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SUMMARY 

variable structure Control is a well-known solution to the 

problem of deterministic control of uncertain systems, since it is 

invariant to a class of parameter variations. A central feature 

of vsc is that of sliding motion, which occurs when the system 

state repeatedly crosses certain subspaces in the state space. 

These subspaces are known as sliding hyperplanes, and it is the 

design of these hyperplanes which is considered in this thesis. 

A popular method of hyperplane design is to specify 

eigenvalues in the left-hand half-plane for the reduced order 

equivalent system, and to design the control matrix to yield these 

eigenvalues. A more general design approach is to specify some 

region in the left-hand half-plane within which these eigenvalues 

must lie. Four regions are considered in this thesis, namely a 

disc, an infinite vertical strip, a sector and a region bounded by 

two intersecting sectors. 

The methods for placing the closed-loop eigenvalues within 

these regions all require the solution of a matrix Riccati 

equation : discrete or continuous, real or complex. The choice of 

the positive definite symmetric matrices in these Riccati 

equations affects the positioning of the eigenvalues within the 

region. suitable selection of these matrices will therefore lead 

to real or complex eigenvalues, as required, and will influence 

their position within the chosen region. 



The solution of the hyperplane design problem by a more 

general choice of the closed-loop eigenvalues lends itself to the 

minimization of the linear part of the control. A suitable choice 

of the position of the eigenvalues within the required region 

enables either the 2-norm of the linear part of the control, or 

the condition number of the linear feedback to be minimized. The 

choice of the range space eigenvalues may also be used, more 

effectively, in this minimization. 
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1. INTRODUCTION 

The problem of controlling uncertain dynamical systems has 

been studied increasingly in recent years. One solution to this 

problem is the Variable structure controller, and it is this 

solution which will be considered in this thesis. Variable 

structure Control (VSC) with a sliding mode was first introduced 

by soviet authors in the early sixties, and a survey paper of this 

early work was written in the seventies (Utkin, 1977). The early 

results on the invariance of VSC systems to a class of parameter 

variations and disturbances were established by Drazenovic in 

1969. In the 1970's and 1980's the method was extended to 

multivariab1e control systems, and model-following control (Young, 

1977 & 1978, Zinober, El-Ghezawi and Billings, 1982) and CAD 

packages were developed (Dorling, +985). CUrrent applications _ _ ._4 

include robotics, and flight control. 

A Variable structure Control system is a system for which the 

structure of the state feedback control is altered, or switched, 

in a preordained way, as the system state crosses certain 

subspaces in the state space. These subspaces are generally known 

as the sliding hyperplanes, the discontinuity surfaces, the 

switching manifolds, or the switching surfaces. The controller 

generally consists of the sum of a linear part and a non-linear 

part; the non-linear part contains the discontinuous elements of 

the control. A non-linear system whose structure alters on the 

switching surfaces, due to control of this form is generally known 

as a Variable structure System (VSS). 
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The central characteristic of a Variable structure System is 

the sliding motion which occurs when the system state crosses and 

then recrosses a switching surface. This sliding motion depends 

on the form of the control law, and may occur on individual 

switching surfaces, or on all of the switching surfaces together. 

If the latter case occurs, then the system is said to be in the 

sliding mode, and its motion is then effectively constrained to 

lie within a subspace of the full state space. The system is 

therefore equivalent to a system of lower order, known as the 

reduced order equivalent system, and this lower order system must 

be asymptotically stable to ensure that the state slides down the 

switching surfaces to the origin. 

The objective of the design of a vsc system is to drive the 

state f~om some arbitrary initi~l_~ondition onto the intersection 

of the switching surfaces, and then to maintain it on, or in the 

neighbourhood of, this intersection. The design process consists 

of two separate parts, the existence problem and the reachability 

problem. The choice of a set of hyperplanes to give the system 

the required behaviour in the sliding mode is called the existence 

problem. The hyperplanes must be chosen so that the sliding mode 

on their intersection gives the desired performance of the reduced 

order equivalent system. The solution of the existence problem is 

completely independent of the form of the control functions. Once 

the existence problem has been satisfactorily solved, the second 

stage of the design process, which consists of the design of 

controls which ensure the attainment of the desired sliding mode, 

is considered. 
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This part of the design process is called the reachability 

problem, and since its solution depends on the choice of the 

sliding hyperplanes, it cannot be solved until the existence 

problem has been solved. 

The transient motion of a vsc regulator system consists of 

two independent stages : 

1) a preferably rapid motion to bring the system to the inter­

section of the switching surfaces, where the sliding motion 

will occur. 

2) a slower sliding motion of (possibly) infinite duration during 

which the state slides towards the state space origin, whilst 

remaining in or in the neighbourhood of, the sliding subspace. 

Th1S independent two stage motion can help to solve the 

problem.of opposing design requirements, which occurs between 

static and dynamic accuracy, when designing a linear control. 

A Variable structure controller may be designed to give a rapid 

response with no loss of stability, and with insensitivity to 

parameter variations, and invariance to certain external 

disturbances. A controller designed in this way compares well 

with other design methods, for instance that of the Lyapunov 

controller (Garofalo and Glielmo, 1988), and a comparison of these 

two methods is contained in Chapter 2. 

The solution of the existence problem requires the sliding 

hyperplanes to be chosen, to give an asymptotically stable reduced 

order equivalent system. The transient response of a linear 

system is given by a linear combination of the modes of the 
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system. The time response of the system is also determined by its 

eigenstructure, and so it is clearly important to choose a 

suitable structure for a satisfactory solution of the control 

problem. 

In this thesis, we are particularly concerned with the choice 

of the closed-loop eigenvalues, and hence the sliding hyperplanes. 

The system will have a mode of un forced behaviour for each closed­

loop eigenvalue, and these modes will be excited to various 

degrees by an arbitrary initial condition, and will behave 

independently of each other. Clearly then, the choice of the 

closed-loop eigenvalues of a system fixes the possible modes of 

unforced behaviour of that system, and so choosing suitable 

eigenvalues, in some way, is clearly important. 

Th~ simplest method is to ?p~pify the exact eigenvalues 

required, and this method is used by the VASSYD CAD package, which 

will be discussed in Chapter 2. However, it would clearly be 

advantageous to be able to specify the eigenvalues in a more 

general way, and one which is more closely linked to the modes of 

unforced behaviour of the system. Two possibilities for eigen­

value positioning are to place them within a strip or a disc, and 

these will be discussed, with regard to a Variable structure 

controller, in Chapter 3. Another possibility is to place the 

eigenvalues within a sector, or a damping region, linked to the 

damping ratio of the system. The damping ratio, together with the 

closed-loop eigenvalues, determines the transient response of the 

system. This will be discussed in Chapter 4, again with regard to 

a Variable structure controller. These methods require the 
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solution of a matrix Riccati equation, either discrete or 

continuous, with a real or complex solution. The choice of the 

positive definite symmetric matrices in the Riccati equation has 

an effect on the positioning of the eigenvalues within the chosen 

region, and this is investigated in Chapters 5 and 6. 

The control effort required to reach the required subspace is 

also an important factor. It would clearly be advantageous to be 

able to design the controller so that the required control effort 

is minimized in some way. The linear part of the control lends 

itself to being minimized, rather than the non-linear part, which 

is discontinuous. This will be investigated in Chapter 7. 

The research undertaken in this thesis is arranged in six 

chapters. Chapter 2 contains a description of the design of both 

a Variable structure controller an~ a Lyapunov controller, and a . .. 
comparison of their performance with regard to a robot arm 

tracking problem. The design of the sliding hyperplanes by 

placing the closed-loop eigenvalues of the reduced order 

equivalent system within a disc or a strip in the left-hand half-

plane is contained in Chapter 3, and numerical examples of the 

hyperplane design process are given. In Chapter 4, a method for 

placing the closed loop eigenvalues of a system within a sector is 

developed, again with numerical examples of the hyperplane design 

process. Chapter 5 is concerned with the dependence of the eigen-

value placement within a disc or a strip to the design of the 

positive definite symmetric matrices, while Chapter 6 contains a 

similar investigation for the sector, and an investigation into 

the range of sectors available. The numerical examples given in 

5 



both of these chapters have again been chosen to demonstrate the 

hyperplane design process. In Chapter 7 the effect of minimizing 

the linear part of the control is investigated, and the results of 

the minimization are assessed by considering the robot arm 

tracking problem outlined in Chapter 2. 
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2. COMPARISON OF VSC AND LYAPUNOV METHODS 

2.1 Introduction 

There are many approaches to the problem of deterministic 

control of uncertain time-varying systems, and two possibilities 

which will be considered in this work are Variable structure 

control (see for example, Drazenovic, 1969, Itkis, 1976, Utkin, 

1977 & 1978, De Carlo, Zak & Matthews, 1988, Zinober, EI-Ghezawi & 

Billings, 1981 & 1982, Dorling & Zinober, 1986 & 1988), and 

Lyapunov control (see for example, Gutman & Palmor, 1982, Corless 

& Leitmann, 1981, Barmish & Leitmann, 1982, Ryan, 1988, Garofalo & 

Glielmo, 1988). The essential feature of VSC is that the non-

linear feedback control has a discontinuity on one or more 
__ &." 

subspaces in the state space. The controller is designed so that 

the chosen sliding subspace, the null space of the sliding 

hyperplane matrix, is quickly reached, and thereafter the state 

remains within this subspace. The two parts of a VSC design 

procedure, the existence problem and the reachability problem, 

have been explained in Chapter 1. In Lyapunov control, a 

nonlinear function is developed using a Lyapunov function and 

specified bounds on the uncertainties, to give uniform boundedness 

and ultimate boundedness of the closed-loop feedback trajectory. 

In section 2.2, the existence problem for a vsc system is 

outlined, with respect to the regulator system. The design 

strategy of the CAD package VASSYD (Dorling, 1985) is also briefly 

outlined. section 2.3 briefly outlines the Lyapunov approach 

7 



theoretically developed by Garofalo and Glielmo, 1988. section 

2.4 contains the numerical example being used in this comparison. 

The robot arm under consideration is described, and its equations 

are adapted for use with the two methods. The Lyapunov method 

requires some development from its theoretical formulation for use 

with a numerical example. The constants have to be chosen, and a 

method developed to ensure that the closed-loop eigenvalues of the 

two systems are the same (Zinober & Woodham, 1989). section 2.5 

contains a brief discussion of the results. 

2.2 The Regulator System and VSC Method 

A general form of the regulator system is given by 

(2.2.1) 

where x is the state n-vector, u is the control m-vector, and f is 

the disturbance p-vector. A and ~A are nxn matrices, and ~A 

represents the uncertainties in the plant values. B and AB are 

nxm matrices, ~B represents the plant/control interface 

uncertainties and D is a nxp matrix representing the external 

disturbance effects. During the ideal sliding mode, motion is 

constrained to lie within a subspace of the full state space, 

which is designed to be a complementary subspace to the range 

space of B. Thus, during sliding, any uncertainties and 

disturbances acting in the range space of B will have no effect on 

the solution. 
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It is therefore sufficient to consider the ideal system, with no 

uncertainties and disturbances, given by 

x(t) = Ax(t) + Bu(t) (2.2.2) 

where x, u, A and B are as defined above. 

Matched uncertainties are handled by suitable choice of the 

control function. We assume that m < n, B is of full rank m and 

the pair (A,B) is completely controllable. The sliding mode may 

be determined from the condition 

cx(t) = 0 (2.2.3) 

where ts is the time when the sliding subspace is reached and C is 

an mxn matrix. Differentiating equation (2.2.3) with respect to 

time, and substituting for x(t) from (2.2.2) gives 

Cx(t) = CAx(t) + CBu(t) = 0 (2.2.4) 

Equation (2.2.4) may be rearranged to give 

CBu(t) = -CAX(t) (2.2.5) 

C is designed so that ICBI ~ 0, and therefore the product CB is 

invertible,and hence equation (2.2.5) may be rearranged to give 

the following expression 

-1 u (t) = - (CB) CAx (t) = -Kx (t) (2.2.6) 

where u(t), the equivalent control, is the open-loop control which 

forces the trajectory to remain in the null space of C, during 

sliding. 
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substituting for u(t) from equation (2.2.6) into equation (2.2.2) 

gives 

x(t) = (I - B(CB)-lC)Ax(t) 

= (A - BK)x(t) 

(2.2.7) 

which is the system equation for the closed-loop system dynamics 

during sliding. 

It can be seen that this motion is independent of the actual 

control u and depends only on the choice of C, which determines 

the matrix K. The function of the control u is to drive the state 

into the sliding subspace M, and thereafter to maintain it within 

the subspace M. 

The-convergence of the stat~ vector to the origin is ensured 

by suitable choice of the feedback matrix K. The determination of 

the matrix K or alternatively, the determination of the matrix C 

defining the subspace M may be achieved without prior knowledge of 

the form of the control vector u. (The reverse is not true). 

The null space of C, N(C), and the range space of B, ~(B), are, 

under the hypotheses given earlier, complementary subspaces, so 

N(C)~(B) = {O}. Since motion lies entirely within N(C) during 

the ideal sliding mode, the dynamic behaviour of the system during 

sliding is unaffected by the controls, as they act only within 

~(B). The development of the theory and design principles is 

simplified by using a particular canonical form for the system, 

which is closely related to the Kalman canonical form for a 

multivariable linear system. 
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By assumption, the matrix B has full rank m, so that there exists 

an orthogonal nxn transformation matrix T such that 

TB = [~] (2.2.8) 

where B2 is mxm and nonsingular. 

Let B = aR, where a is an nxn orthogonal matrix and R i~ nxm and 

upper triangular. Partitioning this expression for B gives 

(2.2.9) 

premultiplying both sides of equation (2.2.9) by aT, since a is 

orthogonal, and hence QT = Q-1, gives 

[Q~ 1 a~] [81] = [R1] aT QT 82 0 
12 22 

(2.2.10) 

since we require T to be chosen so that equation (2.2.8) holds, it 

is clear from equation (2.2.10) that T is given by 

T = [~~: ~~:] (2.2.11) 

The orthogonality restriction is imposed on T for reasons of 

numerical stability, and to remove the problem of inverting T when 

transforming back to the original system. The transformed state 
. . 

is y=Tx, so Tx = y, and the state equation (2.2.2) becomes 

yet) = TATTy{t) + TBu(t) (2.2.12) 
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The sliding condition is CTTy(t) = 0, V t ~ ts. If the 

transformed state y is now partitioned as 

n-m Yl E 'R , (2.2.13) 

and the matrices TATT,TB and CTT are partitioned accordingly, then 

equation (2.2.12) may be written as a pair of equations: 

. 
Yl (t) = AllYl (t) + A12Y2 (t) 

The sliding condition becomes 

where 

and C2 is nonsingular (from CB nonsingular). 

(2.2.14a) 

(2.2.14b) 

(2.2.15) 

The canonical form is central to hyperplane design methods 

and it plays a significant role in the solution of the 

reachability problem, i.e. the determination of the control form 

ensuring the attainment of the sliding mode in M (Zinober, 1984). 

Equation (2.2.15) defining the sliding mode is equivalent to 

(2.2.16) 

where the mx(n-m) matrix F is defined by 

(2.2.17) 

so that in the sliding mode Y2 is related linearly to Yl' 

12 



The sliding mode satisfies equation (2.2.16) and 

. 
YI = All YI (t) + A12 Y2 (t) (2.2.18 ) 

This represents an (n_m)th order system in which Y2 plays the role 

of a state feedback control. So we get 

(2.2.19) 

which is known as the reduced order equivalent system, with system 

matrix (All - A12F). The design of a stable sliding mode such 

that y ~ 0 as t ~ m requires the determination of the gain matrix 

F such that (All - AI2F) has n-m left-hand half-plane eigenvalues. 

The CAD package VASSYD (Dorling, 1985) will design the 

sliding hyperplanes, either by assignment of the sliding mode 

spectrum, or by quadratic minimization. The design of the sliding 

mode spectrum requires the exact specification of the closed-loop 

eigenvalues of the reduced order equivalent system All - AI2F. 

The eigenvectors may be assigned explicitly, or designed by the 

package to give maximally robust eigenvalues, using the theory 

that the sensitivity of an eigenvalue is inversely proportional to 

the angle between its left and right eigenvectors (Wilkinson, 

1965), and a suitable design method (Kautsky, Nichols and Van 

Dooren, 1985). The hyperplane matrix C is calculated, by 

reversing the transformation process (see Chapter 3, section 3.2), 

and then the remaining m left-hand half-plane arbitrary eigen-

values of the full-order linear feedback system must be chosen. 
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The feedback matrices are then calculated (see Chapter 7, section 

7.2) to give a controller of the form 

u(x) = Lx + (2.2.20) 

where p is an arbitrary constant, ~ is a constant used to smooth 

the control, and I ~ is the matrix 2-norm. 

2.3 Lyapunov Control 

The Lyapunov control approach requires the closed-loop system 

error trajectories to be ultimately bounded and the convergence of 

the error norm to be arbitrarily close to exponential convergence 

with a desired time constant (GaFo~Dlo & Glielmo, 1988). 

Consider a multi-input multi-output system of the form 

y(U) = f(y, ...• • y(V-l» + F(y, •••••. ,y(U-l»U (2.3.1) -
y(to) = yo, ••••.•• ,y(U-l) (to) = Yo (v-t) (2.3.2) 

where y E ~m is the output, u E ~m is the input, and v is a 

positive integer. 

Suppose the following 

i) Let f(y, •• ,y(U-l}) be continuous and cone-bounded with respect 

to y, ••• ,y(v-t), so that there exists kl i = 1, ••• ,v such that 

IIf(y, •. ,y(U-l» 11 ~ 1<:0 + k1 11yll + •• + kvlly(U-l) 11 (2.3.3) 
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ii) Let there exist a known matrix W(y, •••• ,y(V-l» e ~m and a 

scalar AD such that, for any (y, ••• ,y(V-l» e ~mv, the matrix 0, 

defined as follows 

O(y, ••• ,y(V-l» = F(y, .•• ,y(V-l) )W(y, ••• ,y(V-l» (2.3.4) 

is positive definite and norm bounded, in other words it satisfies 

the following inequality 

~O(Y, ••••• ,y(V-l» 11 ~ AD (2.3.5) 

It is possible to find a function 9 

following inequality 

~mV ~ ~+ satisfying the 

g(y, ••••• ,y(V-l» ~ maxllf(y, ••••. ,y(V-l» 11 (2.3.6) 

for all (y, ••• ,y(V-l». There also exists a positive scalar AD 

satisfying 

, '" (y, ••• ,y(V-l» (2.3.7) 

where min Ai represents the minimum eigenvalue out of the set of m. 

The objective of the control is to make the tracking error 

8 = Y - y (2.3.8) 

ultimately bounded in a ball around 8 = O. The radius of this 

ball can be made small by a suitable choice of the controller 

parameters. 
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Let W be given by 

W = f + Fu - y (u) - kug' - kU-l g' ( 1 ) (2.3.9) -
where k l , i = 1, ••• ,v are arbitrary mxm matrices. 

From equations (2.3.1), (2.3.8) and (2.3.9), the error dynamics 

equation may be written 

(2.3.10) 

Define e to be 

e' = [~' 11'(.), ••••• g(U •• )T (2.3.11) 

Then the state space representation of the dynamic equation of the 

tracking error may be written 

e = Ee - B1W (2.3.12) 

where 

0 Im .......•... 0 0 

[L] 
0 0 Im ....... 0 0 

E = Bl = (2.3.13) o •••.•••••••••••• • Im 

-k ················-k v 1 

The kl matrices are chosen so that E is asymptotically stable. 
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· Let P be the unique positive definite solution of the Lyapunov 

equation 

ETp + PE = -Q (2.3.14) 

where Q is a symmetric positive definite matrix. 

If Pv is chosen to be smaller than zero, and W is such that 

(2.3.15) 

for any e: IIvll > Pv , where v = BIPe , then the error, e, is -- -- ...,,,.,,. -
uniformly bounded and globally ultimately bounded in ball of known 

radius (Garofalo & Glielmo, 1988). 

In addition, if vTW 0': 0 for any e: IIvll > Pv then the norm of 

the trajectories of the system given in equation (2.3.12) is upper 

bounded by a time function which is close to an exponential one, 

with a known time constant. 

Define the following function 

'¥(y, ••• ,y(U-l) ,e,y(U» = g(y, ••• ,y(U-l» + 

(2.3.16) 

where K = [Ku .... Kt] 
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The controller is then given by 

T B1Pe -u = h9'W (2.3.17) 

IBrp~1 + cS 

where 

cS > 0 h > (1 + cS/Pv)/AO Pv < IIvll 

o < !f :s r(y, ~. ,y(u-l), e ,y(ID» 

The most straightforward choice for the arbitrary matrices in 

equation (2.3.13) is an identity matrix in each case. However, 

since this chapter is concerned with comparing the results from 

the Lyapunov method and the VSC method, it would clearly be better 

to choose the arbitrary matrices so that the closed-loop eigen­

values of the full order system are'the same for both controllers. 

A method of choosing the arbitrary matrices to give the specific 

closed-loop eigenvalues required, with reference to the particular 

example being considered, is developed in the next section. 

2.4 The Robot Manipulator 

The example being used to compare these two methods is that . 

of a robot manipulator tracking a particular trajectory, which is 

an example of a nonlinear uncertain model-following system. Both 

the methods outlined in this chapter will be used to define a 

model following control, and the effectiveness of the designs may 

then easily be seen by comparing the actual track of the robot arm 

with the desired track. 
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The robot manipulator under consideration is a two link robot 

arm, which moves in a horizontal plane (see Fig 2.1). The 

nonlinear equations governing its movements are as follows 

(2.4.1) 

- (2.4.2) 

where J l is the moment of inertia of link i about axis i, ml is 

the mass of link i, VI is the viscous friction constant for axis i 

and i is the moment of inertia of the axis 1 motor. These 

parameters are given the nominal values listed below. 

J 2 = 0.000412 a = J 2 + 2m2l 1l 2coscf>r 

2m2l112sincf>r h 2 -b = = J 1 + J 2 + 4m2l1 + I + 4m2l 1l 2coscf>r 
= 0.OOSS19 + O.00118costl>r 

g = 1/ (J2h - a 2 ) 11 = 12 = 2 m2 = 6.9875x10-s 

- 6.877x10-3 6.07x10-s I = v1 = 0.0025 v2 = 

Equations (2.4.1) and (2.4.2) are required to be converted to 

the form of equation (2.2.1), so that a Variable structure 

controller may be designed, and to the form of equation (2.3.1) so 

that a Lyapunov controller may be designed. The cross terms in 

equations, (2.4.1) and (2.4.2) will be ignored during the 

controller design process, for simplicity, but will be included in 

the model-following simulation which is carried out for each 

controller. It is clear from the results obtained for both 

controllers, that this strategy enables suitable controllers to be 

designed on a decoupled system, for effective control of the full 

robot arm system. 
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Fig 2.1 The two-link robot arm 
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If the cross terms are ignored, equations (2.4.1) and (2.4.2) may 

be written in the following matrix form 

[t) - _gav2] [er] + [ qJ2 -qa) (Ut] 
qhv2 • -qa qh U2 

fJr 

(2.4.3) 

Equation (2.4.3) is clearly of the form of equation (2.3.1) with 

the function f and the matrix F given by 

f _ [-9J2Vl~' + gaV2~'] F = [ gJ2 -ga) (2.4.4) 
gavter ghv2 fJr 

-qa qh 

To convert equation (2.4.3) to the standard form for VSC, consider 

the sUbstitutions 

Differentiating these expressions with respect to time gives 

substituting for er' fJ r , and their first and second derivatives in 

equation (2.4.3) qives 

· Yl 
0 0 1 0 Yt 

+ [ ~J2 + 1 
Ut · Y2 0 -qJ2V 1 0 qav2 Y2 U2 

= (2.4.5) · 0 0 0 0 Y3 u3 
Y3 0 gavt 0 -qhv2 Y4 -ga gh U4 · Y4 
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Equation (2.4.5) is clearly in the form required for a Variable 

structure control problem. 

. 
A linear system of the form x = ~x, where ~ is a 

diagonalizable matrix has a solution of the form x=xoeAdt
• If ~ 

is diagonalizable, then ~r = rA, where A has the eigenvalues of 

Ad on the leading diagonal, and zeros elsewhere, and the columns 

of r are the corresponding right eigenvectors. If the eigenvalues 

of Ad are distinct, then the corresponding eigenvectors will be 

linearly independent, and the matrix r will be non-singular, and 

-1 so Ad = rAr = rAG, where G is the matrix of left eigenvectors. 

The solution may therefore be written x = xoreAtG, and it can be 

seen that a suitable choice of eigenvectors can lead to the 

decoupli~g of the components of ~h~~.yector x. If, for example, 

both rand G were equal to the identity matrix, then the states of 

x would all be independent of each other, and depend only on the 

exponential of the appropriate eigenvalue, and the initial state 

value. 

For the VSC case, the open-loop eigenvalues of the full order 

system, A(A), are [0 0 -0.4016 -0.1218]. The closed-loop 

eigenvalues of the reduced order system, the null space eigen-

values were chosen to be -5 and -7, to ensure rapid decay of the 

error states to zero, and the system is of the form given above, 

with ~ = All - A 12F. The respective eigenvectors of these 

eigenvalues were chosen to be [1 ( 0 O]T and [0 0 1 (]T, where ( 

is arbitrary, to yield decoupling between er (Yl and Y2) and 'r 
(Y3 and y,), as explained above. 
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The m remaining eigenvalues for the full order linear feedback of 

the system were chosen to be -12 and -14, and the resulting 

controller matrices from the VASSYD package are 

L = [-3.6800 
-0.3640 

M [-003500 = -0.1610 

[ -1 N 
-1.22x10 

= 
-2 -1. 18x10 

-0.2360 -0.4710 
-0.0233 -0.1600 

-0.0346] 
-0.0124 

-0.0184 0.1330 0 00078] 
-0.0085 -0.3400 -0.0200 

-6.42x10 -3 -7.96x10 -3 -4.68x10 

-6.21x10 -4 -4.48x10 -3 -2.64x10 
-.] 
-4 

The state trajectories to be tracked by the robot arm have 

been chosen to be those of the model plant with plant matrix A. 

and input matrix Bm : 

~ = [-10~ 
1 0 

-20 0 
o 0 
o -36 

j] B = [log 
m 0 

o J] (2.4.6) 

This model plant has the same basic structure as the robot arm, 

since it has eigenvalues [-10 -10 -6 -6] which correspond to the 

two modes of the robot arm motion. The trajectory under 

consideration is illustrated in figure 2.2. 

The results for the Variable structure controller for a 

simulated run, of 40 seconds, using the full, coupled, equations 

of the robot arm, with the arm following the trajectory 

illustrated in figure 2.2, are shown in figure 2.3. 
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Fig 2.2 The trajectory to be followed by the robot arm 

in the plane 
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It can be seen from figure 2.3 that the errors in Or and fr 

are less than 0.5°, and very steady. By comparing the angle error 

plots with the required robot trajectory (Fig 2.2), it can be seen 

that the small "blips" in the results occur when the arm changes 

direction. The changes of direction occur at the corners of the 

trajectory and the sinusoid starts 30 seconds into the simulation. 

The fr errors are generally negligible, except at the COrners of 

the trajectory, since most of the movement occurs in the lower 

arm. They increase during the sinusoidal part of the trajectory, 

since the upper part of the arm is moving as much as the lower 

part at this point. The Or error remains at about 0.2° since the 

lower arm is moving constantly throughout the simulation. The two 

parts of the control are very smooth, apart from the small "blips" 

which occur when the robot arm is required to change direction. 

The control effort clearly decreases in magnitude after the first 

10 seconds of the simulation, which is as would be expected, and 

it becomes less smooth during the sinusoidal part of the 

trajectory. It can be seen from these results that a variable 

structure controller gives a good model-following performance for 

this problem. 

For the Lyapunov approach, the eigenvalues in the null space 

are required to be the same as those for the Variable structure 

controller during sliding. The discontinuous part of the Variable 

structure control is approximated by a continuous control, which 

brings the trajectory close to the sliding subspace. 
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The motion during sliding is controlled by K = _(CB)-lCA, 

" 
N pCx 

(Equation (2.2.5», where u = ---------
Icxl + 0 

The Lyapunov controller 

is of this form, with C replaced by Bip (Equation (2.3.16», and 

so the closed-loop system during sliding is defined as 

[t:J = [I + F(BiPF)-lBip]f (2.4.7) 

since T v = BlPe -
As explained in the previous section, to enable a comparison 

of the two methods to be made, the closed-loop eigenvalues of the 

system in the null space are required to be the same in each case 

(Zinober_and Woodham, 1989). The closed-loop eigenvalues for the .. _ ..... 

reduced order equivalent system of the VSC problem were chosen to 

be -5 and -7, and so the closed-loop eigenvalues of the full order 

system given in equation (2.2.7) are [-5 -7 0 0]. The strategy 

for choosing the arbitrary kl matrices in equation (2.3.13) so 

that the closed-loop eigenvalues of the system have the required 

values will now be outlined. 

For the Lyapunov method, let us consider a general form of the E 

matrix 

E = 
001 
000 

-k1 0 -k3 

o -ka 0 Ll 
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solving equation (2.3.14) for the general E matrix gives 

2 2 
- (k3+k l+kt> / 2k3k 1 0 -1/2k2 0 

0 
2 2 

-1/2k2 P= - (k2+k4+k2) /2~k4 0 

-1/2k1 0 - (k1+1) /2klk 3 0 
0 -1/2k2 0 - (k2+1) /2k2k, 

Multiplying out the left-hand side of equation (2.4.7) gives 

o 1 o 0 
o -1. 9x10-7-kJl (kl+1) o 4. 7x10-8 -2. 4x10-7k,/ (k2+1) 
o 0 o 0 
o -6. 8x10-6+2 .lx10-5kJl (kl+1) o 3. 9x10-7-k4/ (k2+1) 

The eigenvalues of this matrix are given by 

since for this particular example we require the two non-zero 

eigenvalues to be -5 and -7, the values of the kl must be 

and 

The Lyapunov controller consists only of a non-linear part, 

given in equation (2.3.16), and so the control matrix B~P is given 

by 

o 
-0.5 

-0.1 
o 
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The other variables required by the Lyapunov method will now be 

chosen. From equation (2.3.4) and equation (2.3.7), we have 

o = FW "\1 [0 2+ DT] AD = min '" 

Let us choose the following matrix W 

Then D is given by 

o = [J -a] -a h 

and hence, AD becomes 

i\D == (h + J) ± ~ C (h+J) 2 - 4hJ + 4a2 ») /2 

The matrix D will alter as the robot arm moves, since both a and h 

depend on ~r' as can be seen from equation (2.4.2) and will 

therefore not remain constant. The values of a and h are however 

bounded since cos~r and sin~r are bounded, and so the matrix 0 is 

bounded. Clearly, AD will not remain constant, but will vary as 

the robot arm moves. From equation (2.3.16) we have 

Pv < IIvll 

~ > 0 

so choose Pv = O.lHvll 

so choose ~ = 1.0x10-6 h = (1 + ~ / Pv) / AD 

choose 'ICy,··. ,yCU-l), e ,yCm» = If(Y, ••• ,y(U-l» I 
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since f varies as ~r varies, AD varies, and v varies as the error, 

e, varies, Pv' 7 and h will not remain constant, but will alter as 

the robot arm moves. If the matrix D was chosen so that AD was 

constant, Pv would still vary with v, but some alterations in the 

gain would be removed. 

The results for the Lyapunov controller for a simulated run 

of 40 seconds, with the full, coupled, robot arm equations, and 

with the arm following the trajectory illustrated in figure 2.2 

are shown in figure 2.4. It can be seen from figure 2.4 that the 

errors in er and ~r are larger than those for the Variable 

structure controller, although they are still less than 1°. 

Again, changes in these values occur when the robot arm is 

required to change direction, and the largest errors occur during 
- - ~ 

the sinusoidal part of the trajectory. In this case, the error 

plots for er and ~r are very similar, unlike the plots for the 

Variable structure controller, and this is presumably due to the 

differences in the two controllers. It can also be seen that the 

control is not smooth, but continually oscillating, and this is 

due to the effect of the gain term in the control, h~, which is 

altered at every time step. The two parts of the control in this 

case remain bounded, and constant within the bounds, as would be 

expected from the design, and do not alter at different points of 

the trajectory. However, despite the control not being smooth, 

the Lyapunov controller does give a good model-following 

performance. 
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2.5 Discussion 

As can be seen from the results in Figures 2.3 and 2.4, the 

errors during the model-following simulation for both controllers 

are small. The smoothness of the Lyapunov controller could be 

improved by altering the choice of the gain term, h~, so that it 

does not change with every time step. A plot of the results for 

the Lyapunov controller for the first second of the simulation, 

including a plot of the gain, is given in figure 2.5. It can be 

seen from this plot the very large variations in the value of h~, 

and the effect this is having on the two control components. 

However, the components of the control are clearly bounded, and 

remain small throughout the simulation. 

It would appear from these results that a Variable structure 

controller leads to more accurate model-following control than 

this particular Lyapunov controller. The control effort for a 

Variable structure controller is initially larger in magnitude, 

but much smoother, than that of the Lyapunov controller, but its 

magnitude decreases with time whereas that of the Lyapunov 

controller remains approximately constant. 

The Lyapunov controller could be smoothed by altering the way 

in which the gain term, h~, is calculated. If hand Y were not 

calculated at each time step, or if their mean value over several 

time steps was used, then the gain term would not alter at every 

time step. This would result in fewer calculations per time step, 

and a smoother control. 
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3. EIGENVALUE PLACEMENT IN A DISC OR STRIP APPLIED TO VSC 

3.1 Introduction 

The problem of selecting the eigenvalues of a closed-loop 

Variable structure Control system, and hence directly specifying 

the sliding hyperplanes, is an important one, since the-choice of 

the eigenvalues affects the stability and response of the system. 

A popular method for designing the sliding hyperplane matrix 

(Dorling & Zinober, 1986) requires the exact specification of the 

desired closed-loop eigenvalues. This is a very rigid design 

requirement, since in many practical examples, exact eigenvalue 

specification may not be required: the eigenvalues may simply 

required to be in a certain region of the left-hand half-plane. .. _ .... 

In general, the desired exact eigenvalues for the closed-loop 

system will not be known, so it would clearly be advantageous in 

certain problems to be able to specify a general region of the 

left-hand half-plane within which the eigenvalues should lie. 

Some work has been done on the placing of the closed-loop 

eigenvalues in a particular region by linear state feedback 

methods, rather than VSC methods. One method is the placing of 

the eigenvalues in a hyperbola with major and minor axes at 450 to 

the x and y axes, by selecting the weighting matrices of the DO 

problem in an iterative way (Kawasaki and Shimemura, 1983). This 

method has been extended for other hyperbolic regions, and small 

sectors, using a similar approach with a modified Riccati equation 

being used to design the controller (Kawasaki & Shimemura, 1988). 
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Some work has also been done on root clustering using a 

Lyapunov type approach with Kronecker product matrices (Abdul­

Wahab, 1990). An eigenvalue location method involving mapping 

onto a region of the complex plane has also been considered 

(Bogachev, Grigor'ev, Drozdov and Korov'yakov, 1980). This method 

involves the solution of a modified Lyapunov equation in the 

design of the control law. All of the above methods are fairly 

complicated to use, since they either involve iterative processes, 

or calculations of Kronecker matrix products, or complicated 

transformations, and they all involve rigidly specified regions in 

the left-hand half-plane. 

In this chapter we shall consider two regions in the left­

hand half-plane which are specified in a straightforward manner. 

The first region under consideration is that of a disc in the .. _ .... 

left-hand half-plane, which is specified by its radius, r, and its 

centre, -a + OJ. The second region under consideration is that of 

an infinite vertical strip in the left-hand half plane, which is 

specified by its real axis crossing points. In Chapter 4 a more 

general region of the left-hand half-plane will be considered. 

In section 3.2 the general theory for placing eigenvalues in 

a disc (Furuta and Kim, 1987) is described, and is then extended 

for application to a Variable Structure Control System. In 

section 3.3 the general theory for placing eigenvalues in a 

vertical strip (Shieh, Dib and McInnis, 1986) is described, and is 

then extended for application to a VSC system. This section also 

includes some discussion of three of the methods of solution of 

the continuous Riccati equation with the Q matrix equal to the 
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null matrix. section 3.4 contains some illustrative numerical 

examples for the two methods, and a brief discussion of the 

results is presented in section 3.5. 

3.2 Controller Design For Eigenvalues in a Disc 

The technique of placing all the closed-loop eigenvalues of a 

system within a specified disc with centre -a + OJ and radius T 

(Fig 3.1) has been adapted for use with a VSC system. In this case 

the n-m closed-loop eigenvalues of the reduced order equivalent 

system are required to be placed within the specified disc. 

Furuta and Kim (1987) have studied the standard linear 

regulator problem for systems of the form (2.2.2) with linear 

feedback u = Fx. Consider the matrix equation 

(3.2.1) 

where Q is an arbitrary symmetric positive definite matrix, 

• denotes the matrix conjugate transpose, and a and T are scalars. 

Let ~ and v be an eigenvalue and right eigenvector of A, then 

Av = ~v and (3.2.2) 

premultiplying equation (3.2.1) by v·, postmultiplying it by v and 

• substituting for Av and v·A from equation (3.2.2) gives 

(3.2.3) 
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Now let A = x + jy with A = x - jy. Substituting for A and A in 

equation (3.2.3) gives 

(3.2.4) 

since Q is positive definite, and we require p to be positive 

definite, it follows that 

(x - et) 2 + y2 - r2 < 0 (3.2.5) 

so, if there exists a positive definite solution P of 

(3.2.1), all the eigenvalues of A will lie within the disc with 

centre -et + OJ and radius r. This is the necessary condition for 

the eigenvalues of A to lie within the disc, and the proof of 

sufficiency is contained in Furuta and Rim (1987). 

In this case, the eigenvalues-·of the closed-loop system 

A + BF, where F is a control gain matrix, are required to be 

within the disc, so equation (3.2.1) becomes 

(3.2.6) 

with 

This matrix Riccati equation may be solved using the discrete 

method, which takes the iterative form for s = 0,1,2, ••• 

(3.2.7) 

where Rand Q are arbitrary symmetric positive definite matrices. 
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The desired P in equation (3.2.6) is the steady state solution 

Ps from equation (3.2.7), since in the limit, as k ~ m, Pk = P 

(Furuta and Kim, 1987). 

For the sliding mode design, we require the (n-m) left-hand 

half-plane closed-loop eigenvalues of the reduced order equivalent 

system, All - AI2F, to lie within the specified disc (Woodham and 

Zinober, 1990). The discrete matrix Riccati equation to be solved 

for the reduced order system is therefore 

(3.2.8) 

where Q and Pare (n-m)x(n-m) matrices. .. . ...... 

The control matrix is given by 

(3.2.9) 

The control matrix will have the opposite sign to that for 

the general system (A + BF) for the obvious reason that the system 

now under consideration is of the form A - BF. 

The eigenvalues of the reduced order system (Au - AI2F) will 

then lie in the specified disc, and the sliding hyperplane matrix 

c may now be obtained. 
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Recall from section 2.2 that 

and 

T since the product CB is non-singular, CT TB, B2 and C2 are 

nonsingular, and CTT may be written 

where I. is the m-dimensional identity matrix. 

Now (TT)-l = T, and choosing c2 = I., since the product CB is not 

critical to the design, (utkin and Yang, 1978), the sliding 

hyperplane matrix C is given by 

(3.2.10) 

So (n - m) of the closed-loop eigenvalues of the full order system 

(3.2.11) 

will lie in the required region and the remaining m eigenvalues 

will be zero (Dorling and Zinober, 1986). 

The choice of the two arbitrary matrices, Q and R, in 

equation (3.2.8) will affect the positioning of the eigenvalues 

within the specified disc, and this will be discussed in more 

detail in Chapter 6. 
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3.3 Controller Design for Eigenvalues in a Vertical Strip 

The problem of placing all the closed-loop eigenvalues of a 

system within an infinite vertical strip (Fig 3.2) in the left­

hand half-plane (Shieh, Dib and McInnis, 1986) has been extended 

for use with the sliding mode. 

Consider the general system given in equation (2.2.2), and 

two positive real numbers h1 and h2 with h2 > h1• These-two 

positive values specify the open vertical strip crossing the 

negative real axis at the points -h2 and -h1• 

" Define the matrix A 

" A = A + h1I (3.3.1) 

Suppose that (Shieh, Dib and McInnis, 1986) 

(3.3.2) 

where R is an arbitrary mxm positive definite matrix, P is the 

positive definite solution of the continuous matrix Riccati 

equation with its right-hand side equal to zero 

(3.3.3) 

and the constant gain ~ is chosen to be 

~ = 0.5 + (3.3.4) 

"+ " where Tr(A) is the sum of the positive eigenvalues of A. 

Then the resulting closed-loop system is 

x{t) = (A-~BK)x{t) (3.3.5) 
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If A has pure left-hand half-plane eigenvalues A; (i = 1, •• ,n-), 

and pure right-hand half-plane eigenvalues A; (i = 1, •• ,n+), then 

the eigenvalues of the closed-loop system (A - BR-1BTp) will be 

A; (i = 1, •• ,n-)and -A; (i = 1, •• ,n+), where P is the positive 

definite solution of the Riccati equation given in equation 
-1 T (3.3.3). The eigenvalues of (A - ~BR BP), where ~ * 1, will be 

A; (i = 1, •• ,n-), and n+ pure left-hand half-plane eigenvalues. 

If h2 > maX{IRe(~l) I> for all i, where ~l are the negative 

eigenvalues of A, then the eigenvalues of (A- ~BK) will all lie 

within the vertical strip which crosses the real axis at the 

points [-h2, -hl ] (Shieh, Dib & McInnis, 1986). 

For the sliding mode design, we require the (n - m) left-hand 

half-plane closed-loop eigenvalues of (All - A12F) to lie within 

the specified vertical strip (Woodham and Zinober, 1990). The .. ... ... 
matrix Riccati equation to be solved is therefore 

(3.3.6) 

'" where A is given by 

(3.3.7) 

and All and A12 are as given in section 2.2, (page 11). The 

control matrix F is given by 

which has the opposite sign to the control matrix for the system 

(A + BF) for the reason stated earlier (Section 3.2). The 

constant ~ is defined in equation (3.3.4) with A as defined in 
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equation (3.3.7). 50 all the closed-loop eigenvalues of the 

reduced order system will lie in the vertical strip which crosses 

the real axis at -h2 and -ht. The sliding hyperplane matrix, C, 

is then obtained from equation (3.2.10) and (n-m) of the closed-

loop eigenvalues of the full order system given in equation 

(3.2.11) will also lie in the required region. The remaining m 

eigenvalues will be zero (Dorling and Zinober, 1986). 

It should be noted that it is not possible to move the 

original eigenvalues (those of Atl ) towards the right-hand half 

plane, so the value of h2 is limited by the eigenvalues of Atl 

(5hieh, Dib and McInnis, 1986). This is because of the invariance 

of the negative open-loop eigenvalues to the closed-loop 

transformation. 

In practice, it has been found that if equation (3.3.3) is 

solved using the lqr program from MATLAB, a difficulty arises, 

since the right-hand side is zero. This leads to a divide by zero 

warning and some inaccuracies in the resulting P matrix. The 

problem arises because the trivial solution of equation (3.3.6) is 

p = O. A straightforward way round this problem is to set the Q 

matrix to be of the form qI, where q is a very small positive 
-20 • scalar, of the order of 10 ,wh1ch gives an acceptable result. 

The results for both Q equal to zero and Q equal to qI are 

contained in section 3.4. 

A better solution to the problem, mathematically speaking, 
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would be to use a method of solving the continuous Riccati 

equation which works even if 0 is the null matrix, if such a 

method exists. Several different methods will now be considered 

for the solution of this problem. 

The method used in the MATLAB toolbox is that of eigenvalue 

decomposition of an associated Hamiltonian matrix, which is known 

as the Macfarlane-Potter-Fath method (Kailath, 1980). Two other 

methods for solving the continuous matrix Riccati equation, which 

may be considered, are an iterative method and a Schur method 

(Laub, 1979) which allows Q to be greater than or equal to zero. 

These three methods will be described briefly below, and their 

suitability for this particular problem (that of a null 0 matrix) 

will be discussed. .. ...... 

consider the iterative method (Anderson & Moore, 1971) for 

the continuous matrix Riccati equation 

(3.3.12) 

This method uses the following transformations 

1 _ AT)P(l - A) t = - (1 (3.3.13 ) 
2 

_ A) -1 (1 + A) - A) -2B E = (1 F = 2(1 -
G = R + BT (1 _ AT)-10 (1 - A) -la H = 0(1 - A) -la 

using these transformations, equation (3.3.12) may be written 

(3.3.14) 
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The existence of a unique non-negative definite solution P of 

equation (3.3.12) implies the existence of a unique non-negative 

definite solution 1 of equation (3.3.14). This solution may be 

obtained by solving equation (3.3.14) using a discrete method, as 

follows 

-1 T 

11+1= ETtlE - [ET11F+H] [G+FTI1F] [ET11F+H] + Q . (3.3.15) 

where 

and 1 = 0 
o 

P is then determined from 

(3.3.16) 

At first sight, this would seem to be a good method to use, 

as a null Q matrix will clearly no~.give rise to any zero divide 

warnings. However, it becomes clear on closer inspection that if 

Q is the null matrix, then H is zero and so the first step with 

1 = 0 leads to 1 = o. 
o 1 

Therefore, in the limit, as i ~ m, 1 = o. 

It is possible that it is not necessary for 1 to be equal to 
o 

zero, and this will be investigated in the next section. It is 

also clear from equations (3.3.13) that the method will not work 

if the matrix (I - A) is singular, and so care must be taken with 

the choice of the matrix A. 

An approximate answer can perhaps be obtained by setting Q to 

be of the form qI, where q is a very small positive scalar, but 

this may again lead to an approximate answer. This approximation 

will also be investigated in the next section. 
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The Macfarlane-Potter-Fath method (Kailath, 1980), which is 

used by the MATLAB routine for solvinq the continuous matrix 

Riccati equation, solves equation (3.3.12) by considerinq its 

associated Hamiltonian matrix 

(3.3.17) 

Assuminq that equation (3.3.12) is an n-dimensional matrix 

equation, the Hamiltonian matrix, ID, will be a 2n-dimensional 

matrix. 

Let J = [_~ ~], so JT = J-
1 = -J, then 

ID is Hamiltonian if J-lmTJ = -ID 
• • -1 T -1 ID is symplect~c ~f J ID J = m .. _ .... 

Two important properties of Hamiltonian matrices are : 

i) If A is an eiqenvalue of m, then -A will also be an eiqenvalue 

of m, with the same multiplicity. 

ii) If m is Hamiltonian and U is symplectic, then u-1mu is 

Hamiltonian (or symplectic). 

Suppose that ID has 2n distinct eiqenvalues and that its 

eiqenvectors may be partitioned as follows 

i = 1,2, •••• ,2n (3.3.18) 

where {el} and {9ol} are sets of n vectors. 
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Choose the eigenvalues with negative real parts, {A~ i=l, ••• ,n} 

and let {i"q,} be the corresponding eigenvectors. Then P can be 

calculated as 

(3.3.19) 

There are two problems which can occur with this method, when 

Q is the null matrix. The first problem is that there may not be 

sufficient negative eigenvalues of m to form the P matrix. 

Suppose that there are n i negative eigenvalues of m, where n i < n. 

This problem may be overcome by using the eigenvectors of n-n l of 

the zero eigenvalues, thus enabling the P matrix to be formed. 

The second, more common, problem is that the 2n eigenvalues of m - ... .. .... 

are not distinct, in which case the method is not valid. A 

possible approach to this problem is to assemble the P matrix in 

the usual way, with generalized eigenvectors in the case of non­

distinct eigenvalues. This modified version of the Macfarlane­

potter-Fath method may lead to an inaccurate P matrix. Numerical 

results for this modified method are contained in section 3.4. 

Laub (1979) claims that the Schur method will solve the 

continuous matrix Riccati equation (3.3.12) for Q ~ o. 

consider again the associated Hamiltonian matrix m given in 

equation (3.3.17). Let m have eigenvalues Al, ••• ,An , then there 

exists a unitary transformation U such that u-lmu is upper 

triangular with diagonal elements Ai, ••• ,An • 
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There also exists an orthogonal transformation, U, such that uTmu 

is quasi-upper triangular, with the 2x2 and lxl diagonal blocks in 

any order, with a suitable choice of u. The Hamiltonian matrix m 

may therefore be represented as 

with S = [s~. (3.3.20) 

where the Slj are all nxn matrices. 

The orthogonal transformation U may also be partitioned into nxn 

blocks to give 

u = [UU 
U21 

U'2] 
U22 

(3.3.21) 

_4' 

Then the solution of equation (3.3.12) , P, is given by 

P = 
-1 

U21U11 (3.3.22) 

The problem with this method is that when Q is equal to zero, 

the Hamiltonian matrix, ID, given in equation (3.3.17) is already 

in Schur form as can be seen from equation (3.3.20), and so U21 is 

zero, and hence, trivially, P is zero. Again, it may be possible 

to use a Q matrix of the form qI, where q is a very small positive 

scalar to force U21 to be non-zero, and hence P to be non-zero, 

and this will be investigated in the next section. 
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3.4 Numerical Examples 

For the first example, consider the following system which 

has five states (n = 5) and two control inputs (m = 2). The 

system matrix A and the interface matrix B 

-1 1 0 0 0 0 
0 -2 1 0 0 0 

A = 0 0 0 1 0 B = 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

The transformation matrix T is taken as 

2 0 
0 v2 

T = -0.5 0 v2 
0 0 
0 0 

Partitioning the 

gives 

0 0 0 
1 -1 0 

-1 1 0 
0 0 2 

v'2 v'2 0 

product TATT
, 

2v2 
-5+v2 
-3+v2 

2V2] -3-v2 
-5-v2 

as outlined . _ .... 

are given by 

0 
0 
1 
1 
0 

in Section 2.2, (p.ll) 

2+V~] 
2-v'2 

For the disc, choose r = 2 and ~ = -6 + OJ. Solving the 

discrete Riccati equation gives 

[

3471. 4500 
P = 589.4871 

626.9800 

589.4871 
123.8504 
103.0881 

626.9800] 
103.0881 
171.0469 

So the control matrix is 

[ 
7.1830 

F = 24.2803 
-0.8451 

7.9984 
7.6267] 
6.5819 
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The (n-m) closed-loop eigenvalues of (All - AI2F) are -5.2958, 

-5.1979 and -5.0332. 

After transforming back to the full state space, the sliding 

hyperplane matrix, C, is found to be 

C = [ -7.1830 
-24.2803 

-4.7953 
-10.3098 

4.2359 
-1.4154 

-4.2359 
0.0011 

Of course, (n-m) of the closed-loop eigenvalues of the full order 

system given in equation (3.2.11) are found to be the same as 

those for the reduced order system. The remaining m eigenvalues 

of the full order system are found to be zero. 

For the strip, choose h1 = 1.5. The eigenvalues of All are 

-2, -1 and -0.5, and choosing h2 = 2.5 gives ~ = 0.8333 . ..... 

As discussed in section 3.3, there are problems when solving 

the continuous matrix Riccati equation with the right-hand side 

set to zero. The iterative method will only give the trivial 

solution if Q = 0, and will not give a solution with Q set to ql, 

since when h1 = 1.5, the matrix (I - 1.5A) is almost singular. 

Choosing hi = 1 solves this problem, and gives ~ = 2, and the 

following P matrix, after 100 steps 

P = lx103 [~. 0928 
1.0928 

o 
1.6396 

-1.6396 
-~. 0942] 

0.0942 

This P matrix is clearly not acceptable, since not only is it not 

a symmetric matrix, but it is not positive definite. 
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Consider the same example, with hi = 
gives the following solution 

[

0.44 
P = 0.4063 

0.2160 

1, but with t = In-m, which 
o 

0.4063 
1.0490 

-0.4744 

0.2160] 
-0.4744 

0.7798 

This P matrix is clearly symmetric, and has no zero elements, and 

the control matrix is given by 

F = [-0.1903 
0.7568 

-1. 5234 
1.6517 

1.2534] 
-0.5815 

The closed-loop eigenvalues of A11-A12F are -1.374, -2 and -2.839. 

It ~s clear the the smallest ~genvalue is not within the 

vertical strip with bounds -1 and -2.5, and so despite giving an 

acceptable-looking P matrix, the iterative method with t non-zero 
o 

and Q = qI appears not to work. 

Returning to the original strip, hi = 1.5, the precise 

Macfarlane-Potter-Fath method will not give a solution since the 

eigenvalues of the Hamiltonian matrix m are not distinct. using 

the modified version of this method outlined in section 3.3 gives 

the following P matrix 

[

1.8762 
P = 1.4159 

1.2374 

1.1182 
2.1772 

-0.5958 

1.5351] 
-0.1748 

2.3458 
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It can be seen that this P matrix is not symmetric: the 

differences between the corresponding symmetric elements are of 

the order of 10-1• Calculating the control matrix from this P 

matrix gives 

F = [-0.0744 
1.1582 

-1.1554 
1.4759 

1.0503] 
0.1619 

and the (n-m) closed-loop eigenvalues of (A11 - A12F) are 

-1.9432 ± 0.1274j and -2. 

These eigenvalues are clearly within the vertical strip 

crossing the real axis at the points -2.5 and -1.5, and so it 

appears that the inaccuracy of the P matrix is not too critical 

for this particular example. Therefore, the modified version of .. _ .... 

the Macfarlane-Potter-Fath method gives a sufficiently accurate 

result. After transforming back to the full state space, the 

sliding hyperplane matrix is found to be 

[ 
0.0744 

C = -1.1582 
0.0744 

-1.1582 
1.1028 -1.1028 

-1.3641 -0.0501 

A further improvement to this modified Macfarlane-Potter-Fath 

method would be to force P to be symmetric by choosing the off 

diagonal terms to be of the form 

i 'It j (3.4.1) 
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For this example, P would become 

[1.8762 1.2671 1. 3863] 
P = 1.2671 2.1772 -0.3853 

1.3863 -0.3853 2.3458 

The resulting control matrix is 

F = [0.0497 -1. 0677 1.1380] 
1.0704 1.5016 0.0122 

and the (n-m) closed-loop eigenvalues of (All - A12F) are -1.7119, 

-2 and -2.1745. 

These eigenvalues are clearly within the vertical strip, 

crossing the real axis at the points -2.5 and -1.5. After 

transforming back to the full state space, the sliding hyperplane 

matrix i~ found to be 

c = [-0.0497 
-1.0704 

-0.0497 
-1. 0704 

1.1028 -1.1028 
-1.4518 0.0376 

If instead of setting Q to be the null matrix, it is set to 

be a matrix of the form qI, where q is a small positive scalar, 

the eigenvalues of the Hamiltonian matrix ID are distinct, and the 

Macfarlane-Potter-Fath method works without any modifications. 

The following solutions result from this method 

[1 0 

~] [2.4373 1.4526 1.9942] -20 1 P 1. 4526 2.1991 Q = 1.0e ~ = -0.1448 
0 1.9942 -0.1448 2.9695 
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As would be expected from this method, the P matrix is clearly 

completely symmetric. The control matrix is 

F = [0.2257 
1.2766 

-0.9766 
1.5465 

1.2958] 
0.2589 

and the (n-m) closed-loop eigenvalues of (All - A12F) are -2 and 

-1.9971 ± 0.1462j. 

These values are clearly very close to the ones obtained with 

Q set to the null matrix since the complex pair differ only in the 

second decimal place, and the real value is the same. The results 

from this method are accurate since the method used was the 

unmodified Macfarlane-Potter-Fath method, but of course Q was not 

set to the null matrix. After transforming back to the full state 

space, the sliding hyperplane matrix is found to be _ .... 

c _ [-0.2257 
- -1.2766 

-0.2257 1.1362 
-1. 2766 -1.3509 

-1.1362 
-0.0633 

Another solution to the problem of solving the continuous 

matrix Riccati equation when Q is the null matrix is to use the 

Schur method described in section 3.2, with the Q matrix set to qI 

where q is a small positive scalar. This gives the following 

results 

o 
1 
o ~] p = [~ o 

0.9142 
-2.5 

o ] -2.5 
1.942 

Although this P matrix is symmetric, it is clearly not a 

satisfactory result, since P is not positive definite. 
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It is unlikely that a P matrix of this form will give the required 

eigenvalues. It is presumed that the inaccuracies in the P matrix 

arise because although U21 is not zero, it is very small. 

The control matrix is 

F = [~ -1.4226 
0.3452 

0.2441] 
-2.0118 

and the (n-m) closed-loop eigenvalues of (All - A12F) are -1, 

-1.1666 and -2.1666. Clearly, only one of these eigenvalues is 

within the strip with limits -2.5 and -1.5, and so, as was 

surmised from the form of P, this method does not work when Q is 

close to the null matrix. 

For the second example, consider the robot arm discussed in 

Chapter 2. This system has fou~ states (n = 4) and two control 

inputs (m = 2). The system matrix A and the interface matrix B 

are given by 

- [~ 
1 

-0.332 
A - 0 0 

0 0.783 

The transformation 

- [~ T - 0 

o 

o 
o 

-0.3906 
-0.9206 

0 
0 
0 
0 

go 0187] 
-0.1914 

matrix T is 

o 
1 
o 
o 

~o 9206] 
-0.3906 

taken as 

[ 13~o83 o ] B -308.33 = 

315~.39 -308.33 

partitioning the product TATT, as outlined in Section 2.2 gives 

= [-0.3906 
0.9206 
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For the disc, choose r = 2 and « = -4 + OJ. Solving the 

discrete matrix Riccati equation gives 

p = [13
0 

• 3007 0 ] 
13.3007 

So the control matrix is 

F - [-1.2012 
- -2.8309 

2.8309] 
-1.2012 

The (n-m) closed-loop eigenvalues of (All - A12F) are a double 

root at -3.0752, which are clearly within the specified disc. 

After transforming back to the full state space, the sliding 

hyperplane matrix is found to be 

[
-1.2012 

C = -2.8309 
-0.3906 2.8309 
-0.9206 -1.2012 

0.9206] 
-0.3906 

For the strip, choose hi = 2.0, which gives rise to a matrix 

" A whose eigenvalues are both o. Choosing h2 = 3 gives ~ = 0.625 

and the strip crosses the real axis at the points [-3,-2]. 

Solving the continuous matrix Riccati equation with the right-hand 

side set to zero by the Macfarlane-Potter Fath method again gives 

a Hamiltonian matrix with non-distinct eigenvalues. Using the 

modified version of this method to overcome this problem gives the 

following P matrix 
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This P matrix is clearly symmetric, and may be shown to be an 

exact solution of (3.3.6) for this example, and so despite the 

eigenvalues of the Hamiltonian matrix not being distinct, there 

are no obvious errors. The control matrix is 

F _ [-0.9765 
- -2.3014 

2.3014] 
-0.9765 

and the (n-m) closed-loop eigenvalues of (All - A12F) are a double 

root at -2.5. After transforming back to the full state space, 

the sliding hyperplane matrix is found to be 

c _ [-0.9765 
- -2.3014 

-0.3906 
-0.9206 

2.3014 
-0.9765 

0.9206] 
-0.3906 

Solving the continuous Riccati equation by this method, but - .. _ ..... 

with the Q matrix of the form qI, where q is a small positive 

scalar, still results in the Hamiltonian matrix having indistinct 

eigenvalues, and gives the following results 

-20 [1 01] Q = 1.0e 0 

These results are almost the same as those for Q equal to the null 

matrix, but in this case, the P matrix is not quite symmetric, as 
-3 there is an error of order 10 on P2l " The control matrix is 

given by 

[
-0.9766 

F = -2.3009 
2.3014] 

-0.9765 
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The (n-m) closed-loop eigenvalues of (A11 - A12F) are again a 

double root at -2.5. After transforming back to the full state 

space, the sliding hyperplane matrix is found to be 

C = [-0.9776 
-2.3009 

-0.3906 2.3014 
-0.9206 -0.9765 

0.9206] 
-0.3906 

The results from this method with the P matrix forced to be 
-3 symmetric, but with errors of the order 10 on both P21 and P12 , 

as outlined in equation (4.3.1) are 

[ 
4 -0

4
.001] 

P = -0.001 
F = [-0.9771 

-2.3012 
2.3016] 

-0.9760 

The (n-m) closed-loop eigenvalues of the reduced order system 

(A11 - A12F) are -2.4994 and -2.5006, which are clearly within the 

strip. After transforming back to the full state space, the - ... _ ..... 

sliding hyperplane matrix is given by 

C - [-0.9771 
- -2.3012 

3.5 Discussion 

-0.3906 
-0.9206 

2.3016 
-0.9760 

0.9206] 
-0.3906 

It can be seen that the method of placing eigenvalues in a 

specified disc can be successfully applied to the problem of 

eigenvalue placement in a Variable structure Control system. It 

is clear that this method is less restrictive than a method of 

choosing precise eigenvalues. The sensitivity of this method to 

changes in the arbitrary matrices will be considered in Chapter 6, 

along with the problem of positioning eigenvalues within the disc. 
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with regard to the placement of eigenvalues in an infinite 

vertical strip, it can be seen that this theory may be 

successfully applied to a Variable structure Control System. 

This method also allows a much less rigid specification of the 

eigenvalues and therefore gives more flexibility of solution. 

The robustness of this method to changes in the arbitrary matrix 

is also discussed in Chapter 6. 

Some difficulties arise with the solution of the continuous 

matrix Riccati equation when Q is the null matrix. The 

Macfarlane-Potter-Fath method uses the associated Hamiltonian 

matrix of the system, and it appears that when Q is null, this 

results in the eigenvalues of this matrix not being distinct. 

As has been outlined in section 3.3 and illustrated in 

section 3.4, some modifications to the Macfarlane-Potter-Fath 
- - ~ 

method enable this problem to be overcome, and also force the 

resulting P matrix to be symmetric. Both the iterative method and 

the Schur method outlined in section 3.3 will give either a null P 

matrix or a P matrix which is not positive definite, which is 

clearly unsatisfactory. The reason for the problems connected 

with the solution of the continuous matrix Riccati equation with 

the right-hand side equal to zero can be seen by looking at 

equation (3.3.6), since it is clear that the trivial solution is a 

null P. The only method discussed in this work in which this 

inherent problem can be overcome is that of the modified 

Macfarlane-Potter-Fath method. There may possibly be a better way 

of solving equation (3.3.6), and this will be considered in the 

future. 
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4. EIGENVALUE PLACEMENT IN A SPECIFIED SECTOR 

4.1 Introduction 

In this chapter the problem of placing eigenvalues in a 

region other than a disc or a vertical strip will be considered, 

and a new method will be developed to place the closed-ioop 

eigenvalues of a system within a sector in the left-hand half­

plane (woodham and Zinober, 1991). Some work has been done 

recently on a similar problem for the very specific case of 

rotational systems (Kim and Lee, 1990). This method enables the 

system to be described by complex matrices, and the method used to 

place the eigenvalues within the chosen region results in a 

complex ~ontrol matrix. There is no indication in this work of ... . ... 
how to map this result back to the "real world". 

The selection of weighting matrices to give the required 

eigenstructure has been considered (Harvey and Stein, 1978), and 

numerical methods for robust eigenstructure assignment have been 

studied (see for example, Kautsky, Nichols & Van Dooren, 1985, 

Burrows and Patton, 1990,a & b). The problem of root clustering 

for real and complex matrices has been addressed (Gutman, 1979, 

Gutman and Vaisberg, 1984) and the conditions for the eigenvalues 

of a matrix to lie within a particular sector are obtained from 

particular classes of matrices. However, this work does not give 

any indication of how to move the eigenvalues into the sector. 

Methods to determine whether the roots of a polynomial lie to the 

left of a vertical line (Soh, 1990), or in a sector in the left-
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hand half-plane (Foo & Soh, 1990) have been developed. Again, no 

method is given for moving roots into the required region. 

Some work has also been done on the robustness of eigenvalue 

assignment in regions bounded by straight lines (Juang, Hong and 

Wang, 1989). Once again, there is no strategy given to place the 

eigenvalues of a system within a particular region. 

The method which will be described in this chapter, and 

illustrated with a numerical example (Woodham & Zinober, 1991), 

has no restrictions on the real system matrices. The method for 

ensuring that the eigenvalues will lie in the required region is 

developed in detail, and involves the solution of a complex 

continuous matrix Riccati equation. The resulting control matrix 

is also real, and thus possible to implement in a physical 

problem._ The region which will ~e_90nsidered is an open ended 

sector bounded by a straight line cutting the left-hand half­

plane, and its reflection in the real axis (Fig 4.1). 

In section 4.2 the approach will be developed using the 

standard regulator theory, and it will then be applied to the 

particular problem of Variable Structure Control systems. In 

section 4.3 the extension of this work to a region bounded by two 

intersecting sectors is considered, and some of the problems are 

highlighted. section 4.4 contains some examples of the method, 

applied to the two systems described in Chapter 3. In section 4.5 

the effect on the method of particular pairs of a and B values is 

investigated. It can be seen that there are limiting values of e 

for each a value, and a possible method of predicting these values 

is outlined. section 4.6 contains a discussion of the results. 

62 



10 r-------·- - -.'- - -----------------.,---
I 
i 

8~ 

6~ 
41 
2 

0 

-2 

-4 

-6 

-8 

-1~10 

( 1) 
I 

I , 
I 

I 

I , 
,/1 

/ I 

/~ 
/ I ,/ 

" et , , 

'V:j , e -, 
\1 
" , I 

I 
I 

I 
I 

I 

-8 -6 -4 -2 0 

Fig 4.1 Sector with angle e and real axis 

crossing point a 

63 

I 

I 

] 



4.2 Technique for the Regulator System 

The technique for placing all the closed loop eigenvalues of 

a system within a specified sector in the left-hand half-plane 

will now be developed (Woodham and Zinober, 1990). 

Let us define a region bounded by a line at an angle a to the 

imaginary axis, and crossing the real axis at «, where a is any 

real number, and the reflection of this line in the real axis 

(Fig 4.1). The angle a is measured in an anti-clockwise direction 

from the imaginary axis, and lies between 0° and 90°. 

We want to determine the state feedback, u = Fx, such that 

all the eigenvalues of the closed loop system lie within the 

required region. 

The equation of line (1) is given by 

. . ysina + (x - «)cosa = 0 (4.2.1) 

The region we are considering is to the left of this-line, and 

excludes the origin, so we require 

ysina + (x - «)cosa < 0 (4.2.2) 

The equation of line (2) is given by 

12 : ysina - (x - «)cosa = 0 (4.2.3) 

The region we are considering is to the left of this line, and 

excludes the origin, so we require 

ysina - ex - «)cosa > 0 (4.2.4) 
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Let us now consider the general system (2.2.2) and the matrix 

equation 

(4.2.5) 

• • Q is an arbitrary positive definite matr1x and denotes the 

complex conjugate transpose. Let A and v be an eigenvalue and 

corresponding right eigenvector of A, so that 

.. -. 
Av = AV and v A = Av 

Premultiply equation (4.2.5) by v· and postmultiply by v to give 

(4.2.6) 

• Substituting for Av and v·A , and rearranging gives 

(4.2.7) 

-Let A = x + jy and hence A = x - jy. Substituting into equation 

(4.2.7) gives 

[ . ]. . 2 (x - ex) cosB + YS1nB v Pv = -v Qv (4.2.8) 

Since Q is positive definite and we require P to be positive 

definite it follows that 

(x - ex)cosB + ysinB < 0 (4.2.9) 

In other words, if there exists a positive definite solution P to 

equation (4.2.5), all the eigenvalues of the matrix A lie to the 

left of the line defined by 

(X - ex)cosB + ysinB = o. 
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Consider the state feedback u = Fx. The conditions for the 

eigenvalues of the closed loop system A + BF to lie within the 

region are required. Consider the following equation 

e JB (A + BF)·P + e-JBp(A + BF) - 2cxPcosB = -0 (4.2.10) 

where Q is an arbitrary positive definite symmetric matrix. 

It will now be shown that the eigenvalues of A + BF all lie 

in the required region if there exists a positive definite 

solution P satisfying (4.2.10). Let us now consider a continuous 

matrix Riccati equation of the form 

(4.2.11) 

.. -.'" -
Let F = _R-1BTp, where R is an mxm positive definite symmetric 

weighting matrix, and sUbstitute for F in equation (4.2.11) to 

give 

(4.2.12) 

Expanding equation (4.2.12) gives 

(4.2.13) 

Rearranging equation (4.2.13) gives 

(4.2.14) 
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Now eJe + e-Je = 2cose, so substituting for this expression in 

equation (4.2.14) gives 

(4.2.15) 

Comparing equations (4.2.10) and (4.2.15), it is clear that we 

must add eJe(BF)·P to both sides of equation (4.2.15) to obtain 

the left-hand side of equation (4.2.10). So equation (4.2.15) 

becomes 

(4.2.16) 

• substituting for (BF) P in equation (4.2.16) gives 

(4.2.17) 

Since Q and R are arbitrary positive definite symmetric matrices, 

we can choose positive definite symmetric matrices Q and R such 

that 

and 

Then equation (4.2.17) may be written 

e Je (A + BF)·P + e-JeP(A + BF) - 2aPcose = -Q (4.2.18) 

It is clear that equation (4.2.18) and equation (4.2.10) are 

identical. 
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The eigenvalues of (A + BF) will, therefore, lie in the required 

region if there exists a positive definite solution p to equation 

(4.2.18) satisfying 

(4.2.19) 

where F = _R-1BTp. 

Since the eigenvalues of (A + BF) will be either real, or 

complex conjugate pairs, they will lie in the region bounded by 

line (1), and its reflection in the real axis, line (2). 

Conditions (4.2.2) and (4.2.4) will therefore be satisfied, and 

the eigenvalues of (A + BF) will lie in the required sector in the 

left-hand half-plane. 

In general, the solution matrix P of equation (4.2.19) has 

complex elements except on the leading diagonal, unless the angle 

e is zero. If e is zero, then equation (4.2.19) is not a complex 

equation and so P will be a real positive definite matrix. The 

general form of the P matrix when e is not equal to zero is 

Pu P12- P12j P13-P13j • ••.•• P1n-P1nj 

P12+P12j P22 P23+P23j • ••••• P2n+P2nj 

P13+P13j P23-P23j P33 • ••••• P3n- P3nj 
P = (4.2.20) · . . . . . · . . . . . · . . . . . · . . . . . 

P1n+P1nj P2n-P2n j P3n+P3nj . . . . . . Pnn 
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• The P matrix is a Hermitian matrix, since P = P, which can 

be seen from equation (4.2.19). 

Now consider equation (4.2.19) with 8 replaced by -8 

(4.2.21) 

This gives rise to a solution Pt which is also a Hermitian 

positive definite matrix and is the complex conjugate transpose of 

the solution P of equation (4.2.19). Substituting p. for Pt in 

equation (4.2.21) gives 

(4.2.22) 

The complex conjugate transpose of equation (4.2.19) is 

(4.2.23) 

It can be seen that equation (4.2.22) and equation (4.2.23) 

are very similar, and so clearly the solutions of equation 

(4.2.19) and equation (4.2.21) are very closely related. Since we 

require the control matrix to be real, and since the solutions of 

equations (4.2.19) and (4.2.21) are so closely related we shall 

define the control matrix to be 

(4.2.24) 

'" . where P is def1ned to contain the modulus of the elements of the 

'" Hermitian positive definite matrix P. In other words, P is 

defined to be 

(4.2.25) 
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If there exists a Hermitian positive definite solution p to 

equation (4.2.19) and if the control matrix is defined by equation 

(4.2.24), then it is postulated that the closed-loop eigenvalues 

of the system will lie between the line specified by a and e and 

its reflection in the real axis. This will be illustrated 

numerically in section 4.4. 

For the sliding mode design we require the (n-m) left-hand 

half-plane closed-loop eigenvalues of the reduced order equivalent 

system (A11 - A12F) to lie within the specified region. The 

matrix Riccati equation to be solved is therefore 

(4.2.26) 

and the control matrix, F, is give~·by 

" where P is as defined in equation (4.2.25). The control matrix 

has the opposite sign to that of the system A + BF, since the 

system now under consideration is of the form A - BF. 

The eigenvalues of the reduced order systemA11 - A12F will 

then lie in the required region. The sliding hyperplane matrix, 

C, is obtained in the same way as before, and is given by 

where T is the transformation matrix defined in Chapter 2. 
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The choice of the weighting matrix R has an effect on the 

positioning of the eigenvalues within the region, and also enables 

them to be placed within a region at an angle greater than the 

limiting 8 value (Section 4.5). This effect will be discussed in 

the chapter on dependence of eigenvalue placement techniques on 

the design of the R matrix, Chapter 6. 

4.3 Technique for a Region Bounded by Two Sectors 

The extension of the technique for placing all the closed­

loop eigenvalues of a system within a region bounded by one sector 

to a technique for placing all the closed-loop eigenvalues in a 

region bounded by the intersection of two sectors will now be 

considered. 

The first sector is defined to be bounded by a line at an 

angle 8 to the imaginary axis, crossing the real axis at ~, and 

the reflection of this line in the real axis. The second sector 

is defined to be bounded by a line at an angle ~ to the imaginary 

axis, crossing the real axis at ~, and its reflection in the real 

axis (Fig 4.2). Both 8 and ~ are assumed to lie between 0° and 

90
0

• 

We want to determine the state feedback u = Fx such that all 

of the eigenvalues of the closed-loop system lie in this region of 

the left-hand half-plane. 
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From section 4.2 we may recall that for line (1) and its 

reflection in the real axis we have the following conditions 

ysin9 + (x - a)cos9 < 0 (4.3.1) 

ysin9 - (x - a)cos9 > 0 (4.3.2) 

similarly, for line (2) and its reflection in the real axis, we 

get the following conditions 

ysin~ + (x - ~)cos~ < 0 (4.3.3) 

ysin~ - (x - ~)cos~ > 0 (4.3.4) 

As shown in the previous section, due to the symmetry of the 

eigenvalues of a matrix about the real axis, all of the closed-_ .... 

loop eigenvalues of the system will lie in sector 1 if there 

exists a positive definite matrix, Pl satisfying 

(4.3.5) 

All of the closed-loop eigenvalues of the system will lie in 

sector 2 if there exists a positive definite matrix, P2 satisfying 

(4.3.6) 

If all the closed-loop eigenvalues of the system are to lie in the 

region bounded by the intersection of the two sectors, then Pl and 

P
2 

must be positive definite, and satisfy equations (4.3.5) and 

(4.3.6) . 
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Let us consider the general system (2.2.2) and the following 

matrix equation, which is a combination of equation (4.3.5) and 

equation (4.3.6) 

• where Q is an arbitrary positive definite matrix, and denotes 

the complex conjugate transpose. 

Let A and v be an eigenvalue and the corresponding right 

eigenvector of A, as defined in section 4.2. Premultiply equation 

• (4.3.7) by v and postmultiply it by v to give 

• • - 2 (acosB + I3cos,) v Pv = -v Qv (4.3.8) 

.. .... ...... 

• • Substituting for Av and v A, and rearranging gives 

(4.3.9) 

Let A = x + jy and hence A = x - jy. Substituting into equation 

(4.3.9) gives 

• (COse+coS,+j(Sin,+sin,» (x-jy)+(cosB+ )_ • 
v Pv cos,-j(sine+sin~»(x+jy)-2(acosB+l3cos,) --v Qv (4.3.10) 

Expanding the expression in the brackets in equation (4.3.10), and 

rearranging gives 

• (2X(COSe + cos,) + 2y(sinB + sin,) -) • 
v Pv 2 (acosB + I3cos,) = -v Qv (4.3.11) 
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since Q is positive definite, and we require p to be positive 

definite, it follows that 

x(cos8+cos~) + y(sinB+sin~) - (acosB+~cos~) < 0 (4.3.12) 

Equation (4.3.12) may be rewritten in the form 

(x - a)cosB + ysinB + (x - ~)cos~ + ysin~ < 0 (4.3.13) 

However, equation (4.3.13) does not imply that conditions (4.3.1) 

and (4.3.3) hold, except in the particular case when a = ~ and 

B = ~. 
consider the associated matrix Riccati equation 

(ejB+ej~)A· _ (aejB+~eJ~)I)P _(e-j8+e-j~)PBR-1BTp + 

p( (e-j8+e-j~)A - (CX~-je"'~~e-J~) I) = -Q (4.3.14) 

It can be seen that if both 8 and ~ are equal to 0, equation 

(4.3.14) becomes 

(4.3.15) 

The solution of equation (4.3.15) will give a control matrix which 

it is postulated will place the closed-loop eigenvalues to the 

left of the line intersecting the real axis at the point 

x = 
-(a + ~) 

2 
(4.3.16) 
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It is clear that equation (4.3.7) does not lead to a solution 

which places the eigenvalues in the required region, except in the 

particular case when a =~. The choice of a continuous matrix 

Riccati equation formed from the combination of equation (4.3.5) 

and equation (4.3.6) was clearly not entirely suitable for the 

solution of the problem of placing the eigenvalues in a region 

bounded by two intersecting sectors. 

Consider instead a continuous matrix Riccati equation which 

is an approximation to the intersection of equation (4.3.5) and 

equation (4.3.6). 

(4.3.17) 

- .~ 

Let A and v be an eigenvalue and the corresponding right 

eigenvector of A, with the same definition as before, and 

• premultiply equation (4.3.17) by v and postmultiply it by v to 

give 

• • 2 v Pv ( acos (e+q, ) + pcost/» == -v QV (4.3.18) 

• • Substituting in equation (4.3.18) for v A and Av, and rearranging 

gives 

• -v Qv (4.3.19) 
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Let A = x + jy and hence A= x - jy, and recall that 

e J (8+f) = cos(8+f) + jsin(8+f) 

e-J (8+f) = cos(8+f) - jsin(8+f) 

substituting in equation (4.3.19) for A, A, e J (8+f) and e-J (8+f) 

and rearranging gives 

• -v Qv (4.3.20) 

since Q is positive definite, and we require p to be positive 

definite, it follows that 

xcos(8+f) + ysin(8+f) - acos(8+f) - ~cosf < 0 (4.3.21) 

Equation (4.3.21) may be rearranged to give ......... 

(x - a)cos(8+f) + ysin(8+f) - ~cos, (4.3.22) 

Equation (4.3.22) is the equation of a straight line at an 

angle of 8+f to the imaginary axis which crosses the real axis at 

~cosf 
the point + a. 

cos (8+f) 

It can be seen from Fig 4.3 that this region is a sector 

inside the required region, so that although the closed-loop 

eigenvalues will be within the required region, there is an area 

of this region in which they will not be placed, indicated by the 

shading. 
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However, this method gives eigenvalues in a subregion of the 

required region, and so may be useful. The conditions for the 

eigenvalues of the closed-loop system A + BF to lie within the 

region are required. Consider the state feedback u = Fx and 

equation (4.3.17). We will now show that the eigenvalues of 

A + BF will lie in the required region if there exists a positive 

definite solution P to equation (4.3.17) 

consider a continuous matrix Riccati equation of the form 

• 
eJcf>(e-JB(A-a1)-I31) P + e-Jcf>P(e-JBCA-a1)-I31) -

e-Jcf>e-JBPBR-1BTp = -Q (4.3.23) 

Let F = _R-1BTp, where R is an mxm positive definite symmetric 

weighting matrix, and SUbstitute for F in equation (4.3.23) to 

give 

• 
eJcf> ( e-JB (A-a I ) -131) P + e - Jcf>p ( e-JB (A-a1) -131) + 

e-Jcf>e-JBpBF = _0 (4.3.24) 

Expanding equation (4.3.24) gives 

eJcf>eJBA·p_eJcf>eJBap-eJcf>I3P + e-Jcf>e-JBp(A + BF) -
e - Jcf> e -JB aP - e-Jcf>I3P -= -Q (4.3.25) 

Rearranging equation (4.3.25) gives 

eJcf>eJBA·P + e-Jcf>e-JBp(A + BF) -
P(a(e-Jcf>e-JB + eJcf>eJB ) (3 (e-Jcf> + eJcf») -+ = -Q (4.3.26) 
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Now e-J; + e Jf = 2cOSf and eJfeJB + e-Jfe-JB = 2cos(B+f), so 

substituting for these expressions in equation (4.3.26) gives 

(4.3.27) 

comparing equation (4.3.17) and equation (4.3.27), it is clear 

that we must add eJfeJB(BF)·P to both sides of equation (4.3.27) 

to obtain the left-hand side of equation (4.3.17). So equation 

(4.3.27) becomes 

eJ;eJe (A + BF)P + e-Jfe-Jep(A + BF) -

2P(acOS(e + ;) + /3cos;) = -Q + eJfeJB(BF)P (4.3.28) 

. . 
substituting for (BF) P in equation (4.3.28) gives 

eJfeJe (A + BF)·P + e-Jfe-Jep(A + BF) -

2P(acOS(B + ;) + I3cos;) = -5 - eJfeJBFTRF (4.3.29) 

Since Q and R are arbitrary positive definite symmetric matrices, 

we can choose positiye definite symmetric matrices Q and R such 

that 

and 

Then equation (4.3.29) may be written 

(4.3.30) 
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Clearly, equation (4.3.30) and equation (4.3.17) are identical, 

and so the eigenvalues of (A + BF) will lie in the required region 

if there exists a positive definite Hermitian solution p to 

equation (4.3.30) satisfying 

• 
eJ<P(e-J9(A-CXI)-~I) p + e-J<PP(e-J9(A_CXI)_~I) -

PBR-~BTp = -Q (4.3.31) 

Again, the solution matrix P of equation (4.3.31) will be 

Hermitian, and so the control matrix will again be defined to be 

A 

where P is again defined as 

(4.3.33) 

So, if there exists a Hermitian positive definite solution P 

to equation (4.3.31), and if the control matrix is defined by 

equation (4.3.32), then all the closed-loop eigenvalues of the 

system will lie in the required region. 

For the sliding mode design, we require the (n-m) left-hand 

half-plane closed-loop eigenvalues of the reduced order equivalent 

system (A11 -A12F) to lie within the specified region. The control 

matrix will have the opposite sign to that for the system (A+BF). 
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The matrix Riccati equation to be solved is therefore 

eJ~ (e-J8 (A11-exI) -tu)· P + e -J~p (e-J8 (A11-exI) -tU) -
-1 T 

PA12R A12P = -Q 

and the control matrix, F, is given by 

/\ 

where P is as defined in equation (4.3.33). 

(4.3.34) 

The control matrix has the opposite sign to that for the 

system A + BF, since the reduced order equivalent system now being 

considered is of the form A - BF, as explained earlier. 

The closed-loop eigenvalues of the reduced order equivalent 

systemA11 - A12F will then lie in the required region. The 

sliding hyperplane matrix, C, is obtained in the same as in the 

previous section, and is given by 

where T is the transformation matrix defined in Chapter 2. 

The effectiveness of this method will be illustrated with a 

numerical example in section 4.4. 
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4.4 Numerical Examples 

As a first example, consider the five state system defined in 

Chapter 3, section 3.4. The matrices for the reduced state system 

were obtained in that chapter, and are as follows 

2v'2 
-5+v'2 
-3+"'2 

2v'2] -3-v'2 
-5-v'2 2+"'~] 

2-"'2 

Choose e = 30° and a = -2. The Hermitian positive definite 

solution of the continuous matrix Riccati equation is 

[

13.5643 
P = 4.1713+1. 5824j, 

6.6808+0.9462J 

So the control matrix, 

[-1.1431 -1.2873 
F = -4.7961 -3.4252 

F 

4.1713-1.5824j 
3.8012 
1. 0911-0. 5761j 

= R-1AT P 
12 ' is 

-2.940] 
-2.095 

6.6808-0.9462 j ] 
1.0911+0.5761j 
7.1139 

and the closed-loop eigenvalues of (All - A12F) are -2.4934 and 

-3.1744 ± O.2119j. 

After transforming back to the full state space we get 

[
-1.4131 

C = -4.7962 
-1.1712 
-3.9034 

2.1119 
-1.3722 

-2.1119 
-0.0420 
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For the second example, consider the robot arm discussed in 

Chapter 2. The matrices for the reduced order en - m) system were 

obtained in Chapter 3, section 3.4 and are as follows 

An = [-0.3906 
0.9026 

-0.9206] 
-0.3906 

Choose B = 30° and a = -2. The Hermitian positive definite 

solution of the continuous matrix Riccati equation is 

p = [3
0

.7321 0 ] 
3.7321 

So the control matrix F 

-3.4356] 
1.4578 

and the closed-loop eigenvalues of (All - A12F) are -3.7231 and 

-3.7231. After transforming back to the full system, the sliding 

hyperplane matrix, c, is found to be 

[
-1. 4578 

C = -3.4356 
-0.3906 
-0.9206 

3.4356 
-1.4578 

0.9206] 
-0.3906 

consider the method for placing the closed-loop eigenvalues 

in a region bounded by the intersection of two sectors, which has 

been outlined in section 4.3. 
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Choosing a = -4, a = 30°, ~ = -2 and ~ = 45° results in the 

following Hermitian positive definite solution of the continuous 

matrix Riccati equation 

[

1.7726 
P = 0.0906+0.2357~ 

0.1777+0.2531) 

0.0906-0.2557j 
0.0908 
0.0600-0.0130j 

"-

0.1777-0.2531j ] 
0.0600+0.0130j 
0.2131 

The control matrix, F with P as defined in equation 

(4.3.33) is given by 

[ 
-1.9018 

F = -27.6827 
1. 4720 

-8.6487 
-7.5854] 
-8.3575 

and the (n-m) closed-loop eigenvalues of the reduced order 

equivalent system, (All-A12F), are -6.9475 and -4.8436 ± 0.0691j, 

which are within the required sector. After transforming back to 

the full state, the sliding hyperplane matrix is found to be 

[ 
-1. 9018 

C = -27.6827 
-4.3228 4.5287 -4.5287 

-12.0251 -0.8527 -0.5615 

4.5 Effects of Alpha and Theta on the Eigenvalues 

The choice of a and 8 is restricted to some degree because we 

shall see that there are some values for which the eigenvalues do 

not lie in the required region. There is clearly a connection 

between the root locus plot of the reduced order system, and the 

feasible regions for the eigenvalues. 
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The following maximum 8 values for various a values have been 

determined for the five state example, assuming that both Rand Q 

are set to the identity matrix of the appropriate dimensions. 

Table 4.5.1 Limiting a and 8 values for the 5 state system 

a 10 5 2 1 0 -0.5 -1 -2 

8 0 88 87 85 83 78 72 62 60 

a -3 -4 -5 -6 -7 -8 -9 -10 

8
0 47 49 50 51 52 53 53 54 

-20 -30 -40 -50 -100 -1000 5 a -lx10 

8
0 56 56 57 57 58 59 59 

comparing these results with the root locus plot (Fig 4.4) 

for varying r (R = rI, and Q = I), it can be seen that for a 

values to the right of all the root locus points, the maximum 8 

value can be predicted as follows : 

i) draw a line through a and the locus point with the largest 

imaginary part. 

ii) Calculate the angle between this line and the imaginary 

axis. 

Some of these lines have been drawn in on Fig 4.4, and they 

show the appropriate 8 values for a values of 0, -0.5, -1, -2, and 

-3. However, once the a value is smaller than about -1.2, in 

other words it is no longer to the right of all the root locus 

points, the maximum 8 value is no longer easily predicted. 
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If we consider the root locus plot for the full state space, 

we can see from Fig 4.5 that it contains more complex values than 

the plot for the reduced order equivalent system (Fig 4.4). The 

two arcs of complex values which appear in the plot for the 

reduced order system (Fig 4.4) are present, and there is also a 

third arc, which crosses the x-axis, and a ring shape. Again, 

some lines for various a and 8 combinations have been drawn in, 

and despite the increased complexity of the plot, the same problem 

of predicting the limiting a and 8 values can be seen here. Once 

the a value is within the ring shape, or to the left of it, there 

is no obvious way of predicting the limiting 8 value. 

It can be seen from Table 4.5.1 that the 8 value reaches a 

limiting value of 590 for a values smaller than or equal to -1000. 

It can also be seen that the maximum 8 value decreases as a 

becomes more negative, until some minimum value is reached, and 

then it increases again until it reaches this steady state value. 

There is no obvious way of predicting the minimum value of 8, 

since it occurs for a value of a which is smaller than the 

smallest a value for which the limits can be predicted, in other 

words a lies either within or to the left of the ring shape. 

If the R matrix is altered from the identity matrix to some 

other positive definite matrix, it may be possible to place the 

eigenvalues in a wider range of regions. It may be possible to 

alter the limiting values of a and 8, and it might be possible to 

predict these new limits, and this will be discussed in Chapter 6. 
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Fig 4.5 Root locus plot for the full five state system 
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Let us now investigate the limiting values of a and 9 for the 

robot arm discussed in Chapter 2. 

Table 4.5.2 Limiting a and 9 values for the robot arm 

a 10 5 2 1 0 -0.5 -1 -2 

9° 90 90 90 90 90 90 90 67 

a -3 -4 -5 -6 -7 -8 -9 -10 

9° 63 62 61 60 60 60 60 60 

-40 -50 -100 -1000 8 a -20 -30 -lx10 

9° 60 60 60 60 60 60 60 

Consider the root locus plot for the reduced order system for 

the robot arm (Fig 4.6). In this case, all the eigenvalues are 

real, so it will be more difficult to predict the limiting a and 9 

values for this example. From the results in Table 4.5.2 it can 

be seen that for a values ~ -1 there is no bound on the 9 value, 

apart from the initial restriction that 9 ~ 90°. From the root 

locus plot (Fig 4.6), it can be seen that the largest eigenvalue 

is -1. Between a = -2 and a = -6, the 9 limit drops to 60° and 

remains there for all a values < -6. A root locus plot of the 

full system, Fig 4.7, also has only real eigenvalues. 

If the R matrix is altered from the identity matrix to some 

other positive definite matrix, it may be possible to place the 

closed-loop eigenvalues of the system in a wider range of sectors. 

It may then be possible to predict the limiting 9 values in some 

way, and this will be investigated in Chapter 6. 
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4.6 Discussion 

It has been shown that it is possible to place the closed­

loop eigenvalues of a system of the form x = Ax + Bu in a sector 

bounded by a straight line at an angle B to the imaginary axis, 

crossing the real axis at a, and its reflection in the real axis. 

It is also possible to place the eigenvalues of the reduced order 

equivalent system in this sector, and hence it is appropriate to 

use this method to choose the sliding hyperplanes of a Variable 

structure Control system. The specification of a region of the 

left-hand half-plane in this way is more flexible than the region 

specifications discussed in Chapter 3, since this sector stretches 

to negative infinity at its left-hand end. It is also clear that 

it is much easier to specify a region in this manner than to have 

to select exact eigenvalues.in the left-hand half-plane. The 

method is straightforward to use, and the choice of a real control 

matrix, obtained from the complex Hermitian P matrix gives 

satisfactory results for the numerical examples considered here. 

This method has also successfully been extended to give a 

solution to the problem of placing the closed-loop eigenvalues in 

a region bounded by two intersecting sectors (Fig 4.3). There is, 

however, a part of the chosen region in which the eigenvalues will 

not be placed, the shaded region in Fig 4.3, but they will be 

within the required region. Again, this technique can be extended 

to assign the sliding hyperplanes of a Variable structure Control 

system. 
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The limiting values of a and 8 have been considered for the 

region bounded by a single sector, and it can be seen that there 

is a maximum 8 value of - 60° for both examples, when a is smaller 

than a certain value. From the numerical results presented in 

section 4.5, for two very different systems, it would appear that 

the following conclusions can be suggested : 

1) If the root locus plot is purely real and a is greater than 

the largest root locus value then there is no restriction on 8 

apart from the 90° restriction imposed initially. 

2) If the root locus has complex values and a is greater than the 

real part of the the largest complex pair, then the limiting 8 

value may be obtained from the root locus plot by calculating 

the angle between the imaginary axis and the line joining the 

real axis crossing point, a, and the largest complex 

eigenvalue. 

3) When a is smaller than the majority of the root locus values, 

the 8 value will be approximately 60°. 

There is a range of values of a which will fall between 

conclusions 2 and 3, and for which it is not obvious how to 

predict the limiting 8 value. However, it is useful to be able to 

predict the limiting 8 values for most of the range of a values, 

and the problem for the values for which 8 can not easily be 

predicted, may be surmounted by selecting smaller 8 values. 
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5. DEPENDENCE OF EIGENVALUE POSITION ON THE R MATRIX DESIGN 

5.1 Introduction 

The dependence of the solution of a general matrix Riccati 

equation, continuous or discrete, on the design of the arbitrary 

matrix R is a property which can possibly be used to position the 

closed-loop eigenvalues of a system within a chosen region. It 

would clearly be useful to be able to position the closed-loop 

eigenvalues of a Variable structure Control System within the 

chosen region and to predict which, if any, of them will be 

complex. It could also be useful to control the scatter of the 

eigenvalues within the chosen region. Some work has been done on 

choosing_the weighting matrices of .the Riccati equation (Harvey & 

stein, 1978), Work has also been done on the eigenvalue bounds of 

the solutions of both the Riccati and Lyapunov equation (Karanam, 

1982, Kwon, Youn & Bien, 1985, Komaroff, 1988). The robustness of 

eigenvalue assignment techniques for non-VSC controllers has also 

been considered (Burrows & Patton, 1990, a & b). 

In section 5.2 the dependence of the solution of the discrete 

matrix Riccati equation, used in section 3.2 to place the closed­

loop eigenvalues of a VSC system in a specified disc, on the 

design of the arbitrary R matrix, and in the disc size is 

considered. section 5.3 contains a similar investigation for the 

continuous matrix Riccati equation used in section 3.3 to place 

the closed-loop eigenvalues of a VSC system in a vertical strip. 

section 5.4 contains a discussion of the results. 
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5.2 Design of R for Eigenvalue Positioning within a Disc 

Some work on eigenvalue positioning within the disc has been 

carried out by Furuta and Kim (1987), and this will be briefly 

considered here. This analysis depends on the eigenvalues of the 

product BTpB, which are not easy to predict, and so a further 

investigation of predicting eigenvalue positioning without using 

these eigenvalues will also be carried out. 

If R is chosen to be diag{r1,r2' •• ' r.} and the linear 

control has each channel multiplied by a gain X, then it may be 

written u = XFx where X = diag{k1 k2, ••• , ~}. The bounds on this 

" " gain, g.ln,l and gmax,l satisfy 

" 
9.1n,1 = 

1 A 

= 9max , 1 i=1,2, ••• ,m (5.2.1) 

where 

(5.2.2) 

(5.2.3) 

where A12 is the appropriate part of the partitioned matrix TATT 

(see section 2.2), ~l' i = 1, .• ,n-m are the eigenvalues of AI2PA12 

and r is the radius of the disc (Furuta and Kim, 1987). 

It can be seen that a l approaches zero as r~O, unless ~max=O, 

so the difference between the gain bounds, gn, decreases. This 

will result in all the eigenvalues of the closed-loop system being 

assigned to the same point (Furuta & Kim, 1987). 
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To investigate the difference between the gain bounds for 

various discs, let us consider again the five state system 

described in Chapter 3. Choosing« to be -6 + OJ and allowing r, 

the radius of the disc, to vary, gives the following values of the 

minimum and maximum gains, equation (5.2.1), the maximum eigen-
T A A 

value of A12PA12 , Am , equation ( 5 • 2 • 3), and gD = gmax, 1 - gmln, 1 • 

Table 5.2.1 Parameter values for « = -6+0j and varying r 

A A 

r g.ln, 1 gmax,l gD Am Eigenvalues of All -A12F 

1.0 0.9568 1. 0473 0.0905 4.8998x10 2 -5.7565;-5.7997;-5.823 

0.5 0.9888 1. 0114 0.00226 1.9604x10 3 -5.9390;-5.9499;-5.956 

0.25 0.9972 1. 0028 0.0056 7.8397x10 3 -5.9848;-5.9875;-5.989 
1.0005 0.0010 3 -5.9976;-5.9980;-5.998 0.1 0.9995 4.8993x10 

It can be seen from Table 5.2.1 that if the radius is small, 
A 

then the maximum and minimum values of the gain margin, gmln, 1 and 
A 
q~,l' both tend to 1, as would be expected, and equation (5.2.1) 

becomes 

r ..... 0 (5.2.4) 

If we now consider the effect of altering the R matrix, we 

can see that equation (5.2.2) does not lead to any conclusive 

results. If r 1 ..... 0, then the a 1 will tend to zero, but if r 1 is 

simply very small, the value of Am is not necessarily very large 

and hence the a 1 could be quite large, as can be seen from 

equation (5.2.2). 
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Consider the same five state system, and choose a disc 

specified by « = -6 + Oj and r = 4. The R matrix is allowed to 

vary in the following way 

R = ReactI (5.2.5) 

This leads to the following values of the minimum and maximum 

" " values of the gains, gmln, 1 and gmax,l' go, the closed-loop 

eigenvalues and AID for various values of Rract. 

Table 5.2.2 Parameter values for varying Rract values 

" " 
React g.ln, 1 g_x,l go Am Eigenvalues of Al1 -A12F 

1.0 0.7152 1. 6618 0.9466 47.7516 -3.8808:-4.1879:-4.4259 
1x10-1 0.7495 1.5020 0.7525 7.1571 -4.2782±0.1649j:-4.8338 

1x10-2 0.8423 1. 2304 0.3881 2.4764 -4.3125;-5.2137;-5.6482 

1x10-3 0.9356 1.0739 0.1383 1.8896 -4.3036:-5.8634:-5.9543 

1x10-4 0.9783 1. 0227 0.0444 1. 8251 -4.3029;-5.9851:-5.9953 

1x10-5 0.993 1. 0071 0.0141 1. 8186 -4.3028;-5.9985;-5.9995 

1x10-6 0.9978 1. 0022 0.0044 1. 8179 -4.3028;-5.9998:-6.0 

1x10-8 0.9998 1.0002 0.0004 1.8178 -4.3028;-6.0 ;-6.0 

It can be seen from Table 5.2.2 that when ~act is 1x10-6
, go 

is 4.4x10-3
, compared with a value of lx10-3 for a disc of radius 

of 0.1, with Rract equal to 1. Clearly then, the R matrix has to 

be about 105 times smaller than its nominal value, In-ID' to have 

the same effect as decreasing the radius by an order of 2, and 

this would appear to be due to the effect of Am the largest , 
T 

eigenvalue of A12PA12 • When Rract = 1 and r = 3, it can be seen 

from Table 5.2.2 that Am = 47.7516, and it can be seen from Table 
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5.2.1 that decreasing the radius from 3 to 0.5 gives an increase 

in A. of 1. 9126x103 
• If React is decreased from 1 to 1x10-B

, it 

can be seen from Table 5.2.2 that A. only changes by 45.9338. A 

further point to note is that when React is small, only two of the 

closed-loop eigenvalues are close to the centre of the disc, and 

the third is at a point near to the right-hand edge of the disc. 

Thus, by choosing a small value for React it is possible to 

have at least some of the closed-loop eigenvalues close to the 

centre of the disc, without having to make the radius of the disc 

particularly small. Since the radius of the disc is not small, 

the difference between the gain bounds will not be small, which 

can be advantageous. 

Consider the effect on the closed-loop eigenvalue position of 

a small value for React and various values of the radius. Choose 

React = 1x10-6 and ex = -6 + Oj with the R matrix defined as in 

equation (5.2.5). 

Table 5.2.3 Eigenvalues for React=lx10-
6 and varying radii r 

A A 

r gain, I gmax,l go A. Eigenvalues of Al1 -A12F 

1. 0060 
-2 

1.0265 -1.362;-5.9994;-5.9998 6.0 0.9941 1. 2x10 

1. 0048 
-3 1.0771 -1.905;-5.9996;-5.9999 5.0 0.9552 9.6x10 

1. 0036 
-3 1.269 -3.081;-5.9997;-5.9999 4.0 0.9956 7.1x10 

1.0022 
-3 1.8179 -4.303;-5.9998;-6.0 3.0 0.9978 4.4x10 

1. 0011 
-3 3.5635 -5.236;-5.9999;-6.0 2.0 0.9989 2.2x10 

1.0 0.9997 1. 0003 6.0x10 -4 13.2804 -5.808;-6.0 ;-6.0 

1.0001 
-4 52.2742 -5.952;-6.0 0.5 0.9999 2.0x10 ;-6.0 

0.1 1.0 1.0 0.0 3 
-5.998;-6.0 1.3x10 ;-6.0 
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From the results in Table 5.2.3 it can be seen that if React 

is small, decreasing the magnitude of the radius moves the off 

eiqenvalue nearer to the centre of the disc. However, the radius 

still has to be about the same magnitude for the eigenvalues to be 

close to the centre whether React is 1x10-6 or 1.0, so it is clear 

that the effect of the radius on the closed-loop eigenvalues is 

the dominant effect. 

It is clear from these investigations that when React is very 

small, Aa is small when r is large, and increases as r decreases. 

Hence, from the theory outlined earlier, the expression for a 1 

when Rract is small and the radius of the disc, r, is greater than 

1, from equation (5.2.2), is 

R a 1 -+ -+ 0 - 1 
1 +--

r 1 

" /\ 

and so galn,l and gmax,l become 

" g.ln,l -+ 1 and 
/\ 

gmax, 1 -+ 1 

and it can be seen that the difference between the gain bounds, 

gD' will tend to zero. The value of Am counteracts the effect of 

a change in the radius to some degree, and this effect is 

difficult to predict. If the radius of the disc is equal to 1, Am 

is of the order of 10, for small React' and the expression for the 

a
1 

will once again tend to 1. This is again due to the effect of 

Am' which dominates the expression for a 1 when r = 1 and Rract. is 

" " small. Again, gmln,l and gmax, 1 will tend to 1, and hence gD -+ o. 
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If the radius is smaller than 1, then A. is of the order of 103
• 

• -2 2- • :If React 1.S much larger ~han r , r rl w1.ll be small, and so the 

expression for the al becomes 

:In this case, the minimum and maximum gain values will again both 

be 1, and so the difference in the gain bounds will be zero. 

Hence, the system is again at the critical point with regard to 

its stability. It would appear therefore, that the effect of Am 

can lead to critical stability for various combinations of the 

radius r and the R matrix elements r 1 • However, it is not 

straightforward to predict the size of Am from rand r 1 • 

The effect on the closed-loop eigenvalues of the arbitrary R 

matrix is harder to predict, partly since the effect of the radius 

is dominant and partly because it is difficult to predict the 

effect of R on the solution of the discrete matrix Riccati 

equation, equation (3.2.8). However, from the results presented 

so far, it can be seen that it is particular values of RCact which 

result in complex eigenvalues, rather than particular values of 

the radius. 

It would be useful to be able to choose the R matrix so as to 

predict the closed-loop eigenvalue positions for a disc with a 

radius greater than 1 (say). 

101 



Consider the same five state system, with a = -6 + Oj and 

r = 4, and vary ~act' with R calculated as outlined in equation 

(5.2.5). 

Table 5.2.4 Eigenvalues for a=-6, r=4 & varying ~act 

~act deteR) Eigenvalues of A11-A12F 

lx10-8 1x10-16 -3.0806;-6.0 ;-6.0 

lxlO-7 lxlO-14 -3.0806;-6.0 ;-6.0 

lxlO-6 lxlO-12 -3.0806;-5.9997;-5.9999 

lx10-5 lx10-1O -3.0807;-5.9973;-5.9992 

1x10-4 1x10-s -3.0807;-5.9736;-5.9916 

lx10-3 1x10-6 -3.0817;-5.7627;-5.9194 

1x10-2 1xlO-4 -3.0925;-4.7351;-5.4004 

5x10-2 2.5xlO -3 -3.1792;-3.5853;-4.4849 

8x10-2 6.4x10 -3 -3.2467±0.1852j;-4.1920 

0.1 1x10-2 -3.1875±0.2383j;-4.06 

0.2 4x10-2 -3.0243±0.2954j;-3.7012 
0.5 0.25 -2.8483±0.2685j;-3.37 
1.0 1.0 -2.7404±0.2008j;-3.2425 
2.0 4.0 -2.6533±0.0570j;-3.1681 
3.0 9.0 -2.4773;-2.7458;-3.1425 
5.0 25.0 -2.3608:-2.7746;-3.1219 

10.0 1x102 -2.2537;-2.7890;-3.1064 

1x102 1x104 -2.0809;-2.7990;-3.0925 

lx10
3 1x106 -2.0257;-2.7999;-3.0911 

1x104 1x108 -2.0082;-2.8 ;-3.0909 

lxl08 1xlO16 -2.0 :-2.8 ;-3.0909 

It can be seen from the results in Table 5.2.4 that as Rract 

is increased, the closed-loop eigenvalues tend to the limiting 

values -2, -2.8 & -3.0909, and as Rract is decreased the closed­

loop eigenvalues tend to the limiting values of -3.0807, -6 & -6. 

When ~act is large, one of the eigenvalues is on the right-hand 
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edge of the disc (which is at -2 in this case), the second 

eigenvalue is close to the right-hand edge of the disc and the 

third eigenvalue is about a third of the way between this edge and 

the centre of the disc, but nearer to the edge. When ~act is 

small, the position of this third eigenvalue is almost unchanged, 

but the other two eigenvalues which were on, or near to, the edge 

of the disc move onto the centre of the disc. It appears, 

therefore, that the closed-loop eigenvalues are never assigned to 

the semi-circular region to the left of the disc centre, so in 

fact they are being assigned to a vertical semi-circle of centre a 

and radius r. 

When ~act lies between the values which position the closed­

loop eigenvalues on one or other set of limiting values, the pair 

of eigenvalues which move within the bounds of the disc take a 

range of values, both real and complex. It would be helpful if 

the ~act values associated with the real set of eigenvalues could 

be picked out from those associated with the complex set of 

eigenvalues. 

For this particular system, complex conjugate pairs of 

eigenvalues occur for values of ~act between about 2 and 0.08, 

and the corresponding determinants of the R matrix are between 4 

and 0.0064. 

It is possible that the determinant of the R matrix could be 

used to help to predict the closed-loop eigenvalue positions, 

perhaps in conjunction with the disc radius. 

Some results of an initial investigation into the effect of 
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the determinant of R on the solution are contained in Table 5.2.5. 

The disc has « = -6 +OJ and r = 4, and deteR) is chosen to be 1. 

Table 5.2.5 Eigenvalue variations for deteR) = 1 

R matrix Eigenvalues of A11 -A12F 

(~ ~] -2.7404±0.2008j:-3.2425 

(~ ~] -2.5267:-2.8282:-3.4568 

(~ ~. 5] -2.7903±0.1629j:-3.2859 

(1 ~. 5] -2.6422;-2.8615;-3.5872 

(~ ~. 25] -2.8346±0.1095j;-3.4606 

(10 0 ] o 0.1 -2.8579±0.0358j;-3.9086 

(10 0.1] 
0.1 0.101 -2.8540±0.0252j;-3.9144 

(10 0.316] 
0.316 0.11 -2.8171;-2.8743;-3.927 

(12 0 ] o 0.0833 -2.8599±0.0139j;-4.0181 

(12.4 0 ] o 0.081 -2.2602±0.0047j;-4.0383 

(12.5 0 ] 
o 0.08 -2.8559;-2.8647;-4.432 

(20 0 ] o 0.5 -2.8203;-2.9066;-4.3441 

(50 0 ] o 0.02 -2.8066;-2.9259;-4.9346 

(100 0 ] o 0.01 -2.8031;-2.9310;-5.3148 
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From the results in Table 5.2.5 it can be seen that if 

R(l,l) s 12, and if the off-diagonal elements are smaller than all 

of the diagonal elements, then the closed-loop eigenvalues 

comprise a complex conjugate pair and a real value. As RC1,1) is 

increased, the real eigenvalue moves towards the centre of the 

disc, and the complex conjugate pair move closer to the real axis. 

When RC1,1) > 12, or if the off-diagonal elements are bigger than 

the diagonal elements, then all the eigenvalues are real. 

Consider the same example as that used for Table 5.2.5, but 

choose the determinant of the R matrix to be 5. 

Table 5.2.6 Eigenvalue variations for deteR) = 5 

R matrix Eigenvalues of A11 - A12F 

[~ ~] -2.7±0.0424j;-3.1771 

[4.5 0 ] o loll 
-2.690±0.0297j;-3.1715 

[~ ~.25] -2.6686;-2.6916;-3.1666 

[13 ~ ~] -2.4123;-2.8208;-3.2357 

[205 20
] 

-2.5945;-2.6992;-3.1593 

[~ ~] -2.4278;-2.8531;-3.3225 

[~ ~] -2.5537;-2.8489;-3.3125 

[~o ~. 5] -2.7685±0.0711j;-3.2567 

[~o ~.25] -2.8211±0.0481j;-3.4525 
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It can be seen from Table 5.2.6, that the results for 

deteR) = 5 are not conclusive. When Re1,1) ~ 4.5 and the off 

diagonal elements are smaller than all of the diagonal elements, 

then the eigenvalues comprise a complex conjugate pair and a real 

value. If Re1,1) < 4.5 or if the off diagonal elements are larger 

than anyone of the diagonal elements, the eigenvalues are all 

real. In this case, two of the eigenvalues are close together and 

near to the right-hand edge of the disc, and the other one is 

nearer to the centre of the disc. 

It is clear that there is some connection between the 

determinant and form of the arbitrary R matrix, the position of 

the eigenvalues within the disc, and the radius and centre of the 

disc. A series of runs has been carried out for three different 

discs, and R matrices with determinants of 0.1, 0.5, 1 and 10. 

The eigenvalues have been plotted in each case and the results are 

shown in the following figures 

Fig 5.1 

Fig 5.2 

Fig 5.3 

r = 4, a = -6 + Oj 

r = 4, a = -5 + OJ 

r = 4, a = -4 + OJ. 

It can be seen from the results for r = 4 and a = -6 + OJ 

(Fig 5.1) that as the determinant of R increases from 0.1 to 10, 

the complex conjugate pairs of eigenvalues approach the real axis, 

until, when deteR) = 10, all the eigenvalues are real, and in 

three clusters. These three clusters are close to the limiting 

eigenvalues for large values of ~act and deteR). 
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The results for a = -5 + OJ and r = 4 (Fig 5.2) demonstrate that 

for all the choices of deteR), the eigenvalues are real and in 

three clusters. As deteR) increases, the clusters move closer to 

the limiting eigenvalues for large values of React and det (R) • 

The results for a = -4 + OJ and r = 4 (Fig 5.3) demonstrate that 

when deteR) = 10, the eigenvalues comprise a complex conjugate 

pair close to -1, and a real value at 2.14, and as deteR) 

decreases, the complex conjugate pairs tend to the real axis 

until, at deteR) = 0.1, all the eigenvalues are real. 

It is not possible to draw any general conclusions from these 

results, as a change in the disc centre changes the positioning of 

the eigenvalues within the disc very dramatically. Some further 

runs have been carried out for two different values of the disc 

radius, r = 3 and r = 5. The disc centres have been chosen so 

that the differences between the disc radius and the disc centre 

are the same as for the runs for r = 4. The results for these 

runs are displayed in the following figures 

Fig 5.4 r = 5 and a = -7 + OJ Fig 5.7 r = 3 and a = -5 + OJ 

Fig 5.5 r = 5 and a = -6 + OJ Fig 5.8 r = 3 and a = -4 + OJ 

Fig 5.6 r = 5 and a = -5 + OJ Fig 5.9 r = 3 and a = -3 + OJ 

The results for r = 5 and a = -7 + OJ (Fig 5.4) show that 

when the determinant of R is small, there are a lot of complex 

conjugate pairs of eigenvalues. As deteR) increases, the number 

of complex conjugate pairs decreases until, when deteR) = 10, 

there are only a few complex conjugate pairs of eigenvalues. 
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The results for r = 5 and a = -6 + OJ (Fig 5.5) show that the 

eiqenvalues are real for all choices of the determinant, and as 

the determinant increases, they move towards the right-hand edge 

of the disc. When r = 5 and a = -5 + OJ (Fig 5.6), the eigen­

values are all real when the determinant is small. As the 

determinant increases complex conjugate pairs of eigenvalues 

approach the real axis, until when deteR) = 10, the eigenvalues 

comprise one real value and one complex conjugate pair. The 

results for r = 3 show the same characteristics for the three a 

values as those for r = 5 and r = 4. 

The example of the robot arm, described earlier, has also 

been investigated for various discs. It was found from these 

investigations that for all choices of the R matrix, the 

eigenvalues were real. The results for two discs are shown in the 

following figures 

Fig 5.10 r = 4 and a = -4 + Oj 

Fig 5.11 r = 3 and a = -4 + OJ 

The results in both of these figures show that when the 

determinant of R is small, one of the eigenvalues is very close to 

(or on) the centre of the disc, and the other one is near to the 

right-hand edge of the disc. When the determinant of R is large, 

one of the eigenvalues is near to the right-hand edge of the disc, 

and the other one is on (or almost on) this edge. This pattern 

was found for the five state example. 
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It would seem that if the root locus plot of the system has all 

real eigenvalues, then regardless of the choice of the R matrix, 

or the disc, the eigenvalues will always be real. 

It would appear from these results that if r = lal, then an R 

matrix with a large determinant gives real and complex conjugate 

pairs of eigenvalues, and an R matrix with a small determinant 

gives purely real eigenvalues. If lal - r = 1, then the eigen­

values will be purely real for any choice of R matrix. Finally, 

if lal - r > 1, then an R matrix with a small determinant gives 

real and complex conjugate pairs of eigenvalues, and an R matrix 

with a large determinant gives mostly real eigenvalues. 

5.3 Design of R for Eigenvalue Positioning within a Strip 

An investigation into the effect of changes in the arbitrary 

R matrix on the solution of the continuous matrix Riccati equation 

given in equation (3.3.3), and hence on the position of the 

closed-loop eigenvalues, will now be performed. 

consider once more the five state system discussed in 

previous chapters, and its third order equivalent system. If hi 

is chosen to be 1, then the real eigenvalue of All + hlI with the 

largest magnitude is A = -2. Since h2 has to have a magnitude 

larger than the magnitude of A, choose h2 to be 3. The vertical 

strip then crosses the real axis at the points -3 and -1. 
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using the Macfarlane-Potter-Fath method outlined in Chapter 3, 

section 3.3, to solve the continuous matrix Riccati equation with 

a null Q matrix, given in equation (3.3.6), and varying the R 

matrix as before gives the following results 

Table 5.3.1 Eigenvalues for varying Rract 

Rract Eigenvalues of All - A12F deteR) 

1.0 -1.0;-2.0;-3.0 1.0 
2.0 -1.0;-2.0;-3.0 4.0 
3.0 -1.0;-2.0;-3.0 9.0 
0.5 -1.0:-2.0:-3.0 0.25 
0.1 -1. 0; -2.0; -3.0 0.01 

It can be seen from the results in Table 5.3.1 that the 

closed-loop eigenvalues of the reduced order equivalent system, 

All-A12F, _remain unchanged for the range of Rfact values 

investigated. 

It would therefore appear that for any choice of the 

arbitrary R matrix which is a multiple of an identity matrix of 

the appropriate size, the positions of the eigenvalues within the 

strip remain unchanged. This would suggest that the control 

matrix, F, is unaffected by changes in the R matrix, and that the 

solution of the continuous matrix Riccati equation, P, is altering 

in proportion to the R matrix. 

The solution to the continuous matrix Riccati equation 

outlined in equation (3.3.6), P, and the corresponding control 

matrix outlined in equation (3.3.7), F, will now be obtained. 
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The ~act values are those given in Table 5.3.1, and the resulting 

P and F matrices are as follows 

Table 5.3.2 P and F matrices for various Rfact values 

~act P matrix F matrix 

[~ 
0 -g.666 ) [g -1. 6666 1.6666] 1.0 0.666 

-0.666 0.666 1.1785 -1.1785 

[~ 
0 -~.333) [g -1.6666 1.6666] 2.0 1.333 1.1785 -1.1785 -1. 333 1.333 

[~ 
0 0 ) [g -1. 6666 1.6666] 3.0 2.0 -2.0 

-2.0 2.0 1.1785 -1.1785 

[~ 
0 -g. 333) [g -1.6666 1. 6666] 0.5 0.333 

-0.333 0.333 1.1785 -1.1785 

[~ 
0 -g. 066) (~ -1.6666 1. 6666] - 0.1 0.066 

-0.066 0.066 1.1785 -1.1785 

It can be seen from Table 5.3.2 that all the control matrices 

are identical, as would be expected, since the eigenvalues of 

All - A12F are identical in each case. It can also be seen that 

the P matrices are all multiples of the solution of the Riccati 

equation for Rfact = 1. 

This result will now be proved for the reduced order 

equivalent system of any system of the form of equation (2.2.2). 

When Rfact is chosen to be 1, R is an identity matrix of the 

appropriate dimensions. 

117 



Suppose that the solution of the continuous matrix Riccati 

equation when R = I is -P, then 

-
~act = 2 R = 21 P = 2P 

~act = 3 R = 31 P = 3P 

~act = 0.5 R = 0.51 P = 0.5P 

~act = 0.1 R = 0.11 P = O.lP 

consider the continuous matrix Riccati equation with a zero right-

hand side, equation (3.3.6) 

(5.3.1) 

'" where A and the control matrix, F, are given by 

(5.3.2) 

(5.3.3) 

Let R = Rt and P = Pt, and then equation (5.3.1) becomes 

(5.3.4) 

Now choose the arbitrary matrix, R, to be of the form r = ~Rl' 
where ~ is any positive real number. Let us suppose that the 

solution to the matrix Riccati equation is P2 • 

Then equation (5.3.1.) becomes 

(5.3.5) 
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Substituting P2 = ~Pl into equation (5.3.5) gives 

(5.3.6) 

Equation (5.3.6) may be rearranged to give 

Clearly, if equation (5.3.7) is divided by the scalar ~, it is 

identical to equation (5.3.4). 

Hence, if an arbitrary matrix R gives rise to a solution P of 

equation (5.3.1) then an arbitrary matrix RI = ~r will give rise 

to a solution matrix PI = ~P for all positive real scalars ~. 

consider equation (5.3.3) for the control matrix, when R = RI and 

Let the control matrix be Fl1 given by 

(5.3.8) 

Let R2 = ~Rl' and then the corresponding solution P2 will be equal 

to ~Pl' and the control matrix will be given by 

(5.3.9) 

Substituting for R2 and P2 in equation (5.3.9) gives 

(5.3.10) 

119 



Clearly, since ~ is a scalar, the right-hand side of equation 

(5.3.10) is identical to the right-hand side of equation (5.3.8) 

and hence Fi == F2• 

It has therefore been proved the solution matrix of the 

continuous Riccati equation (3.3.6) with R replaced by ~ will be 

eP, where ~ is a positive real scalar, and hence the coritrol 

matrix will remain unchanged. This results holds for all systems 

of the form of the standard regulator problem given in equation 

(2.2.2). The solution of this method of placing all the closed­

loop eigenvalues of the reduced order equivalent system of a 

Variable structure Control system, and hence (n-m) of the closed­

loop eigenvalues of the full order VSC system, within an infinite 

vertical strip in the left-hand ha~~-plane is therefore unaffected 

by positive scalar multiple changes in the arbitrary positive 

definite symmetric R matrix. 

The effect of a change to the R matrix which is not obtained 

by multiplying an identity matrix of the appropriate dimensions by 

a positive real scalar will now be investigated. 

consider the same five state example which was used before, 

which has a third order equivalent system. Suppose that the 

required vertical strip crosses the real axis at the points -3 and 

-1, so that hi = 1 and h2 = 3, since the magnitude of the smallest 

eiqenvalue is 2. 
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Allowing the R matrix to vary by a different factor in each 

element gives the following results. 

Table 5.3.3 Eigenvalues for various R matrices 

R matrix Eigenvalues P matrix F matrix 
of Al1 -A12F 

[~ ~] [g 
0 -~o 66] [~ -1. 666. 1. 666] -1;-2;-3 0.66 

-0.66 0.66 1.179 -1.179 

[~ ~] [g 
0 0 ] [~ -1. 250 1. 250] -1;-2;-3 1.0 -1.0 

-1.0 1.0 1. 768 -1.768 

[~ ~05 ] [~ 
0 -~o 66] [~ -0.833 00833] -1;-2;-3 0.66 

-0.66 0.66 2.357 -2.357 

[~ ~] [g 
0 -~o 43] [~ -0.714 00714] -1;-2;-3 1.43 

-1.43 1.43 2.525 -2.525 

[1~ - ~] [g 
o ., 

-~021] [~ -0.576 00576] -1;-2;-3 1.21 
-1.21 1.21 2.722 -2.722 

[001 0001] [g 
0 -~o 06] [~ -1. 631 1. 631] -1;-2;-3 0.06 

0.01 0.1 -0.06 0.06 1.229 -1.229 

It can be seen from Table 5.3.3 that the closed-loop 

eigenvalues of the reduced order equivalent systemAl1 - A12F 

remain unchanged for all the R matrices used. In this case, the 

control matrices are not the same, but they are equivalent to one 

another, since each one can be obtained from any of the others by 

elementary transformations (Hohn, 1958). It can be argued that, 

provided the control matrices are equivalent to one another, the 

eigenvalues of Al1 - A12F will remain the same. 
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Thus, the solution of this method of placing the closed-loop 

eiqenvalues of the reduced order equivalent system of a Variable 

structure Control system within a vertical strip in the left-hand 

half plane is unaffected by the choice of the arbitrary R matrix. 

consider the robot arm system discussed in previous chapters, 

and its second order equivalent system. If hl is chosen to be 1 

then the real eigenvalue of All + hlI with the largest magnitude 

is A = -1. Since h2 has to have a magnitude greater than that of 

A, choose h2 to be 3. The vertical strip then crosses the real 

axis at the points -3 and -1. Using the Macfarlane-Potter-Fath 

method outlined in Chapter 3, section 3.3, to solve the continuous 

matrix Riccati equation with a null Q matrix, and varying the R 

matrix, gives the following results 

Table 5.3.4 Eigenvalues for varying R matrices 

R matrix E-values P matrix F matrix 

I -2 ; -2 21 [-0.781 
-1. 841 

1.841) 
-0.781 

21 -2 · -2 41 [-0.781 1. 841) , 
-1.841 -0.781 

31 -2 · -2 61 [-0.781 1. 841) , 
-1. 841 -0.781 

0.51 -2 ; -2 I [-0.781 
-1.841 

1. 841) 
-0.781 

0.11 -2 ; -2 0.2I [-0.781 
-1. 841 

1.841) 
-0.781 

[~ ~. 5) -2 ; -2 [ 1.1526 
-0.3596 

-0.3596) 
1.8476 

[-0.781 
-1.841 

1. 841) 
-0.781 

[10~ ~.01) -2 · -2 [ 30.532 71. 9083) [-0.781 1.841) , 
-71.9083 169.4880 -1.841 -0.781 
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It can be seen from Table S.3.4 that the relationship between 

the R, P and F matrices outlined in equations (S.3.1) to (5.3.10) 

holds, namely 

P l = a:P and (S.3.11) 

which would be expected, since these equations hold for. all All 

and A12 matrices, and hence all full order systems of the form 

. 
x = Ax + Bu (S.3.12) 

However, it can be seen from the results in Table 5.3.4 that even 

if Rl is not a scalar multiple of R, Fl is still equal to F, and 

this result will now be considered. For the robot arm example, 

recall f!"om Chapter 3 that the red\1,ced order system matrix All is 

the null matrix, and this will have an effect on the solution of 

the Riccati equation (3.3.6). Substituting All = 0 into equation 

(3.3.6) gives 

(5.3.13) 

Since hl is a real scalar, equation (5.3.13) may be rearranged to 

give 

(S.3.14) 

post-multiplying both sides of equation (5.3.14) by p-l gives 

(S. 3 .15) 
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-1 T. 1 t . since Al~ A12 1S a ways a square ma r1X, as A12 is (n-m)xm and r 

is ~m, and assuming it is non-singular, equation (5.3.15) may be 

rearranged to give 

-1 

P = 2hl [AI2R-1Ai2] 

The control matrix F is then given by 

(5.3.16) 

(5.3.17) 

It can be seen from equation (5.3.17) that in the particular 

case when All is zero, the F matrix is independent of the solution 

p of the matrix Riccati equation (3.3.6). This is illustrated in 

the results in Table 5.3.4 for the.R matrices which are not a 

scalar multiple of the identity matrix. If A12 is a square 

matrix, then equation (5.3.17) may be further simplified to give 

As an example, consider the case when R = [~ g.s)' and hence 

-1 [1 0] R = 0 2 • 

From equation (5.3.16), since hl was chosen to be 1, P is given by 

P = 2[[-0.3906 
0.9206 

-0.9206] [1 0) [-0.3906 
-0.3906 0 2 -0.9206 
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0.9206]] -1 
-0.3906 (5.3.19) 



Multiplying out the bracketed expression in equation (5.3.19) 

qives 

p = 2 [1.8476 
0.3596 

-1 
0.3596] 
1.1526 (5.3.20) 

since the determinant of the matrix to be inverted in equation 

(5.3.20) is equal to 2, P becomes 

[ 
1.1526 

P = -0.3596 
-0.3596] 

1. 8476 (5.3.21) 

It can be seen that the P matrix obtained in equation (5.3.21) is 

identical to that obtained earlier, and displayed in Table 5.3.4. 

Since, in this example the matrix A12 is square, F may be obtained 

from equation (5.3.18). 

h -1 __ 2[-0.3906 
F = 2" lA12 ,.. 0.9206 

-0.9206] 
-0.3906 

So the control matrix, F, becomes 

[
-0.781 

F = -1.841 
1. 841] 

-0.781 

-1 

(11 = 1) (5.3.22) 

(5.3.22) 

It is clear that the F matrix given in equation (5.3.22) is 

identical to the F matrix for the appropriate R matrix given in 

Table 5.3.4, and will be the same for all choices of the arbitrary 

R matrix. 
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It may be concluded, therefore, that for a general system of 

the form * = Ax + BU, in the particular case when its reduced 

order equivalent system matrix A11 is zero, the solution of the 

continuous matrix Riccati equation given in equation (3.3.6), P, 

will be given by equation (5.3.16) and that the control matrix, F, 

will be independent of the solution matrix P and will be given by 

equation (5.3.17). In addition, if the reduced order equivalent 

system matrix A12 is a square matrix, in other words, if n-m = m, 

then the control matrix, F, is only dependent on the right-hand 

strip limit h1 , the matrix A12 and ~, as can be seen from equation 

(5.3.18) 

5.4 Discussion 

It has been shown that the positioning of the closed-loop 

eiqenvalues of a system within a specified disc in the left-hand 

half-plane depend more on the determinant of the arbitrary R 

matrix than on its structure, and also depend on the choice of the 

disc centre and radius. owing to the complexity of the solution 

of the discrete matrix Riccati equation, it is not easy to 

determine the exact relationship between the R matrix, the disc 

centre and radius, and the positioning of the eigenvalues. 

However, from the investigations contained in this chapter, it 

would appear that there are some generalizations which can be made 

about the relationship between eigenvalue positioning and the 

choice of the R matrix and the disc parameters, for a fixed 

arbitrary positive definite symmetric Q matrix. 
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From the numerical results obtained from two very different 

systems, the following conclusions are suggested : 

1) If the root locus plot of the system comprises only real 

eiqenvalues, then regardless of the choice of R matrix and 

disc parameters, the eigenvalues will always be placed along 

the real axis, within the disc. 

2) If the root locus plot has complex values, and the radius and 

the modulus of the centre of the disc are equal, then an R 

matrix with a small determinant will lead to real eigenvalues 

within the disc, and an R matrix with a large determinant will 

lead to real and complex eigenvalues. 

3) If the root locus plot has complex eigenvalues, and the 

difference in magnitude between the radius and the centre of 

the disc is equal to 1, then the eigenvalues will be real for 

all choices of the R matrix. An R matrix with a large 

determinant will place the eigenvalues close to the right-hand 

edqe of the disc. 

4) If the root locus plot has complex eigenvalues, and the 

difference in magnitude between the radius and the centre of 

the disc is greater than 1, then an R matrix with a small 

determinant will lead to complex and real eigenvalues within 

the disc, and an R matrix with a large determinant will lead 

to all real eigenvalues. 

It is therefore possible to choose an R matrix with an 

appropriate determinant, depending on the choice of disc, to 

ensure that the eigenvalues are all real or a mixture of real and 

complex conjugate pairs. 
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The investigation into the effect of the arbitrary R matrix 

on the positioning of the eigenvalues within a vertical strip 

crossing the real axis at the points -hi and -h2 leads to the 

following conclusions, which have been demonstrated for all 

systems in the form of equation (2.2.2) : 

1) If the arbitrary R matrix is multiplied by a positive real 

scalar, then the solution of the continuous matrix Riccati 

equation will be multiplied by the same scalar, and the 

control matrix, F, and the closed-loop eigenvalues will remain 

unchanged. 

2) If the R matrix is not a multiple of the identity matrix, the 

solution matrices of the continuous matrix Riccati equation 

are scalar multiples of each other, the control matrices are 

equivalent to one another, and the eigenvalues are unchanged. 

3) If the reduced order system matrix All is zero, then the 

control matrix is independent of the solution of the 

continuous matrix Riccati equation. If the reduced order 

system matrix Al2 is a square matrix, then the control matrix 

is independent of the arbitrary R matrix, and so only depends 

on h1 , Al2 and I.L. 

It has therefore been proved that eigenvalue placement within 

a vertical strip is independent of any change in the arbitrary R 

matrix. In the particular case when All is zero, and Al2 is 

square (n-m = m), the control matrix is independent of both the 

solution of the continuous matrix Riccati equation, and the 

arbitrary matrix R. 
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6. DEPENDENCE OF EIGENVALUE POSITIONING WITHIN A SECTOR ON 

THE R MATRIX DESIGN 

6.1 Introduction 

The dependence of the positioning of the closed-loop eigen­

values within the sector described in Chapter 4 on the design of 

the R matrix will now be considered. This will involve some 

investigations into the effect of the arbitrary R matrix on the 

solution of a complex continuous matrix Riccati equation with a 

non-zero arbitrary matrix Q. This work follows on, to some 

deqree, from the investigation carried out in Chapter 5, Section 

5.3 on the effect of the R matrix on the solution of a real 

continuous matrix Riccati equation with a zero Q matrix. The 

robustness property may be more useful in the case of the sector 

than in the cases of the disc and the strip discussed in the 

previous chapter, since it might be possible to place the eigen­

values in sectors outside those described by the limiting e and a 

values discussed in Chapter 4. It would also be useful to be able 

to predict the position of the eigenvalues within the sector, and 

in particular, to predict whether they will be real or complex. 

The placing of the eigenvalues in wider range of sectors than 

was shown to be possible in Chapter 4, Section 4.5, is considered 

in section 6.2. Section 6.3 contains the investigations into the 

possibility of predicting the positioning of the eigenvalues 

within the sector, and section 6.4 contains a discussion of the 

results. 
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6.2 Effect of the R Matrix on the Limiting Alpha & Theta Values 

The effect of the arbitrary R matrix on the solution of the 

continuous matrix Riccati equation given in equation (4.2.30), and 

hence on the limiting a and 6 values discussed in Chapter 4, 

section 4.5 will be considered. 

consider once more the five state VSC example, outlined in 

section 3.4, when a - -2 and 6 = 65°, bearing in mind that the 

maximum 8 value for a = -2 was previously found to be 60° (see 

section 4.5). The R matrix is varied as follows 

R = React.! (6.2.1) 

Table 6.2.1 Eigenva1ues for 8 ° = 65 , a - -2 & varying React 

RCact Closed-loop Eigenvalues 

1.0 -1.9991 ± ·0.-2091j · -2.8783 , 
2.0 -1.8216 ± 0.2596j · -2.7662 , 
3.0 -1.7419 ± 0.2589j ; -2.7175 
4.0 -1.6442 ± 0.2518j · -2.6888 , 
5.0 -1.6617 ± 0.2437j ; -2.6694 
0.9 -2.0314 ± 0.1894j · -2.8995 , 
0.8 -2.0694 ± 0.1590j · -2.9248 , 
0.7 -2.1148 ± 0.1033j · -2.9559 , 
0.6 -2.0697 · -2.2714 ; -2.9953 , 
0.5 -2.0383 · -2.4440 · -3.0478 , , 
0.333 -2.0411 · -2.7878 · -3.1985 , , 
0.25 -2.0616 ; -3.0264 · -3.3561 , 
0.2 -2.0826 · -2.1961 · -3.5311 , , 
0.1 -2.1600 · -3.6740 · -4.4009 , , 

It can be seen from the results displayed in Table 6.2.1, 

that as R Cact is increased the real eigenvalue, which is within 

the required sector, moves towards a, the right-hand limit of the 

sector. For a suitably large value of RCact., this eigenvalue may 

possibly move beyond a, and out of the required sector. 
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The real part of the complex eigenvalues, which are outside the 

sector for Rract values greater than or equal to 1, move closer to 

the origin as React increases, and away from the origin and hence 

into the sector as React decreases. The imaginary parts of the 

complex pairs of eigenva1ues are outside the required sector for 

all the a values displayed in Table 6.2.1, and their magnitude 

increases as Rfact increases, until it reaches some maximum value, 

and then it decreases again. As Rract decreases, the imaginary 

parts move nearer to the real axis, but are always outside the 

required sector. If React is smaller than or equal to 0.6, the 

eigenva1ues are all real, and all lie within the required sector, 

and as React decreases beyond 0.6, the eigenva1ues move along the 

real axis, towards a. It can be seen from these results that a 

suitable choice of value for Rract will increase the maximum value 
o 0 • of 8 from 60 to 65. It 1.S possible, therefore, that if React is 

made suitably small, the restrictions on the choice of a and 8 

could be relaxed. 

using MATLAB, a routine has been written which alters the R 

matrix by multiplying it by a scalar until the eigenva1ues lie in 

the required sector. Consider once more the five state example, 

and the case when a = -2, and let 8 hold a range of values greater 

than its previous maximum value of 60°. The R matrix is altered 

according to equation (6.2.1) and the R fact values which result in 

the eigenva1ues lying in the required sector are contained in 

Table 6.2.2. 
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The closed-loop eigenvalues of the reduced order equivalent system 

~1 - A12F and the appropriate 9 values are also displayed in 

Table 6.2.2. 

Table 6.2.2 Comparison of React' 9 & eigenvalues for ex = -2 

9° React Closed-loop Eigenvalues 

55 1 -2.1105 · -2.6100 · -2.7800 , , 
60 1 -2.1602 ± 0.0762j . -2.8686 , 
65 0.6 -2.0697 · -2.2714 · -2.9953 , , 
70 0.5 -2.0149 : -2.1687 : -3.0575 
75 0.05 -2.0093 : -4.2078 · -5.5167 , 
80 0.01 -2.0407 · -6.9188 : -10.9108 , 
81 0.01 -2.0204 · -6.9120 ; -10.8893 , 
82 0.01 -2.0004 · -6.9071 · -10.8677 , , 
83 0.007 -2.0025 : -7.8734 · -12.7947 , 
84 0.005 -2.0011 · -8.9593 · -14.9597 , , 
85 0.003 -2.0050 · -11.0065 · -19.0494 , , 
86 0.002 -2.0012 · -13.0500 · -23.1282 , , 
87 0.001 -2.0028 · -17.6713 : -32.3649 , 
88 4x10-4 -2.0029 · -26.8507 · -50.7169 , , 
89 1x10-4 -2.0011 · -51. 8421 · -100.6919 , , 
89.5 2x10-s 

-2.0013 · -113.6408 ; -224.2860 , 
89.9 1x10-6 

-2.0000 · -100.7000 ; -501.8000 , 
89.95 2x10-7 

-2.0000 · -1119.9000 · -2236.7000 , , 

It can be seen from the results displayed in Table 6.2.2 that 

by choosing a suitable value for React' the limiting value of 9 

for ex = -2 can be increased from 60° to 89.95°. However, it is 

clear that as Rfact becomes very small, and 9 moves closer to 90°, 

two of the eigenvalues move further away from ex in the negative 

real direction, and the other eigenvalue moves very close to ex. 

This results in the spread of the eigenvalues being considerable, 

as can be seen from the results displayed in Table 6.2.2 for 
-7 

React = 2x10 • 
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Consider the a values and their corresponding limiting a 

values displayed in section 4.5, Table 4.5.1. For these a values, 

the R matrix has been altered as described in equation (6.2.1), 

and the new limiting 8 values of the various a values are 

displayed in Table 6.2.3, along with both the old and the new 

closed-loop eigenvalues. 

Table 6.2.3 New limiting a values for various a values 

ex eO 
0 

E igenva lues for 80 ~act aO 
n Eigenvalues for an 

10 88 -1.139±0.22j:-2.383 3x10-1 90 -1.648:-2.013;-3.242 

5 87 -1.177±0.23j:-2.420 3x10-1 90 -1.648;-2.013;-3.242 

2 85 -1.210±0.24j;-2.440 3x10-1 
90 -1.648:-2.013:-3.242 

1 83 -1.225±0.24j;-2.436 3x10-1 90 -1.648;-2.013;-3.242 

0 78 -1.257±0.24j:-2.424 3x10-1 90 -1.648;-2.013;-3.242 

-0.5 72 -1.306±0.25j:-2.423 3x10-1 90 -1.648:-2.013:-3.242 

-1 62 -1.470±0.25j:-2.467 
. ·-1 

3x10 90 -1.648;-2.013;-3.242 

-2 60 -2.160±0.08j;-2.869 2x10-11 89 5 5 -2;-1.lx10 ;-2.2x10 

-3 47 -3.037;-4.220±0.33j 6x10-6 67 -3:-22.738;-42.413 

-4 49 -4.012;-5.472±0.31j 1x10-7 64 -4;-1583.9;-3164.4 

-5 50 -5.062;-6.224±0.25j 2x10-6 62 -5:-356.880;-709.109 

-6 51 -6.092;-7.920±0.14j 2x10-7 61 -6:-1129.1:-2239.3 

-7 52 -7.085;-8.864;-9.25 2x10-7 61 -7:-1122.4:-2239.8 

-8 53 -8.033;-9.82;-10.46 6x10-6 
61 -8;-209.02;-412.53 

-9 53 -9.14:-10.99;-11.77 3x10-7 
61 -9;-918.24:-1830.52 

-10 54 -10.02;-11.9;-12.85 7x10-8 60 -10;-1895.7;-3784.9 

-20 56 -20.03;-22.4;-24.28 1x10-s 60 -20:-169.34;-326.71 

-30 56 -30.69;-33.6;-35.98 1x10-6 60 -30;-516.14;-1015.44 

-40 57 -40.33;-43.6;-46.50 5x10-7 
60 -40;-728.30;-1434.69 

-50 57 -50.84:-57.8;-54.49 2x10-7 60 -50;-1144.2;-2261.54 

-100 58 -100.9:-106;-110.83 1x10-8 60 -100;-5051.2;-lx104 

-1000 59 -1014.2;-1030;-1045 lx10-12 
60 5 6 -1000: -5x10 ; -lx10 

-lxlO 
5 59 

555 
-lx10 ;-1x10 ;-lx10 1x10-2o 

60 599 -lx10 ;-2x10 :-3x10 

133 



It can be seen from Table 6.2.3 that for a ~ -1, the limiting 

value of 8 is 90° for a suitable choice of React' and for a < -1, 

the limiting value of a drops to 60°, which appears to be the 

limiting value of a for all small a values. 

consider the robot arm example outlined in section 2.4, and 

its a values and corresponding 8 values displayed in section 4.5, 

Table 4.5.2. The R matrix is altered as described in earlier, and 

the new limiting 8 values for the a values smaller than -1 are 

displayed in Table 6.2.4, along with the old and new closed-loop 

eiqenvalues. It is unnecessary to consider the cases when a ~ -1, 

since the limiting a value is 90° for these values when R = I. 

Table 6.2.4 New limiting a values for the robot arm 

a 8° 
° 

Eigenvalues React 8° n Eigenvalues 
for 80 for an 

-2 67 -2.0506; -2.0506 1/4 90 -2 ; -2 
-3 63 -3.0567: -3.0567 1/9 90 -3 · -3 , 
-4 62 -4.0054: -4.0054 1/16 90 -4 · -4 , 
-5 61 -5.0463: -5.0463 1/25 90 -5 · -5 , 
-6 60 -6.1623; -6.1623 1/36 90 -6 ; -6 
-7 60 -7.1401; -7.1401 1/49 90 -7 · -7 , 
-8 60 -8.1231; -8.1231 1/64 90 -8 · -8 , 
-9 60 -9.1098; -9.1098 1/91 90 -9 · -9 , 

-10 60 -10.0990;-10.0990 1x10-2 90 -10 · -10 , 
-20.0499;-20.0499 -3 90 -20 -20 60 2.5x10 · -20 , 
-30.0333;-30.0333 

-3 
90 -30 60 1.lx10 -30 · -30 , 

-40.0250;-40.0250 -4 90 -40 60 6.25x10 -40 · -40 , 

-50 60 -50.0200:-50.0200 4x10-4 90 -50 · -50 , 
60 

2 2 1x10-4 
90 -100 -100 -1.0x10 ;-1.0x10 · -100 , 

-1000 60 
3 3 -1. Ox10 ; -1. Ox10 lx10-6 90 -1000 :-1000 

-lxlO 
5 60 

5 5 
-1. Ox10 ; -1. Ox10 lx10-1O 

90 5 5 -lx10 ; -lx10 
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It can be seen from the results displayed in Table 6.2.4, 

that for all choices of a, the limiting 8 value may be increased 

to 90°, by a suitable choice of the arbitrary matrix R. It can 

a1so be seen that the appropriate choice of React for the 

eiqenvalues to be on the right-hand point of the sector is 1/a2 in 

each case. 

The results noted from the investigations of these two 

systems will now be verified for the reduced order equivalent 

system of any system of the form of equation (2.2.2). 

. 1 t 90° J8 d - J8 b . d . . When 8 1S equa 0 , e an e ecome ] an -] respectl.vely, 

so substituting for them in equation (4.2.29) gives 

• -1 T j (A11 - aI) P - jP(All - aI) - PA12R A12P = -Q (6.2.2) 

Equation (6.2.2) may be expanded to give 

(6.2.3) 

The a terms in equation (6.2.3) cancel, to give 

(6.2.4) 

Equation (6.2.4) is clearly a standard form of a continuous 

complex matrix Riccati equation which is independent of a for all 

matrices A11 and A12 • Thus, if 8 = 90°, the Riccati equation has 

the same solution for all values of a, provided that the R matrix 

is chosen to be the same in each case. 
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C1early, for the closed-loop eigenvalues to lie in the required 

reqion, the a value must be smaller than all the real negative 
-1 T eiqenvalues of A11 - A12F, where F = R A12P. This result holds 

for all All and A12 matrices, and it is illustrated in the results 

in Table 6.2.3, and in the results for the robot arm in Table 

4.5.2. When 8 = 90°, the eigenvalues of All - A12F for this 

example are -1.648, -2.013 and -3.242 and so the limiting 8 value 

will be 90° for a ~ -1.648. When a = -2, only one of the eigen­

values of All - A12F is larger than a and so a small R matrix will 

give a limiting e value of 89°, for the five state example. When 

et = -3, two of the eigenvalues of All - A12F are larger than a and 

so the limiting e value is only 67°, for the five state example. 

When a < -3, all three eigenvalues of All - A12F are larger than 

et, and the limiting 8 value drops quickly to its steady state 

value of 60°, for the five state example. The robot arm example 

will have a limit of 90° for all a values, provided that 

2 
React = l/a . 

In general, the limiting value of 8 will be 90°, for a 

suitable choice of the arbitrary R matrix, providing the following 

condition described above, holds 

(6.2.5) 

where Real{Al} denotes the real eigenvalues. 

When a does not satisfy the condition given in equation 

(6.2.5), then the limiting e value will drop back to 60°. 
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For the robot arm, the reduced order equivalent system matrix 

A11 is zero, and the reduced order equivalent system matrix A12 is 

orthogonal (A~~ = AI2),and so it is a special case of the above 

theory. 

Substituting All = 0 into equation (6.2.4) gives 

If Q = In-aa and R = Rcactl., then equation (6.2.6) becomes 

Since A12 is orthogonal, the expression for P becomes 

The control matrix, F 
-1 T 

= -R A12P, is therefore given by 

F = 

and the closed-loop reduced order system is given by 

1 
All - A12F = -;:::==: 

~ Rcact 

I 

(6.2.6) 

(6.2.8) 

(6.2.9) 

(6.2.10) 

The closed-loop eigenvalues are therefore a double root at 

~ = (6.2.11) 
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If the eigenvalues are required to be ~ a, then, from equation 

(6.2.11), React must be chosen to be 

2 
React :s l/a (6.2.12) 

This result has thus been proved for all systems where the 

reduced order equivalent system matrices comprise a null matrix 

A11' and an orthogona1 matrix A12 • The results for the robot arm 

in Table 6.2.4 clearly illustrate this result. 

In these examples it can be seen that for a suitable choice 

of the arbitrary matrix, R, the limiting values of 8 can be 

increased, and so the closed-loop eigenvalues of the reduced order 

equivalent system of a VSC system can be placed in a wider range 

of regions, including the region which is part of the negative 

real axis. If the condition in equation (6.2.5) holds then the 

limiting value of 8 will be 90°, otherwise it will fall in stages, 

until it reaches 60°. 

In the particular case where the matrices of the reduced 

order equivalent system comprise a null matrix All and an 

orthogonal matrix A12 , the limiting 8 value will be 90° for all 

choices of ex, provided React satisfies equation (6.2.12). In this 

case, the solution of the continuous matrix Riccati equation, P, 

may be found from equation (6.2.8). 
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6.3 Effect of the R Matrix on Eigenvalue Positioning 

The theory of the dependence of the positioning of eigen­

values within a disc on the design of the R matrix will now be 

investigated for the case of a specified sector in the left-hand 

half-plane. 

For the initial investigation, the five state example was 

again considered, and the values of a and 8 were chosen to be 

« = -2 and a = 30°. The R matrix was altered according to 

equation (6.2.1), and the resulting eigenvalues are displayed 

below. 

Table 6.3.1 Eigenvalues for a = 30° and a = -2 

React Closed-loop Eigenvalues 

1 -2.4934 · -3.1744 ± 0.2119j , 
2 -2.3253 · -3.0810 ± 0.2382j , 
3 -2.2466 · -3.0457 ± 0.2396j , 
4 -2.1985 · -3.0265 ± 0.2386j , 
5 -2.7122 · -3.0143 ± 0.2374j , 

1/2 -2.7122 · -3.2364 ; -3.4288 , 
1/3 -2.8693 · -3.1693 ; -3.7682 , 
1/4 -2.9925 · -3.1624 . -4.0228 , , 
1/5 -3.0761 · -3.1880 . -4.2455 , , 

It can be seen from the results displayed in Table (6.3.1) 

that when React ~ 1, the closed-loop eigenvalues comprise a real 

value and a complex conjugate pair. When Rfact < 1, the eigen­

values are all real, and move further away from <X as React 

decreases. It would clearly be useful if this result held for all 

sectors, but it must be noted that for this particular choice of a 

and 8, the eigenvalues lie within the sector without having to 

alter the R matrix. 
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Consider the same example , but let e = 650 and a = -2, and 

recall from the previous section that React must be 0.6 or smaller 

for the eiqenvalues to lie in the required region. The results 

for this investigation are shown below. 

Table 6.3.2 Eigenvalues for e = 650 and a = -2 

R Eigenvalues of All - A12F within 
sector 

1I -1.9991 ± 0.2090j · -2.8783 no , 
0.91 -2.0314 ± 0.1894j · -2.8995 no , 
0.71 -2.1147 ± 0.1033j · -2.9559 no , 
0.61 -2.0697 ; -2.7140 · -2.9953 yes , 

(°0
6 

005] -1.9760 · -2.5869 · -4.3098 no 0.5 0.6 
, , 

(006 001] -2.0525 ; -2.4632 · -2.8536 yes 
0.1 0.6 , 

0.21 -2.0826 · -3.1962 · -3.5311 yes , , 
0.011 -2.3740 · -6.9730 ;-11. 2354 yes , 

It can be seen from the results displayed in Table 6.3.2, 

that when ~act is greater than 0.6, the eigenvalues comprise a 

real eiqenvalue, which is within the required sector, and a 

complex conjugate pair of eigenvalues, which are outside the 

required sector. When React is less than or equal to 0.6, the 

eiqenvalues are all real, and are all within the required sector. 

If the R matrix has some non-zero off-diagonal terms, then the 

eiqenvalues are still real, but are outside the required sector if 

the off-diagonal terms are very close to the diagonal terms. 

These results suggest that if Rract has to be smaller than 1 

for the eigenvalues to lie within the required sector, then the 

eiqenvalues will lie in the sector and be purely real. If React 
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can be equal to, or larger than 1, then if R has off-diagonal 

terms very close to the diagonal terms, the eigenvalues will lie 

in the sector and be purely real. If the R matrix is a diagonal 

one, then the eigenvalues will lie in the sector and comprise at 

least one complex conjugate pair. It also appears that a matrix 

with off-diagonal terms close to the diagonal terms will place the 

eigenvalues in the required sector, where a diagonal matrix of the 

same magnitude will not. Conversely, if a diagonal matrix results 

in the eigenvalues being just inside the sector, then the 

introduction of off-diagonal terms of a similar magnitude will 

push some of the eigenvalues back out of the sector. 

To investigate these suppositions, some runs have been 

carried out for two sectors with the R matrix being altered using 

two different methods. The first method is to alter Rract from 10 

to 1 in steps of 0.5, with R = RractI, and the second method is to 

alter the leading diagonal in the same way as in the first method, 

but to choose the off-diagonal terms so that the determinant of R 

is equal to 0.5. The results for these runs are displayed in the 

following figures 

Fig 6.1 (X = -2 B = 300 det (R) = 0.5 

Fig 6.2 (X = -2 e = 300 
R = RractI 

Fig 6.3 (X = -6 e == 250 deteR) = 0.5 

Fig 6.4 (X = -6 e = 250 

R = RractI 
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Eigenvalues in a sector: alpha = -2, theta = 30 and detr = 0.5 
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Eigenvalues in a sector: alpha = -6, theta = 25 and detr = 0.5 
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Fig 6.3 Eigenvalues for a = -6, e = 25° and det(R) =,0.5 

Eigenvalues in a sector: alpha = -6, theta = 25 and r = RfactI 
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It can be seen from figures 6.1 and 6.2, that introducing 

non-zero off-diagonal terms to the R matrix, so that its 

determinant is equal to 0.5 places all the eigenvalues on the real 

axis. When the off-diagonal terms are zero, the eigenvalues 

comprise a real value and a complex conjugate pair. These results 

are repeated for the second sector, as can be seen from figures 

6.3 and 6.4. This result will only hold if the eigenvalues are 

within the required sector for the diagonal R matrix. 

An investigation into the largest diagonal R matrix, and the 

1arqest non-diagonal matrix required to place the eigenvalues 

within the required sector has been carried out for various 

sectors. The results are displayed below. 

Table 6.3.3 Largest R matrices for placement within the sector 

ex eO 
Reacl Eigenvalues Rll R1j Eigenvalues 

0 80 0.7 -1.39±0.24j:-2.S6 1x108 9.99x10 8 
-1.20:-1.90:-3.63 

-1 65 0.8 -1.S4±0.24j:-2.S2 1x108 9.99x10 8 
-1.29:-1.94:-3.86 

-2 75 0.05 -2.01;-4.21;-5.52 - - -
-3 60 0.05 -3.01;-5.05;-6.41 - - -
-4 55 0.07 -4.03;-6.00;-6.70 0.02 0.0199 -4.02;-4.84;-34.1 
-5 58 0.01 -5.08;-9.11;-13.2 - - -

-10 56 0.01 -10.2;-14.1;-17.2 0.1 0.099 -10.7:-11.4;-38.1 

It can be seen from the results displayed in Table 6.3.3 that 

for some sectors, it is possible to use a very large R matrix, 

provided its determinant is small, and still have the eigenvalues 

within the required region. For other sectors, the largest R 

matrix which places the eigenvalues within the sector is that of 

the form R = Reacl l • 
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It is clearly possible to have some control over the form of 

the eiqenvalues, in other words whether they are real or complex, 

dependinq on the sector chosen. In general, if Rract has to be 

smaller than 1, with the R matrix given by RractI, for the closed-

100P eigenvalues to be within the required sector, then the 

eiqenvalues will be real. If the leading diagonal elements of R 

are ~ 1, with the off-diagonal elements close to the leading 

diaqonal elements, and the closed-loop eigenvalues are within the 

required sector, then they will also be real. If a matrix of the 

form ReactI, where Rract is a positive scalar, places the closed­

looP eigenvalues within the required sector then some of the 

eiqenvalues will be complex. If the R matrix has to be very 

small, in other words Rract must be small, to place the 

eiqenval~es within the required se9tor, then there is little scope 

for moving them around within the sector. 

In the particular case when the reduced order system matrices 

comprise a null matrix An and an orthogonal matrix At2 (for 

example, the robot arm system), the closed-loop eigenvalues are 

qiven by equation (6.2.11). It is clear from this equation that 

the eigenvalues will always be real, since the arbitrary matrix, 

R, from the continuous matrix Riccati equation, must be positive 

definite, and hence the scalar Rfact cannot be either negative or 

zero. 
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6.4 Discussion 

It can be seen, therefore, that the closed-loop eigenvalues 

of a VSC system may be placed in a wider range of sectors than was 

previously supposed (section 4.5), provided that the arbitrary R 

matrix from the continuous matrix Riccati equation is chosen 

appropriately. Some general rules have been verified, for systems 

of the form given in equation (2.2.2), and they are as follows: 

1) If a is ~ the largest real closed-loop eigenvalue of the 

reduced order equivalent system, then the limiting B value 

will be 90°, for a suitable (small) choice of the R matrix. 

2) If a is < the largest real closed-loop eigenvalue of the 

reduced order equivalent system, then the limiting B value 

drop~ to 60°, for a suitable.c~?ice of the R matrix. 

3) For the particular case when the system matrices of the 

reduced order equivalent system comprise a null matrix All and 

an orthogonal matrix Al2 , provided that the R matrix is chosen 

to be 1/«2, the limiting B value will be 90°, for all choices 

of a. 

The above conditions may be successfully applied to the 

reduced order equivalent systems of all systems of the general 

form given in equation (2.2.2). It is therefore possible to 

ensure that the closed loop eigenvalues lie within the required 

sector, provided that the sector chosen satisfies these 

conditions. 
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The positioning of the eigenvalues within the required sector 

has also been considered, and some control over their form, real 

or complex, is available. The following general conditions have 

been deduced 

1) If the R matrix has to be smaller than the identity matrix for 

the eigenvalues to be within the required sector, then the 

eigenvalues will all be real. 

2) If an R matrix which is larger than the identity matrix will 

place the eigenvalues within the required sector, then the 

eiqenvalues will be real and complex if R is a scalar multiple 

of the identity matrix, and purely real if the R matrix has 

off-diagonal elements very close to the leading diagonal 

elements. 

3) In the particular case when the system matrices of the reduced 

order equivalent system comprise a null matrix All and an 

orthogonal matrix Al2 , the eigenvalues will always be real. 

It is clearly possible to force the eigenvalues to be either 

all real, or a mixture of real values and complex conjugate pairs 

for some sectors in the left-hand half-plane. The properties 

above, coupled with the conditions on the R matrix for the eigen­

values to be in the required sector, enable the eigenvalue forms 

to be predicted, and in some cases influenced. 
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7. MINIMIZATION OF THE LINEAR CONTROL 

7.1 Introduction 

In this chapter, the effect of "minimizing" the linear part 

of the control is investigated. The technique of finding an 

optimal control which minimizes the performance index of a system, 

is well-known (see for example, Anderson and Moore, 1969 & 1971, 

Grimble and Johnson, 1988). Work has also been done on optimal 

eiqenstructure assignment (see for example Fahmy and O'Reilly, 

1982, Kautsky, Nichols and Van Dooren, 1985, Burrows and Patton, 

1990, a & b). Little work appears to have been done regarding 

minimizing the control effort of a VSC system. It is clearly more 

efficient to use the smallest effective control possible, bearing 

in mind gther design consideration~,such as the choice of the 

closed-loop eigenvalues. The choice of both the the sliding 

hyperplanes and the m remaining eigenvalues for the linear 

feedback system affect the form of the linear control. If the 

sliding mode eigenvalues are being chosen explicitly, then there 

is no flexibility for minimizing the linear part of the control, 

except by suitable choice of the m remaining eigenvalues. If, 

however, the sliding mode eigenvalues are simply required to be in 

a particular region of the left-hand half-plane then there is 

clearly scope for positioning the eigenvalues within the chosen 

region and minimizing the linear part of the control. It is 

therefore possible to combine one of the eigenvalue assignment 

methods outlined in Chapters 3 and 4 with a minimization of the 

linear part of the control, and this will now be considered. It 
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is not possible to predict the effect of this minimization on the 

resulting control, or on the performance. The effects of both the 

s1iding mode eigenvalues and the m remaining eigenvalues on the 

control magnitude, and on the performance will be investigated in 

this chapter. 

section 7.2 contains an outline of the theory of controller 

design, once the sliding hyperplanes have been chosen, and the C 

matrix calculated, and these results are used in later sections. 

section 7.3 contains an investigation of the effect of minimizing 

the 2-norm of the linear part of the control, using the robot arm 

simulation outlined in Chapter 2. section 7.4 contains an 

investigation into the effect of minimizing the condition number 

of the closed-loop matrix for the linear part of the control, 

again us!ng the robot arm simulatiQP. section 7.5 contains a 

brief discussion of the results. 

7.2 controller Design Theory 

Once the sliding hyperplane matrix, C, has been chosen, using 

one of the methods outlined in previous chapters, the state 

feedback control function u ~n ~ ~m must be selected. The 

function of u is to drive the state x into the null space of C, 

and then to maintain it within this subspace. In general, the 

variable structure control law consists of two parts, a linear 

L i N part u and a non-l near part u, and these are added together to 

form the control u. 

L N 
U = U + U (7.2.1) 
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Tbe linear control, L 
U , is a state feedback controller of the form 

(7.2.2) 

The nonlinear control, UN, incorporates the discontinuous 

e1ements of the control law, and has several possible forms which 

have been discussed elsewhere (Zinober, 1991, Young, 19?7, Ryan, 

1983). Here, the unit vector method, (Ryan & Corless, 1984) will 

be considered, which works on the principle of rapid motion onto a 

subspace within the state space, followed by slower transient 

motion within the subspace, which approaches the state space 

origin asymptotically. The individual controls are continuous, 

except on the final intersection of the hyperplanes, N(C), where 

a11 the controls are discontinuous together. The design technique 

ensures that the motion is always towards the final target, the 

null space of C, N(C). The control structure has the form 

u(x) = Lx + 
p 

Nx (7.2.3) 

where the null spaces of N, M and C are coincident. 

H(N) = H(M) = N(C) (7.2.4) 

Recall the transformed state y, outlined in Chapter 2, which is of 

the form y = Tx, and the transformed system 

with (7.2.5) 
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consider a second transformation, T2 'Rn ~ 'Rn, of the form 

z = T 2y (7.2.6) 

where 

.. [In... 0] 
Ta F I 

ID 
(7.2.7) 

F is the control matrix for the reduced order equivalent system. 

The inverse of T2 is given by 

T-1 _ [ In-m 
a - -F (7.2.8) 

. n-. ID T T T partition Z l.nto Zl e 'R and Z2 e 'R , so that z = [Zl Z2]. 

Equation (7.2.6) may then be similarly partitioned to give the 

system equations of the second transformation 

The transformed system equations are therefore 

. . 
Yl = Zl 

.. 

(7.2.9a) 

(7.2.9b) 

(7.2.10) 

Recall from Chapter 2 that the partitioned system equations of the 

reduced order system resulting from the first transformation, T 

are 

(7.2.11) 

(7.2.12) 
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Substituting for Yl and Y2 from equation (7.2.10) into equation 

(7.2.11) and rearranging gives 

(7.2.13 ) 

Substituting for Yl and Y2 from equation (7.2.10) into equation 

(7.2.12) gives 

(7.2.14) 

. 
Substituting for Zl from equation (7.2.13) into equation (7.2.14) 

and rearranging gives 

(7.2.15) 

Equations (7.2.13) and (7.2.15) may be simplified by using the 

following sUbstitutions 

if = A22 + FAlz 

X = A2l - A22F + FAll - FAl2F = A2l - A22F +F~ 

Substituting for these expressions in equations (7.2.13) and 

(7.2.15) gives 

• 
Zl = I:z l + A12Z 2 

Z2 III XZl + IItz2 + BzU 

(7.2.16) 

(7.2.17) 

. 
In order to obtain the sliding mode, Z2 and Z2 must be forced to 

zero. If Z2 is zero, equation (7.2.17) becomes 

(7.2.18 ) 
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ROW, recalling that ~ is an mxm non-singular matrix, define the 

1inear part of the control to be 

(7.2.19) 

where ~. is any mxm matrix with left-hand half-plane eigenvalues. 

Given a real spectrum {<I: Real«l) < 0, i = 1, ••. ,m}, generally 

known as the range space eigenvalues, ~. may be set to 

diaq{~l : i = 1, •••• ,m}. 

Transforming equation (7.2.19) back to the original x space, 

recalling that z = T2y and y = Tx, gives 

(7.2.20) 

The linear part of the control, uL
, will drive the state component 

Z2 to zero asymptotically, since substituting for u from equation 

(7.2.19) into equation (7.2.17) gives Z2 = -~.Z2. The non-linear 

part of the control, UN, must be designed so as to attain H(e) in 

finite time. The non-linear control is discontinuous when Z2 = 0, 

and continuous elsewhere. Let Po be the unique positive definite 

solution of the Lyapunov equation 

(7.2.21) 

Then POz2 = 0 if and only if Z2 = o. 
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The linear control can be chosen to be 

(7.2.22) 

where P > 0 is a scalar parameter selected by the designer to be 

sufficiently large. 

When Z2 = 0, UN is undefined, so it may be arbitrarily defined to 

be any function satisfying luNI ~ p. The control u = uL + UN is 

then given by 

(7.2.23) 

Tbis control will drive an arbitrary initial state ZO to the 

sliding subspace in time ~, given by 

(7.2.24) 
p 

where eT.l n (PD) denotes the minimum eigenvalue of PD and <.,. > 

denotes the Euclidean inner product on ~.. Transforming the 

nonlinear control into x space gives 

(7.2.25) 

(7.2.26) 

Therefore, the control in x space is given by equation (7.2.3). 
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To minimize the control effort required to drive the state 

onto the subspace, it is clearly necessary to "minimize" the 

linear part of the control in some way, and two possibilities will 

noW be considered. The linear part of the control, L, depends on 

the choice of the control matrix, F, as can be seen from equation 

(7.2.20). It is clear, therefore, that there are restrictions on 

the design on the linear part of the control, imposed by the 

design of the control matrix F and the range space eigenvalues. 

If the sliding mode eigenvalues are being explicitly chosen, 

then there is clearly no scope for minimizing the linear part of 

the control by a suitable choice of the control matrix, since it 

has therefore been fixed. The sliding mode eigenvalue placement 

methods !n Chapters 3 and 4 offer some degree of flexibility in 

the F matrix, and hence in the choice of L, since they only 

require the eigenvalues to be within a particular region of the 

1eft-hand half-plane. A method for the minimization of the linear 

part of the control will therefore be investigated for these 

methods. A similar method could be applied to exact sliding mode 

eiqenvalue placement techniques, provided that there were 

tolerances on the required positions of the closed-loop eigen­

values. The choice of the range space eigenvalues has an effect 

on both the linear part and the non-linear part of the control, 

and so a suitable choice could lead to a minimization of the 

linear part of the control. 
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7.3 Minimization of the 2-norm of L 

The 2-norm of a matrix may be defined to be the maximum value 

o~ the ratio between the norm of the product of the matrix with a 

vector, and the norm of the vector. This shows the amount by 

which the transformation can magnify the Euclidean norm of the 

vector. The 2-norm of the linear control gives the magnification 

o~ the distance of any vector from the origin, by the controller. 

Since the function of the linear control is to drive the state to 

the origin, it seems appropriate to try to minimize this 

magnification. It is not feasible to minimize the 2-norm of L, 

and hence the linear control effort, at each time step, and so the 

2-norm of the control matrix L will be minimized by a suitable 

choice of the closed-loop eigenvalues of the reduced order 

equivale~t system. A suitable choice of the range space eigen­

values will decrease the value of the 2-norm of L. Some work has 

been done eigenstructure assignment for a low norm linear feedback 

control law (Burrows and Patton, 1990, a & b). 

Consider first the effect of minimizing the 2-norm of the 

linear part of the control, L, on the control effort. The 2-norm 

of L is defined to be 

(7.3.1) 

h ~ is the maximum eigenvalue of [LTL]. were "'_x 
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In the first instance, this investigation was carried out 

using the optimization package in MATLAB, and in particular the 

routine "attgoal" (Grace, 1990). This is a very general routine 

which attempts to minimize the objectives returned by a user-given 

function, using a sequential quadratic programming method. The 

qoa1 values are given by the user, along with weighting values for 

the goals. The initial value of a design variable k must be 

chosen, along with its bounds. k is varied by the routine to try 

to achieve the goals, and can be a scalar or a matrix. 

For our investigation we require the 2-norm of L to be 

minimized whilst the closed-loop eigenvalues remain in the sector 

(section 4.2). The variable k will be used to alter the R matrix 

as follows 

newr = k*R (7.3.2) 

where k is a positive scalar, and R is fixed by the designer. 

For the sector, the goal is to minimize ~ Lt whilst placing 

all the closed-loop eigenvalues of the reduced order equivalent 

system within a sector specified by a and e (section 4.2). Since 

the requirement for the eigenvalues to be within the required 

sector is a rigid one, a switch variable, reg-pen, is set up, and 

is given the value 1 if the eigenvalues are within the required 

sector, and 10 otherwise. The weighting value for reg-pen must be 

zero, since all of the closed-loop eigenvalues must be within the 

required sector, even if the value of IL~2 is not minimized. 
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Consider again the five state example, and choose ~ = -2, 

8 - 30°, and the range space eigenvalues, < .. , to be [-2.5,-5]. 

Using the eigenvalue placement technique outlined in section 4.2, 

with Q = In-m and R = I., gives the closed-loop eigenvalues of 

All - Al2F as -2.4934 and -3.1744 ± 0.2119j, which are within the 

required sector, so regj)en = 1. The initial value of ILt is 

19.499 and the initial value of k is 1. 

The following results are obtained after 202 steps, with the 

c1osed-Ioop eigenvalues within the required sector : 

ILL = 14.0072 k = 27.1509 

Closed-loop eigenvalues : -2 and -2.9643 ± 0.2272j 

It is clear that the closed~loop eigenvalues are within the 

required sector, and that ILI2 is smaller than it was for k = 1, 

but the minimum has not been reached after 202 steps, and the 

computational time is excessive. 

As as a second example, using the same five state system, 

choose ~ = -2 and 8 = 65°, with the same range space eigenvalues. 

Using the same eigenvalue placement technique as for the previous 

case, with Q = I n _. and R = I., gives the closed-loop eigenvalues 

of Atl - A12F as -2.8783 and -1.9991 ± 0.2091. These eigenvalues 

are clearly not all in the sector, so regj)en = 10. The initial 

value of ILI2 is 11.4911, and this will probably increase since 

the eigenvalues are not all in the sector. k is chosen to be 1. 
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~ following results were obtained after 202 steps, with some of 

the closed-loop eigenvalues outside the required sector : 

k = 1 

Closed-loop eigenva1ues -2.8783 and -1.9991 ± 0.2091j 

It is clear that after 202 steps, there is no change in k and 

two of the eigenvalues are still outside the required sector. 

There are clearly problems with using this very general 

optimization package with a discontinuous variable such as 

req-pen. The main difficulty is that the eigenvalues are either 

within the required sector, or outside it, and attgoal seems to 

find it difficult to cope with a variable which switches between 

two values, as reg-pen does, rather than continuously iterating 

with each step. This results in the program oscillating between 

two k values and being unable to find an acceptable answer. 

Alternatively, k may be moved in the wrong direction, since the 

program is unable to tell which direction is correct from reg-pen • 

To overcome this problem, a more specific MATLAB routine has 

been written, which can cope with the variable reg-pen switching 

between two values, and will not search in the wrong direction for 

a large number of steps. This routine uses an iterative one­

variable search to find the R matrix which will minimize the 2-

norm of L. 
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The R matrix is altered as outlined in equation (7.3.2) by a 

positive scalar, React' which is increased or decreased, until 

1) the minimum of ILI2 is obtained. 

2) the "computational steady state" of min~Lt is obtained. 

3) the smallest possible value of IL~2 is obtained, whilst still 

having the closed-loop eigenvalues within the required sector. 

The "computational steady state" of the minimum is defined as a 
. . -6 value wh1ch changes marg1nally « 1x10 ) for a step change in 

~act 

Table 7.3.1 contains the results for various sectors with the 

value of ILl for React = 1, [ILII] and the value of reg-'pen for 
2 2 0 

-
k = 1, rpo given for comparison. The Cl are the range space 

eigenvalues, is the minimum 11 LII value, and cSs is the 
2 

number of steps taken to reach the minimum. rp represents the 

final value of reg-'pen, and an indication is given of whether the 

minimum value has been reached. 

Table 7.3.1 Minimum 1I Lt values for various sectors 

eO a rpo [ILia). Cl [ILLL. cSs rp Rfact Minimum 

reached 

30 -2 1 12.9599 -2.5;-3.5 9.4352 14 1 25 Y 
60 -2 1 8.4912 -2.5;-3.5 8.4912 22 1 1 Y 
65 -2 10 7.7137 -2.5;-3.5 8.7343 27 1 0.6 Y 
35 -4 1 175.1379 -4.0;-8.0 169.4164 22 1 110 Y 
60 -4 10 77.4880 -4.0;-8.0 224.3618 42 1 0.01 Y 
20 -6 1 617.3135 -4.0;-8.0 614.2129 16 1 40 Y 
55 -6 10 244.0771 -4.0;-8.0 328.0779 39 1 0.04 Y 
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It can be seen from the results displayed in Table 7.3.1 that 

in all cases a minimum value of ILI2 is reached, and the closed-

100p eigenvalues of the reduced order equivalent system are within 

the required sector. Three of the cases listed in Table 7.3.1 

initially have eigenvalues outside the required sector (rpo = 10), 

and it can be seen that the method used finds the smallest value 

of ILI2 for which the eigenvalues are within the required the 

sector. 

This specialized routine is clearly successful for the 

particular problem of minimizing a system containing a 

discontinuous variable, and the number of steps required is not 

too large, even in the cases where the eigenvalues are initially 

outside the required sector. 

It can be seen from the results in Table 7.3.1 that for some 

sectors, e = 30° and a = -2 for example, it is possible to alter 

the value of ILI2 by a reasonable amount (- 25%), and for other 

sectors, e = 35
0 and a = -4 for example, the value of ILt is not 

altered very much « 4%). In the case of e = 60° and a = -2, for 

example, the minimum value of IL~2 occurs when R = Im' There is 

clearly a lot of variation in the value of 11 LII for the various 
2 

sectors, and a lot of difference in its minimum value, and so the 

effect on the linear part of the control will vary depending on 

which sector is being considered. 
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It can also be seen from the results in Table 7.3.1 that as 

~act increases, the value of ILI2 decreases. It was observed 

from the results obtained in section 6.2 that as ~act decreases, 

the eigenvalues move away from the origin, and further into the 

sector. It is therefore clear that there is a trade-off between 

the value of ~act which gives the minimum value of ~Lt, and the 

value of React which results in the eigenvalues being in -the 

required sector. If the eigenvalues lie well within the required 

sector when R = lID' and hence React = 1, then there is clearly 

scope for increasing the size of React without pushing the 

eigenvalues out of the sector, and so 11 Lt may be minimized. 

If, however, the eigenvalues are only just in the sector when 

React = 1, or if ~act had to be decreased to push the eigenvalues 

into the_required sector, then there is clearly very little scope 

for altering ~act' and hence very little scope for minimizing 

IL~2 by choice of the control matrix. 

The method for placing the closed-loop eigenvalues of the 

reduced order equivalent system in a disc may also be adapted for 

the minimization of IL~2. This method, outlined in section 3.2, 

was found to place the closed-loop eigenvalues within the required 

disc for all positive choices of RCact ' as can be seen from the 

robustness results presented in section 5.2. 

The minimization of IL~2 whilst placing the closed-loop 

eigenvalues within various discs will now be investigated. 
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The results for the various discs, of radius r and centre a, are 

given in Table 7.3.2. 

Table 7.3.2 Minimum IL~ values for various discs 
a 

a r [ILl.), <1 [ILI.J... cSs Rract Min/st-st 

reached 

-6 4 14.7742 -2;-4 10.1634 70 195310 Y 
-6 2 138.0144 -4;-8 136.7579 17 45 Y 
-6 6 5.0419 -1;-6 4.6391 22 110 Y 
-4 1 43.2668 -1;-6 42.3589 20 60 Y 
-4 4 5.0050 -1;-6 4.6390 22 110 Y 
-3 1 11.5615 -2;-4 8.6177 70 195310 Y 

It can be seen from the results displayed in Table 7.3.2, 

that ILia is minimized within a reasonable number of steps for the 

various combinations of a and r. It can also be seen that if the 

difference between a and r is the same then, regardless of their 

actual values, the values of I Lt for Rract = I, and the minimum 

of ILI2 are very similar. It was noted in section 5.2 that, as 

~act is increased, some, or all of the closed-loop eigenvalues 

are moved towards the right-hand edge of the disc. It can be seen 

from the results in Table 7.3.2, that as Rract increases, the 

value of ILI2 decreases, until either a minimum or a 

"computational steady state" value is reached. There is no 

problem, with this method, of the closed-loop eigenvalues moving 

out of the required disc, for large values of the scalar Rract • 

The closed-loop eigenvalues will always lie in the required disc, 

for any positive definite choice of the matrix R. 
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It is also possible to minimize 11 Lt by choosing appropriate 

values for the range space eigenvalues. The effect of this 

minimization method will be harder to predict, since the choice of 

the range space eigenvalues also affects the non-linear part of 

the control, as can be seen from equation (7.2.22). A MATLAB 

routine which linearly alters the range space eigenvalues until 

the minimum of ILI2 is reached has been written. There" is clearly 

a restriction on the choice of the range space eigenvalues, since 

they must be negative. 

The results for the five state system for various sectors are 

displayed below, with the initial value of Cl being [-1 -10] in 

each case. 

Table 7.3.3 Minimum ~L~2 values for different choices of Cl 

eO ex. [ILL), Cl [iLt).,. ~s 

30 -2 41.6831 -0.92;-2 6.8334 17 
60 -2 27.0482 -0.92;-2 4.6394 17 
35 -4 222.4532 -0.92:-2 33.4322 17 
20 -6 786.9282 -0.92;-2 120.0821 17 
40 -6 532.7077 -0.92;-2 80.8720 17 

It can be seen from the results displayed in Table 7.3.3 that 

the minimization of ILI2 is affected much more by the choice of 

the range space eigenvalues, than by the choice of the sliding 

mode eigenvalues. In each case, the value of IILII2 is altered by 

about 80% which is a bigger difference than was obtained by 

altering the control matrix, and also gives consistent results 
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which are independent of the sector chosen. It is possible that a 

combination of these results for choices of control matrix and 

range space eigenvalues will give good performance results, and 

this will now be investigated. 

It has been shown, therefore, that the value of ILI2 may be 

minimized by a suitable choice of the value React' whilst still 

having the closed-loop eigenvalues of the reduced order equivalent 

system within the required sector or disc. It has also been shown 

that the value of ILI2 may be minimized by a suitable choice of 

the range space eigenvalues. However, it is difficult to assess 

the effect of the minimization of IL~2 on the performance of a 

system, since the choice of the control matrix, F, and the choice 

of the range space eigenvalues affect the components of the linear 

part of the control, and the choice of the range space eigenvalues 

affects the non-linear part of the control, as can be seen from 

equation (7.2.22). It is clearly not easy to predict, in general, 

the effect of altering the non-linear part of the control on a 

system. The effect must be considered for each particular example 

separately. 

The numerical example which will now be considered is the 

model-following example of the robot arm, described in Chapter 2. 

This example has been chosen since it will be possible to see the 

effect of minimizing ILI2 on the Br and ~r errors of the robot 

arm, as well as on the components of the control. 
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Firstly, a suitable choice of a sector must be made, so that 

the minimum value of ILI2 differs as much as possible from its 

value when React = 1, to enable the differences in the results to 

show up clearly. 

The system matrices, the transformation matrix, T, and the 

matrices of the reduced order equivalent system for the" robot arm 

are obtained in section 3.4, and the simulation of the performance 

of the robot arm is discussed in section 2.4. 

Consider various sectors for the closed-loop eigenvalues of 

the reduced order equivalent system of the robot arm system to lie 

within. The results of the investigation into the sector which 

gives the biggest change in the value of 11 L~ are displayed in 
2 

Table 7.3.4. The variables displayed in this table are the same 

as those displayed in Table 7.3.1, and the range space eigenvalues 

are initially set to [-1 -10]. 

Table 7.3.4 Minimum ILI2 values for various sectors 

ex eO rpo [ILI.L [ILI.J... cSs rp Rract minimum 

reached 

-2 30 1 0.3805 0.3556 28 1 260 Y 
-2 40 1 0.3460 0.3186 29 1 285 Y 
-'2 60 1 0.2592 0.2225 33 1 685 Y 
-4 30 1 0.6968 0.6835 19 1 55 Y 
-6 30 1 1.0241 1. 0152 17 1 45 Y 
-1 30 1 0.2391 0.1993 35 1 935 Y 
-1 60 1 0.1896 0.1409 39 1 1435 Y 
-1 10 1 0.2596 0.2198 34 1 810 Y 
-0.5 30 1 0.1817 0.1314 39 1 1435 Y 
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It can be seen from the results displayed in Table 7.3.4 that 

the biggest percentage difference between the value of ILI2 when 

v_ = 1 and its minimum value, occurs when a = -0.5 and "yact , 

8 = 30°. The robot arm simulation will be run for this sector 

with both the nominal value of IL~ and its minimized value. 
2 

The simulation will also be run for the minimization of ILI2 
by choice of the range space eigenvalues, for comparison. 

The minimization of ~L~2 by choice of the range space eigen­

values will now be investigated for the robot arm. Again, the 

sector giving the biggest difference between the initial and 

minimized values of ILI2 is required. The initial choice of the 

range space eigenvalues is [-1 -101~ 

Table 7.3.5 Minimum ~L12 values for different choices of Cl 

eO a [!LlzL Cl cSs [ILLL 
30 -2 0.3805 -0.92;-2 17 0.0902 
40 -2 0.3460 -0.92;-2 17 0.0823 
60 -2 0.2592 -0.92;-2 17 0.0621 
30 -4 0.6968 -0.92;-2 17 0.1624 
30 -6 1. 0241 -0.92;-2 17 0.2367 
30 -1 0.2391 -0.92;-2 17 0.0547 
60 -1 0.1896 -0.92;-2 17 0.0445 
10 -1 0.2569 -0.92;-2 17 0.0616 
30 -0.5 0.1817 -0.92;-2 17 0.0435 

It can be seen from the results displayed in Table 7.3.5 that 

the percentage differences between the initial value of ILI2 and 

the minimum value of IL~2 are the same for all of the sectors 
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investigated. Again, the minimization of ~L~2 by the appropriate 

choice of the range space eigenvalues, appears to be more 

effective than the minimization by choice of the sliding mode 

eigenvalues. This method of minimizing ILI2 is also more 

consistent, since the results do not depend on the choice of 

sector. The robot arm simulation will therefore be run for the 
o . 

sector defined by a = -0.5 and e = 30 , for ease of comparison 

with the minimization by choice of sliding mode eigenvalues 

method. 

The results of the simulation runs for the three examples, 

for er error, ~r error, u1 and u2 are displayed in figures 7.1 to 

7.6, with the parameters as follows 

Fig 7.1 & 7.2 Plots for <I = [-1 -10] and 11 L 12 not minimized 

Fig 7.3 & 7.4 Plots for ~Lt minimized by sliding mode design 

Fig 7.5 & 7.6 Plots for ~L112 minimized by range space design 

The errors in all these cases are larger than for the run in 

Chapter 2, which is due, in part, to coupling effects between the 

angles. The simulation run in section 2.4 used partial eigen­

vector assignment to remove this coupling effect, which resulted 

in very small errors. The eigenvector assignment has not been 

included for these investigations, since it would mask the effects 

of the minimizations. 
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It can be seen from figures 7.1 and 7.3 that when ILI2 is 

minimized by choice of the sliding mode eigenvalues, the Br and 'r 
error plots are very similar in shape, but those for the minimized 

value of ILI2 are larger than those for its nominal value. The 

error plots for Br and 'r for the minimization of ~L12 by choice 

of the range space eigenvalues (Fig 7.5) are again the same shape, 

but are larger again. The angle error plots for all three cases 

have spikes when the robot arm changes direction, and the worst 

spikes occur at the changes of direction during the sinusoidal 

part of the trajectory. The steady state and worst case errors 

are as follows : 

Fig 7.1 Br = 12.6° (worst case) Br = 2.86° (steady state) 

'r = 1.43° 'r = 0.29° 

Fig 7.3 Br = 17.2° Br = 5.73° 

'r = 2.01° 'r = 0.46° 

Fig 7.5 Br = 37.2° Br = 17.2° 

'r = 0.89° 'r = 0.57° 

It can be seen from figures 7.2 and 7.4 that the control 

effort is slightly smaller when 11 L~ has been minimized by 
2 

choosing appropriate sliding mode eigenvalues. If ~L12 has been 

minimized by choosing appropriate range space eigenvalues, it can 

be seen from figure 7.6 that the control effort is increased by 

about 50% compared with the other two results. 
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The control plots are all very similar in shape, smooth waves 

about a constant value and these values are as follows : 

Fig 7.2 

Fig 7.4 

Fig 7.6 

u1 : 1.5 

u1 1.4 

u1 3.3 

u2 : 0.025 

u2 0.02 

u2 0.28 

It is clear from these results, that minimizing ILI2 by 

choosing the appropriate range space eigenvalues leads to both a 

1arger control effort, and larger errors in the angles than either 

minimizing ILI2 by choosing appropriate sliding mode eigenvalues, 

or not minimizing ILI2 at all. 

It ~ould appear from these re~~lts that the effect of the 

range space eigenvalues is more significant than the effect of the 

size of ILI
2

• If ILI2 is minimized by choosing the appropriate 

sliding mode eigenvalues, then it appears that choosing the range 

space eigenvalues to be small (ie large and negative) gives a 

small decrease in the control effort and a small increase in the 

angle errors. 

Minimizing ILI2 by choosing the appropriate range space 

eigenvalues leads to an increase in both the control effort and 

the angle errors. It would appear, therefore, that a smaller 

control effort could be obtained simply by choosing the range 

space eigenvalues to be large and negative, which would have the 

effect of maximizing the value of 11 LI12 . 
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The magnitude of the control effort clearly depends on the 

choice of the range space eigenvalues, and the choice of the 

s1iding hyperplanes, and the size of IL!2' It is not obvious from 

the theory how these interact, and it might be necessary to 

minimize ILI2 by simultaneous choice of the sliding hyperplanes 

and the range space eigenvalues. There is clearly scope for an 

investigation into a far more complicated optimization problem 

than has been considered in this work. 

7.4 Minimization of the Condition Number of (A + BL) 

Suppose a matrix transformation maps vectors onto a surface 

6. Then the condition number of the matrix is defined to be the 

ratio of_the largest to the smallest distances from the origin to 

a point on this surface 6, and it will always be ~ 1. A matrix 

with a condition number close to 1 is called a well-conditioned 

matrix. Again, since the linear control drives the state to zero, 

it is appropriate to try and minimize its condition number, and 

hence the ratio of distances. The condition number will be 

minimized during the design process by choice of the sliding mode 

eigenvalues. suitable choice of the range space eigenvalues will 

lead to a decrease in the size of the condition number. 

Consider the effect of minimizing the condition number (with 

respect to the 2-norm) of the closed-loop system for the linear 

control, (A + BL), on the control effort and the system 

performance. 
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The 2-norm condition number of the linear closed-loop system is 

defined to be 

le CA + BL) = I (A + BL) t I (A + BL) -1 L (7.4.1) 

where I !2 is as defined in equation (7.3.1). 

The optimization package in MATLAB (Grace, 1990) was not used 

to investigate this minimization problem, since the same 

difficulties experienced when trying to minimize IL~2' outlined in 

the previous section, will clearly arise. 

A MATLAB routine for the specific problem of minimizing the 

condition number of (A + BL), whilst placing the closed-loop 

eigenvalUes of the reduced order' equivalent system within the 

required sector of the left-hand half-plane has been written. The 

R matrix is altered in the following way 

newr = Rract R (7.4.2) 

where Rract is a positive scalar, and R is the chosen starting 

matrix, usually set to I... The scalar Rract is altered, as 

appropriate, until : 

1) The minimum of the condition number of (A + BL) is reached. 

2) A "computational steady state" minimum value is reached. 

3) The smallest possible value of the condition number of 

(A + BL) is obtained, whilst still having the closed-loop 

eigenvalues within the required sector. 

175 



The results for an investigation into minimizing the 

condition number of (A + BL) for a sector defined by a and e are 

contained in Table 7.4.1, with the values of K(A + BL) for 

~act = 1 given for comparison. rpo and rp are the switch values 

for ~act = 1 and the minimum value of the condition number of (A 

+ BL), (~{A+BL»)m' respectively, and will be set to 1 if the 

eiqenvalues are within the required sector, and 10 otherwise. 

Table 7.4.1 Minimum K(A + BL) values for various sectors 

eO a rpo (K(A+BL»)o <1 (K (A+BL») m cSs React rp minimum 

30 -2 1 24.5883 -2.5;-3.5 16.7203 14 25 1 Y 
60 -2 1 14.149 -2.5;-3.5 14.1496 22 1 1 Y 
65 -2 10 12.5349 -2.5;-3.5 14.5527 27 0.6 1 Y 
35 -4 1 510.7013 -4.0:-8.0 490.1365 24 160 1 Y 
60 -4 10 193.5621 -4.0:-8.0 717.5465 42 0.01 1 Y 
20 -6 1 2021.2 -4.0;-8.0 2001.85 17 45 1 Y 
55 -6 10 724.2187 -4.0:-8.0 1039.9 39 0.04 1 Y 

It can be seen from the results in Table 7.4.1 that in all 

cases a minimum, or a steady state value of the minimum, of 

K{A + BL) is reached, and the closed-loop eigenvalues of the 

reduced order equivalent system are within the required sector. 

Three of the cases listed in Table 7.4.1 initially have eigen­

values outside the required sector (rpo = 10), and it can be seen 

that the method used finds the smallest value of K(A + BL) for 

which the eigenvalues are within the required the sector. 

This specialized routine is again clearly successful for this 

particular minimization problem, with a discontinuous variable, 

even in the cases where the eigenvalues are initially outside the 

required sector. 
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It can be seen from the results in Table 7.4.1 that for some 

sectors, 8 = 30° and a = -2 for example, it is possible to alter 

the value of (K(A + BL) by a reasonable amount (- 33%), and for 

other sectors, 8 = 20° and a = -6 for example, the value of 

~(A + BL) is not altered very much « 1%). In the case of B = 60° 

and a = -2, for example, the minimum value of K(A + BL} occurs 

when R = I., and this is also the point where the minimUm of ILI2 
occurs. There is clearly a lot of variation in the value of 

K(A+BL) for the various sectors, and a lot of difference in its 

minimum value for the various sectors. The minimum value of 

K(A + BL) occurs for the same Rfact value as the minimum value of 

ILI2 does, for all of the sectors investigated in Table 7.4.1, 

except for B = 35° and a = -4 and 8 = 20° and a = -6. The values 

of K(A +_BL) for the various sectors are much bigger than the 

values of IL!2' and the differences between the condition number 

when Rract = 1 and the minimum value of the condition number are 

generally much larger, of the order 10 in some cases. 

It can also be seen from the results in Table 7.4.1 that as 

~act increases, the value of K(A + BL) decreases. It was 

observed from the results obtained in section 6.2 that as Rract 

decreases, the eigenvalues move away from the origin, and further 

into the sector. It is therefore clear that once again there is a 

trade-off between the value of Rfact which gives the minimum value 

of K(A + BL), and the value of Rfact which results in the eigen­

values being in the required sector. If the eigenvalues lie well 

within the required sector when R = Iml and hence Rract = 1, then 
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there is clearly scope for increasing the size of Rract without 

pushing the eigenvalues out of the sector, and so the value of 

~(A + BL) may be minimized. If, however, the eigenvalues are only 

just in the sector when Rract = 1, or if Rract had to be decreased 

to push the eigenvalues into the required sector, then there is 

clearly very little scope for altering Rract, and hence very 

little scope for minimizing ~(A + BL). 

The method for placing the closed-loop eigenvalues of the 

reduced order equivalent system in a disc will adapt itself well 

to the minimization of K(A + BL), and will now be investigated. 

The results for the various discs, of radius r and centre a, are 

given in Table 7.3.2. The other values listed in the table are 

the same as those for Table 7.4.1, except that in this case there 

is no need for the variable reg-pen, since the closed-loop 

eigenvalues are always within the required disc. 

Table 7.4.2 Minimum K(A+BL) values for various discs 

ex r (~(A+BL) )0 <I (~(A+BL»)III ~s Rract min / st-st 
reached 

-6 4 28.0092 -2;-4 18.0119 73 429690 Y 
-6 2 385.7116 -4;-8 381. 4360 18 50 Y 
-6 6 11.4562 -1;-6 11.4562 22 1 Y 
-4 1 94.1963 -1;-6 91. 0061 24 160 Y 
-4 4 11.5075 -1;-6 11. 5075 22 1 Y 
-3 1 20.8214 -2;-4 14.9933 70 195310 Y 

It can be seen from the results in Table 7.4.2 that K(A + BL) 

is minimized within a reasonable nUmber of steps for the various 

combinations of a and r. It can also be seen that if the 
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difference between the magnitudes of a and r are zero then, the 

initial values of K(A + BL) are very similar, and the minimum 

val ues occur when React = 1. For this example, except in the case 

when a = -3 and r = 1, the minimum of the condition number of 

A + BL does not occur for the same React value as the minimum of 

ILI2 occurs. In the case where a = -6 and r = 2, for example, the 

minimum of the condition number occurs one step later than the 

minimum of the 2-norm. Again, as React is increased, the 

condition number decreases, but since the eigenvalues will always 

lie in the disc, this does not cause any problems. 

It is also possible to minimize K(A + BL) by choosing 

appropriate values for the range space eigenvalues. The effect of 

this min!mization method will ag~i~,be harder to predict, for the 

reasons outlined in the previous section. A MATLAB routine which 

alters the range space eigenvalues by scalar multiplication, until 

the minimum of K(A + BL) is reached has been written. 

The results for the five state system for various sectors are 

displayed below, with the initial value of <1 being [-1 -10] in 

each case. 

Table 7.4.3 Minimum K(A + BL) values for different <1 
eO a (K (A+BL) ) <1 (K (A+BL) ) as 

0 m 

30 -2 90.4474 -0.92;-2 14.6921 17 
60 -2 55.9696 -0.92;-2 9.8194 17 
35 -4 532.3128 -0.92;-2 72.3342 17 
20 -6 2095.2 -0.92;-2 260.3421 17 
40 -6 1388.2 -0.92;-2 175.2452 17 
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It can be seen from the results displayed in Table 7.4.3 that 

the minimization of K(A + BL) is affected much more by the choice 

of the range space eigenvalues, than by the choice of the sliding 

mode eigenvalues. In each case, the value of K(A + BL) is altered 

by about 80% which is a bigger difference than was obtained by 

altering the control matrix, and also gives consistent results 

which are independent of the sector chosen. Again, a combination 

of these minimization techniques will be considered. 

It has been shown, therefore, that the value of K(A + BL) may 

be minimized by a suitable choice of the value ~act' whilst still 

having the closed-loop eigenvalues of the reduced order equivalent 

system within the required sector or disc. It has also been shown 

that the value of K(A + BL) may be minimized by a suitable choice 

of the range space eigenvalues. However, as was found in the 

previous section, it is difficult to assess the effect of the 

minimization of K(A + BL) in general, due to the effects on both 

the linear and the non-linear part of the control of these two 

minimization techniques. The effect on the performance of a 

system must be considered for each individual case. 

The model-following example of the robot arm will again be 

considered, so that the effects on performance as well as on the 

control magnitude can be seen. Firstly, a suitable choice of a 

sector must be made, so that the minimum value of K(A + BL) 

differs as much as possible from its value for ~act = 1, to 

enable the differences in the results to show up clearly. 
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Investigating various sectors for the robot arm system, with 

the values displayed in Table 7.4.4 the same as those displayed in 

Table 7.4.1, and the range space eigenvalues initially set to 

[-1 -10], gives the following results 

Table 7.4.4 Minimum K(A+BL) values for various sectors 

« 8° rpo (K(A+BL»)o (K (A+BL) ) ID ~s rp React min / st~st 

reached 

-2 30 1 64.7675 61.2386 27 1 235 Y 
-2 40 1 59.8787 56.0377 28 1 260 Y 
-2 60 1 47.9311 43.2057 30 1 310 Y 
-4 30 1 110.6398 108.7009 19 1 55 Y 
-6 30 1 158.6691 157.3581 16 1 40 Y 
-1 30 1 45.2984 40.4466 30 1 310 Y 
-1 60 1 39.3652 35.9382 20 1 60 Y 
-1 10 1 47.6224 42.8779 30 1 310 Y 
-0.5 30 1 38.5434 35.9353 8 1 8 Y 

It gan be seen from the results in Table 7.4.4 that the 

biggest difference between the initial value of K(A + BL) and the 

minimum value of K(A + BL) occurs when « = -1 and 8 = 30°. The 

robot arm simulation will be run for this sector with both the 

nominal and minimized values of K(A + BL). 

The simulation will also be run for the minimization of 

K(A + BL) by choice of the range space eigenvalues, for 

comparison. 

The minimization of K(A + BL) by choice of the range space 

eigenvalues will now be investigated for the robot arm. Again, 

the sector giving the biggest difference between the initial and 

minimized values of K(A + BL) is required. 
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The initial choice of the range space eigenvalues is [-1 -10]. 

Table 7.4.5 Minimum K{A+BL) values for different choices of <1 
eO (X (K {A+BL»)o <1 cSs (K (A+BL») 

ID 

30 -2 64.7675 -0.92;-2 17 16.0361 
40 -2 59.8787 -0.92;-2 17 14.8996 
60 -2 47.9311 -0.92;-2 17 12.1217 
30 -4 110.6398 -0.92;-2 17 26.6973 
30 -6 158.6691 -0.92;-2 17 37.8584 
30 -1 45.2948 -0.92;-2 17 11. 5085 
60 -1 39.3652 -0.92;-2 17 10.1290 
10 -1 47.6224 -0.92;-2 17 12.0499 
30 -0.5 38.5434 -0.92;-2 17 9.9378 

It can be seen from the results displayed in Table 7.4.5 that 

the percentage differences between the initial value of K(A + BL) 

and its minimum value are the same for all the sectors. Again, 

the minimization of K(A + BL) by t~~ appropriate choice of the 

range space eigenvalues, appears to be more effective than the 

minimization by design of the sliding mode. This method of 

minimizing K(A + BL) is again more consistent, as was found in the 

minimization of ILI2 case. The robot arm simulation will 

therefore be run for the sector defined by a = -1 and e = 30°, for 

comparison with the minimization by design of the sliding mode. 

The results of the simulation runs for er and ~r error, u1 

and u2 are displayed in figures 7.7 to 7.12, as follows: 

Fig 7.7 & 7.8 Plots for <1 = [-1 -10], K{A+BL) not minimized 

Fig 7.9 & 7.10 Plots for K(A+BL) minimized; sliding mode design 

Fig 7.11 & 7.12 Plots for K(A+BL) minimized; range space design 
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Again, the errors in all these cases are larger than for the 

simulation run in Chapter 2, due, in part, to coupling effects 

between the angles, discussed in the previous section. 

It can be seen from figures 7.7 and 7.9 that when ~(A + BL) 

is minimized by choice of the sliding mode eigenvalues, the er and 

~r error plots are very similar in shape, but those for-the 

minimized value of ~(A + BL) are larger than those for its nominal 

value. The error plots for er and ~r for the minimization of 

K{A + BL) by choice of the range space eigenvalues (Fig 7.11) are 

again the same shape, but are larger again, except for the 

sinusoidal part of the trajectory, when the ~r errors are smaller 

than those in figures 7.7 and 7.9, by about 30%. 

The angle error plots for all three cases have spikes when 

the robot arm changes direction, and the worst spikes occur at the 

changes of direction during the sinusoidal part of the trajectory. 

The steady state and worst case errors are as follows : 

Fig 7.7 

Fig 7.9 

er = 9.74° (worst case) 

~r = 1.15° 

er = 11.5° 

~r = 1.29° 

Fig 7.11 er = 28.1° 
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er = 2.29° (steady state) 

~r = 0.23° 

er = 2.86° 

~r = 0.29° 

er = 11.5° 
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It can be seen from figures 7.8 and 7.10 that the control 

effort is indistinguishable for the nominal and minimized by 

sliding mode design values of K(A + BL). If K(A + BL) has been 

minimized by choosing appropriate range space eigenvalues, it can 

be seen from figure 7.12 that the control effort is increased by 

about 50% compared with the other two results, and varies less, 

after the first second, than the other two control plots do. The 

control plots are all very similar in shape, smooth waves about a 

constant value and these values are as follows : 

Fig 7.8 

Fig 7.10 

Fig 7.12 

-

u1 

u1 

u1 

1.6 u2 0.035 

1.6 u2 0.035 

3.5 u2 0.3 

It is clear from these results, that minimizing K(A + BL) by 

choosing the appropriate range space eigenvalues leads to both a 

larger control effort, and larger errors in the angles than either 

minimizing K(A + BL) by choosing appropriate sliding mode eigen­

values, or not minimizing K(A + BL) at all. 

It would appear from these results that the effect of the 

range space eigenvalues is more significant than the effect of the 

size of K(A + BL). If K(A + BL) is minimized by choosing the 

appropriate sliding mode eigenvalues, then it appears that 

choosing the range space eigenvalues to be small (ie large and 

negative) gives a small decrease in the control effort and a small 

increase in the angle errors. 
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Minimizing ~(A + BL) by choosing the appropriate range space 

eigenvalues leads to an increase in both the control effort and 

the angle errors. It would appear, therefore, that a smaller 

control effort could be obtained simply by choosing the range 

space eigenvalues to be large and negative, which would have the 

effect of maximizing the value of ~(A + BL). 

7.5 Discussion 

It is clear from this work that it is possible to minimize 

either the 2-norm of the linear part of the control, or the 

condition number of the linear closed-loop feedback system, or in 

some cases both simultaneously, whilst the closed-loop eigenvalues 

of the reduced order equivalent sy~tem remain in the required 

sector or disc in the left-hand half-plane. The specialized 

MAT LAB routines seem to work very efficiently when solving these 

problems, and the difficulties experienced when trying to use a 

very general MATLAB optimization routine to solve these problems 

have been overcome. 

However, it appears that the effects of these two different 

minimizations of the linear part of the control are very small, 

and for some of the examples used here, they are dominated by the 

effects of the choice of the range space eigenvalues. It is 

clearly not straightforward to predict these effects on the 

control effort and performance from the theory, partly due to the 

complexity of the interactions, and partly because the choice of 
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the range space eigenva1ues affects the non-linear part of the 

control as well as the linear part of the control. The effects of 

the minimization of the condition number of the linear feedback 

system on the control effort and the performance would appear to 

be as small as the effects of the minimization of the 2-norm of 

the linear part of the control. 

The most critical effect on the performance of the system 

would appear to be due to the choice of the range space eigen­

values. The following effects of the range space eigenva1ues have 

been deduced from these investigations : 

1) If the range space eigenva1ues are small and negative, then 

the 2-norm and the condition number will be minimized, 

simultaneously, and the resulting control will be increased by 

about 50% • 

2) If the range space eigenvalues are chosen to be large and 

negative, then the 2-norm and the condition number will be 

maximized, and the control effort will be decreased. 

3) If the 2-norm or the condition number is minimized by design 

of the sliding mode, and the range space eigenva1ues are large 

and negative, then the control effort may be decreased. 

It would appear, therefore, that the most satisfactory way to 

decrease the effort of the linear part of the control, without 

increasing the system errors, is to choose the range space 

eigenvalues so as to maximize the 2-norm or the condition number. 
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8. CONCLUSIONS AND FURTHER WORK 

It has been illustrated in this thesis that the Variable 

structure Control approach to the solution of the problem of 

deterministic control of uncertain time-varying systems compares 

very well with the method of Lyapunov Control. The accuracy of 

these two methods has been confirmed by the detailed consideration 

of a non-linear uncertain model-following control system, a 

trajectory-tracking robot manipulator. 

The design of the sliding hyperplane matrix of a Variable 

structure controller, by specifying different regions in the left­

hand half-plane in which the closed-loop eigenvalues of the 

reduced order equivalent system must lie, has been investigated. 

The method of eigenvalue placement within a vertical strip has 

necessitated an investigation into.~he suitability of methods of 

solution of a real continuous matrix Riccati equation for the 

particular case when the right-hand side of the equation is equal 

to zero. The theory for the placement of the closed-loop 

eigenvalues of a general system within a disc or an infinite 

vertical strip has been developed for use in the hyperplane matrix 

design method. 

Two new regions of the left-hand half-plane have also been 

considered, namely a sector and a region bounded by two 

intersecting sectors. The necessary theory for ensuring that the 

eigenvalues of a system lie within these regions has been 

developed, and then extended for use in the design of the sliding 

hyperplane matrix. 
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This has involved an investigation into the solution of a 

complex continuous matrix Riccati equation, and a reliable method 

leading to a satisfactory solution has been developed. The 

restrictions on the magnitude of the angle describing the sector, 

for satisfactory closed-loop eigenvalue placement within the 

sector, have been established for a general system of the form of 

equation (2.2.2). 

The robustness of the three different regions to changes in 

the positive definite symmetric R matrix has been investigated. 

The choice of the appropriate R matrix to give the desired eigen­

values, real or complex, and to specify their positions within the 

required region have been obtained for a general system of the 

form of equation (2.2.2). Some further results on the positioning 

of the eigenvalues within the requ~Fed region have been proved for 

a system of a particular specialized form. 

The minimization of the magnitude of the control effort has 

been considered, and two different options have been investigated, 

namely the minimization of the 2-norm of the linear part of the 

control, and the minimization of the condition number of the 

linear closed-loop feedback system. These minimizations have been 

obtained by choice of the sliding hyperplanes, or by choice of the 

range space eigenvalues. The results for these two investigations 

have shown that the magnitude of the range space eigenvalues has a 

very considerable effect on the magnitude of the control effort, 

which dominates the effect of the choice of the sliding 

hyperplanes. 
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There is clearly scope for further work in this area, and the 

obvious particular paths to be considered are as follows : 

1) Rationale for a 60° limit on the angle describing a sector in 

the left-hand half-plane whose end point is smaller than the 

smallest real eigenvalue of the reduced order equivalent 

system. 

2) Full theoretical proof of the method of solution of a complex 

continuous matrix Riccati equation. 

3) Improved accurate method for solving the standard real 

continuous matrix Riccati equation, with its right-hand side 

equal to zero. 

4) Further investigation into the effect of the range space 

eigenvalues and the design of ~he sliding hyperplane matrix 

on the magnitude of the control effort, and on the performance 

of a Variable structure Control system. 

192 



REFERENCES 

Abdul-Wahab A.A., "Lyapunov-type Equations for Matrix Root­

Clustering in subregions of the Complex Plane", Int. J. Sys. 

Sci., vol. 21, no. 9, pp. 1819-1830, 1990. 

Anderson B.O. and J.B. Moore, "Linear system Optimization with 

Prescribed Degree of stability", Proc. IEE, vol. 1i6, no. 12, 

pp. 2083-2087, 1969. 

Anderson B.O. and J.B. Moore, "Linear optimal Control",Prentice­

Hall, pp. 343-363, 1971. 

Barmish B. & G. Leitmann, "On Ultimate Boundedness Control of Un­

certain Systems in the Absence of Matching Assumptions", IEEE 

Trans. Autom. Control, vol. AC-27, no. 1, pp. 153-158, 1982. 

Bogachev _A. V., V.V. Grigor'ev, V~N •. ,Drozdov and A.N. Korov'yakov, 

"Analytic Design of Controls from Root Indicators", Autom. 

Telem., vol. 8, pp. 21-28, 1980. 

Burrows S.P. and R.J. Patton, "A Comparison of Some Robust Eigen­

value Assignment Techniques", Optim. Control Appl. & Methods, 

vol. 11, pp. 355-362, 1990 (a). 

Burrows S.P. and R.J. Patton, "optimal Eigenstructure Assignment 

for Multiple Design Objectives", American Control Conference, 

vol. 2, pp. 1678-1683, 1990 (b). 

corless M. & G. Leitmann, "Continuous state Feedback Guaranteeing 

Uniform Ultimate Boundedness for Uncertain Dynamic Systems", 

IEEE Trans. Autom. Control., vol. AC-25, no. 5, 

pp. 1139-1144, 1981. 

193 



D'Azzo J.J. and C.H. Houpis, "Linear Control System Analysis and 

Design", McGraw-Hill, pp. 253-306, 1981. 

DeCarlo R.A., S.H. Zak and G.P. Matthews, "Variable structure 

Control of Non-Linear Multivariable Systems - a TUtorial", 

Proc IEEE, vol. 76, pp. 212-232, 1988. 

Dorling C.M., "The Design of Variable Structure Control Systems," 

Manual for VASSYD CAD Package, Sheffield University, 1985. 

Dorling C.M. and A.S.I. Zinober, "Two Approaches to Hyperplane 

Design in Multivariable Variable Structure Control Systems", 

Int. J. Control, vol. 44, no. 1, pp. 65-82, 1986. 

Dorling C.M. and A.S.I. Zinober, "Robust Hyperplane Design in 

Mul~ivariable Variable Structv.~e Control Systems", 

Int. J. Control, vol. 48, no. 5, pp. 2043-2054, 1988. 

Drazenovic B., "The Invariance Conditions in Variable Structure 

Systems", Automatica, vol. 5, pp. 287-295, 1965. 

Fahmy M.M. and J. O'Reilly, "on Eigenstructure Assignment in 

Linear Multivariable systems", IEEE Trans. Autom. Control, 

vol. AC-27, no. 3, pp. 690-693, 1982. 

Foo Y.K. and Y.C. Soh, "Damping Margins of Interval Polynomials", 

IEEE Trans. Autom. Control, vol. AC-35, no. 4, pp. 477-479, 

1990. 

Furuta K. & S.B. Kim, "Pole Assignment in a Specified Disc", IEEE 

Trans. Autom. Control, vol. AC-32, no. 5, pp. 423-427, 1987. 

194 



Garofalo F. and L. Glielmo, "Nonlinear continuous Feedback Control 

for Robust Tracking," in "Deterministic Control of Uncertain 

Systems," ed. A.S.I. Zinober, Peter Peregrinus Press, 1991. 

Grace A., "optimization Toolbox Users Guide", Mathworks, 

pp. 2.4-2.11, 1990. 

Grimble M.J. and M.A. Johnson, "Optimal Control and Stochastic 

Estimation: Theory and Applications", Wiley, Vol 1, 

pp 256-340, 1988. 

Gutman S., "Root Clustering of a Complex Matrix in an Algebraic 

Region", IEEE Trans. Autom. Control, vol. AC-24, no. 4, 

pp. 647-650, 1979. 

Gutman S~ and Z. Palmor, "Properties of Min-Max Controllers in 

Uncertain Dynamical Systems", SIAM Journal of Control and 

optimization, vol. 20, pp. 850-861, 1982. 

Gutman S. and F. Vaisberg, "Root Clustering of a Real Matrix in a 

Sector", IEEE Trans. Autom. Control, vol. AC-29, no. 3, 

pp. 251-253, 1984. 

Harvey C.A. and G. Stein, "Quadratic Weights for Asymptotic 

Regulator Properties", IEEE Trans. Autom. Control, 

vol. AC-23, no. 3, pp. 378-387, 1978. 

Hohn F.E., "Elementary Matrix Algebra", Macmillan, pp. 350-353, 

1964. 

Itkis U., "Control Systems of Variable Structure", Wiley, 

New 'lork, 1976. 

195 



Juang Y-T., Z-C. Hong & Y-T. Wang, "Robustness of Pole Assignment 

in a Specified Region", IEEE Trans. Autom. Control, 

vol. AC-34, no. 7, pp. 758-760, 1989. 

Kailath T., "Linear systems", Prentice-Hall, pp. 230-237, 1980. 

Karanam V.R., "Eigenvalue Bounds for Algebraic Riccati and 

Lyapunov Equations", IEEE Trans. Autom. Control, vol. AC-27, 

no. 2, pp. 461-463, 1982. 

Kautsky J., N.K. Nichols & P. Van Dooren, "Robust Pole Assignment 

in Linear state Feedback", Int. J. Control, vol. 41, no. 5, 

pp. 1129-1155, 1985. 

Kawasaki N. and E. Shimemura, "Determining Quadratic Weighting 

Matrices to Locate Poles in. a.Specified Region", Automatica, 

vol. 19, no. 5, pp. 557-560, 1983. 

Kawasaki N. & E. Shimemura, "Pole Placement in a Specified Region 

based on a Linear Quadratic Regulator", Int. J. Control, 

vol. 48, no. 1, pp. 225-240, 1988. 

Kim J-S. and C-W. Lee, "Optimal Pole Assignment into Specified 

regions and its Application to Rotating Mechanical Systems", 

opt. Control Appl. and Methods, vol. 11, pp. 197-210, 1990. 

Komaroff N., "Simultaneous Eigenvalue Lower Bounds for the 

Lyapunov Matrix Equation", IEEE Trans. Autom. Control, 

vol. AC-33, no. 1, pp. 126-128, 1988. 

Kwon B.H. , M.J. Youn and Z. Bien, "On Bounds of the Riccati and 

Lyapunov Matrix Equations", IEEE Trans. Autom. Control, 

vol. AC-30, no. 11, pp. 1134-1135, 1985. 

196 



Laub A., "A Schur Method for Solving Algebraic Riccati Equations", 

IEEE, Trans Autom. Control, vol. AC-24, no. 6, pp. 913-921, 

1979. 

Ryan E.P. and M. Corless, "Ultimate Boundedness and Asymptotic 

Stability of a Class of Uncertain Dynamical Systems via 

continuous and Discontinuous Feedback Control", lMA Journal 

of Math. Control & Information, vol. 1, pp. 223-242, 1984. 

Ryan E.P., "A Variable Structure Approach to Feedback Regulation 

of Uncertain Dynamical Systems", Int. J. Control, vol. 38, 

no. 6, pp. 1121-1134, 1983. 

Ryan E.P., "Adaptive Stabilization of a Class of Uncertain Non­

Lin~ar systems - a Differenti~~ Inclusion Approach", Syst. & 

Control Letters, vol. 10, pp. 95-101, 1988. 

Shieh L.S., H.M. Dib & B.C. Mclnnis, "Linear Quadratic Regulators 

with Eigenvalue Placement in a vertical Strip", IEEE Trans. 

Autom. control, vol. AC-31, no. 3, pp. 241-243, 1986. 

Soh C.B., "Damping Margin of Continuous-Time Systems with Polytope 

Uncertainties", Int. J. Syst. Sci., vol. 21, no. 4, 

pp.749-754, 1990. 

Utkin V.I., "Variable Structure Systems with Sliding Modes", IEEE 

Trans. Autom. Control, vol. AC-22, no. 2, pp. 212-222, 1977. 

Utkin V.I., "Sliding Modes and their Application in Variable 

structure Systems", MlR, MoscoW, 1978. 

197 



utkin V.I. and K.D. Yang, "Methods for Constructing Discontinuity 

Planes in Multidimensional Variable structure Systems", 

Autom. Remote Control, vol. 39, no. 10, pp. 1466-1470, 1978. 

Wilkinson J.H., "The Algebraic Eigenvalue Problem", Clarendon 

Press, Oxford, 1965. 

woodham C.A. and A.S.I. Zinober, "New Design Techniques for the 

sliding Mode", IEEE International Workshop, Sarajevo, 

pp. 220-231, 1990. 

Woodham C.A. and A.S.I. Zinober, "Eigenvalue Assignment for the 

Sliding Hyperplanes", lEE Control Conference, Edinburgh, 

pp 982-988, 1991. 

Woodham C.A. and A.S.I. Zinober, "~~bust Eigenvalue Assignment 

Techniques for the Sliding Mode", IFAC Symposium, Zurich, 

pp 529-533, 1991. 

Young K-K.D., "Asymptotic Stability of Model Reference Systems 

with Variable Structure Control", IEEE Trans. Autom. Control, 

vol. AC-22, pp. 279-281, 1977. 

Young K-K.D., "Controller Design for a Manipulator using Theory of 

Variable structure Systems," IEEE Trans. syst. Man. & CYb., 

vol. 8, pp. 101-109, 1978. 

zinober A.S.I., O.M.E. EI-Ghezawi and S.A.Billings. "Variable 

Structure Control of Adaptive Model-Following Systems", 

lEE Conference Control & Applic., Warwick, pp. 123-127, 1981. 

198 



zinober A.S.I., O.M.E. El-Ghezawi and S.A.Billings. "Multivariable 

Variable structure Adaptive Model-Following Control Systems", 

lEE Proc., vol. 129, part D, no. 1, pp. 6-12, 1982. 

Zinober A.S.I., "Properties of Adaptive Discontinuous Model­

Following Control Systems," Fourth lMA International 

Conference, Cambridge, pp. 337-346, 1984. 

zinober A.S.I., "Variable structure control of a Robot 

Manipulator," Fourth IFAC Symposium, Beijing, pp. 175-180, 

1988. 

Zinober A.S.I., "Deterministic Control of Uncertain Systems," 

Proc. IEEE ICCON Conference, Jerusalem, WP-6-1, pp. 1-6, 

1989. 

Zinober A.S.I., "Deterministic Nonlinear Control of Uncertain 

systems", Peter Peregrinus Press, 1991. 

Zinober A.S.I. and C.A. Woodham, "Deterministic Nonlinear Control 

of a Robot Manipulator", IEEE Control Conference, Jerusalem, 

TP-3-8, pp, 1-2, 1989. 

zinober A.S.I. and C.A. Woodham, "Variable structure Model­

Following Control of a Robot Manipulator", lMA Conference, 

Loughborough, 1989. (Not Yet Published) 

199 


