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Abstract

Switched mode, Class-D power amplification allows for high efficiency power
amplification of an audio signal. This thesis investigates its application to high power
car audio systems where there is a demand for efficient high power amplification.
Examination of the present car audio power amplifiers, which comprise a switched
mode power supply combined with a linear output stage, has shown that there is

significant scope for improvement in efficiency and power density.

A novel power stage in which the attributes of a switched-mode power supply and full
bridge output stage is presented. It is demonstrated that elimination of the intermediate
DC supply results in an amplifier which has a significantly lower part count, size and

cost compared to conventional designs.

Two different modulation schemes are explored (PWM and PDM) with a view to
finding the most suitable for the new power stage. The theoretical performances of the
modulators are verified by practical measurements. The design of high order Delta-
Sigma modulators is difficult as they show unstable behaviour and an alternative design

methodology has been presented to ease this task.

The mechanisms which introduce distortion in a practical amplifier are discussed, and
for the case of a PWM driven output stage, a new model is presented to predict the
effect of dead time on harmonic distortion. This form of distortion is shown to be the
dominant cause of open loop non-linearity. The use of feedback is also investigated and

yields a factor of 20 improvement in amplifier total harmonic distortion.

The design throughout has been supported with practical results and these have

illustrated the importance for careful circuit layout in high frequency switching systems.
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Introduction

1 Introduction

The advent of the compact disc in 1983 has heralded a rapid progression in the
application of digital audio techniques to consumer products. Digital audio storage and
transmission is now commonplace (digital TV, DVD, Minidisk etc) and has brought
benefits such as increased dynamic range and low noise floors.

Although the use of digital technology has revolutionised consumer audio, one part of
the audio chain which has remained largely unchanged is the conventional analogue
technology used for final audio power amplification. Most consumer audio power
amplifiers have power ratings of a few tens of Watts and heat generated by the use of
linear amplifiers for such applications is easily dissipated. However, for applications
where conversion efficiency is paramount (e.g. portable battery powered equipment),
linear technology is not suitable or where high power output is required, the amplifiers
tend to be large and dissipate excessive heat.

Digital or, Class-D power amplifiers, first suggested by Baxandall [1.1], use output
transistors in a high frequency switching manner with the audio information being
conveyed in the timing of the switching events. This approach offers three main

advantages over the more conventional linear technique.

e The use of the power handling devices in an on or off state offers a significant
increase in power conversion efficiency over linear amplifiers.

e The entire power conversion process (up to the switching drive signals) can be
undertaken digitally and this offers improvements in the amplifier fidelity similar to
those seen with compact disc (very low distortion and signal to noise ratio).

e Digital circuitry requires no set-up steps (e.g. bias setting) which can make the

production of digital amplifiers cheaper.

In high-power audio amplifier systems, it is the increase in conversion efficiency that
makes the use of Class-D amplifiers attractive. Indeed, Class-D amplifiers are now
commonplace in commercial PA systems [1.2] where the power rating is of the order of
kilowatts. These systems use analogue modulation techniques to control the switching
transistors and thus offer similar fidelity performance to their linear counterparts at very

much higher conversion efficiency.
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This thesis is concerned with the use of Class-D techniques for in-car audio where there
is a particular requirement for high efficiency since the power is drawn from a limited
energy low voltage supply. A novel class-D structure in which the intermediate DC
supply is eliminated is described in detail. A new model enabling accurate prediction of

dead time distortion in PWM modulated class-D systems is also presented.

1.1 In-Car Audio Power Amplifiers

In the USA in recent years, the market need for high power car audio amplification has
grown with ever increasing demands on power and performance. A number of
manufacturers [1.3, 1.4, 1.5] commercially produce in-car power amplifiers with ratings
up to S00W per channel, and an example of one of these is shown in Figure 1.1. These
units tend to be physically large and can run very hot. A typical state of the art amplifier
utilises a linear output stage driven by a switched-mode power supply (SMPS) as shown
in Figure 1.2. The SMPS is used to boost the 12V DC voltage from the car battery to the
~t50V required by the linear output stage. To maintain a reasonable efficiency, the
switching elements forming the primary side bridge circuit are realised with paralleled
MOSFETs to keep the conduction loss to a minimum. In the linear amplifier section,
many paralleled bipolar devices are again used in order to dissipate the losses over a
large silicon area to limit the maximum operating temperatures.

Typically, the amplifier is mounted inside the car boot where the ambient temperature
can be relatively high. The linear technology used in the conventional output stage is
inefficient and although the amplifier contains thermal protection, it is likely to cut out
before full continuous power output is achieved. Furthermore, since the amplifier power
source is a battery, energy wasted as heat will cause an additional load on the car
electrical system and will compromise the operating time of the amplifier. An
additional alternator may be required to ensure an adequate electrical supply for the
amplifier.

The efficiency of the overall amplifier will be the combined efficiencies of the power
supply and the linear output stage. The efficiency of the power supply in the amplifier
of Figure 1.2 was measured by disconnecting the linear output stage and loading the
positive power rail with a variable load. The input voltage was maintained at a nominal
12V and Figure 1.3(a) shows the measured conversion efficiency as a function of the
output power. Figure 1.3(b) shows the measured power loss in the SMPS. The input and

output powers were measured using a high accuracy power analyser (see Appendix E).

16



Introduction
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Figure 1.2 - Present in-car power amplifier circuitry (S00W per channel)
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(a) - Conversion Efficiency
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Figure 1.3 - Measured efficiency and power loss in the amplifier SMPS

In Figure 1.3, the solid blue line represents a polynomial fit to the measured data. The
polynomial was calculated using a least squares fit approach in MATLAB. The results
indicate an SMPS efficiency between 80% and 90% over most of the operating region
of the power amplifier. Compared to the linear output stage, this efficiency is very high
and therefore the overall amplifier conversion efficiency is likely to be dominated by
the efficiency of the linear output stage.

The linear output stage was reconnected and the total conversion efficiency of the
amplifier (based on 12V DC input to AC audio output) was measured for load
resistances of 400, 20Q, 14Q, 10Q and 8Q. The amplifier was configured in bridged
mode and for these load resistances, the power outputs at full 90V peak are 100W,
200W, 300W, 400W and 500W respectively, Figure 1.4.
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(a) - 40 Ohm Load (100W at Full Output)
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Figure 1.4 - Conversion efficiencies of full amplifier system

As would be expected, the overall conversion efficiency is relatively independent of the

load resistance used. The profiles confirm that the linear amplifier has a significant

impact on overall efficiency and at best, the amplifier is 50% efficient.
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1.2 Specification

Introduction

The target specification of the Class-D system is based on the specifications of a present

linear design, the Precision Power PC21400 amplifier, which is capable of delivering

350W per channel into a 4 load.

Power Bandwidth

Total Harmonic Distortion
Input Topology

Input Sensitivity

Input Impedance

Load Impedance (stereo)
Load Impedance (bridged)
Supply Voltage

Damping Factor

Slew Rate

4.5Hz - 100kHz
0.02%

Differential

150mV - 12V RMS
10k

2-8Q

4-8Q

11-15V

>500

>50V/us

The 100kHz power bandwidth presented above is excessive when the hearing area of a

human is considered, Figure 1.5. A bandwidth of 20kHz was stipulated for the work in

the thesis as this was considered adequate for a car audio system.
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Figure 1.5 - Hearing area for a typical adult human (Source - [1.6])



Introduction

The figure shows that most humans can only perceive frequencies up to 14kHz although
the argument for high power bandwidth can be supported through subjective testing.

The target and harmonic distortion figure was also relaxed to 0.1%. Although this is
poorer than the 0.02% offered by the linear amplifier, it is deemed that this is acceptable
for in car audio use. Also, the equipment available to measure the spectral content of the
amplifier has a dynamic range of 70dB which is close to the required 60dB range

required to measure 0.1% distortion.

1.3 Research Overview

The thesis investigates the development of a high efficiency Class-D amplifier system
for in-car audio use. The aim is to produce a system with much higher conversion
efficiency than the present linear system and simultaneously reduce the part count. This

will lead to a system with higher power density and lower cost.

Chapter 2 provides an overview of the operation of both linear and conventional
switched-mode amplifier systems. In particular, the factors affecting the
operational efficiency of both these types of amplifiers will be discussed.
This will give an indication of the likely improvement available through

the implementation of switched-mode technology.

Chapter 3 reviews pulse width modulation (PWM) and pulse density modulation
(PDM) schemes available to drive a switched-mode power stage.
Theoretical limitations in performance are verified experimentally and
give an indication of the attainable performance for a practical
modulator. Furthermore, a new methodology is presented for the design
of high order Sigma-Delta modulators with experimental results to

support the theoretical performance.

Chapterd  presents practical results from a prototype Class-D output stage to
highlight the performance available from a such systems using the
modulation technique discussed in chapter 3. In particular, the
conversion efficiency is measured and shown to be significantly higher

than a linear output stage. Much of the chapter is dedicated to an
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Chapter 5

Chapter 6

Introduction

investigation of distortion mechanisms within the power stage.
Specifically, an analytical method of predicting the harmonic distortion
caused by the necessary introduction of a dead time between the
switching of the power devices in the output stage is discussed. The
chapter concludes with a discussion of the methods available for the

implementation of closed loop control to minimise harmonic distortion.

proposes a new integrated power stage which combines the attributes of
an SMPS and Class-D output stage and eliminates the need for an
intermediate DC supply and associated filter components. The chapter
discusses the development of the power stage and pertinent design issues
to its successful operation. In particular, the importance of careful circuit
layout to minimise parasitic effects and the use of planar magnetic

circuits to minimise transformer leakage inductance are highlighted.

gives the results of applying both PWM and PDM modulation strategies
to the new power stage developed in Chapter 5. Two methods for partial
soft switching are developed. Distortion mechanisms present in the new
power stage are highlighted and supported with results taken for both
open and closed operation. Finally, the operational efficiency of the
complete converter is measured and possible improvements are

discussed.



Amplifier Operation

2 Amplifier Operation

2.1 Introduction

At the heart of the power conversion process in an audio amplifier is application of the
power transistor to allow a small signal to control a much larger power signal. There are

a number of amplifier circuits available, which fall under one of two main categories: -

¢ Linear Amplifiers, in which the power transistor operates in its linear region
e Switching Amplifiers in which the power transistor operates in its switching states,

i.e. saturated on or off.

This chapter reviews the general operation of both types of amplifier. More specifically,
the factors affecting the efficiency of both types of amplifier are discussed and the linear
amplifier operation is augmented with results from a prototype power stage. The

practical operation of a switching amplifier is covered in Chapter 4.

2.2 Linear Operation

Although a large number of linear output stages have been developed, they are mostly
based around the basic stage as shown in Figure 2.1. (The power stage is shown with

BJT’s although MOSFETs can also be used).

+Vd
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NPN
INPUT Oy VCE
lo
r——a )
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Q2 5 ey
PNP

-Vde

Figure 2.1 - Generic linear power stage
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The power stage consists of two emitter-followers, one to provide positive output

voltage and the other to provide negative output voltage. The transistors must be biased

into conduction to reduce crossover distortion and the level of bias used in practice

determines the class of the amplifier. There are four main classes of linear amplifiers

and these are described below.

Class-A

Class-AB

Class-B

Class-C

Under Class-A operation, both transistors always remain in conduction.
To achieve this, the bias current must be set to be greater than the peak
output current. The maximum efficiency of this power stage is therefore
50% and this is achieved for maximum sinewave output voltage into a
purely resistive load. This class of operation offers the most linear output
stage but suffers from very poor efficiency.

Under Class-AB operation, the output transistors are biased slightly into
conduction (typically a few tens of mA). This level of bias offers a
greater operating efficiency than Class-A operation but suffers from
poorer linearity. This class of operation is the most commonly used for
audio output stages.

Under Class-B operation, the output transistors are biased to be just on
the point of conduction. This offers an increase in efficiency of up to
approximately 75% but the output stage can exhibit relatively high levels
of crossover distortion.

Under Class-C operation, no bias is used. This leads to very high levels
of crossover distortion and is most often used where very high output

power is required (e.g. radio transmitters)

With these linear power stages, the efficiency is further reduced by the nature of the

load impedance. Any reactive power flow between the amplifier and load causes

additional power loss in the output stage. For an ideal power stage of Figure 2.1, with

zero cross-over distortion and no bias current, the conversion efficiency, n, for a

sinewave output into a reactive load is given by Equation (2.1) (The working for

Equations (2.1), (2.2) and (2.3) can be found in Appendix A).
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Ve

DC

cos(¢)

n=257

(2.1)

Where, Vp is the sinewave amplitude
Vpc is the DC link supply voltage
0 is the phase shift of the load.

Thus, peak efficiency occurs when the peak output voltage approaches the DC supply
rails and when the load has unity power factor (i.e. is purely resistive). Similarly, the

power lost in the output stage, Py, can be found and is shown in Equation (2.2).

4V, V. =Vimcos(o)
27r|Z |

P =
2.2)
Where, |Z| is the magnitude of the load impedance

The peak power loss in the linear power stage can be found through differentiation of

(2.2) and exists over two ranges of power factor as shown in (2.3). The working can be

found in appendix A.

p = |Z cos(¢) V4
LOSS - )
Ve (4 — 7T COS ¢)) 2
B0 27['2' 0< cos(¢) < -

(2.3)

Both the conversion efficiency and power loss are functions of the complex load
impedance as well as the peak output voltage relative to the power supply rails. In
practice, the impedance of a loudspeaker system will vary considerably over the design
frequency range. A single electromagnetic drive unit will have electrical and mechanical
resonance’s and if a number of units are connected in parallel in combination with

crossover networks to cover the full bandwidth, a complicated impedance will result.
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The complex impedance of a 300W single low frequency (40Hz-2kHz) base drive unit,

mounted in free air, is shown in Figure 2.2. It is evident that the magnitude of the

impedance can vary significantly from the nominal 8Q and the phase shift is as much as

50°. Using Equation (2.3), Figure 2.3 shows that this load impedance could result in a

power loss of up to 40W for a 100W rated linear power stage.

(a) - Bass Driver Impedance Magnitude
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Figure 2.2 - Typical bass driver impedance profile

The band of frequencies up to 300Hz shows the largest phase shift over the useful band

alculated efficiency profile over this range

and Figure 2.4 plots the ¢

of the loudspeaker

ation (2.1). The profile shows

using the measured impedance data of Figure 2.2 and Equ

that the large phase shift of the loudspeaker around resonance can drop the power stage

efficiency by more than 20% although it is the peak output voltage relative to the DC

rail voltage that has the largest effect on efficiency. To verify the calculated efficiency

profile, the actual efficiency of a Class-B linear power stage was measured with the bass

drive loudspeaker as a load as shown in Figure 2.5. The supply rails were set to 6V

with a steady state bias current of S0mA.
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