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Summary 

This thesis is concerned with problems of variable selection, influence of sample size and 

related issues in the applications of various techniques of exploratory multivariate 

analysis (in particular, correspondence analysis, biplots and canonical correspondence 

analysis) to archaeology and ecology. Data sets (both published and new) are used to 

illustrate these methods and to highlight the problems that arise - these practical 

examples are returned to throughout as the various issues are discussed. Much of the 

motivation for the development of the methodology has been driven by the needs of the 

archaeologists providing the data, who were consulted extensively during the study. 

The first (introductory) chapter includes a detailed description of the data sets examined 

and the archaeological background to their collection. Chapters Two, Three and Four 

explain in detail the mathematical theory behind the three techniques. Their uses are 

illustrated on the various examples of interest, raising data-driven questions which 

become the focus of the later chapters. The main objectives are to investigate the 

influence of various design quantities on the inferences made from such multivariate 

techniques. Quantities such as the sample size (e.g. number of artefacts collected), the 

number of categories of classification (e.g. of sites, wares, contexts) and the number of 

variables measured compete for fixed resources in archaeological and ecological 

applications. Methods of variable selection and the assessment of the stability of the 

results are further issues of interest and are investigated using bootstrapping and 

procrustes analysis. Jack-knife methods are used to detect influential sites, wares, 

contexts, species and artefacts. 

Some existing methods of investigating issues such as those raised above are applied and 

extended to correspondence analysis in Chapters Five and Six. Adaptions of them are 

proposed for biplots in Chapters Seven and Eight and for canonical correspondence 

analysis in Chapter Nine. Chapter Ten concludes the thesis. 
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Chapter One 

Introduction 

1.1 Background and Motivation 

This thesis has been motivated by both an interest in multivariate techniques of analysis 

and an interest in archaeology (and other related 'field studies' such as some areas of 

ecology), although the methods described are by no means exclusively tied to 'field 

studies' - they are applicable in other areas. The aim, however, is to develop practical 

guidelines regarding data collection for archaeologists in particular, in order to enable 

sensible statistical analysis to be carried out post-excavation. Because time and money 

for excavations are severely limited, a balance has to be struck between numbers of 

variables recorded on each artefact (or other item), numbers of artefacts collected at 

each site, numbers of categories into which artefacts are classified and numbers of sites 

examined. Ways of approaching this multivariate design problem are illustrated in the 

chapters that follow, using the data sets described in Section 1.2 and listed in the 

Appendix. 

1.1.1 Aims and Objectives 

The aim of many techniques of exploratory multivariate analysis is to give an informal 

assessment of the structure of a data set and to give initial answers to questions such 

as: are particular observations similar or distinct; are variables correlated or 

independent; do the data subdivide into groups; which observations are particularly 

associated with which variables? Available techniques include principal component 
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analysis, correspondence analysis, canonical correspondence analysis and the various 

forms of biplot. Which one is appropriate in any particular study depends on the form 

of the data (e.g. continuous measurements or counts) and the archaeological or 

ecological problems posed. For example, in archaeology, pottery fragments might be 

collected at various sites and classified according to fabric type, function and 

decoration; in ecology, various species of beetle might be recorded at various sites. 

The objective might be to determine which past human activities were associated with 

which sites, or which species (and hence environmental regimes) characterise which 

sites. 

Sometimes the data analysed are all the data that were potentially available. However, 

in other cases, in particular ecological, archaeological and other 'field studies', there 

are more data that could be collected if necessary. In such cases it is desirable to be 

economical in data collection, yet still be able to obtain conclusive results from 

statistical analyses. Thus, there is a need to design the data collection stage in terms of 

numbers of observations made and which variables are recorded, bearing in mind 

which multivariate technique is to be used for analysis. 

If the data are of the form of a sites-by-types matrix then analysis might start with a 

graphical display obtained by using correspondence analysis. The questions of 

statistical design raised are, for example: how many pieces of pottery are needed at 

each site (this depends on the number of sites examined) and how fine a classification 

should be recorded? Given that there is always a limited budget available (in terms of 

both time and money), a choice is forced between many samples at few sites or few 

samples at many sites, as well as between detailed classification on few objects or less 

detail on more objects. Distinguishing between very similar fabric types might be time 

consuming and returning to a site to supplement an inadequate sample might be 

additionally expensive. The requirement is that there should be sufficient data for the 

inferences drawn from the analysis to be adequately 'reliable'. 

If, alternatively, the data are in the form of an observations-by-variables matrix then 

analysis might start with a graphical display of the matrix, obtained by using a biplot. 

2 
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Statistical questions raised include: how many variables should be recorded; is it worth 

distinguishing between strongly correlated ones; do we have enough observations to 

reveal any (known or unknown) group structure; what are the effects of measuring 

fewer observations? This time the choice is primarily between measuring many 

variables on few observations or few variables on many observations. 

This thesis is directed towards answering such questions as those outlined above. This 

requires investigating these various exploratory multivariate techniques, formalising 

the way 'informal' assessments are made, particularly from graphical displays (largely 

by bootstrapping) and investigating how sample size (in terms of numbers of sites 

visited, numbers of classifications made and numbers of artefacts measured) influences 

these methods. All of the graphical display techniques in this thesis are based on the 

singular value decomposition of a matrix but note that we do not directly consider 

principal component analysis (PCA) here because, as we will see in Chapter Three, 

PCA is encompassed within the biplot framework. Section 1.2 introduces the data sets 

(both new and published) which are returned to throughout and Section 1.3 explains 

the notation and methodology for the chapters which follow. Whichever technique is 

used for analysis, the steps involved in the graphical display of the data remain similar 

and these are described in 1.4. Section 1.5 explains the historical background of the 

techniques and 1.6 describes the structure of the thesis, chapter by chapter. 

3 
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1.2 Data Sets 

The three multivariate techniques - correspondence analysis, biplots and canonical 

correspondence analysis (which are described fully in Chapters Two, Three and Four) 

- are illustrated on various recently collected data sets as well as on some published 

data. The data sets used are described in the following sections and listed in the 

Appendix. They all arise from either archaeological or ecological studies. 

1.2.1 Memphis Pottery Sherds 

The first extensive data set arises from excavations carried out by the Egypt 

Exploration Society in Memphis, Egypt (approximately 30 km south of Cairo), over 

the last 20 years. These data have been provided by Janine Bourriau of the Macdonald 

Institute, Cambridge and are listed in Table A.I of the Appendix. The data consist of 

excavated pottery sherds that form a stratigraphic sequence. The sequence consists of 

weights (in grams) of pottery sherds classified into 13 contexts (where a context can 

be thought of as the situation or circumstances in which an artefact is found e.g. soil 

conditions and is the unit of excavation) and 48 pottery 'wares' (where a ware is 

considered to be a combination of vessel form, fabric and decoration). The total 

weight of all sherds is 261 kg. The contexts form a chronological sequence with that 

nearest to the current ground surface being the most recently 'used' and that deepest 

below ground the least recent. Archaeological interest lies partly in investigating how 

pottery typology has altered (where typology means chronological evolution of an 

artefact), partly in examining how pottery function has altered with stratigraphy and 

partly in providing a reference collection of pottery to be used on smaller sites 

(because Memphis is a large site). The complete stratigraphy at Memphis covers a 

period of perhaps 1500 years but the subject of the data used here is restricted to only 

a few hundred years. The sherds were weighed rather than counted in order to save 

time, but it is known that in this assemblage I sherd == 10 grams (Bourriau, pers. 

comm.) and so we treat the data as counts of sherds. Statistical interest is concerned 

with using correspondence analysis to identify the relationships between the various 

wares and contexts and seeing whether the chronological nature of the contexts is 

reflected in the analysis. Also, with such a large number of wares, the effects of 

4 
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'merging' wares on the interpretation of contexts is of interest - i.e. how does the 

relationship between contexts alter (as revealed by statistical analyses) if we don't 

distinguish between certain types of wares. In addition to the above we can assess how 

'reliable' the contexts are - i.e. if we were able to repeat the data collection 

procedure then how would this alter the observed relationships between the contexts. 

Figure 1.1 illustrates the stratigraphic sequence with context 377 being closest to the 

current ground surface. 

Figure 1.1 Stratigraphic Sequence of Memphis Sherds 

1.2.2 Amarna Pottery Sherds 

These data were obtained from Paul Nicholson at Cardiff University and are listed in 

Table A.2 of the Appendix. The data consist of the surface collection of 12693 pottery 

sherds from (to date) 12 'sites' over the city of Amarna, Egypt. Archaeological 

interest lies in establishing which areas of the city were used for which type of 

activities, such as domestic, ceremonial, craft etc. The sherds were collected by 

selecting a target point in the centre of an area of visibly high sherd density on the 

ground surface (conventionally taken to indicate the previous occurrence of activity 

5 
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below the surface), scribing a circle of radius 10 feet, collecting all sherds within the 

scribed circle and classifying them into pottery wares (10 in total). Each circle is taken 

to be a separate site and there are a total of 12 across the city with the number of 

sherds at the various sites ranging from 243 to 2589. Statistical interest is mainly 

concerned with investigating sample size issues using correspondence analysis. If, for 

example, a circle of smaller radius had been scribed, or if only a fixed number of sherds 

had been examined, then it is important to understand how this would alter the results 

and conclusions of any analysis (i.e. would it lead to changes in which pottery wares 

are associated with which sites and which sites are most similar with regard to pottery 

wares). These questions are of interest because the study is ongoing and so far the 12 

sites examined cover only a small proportion of the total area of the city. Decreasing 

the sample size per site would allow more sites to be examined in the available time. 

Conversely, if sample sizes are inadequate at some or alI of the sites then there is time 

to remedy this. Further questions of interest include how the various relationships 

between wares would be altered if fewer sites had been visited and whether any site is 

particularly unusual in terms of the pottery it contains. 

1.2.3 Melanesian Starch Grains 

Carol Lentfer at Southern Cross University, Australia has provided data consisting of 

the abundances of each of 96 types of starch grain, retrieved from soil samples at each 

of 15 sites of known environment (e.g. plantation, garden, village, forest), in Gauru, 

New Britain, together with the sizes of each grain (length and width). There are 3336 

grains in total. These data are being used in a new area of archaeological research 

because, whilst there is a belief that any single plant species gives rise to only one 

'type' of starch grain, there is a suspicion that different species could give rise to the 

same grain 'type'. However, it is suspected that grains of the same type from different 

species might be differentiated on the basis of size. Thus, interest lies partly in 

establishing the effect on the site and type relationship when grain types that appear 

multi modal, from histograms of grain length, are divided up into several categories on 

the basis of this measurement, but also in detecting information on past vegetation, 

crops and climate from this fossil plant material. We use correspondence analysis to 

6 
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investigate these issues and we also examine the associations between sites of different 

environments. These data are listed in Table A3 of the Appendix and the 

environmental descriptions of the sites are given in Table A4. 

1.2.4 Early Stone Age Tools 

These published data (B0lviken et al., 1982) consist of 899 worked stone artefacts 

from 28 Early Stone Age sites (8000-4000 Be) published originally by Odner (1966), 

together with similar data from 15 sites published originally by Simonsen (1961). The 

artefacts have been grouped by B01viken et al. (1982) into 16 functional types and 

then into 7 functional classes. The reason for collecting such data was to test Odner's 

hypothesis that the largest sites in the inner part of the fjords of the Varangerfjord area 

of Scandinavia reflect larger aggregates of people during longer periods of time than 

the smaller sites which are located in the outer fjord-coast area. If Odner is right then 

it is expected that the subsistence dichotomy should include two groups of 

geographically different sites, with an emphasis on different artefact types. Statistical 

analysis is concerned with using correspondence analysis to compare the effects of 

artefact groupings based on archaeological arguments with those obtained from 

groupings based purely on statistical methods, by looking specifically at the locations 

of the sites in the ordination map. These data are listed in Tables AS and A6 of the 

Appendix. 

1.2.5 Ceramic Pots 

Finds of many sherds of one particular shape and size from the 17th century porcelain 

kiln-site of Hyakken, near Arita, in Japan, prompted Impey (1979) to speculate on the 

number of potters working at the kiln. He thought that if the sherds were complete 

enough for several measurements to be taken on each piece, then these measurements 

could be analysed to see if there were natural groupings. If there were such groups 

then the number of groups might correspond to the number of potters working on that 

shape at the kiln, which could have implications for output, trade distribution, craft 

specialisation and population size of the site. Furthermore, Impey & Pollard (1985) 

thought that even within a given pottery shape, the individual characteristics of both 
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the thrower and the turner would be detectable by taking measurements and thus they 

hypothesised that the thickness of the rim of a vessel would be determined by the 

thrower, the width of the foot by the turner and the overall height by both. In order to 

investigate this hypothesis (and to try to shed light on the issues raised above) Impey 

& Pollard (1985) commissioned an experiment whereby three potters were shown the 

kiln-site material from Japan and asked to make 10 replicate pots each. Thirteen 

measurements (in em) were then taken on each of the 30 pots and these are listed in 

Table 1.1 below, along with their associated codes. The aim was to investigate 

whether the pots divide into three groups on the basis of these measurements. The 

data can be found in Table A8 of the Appendix. 

Table 1.1 Ceramic Pot Measurements (cm) 

Measurement Code 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Description 

Internal height at centre 

External diameter at lip 

Internal diameter 2cm from base 

External diameter 2cm from base 

Internal diameter at lip 

Overall height 

Height from point of angle 

Diameter at point of angle 

External diameter of footring at base 

Internal diameter of footring at base 

Internal depth of footring at centre 

Thickness of wall at 2cm from base 

Thickness of lip 

The pot measurements are illustrated in Figure 1.2 where the inside of the pot is 

represented by the left-hand side of the diagram and the exterior, with any decoration, 

by the right hand side. The dark shaded area on the far left represents the thickness of 

the pot. 
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Figure 1.2 Ceramic Pot Measurements 

Statistical interest lies in whether biplots enable us to distinguish between the pots 

. made by each of the three potters using the available measurements, how the 

separation of groups is altered when variable selection methods are implemented and 

the effects op the analysis when fewer pots are considered. 

1.2.6 Simpson Desert Flakes 

These data were obtained from Huw Barton at the University of Sydney, Australia and 

consist of dimensional measurements (made using callipers) on flakes (flint tools and 

flake debitage) from the Simpson Desert, Australia. Additionally t the weight of each 

flake (in grams) was recorded using an electronic balance. Flint tools were recorded at 

two sites, coded 08 and 09. ArchaeologicalJy, the landform at site 08 is described as 

'escarpment', whereas site 09 is described as 'plain with drainage'. The measurements 

(in mm) taken on the flakes are described in Table 1.2, along with their associated 

codes and are illustrated in Figure 1.3. 
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Table 1.2 Simpson Desert Flake Measurements 

Measurement 

Lengtb (mm) 

Width (mm) 

Thickness (mm) 

Platform width (mm) 

'Code Description 

1 Length from the point of force of application to the most distal point 

on the flake. 

2 A measurement perpendicular to the length axis taken at the midpoint 

of that axis. 

J 

4 

A measurement taken at the intersection of the length and width axes 

from the ventral to the dorsal flake surface. 

Along the plane of the striking platform from one lateral flake margin 

to the next. 

Platform thickness (mm) 5 Measurement from the point of force of application. perpendicular to 

the bulb of percussion, from the ventral to the dorsal flake surface. 

Weight (grams) 6 Weight of flake to the nearest tenth of a gram. The lower limit of 

sensitivity is O.5g and the upper limit is lOOOg. 

Platform thickness 

Thickness 

Figure 1.3 Simpson Desert Flake Measurements 

These data were collected as follows. A S metre (m) grid square was sub-divided into 

1m squares, where placement of each Sm x Sm grid was determined largely on the 

basis of visible flake density: low density patches were avoided in order to increase the 
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amount of data recovered from each recording unit. At each major sample location, a 

total of five, Sm square grids were laid out and within each metre square every flake 

bigger than 5mm was recorded (flakes smaller than 5mm were ignored because 

collection and analysis of such material would have been almost impossible, Barton, 

pers. comm.). At minor sample locations the area examined was smaller and so the 

quantities of flakes measured at different locations are not comparable, because the 

total surface area examined differs. The aim is to discover which measurements are 

important in discriminating between the material from each type of terrain for both 

flint tools and, separately, flake debitage (Barton, pers. comm.). The tool data, after 

incomplete tools have been deleted, consist of six measurements on 53 tools from site 

08 and on 26 tools from site 09. The debitage data consist of six measurements on 

2767 flakes from 28 sites. Statistical interest lies in assessing how 'reliable' the 

measurements are when sampling methods are used to reduce the number of tools or 

flakes analysed and also when the number of variables measured is reduced. Methods 

of identifYing outlying and influential flakes are also of interest. In addition to the 

above, the ability of biplots to identifY differences between the sites based on their 

landform and access to water sources is investigated, as well as how this alters when 

variable selection methods are implemented. The tool measurements and site 

descriptions are listed in Tables A9 and AlO of the Appendix respectively. 

1.2.7 Bone Engravings 

Data consisting of the abundances of 44 designs, engraved on bones from five sites in 

Spain, were obtained from Kaufman (I 998), but were originally investigated by 

Conkey (1980). Conkey (1980) used these data to try to distinguish between 

aggregation and dispersion sites for the Early Magdalenian occupation of Cantabrian 

Spain, arguing that aggregation sites should exhibit a greater diversity of designs than 

dispersion sites, because bands of hunter-gatherers would congregate at these sites. 

We use these data to introduce the diversity biplot into archaeology. Examples of the 

designs are illustrated in Figure 1.4 and the data are given in Table All of the 

Appendix. 
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Figure 1.4 Bone Engravings (after Conkey, 1980) 

1.2.8 Hunting Spiders 

Data on the distributions of 12 species of hunting spider across sites in a Dutch dune 

area, together with measurements of environmental characteristics at the various sites, 

have been taken from van der Aart & Smeenk-Enserink (1975) and were previously 

analysed by ter Braak (1986). The species data consist of the numbers of individuals 

of each species caught in pitfall traps over a period of 60 weeks, with 26 

environmental variables measured at each of the 28 traps. The reason for collecting 

these data was to trace the main environmental factors that have influenced the 

distributions of the species studied. In ter Braak (1986) the number of variables was 

considered too large to sort out their independent effects on community composition 

and 18 were removed on a priori grounds; two more were removed because they were . . 
strongly correlated with one of the remaining six variables. These data and their 

descriptions are listed in Tables A.12-A.14 of the Appendix and are used both to 

illustrate canonical correspondence analysis and to examine how 'reliable' the sites are 

when there are small changes in the data collected - i.e. if we were to repeat the data 

collection procedure then how would this alter the observed relationships between the 

species, sites and environmental variables. We are also interested in the effects on the 

analysis of transforming both the species and environmental data and the data provide 

scope for examining both existing and new methods of selecting environmental 

variables. In addition, we can also examine the effects on the analysis of visiting fewer 

sites i.e. how do the relationships between the species and environmental variables 

alter. 
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1.2.9 Dune ~1eadow Vegetation 

Data relating to dune meadow vegetation originate from a research project by 

Batterink & Wijffels (1983, unpublished) on the Dutch island of Terschelling, but were 

taken from ter Braak (1988). The objective of the original project was to investigate 

the differences in vegetation among dune meadows that have been subjected to 

different management regimes. Thirty species have been recorded across 20 sites 

according to the ordinal scale of van der Maarel (1979) and, additionally, five 

environmental variables have been measured at each site. These are (a) thickness of the 

Al soil horizon (measured in centimetres), (b) moisture content of the soil (on a 5 

point scale), (c) grassland management type - (standard farming (SF), biological 

farming (BF), hobby-farming (HF) and nature conservation management (NC», (d) 

agricultural grassland use - (hayfields (H), pasture (P) or a combination (C) of these) 

and (e) quantity of manure applied. These data are used to again illustrate canonical 

correspondence analysis and to look at the 'reliability' of the sites - i.e. how 

representative are they of the true population of dune meadow vegetation data. They 

also raise important questions regarding how to deal with ordinal and nominal 

variables and how the scales on which vegetation abundances are usually measured 

affect the reliability assessment. In addition, interest lies in using these data to help 

develop methods for detecting influential sites, species and variables. These data can 

be found in Tables A.15 and A.16 of the Appendix. 
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1.3 Notation 

As explained in Sections 1.1 and 1.2, the graphical display techniques in which we are 

interested are correspondence analysis, the various forms of biplot and canonical 

correspondence analysis. All three methods make use of the singular value 

decomposition and it is useful, therefore, to define some notation that is used 

throughout the thesis and to describe the methodology that is common to all three 

techniques. 

1.3.1 The Norm 

The norm of a vector is the distance of the vector from the origin. Therefore, the norm 

of a vector v with r entries is called the Euclidean norm and is denoted by: 

IIvII = Jt. vi . 

The norm of a matrix A (n x m) is defined to be the square root of the sum of its 

squared entries: 

n m 

IIAII= 2:2: aij. 
H j=1 

1.3.2 The Singular Value Decomposition 

The singular value decomposition (SVD) is used in graphical display techniques to find 

a lower rank matrix that approximates the data matrix (Eckart & Young, 1936). The 

SYD of any real matrix A (n x m) of rank r, can be expressed as: 

A=VDJ.1yT 

where OJ.1 = diag (Ill, ... , Ilr) contains the matrix of singular values of A in decreasing 

order of magnitude; 

0J.12 = diag (1l12, ... , Il/) contains the matrix of eigenvalues of A in decreasing 
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order of magnitude; 

U (n x r) and Y (m x r) are orthonormal i.e. UTU = yTy = Ir; 

U and Yare the eigenvectors of AT A and AAT respectively. 

If the singular values are all distinct then the singular value decomposition of a matrix 

is unique up to a simultaneous reflection of the corresponding columns ofU and Y. 

Having expressed A in terms of its SVD we can find a least-squares rank p 

approximation of A, denoted by Alp) (p < r): 

where DflIp) = diag (~l' ... ' ~p) contains the matrix of singular values of A)p) In 

decreasing order of magnitude; 

U[p) (n x p) and Vip] (m x p) are orthonormal i.e. U[PITU[Pl = Y[p)TV[pl = Ip. 

Alp) is the closest of all possible rank p approximations to A in the sense that it 

minimises the sum of the squared differences between corresponding entries of A and 

Alp [, i.e. it minimises: 

n m 

II(a i] -a ij[pJ)2. 
1=1 ]=1 

1.3.3 The Generalised Singular Value Decomposition 

We can generalise the above so that any matrix Q (n x m) of rank r, can be 

decomposed as: 

nand <l> are positive definite symmetric matrices. 
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This is called the generalised singular value decomposition (GSVD) in the metrics n 
and <1>. The rank p approximation to Q in the metrics n and <I> is given by: 
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1.4 Graphical Displays in Low-Dimensional Space 

From a practical viewpoint we are interested in displaying the results from applying 

graphical multivariate techniques in a low number of dimensions (typically two), 

because these are the easiest to interpret. There are three steps to displaying a data 

matrix in low-dimensional space: 

Step 1: 

Step 2: 

Step 3: 

The data matrix is scaled. Forms of scaling include column-centring 

(subtracting the mean of each variable from the appropriate column) 

and row-centring. Call this scaled matrix H. 

Compute the GSVD ofH: 

and obtain its two-dimensional approximation. 

Obtain the co-ordinates of the row and column points ofll (see below). 

The row and column co-ordinates in a p-dimensional display are given by F[pl (n x p) 

and G lpl (m x p) respectively, which are both of rank p: 

where N lpl and M'rl are the first p columns ofN and M respectively; 

D~tfpl is a diagonal matrix consisting of the first p singular values ofH; 

a and b are real numbers, where a + b = 1. 

The individual row and column points are given by the rows t? of Flpl and g? of G[pl, 

respecti vely. 
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1.4.1 Axis Scaling 

It is known that the scales of the displayed axes must be equal for the various forms of 

biplot (see Chapter Three) and also for canonical correspondence analysis (see 

Chapter Four). This is because the interpretations of the variables utilise angles 

between the vectors representing them and the relative lengths of these vectors. 

However, in the biplot, if the observation points vary greatly in magnitude from the 

variable points then one set of points can be multiplied by a suitable constant before 

displaying the data, without altering the interpretation of the display. This also applies 

to both the category and variable points in canonical correspondence analysis. Because 

correspondence analysis (see Chapter Two) can only compare distances between row 

points and, separately, distances between column points, the scales of the displayed 

axes do not have to be equal. 
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1.5 Historical Background 

In this section we give a brief guide to the early development of the main three 

multivariate methods discussed in this thesis. Correspondence analysis is thought to 

originate with a paper by Hirschfield in 1935, although at around the same time Horst 

was independently suggesting similar ideas and labelling them the 'method of 

reciprocal averages'. Fisher was also deriving the same theory in an ecological context 

and calling it 'dual scaling'. Correspondence analysis, or rather, 'Analyse des 

Correspondances', was developed by the French linguist and data analyst Benzecri in 

the late 1960's and was subsequently described and popularised in English by 

Greenacre (who studied with Benzecri in the early 1970's). Biplots were originally 

developed by Gabriel (1971, 1972) and have since been summarised by Greenacre & 

Underhill (1982), Greenacre (1984), Gower (1984) and Gower & Hand (1996). 

Jolliffe (1972, 1973) and then Krzanowski (1987) have published methods in the area 

of variable selection in principal component analysis and Krzanowski (1993) has also 

published work on attribute selection in correspondence analysis. rer Braak (1986, 

1988) was the first to develop canonical correspondence analysis, although Lebreton 

was independently exploring similar ideas at about the same time. Canonical 

correspondence analysis is widely used in ecology and to some extent in archaeology. 

Its popularity is growing. 

19 



Chapter One - Introduction 

1.6 Thesis Structure 

This section explains the structure of the thesis chapter by chapter. Chapters Two, 

Three and Four set the scene for the later chapters and consist mainly of explanations 

of the theory behind the three multivariate techniques of correspondence analysis, 

biplots and canonical correspondence analysis respectively, with illustrations of their 

application to the various data sets described in Section 1.2. These chapters also 

highlight what we believe to be problems with applying these methods to 

archaeological and ecological data, but a full consideration of these issues and possible 

solutions is deferred to the later chapters (Five, Six, Seven, Eight and Nine). 

Chapter Two reviews the technique of correspondence analysis and explains how to 

interpret the results using new data sets from Memphis (1.2.1, pottery sherds), 

Amarna (1.2.2, pottery sherds) and Melanesia (1.2.3, starch grains). Correspondence 

analysis is suitable for data in the form of a contingency table and looks for informal 

patterns between row categories and between column categories. We identify various 

problems with the application of this method to archaeological data, including the 

problem of displaying large numbers of categories simultaneously, the effects on the 

analysis of the number of categories into which artefacts are classified and the 

influence of overall sample size. These problems and others, are discussed in detail in 

Chapters Five and Six. 

Chapter Three explains the theory behind the various forms of biplot, collating the 

information on the various types from the fragmentary literature and describing their 

application to ceramic pots (1.2.5, published data), bone engravings (1.2.7, published 

data) and to new data on flint tools and flake debit age from the Simpson Desert 

(1.2.6). Biplots are suitable for data consisting of variables measured on a number of 

observations and display both the observations and the variables simultaneously. 

Interpretation rests on examining the correlations between variables and identifYing 

group structure among the observations. The relative merits of the various forms of 

biplot are discussed, including which is most appropriate for the particular question in 

hand and we introduce the diversity biplot into archaeology. Because of the large 
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numbers of variables which are often measured by archaeologists, it is important to 

examine how the observations and remaining variables are affected if fewer variables 

are measured. On a similar theme, interest also lies in how the relationship between 

variables and group structure of observations is altered if fewer observations are 

measured. These questions and others, are addressed in Chapters Seven and Eight. 

In Chapter Four we introduce the less well known technique of canonical 

correspondence analysis and apply it to published data sets consisting of hunting 

spiders (1.2.8) and dune meadow vegetation (1.2.9). The structure of a data set 

suitable for canonical correspondence analysis is abundances of a multitude of species 

across a number of sites, together with a set of environmental variables measured at 

each site. This method is concerned with identifYing which environmental variables are 

most important in explaining the distributions of the species across the sites. We 

investigate the effects of various transformations of the data (raw abundances, log and 

square root transformations, conversion to presence/absence) on the results of the 

analysis and explain how the method could be used much more widely in archaeology. 

We also consider how the number of environmental variables can influence the 

analysis, before implementing variable selection methods in Chapter Nine. 

The methodology of Chapter Two forms the basis of Chapters Five and Six. In 

Chapter Five we introduce methods of investigating the effects of varying sample sizes 

on the results of the correspondence analysis. These methods aid us in developing 

general guidelines to help archaeologists when sampling and classifYing artefacts, in 

order to ensure that enough data are collected for statistical methods to be used 

effectively. In addition, we examine how reliable our particular data sample is by 

looking at the stability of the two-dimensional maps; we do this by using bootstrapping 

to resample from the multinomial and the hypergeometric distributions and obtain 

confidence regions using convex hulls and concentration ellipses. We also assess 

stability by applying a jack-knife approach and emphasise that any resampling must be 

implemented in a way appropriate to the method by which the data were originally 

collected. 
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Chapter Six investigates the effect of the number of categories into which artefacts are 

classified on the results of the correspondence analysis. We discuss existing statistical 

methods of selecting categories and suggest improvements, before implementing a new 

method. We also consider the implications of these statistical methods on archaeology 

and use archaeological expertise to suggest alternative category groupings, before 

discussing why the two approaches may not agree. A method of detecting influential 

categories is also introduced; this is based on a jack-knife approach. 

Chapters Seven and Eight extend the methodology of Chapter Three. Because of the 

large numbers of variables that are often present in archaeological data, Chapter Seven 

adapts the existing methods of variable selection used in principal component analysis 

to the various forms of biplot and comments on their validity. This chapter also 

develops and implements other methods of variable selection and discusses their 

relative merits (by analogy with linear regression). 

Chapter Eight discusses replicating the data matrix by using the multivariate normal 

distribution, in order to investigate the stability of the biplot variables and also to 

examine the effects of varying sample size on the biplot interpretation. Confidence 

intervals for the true directions of the variables (i.e. for the whole population of data) 

are also developed, using both traditional bootstrap and directional data methods. In 

addition, jack-knifing as a means of both assessing stability and identifying influential 

observations is introduced. 

Canonical correspondence analysis (CCA) is investigated in Chapter Nine, which 

expands on the methodology of Chapter Four. By resampling from the multinomial 

distribution and considering confidence regions based on convex hulls and 

concentration ellipses, we can assess the reliability of our particular data sample; an 

alternative method of investigating stability is to use a jack-knife approach. We also 

consider the effects of the number of sites visited on the CCA map and compare an 

existing method of variable selection with a method that we introduce. We propose 

using jack-knifing to identify influential species, sites and environmental variables (i.e. 

those which have a large influence on the ordination diagram) and we assess the 
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impact of changes in species abundance (i.e. sample size) on the interpretation of the 

map. 

This thesis is concluded in Chapter Ten. 
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Chapter Two 

Correspondence Analysis 

2.1 Introduction 

This chapter presents a review of the technique of correspondence analysis. The 

purpose is to bring together the algebraic details of the method and the various steps 

involved in interpreting the results and to illustrate these on several new data sets 

which were introduced in Chapter One and which are listed in the Appendix. In 

addition, questions generated by the particular problems underlying the data sets are 

raised, such as the influence of overall sample size, the influence of the number of 

categories and the effects of amalgamating and dividing categories on the analysis. 

These and other issues, are addressed in Chapters Five and Six. 

Correspondence analysis is a graphical exploratory multivariate technique that displays 

the rows and columns of a matrix of non-negative data as points in low-dimensional 

vector spaces. These spaces can be superimposed to obtain a joint display of rows and 

columns. The most basic form of correspondence analysis, known as simple 

correspondence analysis, is its application to a two-way contingency table. All other 

forms of correspondence analysis are the application of the same algorithm to other 

types of data matrices. 
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Section 2.2 describes the algebraic details of the technique, whereas 2.3 explains the 

interpretation of the results with illustrations on pottery sherds from Memphis (l.2.1) 

and Amarna (1.2.2) and on Melanesian starch grains (l.2.3). Questions arising as a 

result of applying correspondence analysis to these data sets are also raised in this 

section. Some faults of correspondence analysis are illustrated in Section 2.4, using 

data on frequency seriation and the role of seriation in archaeology is also discussed. 

A brief comparison of correspondence analysis with principal component analysis is 

given in 2.5 and Section 2.6 concludes the chapter, identifying several areas of 

concern which may arise when applying the method, particularly to archaeological 

data. These concerns are addressed in Chapters Five and Six. 
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2.2 The Theory of Correspondence Analysis 

Correspondence analysis aims to obtain a graphical representation of both the rows 

and columns of a matrix in as few dimensions as are deemed 'adequate'. The method 

can be defined in three steps: 

Step 1: Define two clouds of points (one for rows and one for columns) in 

corresponding multidimensional space. 

Step 2: 

Step 3: 

Impose a metric structure on each cloud of points i.e. define distances 

between rows and between columns. 

Define the fit of each cloud of points to a low-dimensional subspace 

onto which the points are projected for subsequent display and 

interpretation. Typically, we use two-dimensional space. 

These steps are described algebraically in Section 2.2.1. 

2.2.1 Algebraic Definition 

A variety of approaches lead to the equations of correspondence analysis (Tenenhaus 

& Young, 1985), but here we use the idea of the singular value decomposition (SVD) 

of a matrix (Eckart & Young, 1936) to provide the theoretical background. 

Step 1 

We introduce the following definitions. 

Let X (n x m) = data matrix of rank r, with elements xij; 

P = data matrix X divided by the sum of all its elements, with elements Pij 

(profiles); 

r = vector ofrow sums ofP (row masses or average column profile); 

c = vector of column sums of P (column masses or average row profile); 

Dr = diag(r); 
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We want to represent graphically the distance between row (or column) profiles and 

so we orientate the configuration of points at the 'centroid' of both sets. The centroid 

of the set of row points in its space is c, the vector of column masses or 'average row 

profile'. The centroid of the set of column points in its space is r, the vector of row 

masses or 'average column profile'. To perform the analysis relative to the centre of 

gravity, P is centred 'symmetrically' by rows and columns i.e. we compute P - rcT 

(Hoffman & Franke, 1986). 

Step 2 

In step 1 we defined the set of row points and their masses in r-dimensional space and 

calculated their centroid. This space needs to be structured so that we can compute 

distances between profiles. However, the usual Euclidean distance function is not 

suitable and so a weighted Euclidean metric is used, called the chi-squared metric, 

where each squared difference between row profiles Zj and Zj' is divided by the 

respective element of the average row profile: 

The usual chi-squared statistic, X2
, that tests the null hypothesis of row-column 

independence can be expressed as: 

2 

where x .. is the sum of all the elements of X. In other words, !... can be defined 
x 

geometrically as the weighted average of the squared distances of the row profiles to 

their centroid. This is termed the total inertia of the data matrix. 
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Step 3 

In steps 1 and 2 we have defined the cloud of row-profile points with masses in a 

space structured by the chi-squared metric. The problem is finding the k-dimensional 

subspace through the centroid of the cloud that is closest to all the points. The measure 

of closeness is defined as the weighted sum of squared distances from the points to the 

subspace, where the weights are the row masses and the distances are computed using 

the chi-squared metric. 

It can be shown that the first k right and the first k left singular vectors respectively of 

o~t (P - rc T )O:t, corresponding to the k largest singular values, represent the k

dimensional subspace of the row and column clouds which are closest to the points in 

terms of the weighted sum of squared distances (see e.g. Greenacre & Hastie, 1987). 
I I 

Letthe SVD of D ~2 (P - rc T)D:2 be: 

(2.1) 

where Nand M are orthonormal i.e. NTN = MTM = Ir and DJ.! = diag (J.!l, ... , J.!r) is a 

diagonal matrix of singular values. The columns of Nand M define the principal axes 

of the row and column clouds respectively. 

2 

The trace of the matrix in (2.1) is equal to L and so its eigenvalues, or principal 
x 

inertias, are a decomposition of the total inertia and give an idea of the quality of the 

representation with respect to the individual principal axes. The co-ordinates of the 

row profiles with respect to their principal axes (i.e. the row principal co-ordinates) 

are given by: 

(2.2) 
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2.2.2 The Dual Problem 

The above methodology can be applied in an equivalent fashion to the columns of the 

data matrix P - i.e. by repeating the above steps on the transposed matrix pT. We 

now look for the principal axes of the column profiles, weighted by masses that are 

the elements of c, in a space with a chi-squared metric defined by the diagonal matrix 

Dr-I. Thus, the elements of rand c play dual roles, weighting the profiles on the one 

hand and rescaling the dimensions on the other. If we divide each row of this 

transposed matrix by its total, we obtain a matrix C of column profiles. There is no 

need to recompute the dual solution because it can be obtained from the first problem 

via the transition formulae (see 2.2.3 and Greenacre, 1984). The total inertia and its 

decomposition into principal inertias (i.e. along principal axes) is exactly the same in 

the two problems. Because of the transition formulae, in their respective subspaces a 

row point is attracted to the region of the column points for which the row profile is 

large and vice versa. These reasons justify the merging of the respective plots of the 

row and column profiles into one and the representation of the row and column points 

on the same principal axes. If the first two principal axes are plotted then the inter-row 

and inter-column distances may be interpreted as approximate chi-squared distances, 

but row to column distances are meaningless. 

The co-ordinates of the column profiles with respect to their principal axes (i.e. the 

column principal co-ordinates) are given by: 

(2.3) 

2.2.3 The Transition Formulae 

The transition formulae for these principal co-ordinates express the row co-ordinates 

in terms of the column co-ordinates and vice versa. They are used to describe the 

relationship between the row and column points in the display and to plot the 

supplementary points (see 2.2.4). The two sets of co-ordinates, F and G, are related to 

each other by the following equations, known as the transition formulae: 
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G = CFD-1 
11· 

The usual display of row and column points as defined by the transition formulae is in 

a symmetric map. In this case both sets of points are called principal co-ordinates. For 

a symmetric map in the first two dimensions, co-ordinates in the first row of Fare 

plotted against those in the second row (these are the first and second principal axes) 

and similarly for the first and second rows of G. Occasionally, the third principal axis 

will explain a 'substantial' amount of variation in the data and so the first and third 

axes, or second and third axes, will be plotted. 

2.2.4 Supplementary Points 

Sometimes there are additional rows and columns of data which are not the primary 

data of interest, but which are useful in interpreting features discovered in the primary 

data. Any additional row (or column) of a data matrix can be superimposed onto an 

existing map, as long as the profile of this row (or column) is meaningful. Such a row 

(or column) is known as a supplementary point and takes no part in the determination 

of the axes. However, the contribution of the axes to the supplementary point is 

meaningful and allows us to judge whether the point lies to a greater or lesser extent in 

the space of the map, rather than out of it (Greenacre, 1993b). 

2.2.5 The Principle of Distributional Equivalence 

If two row points occupy identical positions in multidimensional space, then they may 

be merged into one point, whose mass is the sum of the two masses, without affecting 

the masses and interpoint distances of the column points. Similarly, a row of data may 

be subdivided into two rows of data, each of which is proportional to the original row, 

leaving the geometry of the column points invariant. This principle also applies to 

column points. 
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2.2.6 The Standard Co-ordinates 

The standardisation of the principal co-ordinates is the 'natural' standardisation 

imposed by our definition of the two dual and symmetric geometries. Another 

standardisation differs from the co-ordinates in equations (2.2) and (2.3) by the 

absence of the scaling factors DJ.1; these are the standard co-ordinates. The rows are 

denoted in (2.4) and the columns in (2.5): 

(2.4) 

(2.5) 

Thus, the weighted average of the squared principal co-ordinates of the rows, or the 

columns, on a principal axis, is equal to the squared singular value (or 'principal 

inertia') associated with that axis, whereas the weighted average of the squared 

standard co-ordinates is equal to 1 (Greenacre, 1993a). 
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2.3 The Ordination Diagram and its Interpretation 

This section describes how to interpret the correspondence analysis display, with 

applications to new sets of archaeological data. 

2.3.1 Symmetric and Asymmetric Displays 

In a symmetric display ( or map), the separate configurations of row profiles and 

column profiles are overlaid in a joint display, even though they emanate from 

different spaces and both row and column points are displayed in principal co

ordinates (Greenacre, 1993b). The convenience of such a display is that we always 

have both clouds of points equally spread out across the plotting area. 

An asymmetric display means that the standardisations imposed on the two sets of 

points are different. Usually, one of the sets is represented in principal co-ordinates 

and the other is represented in standard co-ordinates, known as vertices (Greenacre, 

1984). We refer to an asymmetric row plot when the rows are in principal co-ordinates 

and the columns are in standard co-ordinates (and vice versa for an asymmetric 

column plot). In asymmetric maps the principal co-ordinates are often bunched up in 

the middle of the display, far from the outer standard co-ordinates, especially if the 

principal inertias are low. 

When row points are in principal co-ordinates, the row-to-row distances approximate 

the inter-row chi-squared distances. This is the case in both the symmetric map and in 

the asymmetric row map. The danger of symmetric maps is in interpreting row-to

column distances directly because no such distance is defined or intended in this map. 

However, the degree of association between a row point and a column point is 

determined by a comparison of their distances from the origin. Whether the joint map 

is produced using asymmetric or symmetric scaling, there is a style of interpretation 

that remains universally valid - the dimensional interpretation. This involves 

interpreting one axis at a time and using the relative positions of one set of points to 

give a descriptive name to the axis. 
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The row and column points are displayed in the subspace of the first few principal 

axes and the quality is gauged by the moments of inertia (or eigenvalues) expressed as 

percentages of the total inertia. The quality of representation in the subspace of k 

dimensions, rather than in the full r-dimensional space, is given by the ratio of the sum 

of the eigenvalues: 

k 

LJ.l.~ 
tl =lOOx~' 

r 

LJ.l.: 
I~I 

It is hoped that the first two dimensions explain 'most' of the variability in the data. 

2.3.2 Inertia 

The overall spatial variation in the set of row points and set of column points assists in 

the interpretation of the maps. This variation, the total inertia, is defined as the 

weighted sum of squared distances from the points to their respective centroids and is 

equivalent for both sets of points. It is given by: 

The total inertia can be decomposed along the principal axes. Each eigenvalue, ~/, 

indicates the weighted variance (inertia) explained by the t-th principal axis of the 

display; summed over all principal axes, these eigenvalues represent the total inertia 

of the spatial representation. Additionally, the inertia of an axis can be decomposed 

among the different points so that each point's contribution to the position of that axis 

can be found. The total inertia of a point can also be decomposed along the different 

axes in order to show how well each point is represented by each axis. However, a 

two-dimensional display does not indicate which points have had the most impact in 

determining the orientation of the axes and so we need additional information. 
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2.3.2.1 Inertia of the Points 

The inertia of the i-th row point is equal to: 

[ 
(P' )2] m --.!.- C. r 
~ J 2 

v· =r "'" =r""'f I I L..J I L..J It· 

J=I C j t=1 

This is the contribution of the i-th row point to the total inertia. A similar definition 

holds for each column point. 

2.3.2.2 Absolute Contributions to Inertia 

The inertia along the t-th axis, /.Jl, consists of the weighted sum of squared distances 

of the displayed row (or column) profiles to the origin, where the weights are the 

masses for each row (or column) point. For the row profiles, this inertia can be 

expressed as: 

n 

Jot; = L r.fi;· 
1=1 

Thus, each eigenvalue also represents the inertia of the projections of the set of row 

(or column) points onto each axis. Each term in the summation is expressed relative to 

the inertia 'explained' by each axis (i.e. as a percentage) and so the absolute 

contribution of the i-th row to the t-th principal axis is obtained. The absolute 

contributions quantify the importance of each point in determining the direction of the 

principal axes. 

2.3.2.3 Relative Contributions to Inertia 

The 'Quality' of the representation of each point In the display can also be 

determined. The relative contribution of the t-th principal axis to the inertia of the i-th 

row is given by the quantity: 
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which indicates how well each point is 'fit' by the representation. For a particular 

point, the sum of the relative contributions across all r axes is equal to 1, because an 

angle cosine can be given a geometric interpretation as a correlation coefficient. We 

can find out how close each point lies to the k-dimensional subspace by looking at the 

angle e between the true profile point vector and the principal axis. The inertia of the 

profile point vector is decomposed along the principal axes and the value of cos2e is 
called the contribution of the axis to the inertia of the point. If cos2e is high then the 

axis explains the point's inertia very well; equivalently, e is low and the profile vector 

is said to lie in the direction of the axis or 'correlate' with the axis. The values of 

cos2e are called the relative contributions because they are independent of the mass of 

the point. Generally, a high contribution of the point to the inertia of the axis implies a 

high relative contribution of the axis to the inertia of the point, but not conversely 

(Greenacre, 1984). 

2.3.3 Application to Memphis Pottery Sherds 

In this section we illustrate correspondence analysis by usmg data consisting of 

weights of pottery sherds obtained from excavations at Memphis, Egypt (1.2.1). The 

weights of the sherds were recorded according to their contexts within the 

stratigraphic sequence and their fabric type (ware). The contexts are listed in reverse 

stratigraphical order (see Figure 1.1), from that closest to the current ground surface 

(context 377) to that furthest below ground (context 749) and the data are given in 

Table Al of the Appendix. Some of the results from applying symmetric 

correspondence analysis to these data are shown in Tables 2.1 and 2.2. Because there 

are so many wares, the points representing the contexts and wares are displayed in two 

separate diagrams (Figures 2.1 and 2.2 respectively), but it is still difficult to identify 

the precise relationships between the wares - the effect of large numbers of 

categories on the analysis is discussed in detail in Chapter Six. Since there are 48 

wares (rows) and 13 contexts (columns) in the data matrix, there are 12 dimensions to 

the solution. Thus, 12 principal inertias are obtained which are shown in Table 2.1 
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below. 

Table 2.1 Principal Inertias for the Memphis Pottery Sherds 

Inertia Percentage of Inertia Cumulative Percentage of Inertia 

0.743 44.22 44.22 

0.254 15.09 59.31 

0.224 13.30 72.61 

0.131 7.81 80.42 

0.099 5.88 86.29 

0.077 4.61 90.90 

0.055 3.29 94.19 

0.042 2.50 96.69 

0.029 1.74 98.43 

0.019 1.16 99.58 

0.004 0.23 99.81 

0.003 0.19 100.00 

1.681 

We can see from this table that the first principal axis explains 44.2% of the inertia of 

the data and that the second axis explains 15.1 %. These percentages are high enough 

for us to be confident in our interpretations of the two-dimensional display (there is no 

rule for deciding whether a percentage is 'high enough', but a figure of at least 50% 

has proven to be a reasonable rule of thumb for archaeological data). Considering 

Figure 2.1 and using the dimensional interpretation of Section 2.3.1, it is clear that the 

first axis is a contrast between context 377 on the far left, contexts {465, 476, 509} in 

the middle and the remaining contexts on the right. Thus, going from left to right 

across the display corresponds to going from closest to the current ground surface to 

furthest below ground in the stratigraphic sequence (see Figure 1.1). The second axis 

separates context 289 from the remaining contexts, which is particularly interesting 

because context 289 is common to another stratigraphic sequence at Memphis 

(Bourriau, pers. comm.). 
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Figure 2.1 Correspondence Analysis Map of Memphis Contexts 

We now consider Figure 2.2, the codes for which are listed in Table Al of the 

Appendix. The first axis separates wares {5, 8, 9, 31, 33} - which we refer to as 

'group l' - from {4, 6, 7,10,22,23,24,36,37,38, 39} - 'group 2' - and both 

these from the wares in the top right-hand corner which we call 'group 3'. The second 

axis splits wares 25 and 29 (which are undatable Nile fabrics) from all the remaining 

wares. 
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Figure 2.2 Correspondence Analysis Map of Memphis Wares 

Overlaying Figures 2.1 and 2.2 suggests that the wares in 'group l' have a strong 

association with context 377 (because they are located at similar distances from the 

origin), the wares in 'group 2' have a strong association with contexts {465, 476, 509} 

and the wares in 'group 3' have a strong association with the remaining contexts. 

Wares 25 and 29 are highly associated with context 289. These inferences are 

confirmed by a close look at Table AI, where the weights of the wares are relatively 

large in their associated contexts just described. 

The Memphis sherds comprise a large amount of data that have been examined in 

detail by archaeologists. Many of the sherds could be sorted much more quickly into 

broader categories of wares which would save time (which could be spent collecting 

other archaeological information) and which would also mean that there are fewer 

categories to display on the correspondence analysis map - relationships between 

wares could then be more clearly identified. It is, therefore, important to investigate 

whether sorting the sherds into broader categories would alter the interpretation of the 

correspondence analysis map: this can be assessed by amalgamating categories based 

on either archaeological expertise or statistical methods. Combining categories in this 
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way reduces the number of categories without losing all the information collected. 

This issue is addressed in Chapter Six. Table 2.2 displays the numerical output from 

the correspondence analysis for the contexts only. 

Table 2.2 Correspondence Analysis Output for the Memphis Contexts 

First Principal axis Second Principal axis 

Context Quality Mass Inertia Co-ord Correl Contr Co-ord Correl Contr 

377 0.858 0.031 0.312 -3.785 0.851 0.600 0.334 0.007 0.014 

465 0.579 0.024 0.116 -2.166 0.573 0.150 -0.213 0.006 0.004 

509 0.430 O.oJ8 0.132 -1.552 0.408 0.122 -0.356 0.021 0.019 

476 0.442 0.009 0.038 -1.770 0.441 0.038 -0.081 0.001 0.000 

289 0.939 0.075 0.136 0.250 0.021 0.006 -1.670 0.918 0.827 

690 0.174 0.077 0.038 0.234 0.066 0.006 0.299 0.108 0.027 

716 0.255 0.063 0.015 0.295 0.211 0.007 0.136 0.044 0.005 

739 0.020 0.011 0.032 0.298 0.018 0.001 0.113 0.003 0.001 

740 0.409 0.095 0.030 0.284 0.154 0.010 0.366 0.256 0.050 

707 0.256 0.316 0.049 0.256 0.249 0.028 0.041 0.006 0.002 

761 0.235 0.011 0.004 0.275 0.130 0.001 0.248 0.105 0.003 

758 0.354 0.149 0.025 0.286 0.294 0.016 0.129 0.060 0.010 

749 0.161 0.101 0.073 0.314 0.081 0.013 0.313 0.080 0.039 

We see from the above table that, for example, the mass of context 377 is 0.031, its 

inertia in full 12-dimensional space is 0.312, its principal co-ordinate (,Co-ord') on 

the first axis is -3.785 and its principal co-ordinate on the second axis is 0.334. We 

obtain similar information for the wares. The following section describes the 

interpretation of the other entries in the table in more detail. 

2.3.3. t Absolute Contributions to Inertia 

For each principal axis we look down the column headed 'Contr', in order to interpret 

the dimension. The inertia along the first axis is 0.74 (see Table 2.1), which is equal to 

the weighted sum of squared distances of the displayed column or row profiles to the 

origin. Each term in this sum can be expressed as a percentage of this first principal 

inertia and we call these 'contributions by the points to the principal axis' 
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For example, the point 377 has a mass of 0.031 and a distance from the centroid of -

3.785. Its absolute contribution to the first principal inertia is thus 0.031 x (-3.785i = 

0.44 which is 60.0% of 0.74. It is the points such as this one, with high contributions, 

that have played the major role in determining the final orientation of the first 

principal axis. An alternative method of calculating the absolute contribution of 

context 377 to the inertia of the first axis is to multiply its contribution ('Contr') of 

0.60 by the inertia of this first axis, 0.74, giving 0.60 x 0.74 = 0.44. We can also carry 

out similar calculations for the second axis, for the other contexts and for the wares. In 

Chapter Six we investigate an alternative method of identifying influential points. 

2.3.3.2 Relative Contributions to Inertia 

For each point we scan across the values in the 'Correl' columns in order to identify 

the axes which represent the point well. Considering context 377, its squared 

correlation with the first axis is 0.851 and with the second is 0.007. This is not 

surprising given that context 377 is well separated from most of the other contexts on 

the first axis. Looking at context 289, this has a very high squared correlation with the 

second axis (0.918), which confirms our interpretation of it being distinguished from 

the remaining contexts on this axis. The quality (,Quality') of representation of 

context 377 in the two-dimensional display is 0.858, the squared correlation (cosine) 

with the plane, which is the sum of the individual squared correlations. A similar 

interpretation can be made for the other contexts and for the wares. 

2.3.4 Application to Amarna Pottery Sherds 

A second application of correspondence analysis concerns pottery sherds from 

Amarna, Egypt, which were described in Section 1.2.2 of Chapter One. The sherds are 

classified according to pottery ware and site and the data are given in Table A.2 of the 

Appendix. The first two dimensions explain 56.3% of the inertia of the data and this is 

a high enough percentage for us to be confident in our interpretations of the two

dimensional display. Figure 2.3 displays the symmetric correspondence analysis map 

of the Amarna sherds. Interpreting the first principal axis, there is a contrast between 

site c and pottery ware lOon the right, which appear to be associated with each other, 

site k and ware 9 in the middle and the remaining sites and pottery wares on the left. 
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As for the Memphis sherds, absolute and relative contributions to inertia can also be 

obtained. 
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Figure 2.3 Correspondence Analysis Map of Amarna Sherds 

Key questions which arise with these data concern sample sizes. The existing data 

consist of sherds collected from 12 sites, but it is important to understand how the 

relationships between the pottery wares would be affected if fewer sites had been 

visited. In addition, we need to consider how the relationship between wares and sites 

might be altered if fewer sherds had been collected at one or more sites, with a view to 

making inferences about the minimum sherd numbers required to make analysis 

worthwhile. Questions such as these are considered in detail in Chapters Five and Six. 
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2.3.5 Application to Melanesian Starch Grains 

In a third example, correspondence analysis is applied to counts of starch grains from 

Melanesia, cross-classified into type and site, described in Section 1.2.3 and listed in 

the Appendix. Only 40.0% of the total inertia is explained in the first two dimensions, 

which is fairly low and so it may be of interest to consider the third dimension (which 

accounts for 11.4% of the total inertia) in addition to the first two. Figure 2.4 shows 

the sites displayed in the first two dimensions. Along the first axis site S 16 (a garden 

site) appears to be quite unusual in comparison with the remaining sites, whereas sites 

SI, S2 and S5 (the rock island sites) are slightly removed from the bulk of the sites in 

the second dimension. Figure 2.5 displays the types of starch grain but there are so 

many types that it is almost impossible to obtain a clear picture of the relationships 

between them. Despite this, it seems reasonable to suggest that types 13, 19, 20, 45, 

62 and 65 are slightly separated both from each other and also from the remaining 

types on the first axis. 
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Figure 2.4 Correspondence Analysis Map of Melanesian Sites 

(First and Second Principal Axes) 
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Figure 2.5 Correspondence Analysis Map of Melanesian Starch Grain Types 

The sites are displayed in the second and third dimensions in Figure 2.6. We see from 

this figure that the second axis contrasts the three rock island sites (S 1, S2 and S5) 

from the other sites and there appears to be a disturbance gradient on this second axis 

going from the least disturbed rock island sites on the left to the most disturbed sites 

on the right. 
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Figure 2.6 Correspondence Analysis Map of Melanesian Sites 

(Second and Third Principal Axes) 

Because of the large number of types which need to be displayed and the relatively 

sparse nature of most of the types (many with fewer than 10 grains in total), it is 

important to consider how the relationships between the sites are altered when fewer 

types, each consisting of a 'reasonable' number of grains, are used in the analysis. 

Reasons why we may want to delete categories of starch grain can be summarised as 

follows: 

• The data collected for some types of grain are so sparse that they may be 

hiding relationships between other categories and with other categories. 

This can cause points to be all bunched up together in the correspondence 

analysis map. Deleting one or more of these sparse categories can lead to 

'true patterns' emerging (or at least more interpretable ones). 

• It is almost impossible to identify patterns in the data because we cannot 

easily visualise all the 96 types of grain that have been collected. 

Deleting some types may help us to identify patterns. 
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In addition to the above points and as explained in Section 1.2.3, it is of great 

importance to archaeologists to investigate the possibility that different plant species 

produce different sized grains of the same type. It is therefore necessary to allow for 

the division of types on the basis of grain size and this is considered in Chapter Six. 
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2.4 Frequency Seriation 

The concept of seriation can be attributed to Flinders Petrie (1899), although the 

essential theory behind the seriation method was 'formalised' by Brainerd and Robinson 

(Robinson, 1951). Kendall (1971) reviewed and evaluated Petrie's work, explaining the 

similarity between the approaches of Petrie and Robinson, despite their apparent 

differences. It is from here that the term 'Petrie matrix' (see below) appears to originate. 

The application of correspondence analysis to seriation problems (usually in 

archaeology) has revealed some unwelcome features of the technique which we explain 

below. Frequency seriation problems concern determining a plausible ordering of sites 

or assemblages of artefacts on the basis, typically, of only the presence or absence of 

each of various categories of artefact. This is taken to indicate their ordering in time. It 

is, perhaps, the fact that the data matrix is binary - an 'extreme' form of the data -

that reveals the deficiencies in correspondence analysis clearly. 

Table 2.3 illustrates an incidence matrix, which we have invented, but which is based on 

an idea from Lock & Wilcock (1987), where the rows represent six site assemblages 

(colJections of artefacts) and the columns five typical groups of artefacts from different 

archaeological Periods. The occurrence of a '1' indicates that the particular type of 

artefact is found at the given site. This matrix is unordered and the 1 's are widely 

scattered. 

Table 2.3 Incidence Matrix of Assemblages and Artefacts 

Artefacts 

Site Iron Beaker Stone Samian Bronze 

Assemblage Tools Pottery Tools Ware Tools 

A 1 0 0 1 0 

B 0 0 1 0 0 

C 0 1 0 0 1 

D 0 0 0 1 0 

E 1 0 0 0 1 

F 0 1 1 0 0 
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To obtain a two-way Petrie matrix from this data (a Petrie matrix is an incidence matrix 

that has a block of consecutive l' s in every row~ the matrix is two-way Petrie if the 

matrix also has a block of consecutive 1 's in every column, the block in the first column 

starting in the first row and the block of the last column ending in the last row), the aim 

is to get the 1 's as close as possible to the central diagonal by reordering the rows and 

columns. Both the artefact types and the sites will hopefully then be seriated. 

Table 2.4 shows the data rearranged into a two-way Petrie matrix. For any table that 

permits such a rearrangement we can discover the correct ordering of sites and artefacts 

from the scores of the first axis of a correspondence analysis (Figure 2.7). However, 

correspondence analysis does not reveal the structure if the l' sand 0' s are interchanged 

(their role is asymmetrical) - the 1 's are important but the O's are disregarded 

(Jongman et al., 1995). 

Table 2.4 Two-way Petrie Matrix of Assemblages and Artefacts 

Artefacts 

Site Samian Iron Bronze Beaker Stone 

Assemblage Ware Tools Tools Pottery Tools 

D 1 0 0 0 0 

A 1 1 0 0 0 

E 0 1 1 0 0 

C 0 0 1 1 0 

F 0 0 0 1 1 

B 0 0 0 0 1 

Using archaeological knowledge in conjunction with this seriation, we would infer that 

B is the earliest site (stone tools only, from the Palaeolithic Period) and that D is the 

most recently occupied site (Samian ware, typical of the Roman Period) and also that 

the age order of the artefact types is stone tools, beaker pottery, bronze tools, iron tools 

and Samian ware. Archaeological knowledge is important for the interpretation of a 

Petrie matrix because otherwise it would be unclear whether site B or site D contained 

the earliest material. 
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2.4.1 Seriation in Archaeology 

In archaeology we distinguish between two types of seriation - frequency seriation and 

contextual seriation. In contextual seriation it is the duration of different artefact styles 

which governs the seriation and frequency seriation is not just applicable to presence or 

absence of artefacts, but it also measures changes in the frequency of a (ceramic) style. 

There are three basic assumptions behind frequency seriation: 

• (Pottery) styles gradually become more popular, reach a peak popularity 

and then fade away. 

• At a given time period, a (pot) style popular at one site would similarly be 

popular at another site. 

• Sites must cover a single Period in the archaeological record. 

Seriation by itself does not tell us which end of a given sequence is first and which is 

last - the true chronology has to be determined by other means e.g. by links with 

excavated stratigraphic sequences. 

2.4.2 Faults of Correspondence Analysis 

The ordination of Table 2.4 illustrates two 'faults' of correspondence analysis which 

are outlined below. 

2.4.2.1 Changes in Artefact Composition 

A correspondence analysis of the data in Tables 2.3 and 2.4 is illustrated in Figure 2.7. 

The artefacts are coded as it = iron tools, bp = beaker pottery, st = stone tools, sw = 

Samian ware and bt = bronze tools; the sites are labelled as a-f From Table 2.4 we 

observe that the change in artefact composition between two consecutive assemblages is 

constant and we would therefore like this constant change to be reflected in equal 

distances between the correspondence analysis scores of neighbouring assemblages 

along the first axis of the map in Figure 2.7. However, this is not the case - the 

assemblage scores at the ends of the first axis are closer together than those in the 
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middle of the axis. 

2.4.2.2 The' Arch Effect' 

The artefact composition is explained perfectly by the ordering of the assemblages and 

artefacts along the first axis and it has therefore been argued that the importance of the 

second axis should be zero. However, the first axis of Figure 2.7 explains 45.2% of the 

variation in the data and the assemblage and site scores on the second axis show a 

quadratic relation to the first axis. This is termed the 'arch effect' (Gauch et al., 1977) 

and denotes the phenomenon which sometimes occurs in ordination methods, where all 

or most of the plotted points appear in a curve. This is because although the axes are 

orthogonal, non-linear relationships may still exist between them - the axes are not 

independent. The 'arch effect' is a mathematical phenomenon, which does not 

correspond to any real structure in the data. 
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Figure 2.7 The' Arch Effect' 

Hill & Gauch (1980) believe that the 'arch effect' occurs fairly often in ecological data 

sets and developed the technique of , de trended' correspondence analysis to solve the 

problem. This technique has since come under criticism but is not discussed here. 
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2.5 Correspondence Analysis and Principal Component Analysis 

In the foHowing sections we give a brief comparison of the techniques of 

correspondence analysis and principal component analysis. However, an explanation 

of principal component analysis is not given here but is deferred to Chapter Three -

'Biplots' - because is has closer similarities with these methods of analysis. 

2.5.1 Joint Plots 

In correspondence analysis, both the rows and columns of the data matrix are plotted 

together on the same picture, whereas in principal component analysis it is just the 

scores that are plotted. These scores correspond to the rows. 

2.5.2 Size and Shape 

Correspondence analysis pays more attention to 'shape' and less to 'size' than 

principal component analysis (Ringrose, 1990). In particular, if two rows have the 

same relative abundances but different absolute abundances (e.g. one is exactly twice 

the other) then in correspondence analysis these wiH have exactly the same co

ordinates on the axes, differing only in their contributions to the overall positioning of 

, the axes. However, in principal component analysis they will have different positions 

and the row with the larger abundance will be further away from the origin than the 

other row on each axis. 

2.5.3 Decomposition of Variance 

The inertia in correspondence analysis is decomposed along the principal axes, just as 

variance is in principal component analysis. Thus, a decision can be made on how 

many dimensions adequately describe the data in both techniques. 
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2.6 Summary and Conclusions 

This chapter has reviewed the technique of correspondence analysis, which allows 

data in the form of contingency tables or incidence matrices to be displayed in two

dimensional space and also allows us to visually identify relationships between row 

categories and between column categories, which is of great use in archaeology. The 

method is known, however, to have several faults which we illustrated using a 

frequency seriation problem. Seriation, as defined in archaeology, was also discussed 

and some of the similarities between correspondence analysis and principal 

component analysis were explained. 

The Memphis sherd data (1.2.1) and the Melanesian starch grains (1.2.3) suggested 

that correspondence analysis maps can become difficult to interpret if there are many 

categories to display (Figures 2.2 and 2.5) and that it may therefore be advisable either 

to classify artefacts into broader categories initially, which will also save the 

archaeologist time, or to amalgamate or delete categories at a later stage. There are 

various methods available, both archaeological and statistical, for choosing which 

categories to combine and methods also exist for deleting categories. We explained 

that with certain types of data (e.g. starch grains, phytoliths, microfossils) it is 

necessary to allow for the division of categories after data collection, on the basis of 

an external variable. Existing methods of category selection and our extensions of 

these are examined in Chapter Six. 

In this chapter we also discussed (using the Amarna sherds of 1.2.2) the importance of 

considering the effect of the number of artefacts collected, both in total and within 

each site, on the relationships between categories. For example, it may be that, 

depending on the number of artefacts collected, the relationships between wares and 

sites in the correspondence map vary. These issues need to be considered in detail and 

this forms part of Chapter Five. In addition, by looking at the output from 

correspondence analysis, we explained how to identify which points have played the 

biggest part in determining the orientations of the first two principal axes. In Chapter 

Six we investigate an alternative method of detecting influential points, using a jack

knife approach. 
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Biplots 

3.1 Introduction 

A second, relatively recently developed collection of techniques for displaying data 

matrices is the set of different forms of biplot. The aim of this chapter is to bring 

together the algebraic details of these various forms, from a large number of sources and 

to combine them with guides to the important aspects of biplot interpretation, giving 

illustrations using both published and new data sets. Potential problems with applying 

biplots to archaeological data are also highlighted, for example the effects of large 

numbers of artefacts on the interpretation, the influence of outliers and the need for 

variable selection methods when vast numbers of variables have been measured. We 

also use concentration ellipses for summarising large numbers of observations and 

extend their use to compare groups of artefacts. In addition, the influence of the number 

of variables measured and their ability to discriminate between groups of observations is 

briefly discussed and we introduce the diversity biplot into archaeology for the first 

time. The discussion in this chapter is a prelude to the developments described in 

Chapters Seven and Eight, where problems such as those just described are addressed 

and solutions are suggested. 

A biplot is a method of visual ising the elements of a rectangular data matrix by 

representing the rows and the columns of the matrix as points or vectors in a joint 

display in low-dimensional space. Often, the data matrix (X) is in an observations-by-
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variables format; the observations are usually represented by points and the variables 

by vectors extending from the origin of the display. There are various forms of biplot, 

all of which rely on a generalised singular value decomposition (GSVD) of different 

scalings of the data matrix. These include the covariance, correlation, coefficient of 

variation, Spearman rank correlation, principal component and diversity biplots. 

Biplots are related to techniques such as principal component analysis, 

correspondence analysis and multivariate analysis of variance and just as with these 

their importance lies in revealing structure within the data which may, or may not, be 

suspected. 

This chapter describes the theory behind the various forms of biplot and applies the 

most common ones to archaeological data, collating the fragmentary literature into a 

coherent account. Section 3.2 presents the standard technique of principal component 

analysis in preparation for Section 3.3, which introduces biplots. In Section 3.4 we 

define and compare the biplots of the Correlation Biplot Family, describe their 

properties and develop the Spearman rank correlation biplot to consider the two cases 

of tied ranks and absence of tied ranks separately. We describe the main biplot of the 

Principal Component Biplot Family in Section 3.5 and in 3.6 we describe how to 

assess the quality of representation ofa biplot in two dimensions. The interpretation of 

a biplot, with applications to ceramic pots and Simpson Desert flakes, is illustrated in 

Section 3.7, where concentration ellipses are used to summarise large numbers of 

observations and to assess similarities between groups of observations. The concept of 

diversity is discussed in 3.8, where the diversity biplot is introduced into archaeology 

and comparisons are made with correspondence analysis. In 3.9 we describe another 

form of biplot, the symmetric biplot and the relationships between biplots and a 

selection of other multivariate techniques are described in 3.10. The chapter is 

concluded in Section 3.11 where the particular problems driven by archaeological data 

are summarised. These are discussed in Chapters Seven and Eight. 
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3.2 Principal Component Analysis 

Principal component analysis (PCA) is one of the most widely used techniques of 

multivariate analysis and yet it has many similarities with biplots, which are much less 

well known. The main idea of PCA is to reduce the dimensionality of a data set 

consisting of a large number of interrelated variables, while retaining as much as 

possible of the variation present in the data set. This is achieved by transforming to a 

new set of variables, the principal components, which are uncorrelated with each 

other, each containing a proportion of the variance explained in decreasing order of 

magnitude, so that the first component retains most of the variation present in all of 

the original variables (Jolliffe, 1986). 

Consider a data matrix X (n x m) which consists of m variables (columns) measured 

on n observations (rows). For PCA, the matrix X is scaled in one of two ways, to form 

matrix H. If X is mean-centred by columns then we refer to PCA on the covariance 

matrix, but if X is standardised so that each variable has zero mean and unit variance, 

useful when the variables have been measured in different units, then we refer to PCA 

on the correlation matrix. Consider the singular value decomposition ofH: 

H = UDliyT 

where Dii = diag (Ill, ... , 11m) is a diagonal matrix of singular values; 

D/ = diag (1112, ... , 11m2
) is a diagonal matrix of eigenvalues; 

U (n x m) and Y (m x m) are orthonormal i.e. UTU = yTy = 1m; 

U is the matrix of left eigenvectors ofHHT; 

V is the matrix of right eigenvectors ofHTH. 

The matrix Y defines a rotation of the original axes to a new set of axes (the principal 

axes). The rotation is applied to the data by postmultiplying the matrix H by Y to 

obtain the co-ordinates of the points for the observations relative to their principal 

axes. These co-ordinates are often termed 'scores'. Thus, if aij is the score for the i-th 

observation along the j-th principal axis, it is given by: 
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a ij =hi1v1j + ... +himvmj =L:hi1v 1j 
1=1 

and the matrix of scores, A (n x m), is given by: 

A=HV=UDIl· 
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If h is the vector of m variables then hVI denotes the scores on the first principal axis 

where VI is a column vector containing VII, ... , Vim. It is a standard result that the first 

principal axis is the linear function of the elements of h that has maximum variance; 

the second principal axis is the linear function hV2 that has maximum variance, subject 

to being uncorrelated with hVI. 

For any specified k < m, peA finds the subspace of k dimensions for which the sum 

of squared perpendicular distances of hi, ... , hm to the subspace is minimised. Each 

point is then represented by the projection of its original position onto that subspace 

and to obtain the best fitting subspace of k dimensions we take the first k columns of 

scores of A. Up to m principal components could be found but it is hoped that most of 

the variation in y will be accounted for by the first k principal components, where k 

« m. Using k principal components instead of m variables considerably reduces the 

dimensionality of the problem when k « m, but usually the values of all m variables 

are still needed in order to calculate the principal components, because each principal 

component is generally a function of all m variables. 

Because we hope to reduce the dimensionality of the data from the original m 

dimensions to a much smaller number, k, we are interested in measuring the 

percentage of variation in the data accounted for by the first k principal components. 

This is given by: 

k 

L J.l~ 
]=1 

tk = 100 x -m--' 

L: J.l~ 
J=I 

55 



Chapter Three - Biplots 

We mentioned at the beginning of this section that principal component analysis has 

close similarities with certain forms of biplot (particularly the principal component 

biplot) and these are described in Section 3.10.1. However, peA only displays the 

observations, whereas biplots display both observations and variables and this is their 

major advantage. We describe biplots in Section 3.3 below. 
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3.3 Introduction to Biplots . 

Any matrix X (n x m), of rank r, can be factorised as: 

where F (n x r) and G (m x r) are both of rank r. Each Xij, the (i,j)-th element ofX, can 

be expressed as the inner product of~ and gj, where ~T is the i-th row ofF and gj is the 

j-th column of GT. In a biplot the co-ordinates of the rows (observations) of matrix X 

are usually represented by points and the columns (variables) are usually represented 

by vectors, where the j-th variable is represented by a vector from the origin to the 

point gj. Biplots represent each element Xij geometrically, as in Figure 3.1, where a 

perpendicular is dropped from point ~ onto vector gj and the distance from the origin 

to the foot P of this perpendicular is multiplied by the length of vector Sj. The product 

corresponds to the inner product ~Tgj. The geometrical interpretation of these points is 

in terms of the distances of each point from the origin and the cosines of the angles 

which pairs of the vectors subtend at the origin. There is no particular reason why the 

variables are represented by vectors rather than points, but it allows us to more easily 

visualise the correlations between the variables, which are represented by the size of 

the angle subtended between their vectors at the origin. 

Figure 3.1 Graphical Representation of the Elements of a Matrix 

If X is of rank two then the rows and columns are displayed exactly on a two

dimensional plot, but otherwise they are a least squares approximation to the full rank 

matrix. The quality of representation of the two-dimensional display is evaluated by 
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expressing as a percentage the ratio of the sum of eigenvalues in two dimensions to 

the sum of eigenvalues in full r-dimensional space. The interpretation of a biplot 

focuses on the relationship between the variables - those variables represented by 

vectors which subtend a small angle at the origin are highly correlated, whereas those 

with an angle of approximately 90° between them are considered to be uncorrelated. 

More specific details regarding the interpretation of biplots are given in Sections 3.6 

and 3.7. These vary according to the form ofbiplot. 

Each time a biplot is implemented a GSVD is required. However, when the GSVD is 

carried out, the left and right eigenvectors are determined independently and this can 

lead to arbitrary sign changes in the eigenvectors and hence in the resulting co

ordinates (see 5.2.4). There are two main families of biplots - these are described in 

Sections 3.4 and 3.5 - they differ in the scalings of the matrix of singular values 

obtained from the GSVD of matrix X. The diversity biplot is discussed in 3.8, where 

we propose applying it to archaeological data and the symmetric biplot which has 

another alternative scaling is described in 3.9. In the subsequent sections of this 

chapter we use the notation of Chapter One. 

58 



Chapter Three - Biplots 

3.4 The Correlation Biplot Family 

Considering the GSVD of a matrix X for the simplest case of n = In and <l> = 1m, as 

described in Chapter One, we have a = 0 and b = 1 for all biplots in this family. Thus, 

the co-ordinates of the observations and the variables in two dimensions are given by 

the first two columns ofF and G respectively, where: 

F=U 
(3.1) 

G=VDI-\' 

In Sections 3.4.1-3.4.4 we describe the four most commonly used biplots of the 

Correlation Biplot Family. These include the covariance biplot, which is most suitable 

for variables measured in the same units, the correlation biplot, which is useful when 

the variables are measured on different scales and the coefficient of variation biplot 

which is suited to data matrices in which the relative variability of the variables, rather 

than the absolute variability, is of main interest. We also describe the Spearman rank 

correlation biplot, which is useful when there are large discrepancies between the 

magnitudes of the observations because it ranks the observations within each variable. 

All these biplots involve scaling a data matrix X (n x m) of rank r. In addition, the 

I 

covariance, correlation and coefficient of variation biplots are all scaled by (_1_) 2 
n-l 

to ensure that properties 3.4.6.1 and 3.4.6.2 (see below) hold automatically. These 

various types of biplot are illustrated on the ceramic pots (1.2.5), flint tools and flake 

debitage (1.2.6) in Section 3.7. 

3.4.1 The Covariance Biplot 

The covariance biplot is a common form of biplot, which involves column-centring 

matrix X to form matrix Y: 

( l)t -y= - (X-X) 
n-l 

where X is a matrix of column means. By calculating a GSVD of matrix Y, we obtain 
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the co-ordinates of the observations and the variables, as defined in the prevIOus 

section. The squared norm of matrix Y is of interest because it allows us to identify 

(loosely) which variables are of most importance in the biplot analysis, by calculating 

their relative contributions to the squared norm (Underhill, 1990) and this is discussed 

further in 3.4.5.7. The squared norm ofY is given by: 

m 

IIYI1
2 

= LS~ 
j=l 

where Sj is the standard deviation of variable j. The relative contribution of variable j 

to the squared norm is denoted by: 

This depends on the magnitude and scale of measurement of the variables. 

3.4.2 The Correlation Biplot 

In the correlation biplot the matrix X is column-standardised as follows to form matrix 

c: 

I 

C = (_1 )\x- X)(diag(sl'"'' sm)r 
n-l 

where s), ... , Sm are the standard deviations of the variables. Because of the 

standardisation imposed on matrix X, the standard deviations of the variables of Care 

all equal to one and the length of the vector representing variable j, given by Ilg j II, is 

equal to one for each variable, in full r-dimensional space. The squared norm of 

matrix C is given by: 
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and thus each variable j makes an equal contribution to the squared norm of rj = ~ . 
m 

3.4.3 The Coefficient of Variation Biplot 

The coefficient of variation biplot was developed by Underhill (1990). The matrix X 

is scaled as follows: 

where x I"'" X m are the means of the variables. Because of this scaling of matrix X, 

the standard deviations of the columns of E are the coefficients of variation of the 

variables. Thus the length of the vector representing variable j in the display, given by 

/lg j /I ' gives the coefficient of variation of the variable, because: 

This display is useful for data matrices in which the relative variability of the 

columns, rather than the absolute variability, is of prime interest. However, the 

variables must be such that the coefficient of variation is meaningful - they need to 

be measured on a ratio scale. Underhill (1990) says that the coefficient of variation 

biplot is a compromise between leaving the variables in their original scales and units 

(so that the variables with the largest standard deviations dominate) and transforming 

by the standard deviations so that each variable has equal importance. The squared 

norm of matrix E is given by: 

and the relative contribution of variable j to the squared norm is denoted by: 
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which is proportional to the coefficient of variation of the variable. Variables with 

small coefficients of variation make a small contribution to the squared norm and vice 

versa, regardless of their original scales of measurement. 

3.4.4 The Spearman Rank Correlation Biplot 

The Spearman rank correlation biplot was introduced by Iloni (1991). In this form of 

biplot the observations within each column of matrix X are ranked and the matrix of 

1 

ranks, multiplied by (_1_)"2, is given by Z, with elements Zij. In the next two 
n-l 

sections we extend the comments by I10ni (1991) to consider the cases of tied ranks 

and absence of tied ranks, separately. 

3.4.4.1 Absence of Tied Ranks 

Firstly, we consider the case of no ties. If there are no tied observations then the 

variables of Z have the same norm and the squared norm of matrix Z with no ties is 

given by: 

IIzI1 2 = n(n + 1)(2n + l)m . 
6 

Each individual variable has squared norm: 

If none of the variables have tied ranks then they each have an equal relative 

contribution to the squared norm, given by: 

1 
rj=-. 

m 
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3.4.4.2 Tied Ranks 

In this section we develop expressions for the squared norm and relative contributions 

to the squared norm for the case of tied ranks. The squared norm of a variable j which 

has w (~2) tied observations out of n, is given by: 

(3.2) 

Therefore, for p variables with w ties and m variables with no ties, the squared norm 

of matrix Z is: 

IIZI12 = 2mn(n + 1)(2n + I) - wp(w -I)(w + 1) 
12 

and the relative contribution of a variable j with w ties to the squared norm of a matrix 

of which p variables have w ties is: 

2n(n + 1)(2n + I) - w(w -1)(w + I) 
r=--~--~~--~--~--~~--~ 

J 2mn(n + 1)(2n + I) - pw(w - l)(w + 1) 
(3.3) 

Similarly, the relative contribution of a variable with no ties to the squared norm of a 

matrix of which p variables have w ties is: 

2n(n + 1)(2n + 1) 
r=----------~--~--~--------
J 2mn(n + 1)(2n + 1) - pw(w -1)(w + I) 

(3.4) 

We see that the denominators of(3.3) and (3.4) are equal and so if a variable has tied 

observations then in the Spearman rank correlation biplot this variable contributes less 

to the squared norm and can be loosely considered to be less important. In fact, the 

more observations within a variable that are tied, the less contribution that that 

variable makes to the squared norm. The contribution of a variable to the squared 

norm also varies with the number of pairs of ties, triples of ties and so on and we can 

see from (3.2) that more information is lost (i.e. there is less contribution to the 

squared norm) when three values tie together, compared with when two pairs of 

values tie. Because the other forms of biplot all use a transformation of the actual 
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measurement data and not ranks, no information is lost when tied values are obtained 

for these biplots. 

3.4.5 Comparisons between Biplots 

Having described the most common types of biplot, the following sections comment 

on the various scalings of the data matrix X which result in the covariance, 

correlation, coefficient of variation and Spearman rank correlation biplots. It is 

important to be aware of the various features of each before undertaking any data 

analysis so that the most suitable biplot can be chosen. 

3.4.5.1 Units of Measurement 

The elements in the scaled data matrices of C, E and Z in the cases of the correlation, 

coefficient of variation and Spearman rank correlation biplots respectively, have the 

potential advantage of being dimensionless, while those ofY, in the covariance biplot, 

are in the units of measurement of the original variables. Thus, for the flint tool data 

introduced in 1.2.6 and discussed in 3.7.2, where some measurements are In 

millimetres and one is in grams, the covariance biplot is not really suitable. 

3.4.5.2 Robustness to Outliers 

The Spearman rank correlation biplot is useful when there are large discrepancies 

between the magnitudes of the observations for a particular variable, because it is 

robust with respect to outliers (we will see this with the flint tool data in Figure 3.9). 

However, if we want to preserve differences in the magnitude of observations, 

information is clearly lost in this form ofbiplot. 

3.4.5.3 Correlations between Variables 

In all the biplots of the Correlation Biplot Family, the cosine of the angle subtended at 

the origin between the vectors representing two variables approximates the correlation 

between the two variables, but in the case of the Spearman rank correlation biplot this 

is the rank correlation. 
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3.4.5.4 Variability 

The correlation biplot and Spearman rank correlation biplot do not display variability 

because the variables are scaled to have a standard deviation of one if perfectly 

represented in two dimensions. However, the coefficient of variation biplot does 

display variability. If, in the covariance biplot, the scales of measurement of the 

variables are different, then only relative variabilities can be compared. 

3.4.5.5 Standardisation of Variables 

In the correlation biplot all the variables are standardised to have a mean of zero and 

variance of one. This prevents the plot from being dominated by a few variables, but 

has the disadvantage that the relative variabilities are not displayed. Also, by 

standardising the scales of measurement in the correlation biplot, the relative weights 

of variables having small standard devi;.ltions are effectively inflated (and vice versa). 

This may be a desirable feature in some applications but might divert attention away 

from particular observations occurring as extremes in some variables. 

3.4.5.6 Scales of Measurement 

If the scales of measurement of the variables differ greatly, the variables on larger 

scales dominate the plot in the covariance biplot, at the expense of the other variables 

whereas in the correlation biplot and Spearman rank correlation biplot the relative 

importance of each variable is the same. In the coefficient of variation biplot, 

variables with large coefficients of variation tend to be associated with the large 

singular values and therefore have a high quality of display and are relatively 

dominant (and vice versa), but this does not depend on the original scale of 

measurement. Variables that are highly correlated with those with large coefficients of 

variation will also be well displayed. 

3.4.5.7 Relative Contributions to the Squared Norm 

The relative contributions of each variable to the squared norm may loosely be 

thought of as the 'weight' or importance of each variable in the analysis, although 

these quantities do not appear as weights in any equation (Underhill, 1990). The 

relative contributions of variable j to the squared norm of the matrix were defined in 
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Sections 3.4.1-3.4.4, but we summarise the main points below. 

• The contributions of each variable to the squared norm in a covariance 

biplot depend on the magnitudes and the scales of measurement of the 

variables. Variables making larger contributions tend to dominate the 

biplot and so the covariance biplot may fail to find any subtle 

multivariate structure in a data matrix if there are large relative 

differences between the smallest and largest standard deviations 

(Underhill, 1990). 

• In the correlation biplot, each variable makes an equal contribution to the 

squared norm. This inflates the relative contributions to the squared norm 

of variables having small standard deviations (and vice versa). 

• In the coefficient of variation biplot, the contribution of each variable to 

the squared norm is proportional to the coefficient of variation. Variables 

with small coefficients of variation make a small contribution to the 

squared norm and vice versa, regardless of their original scales of 

measurement. 

• If a variable has tied observations then in the Spearman rank correlation 

biplot this variable contributes less to the squared norm than other 

variables and variables with greater numbers of ties give a smaller 

relative contribution. The contribution to the squared norm also varies 

with the number of pairs of ties, triples of ties and so, for example, there 

is less contribution from a variable when three values tie together 

compared with when two pairs of values tie. 
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3.4.6 Geometrical Properties of the Correlation Biplot Family 

The geometrical interpretation of the biplots in this family is in terms of the distances 

of each observation from the origin and the cosines of the angles which pairs of the 

vectors representing variables subtend at the origin. Four important properties are 

listed below and it is useful to bear these in mind when interpreting a biplot. 

3.4.6.1 Standard Deviations of Variables 

The distance of g j' the j-th column of G, from the origin is given by Ilg j II and for the 

covariance, correlation and Spearman rank correlation biplots this approximates the 

standard deviation, Sj, of variable j. We show this below for the covariance biplot. As 

reported in Barr, Underhill & Kahn (1990), it follows from equation (3.1) that: 

GGT=VD D VT 
J.! J.! 

=_I_(X_ xr(X- X) 
n-l 

= S. 

Thus: 

(3.5) 

Similar arguments follow for the correlation and Spearman rank correlation biplots, 

but the standard deviation can take a maximum value of one in these cases. However, 

for the coefficient of variation biplot, IIg j II approximates the coefficient of variation of 

s· 
the variable, denoted by ~, because: 

Xj 
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Thus: 

GG T =VD D VT 
~ ~ 

1 ( -) T ( -). (_ _)-2 = n _ 1 X - X X - X dlag Xl"'" Xm 

3.4.6.2 Covariances between Variables 

We now consider the covariances between variables. For the covariance, correlation 

and Spearman rank correlation biplots, the inner product of variables j and j', given 

by gj T gj" approximates the covariance Sjj' between columns j and j' of X, because: 

(3.6) 

However, this does not hold for the coefficient of variation biplot because: 

3.4.6.3 Correlations between Variables 

The cosine of the angle between gj and gj' (or, equivalently, their inner product) 

approximates the correlation between the variables j and j' of X. Thus, if two 

variables j and j' are highly positively correlated then g j and g j' will lie in the same 

direction from the origin and if they are negatively correlated then they will lie on 
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opposite sides of the origin. If the correlation is close to zero, then they will tend to lie 

at right angles to each other. 

For all biplots in the Correlation Biplot Family (covariance, correlation, coefficient of 

variation and Spearman rank correlation), the cosine of the angle between g i and g i' 

is given by: 

Using equations (3.5) and (3.6), for the covariance, correlation and coefficient of 

variation biplots we obtain: 

n 

L(x ti - x)(Xti' - xi') 
cos (9 jj') = -;=:::::::::::1==1 ======== 

n n 

L(X ti - x)2L(Xti' - Xi,)2 
1=1 1=1 

For the Spearman rank correlation biplot x is replaced with z in the above. 

3.4.6.4 Distances between Variables 

Distances between variable points (the tips of the vectors) in the display represent the 

Euclidean distances between the columns of the matrices Y, C, E or Z of the 

covariance, correlation, coefficient of variation and Spearman rank correlation biplots 

respectively. For the covariance biplot, denoting the j-th column ofY by Y (j), we have: 

and so the square of the distance between g i and g J' is proportional to the Euclidean 

distance between the centred columns j and j' ofX. 
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3.4.6.5 Distances between Observations 

Distances between observations in the display represent the Mahalanobis distances 

between the rows of the matrices. From (3.1) it follows that: 

U 
-1 

F= =YVD 
~ . 

Therefore: 

=_1_(x_ X)S-l(X- Xr. 
n-l 

Thus: 

where Skk is the k-th standard deviation. Therefore, the distance between fk and fk, is, 

from Barr, Underhill & Kahn (1990): 

m 

= L(Ykt - Yk't)S-l(Ykt - Yk't) 
t=1 

which is the Mahalanobis distance between y(k) and y(k'), where y(k) is the k-th row 

ofY. 

Because the displays are often a two-dimensional approximation to a higher 

dimensional data matrix, there are always distortions and Underhill (1990) says that 

these distortions are unevenly distributed over the displayed observations, so that 

while some (or most) of the observations may be well represented, others are poorly 

displayed. 
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3.4.7 Significance Testing 

Whilst biplots are essentially exploratory techniques, they can be adapted to testing 

the significance of the association between any two variables as explained by Gabriel 

(1995). If we recall that the chi-squared statistic equals the square of the correlation 

coefficient multiplied by the sample size n and that the chi-squared statistic with one 

degree of freedom is the square of a Standard Normal random variable, then 

significance can be established by checking whether the absolute value of the inner 

product that approximates the correlation coefficient in a biplot exceeds the 

appropriate percentage point of the Standard Normal distribution, divided by Fn . 
However, the vectors are obtained by projection onto the two-dimensional plane 

which may distort the angles between them and so it is safer to use the test only for 

variables which are well represented on a biplot (see 3.6). If the associations of all 

pairs of variables are to be tested simultaneously then the test must be adjusted by 

using a Bonferroni correction. In Section 3.7.1.2 we will see an application of this test 

to the ceramic pots (1.2.5). 
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3.5 The Principal Component Biplot Family 

In this section we describe the main biplot of the Principal Component Biplot Family. 

Considering the GSVD of a matrix X, for the simplest case of O=In and <I>=Im, 

described in Chapter One, we have a = 1 and b = O. The co-ordinates of the 

observations and the variables in two dimensions are given by the first two columns of 

F and G respectively, where: 

F=UD j.I 
(3.7) 

G=V. 

One disadvantage of this choice of F and G, as compared with the Correlation Biplot 

Family of Section 3.4, is that properties 3.4.6.1 and 3.4.6.2 are no longer valid, 

because: 

The main biplot in this family is the principal component biplot, in which the data 

matrix X is usually either column-centred: 

y=(_l )t(X_ X) 
n-l 

or column-standardised: 

Having introduced the principal component biplot, we now describe the geometrical 

properties ofbiplots in the Principal Component Biplot Family. 
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3.5.1 Geometrical Properties of the Principal Component Biplot Family 

Biplots in the Principal Component Biplot Family have three important properties. 

These should be considered when interpreting a biplot and are explained below. 

3.5.1.1 Correlations between Variables 

The cosine of the angle between gj and g j' approximates the correlation between the 

variablesj and j' ofX. Using scaling (3.7), we see that: 

Therefore: 

GGT = VVT 

= _I_(X_ Xr S-I(X- X). 
n-I 

Thus: 
II 11

2 1 ~ -)2 -I 
gj = n _ 1 tt (x tj - Xj Sjj 

and 

For the principal component biplot the cosine of the angle between gj and gj' is given 

by: 
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n 

~)Xtj - Xj)(X tj, - Xj') 

Therefore: cos(S jj') = t=::::::::::t==1 ======== 
n n 

~:::<Xtj - Xj )2 L (Xtj' - Xj,)2 
t=1 t=1 

which is the Pearson product-moment correlation coefficient between variables j and 

'I J . 

3.5.1.2 Distances between Variables 

The distances between variable points (the tips of the vectors) in the display represent 

the Mahalanobis distances between the columns of the matrix Y (Gabriel, 1995). The 

'proof of this could not be found stated explicitly in the literature, but is clearly as 

follows. From 3.5.1.1, denoting the j-th column ofY by Y(j), it follows that: 

Ilg j - g j' f = (Y(j) - Y(j'))T S-I (Y(j) - Y(j')) 

= :t (y tj - Y tj') S-I (y tj - y tj') 
t=1 

This is the Mahalanobis distance between columns j and jl of Y. 

3.5.1.3 Distances between Observations 

Distances between observations in the display represent the Euclidean distances 

between the rows of the matrix. The 'proof of this is as follows. From (3.7) we see 

that: 

=yyT 

=_I_(X_ X)(X- Xf. 
n-l 
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Thus: 

Therefore, the distance between fk and f k, is given by: 

Thus, the square of the distance between fk and fk, is proportional to the Euclidean 

distance between the centred columns k and k' of X. 
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3.6 Quality of Representation in Two Dimensions 

When applying biplots we usually consider two-dimensional displays, because these 

give the best visual representation of the data. However, this means that only the first 

two columns of F and the first two columns of G, which correspond to the two largest 

singular values ~k (k = 1,2), are used. When implementing a biplot, there are four 

main goodness of fit measures to help us decide whether the two-dimensional 

representation of our data is adequate. These are explained below and applied to the 

ceramic pots (1.2.5) and Simpson Desert flint tools (1.2.6) in Section 3.7. 

3.6.1 The Data Matrix 

For both families of biplots previously described, the elements of the scaled data 

matrix X are represented in a biplot where the goodness of fit is given by the ratio of 

the sum of the eigenvalues in two dimensions to the sum of the eigenvalues in full r

dimensional space. This is usually expressed as a percentage: 

2 

L~~ 
d p =100x~. 

L~~ 
k=1 

(3.8) 

This is the most important measure for assessing goodness of fit and we have found 

that as a rough rule of thumb, at least 50% of the variation in archaeological data 

should be explained in the first two dimensions in order to provide a useful two

dimensional representation. 

3.6.2 The Principal Co-ordinates 

In the Correlation Biplot Family the co-ordinates of the variables are known as 

principal co-ordinates because these involve the singular values, whereas in the 

Principal Component Biplot Family it is the co-ordinates of the observations which 

are the principal co-ordinates. In the Correlation Biplot Family, the elements of S, the 

variance-covariance matrix, have goodness of fit given by the ratio of the sum of the 

squared eigenvalues in two dimensions to the sum of the squared eigenvalues in full r

dimensional space. Again, this is usually expressed as a percentage: 
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2 

L/-!~ 
q =100x~ P r' 

L/-!~ 
k=l 

A high value of qp indicates that both vanances and covariances are closely 

approximated by the squared lengths of g-vectors and their inner products 

respectively. For the Principal Component Biplot Family, as for the Correlation Biplot 

Family, q p is a measure of goodness of fit of the principal factors. Note that qp is 

higher than the goodness of fit of X itself (see (3.8)), which is approximated jointly by 

both principal and standard factors (Gabriel, 1995). 

3.6.3 Inter-row and Inter-column Distances 

The inter-row (Mahalanobis) distances for the Correlation Biplot Family and the inter

column (Mahalanobis) distances for the Principal Component Biplot Family are 

approximated, in two dimensions, with goodness of fit: 

2 
ts =-. 

r 

This is because it is the inner products that are being directly approximated - the 

approximation of the inter-row or inter-column distances is indirect (Barr, Underhill & 

Kahn, 1990). The value of ts appears low, but this is because it evaluates the goodness 

of fit of Mahalanobis distances in standard form (Gabriel, 1995) - it is the values in 

principal form which are well represented (as we saw in 3.6.2) and thus the type of 

biplot must be chosen appropriately, depending on whether the observations or 

variables are of main interest. 
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3.6.4 Variables 

The quality of the representation of variable j in both biplot families may, as In 

correspondence analysis (Green acre, 1984), be defined as: 

This is the squared cosine of the angle between the vector gj in r-space and gj[2j, the 

vector in the displayed two-dimensional subspace, expressed as a percentage. When 

very large numbers of variables are measured, as is common in archaeology, we are 

often interested in reducing this number whilst still retaining any group structure 

amongst the artefacts, because this will save the archaeologist time (and sometimes 

money). In Chapter Seven we discuss existing variable selection methods for use with 

principal component analysis and extend and develop them to biplots. However, other 

factors may become relevant such as ease of measurement of variables and the 

goodness of fit measure above could also help us with the selection process. 
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3.7 Interpreting Biplots 

Having described, in considerable detail, the theory of the most common biplots and 

also explained how to assess whether a two-dimensional representation is adequate, 

we now illustrate these biplots using two of the most common types of artefacts 

recovered in archaeology - namely pottery and flint. We return to these data 

throughout Chapters Seven and Eight. 

3.7.1 Application to Ceramic Pots 

The various types of biplot are illustrated on the ceramic pot data (1.2.5), which 

consist of 13 measurements (all in cm) on each of 30 ceramic pots. Archaeological 

interest lies mainly in assessing whether three groups of pots can be distinguished, 

corresponding to the three potters who made them, on the basis of these 

measurements. Also of interest is whether any groupings can be identified when using 

fewer measurements (hence saving time and money) and this is addressed in Chapter 

Seven. 

The four types of biplot from the Correlation Biplot Family - the covanance, 

correlation, coefficient of variation and Spearman rank correlation biplots - and the 

principal component biplot, are illustrated in the sections that follow. Not all of these 

are necessarily appropriate to answer these particular questions on these data (usually 

the correlation or principal component biplot is the most appropriate), but it is a useful 

illustration to see each of them applied to the same data set. In 3.7.1.6 we discuss their 

relative merits, relevance to the problem and the interpretation of the results in relation 

to the underlying archaeological objectives. In the plots that follow, each of the 30 

pots is represented by a circle and each of the 13 variables by a line (vector) 

emanating from the origin. For biplots in the Correlation Biplot Family, each biplot 

has quality of representation of inter-row distances of 15.38% in two dimensions 

which is clearly low, but not unexpected (see 3.6.3). For the principal component 

biplot it is the inter-vector distances which have quality of representation 15.38%. The 

qualities of representation of individual variables as discussed in 3.6.4 are listed in 

Table 3.1 for all five biplots. 
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Table 3.1 Quality of Representation of Individual Variables (%) for the Ceramic 
Pots 

Biplot 

Variable Covariance Correlation Coefficient of Spearman Rank Principal 

Variation Correlation Component 

1 88.3 84.6 19.8 85.2 19.9 

2 45.6 42.3 9.8 55.5 8.2 

3 95.4 86.6 67.2 85.4 17.5 

4 75.5 77.0 26.1 76.3 14.9 

5 68.5 64.1 7.2 58.0 12.5 

6 85.7 91.2 36.0 86.3 23.3 

7 69.7 72.8 3.4 78.8 17.0 

8 70.5 76.3 11.4 81.8 15.0 

9 68.8 76.4 57.7 79.8 18.3 

10 80.0 85.1 64.1 78.8 18.6 

11 14.8 19.9 99.4 15.9 5.1 

12 79.2 81.3 99.7 76.0 18.9 

13 38.9 50.7 6.7 45.0 10.7 

From Table 3.1 we see that the quality of representation for all variables in the 

principal component biplot is low, because of the scaling involved in this type of 

biplot (see 3.5). We also note that the quality of representation of variables in the 

coefficient of variation biplot varies considerably from as low as 3.4% for variable 7, 

to as high as 99.7% for variable 12 and this is probably because variable 7 has a low 

and variable 12 a high, coefficient of variation. Variable 11 is poorly represented in all 

but the coefficient of variation biplot. Investigating further, we see that in the first 

three dimensions variable 11 has a quality of representation of 15.6% in the 

covariance biplot, 59.0% in the correlation biplot and 87.3% in the Spearman rank 

correlation biplot and thus a considerable proportion of the variation is hidden in the 

third dimension. These differences in quality of representation are interesting because 

if we consider variable 11 to be particularly important, or variable 7 is very difficult to 

measure, we might consider a coefficient of variation biplot to be most appropriate. In 

addition, given that the majority of variables in the biplots of the Correlation Biplot 

Family are well represented in two dimensions, it may not be worth looking at three 
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dimensions. This is aside from problems of visualisation which clearly favour two 

dimensions, although the first and third, or second and third, principal axes could be 

plotted against each other if a substantial percentage of variation is explained in the 

third dimension. The next few sections consider each biplot in turn. 

3.7.1.1 The Covariance Biplot 

Constructing a covariance biplot for these data, as explained in 3.4.1 and representing 

the results in the first two dimensions produces Figure 3.2. 
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Figure 3.2 Covariance Biplot of Ceramic Pots 

The data matrix Y is represented with goodness of fit 79.4%, whereas the goodness of 

fit of the variance-covariance matrix is 96.7% and so both these values are more than 

adequate for us to be confident in our interpretations of the display. We interpret the 

biplot as follows: pairs of variables with small angles between them, such as 1 & 7 

and 2 & 5, are highly positively correlated; pairs of variables with an angle of 

approximately 900 between them, such as 1 & 10 and 1 & 3, are uncorrelated; and 

pairs of variables with an angle of approximately 1800 between them, such as 2 & 8, 

are highly negatively correlated. Pots which are similar as regards measurements are 
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located close together on the plot and thus there appear to be three groups of pots 

represented: one group towards the top left, one group towards the top right and one 

group towards the bottom of the picture. We see from the plot that variables 11, 12 

and 13 have short vectors and from 3.4.6.1 we know that the length of the vector 

approximates the standard deviation of the variable. This is not really surprising 

because variables 11, 12 and 13 are internal depth of footring, wall thickness and lip 

thickness respectively and we would expect these to have low variability compared 

with variables such as pot height. 

3.7.1.2 The Correlation Biplot 

Figure 3.3 displays the data in the form of a correlation biplot in two dimensions, as 

described in 3.4.2. 
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Figure 3.3 Correlation Biplot of Ceramic Pots 

Data matrix C is represented with goodness of fit 69.8% and the goodness of fit of the 

variance-covariance matrix is 92.8%. Both these values are lower than for the 

covariance biplot but are still very high. As in the covariance biplot, there appear to be 

three groups of pots and similar pairs of variables to those in the covariance biplot 
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appear to be highly correlated. We can see that all variables except 11 are fairly well 

represented in the plot (this is indicated by the closeness of the lengths of the lines to 

one, which indicates perfect representation) and that variable 6 is the best represented, 

having the longest vector. If we draw a unit circle on the correlation biplot then it 

becomes even more obvious which variables are best represented. 

Applying the idea described by Gabriel (1995) and explained in 3.4.7, to variables 1 & 

7, because these are both well represented on the plot (see Table 3.1), we can test for 

any significance of association between them. The value of their inner product is 

0.785 and comparing this with the 5% critical point of the standard normal distribution 

divided by the square root of30 (= ~ = 0.358), we conclude that the variables are 
5.477 

significantly associated with each other. Repeating the test for variables 1 & 3, which 

we would interpret as being uncorrelated by 3.4.6.3, we obtain an inner product with 

absolute value of 0.178. Comparing this with the same percentage point of the normal 

distribution leads to the conclusion that these variables are not associated with each 

other and are measuring different aspects of the data. 

3.7.1.3 The Coefficient of Variation Biplot 

Using a coefficient of variation biplot to display the data (see 3.4.3) and representing 

the results in two dimensions produces Figure 3.4. The matrix E is represented with 

goodness of fit 81.8%, whereas the goodness of fit of the variance-covariance matrix 

is 94.7% in the first two dimensions and so once again, these values are extremely 

high. 

83 



Chapter Three - Biplots 

0.4 

-- 8 
~ 0 11 0 
~ 0.2 0 

0 
C\I .......-
(/) 

0 .§ 
0 0 

(Ij 0 0 
0. .g 

00 . .: 
12 a. -0.2 0 

'"C 
0 c: 

0 0 
() 0 
Q) 

en -0.4 0 

-0.4 -0.2 0 0.4 
First Princi 

Figure 3.4 Coefficient of Variation Biplot of Ceramic Pots 

Variables 11 (internal depth of footring) and 12 (thickness of wall) dominate the plot 

and so we know, from 3.4.3, that these have larger coefficients of variation than the 

remaining variables. Some variables have such small coefficients of variation that they 

are difficult to see on the plot - namely 2, 4, 5, 7 and 8 and because of this it is 

difficult to assess which pairs of variables are highly correlated and which are not. 

However, in this biplot there no longer appear to be three groups of pots as in the 

previous two biplots (even after plotting the pots without the variables to reduce the 

scale). We suggest that one reason for this could be that because variables 11 and 12 

are so dominant, it may be that they do not contain much grouping information - i.e. 

it is not these variables which differentiate between pot groups and they may even 

hinder group separation. Also, given that some variables are very poorly represented 

(see Table 3.1), it may be worth excluding these from the analysis. Alternatively, it 

may be that this form of biplot is not suitable for identifying groups of observations, 

perhaps because of the data themselves. The idea of variable selection and assigning 

importance to variables in their ability to discriminate between groups of observations 

is discussed in Chapter Seven. 
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3.7.1.4 The Spearman Rank Correlation Biplot 

Figure 3.5 illustrates the Spearman rank correlation biplot applied to the same data 

(see 3.4.4). 

1r-----~----~------~----~ 

-~ o 
C') 

ci 0.5 
C') ....... 
(f) 

.~ 

~ 0 .g 
.;:: 
a.. 

§ -0.5 
(,) 
Q) 

en 

10 

8---
4--~~~~~ ___ 5 

2 

3 

6 
-1~----~------~------~----~ 

-1 -0.5 1 
First Princi 

Figure 3.5 Spearman Rank Correlation Biplot of Ceramic Pots 

The matrix Z is represented with goodness of fit 69.5%, which is equal to that of the 

correlation biplot and the goodness of fit of the variance-covariance matrix is 93.1 % 

in the first two dimensions. As in the covariance and correlation biplots, there appear 

to be three groups of pots and we see that variable 11 is poorly displayed because the 

vector representing it is short. As for the correlation biplot, vectors with lengths close 

to one indicate near perfect representation of the corresponding variables. 
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3.7.1.5 The Principal Component Biplot 

The principal component biplot of Section 3.5 is illustrated in Figure 3.6, where the 

matrix Y of the ceramic pot data is represented with goodness of fit 69.8%. 
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Figure 3.6 Principal Component Biplot of Ceramic Pots 

Again, the plot suggests three groups of pots and is very similar to the correlation and 

Spearman rank correlation biplots in terms of which pairs of variables appear to be 

highly correlated. 

3.7.1.6 Summary and Comparisons 

The covariance, correlation, Spearman rank correlation and principal component 

biplots separate the pots into three groups and these groupings are discussed further in 

3.7.3.1. The coefficient of variation biplot does not reveal these pot groupings. We 

suggested in 3.7.1.3 that one explanation for this lack of grouping is that variables 11 

and 12 dominate the plot and are perhaps obscuring group structure which might be 

revealed if they were not present (these variables dominate the plot because they have 

large coefficients of variation compared with the other variables). In Chapter Seven 

we examine, adapt and improve existing methods of variable selection, but removing 

86 



Chapter Three - Bip/ots 

these two variables makes the pot groups become only slightly more distinct. We 

therefore believe that the lack of grouping must either be due to the scaling involved 

in obtaining a coefficient of variation biplot, or the data set itself. Looking in more 

detail at this form ofbiplot, it appears that when variable means are subtracted and the 

variables are then divided by their means, the difference in each measurement 

between observations tends to be reduced, which in turn could result in group 

structure being less likely to be revealed. Thus, if we use a biplot because we want to 

display groups of observations, then the coefficient of variation biplot may not be 

suitable unless, perhaps, there are very large differences between observations from 

different groups. 

All five biplots explain approximately 70% or more of the variation in the data and the 

positions of the variables in the various biplots are almost identical, except for the 

coefficient of variation biplot. From what we have seen in Section 3.7.1 and using our 

a priori knowledge of the data, we believe that the correlation and principal 

component biplots are always likely to be the most useful because they do not require 

variables to be in the same units (unlike the covariance biplot). In addition, they make 

use of all the data (unlike the Spearman rank correlation biplot) and they are able to 

separate out groups of observations (unlike the coefficient of variation biplot). The 

choice between these two may therefore come down to the percentage of variation 

explained and the quality of representation of the variables. However, it is of course 

hazardous to make generalisations on the basis of one data set and we now consider a 

further example. 

3.7.2 Application to Simpson Desert Flint Tools 

Several types of biplot are illustrated on the Simpson Desert flint tool data (1.2.8) 

which consist of six measurements on 52 flint tools from site 08 and 26 from site 09. 

In the analysis the data are treated as 78 tools i.e. sites are not distinguished, but tools 

are labelled according to site in the resulting plots. Site 08 is considered to be of 

landform 'escarpment', whereas site 09 is described as 'plain with drainage'. The 

archaeological aim is to identify whether there is any distinction between tools 

measured at the two landforms on the basis of the available measurements and 

therefore whether the sites were used for different activities in the past (Barton, pers. 
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comm.). 

Five of the variables are measured in millimetres and one, weight, in grams, so we did 

not consider the covariance biplot to be appropriate (see 3.4.5.6). However, the 

remaining four biplots which were described in Sections 3.4 and 3.5 are illustrated and 

the results compared and summarised in 3.7.2.5. For biplots in the Correlation Biplot 

Family each biplot has a quality of representation of inter-row distances of 33.3%, 

which seems reasonable (see 3.6.3). The qualities of representation of individual 

variables for the various biplots are given in Table 3.2. There is also interest in seeing 

whether weight (the most expensive variable to obtain) is really necessary - if it were 

dropped then the covariance biplot would be available. 

Table 3.2 Quality of Representation of Individual Variables (%) for the Simpson 
Desert Flint Tools 

Biplot 

Variable Correlation Coefficient of Spearman Rank Principal 

Variation Correlation Component 

Length 87.9 69.7 93.5 60.3 

Width 85.0 75.5 80.7 28.8 

Thickness 79.3 77.3 81.6 23.0 

Platform Width 83.4 94.4 85.1 35.1 

Platform Thickness 69.4 75.7 58.3 20.1 

Weight 89.0 76.4 96.9 32.7 

The qualities of representation of individual variables in the principal component 

biplot are lower than for the other biplots and all variables are adequately represented 

in the correlation, coefficient of variation and Spearman rank correlation biplots. The 

various biplots are illustrated below where tools from site 08 are represented by 

circles and tools from site 09 by crosses. 
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3.7.2.1 The Correlation Biplot 

The correlation biplot was described in 3.4.2 and is illustrated in Figure 3.7. 
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Figure 3.7 Correlation Biplot of Simpson Desert Flint Tools 

Data matri x C is represented with goodness of fit 82.3% which is high enough for us 

to be confident in our interpretations of the di splay and we see from the lengths of the 

variables, as well as from Table 3.2, that the variables are all well represented. 

Clearly, platform thickness and thickness are very highly correlated, judging by the 

small angle between them on the plot and the tools appear to divide into groups which 

correspond to the di fferent landforms, although there is some overl ap. There appear to 

be two outlying tools to the right of the picture which are associated mainly with 

variable weight and either or both of thickness and platform thickness. These tools are 

from site 08. 
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3.7.2.2 The Coefficient of Variation Biplot 

Figure 3.8 illustrates the coefficient of variation biplot, which was described in 3.4.3. 

1 r----.----~--~----~----~--~ 

':;j 0.75 
(\J 

r--: 
(\J 

--;; 0.5 
'x co 

~ 0.25 
'u 
c 
·c 
a.. 
1J 
c 
o 
() 

o 

iB -0.25 

length 

o 

weight 

o thickness 
'd h plat thick 

WI t 

plat width 
-0.5 '--_-'-__ .1....-_--'-__ -'--_--'-_---' 

-0.5 -0.25 0 0.25 0.5 0.75 1 
First Principal axis (51.0%) 

Figure 3.8 Coefficient of Variation Biplot of Simpson Desert Flint Tools 

The matrix E is represented with goodness of fit 78 .2% and the coeffic ient of variation 

biplot produces a more distinct division of tools into two groups than was seen in the 

correlation biplot, with some tools from site 09 (crosses) appearing with those from 

site 08. There are again two outlying tools, which are located towards the ri ght of the 

plot. In contrast to the coefficient of variation biplot on the ceramic pot data, it 

appears that the variables are able to di stinguish between groups of observations in 

this type of biplot for the flint tool data. This could be because tools from the two sites 

differ by a relatively large amount on the basis of these measurements, or because 

particularly 'appropriate' variables for di stinguishing between tools at different 

landforms have been measured. 
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3.7.2.3 The Spearman Rank Correlation Biplot 

The Spearman rank correlation biplot of 3.4.4 is illustrated in Figure 3.9, where the 

data matrix Z is represented with goodness of fit 82.7% in two dimensions. 
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Figure 3.9 Spearman Rank Correlation Biplot of Simpson Desert Flint Tools 

Figure 3.9 is more similar (apart from arbitrary refl ection , see 5.2.4) to the correlation 

biplot than to the coefficient of variation biplot, both in terms of the di vision of tools 

into groups and in terms of highly correlated variables. We also notice that there are 

no outlying tools on this plot - tools with extreme measurements have been removed 

by ranking the observations within each variable. All six variables are well 

represented in the plot because their vectors have lengths close to one, although this is 

already evident from Table 3.2. Calculating the correlation coefficients on the raw 

data confirms the correlations observed in Figure 3.9. 
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3.7.2.4 The Principal Component Biplot 

In Section 3.5 we introduced the principal component biplot and this is illustrated in 

Figure 3.10. 
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Figure 3.10 Principal Component Biplot of Simpson Desert Flint Tools 

The principal component biplot is most similar to the coeffici ent of vari ation biplot, 

both in terms of grouping of similar tools and in terms of pairs of highly correlated 

variables. The majority of tools from the different sites are well separated, although a 

few from site 08 overlap with those from site 09. 

3.7.2.5 Summary and Comparisons 

Each biplot produces a separation of tools from landform 'escarpment ' (site 08) fro m 

those from 'plain with drainage' (site 09). In both the correlation and coeffi cient of 

vari ation biplots there appear to be two 'outlier' tools from site 08, whereas in the 

principal component biplot there is only one. If we consider it necessary to identi fy 

and remove outliers then the Spearman rank correlation biplot is not appropriate. It 

may also be the case that these outliers have a large influence on the orientation of the 

vectors representing the variables and on the relationships between other observations. 
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This is something we consider in Chapter Eight, where we develop a method to detect 

influential observations. All biplots explain approximately 80% of the variation in the 

data, which is more than adequate for us to be confident in our interpretations of the 

displays. 

3.7.3 Displaying Groups of Observations 

One method of displaying particular groups of observations on a biplot is by using a 

concentration ellipse for the points of each group of interest. Gabriel (1981) comments 

that use of concentration ellipses is of particular importance when large sets of data 

need to be displayed (i.e. when there are more row markers than can be displayed 

effectively). We found this to be the case with the flake debitage data (1.2.6) that is 

described in 3.7.3.2, but we also propose using ellipses to identify similarities between 

groups of observations. Concentration ellipses are based on the multivariate normal 

distribution (Mardia et al., 1979) and if X - MN m (Il, L) then the equation given by: 

provides ellipses centred on the mean Il of constant density, where c is a constant. 

Mardia et al. (1979) explain that: 

(X -Il) T L-1 (X -Il) - Xm 2. (3.9) 

By analogy with confidence intervals for normal distributions, we suggest taking 

percentage points of the chi-squared distribution at 68% (- one standard deviation 

from the centroid) and 95% (- two standard deviations from the centroid), although 

applied to non-normal data, use of such ellipses effectively imposes some non

parametric smoothing on the data. Concentration ellipses are illustrated below for the 

co-ordinates obtained from the ceramic pot and Simpson Desert flake debitage data. 
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3.7.3.1 Application to Ceramic Pots 

The ceramic pot data (1.2.5) used in Section 3.7.1 are actually a control group of 

ceramics. Impey approached a potter and showed him some kiln-site material. The 

potter was asked to look at, but not measure, these sherds and show them to three 

other potters. The three potters were then asked to make ten similar pots each and pots 

from each potter are labelled 1, 2 or 3 in the plots. With these pot data, we suggest 

using concentration ellipses in order to identify whether pots from the different groups 

are similar (rather than to summarise large amounts of data) and we show that 

overlapping ellipses are indicative of similar groups, whereas distinct ellipses are 

likely to result from dissimilar pot groups. 

We propose displaying six ellipses, two for each group of pots (one at the 68% point 

of the chi-squared distribution and one at the 95% point), with different symbols 

representing each group of pots. This is done in Figure 3.11 for the covariance biplot, 

where the ellipses are meant to be used as an informal assessment of similarities 

between groups and not as a formal significance test. 
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Figure 3.11 Concentration Ellipses for the Ceramic Pots (Covariance Biplot) 
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Figure 3.11 shows that the ellipses of the different groups are non overlapping and 

appears to confirm that there are three distinct groups of pots, corresponding to the 

three different potters. The inner ellipse of each group should contain 68% of the 

points, if equation (3.9) holds and the outer ellipse should contain 95% of the points. 

However, for each group there is at least one pot which does not fall within the inner 

ellipse. If we apply the same methodology to the coefficient of variation biplot where, 

in Figure 3.4, there was no evidence of three groups of pots, then we obtain Figure 

3.12. 
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Figure 3.12 Concentration Ellipses for the Ceramic Pots 

(Coefficient of Variation Biplot) 

We see from the figure that the inner ellipses of groups 1 and 2 touch but do not 

intersect, although both intersect with the inner ellipse of group 3 and there is 

considerable overlap between the outer ellipses of all three groups. Thus, if we display 

only ellipses and not pots, we still conclude that the pots cannot be separated into 

groups. We propose that as a rule of thumb, if the centroid of one ellipse lies within 

another ellipse, then the corresponding groups cannot be distinguished. 

In conclusion, we can use ellipses as an informal method of identifying similarity 
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between groups of observations (in this case pots). The covariance biplot enables us to 

distinguish between the pots produced by three potters (as do the correlation, 

Spearman rank correlation and principal component biplots which are not shown), 

whereas the coefficient of variation biplot does not. We favour either the correlation 

biplot or the principal component biplot because these account for variables in 

different units and display outlying observations. In archaeology, establishing groups 

of pots (or indeed other artefacts, as we wilI see with the flake debitage) has far 

reaching implications for reconstructing the past, for example the number of people 

which existed at a site, the extent of craft activities and division of labour. 

3.7.3.2 Application to Simpson Desert Flake Debitage 

In this section we consider the flake debitage (flint waste material, not flint tools, 

1.2.6) which consist of six measurements taken on 2767 flakes from 28 sites 

(including 08 and 09 - see 3.7.2) across the Simpson Desert. Archaeological interest 

lies in establishing whether biplots are able to distinguish between groups of flakes, 

according to water permanency and land terrain at the sites where they were found 

(Barton, pers. comm.). However, it is extremely difficult to display alI the flakes on 

one plot and to identify relationships between them and so we need to consider other 

methods of representing the data. We also develop methods for looking at the 

influence of large samples on observation groupings and on relationships between 

variables in Chapter Eight. Concentration ellipses, as advocated by Gabriel (1981), are 

used to summarise this large data set and their use is extended to assess group 

structure. 

A correlation biplot was carried out on all the data but it was impossible to distinguish 

between sites of different terrain and water permanency by displaying individual 

points. A random sample of 10% of the data was taken and it was again impossible to 

distinguish between sites, because of the volume of data. We therefore summarise the 

data by displaying concentration ellipses using the 95% point of the chi-squared 

distribution, one for each type of water permanency, in Figure 3.13. 
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Figure 3.13 95% Concentration Ellipses for the Flake Debitage according to 

Water Permanency (Correlation Biplot) 

The largest ellipse is that for ephemeral water sources and there are 1200 flakes from 

sites with this type of water permanency; the smallest ellipse is for flakes from sites 

with permanent water sources (878 flakes) and the middle one is for sites which had 

semi-permanent water sources (689 flakes). It is interesting to see that the ephemeral 

ellipse completely encompasses the other two ellipses and is approximately three 

times their sizes. However, the overlapping nature of the ellipses suggests that 

differences between flakes from different water sources either do not exist, or cannot 

be detected using the available data. This could be because the measured variables 

were not the most appropriate ones to identify differences, or because certain variables 

mask the effects of others. This raises the question of whether variable selection 

methods would be useful to identify the most important variables in distinguishing 

between groups of observations and this is discussed in Chapter Seven. Because the 

orientations of the ellipses in Figure 3.13 are different, it is evident that the flakes 

from the different water sources have a different correlation structure. 

In Figure 3.14 we display five ellipses using the 95% point, one for each type of 

terrain. It is the dissected residual terrain that has the largest ellipse and this 
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encompasses the ellipses of all the other terrains, which are all of similar size, but 

different correlation structure, to the dissected residual terrain. It therefore seems that 

we cannot separate out the flakes according to their terrain. 
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Figure 3.14 95% Concentration Ellipses for the Flake Debitage according to 

Land Terrain (Correlation Biplot) 

The variable co-ordinates obtained from the correlation biplot are illustrated in Figure 

3.15. We see from the figure that the relationships between the variables are similar to 

those in the correlation biplot of flint tools in Figure 3.7, but in Figure 3.15 the 

variables thickness and platform thickness are not so highly correlated. Platform 

thickness and weight also appear to be uncorrelated in this figure, in contrast to Figure 

3.7. However, these differences are not surprising because flint tools are likely to be a 

different shape to waste flakes by definition of their purpose (Barton, pers. comm.). 
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Figure 3.15 Correlation Biplot Variables for the Flake Debitage 

Other forms of biplot were also obtained for these data (although for reasons already 

discussed we prefer the correlation or principal component biplot), but none were able 

to distinguish between groups of flakes. Concentration ellipses using the 95% point 

for the coefficient of variation biplot, for water permanency, are illustrated in Figure 

3.16. The figure does show some areas where there is no ellipse overlap and is an 

improvement on the correlation biplot of Figure 3.13 in terms of separating out groups 

of flakes, but there are no clear groupings and all three ellipses are of a similar size. 
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Figure 3.16 95% Concentration Ellipses for the Flake Debitage according to 

Water Permanency (Coefficient of Variation Biplot) 
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3.8 Diversity 

The concepts and methods of diversity, as developed primarily in the field of ecology, 

have been increasingly represented in the archaeological literature over the last twenty 

years (Conkey, 1980; Grayson, 1984; Leonard & Jones, 1984; Rhode, 1988; 

McCartney & Glass, 1990; Ringrose, 1990; Kaufman, 1998), although the diversity 

biplot does not appear to have been introduced. In the sections that follow we discuss 

the role of diversity in archaeology and we also extend the role of the diversity biplot 

to cover this area. 

Numerous measures of diversity have been developed in ecology, some of which have 

been adapted to archaeology. The most basic measure is the number of artefact types 

recovered from a site, but this does not allow for evenness considerations and is really 

an artefact type richness measure. It also ignores varying sample sizes, which can 

affect the number of artefact types sampled at a site and can therefore make 

comparisons between sites of dubious relevance. The next few sections briefly 

describe indices of richness, evenness and diversity and provide references where 

further details can be found. 

3.8.1 Richness Indices 

Bobrowsky & Ball (1989) describe many richness indices, which include those due to 

Margalef (1958), Odum et al. (1960) and Menhinick (1964). These three indices 

attempt to correct for sample size, because we would expect that as more individual 

artefacts are counted, the variety of types encountered increases. In practice we have 

found that there is very little difference between these indices. 

3.8.2 Evenness Indices 

Evenness describes the distribution of artefact abundances, or the relative frequencies 

of individual artefacts within each of the artefact types and is most often expressed as 

the ratio between an observed index of diversity and an expected maximum diversity, 

where all types are equally abundant. Pielou (1975, 1977) described two evenness 

indices: 
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• Ratio of Brillouin's Indices (originally introduced by Zar, 1974). 

• Ratio of Shannon Indices. 

3.8.3 Diversity Indices 

Diversity indices attempt to combine richness and evenness measures into a single 

index and the main diversity indices are listed below. If X (n x m) is a data matrix of 

rank r, with columns corresponding to sites and rows corresponding to artefact types 

x 
observed at those sites, then let P (n x m) be a matrix with entries pij, where Pij = _'J 

x· J 

is the proportion of artefacts of type i at site j (where X.j is the sum of entries in 

column j) and let ni be the number of individual artefacts counted of type i. For a 

particular site, N is the total number of individual artefacts and S is the number of 

artefact types found at the site. 

3.8.3.1 The Simpson Index 

Simpson (1949) defined the probability of any two individual artefacts drawn at 

random from an infinitely large site belonging to the same type, as: 

n· 
where Pi = -' . 

N 

However, in order to calculate the index, the form appropriate to a finite site is used: 

It is evident that as E increases, diversity decreases and so the index is usually 

expressed as 1-E (Greenberg, 1956; Pielou, 1969) or lIE (Williams, 1964; Whittaker, 

1972; Hill, 1973). The index is also heavily weighted towards the most abundant type 

in the sample. 
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3.8.3.2 Squared Euclidean Distance 

The Squared Euclidean distance between two sites (k and I), given by: 

s 

d~l = L (Pile - Pil)2 (3.10) 
i=l 

is a measure of dissimilarity between sites and may be regarded as a measure of 'beta' 

diversity. 

3.8.3.3 Other Diversity Indices 

Other diversity indices, which are not explained here, include: 

• The Shannon Index. 

• The Berger-Parker Index. 

• Brillouin's Index (due to Margalef, 1958 and then Brillouin, 1962). 

• The McIntosh Index (McIntosh, 1967). 

• Hill's Family of Diversity Indices. 

3.8.4 Diversity in Archaeology 

In archaeology, an assemblage is defined to be a collection of artefacts and differences 

in assemblage diversity have been thought to represent, amongst other things, 

important differences in settlement function (e.g. a wider range of artefacts could 

indicate a more permanent settlement), social relations and subsistence patterns. So 

far, the emphasis in the literature has been on investigating the relationships between 

richness and sample size with a view to the fact that as more artefacts are collected, 

the number of artefact types within the collection increases. Rhode (1988) comments 

that this issue is critical for comparative studies between sites because, if the diversity 

measures vary as a function of assemblage size, then they may be telling us more 

about collection strategy, or rate of deposition, than about differences in past human 

behaviour. 
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An assemblage's diversity must not be described purely in terms of its diversity index 

because a site with a few, evenly represented artefact types can have the same 

diversity index as one with many, unevenly represented types. These two components 

of diversity - type richness (the variety of types) and type evenness (the relative 

abundance of types) - must be studied separately. To help us understand diversity, 

we can think of 'alpha' diversity as within-assemblage diversity and 'beta' diversity as 

between-assemblage diversity. Beta diversity is a measure of how different (or 

similar) a range of sites are in terms of the variety (and sometimes the abundances) of 

types found at them; the fewer types that are shared by two sites, the higher the beta

diversity will be. Both of these measures can be represented on a type of principal 

component biplot known as the diversity biplot, introduced into ecology by ter Braak 

(1983). We extend its use to archaeology in Section 3.8.9. 

3.8.5 Application of Richness, Evenness and Diversity Indices to Bone 

Engravings 

In this section we use the data described in Section 1.2.7, which consist of counts of 

44 designs on bones from five sites in Spain. Conkey (I980) attempted to distinguish 

between aggregation and dispersion sites for the Early Magdalenian occupation of 

Cantabrian Spain and working mainly with the design elements on engraved bone 

artefacts, argued that aggregation sites should exhibit a greater diversity of elements 

than would be found in dispersion sites, because bands of hunter-gatherers would 

congregate at these sites. 

3.S.5.1 Richness Indices 

We calculated the three richness indices mentioned in 3.8.1 for the bone engraving 

data. Two of them place Altamira as being the richest in design classes, followed by 

Cueto de la Mina, EI Cierro, EI Juyo and then La Paloma; the third index has the same 

ordering except that Altamira and Cueto de la Mina change places. 
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3.8.5.2 Evenness Indices 

The two evenness indices referred to in 3.8.2 were also calculated for the bone 

engraving data. Clearly, these indices are measuring different aspects of the data 

because Brillouin's evenness index is lowest for La Paloma, yet the Shannon index is 

highest for this site. This leaves us with the obvious problem of which, if either, to 

choose. 

3.8.5.3 Diversity Indices 

The diversity indices of 3.8.3 attempt to combine richness and evenness into one 

single index and we have evaluated all those mentioned for the bone designs. For all 

the indices, Altamira has the highest diversity, whereas Cueto de la Mina has the 

second highest diversity for all except the McIntosh Index, although this index does 

produce similar values for all sites. Beta diversity (equation (3.10)) is measured by 

squared Euclidean distances between sites and is evaluated for the five sites in Table 

3.3. 

Table 3.3 Squared Euclidean Distances between Bone Engraving Sites 

Altamira EI Cierro EIJuyo Cueto de la Mina La Paloma 

Altamira 0.000 0.050 0.069 0.049 0.074 

EI Cierro 0.050 0.000 0.034 0.064 0.067 

EIJuyo 0.069 0.034 0.000 0.074 0.096 

Cueto de la Mina 0.049 0.064 0.074 0.000 0.051 

La Paloma 0.074 0.067 0.096 0.051 0.000 

We see that the lowest value in the table is between EI Juyo and EI Cierro, which 

suggests that these sites are the most similar in terms of artefact types; we also see that 

La Paloma and EI Juyo are the most different. Conkey (1980) used the Shannon Index 

of diversity and concluded that Altamira was high in diversity while EI Cierro, EI 

Juyo and La Paloma were low in diversity. Conkey also thought that Cueto de la Mina 

was intermediary between Altamira and the other sites and was therefore also thought 

to represent an aggregation site. The richness, evenness and diversity indices suggest 

that Altamira and Cueto de la Mina are the most diverse sites. 
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3.8.6 The Jack-knife Technique and Diversity 

Kaufman (1998) has recently developed a method of testing for differences between 

diversity measures. When we obtain diversity, richness or evenness indices we usually 

comment on which sites have larger or smaller values than which other sites, but we 

don't know if these differences are 'significant'. Two approaches currently used to 

assess differences are simulation (Kintigh, 1984, 1989) and regression (Grayson, 

1984) methods, but these can give contradictory results when applied to the same data 

(Kaufman, 1998). Kaufman has therefore developed an approach based on the jack

knife technique, which we believe is a valuable contribution to the literature. Its main 

advantages are that it does not assume a theoretical sampling model and no a priori 

assumptions regarding an underlying distribution are required. It is not illustrated here 

but we believe that it has a sound statistical basis. 

3.8.7 The Diversity Biplot and its Interpretation 

Using the notation of3.8.3, each of the m sites can be represented by a vector pj in r

dimensional Euclidean space. For each site, the proportion of artefacts of a particular 

type is equal to the length of the orthogonal projection of the site onto the axis that 

represents that type. The length of each site vector is Pj, which is the distance between 

the site vector and the origin and is denoted IIpJ The squared length of each site 

vector pj is given by: 

which is equivalent to the formula for the Simpson Index discussed in 3.8.3.1. 

Co-ordinates of the row points (types) and column points (sites) are obtained by 

applying a singular value decomposition to the matrix of proportions P. A non-centred 

principal component biplot of proportion data gives site ordinations that display 

approximate alpha diversities of sites and beta diversities of groups of sites, as 

measured by the Simpson Index (see 3.8.3.1) and squared Euclidean distance (see 

3.8.3.2) respectively (ter Braak, 1983). However, type-centring of the matrix of 
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proportions allows a better approximation to beta diversities and alpha diversities can 

still be visualised if the true origin is projected onto the plane of ordination. 

If both artefact types and sites are displayed as vectors from the origin to the points 

representing them, then type vectors pointing in roughly the same direction as a site 

vector are present in high proportions at that site. A site with low diversity will have 

only a few long type vectors pointing in its direction, whereas a site with high 

diversity will have several, shorter type vectors that point in its direction. The biplot 

thus displays which types make a site as diverse as it is. The type-centred diversity 

biplot is explained in the next section. 

3.8.8 The Type-Centred Diversity Biplot 

In type-centred diversity biplots the data matrix of proportions, P, is row-centred, so 

that the entries are now Pij - pi., where Pi. = ~ i: p ij' This means that the origin of the 
m J=l 

co-ordinate system is translated to the centroid of the sites and the proportions of a 

type at each site are approximated as deviations from the mean proportion of the types 

at the site. Distances between sites are not affected by this translation of origin, but 

lengths of the vectors representing them are, hence Euclidean distances are displayed 

more accurately than before, but the Simpson Index values are not. For the Simpson 

Index values we need to know the position of the true origin and this is determined by 

projecting the true origin (in full-dimensional space) onto the plane of the biplot and 

calculating the distance from the true origin to its projection, which has co-ordinate Zr 

on the r-th principal component. The squared distance from the origin to z in a two

dimensional biplot is equal to: 

The Simpson Index of a site in the biplot is approximated by t2 plus the squared 

distance between the site and the projection of the origin. The order of the Simpson 

Indices of the sites can be seen by looking at distances from z, where high-diversity 

sites will be near to z. We apply the type-centred diversity biplot to the bone 
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engravings in section 3.8.9 below. 

3.8.9 Application of the Diversity Biplot to Bone Engravings 

Diversity indices for the bone engravings have been di scussed in several papers 

(Kaufman, 1998; Rhode, 1988; Kintigh, 1984, 1989), but a di versity biplot has never 

been introduced and the present author is unable to find any diversity biplots in the 

literature which relate to archaeology. Figure 3.17 illustrates a des ign-centred 

diversity biplot, but because there are so many designs to di splay we represent these 

by plusses and the sites by lines. The fi ve sites are labelled (ALTAMJRA=Altamira; 

CUETO=Cueto de la Mina; EL JUYO=EI Juyo; CIER=EI Cierro; PALOMA=La 

Paloma) and the position of the true origin is indicated by an asteri sk (*), which 

happens to be located at the present ori gin. 
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Figure 3.17 Design-Centred Diversity Biplot of Bone Engravings 

The percentage of vari ation accounted for in these first two dimensions is over 70%, 

which is more than adequate for us to be confident in our interpretations of the 

di splay. Design 8 is the point located on the extreme le ft of the di agram and projection 

of the sites onto a vector in this direction indicate that it is present in high proportions 

at EI Juyo and EJ Cierro, but in very Jow proportions at Altamira and Cueto de la 
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Mina. Beta diversity is lowest between El Juyo and El Cierro because these have the 

smallest Euclidean distance of any pair of sites and thus they are most similar (the 

angle between them is also small suggesting that they are highly correlated in some 

sense). The biplot in Figure 3.17 agrees to a certain extent with Conkey's 

interpretation of diversity based on the Shannon Index, because we see that there are 

more designs in the direction of Altamira compared with Cueto de la Mina and even 

less for the remaining sites. However, sites nearest to the asterisk have high diversity 

and this would suggest that EI Cierro is most diverse, rather than Altamira. 

To a certain degree we suggest that the diversity biplot 'corrects' for sample size 

problems, because it is applied to the data as proportions. We believe that just as there 

is probably a sample size above which richness does not increase for a given 

assemblage, there is also a sample size below which it is not sensible to compare 

richness across sites. Clearly, the sample size should be at least as big as the total 

number of categories identified after considering all relevant sites. In the case of the 

bone engravings, the sites of La Paloma and EI Cierro have sample sizes of 23 and 35 

respectively, which are both less than the number of design elements (44). We 

therefore have no hope of achieving the same richness at these sites as at the other 

three, which all have sample sizes greater than 44. Conkey (1980) briefly discusses 

this and concedes that: 

One must carve at least 44 design elements in order to achieve the 

maximum diversity of the Lower Magdalenian design element repertoire. 

Only two sites in this study yielded fewer instances of the use of design 

elements than the total (44) of different design elements ... ' 

Whilst there are only two sites with less than 44 designs, we must remember that this 

is 40% of the sites and so there is an argument for either obtaining more bone 

engravings at these sites or limiting our interest to the remaining three sites. We are 

not convinced that it is worthwhile to estimate the minimum sample size above which 

there will be little increase in assemblage richness, because the type of finds we are 

dealing with are generally limited in number and some information is better than none 

at all. 
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Looking at the raw data (Table A.II in the Appendix) we see that there are only six 

design elements which are found at all five sites and there are 11 designs found only at 

Altamira. Only one other site - Cueto de la Mina - yielded design elements unique 

to it. There are six designs not present at Altamira, five of which are unique to Cueto 

de la Mina and so there is evidence to suggest that this site may also have been an 

aggregation locale (Conkey, 1980). 

3.8.10 The Diversity Biplot and Correspondence Analysis: Bone 

Engravings 

This section compares the interpretation of the diversity biplot with that of the 

correspondence analysis map for the bone engraving data. The diversity biplot is 

applied to data in the form of design-centred proportions for each site and it is 

therefore interesting to compare the interpretation of this biplot with that of a 

correspondence analysis map (described in Chapter Two), which is based on relative 

frequencies. Figure 3.18 illustrates the correspondence analysis map with designs 

represented as circles and sites as triangles. The site labelling is as follows: 

ALT=Altamira; CUE=Cueto de la Mina; JUY=EI Juyo; CIE=EI Cierro; PAL=La 

Paloma. 
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Chapter Three - Bip/ots 

Figure 3.18 Correspondence Analysis Map of Bone Engravings 

Interpreting this map we infer that AItamira is highly associated with many types of 

design, mainly because of the large cluster of designs in the top right-hand corner of 

the display; these are in fact the 11 designs unique to this site. It is also evident that in 

the top left-hand corner are five designs highly associated with Cueto de la Mina and 

these are the five designs mentioned in 3.8.9 that are unique to this site. In the 

correspondence analysis map abundances of designs at sites cannot be approximately 

recovered by projecting a design onto the line from the origin to the site point, as is 

the case for biplots. Also, in a symmetric correspondence analysis map the designs are 

placed at the centroid of the sites in which the design occurs and vice versa. 

Additionally, distances between sites are in terms of the chi-squared distance in the 

correspondence analysis plot, rather than in terms of Euclidean distance in biplots. 

However, relationships between designs and sites do seem to be more clearly 

displayed in the correspondence analysis map than in the diversity biplot. 
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3.9 The Symmetric Biplot 

Having described and applied biplots of the Correlation and Principal Component 

Biplot Families, we briefly introduce another form of biplot that has fewer properties 

than these other biplots. The symmetric biplot is a combination of the row and column 

scalings of both the Correlation Biplot Family and the Principal Component Biplot 

Family. The mean of all elements of the data matrix, x, is subtracted from each 

element of the matrix: 

Y=X-x 

and because the overall mean of the matrix is subtracted, the variables must be 

measured in the same units. Considering the GSVD of a matrix X for the simplest case 

of n = In and <I> = 1m, described in Chapter One, we have a = t and b = t. The row 

and column co-ordinates in two dimensions are given by the first two columns of the 

matrices F and G respectively, where: 

I 

G=VD~. 
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3.10 Relationships with other Techniques 

Biplots are known to have close similarities with both principal component analysis 

and correspondence analysis and these similarities are described below. 

3.10.1 Biplots and Principal Component Analysis 

Both biplots and principal component analysis usually operate on data where rows 

represent observations and columns represent variables. There is a simple algebraic 

transformation from one technique to the other, which was explained in Baxter (1994), 

although the interpretations of the two representations are different. 

To obtain either a correlation biplot or a principal component biplot from a principal 

component analysis, it is necessary to carry out the following steps: 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Start with a data matrix X (n x m), where rows are observations and 

columns are variables. 

Let L be matrix X, column-standardised so that each column has zero 

mean and unit variance. 

Carry out a PCA on matrix L. Obtain principal component scores and 

coefficients. 

Carry out a singular value decomposition on matrix L, so that: 

where i\= diag (AI, ... , Ar) is a diagonal matrix of singular values~ 

U is the eigenvector ofLTL; 

V is the eigenvector of LL T. 

The principal component scores and coefficients obtained in step 3 are exactly the 

same as the row co-ordinates and the column co-ordinates respectively in the principal 
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component biplot. The correlation biplot can be obtained from the principal 

component biplot (with column standardisation) by dividing the column co-ordinates 

by Ai and multiplying the row points by A.i, where A.i is the singular value from the 

singular value decomposition ofL. 

Whereas in PCA only the total variance (the sum of the column variances) is 

decomposed along the principal axes, in the covariance biplot the individual variable 

variances are also displayed (represented by vectors). The relative variances are also 

displayed in the correlation and Spearman rank correlation biplots and these can take a 

maximum value of one. 

3.10.2 Biplots and Correspondence Analysis 

Correspondence analysis was originally developed for data in the form of a 

contingency table, although it is often extended to frequency and categorical data. In 

contrast, biplots are more appropriate for data matrices of continuous data, where rows 

represent observations and columns represent variables. However, both biplots and 

correspondence analysis are ways of interpreting a joint map of row and column 

points and the main differences between the techniques are listed in the following 

sections. Table A.I of Appendix A in Greenacre (1984) explains the relationship 

between various multivariate techniques in terms of the singular value decomposition. 

3.10.2.1 Interpreting the Displays 

The interpretation of a biplot is in terms of row-to-column scalar products with respect 

to the origin - biplots are designed to recover, approximately, the individual 

elements of the data matrix in these scalar products. In contrast, the correspondence 

analysis map is interpreted in terms of interpoint distances. Thus, row-to-column 

scalar products can be interpreted in a biplot but row-to-column distances cannot be 

interpreted in symmetric correspondence analysis because the rows and columns are 

in different low-dimensional spaces (Greenacre, 1993a). 
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3.10.2.2 Types of Data Matrices 

Two-dimensional correspondence analysis plots cannot, in general, be compared in 

any direct way with biplots because the data matrices are of different types. However, 

both biplots and correspondence analysis determine the plotting positions for rows and 

columns of a data matrix X (n x m) from the singular value decomposition (SVD) of a 

matrix. For biplots the SVD is calculated for X (after scaling), whereas in 

correspondence analysis the SVD is found for a matrix of residuals after subtracting 

expected values, assuming independence of rows and columns (i.e. from ~, where x .. 
x 

is the sum of all the entries of X; Jolliffe, 1986). 

3.10.2.3 Approximation of Data Matrices 

The steps of approximation and factorisation of biplots are reversible and the 

possibility of reproducing the data, at least approximately, from the display is a unique 

feature of biplots. However, in correspondence analysis we start with a matrix X, 

calculate a function of the matrix and then produce a map of these distances of 

correlations by the chi-squared metric. We cannot even approximately retrace the step 

from the map of the distances or correlations to the original data because the functions 

that have been used to summarise the data are generally not one-to-one functions. 
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3.11 Summary and Conclusions 

Both biplots and principal component analysis are used to display data that consist of 

a senes of variables measured on each of a number of observations. However, 

whereas PCA displays only observations, biplots display both observations and 

variables simultaneously and this is their strength. There are many types of biplot, 

each of which is useful in a different situation, depending on the aims of the analysis 

and the form that the data take (e.g. whether the variables are in the same units; 

whether there are any outlying observations etc.)' This chapter has collated the most 

common forms ofbiplot together (from the fragmentary literature) and illustrated each 

of them on both new and published data. We have also explained in detail the 

goodness of fit measures that help us to assess whether the display in our chosen 

dimensionality, typically two, is adequate and whether individual variables are well 

represented. (The quality of representation of individual variables is discussed in 

depth in Chapter Eight, in relation to assessing the stability of these variables.) In 

addition, we have expanded the Spearman rank correlation biplot in order to enable us 

to assess the influence of tied, as compared with untied, observations. From our 

analyses we suggested that as a rule of thumb at least 50% of the variation in 

archaeological data should be explained in the first two dimensions of the ordination 

diagram. 

Biplots are particularly useful in identifying groups of observations and in revealing 

which pairs of variables are highly correlated. However, because of the typically large 

numbers of variables that are measured in archaeology and because of the limited time 

and money available, we propose the introduction of variable selection methods to 

reduce the number of variables needed to reveal group structure. By using variable 

selection methods we can assign importance to variables in their ability to 

discriminate between groups of observations, although other factors such as ease of 

measurement may also come into consideration. In Chapter Seven we apply the 

methods of variable selection which exist for PCA to the various biplots and we also 

develop alternative methods. 

It IS known that concentration ellipses are useful if there are large numbers of 
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observations to display (as is often the case in archaeology), because they can be used 

to summarise those from different 'groups' and avoid over-cluttering of the diagram. 

In this chapter we proposed extending their use to allow informal assessments of the 

similarity between groups of observations to be made, by looking for ellipse overlaps. 

By making an analogy with confidence intervals based on the normal distribution, we 

suggested taking percentage points of the chi-squared distribution at 68% (- one 

standard deviation from the centroid) and 95% (- two standard deviations from the 

centroid) when plotting the ellipses. We also suggested that if the centroid of an 

ellipse representing one group of observations lies within the ellipse representing 

another group, then the groups can be considered to be indistinguishable on the basis 

of the available measurements. We discuss the overlap of concentration ellipses in 

connection with correspondence analysis and canonical correspondence analysis in 

Chapters Five and Nine respectively. 

Although the diversity biplot has been used in ecology, no references could be found 

to its use in archaeology and so we have introduced it into archaeology in this chapter. 

The diversity biplot is applicable to data which consist of the proportions of artefacts 

of different types observed at a number of sites - it allows us to assess visually which 

sites are particularly rich in which artefact types, rather than using one or more of the 

numerous diversity indices which we also discussed. In addition, we used the bone 

engraving data (1.2.7) to compare the diversity biplot with the symmetric 

correspondence analysis map - the interpretations of both diagrams proved to be 

very similar. We also explained the similarities between biplots and both PCA and 

correspondence analysis. 

Finally, it is clear that outlying observations are revealed by their aberrant locations in 

the ordination diagram, but observations that have been influential in determining the 

display are not obvious and so in Chapter Eight we propose using the jack-knife 

technique to identify such observations. We also use a jack-knife approach to help us 

to detect which categories have been influential in determining the correspondence 

analysis (Chapter Six) and canonical correspondence analysis (Chapter Nine) displays. 
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Canonical Correspondence Analysis 

4.1 Introduction 

A rather different development of statistical methodology (as compared with the 

previous two chapters) for examining the structure of certain types of data matrix has 

focused on exploring the relationship between species abundances and environmental 

variables that have been observed at various sites. The resulting technique is known as 

canonical correspondence analysis and is usually implemented by using the 

commercially available package CANOCO, although it is straightforward to 

implement in any standard programming language because it relies on the singular 

value decomposition and what is essentially a least squares method of regression. 

The aim of this chapter is to provide a coherent account of the technique with 

algebraic details and a guide to use and interpretation, partly because it is much less 

widely used than other exploratory multivariate methods and partly to expand the 

framework for further work in Chapter Nine. Much of the development of the 

methodology has been driven by problems arising in ecology (specifically, community 

ecology) and it is helpful to describe the technique with close reference to this specific 

area of application. There is also considerable potential for the technique to be more 

widely used in archaeology and this is something we discuss later in the chapter. 
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Community ecology is the study of assemblages of plants and animals that live 

together and their interaction with environmental variables. Typically, data are 

collected on abundances of a multitude of species at a number of sites (a site is the 

basic sampling unit, separated in space or time from other sites e.g. a quadrat, or a 

trap) and sometimes environmental variables are also measured at these sites. 

Before canonical correspondence analysis (CCA) was developed, the available 

statistical methods for analysing such data either assumed linear relationships between 

species abundances and environmental variables, or were restricted to regression 

analysis of the response of each species separately. To analyse the generally non

linear, non-monotone response of a community of species it was necessary to use 

ordination and cluster analysis - indirect methods that are generally less powerful 

than the direct method of regression analysis. Recently, regression and ordination 

have been integrated into techniques of (multivariate) direct gradient analysis, which 

are collectively called canonical ordination. One of these techniques, canonical 

correspondence analysis, developed by ter Braak (1986), escapes the assumption of 

linearity and is able to detect unimodal relationships between species and external 

(environmental) variables. 

Ordination techniques such as correspondence analysis are commonly used to explain 

the variation in community composition by displaying points representing sites and 

points representing species in an ordination diagram. Subsequently, the diagram is 

interpreted with the help of external data, for example by calculating correlation 

coefficients between environmental variables and ordination axes, or by multiple 

regression of the ordination axes on the environmental variables. It is known that one 

difficulty with these methods is that the ordination axes are just particular orthogonal 

directions in the ordination diagram; other directions may well be better related to the 

environmental variables. Canonical ordination is a solution to this problem and with 

this method the regression model is inserted into the ordination model. As a result the 

ordination axes appear in order of the variance explained by linear combinations of 

the environmental variables. 

119 



Chapter Four - Canonical Correspondence Analysis 

This chapter describes the technique of CCA, beginning in Section 4.2 with a 

discussion of the various scales of measurement used when collecting vegetation data, 

followed by an explanation of the theoretical background and two approaches to 

implementing the method in 4.3. Section 4.4 describes the ordination diagram and 

associated quantities of interest, which aid its interpretation. Applications to published 

data on hunting spiders and dune meadow vegetation are discussed in 4.5 and 4.6 

respectively and connections with other multivariate techniques are explained in 4.7. 

This chapter is concluded in Section 4.8. 
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4.2 Data Collection and Transformation 

Data suitable for CCA consist of abundances of species (animal or, separately, 

vegetation) at a number of sites and of environmental variables measured at each site. 

The next section describes the most commonly used scales when collecting vegetation 

abundance data, one of which applies to the dune meadow vegetation of Section 4.6. 

4.2.1 Scales of Measurement for Vegetation Data 

Typically, the taxonomic unit employed in sampling within community ecology is the 

species. Species abundance measures include presence/absence, percentage cover, 

density (of number of individuals), frequency (percentage of quadrats having a species 

present), biomass (dry weight) or some weighted average of two or more such 

quantities. Abundance relates to the density of the individuals of a given species in a 

plot, whereas percentage cover is measured as the vertical projection of all aerial parts 

of plants of a given species as a percentage of the total plot area. Estimation of 

coverage is made by quick visual inspection and most scales have between five and 

ten ordinal values. Abundance and percentage cover are usually estimated together in 

a single 'combined estimation' or 'cover-abundance' scale and the Braun-Blanquet 

and Domin scales have been most commonly used (Gauch, 1982). The Braun

Blanquet scale is an ordinal scale that was extended by Barkman et al. (1964) to 

include subdivisions 2m, 2a and 2b and recoded to numeric values by van der Maarel 

(1979). Table 4.1 illustrates these scales, although for extensive surveys with very 

diverse communities it has been argued that the bulk of the information lies in 

qualitative differences i.e. in species presences and absences. We should note that, for 

example with Domin's scale, a value of 10 is not equal to twice a value of 5 in terms 

of cover-abundance; this is also the case for the other scales in the table and this is 

crucial when investigating the stability of the CCA map for the dune meadow 

vegetation in Chapter Nine. 
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Table 4.1 Cover-Abundance Scales for Vegetation 

Braun - Blanquet Barkman's refinement of Braun - Blanquct van dcr Domin 

Maarcl 

Symbol Cover Symbol Cover - abundance Symbol Symbol Cover -

(%) abundance 

1 <5 r one or few individuals 1 + one individual, 

2 5 -25 + occasional and less than 5% of total 2 reduced vigour 

area 1 rare 

3 25 - 50 1 abundant and with very low cover, or 3 2 sparse 

abunrumt but with higher cover, less 3 < 4%, frequent 

than 5% cover of total plot area 4 5 - 10% 

4 50 -75 2m very abundant 4 5 II - 25% 

5 > 75 2a 5 - 12.5% cover, irrespective of 5 6 26 -33% 

number of individuals 7 34 - 50 % 

2b 12.5 - 25% cover, irrespective of 6 8 51 -75% 

number of individuals 9 76 - 90% 

3 25 - 50% cover of total plot area, 7 10 91 - 100% 

irrespective of number of individuals 

4 50 - 75% cover oftolal plot area, 8 

irrespective of number of individuals 

5 75 - 100% cover of total plot area, 9 

irrespective of number of individuals 

4.2.2 Data Transformation 

Ter Braak (1987a) is one of the prime references for CCA and he comments that 

species abundances are highly variable and nearly always show a skew distribution 

with respect to a quantitative environmental variable. He goes on to say that if the 

abundance of each species has a highly skew distribution, with many small values and 

a few large values, then the data can be square rooted or logged to down-weight high 

abundances. This is necessary because it is commonly believed that the abundance of 

a species tends to have a single-peaked response function to an environmental 

variable. This is because not only does it require a certain minimum amount of a 

resource, but also it cannot tolerate more than a certain maximum amount of a 
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resource (this is essentially Shelford's Law of Tolerance (Shelford, 1911; Odum, 

1971». Each species' occurrence is thus confined to a limited range, known as its 

niche. Relationships between the species and quantitative environmental variables are 

therefore generally non-linear, but a unimodal curve may appear monotonic if only a 

limited range of the environmental variable is sampled. Ter Braak (1987a) believes 

that a good choice of environmental variable should minimise the number of species 

with more complex distributions than unimodal. However, if any of the environmental 

variables do follow a skewed distribution then they can be transformed to a symmetric 

distribution by taking logarithms, although any transformation of the species 

abundance data may influence the results of an analysis. In Section 4.5 we consider, 

for the hunting spiders, the effect of transformations of both species abundances and 

environmental variables on the interpretation of the ordination diagram because the 

consequences are potentially quite far-reaching. Chapter Nine discusses the effect of 

data transformations on the stability of the CCA map. 
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4.3 The Theory of Canonical Correspondence Analysis 

Ter Braak (1987a) and ter Braak & Verdonschot (1995) are the main references for 

explaining the theory behind and the application of, the technique of CCA and the 

next few sections are heavily based on these. There are two methods of implementing 

CCA - an iterative algorithm and a singular value decomposition, both of which are 

explained below. 

4.3.1 Background and Notation 

In canonical correspondence analysis abundances of species are assumed to have bell

shaped (i.e. unimodal) response curves with respect to linear combinations of the 

environmental variables (which are known as environmental gradients). CCA also 

assumes a response model that is common to all species and the existence of a single 

set of underlying environmental gradients to which all species respond. When the 

response curves are not unimodal but approximately linear, the results can be expected 

to be adequate, but it is conventionally recommended in this situation to utilise instead 

the linear counterpart of CCA, known as redundancy analysis (van den Wollenberg, 

1977). Redundancy analysis is a constrained form of multiple regression of the 

species' responses on the explanatory (environmental) variables (constrained so that 

the site scores are linear combinations of environmental variables), but there is no 

weighted averaging as in CCA. Instead, there is a two-way weighted summation. 

CCA forms a linear combination of environmental variables that maximally separates 

the niches of the species. The first synthetic gradient is the first ordination axis, where 

the achieved maximum amount of niche separation is described by the eigenvalue of 

the ordination axis i.e. the eigenvalue is a measure of separation of the species' 

distributions along the ordination axis. Subsequent ordination axes are also linear 

combinations of the environmental variables that maximally separate the niches, but 

subject to the constraint that they are uncorrelated with the axis or axes extracted 

previously. In principle, as many ordination axes can be extracted as there are 

environmental variables. 
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We can define CCA in terms of a singular value decomposition (SVD), or 

equivalently, by means of an iterative algorithm of reciprocal averaging and multiple 

regression. In this chapter we give details of both approaches, although the latter 

almost exclusively dominates the relevant literature. There are two types of 

explanatory variables - environmental variables and covariables: by environmental 

variables we mean variables of prime interest; covariables are those variables whose 

effect is to be removed (ter Braak, 1987b). When covariables are not present, the steps 

involving these variables are omitted. We first introduce some notation: 

Let Y = [Yik] (i = 1, ... , n; k = 1, ... , m) be a species-by-sites matrix containing the 

observations of n species at m sites. The observation Yik must be greater than, 

or equal to, 0; 

Z2 = [Z2kj] (k = 1, ... , m; j = 1, ... , q) be a sites-by-environmental variables 

matrix containing the observations of q environmental variables at the m sites; 

R = diag (Yi.) be a diag~nal matrix of species totals; 

W = diag (y.k) be a diagonal matrix of site totals; 

W* = diag (~~ ) 

If covariables exist then let Zl = [Zlkl] (k = 1, ... , m; I = 0, ... , p) be a sites-by

covariables matrix containing the observations of p covariables at the m sites. The first 

column is a column of l' s to account for the intercept in the regression analysis and 

the observations Zlkl and Z2kj may take any real value. We can also define products of 

variables in order to examine whether the effect of one variable depends on the value 

of another variable (in the same way as in multiple regression). 

4.3.2 Preliminary Calculations 

Some preliminary calculations are necessary before CCA is implemented, regardless 

of whether we use the iterative algorithm or the singular value decomposition 

approach. These calculations are to standardise all the environmental variables (both 

environmental variables of interest and covariables which are not of direct interest). 
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The effects of the covariables are then removed by calculating the residuals of the 

linear regression of each of the environmental variables on the set of covariables. 

However, we suggest that it may be preferred not to make a distinction between 

covariables and environmental variables but to leave both in the complete analysis, 

unless it is absolutely certain which variables are the most appropriate for explaining 

species abundance (i.e. variables such as time and temperature would be classed as 

covariables but other, less obvious variables, would not). We describe the preliminary 

calculations below. 

PI. It is generally recommended to standardise the environmental variables to zero 

mean and unit variance. Although ter Braak (1 987b) does not say so explicitly, 

this is presumably important only when the variables are in different units or 

have widely differing variances. If there is only one variable and no 

covariables then it is clearly not necessary (although only one canonical 

ordination axis can be extracted). We also believe that there may be some 

situations, when the variables are in the same units, where they should not be 

standardised so as to allow those with greater values to have relatively higher 

weight in the calculations. 

To standardise the variables, calculate the mean and vanance for 

environmental variable j: 

and set 

P2. If covariables exist, standardise these to zero mean and unit variance. 

Calculate the mean and variance for covariable I: 

126 



Chapter Four - Canonical Correspondence Analysis 

and set 

P3. Calculate for each environmental variable j the residuals of the multiple 

regression of the environmental variables on the covariables: 

where Z2j = (Z2Ij, ... , Z2njr and < is the vector of coefficients of the 

regression ofz2j on Zl. Define Z2 = [Z2d (i = 1, ... , n; j = 1, ... , q). 

Having performed the above calculations, canonical correspondence analysis can now 

be implemented. The iterative algorithm approach is described in the following 

section. 

4.3.3 The Iterative Algorithm Approach 

We denote the species and site scores on the s-th ordination axis by u = [uiJ (i = 1, ... , 

n) and x = [xd (k = 1, ... , m) respectively. The canonical coefficients of the 

environmental variables are denoted by c = [Cj] (j = 1, ... , q) and the site scores of the 

previous (s-l) ordination axes are denoted as columns of the matrix A. We carry out 

the following steps. 
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Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7: 
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Start with arbitrary, but unequal site scores x = [Xk]. Set XkO = Xk. 

Derive new species scores from the site scores by weighted averaging: 

LYikXk 
u. = --'k=---__ 

1 

Derive new site scores x * = [Xk *] from the species scores by weighted 

averagmg: 

Yk 

* * Make x = [Xk] uncorrelated with the covariables by calculating the 

residuals of the multiple regression ofx* on ZI: 

If q > SA where SA is number of axes already extracted, then calculate a 

multiple regression of the site scores x· on the environmental variables 

Z2: 

and take as new site scores the fitted values: 

If SA> 0, make x = [Xk] uncorrelated with previous axes by calculating 

the residuals of the multiple regression ofx on A: 

Standardise x = [Xk] to zero mean and unit variance: 
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Step 8: 

Step 9: 

Step 10: 

Chapter Four - Canonical Correspondence Analysis 

(4.1) 

Stop on convergence i.e. when the new site scores are sufficiently close 

to the site scores of the previous iteration. If: 

then go to step 9. Otherwise, set XkO = Xk and go to step 2. 

Set the singular value A equal to s in (4.1) and add x = [Xk] as a new 

column to the matrix A. 

Set SA = SA + 1 and go to step 1 if further ordination axes are required; 

otherwise stop. 

4.3.3.1 The Transition Formulae 

Each time step lOis reached, site scores which are a linear combination of the 

environmental variables are obtained for a particular axis (x). From these we can 

obtain, for each axis, by using the following transition formulae with the appropriate 

A, species scores (u) and site scores (x·) which are weighted mean species scores: 

(4.2) 

(4.3) 

where a. (0 ~ a. ~ 1) is specified by the analyst. 
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There is no natural way of selecting a and in most fields outside community ecology 

only a = 0.5 has been used (Oksanen, 1987), but in community ecology either a = 0 

or a = 1 is usually used. When a = 0, species scores are weighted means of the site 

scores; when a = 1, site scores are weighted means of the species scores; and when a 

= 0.5, sites and species are treated in a symmetric way, so that neither is the weighted 

mean of the other. Ter Braak (1985) believes that in species-by-sites matrices the 

choice of a = 1 is more appealing because there are nearly always species whose 

optimum is outside the sampled range of sites - therefore the species should have a 

greater range of scores and the site scores should be the direct weighted averages of 

species scores. In contrast, when a = 0 the species' optima all lie inside the range of 

sample scores, although this is the default in CANOCO 3.1 and ter Braak (1987b) 

does comment that the choice of scaling is less critical the higher the eigenvalues of 

the ordination axes. We use both a = 0 and a = 1 in this chapter and in Chapter Nine. 

Having explained the iteration algorithm approach to CCA we now describe the 

singular value decomposition approach. 

4.3.4 The Singular Value Decomposition Approach 

The species and sites co-ordinates produced by the algorithm of 4.3.3 can also be 

obtained by the following singular value decomposition. The details are taken from 

Jongman et al. (1995) and use the notation defined in 4.3.1. 

Define: 

Calculate the SVD of: 

W-o.SS S -0.5 - PAO,SQT 
12 22 -

where A 0.5 = diag (1..1°.5,,,., Am 0.5) are singular values; 

P (m x m) and Q (m x m) are orthonormal i.e. pTp = QTQ = 1m. 

130 



Chapter Four - Canonical Correspondence Analysis 

For the case of a = 1 the species co-ordinates are given by: 

u = W-o.sp A 0.5 , 

the site scores are given by: 

and the canonical coefficients are obtained from: 

Having obtained species and site co-ordinates, there are some quantities that aid the 

interpretation of the ordination diagram and these are described in 4.3.5, using the 

notation of 4.3.3. For the questions addressed in Chapter Nine, such as investigating 

the influence of sample size on the analysis, the detection of influential categories and 

variables and the development of methods for assessing the stability of the ordination 

diagram, we believe that the SVD is the more useful approach. 

4.3.5 Quantities of Interest 

The following sections explain the maIn quantities of interest which aid the 

interpretation of the ordination diagram. They are discussed in Sections 4.5 and 4.6 for 

the hunting spiders and dune meadow vegetation data respectively. 

4.3.5.1 Intraset Correlations 

The species scores (u) and site scores (x·) are the co-ordinates which are plotted in the 

ordination diagram, whereas the intraset correlations are the correlation coefficients 

between the environmental variables (2 2 ) and the ordination axes (x). They relate to 

the rate of change in community composition per unit change in the corresponding 

environmental variable, where the other environmental variables covary with that one 

environmental variable. Any arbitrariness in the units of measurement of the variables 

was removed when the variables were standardised prior to the analysis (see 4.3.2). 
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4.3.5.2 Environmental Variable Co-ordinates 

The co-ordinate of an environmental variable on aXIs s IS A.~5 multiplied by the 

intraset correlation (see 4.3.5.1) of the environmental variable with that axis, where A.s 

is the singular value of axis s. Thus, environmental variables can be displayed along 

with species and sites in the ordination diagram. 

4.3.5.3 Canonical Coefficients 

The final regression coefficients (c) as defined in 4.3.3.1 are called canonical 

coefficients and these define the ordination axes as linear combinations of the 

environmental variables, along which the distributions of the species are maximally 

separated. Canonical coefficients relate to the rate of change in community 

composition per unit change in the corresponding environmental variable, where the 

other environmental variables are held constant. When the environmental variables are 

strongly correlated with each other e.g. when the number of environmental variables 

approaches the number of sites, the effects of different environmental variables on 

community composition cannot be separated out and so the canonical coefficients are 

unstable. This is known as the multicollinearity problem and we see an example of 

this in Section 4.5 for the hunting spider data. 

4.3.5.4 Species-Environment Correlations 

The multiple correlation coefficient of the final regressIOn is called the specles

environment correlation and is a measure of how well the extracted variation in 

community composition can be explained by the environmental variables. It is equal 

to the weighted correlation between the site scores (x*) which are weighted mean 

species scores and the site scores (x) which are a linear combination of the 

environmental variables. However, McCune (1997) comments that as the number of 

environmental variables increases, the species-environment correlation always 

converges to 1, so that it is a poor measure of the success of an ordination. 
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4.3.5.5 Variance Inflation Factors 

Variance inflation factors (VIFs) relate to the (partial) multiple correlation between 

environmental variable j and the other environmental variables in the analysis. If the 

VIF is large, say> 20, then the variable is almost perfectly correlated with the other 

variables and therefore has no unique contribution to the regression equation and its 

canonical coefficient is unstable. When implementing environmental variable 

selection methods in Chapter Nine, it is helpful if we can ensure that the VIFs of the 

selected variables are low. 

4.3.5.6 Inter-set Correlations 

The inter-set correlations of the environmental variables with the axes are the 

weighted correlation coefficients between the environmental variables and the site 

scores (x *) which are weighted mean species scores. In contrast to the canonical 

coefficients, the inter-set correlations do not become unstable when the environmental 

variables are strongly correlated with each other i.e. when the VIFs are large. The 

mean squared inter-set correlation is the fraction of the total variance in the 

standardised environmental data that is extracted by each species axis. 

4.3.5.7 Ordinal Variables 

CCA cannot directly cope with ordinal variables - these must be treated either as if 

they are quantitative, or as nominal variables; nominal variables must be transformed 

to dummy variables. This causes some problems when assessing the stability of the 

variables in Chapter Nine. 
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4.4 The Ordination Diagram and its Interpretation 

The CCA map is usually examined in two dimensions, because this gives the most 

convenient visual representation of the data. The following sections describe the 

interpretation of the species points, site points and environmental variables in the 

ordination diagram and Chapter Nine investigates how this interpretation changes 

when the number of sites or variables included in the analysis alters. Each pair of 

{sites, species, environmental variables} forms a biplot and when the CCA map 

contains all three quantities it is known as a triplot. 

4.4.1 Displaying Species and Sites 

In the ordination diagram, sites and species are each represented by points that form a 

biplot. These points jointly represent the dominant patterns in community composition 

insofar as these can be explained by the environmental variables. By taking a = 0 

(equations (4.2) and (4.3)), species scores are weighted mean site scores and each 

species point then lies at the centroid of the sites points at which it occurs, with the 

origin of the plot lying at the centroid of the species points. We can then infer which 

species are likely to be present at a particular site (i.e. those located close to the site). 

We consider methods of assessing the stability of the site points (i.e. how 

representative they are of the true population of data) in Chapter Nine. 

4.4.2 Displaying Qualitative Environmental Variables 

Each class of a nominal environmental variable is represented separately by a point 

located at the centroid of the sites belonging to that class. Classes consisting of sites 

with high values for a species will then tend to lie close to the point representing that 

species. If the environmental data consist of a single qualitative variable, the points for 

classes and species in the CCA diagram are identical to those obtained from a 

correspondence analysis on the species-by-c1asses table, the entries of which are the 

total abundance of each species in each class (see Chapter Two). The stability of 

nominal environmental variables is discussed in Chapter Nine. 
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4.4.3 Displaying Quantitative Environmental Variables 

Quantitative environmental variables are represented by vectors (lines), each of which 

determines a direction or axis in the diagram. It is only the directions and relative 

lengths of the vectors that convey information, so the lengths can be reduced or 

extended to fit into the ordination diagram. Each vector points in the direction of 

maximum change in the value of the associated variable and the vector length is 

proportional to this maximum rate of change. An environmental variable with a long 

vector is one for which abundances vary rapidly as the variable changes. The length of 

a vector also indicates the importance of the variable: the length is equal to the 

multiple correlation of the variable with the displayed ordination axes and thus 

indicates how well the values of the variable are displayed in the biplot of sites and 

environmental variables. 

If we can extend a vector in both directions then from each species point we can drop 

a perpendicular to this axis, where the end points of these perpendiculars indicate the 

relative positions of the centres of the species distributions along the environmental 

axis (see Figure 4.2). In general, the approximate ranking of the weighted averages for 

a particular environmental variable can be seen from the order of the endpoints of the 

perpendiculars of the species along the axis for that variable: the inferred weighted 

average is higher than average if the endpoint of a species lies on the same side of the 

origin as the head of a vector and vice versa. The grand mean of each environmental 

variable is represented by the origin of the plot. We discuss methods for investigating 

the stability of these quantitative variables in Chapter Nine. 

4.4.4 Species and Environmental Variables 

The species points and the vectors of the environmental variables jointly represent the 

species' distributions along each of the environmental variables and this joint plot is a 

biplot. This biplot provides a weighted least squares approximation of the weighted 

averages of the species with respect to the environmental variables. There is a measure 

of goodness of fit which expresses the percentage of variation of the weighted 

averages accounted for by the two-dimensional diagram of vectors and species and 

this is given by: 
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Ter Braak (1987b) comments that the percentage of variation accounted for is 

dependent on the number of variables in the analysis: with only two environmental 

variables, two canonical axes always explain 100% of the variation, regardless of 

whether or not the result is ecologically meaningful. 

4.4.5 Ordination Axes 

The first eigenvalue is equal to the maximised dispersion of species scores along the 

first ordination axis. The second and further axes also select linear combinations of 

environmental variables that maximise the dispersion of the species scores, but these 

are subject to being uncorrelated with previous axes; in principle as many axes can be 

extracted as there are environmental variables. CCA is in fact restricted 

correspondence analysis (CA), but the restrictions become less strict with the more 

environmental variables that are included in the analysis: if q ~ m-I, then there are no 

restrictions and CCA is then CA. In Chapter Nine we compare the species and site 

points obtained from CA and CCA for the hunting spider data. 

Eigenvalues indicate how long the extracted gradients are (where higher values mean 

longer gradients). If the gradients are long then the scores (optima) of most species lie 

close to the centre region where the sites lie and there is some evidence that the 

probability of occurrence of species along the gradients is unimodal as required. By 

looking at the signs and relative magnitudes of the intraset correlations (4.3.5.1) and 

the canonical coefficients (4.3.5.3), we can infer the relative importance of each 

environmental variable for predicting the community composition. 
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4.4.6 Tolerances 

The tolerance or weighted standard deviation of a species is a measure of its niche

breadth and is calculated as: 

where Xk is the site score at site k (ter Braak, 1985; ter Braak & Verdonschot, 1995). 

The tolerance can be calculated for each species on each extracted ordination axis and 

plotted as a cross with the species points as the centres and the tolerances on each axis 

as lines through this point. We illustrate the tolerances on the first two axes for each of 

the hunting spider species in Figure 4.3. 

4.4.7 Supplementary Points 

As was the case for correspondence analysis in Chapter Two, samples and species in 

CCA can be made passive so that they do not influence the determination of the 

ordination. Their scores on the ordination axes are calculated after CCA has been 

implemented. 

4.4.8 Ranking Environmental Variables 

It is known that the environmental variables can be ranked in order of their importance 

for determining the species composition. A related aim is to reduce a large set of 

variables to a smaller set that suffices to explain the variation in species composition 

and this forms part of the focus of Chapter Nine. Ter Braak & Verdonschot (1995) 

comment that environmental variables can be ranked and selected in CCA in a similar 

way to how predictors can be ranked and selected in regression, with the species and 

the environmental variables taking the roles of the response and explanatory variables 

respectively. However, CCA aims to explain the variation in the species composition 

i.e. in relative abundance values, whereas linear regression aims to explain the 

variation in absolute abundances. Ter Braak & Verdonschot (1995) describe a forward 

selection method and apply it to macro-fauna data from the 
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Netherlands. We explain this method in detail and introduce an alternative in Chapter 

Nine. 

4.4.9 The 'Arch Effect' 

The 'arch effect' was described in the context of correspondence analysis in 2.4.2.2 

and is an approximately quadratic dependence between the scores of the first two 

axes, which occurs whenever a short gradient is dominated by a long gradient (Gauch, 

1982). In CCA it is known that the 'arch effect' can be removed by dropping 

superfluous environmental variables; variables that are highly correlated with the 

'arched' axis (often the second axis) are most likely to be superfluous. Detrended 

CCA (Hill & Gauch, 1980) also removes the 'arch effect', but as with detrended 

correspondence analysis it has been heavily criticised. 

4.4.10 Canonical Correspondence Analysis and Archaeology 

The main application area of CCA is the field of ecology, but there is scope for its use 

in other areas. In archaeology or palaeoecology for example, it may be that the 

environmental conditions at the sites are unknown and that this is what we are hoping 

to discover, but we may have information on the environmental preferences of 

species. In this situation we can just reverse the roles of sites and species, taking Z2 in 

Section 4.3.1 to be species-by-environmental variables and obtain species scores 

which are constrained to be linear combinations of the environmental preferences (i.e. 

obtaining species scores in equation (4.1) instead of site scores). This gives us 

information on the site-environment relationship rather than on the species

environment relationship. We therefore obtain values for site-environment 

correlations, which measure how well the environmental variables explain the 

variation between sites. Additionally, we can project the sites onto the environmental 

variables and see the relative positions of the centres of the site distributions along the 

axes. In summary, rather than measuring environmental conditions at each site and 

inferring species preferences from this, we use our knowledge of the environmental 

preferences of species to infer past environmental conditions at sites. Of course, 

environmental preferences can alter over time and we need to bear this in mind. One 

of the most recent references of CCA applied to archaeology is Bogaard et al. (1999). 
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4.5 Application to Hunting Spiders 

In this section CCA is applied to data consisting of the distributions of 12 species of 

hunting spider in a Dutch dune area, taken from van der Aart & Smeenk-Enserink 

(1975) and analysed by ter Braak (1986) in relation to environmental data. These data 

were described in Chapter One and comprise the numbers of individuals of each 

species caught in 28 pitfall traps (sites) with 26 environmental variables measured at 

each site. This is a considerable number of sites and variables and Chapter Nine 

introduces one method of adjusting the overall number of sites used in the analysis, as 

well as a technique for assessing which sites are particularly influential. It also 

discusses variable selection methods which reduce the number variables used in the 

analysis. In ter Braak (1986) the number of environmental variables was considered 

too large to sort out their independent effects on community composition and 18 were 

removed on a priori grounds; two more were removed because they were strongly 

correlated with one of the remaining six variables. We implement CCA on these 

remaining variables which are labelled 1, 4, 5, 6, 7 and 26 in the analysis below. Ter 

Braak (1986) took a = 1 (see 4.3.3.1), transformed the species-by-sites data by taking 

square roots to down-weight high abundances and transformed the environmental 

variables by taking logarithms. However, we take a = 0 and implement CCA on both 

the original data and the transformed data. We also treat the species data as 

presence/absence in order to investigate how the inferences made alter depending on 

the form of the data. 

4.5.1 The Original Data 

Implementing CCA on the untransformed data (Tables A.12-A.13 of the Appendix), 

we obtain the ordination diagram of Figure 4.1, where the environmental variables are 

represented by lines from the origin (labelled with codes from Table 4.2), the species 

are represented by circles (three of which are labelled) and the sites are indicated by 

pluses. 
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Figure 4.1 Canonical Correspondence Analysis Map of Hunting Spiders 

The species-environment correlations (see 4.3.5.4) of the first two axes are 0.97 and 

0.90 and because these values are high we can be confident that the environmental 

variables are suffici ent to explain the major variation among the different species of 

spider. The environmental variable vectors in conjunction with the species points 

account for 77.2% of the variance in the weighted averages of the 12 spiders with 

respect to the six environmental variables in two dimensions (see 4.4.4), which is also 

fairly high. The species and site points show some evidence of an ' arch effect ' as 

discussed in 4.4.9. 

The canonical coefficients (final regressIOn coefficients), intraset correlat ions 

(correlations between the environmental variables and the ordination axes) and 

variance inflation factors which were described in sections 4.3.5.3, 4.3.5 .1 and 4.3.5.5 

respectively are di splayed in Table 4.2. We see that variables moss, twigs and herbs 

have VTFs of 30.32, 38.40 and 58.72 respectively, which implies strong 

multicollinearity among the environmental variables and unstable canoni cal 

coefficients, so we must be careful when interpreting these variabl es. Interpreting the 

axes, the first axis appears to be a moisture gradient on which the drier sites have a 

high percentage of moss or bare sand, whereas the correlations of the second axis 

140 



Chapter Four - Canonical Correspondence Analysis 

show a contrast between sites with a high cover of herbs and sites without. 

Table 4.2 Canonical Coefficients, Intraset Correlations and Variance Inflation 
Factors for the Hunting Spiders 

Canonical Intraset Variance 

Coefficient Correlation Inflation 

Code Environmental Variable Axis 1 Axis 2 Axis 1 Axis 2 Factor 

1 Water Content -0.0017 -0.0031 -0.905 -0.302 2.59 

4 Bare Sand 0.0026 0.0041 0.849 0.362 12.33 

5 Fallen Twigs -0.0040 0.1380 -0.358 1.663 38.40 

6 Cover Moss 0.0021 0.0017 1.036 -0.180 30.32 

7 Cover Herbs -0.0049 0.0051 -0.607 -1.352 58.72 

26 Light Reflection 0.0024 0.0000 0.965 -0.386 3.01 

In Figure 4.1, the small angle between the vectors representing twigs and moss 

demonstrates the high correlation between these two variables and the angle of 

approximately 1800 between variables water content and sand indicates that these are 

highly negatively correlated. It is also evident that all the vectors are of roughly the 

same length, which means that the gradients in abundances are similar for each 

variable. Considering the species and site points in the ordination diagram, we infer 

that Pardosa pul/ala reaches its maximum abundance in the pitfall traps on the left of 

the diagram and that Pardosa monticola is most abundant in the pitfall traps in the 

centre-right of the diagram. Pardosa /lIgllbris occupies an aberrant position in the 

diagram, being the single spider species that occurs mainly in habitats with a high 

cover of herbs. 

The fraction of the total vanance 10 the standardised environmental data that is 

extracted by each species axis (the mean squared interset correlation) is 40.0% for the 

first axis and 20.0% for the second axis: this is fairly high. The first two eigenvalues 

are 0.64 and 0.30, which show that the extracted gradients are reasonably long and 

there is therefore some evidence that the probability of occurrence of a species along 

these environmental gradients is unimodal as required. 
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Extending the bare sand axis and dropping a perpendicular from each species point 

onto this axis (see Section 4.4 .3) means that we can see the relative positions of the 

centres of the species distributions along the axis . Thi s is illustrated in Figure 4.2, 

although the species in the bottom left-hand corner are not labelled as thi s would 

confuse the diagram. Thus, Arctosa perita has the highest weighted average of all the 

species and is higher than the average of all species (the origin), because it li es on the 

same side of the origin as the axis . The species with the next hig hest weighted average 

is Alopecosa fahrilis followed by Alopecosa accel1ll1ala; we can make similar 

inferences about the species on the other environmental variables . 
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Figure 4.2 Projection of Hunting Spider Species Points onto the Bare Sand Axis 

We now consider the tolerances of each species (see 4.4.6) and di splay them in Figure 

4 .3 . 
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Figure 4.3 Tolerances of Hunting Spider Species 

The species In the left-hand corner (2ora spillimana, At,donia alhimana, Arctosa 

lutetiana, Pardosa nigriceps, Pardosa pullata and A lopecosa c/flleata) appear to have 

similar tolerances on both axes to the linear combination of environmental variab les 

obtained from CCA, whereas Pardo sa luguhris and Trochosa {errico/a have relat ively 

high tolerances to the environmental variables which are strongly represented on the 

second axis . 

4.5.2 Transformed Data 

Transforming both the species data (by taking square roots to down-weight high 

abundances) and the environmental variables (by taking logs) as in ter Braak (1986), 

leads to the ordination diagram of Figure 4A. We are interested in comparing thi s 

figure with that of the untransformed data (Figure 4, I) . 
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Figure 4.4 Canonical Correspondence Analysis Map of Hunting Spiders 

(Transform ed) 

The species-environment correlations on the fi rst two axes are 0.96 and 0.95 which 

are similar to those fo r the original untransformed data. However, the vectors fo r the 

environmental vari abl es account fo r, in conjunction with the species points, 88 .2% of 

the variance in the weighted averages of the spiders in the first two dimensions, whi ch 

is 11 % higher than for the untransformed data. The interpretation of the canonical 

coeffi cients and intraset correlation coefficients is simil ar for both sets of data. 

Considering the transformed data, there are no variabl es with high variance infl ation 

factors and so we can be confident when interpreting the variables, although we note 

that their relati ve positions in the ordination map are simil ar regardless of the form of 

the data. The distributions of sites and species across the ordination di agrams are 

again simil ar and so for these data the transform ations have had littl e effect on the 

interpretation of the CCA map. 

4.5.3 Presence/Absence Data 

In this section we use the untransformed environmental variabl es, but we converi the 

species data into a presence/absence format (i.e. replacing any value greater than zero 
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with a one). The resulting ordination diagram is illustrated in Figure 4.5. 

Figure 4.5 Canonical Correspondence Analysis Map of Hunting Spiders 

(Presence/Absence) 

We see from the map that the species Pardosa lugubris is no longer situated apart 

from the other species, although this is as we would expect given that the data no 

longer consist of absolute abundances. It is also clear that variables 5 and 6 (twigs and 

moss) are more highly correlated than they were in Figures 4.1 and 4.4, but the 

positions of the other variables on the map have not really altered. The species

environment correlations of the first two axes are 0.92 and 0.84, which are lower than 

for both the transformed and untransformed data and so the variation in community 

composition is slightly less well explained by the environmental variables. It is also 

evident that the species points no longer form an 'arch effect'. 

The environmental vectors in conjunction with the species points account for 91.8% 

of the variance in the weighted averages of the 12 spiders in the first two dimensions, 

which is extremely high. However, four of the six variance inflation factors are also 

very high (sand=21.75, moss=36.35, twig=55.04, herb=63.45) and so there is greater 
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multicollinearity than for the untransformed data. The fir st two eigenvalues are 0.37 

and 0. 11 and so the first extracted gradient is reasonabl y long but the second is not 

and there is therefore little evidence of unimodality in the occurrence of species along 

the environmental gradients. On the basis of the above interpretation it therefore 

appears that the presence/absence form of the data is the least usefu l form of data for 

canonical correspondence analys is. 

4.5.4 The Original Data and all 26 Environmental Variables 

As we explained at the beginning of Section .4.5, 26 environmental variab les were 

originall y measured at the 28 sites. In thi s section we apply CCA to all these variabl es 

in combination with the untransformed species data in order to assess the influence of 

the number of environmental variables measured on the interpretation of the results. 

The CCA map is illustrated in Figure 4.6, where most of the enviro nm enta l variables 

are labell ed; asteri sks indi cate the reduced set of six vari ables whi ch were used in the 

previous CCA maps. It is clear from the fi gure that as was the case in Figures 4. I and 

4.4, both species and site points form an 'arch effect ' . 
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Figure 4.6 Canonical Correspondence Analysis Map of Hunting Spiders 

(all 26 Variables) 
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Comparing Figure 4.6 with Figure 4.1 we can see that the relationships between the 

environmental variables have altered considerably, for example variables 6 & 26 are 

now highly correlated when previously they were uncorrelated. We also see that there 

is a group of variables on the bottom right that are highly correlated - {6, 13, 24, 25, 

26} - variables 3 & 4 are also highly positively correlated. Examining the variance 

inflation factors reveals that these are very large (all are greater than 24) and so 

multicollinearity is severe. We cannot, therefore, be confident in any of our 

interpretations based on this figure. There is, however, considerable scope for 

implementing variable selection methods and we discuss this further in Chapter Nine. 
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4.6 Application to Dune Meadow Vegetation 

In this section we apply CCA to data consisting of the abundances of 30 plant species 

(measured on van der Maarel ' s scale of 1-9) in 20 sample plots on the Dutch island of 

Terschelling. These data were described in Chapter One and compri se five 

environmental variables, two of which are considered to be nominal ; the data were 

taken from ter Braak (1987b) but originate in Batterink & Wijffels (1983 , 

unpublished) . 

Implementing CCA (this time with a = I) as in ter Braak (1987b), leads to the 

ordination diagram of Figure 4.7 where species are represented by circl es, sampl es by 

crosses, quantitative environmental variables by lines and nominal environmental 

variables by asterisks. All the variables are labelled. 
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Figure 4.7 Canonical Correspondence Analysis Map of Dune Meadow Vegetation 

In contrast with the ordination maps for hunting spiders (Figures 4.1, 4.4, 4.5 and 4.6), 

there is no 'arch effect' in Figure 4.7. It is also clear from the figure that variab les 

moisture and Al are highly correlated (because there is a small angle between the 

vectors representing them). The first two eigenvalues are 0.49 and 0.27, which suggest 
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that the environmental gradients are reasonably long. The variance inflation factors 

are fairly low (less than 12) so we can be confident in our interpretation of this figure. 

In addition, the species-environment correlations are 0.97 and 0.92 and so the 

variation in community composition is well explained by the environmental variables. 

The vectors representing the environmental variables account for, in conjunction with 

the species points, 62.3% of the variance in the weighted averages of the plants in the 

first two dimensions, which is reasonably high. 
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4.7 Connections with other Techniques 

It is known that canonical correspondence analysis has close connections with other 

multivariate techniques and we describe some of these below. 

4.7.1 Canonical Correspondence Analysis and Correspondence Analysis 

In the context of community ecology, correspondence analysis is applied to data 

consisting of a species-by-sites matrix: it constructs from these data principal axes that 

maximise niche separation. Canonical correspondence analysis, however, also 

requires environmental variables to be measured at each site and constructs principal 

axes by linearly combining the measured environmental variables; this has the 

advantage that the environmental basis of the ordination is guaranteed. However, if 

there are nearly as many environmental variables as there are sites then CA and CCA 

are reported to produce the same site and species ordination. It is also known that 

correspondence analysis is very susceptible to species-poor sites containing rare 

species in that it places such aberrant sites (and the rare species occurring there) at 

extreme ends of the first ordination axis, relegating the major vegetation trends in the 

data to later axes. In contrast, canonical correspondence analysis does not show this 

'fault', provided that the sites that are aberrant in species composition are not so 

aberrant in terms of the environmental variables. A practical problem with both 

techniques, however, is that species that are unrelated to the ordination axes tend to be 

placed in the centre of the ordination diagram and are not distinguished from species 

that have true optima there (ter Braak, 1985, 1986). This can be circumvented by 

looking at a species-by-sites matrix in which species and sites are arranged in order of 

their scores on one of the ordination axes (see the discussion in Section 2.4). 

4.7.2 Canonical Correspondence Analysis and Discriminant Analysis 

Chessel et al. (1987) and Lebreton et al. (1988) were among the first to recognise the 

formal equivalence between canonical correspondence analysis and discriminant 

analysis. Multiple discriminant analysis works on measurements of variables on 

individuals belonging to different groups, where the usual aim is to assign new 

individuals with unknown group membership to groups on the basis of the measured 

variables. To investigate whether it is possible to discriminate between groups using 
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fewer dimensions, canonical variates are obtained (linear combinations of the 

variables that maximally separate the groups). Replacement of 'groups' by 'niches of 

species' yields similar definitions for discriminant analysis and CCA, but with 

discriminant analysis the variables are measured on each individual, whereas with 

CCA the (environmental) variables are measured at each site. Furthermore, 

discriminant analysis is only appropriate if the number of sites is much greater than 

the number of species and the number of classes (Schaafsma & van Vark, 1979). 

Consequently, many ecological data sets cannot be analysed by discriminant analysis 

without dropping many species, but CCA can be used regardless of the number of 

specIes. 

4.7.3 Canonical Correspondence Analysis and Canonical Correlation 

Analysis 

In canonical correlation analysis the specIes scores are parameters estimated by a 

multiple regression of the site scores on the species variables and this regression 

means that the number of species plus the number of environmental variables must be 

smaller than the number of sites. In contrast, canonical correspondence analysis has no 

upper limit to the number of species that can be analysed. 
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4.8 Summary and Conclusions 

Canonical correspondence analysis IS a multivariate ordination method most 

commonly used in community ecology, although it does have applications in other 

areas, for example archaeology, but these are relatively underdeveloped. Within 

ecology, it is an appropriate method to use when interest lies in the response of a 

community of species to environmental variables measured at certain sites. With 

CCA, environmental variables are directly included in the ordination so that the 

resulting axes are linear combinations of these variables, measuring particular 

environmental gradients. It is usual for all variables to be standardised prior to 

analysis, but we suggested that there may be some situations, for example when the 

variables are in the same units, where this should be avoided so as to allow those 

variables with greater values to have relatively higher weight in the calculations. It is 

also known that CCA cannot directly cope with ordinal variables and we discuss this 

in Chapter Nine in the context of assessing the stability of the environmental 

variables. 

This chapter has described the algebraic details of CCA, two methods of 

implementing the technique (by an iterative algorithm and by a singular value 

decomposition) and given a guide to the interpretation of the results, focusing on 

displaying the data in two dimensions. We have investigated the effect of the form of 

the data (raw, transformed, or presence/absence) on the results of the analysis and 

concluded that it is not advisable to implement CCA on presence/absence data, 

although this was the only form of data for which there was no evidence of an 'arch 

effect'. In Chapter Nine we discuss how the form of the data affects the stability of the 

CCAmap. 

We also raised the issue of how the number of environmental variables measured at 

each site influences the results of the analysis and discovered that there are severe 

problems with multicollinearity when large numbers of variables are measured, 

although even with smaller numbers of variables there can be high variance inflation 

factors, depending on the form of the data. Chapter Nine describes an existing method 

of selecting environmental variables and proposes a different approach, based on 
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procrustes analysis. It was evident that ordination diagrams can become difficult to 

interpret when there are large numbers of categories (species or sites) to display and 

so in Chapter Nine we discuss methods of selecting categories. These are again based 

on the procrustes statistic. The question of how to detect the influence of individual 

categories on the determination of the CCA map (i.e. how does the interpretation of 

the map alter if these are removed) was also highlighted in this chapter and we address 

this in Chapter Nine. 

Finally, the similarities between CCA and each of correspondence analysis, 

discriminant analysis and canonical correlation analysis were explained and in 

Chapter Nine the similarities between the interpretation of CCA maps and both CA 

and biplot ordination diagrams are discussed, using the hunting spider data (1.2.8). 
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Chapter Five 

Stability, Sample Size and Correspondence 

Analysis 

5.1 Introduction 

Chapter Two explained the theory behind correspondence analysis and illustrated its 

application to pottery sherds and starch grains. It also raised the questions of how to 

deal with sparse data and how the number of artefacts collected influences the results 

of the analysis. For example, it may be that there are a minimum number of categories 

or artefacts below which it is not worthwhile carrying out a correspondence analysis 

because there is not enough information to distinguish between the categories in the 

resulting display. Considering our data sets, this could apply to the number of 

Memphis (1.2.1) and Amarna (1.2.2) wares that were identified, to the number of 

Amarna sites visited, to the number of Memphis contexts identified or to the total 

number of sherds collected. It could also apply to the number of starch grain types 

(1.2.3) or to the total number of grains obtained. 

Similarly, there may be a maximum number of categories (pottery wares, sites or 

types of grain), artefacts or grains above which the resulting correspondence analysis 

map becomes too cluttered for patterns to be revealed. Considering the starch grains, 

if many different types of grain have been identified then groups of similar types, or 

the identification of which sites are similar in terms of vegetation, can be almost 
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impossible. Investigation of such issues using specific examples aids us in developing 

general guidelines to help archaeologists (and others) when sampling and classifying 

artefacts, not least because the same type of data is frequently collected in archaeology, 

but also because pottery in particular is one of the most common artefacts found. In 

addition, we examine the stability of the two-dimensional maps obtained as a result of 

the analysis, by considering confidence regIOns based on convex hulls and 

concentration ellipses (i.e. how confident are we that the data collected are a 

representative sample of all possible data). This chapter, therefore, aims to combine the 

theory of correspondence analysis with other techniques such as bootstrapping and 

jack-knifing, in order to investigate problems such as those listed above. 

The remainder of Section 5.1 explains the concepts of bootstrapping and 'stability' of a 

display and briefly discusses problems in assessing stability. Two bootstrap sampling 

methods involving the multinomial distribution are explained and applied in 5.2 

(which one is applicable depends on how the data were collected) and methods of 

dealing with sparse contingency tables (i.e. trace and absolute zeroes), which are 

common in archaeology, are developed in 5.3. Convex hulls and concentration ellipses 

as methods of summarising stability and investigating similarities between categories 

are explained and extended in Section 5.4 and in 5.5 we discuss the jack-knife as a 

method for assessing stability. Section 5.6 introduces an alternative method of 

resampling which does not involve the multinomial distribution and investigates the 

influence of sample size on correspondence analysis maps. This section also discusses 

problems with estimating minimum required sample sizes in archaeology. We 

conclude the chapter in 5.7. 

5.1.1 The 'Bootstrap' 

The bootstrap (Efron, 1979) is used to assIgn measures of accuracy to statistical 

estimates. The idea is to resample from the original data - either directly or via a 

fitted model- to create replicate data sets, from which the variability of the quantities 

of interest can be assessed. Bootstrapping is applied throughout most of this chapter 

and again in Chapters Eight and Nine, where it is used in conjunction with biplots and 

canonical correspondence analysis respectively. 
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biplots and canonical correspondence analysis respectively. 

5.1.2 Stability of the Displays 

The purely algebraic technique of correspondence analysis is an exploratory method 

that can be regarded as a generalisation of a scatterplot for investigating the structure 

and relationships between two sets of categories. It is not a method of estimation (nor 

of hypothesis testing) but nevertheless bootstrapping methods can be used to assess 

the 'stability' of the displays, answering informal questions of how 'distinct' are 

different categories and how sensitive is observed structure to sampling variability in 

the data. Strictly, we should differentiate between internal stability and external 

stability: internal stability is at the level of the data matrix itself and external stability 

is at the level of the wider population (see Greenacre, 1984). Our main interest lies in 

investigating whether small differences in the original data matrix can produce 

relatively large differences in the correspondence analysis map, because this could 

indicate that either our data sample is not representative of the true population of data, 

or that we have a particularly influential category or cell and hence our interpretations 

of the display could be misleading. 

Ringrose (1990) comments that if it were possible to obtain more data in exactly the 

same way as the data already collected (i.e. by using the same sampling scheme), then 

this process could be repeated many times to obtain a set of replicate data matrices, 

each of which could be subjected to correspondence analysis to produce a new set of 

points. Thus, each point (i.e. category) in the original analysis would lead to a cloud of 

points, one from each replicate matrix. This represents the uncertainty of a point's true 

position and the overlapping nature of the clouds of points could be used informally to 

assess the similarities between categories. However, if this repeated sampling is not 

possible, as is usually the case, then the observed sample can be treated as a proxy for 

the underlying distribution and new samples can be drawn from it. This is called 

'resampling' or 'bootstrapping' and in Section 5.2.1 we briefly describe two methods 

of resampling using the multinomial distribution. 

Having obtained a series of replicate matrices, the next two sections explain two 
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different schools of thought regarding how to apply correspondence analysis to these 

replicates. They differ in whether the co-ordinates of each bootstrap should be relative 

to different axes or whether they should be related to the original co-ordinate system: 

both of these are illustrated in Section 5.2. 

5.1.2.1 Greenacre: Partial Resampling 

Greenacre (1984) holds the view that a new correspondence analysis should not be 

carried out on each replicate matrix, because this leads to the points' co-ordinates 

being relative to different axes. Instead, he advocates converting the bootstrapped sets 

of row and column profiles into points on the co-ordinate system calculated from the 

original data, using the transition formulae (see 5.2.2) i.e. the original plane is fixed as 

the viewing plane for the replications. The replicated row or column points, depending 

on which are of main interest, are then projected onto this plane in order to explore the 

stability of the points themselves as well as, indirectly, the stability of the original 

plane. 

5.1.2.2 Milan & Whittaker: Filtering 

Milan & Whittaker (1995) argue that because the partial resampling of Greenacre does 

not repeat the singular value decomposition (SVD) on each facsimile matrix, it does 

not give a full simulation of the sampling variation and the size of the region produced 

may be quite different from that obtained when a new correspondence analysis is 

applied to each of the bootstrapped samples. They argue that Greenacre's form of 

partial resampling generates less nuisance variation and that the bootstrap regions can 

be wrongly centred and too small. Thus, they advocate carrying out a new 

correspondence analysis on each replicate matrix. They also comment that the 

possible effects of carrying out a new SVD on each matrix are arbitrary changes in the 

sign of singular vectors, inversion of the order of singular values and rotation of the 

plotted co-ordinates. Because it is not possible to avoid the SVD constraints, Milan & 

Whittaker (1995) propose filtering techniques to minimise their effects and these are 

explained in Section 5.2.4. 
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5.2 Assessing Stability by using the Multinomial Distribution 

In order to generate replicate matrices to assess stability, as described in 5.1, we need 

to assume a distribution for the data. For a contingency table we can resample, with 

replacement, individuals in the sample, noting their original row and column 

classifications. The data are usually treated either as a series of multinomial 

distributions, one for each column (or row, depending on which we are primarily 

interested in), or as a single multinomial distribution for the whole matrix, although a 

binomial distribution for each cell can also be considered. There are two algorithms 

appropriate for the two types of multinomial sampling described above and these are 

briefly explained in 5.2.1 below. 

5.2.1 Bootstrap Methods 

In this section we describe two bootstrap methods. The first method views the data 

matrix as a series of separate multinomial samples, one for each column (or row) and 

the second views the data as a single multinomial sample for the whole matrix. Before 

implementing a resampling method we need to decide which form of multinomial 

sampling to use and we can use our knowledge of how the data were collected to help 

us decide. For example, in archaeology, if the data were originally obtained by 

collecting samples of a predetermined size from a number of sites, then clearly 

modelling each site as a separate multinomial sample is most suitable as a resampling 

method. This is because the sample size is fixed and the counts from one site are 

independent of the counts from another site. If, however, pottery sherds were collected 

and subsequently cross-classified into say, fabric and glaze, then modelling the data as 

a single multinomial sample is the most suitable resampling method, because before 

collection it was unknown how many sherds would be found and recorded i.e. the total 

number of sherds in each fabric category or glaze category was not pre-determined. 

The next two sections briefly explain the two proposed methods. 
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5.2.1.1 Method One: Separate Multinomial Samples 

When we apply bootstrapping to the data matrix, we may decide to compare all 

columns (or rows) together, treating each column as a simple multinomial sample and 

allocating each cell an appropriate probability (which depends on its proportion of the 

column total). Thus, column totals are fixed but row totals can vary; this is equivalent 

to sampling each column with replacement. 

5.2.1.2 Method Two: A Single Multinomial Sample 

If, instead, we decide to treat the whole data matrix as a single multinomial sample, 

then neither row or column totals are fixed, but just the overall matrix sum and each 

cell is allocated a probability which depends on its proportion of this matrix sum. This 

is equivalent to sampling the whole matrix with replacement. 

5.2.2 Obtaining Bootstrap Co-ordinates by using Partial Resampling 

In order to apply Greenacre's method of obtaining new co-ordinates for the replicate 

matrices (using one of the algorithms just described), we use the following procedure, 

where it is supposed that the main interest lies in the column co-ordinates. The 

notation is the same as that in Chapter Two. 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Carry out a correspondence analysis on the original data matrix. Store 

the matrix FOil-I. 

Carry out bootstrapping on the data matrix using the most appropriate 

method from 5.2.1 and obtain B replicate matrices. 

Calculate replicated column profiles, Dc-I. p., for each of the generated 

matrices. 

Apply the relevant transition formula to relate the bootstrapped 

matrices to the original co-ordinate system. The matrix of projected 
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column co-ordinates is now given by: 

G* contains the principal co-ordinates of the replicate column profiles (the column co

ordinates) and F contains the principal co-ordinates of the row profiles from the 

original matrix (the row co-ordinates). This is equivalent to each replicate column 

being projected onto the display as a supplementary column (see 2.2.4). 

5.2.2.1 Application to Memphis Pottery Sherds 

Using the Memphis pottery sherds, classified according to context and ware and 

described in 1.2.1, we generate 200 bootstraps from each context using method one 

and apply Greenacre' s partial resampling to obtain Figure 5.1. This is not the most 

appropriate method to use for these data because, before excavation, it had not been 

decided that a specific number of sherds from each context would be colIected (and 

indeed this would not have been possible), but for illustrative purposes we compare 

the two methods in order to examine the effects of making an inappropriate choice. 

However, because there are so many zero cells in the data matrix, some of the 

replicate matrices have columns with all zero entries which means that correspondence 

analysis cannot be applied. We therefore arbitrarily alter one of the cells in these 

columns from zero to one (see Section 5.3 for a full discussion of our proposals for 

dealing with zeroes in data matrices). 

The aim of applying either bootstrap method is to assess whether the pottery samples 

obtained from the contexts are really representative of the whole population of pottery 

(the bigger the cloud, the less representative they are) and whether the contexts are 

similar in terms of the pottery wares excavated from them (the greater the overlap of 

clouds, the more similar the contexts). Similar contexts as suggested by overlapping 

clouds could have implications for the popularity or availability of a particular type of 

ware (i.e. restricted availability may mean that similar wares were in use for a long 

period of time and are therefore common to several neighbouring contexts). We 

should emphasise, however~ that our inferences are informal and we have no method 
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of calibrating differences in cloud size: interpretations are based purely on visual 

display. 
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Figure 5.1 Two Hundred Bootstrap Points of Memphis Contexts (Method One) 

From Figure 5.1 it is clear that the contexts nearest to the ground surface (see Figure 

1.1) - {377, 465, 509, 476, 289} - are well spaced from the remaining contexts 

which are all bunched together in the top right of the diagram. It is also evident that 

context 476 contains more variability than the other contexts (because it has a larger 

bootstrap cloud) and so we are less certain that the pottery from this context i 

representative of the true population of pottery. Additionally, there is considerable 

overlap between the contexts in the top right of the picture, suggesting that it is 

difficult to di tinguish between them using the available data, although all their 

bootstrap clouds are relatively mall and they must therefore consist of very similar 

proportions of wares. Given the practical difficulty sometimes involved in excavation 

in identifying where one context ends and another begins (and hence the element of 

arbitrariness in defining contexts), it is interesting to examine the effects of combining 

those contexts in the top right which are also next to each other in the stratigraphic 
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sequence illustrated in Figure 1.1 and we give this full consideration in Chapter Six. 

Generating 200 bootstraps from each context using method two and Greenacre's 

partial resampling leads to Figure 5.2. 
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Figure 5.2 Two Hundred Bootstrap Points of Memphis Contexts (Method Two) 

There are no obviou vi ual differences between Figures 5.1 and 5.2, which suggests 

that the choice of re ampling method i not crucial with these data and number of 

replications. Repeating the proce with 1000 bootstraps using method two and 

Greenacre's re ampJing produces Figure 5.3. From Figure 5.3 it is clear that the 

bootstrap cloud are larger than those in Figure 5.2, suggesting that the number of 

replications i relevant when a sessing stability, but this is not really surprising. We 

believe that the rea on for thi is because as more and more replicate matrices are 

generated, the chance of generating more and more unusual matrices increases, 

probably up to a limiting ize of cloud and this is because there are a finite number of 

replicate matrices which can be obtained by applying the multinomial distribution to 

the original data. 
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Figure 5.3 One Thousand Bootstrap Points of Memphis Contexts (Method Two) 

5.2.2.2 Application to Amarna Pottery Sherds 

Using the Amarna p ttery herds, which are cIa sified according to site and ware and 

which were de cribed in 1.2.2, we generate 100 bootstraps from each site using 

method one and appJy Greenacre' partial re ampling to obtain Figure 5.4. We use 

method one because the ite were originally sampled independently and this is 

therefore the most appropriate method. Intere t lies in as essing how representative the 

sample at each ite i (in term of pottery) of the true population of pottery at that site 

and in determining which site are irnilar in term of their distributions of wares. 

Figure 5.4 reveal that a1J the ites except 7 and 8 are fairly distinct, which suggests 

that they contain different proportion of ware. Site 4, 5 and 12 are the most variable 

because they have the large t clouds and we are therefore Ie s certain that the samples 

from these ite are repre enta6ve of the true population of data. There j also a 

pos ible 'arch effect' ( ee 2.4.2.2). 
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Figure 5.4 One Hundred Bootstrap Points of Amarna Sites 

(Method One: Greenacre) 

If we generate 100 bootstraps from each context using method two (which is not 

strictly appropriate, but it is interesting to compare it with method one) then we obtain 

an almost identical picture, ugge ting that there is little difference between the two 

methods for these data and number of replications. Using greater numbers of 

bootstraps the clouds become larger and with 1000 bootstraps site 9 and 12 overlap 

using both method . Generating 1000 boot traps using method two lead to the clouds 

for sites 5 and 12 touching each other. Thi appear to uggest that with 1000 

bootstraps choo ing the wrong method ha orne effect on which sites overlap, 

although our inference ba ed on any overlapping clouds are still informal. Because 

the overlapping nature of the clouds appears to depend on the number of bootstraps, 

we believe that the e cannot be used directly to ascertain the stability of the display, 

nor to asse the imilarity between row or column categories. A trimmed mea ure is 

therefore needed and we introduce po ible mea ures in Sections 5.4.4 and 5.4.5. 
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5.2.3 Obtaining Bootstrap Co-ordinates by using l\li1an & Whittaker's 

Method 

We can also apply Milan & Whittaker's method of obtaining row and column co

ordinates, which involves carrying out a new correspondence analysis on each 

replicate matrix (see 5.1.2.2) and this is illustrated in Section 5.2.4.4 below. One 

problem with implementing correspondence analysis on each replicate matrix, which is 

not present in Greenacre's method, is the arbitrary sign of eigenvectors obtained from 

the singular value decomposition (and hence the arbitrary sign of the row and column 

co-ordinates which are based on these eigenvectors) which is part of the 

correspondence analysis (see Chapter Two). Another difference between the methods 

of Greenacre and Milan & Whittaker is that because a new correspondence analysis is 

carried out on each replicate matrix under the latter method, the co-ordinates of each 

matrix are relative to different axes. We must therefore decide which method we 

believe is best and so we implement that due to Milan & Whittaker in order to compare 

them. 

5.2.4 Filtering Techniques 

Correspondence analysis involves the singular value decomposition of a matrix (see 

Chapter Two), although associated with this are standard orthogonality conditions. 

Possible effects of the singular value decomposition are: 

• Arbitrary changes in the sign of the singular vectors. 

• Inversion of the order of the singular values. 

• Rotation of the plotted co-ordinates. 

However, such effects only become apparent when more than one set of co-ordinates is 

to be displayed. Milan & Whittaker (1995) propose 'filtering' techniques to avoid 

these problems which they say are a result of the resampling and they define the 

Frobenius norm for the difference between two matrices, U (n x m) and V (n x m), by: 
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Using the notation of Milan & Whittaker (1995), if Wo is the matrix of original co

ordinates (known as the reference) and w[r) is the matrix of co-ordinates from the r-th 

bootstrap, then for each bootstrap a set: 

is identified and compared with the reference. The three filtering techniques are 

described below. 

5.2.4.1 Reflection 

To minimise the effect of arbitrary reflection we apply all possible reflections to the 

new set of co-ordinates, compare these with the reference set and take the closest to be 

the new co-ordinates. For each bootstrap, w[r), each of the possible reflections of the 

co-ordinates from the set: 

are compared with woo The identified set of co-ordinates are those which minimise: 

(5.1) 

In the two-dimensional case, the ~ are given by: 

(5.2) 

5.2.4.2 Reordering 

During the simulation process two singular vectors may change order. The effect of 

inversion of the order of singular values and vectors is minimised by minimising 

expression (5.1) over WO, instead of over WR
, where WO is the set of combinations of 
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all possible reflections and all possible inversions of order. The points whose co

ordinates have the least distance to the reference among all possible combinations of 

reflections and order inversions are considered to be the new co-ordinates and in two 

dimensions there are only two possible permutations of point co-ordinates. Each 

element from the set of all combinations of reflections and inversion of order: 

is obtained by multiplying wlr) by one matrix Ri (i=I,2,3,4) from the matrices displayed 

in (5.2) and one matrix 0=1,2) from (5.3). We therefore obtain , where: 

(5.3) 

5.2.4.3 Rotation 

A further filtering is obtained by rotating the co-ordinates. The identified points are 

, where the orthogonal matrix rotates the points to the closest 

position to the reference set. The technique used to select the best rotation is called 

orthogonal procrustes and can be described by: 

(5.4) 

subject to Q T Q = 1m, where Q rotates the points to the position closest position to Wo in 

a least squares sense. The matrix , the solution to (5.4), is given by where 

U and V are obtained through the SVD: 

and where Dm= diag 0' .. 1, ... , Am) is a diagonal matrix of singular values. 
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5.2.4.4 Filtering Applied to Amarna Pottery Sherds 

In this section we apply the reflection and reordering of Sections 5.2.4.1 and 5.2.4.2 

respectively to the Amarna sherds (1.2.2), having generated 100 bootstraps using 

method one. It turns out, however, that the resulting plots are the same for both these 

types of filtering. We do not believe that it is necessary to consider rotation because 

there is no translation of the co-ordinates as a result of the SVD and procrustes 

rotation may therefore 'overcorrect' for nuisance variation that does not really exist. 

1 
8_7 

0.5 1- , 11 
(/) 

101.'2 .~ 0 
<lS c. 41 .0-0.5 
c . .:::: 
a.. 
"0 -1 12 c 
0 
() 

~-1.5 

-2 . 6 
-2.5 

-1 0 1 2 3 
Rrst Airci a>4S 

Figure 5.5 One Hundred Bootstrap Points of Amarna Sites 

(Method One: Filtering) 

Comparing Figure 5.5 (filtering) with Figure 5.4 (partial resampling), it is evident that 

the bootstrap clouds are much larger under ftltering (as suggested by Milan & 

Whittaker, 1995). Thus, if we use filtering rather than the transition formulae, then we 

conclude that the data are less representative of the true population of data. The 

relative stability of each site is also different compared with Greenacre's resampling: 

sites 4 and 12 no longer have larger clouds as compared with the other sites. 

Generating 1000 replicates of the Amarna sherds, the bootstrap clouds are much larger 
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than those from 100 bootstraps and so clearly we cannot use size of bootstrap cloud as 

a measure of stability, but we discuss this problem further in 5.4.5. We appreciate the 

arguments for both resampling and filtering, but we mainly focus on Greenacre's 

partial resampIing method in this chapter, although filtering is used in Section 5.5. 
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5.3 Sparse Contingency Tables 

Sometimes zeroes occur in the data matrix, for example with the Memphis sherd data 

listed in Table A.I of the Appendix. This can be a problem when generating replicate 

matrices based on the multinomial distribution, because each zero cell will be allocated 

zero probability. However, if it is clear that zero counts occurred because of an 

absence in the population from which the sample was taken of that particular artefact 

(these are called essential zeroes or absolute zeroes) then the problem is not serious. If, 

on the other hand, the zero counts occurred because the sampling technique was not 

adequate to detect rare artefacts (these are called trace zeroes) then it may be advisable 

to adjust the bootstrapping procedure to account for this. 

It is not always possible, however, when faced with a data set, to determine which type 

of zero is present. If, for example, all non-zero cells contain counts of several 

thousand, then zero cells may well indicate essential zeroes. But, if cells contain small 

numbers of say, less than ten, then the nature of the zeroes may not be clear. In 

principal, increasing the sample size can eliminate trace zeroes, but in practice this is 

too costly. We therefore propose adjusting the probabilities assigned by the 

bootstrapping algorithm to each cell in order to account for trace zeroes (i. e. use a 

'smoothed bootstrap') and thus the generated matrices may then contain non-zero 

counts in those cells which previously contained zeroes. 

We propose two methods of adjusting the probabilities assigned to cells which contain 

trace zeroes, both of which use the binomial distribution and this is because we are 

considering the cell with trace zero or not. The methodology that we have developed is 

introduced in Section 5.3.1. 
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5.3.1 Methodology for Adjusting for Trace Zeroes 

In this section we introduce two methods of adjusting for trace zeroes, which we refer 

to as Al and A2. 

Method AI: For cells containing trace zeroes, we take the upper one-sided (l-a)% 

confidence limit for the cell probability (based on the observed zero) and we use this as 

the multinomial probability when generating replicate matrices. It is now possible to 

obtain a non-zero count in a cell that previously contained a zero. It is easily seen that 

this upper (l-a)% confidence limit for the cell probability, given the observation zero 

I 

in n trials, is I-an. We can interpret this as the highest value for the cell probability 

that is consistent with the observed zero. We could take a to be the conventional value 

of 0.05 but perhaps a higher value is preferable - taking a = 0.5 gives the smallest 

value for the cell probability where we are 'more certain than not' that it is consistent 

with the trace zero. 

Method A2: For the cell containing a trace zero, take the expected count for the cell to 

be no lower than a certain value z (for example z = 0.5). Because, for the binomial 

distribution, the expected value of a cell is given by np, we have: 

np>z 

z 
p>-. 

n 

Here, we take p =!:.. to be the cell probability used in generating replicate matrices. 
n 

Taking z = 0.5 in particular has the informal interpretation that this is the smallest 

value for the cell probability where the expected cell count would 'just avoid being 

rounded down to a [trace] zero'. Whatever value we impute for the cell probability 

corresponding to a trace zero, we need to ensure that it is at least large enough in 

relation to the number of bootstraps performed to ensure that a reasonable number of 

bootstrap matrices do occur with non-zero frequencies in those cells. 
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Having introduced these methods of accounting for trace zeroes, in the next few 

sections we illustrate and adapt A 1 to account for: 

• the number of trace zeroes. 

• whether method one or two of 5.2.1 is appropriate for resampling from 

the data. 

5.3.1.1 One Trace Zero for Column Comparisons 

When resampling from each column separately, we propose the following methods of 

accounting for trace zeroes (B 1 and B2). When one zero occurs in a column, the 

probability assigned to that zero cell is calculated as in Al above and the initial 

probability assigned to each non-zero cell is obtained by dividing the cell value by the 

column total. However, how these probabilities are adjusted to account for the non

zero probability assigned to the zero cell is open to discussion and we propose two 

ways: 

Method Bl: Divide the calculated probability for the zero cell by the number of non

zero cells in the column. Subtract this value from the initial 

probabilities obtained for each of these non-zero cells. The sum of the 

probabilities allocated to each cell in the column should then equal one. 

Method B2: For each non-zero cell, multiply the initial probability assigned to the 

cell by the calculated probability for the zero cell and subtract this value 

from the initial probability. 

These two methods are illustrated in a simple example. 
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Example 

Suppose the data matrix is as follows: 

[

0 2 

4 3 

6 8 

Taking a = 0.2 we have, for the first column: 

l~ ] 

PI = 0.15 

where Pi (i=1,2,3) is the probability assigned to each cell in a particular column. 

Calculating the adjusted probabilities produces: 

Method Bl 

O 40 
0.15 

P2 =. - -- = 0.33 
2 

0.15 
P3= 0.60 - - = 0.53 

2 

Method B2 

P2 = 0.40 - (0.40*0.15) = 0.34 

P3 = 0.60 - (0.60*0.15) = 0.51. 

We prefer method B2 because it accounts for the relative magnitude of the cells with 

non-zero entries. In the next section we consider the whole matrix. 

5.3.1.2 One Trace Zero for the Whole Matrix 

When considering resampling from the matrix as a whole, we need to consider the total 

number of zero cells in the matrix. If there is only one zero cell then the probability 

assigned to that cell is calculated as in the beginning of Section 5.3.1 and the initial 

probability assigned to each non-zero cell is obtained by dividing the cell value by the 

matrix total. However, how these probabilities are adjusted to account for the zero cell 

is again open to discussion, although we can apply methods Bland B2 introduced in 

5.3.1.1 to the whole matrix rather than to each column. Of course, the adjusted 
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probabilities of the non-zero cells will be very little different to the unadjusted 

probabilities for the case of only one trace zero. 

5.3.1.3 Two or More Trace Zeroes for Column Comparisons 

Sometimes, two or more trace zeroes occur in a column. We first consider the case of 

two zeroes. The probability allocated to a zero cell is calculated as before and we 

propose that either one of the following methods is chosen to adjust this value: 

Method Cl: The probability is divided equally amongst the number of zero cells in 

the column. 

Method C2: The probability is divided amongst the number of zero cells in the 

column proportionally, by conditioning on row totals. 

The probabilities assigned to the non-zero cells can then be adjusted and we can also 

apply similar methodology to the case of more than two zeroes in a column. However, 

even with these 'sparse algorithms' there is no guarantee that a generated column will 

contain an entry other than zero, which causes problems for correspondence analysis. 

A value of one can then be placed in a cell chosen at random from within the column 

consisting only of zeroes. For the case of two or more trace zeroes in the whole matrix, 

similar methodology can be applied. 

5.3.2 Application to Amarna Pottery Sherds 

In order to illustrate how bootstrapping can be adapted to account for trace zeroes, 

method Al and either B2 or C2, whichever is appropriate, is applied to the Amarna 

sherds, taking u=0.25, generating 100 bootstraps and using method one. Greenacre's 

partial resampling method is also applied and it is necessary to assume that all zeroes 

are trace zeroes (which mayor may not be realistic). Comparing the resulting figure 

with Figure 5.4 there is no visual difference and this is because the probabilities 

assigned to each zero cell are still extremely small which, in turn, is because the total 

sample sizes obtained from each site are reasonably large. Our experience reveals that 

even with 'small' sample sizes, the probabilities assigned to the zero cells are too small 
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to make any real difference to the bootstrap clouds and so it is probably advisable to 

apply the multinomial distribution directly to the original data, without adjustment. 
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5.4 Convex Hulls, Peeling and Ellipses 

In this section we describe the convex hull, which we use as a method of summarising 

the clouds of points resulting from bootstrapping. Each set of replicate points, 

regardless of the method used to obtain them, can be enclosed by a convex hull of the 

points which connects the outermost points of each set. 

Convex hull peeling (Green, 1981) involves constructing the convex hull of the data, 

deleting it and then constructing the convex hull of the remaining points. This 

procedure may be repeated until no points are left and in the bivariate case, the 

successive shells so formed are called the convex hull peels of the data. The Green

Silverman peeling routine, due to Green & Silverman (1979), is one of a number of 

peeling algorithms. This routine, however, makes an attempt to deal with degeneracies 

caused by rounding errors, which other methods tend to ignore and is the algorithm 

used throughout the work below. 

Rather than displaying all the bootstrap points, just the convex hulls of the clouds are 

usually shown and non-overlapping hulls are taken to indicate that differences exist 

between row or between column categories. (Alternatively, concentration ellipses at a 

given probability level can be drawn and again, non-overlapping ellipses indicate that 

differences exist between categories.) Ringrose (1992) comments that the points which 

have the greatest spread in the bootstrap display are those with similar numbers in all 

their cells and low frequencies, while the reverse will give a smaller group. A large 

spread of points can also be due to the category being poorly represented in the given 

dimensions. If categories overlap then we conclude that they are hard to distinguish on 

statistical grounds and categories that remain separate after many bootstraps have been 

generated are unlikely to have the same profiles across rows. It should be remembered 

that it is not appropriate to compare clouds of row points with clouds of column points 

because there is no definition of distance between columns and rows in 

correspondence analysis (see 2.3.1). 

Ringrose (1992) carried out a simulation study in order to investigate the reliability of 
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bootstrap confidence regions, where the idea was to investigate the significance level 

they represent. Ringrose commented that the more bootstrap replications that are used 

in the construction of the hulls, the larger they are likely to be and so the greater the 

probability of overlaps. He noted that the 100% hulls are likely to be the most affected 

by differences in the number of bootstrap replications and so it might be more useful 

to use the 90% hulls instead. Ringrose also noted that the hull overlap rate for 1000 

replications is 1.5 times greater than that for 100 replications and this is something we 

address in the next few sections. 

5.4.1 Application to Memphis Pottery Sherds 

Having generated 200 bootstraps using method two and applied Greenacre's partial 

resarnpling, the outer convex hulls for the Memphis contexts (1.2.1) are shown in 

Figure 5.6. 

As explained in Ringrose (1992), the context with the greatest spread (476) has similar 

numbers across the wares and low numbers in each cell. In fact, context 476 has a 
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larger hull than all of the top right contexts put together and one reason for this could 

be because the period of occupation that it corresponds to is greater than for the other 

contexts (and it therefore has a greater variety of wares), or because greater changes in 

pottery typology were occurring during the phase represented by this context. 

5.4.2 Application to Amarna Pottery Sherds 

Having generated 100 bootstraps using method one and applied Greenacre' s 

resampling, Figure 5.7 illustrates convex hull peeling for the Amarna sherds (1.2.2) 

for site 12. 
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Figure 5.7 Convex Hull Peels of Amarna Site 12 

We see that there are 11 hull peels in total and that the two outer hulls are some 

distance away from the remaining hulls. It is also clear that taking the outer hull as 

compared with the hull containing approximately 50% of the points, leads to a very 

different estimate of site stability. We address this problem in the next section. 
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5.4.3 Multivariate Summaries 

Seheult, Diggle and Evans (1976) suggested that convex hull peels could be used to 

define a median and interquartile set, with the median point being taken as the 

centroid of the innermost convex hull. Green (1981) used these summaries, with the 

outermost convex hull, as a bivariate analogue of the box-and-whisker plot. 

Alternative ideas have included the vector of marginal medians, which ignores the 

bivariate structure of the data and the mediancentre, which is that point from which 

the aggregate distance to the data points is minimised (Gower, 1974). 

Because one of our objectives is to assess the stability of the displays, we have, in 

Section 5.2, suggested various resampling methods. However, as we saw in 5.2.2, the 

size of the resulting clouds depends on the number of bootstraps generated and we 

must therefore develop confidence regions to account for this. Alternative suggestions 

for summarising two-dimensional data are discussed below, although they are easily 

extended to higher dimensions. 

5.4.3.1 Alternative Methods 

Problems arise with comparing summaries of data based on different numbers of 

bootstraps because, as we saw in 5.2.2, the size of a bootstrap cloud increases as the 

number of bootstraps increases. When obtaining confidence intervals in one 

dimension, it is often a 95% interval that is obtained and ideally we would like to 

investigate the equivalent in two dimensions. However, in the case of bootstrap 

clouds, the size of the hull which contains closest to 95% of the points is still 

extremely dependent on the number of bootstraps, as is the 75% hull and we therefore 

need to consider either a hull based on a much smaller number of points (say 50%), or 

develop a method for adjusting the hull according to the number of bootstraps. 

Depending on the number of bootstraps, we observe that it is often the case that the 

hull containing closest to e.g. 75% of the points actually contains anything between 

approximately 60%-90% of the points (because there is no hull that contains close to 

75% of the points). At first we considered the idea of ranking the hulls and taking, say, 

the third peel as a summary measure, but in reality the number of hull peels vary 
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considerably with the value of E in the Green-Silverman routine (Green & Silverman, 

1979) and also with the particular data set being analysed and so this is not sensible. 

We believe that one relatively stable choice of obtaining similar sized hulls, regardless 

of the number of bootstraps, is to plot those hulls containing closest to 25% and 

closest to 75% of the points for 100 bootstraps. This can be thought of as being 

analogous to the interquartile range in one dimension. However, because the cloud 

size increases with the number of bootstraps, we need to adjust the region to account 

for this. Going from 100 bootstraps to 1000 increases the 'size' of the outer hull by 

approximately 50% (see Table 5.1) and going from 100 to 5000 bootstraps increases 

the 'size' of the outer hull by roughly 100%. Sections 5.4.4 and 5.4.5 explain the 

summary measures in more detail. 

5.4.4 Measuring Stability by Area 

In this section we propose investigating informally the differences in category stability 

as assessed by the methods of Greenacre and Milan & Whittaker. We do this by 

calculating the areas of the convex hulls and concentration ellipses of the bootstrap 

points. Stability is visually assessed by hull size and so by calculating the area of the 

hulls we believe that the distortion which sometimes occurs when plots are displayed 

in less than full dimensionality and when computer packages are used, can be avoided. 

We also investigate the effect of the number of bootstraps on convex hull areas. 

We believe that two methods discussed by Jennrich & Turner (1969) in the context of 

animal home range have direct applicability to measuring category stability. We 

describe these methods below. 

5.4.4.1 Area of a Convex Polygon 

Given a set of points, we can draw the smallest convex polygon which contains all the 

points (or, say, 75% of them) and take: 
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A) = (area of the convex polygon) 

as an index of the variability of points, where (Xi,Yi) is the i-th ordered point out of n 

moving in an anticlockwise direction on the convex hull and where (xn+J.Yn+) = 

(XI,yI). 

5.4.4.2 Area of a Concentration Ellipse 

Jennrich & Turner (1969) developed an index that measures non-circular as well as 

circular clusters of points. Let: 

~=(~; ) and L= (0' xx 0' xy ) 
0' yx 0' yy 

be the mean vector and variance-covariance matrix respectively of the bivariate 

normal distribution. The regions of the most intense numbers of points are shown to 

be bounded by concentric, constant density ellipses of the form: 

where z denotes an arbitrary point on the ellipse. An ellipse of this form that accounts 

for a proportion p of the total number of points has an area given by: 

By setting p = l-e-3 = 0.95, this simplifies to: 

(5.5) 

Equation (5.5) is the definition of variability. It is the area of the smallest region that 

accounts for 95% of the total number of points and is estimated by the statistic: 
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Here, IS I is the determinant of the sample variance-covariance matrix. 

To use the above method we must assume that our bootstrapped points can be 

described by a bivariate normal distribution. The variability of the bootstrap points can 

then be thought of as the area of the smallest sub-region that accounts for a specified 

proportion, p, of its total area. 

5.4.4.3 Application to Amarna Pottery Sherds 

Considering the Amarna sherd data (1.2.2), varying numbers of bootstraps are 

generated (100, 1000 and 5000), using method one and Greenacre's partial 

resampling. The measures Al and ~ are calculated and are shown in Table 5.1, 

although the measures themselves cannot be compared. 

Table 5.1 Stability Measures according to the Number of Bootstraps 

AI (x 1000) A4 (x 10) 

Site 100 1000 5000 100 1000 5000 

1 0.921 1.570 1.987 0.011 0.011 0.010 

2 4.204 60460 8.446 0.039 0.037 0.041 

3 1.684 3.128 3.968 0.018 0.019 0.019 

4 15.373 24.010 33.663 0.149 0.147 0.150 

5 3.108 4.376 6.227 0.031 0.031 0.031 

6 0.305 00408 0.558 0.003 0.003 0.003 

7 0.554 0.884 1.304 0.007 0.007 0.006 

8 0.286 00406 0.545 0.003 0.003 0.003 

9 3.031 5.193 7.447 0.036 0.034 0.035 

10 0.335 0.508 0.711 0.003 0.003 0.003 

11 1.792 2.764 3.211 0.017 0.018 0.018 

12 9.530 16.591 24.799 0.115 0.116 0.115 

182 



Chapter Five - Stability, Sample Size and Correspondence Analysis 

It is clear from reading down the columns of the above table that sites 4 and 12 have 

the largest bootstrap clouds. It is also evident that in contrast to measure At. measure 

~ does not appear to depend on the number of bootstraps. Figure 5.8 displays 95% 

ellipses for the 12 Amama sites based on 100 replicate matrices. 
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Figure 5.8 95 % Concentration Ellipses for the Amarna Sites 

It is evident from the above figure that none of the ellipses overlap and so we conclude 

that all the sites are distinct with regard to the wares that they contain (again, this is an 

informal inference). However, we should consider at what degree of overlap we would 

no longer view sites as being distinct. We suggest that if the centroid of a 95% ellipse 

representing one site is included in the 95% ellipse of another site, then these sites can 

be considered to be virtually indistinct in terms of their profiles of wares. 
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S.4.S Application of Multivariate Summaries to Amarna Pottery Sherds 

In this section we use method one to generate 100 bootstraps from each Amarna site, 

before applying Greenacre's partial resampling method and implementing convex hull 

peeling on the resulting site co-ordinates. Calculating the area of each peel and, if 

necessary, interpolating between peels, we find the areas of the peels containing 25%, 

75%, 95% and 100% of the bootstrap points. We then find the percentages of points 

needed from 1000 and 5000 bootstraps in order to obtain these same areas. Because 

the percentages will vary for each site, we obtain ranges of percentages, based on the 

lowest and highest values across all sites and these are shown in Table 5.2. 

Table 5.2 Approximate Percentages of Points in the Hulls 

Number of Points in the Bootstrap 

100 1000 5000 

25% 13.8-26.5% 12.0-24.4% 

% Hull 75% 58.6-75.5% 56.3-72.1 % 

95% 85.6-95.8% 85.1-93.6% 

100% 92.9-98.2% 92.4-96.9% 

From Table 5.2 we see that as the number of bootstraps increases, the percentages of 

points in the hulls corresponding to those of 100 bootstraps decreases i.e. the hulls 

containing say, 75% of the points for 100, 1000 and 5000 bootstraps vary in size 

considerably. 

Figure 5.9 shows, for site 1, the hulls closest to those containing 25% and 75% of the 

points for 100 bootstraps and also those hulls for 1000 and 5000 bootstraps with areas 

closest to these. Sometimes, there is no hull that contains close to 25% or 75% of the 

points. 
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Figure 5.9 25% and 75% Hulls of Amarna Site 1 

It is clear from Figure 5.9 that the hulls are fairly similar and that our proposed method 

is a good means of adjusting for the number of bootstraps. 
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5.5 Assessing Stability by using a Jack-knife Approach 

So far in this chapter we have used the multinomial distribution to help us to assess 

the stability of the categories in a correspondence analysis map. We now introduce an 

alternative method, based on the jack-knife technique. We propose that each column 

(or row) category of a contingency table is deleted in tum, correspondence analysis is 

implemented on the reduced matrices and the size of the resulting cloud of row (or 

column) points is then examined. However, because the dimensions of the data matrix 

are reduced each time a column is deleted, Greenacre's method of partial resampling 

cannot be applied. It is, therefore, necessary to implement filtering and so the 'jack

knife clouds' should be compared with those clouds obtained from using multinomial 

sampling with filtering. We believe that this method can also be used as a means of 

detecting influential categories and this is explained in Chapter Six. 

5.5.1 Application to Amarna Pottery Sherds 

In this section we apply the jack-knife method introduced above to the Amarna sherd 

data. We omit each ware in turn, implement correspondence analysis and display the 

site points in Figure 5.10 (there are arbitrary reflections as compared with Figure 5.4 

- see 5.2.4), where there are 10 points for each site, each corresponding to a deleted 

ware. We see that the clouds are generally slightly larger under jack-knifing as 

compared with bootstrapping (although this will depend on the number of bootstraps 

generated and the method of obtaining replicate co-ordinates), which is probably due 

to particularly influential wares (see 6.8). It may not, therefore, be sensible to produce 

hulls, ellipses or other summary measures for each site, when such influential wares 

exist (although this depends on the archaeological importance of the wares). One 

advantage of a jack-knife approach is that it gives us a benchmark with which to 

compare the results of other methods of assessing stability. 
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Figure 5.10 Amarna Site Clouds (Jack-knifing) 
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5.6 The Influence of Sample Size 

So far we have proposed assessing stability of the correspondence analysis map by 

resampling using the multinomial distribution or by jack-knifing. We now compare 

the results from the first method with those from 'sampling without replacement'. This 

is really sampling using the hypergeometric distribution (multinomial sampling is the 

same as sampling with replacement). 

Using sampling without replacement, observations can only be retained at most once 

and so this form of resampling is only suitable for answering questions concerning 

smaller sample sizes than those actually obtained. We suggest using sampling with 

and without replacement to assess some of the questions posed in Chapter Two, 

namely, the influence of sample size on both the relationship between row and column 

categories and on the stability of the categories in the correspondence analysis map. 

If we take many samples of size h < n, without replacement, where n is either the 

original matrix sum, or the sum of a particular category (depending on how the data 

were originally collected), then this enables us to evaluate the relationship between 

row and column categories as if we had originally taken a sample of size h. We can 

also investigate whether a particular smaller sample is representative of the true 

population of data (we do this by obtaining one sample without replacement and then 

resampling this with replacement). We apply these suggestions to the Amarna sherds 

in the following section. 

5.6.1 Application to Amarna Pottery Sherds 

The two types of resampling so far discussed - using the multinomial distribution 

and sampling without replacement - are illustrated below for the Amarna sherds 

(1.2.2). We generate 100 bootstraps for a series of sample sizes that consist of varying 

proportions of the original numbers of sherds obtained from each site. Because the. 

measure ~ does not appear to vary with the number of bootstraps (see Table 5.1), we 

use this to assess site stability. 
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5.6.1.1 Sampling by using the Multinomial Distribution 

Using method one from 5.2.1.1 and Greenacre's partial resampling, we calculate the 

measure ~ for each of the Amarna sites: the results are shown in Table 5.3. The 

numbers of sherds generated from each site vary according to the column headings of 

the table (where 2 = double the original number etc.). 

Table 5.3 The Measure A4 (x10) for Varying Sample Sizes (Multinomial 
Distribution) 

Sample Size (proportion of original) 

Site 2 1 3 1 1 1 
- - - -
4 2 4 8 

1 0.005 0.011 0.015 0.019 0.035 0.078 

2 0.020 0.039 0.049 0.090 0.151 0.322 

3 0.010 0.018 0.026 0.036 0.064 0.135 

4 0.071 0.149 0.216 0.333 0.601 1.413 

5 0.014 0.031 0.039 0.059 0.093 0.172 

6 0.001 0.003 0.003 0.005 0.010 0.000 

7 0.003 0.007 0.010 0.011 0.025 0.044 

8 0.001 0.003 0.004 0.005 0.012 0.023 

9 0.018 0.036 0.041 0.068 0.139 0.322 

10 0.002 0.003 0.004 0.008 0.012 0.031 

11 0.008 0.017 0.026 0.035 0.077 0.082 

12 0.059 0.115 0.149 0.207 0.407 0.917 

Reading from left to right across the table, we see that the smaller the sample size the 

larger the value of ~ and so the less stable the site i.e. the less confident we are that 

the sample collected at the site is representative of the true population of wares. The 

corresponding 95% ellipses for each sample size are illustrated in Figure 5.11 for site 

12 and we see that the ellipses are not quite concentric, although we believe that this is 

due to the inherent variation when using bootstrapping. The smallest ellipse 

corresponds to a sample of size t th of the original and the largest ellipse to double the 
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original sample size. Clearly, sample size is very influential in our interpretation of 

site similarity (Le. with smaller samples we obtain larger ellipses and greater numbers 

of site overlaps). 
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Figure 5.1195% Concentration Ellipses for Amarna Site 12 

(Varying Sample Sizes) 

5.6.1.2 Sampling Without Replacement 

In this section we use sampling without replacement in order to assess the effects on 

the correspondence analysis display of smaller samples than that actually obtained. We 

sample different proportions of the original sherds collected at each Amama site, 

without replacement, 100 times and calculate A4 for each site. The values are shown in 

Table 5.4. 
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Table 5.4 The Measure A4 (xl0) for Varying Sample Sizes (Without Replacement) 

Sample Size (proportion of original) 

Site 3 1 1 1 - - - -
4 2 4 8 

1 0.003 0.013 0.033 0.086 

2 0.014 0.036 0.139 0.290 

3 0.006 0.022 0.048 0.148 

4 0.051 0.139 0.528 0.890 

5 0.010 0.032 0.100 0.208 

6 0.001 0.003 0.010 0.016 

7 0.002 0.006 0.017 0.045 

8 0.001 0.003 0.008 0.018 

9 0.011 0.037 0.098 0.255 

10 0.001 0.003 0.008 0.024 

11 0.006 0.020 0.060 0.121 

12 0.033 0.123 0.337 0.808 

Reading from left to right across the table, it is clear that as was the case for 

multinomial sampling, the smaller the sample size, the more unstable the site, although 

sampling from the multinomial distribution produces larger values of A. than sampling 

without replacement. 

5.6.1.3 Stability of a Particular (Smaller) Sample 

Here, we use sampling without replacement to generate a smaller sample than that 

actually obtained, before generating 100 bootstraps using multinomial sampling to 

assess the stability of this particular smaller sample. Table 5.5 displays the values of 

A. and it is evident that smaller sample sizes lead to greater instability of the sites. As 

expected, the table contains similar values to those in Table 5.3. 
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Table 5.5 The Measure A4 (xl0) for a Particular Sample for Varying Sample 
Sizes 

Sample Size (proportion of original) 

Site 3 1 1 1 
- - - -
4 2 4 8 

1 0.013 0.016 0.041 0.099 

2 0.042 0.077 0.197 0.407 

3 0.024 0.035 0.022 0.129 

4 0.204 0.314 0.498 1.599 

5 0.035 0.063 0.140 0.175 

6 0.004 0.006 0.011 0.000 

7 0.009 0.013 0.023 0.064 

8 0.005 0.007 0.010 0.018 

9 0.047 0.062 0.177 0.284 

10 0.005 0.008 0.013 0.027 

11 0.023 0.027 0.070 0.101 

12 0.141 0.221 0.354 1.386 

5.6.2 Minimum Sample Sizes 

Given that, for each data set, we have only a sample of all possible data, we would like 

to know how large a sample is required to estimate a proportion of artefacts with a 

particular attribute to a certain level of accuracy, with a required probability. We use 

the notation of Barnett (1991) and define: 

n = total number of artefacts in the sample; 

N = total number of artefacts in the population; 

f n fi' I . . = - = mIte popu atlOn correctIon; 
N 

p = sample proportion; 

P = population proportion; 
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r = number of artefacts with the attribute in the sample; 

R = number of artefacts with the attribute in the population; 

Q = 1 - P. 

5.6.2.1 A Single Proportion 

Using the above notation, we will effectively assume that: 

p _ NCP, (1- OPCl- P». 
n 

However, this is not the immediate extension of the argument supporting the binomial 

distribution for p because, by incorporating the finite population correction in var(p) , 

some account is taken of the 'lack of replacement'. Formulae are available to calculate 

the sample size required in order to estimate a given proportion to a certain degree of 

accuracy. These involve choosing n to ensure that: 

Pr ( Ip-PI > d) ::;; a 

where d is known as the tolerance. Ignoring the finite population correction and using 

the normal approximation to the binomial, leads to: 

ph~> ~l~a 

1-1~J~a IF 

=> 
PQ(<I>-t (1- a)y 

n~ 2 
d 

(5.6) 

We estimate P and Q by their sample equivalents p and q. 
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5.6.2.2 Several Proportions 

We now tum our attention to data matrices which consist of one or more row 

categories and two or more column categories (or vice versa) and where the entries in 

the matrix correspond to counts or abundances. Rather than calculating the sample 

size required to estimate one proportion to a given level of accuracy, we consider the 

case of estimating several proportions simultaneously. For example, with the Amama 

sherds we want to determine, for each site, the minimum sample size (n) necessary in 

order to estimate the proportions of sherds of several wares simultaneously, to a 

certain level of accuracy. After some algebra and assuming the column categories are 

independent, we obtain a similar formula to (5.6). 

For a particular row, we take Pj to be the proportion of 'artefacts' in column category i, 

where i=I, ... , A and Qj=l-Pj. If we also assume that Pj is the same for all column 

categories, then we obtain the following inequality: 

(5.7) 

If, instead, we allow Pj to vary across the A column categories, then we need to solve 

the following inequality numerically: 

A d TI (<1>(-» ~ 1- ex 
i=1 ~Pi~i 

(5.8) 

5.6.2.3 Application of Several Proportions to Amarna Pottery Sherds 

In this section we are interested in estimating minimum sample sizes for each of the 

12 Amama sites (1.2.2) separately (because, in the original sampling scheme, each site 

was sampled independently). In order to estimate sample size when we have several 

proportions to consider simultaneously, we need to make an analogy with the well 

known case of estimating one proportion. It is known that the largest estimate of 
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sample size for one proportion is obtained from (5.6) by taking P=0.5. Therefore, the 

most natural analogy for several proportions is to apply inequality (5.7) with Pi = 1 
and take A= I 0 Amarna wares, but this does not produce the largest sample size 

estimate. If, instead we take P1=P2=0.49 and Pi = 0.02 for i =3, ... , A and apply (5.8), 
A-2 

we appear to obtain the highest estimates (assuming we take the proportions to two 

decimal places, which seems reasonable). These estimates are listed in Table 5.6 and 

clearly become higher as the significance level a decreases. For a tolerance of d=O.I, 

all the estimated sample sizes are smaller than those actually collected in the field, but 

for d=0.05 and all three values of a., the actual number of sherds collected from site 4 

is lower than the estimated numbers. 

Table 5.6 Estimated Minimum Required Sample Sizes for the Amarna Sites 

Tolerance (d) 

a. 0.1 0.05 

0.2 67 267 

0.1 96 383 

0.05 126 502 

We now apply the above methodology to the actual Amarna sherd data. Considering 

various values of d and a we take, for each site, Pi and Pj to be the actual proportions 

which are closest to 0.49 for two wares i and j, say Pi = Pj = Pt and we also take 

Pk =(1- 2p, ) for the remaining eight wares. The estimated minimum sample sizes 
A-2 

for estimating all 10 ware proportions simultaneously for each site are given in Table 

5.7 below. These are not necessarily the largest minimum sample sizes but they are 

likely to be very close - if a site has one ware that accounts for the vast majority of 

sherds at that site then it may be possible to obtain slightly higher estimates of sample 

size by using different proportions (e.g. site 3 contains one ware which fonns 90% of 

the total sherds at the site and we can obtain higher estimates for this site). This 
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method assumes, however, that sherds of each ware are found at each site and if we 

use the number of different wares that are actually found at each site then we obtain 

smaller estimates. The actual numbers of sherds collected at each site are given in the 

last column of Table 5.7. 

Table 5.7 Estimated Minimum Required Sample Sizes for the Amarna Sites 
(Actual Data) 

Tolerance (d) 

0.1 0.05 Number 

Site a= 0.2 a=O.1 a = 0.05 a=0.2 a=O.1 a = 0.05 Collected 

1 47 70 95 186 277 379 881 

2 50 68 90 197 270 358 1447 

3 19 27 37 74 108 146 960 

4 54 76 100 215 303 399 243 

5 37 54 72 146 215 288 590 

6 11 15 20 41 60 80 555 

7 43 66 92 172 263 365 1788 

8 52 76 102 207 302 406 2589 

9 64 91 120 254 364 477 576 

10 53 77 102 210 306 408 1951 

11 43 61 81 170 244 321 779 

12 49 73 98 196 289 389 334 

If we consider a tolerance of 0.1 to be adequate, then we can recommend collecting 

considerably less artefacts in future (at all sites) than the numbers that were actually 

obtained, for all three values of a. However, if we take d=O.05 and a=O.05 then the 

actual numbers of sherds collected from sites 4 and 12 are less than the numbers 

which we recommend, based on inequality (5.8). For d=O.05 and a=O.2, the numbers 

of sherds collected at all sites exceed the recommendations. 
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5.6.2.4 Application of Several Proportions to Memphis Pottery Sherds 

In this section we estimate minimum sample sizes for the Memphis sherds (1.2.1). 

Because the original numbers of Memphis sherds obtained from each context were not 

fixed in advance, it is more appropriate to estimate a minimum sample size for the 

total number of sherds obtained (although, given the fact that we are looking at 

contexts, we would not actually be able to choose our sample size on excavation). To 

account for all AB cells of the data matrix simultaneously we can use a similar 

argument to that in 5.6.2.2, taking Pi to be the same for all i =1, ... , AB (where Pi is the 

proportion of the total number of sherds in cell i, Qi= I-Pi and Pi,Qi>O). We then obtain 

the inequality: 

I 

P.Q. (<1>-1 «(1- a)Aii»2 
n> I I 

- d2 

where n is the required sample size. If, instead, we allow Pi to vary across each cell, 

then we obtain the following: 

AB d n (<I>(~Pi~1 » ~ 1- a (5.9) 

Considering various values of d and a and applying (5.9) we can estimate an overall 

minimum sample size (although, because the Memphis data consist of sherd weights 

rather than sherd counts, we are actually estimating a minimum weight). Table 5.8 

., 0 49 d P 0.02 fi . 3 624 shows the estlmated weIghts when PI = P2=' an i = or 1= , ... , . 
AB-2 

These proportions appear to produce the highest estimates of weight. 
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Table 5.8 Estimated Minimum Required Weights for the Memphis Contexts 
(grams) 

0.2 

0.1 

0.05 

0.1 

67 

96 

126 

Tolerance (d) 

0.05 

267 

383 

502 

Comparing the values in the table with the actual weight of sherds collected (261280 

grams), suggests that regardless of our choice of tolerance and significance level, a 

much smaller weight of sherds is required than that actually obtained. Taking Pi and Pj 

to be the actual cell proportions from the data which are closest to 0.49, say 

Pi = Pj = ps, taking Pk =(1- 2ps ) for the remaining 622 cells and using (5.9) we 
AB-2 

obtain the values in Table 5.9. There are 168 non-zero cells in the data matrix and so 

in brackets are the estimated minimum weights using this number of cells. Again, 

much smaller weights are required than that that was actually obtained, although it 

may be possible to obtain higher estimates of sample size, depending on how the 

abundance of sherds is distributed across the sites and wares. 

Table 5.9 Estimated Minimum Required Weights for the Memphis Contexts 
(Actual Data) 

Tolerance (d) 

ex 0.1 0.05 

0.2 388 (314) 1551 (1255) 

0.1 429 (354) 1714 (1416) 

0.05 469 (394) 1875 (1575) 
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5.6.2.5 Problems with Estimating Minimum Sample Sizes for Pottery Sherds 

Having used sampling fractions to calculate minimum required sample sizes in order 

to estimate several proportions simultaneously, we now consider the arguments 

against this approach. Orton et al. (1995) criticise attempts to answer the question of 

'what is a minimum viable sample size below which it is not worth quantifying any 

assemblage' for two reasons: 

[1] They argue that we expect to merge assemblages (an assemblage is a collection 

of artefacts) into different groupings for different purposes, for example 

chronological groupings or functional groupings and so even an assemblage 

that is 'too small' by itself may form a useful part of some larger grouping. 

[2] They argue that a lower limit would be in terms of pies (pottery information 

equivalents: numbers which are obtained from eves - estimated vessel 

equivalents: estimates of the number of pots represented from sherds - and 

which have the same statistical properties as counts of objects - one pie 

contains as much statistical information as one whole pot), because we seek a 

lower limit on the information contained in an assemblage. However, we 

cannot measure pies directly, only from eves and so to know whether we are 

above or below a threshold, we must quantify the pottery first, by which time it 

is too late to save time by not doing so. 

We believe that the first criticism can be discounted, because we propose looking at 

sample size recommendations for either a specific collection of data, collected to 

answer a particular question (as with the Memphis and Amama sherds), or, if several 

groupings have been envisaged prior to data collection, then recommendations can be 

made based on all these groupings. We also propose using the methods for data other 

than pottery sherds, for example starch grains, which are not subject to these 

criticisms. 
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We accept the second criticism, but propose that because excavations commonly take 

place over several seasons, an idea of the likely type and quantity of finds can be 

gained in the first or second season (similar to trial trenching as a means of gaining an 

idea of the type of subsoil and likely finds) and this information can then be used to 

estimate sample sizes for future seasons. It is also extremely probable that similar 

studies as far as the statistical aspects are concerned, will be carried out in the future, 

for which we can make recommendations. 

Orton et al. (1995) criticise the traditional statistical approach of using sampling 

fractions because they say that we have no idea of the original size of the population. 

They argue that such an approach is not an adequate description of the sampling 

process because it does not take into account the fact that the pots are nearly always 

found broken and incomplete and that in general, brokenness varies between wares 

and according to size within the same ware, so that sherd counts are biased as 

measures of the proportions of wares. They also believe that correspondence analysis 

cannot be applied to sherd counts because the requirements of independence and/or 

lack of bias are not met. By this they presumably mean that because sometimes many 

sherds are from the same pot, each sherd is not independent and so some pots are 

overrepresented in the sample. At Memphis, the sherds were weighed because there 

were too many to count individually and if they had been counted then the amount of 

data collected would have been reduced. We believe that the bias argument is 

overcome by using sherd weights. 
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5.7 Summary and Conclusions 

This chapter has investigated various methods of examining the stability of the 

categories displayed in a correspondence analysis map (i.e. how representative are the 

samples that they contain of the true population of data) and examined the effect of 

varying the sample size on the results of the analysis. Two methods of assessing 

stability were discussed, both of which involved fitting the multinomial distribution to 

the original data and generating replicate matrices (bootstraps) before implementing 

correspondence analysis, remembering that resampling should be carried out in the 

same way as the original data were collected. Typically, this means either fitting a 

single multinomial distribution to the whole matrix or fitting a series of multinomial 

distributions, one to each column (or row). Regardless of which method is used, each 

column category in the original analysis leads to a cloud of points, one from each 

replicate matrix, from which stability is assessed. We revealed that for a given data 

set, the size of the bootstrap clouds does not really alter according to which 

resampling method is used, although it is known that cloud size is affected by the 

number of bootstraps generated (more bootstraps lead to larger clouds). We also 

developed a third method for assessing stability, which is based on a jack-knife 

approach and involves deleting each column (or row) category in turn, before 

implementing correspondence analysis on the reduced data. We revealed that the 

resulting clouds of points for each category are much smaller under this method than 

those obtained from fitting one or more multinomial distributions (although this 

depends on the number of replicate matrices generated) and so the jack-knife method 

provides a useful standard against which other methods of assessing stability can be 

measured. 

Having generated a series of replicate matrices, there are two known methods of 

obtaining the category co-ordinates to display in the correspondence analysis map, 

both of which were discussed in detail and compared. The first method involves 

relating the replicate matrices to the original co-ordinate system via the transition 

formulae; the second approach is to carry out a new correspondence analysis on each 

matrix. The latter method leads to larger bootstrap clouds and filtering is required to 

overcome the arbitrary sign changes resulting from the singular value decomposition 
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(which forms part of correspondence analysis). This chapter has focused on the former 

method, but the equivalent of the latter method for biplots forms the basis of Chapter 

Eight. The stability of the categories was summarised using the known method of 

(non-parametric) convex hulls, but we also introduced (parametric) concentration 

ellipses for this purpose. We proposed using the areas of hull peels to assess stability 

(larger areas indicate greater instability) and to obtain comparable areas between 

clouds resulting from differing numbers of bootstraps. We also introduced the idea of 

using the area of an ellipse to measure stability and this method has the advantage of 

being unaffected by the number of bootstraps generated. In addition, we suggested 

using ellipse overlaps to assess similarities between categories. In particular, we 

suggested that if the centroid of a 95% ellipse representing one category is included in 

the 95% ellipse of another category, then the categories can be considered to be 

virtually indistinct. Sampling from the multinomial distribution was compared with 

sampling without replacement and inferences were drawn regarding the effect of 

sample size (e.g. the number of artefacts collected) on the correspondence analysis 

map and on stability. It is clear that the smaller the sample size the less stable the 

category, but also that sampling using the multinomial distribution leads to greater 

instability than sampling without replacement. 

Sometimes, large numbers of trace zero cells occur in archaeological data (i.e. the 

sampling technique is not adequate to detect rare artefacts). This can be a problem 

when generating replicate matrices based on the multinomial distribution, because 

each zero cell is allocated zero probability. We therefore developed two methods 

based on the binomial distribution to adjust the probabilities assigned to these cells. 

However, the sizes of the bootstrap clouds appear unchanged by these methods unless 

the sample size is very small and this is because the probabilities assigned to the zero 

cells are also very small. We have therefore concluded that it is not worth accounting 

for trace zeroes in the data when assessing for stability. 

Finally, we investigated how the actual numbers of artefacts collected by 

archaeologists compare with recommendations based on statistical calculations, 

obtained by using traditional sampling theory i.e. using sampling fractions. Because 
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our data consist of several categories, we made an analogy with the well known case 

of estimating sample size for one proportion and assumed that the categories are 

independent. Criticisms of applying this traditional approach to archaeological data 

were also considered and largely refuted. It is clear that the actual sample sizes 

collected by archaeologists tend to exceed those required based on statistical criteria, 

sometimes by as much as 600% for any particular site. 
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Chapter Six 

Category Selection Methods and 

Correspondence Analysis 

6.1 Introduction 

The theory behind correspondence analysis (CA) was explained in Chapter Two, 

where its application to pottery sherds and starch grains was illustrated. Chapter Two 

also highlighted problems that arise when applying this technique to archaeological 

data, in particular the difficulty in interpreting the ordination map when large numbers 

of categories are displayed and the effect of the number of row categories on the 

relationships between column categories. We also discussed the fact that it is 

sometimes necessary to divide categories after data collection, on the basis of an 

external variable. This chapter, therefore, aims to combine the theory of 

correspondence analysis with other techniques such as bootstrapping, procrustes 

analysis and jack-knifing in order to investigate issues such as those raised above. 

Section 6.2 discusses the rationale behind category selection methods and describes 

the various strategies available for selecting the number of categories into which 

artefacts are classified. Section 6.3 explains and applies an existing method of 

selecting categories for deletion, proposed by Krzanowski (1993) and introduces the 

use of a scree-plot to aid category selection. This section also suggests ways in which 

Krzanowski's method could be adapted. A method of clustering categories discussed 

by Greenacre (1988, 1993b) is explained in 6.4, where we also introduce terminology 

for distinguishing between statistical 'clustering' of categories and 'merging' 
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categories based on archaeological grounds. Correspondence analyses on the resulting 

categories from both methods are then compared. In Section 6.5 we propose using 

correspondence analysis to assess the effects of dividing categories and in 6.6 we 

discuss reasons for leaving categories unchanged. In Section 6.7 we develop a method 

which accounts for both combining and deleting categories simultaneously, which is 

based on work by Krzanowski (1993). We also compare two methods of combining 

categories in this section and other possible methods are suggested, but not 

implemented. In addition, 6.7 investigates the stability of and the influence of sample 

size on, the correspondence analysis map resulting from category selection. In Section 

6.8 we extend the method of jack-knifing first introduced in Chapter Five to the 

detection of influential categories and we conclude the chapter in 6.9. Throughout this 

chapter we illustrate the various methods on the Amarna and Memphis pottery sherds 

(1.2.1, 1.2.2), the Melanesian starch grains (1.2.3) and also on Early Stone Age tools 

(1.2.4). 
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6.2 Selecting Categories 

Sometimes, artefacts are classified into such a large number of categories that it is 

difficult to distinguish between them on the correspondence analysis map - we saw 

this in Chapter Two with both the Melanesian starch grains and the Memphis pottery 

sherds. Also, the data collected are often sparse with many zero counts, making it 

difficult to distinguish between categories based on these (insufficient) data. 

Additionally, it may be that some categories are expensive to obtain and that both time 

and money can be saved if fewer are 'needed' in order to reveal the same relationships 

between the row and between the column classifications. However, whether numbers 

of categories can be reduced depends on the objectives of the study. If, for example, 

the main aims are to answer archaeological objectives, with statistical analyses 

playing a small part in this, then it makes sense for an archaeologist to differentiate 

between all pottery wares, because this is extremely important for answering 

archaeological questions (i.e. category reduction is redundant). It may also be the case 

that either the row or the column classifications in a correspondence analysis are 

beyond the control of the archaeologist. There may, for example, be predefined 

categories (e.g. Bronze Age, Iron Age, Roman Period etc.), but it may be possible to 

sample more or fewer 'sites' to compensate for this fixed number of categories. We 

believe that there are five possible options available for deciding on the number of 

categories to include in a correspondence analysis, namely: deleting, clustering, 

merging or dividing the categories, or leaving them unchanged. We give a critical 

approach to each of these possibilities in the sections that follow. 
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6.3 Deleting Categories 

Krzanowski (1993) comments that the focus of an analysis of a contingency table is 

on determining whether the grouping categories (e.g. the rows) can be sufficiently 

distinguished from each other on the basis of the observed characteristics (i.e. the 

columns). However, we disagree with this for two reasons. Firstly, it is not always 

clear that there are grouping categories and, separately, observed characteristics: it 

may be that there are two sets of observed characteristics (for example, pottery sherds 

are often cross-classified into fabric and ware). Secondly, we often have such large 

amounts of data (e.g. the Melanesian starch grains and Memphis pottery sherds 

described in Chapter One and listed in the Appendix) that our aim is only to look for 

relationships between rows and between columns, which cannot be seen from looking 

at the raw data alone, i.e. we merely want to display our data. 

Considering category deletion methods, one means of assessing the effect that the 

deletion of a complete row or column of the contingency table has on the 

correspondence analysis is to use the influence function (Pack & Jolliffe, 1992). This 

considers the change in eigenvalues or eigenvectors, thereby ranking the importance 

of rows or columns. However, Krzanowski (1993) believes that the problem with this 

is that it ranks the importance of the overall goodness of fit of the r-dimensional 

configuration and does not pay attention to the individual row points. 

Krzanowski (1993) therefore introduced a method to select those columns of a 

contingency table that are the most important in describing the differences between 

rows. Krzanowski first considered this aspect in the context of principal component 

analysis and proposed a procrustean measure of importance for each variable, which 

he subsequently adapted to correspondence analysis; we extend this method to the 

various forms of biplot and to canonical correspondence analysis in Chapters Seven 

and Nine respectively. The method works as follows: 

Stage 1: 

Stage 2: 

Carry out a correspondence analysis on the data and retain the co

ordinates of the rows in the reference configuration X. 

Omit each column of the data matrix in turn, implement 

correspondence analysis and retain the row co-ordinates of the reduced 
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data set in matrix Y. 

Apply procrustes analysis to minImISe trace{ (X-Y)(X-y)T} under 

translation, rotation and reflection of Y. This results in a residual sum 

of squares M2, where the smallest M2 corresponds to the least important 

variable because deleting it results in a configuration that is the least 

different from the reference. 

Krzanowski explains that there are extra considerations that arise with the application 

of this technique to the co-ordinates obtained from correspondence analysis. In 

general, we can expect a substantial change in the pattern of entries of the contingency 

table when columns are deleted from it. The rotated configurations after column 

deletions are thus likely to undergo considerable scale changes and if this is felt to be 

problematic then the configurations should be rescaled to a common size before each 

calculation ofM2. Krzanowski suggests that a simple way of doing this is to rescale X 

and Y so that the sum of squares of elements in each matrix is equal to a constant 

value, say one. The second consideration is that in correspondence analysis masses are 

attached to each point in the configuration (see 2.2.1) and so it can be argued that in 

calculating M2 it is more appropriate to minimise a weighted sum of squares (i.e. we 

are more willing to tolerate an error in the position of a point with low mass than in 

the position of a point with high mass). For this reason the preliminary translation of 

the configurations should be so that their weighted centroids coincide. However, it is 

not clear which are the appropriate weights to use since the row masses will change 

each time that a column is deleted from the table. Krzanowski says that a relatively 

stable choice is to use the masses obtained from the original table, because this 

provides the reference configuration at each step of the analysis. Thus, using the 

notation of Chapter Two, we weight each row of X and Y by the mass fj and we obtain 

M2 as the minimum oftrace{D(X-Y)(X-y)T}, where D = diag (rI, ... , rr). We discuss 

later why we believe that the original co-ordinates may not be the best choice of 

reference configuration for each step of the method. 

Krzanowski goes on to say that the ideal solution for the selection of the best q 

columns is to compute M2 between the new and reference configurations for each 

possible choice of q columns and to select the q columns that correspond to the 
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smallest M2. However, he also believes that a backward elimination algorithm can be 

considered to be an acceptable alternative. He chooses the dimensionality of the 

reference configuration (m) to be the smallest dimensionality greater than two which 

accounts for at least 80% of the total inertia and takes q to be as close as possible to m 

as seems reasonable in each data set. We apply Krzanowski's method to the Memphis 

pottery sherds in Section 6.3.2, where we implement both the rescaling and weighting 

of rows. We suggest that a minimum of80% is often too stringent and that the number 

of columns selected should be chosen independently of the dimensionality used in the 

calculations (see the discussion in 6.3.5). 

6.3.1 Reasons for Deleting Categories 

Before implementing any category deletion methods we believe that it is important to 

list the three main reasons why deletion may be appropriate. 

[1] The data collected on certain categories may be so sparse so as to hide 

relationships both between and with, other categories. This can cause the 

points to be all bunched up together in the correspondence analysis map and 

deleting one or more of these sparse categories can lead to 'true patterns' 

emerging (or at least more recognisable and interpretable ones). 

[2) Data on a very large number of categories may have been collected and too 

many categories make it almost impossible to identify patterns in the data 

because they cannot all be visualised. Deleting some of these categories may, 

therefore, considerably aid interpretation. 

[3) Time and effort in future studies can be saved if a suitable number of 

categories can be recommended before data collection begins. This is of 

particular importance in archaeology where there can be a tendency to 

'overcollect' because of the difficulty (both in time and expense) of returning 

to a site (which may no longer exist). 
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6.3.2 Application to l\Jemphis Pottery Sherds - Deleting \Vares 

The aim of this section is to use the Memphis sherd data (1.2.1) to try to establish 

which ware categories are most important in explaining the differences between 

contexts and which contexts are most important in explaining the differences between 

wares. This is an example of data that do not consist of grouping categories and 

observed characteristics (see the discussion at the beginning of6.3). We know that, by 

definition, there are differences between wares. It is, however, more difficult to 

distinguish between contexts because, using the stratigraphic method of excavation, 

this relies on identifying changes in colour, texture and smell of the sediment or soil. 

Both contexts and wares therefore need to be identified by experienced archaeologists. 

By examining the wares we can identify which of them are most important in allowing 

us to differentiate between different levels of activity and time periods in the past: we 

can also investigate how the total quantity and number of different wares alter over 

time (this has relations with frequency seriation, see 2.4). By considering the contexts 

we can investigate whether there are some which are dominated by particular wares, 

or whether the wares are spread evenly across the contexts. However, contexts by 

definition form a sequence and it is not sensible to consider the effects of deleting any 

one context. We therefore introduce the idea of combining neighbouring contexts and 

the justification for this later in the chapter (see 6.7.5). 

It is evident that with as many as 48 wares, computing all subsets of wares in order to 

establish the 'most important' ones would be extremely time consuming and so we 

follow the backward elimination procedure proposed by Krzanowski. However, we 

initially choose the dimensionality of the reference configuration to be two (rather 

than basing it on the percentage of variation explained, as Krzanowski suggested), 

because we will always display the data in two dimensions. Table 6.1 lists the order in 

which the wares are deleted and the corresponding M2 values for the first 12 steps of 

the procedure. 
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Table 6.1 Order of Deletion of Memphis \Vares 

Step 1\12 (x 106
) \Vare Deleted 

1 0.139 43 

2 0.123 46 

3 0.132 45 

4 0.144 42 

5 0.149 44 

6 0.178 17 

7 0.219 13 

8 0.319 21 

9 0.452 18 

10 1.077 14 

11 2.293 15 

12 3.899 39 

We introduce a 'scree-plot' in Figure 6.1, which plots the ware deleted at each step 

against the corresponding M2 value and we see that we stop deleting wares after ware 

18 because this is the point at which there is a large change in slope. We can think of 

the vertical axis as a goodness of fit measure, with the bottom representing the best fit 

(i.e. all categories included) and the top the worst fit. For clarity, we only plot the first 

12 steps of the scree-plot, which includes the sudden rise after ware 18 is deleted. 

However, we should always implement all steps when applying this method of 

category selection, because the magnitude ofM2 can alter substantially between steps. 

If, instead, we produce a cumulative scree-plot i.e. we sum the values ofM2 across the 

steps, then again we stop after deleting ware 18, but this time the change in slope of 

the plot is more pronounced (and the plot will always be monotonically increasing). 
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Figure 6.1 Scree-Plot for the Memphis Wares (Backward Elimination) 

Having deleted 9 wares, we need to carty out a correspondence analysis on the 

remaining wares in order to examine how the relationships between contexts have 

altered, compared with when all the data were retained. We find that the 

correspondence map is little changed (see Figures 2.1 and 2.2), which suggests that 

the wares we deleted are the 'redundant' wares in some sense and that little 

information has been lost by deleting these wares. Thus, for these data two dimensions 

(which explained 59.3% of the inertia of the original data) are sufficient and many 

more than two wares are retained (see the discussion in 6.3 on choosing 

dimensionality and number of categories). We believe that there is, therefore, scope 

for adapting Krzanowski's method. 

Besides using a reference configuration in two dimensions and introducing scree-plots 

and cumulative scree-plots to detect 'surplus' categories, we believe that there are 

other possibilities for selecting which wares to delete: 

• Choose the dimensionality of the reference configuration based on the 

percentage of variation explained (as in Krzanowski, 1993). This is 

discussed in the following section for the Amarna sherds. 

• Use a forward selection, all subsets or stepwise procedure for selecting 

wares, although the first and last of these may not produce any 'better' 

identification of redundant categories than backward elimination (the all 
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subsets approach is also too time consuming to be implemented for the 

Memphis sherds). It may be that all these methods will select different 

categories for deletion but that there are several possibilities (i.e. there is 

no unique solution), none of which substantially affect the correspondence 

analysis map. We believe that the ideal method of category deletion 

should enable several subsets of categories to be obtained and as we will 

see in the next section, the selected categories vary depending on the 

number of dimensions used in the procrustes calculations. 

• Compare the co-ordinates obtained at each step with those from the 

previous step rather than with those obtained from the whole data set (and 

change the weights appropriately). Our justification for this is partly that 

the selection process is more closely monitored, but also that this provides 

closer similarities with variable selection methods in regression. 

6.3.3 Application to Amarna Pottery Sherds - Deleting \Vares 

In this section we apply Krzanowski's backward elimination method to the Amarna 

sherds (1.2.2). More specifically, we attempt to establish which wares are most 

important in explaining the differences between sites i.e. if a particular ware is not 

identified (either ignored or classified with another ware) then how is the relationship 

between sites affected. We can also establish which sites are most important in 

determining the differences between wares i.e. how do the relationships between 

wares alter if a particular site is not visited; this is the focus of 6.3.4. We apply 

Krzanowski's backward elimination method (again using a reference configuration in 

two dimensions) and the resulting scree-plot is displayed in Figure 6.2. Inspection of 

the scree-plot (and cumulative scree-plot) indicates that there is little change in M2 

from deleting wares I, 4 and 5, a small change after deleting 3 and more substantial 

changes from deleting further wares. This suggests that the elimination of wares 

should cease after ware 3, although other factors might be used to decide whether or 

not to include ware 3, because the scree-plot has no clear large change of slope. One 

such factor might be the quantity of pottery available to record, because if ware 3 is 

rare then there may be little point in including it in the analysis. 
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Figure 6.2 Scree-plot for the Amarna Wares 

(Backward Elimination: Two Dimensions) 

Implementing correspondence analysis after deleting wares 1, 4 and 5 produces a very 

similar site configuration to that of Figure 2.3, which included all wares and so this 

again indicates that the scree-plot is useful in deleting wares which do not add 

information to the relationships between sites. If ware 3 is also deleted then the 

resulting correspondence analysis map is still similar to Figure 2.3. We should recall 

from Section 1.2.2 that the Amarna sherds were collected by scribing a circle of given 

radius and classifying all pottery wares within that area. However, with other 

sampling schemes there may be scope for deliberately including wares that are known 

to be common. 

If, instead of using two dimensions to calculate M2 when selecting wares, we choose 

the dimensionality of the reference configuration according to the percentage of 

variation explained, as Krzanowski suggested, then we use four dimensions and this 

produces the following scree-plot (Figure 6.3). However, using four dimensions in the 

calculations means that we are only able to take five steps in the backward elimination 

process. 
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Figure 6.3 Scree-plot for the Amarna \Vares 

(Backward Elimination: Four Dimensions) 

Figure 6.3 suggests that we should delete wares 3 and 4; the results of a 

correspondence analysis with these wares deleted are little altered from those with all 

10 wares. However, when using two dimensions in our calculations we are able to 

delete more wares based on the scree-plot, without altering the pattern in the 

correspondence analysis map. It is interesting to note that the inertia explained in the 

original data in two dimensions was 56.3% and so it seems that it is not always 

necessary to choose dimensions that account for 80%, as suggested by Krzanowski. 

6.3.4 Application to Arnarna Pottery Sherds - Deleting Sites 

Besides looking at which wares are most important for describing differences between 

sites, as we did in the previous section, we can also establish which sites are most 

important in determining the difTerences between wares i.e. how do the relationships 

between wares alter if a particular site is not visited. We apply Krzanowski's 

backward elimination method (using a reference configuration in two dimensions), but 

the resulting scree-plot is not monotonically increasing. The cumulative scree-plot is 

illustrated in Figure 6.4. With this method and these data we are only able to carry out 

six steps because on the 7-th step there is a ware that occurs at none of the remaining 

sites and so correspondence analysis cannot be applied (because the technique 

requires that the row and column sums are non-zero). 
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Figure 6.4 Cumulative Scree-plot for the Amarna Sites (Backward Elimination) 

Inspection of the above scree-plot suggests that, because of the change in slope at step 

3, we should stop the selection process after site 12 is deleted. If, instead of using two 

dimensions to calculate M2 when selecting wares, we choose the dimensionality of the 

reference confif:,ruration according to the percentage of variation explained being 

greater than 80%, as Krzanowski suggested, then we use four dimensions. We would 

probably delete sites 4 and 6 on the basis of the resulting scree-plot (not shown), 

although possibly 7 and 12 as well. Deleting sites 4, 6, 7 and 12 produces a 

correspondence analysis map that is very similar to that of Figure 2.3, which suggests 

that the plot has picked out the 'least important' sites (in terms of their ability to 

highlight the distinction between pottery types) for deletion. If we look at the stability 

of the sites in Chapter Five, then we recall that sites 4 and 12 are the most unstable 

(they have the largest bootstrap clouds) under Greenacre's partial resampling method 

and so there does not appear to be any relationship between site stability and site 

deletion. We see from the above analysis that site 6 is deleted in four dimensions but 

not in two, although both resulting correspondence analysis maps are little changed 

from the original. This is evidence, we believe, that there are many subsets of 

categories which can be retained and not one 'unique' set. Formalising Krzanowski's 

category deletion method is therefore inappropriate. 
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6.3.5 Summary of Category Deletion l\fethods 

Having implemented Krzanowski's backward elimination method and variations of it, 

in the previous sections, we make the following comments. Krzanowski recommended 

that the number of dimensions used in the calculations should together explain more 

than 80% of the variation in the original data. While this is only a guide, we saw with 

the Memphis and Amarna sherds that sensible subsets of categories are obtained from 

using just two dimensions, which account for a much smaller percentage of variation 

in the data and in some cases retain fewer categories. 

We suggest that the methodology can be improved as follows. Rather than choosing 

the number of categories to correspond to the dimensionality, we propose choosing 

them independently. Firstly, we suggest that the dimensionality for the procrustes 

calculations should be chosen. This can be done informally (e.g. because the results 

will be displayed in two dimensions) or based on the percentage of variation 

explained. We believe that the aim of category deletion is to reduce the number of 

categories to a more 'manageable' number, without losing information i.e. if the 

patterns displayed in the correspondence analysis map vary according to the number 

of column (or row) categories included in the analysis, then the data are not 

sufficiently stable for us to be confident of our inferences. We therefore believe that 

formalising the selection process is not necessary, because there are likely to be 

several sets of categories which can be deleted without altering the inferences of the 

map, rather than one unique set. Both the scree-plot and cumulative scree-plot proved 

to be useful aids, because they allow us to visually monitor the selection process as it 

progresses. However, sometimes the scree-plot is non-monotonic, which can lead to 

inconclusive evidence concerning which categories to delete (it is nearly always more 

monotonic in higher dimensions and so for this reason it may be worthwhile choosing, 

for example, three dimensions), although the cumulative scree-plot overcomes this 

problem. Because the procrustes statistic is based on comparisons of sets of points, the 

dimensionality used in the calculations affects the number of categories that can be 

deleted. For example, if we have category co-ordinates in four dimensions then we 

cannot have fewer than five categories remaining after category selection. 
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6.4 Clustering and Merging Categories 

Depending on the aims of the analysis, an alternative to deleting categories can be to 

combine them. Again, this is likely to be most appropriate when there are large 

numbers of categories to display, for example with the Memphis sherds and 

Melanesian starch grains discussed in Chapter Two (see also Section 6.2). Greenacre 

(1988, 1993b) describes how to investigate clusters of rows or columns, based on 

reductions in the chi-squared statistic and builds on work by Hirotsu (1983) in which 

only row-wise and/or column-wise multiple comparisons are considered. 

Using the notation of Chapter Two (where the data consist ofn rows and m columns), 

we consider the row problem. Suppose we have performed a hierarchical clustering of 

the rows using a method such as that due to Lance & Williams (1967); the result of 

the clustering can then be depicted in the form of a binary tree, with H == n-l nodes. It 

is possible to decompose the total inertia (and chi-squared statistic) with respect to this 

set of nodes. Every hierarchical clustering method will imply different decompositions 

of inertia, but Greenacre says that one method is of special interest. This method 

minimises the 'pseudo-distance' between clusters at each node, where the pseudo

distance between two clusters is the squared chi-squared distance between the two 

cluster centroids multiplied by a weighting factor, which depends on the masses of the 

profiles in the two clusters. This is a weighted version of the clustering criterion 

described by Ward (1963). 

The pseudo-distance between two rows is defined by: 

(6.1) 

where r(1l and r(21 are the masses of the profiles in the two respective clusters merged 

at node hand a[l J and a[2J are the centroids of the two respective clusters. It is known 

that if the pseudo-distance given by (6.1) is multiplied by the sample size n to obtain 

the equivalent chi-squared component, then we obtain the statistic given by Hirotsu 

(1983) to perform multiple comparisons on the rows of the contingency table. Hirotsu 

shows that nVh for any two subsets of rows, or the equivalent statistic for any two 

subsets of columns, is bounded above by the largest eigenvalue of a matrix which has 

an asymptotic Wishart distribution. The relevant Wishart matrix variate, Wr(s), has 
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order r == min { n-l, m-l} and degrees of freedom s == max {n-l, m-l}. 

In archaeology, it is not necessarily sensible to cluster categories on a statistical basis; 

it may be advisable to merge them based on the expertise of an archaeologist. If, using 

Greenacre's method, we find archaeologically non-sensible categories being clustered, 

then this can be argued to indicate that not enough data have been collected to show 

archaeological differences (i.e. the data do not contain information on the differences) 

and we should therefore still combine categories on mathematical reasoning. 

Furthermore, if the categories remain unclustered then they may contribute noise to 

the analysis and by clustering them we may obtain a better picture of the remaining 

classifications. What we believe to be the advantages and disadvantages of 

Greenacre's method of clustering are discussed in the next two sections and then 

applications of the method are illustrated. 

6.4.1 Advantages of Clustering 

There are three main advantages of clustering: 

II) Some information from the clustered categories is retained, whereas this is 

completely lost if any categories are deleted. 

12) Categories with sparse data can dominate the analysis, or contribute noise and 

by clustering them we can stop these effects from occurring. 

[3) Clustering categories can help suggest how fine a classification is needed. This 

is particularly useful for future studies where similar data are to be collected. 

6.4.2 Disadvantages of Clustering 

There are two main disadvantages of clustering: 

[I) Because the clustering is based on the chi-squared statistic, it involves only 

minimising the difference between the observed and expected counts. Thus, it 

can be argued that there is no real archaeological basis for the clustering. 

[2) Clustering is only appropriate for some types of data. It is not necessarily 

sensible to cluster e.g. pottery wares if they are archaeologically very different. 
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Similarly, it would not usually be sensible to cluster sites. 

We now introduce a distinction between merging and clustering, because we feel that 

as far as practical applications are concerned there are two approaches that need to be 

compared. We define merging to be combining categories as a result of archaeological 

information, but clustering to be combining categories as a result of statistical criteria. 

We discuss these two methods in the following sections. 

6.4.3 Application to l\1eruphis Pottery Sherds -l\lerging Wares 

In consultation with Janine Bourriau, from whom the Memphis sherd data (1.2.1) 

were obtained, categories of wares that can be merged on archaeological grounds (i.e. 

similar wares) were identified. These are listed in Table A.7 of the Appendix and 

reduce the ware categories from 48 to 30. We implement correspondence analysis on 

these grouped wares in order to examine the effect of the mergings (Figure 6.5) on our 

interpretation of the map . 
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Figure 6.5 Correspondence Analysis l\lap of Memphis Contexts (Merged \Vares) 

This figure differs slightly from Fibrure 2.1 because context 289 is now located close 

to the contexts in the top right of the figure, when previously it was located some 
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distance away from these. We can therefore conclude that it is at least one of the 

merged wares which is able to separate out this context from the remainder. Thus, 

depending on how important it is to distinguish between this context and others, 

compared with the advantages of reducing the number of categories in the analysis, 

the broader categorisation of wares illustrated above may, or may not, be acceptable. 

In Section 6.8 we introduce a method of detecting influential categories and if we 

apply this to the Memphis wares then we may be able to ascertain which wares are 

responsible for altering the position of context 289 on the map. 

6.4.4 Application to Early Stone Age Tools - Merging and Clustering 

Tools 

The effect of merging archaeologically similar categories can also be investigated by 

using the Early Stone Age tool data described in Section 1.2.4. If we compare the 

mergings into seven categories as defined by B01viken et al. (1982), which are listed 

in Table A.5 of the Appendix, with the c1usterings obtained from Greenacre's method 

applied until seven categories remain, we discover that the statistical mergings do not 

agree with the archaeological ones. A chi-squared test on these data produces a 

statistic of 1238.88 which indicates that the tools and sites are not independent and so 

it was sensible to proceed with Greenacre's method of clustering. We display the 

c1usterings and mergings in the table below. 
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Table 6.2 Clustering and Merging Early Stone Age Tool Categories 

Method 

Greenacre's Clusterings 

1, 5 

2,9, 10, 14 

3, 13 

4 

6, 7, 11, 12 

8, 16 

15 

Bolviken's Mergings 

1,2,3,4 

5 

6, 7, 8 

9, 10, 11 

12 

13, 14, 15 

16 

To fully implement Greenacre's method we need to compare the chi-squared values 

with the upper percentage point of the W1s (42) distribution, in order to find the 

stopping point. However, because we are comparing an archaeological method with a 

statistical one, we do not believe that this is really necessary. 

We see from Table 6.2 that the groupings obtained from the two methods are very 

different. We believe that the reason for this is because Greenacre's criterion is based 

solely on the relative frequencies of tools across sites and there is no reason why the 

relative frequencies of tools should imply similar archaeological use and only 

arguably imply a similar distribution across sites. For these data, post-depositional 

destruction (i.e. what happened to an artefact between its deposition and its discovery) 

is probably not relevant, because the tools are all made of stone (and are therefore 

likely to have survived equally weJl in the archaeological record). In addition, many of 

the cells of the data matrix contain zero frequencies, which affects the clustering 

method but not the mergings of the archaeologist. 

The above example illustrates how incompatible statistical and archaeological criteria 

for combining categories can be and that care, thought and preferably the expertise of 

an archaeologist should, where possible, be sought before combining categories. 

Figures 6.6a-6.6c below illustrate the Early Stone Age tool sites obtained from a 

correspondence analysis using: 
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I 
-1 

[a] The original data 

[b] Greenacre's c1usterings 

[c] Bolviken's mergings. 

34 • 

First Principal axis (19.3%) 

Figure 6.6a Correspondence Analysis Map of Early Stone Age Tool Sites 

Figure 6.6a allows us to distinguish sites {24, 30, 34} on the left, from the group in 

the middle, from sites {2, 11,14,38, 42} on the right. Sites {I, 4, 19, 20} towards the 

bottom of the plot are also separated from the bulk of the points. However, the map 

has not revealed any clear patterns and only 34.6% of the variation in the data has 

been explained. Figure 6.6b reveals even less differentiation between sites, although 

sites {24, 3D} are still separated out from the remainder and sites {6, 7,34, 36} are 

slightly separated. 
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Figure 6.6c represents the sites resulting from the tool mergings based on the opinion 

of the archaeologist (B0Iviken) and shows a well-spaced out plot, although some of 

the sites which are located close together in 6.6a are no longer located close together 

e.g. sites 24 and 30. However, 55.1% of the variation in the data is explained in the 

plot. We recall from Chapter One that the original aim of the project was to test the 

hypothesis that the largest sites in the inner part of the fjords of the Varangerfjord area 

of Scandinavia reflect larger aggregates of people during longer periods of time than 

the smaller sites which are located in the outer fjord-coast area. However, the map 

does not reveal this (sites from the inner fjords are not located together and away from 

the sites of the outer fjords) and despite the fact that all three figures consist of the 

same number of sites, Figure 6.6c is clearly the most easy to interpret. Based on the 

above three figures, we conclude that it may be worthwhile considering other methods 

of clustering categories, because if the relationship between sites varies with the tools 

included in the analysis, it is difficult to draw sensible archaeological conclusions. If, 

for example, another study is carried out, but only a selection of tool categories are 

obtained, we need to be confident in our interpretation of the correspondence analysis 

map. We therefore consider other methods of clustering categories in Section 6.7. 
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6.S Dividing Categories 

For some types of archaeological data the categories may contain counts that need to 

be divided based on some external variable and this was briefly mentioned in Chapter 

Two. However, it may not be clear at the time of data collection that a finer division 

of categories is needed, or the external information needed to subdivide them may not 

be available. We propose using correspondence analysis to assess the effect of 

category division and we illustrate this in the following section. Category division is 

particularly important when considering organic plant materials such as starch grains, 

which we focus on below, but also for phytoliths and microfossils. 

6.5.1 Application to Melanesian Starch Grains 

Whilst there is a belief among palynologists that any single plant species gives rise to 

only one 'type' of starch grain, there is a suspicion that different species could give 

rise to the same grain 'type'. However, grains of the same type from different species 

might be differentiated on the basis of their size and by looking at histograms of the 

lengths of starch grains for each type, it is clear that some types do consist of grains of 

several distinct sizes. Dividing the types into groups based on the median size or the 

anti mode of grains within a type means, however, that a proportion of the grains are 

misclassified, if their sizes form a mixture of two or more distributions. 

Figures 2.4 and 2.5 in Chapter Two illustrated correspondence analysis on all the 

Melanesian starch grain data (1.2.3), but we now consider only types that consist of 

more than 10 grains, because otherwise the plot becomes too crowded. We could, of 

course, implement the category deletion methods of 6.3 (it is not sensible to combine 

grains of different types) in order to reduce the number of points displayed on the 

correspondence analysis map, although types with fewer than 1 ° grains make it 

difficult to assess whether distinct groups of different sized grains exist. Examining 

histograms of the starch grain lengths (not shown) reveals that types 6, 28, 32, 40, 92 

and 142 might reasonably be subdivided into two groups based on size. 

By dividing type x into xa and xb at the antimode and implementing correspondence 

analysis, we propose that if xa and xb are located some distance apart on the 

correspondence analysis map then there may be some evidence that they are from 

different species. However, if they are located close together then they are likely to be 
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different sized grains of the same type. If there is a grain type that has a unimodal 

distribution when considering a histogram of grain lengths, then there is no reason to 

suppose that it originates from more than one species. We can, however, divide it into 

two groups at the median and examine whether both groups occur together in the 

resulting correspondence analysis map. 

A series of correspondence analyses were carried out on these data, with each type 

that may feasibly originate from two distinct species separately subdivided and then 

with all these types divided simultaneously (Figure 6.7). 
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Figure 6.7 Correspondence Analysis Map of Melanesian Starch Grain Types 

(With Subdivisions) 

We see from the above figure that when type 6 is split, 6a and 6b are located some 

distance apart and similarly for 142a and 142b. Subdivisions {28a, 28b}, {40a, 40b} 

and {92a, 92b} are reasonably close and {32a, 32b} closer still. Dividing all types 

separately, whilst the other types remain undivided, does not really alter these 

patterns. This is an advantage because it means that types can be considered 

separately, without confusion and that new data can easily be incorporated into the 

analysis. We should also bear in mind that types that are located close together after 
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category division support the hypothesis that they are from the same species, but they 

do not prove it. Also, the decision of how close the points have to be, to be considered 

to be from the same species is in part subjective, but could be aided by convex hulls 

and concentration ellipses. As in Chapter Five, we could generate replicate data 

matrices with these types divided, by fitting a series of multinomial distributions, one 

for each site. Then, for example, if the centroids of the 95% concentration ellipses of 

the two divisions of a type overlap, we may infer that the types are from the same 

species. 

We believe that this method of assessing the effects of category division could come 

under criticism for the following reason. Correspondence analysis is based on relative 

frequencies (of grains). If dividing a type into two groups based on size leads to both 

groups having similar frequencies across sites, then they will be located together in the 

CA map, but it is not clear why similar relative frequencies of different size grains 

should imply that they originate from the same species. 
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6.6 Leaving Categories Unchanged 

In the previous sections we have discussed various methods for altering the number of 

categories into which the data are classified. However, before any category selection 

method is applied, we need to appreciate the reasoning behind why these categories 

were originally chosen. For example, the data may have been collected and classified 

into particular categories because these were testing a specific hypothesis of the 

archaeologist. Deleting, clustering, merging or dividing them therefore alters the 

question(s) originally posed. Often, the archaeologist has only one chance at 

collecting artefacts and unless s/he has retained them, the corresponding categories 

cannot be subdivided at a later stage, but they can be merged, clustered or removed 

from analysis. 

One method of overcoming the problem of a heavily cluttered correspondence 

analysis map is to implement correspondence analysis on all the data, but to display 

only some of the resulting row and column points at anyone time. In this way, all the 

data are used in the analysis (and thus no information is lost), but the plot is not too 

confusing and patterns can be revealed. It may also be advisable to exclude categories 

consisting of sparse data from the analysis and project them onto the resulting display 

as supplementary points (see 2.2.4). Leaving categories unchanged clearly retains 

more information than the other methods of altering category numbers. 
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6.7 Com bining l\fethods of Category Selection 

In the following sections we introduce and apply a method that allows us to 

simultaneously consider deleting and clustering categories. This is useful when it is 

clear that either there are too many categories to display, or when some categories 

consist of sparse data. 

6.7.1 Backward Elimination Procrustes Analysis 

In this section we describe a method which we have developed to allow, 

simultaneously, for the possibility of deleting and clustering categories. In order to 

decide which column categories best distinguish between row categories we propose 

the following method: 

Stage t: 

Stage 2: 

Stage 3: 

Stage 4: 

Stage 5: 

Each column category is deleted In turn and each pair of column 

categories are combined in turn. 

Correspondence analysis is applied to each reduced matrix and row co

ordinates are obtained. 

Each set of row co-ordinates IS compared with the reference 

configuration (the co-ordinates from the original data) using procrustes 

analysis, scaling each configuration and weighting by the original row 

masses as suggested by Krzanowski (1993) and as described in Section 

6.3. The residual sum of squares, M2, is obtained in each case. 

The column deletion or column clustering that results in the smallest 

M2 is implemented. 

Stages 1-4 are repeated for the reduced matrix. The values of M2 at 

each step are then plotted in a scree-plot to assess the stopping point 

i.e. the number and combination of categories to retain. 

6.7.1.1 Application to Amarna Pottery Sherds 

In this section we apply the method just proposed to the pottery sherds from Amarna 

(1.2.2). The resulting M2 values and corresponding retained wares are displayed in 

Table 6.3~ the resulting scree-plot is illustrated in Figure 6.8. 
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Table 6.3 Category Groupings of Amarna Wares 

Step l\,e (x 103
) Wares 

0 0.000 {I} {2} {3} {4} {5} {6} {7} {S} {9} 

1 0.026 {I} {2} {3} {4,5} {6} {7} {S} {9} {IO} 

2 0.040 {I} {2} {3} {4,5,6} {7} {S} {9} {IO} 

3 0.06S {I,2} {3} {4,5,6} {7} {S} {9} {IO} 

4 0.156 {I,2} {3,7} {4,5,6} {S} {9} {IO} 

5 S.652 {1,2,3,7} {4,5,6} {S} {9} {IO} 

6 20.430 {1,2,3,7} {4,5,6,9} {S} {IO} 

7 61.790 {I,2,3,4,5,6,7,9} {S} {10} 

We include M2 = 0 in the scree-plot to allow for the possibility that no categories are 

combined or deleted, but for these particular data the slope of the plot is not altered if 

it is omitted (although this is not always the case - for example, see Figure 6.10) . 
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Figure 6.8 Scree-plot for the Amarna \Vares (Procrustes Analysis) 

Considering Figure 6.S we stop the elimination process after step 4, taking the 

associated groupings from Table 6.3. A correspondence analysis map using these 

groupings is illustrated in Figure 6.9. 
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Figure 6.9 Correspondence Analysis Map of Amarna Pottery Sherds 

(Category Groupings) 

Figure 6.9 produces a very similar picture to Fi!,l'lJre 2.3 (the original data), after 

allowing for arbitrary reflections (see 5.2.4). The method therefore appears to work 

well because the wares' that have been combined have not altered the original map 

and, therefore, our interpretations of the relationships between contexts are 

unchanged. This gives us confidence in our inferences made from the correspondence 

analysis map. 

6.7.1.2 Application to Early Stone Age Tools 

As a second example we apply the above method to the Early Stone Age tools (1.2.4) 

and the resulting categories are listed in Table 6.4. With these data it is necessary to 

stop at step 10 because when we try to delete columns {1,3,5,6,7,12,13} in the first 

stage of step 11, we obtain one row total of zero which means that correspondence 

analysis cannot be applied. Because the data consist of generally low row counts 

anyway, it is probably best not to assign a value of 1 to one of the cells in that row at 

random (as we did in 5.2.2.1). However, if we carry out all other possible combinings 

and deletions at step 11 and choose that with the smallest M2, then we obtain the 

results in the table. 
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Table 6.4 Category Groupings of Early Stone Age Tools 

Step M2 (x 103
) Categories 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

24.S94 {l} {2, 9} {3} {4} {S} {6} {7} {8} {1O} {11} {I2} {13} {I4} {IS} {I6} 

24.521 { I} {2, 9} {3} {4} {5} {6} {7, 13} {8} {1O} {II} {12} {14} {15} {16} 

24.607 {l} {2,9} {3} {4} {5, 6} {7,13} {8} {IO} {II} {12} {14} {I5} {I6} 

2S.300 {I} {2,9} {3} {4,8} {S,6} {7,I3} {1O} {11} {I2} {I4} {IS} {I6} 

26.582 {I} {2,9} {3,7,13} {4,8} {5,6} {IO} {II} {12} {I4} {IS} {I6} 

29.291 {I} {2,9,10} {3,7,13} {4,8} {S,6} {II} {I2} {I4} {IS} {16} 

31.051 {1 , 12} { 2,9, 1 O} {3, 7, 13} {4, 8} {5, 6} {II} {14} {I5} {l6} 

35.400 {I,I2} {2,9,IO} {3,7,13} {4,8} {5,6} {l1,15} {14} {16} 

40.8S0 {I,S,6,I2} {2,9,1O} {3,7,13} {4,8} {II,IS} {I4} {IS} 

53.323 {l,3,5,6,7,12,13} {2,9,1O} {4,8} {lI,I5} {l4} {l6} 

63.793 {I,3,S,6,7,I2,13} {2,9,1O} {4,8} {11,15,16} {14} 

86.833 {l,3,5,6,7,12,I3} {2,9,10,I4} {4,8} {11,15,I6} 

A scree-plot of the results in Table 6.4 is produced in Figure 6.10 and we include M2 = 

o to allow for the possibility that no categories are combined or deleted. 
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Figure 6.10 Scree-plot for the Early Stone Age Tools (Procrustes Analysis) 

From the above plot we conclude that no categories should be combined or deleted 

and this is because of the large difference in scale between the M2 at step 0 and the 
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remaining steps. The interpretation of the plot is that combining any categories loses 

considerable information, but once combining has begun little subsequent information 

is lost until approximately step 9. A correspondence analysis of the categories 

obtained as a result of stopping the category selection process at step 9 produces a 

figure that is very similar to that obtained when all tool groups are considered 

separately (Figure 6.6a). This contrasts with Figure 6.6c where mergings based on 

archaeological expertise produce a different pattern of sites and so it now seems that 

there may be some justification for combining categories on purely statistical grounds. 

It is also interesting to note that in both our examples categories have always been 

combined but never deleted. 

So far, implementing correspondence analysis on the categories identified by the 

scree-plot has lead to very similar maps to those of the original data. However, it may 

be that we can stop at any point on the scree-plot and still obtain a similar ordination 

map. In order to investigate this issue further, we also implement correspondence 

analysis using the categories of step 11 in Table 6.4. The results suggest that the 

patterns between the sites will remain similar regardless of where in the scree-plot we 

stop the selection process. The advantage of this is that if, for some reason, we are 

only able to collect information on a subset of tool categories, then we can be 

confident that our data are not too sparse to mask the relationships between the sites 

which would be revealed with a larger number of tool categories. 

6.7.2 Other Methods of Combining Categories 

Having discussed a number of category selection methods in the previous sections, we 

believe that there are other methods that should be considered. 

[1) Firstly, backward eli mination procrustes analysis could be implemented as in 

Section 6.7.1, but rather than comparing each set of row co-ordinates with the 

original co-ordinates, the co-ordinates could be compared with those of the 

previous step. Based on the description at the beginning of Section 6.3, we 

propose using weights equal to the masses of the row categories at the previous 

step, because these rows are now our reference co-ordinates. This allows us to 

more carefully monitor the selection process and by using a scree-plot we can 

obtain a visual assessment of the process. 
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[2) Secondly, backward elimination procrustes analysis could be used to allow not 

only for the possibilities of combining and deleting categories, but also for the 

possibility of leaving them unchanged. For this to be implemented, the co

ordinates would have to be compared with the original set and leaving 

categories unchanged could not be included in the first step. 

[3) Thirdly, we could implement a forward selection method, allowing for the 

possibilities of deleting and combining categories. At the first step we would 

choose two individual categories, or a pair of combined categories and an 

individual category, with the smallest M2 when compared with the original co

ordinates. For subsequent steps we would choose the option that produced the 

largest M2 when co-ordinates are compared with those of the previous step. 

[4) A stepwise method of selecting category combinations could also be 

implemented, using a combination of the backward elimination and forward 

selection methods and comparing co-ordinates with those of the previous step. 

[5) Finally, an all subsets approach could be applied. All possible combinations of 

categories could be computed; the co-ordinates from each combination can be 

compared with the original co-ordinates and that with the smallest M2 chosen. 

We believe that the ideal choice in one sense would be method [5], because all 

category combinations are considered. However, this is the most time consuming 

method. A stepwise method could therefore be recommended because this compares 

the co-ordinates at each step with those of the previous step and if we also introduce 

critical values then the option of leaving categories unchanged is automatically 

included, although this may suggest that we are seeking one unique set of categories 

rather than any of several subsets (see 6.3.5). 
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6.7.3 Measuring Stability by Area 

Methods of assessing the stability of the categories in the correspondence analysis 

map were explained in Chapter Five and included calculating the areas of convex hull 

peels and concentration ellipses. By implementing these methods on the combined 

categories we can investigate the effects of altering the original category groupings on 

stability. 

6.7.3.1 Application to Amarna Pottery Sherds 

Using the Amarna ware groupings obtained at step 4 of Table 6.3, we generate 

replicate matrices using the multinomial distribution, as we did in 5.2.1.1 and apply 

convex hull peeling to the resulting site co-ordinates. The methodology of Section 

5.4.5 is followed. 

Table 6.5 Approximate Percentages of Points in the Hulls 

Number of Points in the Bootstrap 

100 1000 5000 

25% 13.0-25.3% 12.7-22.8% 

% lIuli 75% 59.5-72.4% 50.8-70.5% 

95% 83.0-95.5% 74.8-94.1% 

100% 87.0-99.2% 83.3-98.5% 

Considering Table 6.5, the percentages of points in the hulls from 1000 and 5000 

bootstraps are generally slightly lower than those in Table 5.5, but there are no major 

differences. Thus, any given site exhibits similar stability regardless of the number of 

categories used in the analysis. 

6.7.4 The Influence of Sample Size 

Section 5.6 of Chapter Five discussed the influence of sample size on both the 

stability of categories in the correspondence analysis map and on the relationships 

between categories. By using our combined categories we can also assess the effects 

of altering sample size on the results of the analysis. We do this by implementing 

sampling without replacement and comparing the results with those obtained from the 

original categories. 
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6.7.4.1 Application to Amarna Pottery Sherds 

Using the category groupings obtained at step 4 of Table 6.3, we sample the Amarna 

sherds (1.2.2) without replacement 100 times for varying sample sizes. The sample 

sizes consist of differing proportions of the original sherds obtained from each site and 

the area of the 95% concentration ellipse, ~, is calculated for each of them (see 

5.4.4.2). The values are given in Table 6.6 below. 

Table 6.6 The Measure A.-(x 103
) for Varying Sample Sizes 

Sample Size (proportion of original) 

Site 1- I .1 J 
4 1 4 i 

1 0.431 1.141 3.108 8.659 

2 1.660 4.801 15.188 41.370 

3 0.997 2.644 7.840 18.766 

4 6.367 20.687 55.789 137.565 

5 1.490 4.404 11.292 27.088 

6 0.058 0.138 0.475 1.306 

7 0.272 0.727 2.850 5.161 

8 0.087 0.307 1.039 2.228 

9 0.129 4.305 10.741 27.300 

10 0.113 0.353 1.086 2.415 

11 0.680 2.809 8.042 19.892 

12 3.988 15.114 44.275 92.514 

Comparing with Table 5.3, we see that the values in the above table are generally 

slightly higher than those for the original categories, suggesting that there is greater 

instability in the sites when fewer categories are present. This appears to be true 

across all sample sizes and the smaller the sample size the greater the instability. This 

seems reasonable, despite the fact that we have the same total number of sherds, 

because some information has been lost by combining categories. 

For a given proportion of the original sample size obtained at each site, say half, we 

can calculate A4 at each step of Table 6.3 in order to compare the stability of different 
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category groupings. The results are illustrated in Table 6.7. From the scree-plot of 

Figure 6.9 we see that the slope is relatively flat between steps 1-4 and we might 

therefore expect the value of ~ to be little changed in this range. 

Table 6.7 The Measure A4(xI03
) for Varying Category Groupings (t the original 

Sample) 

Step 

Site 1 2 3 4 5 6 7 

1 1.454 1.431 1.434 1.141 1.064 0.000 0.000 

2 5.286 5.278 5.304 4.801 4.752 5.267 5.471 

3 2.787 2.833 3.106 2.644 1.870 1.888 0.009 

4 22.014 21.945 22.171 20.687 1.928 8.359 0.009 

5 3.666 3.740 3.708 4.404 3.539 1.646 0.000 

6 0.310 0.230 0.231 0.138 0.049 0.308 0.001 

7 0.752 0.750 0.717 0.727 0.591 0.460 0.000 

8 0.306 0.292 0.293 0.307 0.266 0.000 0.000 

9 3.788 3.783 3.557 4.305 3.372 1.231 0.015 

10 0.479 0.480 0.436 0.353 0.259 0.148 0.000 

II 2.036 2.056 2.173 2.809 1.904 2.772 0.000 

12 12.607 12.682 12.696 15.114 12.844 4.057 0.000 

Reading across the rows of the table, it is clear that the stability of each site (as 

measured by A4) is fairly constant for the first four steps, but that after this point, with 

fewer categories, stability is increased (i.e. the values in the table fall). This greater 

stability must, however, be contrasted against the information lost when dealing with 

fewer categories. 

6.7.5 Comparing Methods of Clustering Categories 

In this section we propose comparing the results of combining categories using 

procrustes analysis as described in 6.7.1 (without allowing for category deletion), with 

the results of clustering using Greenacre's method, described at the beginning of 6.4. 
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6.7.5.1 Application to Memphis Pottery Sherds 

In Chapter Five we explained that for the Memphis sherds (1.2.1), contexts were 

identified by examining changes in the subsoil (i.e. by using the stratigraphic process) 

and not by using the arbitrary process of excavation (the arbitrary process is the 

controlled excavation of the subsoil in measured levels of a predetermined thickness). 

With this method of excavation it can be very difficult to identify distinct contexts (i.e. 

where one context ends and another begins) and we therefore propose examining the 

effect of allowing neighbouring contexts to be combined (i.e. treating them as if they 

cannot be distinguished). We propose allowing for a maximum of two contexts to be 

combined, with the justification that it is unlikely that more than two neighbouring 

contexts would be undifferentiated by the archaeologist. Of course, once excavation 

has taken place the information is lost and we will never know whether the contexts 

were reliably identified or not. Our aim is to assess the effect of potential 

misidentification on the interpretation of the correspondence analysis map. There are 

13 contexts for the Memphis sherds and so for the first stage of clustering we compare 

12 possible category combinations. The following table reveals how the contexts 

combine for the two clustering methods. 

Table 6.8 Clusterings of Contexts for the Memphis Pottery Sherds 

Method 

Step Procrustes 

1 377 465 509 476 289 690 {71~739} 

740 707 761 758 749 

2 377 465 509 476 289 690 {716, 739} 

740 707 {761,758} 749 

J 377 465 {509,476} 289 690 {716,739} 

740 707 {761,758} 749 

4 377 465 {509,476} 289 690 {716, 739} 

{740,707} {761,758} 749 

5 {377,465} {509,476} 289 690 {716,739} 

{740, 707} {761, 758} 749 

6 {377, 465} {509,476} {289, 690} {716, 

739} {740,707} {761, 758} 749 

Greenacre 

377 465 509 476 289 690 716 739 

740 707 {761,758} 749 

377 465 {509,476} 289 690 716 739 

740 707 {761,758} 749 

377 465 {509,476} 289 {690,716} 

739 740 707 {761,758} 749 

377 465 {509,476} 289 {690, 716} 

739 {740,707} {761,758} 749 

{377,465} {509,476} 289 {690,716} 

739 {740, 707} {761, 758} 749 
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The most obvious difference between the two methods is that a minimum number of 

seven categories are revealed by procrustes analysis as compared with eight for 

Greenacre's method. Producing correspondence analysis maps for the most extreme 

clusterings i.e. when as many contexts as possible are misidentified, reveals that both 

Greenacre' s clustering and the procrustes method produce wares with a similar pattern 

to Figure 2.2, which suggests that consistently misidentifying a maximum of two 

contexts does not have serious implications for the relationships between wares and 

contexts. Greenacre ' s clustering method has preserved the most important differences 

between wares (Figure 6.11) and the map is little changed from Figure 2.2. 
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Figure 6.11 Correspondence Analysis Map of Memphis Wares 

(Greenacre's Clusterings) 

The ware groupings obtained from procrustes analysis (not shown) give a fairly 

similar picture to Figure 6.11, the main differences being that wares 25 and 29 are no 

longer separated from the remainder and that context 289 is now clustered with other 

contexts. 
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6.8 Detecting Influential Categories by using a Jack-knife Approach 

In this section we propose using the technique of 'jack-knifing' to identify columns 

(or rows) that are potentially influential in correspondence analysis and which 

therefore affect the relationship between rows (or columns). The method is identical to 

that explained in Section 5.5, but the inferences of the resulting plot are different. We 

also use a jack-knife approach to detect influential observations in biplots (Chapter 

Eight) and to identify influential categories in canonical correspondence analysis maps 

(Chapter Nine). 

If we delete each column (or row) category of a contingency table in turn and 

implement correspondence analysis then we can examine the resulting cloud of row 

points for unusual points that may indicate unusual column categories (we must use 

filtering - Greenacre's resampling cannot be used, see 5.5). If removing these 

column categories affects the relationships between row categories, then the columns 

are considered to be influential. We discuss how to ascertain which category is 'most 

influential' in 6.8.2 and we apply this idea of jack-knifing to the Amarna pottery 

sherds in the next section. 

6.8.1 Application to Amarna Pottery Sherds - Influential Wares 

Applying the method suggested above, we delete each Amarna ware (1.2.2) in turn, 

implement correspondence analysis and display the sites. Given that there are 10 

wares we should have 10 points for each site, each one representing the deletion of a 

different ware. A point located some distance away from the bulk of the points within 

a site indicates a potentially influential ware. The resulting correspondence analysis 

map is illustrated in Figure 6.12 (note that this is identical to Figure 5.10). 
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Figure 6.12 Arnarna Pottery Site Clouds (Jack-knifing) - Influential Wares 

We can see from the above figure that not all the 10 points representing each site are 

located together. For example, consider site 11: only eight of the points are located 

together, with an additional one being located at the bottom left of the figure and 

another one on the right of the figure. The wares represented by these unusual points 

are wares 9 and 10. However, for other sites, namely 1, 7 and 8, all the points are 

located close together and none of the wares appear influential. For sites 2, 3, 9 and 10 

just ware 10 is located a long distance from the remainder and for sites 4, 5, 6 and 12, 

ware 8 is located some distance apart. 

When we remove the potentially influential wares and implement correspondence 

analysis, interesting results emerge. Removing ware 8 and, separately, removing ware 

10, both cause the resulting correspondence analysis map to change fairly 

substantially indicating that these are indeed influential wares. Removing wares 9 and 

10 together as suggested by site 11 again causes the map to change. However, deleting 

only ware 9 does not result in any change and this is as we expect because ware 9 

alone was not highlighted by any of the sites as being potentially influential. Figure 

6.13 shows the correspondence analysis map with ware 10 removed, in order to 

illustrate the influence of this ware. 
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Figure 6.13 Correspondence Analysis Map of Amarna Pottery Sherds 

(\Vare 10 Deleted) 

If we compare Figure 6.13 with Figure 2.3 of Chapter Two, we see that site c is no 

longer separated from the other sites and wares. However, site k and ware 9 are still 

located a similar distance from the origin and slightly away from the other points. 

While the relationships between sites and between wares remain similar, the plot is 

now more spaced out and this time it is sites i & j and wares 1 & 2, which are located 

some distance apart from the other points. 

6.8.2 Application to Amarna Pottery Sherds - Influential Sites 

In the previous section we applied the newly introduced jack-knife approach in order 

to detect influential Amarna wares. In this section we use the jack-knife method to 

detect influential sites i.e. which sites are most influential in explaining the 

relationships between pottery wares. We know that, by definition, pottery wares are 

different, but we would like to know how the correspondence analysis map alters if a 

particular site is not visited. To investigate this question we delete each site in turn, 

carry out a correspondence analysis and then display the wares. Given that there are 

12 sites we should have 12 points for each ware, each one representing the deletion of 
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a different site_ A point some distance away from the bulk of the points within a ware 

indicates a potentially influential site. The resulting correspondence analysis map is 

illustrated in Figure 6.14. 
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Figure 6.14 Amarna Pottery Ware Clouds (Jack-knifing) - Influential Sites 

Considering ware 10, there i one potentially very influential site (the circle at the top 

of the figure) and one Ie influential site (to the top right of the majority). These 

correspond to ites 3 and 11 respectively. Site 3 is also very influential for ware 8, 

sites 3 and 11 are influential for ite 9 and the points representing wares ] and 2 are 

very spread out so that there are no ite that are clearly influential. Looking at sites 3 

and 11 in the original corre pondence analysis map of Figure 2.3, we see that these 

two influential ite are tho e which are eparated out on the fir t axis and so perhaps 

influential column categories tend to be those which are located apart from the 

majority of column categories on the original CA map. Looking at the bootstrap 

clouds of Figure 5.4 and 5.5, ites 3 and 11 are no more unstable than any other sites 

and 0 using multinomial re ampJing to obtain bootstrap clouds does not appear to 

help us in the detection of influential categories. If we delete sites 3 and 11 and 

implement correspondence analysis we discover that the ordering of the sites from left 

to right on the first axi of the map is the arne as on the second axis in Figure 2.3 and 
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that the same wares are located close to the same sites in both figures. The advantage 

of this is that our inferences based on the correspondence analysis map are not altered 

if we are only able to collect data from fewer sites - we can be confident in our 

interpretations of the ordination diagram. 

We now consider how to measure which site (or, more generally, which category) is 

the 'most influential'. Potentially influential categories can be identified by eye, as we 

have done in this and in the previous sections, but we propose that the most influential 

column category could be determined from the jack-knife correspondence analysis 

map by counting, for each row category, which points (and hence which columns) 

appear most removed from the bulk of the points. The column with the greatest count 

is then considered to be the most influential. An alternative and more formal method 

is to make use of the category deletion methodology of6.3. Recall that in the first step 

of the selection process, each column category is deleted in turn and the resulting 

configurations of row points are compared with the reference configuration, resulting 

in a procrustes M2 for each column. With category deletion we look for the smallest 

M2, but here we identify that column category with the highest M2 and this is the 

'most influential' category (because the corresponding row co-ordinates differ most 

from the reference configuration). Implementing both these suggestions for the 

Amarna sherds leads to site 3 being deemed the 'most influential' site. 

We believe that there are other links between the jack-knife method of detecting 

influential categories and category selection: we might expect that a very influential 

site would be unlikely to be removed under Krzanowski's backward elimination 

method, because this latter method is based on removing column categories which 

result in the least difference between the row co-ordinates and the original 

configuration. However, Krzanowski's method of category deletion weights the co

ordinates at each stage by the masses from the original correspondence analysis and 

this could reduce the relationship between the two methods. 
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6.9 Summary and Conclusions 

This chapter has looked at various methods of selecting categories when 

correspondence analysis is to be used for analysing the data. Firstly, we considered 

category deletion methods; in particular, Krzanowski's backward elimination method 

was applied and we made suggestions for adapting it. Specifically, we proposed 

comparing the co-ordinates at each step of the elimination process with those of the 

previous step rather than with those of the original data, partly because we believe that 

this more closely monitors the selection process and partly because this has closer 

similarities with variable selection methods in regression. We also introduced the use 

of a scree-plot and a cumulative scree-plot in order to help identify the number of 

categories to delete (by looking for a change in slope each time a category is 

removed). These proved to be very successful tools and gave reason to believe that 

choosing the dimensionality that explains closest to 80% of the variation in the data 

(as suggested by Krzanowski) is often too stringent: two dimensions are often 

sufficient. One drawback of the scree-plot is that it may be non-monotonic when low 

numbers of dimensions are used in the procrustes calculations. However, the 

cumulative scree-plot overcomes this. We also proposed that the number of categories 

selected should be chosen independently of the dimensionality used in the calculations 

(which disagrees with Krzanowski), although it is clear that the higher the 

dimensionality used in the procrustes calculations, the fewer categories that can be 

deleted. We believe that the aim of category reduction methods is to identify several 

subsets of categories rather than one unique set - the all subsets approach is closest 

to this ideal. Making comparisons with Chapter Five we concluded that there is no 

relationship between the stability of a site and the first sites deleted in the backward 

elimination method and so we cannot use the results of one method to make inferences 

about the results of the other. We also explained that contingency table data do not 

always consist of grouping categories and observed characteristics as Krzanowski 

suggested: sometimes there are two sets of observed characteristics. 

Secondly, we introduced terminology for distinguishing between combining 

categories based on archaeological grounds as compared with on statistical grounds. 

Greenacre's method of clustering categories was applied and the results of this 

compared with merged categories as defined by an archaeologist. It was clear that for 
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some data sets the expertise of an archaeologist is required before any amalgamation 

is undertaken (and that some categories should never be combined). We also revealed 

that large numbers of zeroes in the data affect the deletion and clustering methods, 

partly because correspondence analysis requires non-zero row and column totals and 

partly because of the influence of zeroes on clustering methods (but not on the opinion 

of the archaeologist). In addition, we proposed using correspondence analysis to 

assess the effect of category division (which is based on external variables) and this 

was moderately successful. The relative merits of the various methods of category 

selection were also discussed and we reiterated that sometimes no selection method is 

appropriate because the given categories are essential in testing a particular hypothesis 

of the investigator. 

In this chapter, we developed a method to account for combining and deleting 

categories simultaneously and we compared clustering using Greenacre's method with 

a method based on procrustes analysis, which we introduced - both produced similar 

results. We also proposed using clustering methods in archaeology in order to assess 

the effects of misidentifying contexts when the stratigraphic method of excavation is 

used - the results showed that there are no serious consequences in terms of 

inferences based on the correspondence analysis map, if two neighbouring contexts 

are misidentified. After various methods of combining categories were implemented 

we used the methodology of Chapter Five and calculated the stability of and the 

influence of sample size on, these categories and compared the results with those 

obtained from the original categories. It appears that when the data consist of smaller 

numbers of categories, these categories are less stable. By making comparisons with 

the backward elimination scree-plot, it is clear that the stability of the categories 

increases as the slope of the plot rises; where the plot is flat, the stability of the 

categories remains fairly constant. 

FinaIly, jack-knifing was introduced as a means of detecting influential categories and 

proved to be a good technique for identifying which categories have a potentiaIly 

large influence on the ordination diagram. We suggested that the 'most influential' 

column category could be ascertained by looking for that column with the largest 

procrustes M2 at the first step of the backward elimination method (i.e. when each 

column is removed in turn and the corresponding row co-ordinates are compared with 
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those of the original data). This proved to be very successful. 
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Chapter Seven 

Variable Selection Methods and Biplots 

7.1 Introduction 

The theory of biplots was explained in Chapter Three and their application to flake 

debitage, flint tools and ceramic pots was illustrated. Chapter Three also collated 

information regarding the various forms ofbiplot, raised the issue of variable selection 

and explained the relationship between biplots and the more well known technique of 

principal component analysis. This chapter combines biplots with procrustes analysis, 

in order to investigate the importance and influence of variable selection when 

collecting and analysing data. Various methods of selecting variables are introduced 

and discussed and the influence of the dimensionality used in the calculations is 

considered. It is clear that there are different issues involved in variable selection for 

biplots as compared with principal component analysis and this is because biplots are 

nearly always displayed in two dimensions, whereas the number of principal 

components tends to be chosen objectively. 

The remainder of this section gives a general introduction to the idea of variable 

selection. Section 7.2 explains the variable selection methods in existence for 

principal component analysis and presents a critical review of a method introduced by 

Krzanowski (1987, 1996). A variation of Krzanowski's backward elimination method 

for principal component analysis is extended to biplots in 7.3 and reasons for its 

failing for some types of biplot are discussed. The scree-plot and cumulative scree-
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plot as aids to variable selection are also proposed in this section and the backward 

elimination method is compared with forward selection, stepwise and all subsets 

methods, in varying numbers of dimensions. Throughout this chapter, which is 

concluded in 7.4, the techniques are illustrated on two of the data sets presented in 

Chapter One and initially investigated in Chapter Three, i.e. the ceramic pots (1.2.5) 

and Simpson Desert flint tools (1.2.6). 

7.1.1 Selecting a Subset of Variables 

We saw in Chapter Three with the ceramic pots that it is common in archaeology for 

many variables to be measured on any given artefact and it is also known that these 

measurements can be time consuming to obtain. Additionally, some variables can 

dominate statistical analyses (as we saw with the coefficient of variation biplot in 

3.7.l.3) and mask the effects of other variables. There is, therefore, scope for 

developing variable selection methods for use with biplots in archaeology. When 

considering variable selection, ease of measurement of variables should also be borne 

in mind, partly because it is often not possible to take some measurements due to 

broken or chipped artefacts, but also because some measurements are time consuming 

to obtain, for example weighing artefacts. The focus of this chapter is on both 

developing and implementing existing and new methods of variable selection and on 

investigating the effects of these methods on the relationships between the remaining 

variables and on the structure of the observations. Jolliffe (1986) explains that when p, 

the number of variables observed is large, it is often the case that a subset of m 

variables, with m « p, will contain virtually all the information available in all p 

variables and thus time can be saved by measuring only m variables. 
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7.2 Variable Selection and Principal Component Analysis 

There are several variable selection methods in existence for use with principal 

component analysis. The main ones are due to Jolliffe (1972, 1973) and Krzanowski 

(1987) and these are explained below. 

7.2.1 The Work of Jolliffe (1972, 1973) 

Two of the first papers to consider variable selection in principal component analysis 

were those of Jolliffe (1972, 1973). Jolliffe commented that in multivariate analysis 

when a large number of variables, say 10 or more, are available, then the results are 

often little changed if a subset of the variables is used, with the remaining variables 

being considered to be redundant. Jolliffe also observed that variables are often 

present which complicate the data but which do not contribute any extra information 

and that time and money are also saved if some of the variables are discarded, 

computing time is reduced and in future analyses fewer variables need be measured. 

Jolliffe considered eight rejection methods of variable selection. Two of the principal 

component methods that he found to be most satisfactory are as follows: 

Method One: Carry out a principal component analysis on data matrix X (n x m). If q 

variables are to be retained, a variable is associated with each of the last 

(m-q) components. The last (m-q) components are considered 

consecutively. Starting with the last component, the variable that has 

the largest coefficient in the component is associated with it, as long as 

it has not already been associated with a previous component. These 

(m-q) variables are then rejected. 

Method Two: Carry out a principal component analysis on data matrix X (n x m). The 

first q components are considered successively, starting with the first 

and the variable with the largest coefficient on a component is 

associated with it as long as it not already associated with another 

component. These q variables are retained and the remaining (m-q) 

rejected. 
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We should be aware that both the above methods require q to be chosen subjectively. 

7.2.2 The Work of Krzanowski (1987, 1996) 

Krzanowski (1987) observed that all the variable selection criteria in existence were 

concerned with overall features, either of the subset data (McCabe, 1984), or of the 

complete data (Jolliffe, 1972, 1973). Thus, he considered the criteria to be based 

exclusively on variance-covariance or correlation matrices and their eigenvalues or 

eigenvectors. Krzanowski therefore suggested that a more appropriate criterion for 

preserving structure among observations would be one that involved some direct 

comparisons between the individual points of the subset configuration and the 

corresponding points of the complete data configuration and he suggested making use 

of procrustes analysis for this (see 6.3). We describe and discuss his method below, 

using the following notation, which is taken from Krzanowski (1987): 

Let X (n x m) = data matrix of m variables measured on n units, column 

standardised to zero mean and unit variance; 

Y (n x k) = matrix of principal component scores (where k < m), yielding the 

best k-dimensional approximation to the original data configuration; 

Z (n x k) = matrix of principal component scores of the reduced data, which 

contains only q selected variables. 

Having defined these matrices, we view Y as the 'true' configuration and Z as the 

corresponding approximate configuration based on a subset of q variables (we must 

ensure that sufficient data variability has been explained in the k dimensions). These 

configurations are then compared using procrustes analysis, which involves finding 

the sum of squared differences between corresponding points of the two 

configurations after they have been matched as well as possible under translation, 

rotation and reflection. The residual sum of squares, M2, then measures the loss of 

information about the data structure when only q variables are used, instead of all p 

variables. The 'best' subset of q variables is the subset that yields the smallest M2 

among all q-variable subsets. However, as with Jolliffe's methods, q needs to be 

chosen subjectively. Krzanowski suggests choosing the dimensionality of the data, k, 
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by either usmg the cross-validatory techniques of Wold (1978) or Eastment & 

Krzanowski (1982), or by convenience (e.g. because the data will be displayed in two 

dimensions). However, in the latter case, care must be taken to ensure that sufficient 

data variability has been accounted for in the chosen dimensions. 

We question whether the 'true' co-ordinates, which act as the reference set in this 

method, are the most appropriate co-ordinates to use. In Krzanowski (1987), each time 

a variable is deleted the resulting co-ordinates are always compared with the original 

set. However, we are not convinced that this is the most sensible approach, because it 

differs to the analogous procedures in backward elimination and stepwise regression. 

With these methods, each time a variable is deleted an F-statistic is computed based 

on a comparison with the previous step, rather than with the original data. We believe 

that there are arguments in favour of both methods and we illustrate both of these on 

different data sets in Section 7.3. 

7.2.2.1 A Stopping Rule for Structure-Preserving Variable Selection 

Previously, when using variable selection methods, a subjective decision had to be 

made on how many variables to retain. Krzanowski (1996) introduced some 

objectivity into the process by providing a stopping rule for the backward elimination 

method, based on the procrustes residual sum of squares, Mj2, when i variables have 

been removed. He considered a stepwise method to be too time consuming in the case 

of large numbers of variables (which are often present in archaeology), although we 

consider this possibility for the flint tools in 7.3.2.7. 

If we measure m variables on each of n observations and we are interested in k 

dimensions, then Krzanowski (1996) claims that the procrustes residual sum of 

squares in the backward elimination process, M?, when i variables have been removed 

will, if the omitted variables are not structure-carrying, approximately follow a 

(1 + C
2)cr2y} distribution, where r= nk _1. k(k + 1) and c = ~( m - i - k) / (m - k). If 

2 

some of the omitted variables are structure-carrying, then the residual sum of squares 

will be inflated and we continue deleting variables until the calculated Mj2 exceeds 
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some critical value. However, (32 is unknown and so in practice we will need to 

replace it by an estimate from the data. Krzanowski suggests that a suitable estimate is 

given by: 

where d = (n-k-l)(m-k) is the number of degrees of freedom left after fitting k 

principal components and UitStVtj are the elements from the singular value 

decomposition of matrix X. The critical value chosen is a suitable percentage point of 

the relevant X2 distribution, although interpretation of the 'significance level' is 

complicated by the sequence of repeated 'tests'. Krzanowski (1996) briefly discusses 

this issue and suggests relaxing the probability levels (i.e. reducing the percentage 

point) when setting the critical values. 

We question whether a formal test is necessary because we believe that there may well 

be several combinations of variables that are able to distinguish between groups of 

observations, rather than one 'unique' combination. If this is true then we can use 

other information (e.g. ease of measurement) to select which combination to use. 

Additionally, it may be the case that one variable cannot be obtained in a particular 

study and so to know of other alternative subsets of variables that retain group 

structure amongst the observations could prove to be important. 

7.2.2.2 Choice of Dimensionality 

The choice of dimensionality influences both Mi2 and the percentage point obtained 

from the chi-squared distribution and so it is important to investigate how this 

influences the variables selected. However, this must be balanced against the visually 

appealing nature of two-dimensional displays. Krzanowski (1996) says that 

underestimation of the dimensionality k means that cr 2 will be too large, which will 

produce critical values that are too large and hence too few variables may be retained 

as 'important'. However, he goes on to say that the additional deletions will be the 

more marginal ones and that the most important variables should not be missed. 

Krzanowski also believes that overestimation of k will produce a slightly smaller a 2 
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and that the final results should not be greatly affected. In our examples in this chapter 

we consider two-dimensional and three-dimensional space. 
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7.3 Variable Selection and Biplots 

Given the close relationship between principal component analysis and the principal 

component biplot (see Section 3.10.1), we extend Krzanowski's method of variable 

selection to this form of biplot and also to the covariance, correlation, coefficient of 

variation and Spearman rank correlation biplots. We showed in Chapter Three that 

biplots are more useful than principal component analysis for exploratory analysis 

because they enable us to display both observations and variables simultaneously. If 

we wish to use a biplot for our analysis, then we believe that it is more sensible to use 

it in the variable selection process as well. 

In archaeology, variables are often measured on artefacts with the aim of detecting 

and discriminating between two or more groups (Barton, pers. comm.) and thus we 

consider Krzanowski's method to be more suitable for reducing the number of 

variables measured than previous methods, because it is based on comparisons 

between individual observations. However, if we wish to analyse our data using a 

biplot rather than principal component analysis (for which the method was 

developed), then it is important to consider whether this method is still reliable. We 

test this method of variable selection on the observation (row) co-ordinates from the 

covariance, correlation, coefficient of variation, Spearman rank correlation and 

principal component biplots, because these correspond to the scores in a principal 

component analysis. We do this for both the ceramic pots and the Simpson Desert flint 

tools because, as we saw in Chapter Three, we expect groups to exist in both cases. 

We also consider these data to be typical of archaeological studies (pottery and flint 

are the most common artefacts found) and so there is reason to believe that any 

inferences can be applied more generally. 

7.3.1 Application to Ceramic Pots 

In this section we introduce a variation of Krzanowski's backward elimination method 

and apply it to the ceramic pots, which were described in 1.2.5. We recall that the data 

consist of 13 measurements taken on each of 30 ceramic pots, made by three potters. 
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7.3.1.1 Backward Elimination using Critical Values (Two Dimensions) 

We assume a two-dimensional representation, a 5% significance level and apply an 

adaption of Krzanowski's backward elimination method of variable selection. Rather 

than comparing the co-ordinates at each step of the elimination process with those 

obtained from the original data, we propose comparing them with those from the 

previous step, although we still remove the variable which results in the lowest M? at 

each step. This means, however, that using the critical values from Krzanowski (1996) 

may not be strictly appropriate, but we use them as an initial guide. We choose to vary 

the reference set of co-ordinates at each step of the elimination process because we 

believe that this is the best way of monitoring the process. Table 7.1 lists the order in 

which the variables were deleted for each form of biplot (explanations of the 

measurements corresponding to each number are given in Chapter One). We recall, 

from Chapter Three, that over 69% of the variation in the data is explained in the first 

two dimensions, for all forms ofbiplot. 

Table 7.1 Krzanowski's Method of Variable Selection for the Ceramic Pots (Two 
Dimensions) 

Biplot Order in which Variables Deleted Variables Retained 

Covariance 1311124810926 1357 

Correlation 3 6 74 5 12 2 11 10 13 1 89 

Coefficient of Variation 762395 8 1 4 10 11 12 13 

Spearman Rank 811101313974212 56 

Principal Component 11 2 3 13 6 9 5 4 8 1 12 7 10 

We see from the table that the coefficient of variation biplot removes 11 variables, 

although this is the form of biplot that did not show any obvious pot groupings when 

all 13 variables were used (see Figure 3.4). For the correlation, principal component 

and Spearman rank correlation biplots 11 variables are also deleted (algebraically we 

cannot remove more than 11), although these are different in each case. The 

covariance biplot deletes nine variables. The reason why different variables were 

deleted in each case is because of the different pre-scaling used in each type of biplot 

(see 3.4 and 3.5) - each form of biplot is important in different situations and 
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measures different aspects of the data. However, because this is a comparative study, 

we have applied variable selection to five types of biplot, but this would not usually be 

acceptable. 

We now compare the biplots which use only the variables retained after the backward 

elimination procedure, with those biplots obtained from using all the variables 

(illustrated in Chapter Three), in order to assess whether it is possible to employ this 

method of variable selection with this type of data and still retain pot groupings where 

these exist (e.g. no groupings occurred in the coefficient of variation biplot, so we 

should not really be surprised if none occur using fewer numbers of variables). Figure 

7.1 illustrates the covariance biplot and we see that there is a very good separation 

between one group of pots, on the bottom left and the remaining pots, with the other 

two groups being reasonably separated from each other (those below the vector 

representing variable 5 form one group corresponding to one potter and those above 

form another group). 
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Figure 7.1 Covariance Biplot of Ceramic Pots (Backward Elimination) 

Comparing the above figure with the covariance biplot that used all l3 variables 

(Figure 3.2), the separation of pots into three groups in Figure 7.1 is poor and so the 

backward elimination method has not selected appropriate variables. This could be 
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either because the critical values are wrongly set, because comparing the co-ordinates 

with those of the previous step is inappropriate, or because the method itself is not 

very good at selecting variables for biplots (recall that it was originally introduced for 

principal component analysis). 

We now tum to the correlation biplot in Figure 7.2, which shows that it is not possible 

to distinguish three groups of pots using only variables 8 and 9 (diameter at point of 

angle and external diameter of footring at base, respectively). Figure 3.3 illustrates a 

much better division of pots into groups, using all 13 variables. 
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Figure 7.2 Correlation Biplot of Ceramic Pots (Backward Elimination) 

The coefficient of variation biplot was also obtained but it is still not possible to 

distinguish between three groups of pots in this figure, using variables 12 and 13 

(thickness of wall at 2cm from base and thickness of lip respectively), although it is no 

worse than Figure 3.4 which used all 13 variables. 

The Spearman rank correlation biplot (not shown) indicates that it is no longer 

possible to separate out the three groups of pots when using just variables 5 and 6 

(internal diameter at lip and overall height respectively), although one group of pots is 
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fairly well separated from the remainder. Figure 3.5, which used all the variables, 

provides a better separation of pots into groups. 

The principal component biplot is illustrated in Figure 7.3 and this produces a 

separation of the three groups of pots which is nearly as good as that obtained using 

all 13 variables (see Figure 3.6), although there is an unusual observation at the top of 

the picture which belongs to the group on the middle left. 
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Figure 7.3 Principal Component Biplot of Ceramic Pots (Backward Elimination) 

Because the row co-ordinates (pots) are the same as the scores in principal component 

analysis, which is what the technique was originally developed for and because the 

principal component biplot is the only biplot to produce as good a group separation of 

pots after variable selection, we believe that Krzanowski's technique may need some 

adaption for the other biplots. 
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7.3.1.2 Reasons for the Breakdown of the Backward Elimination Technique 

In this section we suggest four reasons for the breakdown of the backward elimination 

technique. 

[1] We propose that one reason why the technique does not work well on biplots 

from the Correlation Biplot Family could be due to the nature of the row and 

column factorisation. In this family the inter-row distances are poorly 

represented (see 3.6.3) and thus it is possible that these biplots are unable to 

separate out the distances between observation groups appropriately (recall 

that the procrustes criterion is based purely on observation differences). In the 

principal component biplot, however, the inter-row differences are well 

represented. When all 13 variables were used in Chapter Three, all biplots 

except the coefficient of variation biplot were able to identify three groups of 

pots, which could suggest that the procrustes method itself is flawed as a 

means of selecting variables. 

[2] It is possible that the critical values are inappropriate because we are 

comparing each set of co-ordinates with those obtained from the previous step 

in the backward elimination procedure, whereas Krzanowski (1987) uses the 

original co-ordinates as the reference set. 

[3] The critical values may be wrongly set and so too few variables are retained in 

biplots of the Correlation Biplot Family. This problem can be overcome by 

altering the critical values, or by using a scree-plot or cumulative scree-plot 

that we introduce in 7.3.1.3. 

[4] It is possible that two dimensions are insufficient in this variable selection 

problem, although they were sufficient when all 13 variables were used in 

Chapter Three. 

We discuss points [3] and [4] in more detail below. However, we believe that the 

principle of comparing row points (observations) using procrustes analysis is just as 

applicable to biplots as it is to principal component analysis. Bearing in mind 
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Krzanowski's comments on variable selection in 7.2.2.1, we re-evaluate the critical 

points for all the biplots using the 10% significance level. However, it turns out that 

the variable selection remains the same in all cases, although this may be because we 

compared the co-ordinates with those of the previous step. 

7.3.1.3 The 'Scree-plot' and 'Cumulative Scree-plot' (Two Dimensions) 

We believe that the critical values against which the procrustes M?s are compared are 

an initial guide to selecting variables, but that they need fine-tuning and so we 

introduce a scree-plot and cumulative scree-plot as alternatives, which may be more 

informative (although less formal). These operate on a similar basis to the scree-plots 

used in principal component analysis to choose dimensionality and so we stop deleting 

variables at the point where there is a 'kink' in the graph. On the vertical axis we plot 

the values ofMj2 at each elimination step (or the cumulative sum of the M? across the 

steps) and the corresponding variables deleted at each step are shown on the 

horizontal axis. We can allow for the possibility that no variables are deleted by 

including Mj2 = O. Making an analogy with Jolliffe (1986), we also investigate using 

log (Mj2), but this does not give good results. Figure 7.4 illustrates the scree-plot for 

the covariance biplot after using our adaption of the backward elimination method . 
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Figure 7.4 Scree-plot for the Ceramic Pots (Covariance Biplot: Two Dimensions) 

It is evident from the above figure that there is clearly an anomaly at the point where 
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variable 6 is deleted (step 9) and this means that the plot is not monotonically 

increasing. If we think of the vertical axis as a goodness of fit measure with the 

bottom being the best fit (i.e. all variables included, M? = 0) and the top the worst fit, 

then this plot is effectively saying that deleting variable 6 as well as the previous eight 

variables improves the fit. This is clearly inappropriate unless we believe that variable 

6 is masking the effects of other variables. Examining the scree-plot for the correlation 

biplot also indicates an anomaly at step 9, i.e. the plot is non-monotonic, but this time 

it is when variable lOis deleted. 

We believe that one possible explanation for these anomalies could be that the scaling 

on M? is inappropriate; another explanation could be that the dimensionality is not 

sufficiently high: these are effects that would be missed if we just used Krzanowski's 

critical values with a chosen dimensionality. The scree-plots for the coefficient of 

variation and Spearman rank correlation biplots (not illustrated) also show that 

something anomalous occurs at step 9 and for the former biplot also at step 4. If, 

instead, we use a cumulative scree-plot (i.e. we sum the values of Mi2 cumulatively 

across the steps) then we obtain, for the covariance biplot, Figure 7.5 . 
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Figure 7.5 Cumulative Scree-plot for the Ceramic Pots 

(Covariance Biplot: Two Dimensions) 

From the above figure we stop deleting variables either after variable 9, or after 

variable 6 and so the cumulative plot has allowed us to make a decision on the number 
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of variables to retain, where the scree-plot could not. Considering the principal 

component biplot, we see that the scree-plot is monotonically increasing and we delete 

eight variables because it is at this point that the M? increases considerably (but, if we 

include Mi2 = 0 in the plot, then no variables are deleted). The principal component 

biplot on the remaining five variables is shown in Figure 7.6. 
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Figure 7.6 Principal Component Biplot of Ceramic Pots (Backward Elimination) 

We see from the above figure that retaining five variables has not improved the 

separation of pot groups over that obtained by retaining just two variables (Figure 7.3) 

and the group separation is considerably worse than when all 13 variables are included 

(Figure 3.6). It therefore appears that in the two-dimensional case Krzanowski's 

critical values perform better than the scree-plot and cumulative scree-plot in terms of 

choosing variables for the principal component biplot. This is not the case for the 

other forms of biplot. 
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7.3.1.4 Backward Elimination using Critical Values (Three Dimensions) 

In this section we apply, for comparative purposes, the backward elimination method 

using three dimensions (rather than two). We use a 5% significance level, compare the 

co-ordinates with those of the previous step and display the plots in two dimensions. 

Table 7.2 indicates the variables retained for each form of biplot and these can be 

compared with those in Table 7.1. 

Table 7.2 Krzanowski's Method of Variable Selection for the Ceramic Pots 
(Three Dimensions) 

Biplot Order in which Variables Deleted Variables Retained 

Covariance 131112461089 12357 

Correlation 653108141272 9 11 13 

Coefficient of Variation 64298711053 11 12 13 

Spearman Rank Correlation 8 3 1 9 6 4 5 12 2 7 101113 

Principal Component 861031745122 9 11 13 

From Table 7.2 it is evident that one more variable is included in all forms of biplot 

when three dimensions are used in the selection process, compared with when two 

dimensions are used. We believe that this is most likely to be a direct result of the 

dimensionality because, by definition, the least number of variables that we can retain 

in a two-dimensional plot is two and in a three-dimensional plot is three. We also 

believe that the most likely explanation for this 'dimensionality effect' is that the 

critical values are not appropriate. Critical values were introduced by Krzanowski 

(1996) to give some formality to the selection process, but they do not appear to be 

satisfactory for the various forms of biplot and we dispute whether they are useful in 

problems such as these. 

Using the variables retained in Table 7.2, none of the biplots show any improvement 

in separation of pots into groups compared with those obtained from two dimensions 

and all plots are worse than when all 13 variables were used. In summary, 

Krzanowski's backward elimination method is no more successful when three 

dimensions are used in the selection process, compared to when two dimensions are 
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used. 

7.3.1.5 The 'Scree-plot' and 'Cumulative Scree-plot' (Three Dimensions) 

In this section, as in Section 7.3.1.3, we examine the scree-plot and cumulative scree

plot as alternatives to using the critical points ofKrzanowski (1996), but this time we 

use three dimensions in the procrustes calculations. The scree-plot for the covariance 

biplot is illustrated in Figure 7.7 and we see that it is monotonically increasing. 

However, it is not convex and there are two possible reasons for this. Firstly, whilst 

deleting variables worsens the fit in terms of the M?, there is no reason why the 

deletion of each subsequent variable should reduce the fit more than the previously 

deleted variable. Secondly, the non-convexity could be because the dimensionality 

used in the calculations is too low. It appears from the plot that eight variables should 

be deleted, because it is at this point that the kink in the graph occurs and in fact this 

agrees with the number of variables deleted using Krzanowski's critical values. 

However, the resulting pot groupings are not real1y satisfactory and we know from 

Figure 3.2 that when al1 13 variables are used it is possible to distinguish between 

three pot groups. 
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Figure 7.7 Scree-plot for the Ceramic Pots (Covariance Biplot: Three 

Dimensions) 

Considering the correlation biplot, the resulting scree-plot IS also monotonically 
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increasing and we would again delete eight variables, whereas using Krzanowski's 

critical values we deleted ten variables. Deleting these eight variables and producing a 

biplot provides a slightly better distinction between pot groups than that which we 

obtained from using critical values, although it is not as good as Figure 3.3 where all 

13 variables are used. The scree-plot for the coefficient of variation biplot is still not 

monotonically increasing (- we could use the cumulative scree-plot), but the scree

plot for the Spearman rank correlation biplot (not shown) indicates that we should 

delete seven variables (which corresponds to the 10 deleted using the critical values of 

Krzanowski). A biplot carried out on the remaining six variables is illustrated in 

Figure 7.8 and similar pot groupings are shown to those obtained using two variables 

in two dimensions, although again information on pot groupings has been lost from 

when all 13 variables are used. 
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Figure 7.8 Spearman Rank Correlation Biplot of Ceramic Pots 

(Backward Elimination) 

Even though the scree-plot for the principal component biplot is monotonically 

increasing in two dimensions, it is not monotonically increasing in three dimensions 

(not shown). This is an important discovery because if we had believed that a 

monotonically increasing plot implied adequate dimensionality for variable selection 
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then we would not have considered three dimensions (although it could be argued that 

we should stop considering higher dimensionality when we obtain a monotonically 

increasing plot and bear in mind that we are going to display the resulting plots in two 

dimensions regardless. However, we could plot first and third components, say, rather 

than just first and second). The non-monotonicity of the principal component scree

plot could be due to comparing the co-ordinates at each step of the backward 

elimination process with those of the previous step, rather than with the original co

ordinates. It therefore seems that either an alternative method of choosing 

dimensionality is required, or an alternative method of variable selection is needed 

(i.e. not backward elimination, or not the procrustes statistic). Figure 7.9 shows the 

cumulative scree-plot obtained when three dimensions are used in the calculations. By 

looking at the change in slope of the plot, we stop deleting variables after variable 12 . 
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Figure 7.9 Cumulative Scree-plot for the Ceramic Pots 

(Principal Component Biplot: Three Dimensions) 

When all the above work is repeated using the original co-ordinates as a reference and 

using three dimensions, monotonically increasing plots are obtained for all forms of 

biplot except the coefficient of variation biplot. However, the resulting biplots show 

no improvement in separating the pots into three groups. Eastment & Krzanowski 

(1982) suggest a cross-validation approach for choosing dimensionality, but this is too 

time consuming in practice and we believe it is too technical for the archaeologist to 

use unaided. 
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7.3.1.6 Summary of Ceramic Pots 

Variable selection procedures can take the form of backward elimination, forward 

selection, all subsets and stepwise regression, but for the ceramic pots we only 

considered the first of these (the others are discussed in the next section for the flint 

tool data). Within the backward elimination framework, procrustes residual sums of 

squares (Mi2) were used as discussed in Krzanowski (1987, 1996), in order to decide 

on which variable to delete at each step of the process. Krzanowski (1987) used the 

original co-ordinates as reference co-ordinates, but we suggested, by making an 

analogy with backward elimination and stepwise regression, that the co-ordinates at 

each step of the process should be compared with those obtained in the previous 

elimination step. Both methods have advantages and disadvantages. Krzanowski 

(1996) introduced critical values as a stopping criterion, with which the procrustes 

statistic at each step should be compared and we applied these, although we are not 

convinced of the need for formal testing. This is because we believe that we are 

looking for any subset of the variables that preserves the data structure, of which there 

could be many, rather than one unique set of variables. 

We recall from Chapter One that the main objective of analysing the ceramic pot data 

was to see whether it is possible to identify three groups of pots, each corresponding 

to a difTerent potter, on the basis of the available measurements. A second objective 

was to investigate whether any groupings were altered by the elimination of some 

variables. Using two dimensions and applying Krzanowski's critical values to select 

variables, none of the biplots produced as good a separation of pots into groups as 

were obtained in Chapter Three using all 13 variables. We proposed several reasons as 

to the causes of this and introduced a scree-plot and cumulative scree-plot as methods 

of helping us to select variables. In two dimensions only the principal component 

biplot produced a monotonically increasing scree-plot, but the group separation of 

pots was still worse than that obtained using 13 variables. Three dimensions were then 

used in our variable selection procedure and more variables are retained using the 

critical values of Krzanowski than are retained in two dimensions for every form of 

biplot. IIowever, the resulting biplots show no improvement on those obtained using 

two dimensions. Scree-plots were again used, making use of three dimensions, but the 

resulting biplots based on the variables selected from these plots are still considerably 
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worse than when all 13 variables are used and the scree-plot for the principal 

component biplot is no longer monotonically increasing. Cumulative scree-plots are 

monotonically increasing and so we believe that these are more helpful in the 

selection process. 

For these ceramic pot data backward elimination methods were not able to select 

appropriate variables to distinguish between the pot groups which we know exist from 

Chapter Three. Comparing co-ordinates at each step of the process with the original 

set, rather than with those obtained at the previous step, still does not improve the 

separation of pot groups. 

7.3.2 Application to Simpson Desert Flint Tools 

In this section we use the flint tool data described in 1.2.6 in order to investigate the 

backward elimination method of variable selection, using both critical values from 

Krzanowski (1996) and scree-plots. We also introduce forward selection, all subsets 

and stepwise methods. 

7.3.2.1 Backward Elimination using Critical Values (Two Dimensions) 

Using the methodology of7.2.2, we apply backward elimination procrustes analysis to 

the row co-ordinates obtained from the correlation biplot, coefficient of variation 

biplot, Spearman rank correlation biplot and principal component biplot. Because of 

differences in the units of measurement between the variables, the covariance biplot is 

not considered suitable. Assuming a two-dimensional representation and a 5% 

significance level, Table 7.3 indicates the order in which the variables are deleted for 

each biplot. For these data we compare the co-ordinates obtained at each step with 

those obtained from the full (original) data set. The measurements that correspond to 

the codes 1-6 are listed in Section 1.2.6. 
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Table 7.3 Krzanowski's Method of Variable Selection for the Simpson Desert 
Flint Tools (Two Dimensions) 

Biplot Order in which Variables Deleted Variables Retained 

Correlation None Deleted 123456 

Coefficient of Variation None Deleted 123456 

Spearman Rank Correlation 645 123 

Principal Component 354 126 

We see from the above table that all the variables are retained for the correlation and 

coefficient of variation biplots, but that three variables are deleted for the Spearman 

rank correlation and principal component biplots, although these are different in each 

case. By implementing the Spearman rank correlation and principal component biplots 

on the variables retained we can investigate whether any grouping of flint tools occurs 

and we can compare these groupings with those in the biplots obtained from using all 

the original six variables. The grouping obtained from the Spearman rank correlation 

biplot (not shown) is very similar to that obtained when the original six variables are 

used (Figure 3.9). Figure 7.10 illustrates the principal component biplot, where tools 

from site 08 are represented by circles (0) and tools from site 09 are represented by 

crosses (x); it appears that removing three variables (thickness, platform width, 

platform thickness) does not alter the tool groupings very much (compared with 

Figure 3.10). Thus, the backward elimination method has selected adequate variables 

for these two forms of biplot. 
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Figure 7.10 Principal omponent Biplot of Simpson Desert Flint Tools 

(Backward Elimination) 

7.3.2.2 Backward Iimination using the cree-plot (Two Dimensions) 

In Section 7.3.1.3 we introduced the cree-plot and cumulative scree-plot as possible 

alternative t u ing Krzan w ki critical value in variable selection problems. This 

section applie the cr e-pl t to the variou form of biplot for the Simpson Desert 

flint t oJ. igure 7.11 il1u trat the cree-plot for the correlation biplot and this 

uggest that we h uld delete thr e variable (thickness, platform thickness and 

width), which c ntra t with n ne deleted when u jng Krzanowski's critical values. A 

biplot on thi r duc d num r f variabl i iJlu trated in Figure 7.12. 
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A scree-plot for the coefficient of variation biplot shows that we should delete two 

variables in contrast to none deleted using Krzanowski's critical values. The resulting 

biplot is as good as Figure 3.8 in terms of separation of tools and so again a scree-plot 

has proven useful. We also delete two variables for the Spearman rank correlation 

biplot based on the scree-plots, rather than three using critical values. The resulting 

biplot is as good at separating tool sites as Figure 3.9. Using the scree-plot for the 

principal component biplot we would probably delete three variables, which agrees 

with those deleted using the critical values ofKrzanowski (1996). 

In summary, all the scree-plots are monotonically increasing in two dimensions and 

the separation of tools into groups is as good when using the reduced numbers of 

variables as it is with all the original six variables and so we do not believe that it is 

necessary to consider higher dimensionality at this stage. The scree-plot was useful 

here because it enabled us to reduce the number of variables measured for the 

correlation and coefficient of variation biplots whilst still retaining tool groups, 

whereas Krzanowski's criteria did not select any variables. We now introduce the 

methodology of other methods of variable selection. 

7.3.2.3 The 'All Subsets' Approach (Two Dimensions) 

In this section we introduce and discuss the 'all subsets' approach to variable 

selection, by which we mean that the observation co-ordinates obtained from every 

combination of two or more variables are compared with the original co-ordinates and 

we choose that combination with the smallest M/, where j variables are included. 

Because, in 7.3.2.1, the stopping criterion of Krzanowski (1996) suggested that three 

variables should be retained for the Spearman rank correlation and principal 

component biplots, we examine M/ for each combination of three variables (20 

combinations in total), to see whether this produces the same three variables as the 

backward elimination algorithm. We call this the 'all subsets' approach. However, 

because we only have six variables we could use the all subsets method on each 

possible combination of variables (56 combinations in total). Table 7.4 lists the 

variables which are retained under both the backward elimination and the 

corresponding all subsets approaches (where ---- indicates not appropriate), using both 

critical values and scree-plots. 
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Table 7.4 Variables Retained in the Backward Elimination and All Subsets 
Methods of Variable Selection for the Simpson Desert Flint Tools 

Biplot Backward Elimination All Subsets Backward Elimination All Subsets 

(Knanowski) (scree-plot) 

Correlation 123456 ---- 146 146 

Coefficient of Variation 123456 ---- 1345 1345 

Spearman Rank Correlation 123 134 123 5 1345 

Principal Component 126 146 126 146 

It is clear from the first two rows of the table that the variables retained under 

backward elimination using the scree-plot and under the corresponding all subsets 

method, agree for the correlation and coefficient of variation biplots. However, from 

rows three and four we see that different variables are retained under the all subsets 

and backward elimination approaches using critical values and that different variables 

are retained using a backward elimination scree-plot as compared with an all subsets 

approach, for both the Spearman rank correlation and the principal component biplots. 

We are now interested in obtaining biplots based on the variables retained in the all 

subsets approach and comparing these with the biplots resulting from the backward 

elimination method (using both Krzanowski's critical values and scree-plots) and, 

more importantly, with the original biplots of Chapter Three. 

Figure 7.13 illustrates the Spearman rank correlation biplot for the all subsets 

approach and it is evident that it has very si mi lar tool groupings to that of Figure 3.9 

(six variables). Because the scree-plot retains more variables than Krzanowski's 

critical values, but the biplots on three variables are adequate, it is not worth 

considering four-variable biplots. However, a comparison of the M/s obtained from 

applying all subsets with three variables, with the M/s obtained from all subsets with 

four variables is useful, as we will see below. 
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Figure 7.13 Spearman Rank Correlation Biplot of Simpson Desert Flint Tools 

(All Sub ets) 

For the principal component biplot (not shown), there is little difference between the 

tool grouping and igure 3.10 the original biplot). We believe that it is probably 

because the data contain 0 much noise that there is little visual difference between 

tool separation for any subset of three variables or more. The M/ statistics are 

calculated for the different forms of biplot, for three and four variable subsets, so that 

we can identi fy h w cl the eh ice i between different subsets. For both the three 

variable ubset corr lation, parman rank correlation and principal component 

biplots) and, separately, the four variable sub ets (coefficient of variation and 

Spearman rank correlation biplot ), the choice i clear-cut. Because the separation of 

tool group is a good with three variable a it is with four or six, we consider pairs 

of variables and the pair with the malle t Mi2 is listed in Table 7.5. 
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Table 7.5 M/ Statistics for the Simpson Desert Flint Tools: All Subsets Approach 

Biplot Variables Retained Ml 
Correlation 1 2 0.304 

Coefficient of Variation 1 2 0.301 

Spearman Rank 46 0.217 

Principal Component 1 2 1.298 

For the correlation and Spearman rank correlation biplots the M/ values from the best 

subset of two variables are considerably larger than those for the corresponding best 

three variable and four variable subsets, indicating that pairs of variables do not need 

to be considered. However, for the coefficient of variation biplot the M/ for the best 

two variable subset is smaller than that of the best four variable subset, albeit only 

slightly. The resulting biplot of these two variables provides a good distinction of tool 

groups, which is as good as that obtained from using all six variables. 

7.3.2.4 Forward Selection (Two Dimensions) 

Having implemented backward elimination and all subsets approaches to variable 

selection, we consider how these compare with forward selection. We propose two 

possible methods and these are described below. 

Method One: Comparing Co-ordinates with those of the Previous Step 

In this method the co-ordinates obtained at each step of the selection process are 

compared with those of the previous step. The first step is to consider all combinations 

of two variables. The combination with the smallest M/ is chosen (where M/ is the 

procrustes statistic for j variables included), where this gives the smallest difference 

between the subset and the full set of variables. Next, each remaining variable is 

added in turn to this pair of variables and the combination of three variables with the 

largest M/ when compared with the pair of variables is chosen. Each remaining 

variable is added in turn and the process continues until all six variables are included. 

In order to implement forward selection we need to start with pairs of variables. This 

is in contrast to linear regression where we can obtain a measure of fit for each 

variable separately. 
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Method Two: Comparing Co-ordinates with the Original Co-ordinates 

In this method the co-ordinates obtained at each step of the selection process are 

compared with the original co-ordinates. The first step is to consider all combinations 

of two variables. The combination with the smallest M/ is chosen (where M/ is the 

procrustes statistic for j variables included), where this gives the smallest difference 

between the subset and the full set of variables. Next, each variable is added to this 

pair in turn and the set with the smallest M/ as compared with the original six 

variables is chosen. Variables are added one by one and the variable with the smallest 

M/ is chosen each time. 

7.3.2.5 Forward Selection using the Scree-plot (Two Dimensions) 

In this section we use the scree-plot to assess which variables should be retained for 

the flint tool data. We can include M/ = 0 in the plot, which occurs when all variables 

are selected, in order to allow for the possibility that five out of the six variables are 

needed. However, the point at which we stop including variables differs from that of 

the backward elimination procedure - we are looking for a substantial fall in M/ in 

return for the inclusion of just one more variable. The scree-plot for the Spearman 

rank correlation biplot suggests that three variables should be selected and a biplot on 

these three variables (not illustrated) shows a similar division of tools into groups to 

that in Figure 3.9. 

Figures 7.14 and 7.15 illustrate scree-plots for the principal component biplot, using 

methods one and two respectively. Based on these plots we would select three and 

four variables respectively. The principal component biplots of these selected 

variables are produced in Figures 7.16 and 7.17; both give as good a separation of 

tools into groups as was obtained using all six variables in Figure 3.10. 
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Figure 7.14 Scree-plot for the Simpson Desert Flint Tools 

(Principal Component Biplot: Method One) 
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Figure 7.1S Scree-plot for the Simpson Desert Flint Tools 

(Principal Component Biplot: Method Two) 
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Figure 7.16 Principal Component Biplot of Simpson Desert Flint Tools 

(Method One) 
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Figure 7.17 Principal Component BipJot of Simpson Desert Flint Tools 

(Method Two) 

The variables retained based on the scree-plots for method one, for all types of biplot 
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are listed in the following table. The spaces between the variables indicate which pair 

of variables is selected first (---- indicates a non-monotonic plot and so it is not 

possible to choose any variables). 

Table 7.6 Forward Selection for the Simpson Desert Flint Tools (Method One) 

Biplot Order in which Variables Selected Variables Retained 

Correlation 1 2 5436 1254 

Coefficient of Variation 12 5643 1256 

Spearman Rank Correlation 1 6 5243 

Principal Component 46 1523 146 

7.3.2.6 Forward Selection using the Scree-plot (Three Dimensions) 

If we begin the forward selection process by selecting two variables then it is not 

possible to use three dimensions in the M/ calculations at this first step. We can, 

therefore, either use two dimensions for considering all pairs of variables at the first 

step and three dimensions for subsequent steps, or we can begin the forward selection 

process by choosing three variables (and not allow for the possibility of selecting only 

two). We implement the first option in this section, but for the correlation biplot the 

scree-plot is non-monotonic and this could be directly related to this decision. We can, 

however, look at the cumulative scree-plot. 

A scree-plot for the coefficient of variation biplot indicates that we should select 

variables length, platform width and platform thickness. The resulting biplot is shown 

in Figure 7.18 and produces a similar tool group division to that in Figure 3.8. 
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Figure 7.18 Coefficient of Variation Biplot of Simpson Desert Flint Tools 

(Forward Selection) 

7.3.2.7 The Stepwise Approach (Two Dimensions) 

In this section we suggest combining the forward selection and backward elimination 

methods to form a stepwise approach to variable selection which works as follows. 

The first step is to consider all combinations of two variables and calculate M/ (where 

j is the number of variables included) by comparing the corresponding row co

ordinates with those of the original data, for each pair. The combination of variables 

with the smallest M/ is chosen, providing this is greater than a threshold value. Next, 

each remaining variable is added in turn to this pair of variables and the combination 

of three variables with the largest M/ is chosen, when compared with this pair, 

provided that this is greater than the threshold value. If no combination of three 

variables is greater than the threshold value then we stop the procedure with the pair 

of variables. The third step is to delete each of the variables in turn (except the one 

most recently added) and choose the smallest M? (where i variables are deleted). If 

Mj2 is smaller than the threshold value then we remove the variable that was deleted, 

but otherwise we retain it. The fourth step is to add in each of the remaining variables 

(provided that they have not just been deleted in the third step) and compare M/ with 

a threshold value. This process continues until no further variables have an M/ large 
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enough to be added, or an M? small enough to be removed. 

The main problem with this stepwise method is how to determine the threshold values. 

In this section we use the same threshold value (Fthr) for determining whether to add 

or to delete a variable. We also compare the co-ordinates with those of the previous 

step, rather than with the original set, although this differs from the method used for 

the Simpson Desert flint tool applications earlier in the chapter. 

We now implement the stepwise procedure described above and the variables retained 

under ranges of the threshold value are listed in Tables 7.7 and 7.8, for the various 

biplots. 

Table 7.7 Variables Retained for the Simpson Desert Flint Tools (Stepwise 
Method: Correlation and Coefficient of Variation Biplots) 

Correlation Biplot Coefficient of Variation Biplot 

Fthr Variables Retained Fthr Variables Retained 

Fthr> 2.083 None Fthr> 1.844 None 

1.612 < Fthr ~ 2.083 3 5 1.456 < Fthr ~ 1.844 3 5 

0.249 < Fthr ~ 1.612 1 5 0.307 < FtJJr ~ 1.456 1 5 

0.239 < Fthr ~ 0.249 1 2* 0.269 < Fthr ~ 0.307 46 

0.179 < FtJ1T ~ 0.239 125* 0.238 < Fthr ~ 0.269 156 

0.153 <Fthr~0.179 1 3 5* 0.093 < Fthr ~ 0.238 146 

0.095 < Fthr ~ 0.153 134* 0.052 < Fthr ~ 0.093 1 346 

0.037 < Fthr ~ 0.095 1 345* o < Fthr ~ 0.052 1 2346* 

0< FtJJr ~ 0.037 1 23 4 5* or 1 345 6* 

Implementing a biplot on each set of retained variables indicates that sensible biplots 

(in terms of separation of flint tools) are obtained by choosing Fthr corresponding to 

the asterisk (*). 
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Table 7.8 Variables Retained for the Simpson Desert Flint Tools (Stepwise 
Method: Spearman Rank Correlation and Principal Component 
Biplots) 

Spearman Rank Correlation Biplot Principal Component Biplot 

Fthr Variables Fthr Variables Retained 

Fthr> 1.878 None Fthr> 1.106 None 

0.231 < Fthr ::; 1.878 56 0.423 < Fthr::; 1.106 46 

0.210 < Fthr ::; 0.231 1 2* 0.413 < Fthr S 0.423 1 4* 

0.155 < Fthr::; 0.210 456* 0.368 < Fthr S 0.413 1 5* 

0.114 < Fthr::; 0.155 1 3 5* 0.362 < Fthr S 0.368 145* 

0.053 < Fthr ::; 0.114 1456* 0.217 < Fthr S 0.362 146* 

0< Fthr ~ 0.053 12456* 0.203 < Fthr S 0.217 1 345* 

0< Fthr S 0.203 1 3456* 

The above tables suggest that for these data there are always threshold values which 

we can choose in order to retain anything from 2 to p-l variables (where p is the 

number of original variables). If we are unsure where to set our threshold values 

within the stepwise method then we can select a specific number of variables to retain 

instead. We can also alter the threshold value for entering a variable so that it is 

different from that used to delete a variable and we can change the values at each step 

in the selection process so that they reflect the appropriate degrees offreedom. 

7.3.2.8 Summary of Simpson Desert Flint Tools 

All the variables selected under Krzanowski's backward elimination method using 

critical values and from backward elimination scree-plots provide as good a separation 

of tools into groups as the original six variables. All four scree-plots associated with 

backward elimination are monotonically increasing in two dimensions and they enable 

us to reduce the number of variables required to distinguish between tool groups in the 

correlation and coefficient of variation biplots, where Krzanowski's critical values do 

not. It is interesting to note that variable length was retained in all selections. Forward 

selection scree-plots selected sensible variables, in terms of tool separation, for all but 

the Spearman rank correlation biplot where the plot is non-monotonic. However, the 

cumulative scree-plot enables a selection to be made (and is, by definition, 
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monotonic). The biplots produced from the all subsets approach in Table 7.4 provide a 

good discrimination between tool groupings. The stepwise method indicated that a 

very precise choice of threshold is required in order for the coefficient of variation 

biplot to select appropriate variables, but for the other biplots there are a range of 

values that produce a selection which separates the tool groups. 
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7.4 Summary and Conclusions 

The various forms of biplot are useful tools for exploratory data analysis, particularly 

in field studies. Archaeologists in particular are interested in variable selection 

methods (Barton, pers. comm.) because these can save them valuable time and hence 

limited resources when collecting data. In this chapter we investigated the backward 

elimination method of variable selection introduced into principal component analysis 

by Krzanowski (1987, 1996) and extended this to the various forms of biplot with 

varying degrees of success. In particular, we proposed an adaption of the method by 

suggesting that it may be more sensible to compare the co-ordinates at each step of the 

selection process with those of the previous step, rather than with the original 

configuration using all the measured variables. This proposal was based on an analogy 

with linear regression methods. 

We also looked at how the forward selection, all subsets and stepwise approaches 

compare with backward elimination and introduced the idea of a scree-plot and 

cumulative scree-plot to aid the selection process for the backward elimination and 

forward selection methods. The scree-plot reveals any non-monotonicity in successive 

procrustes values and both show a 'kink' in the graph when adding or deleting a 

variable leads to a particularly large or small difference in the procrustes residual sum 

of squares. In addition, we discussed the effect of the dimensionality used in the 

calculations and how this forces a minimum number of variables into the selection 

methods. There may, therefore, be a trade off between 'adequate' dimensionality in 

order for a 'good' subset of variables to be selected and the number of variables 

selected. It was also revealed that an increase in dimensionality when calculating the 

procrustes residual sum of squares does not always lead to monotonic scree-plots and 

can sometimes lead to previously monotonic plots becoming non-monotonic. This is 

overcome by using the cumulative scree-plot, which is, by definition, monotonic. We 

emphasised that there may be several subsets of variables that are able to distinguish 

between groups of artefacts, rather than one unique set: this is a major disadvantage of 

Krzanowski's method, which only obtains a single subset of variables. Because of this 

we believe that less formal methods of selection, for example scree-plots, have 

advantages over critical values, not least because they provide a graphical means of 
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following the selection process at each step. With Krzanowski's variable selection 

method for principal component analysis it is important that k is chosen' correctly', so 

that a good representation of the data in k dimensions is achieved, but with biplots we 

expect to see them in two dimensions only. 

With the two data sets we analysed, it was not the dimensionality used in the 

calculations that was the important factor in the success of the methods, but the data 

itself When the initial separation of observations into groups, using all the measured 

variables (as for the ceramic pots) was good, then regardless of whether two or three 

dimensions were used in the calculations and regardless of whether critical values or 

scree-plots were used, the variable selection was poor. However, when there was more 

'noise' in the data and the group separation based on the original variables was not so 

clear cut (as for the flint tools), then two dimensions were adequate for variable 

selection to be successful, for all forms of biplot and all methods that were 

implemented, regardless of whether critical values or scree-plots were used. 
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Stability, Sample Size and Biplots 

8.1 Introd uction 

This chapter uses the theory of biplots as described in Chapter Three, in combination 

with techniques such as bootstrapping and directional data methods, in order to assess 

how representative our data are of the true population of data within the biplot 

framework - i.e. to assess the stability of biplots. Chapter Three raised the issues of 

the effect of the number of artefacts measured on the interpretation of a biplot and the 

identification of outlying or influential observations. Investigating these, using various 

resampling methods and jack-knifing, forms part of this chapter. The Simpson Desert 

flint tools and the ceramic pots first described in Chapter One and discussed 

extensively in Chapters Three and Seven are used throughout to illustrate the methods 

that we develop. 

Section 8.2 describes how the multivariate normal distribution can be used to replicate 

the data matrix in order to assess the stability of biplot variables, before explaining 

why, in contrast to correspondence analysis, there is only one method of obtaining 

observation and variable co-ordinates from these replicates. We also develop methods 

of projecting supplementary observations and variables onto the original biplot axes. 

Traditional bootstrap confidence intervals are extended to biplots to assess the true 

directions of the variables in Section 8.3 and in 8.4 intervals are obtained by applying 

directional data methods. In this section we also propose, for some types ofbiplots, an 
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adaption of the usual method of calculating a mean direction. In Section 8.5 we 

introduce an alternative method of assessing the stability of biplot variables, which 

uses the jack-knife. Section 8.6 investigates the influence of sample size (e.g. the 

number of artefacts measured) on biplots and 8.7 discusses the overlap between 

variable selection methods and sample size issues. A method of identifying influential 

observations by using a jack-knife approach is introduced in Section 8.8. Finally, 

conclusions are drawn in 8.9. 
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8.2 Assessing Stability by using the Multivariate Normal Distribution 

Because our data consist of a number of variables measured on a series of 

observations for only a sample of all possible data, we need to consider how 

representative these data are of the true population of data (i.e. how stable are the 

variables). Whereas it is possible to investigate the stability of categories within a 

correspondence analysis map by bootstrapping the original data matrix and treating 

each column, row, or the whole data matrix as a sample from the multinomial 

distribution (see Chapter Five), for biplots we are dealing with a different type of data. 

One possibility is to fit the multivariate normal distribution to the data matrix and then 

bootstrap from this distribution. Another possibility (only appropriate for examining 

stability when we are interested in smaller sample sizes than that actually obtained) is 

to sample the observations without replacement (see 8.6). 

In the rest of Section 8.2 we describe fitting a multivariate normal distribution to the 

data (after any necessary transformations), because this seems to fit well; it is also one 

of the most mathematically tractable distributions. However, in principle the 

multivariate normal distribution could generate negative values (negative values are 

inappropriate because the data suitable for biplots consist of 'measurement' variables 

and as such should be greater than zero); if these occur then an alternative sampling 

method should be used. Various methods for assessing multivariate normality are 

given in Gnanadesikan (1977), although in practice marginal normality is usually 

considered sufficient because large numbers of observations are required to test for 

multivariate normality. The computational details for fitting a multivariate normal 

distribution are described below. 

8.2.1 Computational Details 

Consider a data matrix X (n x m) with n rows (observations) and m columns 

(variables). We assume that in the population X (or some transformation of X) has a 

multivariate normal distribution, i.e. X - MN m (1l,:1:). In our sample, x approximates 

Il and is a vector of means of the variables; S approximates :1: and is the variance

covariance matrix. We use the following steps to obtain one bootstrap of X: 
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Calculate the sample mean vector: 

-T (- -) 11 TX x = xp ... ,xm =- n 

n 

where In is the column vectorofn Is. 

Calculate the variance-covariance matrix: 

1 - T -
var (X) = S = - (X - X) (X - X) 

n -1 

where X (n x m) is a matrix with all rows equal to xT
. 

Assume that the data come from the multivariate normal distribution 

with mean ~ and variance-covariance matrix L. To resample from this 

distribution we must find a matrix G such that L = GT G (Morgan, 1995, 

says that usually a Choleski factorisation is used for L, in which GT is a 

lower triangular matrix). 

Generate p independent standard univariate normal random variables 

ZI, ... , 2m and let Z = (ZI, ... , Zro)T. 

Let y = ~ + GTz. The vector y is then an observation from a 

MNm(~,L) population. 

Repeat steps 3 and 4 n times. 

To obtain B bootstrap matrices carry out steps 3-5 B times. 

8.2.1.1 Transformations 

It is well known that a minimum requirement for data to follow a multivariate normal 

distribution is that each separate variable should follow a univariate normal 

distribution and we therefore need to ensure that this is true for at least the majority of 
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variables. If the variables are of the same type, it is better for the sake of conformity 

that either the data are left as they are or that all the variables are subjected to the same 

transformation (usually a logarithm or square root will suffice). We use the 

Kolmorgorov-Smirnov Test to test each variable for normality before deciding 

whether a transformation is appropriate or not, but any test of univariate normality can 

be used, it does not have to be the Kolmorgorov-Smirnov Test. 

8.2.1.2 Grouped Data 

If we know, a priori, that the data are grouped (as in the cases of the flint tools of 

1.2.6, where there are two sites and the ceramic pots of 1.2.5, where there are three 

potters), then we should allow for this in the generation of replicate data. For each 

variable we should first subtract group means from each group, assess for normality 

and if the data are non-normal then we can try various transformations (e.g. Box-Cox, 

logarithm, square root). We then transform each variable before we subtract group 

means, assess for normality and if the majority of variables are normally distributed 

then the transformation is applied to the raw data. Regardless of whether or not a 

transformation has been used, we generate data from separate multivariate normal 

distributions for each group. However, the generated data are combined before 

implementing a biplot. 

Even if we know that the data consist of groups of observations, if the original bi plot 

is not able to show group differences then there is an argument for treating the data as 

a homogeneous set. For example, with the ceramic pot data, a priori we know that 

there are three potters, but we don't know whether the pots that they produce can be 

distinguished on the basis of the available measurements. In fact, this is one of the 

aims of the analysis. 

8.2.2 Bootstrap Co-ordinates 

Having obtained replicate matrices by fitting the multivariate normal distribution to 

the original data, we discover that there is only one way of obtaining observation and 

variable co-ordinates for biplots - this is to implement a biplot on each replicate 

matrix. This is in contrast to correspondence analysis (see 5.1.2.1 and 5.1.2.2) where 

we can either project replicate matrices onto the original co-ordinate system or we can 
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carry out a new correspondence analysis on each generated matrix. In the following 

sections we describe why it is inappropriate to project replicate matrices onto the 

original co-ordinate system for biplots. We also develop the methodology that enables 

supplementary observations and variables to be displayed. 

8.2.2.1 Separate Biplots for each Replicate Matrix 

One method of obtaining biplot co-ordinates from the generated matrices is to carry 

out a biplot analysis on each replicate matrix and overlay the co-ordinates on the same 

plot. This method could, however, be criticised on the grounds that the co-ordinates 

are all relative to different axes and are thus not directly comparable (see the 

discussion in 5.1.2.1 for correspondence analysis). In the next section we describe 

why relating co-ordinates to the original axes is inappropriate. 

8.2.2.2 Relating Biplot Co-ordinates to the Original Axes 

As in correspondence analysis, it can be argued that biplots should not be applied to 

the replicate matrices directly, because this leads to the co-ordinates being relative to 

different axes; instead, the replicates should be related to the original co-ordinate 

system. However, this is inappropriate. Suppose we have a data matrix X (n x m), 

with singular value decomposition given by: 

Recall, from Chapter Three, that for the Principal Component Biplot Family, the 

original observations have co-ordinates given by: 

F = UDfL= xv. 

Therefore, for each replicated matrix Xr
, with singular value decomposition: 

we can define the observation co-ordinates as given by: 
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and for each replicate matrix the co-ordinates will be relative to different axes. 

In order to obtain the observation co-ordinates we project the matrices (standardised 

as in Chapter Three) onto the original space spanned by V. The observation co

ordinates are then given by: 

(8.1) 

In effect, we are using the original variable co-ordinates (V) as the reference co

ordinates. However, because we have fitted a multivariate normal distribution to our 

data, which is based purely on the means and variance-covariance matrix of the 

original data, there is no reason why the first row (observation) of a replicate matrix 

should correspond to the first observation of the original data i.e. the relative row 

positions are lost when the replicate matrices are obtained. We do not, therefore, 

obtain sensible co-ordinates for the observations and variables from the replicate 

matrices. 

8.2.2.3 Supplementary Data for the Principal Component Biplot Family 

In this section we propose a method for projecting supplementary observations and 

variables onto the original co-ordinate system. This is useful if the data contain any 

unusual observations that we do not want to influence the ordination diagram; these 

can be projected onto the biplot after the axes have been determined. It is also useful 

when 'extra' observations are measured, or when another variable is measured on 

existing observations. We recall that V is the matrix of the original variable co

ordinates (see 3.5) and we take X
S to be a new observation with dimensions 1 x m. 

Because we rescaled the original data before carrying out a biplot analysis, we should 

standardise this new observation by subtracting the original means for each variable 

and dividing by the standard deviations. We should also divide by ~, where n is 

the number of observations in the original data matrix. We can now project a new 

observation onto the display by using (8.1); the co-ordinates of this observation, f
S

, 

are given by: 

fS = x"v. 
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If we obtain a supplementary variable i.e. an extra variable is measured on each 

observation, then we can also project this onto the original plot. If we take Xv to be a 

new variable with dimensions n x 1 and standardise it by subtracting its mean, 

dividing by its standard deviation and dividing by ~, then the co-ordinates of 

this variable are given by: 

Tun -I 
gv= Xv I!. 

8.2.2.4 Supplementary Data for the Correlation Biplot Family 

In the previous section we explained how to project supplementary data onto the 

biplot axes for biplots in the Principal Component Biplot Family. In this section we 

consider the Correlation Biplot Family. Recall from Chapter Three that the 

observation co-ordinates are given by: 

-\ 
F=U=XVD~ . (8.2) 

For biplots of the Correlation Biplot Family, VDfl-
1 is retained from the original data 

and we take x' to be a new observation with dimensions 1 x m. Because we rescaled 

the original data before obtaining a biplot, we should again standardise this new 

observation. We can then project a new observation onto the display using (8.2), so 

that its co-ordinates are given by: 

If we obtain a supplementary variable i.e. an extra variable is measured on each 

observation, then again we can project this variable onto the original plot. If we take 

Xv to be a new (standardised) variable with dimensions n x 1, then the co-ordinates of 

this variable are given by: 
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8.2.2.5 Bootstrap Fans 

The aim of Section 8.2.1 was to illustrate one method of generating replicate matrices 

in order to assess the stability of the biplot variables (i.e. to investigate how 

representative our data sample is of the true population of data). If any of the variables 

are unstable then it may be unwise to include them in the variable selection methods 

discussed in Chapter Seven. We assess stability by obtaining variable co-ordinates 

from each replicate matrix and thus we have as many vectors for a particular variable 

as we have replicate matrices. We develop the notion of a 'bootstrap fan' to describe a 

set of these bootstrap vectors for a particular variable (so-calJed because they typically 

resemble a fan) and we propose using these fans to obtain confidence intervals for the 

true directions of the variables i.e. for the whole population of data. 

Having obtained bootstrap fans for each variable, we intuitively hope that the original 

variable co-ordinates lie roughly in the centre of the fans. However, it turns out that 

this is not always the case and the reasons why are complex. The root cause appears to 

be that a biplot in two dimensions is not always appropriate for a particular data set; 

this is because two dimensions can be insufficient to both explain a high proportion of 

the variation in the data and also for each individual variable to have a high quality of 

representation. The problem is confounded by low correlations between variables. We 

discuss these issues in the context of analysing the flint tool data in 8.2.4.1. 

8.2.2.6 Application to Ceramic Pots 

In this section we illustrate, for the ceramic pots described in 1.2.5, the bootstrap fans 

obtained when a new biplot is implemented on each replicate matrix. However, we 

first need to account for any arbitrary sign changes resulting from the singular value 

decomposition, as discussed in 5.2.4 and again in 8.2.4. We generate 100 replicate 

matrices and illustrate the fan for variable 13 (thickness oflip) of the correlation biplot 

in Figure 8.1. In this figure and throughout this chapter, an asterisk indicates the 

direction of the variable obtained from the original data. 

Figure 8.1 suggests that separate biplot analyses on each matrix produce sensible 

bootstrap fans, because the width of the fan illustrated only covers approximately 90° 

(as do those of the other variables which are not shown) and the replicate vectors are 
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of similar lengths to the vector representing the original variable. 
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Figure 8.1 A Bootstrap Fan from Separate Biplot Analyses (Correlation Biplot) 

8.2.3 Variable Selection and Bootstrapping 

In this section we propose that if one of the variable selection methods described in 

Chapter Seven has been implemented, then it may be possible to make use of these 

selected variables when using bootstrapping to assess stability. This is particularly 

important if there are several subsets of variables which are able to distinguish 

between groups of observations, because that subset that consists of the most stable 

variables can be considered to be the most useful. When fitting a multivariate normal 

distribution to the data in preparation for bootstrapping, we believe that there are two 

choices. 

Method One: 

Method Two: 

Fit the distribution to the original variables and then delete 

those suggested by the variable selection method before 

implementing a biplot. 

Delete the variables suggested by the variable selection 

procedure and then fit the distribution to the resulting data 
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before carrying out a biplot analysis. 

Method two could be argued to be most sensible on the grounds that having selected a 

subset of variables, it is then that we need to confirm their stability. However, there 

may be an argument for using the bootstrap fans in the variable selection process, 

because unstable variables will be highlighted (i.e. those with wide confidence 

intervals for the true direction - see 8.3 and 8.4). We should bear in mind, however, 

that the stability of a particular variable varies according to which other variables are 

included in the analysis. 

8.2.4 Reflection, Reordering and Procrustes Rotation 

Because of the arbitrary nature of the singular value decomposition (which is unique 

only up to the sign of the eigenvectors, because the left and right eigenvectors are 

determined independently) and the problems discussed in 5.2.4, filtering must be 

applied to the co-ordinates obtained from each bootstrap. It is always necessary to 

apply reflection to biplot co-ordinates (and indeed any co-ordinates obtained from a 

singular value decomposition), but Milan & Whittaker (1995) suggest that reordering 

is only necessary if any of the singular values have changed order. It is unclear from 

Milan & Whittaker (1995) which form of filtering is appropriate for exploratory 

multivariate methods and the present author is unable to find any other relevant 

material. We apply filtering to the flint tools in the next section. 

8.2.4.1 Application to Simpson Desert Flint Tools 

We recall from Chapters One, Three and Seven that the Simpson Desert flint tool data 

(1.2.6) consist of measurements of six variables on tools from two sites. By assessing 

each variable for normality using the Kolmorgorov-Smirnov Test, we find that the 

distributions of all six variables exhibit departures from normality. Considering 

transformations of all the variables we find that the log transformation makes 

variables length, width, thickness and weight normally distributed and all variables are 

therefore subjected to this transformation. We replicate the data by fitting two 

multivariate normal distributions, one to each site, 100, 1000 and 5000 times, carrying 

out a biplot on the replicates for both sites combined and then applying reflection as 

discussed in 5.2.4.1. Figure 8.2 shows the results of reflection applied to 100 
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bootstraps, but for clarity only variables length and width are shown, although the 

analysis was carried out on all six variables. Again, the asterisks indicate the positions 

of the original variables. 
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Figure 8.2 Bootstrap Fans for the Simpson Desert Flint Tool Variables 

(Correlation Biplot: All Data) 

It is clear from Figure 8.2 that even after reflection the fans are not centred about the 

original co-ordinates; applying reordering produces an identical figure, but it is not 

clear from Milan & Whittaker (1995) whether this is necessary. The third and more 

stringent form of filtering is procrustes rotation, but we believe that this is 

unnecessary for two reasons. Firstly, because there can never be any translation of the 

biplot co-ordinates as a result of the singular value decomposition, a procrustes 

rotation would 'overcorrect' for nuisance variation that does not really exist. 

Secondly, the stretching incorporated into the procrustes rotations (see 5.2.4.3) would 

be problematic because the replicate vectors are of different lengths. We therefore 

apply only reflection throughout the remainder of this chapter. 

Because the fans of Figure 8.2 are far from being centred we believe that there is a 

problem either with fitting the multivariate normal distribution, with the data set itself, 
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or with the two-dimensional representation of the data. In order to examine the first 

possibility we generate univariate normally distributed variables and, separately, 

multivariate normal data. In the former case all variables have a low quality of 

representation and are virtually uncorrelated (as expected); in the latter case all are 

well represented and highly correlated (again, as expected). Additionally, the 

distributions of the variables do not exhibit departures from normality using the 

Kolmorgorov-Smirnov Test. This appears to confirm that the actual method of 

generating multivariate normal data is correct and ·suggests that it is either the data 

themselves, or the dimensions in which the fans are displayed, that determines 

whether the fans are centred. 

To investigate the second and third of the possible causes of non-centring we consider 

the two sites separately. For site 9 alone all the variables except platform thickness are 

centred. We also calculate the quality of representation of each variable in two 

dimensions (Table 8.1) and the correlations between variables. This is done for the 

two sites separately and together and reveals that for site 9 alone, platform thickness 

has a quality of representation of only 11.5%, which is by far the lowest of all the 

variables. The corresponding bootstrap fan encompasses 3600 and we believe that this 

is at least partly because the variable is uncorrelated with all the others, so that the 

two-dimensional display does not adequately capture this variable. Considering the 

quality of representation of the variables in the third dimension for site 9, we see that 

platform thickness has a value of 88.4% and is therefore well represented in this third 

dimension. Still considering site 9 alone and omitting platform thickness produces 

centred fans for the other variables. 
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Table 8.1 Quality of Representation of Simpson Desert Flint Tool Variables (%) 
for the Correlation Biplot 

Site(s) 

Variable 8 9 8&9 

Length 94.6 93.6 87.9 

Width 84.9 88.7 85.0 

Thickness 81.5 65.7 79.3 

Platform width 83.2 78.1 83.4 

Platform thickness 78.7 11.5 69.4 

Weight 83.8 92.3 89.0 

Considering site 8 alone, we find that none of the bootstrap fans are centred. Using 

our knowledge of site 9 we omit platform thickness and obtain centred fans for the 

other variables. However, without this knowledge it is difficult to see how we would 

come to this decision: whilst platform thickness is the least well represented variable 

for site 8, it is still well represented and it has high positive correlations with the other 

variables. It turns out that the correlation structure of the variables is very different 

within each site. 

Having examined the two sites separately, we again consider them together because 

we are interested in the data as a whole. However, omitting platform thickness no 

longer leads to centred fans for the other variables. Looking at the quality of 

representation of each variable in Table 8.1, we see that variable thickness also has a 

low value and omitting these two variables does lead to more centred fans (the fans 

for length and width are illustrated in Figure 8.3). Comparing Figure 8.3 with Figure 

8.2 we see that the locations of the original variables have altered and this is because 

they are obtained from data consisting of different numbers of variables - their 

relative positions are unchanged. 
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Figure 8.3 Bootstrap Fans for the Simpson Desert Flint Tool Variables 

(Correlation Biplot: Selected Variables) 

The discussion of this section has focused on the correlation biplot, but considering 

the other forms of biplot (coefficient of variation, Spearman rank and principal 

component) we find that for all variables the fans are the same width, regardless of 

whether reflection or reordering is applied. We will therefore consider reflection to be 

the best means of correcting for the arbitrary sign changes of the singular value 

decomposition throughout this chapter. 

8.2.4.2 Application to Ceramic Pots 

The biplots for the ceramic pots (1.2.5) are not illustrated here, but the bootstrap fans 

are centred for all 13 variables for all biplots using both reflection and reordering; the 

correlation structure within each of the three pot groups is also very similar. 

Comparing the fans under reflection and reordering for the ceramic pots, the fan 

widths are found to be the same for the covariance, correlation, coefficient of variation 

and Spearman rank correlation biplots, but smaller under reordering for the principal 

component biplot. However, because there is no evidence of singular values changing 

order (Milan & Whittaker, 1995), we again only apply reflection to the co-ordinates. 
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8.3 Confidence Intervals for the True Directions of Biplot Variables 

using Standard Bootstrap Methods 

In the previous sections we explained the methodology for bootstrapping a data matrix 

B times using the multivariate normal distribution and we also discussed the need to 

apply reflection to the replicate co-ordinates in order to correct for the arbitrary sign 

changes of the singular value decomposition. We would now like to estimate a 

confidence interval for the true direction of each variable (i.e. the direction that each 

variable would take if the whole population of data rather than a sample had been 

measured), based on these replicate vectors. However, the widths of the bootstrap fans 

(see 8.2.2.5) are related to the number of bootstraps that are generated (greater 

numbers of bootstraps result in wider fans). This is not really surprising because, as 

we generate more bootstraps, more and more unusual data sets are obtained, although, 

as we see below, sensible confidence intervals for the true direction of a particular 

variable do not depend on the number of bootstraps. 

There are several well known confidence intervals for use with bootstrapped data, two 

of which we introduce below. We discuss their appropriateness for the flint tool and 

ceramic pot data. 

8.3.1 The Standard Confidence Interval 

In this section we describe the standard confidence interval and propose applying it to 

the biplot variables in order to obtain confidence intervals for their true directions. The 

literature contains little information on bootstrapping multivariate data and Efron & 

Tibshirani (1993) provide the most useful reference. Efron & Tibshirani (1993) 

discuss the singular value decomposition of a covariance matrix and use bootstrapping 

to measure the accuracy of e, where e is the percentage of variation explained by the 

first p components in the particular data set they used. By sampling with replacement 

they obtain B bootstrap data sets and hence B values of e·, the bootstrap replication 

A .. A.() ~e·(b). I 
of e. It is known that if the mean of the B replIcations, e . = L..J --, IS C ose to 

b=l B 

e, then e is close to unbiased. Efron & Tibshirani (1993) suggest using the standard 
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confidence interval to assess the accuracy of the true value of 8, which is given by: 

with probability 1-2a, where iI-a) is the 100(I-a)-th percentile of a standard normal 

distribution. The standard error, seB, is obtained from the B bootstraps by using: 

1 

seB - L -"-------"--" _ { B [8 * (b) - 8 * (. ) r } 2" 

b=1 B-1 

We propose converting the co-ordinates of the vectors representing the biplot 

variables into angles that they make with the direction due east and using these in the 

calculations, because it is the directions of the variables that we are interested in. We 

therefore take e to be the angle of a particular variable in the original data and 8· (b) 

to be the angle of the vector representing this variable, obtained from the b-th 

bootstrap, where b=l, ... , B. We must remember, however, that when implementing a 

biplot, arbitrary sign changes in the singular value decomposition can inflate the 

standard errors and so, as we saw in 8.2.4, reflection must be applied before 

confidence intervals are obtained. 

8.3.1.1 Application to Simpson Desert Flint Tools 

In this section we apply the standard confidence interval just described to the angles of 

the Simpson Desert flint tool (1.2.6) variables, in order to illustrate the importance of 

choosing an appropriate interval when assessing the variation in our estimate of the 

true direction of a variable. Table 8.2 lists the intervals obtained from 100 bootstraps 

for the correlation biplot. Because we are dealing with directional data (and 

considering the angles that the variables make with the direction due east), we should 

be aware that 360°= 0°. The confidence intervals are taken anti-clockwise. 
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Table 8.2 95% Standard Confidence Intervals (0) for the True Variable 
Directions for the Simpson Desert Flint Tools 

Variable Original Direction Interval 

Length 79 (62,97) 

Width 339 (330, 348) 

Thickness 6 (357, 16) 

Platform Width 325 (315, 336) 

Platform Thickness 6 (348,24) 

Weight 26 (15, 38) 

Because the intervals are symmetric they do not accurately represent the vectors in the 

bootstrap fans (we saw in Figure 8.2 that the fans are not centred about the original 

direction). We therefore look to an interval that does reflect this and we see in 8.3.2 

that the BCa interval is more appropriate for these data. 

8.3.1.2 Application to Ceramic Pots 

In contrast to the flint tools, the bootstrap vectors of the ceramic pots (1.2.5) are 

centred about the original directions of each variable for all forms of biplot (see 

comments in 8.2.4.2) and so the standard confidence interval can be considered to be 

appropriate. Table 8.3 lists the intervals obtained from 100 bootstraps for the 

correlation biplot. The intervals are clearly much wider than those for the flint tools 

and all except that for variable 11 are of a similar range. This is interesting because 

variable 11 is the least well represented variable (see Table 3.1) and so there appears 

to be a connection between the quality of representation of a variable and its stability 

(when compared in the same dimensionality). 
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Table 8.3 95% Standard Confidence Intervals e) for the True Variable 
Directions for the Ceramic Pots 

Variable Original Direction Interval 

1 305 (270, 341) 

2 356 (318,34) 

3 203 (171,234) 

4 176 (141,211) 

5 350 (322, 18) 

6 277 (241,313) 

7 306 (261,351) 

8 165 (135, 196) 

9 60 (21, 98) 

10 40 (4, 75) 

11 86 (10, 162) 

12 52 (19, 86) 

13 148 (111,185) 

8.3.2 The BC. Method 

In the previous section we considered the standard confidence interval for assessing 

the stability of biplot variables. In this section we propose using another method for 

calculating a confidence interval for the true direction of a variable - the BCa 

method. This method is also described in Efron & Tibshirani (1993) and works as 

follows. Let e ·(a) indicate the 100o.-th percentile of B bootstrap replications of the 

angle that a vector makes with the direction due east, e * (1), ... , e * (B), where the 

BCa interval endpoints are given by percentiles of the bootstrap distribution. The 

percentiles used depend on two numbers a and zo' called the acceleration and bias-

correction. The BCa interval of intended coverage, 1-20., is given by: 

where ( 
Z + ZCCl) J 

a I = <I> Zo + -1-A-o( A--(-Cl)-) 
- a Zo + Z 
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and a = <1>(Z + Zo + Z(J-IX) J 
2 0 -1-"""::(:"-'''--(-I--IX-) ) . 

- a Zo + Z 

Here, <1>(.) is the standard normal cumulative distribution function and z(a) is the 100a

th percentile point of a standard normal distribution. The value of the bias-correction, 

zo' is obtained directly from the proportion of bootstrap replications less than the 

" original estimate e : 

where <1>-1(.) indicates the inverse function of a standard normal cumulative 

distribution function. The acceleration, a, can be computed in terms of the jack-knife 

values of a statistic e = s (x). Let X(i) be the original sample with the i-th point, Xi, 

" 
deleted and let 0 (i) = S (X(I) . Also, define: 

and 

" 

0" _~e(i) 
o-~ 

,~I n 

We can now calculate al and a2. The BCa method is known to have important 

theoretical advantages: 

• It is transformation respecting. This means that the endpoints of the 

interval transform correctly if we change the parameter of interest from 0 

to some function oro. 

" " • A central 1-2a confidence interval, (8 10 , e up), is supposed to have 

probability a of not covering the true value of8 from above or below. 
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• It does not assume symmetry in the data. 

However, the method also has one main disadvantage: 

• A large number of bootstrap replications are required. At least B = 1000 

replications are reported to be needed in order to sufficiently reduce the 

Monte Carlo sampling error. 

We believe that a further problem with using this method (and also the standard 

confidence interval) in connection with biplots is that the differing vector lengths in 

the fan are ignored and only the angles that the vectors make with the direction due 

east are used. This is particularly relevant for the correlation and Spearman rank 

correlation biplots, where vector lengths represent the quality of representation of the 

variables (see 8.4.5). 

8.3.2.1 Application to Simpson Desert Flint Tools 

In this section we calculate the BCa interval for the true directions of the flint tool 

variables (l.2.6), using the angles obtained from generating 100 and 1000 bootstrap 

vectors for the various forms ofbiplot. We display the results for the correlation biplot 

in Table 8.4. We see from the table that none of these intervals include the original 

directions of the variables, but they do accurately reflect the bootstrap fans (see figure 

8.2) and this is because the fans are not centred (see earlier discussion in 8.2.4.1). The 

intervals are also much narrower than those for the standard confidence interval (see 

Table 8.2). Intervals of similar magnitudes are obtained for the other forms ofbiplot. 
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Table 8.4 95% BC. Confidence Intervals e) for the True Variable Directions for 
the Simpson Desert Flint Tools 

Number of Bootstraps 

Variable Original Direction 100 1000 

Length 79 (98, 106) (98, 108) 

Width 339 (351,358) (351,358) 

Thickness 6 (16,23) (16,24) 

Platform \Vidth 325 (338,347) (338, 345) 

Platform Thickness 6 (353,355) (353,355) 

Weight 26 (38,44) (38,46) 

Following on from the discussion of 8.2.4.1, if we remove variables thickness and 

platform thickness and obtain intervals for the remaining four variables (see Figure 

8.3), for which the corresponding bootstrap fans are slightly more centred, we obtain 

Table 8.5. 

Table 8.5 95% BC. Confidence Intervals e) for the True Variable Directions for 
the Simpson Desert Flint Tools (Selected Variables) 

Number of Bootstraps 

Variable Original Direction 100 1000 

Length 92 (56, 98) (59,97) 

Width 189 (195,203) (194,217) 

Platform Width 203 (188,207) (188,206) 

\Veight 143 (104, 152) (97, 151) 

Table 8.5 shows that the intervals are now slightly more centred about the original 

directions (which have altered because there are now only four variables to consider), 

but they are still a long way from being symmetric and the original direction is not 

included in the interval for the variable width. The intervals are also much wider than 

those for the corresponding variables in Table 8.4 (except for variable width). Despite 

this, the BCa method seems to be a reasonable method for calculating a confidence 

interval for the true direction of a variable. 
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8.4 Confidence Intervals for the True Directions of Biplot Variables 

using Directional Data Methods 

In Section 8.3 we discussed two well known confidence intervals for use with 

bootstrap data and proposed using them to obtain confidence intervals for the true 

directions of biplot variables. However, because we are interested in variable 

directions it seems most appropriate to use methods specifically developed for 

directional data. We discuss and apply one such method in the following sections. 

8.4.1 Lengths of Vectors in the Confidence Intervals 

Before discussing and applying a confidence interval from Fisher (1993), we diverge 

slightly to make some general comments regarding confidence intervals. When 

calculating our confidence intervals we have only been using the angles that the 

vectors make with the horizontal and so we do not have a vector length to use when 

plotting the intervals. We therefore need to convert our lower and upper confidence 

limits into lower and upper values of x and y co-ordinates and we propose the 

following. If, for a particular variable, the lower and upper confidence intervals are 

given by a and c, then we have: 

Xl = rcosa 

Yl = rsin a 

Xu = rcosc 

Yu = r SIO c 

where XI and Xu denote the lower and upper values of the X co-ordinate respectively, YI 

and Yu denote the lower and upper values of the y co-ordinate and r denotes the length 

of the vector. Because both the X and Y co-ordinates are multiplied by the same r, the 

width of the confidence interval is not altered. By taking r = R, the resultant length of 

the variable in the original data, the vectors representing the lower and upper 

confidence bands have similar lengths to the original vector. 

310 



Chapter Eight - Stability, Sample Size and Biplols 

We should remember that when calculating confidence intervals it is important to look 

at the bootstrap vectors as well as the interval, because if a large number of bootstraps 

means that the vectors (after reflection) are distributed over more than say, 180°, then 

finding a confidence interval for the true direction of a variable may not be sensible. 

8.4.2 Confidence Interval from Fisher (1993) 

If, having tested the angles for symmetry about the original direction, we find that this 

exists, we propose adapting the confidence interval in Chapter Five of Fisher (1993), 

using our B bootstraps instead of the n values in the sample and taking R to be the 

resultant of the original data (rather than the mean resultant of the n values in the 

sample). Instead of the definitions given in Fisher (1993), we calculate the circular 

dispersion, B B and the circular standard error, a B' of the B bootstraps using: 

" 1 B " 
P2 = - L cos2(8 i - 8); 

B 1=1 

A 

... 2 OB cr =
B B 

8 i is the direction that the i-th bootstrap makes with the horizontal; 

" 8 is the original direction; 

R is the resultant of the original variable direction. 

" 
An approximate 100(1-a)% confidence interval for the original direction, 8, is then 

given by: 

0±sin-l(zl aB ) 
-()( 

2 

(8.3) 

where z 1 is the upper 100 (+ a) % point of the NCO, 1) distribution. However, because 
-a. 
2 
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the denominator of cr~ is B, the number of bootstraps, the confidence intervals will be 

smaller the larger the number of bootstraps generated. We can only, therefore, 

compare these intervals across variables for a given number of bootstraps. We cannot 

compare them with the BCa interval because this does not depend on the number of 

bootstraps. 

8.4.2.1 Application to Simpson Desert Flint Tools 

In this section we calculate confidence intervals for the true directions of all the 

original six variables for the flint tools and, additionally, intervals for the variables 

chosen under the backward elimination selection criteria of Chapter Seven (even 

though the vectors are not symmetric about the original variable direction - see 

8.2.4.1). We generate 100, 1000 (and 5000) replicate matrices from the multivariate 

normal distribution and implement the principal component biplot. We list the original 

direction and values obtained from Fisher's confidence interval of (8.3) in Tables 8.6 

and 8.7 below. Table 8.6 shows the 95% confidence intervals for each of the six 

variables. 

Table 8.6 95% Fisher Confidence Intervals e) for the True Variable Directions 
for the Simpson Desert Flint Tools 

Number of Bootstraps 

Variable Original Direction 100 1000 

Length 83 (69,97) (80,86) 

Width 329 (310,348) (322,335) 

Thickness 10 (353,27) (8, 12) 

Platform Width 301 (293,309) (301,301) 

Platform Thickness 10 (344,36) (2, 17) 

Weight 38 (20,56) (32,43) 

We see from the above table that the intervals based on 1000 bootstraps are smaller 

than those based on 100 bootstraps (see 8.4.2). However, we can still compare the 

relative widths of intervals for a given number of bootstraps between the original six 

variables and the three obtained from backward elimination variable selection. We can 
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also compare the intervals for a given number of bootstraps across variables. Clearly, 

platform thickness has the widest interval, whereas platform width has a relatively 

small interval. We do not illustrate the other biplots here, but we find that the 

variables have confidence intervals of very similar magnitude to those in Table 8.6. 

Table 8.7 lists the intervals for the variables selected in Chapter Seven for the 

principal component biplot, using the backward elimination method. 

Table 8.7 95% Fisher Confidence Intervals (0) for the True Variable Directions 
for the Simpson Desert Flint Tools (Selected Variables) 

Variable 

Length 

\Vidth 

Weight 

Original Direction 100 Bootstraps 

272 (262,283) 

14 (4,24) 

349 (337,2) 

We should not place any emphasis on the differences between the original directions 

of the variables in Tables 8.6 and 8.7, because this is entirely due to the singular value 

decomposition. It is the relative directions of the variables within each table and the 

widths of the intervals that are relevant. It is evident that the intervals under variable 

selection are narrower than those for the same variables based on the original data and 

are all of similar width. The intervals based on variable selection are illustrated in 

Figure 8.4 - we note that none of them overlap. 
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Figure 8.4 Original Directions and Fisher Confidence Intervals for the Simpson 

Desert Flint Tool Variables (Principal Component Biplot) 
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8.4.2.2 Application to Ceramic Pots 

In this section we calculate confidence intervals for the true directions of the ceramic 

pot variables (1.2.5), using 100 replicate matrices. These are displayed in Table 8.8. 

Table 8.8 95% Fisher Confidence Intervals (0) for the True Variable Directions 
for the Ceramic Pots 

Variable Original Direction 100 Bootstraps 

1 305 (302,309) 

2 356 (352,360) 

3 203 (200,205) 

4 176 (173, 179) 

5 350 (347, 353) 

6 277 (274,280) 

7 306 (303,310) 

8 165 (162, 168) 

9 60 (56, 63) 

10 40 (37,43) 

11 86 (79, 93) 

12 52 (49, 55) 

13 148 (145, 152) 

We see from the table that the intervals are all of a similar width, except for that of 

variable 11, which is roughly twice the size of the others; we recall that this is the least 

well represented variable in two dimensions (see the discussion in 8.3.1.2 and 3.7.1). 

It is also clear that the intervals are considerably narrower than those obtained from 

using the standard confidence interval (Table 8.3) - they are roughly 1~ th of the 

size. 

8.4.3 The von Mises Distribution 

Given that we are dealing with the angles that the variables make with the horizontal 

axis and therefore with circular data, rather than use the standard normal distribution 

(as in the standard interval, the Bea method and Fisher's method) it may be possible 
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to use a circular analogue. One such distribution is the von Mises distribution -

Mardia (I972) says that the importance of the von Mises distribution on the circle is 

similar to that of the normal distribution on the line. We propose that the von Mises 

distribution, if it fits the data, can be used to obtain intervals for the true directions of 

the variables. To establish whether this distribution is appropriate, Fisher (1993) 

suggests using either a quantile-quantile plot or a formal test. We use the formal test in 

the next section. 

S.4.3.1 Application to Ceramic Pots 

We generate B = 100, 1000 and 5000 replicate matrices for the ceramic pots and test, 

for each variable, whether the angles that the vectors make with the direction due east 

follow the von Mises distribution. We discover that this is not the case for any of the 

variables from either the correlation, covariance, coefficient of variation, Spearman 

rank correlation or principal component biplot and so this is not an appropriate 

distribution to use to obtain confidence intervals for the true directions of the variables 

for these data. 

8.4.4 Calculating the Mean Direction using Vectors of Equal Length 

Although we are primarily concerned with estimating confidence intervals for the true 

directions of biplot variables, it is also of interest to consider the mean directions of 

the bootstrap fans. These can then be compared with the directions of the original 

variables and provide another indication of whether the fans are centred (a mean 

direction which is far from the original direction suggests non-centred fans). Mardia 

(1972) described how to calculate the mean direction of angular data and the details 

are given below. If all the vectors are considered to lie on the unit circle then, using 

the notation of Mardia (1972), we let Pj be the point on the circumference of the unit 

circle corresponding to the angle 9j, where i = 1, ... , n. The mean direction, "0' of 

9 1, ... , 9n, is defined to be the direction of the resultant of the unit vectors 

OPJ> ... , OPn' The cartesian co-ordinates ofPj are (cos 9i, sin 9i), where i = 1, ... , n so 

that the centre of gravity of these points is (C, S) where: 
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Therefore, if: 

_ 1 n 

C=-Lcos8 j 

n i=1 

and 
_ 1 n 

S =-Lsin8 i . 

n i=1 

then R = nR is the length of the resultant and Xo is the solution of the equations: 

8.4.5 Calculating the Mean Direction using Vectors of Unequal Length 

In Chapter Three we explained that for the correlation and Spearman rank correlation 

biplots, the closer the length of a vector is to one, the better the corresponding variable 

is represented. Although we do not actually calculate mean directions here, we 

propose, for these two biplots, weighting the angles that the vectors make with the 

horizontal by their lengths, with the justification that a vector which is better 

represented should make a greater contribution to the mean direction of the vectors. If 

the vector making an angle 8 i with the horizontal is of length ai, then we define: 

n 

L (a i sin8 i ) 

c i .=:..:1 ___ _ 
1=- and SI = ...!.i=---,l'-n---

Laj 
i=1 

I 

with Rl = (c~ + 51
2

) I . The weighted mean direction, XI' is given by the solution of 

the equations: 
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8.5 Assessing Stability by using a Jack-knife Approach 

So far we have proposed fitting the multivariate normal distribution to the data in 

order to help us to assess the stability of the biplot variables. In this section we suggest 

an alternative method, based on the jack-knife technique, although the results of the 

two methods are not directly comparable. We propose that each observation is omitted 

in turn, a biplot is implemented on each reduced data matrix and the co-ordinates of 

the vectors representing the variables are obtained. The width of these 'jack-knife 

fans' are then examined and as for bootstrap fans, the wider the fan the less stable the 

variable. We also suggest using this method to detect influential observations and we 

discuss this in Section 8.8. However, because with 'jack-knife fans' the vectors in the 

fans are not obtained from simulated data, but use the actual data (with one 

observation omitted), the fans are likely to be narrower than 'bootstrap fans', although 

are heavily dependent on both unusual observations and to some extent on the number 

of observations. 

8.5.1 Application to Simpson Desert Flint Tools 

We recall from Section 1.2.6 that there are 78 flint tools with six variables measured 

on each. Each of the tools is omitted in turn and a biplot is produced for each set of77 

tools. This results in 78 sets of co-ordinates for each set of six variables, which are 

overlaid on the same plot. We illustrate the correlation biplot in Figure 8.5, although 

the plots are very similar for the other types of biplot. Only three variables are 

illustrated because some of the vectors for different variables overlap, but all six 

variables are used in the analysis. Comparing these fans with those of Section 8.2, we 

see that the fans are much narrower under this jack-knife method. 
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Figure 8.5 Simpson Desert Flint Tool Variables - Jack-knifing 

(Correlation Biplot) 
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8.6 The Influence of Sample Size 

Having introduced bootstrapping and jack-knifing as methods of investigating 

stability and considered three different confidence intervals, we now investigate the 

influence of sample size on biplots. More specifically, we investigate how the number 

of observations measured affects the relationships between the variables. It may then 

be possible to make recommendations on the number of observations to measure in 

order to answer the questions posed by the archaeologists and ecologists. If we take 

many samples of size h < n, without replacement, where n is the original number of 

observations measured, then we can evaluate the stability of the variables as if we had 

originally taken a sample of size h. Sampling without replacement is not appropriate 

for evaluating the effect of larger samples than that obtained and so for this we must 

sample by using the multivariate normal distribution. 

8.6.1 Sampling Without Replacement 

When using sampling without replacement, observations can only be retained at most 

once and so this form of resampling is only suited to answering questions concerning 

smaller sample sizes than those actually obtained. We apply this method to the 

ceramic pots in the next section. 

8.6.1.1 Application to Ceramic Pots 

We recall from Chapter One that 13 measurements were taken on each of 30 ceramic 

pots, with 10 pots made by each of three potters. Therefore, when generating smaller 

samples of pots, it seems sensible to ensure that we obtain equal numbers of pots from 

each potter. 

In 8.2.4.2 we revealed that for each of the 13 variables the bootstrap vectors were 

centred about the direction obtained from the original data. In this section we generate 

100 bootstraps by sampling without replacement, implement the correlation biplot and 

apply the standard confidence interval. We do this for each of the sample sizes in 

Table 8.9 below. The BCa interval is not appropriate for use with smaller samples than 

that actually collected, because the acceleration (see 8.3.2) cannot be calculated. 
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Table 8.9 95% Standard Confidence Intervals (0) for the True Variable 
Directions for the Ceramic Pots (Smaller Sample Sizes: Without 
Replacement) 

Sample Size 

Variable 21 15 9 

1 (275,336) (230,21) (159, 92) 

2 (325,28) (303,409) (266, 86) 

3 (176,229) (157,248) (137,268) 

4 (152, 199) (135,217) (113,239) 

5 (323, 16) (303,37) (264, 75) 

6 (244,310) (222, 332) (192,2) 

7 (274, 338) (252,360) (218,35) 

8 (142, 188) (120, 210) (96,235) 

9 (22, 98) (340, 140) (277,202) 

10 (6, 74) (346,94) (321, 119) 

11 (41, 132) (335, 198) (308,224) 

12 (21, 83) (2, 103) (341, 123) 

13 (118, 178) (97, 199) (57,239) 

Table 8.9 shows that the smaller the sample size the wider the interval and so the less 

confident we are that the directions of the original variables are representative of those 

of the true population of data. Again (see Tables 8.3 and 8.8), variable 11 has the 

widest interval. We also need to consider larger sample sizes than that collected, but 

we cannot do this by sampling without replacement. Instead, we use the multivariate 

normal distribution. 

8.6.2 Sampling using the Multivariate Normal Distribution 

By fitting a multivariate normal distribution to the data as described in Section 8.2.1, 

we can generate a sample of any size. We can then look at the effects of sample size 

on the resulting groupings of the observations in the biplot, on the relationships 

between the variables and on the confidence intervals for the true directions of the 

variables. 
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8.6.2.1 Application to Ceramic Pots 

In this section we generate 100 bootstraps of the ceramic pot data for the correlation 

biplot, using each of the sample sizes in Table 8.10. We then calculate the standard 

confidence interval of Section 8.3.1. An asterisk indicates that the intervals cover over 

3600 and are therefore not sensible. 

Table S.10 95% Standard Confidence Intervals CO) for the True Variable 
Directions for the Ceramic Pots (Smaller Sample Sizes: Multivariate 
Normal Distribution) 

Sample Size 

Variable 21 15 9 

1 (211,40) (195, 56) (93, 158)* 

2 (298, 54) (266, 86) (242, 110) 

3 (156,249) (147, 258) (102,304) 

4 (132, 220) (123, 229) (80,272) 

5 (301, 39) (298,42) (265, 74) 

6 (226,328) (217,337) (177,18) 

7 (249,3) (239, 14) (202,50) 

8 (125,205) (115,215) (78,253) 

9 (342, 137) (319,160) (219, 260)* 

10 (350, 91) (339, 101) (293, 146) 

11 (343, 189) (296,236) (238, 295)* 

12 (2, 102) (351, 113) (308, 157) 

13 (97,200) (72,224) (32,264) 

Comparing with Table 8.9, we see that the intervals in Table 8.10 are slightly wider 

and for samples of 9 pots, three variables have intervals exceeding 3600 
- 9 pots are 

clearly too few for any sensible conclusions to be drawn from the data. We can also 

use the multivariate normal distribution to generate larger samples than that actually 

obtained and we display the results of this for the correlation biplot in Table 8.1 I. 
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Table 8.11 95% Standard Confidence Intervals e) for the True Variable 
Directions for the Ceramic Pots (Larger Sample Sizes: Multivariate 
Normal Distribution) 

Sample Size 

Variable 75 60 45 

1 (285,326) (221,30) (243, 8) 

2 (333,20) (319, 33) (321,32) 

3 (185,221) (l7l,234) (175,231) 

4 (l56, 196) (l45,207) (146,206) 

5 (332, 8) (317,22) (322, 17) 

6 (255,299) (243,311) (245,309) 

7 (280,333) (268,345) (269,344) 

8 (147, 183) (134, 196) (136, 194) 

9 (37, 82) (23, 96) (25,94) 

10 (l9,61) (5, 74) (8, 72) 

II (34, 139) (31, 142) (16, 157) 

12 (34, 71) (19,85) (21,84) 

13 (125, 172) (114, 182) (113, 183) 

The intervals in Table 8.11 are all smaller than those of Table 8.10, indicating that the 

larger the sample size the more stable the variables. For a sample of 75 pots the 

intervals span ~ 40°, for 60 pots ~ 60° and for 21 pots ~ 100°; variable 11 has much 

wider intervals across all sample sizes. 
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8.7 Sample Size and Variable Selection 

In the previous section we investigated the influence of sample size on the stability of 

variables and in Chapter Seven we discussed variable selection methods. We believe 

that recommendations on the size of the sample and on the number of variables 

measured on each observation should not be made independently, because one may 

influence the other. If an archaeologist has some idea of how many artefacts (e.g. tools 

or pot sherds) are potentially available, then it can be suggested in advance of the 

'excavation' how many measurements should reasonably be taken on each artefact. 

However, if there is no clear idea of the number of artefacts available then it may be 

advisable for statistical analysis to be undertaken after an initial number of artefacts 

have been measured; it may then be possible to refine future recording by measuring 

fewer variables, particularly if the site is to be visited in future seasons. In the 

following section we consider the influence of sample size and variables selected 

together. 

8.7.1 Application to Ceramic Pots 

In this section we consider the sample sizes of Tables 8.10 and 8.11 and we combine 

these with the subset of variables obtained (8 and 9) using Krzanowski's backward 

elimination variable selection procedure of Chapter Seven for the correlation biplot 

(even though this method did not produce a good separation of pots into groups). 

Table 8.12 lists the intervals obtained from 100 bootstraps from the multivariate 

normal distribution. 
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Table 8.12 95% Standard Confidence Intervals e) for the True Variable 
Directions for the Ceramic Pots (Selected Variables: Multivariate 
Normal Distribution) 

Variable 

Sample Size 8 9 

75 (6,78) (88,188) 

60 (345,99) (83,193) 

45 (338,106) (79,197) 

21 (260,184) (20,256) 

15 (234,211) (0,275) 

9 (258,187) (359,277) 

Comparing Table 8.12 with Tables 8.10 and 8.11, we see that the intervals in the 

above table are clearly wider than those obtained for variables 8 and 9 when all 13 

variables were used in the analysis; this is true across all the sample sizes. It therefore 

seems that when fewer variables are used in the analysis, the confidence intervals for 

the true directions become wider. Considering Table 8.12, we see that the intervals do 

not become much wider as we go from 15 pots to 9, but in Table 8.10 the intervals 

are still becoming much wider as the sample size is reduced. 
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8.8 Detecting Influential Observations by using a Jack-knife 

Approach 

In this section we propose using the idea of 'jack-knifing', introduced to assess 

stability in Section 8.5, in order to identify influential observations in the data (which 

may also be causing instability in the biplot variables, leading to wider confidence 

intervals for the true directions of variables than would otherwise be the case). It is 

often the case that outlying observations are visible in biplots (see e.g. 3.7.2.1), but by 

omitting one observation at a time we are able to examine the influence of each 

individual observation. However, this is particularly time consuming when large 

numbers of observations have been collected and would not be viable for more than a 

few hundred. 

We propose following the same methodology as in Section 8.5, but the interpretation 

of the resulting plot is different. The vectors representing each variable are plotted as 

before, but this time any that are clearly distinct from the majority are flagged as 

unusual and the corresponding omitted observation is examined further. We also 

discuss methods of establishing which observation is the 'most influential'. 

8.8.1 Application to Simpson Desert Flint Tools 

Implementing the jack-knife method on the flint tools (1.2.6) results in an identical 

plot to Figure 8.5, where we see that for each variable there are two vectors that are 

slightly removed from the remainder. Given that, for a particular variable, each vector 

results from omitting one observation (in this case tools), the plot suggests that there 

are two slightly unusual tools. When we refer back to the raw data we see that these 

tools are both from site 08. Considering univariate analyses, boxplots of individual 

variables show these tools to be particularly unusual on variables width, thickness and 

platform width, moderately different on variables platform thickness and weight, but 

not at all different on length. The jack-knife plot of variable length does, however, 

highlight two tools as being unusual. If these tools are removed from the data and the 

analysis repeated then it may be possible to obtain a better separation between tools 

according to sites, but we do not show this here. It is also likely that the confidence 

intervals for the true directions of the variables will become smaller. 
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We now discuss how to assess which observation is the 'most influential'. Potentially 

influential observations can be identified by eye from the jack-knife plots, as we have 

done above for the flint tools. Alternatively, we could make use of the procrustes 

statistic (see 6.8.2). Specifically, we could delete each observation in turn, implement 

a biplot and compare the resulting variable co-ordinates with those of the original 

data, obtaining a value of M2 for each deleted observation. The observation with the 

largest procrustes M2 can then be considered to be the' most influential'. 
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8.9 Summary and Conclusions 

This chapter has introduced the idea of assessing the stability of biplot variables by 

using the multivariate normal distribution and has identified several methods of 

obtaining confidence intervals for the true directions of the variables (i.e. the 

directions taken if the whole population of data, rather than a sample, had been 

measured). We also developed methods for projecting supplementary observations 

and variables onto the original biplot axes. In addition, we discovered that replicate 

co-ordinates cannot be directly projected onto the original co-ordinate system because, 

after fitting a multivariate normal distribution to the data, there is no reason why the 

first observation of a generated matrix should correspond to the first observation of 

the original data. Instead, the co-ordinates for the replicate matrices must be obtained 

by implementing a biplot on each matrix separately - the resulting vector co

ordinates for a particular variable are referred to as bootstrap vectors. 

We have also developed the notion of a 'bootstrap fan' to describe a set of bootstrap 

vectors for a particular variable and we proposed using these fans to obtain confidence 

intervals for the true directions of the variables (i.e. for the whole population of data). 

It is clear that a biplot in two dimensions is not always appropriate, because two 

dimensions can be insufficient to both explain a high proportion of the variation in the 

data and also for each individual variable to have a high quality of representation. This 

can lead to the bootstrap fans not being centred about the original variable directions. 

It is also evident that variables that are poorly represented in the chosen 

dimensionality (typically two) have particularly wide confidence intervals for their 

true directions. In addition, we proposed using the jack-knife technique to assess the 

stability of the variables and this produces much narrower fans than those obtained 

from using the multivariate normal distribution. 

Two traditional confidence intervals were considered for assessing the true direction 

of the variables - the standard interval (symmetric) and the BCa method. These were 

implemented on the angles that the vectors representing each variable make with the 

direction due east and the choice of interval usually depends on whether the fans are 

centred or not. The BC. method leads to smaller intervals and is considered to be the 

better method because it does not necessarily produce a symmetric interval (it uses 
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percentiles that are based on the replicate vectors). We also proposed an adaption of 

the interval in Chapter Five of Fisher (1993), which was developed specifically for 

directional data, although this is only useful for comparing the relative widths of 

intervals across variables because it becomes narrower the more bootstraps that are 

generated. It can also be used to compare the interval widths of the original variables 

with those of the variables chosen using the variable selection methods of Chapter 

Seven. We suggested using the von Mises distribution to obtain confidence intervals 

because it was developed specifically for circular data, but for our data it was not 

appropriate. We also proposed accounting for the length of the bootstrap vectors when 

calculating mean variable directions for the correlation and Spearman rank correlation 

biplots, because for these biplots vector lengths represent the quality of representation 

of the corresponding variable (and therefore we believe that the longer vectors should 

be given greater weight). Mean directions are another means of assessing how close 

the replicate vector directions are to the directions of the original variables. 

Sampling without replacement and sampling by fitting a multivariate normal 

distribution, in conjunction with confidence intervals, were used to investigate the 

influence of sample size on the stability of the variables. However, the BCa method is 

not appropriate for smaller samples than that actually collected because the 

acceleration cannot be calculated. We also combined varying sample sizes with the 

variables selected under the backward elimination method of Chapter Seven, in order 

to investigate how selection affects the stability of the variables. It is clear that the 

fewer variables that are used in the analysis, the wider the confidence intervals for 

their true directions. Finally, we introduced the jack-knife technique into the biplot 

framework as a means of detecting influential observations and illustrated how such 

observations are highlighted on the resulting biplot. We suggested that the most 

influential observation can be identified by deleting each observation in turn, 

implementing a biplot and comparing the resulting variable co-ordinates with those of 

the original data, to obtain a value of the procrustes M2 statistic for each deleted 

observation. The observation with the largest M2 can be considered to be the most 

influential. This proved to be a very useful method. 
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Stability, Selection Methods, Sample Size and 

Canonical Correspondence Analysis 

9.1 Introduction 

In Chapter Four we explained the theory behind canonical correspondence analysis 

and illustrated its application to data on hunting spiders (1.2.8) and dune meadow 

vegetation (1.2.9). Chapter Four also raised questions regarding the effect of the 

number of categories (sites or species) and the size of the sample (number of sites or 

number of individuals recorded at each site) on the results of the analysis. In addition 

to the above, it was suggested that there may be a maximum number of environmental 

variables above which either the map becomes too cluttered for patterns in the data to 

be revealed, or where the multicollinearity between some of the variables is extremely 

high. This chapter uses techniques such as bootstrapping, procrustes analysis and jack

knifing, in combination with canonical correspondence analysis in order to answer 

questions such as those raised above. We also examine the stability of the sites 

obtained as a result of the analysis (Le. how representative are the samples obtained at 

each site of the true population of data), by considering confidence regions based on 

convex hulls and concentration ellipses. 

As we explained in Chapter Four, canonical correspondence analysis (CCA) is applied 

to data which consist of species abundances recorded at a number of sites, together 
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with a set of environmental variables measured at each site. Thus, there is scope for 

applying variations on the techniques discussed in Chapters Five and Six (for 

correspondence analysis) to the species data and adapting the methods of Chapters 

Seven and Eight (which concerned biplots) to the environmental variables. 

The structure of this chapter is as follows. In Section 9.2 we propose a method of 

assessing the stability of the sites in the CCA map and in 9.3 we discuss how the 

stability of the environmental variables might be investigated. Section 9.4 describes an 

existing technique for selecting a subset of environmental variables, before proposing an 

alternative method. One method of choosing which categories (usually sites) to delete 

from the analysis is introduced in 9.5 and the influence of sample size (Le. the total 

species abundances) on the analysis is addressed in 9.6. Jack-knifing as a method of 

assessing stability is discussed in 9.7 and this same method is proposed in 9.8 for 

detecting influential categories. Connections between CCA and both biplots and 

correspondence analysis are discussed in 9.9 and the chapter is concluded in Section 

9.10. 
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9.2 Site Stability 

One of our main interests lies in investigating whether small differences in the species

by-sites matrix can produce relatively large differences in the CCA display, because this 

could suggest that our data sample is not representative of the true population of all 

possible data and therefore our inferences based on the analysis are of limited use (care 

must be taken in distinguishing between unrepresentative samples and influential 

categories - see the discussion in 9.8). As we explained in Chapter Five for 

correspondence analysis, if it were possible to obtain more data in exactly the same way 

as that already collected (i.e. by using the same sampling scheme), then we could repeat 

this process many times to obtain a set of replicate data matrices, each of which could 

be subjected to CCA to produce a new set of points (clouds), which give some 

indication of the stability of the data. However, because this repeated sampling is not 

usually possible (although we believe that it is more feasible for collecting species data 

as opposed to artefacts, because the former are likely to be more abundant), we treat the 

observed sample as a proxy for the underlying distribution and draw new samples from 

it. There are two main ways in which we can resample from the contingency table, 

namely by using the multinomial distribution or by sampling without replacement: these 

methods were described in Chapter Five. However, the latter is only useful for 

answering questions concerning smaller sample sizes than those actually obtained. We 

discuss the stability of both the dune meadow vegetation sites (1.2.9) and the hunting 

spider sites (1.2.8) in the following sections; both data sets raise different questions 

regarding the interpretation of the results obtained from the multinomial resampling. 

Because a singular value decomposition (SVD) is involved in implementing CCA, it is 

possible that arbitrary reflection of the resulting co-ordinates may occur (it is known 

that the SVD is unique only up to sign changes in the eigenvectors - see Chapter Five) 

and this is corrected for throughout this chapter where necessary. 

332 



Chapter Nine - Stability, Selection Methods, Sample Size alld Canonical Correspondence Analysis 

9.2.1 Application to Dune Meadow Vegetation 

Using the species-by- ites dune meadow vegetation data (described in Chapter One and 

discussed in Chapter Four), which were collected using van der Maarers scale (see 

Table 4.1) and treating each ite as a separate multinomial sample (because this most 

closely resembles the original data collection strategy), we generate 200 replicate 

matrices. We leave the environmental variables unchanged so that the same 

environmental data are combined with each replicate species-by-sites matrix. The 

resulting bootstrap clouds for a subset of the sites (to avoid confusion) are illustrated in 

Figure 9.1. Becau e van der Maarel' s scale was used for these data, fitting a 

multinomial di tribution i not really appropriate, as the values on the scale are not 

frequencie but ordinal measures of abundance. However, in the absence of any other 

form of the data we u e this method of resampling. Interest lies in assessing how 

representative the sample at each site is of the true population of species found at that 

site and al 0 in determining which sites are similar in terms of the distribution of species 

that they contain . 
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Figure 9.1 Two Hundred Bootstrap Points of Dune Meadow Sites 

From Figure 9.1 we see that despite the fact that only a subset of the sites are displayed, 

there is still considerable overlap between the clouds of points from some sites. Of the 
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sites represented, only site 1 is distinct (Le. its cloud does not overlap with those of 

other sites), which suggests that this site consists of either different species, or of 

different proportions of the same species as compared with the other displayed sites. For 

sites with larger clouds (e.g. site 14), we are less certain that the samples obtained from 

these sites are representative of the true population of data, although both the degree of 

overlap and overa]] cloud size are related to the number of bootstraps generated (see 

Chapter Five). However, because we are making only informal inferences, we do not 

believe that this problem is too severe. 

Although Figure 9.1 does not il1ustrate the environmental variables, because these were 

not our prime concern, it is interesting to note that the positions of these variables on the 

map also alter even though the environmental data have remained the same for each 

bootstrap. This is, of course, because of the algebra of CCA (see 4.3.3), which 

incorporates multiple regression of the site scores on the environmental variables into 

the iteration algorithm. 

9.2.2 Application to Hunting Spiders 

In this section, we treat each hunting spider site (1.2.8) as a separate multinomial 

sample and compare the results obtained from using both the original and transformed 

hunting spider data (see 4.5). This will nearly always be the appropriate sampling 

scheme to implement, because it is usually the case that a number of sites are chosen 

and the abundances of the species present at these sites are then recorded. Generating 

500 bootstraps for the untransformed data (both species-by-sites and sites-by

environmental variables) and displaying a subset of the sites so as not to overcrowd the 

diagram, leads to Figure 9.2. We see from the figure that site 26 has a particularly large 

cloud associated with it, whereas sites 5 and 14, for example, have much smaller clouds. 
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Figure 9.2 Five Hundred Bootstrap Points of Hunting Spider Sites 

Transforming both the pecie data and the environmental data as described in Section 

4.5 and generating 500 boot traps produces Figure 9.3, where it is clear that the clouds 

are much Jarger than tho e of 9.2. On the basis of this figure we would therefore 

conclude that the mple obtained at the sites are much less stable i.e. less 

repre entative of the true population of data. Because of the large degree of cloud 

overlap, we al 0 infer that there is a great deal of similarity between the species found at 

the carre pondjng ite . However, it is not satisfactory for the clouds to vary so much 

pureJy becau e of the form of the data and we therefore emphasise that careful 

consideration mu t be given to the data before any analysis is undertaken. 
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Figure 9.3 Five Hundred Bootstrap Points of Hunting Spider Sites (Transformed) 

9.2.3 Convex Hulls and Concentration Ellipses 

As de cribed in Chapter Five, convex hulls and concentration ellipses can be used to 

ummarise the point resulting from bootstrapping, although the sizes of the clouds 

depend on the number of bootstraps generated. We again propose calculating the areas 

of hull and ellip e and therefore comparing the stability of each site (smaller areas 

indicate greater tability Le. the sample obtained at the corresponding site is more 

representative of the true population of data). The methodology was described in 

Section 5.4 and i applied to the dune meadow vegetation data below. 

9.2.3.1 Application of Concentration Ellipses to Dune Meadow Vegetation 

In this section we obtain concentration ellipses and their areas for the dune meadow 

vegetation sites (1.2.9). Having generated 200 bootstraps, Figure 9.4 illustrates 95% 

concentration ellipses for the same subset of sites as in Figure 9.1. The relative sizes of 

the cloud are now much clearer and the ellipses of all the displayed sites, except that of 

site 1, show some degree of overlap. For example, the ellipses representing sites 4 and 9 

overlap considerably and consulting Table A.IS of the Appendix, we see that these sites 

have fairJy simiJar distributions of species. In contrast, site 14 is some distance away 

and it only has three species in common with site 9. 
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In Chapter Five we reported results due to Ringrose (1992), namely that when applying 

correspondence analysis, the sites with the largest clouds have similar numbers across 

the species and low numbers in each cell of the matrix. However, examining the cloud 

sizes reveals that this does not appear to be true for CCA and we suspect that this is 

because of the influence of the environmental variables. 
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Figure 9.4 95% Concentration Ellipses for the Dune Meadow Sites 

The areas of the 95% concentration ellipses for all the sites (referred to as ~ in Chapter 

Five) are given in Table 9.1, where we see that site 14 is the most unstable and site 1 is 

the most stable. In Section 5.4.4.3 we suggested, as a rule of thumb, that if the centroid 

of a 95% ellipse representing a site is included in the 95% ellipse of another site, then 

these sites can be considered to be virtually indistinct in terms of their profile of species. 

Applying this to Figure 9.4, we infer that sites 4 and 9 are indistinct, although when 

more than two ellipses exhibit considerable overlap this rule of thumb will run into 

problems. 

337 



Chapter Nine - Stability, Selection Methods, Sample Size and Canonical Correspondence Analysis 

Table 9.1 The Measure A4 for the Dune Meadow Sites 

Site Ellipse Area Site Ellipse Area 

1 0.240 11 0.388 

2 0.310 12 0.513 

3 0.329 13 0.443 

4 0.333 14 1.154 

5 0.298 15 1.011 

6 0.338 16 0.577 

7 0.282 17 1.094 

8 0.481 18 0.576 

9 0.382 19 0.946 

10 0.255 20 0.705 

9.2.3.2 Application of Convex Hulls to Dune Meadow Vegetation 

In this section we illustrate convex hull peeling for one of the dune meadow vegetation 

sites. Applying convex hull peeling, using the Green-Silverman algorithm (Green & 

Silverman, 1979) described in Section 5.4, to the bootstrap cloud for site 14 (illustrated 

in Figure 9.1), produces Figure 9.5. This figure shows that there are 18 peels in total and 

that the outer convex hull is some distance away from the remaining hulls. It is also 

apparent that considering the outer hull, as compared with the hull containing 

approximately 50% of the points, leads to a very different estimate of site stability. 
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Figure 9.S Convex Hull Peels of Dune Meadow Site 14 
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9.3 Environmental Variable Stability 

Besides investigating the stability of the sites, it is also important to consider the 

stability of the environmental variables. Because the environmental data always consist 

of variables measured at a sample of all possible sites, we need to consider how 

representative these data are of the true population of data Le. how stable are the 

variables. As explained in Chapter Eight for biplots, we need to first fit a distribution to 

the data matrix and then bootstrap from this distribution. 

For quantitative environmental variables we need to fit a distribution to the data 

(perhaps after suitable transformations). However, there are often zeroes in the data and 

so the multivariate normal distribution is not really appropriate (by fitting this 

distribution we are ensuring that no zero values are generated). This is particularly 

problematic when a zero indicates that the combination of an environmental variable 

and site is not possible. For nominal variables the choice of which distribution to fit is 

even more difficult, because the levels of each variable are arbitrarily assigned a number 

e.g. 1, 2, 3, 4 for a variable with four levels, but there is no scaling involved (Le. a value 

of 4 does not represent twice the value of 2). Additionally, because environmental 

variables are measured at sites (rather than variables measured on a sample of 

observations as for biplots) and because this information is then combined with species 

data, the relative magnitudes of each variable across the sites need to be retained and it 

is difficult to see how this can be achieved. 

If we could decide on appropriate distributions to fit to the data, we could generate 

replicate environmental variable matrices, keeping the species-by-sites matrix fixed and 

implement CCA to obtain bootstrap fans (see Chapter Eight) and clouds for the 

quantitative and qualitative environmental variables respectively. These give an 

indication of the stability of the original environmental data and can be used to obtain 

confidence intervals and regions for the true directions and locations of the variables 

respectively, Le. for the whole population of data. By examining the stability of the 

environmental variables it may then be possible to use this information in variable 

selection methods, so that only the more stable variables are retained. Selection methods 

are discussed in the following section. 
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9.4 Environmental Variable Selection Methods 

Sometimes a large number of variables have been measured at each site and this can 

lead to both cluttering of the CCA map and to high multicollinearity between some of 

the environmental variables. It can also be the case that measuring 'inappropriate' 

variables hides the true patterns in the species data. We therefore believe that it is 

important to consider variable selection methods, both for analysing present data and for 

providing guidelines for future data collection. In the next section we discuss an existing 

method of variable selection, before proposing an alternative in Section 9.4.2. 

9.4.1 An Existing Method of Variable Selection 

Ter Braak. & Verdonschot (1995) describe a method of selecting environmental 

variables which uses forward selection and this is an option in the package CANOCO, 

version 3.1. The method works as follows. In step one, CCA is implemented using each 

environmental variable on its own. The variables are then ranked on the basis of their 

fit, where the measure of fit is the eigenvalue of the CCA. The statistical significance of 

the effect of each variable is tested by a Monte Carlo permutation test (as in Manly, 

1991) where, if a p-value of less than 0.05 is obtained, the variable is considered to be 

significantly related to the species data at the 5% level. At the end of the first step the 

variable with the greatest fit is selected. After this, all the remaining environmental 

variables are ranked on the basis of the fit that each separate variable gives in 

conjunction with the variable(s) already selected, where the measure of fit is now the 

sum of all the eigenvalues obtained from CCA, with each variable as the only additional 

environmental variable. CANOCO reports the 'extra fit', which is the change in the sum 

of all eigenvalues of CCA if the associated variable is selected. Later steps proceed in 

the same way and we stop adding variables when they cease to be significantly related 

to the species data. The Monte Carlo test replaces the usual F- or t-tests in forward 

selection multiple regression. 
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9.4.1.1 Application to Hunting Spiders 

In this section, we apply the variable selection method just described to the hunting 

spider data (1.2.8). Originally, 26 environmental variables were measured at each site 

(see Figure 4.6) and so this provides considerable scope for applying variable selection 

methods. Using the untransformed data, taking a. = 0 as in Section 4.5 and applying the 

above method in CANOCO leads to the following table of results. We stop at step 17 

because from this point onwards all the p-values exceed 0.13. 

Table 9.2 Order of Variables Selected for the Hunting Spiders (from 26) 

Step Variable Selected Extra Fit P-Value Step Variable Selected Extra Fit P-Value 

1 3 0.58 0.01 10 16 0.04 0.05 

2 6 0.36 0.01 11 17 0.03 0.03 

3 22 0.32 0.01 12 15 0.03 0.16 

4 4 0.10 0.01 13 9 0.03 0.09 

5 26 0.05 0.04 14 11 0.03 0.10 

6 25 0.05 0.03 15 24 0.03 0.05 

7 10 0.04 0.03 16 12 0.02 0.23 

8 8 0.06 0.01 17 18 0.02 0.21 

9 19 0.03 0.17 

On the basis of the above table, we stop the selection after step 8 and retain variables 

P. 4, 6, 8, 10, 22, 25, 26}, because it is after this point that the first variable is not 

significantly related to the species data at the 5% level. We note that only three of these 

variables are included in the set of six selected by ter Braak (1986) and used in 4.5.2. 

Carrying out CCA on this reduced set of eight variables reveals that there are two 

variables with high variance inflation factors - 25 and 26. The resulting CCA map is 

illustrated in Figure 9.6, where we see that variables 3 & 4 are highly correlated (this is 

indicated by the small angle between the vectors representing them). It is also evident 

that variables {6, 25, 26} are highly correlated, although 6 & 26 are virtually 

uncorrelated in Figure 4.1. Given that the species data have remained the same for both 

figures, this apparent change in correlated variables must be entirely due to the effects 

of the included variables. We also note that the species and site points are located in 

similar positions in both Figure 4.1 and Figure 9.6. 
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Figure 9.6 Canonical Correspondence Analysis Map of Selected Hunting Spider 

Variables (from 26) 

For comparative purposes, we apply this forward selection method to the six variables 

of both the original and transformed data, discussed in Sections 4.5.1 and 4.5.2 

respectively, which leads to the following table. The codes are those from Table 4.1. 

Table 9.3 Order of Variables Selected for the Hunting Spiders (from 6) 

Original Data Transformed Data 

Site Variable Selected Extra Fit P-Value Variable Selected Extra Fit P-Value 

1 6 0.49 0.01 1 0.49 0.01 

2 4 0.32 0.01 5 0.18 0.01 

3 5 0.28 0.01 4 0.09 0.02 

4 1 0.05 0.21 6 0.07 0.01 

5 26 0.04 0.26 7 0.03 0.15 

6 7 0.03 0.44 26 0.02 0.36 
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From the above table we see that when using the original data we only select three 

variables - {4, 5, 6}, although using the transformed data we select four (which 

includes the three selected in the untransformed data) - { 1, 4, 5, 6}. A CCA map using 

these four variables is illustrated below in Figure 9.7 and all the variance inflation 

factors are less than 3.5. Again, the locations of the species and site points are similar to 

those in the previous figures. We also see that variables 1 & 4 are uncorrelated, but that 

4 and 6 are located in similar positions to where they are in Figure 9.6. 
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Figure 9.7 Canonical Correspondence Analysis Map of Selected Hunting Spider 

Variables (from 6) 

In addition to the forward selection method implemented above, we could also use 

backward elimination, stepwise or all subsets methods, although these are not available 

in CANOCO 3.1 or in any other package as far as the author is aware. They are. 

however, relatively straightforward to implement in any standard programming 

language. 
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9.4.2 A Proposed Method of Variable Selection 

In Chapter Seven we discussed variable selection methods for biplots and we believe 

that these can be adapted to CCA. For biplots, using the backward elimination method, 

each variable was omitted in tum and the resulting configurations of observation points 

were compared with that from all the original variables by using procrustes analysis. 

The reasoning behind this is that the removed variable, which corresponds to the least 

difference between configurations, has contributed least to the analysis and can 

therefore be permanently removed. However, in CCA we have two sets of points, one 

set representing the species and the other representing the sites of the species-by-sites 

matrix. We therefore propose the following backward elimination method. 

Stage 1: 

Stage 2: 

Stage 3: 

Implement CCA on the original data and retain the co-ordinates of the 

sites followed by the co-ordinates of the species in the reference 

configuration X. 

Delete each variable in tum and retain the site co-ordinates followed by 

the species co-ordinates in matrix Y. 

A ppl Y procrustes anal ysis to minimise trace { (X -Y)(X -Y) T} under 

translation, rotation and reflection of Y. This results in a residual sum of 

squares M2. The smallest M2 corresponds to the least important variable 

because deleting it results in a configuration that is the least different 

from the reference. Display the resulting M2 values in a scree-plot or 

cumulative scree-plot (as explained in 6.3.2). 

The variance inflation factors of each variable (see Section 4.3.5.5) are also important 

and we need to ensure that these are not too high for the selected variables. It is easy to 

see how this could be applied to a forward selection method, because we could ensure 

that both the variable corresponding to the minimum M2 at each stage in the process and 

also the variables already selected, have variance inflation factors less than some 

specified value. It is more difficult to see how this could be implemented for a backward 

elimination method. As discussed in Chapter Seven for biplots, we can also apply 

stepwise and all subsets methods of variable selection. 
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9.4.2.1 Application to Hunting Spiders 

Using the original 26 variables (and two dimensions for procrustes analysis) we apply 

the method of variable selection just described to the hunting spiders (1.2.8). The 

corresponding scree-plot is illustrated in Figure 9.8, where we can think of the vertical 

axis as a goodness of fit measure with the bottom being the best fit and the top the worst 

fit. 
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Figure 9.8 Scree-plot for the Hunting Spider Variables (Backward Elimination) 

We can see from the plot that the fit improves as each of the first seven variables is 

deleted and we believe that this is because of the multicollinearity which is often present 

with large numbers of variables (and which was revealed in 4.5.4). After variable 2 is 

removed the fit worsens (the slope of the plot rises). We expect this to happen at some 

point in the selection process because we cannot delete variables indefinitely and expect 

the fit of those remaining to improve. We believe that the slight decline on the far right 

of the plot could be because only two dimensions have been used in the calculations. 

Removing the first 11 variables as suggested by the graph and implementing CCA leads 

to Figure 9.9 below. Only six variables have variance inflation factors of less than 20 

and we note that only one of the 15 variables is the same as that selected from Table 9.2 

using the method described in ter Braak & Verdonschot (1995). However, we see from 

Figure 9.9 that the pattern of species and site points is similar to that of the previous 

figures, with species Pardosa lugubris still occupying an aberrant position in the 
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diagram. 
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Figure 9.9 Canonical Correspondence Analysis Map of Selected Hunting Spider 

Variables (Procrustes Analysis) 

If we sum the values of M2 across the steps then we produce a cumulative scree-plot. 

The advantage of such a plot is that the vertical axis measures the 'total discrepancy' 

between the appropriate co-ordinates of the original data and those of the reduced data 

when successive variables have been deleted (rather than the marginal discrepancy 

resulting from the deletion of each variable). This is illustrated in Figure 9.10 (see 

6.3.2), where we see that there is no clear change of slope. It is, therefore, difficult to 

decide where to stop deleting variables and in this situation the scree-plot appears to be 

more helpful. 
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Figure 9.10 Cumulative Scree-plot for the Hunting Spider Variables 

(Backward Elimination) 

348 



Chapter Nine - Stability, Selection Methods, Sample Size and Canonical Correspondence Analysis 

9.5 Deleting Categories 

Sometimes the data consist of large numbers of sites and/or species and it can be 

difficult to see any pattern in the resulting CCA map. It may, therefore, be of interest to 

remove some sites from the analysis. In Section 6.3 we described a method of deleting 

categories for use with correspondence analysis and we propose adapting this method 

forCCA: 

Stage 1: 

Stage 2: 

Stage 3: 

Implement CCA on the original data matrix and retain the co-ordinates 

of the species, followed by the co-ordinates of the environmental 

variables, in the reference configuration X. 

Omit each site in tum (from both the species-by-sites and the sites-by

environmental variables matrices) and retain the species co-ordinates of 

the new data set, followed by the environmental variable co-ordinates, in 

matrix Y. 

Apply procrustes analysis to minimise trace { (X-Y)(X-y)T} under 

translation, rotation and reflection of Y. This results in a residual sum of 

squares M2. The smallest M2 corresponds to the least important site 

because deleting it results in a configuration that is the least different 

from the reference. 

Rather than applying a backward elimination algorithm, we can obtain M2 for each 

possible combination of deleted sites (Le. consider 'all subsets' of sites). We also 

suggest, for the backward elimination method, using a scree-plot or cumulative scree

plot to display the site deleted at each step against the corresponding M2 (or cumulative 

M2) value - we stop deleting sites where there is a large change in slope of the graph. 

We implement the method on both the transformed and untransformed hunting spider 

data in the next section. 
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9.S.1 Application to Hunting Spiders 

Considering the untransfonned spider data (see 4.5.1) and deleting each site in tum 

produces the following non-monotonic scree-plot (only the first 17 steps are shown). 

We see that as each of the first 12 sites is deleted, the fit improves. This could be 

because of the large number of sites - some sites are masking the effects of other sites. 

After site 16 has been removed the fit worsens and this is the point at which we stop 

deleting sites. However, on the far right of the plot we see that the slope again becomes 

negative. This could be because only two dimensions have been used in the 

calculations, or it could be that this method is not appropriate. Removing the first 12 

sites in the plot and implementing CCA leads to a very similar ordination diagram to 

Figure 4.1 in tenns of the locations of species points and environmental variables . 
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Figure 9.11 Scree-plot for the Hunting Spider Sites (Backward Elimination) 

A cumulative scree-plot agam shows no clear change of slope. Considering the 

transfonned spider data (see 4.5.2) and deleting sites produces a non-monotonic scree

plot, which initially has a negative slope (i.e. as sites are deleted the fit improves), 

reaches a minimum M2 and then undulates. We believe that this is also likely to be 

because only two dimensions have been used in the procrustes calculations. 
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9.6 The Influence of Sample Size 

Having considered two methods of environmental variable selection, one method of 

category deletion and introduced bootstrapping as a means of investigating the stability 

of the CCA map, we now consider the influence of sample size (i.e. the species' 

abundances) on the ordination diagram. We investigate how the abundances of species 

measured at each site affect both the pattern of species and sites and the positions of the 

environmental variables. This is of interest because if a 'small' sample leads to widely 

differing inferences to those from a 'large' sample then we cannot be confident in our 

interpretation of the data. 

9.6.1 Application to Hunting Spiders: The Multinomial Distribution 

In this section we sample the species-by-sites hunting spiders matrix (1.2.8, Table A.12) 

by fitting a multinomial distribution, leaving the sites-by-environmental variables 

matrix unchanged. We generate 200 bootstraps with sample sizes consisting of varying 

proportions of the original spider counts obtained from each site, as indicated by the 

column headings of the table and calculate the ellipse area (~) for each of them. 

Reading from left to right across the table, we see that the smaller the sample size the 

larger the area of the ellipse and so the less stable the site i.e. the less confident we are 

that the sample obtained at the site is representative of the true population of data. The 

table also shows that site 26 is particularly unstable - referring to the raw data (Table 

A.12), this is probably due to the very large abundance of Arctosa perita at this site, 

compared with absence or small abundance at the other sites, but could also be due to 

the relatively unusual values of the environmental variables. 
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Table 9.4 The Measure A4 for the Hunting Spider Sites 

Sample Size (proportion of original) Sample Size (proportion of original) 

Site 2 1 3 1 1 Site 2 1 3 1 1 - - - - -
4 :2 4 4 :2 4 

1 0.071 0.134 0.167 0.261 0.523 15 0.134 0.241 0.354 0.529 1.031 

2 0.021 0.037 0.058 0.084 0.202 16 0.103 0.198 0.261 0.412 0.929 

3 0.048 0.114 0.121 0.205 0.366 17 0.086 0.164 0.238 0.332 0.741 

4 0.016 0.039 0.052 0.077 0.193 18 0.141 0.245 0.335 0.551 1.039 

5 0.017 0.032 0.036 0.067 0.217 19 0.216 0.412 0.598 0.835 1.909 

6 0.032 0.069 0.084 0.125 0.305 20 0.228 0.369 0.615 0.893 1.852 

7 0.015 0.037 0.044 0.073 0.233 21 0.411 0.819 0.866 1.515 3.024 

8 0.186 0.422 0.571 0.853 2.244 22 0.365 0.959 1.178 2.038 4.272 

9 0.395 0.743 0.842 1.329 3.131 23 0.443 0.836 1.243 2.147 4.433 

10 0.335 0.644 0.735 1.162 2.812 24 0.255 0.544 0.722 1.139 2.735 

11 0.209 0.415 0.535 0.824 1.887 25 0.315 0.609 0.897 1.051 2.540 

12 0.184 0.351 0.446 0.672 1.552 26 2.176 4.501 6.121 9.400 29.81 

13 0.021 0.043 0.055 0.088 0.232 27 0.207 0.410 0.690 0.958 2.772 

14 0.028 0.052 0.079 0.093 0.232 28 0.278 0.558 0.814 1.187 3.065 

9.6.2 Minimum Sample Sizes 

Because, for any particular data set, we have only a sample of all possible data, it is of 

interest to ascertain the minimum sample size required to estimate the proportion of 

species at a particular site to a certain level of accuracy, with a required probability. We 

use the notation of Chapter Five and consider the multinomial distribution. 

9.6.2.1 Application to Hunting Spiders 

By following the methodology of Section 5.6.2 and taking various values of the 

tolerance (d) and significance level (ex), we estimate minimum sample sizes for the 

un transformed hunting spiders. We use equation (5.8) and list the values in Table 9.5. 

The estimated numbers will be the same for each site. In order to try to estimate the 

largest minimum sample size, we take PI = P2 = 0.49 and Pi = 0.02 for i = 3, ... , A and 
(A-2) 

A=12 species. Clearly. the values in the table increase as ex decreases. 
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Table 9.5 Estimated Minimum Required Sample Sizes for the Hunting Spider 

Sites 

Tolerance (d) 

a 0.1 0.05 

0.2 67 267 

0.1 96 383 

0.05 126 502 

Comparing these estimated sample sizes with the actual abundances in Table A.12 of 

the Appendix, we see that for all combinations of d and a there are 16 sites (out of 28) 

that have total abundances less than the values in the table. For d=0.05 together with 

a=0.05 or a=0.1, the recommended sample sizes exceed those collected at all sites. If 

any data transformations are necessary then we believe that these should be carried out 

after the estimated minimum sizes above have been obtained. 
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9.7 Assessing Stability by using a Jack-knife Approach 

In Sections 9.2 and 9.3 we discussed how the stability of the sites and the environmental 

variables could be assessed. An alternative method of assessing stability is to use a jack

knife approach, which we introduce here and which we discussed for correspondence 

analysis and biplots in Chapters Five and Eight respectively. We propose that the 

method works as follows. Each species or environmental variable is deleted in tum and 

a new CCA is implemented each time. The resulting clouds of sites points (one for each 

deleted species or variable) measure stability and can be compared with those obtained 

from bootstrapping. 

9.7.1 Application to Dune Meadow Vegetation 

In this section we apply the jack-knife method introduced above to the dune meadow 

vegetation (1.2.9). There appear to be two possible approaches to assessing site stability 

which incorporate the technique of jack-knifing and these arise because the data consist 

of both species-by-sites and sites-by-environmental variables matrices. We can either 

delete each species in tum and carry out CCA, before displaying the resulting site points 

or, alternatively, we can remove each environmental variable in turn before 

implementing CCA and again display the resulting site points. Removing each species 

results in Figure 9.12, which only displays three sites because otherwise the plot 

becomes overcrowded: site 17 is represented by circles (0), site 4 by asterisks (*) and 

site 19 by plusses (+). The main feature of this figure is that, for these particular sites, 

the points are not clustered together. Drawing 95% concentration ellipses for the points 

obtained from jack-knifing for the same subset of sites as in Figure 9.4, leads to Figure 

9.13, where we see that there is an extremely high degree of overlap between sites -

only four sites can be labelled without ambiguity. In this figure the sites appear to be 

more unstable and more similar in tenus of the profiles of species that they contain, than 

was revealed by multinomial sampling in Figure 9.4. 
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Figure 9.12 Dune Meadow Site Clouds (Jack-knifing Species) 
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Figure 9.13 9S % Concentration Ellipses for the Dune Meadow Sites 

Removing each of the five environmental variables in tum and implementing CCA 

leads to Figure 9.14, where we again display a subset of the sites. It is clear that the 

clouds of points for each site are much smaller when environmental variables are 

deleted compared to when species are deleted. We therefore conclude that jack-knifing 
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is not a good method of assessing the stability of the sites because we have conflicting 

information. It could, perhaps, also be argued that the points from deleting both species 

and environmental variables should be combined and that the resulting clouds should be 

taken as an indication of stability. 
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Figure 9.14 Dune Meadow Site Clouds (Jack-knifing Environmental Variables) 
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9.8 Detecting Influential Categories by using a Jack-knife Approach 

In this section we propose using the technique of jack-knifing to identify species or 

environmental variables that are potentially influential in CCA (Le. that cause a 

substantial change in the ordination diagram. This is apparent if a site point is located 

some distance away from the remainder of the points). The methodology is the same as 

that of Section 9.7, but the interpretation of the display is different. We also suggest 

how to ascertain which is the 'most influential' species or environmental variable. 

9.S.1 Application to Dune Meadow Vegetation 

Considering Figure 9.12 and site 19 (plusses), we see that there are three points that are 

located away from the majority (Le. at the top of the diagram) and these are caused by 

the deletion of the species Achi mill, Agro stol and Aira prae. For site 17 (circles) there 

are 7 points away from the rest (at the bottom of the diagram), but these are not caused 

by the deletion of the three species listed above. For site 4 (asterisks) there are 9 points 

on the left and 21 on the right and so there do not seem to be any clear species that are 

influential. Similar patterns emerge for the other sites. 

Considering Figure 9.14 we see that there is one point that is removed from the 

remainder for all sites except site 19 and in some cases there are two points located 

away from the rest (e.g. for site 17). The single point relates, in each case, to deletion of 

the variable moisture content and so this variable is potentially influential. Deleting this 

variable and implementing CCA leads to a different ordination diagram to that of Figure 

4.7 (which used all five variables) - the nominal variables are clustered at the centre. 

When there are two points located some distance away from the rest, these are caused 

by deletion of the variables moisture and grassland management. Removing both these 

variables leads to Figure 9.15, where the quantitative variables are located in similar 

directions to in Figure 4.7, but where the distribution of the species points across the 

ordination map is quite different. There now appears to be a cluster of three species at 

the top of the diagram. 
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Figure 9.15 Canonical Correspondence Analysis Map of Dune Meadow 

Vegetation (Moisture and Grassland Management Deleted) 

In order to identify the 'most influential' environmental variable, we propose using the 

backward elimination selection method, which we introduced in 9.4.2. However, in the 

first step, instead of looking for the deleted variable, which results in the smallest M2, 

we look for the variable with the largest M2. This variable is considered to be the most 

influential because it results in the biggest difference in co-ordinates from those of the 

reference configuration. Similarly, when seeking the most influential site, we propose 

using the method of Section 9.5 to identify, at the first step, which site deletion results 

in the largest M2. To detect the most influential species we can apply the method in 9.5, 

but delete species instead of sites. 
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9.9 Connections with Other Techniques - Practical Application 

In Section 4.4 we explained that in canonical correspondence analysis, each pair of 

{sites, species, environmental variables} form a biplot. Given that correspondence 

analysis is appropriate for species-by-sites matrices, that biplots are appropriate for 

sites-by-environmental variables matrices and that both bip]ots and correspondence 

analysis form major parts of this thesis, we believe that it is important to consider 

similarities between these three techniques as regards practical application. We 

concentrate on the hunting spider data in the following two sections. 

9.9.1 Canonical Correspondence Analysis and Correspondence Analysis 

In this section we implement correspondence analysis (CA) on the untransformed 

species-by-sites matrix for the hunting spiders (1.2.8) and compare the locations of the 

species (circles) and site points (plusses), plotted in Figure 9.16, with those obtained 

from CCA in Figure 4.1. 
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Figure 9.16 Correspondence Analysis Map of Hunting Spiders 

Considering Figure 4.1, we see that there is one site located on the right of the diagram 

that is removed from the remainder of the sites and species points - site 26. This is the 
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same site that is located on the top left of the above figure (the CA and CCA ordination 

diagrams are essentially reflections of each other), but this time it is located close to the 

species Arctosa perita. Looking at Table A.12 of the Appendix, it is clear that Arctosa 

perita is very abundant at site 26. It is also evident that both ordination diagrams show 

an 'arch effect' of both species and site points. In Section 4.7.1 we noted that when the 

number of environmental variables is close to the number of sites, then CCA is 

essentially CA, although in the above example there are only six variables and still the 

diagrams are very similar. When the data are transformed as discussed in 4.5.2 (but still 

with six variables), the ordination maps of CA and CCA are again very similar. 

9.9.2 Canonical Correspondence Analysis and Biplots 

In this section we implement the correlation biplot on the (untransformed) sites-by

environmental variables matrix for the hunting spiders and compare the locations of the 

variables with those of the variables obtained from a CCA on these data (Figure 4.1). 

The correlation biplot is illustrated in Figure 9.17. 
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Figure 9.17 Correlation Biplot of Hunting Spiders 

We see that the site points in the above diagram form an arch - this was also the case 

for both CCA and CA. It is clear that the relative positions of the environmental 

variables are the same in both Figure 4.1 and Figure 9.17; the two Figures are 

360 



Chapter Nine· Stability, Selection Methods, Sample Size and Canonical Correspondence Analysis 

essentially reflections of each other. The correlation biplot and CCA produce similar 

ordination maps for these data and this is also the case when they are applied to the 

transformed hunting spider data. 
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9.10 Summary and Conclusions 

This chapter has considered various methods of assessing the stability of the sites in 

canonical correspondence analysis maps and discussed the appropriateness of these 

methods, depending on the form of the data. The main method which we proposed 

involves resampling the species-by-sites matrix by using the multinomial distribution 

(i.e. bootstrapping): a multinomial distribution should usually be applied to each site 

separately, because this most closely resembles the method by which species data are 

obtained in the 'field'; we also suggested that the sites-by-environmental variables 

matrix should be left unchanged. We commented that particular problems arise when 

using the multinomial distribution to assess the stability of vegetation data measured on 

cover-abundance scales (such as those in Table 4.1). This is because the multinomial 

distribution treats the data as frequencies, whereas these scales tend to be of an ordinal 

nature, where the distances between units on the scale are not equal. However, we have 

ignored these problems which, incidentally, do not arise when the data consist of 

absolute abundances, as is usually the case for animal species data. An alternative 

method of investigating stability, which we proposed, is a jack-knife approach, although 

one problem with this method results from the fact that there are two data matrices to 

consider: species-by-sites and sites-by-environmental variables. It is not obvious how 

these two sets of information can be most effectively combined. 

We concluded that as for correspondence analysis, (non-parametric) convex hulls and 

(parametric) concentration ellipses provide useful summaries of the clouds of points 

obtained from bootstrapping. By looking for overlapping 95% concentration ellipses, 

we can establish which sites are similar in terms of the types and distributions of species 

they contain. As we suggested in Chapter Five for correspondence analysis, a rough rule 

of thumb is that if the centroid of a 95% ellipse representing a site is included in the 

ellipse of another site, then these sites can be considered to be virtually indistinct in 

terms of their profiles of species. We also proposed using the area of hull peels and 95% 

ellipses to assess the relative stability across sites (larger areas mean greater instability). 

In correspondence analysis, the sites with the largest bootstrap clouds have similar 

numbers across the species and low numbers in each cell of the original data matrix, but 

this is not true for CCA and we suspect that this is because of the influence of the 

environmental variables. 
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The issues involved in assessing the stability of environmental variables were also 

discussed in some detail: problems arise partly because of zeroes in the environmental 

data and partly when there are nominal variables. It is, therefore, difficult to decide 

which distributions are most appropriate to fit to the data, although when this has been 

decided we can obtain confidence intervals for the true directions of the quantitative 

variables and confidence regions for the true locations of the nominal variables (Le. in 

the whole population of data). 

It is sometimes the case that many more variables are measured at a site than can be 

effectively displayed in the ordination diagram and it is not always known which 

variables are likely to be most effective in explaining the distributions of species (this is 

why we apply CCA). It is also known that multicollinearity often exists when large 

numbers of variables are measured and so we have considered variable selection 

methods in this chapter. In particular, an existing method of forward selection was 

implemented and the results compared with a new method that we introduced and which 

is based on the procrustes statistic. By displaying the results from our method in a scree

plot (and cumulative scree-plot) and looking for changes in slope of the graph, the 

selection process can be visualised. Both methods selected variables with high variance 

inflation factors, but both ordination maps are little changed from that of the original 

data. We could also have implemented stepwise and all subsets methods of variable 

selection and we could have considered using higher dimensionality in the calculations. 

Sometimes there are too many categories (species or sites) to effectively display in the 

ordination diagram and so we proposed a method to reduce this number of categories. 

The method is an adaption of that introduced by Krzanowski (1993) into 

correspondence analysis and is based on the procrustes statistic - this was reasonably 

successful. However, we only used two dimensions in our calculations and it may be 

worth considering higher dimensions. 

In addition, we used the multinomial distribution to calculate the minimum required 

sample sizes in order to estimate two or more categories of species simultaneously (by 

applying traditional sampling theory). It is clear that the actual sample sizes collected by 

ecologists at a particular site are often less than those required based on statistical 
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criteria and are sometimes as little as 3~ th of the size. In contrast, archaeologists often 

'overcollect' artefacts (see 5.6.2), relative to the recommendations based on statistical 

calculations. 

Because canonical correspondence analysis is applied to two data matrices, one of 

which is suitable for correspondence analysis and one of which is suitable for biplots, 

we compared the CCA ordination map with that obtained from a correspondence 

analysis implemented on the species-by-sites data and also with a correlation biplot of 

the sites-by-environmental variables data. For the data we considered, the three methods 

produce very similar ordination diagrams and interpretations. Finally, we introduced 

jack-knifing as a means of detecting potentially influential sites, species and variables in 

the CCA map and we found it to be a very useful technique. We suggested that the 

'most influential' category or environmental variable can be identified by looking for 

the largest procrustes M2 at the first step of the appropriate backward elimination 

selection method. 
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Summary and Conclusions 

10.1 Introduction 

This thesis has been concerned with three techniques of exploratory multivariate 

analysis - correspondence analysis (CA), biplots and canonical correspondence 

analysis (CCA) - and their application to 'field studies' - in particular archaeology 

and ecology. The main focus of Chapter One was to introduce the data sets (both 

published and new material), which we have returned to throughout to illustrate both 

existing and new methodology and which are listed in the Appendix. Chapters Two, 

Three and Four explained in detail the mathematical theory behind the three 

techniques, whilst also raising important questions driven by the data. These questions 

were the focus of Chapters Five to Nine. Similar issues were addressed using all three 

techniques and the purpose of this chapter is to summarise these, but also to explain 

the methods used to address them and the conclusions drawn. The remainder of this 

section explains the similarities, whereas Sections 10.2, 10.3 and 10.4 discuss issues 

specific to each of the techniques. 

Correspondence analysis, biplots and canonical correspondence analysis are all 

informal, graphical, exploratory methods for displaying high-dimensional data in low

dimensional space. They all involve the singular value decomposition of a matrix. 

Correspondence analysis displays the rows and columns of a matrix of non-negative 

data as points in an ordination diagram and looks for patterns or associations in the 
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data. In contrast, biplots are usually used to display data consisting of a series of 

variables measured on a number of observations, where the observations are represented 

by points and the variables by vectors. Canonical correspondence analysis is appropriate 

for data consisting of the abundances of a multitude of species at a number of sites, 

where environmental variables have also been measured at these sites and in some 

respects is a combination of the first two methods. 

The questions that we have addressed in this thesis and the methodology that we have 

developed have, in part, been driven by the needs of the archaeologists who provided 

some of these data sets and who have been consulted extensively during the study. The 

main issues that we have investigated using the three techniques have followed a 

common theme and these are summarised as follows: 

[I] Stability: Investigation of the stability of the data (sites, contexts and 

variables) i.e. how representative are they of the true population of data, within 

the framework of the multivariate technique that is used for analysis. This is of 

interest because our data sets are only samples of all the possible data that 

could be collected, if resources were unlimited. 

[2] Sample Size: Assessment of the influence of sample size (number of artefacts 

collected or measured; abundance of species) on the ordination diagram. 

Quantities such as sample size, the number of categories of classification (e.g. 

of sites, wares, contexts) and the number of variables measured compete for 

fixed resources in archaeological and ecological applications and so if sample 

size can be reduced it may be that resources could be expended on other 

aspects of the study e.g. the number of variables measured could be increased 

or more sites could be visited. We investigated the influence of sample size for 

the Memphis (1.2.1) and Amarna pottery sherds (1.2.2), ceramic pots (1.2.5) 

and hunting spider data (1.2.8). 
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[3) Selection Methods: The development and implementation of both existing and 

new category selection and variable selection methods. Some categories and 

variables were shown to be redundant in the sense that the same patterns are 

revealed in the data if these are removed from the analysis. The resources that 

are spent collecting this 'excess' information could therefore be channelled into 

other parts of the study. Selection methods were successfully applied to the 

Memphis and Amarna wares, Amarna sites, Melanesian starch grains (1.2.3), 

Early Stone Age tools (1.2.4), ceramic pot variables, Simpson Desert flint tool 

variables (1.2.6) and hunting spider sites and variables. However, selection is 

not always appropriate and depends on the type of data and sampling scheme 

used to collect the data. For example, with the Memphis contexts, the scheme 

was not to collect a certain amount of pottery and then to cross-classify it into 

context and ware, but to collect all pottery within each context. Therefore, 

reducing the number of contexts before analysis is not sensible. Our analyses 

also suggested that even though the quantity of material recovered from each 

context is enormous, archaeological expertise is essential for its classification 

i.e. there is little scope for classification into broader categories by a less 

skilled person. Similarly with the hunting spider data, the aim is to identify 

which species characterise which sites and reducing the number of species 

would be inappropriate. The Amarna excavations are ongoing and so it is 

possible to alter the sampling strategy based on the results of our analyses i.e. 

to reduce the number of sherds collected at each 'site' and perhaps increase the 

number of 'sites' visited. We also recommend taking fewer measurements on 

each of the Simpson Desert flints - in particular, weight is expensive to 

measure and it may be worth omitting this variable. 

[4) Influential Categories, Variables and Observations: The detection of 

influential categories (sites, wares, contexts, species, artefacts), variables and 

observations in terms of their effects on the ordination diagram. The influential 

categories identified by using statistical methods can be combined with the 

expertise of the archaeologist and conclusions can be formed based on this. 

Influential categories, variables and observations were investigated for the 

dune meadow vegetation (1.2.9), Simpson Desert flint tools and Amarna 

pottery sherds. 
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The methods used to address the issues described above were as follows: 

[1) Stability: Bootstrapping was used to generate replicate matrices in order to 

assess the stability of the data (the multinomial distribution was used for both 

correspondence analysis and CCA and the multivariate normal distribution was 

used for biplots). Category stability for CA and CCA was summarised using 

both convex hulls and 68% and 95% concentration ellipses. Areas of hull peels 

were used to assess relative stability across categories (larger areas indicate 

greater instability) and to obtain comparable areas between clouds resulting 

from differing numbers of bootstraps. We also suggested using areas of 

concentration ellipses to measure stability and in particular, we suggested that 

if the centroid of a 95% ellipse representing one category is included in the 

95% ellipse of another category, then the categories can be considered to be 

virtually indistinct. In correspondence analysis, the sites with the largest 

bootstrap clouds have similar numbers across the species and low numbers in 

each cell of the original data matrix, but we discovered that this is not true for 

CCA and we suspect that this is because of the influence of the environmental 

variables. The stability of the biplot variables was assessed by introducing the 

idea of 'bootstrap fans' and using the standard confidence interval and the BCa 

method. We also proposed an adaption of the interval in Chapter Five of Fisher 

(1993), which was developed specifically for directional data. Jack-knifing was 

also used to assess both category and variable stability, although for CCA there 

are two data matrices to consider (species-by-sites and sites-by-environmental 

variables). Jack-knifing led to smaller clouds for CA and narrower 'fans' for 

biplots than bootstrapping, but for CCA cloud size depended on whether 

species or environmental variables were omitted. We concluded that a jack

knife approach provides a good benchmark against which other methods of 

assessing stability can be compared. 

[2) Sample Size: For the abundance data of both CA and CCA we investigated 

how the actual numbers of artefacts collected by archaeologists and ecologists 

compare with recommendations based on statistical calculations, obtained by 

using traditional sampling theory. It is clear that the actual sample sizes 

collected by archaeologists tend to exceed those required based on statistical 
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criteria, sometimes by as much as 600% for any particular site (e.g. for the 

Amarna sherds), whereas the samples collected by ecologists at a particular site 

are often less than those required and are sometimes as little as ,1 th of the 

size (e.g. for the hunting spider data). For CA, sampling from the multinomial 

distribution was compared with sampling without replacement and it is clear 

that the smaller the sample size the less stable the corresponding category, but 

also that sampling using the multinomial distribution produces greater 

instability than sampling without replacement. For biplots, sampling from the 

multivariate normal distribution was compared with sampling without 

replacement and we saw that the former method produces greater instability 

than the latter. 

[3] Selection Methods: We used procrustes analysis with all three multivariate 

techniques to select categories (for CA and CCA) and variables (for CCA and 

biplots), focusing on the backward elimination method for CA and CCA, but 

also considering forward selection, all subsets and stepwise methods for 

biplots. It was clear that the higher the dimensionality used in the procrustes 

calculations, the fewer categories or variables that can be deleted. We 

introduced the use of a scree-plot and cumulative scree-plot in order to help 

identify which categories or environmental variables to delete and also to 

choose the correct scale. These are alternatives to critical values for CA and 

biplots and to a Monte Carlo permutation test for CCA. We believe that the 

aim of category reduction methods is to identify several subsets of categories 

rather than one unique set - the all subsets approach is closest to this ideal. 

For CA we introduced terminology for distinguishing between combining 

categories based on archaeological grounds as compared with on statistical 

grounds. It was clear that for some data sets (e.g. Early Stone Age tools and 

Memphis sherds) the expertise of an archaeologist is required before any 

amalgamation is undertaken (and that some categories should never be 

combined). 
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(4J Influential Categories, Variables and Observations: Jack-knifing was used 

to detect influential categories for CA and CCA, to detect influential variables 

for CCA and to detect influential observations for biplots. Procrustes analysis 

was used in combination with jack-knifing in order to detect the 'most 

influential' categories, variables and observations e.g. Amarna sites and wares, 

Simpson Desert flint tools and dune meadow vegetation. 

As a result of our analyses of the Memphis sherds, Amarna sherds, Melanesian starch 

grains, ceramic pots, Simpson Desert flint tools and flake debitage data, we suggested 

that as a rule of thumb at least 50% of the variation in archaeological data should be 

explained in the first two dimensions of the ordination diagram for CA and biplots. 

Krzanowski (1993) suggested choosing the dimensionality for variable selection 

according to 80% of the variation explained, but we believe that this is too stringent. 

The above methodology was appropriate for all three techniques. However, some issues 

were specific to a particular technique and these are discussed in the following three 

sections. 
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10.2 Correspondence Analysis 

For correspondence analysis, we addressed the following questions: 

• Trace Zeroes: Sometimes, large numbers of trace zero cells occur in 

archaeological data (i.e. the sampling technique is not adequate to detect 

rare artefacts). This can be a problem when generating replicate matrices 

based on the multinomial distribution, because each zero cell is allocated 

zero probability. We therefore developed two methods based on the 

binomial distribution to adjust the probabilities assigned to these cells. 

However, the sizes of the bootstrap clouds appear unchanged by these 

methods (e.g. for the Memphis sherds and Amarna sherds) unless the 

sample size is very small and this is because the probabilities assigned to 

the zero cells are also very small. We have therefore concluded that it is 

not worth accounting for trace zeroes in the data when assessing for 

stability. This has implications when deciding on an appropriate sampling 

scheme for data collection - the number of categories and sample size 

could be adjusted depending on the anticipation of trace zeroes. 

• Trace Zeroes and Selection Methods: We also revealed that large 

numbers of zeroes in the data affect category deletion and clustering 

methods (e.g. Early Stone Age tools), partly because correspondence 

analysis requires non-zero row and column totals and partly because of the 

influence of zeroes on clustering methods (but not on the opinion of the 

archaeologist). In addition, we proposed using correspondence analysis to 

assess the effect of category division (which is based on external variables) 

and illustrated this using the Melanesian starch grains. We reiterated that 

sometimes no selection method is appropriate because the given categories 

are essential in testing a particular hypothesis of the investigator e.g. the 

Memphis contexts. 

371 



Chapter Ten - Summary and Conclusions 

• Combining Categories: We proposed using clustering methods in 

archaeology in order to assess the effects of misidentifying (the Memphis) 

contexts when the stratigraphic method of excavation is used - the results 

showed that there are no serious consequences in terms of inferences based 

on the correspondence analysis map, if two neighbouring contexts are 

misidentified. We calculated the stability of and the influence of sample 

size on, combined categories and compared the results with those obtained 

from the original categories. It appears that when the data consist of 

smaller numbers of categories, there is little difference in the stability of 

these categories e.g. the Amarna sites. 
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10.3 Biplots 

The following issues apply specifically to the various forms ofbiplot. 

• Diversity Biplot: We introduced the diversity biplot into archaeology and 

this is clearly more useful than the numerous diversity indices in existence, 

mainly because it provides a graphical display of diversity. However, 

comparing the diversity biplot with CA for the bone engraving data (1.2.7) 

indicates that relationships between categories do seem to be more clearly 

displayed in the correspondence analysis map than in the diversity biplot. 

• Projection: We developed methods for projecting supplementary 

observations and variables onto the original biplot axes. 

• Replicate Matrices: We discovered that replicate matrices cannot be 

directly projected onto the original co-ordinate system. Instead, co

ordinates for these matrices must be obtained by implementing a biplot on 

each matrix separately. We illustrated this for the Simpson Desert flint 

tools and ceramic pots. 

• Dimensionality: It was clear that a biplot in two dimensions is not always 

appropriate, because two dimensions can be insufficient to both explain a 

high proportion of the variation in the data and also for each individual 

variable to have a high quality of representation. This was the case for the 

Simpson Desert flint tools. It was also evident that variables that are poorly 

represented in the chosen dimensionality (typically two) have particularly 

wide confidence intervals for their true directions. 

• Mean Directions: We proposed accounting for the length of the bootstrap 

vectors when calculating mean directions for the correlation and Spearman 

rank correlation biplots, because for these biplots vector lengths represent 

the quality of representation of the corresponding variable. 
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Chapter Ten - Summary and Conclusions 

• Sample Size and Variable Selection: We also combined varying sample 

sizes with the variables selected from the backward elimination method in 

order to investigate how this affects the stability of the variables. It is clear 

that the fewer variables that are used in the analysis, the wider the 

confidence intervals for their true directions e.g. Simpson Desert flint 

tools. 

• Biplots and Correspondence Analysis: Although biplots and 

correspondence analysis are distinct techniques, there might be some 

occasions where, for example, continuous variables could be categorised 

and correspondence analysis used instead of biplots, although we did not 

investigate this. 
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Chapter Ten - Summary and Conclusions 

10.4 Canonical Correspondence Analysis 

Canonical correspondence analysis is relatively underdeveloped in the statistical 

literature and there is considerable scope for further work in this area. We discussed the 

following points: 

• Data Transformations: We investigated the effect of the form of the data 

(raw, transformed, or presence/absence) on the results of the analysis for 

the hunting spider data and concluded that it is not advisable to implement 

CCA on presence/absence data, although this was the only form of data for 

which there was no evidence of an 'arch effect'. 

• Cover-Abundance Scales: We commented that particular problems arise 

when using the multinomial distribution to assess the stability of vegetation 

data measured on cover-abundance scales e.g. the dune meadow 

vegetation. This is because the multinomial distribution treats the data as 

frequencies, whereas these scales tend to be of an ordinal nature where the 

distances between units on the scale are not equal. 

• Comparisons between the Techniques: Because CCA is applied to two 

data matrices, one of which is suitable for correspondence analysis and one 

of which is suitable for biplots, we compared the ordination diagram of 

CCA with that obtained from a correspondence analysis implemented on 

the species-by-sites data and also with a correlation biplot of the sites-by

environmental variables data for the hunting spiders. All three techniques 

produce similar ordination maps for all the data sets that we looked at e.g. 

hunting spiders. 

375 



Appendix 

Data Sets 

Table A.I Weights of Memphis Pottery Sherds (kg) 

Code 

2 

3 

.. 
5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

)8 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

Ware 

AOI.OI 

DOt.Ot 

EOI.Ot 

G01.Ot 

G01.02.00.0t 

GOt.06 

GOI.OS 

GOt.29 

G05.0t 

1101.05 

NILEB2.0t 

UNKNOWN 

D01.00.00.OJ 

D01.08 

DOl SMOKED 

EOISMOKED 

DOI.04 

NILEB2.02 

NILEB2.09 

NO.Ot 

NILECIIANDMADE 

Pt6.0t 

GOt.02 

P33.01 

NILEB2 

NILEB2.06 

NILEB2.07 

NILEB2.08 

NILE82.t5 

377 

0.01 

om 
0.08 

3.90 

0.18 

0.12 

0.56 

0.20 

0.16 

0.04 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

465 

0.10 

0.05 

0.33 

3.14 

0.08 

0.07 

0.26 

0.00 

0.02 

0.30 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

509 

0.45 

0.08 

0.14 

2.98 

0.00 

0.50 

0.72 

0.00 

0.00 

0.03 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

1.14 

0.01 

0.04 

0.20 

0.00 

0.00 

0.00 

0.00 

0.00 

476 

0.01 

0.01 

0.34 

0.96 

0.00 

0.24 

0.14 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.40 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

289 

0.32 

0.54 

1.72 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

3.72 

0.40 

O.ll 

1.28 

0.29 

690 

0.01 

0.47 

2.78 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

8.01 

0.36 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

1.96 

0.00 

0.00 

0.00 

0.00 

0.05 

0.00 

0.81 

0.00 

Context 

716 

0.20 

0.08 

2.50 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

6.32 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.25 

0.00 

1.04 

0.00 

739 

0.04 

0.30 

0.24 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.86 

0.00 

0.01 

0.04 

0.04 

0.04 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.30 

0.00 

0.00 

0.00 

740 707 761 758 749 

0.88 3.00 0.11 1.11 0.32 

0.19 3.71 0.10 0.40 0.72 

6.24 17.20 0.30 8.99 6.50 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

7.76 10.64 1.30 12.50 7.04 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.01 0.00 0.00 0.00 0.00 

0.0 I 0.00 0.0 I 0.01 0.03 

0.19 0.34 0.00 0.00 0.26 

0.01 0.00 0.00 0.00 0.00 

3.71 8.00 0.20 0.10 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

1.48 7.00 0.00 0.90 0.70 

0.00 0.34 0.00 0.02 0.20 

0.87 2.24 0.02 0.94 1.68 

0.00 0.00 0.00 0.00 0.00 
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Table A.I (continued) 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

Ware 

NILEB2SMOKED 

1102.01 

1108.01 

HIO.Ol 

NILEC.OI 

P31.01 

G01.04 

G01.15 

GOISMOKED 

1110.01.00.14 

1124.01 

BREADMOULDS 

D02.0l 

NILEB2.06.01 

1124.01.00.02 

P34.01 

E01.09 

D03IIANDMADE 

D04.0l 

377 465 509 476 

0.00 0.00 0.00 0.00 

0.06 0.00 0.00 0.00 

0.08 0.34 0.00 0.01 

2.50 0.06 0.00 0.00 

0.22 1.39 2.60 0.16 

0.01 0.00 0.00 0.00 

0.00 0.02 0.05 0.00 

0.00 0.01 0.42 0.00 

0.00 0.01 0.26 0.01 

0.00 0.02 0.00 0.00 

0.00 0.02 0.20 0.10 

0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 

Context 

289 690 716 739 740 

0.40 0.17 0.38 0.04 0.62 

0.00 0.00 0.00 0.00 0.00 

0.00 0.81 0.01 0.00 0.00 

0.00 0.02 0.00 0.00 0.00 

10.70 4.61 5.50 0.86 2.49 

0.00 0.00 0.01 0.00 0.20 

0.00 0.00 0.00 0.00 0.0 I 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.16 0.18 0.07 0.00 0.12 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

Source: Janine Bourriau, Macdonald Institute, Cambridge, England. 

Appendix - Data Sets 

707 761 758 749 

1.90 0.01 0.78 0.30 

0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.06 

0.04 0.00 0.00 0.00 

25.66 0.80 13.00 5.20 

0.00 0.01 0.03 0.08 

0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 

0.82 0.08 0.24 0.30 

1.50 0 .. 00 0.00 0.00 

0.02 0.00 0.00 0.00 

0.00 0.00 0.01 0.00 

0.01 0.00 0.00 0.00 

0.06 0.00 0.00 0.00 

0.00 0.00 0.01 0.00 

0.00 0.00 0.00 0.08 

0.00 0.00 0.00 3.00 
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Appendix - Data Sets 

Table A.2 Counts of Amarna Pottery Sherds 

Site 

Ware A B C D E F G H I J K L 

1 30 130 12 12 0 0 7 58 69 351 4 II 

2 21 100 0 3 4 5 60 49 230 1073 0 13 

3 30 100 0 22 0 0 100 129 7 195 0 12 

4 30 44 0 10 0 5 143 414 0 14 0 10 

5 30 130 0 2 0 0 160 258 0 15 4 0 

6 105 144 50 41 65 0 1108 1294 7 97 31 50 

7 529 506 25 51 53 17 60 258 29 156 8 15 

8 0 145 0 85 454 528 0 0 224 25 0 200 

9 106 130 12 17 14 0 143 129 10 25 600 23 

10 0 18 861 0 0 0 7 0 0 0 132 0 

Source: Paul Nicholson, Cardiff University, Wales. 
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Table A.3 Counts of Melanesian Starch Grains 

Type 1 

1 11 

2 17 

4 

5 0 

6 2 

9 9 

10 10 

11 0 

12 2 

15 5 

16 

17 0 

18 2 

19 0 

20 0 

21 0 

22 6 

23 11 

26 2 

27 3 

28 0 

30 

31 0 

32 0 

33 

35 0 

36 0 

38 2 

39 0 

40 2 

41 0 

44 

45 0 

46 0 

47 2 

48 0 

49 0 

51 3 

53 4 

55 

2 

12 

13 

2 

o 

o 

8 

41 

o 

o 

o 
o 
o 

o 

o 

o 

14 

9 

o 

o 

o 
o 
o 
o 

4 

o 

o 

2 

o 

o 
o 

o 
o 
4 

5 

42 

44 

3 

o 

o 

2 

o 

o 

3 

o 
o 
o 
o 

o 

o 

o 

22 

12 

o 

4 

o 
o 
o 

5 

o 

2 

o 

6 

2 

o 

o 
o 

4 

9 

67 

14 

o 

o 

20 

o 

2 

o 

o 
o 
o 

o 

o 

8 

11 

o 
3 

o 

o 

o 

5 

4 

o 
o 

o 

o 

o 

o 
o 
3 

o 

o 

o 

2 

9 

11 

93 

6 

o 

o 

o 

10 

o 
o 
o 
o 
o 
o 
o 

o 

8 

o 

6 

o 

2 

o 

o 

2 

o 

o 

o 

o 

o 
o 
2 

o 
o 
2 

o 
4 

12 

65 

4 

o 
o 

2 

6 

o 

o 
o 

3 

o 

o 

2 

o 

50 

o 
o 
o 
o 

2 

o 
o 

o 

o 

o 

o 
o 

o 
o 

o 

o 
2 

Site 

15 16 

211 23 

47 2 

o 

o 0 

3 0 

5 20 

9 2 

o 
2 0 

o 0 

o 0 

o 0 

o 4 

o 0 

3 6 

o 0 

15 0 

7 0 

3 9 

8 63 

2 0 

o 0 

o 

o 0 

o 

3 2 

4 0 

o 0 

o 0 

o 

3 0 

o 

o 0 

o 0 

2 2 

o 0 

o 0 

4 

6 0 

4 o 

17 

77 

32 

2 

o 

11 

15 

2 

o 
o 

o 

5 

o 

6 

12 

3 

3 

o 

o 
o 

2 

3 

o 

o 

o 

2 

o 

o 

o 
3 

o 

19 20 

271 94 

14 13 

2 3 

2 0 

10 0 

23 14 

2 33 

5 3 

10 2 

7 

3 

o 0 

o 0 

5 3 

o 

4 6 

9 4 

o 6 

2 

2 

o 
o 
o 0 

o 
o 6 

o 0 

o 0 

o 0 

3 0 

o 

o 0 

o 

o 0 

o 0 

o 

o 0 

2 0 

o 0 

2 3 

Appendix - Data Sets 

21 24 25 26 

95 77 89 82 

15 5 12 20 

2 2 2 

000 0 

o 

9 12 13 6 

45 0 3 0 

2 2 

o 3 0 

2 0 

2 0 0 0 

o 0 0 0 

o 0 

000 0 

3 4 5 5 

000 

5 3 7 5 

5 0 29 9 

522 

2 7 

000 

000 0 

o 0 

422 0 

3 2 

10 13 3 5 

2 2 3 

320 0 

o 0 0 

o 2 

2 0 

020 

o 4 0 0 

020 0 

24 3 4 

000 

o 0 0 

353 

o 2 0 

2 2 4 
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Table A.3 (continued) 

Type 

57 

59 

60 

65 

66 

67 

69 

70 

74 

76 

77 

79 

81 

84 

86 

87 

88 

89 

91 

92 

97 

98 

99 

112 

113 

114 

116 

118 

119 

122 

123 

128 

130 

131 

133 

134 

135 

136 

137 

138 

1 

3 

o 

o 

o 

o 
o 

o 

o 

o 

o 

o 

o 

o 
o 

o 

o 

2 

o 

o 

o 

o 

o 

o 

o 

4 

o 

o 

o 

3 

2 

o 

o 
o 

o 

o 

o 

o 

o 
o 

o 

o 

o 

o 

o 

2 

o 
o 

2 

o 

o 

o 

o 

o 

o 

o 

o 

o 
o 

o 

2 

4 

5 

o 

2 

o 

o 

o 

o 
o 

o 
2 

o 

o 

o 

o 

o 

o 

2 

o 

2 

3 

o 
o 

o 
o 

o 

o 

o 

o 

6 

o 
o 
o 

o 

2 

o 

o 

o 

9 

o 
o 

o 

2 

o 

o 

o 

o 
o 

o 

o 
o 

o 

o 

s 

4 

2 

o 

o 

o 

o 
o 

o 
o 
o 

o 
o 

o 

o 
o 

11 

o 
o 

o 

o 
2 

o 

o 

o 
o 
o 

o 
o 

o 
o 

o 

o 

o 

o 
o 

o 
o 

o 

o 

o 

o 

o 
o 
o 
o 
o 

o 

o 
o 

12 

o 
o 

o 

o 

o 

o 

o 
o 
o 
o 

2 

o 
o 

o 

o 

o 

o 

o 

o 

2 

o 

o 
o 

o 

o 

o 

o 

o 

o 

o 
o 
o 
o 

o 

o 

o 
o 

Site 

15 16 

o 0 

2 

o 

o 0 

o 0 

o 0 

o 0 

o 0 

o 
S 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 

o 

o 
4 10 

o 
o 0 

o 
o 0 

o 

o 0 

o 0 

o 0 

o 0 

2 0 

o 

o 

o 0 

o 0 

o 0 

o 0 

o 0 

o 

17 19 

o 
o 

o 0 

2 0 

o 0 

o 0 

o 0 

o 0 

o 0 

3 0 

o 

o 0 

o 0 

4 0 

o 

o 
o 

2 0 

7 

2 0 

o 
o 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 

o 0 

o 0 

o 0 

o 0 

o 
o o 

Appendix - Data Sets 

20 21 

o 0 

o 0 

o 0 

o 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

2 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 
o 0 

o 
o o 

24 25 26 

2 

o 0 

040 

000 

000 

020 

020 

020 

002 

003 

003 

004 

003 

o 0 

o 0 

o 0 

000 

000 

o 0 

000 

000 

000 

002 

000 

000 

000 

000 

000 

000 

000 

o 0 

000 

000 

000 

000 

000 

000 

000 

o 0 s 
o o o 
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Appendix - Data Sets 

Table A.3 (continued) 

Site 

Type 1 2 5 9 11 12 15 16 17 19 20 21 24 25 26 

139 21 5 0 0 0 0 0 0 0 0 0 0 0 

140 2 0 0 0 0 0 0 0 0 0 0 0 0 

141 0 0 0 0 0 0 0 0 0 0 0 0 

142 6 4 0 0 0 0 0 0 0 4 0 6 

143 2 0 0 0 0 0 0 0 0 0 0 0 0 

144 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

145 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

146 0 0 0 0 0 0 0 0 0 0 0 0 0 

147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

148 0 0 0 0 0 0 0 0 0 0 0 0 0 

149 0 0 0 0 0 0 0 0 0 0 0 0 0 

150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

152 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 

153 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Source: Carol Lentfer, Southern Cross University, Australia. 
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Appendix - Data Sets 

Table A.4 Site Decriptions for the Melanesian Starch Grains 

Number Site Description 

1 Garala 1 Advanced regrowth forest on small rock island 

2 Garala 2 Advanced regrowth forest on small rock island 

5 Kaula 70-80m Transect Advanced regrowth forest on small rock island 

9 Mt Hamilton H3 Regrowth forest on old garden site, Gama Island 

11 GamaFEK Coconut plantation on strand plain 

12 Gama Barge Landing Coconut plantation on strand plain 

15 Gam Garden 3 Old garden with cassava and bananas 

16 Gam Garden 5 Old garden dominated by sweet potato 

17 Gam Garden 7a New garden planted with taro. 12 year old 
regrowth forest cleared for garden site. 

19 Gam Garden 7b New garden planted with taro. 12 year old 
regrowth forest cleared for garden site. 

20 Garu Garden 7 c New garden to be planted with taro. 12 year old 
regrowth forest cleared for garden site. 

21 Gam Garden 8 New garden adjacent to site 7 - cleared in 12 
year old regrowth forest 

24 Nave River Heavily logged forest (looks like it was 
advanced regrowth forest before logging) 

25 Imanuel's Garden Garden 

26 Gam, Swept Village Bare ground in Garu village 

Source: Carol Lentfer, Southern Cross University, Australia. 
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Appendix - Data Sets 

Table A.5 Counts of Early Stone Age Tools 

Tools 

Arrows I I Knives I Scrapers I I Axes 1 
Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2 0 0 0 1 0 0 0 12 0 0 4 0 2 0 0 

2 0 0 0 0 0 1 0 0 2 0 8 0 0 0 0 0 

3 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 3 0 0 1 0 1 0 0 

5 0 0 0 0 0 0 0 0 2 0 0 3 0 0 0 0 

6 0 0 2 1 0 0 1 0 0 0 1 1 0 0 0 0 

7 0 0 0 1 0 0 1 0 2 0 0 1 0 0 0 0 

8 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 

9 2 0 0 0 0 1 0 0 4 0 1 6 0 0 0 0 

10 4 2 0 0 0 0 0 0 2 1 1 0 0 0 0 0 

11 2 2 1 0 1 0 0 0 3 1 5 1 0 0 2 1 

12 10 0 7 0 4 6 1 0 5 3 1 7 1 0 0 0 

13 1 0 1 0 2 1 1 0 2 0 1 2 0 0 0 3 

14 1 0 0 0 0 4 0 0 0 0 6 4 0 0 0 4 

15 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 

16 0 0 1 0 2 0 0 0 7 0 0 0 0 0 0 2 

17 1 0 2 0 2 1 1 0 5 0 2 1 0 0 0 0 

18 2 0 0 0 1 0 0 0 3 0 0 1 0 0 0 0 

19 4 0 1 0 0 2 0 0 16 7 0 3 0 4 0 0 

20 0 0 0 0 0 0 0 0 18 2 1 5 0 3 0 0 

21 1 0 1 1 0 1 3 0 5 2 0 5 0 0 0 0 

22 0 0 2 0 0 2 0 0 2 0 0 0 0 0 0 0 

23 0 0 0 0 1 1 0 0 2 0 0 0 0 0 0 0 

24 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

25 4 8 4 4 0 3 0 0 13 0 0 8 2 1 0 0 

26 1 2 8 4 0 7 5 2 21 4 1 9 1 0 0 0 

27 0 0 0 0 0 2 0 0 1 0 0 1 2 0 0 0 

28 0 0 2 0 0 2 0 0 5 2 0 0 0 0 0 0 

29 0 0 0 0 0 3 2 0 3 0 0 1 0 0 0 0 
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Appendix - Data Sets 

Table A.5 (continued) 

Tools 

Arrows I I Knives I Scrapers I I Axes I 
Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

30 0 0 0 0 0 1 0 0 5 0 0 2 0 0 0 0 

31 0 0 0 0 0 1 0 0 3 0 0 0 0 0 0 0 

32 1 0 0 1 0 1 1 0 0 0 0 3 0 0 0 0 

33 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

34 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 

35 0 0 1 0 1 0 1 0 2 0 0 1 0 0 0 0 

36 0 0 4 1 0 0 0 0 3 0 0 1 1 0 0 0 

37 0 0 2 0 0 0 0 0 3 0 0 0 0 0 0 0 

38 0 0 0 0 0 0 0 0 7 0 5 0 0 0 0 0 

39 5 0 3 0 1 0 1 0 6 0 3 3 0 0 0 1 

40 24 0 5 0 6 9 2 0 12 2 1 13 1 0 0 0 

41 16 1 10 0 9 25 11 0 32 2 3 19 5 0 0 3 

42 2 0 0 0 0 0 0 0 1 1 3 1 0 0 0 0 

43 18 0 8 0 14 26 11 0 30 2 8 26 4 0 0 4 

Source: Bolviken et al (1982). 
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Table A.6 Descriptions of Early Stone Age Tools 

Code Tool 

1 Tanged arrows 

2 Blade arrows 

3 Transverse and oblique arrows 

4 Atypical arrows 

5 Microliths 

6 Flake knives 

7 Blade knives 

8 Notched knives 

9 Core and flake scrapers 

10 Blade scrapers 

11 Discscrapers 

12 Burins 

13 Axes 

14 Chisels 

15 Slate axes 

16 Perforators 

Source: Bolviken et al. (1982). 
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Table A.7 Weights of Memphis Pottery Sherds (kg): Merged Wares 

Context 

Code Ware 377 465 509 476 289 690 716 739 740 707 761 758 749 

1 NILECIIANDMADE 0.00 0.00 1.14 0.40 0.00 1.96 0.00 0.00 3.71 8.00 0.20 0.10 0.00 

2 1110.01.00.14,1110.01 2 . .50 0.08 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.04 0.00 0.00 0.00 

3 D04.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 

4 AOI.OI 0.01 0.10 0.4.5 0.01 0.32 0.01 0.20 0.04 0.88 3.00 0.11 1.11 0.32 

5 DOI.04, DOI.OI, 0.01 0.0.5 0.08 0.01 0 . .54 0.47 0.08 0.39 0.20 3.71 0.10 0.40 0.72 
DOl SMOKED, 

DOl.OO.OO.OI, D01.08 

6 EOISMOKED, EOI.09, 0.08 0.33 0.14 0.34 1.72 2.78 2 . .50 0.28 6.24 17.20 0.30 9.00 6 . .50 
E01.01 

7 G01.01 3.90 3.14 2.98 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

8 G01.02, G01.02.00.01 0.18 0.08 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

9 G01.08, G01.06 0.68 0.33 1.22 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 GOl.04, G01.29 0.20 0.02 0.05 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

tl (;05.01 0.16 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

12 1101.05 0.04 0.30 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

13 NILE UNDATABLE 0.22 1.39 2.60 0.16 16.61 13.65 13.49 2.06 13.42 48.12 2.14 28.16 15.41 

14 UNKNOWN 0.00 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

15 P40.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

16 P16.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

17 P33.01 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

18 1102.01 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

19 1108.01 0.08 0.34 0.00 0.01 0.00 0.81 0.01 0.00 0.00 0.00 0.00 0.00 0.06 

20 P31.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.20 0.00 0.01 0.03 0.08 

21 NILEB2.15, GOl.15 0.00 0.01 0.42 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

22 GOISMOKED 0.00 0.01 0.26 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

23 1124.01.00.02,1124.01 0.00 0.02 0.20 0.10 0.16 0.18 0.07 0.00 0.12 0.83 0.08 0.24 0.30 

24 BREADMOULDS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1..50 0.00 0.00 0.00 

25 D02.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 

26 P34.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 

27 D03IIANDMADE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 

Source: Janine Bourriau, Macdonald Institute, Cambridge, England. 
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Table A.8 Ceramic Pot Measurements 

Measurement (em) 

Pot Number 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 6.50 7.85 5.65 6.70 7.30 7.00 6.30 6.55 4.80 4.10 0.15 0.30 0.30 

2 6.85 7.40 5.85 6.80 7.10 7.55 6.70 6.75 4.10 3.50 0.30 0.25 0.30 

3 6.85 7.30 5.80 6.80 6.60 7.55 6.75 6.65 4.30 3.55 0.15 0.35 0.35 

4 5.90 6.80 5.70 6.75 6.30 7.00 6.35 6.75 4.40 3.60 0.30 0.40 0.25 

5 6.30 7.30 4.70 6.55 6.75 6.95 6.35 6.35 4.60 4.15 0.30 0.55 0.30 

6 6.15 7.15 6.20 7.20 6.20 6.85 6.15 7.00 4.75 3.90 0.25 0.40 0.45 

7 6.50 7.40 6.25 6.85 6.70 7.40 6.75 6.15 4.00 3.45 0.25 0.25 0.30 

8 6.35 7.60 5.25 6.75 6.95 6.95 6.40 6.40 4.65 3.95 0.35 0.50 0.30 

9 6.60 7.70 6.55 7.05 6.80 7.40 6.70 6.75 4.20 3.55 0.25 0.20 0.30 

10 6.60 7.35 6.40 7.00 7.00 7.45 6.80 6.60 4.05 3.40 0.30 0.25 0.28 

11 6.80 7.40 6.30 7.00 6.85 7.40 6.60 6.70 4.20 3.65 0.15 0.20 0.30 

12 6.50 7.40 5.10 6.60 6.80 7.15 6.55 6.45 4.50 4.00 0.15 0.55 0.30 

13 5.90 7.25 6.55 7.25 6.30 6.90 6.05 7.05 4.20 3.50 0.25 0.30 0.45 

14 5.85 7.10 6.55 7.20 6.35 7.05 6.15 7.10 4.40 3.55 0.30 0.35 0.35 

15 6.10 7.15 6.50 7.15 6.25 7.10 6.35 7.10 4.45 3.50 0.25 0.40 0.40 

16 6.65 7.45 5.85 6.90 6.60 7.35 6.60 6.70 4.50 3.85 0.10 0.35 0.35 

17 6.55 7.45 5.25 6.60 6.70 7.10 7.10 6.55 4.65 4.10 0.20 0.50 0.35 

18 6.15 7.20 6.70 7.20 6.20 7.15 6.65 6.85 4.35 3.50 0.30 0.30 0.35 

19 6.00 7.00 6.50 7.10 6.15 7.05 6.30 6.90 4.10 3.30 0.25 0.35 0.45 

20 6.00 7.20 6.55 7.15 6.30 7.05 6.25 7.00 4.35 3.70 0.30 0.30 0.45 

21 6.75 7.50 5.95 6.90 6.75 7.45 6.80 6.65 4.30 3.55 0.15 0.35 0.35 

22 6.30 6.80 6.50 6.90 5.95 7.30 6.30 6.80 4.30 3.55 0.20 0.25 0.35 

23 6.10 7.25 6.65 7.40 6.40 7.00 6.10 7.25 4.40 3.70 0.15 0.30 0.50 

24 6.75 7.55 6.60 6.95 6.80 7.35 6.55 6.75 4.20 3.60 0.20 0.30 0.35 

25 6.30 7.60 5.20 6.55 6.80 7.10 6.50 6.55 4.40 3.95 0.30 0.50 0.35 

26 6.90 7.60 6.25 6.80 6.65 7.55 6.85 6.55 4.10 3.55 0.15 0.25 0.30 

27 6.40 7.65 5.55 6.70 6.85 7.20 6.50 6.40 4.75 4.15 0.20 0.55 0.40 

28 6.20 7.55 5.75 6.85 6.95 7.05 6.45 6.65 4.75 4.10 0.40 0.50 0.25 

29 6.15 8.05 5.65 7.05 7.15 6.85 6.20 6.70 4.50 3.85 0.30 0.55 0.40 

30 6.50 7.55 5.15 6.85 6.90 7.05 6.60 6.65 4.75 4.05 0.35 0.60 0.35 

Source: Impey & Pollard (1985). 
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Table A.9 Simpson Desert Flint Tool Measurements 

Measurement 

Site Length Width Thickness Platform Platform Weight 

(mm) (mm) (mm) Width (mm) Thickness (mm) (grams) 

08 42 33 8 24 5 14.5 

OS 31 18 8 15 7 5.0 

08 36 20 4 19 7 5.5 

OS 31 17 8 6 3 4.5 

08 38 27 9 9 5 9.0 

OS 34 15 8 16 5 4.5 

OS 30 18 4 18 3 2.0 

OS 29 18 7 16 6 5.0 

OS 48 21 10 16 7 10.5 

OS 36 32 15 33 14 22.0 

OS 54 33 13 29 12 27.0 

OS 49 34 19 7 4 23.0 

OS 39 24 9 15 5 7.5 

OS 56 16 5 9 4 6.0 

OS 25 32 11 27 13 9.0 

OS 43 60 25 46 15 68.5 

OS 39 43 16 28 5 25.0 

OS 27 16 5 9 3 2.5 

OS 41 21 9 23 8 11.5 

OS 55 20 7 11 6 10.5 

OS 45 29 19 29 14 29.0 

OS 53 29 7 20 18 15.5 

OS 34 18 8 17 5 7.5 

OS 26 13 6 II 3 2.0 

OS 65 23 9 6 3 11.0 

OS 26 12 5 II 6 2.0 

OS 25 13 4 12 6 I.5 

OS 28 15 4 13 4 3.0 

OS 22 14 3 8 3 1.0 

OS 29 14 5 7 5 2.5 

OS 36 20 7 7 3 5.5 

OS 34 18 5 I3 5 3.5 

OS 37 18 5 10 4 3.5 

OS 36 23 5 20 4 4.5 

OS 32 22 6 4 7 4.5 

OS 33 19 9 24 8 9.0 

OS 41 23 10 17 6 10.0 

OS 39 25 10 15 3 12.0 

08 52 30 7 16 6 12.0 

OS 53 24 10 20 9 18.0 
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Table A.9 (continued) 

Measurement 

Site Length Width Thickness Platform Platform Weight 

(mm) (mm) (mm) Width (mm) Thickness (mm) (grams) 

08 48 34 to 15 6 22.0 

os 60 23 6 I4 4 16.0 

OS 65 35 16 23 10 41.5 

08 35 23 18 22 13 18.0 

08 46 20 6 6 3 8.0 

08 34 22 9 14 7 6.0 

08 26 16 3 12 5 2.5 

OS 48 24 10 15 8 11.5 

OS 49 20 13 16 8 12.5 

OS 70 61 27 36 34 176.0 

OS 30 13 6 2 I 2.0 

OS 23 31 10 19 7 8.5 

09 II 43 12 42 II 8.0 

09 16 32 10 25 9 5.5 

09 20 36 9 26 5 4.0 

09 16 36 16 26 7 11.5 

09 12 38 10 28 9 5.5 

09 4 31 7 25 9 3.5 

09 27 20 12 19 5 8.5 

09 9 28 7 28 8 2.0 

09 8 41 8 26 8 3.5 

09 16 33 8 30 9 6.5 

09 15 29 8 24 7 5.5 

09 42 41 12 54 7 29.5 

09 14 38 9 33 6 6.0 

09 7 36 II 33 12 5.0 

09 13 33 12 33 8 8.0 

09 25 15 5 4 14 2.5 

09 34 29 14 24 10 17.0 

09 12 34 9 30 9 5.5 

09 12 37 8 25 3 4.0 

09 55 19 7 14 7 11.0 

09 13 49 10 37 10 10.5 

09 II 34 10 22 10 5.5 

09 35 15 5 17 9 4.0 

09 16 28 9 18 9 4.0 

09 I I 51 13 25 8 10.0 

09 30 14 6 10 8 3.0 

Source: Huw Barton, University of Sydney, Australia. 
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Table A.I0 Site Descriptions for the Simpson Desert Flake Debitage 

Site Terrain Landform Water Permanency 

13 Dunefield Clayey Interdune Ephemeral 

14 Dunefield Clayey Interdune Ephemeral 

15 Dunefield Clayey Interdune Ephemeral 

16 Dunefield Clayey Interdune Ephemeral 

19 Dunefie1d Clayey Interdune Semi-permanent 

20 Dunefield Clayey Interdune Semi-permanent 

10 Dunefield Claypan Ephemeral 

11 Dunefield Claypan Ephemeral 

17 Dunefield Claypan Ephemeral 

18 Dunefield Claypan Ephemeral 

27 Dunefie1d Claypan Ephemeral 

30 Dunefield Sand Sheet/Claypan Semi-permanent 

02 Dunefield Sandy Interdune Permanent 

29 Dunefie1d Sandy Interdune/Claypan Semi-permanent 

26 Dunefield Spring Permanent 

01 Dunefield Spring Permanent 

21 Dunefield Stony Interdune Ephemeral 

22 Dunefield Stony Interdune Ephemeral 

31 Dunefield Swamp Semi-permanent 

05 Floodplain Claypan Semi-permanent 

23 Floodplain Dune Flank Semi-permanent 

12 Sandplain Claypan Ephemeral 

25 Sandplain Claypan Ephemeral 

06 Sandplain Plain with drainage Ephemeral 

09 Sandplain Plain with drainage Ephemeral 

24 Sandplain Stony Interdune Ephemeral 

07 Dissected Residual Escarpment Ephemeral 

08 Dissected Residual Escarpment Ephemeral 

32 Gibberplain Channel Semi-permanent 

Source: Huw Barton, University of Sydney, Australia. 

390 



Appendix - Data Sets 

Table A.II Counts of Engraved Bone Design Elements 

Site 

Design Altamira Cueto de la Mina EIJuyo EI Cierro La Paloma 

1 2 I 0 0 0 

2 12 12 8 5 4 

3 7 2 2 0 

4 0 2 0 

5 0 1 0 0 0 

6 3 0 0 0 0 

7 I2 0 0 0 0 

8 15 3 12 7 

9 0 I 3 3 2 

10 3 5 9 2 2 

11 1 0 0 0 

12 0 0 0 

13 12 4 2 4 3 

14 7 3 0 0 

15 3 1 2 0 

16 11 0 0 0 0 

17 3 0 0 0 0 

18 1 1 0 

19 7 2 2 0 

20 2 4 0 0 0 

21 4 0 0 0 

22 3 I 0 0 0 

23 3 1 2 0 

24 1 0 0 0 0 

25 5 0 

26 1 0 0 0 0 

27 1 0 0 0 

28 2 1 0 0 

29 0 2 0 0 0 

30 2 0 0 0 0 
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Table A.ll (continued) 

Site 

Design Altamira Cueto de la Mina EIJuyo EI Cierro La Paloma 

31 0 I 0 0 0 

32 1 0 0 0 0 

33 0 7 0 0 0 

34 0 0 0 

35 0 0 0 0 

36 1 0 0 0 0 

37 3 0 0 0 0 

38 0 0 0 0 

39 2 

40 1 2 0 0 0 

41 4 2 2 0 I 

42 5 6 0 2 4 

43 4 3 

44 5 0 0 0 2 

Source: Kaufman (1998). 
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Table A.12 Counts of Hunting Spiders 

Spedl's 

Site AI. AI. AI. Ar. Ar. Au. Pa. Pa. Pa. Pa. Tr. Zoo 

accentuata cuneata fabnlis luh·tlana penta albimana IUJ:ubris montlcola niJ:ric .. ps pullata t .. rricola spinimana 
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Source: van der Aart & Smeenk-Enserink (1975). 
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Appendix - Data Sets 

Table A.13 Environmental Variable Measurements for the Hunting Spider Sites 

Environmental Variable 

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 10.3 5.3 3.70 0 0 20 85 5 1 50 3 40 0 

2 21.1 9.7 3.68 0 5 2 95 50 1 80 2 0 0 

3 12.9 6.5 3.60 0 0 10 99 20 1 30 2 60 0 

4 14.5 4.8 3.36 0 0 10 100 50 1 100 0 2 0 

5 20.4 6.0 3.46 0 0 0 100 30 2 90 2 4 0 

6 29.4 12.3 3.65 10 30 10 30 40 1 10 0 0 0 

7 24.0 8.3 3.64 0 0 1 100 30 20 90 0 0 0 

8 13.8 5.4 3.70 0 70 2 30 30 2 10 0 0 0 

9 12.0 5.1 3.38 0 0 75 25 2 1 0 3 0 20 

10 9.0 4.4 3.60 50 0 30 20 3 1 0 3 1 20 

11 9.2 4.5 3.60 0 0 60 40 10 0 0 4 0 30 

12 9.9 4.4 3.41 0 0 45 55 3 1 2 3 0 50 

13 33.7 13.2 3.87 5 5 1 90 30 2 80 10 20 0 

14 21.9 7.8 3.58 0 0 5 95 20 1 20 4 20 0 

15 26.3 5.7 3.58 0 80 1 20 30 1 0 0 0 0 

16 20.7 6.8 3.56 0 99 1 1 30 1 0 0 0 0 

17 28.0 9.4 3.45 0 85 1 20 40 2 0 0 0 0 

18 22.7 9.5 3.43 0 80 0 20 30 2 0 0 0 0 

19 18.6 6.9 3.62 0 90 4 4 20 1 0 0 2 0 

20 22.4 8.1 3.59 0 98 1 1 25 1 0 0 0 0 

21 19.6 5.8 4.27 0 95 1 5 35 1 0 0 0 0 

22 3.5 1.6 7.37 25 0 75 1 20 1 2 2 0 2 

23 3.3 1.4 7.37 20 0 55 25 20 1 2 3 0 20 

24 5.2 2.1 6.73 25 0 55 20 10 0 2 2 0 20 

25 6.2 2.1 6.41 35 0 2 60 45 2 1 0 0 0 

26 2.7 1.1 7.84 90 0 5 5 3 0 0 0 0 10 

27 2.6 1.6 6.58 10 0 45 30 4 3 0 2 0 20 

28 2.6 2.2 7.23 30 0 40 30 2 0 0 2 0 30 
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Table A.13 (continued) 

Environmental Variable 

Site 14 15 16 17 18 19 20 21 22 23 24 25 26 

1 0 0 0 0 0 0 0 0 0 0 18 68 50 

2 2 20 0 5 3 0 25 4 0 1 7 6 5 

3 0 0 0 0 0 0 0 0 0 0 15 43 40 

4 0 0 0 0 0 0 0 0 0 0 12 16 20 

5 0 0 0 0 0 0 0 0 0 0 3 16 10 

6 1 20 20 15 6 20 70 0 0 0 4 3 2 

7 2 0 0 0 0 1 0 0 0 0 21 21 10 

8 0 0 1 15 10 0 75 5 4 2 3 3 2 

9 0 0 0 0 0 0 0 0 0 0 25 56 30 

10 0 0 0 0 0 0 0 0 0 0 26 60 40 

11 0 0 0 0 0 0 0 0 0 0 19 50 40 

12 0 0 0 0 0 0 0 0 0 0 19 60 40 

13 2 2 0 0 0 0 0 0 0 0 12 33 30 

14 2 3 0 0 0 2 12 0 0 1 10 10 3 

15 2 4 0 0 0 0 45 6 2 2 2 3 2 

16 0 0 0 0 0 0 85 5 2 0 1 2 1 

17 0 10 0 0 0 0 40 0 3 0 3 5 3 

18 2 3 1 9 6 2 80 5 1 2 2 5 3 

19 0 2 0 0 0 1 50 4 2 1 1 4 1 

20 0 0 0 0 0 0 75 6 2 1 1 3 1 

21 3 2 0 30 20 2 50 6 2 1 2 3 1 

22 0 0 0 0 0 0 0 0 0 0 19 67 50 

23 0 0 0 0 0 0 0 0 0 0 17 57 60 

24 0 0 0 0 0 0 0 0 0 0 18 55 55 

25 1 2 1 15 8 0 50 0 0 0 2 5 10 

26 0 0 0 0 0 0 0 0 0 0 19 37 80 

27 0 0 0 0 0 0 0 0 0 0 19 56 40 

28 0 0 0 0 0 0 0 0 0 0 19 54 40 

Source: van der Aart & Smeenk-Enserink (1975). 
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Table A.14 Environmental Variable Descriptions for the Hunting Spider Sites 

Environmental Description 
Variable 

1 water content (percentage dry weight) 

2 humus content (percentage dry weight) 

3 acidity (pH-KCI) 

4 percentage bare sand 

5 cover by fallen leaves and twigs (percentage) 

6 cover by moss layer (percentage) 

7 cover by herb layer (percentage) 

8 maximum height herb layer (centimetres) 

9 minimum height herb layer (centimetres) 

10 cover by Calamagroslis epigejos (percentage) 

11 cover by Carex arellaria (percentage) 

12 cover by Fes/uca ovilla (percentage) 

13 cover by Corynephorus c.:allescens (percentage) 

14 cover by Urtica dioica (percentage) 

15 cover by Moehringia trinervia (percentage) 

16 cover by shrub layer (percentage) 

17 maxi mum height shrub layer (decimetres) 

18 minimum height shrub layer (decimetres) 

19 cover by Ligllstrum vulgare (percentage) 

20 cover by tree layer (percentage) 

21 maximum height tree layer (metres) 

22 cover by Populus tremufa (five class scale) 

23 cover by Cra/aegus mOl1ogylla (five class scale) 

24 lux at equal grey sky (x 1000) 

25 lux at cloudless sky (x 1000) 

26 reflection of soil surface at cloudless sky (x 100) 

Source: van der Aart & Smeenk-Enserink (1975). 
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Table A.15 Abundances of Dune Meadow Vegetation 

Site 

Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

AchL mill 1 3 0 0 2 2 2 0 0 4 0 0 0 0 0 0 2 0 0 0 

Agro. stol. 0 0 4 8 0 0 0 4 3 0 0 4 5 4 4 7 0 0 0 5 

Aira prae. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 

Alop. geni. 0 2 7 2 0 0 0 5 3 0 0 8 5 0 0 4 0 0 0 0 

Anth. odor. 0 0 0 0 4 3 2 0 0 4 0 0 0 0 0 0 4 0 4 0 

Bell. perc. 0 3 2 2 2 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 

Brom. hord. 0 4 0 3 2 0 2 0 0 4 0 0 0 0 0 0 0 0 0 0 

Chen. albu. 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 

Cirs. an'e. 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eleo. palu. 0 0 0 0 0 0 0 4 0 0 0 0 0 4 5 8 0 0 0 4 

Elym. rcpc. 4 4 4 4 4 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 

Empe. nigr. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 

Hypo. radL 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 5 0 

June. arti. 0 0 0 0 0 0 0 4 4 0 0 0 0 0 3 3 0 0 0 4 

June. hufo. 0 0 0 0 0 0 2 0 4 0 0 4 3 0 0 0 0 0 0 0 

Leon. autu. 0 5 2 2 3 3 3 3 2 3 5 2 2 2 2 0 2 5 6 2 

LoH. perc. 7 5 6 5 2 6 6 4 2 6 7 0 0 0 0 0 0 2 0 0 

Plan. lane. 0 0 0 0 5 5 5 0 0 3 3 0 0 0 0 0 2 3 0 0 

Poa prato 4 4 5 4 2 3 4 4 4 4 4 0 2 0 0 0 I 3 0 0 

Poa triv. 2 7 6 5 6 4 5 4 5 4 0 4 9 0 0 2 0 0 0 0 

Pote. palu. 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 

Ranu. flam. 0 0 0 0 0 0 0 2 0 0 0 0 2 2 2 2 0 0 0 4 

Rume. acet. 0 0 0 0 5 6 3 0 2 0 0 2 0 0 0 0 0 0 0 0 

Sagi. proc. 0 0 0 5 0 0 0 2 2 0 2 4 2 0 0 0 0 0 3 0 

Sali. repc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 5 

Trif. prat. 0 0 0 0 2 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trif. repc. 0 5 2 1 2 5 2 2 3 6 3 3 2 6 1 0 0 2 2 0 

Vici. lath. 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 0 

Brae. ruta. 0 0 2 2 2 6 2 2 2 2 4 4 0 0 4 4 0 6 3 4 

Call. cusp. 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 3 0 0 0 3 

Source: Batterink & WijfTels (1983). 
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Appendix - Data Sets 

Table A.16 Environmental Variable Descriptions for the Dune Meadow Vegetation Sites 

Environmental Variable 

Site Thickness of Moisture Quantity of Grassland Grassland 
Al Horizon Content Manure Use Management 

1 2.8 1 4 C SF 

2 3.5 1 2 C BF 

3 4.3 2 4 C SF 

4 4.2 2 4 C SF 

5 6.3 1 2 H HF 

6 4.3 2 C HF 

7 2.8 1 3 P HF 

8 4.2 5 3 P HF 

9 3.7 4 1 H HF 

10 3.3 2 1 H BF 

11 3.5 1 1 P BF 

12 5.8 4 2 C SF 

13 6.0 5 3 C SF 

14 9.3 5 0 P NC 

15 11.5 5 0 C NC 

16 5.7 5 3 P SF 

17 4.0 2 0 H NC 

18 4.6 1 0 H NC 

19 3.7 5 0 H NC 

20 3.5 5 0 H NC 

Source: Batterink & WijfTels (1983). 
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