5 ~ a ~ 2.5 0.850 
I 

S/H 3.041 I -0.094 0.5 1.0 0.811 I ! 
~ a ~ ! I 

S/H 3.040 ! -0.032 , 1.0 < a ~ 2.5 ! 0.865 
I ! I 

0 

Air inflated 

B/H 0.448 -0.210 0.2 ~ a ~ 2.5 0.95 

S/H 2.662 -0.039 0.2 ~ a ~ 2.5 0.96 
I 

(Air+Water) Inflated 

Depth of water inside the dam ., 75% max. u/s Head. 

B/H 
I 

0.886 -0.360 1.0 3.0 0.992 I ~ a ~ 

I S/H I 3.002 -0.031 1.0 ~ a ~ 3.0 0.893 
I 

0 I 

1 De p th of water inside the dam ., 30% Max. u/s Head. 

B/H 0.850 -0.349 0.3 ~ a ~ 3.0 0.875 

SIR 2.971 -0.029 0.3 ~ a ~ 3.0 0.850 

Depth of water inside the dam = 15% Max. u/s Read. 

B/R 0.792 -0.284 0.3 ~ a ~ 3.0 0.707 

SIR 2.933 -0.025 0.3 ~ a ~ 3.0 0.800 
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The differences in some instances may be due to the assumption of constant 

tension and weightless material because the material will elongate after 

applying the loads (i.e. internal pressure head, upstream head, and downstream 

head). 

On the basis of the satisfactory comparison of the theoretical and 

experimental work for dams inflated with water, the exercise was repeated with 

air as the inflation fluid. 

The results of the experimental work were plotted as shown in fig.8.ll 

and analysed using the polynomial curve fitting curve technique. Again the 

fitting required a high degree polynomial as can be seen in fig.8.l2, hence 

the values were fitted in the form of equation 8.25 as for the water inflated 

dam and the results of this fitting are shown in fig.B.13. 

The same procedure was adopted for a dam inflated with (air+water), the 

depth of water inside the dam ranging between 30-75 percent of the maximum 

height of the dam and the experimental results plotted as shown in fig.8.l4. 

The curve fitting of the results can be seen in figs. 8.15 and 8.16. 

Once one has found the length of material for a particular maximum 

proportional factor and maximum dam storage height, the dam could be analysed 

by considering the weight of the membrane and the elongation of the material 

found from the stress-strain relationship. All the analysis was worked out 

using the computer program (IHSIP) in order to find the profile of the dam, 

maximum height, upstream slope, tension along the membrane and the cross­

sectional area. 

8.5.1 Procedure for design. 

1. Assume a maximum proportional factor for a particular type of 

inflation fluid. 
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2. Determine or assume the maximum storage head required for this 

dam (i.e. maximum height of dam H = maximum upstream head). 
D 

3. Find the internal pressure head by using the following 

relationship (21): 

h 
a = = 

~ 

where 

= total pressure head. 

~ = maximum height of dam = maximum upstream head. 

4. Find the length of membrane for the above values of alpha 

and maximum upstream head from the equations listed in table 8.1 for a 

particular type of inflation fluid. 

5. Use the program IHSIP to analyse the dam by taking into 

consideration the weight of the membrane and the elongation in order to find 

the maximum height of dam. 

If the calculated maximum height of dam = max1mum upstream head which 

had been assumed, then the length of the membrane was considered as the 

optimum length. But if maximum ~ > upstream head, then increase the 

upstream head by the differences (D) of the upstream head and maximum dam 

height, i.e. 

D = - U/S 

So the new upstream head = U/S + D 

and if maximum upstream head > ~ 

Difference (D) = U/S - H D 

hence the new upstream head = U/S - D 

once the maximum upstream head (U/S) equalled the maximum height (Hn) or if 

any increase in the U/S head will cause decreasing in the maXImum height of 

the dam (~), then the U/S head can be considered as maximum and the length 

of the membrane was considered as the optimum length of membrane. 
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6. Once the length of the membrane was fixed the analysis of the 

dam for other proportional factors less than that assumed initially could be 

carried out to assess the behaviour pattern. 

8.5.2 Computer program IHSIP. 

The program IHSIP used the equations found by the least square method to 

calculate the length of the membrane for assumed maximum value of proportional 

factor and maximum storage head. 

The result of using this for a membrane length equal to 0.80 m with 

maximum proportional factor equal to 2.5 are shown in fig. 3.8. 

Two dams of total length of membrane equal to 3.0 m have been designed 

for different inflation fluids. The maximum heights used were 0.908 and 

0.708 m for the air and water inflated dams respectively and the results of 

the design are shown in figs. 8.17 and 8.18. 

8.6 Recommendations for the design of a model and prototype. 

In this study the design technique was not based on scale model test of 

a prototype inflatable dam, but the model test was carried out to check the 

theoretical output parameters by constructing models of the same dimensions 

as the design, i.e. the theoretical work was used to design a small dam 

(lowest size in this study of total membrane length equal to 0.5 m) and a 

large size of dam as shown in figs. 8.17 and 8.18 with a total length of 

membrane equal to 3.0 m. Hence using this technique in this study it is 

possible to design dams of all sizes. 

However, if it is decided to study the effects of parameters not 

including in this theoretical approach for example waves, ice, snow, movement 

of silt and sediment, vibration, then the construction of a model may be 

required. 

This section outlines the criteria that should be adopted in considering 

the relationship between a model and prototype inflatable dam. Any model 
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should be similar to the prototype in three ways: 

a. 

b. 

c. 

8.6.1 

Geometric similarity. 

Kinematic similarity. 

Dynamic similarity. 

Design of the model model to be tested under hydrostatic 

condition. 

Geometric similarity exists between model and prototype when the ratio 

of the corresponding dimensions in the model and prototype are equal, 

these ratios may be written 

Length, 8.26 

Area, 8.27 

where L is the scale ratio and subscripts m and p refer to the model and 
r 

prototype respectively. 

In the case of an inflatable dam, the material of the membrane of the 

model must have similar properties to the material used for the prototype 

dam, therefore 

or 

where su 

T1 

A' 

SU 
m -SU 
P 

SU 
m 

SU 
p 

= 

'" 

-

1 
L 2 

r 

x 
A' 
---.£. 
A' 

m 

ultimate stress of the membrane material 

ultimate tension of the membrane material 

cross-sectional area of the membrane material. 
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In order to calculate the relationship of the inflation pressure between 

the model and the prototype, the validity of assumption No. 3 in this 

chapter can be used in the model and prototype for the same proportional factor 

h a~ m 
L 8.30 h = .,. 

a l1>p r p 

h ~ m 
L 8.31 or - h = 

l1>p 
= r p 

where 

= maximum height of dam. 

h differential pressure head. 

a = proportional factor. 

8.6.2 Design of the model tested under hydrodynamic condition. 

A model which is designed to be tested under hydrodynamic conditions 

must satisfy the three similarities. To satisfy the geometric similarity of 

the model to the prototype then one can follow the same approach described in 

Section 8.6.1. 

The second similarity which is kinematic similarity is the similarity 

of motion, therefore 

or 

where 

Q .,. 

v ... 

A = 

.,. 

V A 
m m 

V A 
P P 

rate of flow. 

velocity approach • 

cross-sectional area of the channel. 
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The third similarity is dynamic similarity. This similarity of forces 

(see Appendix B) acting on the surface due to inertia forces, gravity force, 

viscous forces, pressure forces, surface tension forces, elastic forces. 

In the case of an inflatable hydraulic structure, the gravity force is 

predominant and one can neglect the other forces. So when applying dynamic 

similarity to both model and its prototype then, 

F = M, a a ..... 8.34 

(Fa) m (M ) m a 
(Fa) P 

= (M ) 
a P 

3 2 2 
(pL g) m (pL v )m 

= 
3 (pL 2U2)p (pL g) p 

V
2
m V

2 

= :e 
gm L gp L m p 

V 2 1 
= r gr L r 

or 
V r 1 = 8.35 

Fr 
where 

F = gravity force. 
a 

M = mass. 

'a = acceleration. 

p '"' density of fluid. 

g = acceleration due to gravity. 

Substituting equations 8.33 into equation 8.35 to yield 

= 8.36 
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and g is unity 
r 

hence = 

Then from the above equation, it is possible to calculate the corresponding 

discharge of the model. 
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CHAPTER 9. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK. 

9.1 Conclusions. 

An inflatable dam constructed from a fabric material can provide a simple 

and inexpensive way of raising or controlling the water level in a river or 

canal. Such a dam can be utilised at sites where traditional hydraulic 

structures are too costly and take too long to construct. 

The dam can be inflated with water or air or a combination of the two and 

anchored to a concrete floor with one end fixed toward the upstream side. The 

object of this investigation was to obtain a design technique for a dam and 

to study the behaviour and performance of that dam both for hydrostatic and 

hydrodynamic conditions. Silt load has been taken into consideration as 

a static load on the upstream face of the dam. 

The theoretical work was developed to use a finite element method to 

analyse the dam. Models were constructed and tested under hydrostatic and 

hydrodynamic conditions. The profiles, tension, upstream slope, maximum height 

of dam and cross-sectional area from the theoretical results were compared with 

the experimental work. It was found that the maximum percentage differences 

were 1.3, 5.3, 3.0, 1.5 and 2.8 respectively. For the hydrodynamic conditions 

the comparison was carried out for the profiles and tension and the maximum 

percentage differences were 1.97 and 2.9 respectively. 

A computer program was written to analyse and design air, water and (air+ 

water) inflated dams based on the analysis in Chapter 4 for static conditions 

and for hydrodynamic condition in Chapter 5. The design length of the membrane 

according to different proportional factors has been developed and detailed 

as in Chapter 8. 
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Different relationships for the overflow head were developed to 

calculate the rate of flow and coefficient of discharge for the dam inflated 

with different inflation fluids as explained in Chapter 7. 

All the above techniques can be used to design such a type of structure 

which could be used for any of the following purposes (16). 

1. Diversion structures. 

2. Check structure for flow control. 

3. Lock system. 

4. Sluice gate. 

5. Salinity barriers. 

6. Tidal barriers. 

7. Raising heights of existing spillways. 

8. Raising height of water reservoirs by adding to top of 

existing gate. 

9. Control gate for water treatment plants. 

10. Control gates for sewage plants. 

11. Replacement of steel gate on concrete structure. 

12. Replacement of low concrete dam to 7.S m in height. 

13. Barrier for beach erosion. 

14. Breakwaters. 

A new technique for deriving the flow rate over an air, water and (air+ 

water) inflated dam has been developed. This leads to a new application of 4 

dam as a device for discharge measurement. 

The main conclusions of the behaviour and performance of an inflatable 

dam (under both hydrostatic and hydrodynamic conditions) resulting from this 

work are as follows:-

1. For the same internal pressure head different inflation fluid. give 

different dam heights for the same dam. 

2. An air inflated dam resulted in a higher maximum height of dam than 

a water inflated dam for the same internal pressure head while an (air+water) 

inflated dam gave a higher maximum height than a water inflated dam and 
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lower height than an air inflated dam for the same internal pressure head. 

3. A silt depth on the upstream face of the dam reduced the maximum 

height of the dam while the downstream head increased the maximum height of 

the dam. 

4. A higher maximum height for an (air+water) inflated dam was 

achieved for a small internal depth of water relative to the maximum height for 

a larger proportion of water for the same total internal pressure head. 

5. The tension in the membrane was higher for an air inflated dam than 

for the equivalent water with an equivalent (air+water) dam tension falling 

between the two. 

Higher tension results in longer elongation in the membrane and this 

may cause a reduction in the dam life which has been suggested as being of the 

order of 20 years. 

6. The tension increased with increasing proportional factora for all 

dams under different inflation fluids and the upstream tension was lower than 

the downstream tension. 

7. The tension in the membrane increased as the length of the membrane 

increased for all proportional factors and for all dams inflated with 

different inflation fluids. 

8. The upstream slope increased as the proportional factors increased 

and also increased as the downstream head increased while the upstream alope 

decreased as the silt depth increased. 

9. The upstream slope remained constant for a particular proportional 

factor for all different lengths of membrane tested. 

10. The downstream slope for all proportional factors was equal to 

zero i.e. the fabric was tangential to the base. 

11. The use of the elliptic integrals to find the length of the membrane 

for a water inflated dam has been modified using a least square method in 
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order to avoid the use of the modulus of elliptic integrals. 

12. Similar relationships based on least square methods have been used 

to find the length of membranes for air and (air+water) inflated dam based on 

the results of the experimental and theoretical work for water inflated dams. 

13. For the hydrodynamic condition the height of a dam decreased as 

the overflow increased. 

14. The base width of the dam is increased with increasing the overflow 

head for a particular proportional factor and inflation fluids and the base 

width also increased with effect of silt depths. 

15. The tension decreased as the overflow increased and this phenomenon 

was also found experimentally by using strain gauges inside the dam. 

16. A dam started to vibrate if the overflow head was increased above a 

flow limit and this condition was investigated for different dams under 

different inflation fluids. 

17. Different formulae for the coefficient of discharge and discharge 

with relation to the ratio (H/"n) were developed; this enables such a 

structure to be used as a device to measure the discharge. These formulae 

were related to dams inflated with air, water and (air+water). 

18. An increase in the downstream head resulted in an increase in the up­

stream and decrease in the overflow head,the former being the larger increase over-

all for dams for different proportional factors and different inflation fluids. 

19. The differences in the total average tension between the theoretical 

and experimental work for the hydrodynamic condition were always less than t 3%. 

20. The thickness of the material had a significant effect on the maximum 

height of the dam and on the elongation of the material whilst the weight of 

the material is of little significance. 

21. A minimum of 50 elements were required in the analysis to give the 

best results for the tension and maximum height of dams. 
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22. A v-notch effect occurred for air inflated dams during deflation 

for both static and dynamic conditions. 

23. Dams become rigid when inflated to high pressures and this resulted 

in insignificant deformation in shape when downstream, silt depth and overflow 

changed. 

24. The analysis in this study resulted in a technique for the design of 

different sizes of dam and was demonstrated for dams in the range of O.S to 

3.0 m. 

9.2 Recommendations for future work. 

1. To study the behaviour of inflatable dams on mobile beds to see the 

effect of sediment transport on the dam. 

2. Construct a prototype in order to study the behaviour and performance 

on a large scale dam. 

3. To study the effect of differences of downstream head on changing 

the base width of the dam for different proportional factors and different 

inflation fluids for static condition. 

4. To study the effect of varying hydrostatic and hydrodynamic pressure 

on the fabric over long periods of time. 

S. To study the effect of vibration in detail and to locate the zone 

of the vibration of the dam and to devise a means of eliminating this. 

6. To study other forms of inflatable dams which might be used such as 

a series of tyre inner tubes, strapped bags, compartment dams. 
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APPENDIX A. 

Equations 8.10 and 8.11 were derived from the following steps. 

If equation 8.S is substituted into equation 8.8, we get the following 

equation 

dividing by M2 and substitute with the equivalent value of Fc' 

equation 8.37 can be written 

Before going further it is necessary to write the following geometry 

equations 

and if putting 

hence 

or 

if putting 

S. A 
1n '2 -

S
. 2 >. 
1n 2'-

~ 
dx -

l-cos>' 
2 

tan e 

- 11' e 

Sin 2 >. 1 - cos('II'-e) 
"2"- 2 

Sin 2 'II'-a l+cose 
2"" - 2 

(n -9) /2 - (I 

Sin2 e l+cose - 2 
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Hence equation 8.38 can be written in the following form 

y/l1> • ( ) ) 
2. 2 

l+a I-Fe Sin ~ 

Substitute equation 8.42 into equation 8.3 and 8.4 and we get 

Tips Sine de • (l+a)~ J1-Fc2sin2~ 
F 2 cosS dB 

c dx or - . M 
4J-F

C 

2 
Sin

2
• 

From the equation, 
'If-e 

~ "-r 

or 2~ • 11' -a, e • 1r - 29 

2df - -dB, cose ... - cosZ, 

sin9 
cose dx 

equation 8.44 can be written in the following form 

1 
K 

1 
M 

1 
M 

o 

o 

dx 
M 

B2 

J 
0 

B2 
i 

J 

• 

clx 

dx • 

2 
2 

F cosZ, d~ c = 
4) l-F C 

2 
Sin 

2 
• 

0 

F 2 

J 
1-2 Sin2~ c • 2 

ft-Fc 2SinZ, 'fI12 

o 

~1 
_/2 J 1 

F 2 
c . --
2 

F Z (1-2 Sin~) 
c 

d~ 

2) 1 - F c 2Sin2~ 

d* 

F 2 
c 

F 2 
c 

o 

1 
Sin2~ 

~_~~~ d~ •••• 

h - F 2 Sin2q, 
Tr/2 j c 
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From Appendix (C) 

F 2 
A 2 ( F-E B/M 

c F + - 2" F ::-2) c F c 

B2 F 2 
(1+0) 

c or 
Hn - (l - 2) F - E 

If apply the following geometry equations 

ds 
- • sec dx 

..... 

and from the equation 8.44 we can arrange the following equation 

ds - -11 
Sece 

8.47 

8.48 

8.50 

8.51 

From the relation between e and, the equation 8.51 can be written in the 

following fOrlll, 

or 

1 
H 

1 
H 

52 

J da 

0 

o 

0 

• 
I 

./2 

w/2 

J 
o 

F 2 Sin2 , d, 
c 

2) 1 

F 2 
c 

2 

F 2S' 2 - in c 

1 x 

• (-cos 

and from Appendix (C) equation 8.52 can be written 
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APPENDIX B. 

FLUID FORCES 

The fluid forces that are considered here are those acting on a fluid 

element whose mass • PL3 , area • L2, length ~ L and velocity = (LIT). 

1. Inertia force 

2. Viscous force 

3. Cravity force 

4. Pressure force 

5. Elastic force 

6. Surface tension force 

If all fluid forces were 

Fi + Fu + Fa + Fp 
ID ID ID m 

F • Fa Fp r Fi + Fu + + 
p p p p 

F - (viscous shear stress) (shear area) u 

't - L2 c du 2 (V L2 
JJP dy L - JJ i) = JJLV 

Fa - (mass) (acceleration due to gravity) 

3 3 
- (pL ) (g) - pL g 

F - (pressure){area) pL
2 

p 

F - (modulus of elasticity)(area) = EL2 e 

F - (surface tension) (length) = aL a 

acting on a fluid element, 

+ Fe + Fa m m 
+ Fe + Fa p p 

Fortunately in IDOst practical engineering problems, not all of the six 

forces are involved because they may not .be acting, maybe of negligible 

magnitude or some may be in opposition to each other in such a way as to 

co.pen •• te. 

Rouse (45) observed at least 90% of hydraulic model studies the 

forces connected with surface tension and elastic compression are relatively 

small and can be neglected. For all practical purposed, therefore, a 
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particular state of fluid motion can usually be simulated in a model by 

considering that either gravity forces or viscous forces predominate. 

Problems in open channel flow involving overflow and underflow 

structures (i.e •• spillways, diversion dams, sluiceways) it is customary 

to preserve complete geometric similarity and model heads are adjusted to 

the values required from equating the ratio of gravitational forces to 

that of inertial forces and neglecting the other forces. 

(Fa)m 
(Fa}p • 

(K'a)m 
(K'a)p 

These are the cri:eria that need to b~ adopted in considering the 

relationship between a model and prototype inflatable hydraulic structure. 
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APPENDIX C. 

Elliptic Integrals. 

1. Normal elliptic integral of first kind 

F (F , ~) c • ( 
o 

2. Complete elliptic integrals of first kind 

F (F ) 
c ·T o 

3. Normal elliptic integral of second kind. 

· f 
o 

4. Complete elliptic integral of second kind 

rr/2 

E (Fe) • J ) 1 - Fe
2 

Sin
2 

+ d+ 
o 
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