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Summary 

Greater environmental considerations and the desire to reduce pollution overflows to watercourses 

are requiring engineers to develop a better understanding of the processes involved in pollution 

transport through sewer networks. Furthermore, developments in modelling techniques and 

computer power are allowing urban drainage modellers to increase the complexity of their software 

and so demand additional data that can be incorporated. Presently, an important aspect is 

quantifYing the retention time and dispersion of pollutants entering an urban drainage system. 

Manholes provide a means of sewer access for maintenance and inspection. Under storm flow 

conditions they are liable to surcharge above the level of the pipe soffit. This creates a storage 

volume that has an impact on the longitudinal dispersion and travel time of soluble pollutants in 

sewer systems. A laboratory investigation has been completed to quantifY these effects for various 

manhole configurations. These include step heights between the inlet and outlet pipes, benching and 

extreme high surcharge conditions. In addition, re·analysis of previously acquired data has allowed 

variations in manhole diameter to be considered. 

Numerical modelling using computational fluid dynamics, combined with laser light sheet 

visualisation of the flow structures within manholes, has provided greater insight into the processes 

causing longitudinal dispersion. 

TIle coefficients required for two existing longitudinal dispersion models, the advection dispersion 

equation and the aggregated dead zone model, have been determined by means of an optimisation 

process. This has been undertaken with computer software specifically written for the purpose. The 

technique adopted for optimisation is fully detailed. Final conclusions regarding the longitudinal 

dispersion due to surcharged manholes are presented. 



"It is f10t the critic who coimts, not the man who points out 
how the strong man stumbles or where the doer of deeds could 
have done them better. The credit belongs to the man who is 
actually in the arena, whose !ace is marred by dust and sweat 
and blood, who strives valiantly, who errs and comes up short 
again and again because there is no effort without error and 
shortcomings, who knows the great devotion, who spends 
himself in a worthy cause, who at best knows in the end the 
high achievement of triumph and who at worst, if he !ails wbile 
daring greatly, knows his place shall never be with those timid 
and cold souls who know neither victory nor defeat. " 

Theodore Roosevelt 
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Introduction 

Chapter 1 

Introduction 

In many parts of the world sewers are designed as combined sewer systems. The principle is that 

wastewater from populations and industrial sources is conveyed to treatment by a pipe network. In 

addition, at times of rainfall, water that lands on impervious areas such as rooftops and roads is also 

passed into the same network of sewer pipes. During dry weather flow conditions and light rainfall 

the function of these combined sewers is generally satisfactory. However, periods of more intense 

rainfall can cause the flow in parts of the network to exceed the maximum capacity of the pipes or 

the treatment works. Under these circumstances of heavy flow, it is common for specially designed 

chambers known as Combined Sewer Overflows (CSOs) to begin operation. These are constructed 

within the sewers and are designed to pass the least polluted volumes of sewer flow to nearby 

receiving waters, thus providing flow relief for the system. However, the spill of flow from CSO 

chambers is predominantly untreated sewage and often has an undesirable impact on watercourses. 

Many regions served by combined sewer systems have undergone extensive urban development since 

the original pipe network was designed and constructed. This means that areas of natural landscape 

have become locations for housing and industry. These changes have a considerable impact on the 

urban drainage systems and cause a greatly increased rainfall runoff. In many cases there has been no 

overall management of wastewater systems to deal with these changes and hence there has been an 

inefficient use of resources. This has often resulted in unnecessary pollution including excessive spills 

from combined sewer overflows and even sUlface flooding. 

TIle Urban Pollution Management manual (Foundation for Water Research, 1994) provides details for 

an environmentally responsible approach to the management and operation of sewer systems. An 

engineering understanding is applied to the principle of total catchment management to ensure that 

the best solutions for given circumstances are found. The aim is to minimise the social, economic and 

environmental costs associated with the operation of an entire urban drainage network, from the 

entrance of the water to its successful discharge into receiving waters. 

An important development in the design and operation of urban drainage networks is the use of 

sewer water quality models. These are generally extensions of the widely employed sewer hydraulic 

models that have been used with success to predict discharges and flow depths at locations 

throughout a sewer system. The models are useful for enabling comparisons to be made between 

possible design options and to investigate problems in current networks. They are also the basis for 

assessment of the potential of real time control operation of sewers. This is where computer 

controlled gates and weirs allow for more advanced operation by better controlling the flow and 

using storage volumes throughout the network to prevent CSO spills. 

At present these models have demonstrated a good capability to model the sewer flow quantities and 

some reasonable quality predictions are claimed. However, many simplifications and omissions are 

made due to there being a lack of understanding regarding the interaction and transport of 

pollutants in sewers. One detail that is not well accounted for is the passage of sewer flow through 
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urban drainage structures. in particular the numerous manhole chambers. Under storm flow 

conditions where the water level may rise above the pipe soffit and the manhole chamber become 

surcharged. passing pollutants are liable to be entrained within this additional storage volume. This 

will result in them becoming more dispersed through the system and will retard their overall travel 

downstream. 

Extensive research has been undertaken in the past to determine the head loss coefficients for 

manholes that were incorporated in the models for the hydraulics of sewers. Only recently. as the 

models have developed and computing power has increased. has there been a need to develop an 

understanding of the physical processes involved as pollutants travel through manholes. The current 

models available assume either no mixing or complete mixing of soluble pollutants at manhole 

junctions. These are the two extremes and without a reliable prediction of the actual circumstances. 

other aspects of the models concerning decay rates or chemical reaction times will be unreliable. 

Therefore. the primary aim of the current study has been to accurately quantify the longitudinal 

dispersion due to surcharged manholes. 

laboratory experiments using a variety of manhole geometries and flow conditions have been used to 

determine longitudinal dispersion parameters under different circumstances and to highlight the 

conditions that are most critical. In addition. a relationship between the head loss and the dispersion 

has been sought and flow patterns through a surcharged manhole have been examined. The aim has 

been to provide the results quantifying longitudinal dispersion in a form that could be incorporated 

into sewer water quality models. thus improving their capabilities as a tool for optimum sewer 

design. 
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Chapter 2 

Literature Review 

2.1 Sewer systems 

The trend of urbanisation through history in the UK, and the associated changes of land use from 

agriculture to habitation, has led to greatly increased rainfall run off volumes. In many cases from 

early civilisations through to the middle ages, open street sewers have been the major provision for 

draining storm and foul sewage. Comprehensive provision of reliable drainage schemes for large 

urban communities became regarded as essentia l in the nineteenth century (Colyer and Pethick, 

1976). The prime requirements for the design of sewer systems initially concentrated on fulfilling 

hydraulic needs . The aim was to convey the rapidly increasing runoff volumes to the sea or nea rest 

river. These schemes were commonly evolved from earlier systems incorporating networks of streams 

that had been converted to culverts and built over. Thus both foul and storm sewage was conveyed in 

the same pipe network, g iving rise to the term combined sewerage system (Figure 2.1). 

D DD 

Figure 2.1 Combined sewer system. 

The design and further development of combined sewerage systems encountered two problems 

(Colyer and Pethick, 1976). Firstly, whilst the construction of a drainage system capable of efficiently 

conveying solely foul sewage was relatively simple, the issue was complicated by the need to 

incorporate pipe sizes that were able to transport the greatly increased discharges during rainfall 

events. Catering for extreme rainfall, especially with a network spanning large distances, would 

require oversized and uneconomic sewers. Therefore a decision had to be made about the proposed 

capacity of a particular sewer, and what storm event return period it was des ig ned for. The second 

problem arose from the increasing demand to provide treatment for foul sewage. The construction of 

expensive treatment works operating considerably below maximum capacity except during 
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infrequent storm flow conditions was undesi rable, especially since the foul flow during storm events 

is greatly diluted by the rain water volume. 

A C0l111110n solution for dealing with sewer discharges greater than a combined sewer system has 

been des igned for is the provision of Combined Sewer Overflows (CSOs). These structures have taken 

a wide variety of forms but all with the same principle intention of limi ting the discharge that 

continues to the treatment facility and passing the excess volume to a nearby natural watercourse. A 

result of employing CSOs is that there will inevitably be spills of a proportion of the sewer flow at 

times of heavy rain. Increasing urbanisation has led to grea ter discharges in sewers and more 

frequent CSO spills. Therefore research has investiga ted CSO pelformance and compared the ability 

of different des igns to separate the flow into dirty and predominantly clean portions (Saul et aI, 

1993). This separation is not easi ly achieved given that pollution in sewer flow can occur in the bed 

load, suspended and dissolved load, and floating matter. 

An alternative sewerage system conveys foul and storm flow by means of totally separate pipes 

(Figure 2.2). In the past the economics of constructing a twin pipe network with manual bricklaying 

restricted the use of separate sewers. Furthermore, there was no need for anything other than a 

combined system since prior to widespread use of wastewater treatment facilities, all sewer flow was 

conveyed to the same destination . These factors are no longer limitations and new urban 

development tends towards the totally separate system (Colyer and Pethick, 1976). An intermediate, 

partially separate, system is also a possibility. This was introduced to convey foul sewage and runoff 

from the rear of houses in one pipe, and the runoff from the front of houses in a separate pipe. This 

principl e was usually applied to expanses often·aced hOllsing in industrial towns. 

Foul sewer 

Figure 2.2 Separate sewer systems. 

DODD 
DODD 
DODD 
DOD 
DODD 

The use of combined or partially separate sewer systems remains extensive. Indeed, such systems 

have the advantage of applying treatment to at least some of the surface runoff from urban 

impermeable areas. This is of particular importance with regards to the first foul flush . Thornton and 

Saul (1986) described this phenomenon as the initial period of storm sewer flow during which the 

concentration of sediments and pollutants entrained in the flow was observed to be significantly 

greater than at later stages of the storm event. This effect arises primarily from the erosion and re-
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suspension of sediments previously deposited on the sewer bed and from runoff collecting pollutants 

on the catchment surface (Verbanck et al, 1994). 

2.1.1 Manholes in sewer systems 

In early sewer systems, manholes were employed as a means of removing silt and other obstructions 

from the flow. Today, the primary function of a manhole chamber is to allow human access to the 

sewer for the purposes of inspection, cleaning, maintenance and repair. It is these functions, along 

with the construction materials and local geography, which largely dictate the size and shape of a 

chamber. 

In this country, the common maxim for locating manholes is that they should be at every change of 

pipe size or type, gradient, direction, and at junctions of pipes. Furthermore, to ensure that cleaning 

tools such as rods can be used effectively, straight unchanging lengths of sewer should have 

manholes spaced at no more than a distance given by the pipe diameter (Table 2.1) Hammer (1986). 

Pipe diameter (mm) Maximum manhole spacing (m) 

457·762 150 

< 381 120 (sometimes 90 for smaller pipes) 

Table 2.1 Recommended maximum spacing for sewer manholes. 

According to Bartlett (1981), manholes vary in size relative to the pipe diameter. For instance, with 

pipes up to 300mm in diameter, rectangular brick or in-situ concrete manholes should have a 

minimum size of 1350mm by 788mm. These measurements are based on the use of standard brick 

dimensions. With larger sewer pipes, the width of the chamber must be great enough for the pipe 

channel and the platform known as benching. Hence for pipes varying from 375mm to 750mm in 

diameter, the associated minimum manhole widths should be from 1125mm to 1575mm. Sewers 

deeper than 8 metres are usually constructed with an access shaft 788mm by 675mm which descends 

to a broader chamber. This lower chamber should have a height clearance of at least 2 metres, and 

minimum plan dimensions of 1350mm by 1125mm. 

In the case of manholes constructed with pre-cast concrete rings the diameter to be used should be 

selected according to the largest pipe size at the junction, as outlined in Table 2.2 (Bartlett, 1981). 

Largest pipe diameter (mm) Diameter of manhole (mm) 

150·400 1200 

450·700 1500 

750·900 1800 

Table 2.2 Recommended manhole diameters. 

White (1987) highlights the problems of constructing manholes to the specified dimensions when 

space is limited. It is rarely possible to achieve the required headroom for chambers if sewers are laid 

at an economic depth. A solution for very shallow sewers is the construction of small inspection 

chambers, however it is often the case that a sewer is too deep for these and too shallow for full 

headroom to be provided. In these circumstances the access shaft itself provides the headroom and 

the necessary space for rodding equipment. For this reason, the shaft is required to be located at an 
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upstrea m corner of the manhole, to facilitate rodding in the more usual downstrea m di rection. 

(Figure 2.3). 

Ground level 

./' Access shaft 

/ Manhole chamber 

Cleaning rod ,/ 

Benching 

Flow -

Figure 2.3 Features of a manhole. 

It is common for manholes to be constructed with an arrangement at the base known as benching. 

This usually consists of a platform that provides a secure, fl at surface to work from for personnel 

accessing the chamber. A channel is included to convey some flow from the manhole inlet to the 

outlet, thus keeping the benching surface free from flooding under dry weather fl ow conditions. It is 

poss ible to offset the channel through a manhole (Figure 2.4) so that adequate space is provided on 

the benching without having to build extra width into the manhole (White, 1987). 

Benching 

______ ~ ______ __ ____________ L_ ____ __ 

Flow -
--------~ ---- - ---- - ------y---------

Figure 2.4 Plan of offset benching des ign. 

A sewer with steep gradients, which requires deep excavations, can be constructed more 

economically if the pipes are laid at gradients suffi cient for the hydraulic requi rements and 

connected to lower sewer pipes at manhole junctions. This can result in manholes where there is a 
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step height between the inlet and the outlet pipe. A ramp formed in the benching is usua lly provided 

to accommodate the change in level (Bartlett. t 970). If the step height between the inlet and outlet 

pipes at a manhole is greater than 600mll1 then it is usual to construct a drop manhole (Bartlett. 

1970; Hammer. 1986). As shown in Figure 2.5. this design allows the sewer fl ow to drop before 

entering the manhole thus protecting personnel entering the chamber and avoiding solids splashing 

onto the wa lls of the chamber. 

2.2 Head loss 

Manhole chamber 

--l\ 

FIOW~ 

Access to upper pipe 
level for inspection 
and maintenance 

>600mm 

Flow ~ 

Figure 2.5 Drop manhole configuration. 

A great deal of research has been undertaken internationally in an attempt to defi ne the head loss 

characteristics of manholes and pipe junctions in sewer systems. The majority of this work has used 

laboratory models of manholes. studied under considerable variations of discharge. surcharge. 

geometry. pipe size and slope and other factors. A small proportion of the work has been conducted 

in fi eld tests where measurements have been taken in real sewer networks. Since there is li ttle 

problem with sewer operation under dly weather flow conditions. most researchers have considered 

flood conditions where the manhole chamber is surcharged and the water surface is above the level 

of the pipe soffit. Surcharging is likely to be fairly common in many sewer systems since the return 

periods of the storms used for design are commonly quite low. such as one year (Archer et at. t 978). 

However. there is usua lly a large margin of safety between a water level causing surcharging. with the 

surcharge going unnoticed. and a water level that causes fl ood ing on the paved surface. 

There have been two major reasons for the extensive research into head losses at surcharged 

manholes. Firstly. computer models that simul ate the hydraulics of a sewer system are able to 

employ the fundamentals of pipe flow theory except at manholes where empirica lly derived head loss 

coefficients are required (Archer et aJ, t 978). The resulting improved model accuracy provides a 
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better tool for sewerage designers and managers to examine the behaviour of proposed or existing 

networks. Friction losses for flows in pipes are well understood and can be estimated with use of the 

Colebrook-White equation. No such reliable theory exists for other structures in sewers, and 

quantifying head loss in such structures has primarily been by laboratory determination. This is due 

to the difficulties associated with making observations in active sewers, and the relative infrequency 

of surcharge events from an experimental point of view. Secondly, studies have been conducted 

which look at design alterations such as baffle plates and benching configurations to examine the 

effect on the head loss caused by a given manhole (Marsalek and Creck, 1988; Johnston and Volker, 

1990). Such changes added to a present sewer system lead to an increased efficiency, which allows 

the sewer to transport greater volumes of flow without flooding or CSO spills to watercourses. 

Researchers have generally followed the principle of Sangster et al (1958) in determining the head 

loss. A method of establishing the hydraulic grade line in the pipes upstream and downstream of the 

manhole is required for this. Piezometric tappings connected to measurement scales have been 

commonly used (Sangster et aJ, 1958; Marsalek, 1984; Johnston and Volker, 1990), although 

calibrated electronic devices such as water level transmitters (Howarth and Saul, 1984; Elgattas, 1995) 

and pressure transducers (Cuymer and O'Brien, 2000) have also been successfully employed for the 

same purpose. The hydraulic grade lines are then extrapolated to the manhole centre line (Figure 

2.6), and the head loss recorded between them, H, at this location is used to determine the head loss 

coefficient, KH (Equation 12.1 I). 
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Figure 2.6 Calculation of head loss from pressure transducer measurements. 
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[2.1[ 

where H is the difference in level between the upstream and downstream hydraulic grade lines at the 

manhole centreline, ~ is the head loss coefficient, v is the mean flow velocity in the pipe and g is the 

acceleration due to gravity. 

There are a wide variety of potential configurations of manhole structure. Unfortunately, it is not 

always straightforward to extend the results of the laboratory configurations that have been studied 

to other conditions not covered. However, the previous head loss studies do assist in determining 

which factors, such as manhole dimensions and shape, pipe size, surcharge level, step height and 

benching configurations have the greatest impact on the head loss. 

2.2.1 Manhole shape and size 

Archer et al (1978) conducted laboratory head loss experiments on both circular and rectangular plan 

shape manholes incorporating a benching design. They considered both straight through alignments 

and variations in the angle of deflection between the inlet and outlet pipes. Their results showed that 

the head loss coefficient was dependent upon the deflection angle and, to a much lesser extent, the 

cross sectional shape of the manhole. Marsalek and Greck (1988) also found that the plan shape had 

little effect on the head loss coefficient in the case of benched and unbenched manholes with a 90 

degree turn. Archer et al (1978) proposed constant values for ~ as given in Table 2.3. 

Shape Straight pipe 30 degree deflection 60 degree deflection 

Rectangular 0.10 0.40 0.85 

Circular 0.15 0.50 0.95 

Table 2.3 Proposed manhole head loss coefficient, KH, values (Archer et al, 1978). 

Whilst Archer et al (1978) considered manholes of similar proportion, Sangster et al (1958) examined 

variations in the relative manhole size and concluded that the observed head losses increased with 

increases in manhole to pipe diameter ratio, Dm/D, although only minor differences occurred with 

Dm/D greater than 2.0, and there was no increase in head loss for Dm/D greater than 2.5. In contrast, 

the results of other researchers (Howarth and Sa ul, 1984; 80 Pedersen and Mark, 1990) from 

laboratory experiments demonstrated that the loss coefficient for a manhole continued to increase 

up to D,,JD values of at least 4.0. 

80 Pedersen and Mark (1990) showed with their theory and laboratory experiments that a 

relationship existed between the head loss coefficient and the manhole diameter ratio, DnJD. They 

proposed that for engineering applications the experimental results could be approximated with a 

function involving the diameter ratio and a shape factor, ~ (Equation [2.2)). 

12.2[ 

This relationship was shown to be useful for predicting loss coefficients for both square and circular 

manholes using data from previous researchers. Combining experimental results from themselves 
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and others, Bo Pedersen and Mark (1990) estimated the shape factor for various straight through 

manhole designs (Figure 2.7). Since the shape factor could only be estimated from the laboratory 

experiments undertaken, they point out that the equation was restricted to the few geometries from 

which it had been determined. 

Shape 0 
_0 (Dm/D S 4) L0-

A B C D 

l; 0.24 0.12 0.07 0.025 

Figure 2.7 Proposed shape factor values (Bo Pedersen and Mark, 1990). 

The pipe slope has been shown to have an insignificant effect on the head loss caused by a manhole 

(Archer et al, 1978; Elgattas, 1995). 

2.2.2 Flow conditions 

Howarth and Saul (1984) completed laboratory experiments to compare the energy loss coefficients 

for manholes with steady flow conditions with those that were obtained with time varying 

discharges. Archer et al (1978) concentrated on steady flow conditions and applied the derived 

coefficients for all flow rates. Howarth and Saul felt that this assumption required validation since 

hydraulic models were able to predict unsteady flow conditions. A computer controlled valve in the 

laboratory apparatus allowed various simulated discharge-time hydrographs to be applied to the 

system. A total of five manhole configurations were examined, three circular manholes with straight 

through flow and half pipe depth benching, a circular manhole with an offset and deeply benched 

channel and a square shaped chamber, again with half pipe depth benching. 

An important discovery by Howarth and Saul was the fact that certain geometry and flow conditions 

were likely to lead to considerable swirling of the flow in a manhole. The presence of this swirl flow 

caused a marked increase in the head loss that occurred, and invalidated the assumptions of previous 

work that a single loss coefficient was applicable to a particular manhole shape. 

Howarth and Saul (1984) established loss coefficients approximately equal to 0.15 for all manhole 

shapes when swirl was not present. This is similar to the values of 0.1 0 to 0.15 proposed by Archer et 

a/(1978) for square and circular manholes respectively. However, with swirl conditions present these 

values increased to averages of 1.0 for the circular manhole, 0.4 for the equivalent square manhole 

and 0.2 for the deeply benched offset manhole. Hence for circular manholes it was possible to obtain 

head loss coefficients approximately seven times the magnitude of the values that were proposed by 

Archer et al (1978) as being applicable for all surcharged flow conditions. Swirl was less likely to 

occur in the square manhole, which the authors attribute to quiescent zones in the corners. 
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Johnston and Volker (1990) observed different circulation regimes within the manhole during their 

laboratory study. They grouped these into five categories (Table 2.4). It was suggested that these 

regimes had a strong correlation with the manhole head loss determined during the experiments. 

Regime Surcharge Water surface Circulation description 

fluctuation (mm) 

1 0.70 ±8.0 Violent oscillations or seiching across 

diagonals 

2 1.10 ±4.0 Predominant wave on downstream face 

of box with two equal eddies in wake 

3 1.20 ±1.0 No wave, equal eddies, fairly calm 

4 3.30 ±0.5 No wave, single eddy, fairly calm 

5 3.70 ±0.5 Random circulations, very calm 

Table 2.4 Circulation regimes Uohnston and Volker, 1990). 

2.2.3 Surcharge level 

Archer et al (1978) conducted a series of tests where the surcharge level varied up to a maximum 

where the water level was five pipe diameters above the outlet pipe soffit. This showed that at a 

constant discharge the head loss that occurred was independent of the surcharge level. Later research 

found that this was not necessarily the case. Howarth and Saul (1984) found that one of the factors 

that affected whether swirl would occur, thus giving rise to greater head loss, was the level of 

surcharge in the manhole chamber. Hence the ratio of surcharge depth to manhole diameter was 

considered an important factor in the head loss coefficient values. Johnston and Volker (1990) found 

that at lower pipe velocities there was a tendency for the head loss coefficient to increase in value 

with surcharge from a small value until the surcharge reached 0.50, then reduce with further 

increases in water depth. This pattern compares favourably with that described by Lindvall (1984) and 

Kusuda and Arao (1996). In these cases, the greatest head loss coefficient values occurred when the 

water depth in the manhole was less than 2.0D. This was attributed to the strong surface swirling 

motions that were observed at low surcharges and which decreased as the surcharge increased. From 

these later studies it would appear that there is a threshold level of surcharge above which the head 

loss tends to becomes constant for a given discharge. 

2.2.4 Step height 

Kusuda et al (1993) and Kusuda and Arao (1996) present the results from a comprehensive 

investigation of head loss at circular manholes that included a step height between the inlet and 

outlet pipes. The manhole diameters to outlet pipe diameter ratios tested were in the range of 1.4 to 

3.6DJD, the upstream pipe diameter was 50mm and the downstream pipe was 50 or 60mm. Step 

heights between the inverts of the upstream and downstream pipes of between 0.0 and 4.0D were 

used, and flow rates were between 0.48 and 3.82 litres per second. The hydraulic grade line was 

established from three piezometer measurements either side of the manhole. 

For step heights up to almost l.5D the head loss coefficient increased as the step height increased. 

However, further increases in step height resulted in no further increase in the head loss coefficient. 

The effect of a step height in the range of 0.0 to l.5D on the head loss coefficient was significant. For 
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a manhole with no step and DmlD = 3.6, the value of ~ was approximately 0.4, whilst for step height 

of 1.5D this increased to almost 2.0 (Figure 2.8). The head loss coefficients were expressly given for 

higher surcharge levels where the head loss was found to be almost constant. 
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Figure 2.8 Head loss coefficient variation with step height (Kusuda and Arao, 1996). 

Head losses for manholes with a step height between the inlet and outlet pipes have also been 

investigated by Elgattas (1995). A laboratory arrangement of manhole and delivery pipes was 

employed for the study. The manholes were circular with internal diameters of 340mm, 388mm and 

488mm. The upstream pipe was always 88mm in diameter whereas three diameters of 88mm, 

110mm and 130mm were used for the downstream pipe. Step heights between the inverts of the inlet 

and outlet pipes at the manhole junction were set between O.OD and 2.0D in 0.5D intervals, where D 

was the outlet pipe diameter. All manholes were tested with no benching and a small number of tests 

were completed with a simple half pipe benching arrangement in the 340mm manhole. 

The results for the variation of the head loss coefficient with step height presented by Elgattas (1995) 

appear to vary from the trends of those of Kusuda et al (1996). Elgattas does not describe a step 

height above which the value of KH becomes almost constant, but found a continual increase of KH 

with step height. This was attributed to the lesser ability of the manhole geometry to guide the flow 

towards the outlet, resulting in an increase in head loss. 

Elgattas (1995) described an empirically derived expression to predict the head loss within the range 

of geometries and flow conditions studied in the laboratory. A curve fitting exercise was applied to 

each configuration of upstream and downstream pipe diameter ratio and manhole to pipe diameter 

ratio to find the relationship between the head loss and variables such as surcharge, step height and 

the Reynolds number. Further curve fitting allowed the surcharge to be described in terms of the 

Reynold's number and thus the empirical model for head loss in terms of step height ratio and 

Reynolds number in the downstream pipe was produced (Equation (2.31). The aj, bi and Cj coefficients 

were listed by Elgattas for all the geometries considered. These were upstream to downstream pipe 

diameter ratios in the range of 0.68 to 1.0 and manhole to downstream pipe diameter ratios between 

2.62 and 5.55. 
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where 

H =[(., + b,(~) +C,(~)') +, +b,(~) +c,(~)}, +., Re)+ 

('3 + b3(~) +C3(~)}' +., Re)' ] ~; 

A1 = a4 +a5(~) 
B1 = b4 + b5(~) 

13 

12.3) 

12.4) 

12.5) 

and h is the step height, D the downstream pipe diameter, Re the Reynold's number and v is the 

velocity in the downstream pipe. 

Unfortunately, the presentation of this empirical analysis is rather poor and somewhat confusing, 

and the equation is limited to the flow conditions and manhole configurations from which it was 

developed. The extensive curve fitting procedure to determine the numerous coefficients must be a 

cause for concern as to the validity of applying the equation as a method for predicting head loss. 

Research into the head loss coefficients for stepped manholes has continued with Arao and Kusuda 

(1999) considering the effects of a combination of a step height and an angle between the inlet and 

outlet pipes. For manholes with no step, the head loss coefficient at most surcharge levels was 

approximately three times greater for a 90 degree angle than for the straight through configuration. 

However, the straight through manhole head loss increased considerably as the step height was 

raised to 1.0D, but the head loss for the angled arrangement increased little further. Thus, the 

difference in head loss coefficients for straight and angled manholes was negligible at this step 

height. 

2.2.5 Benching 

The effect of benching within manholes has been shown to have a large influence on the measured 

head loss coefficient. Marsalek (1984) examined square and circular manholes with three different 

benching arrangements. These were shapes B, C and D in Figure 2.7. The lowest head losses occurred 

with the deep channel benching and were found to be approximately half that of the unbenched 

manholes. This concurred with the benched manhole test results of Johnston and Volker (1990). 

Howarth and Saul (1984) noticed that the bed configuration of the manhole had considerable 

importance on the occurrence of swirling flows and benching was observed to prevent swirl and so 

reduce the head loss. In chambers with a 90 degree turn between the inlet and outlet pipe Marsalek 

and Greck (1988) concluded that half pipe diameter benching gave little reduction in the head loss 

over that for an unbenched manhole. However, the provision of a full pipe diameter depth channel in 

the benching produced significant head loss reductions. 

2.3 Sewer systems modelling 

Greater environmental considerations and a desire to design and operate more efficient urban 

drainage networks has led to the increased use of computer based sewer simulation models. The 

original models concentrated on computing the hydraulics of a sewer system. It was required that 
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these models reached a satisfactory performance before consideration was given to including the far 

more complex water quality aspects. Extensive work was conducted by many researchers into 

determining the head loss characteristics of manhole structures to allow the inclusion of appropriate 

coefficients in the models. Research continues now to develop the ability of these models to produce 

reliable predictions for the water quality aspects of sewer flow. 

Herath et al (1999) provide a summary of the features and application of three current urban drainage 

models. all of which to a greater or lesser extent incorporate some provision for modelling 

wastewater quality. These are HydroWorks. MOUSETRAP and SWMM. produced by Hydraulic Research 

Wallingford. the Danish Hydraulic Institute and the United States Environmental Protection Agency 

respectively. Only one of these models. MOUSETRAP (Crabtree et al. 1994; Garsdal et al. 1995). uses 

both advection and dispersion processes in the routing of dissolved and sediment pollution through 

the sewer system. Whilst this complicates the model. it provides for the longitudinal dispersion 

effects of manholes to be incorporated. 

Garsdal et al (1995) describe the development of the numerical model MOUSETRAP for describing 

water quality processes in urban drainage networks. They identify that the design, management and 

operation of sewer systems would be greatly enhanced with knowledge of pollutant concentrations 

at combined sewer overflows and treatment works. The modelling tool developed was based on the 

MOUSE hydrodynamic package produced by the Danish Hydraulic Institute. The model attempts to 

describe the physical transport of pollutants, both dissolved and attached to sediments, together 

with chemical and biological water quality processes. In their work, the authors detail the extent to 

which water quality considerations are taken into account. A module of the software has been 

developed to include processes such as degradation of organic matter, bacterial fate, exchange of 

oxygen with the atmosphere and oxygen demand. The equations formulated to describe these 

complex processes often include time dependent growth rates or decay constants. In these cases any 

retention that occurs in sewer structures such as manholes that is not taken into consideration will 

result in misleading predictions for these processes. MOUSETRAP also has an advection dispersion 

module that is dynamically coupled with the water quality module. This requires longitudinal 

dispersion coefficients to be applied so as to predict the transport of pollutants through the sewer 

system. 

The authors applied these two modules to a 5km length of gravity sewer in northern Jutland, 

Denmark. Tests were conducted with Rhodamine dye as a tracer to allow residence times for solutes 

to be determined and used for calibration of the advection dispersion module. The conclusions were 

that the advection dispersion equation describes solute transport in sewers effectively. Whilst 

Taylor's (1954) work demonstrates this to be applicable for the straight pipe sections of sewer, and 

theoretically a good approximation of un surcharged flow through benched manholes, the application 

of the equation to sewers where manholes are surcharged and cause changes in flow cross sections is 

less certain. It is possible that the validation of the advection dispersion equation for a real length of 

sewer (Garsdal et aJ, 1995) was completed predominantly for dry weather flow conditions where 

manhole structures would remain unsurcharged. 

A more complete description of the application of the advection dispersion module of the MOUSE 

software is given by Mark et al (1996). The model has been applied to a sewer network in Ljubljana. 

Slovenia. using inputs of industry loadings to the sewer system and measured dry weather flow 

concentrations. Only conservative pollutants were considered with this particular work, thus 

negating concerns over decay coefficients being involved. The final calibrated model gave good 
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simulations of the selected pollutant (ammonium) concentration, including temporal variations, at 

several locations within the system. 

The difference between the accuracy and efficiency of quantitative storm water simulation models, 

which are widely and reliably used, and those attempting to include water quality aspects is 

emphasised by Ahyerre et al (1998). There are many problems associated with simulating the 

complex nature of the physical, chemical and biological processes involved. Whilst the current sewer 

quality software is regularly used for research models, their application as management tools is 

restricted by the cost of obtaining reliable calibration parameters. Further research is required to 

make improvements in the modelling approach and to develop understanding of the water quality 

processes and pollution transport mechanisms involved in order that managers of urban drainage 

systems will be convinced that the models are cost effective and accurate. 

Computer model development continues with the ultimate aim of producing an accurate and fully 

integrated software package. This would be able to predict the flow rates and the pollutant 

concentration levels from the rainfall event to the downstream river flow, divided into sections for 

rainfall prediction, sewer modelling, wastewater treatment facilities and pollution transport in 

watercourses. The advantages of such a model would be extensive. With regards to the urban 

drainage section of the package, the benefits would assist in improved management and operation of 

the network resulting in a reduction of pollutant loading on nearby watercourses. 

2.4 Real time control 

A major development in sewer design and operation is Real Time Control (RTC). As explained by 

Schilling (1996) the primary aim of real time control is to reduce spills from Combined Sewer 

Overflow (CSO) chambers without constructing any extra capacity within a sewer. Computer 

simulations are used to compare the advantages and disadvantages of possible control strategies. 

Furthermore, if an urban drainage network is to be designed with storm control chambers and 

moveable remote controlled weirs and gates so that the bulk of pollutant concentrations can be 

stored for later treatment then a computer model could be employed. This would assist in 

determining the ideal size and location for new chambers, or indeed the best procedure for utilising 

available sewer storage volumes and would be a critical factor in saving costs and reducing CSO 

spills. 

Furthermore, improved flow simulations would allow wastewater treatment facilities to better 

predict the arrival time and concentration of pollutants and so adapt their process accordingly. In 

addition, any CSO spills that were predicted by the model would have a known pollutant 

concentration, and hence the ability ofthe receiving watercourse to cope with the spill could be more 

accurately assessed. Ultimately, the use of such a model would enable water companies to 

successfully reduce the environmental impact and the cost of operating an urban drainage network. 

Engineers must consider an integrated control strategy where the consequences of adding small 

pollutant loads to highly sensitive receiving waters must be weighed against the damage of larger 

loads into waters more capable ofreceiving them. Schilling (1996) highlights that current and future 

research is concentrated upon these quality orientated aspects, and that on-line simulation models 

will play a crucial role in developments. Therefore, improvements in these models are a prime 

concern. 
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Weinreich et al (1997) discuss an extension of a real time control strategy and its operation on the 

Oslo interceptor sewer tunnel. In a reflection of early sewer simulation models. real time control 

strategies have been heavily based on minimising volumes of discharges via CSOs. The work of 

Weinreich et a/looks at the development of these strategies to include pollution concentration 

elements. termed a Pollution Based Real Time Control (PBRTq strategy. The tool developed for this 

work consists of three modules. A flow model combined with a simple pollution transport model. a 

control module and a provision for numerical optimisation. The optimisation procedure utilised 

linear functions considering the relative costs of overflow. discharge and storage. By modifying the 

cost of overflow so that it depends on the pollutant concentration. it becomes possible to direct the 

main polluted discharge on to the treatment works. The authors claim a reduction in total 

phosphorus and ammonia nitrogen at the overflows of 48 and 51 percent respectively by using the 

pollution based real time control model on a simplified model of the Oslo interceptor sewer. This 

compares favourably with reductions of 42 percent for both examined pollutants with purely a 

volume based real time control strategy. Their conclusions highlight the advantages of regarding 

pollutant loads rather than volumes. especially as developments in computing power increase the 

feasibility of more complex methods. However. the concern is expressed as to whether the accuracy 

of pollution transport models is sufficient to make best use ofthese advantages. 

Petruck et al (1998) express the two main aims of their real time control project as a reduction in the 

volume and pollution content of CSO spills and an improvement in the efficiency of the wastewater 

treatment plant. As with Weinreich et al (1997) they consider the effectiveness of a pollution based 

real time control system. in this case applied to the catchment of the stream Rapphofs Muehlenbach 

in Germany. The principle is again to maximise the pollutant load to the treatment facilities. and to 

minimise the discharge of pollution into the watercourse. In this case, only knowledge of the sewer 

system itself is required. As a possible continuation however, Petruck et al (1998) discuss the 

possibilities for applying a Water Quality Based Real Time Control (WQBRTq strategy. In this 

extension of previous control proposals, the aim would be to reduce the occurrence of so called 

critical conditions in the receiving waters. Hence, the requirement is for flow volume and quality 

measurements to be taken for both the sewer system and the associated stream. In this way the 

discharge of CSOs could be determined with regard to the quality of the receiving water. The authors 

predict that this strategy would give further efficiency over pollution based real time control. 

However, the success of further complexities in control strategies will ultimately depend on the 

accuracy of the hydraulic and quality modelling predictions. 

2.5 Longitudinal dispersion 

2.5.1 Introduction 

Longitudinal dispersion is the tendency for a cloud of soluble tracer travelling with a fluid flow to 

spread along the flow direction axis. This effect reduces the cross sectional averaged peak 

concentration of the tracer measured at locations downstream, and spreads the solute over a greater 

longitudinal distance. For many years the importance of this phenomenon has been understood by 

researchers interested in riverine water quality modelling. The theol)' and experimental work 

covering longitudinal dispersion in open channels and rivers is extensive, and in many cases it is now 

possible to produce reliable predictions of field conditions. In the case of urban drainage, there has 

not yet been the same emphasis on research into the longitudinal dispersion that occurs in sewer 

flow. Only now, as computer modelling techniques for urban drainage have reached a level 
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comparable with river modelling, are coefficients required that will allow the models to accurately 

reflect the effects of longitudinal dispersion. Previous models concentrated on the sewer hydraulics 

where coefficients for head loss were the prime concern. With increased environmental 

considerations being applied to sewers, the development of computing power and software 

capabilities, and the desire to produce urban drainage design solutions that are integrated from the 

rainfall event to the final impact on receiving waters, a prime requirement for modellers is to include 

longitudinal dispersion considerations. 

The first theoretical and experimental analysis of longitudinal dispersion in fluid flow began with the 

pipe flow experiments conducted by Taylor (1953, 1954) considering both laminar and turbulcnt flow 

conditions. This work proved fundamental in the determination of equations describing the 

dispersive effects of particular flow regimes. These equations are still widely used today as a means of 

predicting downstream solute concentrations from an upstream source. 

2.5.2 Mixing theory 

If a single drop of tracer were to be statically released into a second tranquil fluid, Brownian motion 

of the molecules would result in the spread of the tracer mass from the region of high concentration 

into the surrounding volume of fluid. So long as the two fluids were of comparable density and 

viscosity, this process would continue until the originally steep concentration gradient became zero 

and the tracer was evenly distributed throughout the entire volume. It was shown by Fick that the 

tracer would move from a region of high concentration to one of lower concentration at a rate 

proportional to the concentration gradient. Molecular diffusion for tranquil conditions in a single 

direction is described by Fick's first law (Equation 12.6)). 

ac 
Jx = -Em ax 12.61 

Where J. is the tracer flux in the x direction, Em is the molecular diffusion coefficient and ac/ax is the 

spatial tracer concentration gradient in the x direction. 

Holley (1969) considered the progress of a tracer travelling within a two dimensional channel flow. 

This situation was described by applying the principle of mass conservation to an elemental control 

volume. A continuum mechanics approach, with the assumption that the fluid conveyed the tracer at 

a rate dependcnt on both the velocity, u, and the concentration, c, gave rise to a two dimensional 

molecular diffusion equation (Equation 12.7)) that is capable of describing dispersion in laminar flow. 

This is also commonly known as Fick's second law. 

DC + u ac = E [a2c + cPc) 
Ot x ax m ax2 8y2 

12.7) 

where Uj is the uniform velocity in the i direction. 

A fully turbulent flow is characterised by being composed of randomly fluctuating velocity 

components at any location within the flow. A similar equation to 12.7) can be produced for 

circumstances where the flow is turbulent. 
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[2.81 

where Ux' uy and c represent instantaneous values. 

A distinctive character of turbulent flow is the formation of eddies. which can range in size from the 

molecular level to easily visible swirls in the flow. This feature necessitates the inclusion of the 

advective term uy(ac/ay) in the equation. since although the primary flow is in the x direction. 

turbulent motion in the y direction will be present. The difficulty in determining instantaneous 

measurements of velocity and concentration means that these are expressed as time averaged values 

comprising a mean value and a turbulent fluctuation (Figure 2.9). Thus. the instantaneous value is 

represented by a time average value (overbar) and a fluctuating component (prime). such that in the 

case of velocity 

u = u + u' [2 .91 

with a similar definition for concentration. 

Instantaneous velocity, u 

~ 
u' 

[] 

Time 

Figure 2.9 Time averaging of turbulent velocity. 

Turbulent diffusion causes a random scattering of particles due to the random eddy forms that exist. 

TIle process of time averag ing leads to an equation where the turbulent diffusion coefficient. Et • is 

defined with analogy to molecular diffusion (Equation /2.10J) (Holley. 1969). This equation includes 

the effects of both molecular and turbulent diffusion on the transport of a tracer. 

12.101 

where ~ and ux are the time averaged concentration and velocity values respectively. 
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If a tracer has been present in a two dimensional continuum long enough. turbulent transport will 

have mixed it throughout the depth of the fluid. This means that most variation in concentration will 

now occur in the longitudinal direction. Equation (2.101 is still valid under these circumstances. 

however. it can be simplified since there is no longer any significant variation in concentration in the 

vertical direction. This is done by depth averaging the turbulent diffusion equation and again 

developing a diffusion coefficient. this time to represent the effects of shear flow. by analogy with 

molecular diffusion. 

(2.111 

where C and U are the cross-sectional average values for the concentration and the velocity 

respectively and Ek is a coefficient for the diffusion due to shear flow. 

These three diffusion processes can be combined and a single dispersion coefficient. K. used to 

represent their combined effects (Equation (2.121). 

(2.121 

where K is the longitudinal dispersion coefficient. 

This is the Fickian model of longitudinal dispersion. otherwise known as the Taylor Advection 

Dispersion Equation (ADE) since it originates from his work studying mixing in pipes (Taylor. 1953. 

1954). The concentration and velocity are cross sectional averages and so the equation is unable to 

model variations of these across a section. The longitudinal dispersion coefficient includes the effects 

of the velocity shear. the turbulent mixing and the molecular diffusion. However. it is important to 

note that the latter two are very small effects in comparison to the velocity shear. and hence K==Ek• 

The spreading of a tracer along the pipe length is increased by velocity shear leading to an increase in 

transverse concentration gradient whilst the transverse mixing acts to smooth these gradients and 

create more uniform concentrations thus counteracting the longitudinal dispersion effects of velocity 

shear. The combination of velocity shear and turbulent diffusion can be termed dispersion. and once 

a solute is fully mixed over the cross section then it is this dispersion that is the dominant mixing 

process. 

2.5.3 Advection Dispersion Equation (ADE) 

Close to the source of injection of a tracer the concentration is not uniform over the cross section. 

This region is known as the advective zone. acknowledging the significance of the velocity profile for 

the mixing in this region. The tracer concentration profiles measured within the advective zone are 

highly skewed. Taylor (1954) showed that further downstream the effects of the longitudinal 

dispersion being increased by the velocity shear are balanced by the turbulent diffusion. which tends 

to reduce longitudinal dispersion. This region is termed the equilibrium zone. The distinctive features 

of this region of mixing are that the variance of cross sectional averaged concentration profiles 

increase linearly with time and the skewness remaining from the advective zone reduces slowly until 

a spatially measured profile becomes Gaussian. The final region of mixing where the concentration 

profiles have this shape is known as the Gaussian zone. 
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This theory requires several assumptions to be met. Firstly, as explained above, sufficient time must 

have elapsed from the time of injection. Also, the flow must be steady and the turbulence 

independent of time. Furthermore, the flow cross section must remain constant and the tracer must 

be conservative. 

Taylor (1954) and others (French, 1986; Rutherford, 1994) supply solutions to the Fickian longitudinal 

dispersion model (Equation 12.12)). If U and K are assumed to be constant then the solution for a 

single, instantaneous tracer injection is given by Equation 12.12). 

12.13) 

where M is the mass oftracer injected at location x = 0 at time t = 0, and A = cross sectional area of 

the channel. 

This equation, known as Taylor's solution for longitudinal dispersion, predicts Gaussian spatial 

concentration profiles. It is very unlikely that measured concentration profiles will have an exact 

Gaussian shape, for two reasons. Firstly, laboratory and field measurements are usually restricted to 

temporal concentration profiles where the concentration of the tracer as it passes a fixed site is 

measured with respect to time. Spatial concentration profiles would require the concentration to be 

measured with respect to distance at an instantaneous moment in time. Longitudinal dispersion that 

occurs during the time taken for the tracer cloud to pass the measuring site imparts a skewness onto 

the profile. Secondly, equation 12.13) assumes that the Fickian dispersion model is valid within the 

advective zone, which is not the case. Concentration profiles in this zone are heavily skewed and this 

skewness can remain long into the equilibrium zone (Fischer, 1966). It can take a considerable time 

and reach length for the skewness to decay sufficiently for Taylor's solution to become valid. 

Whilst equation 12.131 is strictly only valid once the asymmetry of a tracer profile has decayed, it is 

still widely used as a longitudinal dispersion model. The application of Taylor's analysis requires that 

a downstream temporal concentration profile can be predicted from a profile measured at an 

upstream site. In many cases, the 'frozen cloud approximation' is used. This assumes that the 

advection in a system dominates the dispersion such that no longitudinal dispersion occurs as a 

tracer cloud passes a measuring site (Fischer, 1968; Rutherford, 1994). Fischer et al (1979) describe 

how the principle of superposition can be used as a means of routing an upstream concentration 

profile. Assuming that each discrete time concentration at the upstream site was an instantaneous 

release of tracer it is possible to predict the downstream profile produced from each individual 

upstream injection. The sum of the predicted downstream concentrations for each upstream 

injection gives the overall downstream temporal concentration distribution (Figure 2.10). The 

concentration profile at the downstream measuring location at time t after the first arrival of the 

tracer at the upstream location is given by 

[ 
2(- - )2] CIO C U U td-tu-t-'V u(t) , 

Cd(t) = exp - _ dy ,L ~4nK(td -to) 4K(td - to) 

12.141 

where tj is the time of passage of the tracer centroid at site i and y is an integration variable. 
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Figure 2.10 ADE routing of multiple discrete inputs representing an upstream temporal concentration 

distribution . 

In order to use equation 12.141 to predict a downstream concentration profile, it is necessary to 

determine a suitable dispers ion coefficient. Taylor (1954) studied turbulent flow in a straight pipe 

and proposed a theoretical relationship to predict the dispersion coefficient value (Equation 12. 151). 

J( = 10.lru · 12.151 

where r is the pipe radius and u· is the shear velocity. given by equation 12.161. 

u· =J{-to/p) 12.161 

where, 0 is the shear stress at the pipe wall and p is the density of the fluid . 

Fischer (1966) provided analysis to show that the dispersion coeffici ent could be estimated if both 

upstream and downstream concentration distributions were available (Equation 12.171) since, at a 

sufficient distance from the tracer injection point, the variance of concentration profiles was shown 

to increase linearly with time. 

12. 171 

where Ii is the time of passage of the centroid of the tracer cloud at location i. This is ca lcul ated as 

( -00 tC i( t) dt 

( -00 Ci(t)dt 

and ift(i) is the temporal variance at site i, g iven by 

2 
cr t(i) = 

( -co (t - ti t Cit t)dt 

( -co Ci(t)dt 

12.181 

12.191 
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One of the main features of data collected from field tests on real rivers, which do not comply with 

the restrictions to Taylor's analysis such as homogeneous turbulence and constant channel shape, is 

that there is a heavily skewed shape to concentration profiles. An obvious feature of many observed 

temporal concentration distributions is a long tail of low concentration at the end of the profile. The 

reason for this is the presence of dead zones, which are areas of the channel cross section where the 

flow is somewhat isolated from the main flow and is re-circulating or is relatively still. These areas 

can be caused by the shape of the channel sides and any obstructions such as vegetation or rocks. 

Also, roughness elements in the channel bed will have spaces around them which retain some of the 

passing flow (Valentine and Wood, 1977). Fischer (1967) noted that physical observations of these 

dead zones showed that a proportion of a tracer cloud passing them was retained and mixed within 

them and was gradually released back to the main flow. The slow release of tracer from the dead 

zone volumes is the cause of the low concentration tail that is measured after the majority of the 

tracer mass. Valentine and Wood (1977) observed that the effect of dead zones on longitudinal 

dispersion was primarily governed by the proportion of the boundary area covered by, and the 

individual depth of, the dead zones. 

2.5.4 Aggregated Dead Zone (ADZ) equation 

Taylor's analysis is unable to provide good approximations of the skewness often observed in 

measured tracer concentration profiles. The skewness is caused by mechanisms in the flow that 

invalidate the Fickian model for dispersion. Dead zones have been highlighted as a major factor in 

the non-Fickian dispersion that is often observed in natural channels. This has led researchers to 

consider other methods for predicting longitudinal dispersion for cases where dead zones are 

present. It is important to consider how dead zone effects have been accommodated into theoretical 

principles and models since a surcharged manhole chamber interrupting pipe flow may be assumed 

to provide a re-circulating storage volume. 

One such development is the Cells-In-Series (CIS) simulation presented in detail by Stefan and 

Demetracopoulos (1981). This is a complete diversion from efforts to modifY and adapt the advection 

dispersion model (Valentine and Wood, 1977), and has a great benefit of simplifYing the complex 

nature of those models into a relatively simple first order differential equation. 

The CIS method of analysis is based on the modelling of reactor tanks, which has commonly been 

employed in the chemical engineering industry. A series of equal volume units, or cells, is used to 

represent the flow reach in question, and complete mixing is said to occur in each cell. Mass 

transport of a conservative tracer through an individual cell is described by 

dC 
V-= M(t)-QC 

dt 
12.201 

where V is the cell volume, C is the tracer concentration within the cell, M(t) is the external mass 

input of tracer to the cell in time t, either from the upstream cell or as a direct input, Q is the flow 

rate Ollt of the cell. 
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The solution for equation 12.201. giving the tracer concentration in the cell any time after an 

instantaneous injection of mass M at time t = 0 is 

12.211 

where t is the discrete time inteIVal and M is the total mass of tracer injected. 

With an impulse input to the first cell of a series of cells. the concentration in the nth cell is given by 

MQn-l t n-l _(Qt) 
C - e V 

(n.t) - yn(n-1)l 

12.221 

Using this theory. Stefan and Demetracopoulos (1981) demonstrate that the centroid. variance and 

skewness of the temporal concentration profiles produced by this equation are all simple functions of 

the number of cells used. Clearly the technique has a great simplicity advantage over the more 

traditional advection dispersion method of analysis for longitudinal dispersion. There is also the 

benefit that the CIS model is applicable for the advective zone of transport. and it requires no extra 

terms to incorporate skewness into the predicted concentration profiles. 

The terms of the CIS model. such as number of cells and effective cell volume. do not necessarily have 

any direct relationship with actual physical features of a reach length. but they can be determined by 

dye tracing experiments. 

A major disadvantage with this approach is the fact that both the advection and dispersion terms of 

the model are dependent upon the number of cells (Rutherford. 1994). This means that it is not 

possible to vary these aspects independently and hence the potential for applying the model is 

restricted. Indeed. Stefan and Demetracopoulos (1981) applied the model to a series of river reaches 

and found that although in general the travel time could be predicted reliably. there was no 

improvement in the quality of the temporal concentration profiles over those generated from the 

advection dispersion equation. 

The concept of a cells-in-series model was extended into a model with improved potential by Beer 

and Young (1983). They highlight the interdependent nature of the CIS coefficients. which becomes 

an extreme problem for situations where the time delay is large compared with the dispersion 

constants. The development is known as the Aggregated Dead Zone (ADZ) model and Beer and Young 

proposed that longitudinal dispersion could be modelled with a combination of a plug flow chamber 

and a completely mixed tank connected in series. The principle behind the ADZ model is simple. 

Whereas the travel time and dispersion of the CIS model are not able to be independently modified. 

the ADZ technique circumvents this problem. The effect of all the dead zones in the particular reach 

are assumed to be modelled by a single dead zone cell i.e. the completely mixed tank. and the 

required plug flow travel time parameter is introduced prior to the input concentration entering the 

dead zone cell by adding a pure advection cell before it. 

Both simulated tanks have a residence time associated with them. reach time delay. T, for the plug 

flow and residence time, T, for the completely mixed tank. The travel time, i, through the entire 

system, or ADZ cell, is then the sum of these residence times and is equivalent to the average time a 
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particle resides in the system. 

The ADZ model mass balance equation is 

dC(d,t) _ ,!(C _ C ) 
dt - T (u.t-t) (d.t) 

12.23) 

where T, the dead zone residence time, is equal to V.JQ, with V" being the effective dead zone volume. 

The solution for an instantaneous injection of mass M at time t = 0 is 

12.24) 

which is valid for any time where t > T. 

It is important for the applicability of the model that it can be discretised with respect to time, since 

almost all field and laboratory investigations oflongitudinal dispersion are performed on the basis of 

concentration samples at regular time intervals. The discrete form of the ADZ equation is 

where = 

a = 
T = 
t = 
t = 
e = I 

0 = 

12.25) 

tracer concentration at position i at time t, where i = u or d represents the 

upstream and downstream measurement locations respectively. 

-J -:t) 
residence time, t - t 

- -
travel time, td -tu 

time delay, td - t ~ 

time of first arrival of tracer at location i 

the discrete time equivalent of the time delay, t (which is equal to the 

nearest integer value of tiM) 

i\t = the time step or sampling interval 

The transport of a single, instantaneous input of tracer into the ADZ cell is represented in Figure 

2.11. This shows how the model applies the combined effects of advection and exponential decay to 

the injection of tracer to determine the downstream profile. 
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Figure 2.11 ADZ routing of a single. instantaneous tracer injection. 

The ADZ equation 12.25) is applied to actual data by using a discrete time representation of the 

measured concentration profile. In this way. each discrete time concentration value is transported 

downstream in the manner of Figure 2.11. In this situation. however. each previolls discrete time 

value of concentration at the downstream location will continue to decay exponentially. Therefore. 

the downstream concentration profile prediction is generated from the sum of the tracer advected 

from upstream and the decaying concentration at the previous downstream time step (Figure 2.12). 

Upstream 
measured 
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Figure 2.12 ADZ routing of multiple discrete inputs representing an upstream temporal concentration 

distribution. 

The success and potential that the work of Beer and Young displayed with the ADZ model encouraged 

continuing development of the work. Researchers sllch as Wallis et al (1989a) have attempted to 

connect the physical characteristics of a river reach and the ADZ model parameters. This has been 

done by conducting river dye tracing experiments for different short river reaches over a range of 

discharge conditions. TIle choice of short (1 00-150m) reach lengths has allowed study ofthe simplest 

first order ADZ model. which can be developed further by considering higher orders of model if it is 

deemed better for longer reach lengths. 

As explained by Wallis et al (1989a) dead zones have been considered as volumes usually located at 

the edges of a flow which the main discharge passes by but where some form of mixing takes place. 

Solute in the main body of the flow may encoLinter a dead zone and enter it. mixing with the volume 

the dead zone contains and only be released back to the main flow gradually after a period of time. 

The concept of pipe flow encountering a surcharged manhole chamber clearly fits with this image. 
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but as highlighted by the authors it is not so simple to make the comparison for river reaches. 

Although in a river there will often be dead zone regions in the bed and sides of the channel there are 

also considerable other mixing phenomena, such as eddies, wakes behind large roughness elements 

and reverse flows which could occur at bends or similar channel irregularities. It is therefore 

important to understand that the term dead zone used in an ADZ model represents the summation of 

all the various mixing effects even though there are differences in time and length scales. In this way 

all the dispersive effects are lumped together and represented by a single parameter, which gives the 

term lumped parameter model. This is the crucial assumption of the ADZ model (Wallis et al. 1989a). 

The aggregated effect of all the dispersive processes in a reach must be capable of being described by 

a single dead zone equation using an effective dead zone volume. This assumption is only justified so 

far by the practical results offield tests using dye trace experiments. 

With longer reach lengths, where the channel or flow conditions are greatly variable between 

different portions of the total reach length, it is likely that a series of individual ADZ elements may be 

required. Indeed, there are possibilities for ADZ elements to be used in combinations of series and 

parallel. 

The first order ADZ model equation (equation 12.251) can be written in the form 

Cd,t = -aCd,t-l + bCu ,t-1l 12.261 

The development of this equation to allow higher order models to be applied uses a backward shift 

operator introduced by Beer and Young (1983). 

12.271 

Where Z-p is the backward shift operator. Applying this to the first order model described by 

equation 12.261 gives 

12.281 

12.291 

12.301 

The equation above can be generalised in the form 

12.311 

where 

12.321 

12.331 
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Applying second order A(Z-I) and B(Z-I) polynomials to the generalised ADZ equation (Equation 12.31 J) 

gives 

12.34) 

12.35) 

12.36) 

which leads to the second order ADZ equation 

12.37) 

Young and Wallis (1986) and Wallis et al (1989a) discuss the calibration of the ADZ model with data 

from four small rivers in north-west England. This has been done by examining upstream and 

downstream temporal concentration profiles and statistically examining these to determine the most 

appropriate model order and time delay and then estimating the remaining parameters. Repeating 

the analysis for different time delays and model orders allows the best fit coefficients to be obtained, 

using a normalised measure ofthe model fit, R/, described by Young et al (1980). 

)2.38) 

R~ = 1 - ..!ct-=-lL-__ _ 
n 

LC~ 
t=l 

where Ct and Pt are the measured and predicted data values at time t. By this definition, a prediction 

with an exact fit to the measured downstream data would give a value of unity for R/. 

When applying their method to actual river data, Wallis et al (1989a) compare the quality of fit 

between the measured downstream data and ADZ predictions made from different order models. 

Their results show that although the simplest first order models gave adequate longitudinal 

dispersion predictions, higher order models produced better descriptions of the data. However, it was 

noted that the parameters for higher order models were less well defined. 

For two of the four test reaches, a second order ADZ model, which factorises into two parallel first 

order cells gave an extremely good fit to the data including the long tail effect. The assumption made 

is that one ADZ element represents a slow moving layer near the bed whilst the other element 

simulates a faster moving layer of the flow in the remaining channel volume. This is supported by the 

physical bed configuration of these two channels, which consisted of cobbles and hence perhaps 

explains the presence of an ADZ element with a larger residence time. Third order or greater models 

were identified as being over parameterised and were rejected for the field data in question on this 

basis. 
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Young and Wallis (1986) and Wallis et al(1989a) discuss the concept of the dispersive fraction, y. This 

is the ratio of residence time to travel time (Equation [2.39)). 

T 
Y=-=: 

t 
[2.39) 

This value is a measure of the length of time a solute is being dispersed as a proportion of the total 

time spent in the reach by the solute, and hence is also a measure of the proportion of the total reach 

volume that is dispersing the solute. Although the authors point out that the relationship between 

the dispersive fraction and actual physical reach characteristics remains unclear, it appears from the 

results that any particular reach can be expected to have an almost constant dispersive fraction 

regardless of the discharge. This relationship has potential, since it implies that if the dispersive 

fraction is established for a reach by a single dye trace experiment, and a relationship between 

discharge and travel time is known or estimated from channel hydraulics, then the ADZ model can be 

calibrated for all discharge rates. The value for the dispersive fraction was found to be consistently 

lower for smooth constructed channels when compared to results from natural river reaches. As yet, a 

technique for predicting the dispersive fraction of a particular river or channel by examining the 

geometry alone is not available. However, with the more simple dead zone geometry of a surcharged 

manhole there is perhaps a greater possibility of relating the dispersive fraction to the physical 

features. 

Wallis et al (1989b) examined upstream and downstream temporal concentration profiles of a dye 

tracer collected over a 20 metre reach in a rectangular laboratory flume operated at a series of flow 

rates. From the profiles, values for the travel time and time delay were determined, and hence the 

residence time and dispersive fraction could be calculated. Plotting these variables against discharge 

and fitting both power and inverse law relationships to the results showed that either relationship 

gave a high quality fit to the data. The plot for dispersive fraction suggested that there was a slight 

tendency for the dispersive fraction to decrease with discharge. With their earlier work, Wallis et al 

(1989a) concluded that for field tests in small river reaches the dispersive fraction was independent of 

discharge. 

As with the application of other models, the ADZ method requires calibration for the reach 

concerned. The high quality of fit of the model parameters to a relationship with discharge means 

that only a few tracer experiments would be required to calibrate the model over a wide discharge 

range with confidence. This is all that is required for first order model predictions and if these are 

deemed adequate there is no need to consider more complex model orders. If an improved fit is 

required then the authors WalIis et al (1989b) recommend that the time delay and residence time 

values should be halved and applied to two identical first order models positioned in series. It is 

possible to continue extending this to further higher orders of model but as discussed earlier WalIis 

et al (1989a) found no justification for models above third order. The longitudinal dispersion 

predictions can then be made for the reach using the model order identified as most suitable. 

Wallis et al (1989b) highlight three possible reasons for limitations with the downstream 

concentration predictions using this technique. Firstly that this method of applying the model 

involves no optimisation to achieve best fit criteria. Secondly the discrete time version of the ADZ 

equation can only ever be an approximation of the original differential equation and finally there will 

be some experimental error in the derived parameters for the model. 
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2.6 Longitudinal dispersion in manholes 

Detailed examination of the longitudinal dispersion of solutes due to manholes in urban drainage 

networks began with the work of Guymer and O'Brien (1995). Their study was aimed at quantifying 

the contribution that surcharged manhole chambers made in the overall dispersion within a sewer 

and to provide this information in a format that could be employed by sewer modelling software 

designers. Further investigations by Guymer et al (1996, 1998), Guymer and O'Brien (2000) and 

O'Brien (2000) analysed laboratory data with both the advection dispersion equation and with the 

aggregated dead zone model. 

The original work of Guymer and O'Brien (1995) formulated the basic laboratory apparatus 

arrangement and the measurement instrumentation. A circular, unbenched 390mm internal diameter 

manhole was positioned between 2.6 metre lengths of 88mm internal diameter clear perspex pipe. 

Flow was provided from a constant head tank through a control valve, and was measured with a V­

notch weir. The level of surcharge in the manhole could be varied by means of an adjustable weir at 

the downstream end of the system. Small quantities of Rhodamine WT dye were injected into the 

flow well upstream of the manhole and its concentration was measured either side of the manhole. 

To do this fluorometers were modified so that the flow through measuring volume became the entire 

88mm diameter delivery pipe as opposed to the usual 12mm diameter arrangement. Importantly this 

technique was non-intrusive and so there was no disruption to the flow patterns, although it requires 

the assumption that the tracer is cross-sectionally well mixed at both locations. 

Although the configuration of a pipe and surcharged manhole combination does not conform to the 

requirements for Taylor's (1954) analysis to be applied, the widespread use of the advection 

dispersion equation with river reaches and in urban drainage software led Guymer and O'Brien to 

apply it for the manhole arrangement. The tracer measurements gave upstream and downstream 

temporal concentration profiles from which the travel time and dispersion coefficient were obtained. 

Their results show that over the range of tests covered the surcharge appears to have a relatively 

small effect on the solute mean travel time compared with the discharge. By assuming that variations 

in surcharge had no effect on the travel time for a particular discharge a relationship between the 

surcharge mean travel time and the discharge could be formulated. This showed that the delay effect 

caused by the manhole in comparison to that of a straight pipe was greater at higher discharges. 

Guymer and O'Brien (1995) concluded that structures such as manholes have significant effects on the 

longitudinal dispersion. TIley highlight the fact that this conventional method of modelling the 

dispersion may not be fully justified with a surcharged manhole, but tentatively suggest that 

predictions for the geometry considered could be made. With further work they proposed that it 

would be possible to incorporate the mixing and retention effects of manholes into numerical 

modelling schemes. 

Guymer et al (1996) rejected the advection dispersion equation in favour of the aggregated dead zone 

model proposed by Beer and Young (1983). The pronounced skewness, which is a feature of the 

concentration profiles from this work, and the fact that visual observation showed the manhole to 

act as a storage volume justified trying an ADZ approach. In their work Guymer et al (1996) used a 

similar laboratory system to the earlier work, although this time with a 357mm internal diameter 

benched manhole and with 100mm internal diameter pipework. 
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Difficulties were encountered in establishing the precise start and end points of the recorded 

temporal concentration profiles once the background level had been removed. This was due to noise 

generated by the fluorometers as the data was recorded. The method adopted for extracting the 

profile worked away from the peak concentration and cut the profile at the first data point value to 

be less than the best fit background concentration. As pointed out by the authors this defined a start 

time which was invariably too late and also truncated the tail at the end of the distribution. 

Furthermore the exaggerated cut off had a greater effect on the downstream distribution since this 

regularly contained a long low concentration tail. It was a simple method, however, and allowed a 

provisional study of the effectiveness ofthe ADZ technique in these circumstances. 

Once determined, the upstream and downstream temporal concentration profiles were examined to 

find the travel time and time delay coefficients. They presented the manhole travel time by 

subtracting the theoretical pipe length travel time estimated from continuity. The residence time for 

the ADZ model incorporates the mixing of the solute, but the contribution on mixing of the short 

pipe lengths was unknown, so the data was presented as total spread, Ts' of the solute due to both 

the manhole and the pipe lengths. As with Guymer and O'Brien (1995), this work suggested that the 

travel time was independent of surcharge for the range considered. Although researchers 

investigating manhole head loss coefficients (Howarth and Saul, 1984; Johnston and Volker, 1990) 

observed differing circulation regimes, Guymer et al (1996) claimed that these had little effect on the 

mixing and so proposed that a solute introduced into the flow does not become fully mixed with the 

manhole. They felt that the circulation cells and flow structure formed within the manhole may 

prevent the tracer reaching all parts of the surcharged volume. This could not be confirmed by the 

authors without analysis ofthe internal flows in the chamber. 

As a method of simplifying their results to make them more accessible for practical applications, 

Guymer et al (1996) considered the travel time as a multiple of the travel time for equivalent pipe 

lengths. Hence the travel time for the manhole was divided by the theoretical travel time for a pipe of 

the same diameter as the supply pipes and of a length equal to the manhole diameter. The 

equivalence factor was found to be reasonably constant and in the region of ten pipe lengths, 

establishing the significance of surcharged manholes on the travel time of soluble pollutants through 

sewer systems. This is especially so considering that the requirements for the provision of manholes 

ensure that they are numerous. 

The variation of total spread of the solute showed more variation with surcharge than the travel time 

results, and no clear trends. It was difficult for any conclusions to be drawn, but the final 

presentation of results given by the authors averaged the total spread across the surcharge range. An 

ADZ prediction of a downstream concentration profile made using the surcharge mean travel time 

and total spread values had quite good agreement with measured results. The peak concentration 

and the profile shape were well predicted hut advection was slightly overestimated. 

Guymer et al (1998) continued the manhole mixing research by attempting to fill in some remaining 

gaps in the knowledge gained from previous work. There were three new aspects to their work, which 

considered visualisation of flow structures within the manhole, travel times and dispersion for cases 

where the manhole was free flowing rather than surcharged and a brief examination of the 

application of the advection dispersion model for manholes in sewer modelling software. 

For the purposes of flow visualisation, a similar laboratory system to previous arrangements used at 

the University of Sheffield was equipped with a Laser Induced Fluorescence (UF) facility developed by 
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Guymer and Harry (1996). A rapid scanning laser light beam was positioned to form a narrow vertical 

sheet of light along the centre line of the manhole parallel with the primary flow direction (Figure 

2.13). Any fluorescent dye present in the two dimensional light plane emits light with an intensity 

proportional to the concentration. 

Vertical Iightsheet 

z () 

Mirror 

Camera 

j 

F 
Light sheet 
generator 

Figure 2.13 Arrangement for laser induced fluorescence experiments. 

The technique was originally planned as a non-intrusive method for determining the longitudinal 

dispersion, with the ability to determine tracer concentrations spatially and temporally throughout 

the manhole. Calibration tests, however, proved that the laser used was not powerful enough for 

quantitative measurements of concentration but the UF work did prove useful for providing a 

preliminary qualitative analysis of flow structures within the manhole. A series of images presented 

by Cuymer et al (1998) show an injection of dye passing through the manhole (Figure 2.14). In this 

case the flow was 0.9 litres per second and the surcharge was 200mm. The retention of tracer in the 

surcharged volume for a considerable period of time after the majority of tracer cloud mass has 

passed, and the gradual release of the tracer from this volume is obvious. 

The images show how the dye entering with the flow from the left hand side becomes mixed on the 

plane of the manhole centre line. Eddies associated with the jet diffusion region (Abertson et aI, 

1950) can be observed entraining tracer into the surcharge volume and later re-entraining quantities 

into the flow exiting the manhole. The re-circulation pattern can be seen in Figure 2.14b where a 

central region of low dye concentration is present. Furthermore, Figure 2.14c clearly demonstrates 

how the incoming jet of water is compressed slightly upon entry into the manhole chamber by the re­

circulation of water pressing from above. 
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Fig ure 2.14a After 2 seconds Figure 2.14b After 28 seconds 

Figure 2.14c After 38 seconds Figure 2.14d After 67 seconds 

Figure 2.14 Variation in solute concentration within manhole with time. (Q = 0.91/s. Surcharge = 
200mm). Guymer et al (1998). 
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The experimental study comparing surcharged and unsurcharged flow and the effect of benching was 

conducted using a very fine sediment as the tracer. Not only does fine sediment behave in a similar 

manner to solutes in the flow. it is also important to bear in mind that many sewer pollutants are 

attached to fine sediments. In this case a ground olive stone material was used. and the 

concentration was detected using nephelometers fitted into the pipe lengths upstream and 

downstream of the manhole to detect the turbidity of the passing flow. As before. the authors 

encountered problems in distinguishing the start and end points of the temporal sediment 

concentration profiles. For this work a slightly more complex statistical method was employed with 

the aim or retaining better consistency between tests . The authors chose to pursue the advection 

dispersion method of analysing the data since this is the theory used for pollution transport in the 

MOUSE sewer modelling software (Garsda l et al, 1995). Unsurcharged flow was found to calise less 

dispersion and a reduction in travel time whi lst benching was shown to have a significant effect in 

reducing these values . 

In their discussion of numerical modelling for sewer manholes. Guymer et al (1998) highlight how the 

assumption of instantaneous full mixing at surcharged manholes. as currently made in the quality 

model MOUSETRAP. overestimates the degree of mixing that occurs. The effect of representing a 

surcharged manhole as a completely mixed tank is shown by the data in Figure 2.15. A proposed 

method of dealing with this is to reduce the dispersion coefficient that is applied to neighbouring 

pipe lengths. This technique was successfully applied to a MOUSETRAP model for the city of Ljubljana 

in Slovenia (Mark et al, 1996). However. they advocate that a better method is perhaps to develop the 

ADZ theory in combination with jet theory (Bo Pedersen and Mark. 1990) to g ive a more accurate 

description of the actual manhole mixing. 
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Figure 2.15 Comparison oflongitudinal dispersion prediction from MOUSETRAP and laboratory data 

(diameter = 400mm, Q = 1.981/s) (Guymer et al, 1998). 

A development in obtaining longitudinal dispersion coefficients for manholes is the use of 

optimisation techniques. A simple optimisation approach for the advection dispersion equation was 

described by French (1986) and similar methods have also been applied to ADZ models (Wallis et al, 
1989a; Antonopoulos, 1997). French gives several methods for determining a dispersion coefficient 

for temporal concentration data from a river reach. One of these suggests choosing a trial value for 

the dispersion coefficient and using this in combination with the advection dispersion equation 

(Equation 12.141) to produce a downstream concentration prediction from the upstream data. A 

measure of the quality of fit to the actual downstream data is obtained by computing the mean 

squared concentration difference between the predicted and measured profiles. Trying other values 

for the dispersion coefficient determines whether there is a value that gives the best fit. This value is 

than taken as the dispersion coefficient for that particular set of data. 

Antonopoulos (1997) analysed an extensive set of data obtained from fluorescent dye tracer 

laboratory experiments with a SOOmm internal diameter unbenched manhole. The standard ADZ 

coefficients of travel time and reach time delay for the flow between the fluorometer locations were 

obtained in the usual fashion from the temporal concentration distributions. The author pinpointed 

some of the failings of the output produced using these standard coefficients. There was a tendency 

for over-prediction of the advection and dispersion, and hence the predicted curve appeared later on 

the timescale than the measured data, had a smaller peak concentration value, showed less skewness 

and was without the long tail present in the actual data profiles. One of the reasons put forward for 

this by Antonopoulos (1997) was that although Guymer et al (1996) obtained adequate ADZ 

predictions for surcharged manholes it may be that the dead lOne aggregation involved with 

complex river reaches gives better results with a straightforward application of the ADZ model than 

the less complex geometry of a manhole and pipe configuration. Antonopoulos (1997) gives full 

details of optimisation procedure conducted for the ADZ analysis of the data, similar in principle to 

the recommendations of French (1986). A measurement of the goodness of fit was defined using a 

root mean square error parameter, which was a minimum for the closest match between actual and 

predicted profiles. For a given value of time delay, a Newton Raphson approach revealed the 

minimum error as a function solely of residence time. It was demonstrated that for any particular 

time delay value, there was a unique residence time giving the minimum error and hence the best fit 

to the observed data. Repeating this process for the range of possible time delay values, from zero to 
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the time between the first upstream arrival and the final downstream arrival, revealed the pair of ADZ 

parameters which best optimised the model to the recorded data. The remarkable improvement in 

the ability of the optimised ADZ predictions to describe the longitudinal dispersion was evident, and 

the author suggested that this optimisation procedure had great further potential. Depending upon 

the practical application of the optimised ADZ model, it would be possible to create a more complex 

best fit coefficient that was weighted towards factors such as peak concentration, peak arrival time. 

first arrival time and accuracy of tail prediction. 

Dennis et al (1999) incorporated similar optimisation procedures to Antonopoulos (1997) into a 

FORTRAN computer program. An optimised ADZ model was used to examine the effect of a step 

height between the inlet and outlet pipe levels on the travel time of solutes passing through a 

surcharged manhole. The optimisation procedure used a matrix based system to optimise both the 

travel time and the time delay coefficients simultaneously. It was dearly demonstrated that for a 

particular data set there was only a single coupling of the coefficients that gave a downstream 

prediction with the very best fit to the measured data. Dennis et al (1999) give an example of how the 

optimisation method produces a predicted profile that accurately reflects the peak concentration and 

its arrival time. For the purposes of urban drainage design and operation it is deemed that this is the 

most crucial aspect of the trace and it is more important to model this accurately than the low 

concentration tail effects. The step height of one pipe diameter in the manhole geometry was 

demonstrated to cause an increase of approximately 100 percent in the travel time for the system. 

whilst actually reducing the reach time delay slightly. 

2.7 Computational fluid dynamics 

2.7.1 Introduction 

Computational Fluid Dynamics (CFD) is becoming a widely used technique for research and industrial 

applications associated with fluid flow. It offers a different approach to the investigation offluid flow 

from that of physical modelling, and as such it has several advantages. Developments in computer 

power and the software itself bring increasingly complex geometries and flow regimes within the 

scope of detailed CFD analysis. The main advantage of employing CFD techniques is that, once 

calibrated, a model can be used to examine the effects of changes in geometry without the need for 

the reconstruction of a laboratory model, which may prove time consuming and expensive. Thus it 

can be applied as a decision making tool for considering design options. Furthermore, a flow 

problem analysed by means of a numerical model calculates a very complete data set over the control 

volume so values for variables such as velocity and pressure can be obtained for all locations within 

the computational domain. 

In the case of longitudinal dispersion due to surcharged manholes, the advantages of a CFD approach 

could be exploited. For instance, once a solution was obtained for a particular manhole 

configuration, velocities and pressure details for other arrangements could be obtained with relative 

ease. Many CFD packages are also capable of modelling two species of fluid within the same flow, for 

example water and a soluble tracer. In this way the process could be used as a means of identifYing 

critical factors causing longitudinal dispersion as flow passes through a surcharged manhole. 

Furthermore, the CFD solutions offer an interpretation of the flow mechanisms within the manhole, 

which would assist the interpretation oflaboratory results. 
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2.7.2 Governing equations of fluid dynamics 

CFD packages use the governing equations of fluid dynamics and incorporate special techniques for 

the description of turbulent flow conditions. For three dimensional incompressible flow the following 

equations can be applied. 

Conservation of mass is given by the continuity equation 

12.401 

and conservation of momentum in the x direction is given by 

12.411 

with similar equations for y and z flow directions (often collectively referred to as the Navier-Stokes 

equations). 

Where Uj is the instantaneous velocity component in the i direction, p is the density, P is the 

instantaneous static pressure, U is the kinematic viscosity and gj is the acceleration due to gravity in 

the i direction. These equations are derived from first principles in many fluid dynamics text books, 

an example derivation being provided by Anderson (1995). 

At present there is no numerical procedure to solve these equations directly for turbulent flow 

conditions. Therefore the statistical technique of Reynolds averaging is applied to modify the 

equations and allow modelling of turbulent conditions, which are more likely to be encountered in 

practice. As an example of this, consider the instantaneous fluid velocity in the x direction, which is 

separated into a temporal mean velocity, represented by an overbar, and a temporally fluctuating 

component, marked with a prime (Figure 2.9 and Equation (2.421) 

U x =Ux +u~ 12.421 

where the mean component is defined by 

12.431 

with t2 • tl being long in comparison with the time scale for the turbulent fluctuations. 

The fluctuating component of equation (2.431 is defined such that 

U~ =0 12.441 

The same Reynold's averaging principle applies to other flow directions and to the instantaneous 

value of pressure in all directions. Substituting these time averaged varaibles into the fluid flow 
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equations (Equation [2.401 and [2.411) produces 

a;: aUy au z --+--+--=0 ax ay az 
(2.45( 

and for the x direction Navier-Stokes equation 

aux -a~ -a~ -a~ 1 oj) 0 ( a;: --) --+u --+u --+u --=---+g +- u---u' u' + at x ax y ay Z oz pax x ax ax x y 
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The averaging process introduces into the equation correlations between the velocity fluctuations 

(u ~ u ~ and similar) that are unknown (Rodi, 1984). They represent the transport of momentum that is 

attributable to the fluctuating fluid velocity. When multiplied by the density these correlations are 

defined as stresses acting on the fluid, which gives them the name Reynold's stresses. 

There are more unknowns over three flow directions than there are equations, which leads to the 

necessity to obtain a mathematical description of the Reynolds stress values. Different techniques are 

available to overcome this difficulty, which is known as the "closure problem". Two of the most 

common methods are described in the following sections. 

2.7.3 The k-& model 

The k-e turbulence model is described in detail by Rodi (1984). The closure problem is solved by 

employing the Boussinesq hypothesis for eddy viscosity where the Reynolds stresses are assumed to 

be proportional to the mean velocity gradients. The constant of proportionality is termed the 

turbulent, or eddy, viscosity, J.It. This theory was founded on the concept of considering the volume of 

fluid in a turbulent eddy to behave in an analogous manner to molecules, which collide and exchange 

momentum. The molecular viscosity is proportional to the average velocity and mean free path of the 

molecules. Similarly, the eddy viscosity is said to be proportional to a velocity representing the 

fluctuating motion and the length of this motion, termed the mixing length. Whilst the molecular 

viscosity is a fluid property, the turbulent viscosity depends on the local turbulence and thus may 

vary considerably over different locations within the flow. Therefore, whilst the closure problem has 

been solved, it is necessary to determine the turbulent viscosity at particular locations. This is done 

within the model by means of two parameters, k, the turbulent kinetic energy, and e' the dissipation 

rate of k. These are used to calculate the velocity and length scales from which, in turn, the turbulent 

viscosity is computed (Fluent, 1993). 

2.7.4 The Reynolds Stress Model (RSM) 

The k-e model employs an isotropic description of the turbulence to determine the Reynolds stresses. 

This assumes that the turbulence velocity and length scales are equal in all directions. In more 

complex flows, and especially where there is a tendency for high degrees of swirling, it is likely that 

there will be significant variations in the velocity and length scales in different directions. This makes 

the k-e model inappropriate and an alternative option is the Reynolds Stress Model (RSM), which 

calculates individual values for the Reynolds stresses. Although this model is capable of providing a 
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more accurate prediction of complex and swirling flows, the disadvantage is an increase in 

computation time required to reach a solution. 

2.7.5 Previous related use ofCFD 

Rodi (1984) demonstrated that the k-e turbulence model was capable of describing the velocity 

features of jets. Turbulent jets have been examined with computational fluid dynamics by Dimenna 

and Lee (1996) and also Ali and Othman (1997), who considered jet-forced water circulation in 

reservoirs. This work has provided an insight into the ability of CFD software to model re-circulating 

flow regimes and jet flows. In most cases the authors achieved good agreement for the velocity 

profiles between the models and laboratory data. Dimenna and Lee (1996) found that the results were 

particularly sensitive to the computational mesh. Ali and Othman (1997) used two dimensional 

numerical models, which gave depth averaged results. This resulted in good agreement with uniform 

shape laboratory scale reservoirs. However, when extended to models of more realistically profiled 

reservoir shapes the CFD model had less agreement with the measured circulations. This was 

attributed to the fact that a 5:1 vertical exaggeration was used for the laboratory scale model. They 

concluded that CFD was a useful method of examining the jet-forced circulations in reservoirs, but 

that for the more complex geometries further verification with undistorted physical models was 

required. 

Harwood and Saul (1996) used the Fluent CFD software package to assist in the design of a new 

combined sewer overflow. A full-scale laboratory model of an hydrodynamic separator was tested 

with a simple particle imaging system to calibrate the flow fields at several locations within the 

chamber. A hydrodynamic separator CSO structure is designed to induce extensive swirling of the 

flow within. The demonstrated ability of the CFD package Fluent to model these flows with good 

agreement suggests it also has potential as a tool for examining the flow structures and re­

circulations within a surcharged manhole. 

Asztely and Lyngfelt (1996) used a numerical model in a preliminary feasibility study to determine 

whether a three dimensional numerical model could be used to calculate the head loss coefficients 

for surcharged manholes. A series of assumptions were made in establishing the model. The inlet 

conditions were determined by using the outlet conditions of a separate model of a straight pipe, 60 

pipe diameters in length. A circular half pipe benched manhole was modelled including short 

sections of pipe on either side of the chamber itself. Although free surface modelling is possible with 

some numerical models it adds extra complications to the solution process, and in most cases is 

probably unnecessary for steady flow conditions. Asztely and Lyngfelt (1996) chose to fix the free 

surface at a specified level, effectively using a wall condition to seal the surface, but unlike the other 

boundary walls the perpendicular velocity was set to zero and the tangential velocity components 

had frictionless conditions applied to them. This requires that the free surface has little influence on 

the energy loss, which may not be the case at low surcharges and high flow rates when the surface is 

highly turbulent. A further step to reduce the computational domain of the model was to use a plane 

of symmetry along the manhole centre line parallel with the main flow direction. In a similar fashion 

to the fixed surface, this boundary is given frictionless conditions. However, this method restricts the 

applicability of the model to symmetrical flow conditions. With the seiching and swirling flows noted 

by researchers using laboratory manhole studies, this may be a rather restrictive assumption as was 

confirmed by the authors when comparing their predicted head loss with the experimental work of 

Lindvall (1984). 
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The simulations completed discovered that pipe lengths of approximately 10 pipe diameters 

upstream and 20 pipe diameters downstream were required to achieve pipe flow at these extremes 

that was not influenced by flow disturbance from the manhole. Three water levels of 3.6, 4.6 and 5.6 

times the pipe diameter and two manhole diameters of 2.6 and 4.1 pipe diameters were examined. A 

single flow rate giving a Reynolds number of 2.4 x 105 was used. The work highlighted an interesting 

feature of the pressure measured along the centreline of the pipes, which was an additional drop in 

the pressure immediately prior to the manhole inlet. This has not been noted by any laboratory 

researchers and is not included in theoretical approaches. It was explained as a result of the increase 

in flow velocity in this section of pipe, which in turn is caused by the re-circulation in the manhole 

compressing the flow area at the inlet. 

Head loss coefficients were compared with the laboratory results of Lindvall (1984) and found to give 

good agreement in the region where the flow depth to pipe diameter ratio was between 2.5 and 6.0. 

Below this value, where Lindvall had obtained greatly increased coefficients, the CFD compared less 

favourably. This was attributed to the failure of the CFD model to successfully simulate the non­

symmetric and swirling flow patterns that were a feature of the higher head loss flows. Asztely and 

Lyngfelt (1996) concluded that the use of CFD technology was valid for examining flow structures 

within manholes. Reliable simulation results could be obtained with their model for symmetrical flow 

regimes with little influence from the free surface. 

2.8 Summary 

Manhole chambers are extensively located throughout urban drainage networks to provide a means 

of sewer access for inspection and maintenance. A wide variety of geometrical variations have been 

examined in laboratory investigations to determine the head loss caused by a manhole under 

surcharged conditions. The head loss is regarded as being proportional to the velocity head, v2/2g, 

with the constant of proportionality being termed the head loss coefficient, KH• The value of this 

coefficient has been shown to vary with factors such as manhole to pipe size ratio, surcharge level, 

benching arrangement and step height. 

Urban drainage modelling and real time control operation are becoming more widespread as 

understanding of sewer quality processes improves. In addition, developments in computing power 

and modelling techniques are resulting in better predictions of pollution transport through sewers. 

This brings benefits by allowing better management and operation of sewer networks to reduce 

pollution spills into watercourses during storm flow. 

Longitudinal dispersion is the process by which a tracer spreads whilst being transported by a flow. 

The advection dispersion model and the aggregated dead zone equation are two models by which the 

effects of this phenomenon can be predicted in a reach length. These have been applied by 

researchers in an effort to quantifY the longitudinal dispersion due to surcharged manholes. 
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Chapter 3 

Experimental Procedures 

3.1 Introduction 

The longitudinal dispersion due to surcharged manholes was determined by means of a series of 

laboratory experiments. Important aspects of the mixing that were specifically investigated were the 

determination of the effects of extreme high surcharges and of step heights between the inlet and 

outlet pipes. In addition, visual analysis of the flow mechanisms within the manhole was undertaken. 

Measurements ofthe head loss caused by the manhole structure were also obtained. 

Previous work relating to longitudinal dispersion in manholes undertaken by Guymer and O'Brien 

(1995, 2000), Guymer et al (1996, 1998) and O'Brien (2000) was completed to surcharges of 

approximately 300mm. nle results presented from these experiments revealed trends that were not 

fully defined over this surcharge range. The addition of step heights between the upstream and 

downstream pipes at the manhole was felt to add to the necessity of examining high surcharge levels. 

Ultimately, the maximum surcharges possible were restricted by the size of the laboratory to 

approximately 1250mm, equivalent to over 14 pipe diameters above the downstream pipe soffit. 

Although surcharges as high as those considered for these experiments may be uncommon, it was felt 

to be important to ensure that results were extended to a limiting surcharge level. 

Differences in the elevation of sewer pipes at manholes are a common occurrence since sewer pipe 

levels and gradients are dictated by hydraulic, economic and ground topology considerations 

(Bartlett, 1970). The maximum step height that was considered within the laboratory test schedule 

was two times greater than the pipe diameter. This was similar to previous studies examining head 

loss. For step heights greater than approximately 600mm, regardless of pipe diameter, a back drop 

manhole is required to avoid sewer flow splashing unnecessarily within the chamber. Therefore the 

laboratory tests encompass the step height to pipe diameter ratios expected for sewer pipes of 

diameter 300mm or greater. 

Experimental work utilising soluble tracer measuring devices positioned either side of the manhole 

was only capable of providing measurements of the effects of the flow conditions within the 

manhole. The use of laser Iightsheet technology allowed a study of these actual conditions inside the 

chamber and provided further information for the interpretation ofthe other laboratory data. 

3.2 Laboratory system 

3.2.1 General arrangement 

A laboratory system (Figure 3.1) was constructed for the purpose of examining longitudinal 

dispersion due to surcharged manholes. The apparatus consisted of a re-circulating water supply that 

was pumped from a storage sump to a constant head tank and gravity fed through the test apparatus 
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before returning to the sump. The manhole that was used throughout the course of this research was 

a 388mm internal diameter circular design, and is fully described in the following section . The 

upstream supply pipe was over 20 metres in length, with a straight section immediately prior to the 

manhole 3.0 metres long. The downstream straight section after the manhole was 2.7 metres long. 

The delivery pipes, representing the sewer pipes, were constructed from 88mm internal diameter 

perspex and the upstream and downstream pipework was set at a zero slope. A valve attached to the 

upstream delivery pipe controlled flow rates through the manhole of between 0.0 and 8.0 litres per 

second. Flow rates were monitored by means of a 30° V-notch weir located upstream of the sump. 

The calibration equation for the weir is given below (Equation [3.1)). 

Q = .!..Cd tan(!) H5/2 fii 
15 2 

13.11 

where Cd is the coefficient of discharge, in this case 0.597, () is the V-notch angle and H is the head of 

water over the weir. 

The header tank was kept at a constant head by a pump that delivered water from the sump and a 

bell mouth overflow positioned within the header tank returned the overspill to the sump. Positioned 

at the end of the exit pipe from the manhole was a surcharge control system. This consisted of a 

cylindrical tower of diameter 600mm, within which there was a height adjustable circular weir. This 

device was used to alter the water surface level in the manhole at any given flow rate. 
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Figure 3.1 Schematic arrangement of laboratory apparatus. 

3.2.2 Manhole details 

Variable height 
overflow weir 

Outlet 

The manhole used for the experiments was a 388mm internal diameter circular manhole constructed 

from clear perspex. The surcharge height to be tested was varied by means of the weir within the 

surcharge control tower. This weir had a metal support pole that was drilled at 100mm intervals . 

TIlese holes allowed a metal pin to be inserted to fix the surcharge control weir at regular and 

repeatable heights. A maximum water depth of approximately 1300mm was avai lable, giving a safety 

freeboard of 200mm from the top of the manhole. 
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The upstream and downstream pipes were aligned longi tudinally and in the zero step height 

configuration the pipe inverts were set level with the base of the manhole chamber. An aluminium 

plate that was used to connect the pipes to the manhole could be adapted to allow the upstrea m pipe 

to enter the manhole at different heights . Figure 3.2 shows the laboratory manhole with a l.5D step. 

The step height configurations that were tested were between 0.0 and 2.0 pipe diameters, in 0.5 pipe 

diameter increments . For each step height the upstream delivery pipe was raised on adjustable metal 

supports to retain the stability of the apparatus. The manhole with a 1.5 pipe diameter step height 

was tested with and without a benching arrangement in the manhole base. A diagram of the 

benching configuration is provided in Figure 3.3. The design had a half pipe diameter base, which 

was angled between the inverts of the delivery pipes . Vertical side wa lls to the channel were raised to 

the level of the upstream pipe soffit, and the benching platform was sloped upwards at an angle of 1 

in 12 towards the manhole walls. 

Figure 3.2 Laboratory manhole with l.5D step height. 
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Figure 3.3 Benching arrangement for l.5D step manhole. 

3.3 Instrumentation 

3.3.1 Instrumentation for head loss 

Two methods were used to measure the head loss that occurred as flow passed through the manhole 

chamber. The first method was the use of electronic pressure transducers attached to the delivery 

pipes. A second system employing a series of 23 pressure tappings along the length of the delivery 

pipes was fitted so that the pattern of head loss along the entire laboratory pipe lengths could be 

determined. 

The pressure transducers were attached to the invert of the pipe upstream and downstream of the 

manhole. at a distance of 0.985 metres from the centre line. A 2mm diameter hole was drilled 

through the pipe and a strong adhesive was used to attach a perspex mount that held the pressure 

transducer in place. The arrangement was such that the water flowing through the manhole delivery 

pipes was in contact with the transducer pressure sensor. Each transducer was capable of measuring 

static water pressures of between 0.0 and 2.0 metres. 

A possible source of error for these single point pressure measurements was highlighted by Archer et 

a/ (1978). Their studies of head loss with a similar manhole configuration concluded that the 

hydraulic grade line in the pipe exiting the manhole was not necessarily of a constant linear gradient. 

Indeed. for as far as 70 pipe diameters downstream of the manhole the hydraulic grade line was 

measured by Archer et a/ as being asymptotic to the hydraulic grade line for a straight pipe. 

Therefore if. as with previous researchers. the hydraulic grade line was linearly extrapolated from the 

single measurement point to the centre of the manhole to calculate the head loss due to the manhole 

there could be some error in the calculation (Figure 3.4). 
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In an attempt to examine the profile of the hydraulic grade line in the upstream and downstream 

pipe lengths, 23 piezometer tappings were made at intelVals along the pipe. Each pressure tapping 

consisted of a 2mm hole drilled in the pipe soffit over which was attached a circular perspex mount. 

Lever operated valves were then fixed to the mounts allowing individual pressure tappings to be 

switched on and off. From the valve a length of flexible plastic pipe of diameter 8mm led to a rack 

containing glass piezometer tubes of the same diameter and a measuring scale. Pressure tappings 

with valves attached are shown located on the pipe sections in Figure 3.2. 
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3.3.2 Instrumentation for longitudinal dispersion 

The determination of coefficients describing travel time and longitudinal dispersion requires a 

measurement oftemporal concentration profiles at two sites. It was decided to use fluorescent dye as 

a tracer for this purpose. This choice was primarily governed by the experience and equipment held 

by the Civil and Structural Engineering department at the University of Sheffield regarding these 

materials. Fluorescent tracers have the advantages of being well conserved between measuring 

locations, relatively inexpensive and can be detected with high accuracy by non-intrusive means. 

Fluorometric dye concentration measurements were obtained using two Turner Series 10 

fluorometers, one positioned 1.35 metres upstream of the manhole centre line and the other at the 

same distance downstream. In normal operation these fluorometers are used to measure dye 

concentrations in either a discrete test tube sample or in a 12mm diameter through flow pipe 

arrangement. A fluorometer measures the concentration of a fluorescent dye tracer by emitting light 

from a steady light source. This excites any fluorescent particles present and the light emitted from 

them is of a different wavelength to the original source. Filters block the source light, allowing only 

the light reflected from the fluorescent particles to pass to a photomultiplier, which converts the 

amount of light received to an electrical voltage signal. The intensity of light emitted by the 

fluorescent particles is directly proportional to the concentration of these particles within the 

measuring volume. Hence the voltage output from the fluorometer can be calibrated to the 

concentration of fluorescent material present in the sample. Rhodamine WT was selected as the 

fluorescent dye to use. This dye was developed specifically for tracer studies and is resistant to 

absorption, detectable in low concentrations, readily available and economic (Smart and Laidlaw, 

1977). 

Using the normal operation mode for the work in the laboratory manhole test facility was not 

considered appropriate since this would require a sampling system that intruded into the flow. 

Interrupting the flow with even a small diameter sampling tube positioned within the delivery pipe 

system would have an effect on the local flow patterns and the dispersion of the tracer dye. For this 

reason an adapter device was developed by a previous researcher (O'Brien, 2000) that allowed the 

whole of the 88mm internal diameter clear perspex pipe to be used as a through flow arrangement. A 

light tight metal housing. holding a series of aligned mirrors, was fitted to the fluorometer, and this 

unit diverted the light path from its original route in such a way as to allow the dye concentrations 

over the entire pipe cross section to be measured (Figure 3.5). The adapter also housed the filters 

necessary for operation. Each fluorometer was located beneath the pipe section and the attached 

adapter was positioned in place around the pipe (Figure 3.6). Accurate fluorometer measurements 

required that no extraneous light reached the fluorometer photomultiplier. For this reason the entire 

laboratory apparatus was sealed from daylight by the use of lightproof material. 
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Figure 3.5 Diagram of fluorometer adapter (O'Brien, 2000). 

Figure 3.6 Fluorometer and adapter fitted in position on manhole pipeline. 
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3.3.3 Data logging instrumentation 

Data from the measuring devices giving an electronic output was gathered by logging the output on 

a Cambridge Electronic Design (CED) 1401 data logger unit, used in conjunction with Spike2 software 

(Cambridge Electronic Design, 1990). This equipment allowed a selection of logging rates and data 

collection intervals for up to 16 channels, or input devices. Preliminary laboratory tests demonstrated 

that under certain flow conditions it could take over six minutes for a dye injection to completely 

pass the downstream fluorometer. It was therefore decided to log each injection test for ten minutes. 

This ensured all dye from a previous injection would have passed through the system and also gave 

allowance for a constant background concentration reading before and after the passage ofthe dye. 

The data logging rate was set to 26.0417 Hertz. A feature of the logging software that was used for 

the experimental testing was that the total available data rate of 1 kHz was shared between the 

required waveform channels. It was therefore not always possible to set integer data collection rates. 

The selected logging rate was chosen as being capable of well defining the shape of the 

concentration profile at all flow rates with the additional advantage of allowing an entire 10 minute 

logged file to be held on a Microsoft Excel 5.0 spreadsheet. 

3.4 Calibration 

The measurement instrumentation was calibrated as described in the following sections both before 

and after each schedule of tests undertaken at a particular step height configuration. The results were 

combined to give a calibration equation for the appropriate tests. 

3.4.1 Calibration of pressure transducers 

The pressure transducers were calibrated by filling the manhole and neighbouring pipework to a 

series of static water levels. A metal scale was permanently attached to the side of the manhole so 

that the water depth could be determined by a visual measurement. The electronic voltage output 

from the pressure transducers was recorded on the CED 1401 data logger at 26.04 Hertz for one 

minute and the mean value used. A linear regression was applied to the relationship between the 

water depth in the manhole system and the voltage output given by the pressure transducers and 

gave a high quality fit to the data. The results of an example calibration are shown in Figure 3.7. 
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3.4.2 Calibration of fluorometers 
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Calibration of the fluorometers was achieved with them in-situ on the laboratory manhole apparatus. 

The manhole and surrounding pipework were blacked out with lightproof material. The upstrea m 

delivery pipe was detached from the main water supply system a distance of 3.5 metres from the 

manhole centreline. A metal plate that included an adapter for the attachment of a length of plastic 

pipe was fitted at this location. This pipe and a small water pump were used to join the upstrea m 

delivery pipe to the downstream surcharge control chamber. Thus a complete flow circuit was 

achieved with a volume much less than the system as a whole, since the sump and header tank 

volumes were bypassed. This calibration circuit was fill ed with a known quantity of water that could 

be re-circulated by means of the small pump (Figure 3.8). 

Manhole 

Fluorometer o 88mm Pipe 

Surcharge control tank 

Pump 

Figure 3.8 Diagram of fluorometer calibration flow circuit. 
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Measured quantities of Rhodamine WT dye were added, and the system allowed to re-circulate until 

fully mixed. The time taken for full and complete mixing to be achieved was calculated by a test 

procedure whereby fluorometer readings were recorded every five minutes, noting the time beyond 

which both fluorometers gave constant readings. For each calibration concentration the fluorometer 

output was logged at 26.04 Hertz for one minute and the mean value used. The dye concentration 

recorded at each time interval was adjusted for the temperature of the water using the equation 

given by Smart and Laidlaw (1977) for Rhodamine WT dye. This was necessary because the small 

pump and the room temperature caused a gradual increase in the temperature of the water in the 

calibration volume. 

An example of the calibration results is shown in Figure 3.9. A1though it was possible to use the 

fluorometers on different sensitivity scales, the tracer experiments were completed entirely on a 

single scale. This simplified calibration and testing, and also prevented the measuring devices from 

automatically switching sensitivity during any ofthe experiments. 

6.0 

5.0 

i 4.0 

~ 
'S 
~ o 3.0 
~ 

~ 
E 
'1: 
o 
~ 2.0 

1.0 

• Upstream 
• Downstream 

y = 38649187.37x + 0.15 
R2 = 1.00 

y = 30904893.61x + 0.12 
R2 = 1.00 

0.0.J-----.------,.------,r-----r-----.,;--r------r------, 

O.OE+OO 2.0E-08 4.0E-oa 6.0E·oa a.OE·OS 1.0E·07 1.2E·07 1.4E·07 

Dye concentration (III) 

Figure 3.9 Example of calibration for fluorometers (temperature adjusted to 15° Celsius). 

Calibration tests using the fluorometer with the adapter fixed in place around the pipe demonstrated 

that the maximum dye concentration that could be measured accurately was reduced by almost 90 

percent from the normal flow through mode (O'Brien, 2000). This was due to the source light 

intensity being spread over a greater measuring volume. It was still possible to obtain a linear 

response from the device over a suitable working range, up to 8x10·
7

litres of dye to Iitres of water. 

The fluorometer adapters were assumed to enable measurements of a cross sectional average tracer 

concentration, although the exact illumination pattern through the pipe was uncertain. A1so, flow 

conditions at the manhole exit may have caused an uneven spread of dye over the downstream cross 

section. However, the arrangement was superior to any intrusive method on a small scale facility. 
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3.5 Test preparation 

The discharge for a particular test was controlled by a valve that was positioned on the upstream 

pipe. A rotational scale was attached to the valve so that the degree of rotation could be measured. 

Unfortunately this valve and scale could not be relied upon to give repeatable flow conditions with 

sufficient accuracy. This was due to the variations in pressure head difference between the constant 

head tank and the surcharge levels in the manhole requiring slight adjustments in the valve position 

to obtain the same flow rate. For this reason the discharge for each test was measured by the V-notch 

weir and the valve scale was used for guidance only. A limit of 2 percent variation of the measured 

discharge value from the required value was imposed. 

Any adjustments made to the surcharge or discharge required a period of time to allow the system to 

settle to steady flow conditions. A short test whereby flow rates were measured at one minute 

intervals after an alteration was used to establish that it took twenty minutes for the flow to settle to 

a new setting. Flow rates of between 1.0 and 8.0 Iitres per second were used for the laboratory tests. 

This was the practical limit of the system. Discharges of less than 1.0 litres per second could not be 

accurately measured by the V-notch weir and the system was not capable of flow rates much greater 

than 8.0 Iitres per second. 

3.6 Test procedure 

A single test condition offlow rate and surcharge level was established and time given for steady flow 

conditions to be achieved. For each individual test approximately 25ml of Rhodamine wr fluorescent 

dye tracer was injected into the upstream delivery pipe, 10.5 metres prior to the manhole, using a 

manual syringe. The start of data logging and the introduction of the dye were adjusted 

appropriately to ensure that the first arrival time of the dye at the upstream fluorometer occurred 

approximately one minute after the start of the logging. In this way a clear period of 30 seconds 

could be used at the start of the data file to establish the background concentration and the 

upstream and downstream concentration profiles were recorded in their entirety. 

Each dye tracer test for a flow rate and surcharge condition was conducted five times, reduced to 

three times for the benched manhole tests. This was a suitable number to reduce the effects of any 

anomalies within an individual test resulting from the manual injection procedure, whilst still giving 

a practical time scale for the test schedule to be completed. The process of repeating the experiments 

also allowed the reliability and consistency of the data collection and analysis methods to be 

assessed. The output from the pressure transducers was recorded for the ten minute duration of an 

individual test and the mean value was entered into the calibration equation to give the pressure 

head at that location. 

Some previous researchers (Marsalek and Greek, 1988; Kusuda and Arao, 1996) have highlighted the 

possible errors in taking piezometer readings due to level oscillations. These are caused by rapid 

pressure fluctuations that occur during obselVation. In order to reduce the impact of this effect on 

the final results the high and low point of individual manometers was read three times during any 

given flow rate and surcharge combination. The average value of the six measurements (three high 

and three low) was taken as the piezometric pressure head for that location. If there were any air 

bubbles present in the piezometer system these were allowed to flow out of the flexible tubing before 

it was attached to the glass piezometer tubes and readings were taken. The flexible rubber tubing 
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allowed stubborn bubbles to be moved along the pipework by squeezing the pipe upstream of the 

bubble. The piezometer levels were regularly checked to ensure that they were constant for any given 

static head in the manhole. 

3.7 Test Schedule 

The same manhole and pipework was used for all tests in the laboratory schedule, and all used an in 

line arrangement of the upstream and downstream delivery pipes. The effects of a step height 

between the upstream and downstream pipes were studied with five step height arrangements in 

equal steps from 0.0 to 2.0 times the diameter of the pipes (Le. 0 - 176mm). For each geometrical set­

up, a complete range of surcharge and discharge combinations were studied. Surcharge heights up to 

1250mm above the downstream pipe soffit were considered, with the lowest surcharge values being 

governed by the geometry and flow rate, and the 100mm spacing of the overflow weir height 

adjustment. 

TIle complete set of manhole configurations and flow conditions that have been analysed is 

presented in Table 3.1. Civen that each test configuration was repeated a number of times, almost 

2000 individual ten minute periods of data collection were completed. 
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Step height = 0.0 D. no benching Step height = 0.5 D. no benching 

Discharge. Surcharge Number of Discharge. Surcharge Number of 

Q (I/s) range (mm) tests Q (I/s) range (mm) tests 

1.0 28 - 1127 12 1.0 125 -1130 11 

2.0 - - 2.0 138 -1143 11 

3.0 149-1148 10 3.0 155 -1162 12 

4.0 - - 4.0 176 -1183 12 

5.0 - - 5.0 203 -1209 12 

6.0 207 -1195 11 6.0 249 -1242 12 

7.0 - - 7.0 281 -1176 11 

8.0 168 - 1241 12 8.0 322 -1118 10 

I Total number of tests 45 l Total number of tests 91 

Step height = 1.0 D. no benching Step height = 1.5 D. no benching 

Discharge. Surcharge Number of Discharge. Surcharge Number of 

Q (I/s) range (mm) tests Q (I/s) range (mm) tests 

1.0 133 -1129 11 1.0 225·831 7 

2.0 151 - 1145 11 2.0 143 - 846 8 

3.0 171-1169 11 3.0 162 - 869 8 

4.0 196-1196 11 4.0 190 - 896 8 

5.0 146 -1231 12 5.0 141 - 931 9 

6.0 182 - 1170 11 6.0 189 - 975 9 

7.0 218·1211 11 7.0 218 -1021 9 

8.0 282 ·1163 10 8.0 278 -1076 9 

l Total number of tests 88 l Total number of tests 67 

Step height = 1.5 D. with benching Step height = 2.0 D. no benching 

Discharge. Surcharge Number of Discharge. Surcharge Number of 

Q (I/s) range (mm) tests Q (I/s) range (mm) tests 

1.0 230 -731 6 1.0 226 ·1133 10 

2.0 · - 2.0 242 ·1147 10 

3.0 160·761 7 3.0 265 ·1069 9 

4.0 - . 4.0 195 ·1098 10 

5.0 · - 5.0 231 ·1133 10 

6.0 142·841 8 6.0 188 ·1174 11 

7.0 · . 7.0 225 ·1119 10 

8.0 218·815 7 8.0 274·1176 10 

I Total number of tests 28 I Total number of tests 80 

Table 3.1 Summary of laboratory tests. 
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3.8 Laser light sheet visualisation 

Visualisation ofthe mixing within the manhole was achieved using a Laser Induced Fluorescence (L1F) 

technique developed by Guymer and Harry (1996). The beam from a 300mW Argon-Ion laser was 

directed to scan rapidly by means of a rotating hexagonal mirror and a parabolic mirror. collectively 

known as a light sheet generator. This created a parallel sheet of light 500mm wide and only 

approximately 2mm deep. An angled mirror was positioned beneath the manhole so that the 

Iightsheet illuminated essentially a two-dimensional plane of fluid along the manhole centreline. 

parallel with the main flow direction (Figure 2.13). The L1F technique required a fluorescent dye to be 

excited by the energy from the laser light beam. which is emitted over a narrow wavelength band. 

The excited dye particles fluoresce and emit light of a different wavelength to the laser light with an 

intensity proportional to the dye concentration. The emitted light was recorded using a sVHS video 

camera and a high quality recorder. A filter placed in front of the camera lens was used to eliminate 

the wavelengths of the original laser light and thus leave only the light emitted by the fluorescent 

tracer. A total blackout of extraneous light was required for this to be successful and was achieved by 

constructing a blackened hardboard cover over the manhole and surrounding area. A computer 

combined with digital image processing hardware and software was used to analyse the video tape 

and convert the image brightness into values of greyness within the range of 0 to 255. The average 

greyscale values for selected locations within the image area were used in conjunction with 

calibration measurements to determine the tracer concentrations at specified time intervals. 

Unfortunately. under the laboratory conditions for the study of mixing in manholes it was discovered 

that the laser used was not sufficiently powerful to obtain a well defined resolution of the tracer dye 

concentration. When the technique had been used previously by Guymer and Harry (1996) the 

Iightsheet generated had been only 150111111 in length. 'Increasing the Iightsheet length to 500ml11 by 

means of a different parabolic mirror had the effect of spreading the laser power and thus reducing 

the concentration resolution that was attainable. 

However. the technique allowed some qualitative observations of the mixing processes to be made. 

Images of the tracer dye passing through the surcharged manhole chamber were obtained by using 

the digitally captured video images and also a 35mm still camera. In the case of the still camera 

shutter speeds in the region of 0.5 seconds were required to obtain correct exposure and thus the 

images obtained were effectively an average ofthe dye flow over the exposure time period. 

In addition. further understanding of the flow structures in the manhole was achieved by constantly 

injecting small diameter polystyrene beads into the flow. The beads were highlighted by the laser 

lightsheet as they passed through it and reflected the laser light. Using a time lapse method where 

the camera shutter was held open for an extended length of time enabled the path of the beads to be 

captured on film with the still camera. A pattern of the flow structure was produced since there were 

many beads passing through the laser lightsheet in the recorded period of time. 
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Chapter 4 

Experimental Results 

4.1 Introduction 

The primary aim of the experimental work was to determine the effect of a step height between the 

inlet and outlet pipes of a circular sewer manhole on the longitudinal dispersion of a solute. Further 

considerations were the effects of surcharges up to heights Significantly greater than had been 

examined previously, and head loss measurements to establish any possible relationships between 

the head loss and the transport of a solute through a manhole chamber. Furthermore, Laser Induced 

Fluorescence (LlF) techniques have been used to enable visual studies to be made of the mixing and 

retention effects of the manhole and the flow patterns present within it. 

The experimental work completed in the laboratory produced raw data that was processed and 

interpreted to provide results for the head loss, travel time and longitudinal dispersion 

characteristics of the manhole configurations tested. This chapter explains the methods that were 

applied to the data collected and presents the results from the manhole step height experiments. 

4.2 Processing of laboratory data 

Head loss across the manhole was measured using pressure transducers fitted to the delivery pipes 

upstream and downstream of the manhole. The average of 10 minutes of logging the pressure 

transducer output at 26.04 Hertz was used to determine the pressure at both transducer locations. A 

time averaged transducer output value was converted using the calibration equations into pressure 

head in metres. The difference between the readings for the upstream and downstream transducers 

gave the head loss between these two points. This measured head loss was a combination of the 

effects of the manhole and the lengths of pipe either side. The pressure loss due to pipe friction was 

determined from the results of experiments conducted on a straight length of similar pipe with no 

manhole present (Guymer and O'Brien, 2000). These results allowed the hydraulic grade line to be 

extrapolated from the transducer locations to the centre line of the manhole. The vertical difference 

between the hydraulic grade lines at this central location is the head loss caused by the manhole, 

over and above the effects of a pipe of length equal to the manhole diameter. This process was 

completed for the five repeat tests that were conducted for a particular geometry at a given flow rate. 

The final head loss value for a test condition was taken as the average of the results from the five 

repeats. 

4.3 Optimisation of travel time and longitudinal dispersion coefficients 

The longitudinal dispersion due to the manhole was determined by means of analysing the measured 

upstream and downstream temporal concentration profiles of a fluorescent dye introduced into the 
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experimental system. This process required determination of the centroid time, ii' temporal variance, 

crt/.i)2, and the first arrival time ~' of the tracer at each site i. The longitudinal dispersion was then 

initially quantified by calculating the standard longitudinal dispersion coefficients. For the advection 

dispersion equation (Equation (2.141) these are the travel time, i, equal to (id - iu) and the dispersion 

coefficient, K, (Equation (2.17(). In the case of the aggregated dead zone equation (Equation (2.251) 

the required coefficients are the travel time as for the advection dispersion equation and the reach 

time delay, 1', (td' . tu'). However, downstream concentration predictions made using these standard 

coefficients were often a poor representation of the effects of the manhole. 

A process of optimisation applied to the determination of the coefficients for a longitudinal 

dispersion model was used to Significantly improve the quality of concentration profiles predicted by 

the models. The measured upstream data was applied as the input to either the advection dispersion 

equation or a first order aggregated dead zone model. The model coefficients were varied within a 

suitable range and for each case the longitudinal dispersion equation was applied to the upstream 

data. For each variation of coefficients the downstream data and prediction were compared to 

estimate the effects of the changes. Continued adjustment of the coefficients for each model resulted 

in significant improvements in the ability of the predictions to match the observed downstream data. 

This procedure was the foundation for the method of optimisation that was incorporated into a 

computer program. 

4.3.1 Data preparation 

A pair of FORTRAN software programs were developed and written to facilitate the analysis of the 

laboratory data and to calculate standard and optimised longitudinal dispersion coefficients. The 

first of these programs was written to prepare the data for analysis by the second. 

The premise behind the formulation of the optimisation software was that it should have the 

potential to provide analysis for data from a wide range of sources. Although for the work described 

here it would be used to analyse data collected at two fixed sampling stations the program would be 

more versatile if it was also applicable to other users. It was therefore decided to have the data 

required by the analysis software input as individual upstream and downstream data files each 

containing the time in uniform steps and the measured concentration of the tracer, rather than a 

single file containing both upstream and downstream data. This broadened the applicability of the 

software, such that it was used by Guymer et al (1999) for analysing data from a laboratory channel 

where results were required between different combinations of measuring stations. 

The data preparation program was written to convert the experimental data logged with the Spike2 

data logging software (Cambridge Electronic Design, 1990) into two files suitable for using as 

upstream and downstream input data to the analysis and optimisation program. An example of the 

data collected from the upstream and downstream fluorometers is presented in Figure 4.1. For 

convenience of presentation, the full time scale of the data has been omitted. The voltage output 

values were calibrated and temperature corrected to give the tracer concentration. It was found that 

the background concentration of dye within the system tended to increase gradually with time as 

volumes of dye were added to the re-circulating water volume. A linear variation in background 

readings was assumed between the mean value of the first 30 seconds of logging and the mean value 

of the final 30 seconds. This was subtracted from the profiles. 
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Figure 4.1 Example of manhole dye tracer data collected by upstream and downstream fluorometers 

(388mm manhole. no step. Q = 6.01/s. surcharge = 402mm). 

Operation of the analysis program revealed that the number of data points in the tracer 

concentration profiles was too great for the optimisation procedure to run at a reasonable speed. It 

was therefore decided to reduce the number of data points by sampling the data and so effectively 

increasing the time step. A sensitivity analysis was completed to ensure that sampling the data had 

no significant effect on the longitudinal dispersion results. Figure 4.2 shows the results of this 

analysis. The variation of the ADE and ADZ coefficients with the rate of sampling the data is shown. 

This variation was checked for both the maximum and minimum discharge. but the results are 

presented solely for the maximum discharge. This is the more critical case because it has the least 

number of data points to define the tracer profiles. since the tracer cloud passes the fluorometer in 

less time. Predominantly there is little variation in the coefficients for effective sampling rates greater 

than approximately 1.0 Hertz. However. the values for the ADE optimised travel time do tend to 

continue a gradual decrease in value as the effective sampling rate increases. For this reason the 

effective rate of sampling chosen was 6.51 Hertz. where all optimised coefficients had settled to 

almost constant values. This sample rate was equivalent to a data time step of 0.1536 seconds and 

meant selecting one in every four data points from the original logged file. With this process the 

operational speed of the software became acceptable. This data sampling procedure was written into 

the software that prepared the data for analysis. 
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At this stage the requirement for the analysis of the data was that the upstream and downstream 

profiles needed to be extracted from the entire data recording. This required the determination of 

the start and end points of each profile. The start point is the time at which tracer from the injection 

is considered to have first been registered by the fluorometer and the end point is the time at which 

the last of the tracer cloud has passed the fluorometer. There are several problems to be overcome 

with this procedure. Firstly, there is a degree of noise associated with the recorded fluorometric data 

which causes difficulties in establishing an exact time location where the dye concentration is no 

longer greater than the background concentration. This noise appeared to be unavoidable and was 

attributed to electrical interference within the fluorometers themselves (O'Brien, 2000). Secondly, a 

feature of longitudinal dispersion where dead zones are involved is the long tail length of very low 

concentrations at the end of each profile. This compounds the difficulty in determining the measured 

end point for the trace from the downstream fluorometer. 

Traditional methods of longitudinal dispersion ana'lysis using the advection dispersion equation 

require the variance of the profiles to be measured and hence the calculation of second moments 

about the profile centroid is required. Whilst the concentration values for the tail length are very 

small, they are located at a considerable distance from the centroid and therefore have a profound 

effect on the second moments. Thus the analysis results are highly sensitive to the chosen time 

location for the end of the profile, and often the result is an overprediction of the dispersion. 

Previous researchers (Guymer and O'Brien, 1995; Guymer et at, 1996, 1998) have tried several 

different approaches designed to determine a consistent profile cut off location for all measured 

profiles. Unfortunately these techniques did not give a high degree of reliability in overcoming the 

difficulties that were encountered due to the noise on the profile recordings. An analysis procedure 

was required that would be less sensitive to the actual cut off times on a particular profile. For this 

reason a process by which the longitudinal dispersion coefficients were optimised to give the best fit 

to the measured data was used. 

The requirement that the analysis method should have a very low sensitivity to the profile start and 

end points meant that the cut off points could be determined with a simple approach. Working 

outwards from the peak concentration, the cut off point was selected as the time when 10 

consecutive data points were less than one percent of the peak value for that particular profile 

(Figure 4.3). The number of consecutive points and the percentage cut off were variables that could 

easily be changed in the program to give suitable start and end points for data from other sources. 
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The sensitivity of the cut off procedure to different percentage values of the peak concentration was 

examined (Figure 4.4). It was determined that the longitudinal dispersion coefficients calculated in a 

standard manner directly from the upstream and downstream profiles were highly sensitive to the 

tracer profile cut off percentage, and hence the cut off location. This is an example of the difficulties 

faced by earlier researchers in finding a reliable method for extracting the profiles from the raw data. 

However, using an optimisation procedure for determining the longitudinal dispersion coefficients 

greatly reduces their sensitivity to the selected start and end points of the tracer profiles. In the case 

of travel time, there is almost no variation in optimised value for cut off percentages between 0.02 

and 10 percent. There is a slight variation for the dispersion coefficient and reach time delay values 

where small cut off percentages were used. For this reason a low value of 1.0 percent of the peak was 

selected for the cut off. A value any less than this tended to result in difficulties with the optimisation 

process being applied due to the noise associated with the data collected. 
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An output file was created for both the upstream and downstream locations. Each of these contained 

data for time and respective concentration values. These data were held in the appropriate format for 

application into the data analysis program described in the following section. 

The data in Figure 4.5, Figure 4.6 and Figure 4.7 show temporal concentration profiles that are fully 

prepared for the analysis program. Three test combinations of high and low surcharge, maximum 

and minimum discharge and step height variation are presented. The general shape of the profiles is 

broadly similar for all of the zero step height manhole tests completed. One of the most obvious 

features of the profiles is the long tail of low concentration that exists on the downstream profile. 

This is a common feature of dead zone effects where the dye that mixes with the storage volume is 

only gradually released back into the main flow after the bulk of the tracer cloud has passed. The 

introduction of a step height has altered the downstream profile shape that has been recorded. The 

mass of tracer passing directly to the outlet is reduced considerably and therefore a correspondingly 

greater proportion is delayed in the storage volume. This causes increased dispersion resulting in a 

greatly reduced maximum concentration value and a profile tail consisting of a significant proportion 

of the tracer mass (Figure 4.7). 
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4.3.2 Data optimisation 

Preliminary calculations within the main analysis program ascertained the start and end times of 

each distribution, and then calculated their area, centroid time and variance. In order that a fair 

assessment of the longitudinal dispersion modelling equations could be made it was necessary to 

balance the tracer mass measured at the upstream and downstream locations. This procedure 

assumed that the tracer was conservative and that the entire tracer mass measured upstream was 

also measured by the downstream fluorometer. Although this was rarely the case, recovery ratios 

were generally good and in the region of 90 to 95 percent. Also, the simplest forms of the 

longitudinal dispersion models assume conservation of the tracer and so it would be inappropriate to 

compare model predictions that are fully mass balanced with the upstream data to downstream 

profiles that are not. To achieve mass balance the downstream data points were each multiplied by a 

mass balance factor calculated from the upstream tracer mass divided by the downstream tracer mass 

(Equation 14.1)). Since the discharge was equal at the two measurement locations the mass balance 

factor could be determined from the ratio of the areas under the temporal concentration profiles. 

where B is the mass balance factor. 

B = Qu [-00 Cudt = [-00 Cudt 

Qd [-00 Cddt (-00 Cddt 

14.1) 

Adjusting the downstream concentration values in such a way meant deviating from the calibration 

equation for the downstream fluorometer. However, the calibration was still important to check for a 

linear response to the tracer concentrations and to ensure that tracer tests were conducted within 

the calibrated concentration range. 

The FORTRAN analysis program calculated the standard and optimised ADE and ADZ coefficients 

from a given pair of temporal concentration distributions. These are the coefficients that are 

employed by the advection dispersion equation and the aggregated dead zone method for predicting 

longitudinal dispersion. TIle premise behind the software was to make it broad enough to operate 

with data collected from a wide range of sources, such as laboratory data with very small reach 

lengths and time steps to field conditions where these values would generally be much greater. This 

resulted in a program primarily designed for data collected in the laboratory manhole apparatus but 

with minor changes to the code was sufficiently versatile to calculate results from a variety of data 

sources. 

The calculations of area, centroid and variance were used to determine the standard coefficients for 

the equations to be calculated. Hence values for centroid travel time, i, dispersion coefficient, K and 

reach time delay, T, were calculated at this stage. 

The ADE and ADZ equations (Equation 12.141 and Equation (2.251) were then used in combination 

with these standard coefficients in order to produce downstream predictions of concentration 

profiles from the upstream data. A measure of the goodness of fit (Young et al, 1980) between the 

profiles and the actual data, R/, (Equation 12.38)) was calculated. 

For the ADE and ADZ equations the optimisation procedure was very similar and was included 
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together in the same piece of software. The program performed a sequence of refined searches 

through combinations of parameters, travel time and dispersion coefficient values for the ADE model, 

and travel time and time delay values for the ADZ equation, to determine the pair that gave the best 

fit downstream concentration profile, indicated by the maximum ~ 2 value. A matrix system was used 

to significantly reduce the number of calculations required to reach the best fit solution. An 11 by 11 

matrix was constructed, where the rows were headed by varying values of dispersion or time delay, 

and the columns were associated with travel times. For each combination of model parameters a 

downstream profile was predicted from the upstream data using the ADE or ADZ equation in the 

same way as the standard profiles were created. The ~2 value for this prediction was calculated, and 

assigned to the appropriate cell of the matrix. A total of 121 combinations were required to fill the 

matrix. 

The software initialised a maximum and minimum value for the travel time, time delay and 

dispersion coefficient parameters at the side of the matrix, and calculated the step size and hence the 

intermediate values along the matrix boundary. This initial range for the first matrix could easily be 

altered within the program, and the best option depended upon the actual data. The settings shown 

in Table 4.1 were found to be appropriate for the laboratory manhole data. The optimisation 

procedure operated most efficiently if boundary values for the first matrix had a range for each 

coefficient extending between zero and approximately two times the expected final result. In this 

way a pair of coefficients likely to yield the best fit prediction represented a cell dose to the centre of 

the first matrix. ntis generally resulted in the refining procedure locating the optimised results most 

swiftly. Obviously the expected optimised coefficient value, for example for the travel time, would be 

different at different flow rates. The most universal set up for the first matrix was thus to use the 

worst case results for the 1.0 Iitres per second tests and therefore the matrix would encompass the 

results for other test discharges. 

Minimum Maximum 

Travel time 0.0 s 30.0s 

Dispersion coefficient 0.0 nlls 2.0 nlls 

Time delay 0.0 s 30.0 s (approximately) 

Table 4.1 Boundary settings for first optimisation matrix calculation. 

In the discrete form of the ADZ model (Equation 12.25)) it is only possible to apply values of the time 

delay, f, that are multiples of the data time step. The program had to ensure that all time delay 

values used along the matrix boundary were exact multiples of the time step. Therefore the 

maximum time delay for the initial matrix was set at approximately 30.0 seconds but it was increased 

or decreased as necessary to ensure that the time delay steps along the matrix boundary all fitted the 

criteria imposed. 

At this stage the contents of the calculated optimisation matrix were examined and the combination 

of coefficients that gave the prediction with the best fit to the downstream data, represented by the 

cell with the greatest ~2 value assigned to it, were determined. A new matrix was created by the 

software that 'zoomed in' towards the best fit coefficients. Where the cell representing the best fit 

coefficients was not on an edge of the matrix a new matrix could be generated whose boundaries 

were defined by the coefficients immediately either side of the best fit values. This refining procedure 
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is illustrated in Figure 4.8. However, if the maximum R.2 was calculated to be on an edge of the 

matrix then there was the possibility that a better downstream profile prediction might be achieved 

with coefficients Ollt of the range of the current matrix . Therefore, in this case, a new matrix was 

generated which did not 'zoom in' further but had boundary coefficient values adjusted so as to 

translate the matrix and establish a maximum R.2 value within the new boundaries. 
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Figure 4.8 Representation of the matrix optimisation procedure. 

The process of producing a new matrix was repeated until a predetermined final resolution was 

attained . This was done by checking the step sizes between coefficients along the matrix edge each 

time a new matrix was generated and when these were reduced to certain minimum values for the 

coefficients the ultimate best fit prediction was said to have been found. 

In a similar way to the definition of the first matrix range, the ultimate resolution values could be 

adjusted within the program depending on requirements from the data analysis. Default settings are 

given in Table 4.2. These values were determined by examining the output from some sample test 

results used during the construction of the software. It was found that the benched manhole results 

produced the minimum travel time values, close to 1.0 seconds, and dispersion coefficient values, 

approximately 0.01 m2(s. The ultimate resolution of the matrix analysis was therefore set to one 

percent of these values, giving a good level of accuracy and reasonable processing times . In the case 

of the reach time delay, if the step size between the values along the matrix became less than the 

data time step it was set as equal to the data time step, and the final resolution for time delay was 

said to have been reached. 
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Coefficient Ultimate resolution 

Travel time steps 0.01 s 

Dispersion coefficient steps 0.0001 m2/s 

Time delay steps data time step (M) 

Table 4.2 Ultimate resolution values for matrix boundary coefficients. 

For the optimisation technique to be reliable it was essential to verity that there was a unique pair of 

parameters that gave the best fit of the prediction to the measured data . It was confirmed by the 

work of Antonopoulos (1997) and preliminary studies that there was only a single best fit 

combination of parameters for a given data set. This was determined by examining the R, 2 values 

over the entire matrix and ensuring that there was only one peak valuc. Figure 4.9 displays the results 

for this procedure using laboratory manhole data and the ADZ model. The base of each chart in the 

figure is composed of the travel time and time delay values used in the matrix. The three-dimensional 

surface represents the R/ values for each travel time and time delay combination on the base. It is 

clear in Figure 4.9a that there is a single peak in the R,2 values given by the parameter combination 

that produces an ADZ model prediction with the best fit to the data. Figure 4 .9b presents the results 

under the circumstances where the matrix is at the ultimate resolution . The time delay scale, 

governed by the time step at which the data was recorded, spans a greater range than the travel time 

scale. This explains the shape of the three-dimensional surface, whose curvature is considerably more 

pronounced in onc direction than the other. However, there is a single maximum value of R,2, in this 

case given by a travel time of3.0 seconds and a reach time delay of2.073 seconds. 
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When the optimisation procedures had been completed an output file was created. Information 

written to the output file included the data filenames, measuring station distance and mass balance 

factor. All the standard and optimised coefficients were given, along with the ~2 values for each case. 

Also, the full data sets for time and concentration were output, enabling the upstream data, 

downstream data, and standard and optimised predictions to be compared. 

Figure 4.10 and Figure 4.11 provide a comparison between the downstream temporal concentration 

profiles predicted from measured upstream data using standard methods and optimisation. It is clear 

that the standard predictions made with the ADE and ADZ models give a very poor representation of 

the measured data. In both cases the dispersion is considerably overestimated, predicting a peak 

concentration well below the measured value. The justification for optimising the coefficients is 

clear. The optimisation procedure used has significantly improved the accuracy and reliability of the 

longitudinal dispersion predictions. With optimised coefficients, both of the models demonstrate a 

good capability to describe the measured downstream profiles. The peak value and time of 

occurrence is well represented. Although the full tail effect fails to be reproduced, the optimised 

predictions successfully account for the majority ofthe tracer mass. 

The variation of the results over the repeat tests was examined (Figure 4.12). The optimisation 

process was found to be essential in order to obtain reliable and consistent results. This is most 

clearly demonstrated by the dispersion coefficient results (Figure 4.12b) where the spread ofthe data 

for the repeat tests is considerably reduced when optimisation is used. The data in the figure show 

that determining the dispersion coefficient by a standard procedure using the variance of the 

upstream and downstream profiles (Equation 12.17)) is inappropriate where a long tail of low 

concentration distorts the calculation. Similar problems are apparent with the other coefficients. The 

close grouping of the optimised data suggests that the process can yield consistent results regardless 

of potential anomalies in the manual injection oftracer or the data measurement and preparation. 

::: 
(J 

If 
:8 
~ c .. 
u c 
0 
(J 

B.OE·08 

a.OE·08 

7.0E·08 

I.OE·08 

5.0E·08 

4.0E·08 

3.0E·08 

2.0E-08 

1.0E-08 

O.OE+OO 

·1.0E·08 
eo 

' . . . . , 

115 

R,2.0.95 

/ 

70 75 80 

Time, t (s) 

85 

--Downstream data 

--ADE standard 

••••• ·ADE optimised 

BO 95 100 

Figure 4.10 Measured downstream temporal concentration profile with ADE predictions. (388mm 

manhole with no step, Q = 6.01/s, surcharge = 402ml11). 



Experimental Results 

9.0E-08 

8.0E-OS 

7.0E-08 

6.0E-08 

-0 5.0E-OS 
r£ 
0 ,., 

4 .0E-08 ~ 
c:: 

'" u 
3.OE-08 c:: 

0 
0 

2.0E-08 

i .0E-08 

O.OE+OO 

-i .0E-08 

60 

R,' = 0.96 

/ 

65 70 75 80 

Time, t(s) 

85 90 

--Downstream data 

--ADZ standard 

..... ·ADZ optimised 

95 100 

Fig ure 4 .11 Measured downstream temporal concentration profile with ADZ predictions (388mm 

manhol e with no step, Q = 6.01/s, surcharge = 402111111). 

" 

" I 

E 20 

.. I 

" 1.0 V. standard 

" 1.0 V. optimiled 
.. a 0 V. alandl!lrd 

0 8.0 II, optimlled 

~ m m _ ~ ~ m ~ ~ _ I~ ~ I~ 

Surchargo (mm) 

Figure 4.12a ADE travel til11e 

" 1.0 II. standard 

" 1.0 lit optimised 

~ m * * ~ ~ ~ ~ ~ _ I~ ~ ~ 

Sure huge (mm) 

Fig ure 4.12c ADZ travel time 

1.20 

§. t .OO 

" .g 
.! 

~ 
S , ... 
c 
o 

l '" .. 
is 

' .lO 

• a 0 V. standard 
• a 0 III optimised 

,." +-~-~~-~~-...,....;:.......,--=-~=--__ ..:..........:.~A-., , ~ m m _ ~ ~ m ~ ~ _ 1_ 1_ 
Surcharge (mm) 

Figure 4 .12b Dispersion coefficient 

" 1.0 II, IUmdard 

.. 1.0 II, optimise d 

~ m m _ ~ ~ m ~ _ I~ I~ ~ ~ 

Surcharge (mm) 

Figure 4_12d Reach time delay 

Figure 4 .12 Long itudinal dispersion coefficients from 5 repea t tests with standard and optimised 

analysis (388111111 manhole with no step). 

69 



Experimental Results 70 

4.4 Laboratory results 

4.4.1 Flow regimes 

Throughout the laboratory test procedures a description of the flow regime present in the manhole 

for each combination of discharge, surcharge and geometry conditions was recorded. It became 

appropriate to use S different descriptions, numbered 1 to S and described below. 

1 Very calm conditions. Difficult to discern movement. 

2 Slight surface movement with small surface ripples present. 

3 Surface movement obvious. At the downstream side of the manhole a distortion of the water 

surface which rises above the general water surface level is noticeable. 

4 Movement is rapid and rather chaotic. The surface is broken at times with small whirls causing 

bubbles to appear on the surface and occasionally in the flow volume. 

S Vigorous movement. The downstream surface distortion is a steeply formed wave, causing the 

surface to be continuously broken. Bubbles and whirls almost continuously on the surface and 

within the manhole volume. 

The photographs in Figure 4.13 to Figure 4.17 show these flow conditions. The circulation regimes 

were affected by several factors such as the flow rate, the surcharge level, the step height and the 

presence of benching. Figure 4.18 and Figure 4.19 show a record of the circulation regime 

descriptions for different surcharge levels and discharges at two step height conditions. It can be 

seen that the degree of vigorous movement of the water in the manhole increases as the flow rate 

increases. Where the surcharge is greater, it appears that the extra volume of water acts to damp out 

the surface fluctuations. The presence of a step height causes the incoming flow to impact on the 

downstream wall of the chamber. This gives rise to more severe flow conditions in comparison with 

the zero step case. 
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Figure 4.13 Flow condition 1. 

Figurc 4.14 Flow condition 2. 

Figurc 4.15 Flow condition 3. 
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Figure 4.16 Flow condition 4. 

Figure 4.17 Flow condition 5. 
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4.4.2 Head loss results 

73 

Results are presented in Figure 4.20 for the variation of the head loss with surcharge for the 388mm 

manhole at all tested step heights. The data in the figure show the head loss at the different flow 

rates that were tested. In general the head loss that occurs due to the manhole is almost independent 

of surcharge over the range tested. 
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Figure 4.20 Variation of head loss with surcharge (388ml11 unbenched manhole). 

In common with the flow of fluid through a pipe, the head loss is greater at greater discharges. 

Averaging the head loss values across the surcharge range allows the relationship between the head 

loss and the velocity head to be determined (Figure 4.21). In all cases there is a good linear fit 

showing that the head loss can be well represented by such a relationship. An increase in step height 

causes a considerable increase in head loss for step heights between 0.0 and 1.0 pipe diameters. From 

the 0.0 to 0.5 pipe diameter step height there is an i~crease in head loss of approximately 2.5 times. 

Increasing the step further, to 1.0 pipe diameters, results in a lesser increase in head loss. Any step 

height variation above 1.0 pipe diameters appears to have no significant influence on the head loss 

values. 
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manhole). 
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0,0124 0.0085 0.0016 0.0194 0.0023 0.0274 0.0037 0.0249 0.0025 0.0247 0.0022 

0.0220 - - 0.0324 0.0029 0.0449 0.0038 0.0418 0.0035 0.0423 0.0022 

0.0344 - - 0.0475 0.0045 0.0663 0.0049 0.0656 0.0057 0.0652 0.0025 

0.0496 0.0266 0.0058 0.0664 0.0055 0.0924· 0;0063 0.0924 0.0059 0.0922 0.0038 

0.0675 - - 0.0859 0.0067 0.1216 0.0048 0.1204 0.0040 0.1227 0.0033 

0.0882 0.0440 0.0088 0.1109 0.0100 0.1581 0.0048 0.1571 0.0045 0.1582 0.0037 

Table 4.3 Mean and standard deviation values .for surcharge' averaged head loss, Hs. 

The piezometer measurements at locations along the manhole supply pipes were intended to provide 

a longitudinal section of the pressure along the pipe length. It proved difficult to obtain reliable 

readings from the manometers due to the turbulent flow causing pressure fluctuations, which caused 

excessive rise and fall in the piezometer measuring tubes. Also, the pressure tapping pipe work was 

required to be kept scrupulously clean and air free and this p~oved difficult to achieve consistently 

during the extensive laboratory testing period. Although it is not possible to have full confidence in 

the piezometer pressure values, results are presented for one case to provide an indication of the 

pressure profiles obtained (Figure 4.22). 
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Figure 4.22 Sample results from piezometer readings (388mm unbenched manhole, Q = 6.0I/s, 

surcharge = 402mm). 

The pressure profile from the piezometer measurements has a general shape similar to that obtained 

from the numerical model of Asztely and lyngfelt (1996). In the central sections of the pipe lengths 

either side of the manhole the data shows almost constant head loss as the distance along the pipe 

increases. However, as with Asztely and lyngfelt there appears to be an additional pressure drop 

immediately prior to the manhole inlet. This is attributed to the re-circulation occurring in the 

chamber compressing the incoming jet, thereby causing an increase in the velocity in this section of 

the pipe and an associated reduction in pressure. This phenomenon has not been observed by any 

previous laboratory researchers due to the fact that it occurs too close to the manhole to be detected 

by their pressure measurement devices. It has therefore been left out of the theoretical models 

produced. In addition, both the numerical analysis and the laboratory manometer profile highlight 

the effects of the vena contracta that develops in the pipe exiting the manhole, where the pressure 

recovers slightly before settling to the uniform pipe flow head loss. The piezometer results were not 

refined enough to provide confirmation of the asymptotic downstream hydraulic grade line described 

by Archer et al (1978). 

4.4.3 ADE results 

The two parameters required to predict longitudinal dispersion with the ADE model are travel time 

and dispersion coefficient. l1tese coefficients have been determined from the data analysis and 

optimisation procedure. 

The variation of the results for the travel time with respect to surcharge for the 388mm internal 

diameter circular manhole are presented in Figure 4.23. It is clear that the travel time for the zero 

step manhole is almost independent of the surcharge level. The only variation of any significance is 

for the lowest surcharge measurement at the least flow rate where the travel time value is slightly 

higher than the almost constant value above this surcharge. With the inclusion of a step height the 

results demonstrate a similar trend with a maximum value at lower surcharge levels and then a 
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reduction in the travel time to a value that remains constant at further increases of surcharge. The 

level of surcharge at which the travel times attain a constant value appears to increase with 

increasing step height. 
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Figure 4.23 Variation of ADE travel time with surcharge (3880101 unbenched manhole). 

The travel time coefficient is influenced greatly by the discharge through the system. If the values for 

travel time are assumed constant through the surcharge range then it is possible to investigate the 

discharge effect. The data in Figure 4.24 show the trend for the variation of surcharge averaged travel 

time with discharge. It can be seen that there is an almost uniform increase in ADE travel time with 

step height for any given discharge. 
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Figure 4.24 Variation of surcharge averaged ADE travel time with discharge. 

0.00 0.50 1.00 1.50 

0.008 

2.0D 

Q (I/s) mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. 

1.0 14.304 1.067 16.145 1.793 21.266 2.578 26.446 3.742 29.436 4.275 

2.0 · · 8.524 0.669 10.942 1.140 13.927 2.054 15.240 1.416 

3.0 5.105 0.099 5.846 0.593 7.643 1.002 9.526 1.448 10.687 1.157 

4.0 · · 4.476 0.526 5.679 0.622 7.146 1.055 8.218 0.661 

5.0 · · 3.516 0.200 4.699 0.673 5.650 0.785 6.682 0.682 

6.0 2.634 0.044 3.004 0.353 3.934 0.663 4.701 0.816 5.517 0.586 

7.0 · · 2.565 0.120 3.357 0.440 4.168 0.668 4.797 0.553 

8.0 1.987 0.028 2.220 0.105 2.916 0.449 3.507 0.698 4.343 0.564 

Table 4.4 Mean and standard deviation values for surcharge averaged ADE travel time, ts. 

The results for the variation of dispersion coefficient with surcharge are given in Figure 4.25. The 

data shown in this figure demonstrate quite distinct features. In the zero step height case, at 

surcharges below approximately 500mm there is some variability in the dispersion coefficient values. 

As the surcharge increases above the minimum there is a tendency for the dispersion coefficient value 

to also increase, attaining a maximum value at a surcharge of approximately 300mm. Further 

increases in the surcharge result in the dispersion coefficient values swiftly reducing until becoming 

an almost constant value for surcharges greater than 500mm. A similar pattern is followed less 

distinctly by the data for the 0.5 pipe diameter step. However, for greater step height conditions the 

peak dispersion coefficient values occur at significantly higher surcharge levels. The 2.0 pipe 

diameter step geometry demonstrates a peak at surcharges in the region of 800mm. 
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Figure 4.25 Variation of dispersion coefficient with surcharge (3880101 unbenched manhole). 

In some of the step height cases there is undoubtedly considerable variation of dispersion coefficient 

with surcharge. However, as a means of determining the effect of step height upon the dispersion 

coefficient, the values have been averaged across the surcharge range (Figure 4.26). A linear 

relationship between the surcharge averaged longitudinal dispersion coefficient and the discharge 

has been assumed. This has been fitted to the data and through the origin. For the zero step height 

manhole, the surcharge averaged dispersion coefficient has a value of 11.0Qm2/s. This is over three 

times greater than the value of 3.3Qm2/s determined for a straight length of pipe (Guymer and 

O'Brien, 2000). There are further increases in dispersion as the step height increases, and a step 

height of 1.0 pipe diameters gives rise to dispersion coefficients over nine times greater than no step. 

Increases in step height above 1.0 pipe diameters cause smaller increases in the dispersion 

coefficient. 
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Figure 4.26 Variation of surcharge averaged dispersion coefficient with discharge. 

0.00 0.50 1.00 1.50 2.00 

mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. 

0.013 0.009 0.056 0.019 0.116 0.031 0.125 0.039 0.120 0.045 

· · 0.114 0.031 0.224 0.044 0.217 0.088 0.259 0.095 

0.038 0.033 0.162 0.039 0.319 0.069 0.336 0.134 0.368 0.128 

· · 0.214 0.051 0.436 0.105 0.460 0.175 0.474 0.195 

· · 0.263 0.057 0.488 0.115 0.785 0.202 0.609 0.276 

0.075 0.084 0.321 0.079 0.556 0.111 0.620 0.213 0.728 0.342 

· · 0.388 0.101 0.691 0.116 0.793 0.290 0.839 0.349 

0.080 0.055 0.431 0.088 0.796 0.135 0.886 0.248 0.949 0.353 

Table 4.5 Mean and standard deviation values for surcharge averaged dispersion coefficient, K.. 

The effect of benching upon the ADE parameters for longitudinal dispersion through the manhole is 

shown in Figure 4.27 and Figure 4.28. The travel time values for the ADE analysis are approximately 

halved by the presence of benching. Also, any variation in the travel time values with changes in 

surcharge level are eliminated. The comparison with dispersion coefficient values is even more 

marked. In the case of the benching design tested, the dispersion coefficient values have been 

reduced to a minor fraction of those for the unbenched case. Only at surcharges less than 

approximately 400mm is there any increase in the dispersion coefficient above the almost constant 

value of approximately 0.01 metres squared per second for greater surcharges. 
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Averaging these ADE coefficient values over the surcharge range tested provides the relationship 

between them and the discharge. The results presented in Figure 4.29 highlight the reduction in 

travel time that the presence of benching in the manhole causes. As a comparison, travel time values 

for a straight length of pipe (Guymer and O'Brien, 2000) are included in the figure. The benching 

arrangement was a deep channel with a half pipe bed and this has clearly guided the flow towards 
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the outlet giving travel time results that are very similar to the straight pipe values. Figure 4.30 

shows the comparison of benched and unbenched dispersion coefficient results in relation to the 

discharge. It can be seen that the provision of benching causes a huge reduction in the dispersion 

coefficient values and gives results very similar to those for a straight pipe. Therefore, whilst the 

dispersion analysis provided by Taylor (1954) assuming constant cross section is not strictly valid for 

a surcharged manhole, it is clear that this theory can provide a very good approximation of 

longitudinal dispersion for benched manholes, regardless of surcharge or step height conditions. 
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Figure 4.29 Comparison of variation of surcharge averaged ADE travel time with discharge for 

benched and unbenched manholes and straight pipe (pipe data from Guymer and O'Brien, 2000). 
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1.5D unbenched 1.5D benched 

ts K. ts K. 
Q (l/s) mean s.d. mean s.d. mean s.d. mean s.d. 

1.0 26.446 3.742 0.125 0.039 14.162 0.487 0.006 0.002 

2.0 13.927 2.054 0.217 0.088 - - - -
3.0 9.526 1.448 0.336 0.134 5.233 0.100 0.016 0.007 

4.0 7.146 1.055 0.460 0.175 - - - -
5.0 5.650 0.785 0.785 0.202 - - - -
6.0 4.701 0.816 0.620 0.213 2.683 0.039 0.029 0.016 

7.0 4.168 0.668 0.793 0.290 - - - -
8.0 3.507 0.698 0.886 0.248 2.029 0.014 0.027 0.Q10 

Table 4.6 Comparison of benched and unbenched manhole mean and standard deviation values for 

surcharge averaged ADE parameters. 

4.4.4 ADZ results 

The measured upstream and downstream temporal concentration profiles were used to establish the 

parameters for the ADZ equation to give the best prediction of the data. These parameters are the 

travel time and the time delay, both measured in seconds. 

Figure 4.31 presents the variation of the ADZ travel time with surcharge level for all tested 

discharges. There appears to be little variation of travel time with surcharge in the range considered, 

although at step heights ofO.S pipe diameters or lower there is a slight trend for the travel time to be 

greater at lower surcharges. It can be observed that there is an increase in travel time for a given 

discharge as the step height increases. 
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Figure 4.31 Variation of ADZ travel time with surcharge. 

The values of the reach time delay coefficients are presented in Figure 4.32. This represents the time 

taken for the fastest travelling dye to be transported between the measurement locations. Generally 

the trend is for the surcharge height to have little effect on the time delay for any given discharge 

with the zero step height condition. As the step height increases there becomes more variation in the 

time delay values through the surcharge range. Step heights of 1.0 pipe diameters or greater display 

a maximum time delay for the lowest measured surcharges which decreases with increasing 

surcharge. At surcharges of approximately 500111111 or greater there is no further variation of time 

delay. 
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Figure 4.32 Variation of reach time delay with surcharge. 

If the travel time and time delay are considered to be independent of surcharge variations then the 

relationship between the ADZ time coefficients and the discharge can be determined. Figure 4.33 

shows the surcharge averaged travel time values in relation to the discharge. At higher flow rates the 

fluid velocity is greater and hence the tracer cloud takes less time to travel between the fluorometers. 

The figure indicates that an increase in step height causes an increase in travel time for a particular 

flow rate. The increase with step height is almost uniform. All the step height conditions 

demonstrate travel time variations that are a high quality fit to being nearly inversely proportional to 

the discharge. 
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Figure 4.33 Variation of surcharge averaged ADZ travel time with discharge. 

0.00 0.50 1.00 1.50 2.00 

mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. 

15.199 2.093 21.503 3.988 35.407 3.447 44.001 3.801 48.167 5.256 

· · 11.902 1.571 18.457 1.374 22.607 2.649 25.680 1.586 

5.515 0.531 8.113 1.169 12.960 1.667 15.728 1.655 18.156 1.118 

· · 6.249 0.864 9.709 0.866 11.985 1.143 13.832 0.883 

· · 4.959 0.525 7.918 0.796 9.382 0.986 11.322 0.690 

2.887 0.345 4.291 0.757 6.617 0.778 7.819 0.920 9.336 0.912 

· · 3.716 0.410 5.774 0.462 7.028 0.791 8.125 0.593 

2.153 0.120 3.211 0.352 5.028 0.572 5.992 0.769 7.443 0.500 

Table 4.7 Mean and standard deviation values for surcharge averaged ADZ travel time, fs• 

The reach time delay calculated with the optimised ADZ analysis varies with the discharge applied 

through the system in a similar manner to the travel time. (Figure 4.34). Although the manhole acts 

as a dead zone there is clearly a portion of the tracer cloud that bypasses it entirely and thus travels 

between the measurement locations with the maximum velocity of flow. It is apparent that increases 

in the step height above 0.5 pipe diameters ca'uses very tittle change in the time delay for a given 

discharge. The only marked difference is for the case where there is no step height. Under these 

circumstances the time delay is greater than for the manhole conditions where a step height is 

present. It is therefore observed that the introduction of a step height between the inlet and outlet 

pipes at the manhole junction actually results in an increase in the maximum velocity of flow through 

the system at a particular discharge. 
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Figure 4.34 Variation of surcharge averaged reach time delay with discharge. 

0.00 0.50 1.00 1.50 2.00 

mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. 

11.009 0.695 8.348 0.641 7.535 1.091 7.570 1.089 8.187 1.936 

· · 4.449 0.283 4.052 0.362 4.474 0.793 4.393 0.762 

4.027 0.429 3.062 0.208 2.798 0.293 3.018 0.597 2.990 0.516 

· · 2.378 0.224 2.156 0.196 2.296 0.348 2.347 0.384 

· · 1.915 0.108 1.825 0.217 1.871 0.258 1.942 0.299 

2.131 0.234 1.618 0.093 1.544 0.143 1.608 0.222 1.651 0.261 

· · 1.399 0.094 1.299 0.091 1.348 0.149 1.419 0.266 

1.644 0.125 1.020 0.044 1.134 0.061 1.167 0.094 1.229 0.180 

Table 4.8 Mean and standard deviation values for surcharge averaged reach time delay, 1"s' 

The effect of the presence of benching in the manhole on the ADZ time coefficients is shown in the 

following figures. The variation of the travel time with surcharge for the benched and unbenched 1.5 

pipe diameter step height manholes is shown in Figure 4.35. The provision of a benching 

arrangement has caused a significant reduction in the travel time values to approximately 35 percent 

of the values for the unbenched manhole. There is also less variation in travel time with surcharge for 

the benched manhole condition. In a similar manner the reach time delay values are compared in 

Figure 4.36. In this case the results are somewhat different. The presence of benching actually causes 

an increase of up to 100 percent in the time delay values above the unbenched results. Thus the 

presence of benching causes the maximum flow velocity in the system to be less than without 

benching for any given flow rate. 
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Averaging the ADZ time coefficient values over the surcharge range tested provides the relationship 

between the time coefficient and the discharge. In a similar manner to the ADE coefficients, the 

results presented in Figure 4.37 demonstrate a clear reduction in travel time caused by the presence 

of benching in the manhole whilst the data in Figure 4.38 provides a comparison of benched and 
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unbenched reach time delay results in relation to the discharge. ADZ model coefficients for a straight 

length of pipe (Guymer and O'Brien, 2000) are also included in the figures. In both cases, the 

benching gives coefficients that are vel)' similar to the straight pipe values. Friction between the 

passing jet and the boundal)' edges of the benching are clearly slowing the peak velocity, such that 

the reach time delay increases with benching in place. The reach time delay for the benched manhole 

is slightly less than that for the straight pipe. This difference can be explained by the all 

encompassing nature of the pipe walls, which have greater contact with the passing flow and 

therefore apply additional friction effects. 
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benched and unbenched manholes and straight pipe (pipe data from Guymer and O'Brien, 2000). 



Experimental Results 96 

1.50 unbenched 1.50 benched 

Is l"s Is l"s 

Q (I/s) mean s.d. mean s.d. mean s.d. mean s.d. 

1.0 44.001 3.801 7.570 1.089 14.421 0.495 12.109 0.492 

2.0 22.607 2.649 4.474 0.793 - · · · 
3.0 15.728 1.655 3.018 0.597 5.391 0.157 4.528 0.175 

4.0 11.985 1.143 2.296 0.348 · · · · 
5.0 9.382 0.986 1.871 0.258 · · · · 
6.0 7.819 0.920 1.608 0.222 2.797 0.073 2.381 0.102 

7.0 7.028 0.791 1.348 0.149 · · · · 
8.0 5.992 0.769 1.167 0.094 2.115 0.024 1.826 0.038 

Table 4.9 Comparison of benched and unbenched manhole mean and standard deviation values for 

surcharge averaged ADZ parameters. 

4.4.5 Laser imaging 

The following images in Figure 4.39, Figure 4.40 and Figure 4.41 were obtained by means of a 35mm 

still camera used in conjunction with a laser light sheet illuminating the central plane of the 

manhole. Shutter speeds in the region of 0.5 seconds were required to obtain the correct exposure. 

This leads to the images effectively representing the tracer movements averaged over a short time. 

The results of this technique are presented to show the passage of a short injection of fluorescent 

tracer through a manhole with no step between the inlet and outlet (Figure 4.39). The first image 

shows the tracer soon after having initially entered the manhole from the left. This clearly reveals a 

narrowing jet with at least some portion of the tracer passing directly to the outlet pipe. In Figure 

4.39b, more of the tracer mass is present and some has begun to travel lip and backwards within the 

surcharge volume. Once all the tracer has entered the manhole a jet of clear water is observed (Figure 

4.39c). This jet slowly re-entrains the tracer from the volume above it and carries it into the outlet 

pipe. In addition, Figure 4.39d provides an indication of flow velocities by means of the reflection of 

light from many neutrally buoyant particles travelling with the flow. This indicates the lower 

comparative velocities in the surcharge volume re-circulation. 
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Figure 4.39 Passage of tracer and particles through unbenched manhole with no step (Q = 1.5I/s, 

surcharge = 150mm). 
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The images in Figure 4.40 were obtained frolll a 1.50 step manhole at a relatively low surcharge. As 

before, the images show the jet of tracer entering the manhole from the left. In this case, the jet 

appears to be slightly distorted and tends to dip towards the outlet pipe (Figure 4.40b). In this way, 

as before, at least some quantity of the tracer mass passes directly through the manhole. Also. the 

impact of the tracer jet on the back wall of the manhole can be seen to force tracer up into the 

surcharged region of the chamber. The clear jet of water appears to be compressed from both above 

and below, though the effect is stronger, from above suggesting that this region has a more powerful 

re-circulation effect. 
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Figure 4.40a Figure 4.40b 

Figure 4.40d 

Figure 4.40 Passage of tracer through unbenched manhole with l.5D step at low surcharge (388mm 

manhole, Q = 4.01/s, surcharge = 288ml11). 

The images presented in Figure 4.41 were recorded under the same flow conditions as for the 

previous figure except that for this case the surcharge was significantly greater. It is interesting to 

note from these images that the tracer injected does not appear to spread entirely throughout the 

surcharge v lume. It must be remembere'd that some reduction in light intensity at upper levels will 

be apparellt due to attenuation of the laser light sheet by the tracer lower down . However, there is a 

defined edge to the tracer loud in the upper volume rather than a gradual loss of intensity and this 

implies a limit for the spread qf the ' tracer. This demonstrates that the assumption of full , 

instantaneous mixing is not appropriate under these circumstances. 

98 
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Figure 4.41 a Figure 4.41 b 

Figure 4.41 c Figure 4.41d 

Figure 4.41 Passage of tracer through unbertched manhole with l.5D step at high surcharge (388mm 

manhole. Q = 4.0I/s. surcharge = 798mm). 
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Chapter 5 

Discussion 

5.1 Introduction 

This chapter provides discussion and interpretation of the results presented previously for 

longitudinal dispersion and head loss due to a stepped, surcharged manhole. In addition, further 

results are presented for a range of manhole diameters. These data were collected by O'Brien (2000) 

using similar laboratory procedures to those outlined in Chapter 3. All the data from these tests have 

been thoroughly re·analysed using the optimisation techniques described. The range of experiments 

that were undertaken and analysed for the investigation of manhole diameter variations is provided 

in section 5.3. 11tis gave considerable extra results from which to draw conclusions on the effects of 

manholes on longitudinal dispersion. Also, there was an opportunity to make a direct comparison 

between results obtained for a manhole of almost identical dimensions, thus giving extra confidence 

in the laboratory and analysis methods. 

5.2 Head loss 

5.2.1 Comparison of head loss results with other researchers 

It has proved convenient to consider the head loss coefficient (Equation 12.11) as a measure of the 

head loss due to a manhole. 11tis eliminates the effect of the flow velocity on the results. The values 

of the head loss col'flicil'nt for the manhole configurations tested are presented in Table 5.1. 

Step height Head loss coefficient (Kit) 

0.00 0.51 

0.50 1.29 

1.00 1.83 

1.50 1.81 

2.00 1.82 

Table 5.1 Head loss coefficients. 

Bo Pedersen and Mark (1990) present shape factors for different manholes, which allow the 

prediction of a head loss coefficient for a manhole of a given diameter. Their theory and 

experimental work revealed that for a particular manhole design there was a unique relationship 

between the head loss coefficient and the ratio of manhole to pipe diameter. In the case of the zero 

step height and unbenched condition the shape factor was determined by means of plotting the head 

loss results from previous researchers against the diameter ratio of the manhole concerned. A linear 

regression with a gradient of 0.12 was determined, and hence they proposed that KH=O.12(OmfD). Bo 

Pedersen and Mark were limited by the available data to manholes with a diameter ratio less than or 
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equal to 4.0. However, for the work in this thesis the zero step manhole, which has a diameter ratio 

of 4.41, gave a predicted value of 0.53 for K.!, using the appropriate shape factor. This is very close to 

the experimental result of 0.51. Since the relationship developed by 80 Pedersen and Mark (1990) was 

developed from the experimental work of a number of researchers there is good confidence that the 

results from the present study are concurrent with much of the previous recognised manhole head 

loss research. 

The head loss results for the manholes with step height variations also compare favourably with 

results of Kusuda and Arao (1996). Their experiments with equal diameter inlet and outlet pipes 

demonstrate the same pattern where the loss coefficient becomes almost constant for step heights of 

in the region of 1.0 to 1.5 pipe diameters or greater. This constant loss coefficient value is 

approximately 2.0, which is close to the value of 1.8 for the work presented here (Figure 5.1). The 

results from only one manhole to pipe diameter ratio from Kusuda and Arao (1996) are shown since 

they found that it was not a significant factor on head loss for stepped manholes. 

As the step height increases between 0.0 and approximately 1.0 pipe diameters the head loss 

increases. It has previously been demonstrated that the reduction of the diffusion zone volume of the 

submerged jet, for instance by the restraining presence of benching, leads to a reduction in the head 

loss (Marsalek, 1984; Johnston and Volker, 1990) and this is the basis for the jet theory approach to 

predicting manhole head losses considered by Bo Pedersen and Mark (1990). This is discussed in 

more detail in section 5.8. 
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Figure 5.1 Comparison of head loss coefficient with Kusuda and Arao (1996). 

5.3 Re-analysis of manhole diameter data 

In addition to the laboratory tests for stepped manholes outlined in section 3.7, considerable data 

from previous research conducted by O'Brien (2000) were re-analysed with the optimisation 

procedure developed for this present work. This enabled consideration of the effect of variations in 

the surcharged manhole diameter on the longitudinal dispersion. The manhole diameters tested were 

400, 500, 600 and 800mm giving DdD ratios of 4.41, 5.68, 6.82 and 9.10 respectively. Steady flow 
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discharges in the range of 1.0 to 8.7 litres per second were used. All manholes were without a step 

height condition or benching and the surcharge range tested was up to a maximum of approximately 

300mm above the pipe soffits. O'Brien also provided data for re-analysis from tests conducted on a 

straight length of pipe with no manhole present. Test procedures were similar to those detailed for 

the investigation into the effect of step heights and high surcharges. Two of the differences were that 

data was logged at almost 167 Hertz and a different method of data preparation was used. This 

involved determining the start and end points of the upstream and downstream temporal 

concentration profiles by working away from the peak value and establishing the location of the first 

negative value either side of the peak. Five repeat tests for a given flow rate and surcharge 

combination were recorded. The profiles of the five tests were then superimposed onto each other by 

temporally shifting the profiles until the times of occurrence of the peak concentration values were 

aligned. Thus the final upstream and downstream profiles were a merged average of the five tests. To 

eliminate the effects of the noise on the concentration profiles the data were processed using a 

mathematical smoothing filter, a process described in more detail by O'Brien (2000). 

To enable a direct comparison to be made between the manhole diameter and the step height results 

it was necessary to keep the analysis procedure similar. For this reason the manhole diameter data 

were sampled at a rate that gave a time step value as near as possible to that for the step height 

analysis. The original tracer concentration profiles were logged at 166.67 Hertz, giving a time step 

value of 0.006 seconds. A data sample rate of 1 in 25 was applied, thereby giving a time step of 0.15 

seconds, close to the stepped manhole data which were analysed with a time step of 0.1536 seconds. 

The full schedule for the laboratory tests completed by O'Brien is summarised in Table 5.2. Each 

manhole was circular with no step height or benching. 

Manhole diameter (mm) Discharge range (lIs) Surcharge range (mm) Number of tests 

Straight pipe 2.1 -10.3 nla 7 

400 1.0·7.6 7·282 95 

500 1.0 -7.5 10-268 60 

600 0.9·8.7 27-309 95 

800 1.0 - 6.1 27-332 23 

Total number of tests 280 

Table 5.2 Summary of manhole diameter tests completed by O'Brien (2000). 

The work of O'Brien (2000) included longitudinal dispersion data for a length of straight pipe. The 

measured head loss was used in conjunction with Equation (2.151 proposed by Taylor (1954) to 

determine a theoretical value for the dispersion coefficient of 3.6Qm2/s. The standard analysis 

method applied to the laboratory data gave a dispersion coefficient for the pipe of 8.0Qm
2/s. 

However, the optimisation of the ADE coefficients resulted in the value of K being determined as 

3.3Qm2/s, thus further improving confidence in the procedure. 
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Figure 5.2 Variation of discharge averaged dispersion coefficient with surcharge determined with 

standard ADE procedure (O'Brien, 2000). 
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The earlier work of O'Brien (2000) for longitudinal dispersion in manholes with varying diameter was 

originally analysed using a standard procedure to determine the coefficients for the ADE and ADZ 

models. One of the reasons for the present work examining the effects of high surcharge levels was 

because of the recorded trend in the variation of dispersion coefficient with surcharge. These data 

demonstrated a tendency for there to be a plateau region of low dispersion coefficient at low 

surcharges, and this was followed by significant increase and variation in dispersion coefficient 

values as the surcharge was increased above a certain level, dictated by the manhole diameter (Figure 

5.2). The experimental investigation in this current study was designed to obtain data that could be 

used to clarifY the trends for dispersion coefficient at higher surcharge levels. In fact, the re-analysis 

of data gathered by O'Brien using an optimisation procedure resulted in somewhat different trends 

for the variation of dispersion coefficient with surcharge. 

5.4 ADE longitudinal dispersion 

Figure 5.3 and Figure 5.4 present a combination of the results of the author's laboratory investigation 

and the re-analysis of a similar manhole design used by O'Brien (2000). There is generally good 

agreement between the results, which indicates that the data manipulation and smoothing process 

employed by O'Brien does not adversely affect the final coefficients. Including these extra results 

from the laboratory tests completed by O'Brien has allowed a more comprehensive study of the effect 

of surcharge on the ADE coefficients determined, with increased detail in the low surcharge region, 

which previous head loss research has highlighted as a significant area. 

A comparison of the ADE travel time results from the present study and the data provided for a 

400mm diameter manhole is shown in Figure 5.3. The general trend for any flow rate where a low 

enough surcharge was achievable is for there to be a rapid increase in travel time to a maximum 

value as the surcharge increases between a value of zero and approximately 40mm. Further increases 

in surcharge result in the travel time decreasing and for surcharges of approximately 150mm or 

greater the travel time is almost constant. 
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The comparison of dispersion coefficient data for similar manholes is shown in Figure 5.4, The data 

in this figure provide a clear case for the need to extend the work of O'Brien to greater surcharge 

depths , Although there is some scatter in the data for surcharges less than 300mm there are trends 

evident, Between surcharge values of zero and approximately 200mm the dispersion coefficient for 

any discharge tends to reduce, before increasing again to a maximum as the surcharge reaches 

approximately 350ml11, Further increases in the surcharge result in a significant reduction in the 

dispersion coefficient, which is then all110st constant for any surcharge greater than approximately 

500111111. The constant dispersion coefficient value that is measured for the higher surcharges is in the 

region of 10-20 percent of the maximum dispersion coefficient for the same discharge, 
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Th variation of Cr. v'l time with urcharg for different manhole diameters displays some very clear 

trend . The re ult of th r analy is of the data collected by O'Brien are presented in Figure 5.5. For a 

particular di charge the trav'l tim illcrea e with surcharge in an approximately linear fashion to a 

maximum value (t a ertain urcharge that increases with increasing manhole diameter. There is then 

a udden drop in travel time after the maximum value and then no further variation with increasing 

surcharge. It Ita b en ob rved th t ther is a particular surcharge level for each manhole diameter 

wher the travel lime co fficielll become almost constant, and an approximate surcharge level for 

this, ba ed 011 averaging th upI' r. nd I wer limi ts for different discharges, has been marked on the 

figures . TIl' peak t v I tim lue increas as the manhole diameter increases. This is most 

notic ab le betw en the 400mm and 500lllm diameters, and the increase is much less between the 

la rger In nhol . 
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Figure 5.5 Variation of ADE travel time with surcharge for manhole diameters. 

It would be very beneficial to be able to predict this travel time surcharge threshold for different 

diameters. Figure 5.6 presents the data for threshold level as a function of the manhole diameter with 

error bars included to represent the extremes of the surcharge threshold for different discharges. 

Over the range of manholes that has been tested there is an extremely good linear relationship. 

Therefore, it should be possible to obtain a reliable estimate of the surcharge level above which ADE 

travel time values will be constant for a solute passing through the manhole for any manhole within 

this range. 

300 

E 250 

§. 
:!2 ,g 
.J:. 200 e 
S 

e. 
;! 150 
~ 
:;, 
1/1 

~ 
;:I 100 

~ 
w 
~ 50 

y = 37.34x - 92.71 
R2 = 1.00 

O~------~------~------~----~~----~~----~------~ 
3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Manhole diameter ratio, 0",10 (-) 

Figure 5.6 Variation of ADE travel time threshold surcharge with manhole diameter. 



Discussion 109 

Trends for the dispersion coefficient are less clear for different manhole diameters (Figure 5.7). The 

400mm diameter manhole demonstrates two peak dispersion coefficient values, one at the very low 

surcharges and one in the region of the greatest surcharges tested in this case. This pattern is more 

obvious in Figure 5.4 where the manhole diameter re-analysis results are combined with data from 

the present study to provide a more complete picture. With the 500mm manhole the trends are 

similar but it would appear that the maximum surcharge levels tested are not great enough to 

include the second peak in the dispersion coefficient, potentially associated with the transition from 

predominantly horizontal to vertical re-circulation patterns. This suggests that a transition such as 

this would be caused by the volume of water in the manhole attaining a certain aspect ratio in 

relation to the manhole diameter. This theory is supported by the results from the 600mm diameter 

manhole, although these data have a somewhat increased scatter making the trends less discernible. 

Again it would appear that the possible occurrence of a second peak in the dispersion coefficient 

values cannot be validated without results from experiments at greater surcharges. There is a lack of 

data for the 800mm diameter manhole, which makes it difficult to draw any satisfYing conclusions 

regarding the effect of surcharge on the dispersion coefficient in this case (Figure 5.7). In addition, 

the figure is somewhat distorted by the presence of an extreme data point for the 7.45 Htres per 

second results. The original temporal concentration profiles supplied were thoroughly examined for 

the cause of this high dispersion coefficient value. Whilst the profiles did reveal unusually high 

dispersion in comparison to those for similar conditions, there was insufficient evidence to confirm 

that the data was actually unreliable and the data point has therefore remained included in the 

results. 
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5.5 ADZ longitudinal dispersion 

Figure 5.8 presents a comparison of the ADZ travel time data obtained from the laboratory 388mm 

diameter straight through manhole with the results for the 400mm manhole studied by O'Brien 

(2000). It can be seen that the results for the same flow rate and surcharge combination are similar 

and thus there is confidence that the method of concentration profile averaging and smoothing 

employed by O'Brien does not affect the ADZ optimised results unduly. The data show a peak travel 

time value at a surcharge of approximately 50mm for those flow rates that could be tested at these 

low surcharges. The travel time then decreases as surcharge increases further before rising to another 

peak at approximately 350mm. Surcharges greater than approximately 450mm have no further effect 

on the travel time, which remains almost constant for a given discharge up to the maximum 

surcharge. This is a very similar trend to that displayed by the dispersion coefficient with the ADE 

analysis. If it is assumed that the reach time delay is a function of the velocity profile only, then the 

travel time component of the ADZ equation is the part that gives a measure of the longitudinal 

dispersion, and reflects the presence or otherwise of a long tail on the downstream tracer profile. 

Thus the variation of travel time with surcharge appears to reflect the trends displayed by the 

dispersion coefficient. 
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Figure 5.8 Comparison of travel time data from Author and O'Brien (~388mm unbenched manhole 

with no step). 

The comparison of the reach time delay variation with surcharge between the current laboratory 

results and the re-analysis of the data collected by O'Brien is presented in Figure 5.9. There is 

generally good agreement between the two sets of results, although there is a degree of scatter for 

the results from O'Brien's data at lower discharges. Predominantly the time delay values are 

independent of surcharge and the discharge has a far greater influence over the results. 
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Figure 5.9 Comparison of time delay data from Author and O'Brien (~388mm unbenched manhole 

with no step). 

The variation of ADZ travel time with surcharge for different manhole diameters has been evaluated 

after re-analysis of the data collected by O'Brien (Figure 5.10). The travel time increases sharply with 

surcharge in an approximately linear fashion to a maximum value at a surcharge that appears to be 

dictated by the manhole diameter. Further increases in surcharge result in a sudden drop in travel 

time and then no further variation with increasing surcharge. Again this pattern highlights a 

particular surcharge level for each manhole diameter where the travel time coefficient suddenly 

reduces and becomes almost constant. The upper and lower limits for this threshold for different 

discharges have been averaged and the resulting mean threshold surcharge has been marked on the 

figures. The peak travel time value increases by a factor of approximately two between the 400mm 

and 500mm diameters and continues to increase to a lesser extent between the results from the 

larger manholes. 
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Figure 5.10 Variation of travel time with surcharge. 

In a similar manner to the ADE travel time, it appears possible to be able to predict the surcharge 

threshold for the ADZ travel time coefficient as a function of the manhole diameter. Again, error bars 

are used to mark extreme threshold values from different discharges. There is a good linear 

relationship between the manhole diameter and the surcharge threshold over the range of manholes 

that have been tested. 
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Figure 5.11 ADZ travel time threshold. 

The response of the ADZ reach time delay values to variations in surcharge and manhole diameter 

(Figure 5.12) reflect the same theory as applies to the stepped manhole cases. It is assumed that at 

least some fraction of the tracer injected passes directly through to the downstream pipe. Therefore 

the time delay is largely independent of the surcharge level. 
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Figure 5.12 Variation of time delay with surcharge. 

There is considerable variation in the ADZ travel time values at low surcharges. Therefore, in order to 

examine the effect of discharge on the travel times for the different manhole diameters only travel 

times for surcharges greater than the surcharge threshold for the particular manhole have been 

considered. The data presented in Figure 5.13 illustrate that for manholes with a surcharge above the 

threshold value the travel time will be very similar to that for a straight pipe, regardless of the 

manhole diameter. The 800mm diameter manhole varies from this pattern slightly. However, the 

relationship for this case is defined by very few data points and therefore must be treated with 

caution. Error bars represent one standard deviation about the mean value. 
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The level of surcharge has little effect on the reach time delay, the time difference between the first 

arrival of the tracer at the upstream and downstream measuring locations. The effect of discharge is 

shown by the data in Figure 5.14. Error bars are included to show one standard deviation either side 

of the surcharge average. These data indicate that there is generally a good fit to an inverse power 

law. The fastest travelling fraction of the tracer is transported between the fluorometer locations 

more rapidly than it would be by flow through a straight pipe. This implies that the maximum flow 

velocity through the system is increased by the presence of a manhole. Examination of images of the 

jet flow through the manhole has revealed that re-circulation patterns cause a narrowing of the 

incoming jet which gives rise to a related increase in velocity. In addition, the jet in the manhole is 

free of some of the pipe friction effects and therefore the maximum velocity is likely to be increased. 
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Figure 5.14 Variation of surcharge averaged reach time delay with discharge for manhole diameters. 

5.5.1 Equivalent pipe length analysis 

A simple procedure for incorporating longitudinal dispersion due to surcharged manholes into the 

processes of sewer water quality modelling software would be to represent the manhole by an 

equivalent length of pipe. The work of Guymer and O'Brien (2000) presented data for flow through a 

length of straight pipe between the fluorometer locations. This gave equations for the tracer cloud 

mean travel time and the reach time delay with respect to the discharge through the pipe. These were 

in good agreement with theoretical values. The ratio of the measured travel time between the 

fluorometers and through the manhole to the straight pipe travel time over the same distance gives 

the equivalent number of pipes (Equation 15.1 I). 

tm 
Pt =-=­

tp 

(5.1) 

where Pt = travel time equivalent number of pipes, tm = measured travel time with manhole in 

position and tp = straight pipe travel time. 
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In a similar way the equivalent pipe time delay is given by 

15.21 

where PT = time delay equivalent number of pipes, f m= measured time delay with manhole in 

position and fp= straight pipe time delay. 

Thus a value greater than unity for the equivalent pipes implies that the centroid or leading edge of 

the tracer cloud travels slower through the manhole than it would be expected to through a straight 

length of pipe. Conversely, a value less than unity means that the presence of the manhole causes an 

increase in average or maximum speed over that of pipe flow. 

The results from analysing the manhole tracer studies have highlighted the problem with applying an 

equivalent pipe length method for application in a sewer model. The nature of flow through a 

surcharged manhole results in the leading edge of the tracer cloud travelling faster through the 

length of the system than it would through a straight pipe. At the same time, the surcharged volume 

in the manhole retains a proportion of the tracer mass and releases it only gradually. This causes the 

centroid of the tracer to travel slower through the manhole system than through a straight pipe. 

Therefore there is no single equivalent pipe length that can be used to represent the manhole in 

terms of both the travel time, I, and the reach time delay, f, simultaneously. For this reason the 

longitudinal dispersion due to manholes in sewers is required to be modelled individually at the 

junctions with coefficients appropriate to the particular manhole, rather than employing a pipe 

length with pipe coefficients to represent the manhole. 

5.6 Flow patterns 

The longitudinal dispersion results presented for stepped manholes and variations in diameter need 

to be examined with regard to the flow patterns and re-circulation profiles observed in the 

surcharged chamber. There appears to be a strong correlation between the flow regime observed and 

the measured dispersion results. The images obtained using the vertical laser Iightsheet provide 

increased insight into the flow regimes within the manhole. This technique has provided a first look 

at the mixing processes that are present in stepped manholes, and whilst not giving a quantitative 

analysis, useful understanding has been gained. The incoming jet is noticeably compressed by the re­

circulation of the flow. It is also possible to see how a proportion of the tracer passes directly to the 

outlet pipe. The step height case shows the tracer highlighting how the jet impacts on the 

downstream face of the manhole. In the extreme high surcharge case the tracer has failed to reach 

the very upper levels of the surcharge volume, even after a considerable period of time. It would 

appear that the nature ofthe re-circulations within the manhole prevent full mixing from occurring. 

In the case of the straight through manholes, it is assumed that at the lowest surcharge levels the 

flow patterns are predominantly horizontal, since there is a restricted volume above the incoming jet 

to allow re-circulations in a vertical plane. For a given discharge at low surcharges under 

approximately 100mm, the flow conditions in the manhole were observed to produce more vigorous 

motion and re-circulation than at higher surcharges. Included in these patterns at higher flow rates 

were a steep standing wave at the downstream wall and small whirls forming on the free surface. 
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Under these circumstances, the dispersion was measured as being greater than that occurring once 

the surcharge had risen slightly higher. This is attributed to the motion encouraging more tracer to 

be forced out of the main through flow and into these strong re-circulation regimes, thus causing 

greater longitudinal dispersion. 

As the surcharge increases flow patterns are damped slightly, and whilst the system is likely to 

remain structured in the horizontal plane, less tracer mass is released out of the main flow and the 

dispersion coefficient reduces. However, when the water depth reaches a particular level, which in 

this case is a little less then the manhole diameter, it may be considered that the re-circulation 

pattern alters from predominantly horizontal to a regime with a significant vertical re-circulation 

element. Hence it is postulated that for lower surcharges, flow from the incoming jet which does not 

pass directly to the outlet tends to return to the inlet region in a horizontal plane. At higher 

surcharges at least some portion of the returning flow passes back towards the inlet in a vertical 

plane. This circumstance causes an increase in solute dispersion due to the greater mixing 

opportunities and the larger dead zone volume. Further increases in surcharge result in a significant 

reduction in the longitudinal dispersion. At these surcharges the flow pattern for all discharges was 

recorded as being very calm. It is therefore surmised that this flow regime results in much smaller 

quantities of tracer being released from the submerged jet into the surrounding surcharge volume. 

Under these circumstances the travel time and dispersion effects of the surcharged manhole are 

remarkably similar to those for a straight pipe. 

There is an increase in the longitudinal dispersion that occurs if there is a step height between the 

inlet and outlet. The increase in step from 0.00 to 1.00 causes the most significant rises in the 

dispersion. Further step height increases result in little additional dispersion effects. With the 

presence of a step height there is greater contact between the submerged jet and the surrounding 

volume resulting in a greater transfer of tracer to the dead zone regions through the entrainment 

process. 

Manholes with benching in place cause considerably less longitudinal dispersion than their 

unbenched counterparts. This reduction is due to the benching restricting the volume of the 

submerged jet available for interaction with the surrounding volume. As such, the specific geometry 

of the benching, such as half pipe or full pipe depth, will determine the amount by which the 

dispersion is reduced. In the case tested, with a 1.5D step manhole and a deep benching channel, the 

response of the manhole to the tracer experiments was very similar to that of a straight pipe. 

5.7 Dispersive fraction 

As a means of further understanding the mixing processes occurring in the manhole it is worth 

considering the dispersive fraction of the system. This has been used by previous ADZ model users 

(Young and Wallis, 1996; Wallis et al, 1989a, 1989b) as a measure of the proportion of the total reach 

volume that is responsible for dispersion. In many cases for laboratory channels, man made large 

scale channels and natural rivers the dispersive fraction has been found to be almost independent of 

discharge. The value for the dispersive fraction appears to well reflect the dead zone features of a 

particular reach such that higher dispersive fraction values occur for the natural channel shapes 

where more dead zone and mixing activity can be expected. Indeed there has been an interest in 

classifying flow conditions through the dispersive fraction from a broad range of research studies, an 



Discussion 121 

example of which is the work of Lancaster and Hildrew (1993). They investigated the feasibility of 

using the dispersive fraction results from an ADZ analysis as a method for quantifying areas in a 

stream that remain quiescent even during high discharge events. They had hypothesised that the 

abundance of these features was related to the availability of refuge areas for macroinvertebrates. 

They discovered that the dispersive fraction did not vary with discharge in any of the streams 

examined, and was indeed related to the refuge availability. Therefore, the different streams could be 

broadly categorised in terms of dispersive processes by means of the dispersive fraction. 

There is no method as yet for predicting the dispersive fraction of a reach without completing tracer 

measurements. Part of the problem here is that there are many mixing conditions that are difficult to 

measure. For instance, a natural river is likely to have dead zone effects along the banks and also 

along the riverbed caused by rocks, pebbles and vegetation as well as the general channel shape. The 

ADZ model simply lumps these conditions together as one effective dead zone. With so many 

variables it would be difficult to single out the longitudinal dispersion effects caused by individual 

dead zone elements, especially along the channel bed where measurements would be difficult to 

obtain. 

The circumstances for a surcharged manhole chamber are very different. The size and geometry can 

be measured in detail with a high degree of accuracy and there is only a single, principal dead zone 

element. Under these circumstances the dispersive fraction parameter can be considered a very 

powerful coefficient, and there is a possibility that its value for a particular manhole could be 

predicted without the need for tracer dispersion experiments once a range of laboratory studies have 

been completed. 

Figure 5.15 presents the data for the variation of the dispersive fraction with respect to the surcharge 

level in the manhole for the 388mm manhole for all step heights. Each data point is the average of 

the values from the five repeat tests completed. Since the time delay at a given discharge is almost 

independent of surcharge the dispersive fraction follows the trends of the travel time parameter. 

Considering the cases where the step height is equal or greater to 1.0 pipe diameters (Figure 5.1Sc, d 

and e) the dispersive fraction variations are very similar. The minimum value for the dispersive 

fraction occurs at the lowest surcharges and increases slightly with surcharge until the water level 

reaches a surcharge of approximately 400mm. At greater water depths, the dispersive fraction 

remains almost constant at a value of approximately 0.8. This suggests that any increase in step 

height above 1.0 pipe diameters causes no increase in the mixing volume. The pattern for step 

heights less than 1.0 pipe diameters is somewhat different. In these cases the values of dispersive 

fraction rise to a maximum in the lower surcharge region before dropping again to reach an almost 

constant value at surcharges over approximately 400nun. These constant values are much reduced 

from the values at higher step heights, being approximately 0.6 for the 0.5 pipe diameter step and 

0.2 for the case with no step. This suggests that the physical boundaries of the manhole, which 

restrict the incoming jet, cause a reduced volume of mixing activity in the turbulent regions 

surrounding the jet core. 
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The theory that boundaries to the incoming jet significantly restrict the volume of fluid responsible 

for dispersion is further enhanced by considering the measurements from the 1.5 pipe diameter step 

case with benching fitted in the manhole base (Figure 5.16). Here the trend for the dispersive fraction 

variation with surcharge is similar to the lower step conditions, where there is a maximum value at 

lower surcharges reducing to a constant value of approximately 0.1 when the surcharge increases 

over the reg ion of 500mm. This implies that the presence of benching in a manhole has a 

considerable impact on reducing the volume of the surcharged manhole that is responsible for 

dispersing the passing tracer. 
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Figure 5.16 Comparison of dispersive fraction data for benched and unbenched-benched manh oles . 

It can be clea rly observed that the flow rate for a particular manhole geometry has no significant 

effect on the dispersive fraction. This is in line with other researchers considering the dispersive 

fraction of river reaches. The average values of the dispersive fraction for the whol e surcharge range 

at each discharge are presented in Figure 5.17. Error bars are shown , representing plus and minus 

one standard deviation of the averaged value. For cla ri ty, only exa mpl e error bars are added to a 

selection of the data for step heights equal to or greater than 1.0 pipe diameters. As can be seen, the 

dispersive fraction for any discharge over the range considered appears to be constant . This impl ies 

that the dispersive fraction of the manhole volume can be determined with tracer tests conducted at 

only a single discharge. 
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A summary of the surcharge and discharge averaged dispersive fraction results for the stepped 

manholes with and without benching is shown in Table 5.3. This indicates that increasing the step 

height causes an increase in dispersive fraction. The effect is most pronounced between a zero step 

and a 0.5 pipe diameter step where the dispersive fraction increases from 0.249 to 0.609. A further 

0.5 pipe diameter step increase causes the dispersive fraction value to rise to 0.774 after which extra 

step height increases have a greatly reduced effect on the increase in dispersive fraction. With 

benching in place the 1.5 pipe diameter step condition has a dispersive fraction less than that for the 

unbenched zero step configuration. 

Surcharge averaged dispersive 

fraction, i's (-) 

Step height Unbenched Benched 

O.OD 0.249 -
0.5D 0.609 -
1.0D 0.774 . 
1.5D 0.804 0.151 

2.0D 0.828 . 

Table 5.3 Surcharge averaged dispersive fraction values. 

5.8 Relationship between head loss and ADZ parameters 

Bo Pedersen and Mark (1990) proposed that the head losses in surcharged manholes with straight 

through flow could be best represented by an approach based on submerged jet theory. They divide 

the head loss coefficient, K.J. into the contributions made by the entrance energy loss (as the jet 
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enters the manhole) and the exit loss (as flow continues into the downstream pipe). 

Earlier work by Albertson et al (1950) provides extensive mathematical definitions for the mean flow 

patterns of fully submerged jets. During the process of flow establishment. immediately after exiting 

the orifice. the jet is described as a combination of a central core section where the velocity is 

constant and equal to that of the inlet pipe. Surrounding this core is a diffusion region with an 

approximate rate of expansion of 1 in 5 (Figure 5.18). The velocity profile in this region is given by a 

Gaussian normal probability function. The flow is considered to have become fully established at a 

distance x from the orifice. where xfD = 6.2. At this point. the eddies in the diffusion region 

surrounding the central core meet at the centre line. These are convenient nominal designations. 

since the true nature of the flow pattern makes it impossible to precisely define the regions 

concerned. 

Diffusion region .. ' 

1~""~'" 
...... .. ' .. ' .. ' 

--.----+=:: ... 

D v 

_.It..-_-+ ... 
- .... -

Core 
... -.... 

x 

". -'. ". '-. ". '-. --. -'- '-. -. -
Zone of flow 
establishment 

Zone of 
established flow 

xlD=6.2 

Figure 5.18 Velocity distribution and diffusion region in a circular free jet (Albertson et aJ, 1950) 

There is a pronounced velocity discontinuity as the jet enters the manhole and this causes a lateral 

mixing process. Fluid within the surrounding manhole volume is entrained within the jet and thus 

the discharge in the manhole increases to a value greater than that in the inlet pipe. Prior to the jet 

reaching the outlet this extra discharge is rejected back into the manhole volume. This discharge 

gain and loss mechanism is directly related to the entrance head loss (Bo Pedersen and Mark. 1990). 

The exit head loss is caused by the expansion of the flow downstream of the vena contracta in the 

downstream pipe. 111is exit loss will be similar for cases with the same discharge and manhole 

diameter. 

Therefore. the head loss for similar manholes at a particular discharge is primarily a function of the 

size of the diffusion region. which is exchanging energy with the surrounding fluid. From this 

assumption it is possible to relate the head loss coefficients that have been established for the 

stepped manholes to this diffusion region. 
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Figure 5.19 The effect of step height on the volume of jet diffusion region. 

Assuming the approximate jet expansion rate of 1 in 5 (Albertson et al, 1950). it can be determined 

that the diffusive region of the submerged jet will be unaffected by contact with the manhole base at 

step heights of greater than 0 01/5. or approximately 78mm in the case of the 388mm manhole (Figure 

5.19). Once the jet becomes free of the manhole base. any furth er step height increases will result in 

no furth er increase in the volume of the jet diffusion region. and therefore there is no further 

increase in the head loss coefficient. This theory is supported by the head loss coefficient results for 

the stepped manhole. This local diffusion and entrainment pattern of a submerged jet will be altered 

by proximity to long itudinal boundaries such as the free surface of the manhole base (Albertson et al, 

1950) and therefore. at low surcharges it ca n be ex pected that results for head loss and dispersion 

will differ from higher surcharges. as has been found to be the case. 

Benching designs can be included in these considerations by assuming that the entrainment and 

rejection zones a re restricted to areas not encompassed by the physical boundaries of the benching. 

Thus a half pipe shaped benching configuration has half the entrance head loss of an unbounded jet 

entry. In fact. the proposed entrance loss value for this circumstance is likely to be slightly less than 

half of the unbounded jet because it reduces the tendency of the jet to oscillate (Bo Pedersen and 

Mark. 1990). 

Computer simulation models have the ability to make reliable predictions for the hydraulics within a 

sewer system. This involves modelling the pressure and head losses throughout the network. 

Therefore. if a relationship between the head loss and longitudinal dispersion parameters could be 

determined it would be poss ible for a computer model to simulate the longitudinal dispersion of a 

solute passing through a manhole from the head loss coefficient calculated at that chamber. It can be 

considered that the dispers ion region of a submerged jet entering a manhole. which is responsible for 

much of the head loss that occurs. is also responsible for the mixing of tracer into the dead zone 

region. The dispersive fraction from the aggregated dead zone model is a measure of the proportion 

of the reach volume that is involved in the dispersion of a tracer. Therefore the relationship between 

the dispers ive fraction and the head loss coefficient has been examined. 

Figure 5.20 shows the variation of the dispersive fraction averaged over the surcharge range with the 

head loss coefficient for the stepped manhole configurations. A linear regression fits this data well. 

suggesting that the head loss and dispersive fraction are directly related and both refl ect the 

proportions of the diffusion region of the submerged jet. The head loss for the benched manhole was 

determined from the shape factors provided by Bo Pedersen and Mark (1990). In addition. results 

from the manhole diameter variations have been included in the figure. A regression fitted with these 
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data included does not provide such a good measure of fit. However, these data were made available 

by O'Brien (2000) who conceded that the head loss measurements recorded for the manhole diameter 

variations were in some doubt, due to difficulties with the pressure transducers deviating from the 

calibrations and possible impurities such as sediment affecting the measurements. It is therefore 

proposed to disregard these data and suggest that the dispersive fraction can be well estimated from 

the head loss coefficient. The linear regression concurs well with the results from a straight length of 

pipe, where the head loss coefficient is effectively zero and the dispersive fraction was determined as 

0.13 (Guymer and O'Brien, 2000). This is an attractive result, since if the reach time delay is known, or 

estimated from the maximum velocity through the reach, and the head loss coefficient is accurately 

predicted by the computer model then the ADZ model can be applied to predict the longitudinal 

dispersion due to the manhole. 
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Figure 5.20 Variation of dispersive fraction with head loss coefficient. 

5.9 Simulation of longitudinal dispersion in a sewer 

The significance of the longitudinal dispersion due to surcharged manholes in the overall design and 

operation of urban drainage networks has been investigated by means of a simulation considering a 

small length of sewer pipeline. A total length of approximately 100 metres of 880101 diameter pipe 

has been considered, with a flow rate of3.0 Iitres per second. This length was divided into 2.7 metre 

sections, thus making the longitudinal dispersion results for a straight pipe (Guymer and O'Brien, 

2000) directly applicable. A Gaussian distribution of simulated tracer was applied as the input profile 

to the upstream end of the pipe. The experimentally derived coefficients were used in combination 

with the ADZ longitudinal dispersion model to simulate the transport of the tracer downstream 

(Figure 5.21). The upstream tracer concentration profile was used as the input to the first 2.7 metre 

pipe length and the predicted downstream output became the input for the next length and so on. 
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Simulations have also been undertaken for the conditions where the sewer length has two 388111111 

manholes in place. A variety of step heights and benching conditions were considered . All cases have 

been modelled with the ADZ model for longitudinal dispersion using the surcharge averaged 

experimentally derived model coefficients for the manhole type concerned. Figure 5.22 presents the 

downstrea m predictions of concentration profile for each case. 
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Figure 5.21 Sewer simulation input concentration profile with ADZ prediction for longitudinal 

dispersion due to 100 metres of pipe. 
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In this simulation, it is clear that the effect of manholes on the longitudinal dispersion of solutes in 

sewer systems is only significant for unbenched manholes where there is a step height present. 

Manholes with no step, and those with a benching design channelling the flow, appear to cause little 

or no additional longitudinal dispersion over that of the pipe length. It is therefore likely that in 

many circumstances sewer quality models can operate effectively without applying special 

coefficients for manholes. However, this approach would have to be applied with care. In cases where 

the flow is poorly directed through the manhole, such as with an unbenched stepped manhole. There 

is potential for underestimating the longitudinal dispersion if the manholes are not taken into 

consideration. This may also be the case where the flow is partially obstructed in a badly maintained 

manhole, or where an angle between the inlet and outlet pipes prevents smooth passage of the flow. 

It is therefore essential to obtain high quality field data from sewers to quantifY the real effects. In 

this way sewer modellers can gain greater assurances in their methods for simulating transport of 

pollutants through an urban drainage network. 
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Chapter 6 

Numerical Modelling 

6.1 The application of a CFD model 

A computational fluid dynamics model uses the governing equations of fluid dynamics to establish 

the values of the dependent variables, such as velocity and pressure, throughout the model domain 

(Anderson, 1995). An analytical solution using these partial differential equations would be exact and 

continuous, and valid at all locations throughout the domain. However, for all but the most simple of 

fluid flow problems there is too great a complexity for an analytical solution to be determined in 

practice. In contrast, solutions found by numerical analysis are approximate and calculated only at 

discrete locations. Interpolation is required to find the results for locations in between the specified 

points. 

There are various different software packages available for CFD modelling. The decision was made to 

use Fluent (Fluent, 1993) for this research into flow through manhole structures. This choice was 

encouraged by the fact that Fluent was developed at the University of Sheffield, which ensures that 

there is a broad field of experience in using it within the Faculty of Engineering and more specifically 

within the Department of Civil and Structural Engineering. 

Fluent uses a control volume based, finite difference method to solve the governing equations for 

conservation of mass and momentum (Equation (2.40( and Equation (2.41 () and, if required, energy 

and chemical species conservation (Fluent, 1993). These last two equations are used for situations 

where the flow is not isothermal and where more than one fluid is present in the model volume 

respectively. Turbulent flows can be modelled using either the k-e or the Reynolds stress turbulence 

model. 

It is possible to simulate flows in or around structures in either two or three dimensions. The process 

of creating a fluid dynamics model for computer analysis and numerical solution is undertaken in a 

series of stages. 

6.1.1 Geometry input 

The physical aspects of the particular problem are required first. These include determining the 

number of dimensions that are appropriate and outlining the geometrical shape of the domain 

within which the simulation is to be conducted. The geometry is described using either a Cartesian or 

polar co-ordinate system. Points of primary concern are defined by co-ordinates and are then 

connected by means of lines or curves (Figure 6.1 a). These curves form the boundaries to surfaces 

created between them. With the geometry input complete, it is necessary to define the boundary 

conditions at different locations. The main options for defining each of the individual surfaces 

created to form the solution domain are an inlet, an outlet, a boundary wall or as a wall of symmetry 

through the domain. 
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6.1.2 Grid generation 

The system to be analysed is subdivided into a multitude of small discrete volumes, or cells, by means 

of a defined grid. This computational grid must be fine enough to give a good resolution of flow 

conditions throughout the total volume. However, an increase in the number of cells causes 

computational time to be greater, and ultimately there is a limit as to how many cells are available 

with the software. The application of a grid to the geometry beg ins by assigning grid point locations 

to the lines that bound the geometry (Figure 6.1 b). This process is termed 'mapping' of the grid to the 

geometry. It is then possible for the software to interpolate the grid points over the surfaces (Figure 

6.1 c) and finally, for three-dimensional configurations, the grid points are interpolated through the 

interior of the domain (Figure 6.1 d). 

P7 

P4 P3 P4 

P5 P6 P5 

P1 P2 P1 
Figure 6.1 a Geometry defined . Figure 6.1 b Grid points mapped to lines. 

_______ ---4If---__________ P7 
........... . .. ... ... ... 

P4 P4 

P6 

P1 P2 P1 P2 
Figure 6.1 c Interpolation of surface grid. Figure 6.1 d Interpolation of interior grid. 

Figure 6.1 Process of CFD grid gen era tion. 

Whilst a Cartesian grid is ideal for CFD models of square edged volumes, it is often the case that the 

geometry boundary has more complex outlines constructed from curves. PreBFC (PreBFC, 1993), the 

geometry and grid generation software for Fluent, allows for a grid generation system termed Body 

Fitted Co-ordinates (BFq. If this system is employed, the grid co-ordinate system is moulded to 
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exactly fit the geometry, giving the advantage that the grid provides a more accurate representation 

of the shape of the domain (Figure 6.2). It is this fitted grid, rather than the geometry itself, which is 

used by the computer as the discretised domain for solving the governing equations. 
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" ...... ; . 
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. ................ : ...... : .. . 
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Figure 6.2a Cartesian co-ordinate grid Figure 6.2b Body fitted co-ordinate grid 

Figure 6.2 Comparison of Cartesian and body fitted co-ordinate grid systems. 

6.1.3 Boundary conditions 

Each cell is assigned a series of differential equations that are used to describe the fluid flow through 

the cell. For the majority of cells these equations can be considered appropriate. Special input 

requirements may be needed for certain conditions such as the inlet, where different boundary 

conditions will apply. It is necessary at this stage, therefore, to define inlet parameters such as 

velocity or pressure distribution. Similarly, specific conditions at the outlet can be described if 

necessary. Also, a choice of turbulence model must be made, and this will be governed by the nature 

of the flow simulation that is being undertaken. 

6.1.4 Simulation 

There are usually many unknowns within all the equations held within the cells. Furthermore, these 

equations are strongly coupled and must be solved simultaneously. The set of simultaneous 

equations is solved by an iterative process shown in Figure 6.3. Arbitrary initial conditions, except for 

those prescribed at the boundaries, are applied and the iterative procedure continues until the results 

converge to a solution that satisfies the governing equations to within the prescribed level of error. 

Stage 3, which considers the scalar equations, is only required for simulations of two phase flow, 

thermal exchange or similar. 
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Figure 6.3 cm model solving process. 

6.2 Application of Fluent for manhole investigation 

Computational Fluid Dynamics was applied to the investigation of flow through various surcharged 

manhole configurations. It was decided to include lengths of pipe either side of the manhole so that 

it would be possible to examine how the presence of a manhole structure affects the flow in the pipes 

immediately upstream and downstream of the chamber. 

A circular manhole chamber of internal diameter 388mm was prepared, and pipe lengths of 1.15 

metres and internal diameter 88mm were connected. This length of pipe was used since the model 

was then directly comparable to the laboratory configuration between the fluorometer locations. The 

standard configuration with no step height between inlet and outlet pipes and no benching fitted to 

the base of the manhole was simulated with two discharges. Other geometrical variations considered 

were the standard design incorporating benching with a full pipe depth channel, and an unbenched 

design with a 1.0 pipe diameter step height. A full summary of the Fluent manhole simulations 

completed is provided in Table 6.1. 

The version of Fluent used for the study was not capable of modelling a fluid free surface. Therefore 

the surface of the water in the manhole was represented by means of a wall boundary. However, it 

was possible to cut the connection between the boundary and the adjacent cells. In this way the 

boundary defined no shear stress on the adjacent fluid and it therefore represented a frictionless 

wall. This fixed wall surface meant that it was not possible to model the broken or uneven nature of 
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the water surface that was especially prevalent at low surcharges. Also. the Fluent model was used to 

produce steady state solutions which meant that any transient features of the flow regimes such as 

oscillation of the incoming jet or temporary swirling motions within the manhole were not modelled. 

A body fitted grid of six sided cells was arranged to fill the geometry domain (Figure 6.4). In the 

standard manhole case there were approximately 130.000 computational cells. and this value was 

increased to encompass greater surcharge levels. The grid was arranged in such a way so that a line 

of cells was located along the exact centreline of the pipe and manhole length. It was these cells that 

were analysed after a solution had been obtained to extract the pressure head loss information. In 

the case of the stepped manhole. the pressure readings were taken from cells located on a straight 

line drawn between the centres of the manhole inlet and outlet. 

Aug 17 1999 

Gnd ( 123 X 40 X 28 ) Fluent 4 52 

Fluent Inc 

Figure 6.4 Surface grid for 388mm manhole with a step height of 1.00. 

At the inlet to the upstream pipe the velocity was set to a uniform value across the inlet plane. 

calculated from continuity based on the discharge to be modelled. This was a compromise in the 

interpretation of the turbulent pipe flow profile that would be present. However. the option of 

including a greater length of pipe at the upstream end of the model to allow a fully formed velocity 

profile to develop was deemed to require too many computational cells. thus exerting too great a 

demand on computer power and solution time. 

The k-e turbulence model was used for the CFO testing. This has been shown to work satisfactorily 

with similar fluid dynamics problems (Asztely and Lyngfelt. 1996). However. any flow conditions 

where a strongly swirling motion developed would perhaps be more suitably modelled with the 

Reynolds stress turbulence model. This would most certainly be the case for conditions where the 
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inlet and outlet pipes were not directly aligned, but no excessive swirling motion was observed under 

the laboratory test circumstances. 

The use of a turbulence model requires that the inlet boundary conditions applied to the model 

include the turbulent intensity and the characteristic length. Turbulent intensity is a measure of the 

magnitude of the turbulent velocity fluctuations in relation to the mean flow velocity. The 

characteristic length represents the maximum size of the turbulent eddies which are present in the 

flow. For the manhole modelling using Fluent these values were set to 5 percent and 0.088mm 

respectively. A value equal to the pipe diameter for the characteristic length is recommended in the 

Fluent user's manual (Fluent, 1993), whilst a sensitivity analysis found that between values of 5 and 

15 percent the turbulent intensity was not critical in the velocity predictions. 

6.3 Results 

Simulations have been undertaken for a sample of conditions that can be compared with experiments 

conducted in the laboratory. 

Step height Benching Surcharge (mm) Discharge (m3/s) 

0.00 No 172 0.001 

0.00 No 172 0.008 

0.00 Yes 172 0.001 

0.00 Yes 172 0.008 

1.00 No 272 0.001 

Table 6.1 Summary of manhole CFO simulations. 

6.3.1 Flow Profiles 

Velocity magnitude profiles are presented in Figure 6.5, Figure 6.6 and Figure 6.7. The elevation views 

are a vertical section along the centreline of the manhole and pipe length. In the 0.00 step case, the 

plan view is a horizontal slice taken through the pipe centreline. Where a step height is present two 

plan views are provided, one each for the centreline of the upstream and downstream pipes. 
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Figure 6.5 Velocity magnitude prediction (388mm unbenched manhole. step = 0.00. Q = 1.01/s). 
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Figure 6.6 Velocity magnitude prediction (388mm benched manhole, step = 0.00, Q = 1.01/s). 
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Figure 6_7 Velocity magnitude prediction (388mm unbenched manhole, step = 1_0D, Q = l_OI/s)_ 
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The velocity magnitude predictions from the CFD analysis (Figure 6.5, Figure 6.6 and Figure 6.7) show 

the entrance of a jet of water into the manhole chambers. In all cases some narrowing of this jet is 

apparent, most obviously in the stepped manhole (Figure 6.7). The form of the jet for this manhole is 

similar to that observed with images using the laser light sheet (Figure 4.40). It is compressed more 

from above than below, and some velocity vectors close to the downstream side of the manhole can 

be seen to dip steeply towards the outlet pipe. This highlights how some of the injected tracer passes 

directly to the outlet, even with a step present. The benched manhole results (Figure 6.6) show much 

less compression of the jet and indeed the velocities in the surcharge volume are predicted as being 

less than those in the same region for the other manholes. This tends to confirm the expected result 

that the flow is well guided towards the outlet and there is considerably less interaction with the 

dead zone region above than for the other manholes. A consequence of this, however, is that the 

maximum jet velocity is less in comparison. This, combined with the additional friction of the 

benching walls, explains why the reach time delay is greater for the benched manhole than the 

unbenched one. The plan views of the Fluent predictions confirm the presence of re-circulations in 

this plane. 

6.3.2 Head loss 

The relative pressure along the pipe and through the manhole was determined by the CFD analysis. A 

central portion of the upstream and downstream pipes was used to calculate the head loss. These 

sections were of length 200mm, and the hydraulic grade line was extended to the centre of the 

manhole. The pressure head loss was then calculated from the difference between the upstream and 

downstream hydraulic grade lines at this point. From this value the head loss coefficient was 

determined. 
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y = -0.0006x + 0.0021 
o Centreline pressure 
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Figure 6.8 Determination of head loss due to manhole (388mm unbenched manhole, Q = 1.01/s and 

step = 0.00). 
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Step height Benching Om/O K" 
Laboratory CFO Laboratory CFO 

0.00 None 4.4 4.4 0.51 0.42 

0.00 Halfpipe 4 .1 4. 1 0.18-0.30 0.26+ 

0.00 Full pipe 4. 1 4.4 0.07-0.11 0.15 

1.00 None 4.4 4.4 1.83 1.54 

Lindvall (1984) 

+ Asztely and Lyngfelt (1996) 

Table 6.2 Comparison of CFO and laboratory head loss coefficients. 

The comparison between the CFO and laboratOlY results for pressure loss coefficient reveals that the 

numerical modelling has a tendency to slightly ul1derpredict the coefficient value. A potential cause 

of errors with the CFO solutions is the effect of boundary grid spacing on the flow conditions. As a 

means of describing the effects of the boundary layer in turbulent flow, Fluent assumes that the log 

law wall function applies in the layer of cells in contact with the geometry walls (Fluent, 1993). If this 

layer of cells is sized inappropriately then the prediction of the velocity profile will be inaccurate. For 

instance, if the boundary layer of cells is too large then the velocity profile will be underpredicted 

and the head loss coefficient for the pipe lengths will be greater than found in practice. Thus the 

hydraulic grade line for the pipes calculated by the CFO model is too steep and the corresponding 

prediction for the loss due to the manhole is reduced. The necess ity for correctly sizing the boundary 

cell layer is highlighted in Figure 6.9. The Fluent user's manual (Fluent, 1993) recommends guidelines 

for the sizing of these boundary cells. These guidelines were adhered to in the setting up of the 

manhole model but due to considerations of cell numbers and distribution the boundary cell 

thickness at some wall locations in the pipe lengths was near to the recommended maxilllulll limit. 

Large boundary 
grid spacing \ 

Correc boundary 

grid s acing "" 
------ ----------------

Predicted velocity profile 

"" Underprediction 

Actual velocity profile 

Figure 6.9 Boundary layer cell s izing. 
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6.3.3 Particle Image Velocimetry (PIV) 

Particle Image Velocimetry (PIV) was used as a means of obtaining a complete field of flow velocities 

within the manhole by a non-intrusive method. An example of the flow field results obtained along 

the centreline of the manhole is shown in Figure 6.10. In this case. the PIV system used operated by 

means of a scanning laser beam highlighting particles within the flow. and images of these were 

captured by a digital video camera. The scanning laser caused the moving particles to be recorded as 

a series of white dots. Advanced computer software was then used to analyse the images and 

correlate the dot patterns into velocity data. Considerable difficulties were encountered with this 

procedure. and it was not eventually possible to obtain data of sufficient quality that could be used 

for the purpose of validating the CFD modelling. 

Figure 6.10 Flow patterns in manhole determined from particle image velocimetry (388ml11 manhole. 

Q = 1.01/s. surcharge = 429mm). 

Even with the use of a high powered 5W laser. the seeding particles used in the system consistently 

failed to provide bright images for recording. In addition. marks and bracing straps on the manhole 

itself precluded data from being obtained from some regions of the flow. The worst affected of these 

areas are marked with hash lines in the figure. The software used to process the images also proved 

rather unstable. and all attempts to apply a calibration scale to the measurements so as to determine 

quantitative velocity magnitudes resulted in the package crashing. 

However. the PIV results do show similar trends in flow pattern to the CFD models. Figure 6.10 is an 

average of 50 images recorded over an 18 second period. Arrows summarising the main flow 

directions have been added to the figure . The jet entering the manhole appears to show a slight 

narrowing as it traverses the chamber. and also the distinct dip of a proportion of the jet towards the 
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outlet pipe is well represented. It is possible to observe a pattern of re-circulation across the upper 

portion of the figure. It should be noted that the top of the figure does not represent the water 

surface, since the camera was not able to be located in a position that would allow the entire 

surcharge volume to be imaged. Thus it is possible that the greatest re-circulating flow velocities 

have not been captured. 
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Chapter 7 

Further Work 

7.1 Introduction 

The work presented in this thesis provides detailed results regarding the longitudinal dispersion due 

to surcharged manholes. Laboratory studies have investigated the effects of a step height between 

the inlet and outlet pipes and of extreme high surcharge conditions. Furthermore, re-analysing data 

for various manhole diameters using an optimisation process has allowed this extra information to 

be included. A preliminary approach interpreting the flow patterns in manholes has been completed 

using the computational fluid dynamics package Fluent. This has enabled comparisons of computed 

and experimentally measured pressure head loss, and also a qualitative study of flow regimes for 

different manhole designs. However, there are areas of further study that are necessary to enable full 

implementation of manhole mixing and retention effects in sewer modelling software. 

7.2 Continuation oflaboratory studies 

The longitudinal dispersion of a solute due to surcharged manholes has been investigated for specific 

cases from the wide variety of possible manhole configurations. Furthermore, the possibility of a link 

between the head loss that occurs at a manhole junction and the longitudinal dispersion model 

coefficients has been proposed and investigated. Unfortunately there is a limited amount of 

comparable head loss and longitudinal dispersion data and thus it is not possible to extend the 

conclusions beyond the scope of the laboratory investigation. 

The location of manholes in an urban drainage network is largely governed by topographical factors. 

Design requirements for manholes at every change in pipe diameter, pipe slope, pipe direction and at 

all pipe junctions and also at minimum spacing on straight lengths of sewer mean that a wide variety 

of chamber configurations are encountered in practice. In addition, alternative construction materials 

such as masonry or pre-cast concrete units generate manholes with different plan shapes. For this 

reason it is necessary to extend the laboratory studies completed so far to encompass alternative 

manhole configurations. The most worthwhile of these would be manholes where there is an angle 

between inlet and outlet pipes as opposed to the straight through design. Head loss researchers have 

found that this geometry causes a considerable increase in the head loss coefficient and it is 

anticipated that there would be a similar significant effect on the longitudinal dispersion. Other 

possible configurations of interest include a comparison between square and circular plan shapes and 

manholes where greater than two pipes connect. In all experiments it would be important to record 

head loss characteristics as well as the soluble tracer dispersion concentrations so that it would be 

possible to determine any correlation between the head loss and the coefficients for the longitudinal 

dispersion models. 
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The development of a reliable theol)' regarding the association of head loss and longitudinal 

dispersion is reliant upon increased information regarding the flow profiles and movement of tracer 

within the manhole itself. Whilst the use of fluorometers located upstream and downstream of the 

manhole provide travel time and mixing data, their use offers no direct information regarding the 

submerged jet and re-circulation processes within the manhole. 

Laser induced fluorescence is a method by which the flow inside the manhole can be studied and 

analysed. This had been the original method proposed for obtaining longitudinal dispersion 

coefficients for the stepped manhole configurations. Unfortunately the laser employed was of 

insufficient power to obtain the necessary clarity of resolution of tracer concentration. Studies 

undertaken with a more powerful laser and high quality digital image processing equipment would 

enable a considerable advance in understanding the flow structures that lead to the head loss and 

longitudinal dispersion that occurs as flow passes through manholes. Still and video camera images 

clearly revealed the turbulent eddies forming part of the submerged jet as it developed inside the 

manhole. These eddies were observed to cause tracer to mix with the manhole volume and, once the 

main bulk of the tracer cloud had passed, re-entrain pockets of tracer from the areas in contact with 

the jet. A greater understanding of this process gained from quantitative analysis would be applicable 

to any work concerned with the interaction of solutes with dead zone regions and would be 

beneficial for the development of improved longitudinal dispersion models for manholes. 

7.3 Data analysis 

The optimisation of the longitudinal dispersion coefficients has been demonstrated to be crucial in 

determining realistic simulations for the transport of solutes through manholes. However, it should 

be remembered that the work presented is based on simple forms of the ADE and ADZ transport 

models and uses a least errors method for determining the quality of fit of a temporal concentration 

prediction to the measured data. Whilst this generally gives a high quality of prediction for 

important aspects of the profiles there may be situations where even greater levels of simulation 

quality are required. For instance, although the optimised predictions match the downstream data 

well on the rising limb and the peak time and concentration values, they are less good at 

representing the full length of the tail of low concentration. This is a result of the inability of these 

models to fully represent the shape of the downstream profile. 

A method for obtaining increased quality in the model predictions would be to use higher order 

models. The formulation of a second order ADZ model has been outlined (Equation 12.371) and this is 

effectively two first order ADZ models operating in parallel. In practical terms, the second order 

model represents a solute cloud passing through the manhole by two separate flow mechanisms. 

Thus a proportion of the solute can be said to pass straight through from the inlet to the outlet with 

little difference to if it was travelling through a pipe equal in length to the manhole diameter. The 

remainder of the solute cloud is considered to become entrained in the surcharged volume, and is 

only gradually released into the downstream pipe. The dead zone interactions for the two processes 

are vel)' different and the results are not always described well by the first order model attempting to 

combine all the dead zone processes as one. With a second order application, a first order ADZ model 

is applied for each portion of the tracer cloud, and the result combined to give the overall effect of 

the manhole structure. 
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An example set of laboratory data was analysed using the second order model. Two coefficients, 

travel time and time delay, were applied to each first order model. with a further coefficient to 

represent the flow split between them. The measured upstream data profile was routed through the 

parallel model by dividing the concentration values proportionally to the required flow split. Each 

individual first order model was then used to process the relevant portion of the data, using the 

coefficients for that model. The concentration output from the two parallel models was then summed 

to give the predicted downstream profile (Figure 7.1). 

~ 
X~ 

~_II." Flow split 

(100-X)~ 
Input to ADZ 
parallel model 

ADZ 1 st order model 1 

coefficients I, and T, 

Figure 7.1 ADZ parallel model. 

Output from 
model 1 

Output from 
model 2 

Output from 
ADZ parallel 
model 

TIle coefficients for the ADZ parallel model were determined by means of an optimisation procedure 

in a similar manner to the first order model. In this case, there were five coefficients to be optimised, 

thus necessitating a 5 by 5 sided matrix to incorporate all the combinations. In most cases examined, 

the computer software was able to locate an optimised solution giving predictions with an extremely 

high quality of fit to the measured downstream concentration profiles. The combination of two ADZ 

models in parallel demonstrates an improved ability to represent both the peak concentration and 

time of occurrence as well as the long, low concentration tail effect which is a common feature of the 

data (Figure 7.2). 

For the manhole case presented, the ADZ parallel model coefficients are provided in Table 7.1. Also 

shown are the travel time and time delay values for a straight length of pipe. It is clear that first order 

model number 1 in the parallel model uses coefficients very similar to those for a straight length of 

pipe. This supports the theory that a large proportion of tracer mass, in this case optimised to 76 

percent, travels directly through the manhole, and a lesser mass of tracer is mixed into the surcharge 

volume and released slowly, thereby producing the long downstream tail effect. 
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Figure 7.2 Comparison of ADZ parallel and ADZ optimised predictions (388mm unbenched manhole, 

no step, Q = 6.0I/s, surcharge = 402mm). 

388mm unbenched manhole, no step, Q = 6.01/s Straight pipe, Q 
= 6.01/s 

ADZ parallel model ADZ optimised From Guymer and 

O'Brien (2000) 

1 (split = 76%) 2 (split = 24%) 

Travel time, f (s) 2.69 16.98 2.88 2.78 

Time delay, r (s) 2.53 1.38 2.07 2.44 

~:z 0.997 0.962 -

Table 7.1 Coefficients for ADZ parallel and ADZ optimised models. 

The use of a parallel ADZ model would appear to be a very useful longitudinal dispersion model 

where more accurate predictions of profiles not well described by the first order model are required. 

However, a problem with using it further is ensuring the robustness of the optimisation procedure. In 

the case of a single ADZ model with only two coefficients, it was a simple matter to ensure that there 

was an individual pair of coefficients that produced a prediction with the best fit to the downstream 

data. However, with five coefficients in the parallel version, it was not considered possible to be 

certain that the optimised coefficients were the only combination that gave a best fit value. 

A possible solution to this problem would be to use a Monte Carlo simulation procedure. Whilst not 

being an absolute guarantee of the uniqueness of the optimised coefficient set, it would provide the 

extra confidence necessary to use the parallel model throughout the manhole data that have been 

gathered. The process is simple, but rather cumbersome and time consuming. The idea is to calculate 

the best fit coefficient, ~2, for each of the downstream predictions generated from a large number of 
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random combinations of the five ADZ parallel coefficients. In this way, when the best fit values from 

these repeats are plotted against each coefficient in turn it is possible to have confidence in whether 

01' not the coefficient has a single best fit value. This is shown in Figure 7.3, where darker shading 

represents a greater density of data points in that region. Figure 7.3a shows the potential results for a 

coefficient that is statistically shown to have single, critical value that could be obtained through 

optimisation. In Figure 7.3b it can be observed that the coefficient concerned may generate more 

than one maximum best fit value, and therefore an attempt at optimisation may lead to misleading 

results . The final figure represents the expected result for a coefficient that has no significant effect 

on the best fit outcome (Figure 7.3c). This circumstance would occur if the use of a higher model 

caused overparamatisation and the coefficient in the figure was redundant in the optimisation 

process. Undertaking analysis such as this for different data sets would be necessary before 

continuing with ADZ parallel optimisation data analysis, and drawing conclusions from the results . 

. . 
.. " -:. '," ,"' .. J .";t« 

Coefficient Coefficient Coefficient 

Figure 7.3a Figure 7.3b Figure 7.3c 

Figure 7.3 Possible Monte Carlo simulation results. 

7.4 Numerical modelling 

Rapid developments in computing technology mean that accurate and reliable modelling of complex 

fluid flow problems is becoming available. Software manufacturers such as Fluent are releasing 

increasingly powerful versions of their packages. Fluent has the ability to model more than one 

chemical species, each of which can have independent values for density and viscosity, and thus can 

make predictions for the concentration of a soluble tracer added to a water filled domain. This could 

be used as a means of numerically modelling the longitudinal dispersion due to a manhole. 

Whilst channel flow, contact tank and large scale reservoir modelling is commonly reduced to a two 

dimensional flow problem, the submerged jet interaction with the manhole surcharge volume has a 

considerable three-dimensional aspect. TIlis means that a large and complex computational grid is 

required to obtain reliable hydrodynamic predictions, upon which solute transport predictions from 

CFO models have been shown to be highly dependent (Wang and Falconer, 1998). It is regrettable 

that a more refined grid could not be achieved with the CFO software employed. The greatest 

restriction was the requirement for a structured computational grid. This meant that for the manhole 

and pipes combination a large number of cells were required in unused volumes of the three­

dimensional domain. These cells are known as dead cells, and the Fluent software undertakes 110 

calculations for them. However, the total number of cells available for computations is fixed and thus 

having large numbers of dead cells reduces the available number of cells that can be part of the live 
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domain. The simulation of solute transport processes requiring time dependent flow modelling using 

time steps at least an order of magnitude smaller than the smallest time constant being modelled 

(Fluent, t 993). This, in combination with the large computational grid leads to converged solutions 

describing the full passage of the injected species requiring considerable computational time. 

Continual developments in CFD software mean that a more recent version of Fluent allows greater 

flexibility in the formatting of the computational grid, using an unstructured system that produces 

grids with less distortion and enables efficient use of cell numbers. This increases the efficiency of the 

numerical modelling procedure and enables a high quality grid to be applied to complex geometries. 

Other improvements in the software include the development of new solver algorithms that result in 

huge reductions in processing time. This makes three-dimensional time dependent modelling with 

short time steps more feasible. In addition, specific consideration has been given to improving the 

boundary layer modelling, thus reducing the restrictions on the critical boundary layer cell sizing. It 

is expected that continued application of CFD to manhole research would be rewarded with 

improvements in the results for velocities, head loss and dispersion effects. However, the numerical 

models would require successful calibration of the hydrodynamic conditions by means of reliable 

laboratory measurements. 

It is recommended that an investigation into the use of CFD for modelling solute dispersion begins 

with a more simple geometrical case than a surcharged manhole. The ideal starting point would be 

with a three dimensional straight pipe. TIle flow patterns and dispersive characteristics are well 

documented by theory and observation and this would provide a reliable verification for the CFD 

model without the need for intensive laboratory measurements detailing the flow conditions. A fine 

and well-formed grid could be applied to this less complex geometrical form. Furthermore, the travel 

time for a simulated soluble tracer cloud would be significantly reduced and therefore the model 

simulation would be operated over a reduced time period. Only if it were possible to produce a CFD 

model pipe with accurate velocity, pressure and dispersion predictions would it be reasonable to 

extend the work to manhole geometries. 

7.5 Field testing 

The primary aims of establishing an understanding of the mixing that occurs as sewer flow passes 

through surcharged manholes is to increase the reliability of sewer water quality models. Naturally 

these computer models are applied to real urban drainage networks, either operational or planned, 

rather than the idealised conditions of a laboratory. For this reason it is proposed that the work is 

now at a standard whereby a significant understanding would be gained by undertaking research on 

longitudinal dispersion through sewer networks using a controlled series of tracer studies. 

The laboratory tests have shown that certain manhole configurations cause a marked increase in the 

dispersion and retention of a cloud of soluble tracer. It is felt that the non-uniform nature of many 

older sewers that may be suffering from a lack of maintenance will increase longitudinal dispersion 

effects even more. It is important to determine whether these factors are actually significant in the 

ability of a sewer quality model to accurately predict the times of arrival and concentrations of 

soluble pollutants throughout the network. 
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If a computer model fails to calculate the travel times through an urban drainage network accurately 

then the application of time rates of decay coefficients for different pollutants is rendered less 

meaningful. Likewise. the failure to accurately predict first arrival times and peak concentrations of 

pollutants that may enter the sewer system will cause a lack of reliability in any real time control 

analysis or operation based on these times. 

A large quantity of data would be required from a field test schedule and it is likely that difficulties 

would be encountered. Measurements of water depth and velocity at critical points through the 

system. as well tracer concentration measurements would be necessary. Furthermore. interpretation 

of the results would be greatly assisted by testing being carried out under a variety of flow 

conditions. Ahyerre et al (1998) comment that improvement in knowledge of the water quality 

processes occurring in sewer systems will rely on high quality data being gathered. They recommend 

that it would be better to study a limited number of small. experimental watersheds in great detail. 

rather than gather lower quality data over more or larger catchments. This would allow an accurate 

assessment of sewer water quality modelling capabilities at present and provide results that could be 

incorporated in future model development. 
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Chapter 8 

Conclusions 

The longitudinal dispersion due to surcharged manholes has been investigated. A laboratory system 

was developed that allowed the measurement of soluble tracer concentration profiles upstream and 

downstream of a manhole structure. 

A 388mm internal diameter circular manhole with 88mm internal diameter pipe lengths in a straight 

through configuration was studied. Five step height conditions between the inlet and outlet pipes 

were considered, with the inlet pipe being raised in equal steps between 0.0 and 2.0 times the pipe 

diameter, whilst the downstream pipe remained aligned with the manhole base. Surcharges up to 

approximately 1250mm above the outlet pipe soffit were employed. The experiments were conducted 

at flow rates between 1.0 and 8.0 Iitres per second. Specially adapted fluorometers located upstream 

and downstream of the manhole were used to measure the cross-sectional average temporal 

concentration profiles of a fluorescent tracer injected into the flow. Pressure measurements were 

recorded simultaneously by means of pressure transducers fitted to the delivery pipes. O'Brien (2000) 

supplied additional data relating to the longitudinal dispersion due to surcharged manholes of 

various internal diameters. 

The longitudinal dispersion data were analysed using the advection dispersion equation and the 

aggregated dead zone models. Coefficients for these models were optimised by a procedure that 

calculated the pair of coefficients for each equation that gave the best downstream profile prediction 

when compared with the measured data. This procedure was written as a FORTRAN computer 

program. 

It has been determined that surcharged manhole chambers without a step between the inlet and 

outlet pipes, and manholes with a benching arrangement, have similar longitudinal dispersion 

characteristics to an equivalent length of straight pipe. A step height between the inlet and outlet 

pipes causes increased dispersion. This effect is most significant for step heights less than one pipe 

diameter. Alterations to the diffusion and entrainment pattern of the submerged jet occur when it is 

located close to the free surface and this makes the longitudinal dispersion predictions for low 

surcharges less reliable. Additional work is required to establish data for other manhole 

configurations that would enable satisfactory predictions of the dispersion processes in the low 

surcharge region to be made. 

The dispersive fraction has been used as a means of comparing the characteristics of different 

manhole configurations. A relationship between the dispersive fraction and the head loss coefficient 

for stepped manholes with or without benching has been proposed. This, used ill combination with 

an estimate of the reach time delay for the manhole, would allow sewer water quality models to 

predict the transport of soluble pollutants through manholes with a simple first order aggregated 

dead zone model. 
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