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SUMMARY

Variable Structure Control is a well-known solution to the
problem of deterministic control of uncertain systems, since it is
invariant to a class of parameter variations. A central feature
of VSC is that of sliding motion, which occurs when the system
state repeatedly crosses certain subspaces in the state space.
These subspaces are known as sliding hyperplanes, and it is the
design of these hyperplanes which is considered in this thesis.

A popular method of hyperplane design is to specify
eigenvalues in the left-hand half-plane for the reduced order
equivalent system, and to design the control matrix to yield these
eigenvalues. A more general design approach is to specify some
region in the left-hand half-plane within which these eigenvalues
must lie. Four regions are considered in this thesis, namely a
disc, an infinite vertical strip, a sector and a region bounded by
two intersecting sectors.

The methods for placing the closed-loop eigenvalues within
these regions all require the solution of a matrix Riccati
equation : discrete or continuous, real or complex. The choice of
the positive definite symmetric matrices in these Riccati
equations affects the positioning of the eigenvalues within the
region. Suitable selection of these matrices will therefore lead
to real or complex eigenvalues, as required, and will influence

their position within the chosen region.



The solution of the hyperplane design problem by a more
general choice of the closed-loop eigenvalues lends itself to the
minimization of the linear part of the control. A suitable choice
of the position of the eigenvalues within the required region
enables either the 2-norm of the linear part of £he control, or
the condition number of the linear feedback to be minimized. The
choice of the range space eigenvalues may also be used, more

effectively, in this minimization.
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1. INTRODUCTION

The problem of controlling uncertain dynamical systems has
been studied increasingly in recent years. One solution to this
problem is the Variable Structure controller, and it is this
solution which will be considered in this thesis. Variable
Structure Control (VSC) with a sliding mode was first introduced
by Soviet authors in the early sixties, and a survey paper of this
early work was written in the seventies (Utkin, 1977). The early
results on the invariance of VSC systems to a class of parameter
variations and disturbances were established by Drazenovic in
1969. In the 1970’s and 1980’s the method was extended to
multivariable control systems, and model-following control (Young,
1977 & 1978, Zinober, El-Ghezawi and Billings, 1982) and CAD
packages were developed (Dorling, 1985). Current applications
include robotics, and flight control.

A Variable Structure Control system is a system for which the
structure of the state feedback control is altered, or switched,
in a preordained way, as the system state crosses certain
subspaces in the state space. These subspaces are generally known
as the sliding hyperplanes, the discontinuity surfaces, the
switching manifolds, or the switching surfaces. The controller
generally consists of the sum of a linear part and a non-linear
part; the non-linear part contains the discontinuous elements of
the control. A non-linear system whose structure alters on the
switching surfaces, due to control of this form is generally known

as a Variable Structure System (VSS).



The central characteristic of a Variable Structure System is
the sliding motion which occurs when the system state crosses and
then recrosses a switching surface. This sliding motion depends
on the form of the control law, and may occur on individual
switching surfaces, or on all of the switching surfaces together.
If the latter case occurs, then the system is said to be in the
sliding mode, and its motion is then effectively constrained to
lie within a subspace of the full state space. The systenm is
therefore equivalent to a system of lower order, known as the
reduced order equivalent system, and this lower order system must
be asymptotically stable to ensure that the state slides down the
switching surfaces to the origin.

The objective of the design of a VSC system is to drive the
state from some arbitrary initial _condition onto the intersection
of the switching surfaces, and then to maintain it on, or in the
neighbourhood of, this intersection. The design process consists
of two separate parts, the existence problem and the reaéhability
problem. The choice of a set of hyperplanes to give the system
the required behaviour in the sliding mode is called the existence
problem. The hyperplanes must be chosen so that the sliding mode
on their intersection gives the desired performance of the reduced
order equivalent system. The solution of the existence problem is
completely independent of the form of the control functions. Once
the existence problem has been satisfactorily solved, the second
stage of the design process, which consists of the design of
controls which ensure the attainment of the desired sliding mode,

is considered.



This part of the design process is called the reachability
problem, and since its solution depends on the choice of the
sliding hyperplanes, it cannot be solved until the existence
problem has been solved.

The transient motion of a VSC regulator system consists of

two independent stages :

1) a preferably rapid motion to bring the system to the inter-
section of the switching surfaces, where the sliding motion
will occur.

2) a slower sliding motion of (possibly) infinite duration during
which the state slides towards the state space origin, whilst

remaining in or in the neighbourhood of, the sliding subspace.

This independent two stage motion can help to solve the
problem of opposing desién requirements, which occurs between
static and dynamic accuracy, when designing a linear control.

A Variable Structure Controller may be designed to give a rapid
response with no loss of stability, and with insensitivity to
parameter variations, and invariance to certain external
disturbances. A controller designed in this way compares well
with other design methods, for instance that of the Lyapunov
controller (Garofalo and Glielmo, 1988), and a comparison of these
two methods is contained in Chapter 2.

The solution of the existence problem requires the sliding
hyperplanes to be chosen, to give an asymptotically stable reduced

order equivalent system. The transient response of a linear

system is given by a linear combination of the modes of the
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system. The time response of the system is also determined by its
eigenstructure, and so it is clearly important to choose a
suitable structure for a satisfactory solution of the control
problem.

In this thesis, we are particularly concerned with the choice
of the closed-loop eigenvalues, and hence the sliding hyperplanes.
The system will have a mode of unforced behaviour for each closed-
loop eigenvalue, and these modes will be excited to various
degrees by an arbitrary initial condition, and will behave
independently of each other. Clearly then, the choice of the
closed-loop eigenvalues of a system fixes the possible modes of
unforced behaviour of that system, and so choosing suitable
eigenvalues, in some way, is clearly important.

The simplest method is to specify the exact eigenvalues
required, and this method is used by the VASSYD CAD package, which
will be discussed in Chapter 2. However, it would clearly be
advantageous to be able to specify the eigenvalues in a more
general way, and one which is more closely linked to the modes of
unforced behaviour of the system. Two possibilities for eigen-
value positioning are to place them within a strip or a disc, and
these will be discussed, with regard to a Variable Structure
controller, in Chapter 3. Another possibility is to place the
eigenvalues within a sector, or a damping region, linked to the
damping ratio of the system. The damping ratio, together with the
closed~loop eigenvalues, determines the transient response of the
system. This will be discussed in Chapter 4, again with regard to

a Variable Structure controller. These methods require the



solution of a matrix Riccati equation, either discrete or
continuous, with a real or complex solution. The choice of the
positive definite symmetric matrices in the Riccati equation has
an effect on the positioning of the eigenvalues within the chosen
region, and this is investigated in Chapters 5 and 6.

The control effort required to reach the required subspace is
also an important factor. It would clearly be advantageous to be
able to design the controller so that the required control effort
is minimized in some way. The linear part of the control lends
itself to being minimized, rather than the non-linear part, which
is discontinuous. This will be investigated in Chapter 7.

The research undertaken in this thesis is arranged in six
chapters. Chapter 2 contains a description of the design of both
a Variable Structure controller and a Lyapunov controller, and a
comparison of their performance with regard to a robot arm
tracking problem. The design of the sliding hyperplanes by
placing the closed-loop eigenvalues of the reduced order
equivalent system within a disc or a strip in the left-hand half-
plane is contained in Chapter 3, and numerical examples of the
hyperplane design process are given. In Chapter 4, a method for
placing the closed loop eigenvalues of a system within a sector is
developed, again with numerical examples of the hyperplane design
process. Chapter 5 is concerned with the dependence of the eigen-
value placement within a disc or a strip to the design of the
positive definite symmetric matrices, while Chapter 6 contains a
similar investigation for the sector, and an investigation into

the range of sectors available. The numerical examples given in



both of these chapters have again been chosen to demonstrate the
hyperplane design process. In Chapter 7 the effect of minimizing
the linear part of the control is investigated, and the results of
the minimization are assessed by considering the robot arm

tracking problem outlined in Chapter 2.

-——



2. COMPARISON OF VSC AND LYAPUNOV METHODS

2.1 Introduction

There are many approaches to the problem of deterministic
control of uncertain time-varying systems, and two possibilities
which will be considered in this work are Variable Structure
Control (see for example, Drazenovic, 1969, Itkis, 1976, Utkin,
1977 & 1978, De Carlo, Zak & Matthews, 1988, Zinober, El-Ghezawi &
Billings, 1981 & 1982, Dorling & Zinober, 1986 & 1988), and
Lyapunov control (see for example, Gutman & Palmor, 1982, Corless
& Leitmann, 1981, Barmish & Leitmann, 1982, Ryan, 1988, Garofalo &
Glielmo, 1988). The essential feature of VSC is that the non-
linear feedback control has a di§qeptinuity on one or more
subspaces in the state space. The controller is designed so that
the chosen sliding subspace, the null space of the sliding
hyperplane matrix, is quickly reached, and thereafter the state
remains within this subspace. The two parts of a VSC design
procedure, the existence problem and the reachability problem,
have been explained in Chapter 1. In Lyapunov control, a
nonlinear function is developed using a Lyapunov function and
specified bounds on the uncertainties, to give uniform boundedness
and ultimate boundedness of the closed-loop feedback trajectory.

In Section 2.2, the existence problem for a VSC system is
outlined, with respect to the regulator system. The design

strategy of the CAD package VASSYD (Dorling, 1985) is also briefly

outlined. Section 2.3 briefly outlines the Lyapunov approach



theoretically developed by Garofalo and Glielmo, 1988. Section
2.4 contains the numerical example being used in this comparison.
The robot arm under consideration is described, and its equations
are adapted for use with the two methods. The Lyapunov method
requires some development from its theoretical formulation for use
with a numerical example. The constants have to be chosen, and a
method developed to ensure that the closed-loop eigenvalues of the
two systems are the same (Z2inober & Woodham, 1989). Section 2.5

contains a brief discussion of the results.

2.2 The Regulator System and VSC Method

A general form of the regulator system is given by

x(t) = [A+AA]x(t) + [B+AB]u(t)‘ + DE(t,x(t)) (2.2.1)

where x is the state n-vector, u is the control m-vector, and f is
the disturbance p-vector. A and AA are nxn matrices, and AA
represents the uncertainties in the plant values. B and AB are
nxm matrices, AB represents the plant/control interface
uncertainties and D is a nxp matrix representing the external
disturbance effects. During the ideal sliding mode, motion is
constrained to lie within a subspace of the full state space,
which is designhed to be a complementary subspace to the range
space of B. Thus, during sliding, any uncertainties and
disturbances acting in the range space of B will have no effect on

the solution.



It is therefore sufficient to consider the ideal system, with no

uncertainties and disturbances, given by

x(t) = Ax(t) + Bu(t) (2.2.2)

where x, u, A and B are as defined above.

Matched uncertainties are handled by suitable choice of the
control function. We assume that m < n, B is of full rank m and
the pair (A,B) is completely controllable. The sliding mode may

be determined from the condition
cx(t) =0 Vitzt, (2.2.3)

where t, is the time when the sliding subspace is reached and C is

an mxn matrix. Differentiating equation (2.2.3) with respect to

time, and substituting for i(t) from (2.2.2) gives
Cx(t) = CAx(t) + CBu(t) = 0 ViEezt, (2.2.4)

Equation (2.2.4) may be rearranged to give
CBu(t) = -CAx(t) (2.2.5)

C is designed so that |CB| # 0, and therefore the product CB is
invertible,and hence equation (2.2.5) may be rearranged to give

the following expression

u(t) = -(CB) 'CAx(t) = -Kx(t) (2.2.6)

where u(t), the equivalent control, is the open-loop control which
forces the trajectory to remain in the null space of C, during

sliding.



Substituting for u(t) from equation (2.2.6) into equation (2.2.2)
gives

x(t) = (I - B(CB) 'C)Ax(t) Vitzt, (2.2.7)
(A - BK)x(t)

which is the system equation for the closed-loop system dynamics

during sliding.

It can be seen that this motion is independent of the actual
control u and depends only on the choice of C, which determines
the matrix K. The function of the control u is to drive the state
into the sliding subspace #, and thereafter to maintain it within

the subspace A.

The “convergence of the state véctor to the origin is ensured
by suitable choice of the feedback matrix K. The determination of
the matrix K or alternatively, the determination of the matrix C
defining the subspace # may be achieved without prior knowledge of
the form of the control vector u. (The reverse is not true).

The null space of C, ¥(C), and the range space of B, R(B), are,
under the hypotheses given earlier, complementary subspaces, so
N(C)nR(B) = {0}. Since motion lies entirely within #(C) during
the ideal sliding mode, the dynamic behaviour of the system during
sliding is unaffected by the controls, as they act only within
R(B). The development of the theory and design principles is
simplified by using a particular canonical form for the systenm,
which is closely related to the Kalman canonical form for a

multivariable linear system.

10



By assumption, the matrix B has full rank m, so that there exists

an orthogonal nxn transformation matrix T such that

0
TB = [Bz] (2.2.8)

where B, is mxm and nonsingular.
Let B = QR, where Q is an nxn orthogonal matrix and R is nxm and

upper triangular. Partitioning this expression for B gives

Byl |9y Qp R,
[Bz] N [021 Q,, [0] (2.2.9)

Premultiplying both sides of equation (2.2.9) by QF, since Q is

orthogonal, and hence Q" = Q?, gives

Ql, Q,|[B ,
e I W [}1‘] T (2.2.10)
le QZZ 2

Since we require T to be chosen so that equation (2.2.8) holds, it

is clear from equation (2.2.10) that T is given by

Ql, Qf

T = | 2 "2 (2.2.11)
Q‘l‘ T
11 21

The orthogonality restriction is imposed on T for reasons of
numerical stability, and to remove the problem of inverting T when

transforming back to the original system. The transformed state

is y=Tx, so T = 3}, and the state equation (2.2.2) becomes

y(t) = TAT'y(t) + TBu(t) (2.2.12)

11



The sliding condition is CTJy(t) =0, Vtzt,. Ifthe

transformed state y is now partitioned as

Y =(yi ¥Y2)i Y1 €R",  y, R (2.2.13)

and the matrices TAT ,TB and CT® are partitioned accordingly, then

equation (2.2.12) may be written as a pair of equations :

vy (t)
Y2 (t)

Ay (t) + Apys(t) (2.2.14a)

Aoy (B) + Axya(t) + Bu(t) (2.2.14b)

The sliding condition becomes

Ciyi(t) + Cuya(t) =0 (2.2.15)
where
A A
T 11 A T
TAT = CT = |C C
—|:A21 Azz] [ . ,2.1-

and C, is nonsingular (from CB nonsingular).

The canonical form is central to hyperplane design methods
and it plays a significant role in the solution of the
reachability problem, i.e. the determination of the control form
ensuring the attainment of the sliding mode in # (Zinober, 1984).
Equation (2.2.15) defining the sliding mode is equivalent to

ya2(t) = -Fy, (%) (2.2.16)

where the mx(n-m) matrix F is defined by

F=C'c (2.2.17)

so that in the sliding mode y, is related linearly to y;.

12



The sliding mode satisfies equation (2.2.16) and
Y1 = Ay Yi(t) + A va(t) (2.2.18)

This represents an (n--m)th order system in which y, plays the role

of a state feedback control. So we get

Yi(t) = (By - AF)y,(t) (2.2.19)

which is known as the reduced order equivalent system, with system
matrix (A,; - A,,F). The design of a stable sliding mode such
that y - 0 as t » » requires the determination of the gain matrix

F such that (A,; - A,,F) has n-m left-hand half-plane eigenvalues.

The CAD package VASSYD (Dorling, 1985) will design the
sliding hyperplanes, either by assignment of the sliding mode
spectrum, or by quadratic minimization. The design of the sliding
mode spectrum requires the exact specification of the closed-loop
eigenvalues of the reduced order equivalent system A;, - A,,F.

The eigenvectors may be assigned explicitly, or designed by the
package to give maximally robust eigenvalues, using the theory
that the sensitivity of an eigenvalue is inversely proportional to
the angle between its 1ef£ and right eigenvectors (Wilkinson,
1965), and a suitable design method (Kautsky, Nichols and Van
Dooren, 1985). The hyperplane matrix C is calculated, by
reversing the transformation process (see Chapter 3, Section 3.2),
and then the remaining m left-hand half-plane arbitrary eigen-

values of the full-order linear feedback system must be chosen.

13



The feedback matrices are then calculated (see Chapter 7, Section

7.2) to give a controller of the form

u(x) = Lx + __Px (2.2.20)
x| + &

where p is an arbitrary constant, & is a constant used to smooth

the control, and ﬂ n is the matrix 2-norm.

2.3 Lyapunov Control

The Lyapunov control approach requires the closed-loop system
error trajectories to be ultimately bounded and the convergence of
the error norm to be arbitrarily close to exponential convergence

with a desired time constant (Garofalo & Glielmo, 1988).

Consider a multi-input multi-output system of the form

y(V) = f(y,..... y(U-1)) + F(y,...... ,y(V-1))yu (2.3.1)
V(E) = Voreeoeooa,yU ) (t,) = y, (V1) (2.3.2)
where y € R® is the output, u € ®" is the input, and v is a

positive integer.

Suppose the following :
i) Let f(y,..,y(”*)) be continuous and cone-bounded with respect

to y,...,y(U*), so that there exists k; i = 1,...,v such that

WE(Y, .., y(U 1)) s kg + Kyl + .. + kply(V-1)y (2.3.3)

14



ii) Let there exist a known matrix W(y,....,y(U1)) € & and a
scalar Ap such that, for any (y,...,y(V-1)) e RV, the matrix D,

defined as follows
D(Y,---,y(V 1)) = F(y,...,y(V-1))u(y,...,y(V1)) (2.3.4)

is positive definite and norm bounded, in other words it satisfies

the following inequality
“D(y, ..... ,y(vﬂ))“ = Ap (2.3.5)

It is possible to find a function g : RV 5 R* satisfying the

following inequality

G(Yreonns ,y(u-1)) = mafo(y'.....’y(vq))“ (2.3.6)

— - - wal

for all (y,...,y(V-1)). There also exists a positive scalar Ap
satisfying

D + D'

Ap S min 2, ——| - V (Y,e..,y V1)) (2.3.7)
where min A, represents the minimum eigenvalue out of the set of m.

The objective of the control is to make the tracking error

ultimately bounded in a ball around & = 0. The radius of this
ball can be made small by a suitable choice of the controller

parameters.

15



Let W be given by

?

=
[

£+ Fu - §(V) - ky& - ky, €M ... - k(v (2.3.9)
where k;, i = 1,...,V are arbitrary mxm matrices.

From equations (2.3.1), (2.3.8) and (2.3.9), the error dynamics

equation may be written
eV 4+ ket 4 Ll 4 k8 = W (2.3.10)

Define e to be

~

T = [ffr g“” g(““)’ ] (2.3.11)

Lt

Then the state space representation of the dynamic equation of the

tracking error may be written

e = Ee - B¥ (2.3.12)
where
0 Im..........lo o O
o 0 Imoun--oco 0 .
E - 0...-.............Im B1 - ° (2.3.13)
—kv-oo.o-cocoo-ooco_ki Im

The k, matrices are chosen so that E is asymptotically stable.

16
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Let P be the unique positive definite solution of the Lyapunov

equation

E'P + PE = -Q (2.3.14)
where Q is a symmetric positive definite matrix.

If p, is chosen to be smaller than zero, and ¥ is such that
vT[w - (B:PBI)'iBIPES] = Z(Ivil) > 0 (2.3.15)

for any e: Ivii > p, , where v = BEPe , then the error, e, is

uniformly bounded and globally ultimately bounded in ball of known
radius (Garofalo & Glielmo, 1988).

— - -t

In addition, if vIW = 0 for any e: lvi > p, then the norm of

~ o~

the trajectories of the system given in equation (2.3.12) is upper
bounded by a time function which is close to an exponential one,

with a known time constant.

Define the following function

7Y,y (V) e,y (V)) = g(y, ...,y )) +

max “K“: K'*'(BlPBl)-lBIPE ueﬂ+!§l (2.3.16)

where K = [Kv Kl]

17



The controller is then given by

B, Pe
BiPe| + &
where
§ >0 h > (1 + 38/p,)/2p p, < lvil

0< ¥ =9(y,..,y(U1), e ,§m)

The most straightforward choice for the arbitrary matrices in
equation (2.3.13) is an identity matrix in each case. However,
since this chapter is concerned with comparing the results from
the Lyapunov method and the VSC method, it would clearly be better
to choose the arbitrary matrices so that the closed-loop eigen-
values of the full order system aré the same for both controllers.
A method of choosing the arbitrary matrices to give the specific
closed-loop eigenvalues required, with reference to the particular

example being considered, is developed in the next section.

2.4 The Robot Manipulator

The example being used to compare these two methods is that .
of a robot manipulator tracking a particular trajectory, which is
an example of a nonlinear uncertain model-following system. Both
the methods outlined in this chapter will be used to define a
model following control, and the effectiveness of the designs may

then easily be seen by comparing the actual track of the robot arm

with the desired track.

18



The robot manipulator under consideration is a two link robot
arm, which moves in a horizontal plane (see Fig 2.1). The

nonlinear equations governing its movements are as follows

e

¢ = d|av,8,~- hv,¢.- bhé’- abg’ + 2abf_ ¢ - au,+ huz] - (2.4.2)

where J, is the moment of inertia of link i about axis i, m, is
the mass of link i, v, is the viscous friction constant for axis i
and I is the moment of inertia of the axis 1 motor. These

parameters are given the nominal values listed below.

J, = 0.000412 a =J, + 2m,1,1,cos¢,

b = 2m,1,1,sin¢,

J, + T, + 4m1° + T + 4m,1,1,cos9,
- ' 0.008819 + 0.00118cosé,

1/(J,h - a?) 1, =1, =2 m, = 6.9875x10°S

= 6.877x1073 v,

H! Q
|

0.0025 V, = 6.07x10°5

Equations (2.4.1) and (2.4.2) are required to be converted to
the form of equation (2.2.1), so that a Variable Structure
controller may be designed, and to the form of equation (2.3.1) so
that a Lyapunov controller may be designed. The cross terms in
equations (2.4.1) and (2.4.2) will be ignored during the
controller design process, for simplicity, but will be included in
the model-following simulation which is carried out for each
controller. It is clear from the results obtained for both
controllers, that this strategy enables suitable controllers to be

designed on a decoupled system, for effective control of the full

robot arm system.

19



Fig 2.1 The two-link robot arm

20



If the cross terms are ignored, equations (2.4.1) and (2.4.2) may

be written in the following matrix form

6, -gJv;  gavy| |6, gJ, -ga||W
o= + 2 .4.
¢, [ gavy;  —ghv; $ -ga gh] U2 (2.4-3)

r

Equation (2.4.3) is clearly of the form of equation (2.3.1) with

the function f and the matrix F given by

-gJ,v,8, + gavy¢ -
£ = gJ,v,6, t+ gavyd, F = [ 9:5 gi] (2.4.4)
gav,8, = ghv, ¢, d I

To convert equation (2.4.3) to the standard form for VSC, consider

the substitutions

- - -

6, =y, 6. = Yo ¢ = Y3 ¢ = Y,

Differentiating these expressions with respect to time gives

er=Y1

Y2 ér = &3 = Ya

Y2 ¢, Y3 = Yq

ér=YI

Substituting for 6., ¢,, and their first and second derivatives in

equation (2.4.3) gives

V' '

Y.

. (0] 4] 1 0 Y 0 0 U,
Y2 _ |0 -9J2vy O gavy |lYe gJ, -ga||u2
Ys 0] gavy; 0 -ghv, Ya -ga ghl|u,
Ya
\

21



Equation (2.4.5) is clearly in the form required for a Variable

Structure control problem.

A linear system of the form X = A,x, where Ay is a
diagonalizable matrix has a solution of the form x=x,e’d*. 1If a,
is diagonalizable, then A’ = 'A, where A has the eigenvalues of
A, on the leading diagonal, and zeros elsewhere, and the columns
of " are the corresponding right eigenvectors. If the eigenvalues
of A, are distinct, then the corresponding eigenvectors will be
linearly independent, and the matrix I' will be non-singular, and
SO Ay = TAI™! = I'AG, where G is the matrix of left eigenvectors.

AtG, and it can be

The solution may therefore be written x = x e
seen that a suitable choice of eigenvectors can lead to the
decoupling of the components of the vector x. If, for example,
both I' and G were equal to the identity matrix, then the states of
x would all be independent of each other, and depend only on the
exponential of the appropriate eigenvalue, and the initial state
value.

For the VSC case, the open-loop eigenvalues of the full order
system, A(A), are [0 O -0.4016 -0.1218)]. The closed-loop
eigenvalues of the reduced order system, the null space eigen-
values were chosen to be -5 and -7, to ensure rapid decay of the
error states to zero, and the system is of the form given above,
with A; = A;; - A;;F. The respective eigenvectors of these
eigenvalues were chosen to be [1 £ O 0]T and [0 0 1 E]T, where §
is arbitrary, to yield decoupling between 6, (y, and y,) and ¢,

(y; and y,), as explained above.
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The m remaining eigenvalues for the full order linear feedback of
the system were chosen to be -12 and -14, and the resulting

controller matrices from the VASSYD package are

L = [-3-6800 -0.2360 -0.4710 -0.0346]
= |-0.3640 -0.0233 -0.1600 -0.0124
L -
w = |-0.3500 -0.0184  0.1330  0.0078]
= |-0.1610 -0.0085 -0.3400 -0.0200
[ -1 -3 -3 -4
N oo |-1-22x107" -6.42x107° -7.96x107° -4.68x10
-1.18x10 2 =-6.21x10" =4.48x10° -2.64x10 '

The state trajectories to be tracked by the robot arm have
been chosen to be those of the model plant with plant matrix A,

and input matrix B, :

o 1 o0 o o o
100 -20 0 0 100 ©

Ao = o o o 1 Ba =170 o (2.4.6)
0 o0 -36 -12 0 36

This model plant has the same basic structure as the robot arm,
since it has eigenvalues [-10 -10 -6 -6] which correspond to the
two modes of the robot arm motion. The trajectory under

consideration is illustrated in figure 2.2.

The results for the Variable Structure controller for a
simulated run, of 40 seconds, using the full, coupled, equations
of the robot arm, with the arm following the trajectory

illustrated in figure 2.2, are shown in figure 2.3.
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It can be seen from figure 2.3 that the errors in 6, and ¢,
are less than 0.5°, and very steady. By comparing the angle error
plots with the required robot trajectory (Fig 2.2), it can be seen
that the small "blips" in the results occur when the arm changes
direction. The changes of direction occur at the corners of the
trajectory and the sinusoid starts 30 seconds into the simulation.
The ¢, errors are generally negligible, except at the corners of
the trajectory, since most of the movement occurs in the lower
arm. They increase during the sinusoidal part of the trajectory,
since the upper part of the arm is moving as much as the lower
part at this point. The 6, error remains at about 0.2° since the
lower arm is moving constantly throughout the simulation. The two
parts of the control are very smooth, apart from the small "blips"
which occur when the robot arm is ;fquired to change direction.
The control effort clearly decreases in magnitude after the first
10 seconds of the simulation, which is as would be expected, and
it becomes less smooth during the sinusoidal part of the
trajectory. It can be seen from these results that a variable
structure controller gives a good model-following performance for

this problenmn.

For the Lyapunov approach, the eigenvalues in the null space
are required to be the same as those for the Variable Structure
controller during sliding. The discontinuous part of the Variable
Structure control is approximated by a continuous control, which

brings the trajectory close to the sliding subspace.
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The motion during sliding is controlled by K = —(CBY*CA,
A
. N pCX
(Equation (2.2.5)), where uw = ————— . The Lyapunov controller
HCX“ + 3
is of this form, with C replaced by B?P (Equation (2.3.16)), and

so the closed-loop system during sliding is defined as

= [I + F(BIPF)"BIP]f (2.4.7)

. T
since v = B,Pe

As explained in the previous section, to enable a comparison
of the two methods to be made, the closed-loop eigenvalues of the
system in the null space are required to be the same in each case
(Zinober and Woodham, 1989). The closed-loop eigenvalues for the
reduced order equivalent system of the VSC problem were chosen to
be -5 and -7, and so the closed-loop eigenvalues of the full order
system given in equation (2.2.7) are [~-5 -7 0 0]. The strategy
for choosing the arbitrary k, matrices in equation (2.3.13) so
that the closed-loop eigenvalues of the system have the required

values will now be outlined.

For the Lyapunov method, let us consider a general form of the E

matrix
(4] 0 1 0
0] 0 0 1
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Solving equation (2.3.14) for the general E matrix gives

r 9
- (K3+K3+K, ) /2k3kq 0 -1/2k, 0
p= 0 - (K+K3+k,) /2K K, 0 -1/2k,
"l/2k1 0 - (k1+1) /2k1k3 0
. 7

Multiplying out the left-hand side of equation (2.4.7) gives

0 1 ) 0]
0 -1.9x10-7-ky/ (k,+1) 0 4.7x1078-2.4x10-7K,/ (ky+1)
0 o 0 o

The eigenvalues of this matrix are given by
A"’[(a + k3/(k1+1)] [A + k4/(k2+1)']]“'= 0

So A® = 0 or A = -ky/(K;+1) or A = -k./(k;+1)

Since for this particular example we require the two non-zero

eigenvalues to be -5 and -7, the values of the Kk, must be

ky = 10 k, = 14 and ks =k, =1
The Lyapunov controller consists only of a non-linear part,
given in equation (2.3.16), and so the control matrix BIP is given

by

. _[-0.5 o -0.1 0
B,P = [o -0.5 0 -0.1429]
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The other variables required by the Lyapunov method will now be

chosen. From equation (2.3.4) and equation (2.3.7), we have

D+ D

D = FW Ap = min A,

Let us choose the following matrix W

_ |1/9 o
W= [ 0 l/g}

Then D is given by

and hence, Ap becomes I

Ap = [(h + J) £ 4((h+J)% - anT + 4a2)]/2

The matrix D will alter as the robot arm moves, since both a and h
depend on ¢,., as can be seen from equation (2.4.2) and will
therefore not remain constant. The values of a and h are however
bounded since cos¢, and sin¢, are bounded, and so the matrix D is
bounded. Clearly, Ap will not remain constant, but will vary as

the robot arm moves. From equation (2.3.16) we have

py < vk  so choose p, = 0.1lvl
§ >0 so choose & = 1.0x1076 h = (1 + 8/p,)/2p
choose 7(y,...,y(U1), e ,§m) = "f(y,...,y(vd))u
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Since f varies as ¢, varies, A, varies, and v varies as the error,

e, varies, p,, ¥ and h will not remain constant, but will alter as

the robot arm moves. If the matrix D was chosen so that A, was
constant, p, would still vary with v, but some alterations in the

gain would be removed.

The results for the Lyapunov controller for a simulated run
of 40 seconds, with the full, coupled, robot arm equations, and
with the arm following the trajectory illustrated in figure 2.2
are shown in figure 2.4. It can be seen from figure 2.4 that the
errors in 6, and ¢, are larger than those for the Variable
Structure controller, although they are still less than 1°.
Again, changes in these values occur when the robot arm is
required to change direction, and the largest errors occur during
the sinusoidal part of the trajéét;}y. In this case, the error
plots for 8, and ¢, are very similar, unlike the plots for the
Variable Structure controller, and this is presumably due to the
differences in the two controllers. It can also be seen that the
control is not smooth, but continually oscillating, and this is
due to the effect of the gain term in the control, h#W, which is
altered at every time step. The two parts of the control in this
case remain bounded, and constant within the bounds, as would be
expected from the design, and do not alter at different points of
the trajectory. However, despite the control not being smooth,
the Lyapunov controller does give a good model-following

performance.
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2.5 Discussion

As can be seen from the results in Figures 2.3 and 2.4, the
errors during the model-following simulation for both controllers
are small. The smoothness of the Lyapunov controller could be
improved by altering the choice of the gain term, h¥W, so that it
does not change with every time step. A plot of the results for
the Lyapunov controller for the first second of the simulation,
including a plot of the gain, is given in figure 2.5. It can be
seen from this plot the very large variations in the value of h¥W,
and the effect this is having on the two control components.
However, the components of the control are clearly bounded, and

remain small throughout the simulation.

It would appear from these results that a Variable Structure

S

controller leads to more accurate model-following control than
this particular Lyapunov controller. The control effort for a
Variable Structure controller is initially larger in magnitude,
but much smoother, than that of the Lyapunov controller, but its
magnitude decreases with time whereas that of the Lyapunov

controller remains approximately constant.

The Lyapunov controller could be smoothed by altering the way
in which the gain term, h¥W, is calculated. If h and ¥ were not
calculated at each time step, or if their mean value over several
time steps was used, then the gain term would not alter at every
time step. This would result in fewer calculations per time step,

and a smoother control.
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3. EIGENVALUE PLACEMENT IN A DISC OR STRIP APPLIED TO VSC

3.1 Introduction

The problem of selecting the eigenvalues of a closed-loop
Variable Structure Control system, and hence directly specifying
the sliding hyperplanes, is an important one, since the choice of
the eigenvalues affects the stability and response of the systemn.
A popular method for designing the sliding hyperplane matrix
(Dorling & Zinober, 1986) requires the exact specification of the
desired closed-loop eigenvalues. This is a very rigid design
requirement, since in many practical examples, exact eigenvalue
specification may not be required; the eigenvalues may simply
required to be in a certain region of the left-hand half-plane.
In general, the desired exact eigenvalues for the closed-loop
system will not be known, so it would clearly be advantageous in
certain problems to be able to specify a general region of the
left-hand half-plane within which the eigenvalues should lie.

Ssome work has been done on the placing of the closed-loop
eigenvalues in a particular region by linear state feedback
methods, rather than VSC methods. One method is the placing of
the eigenvalues in a hyperbola with major and minor axes at 45° to
the x and y axes, by selecting the weighting matrices of the IQ
problem in an iterative way (Kawasaki and Shimemura, 1983). This
method has been extended for other hyperbolic regions, and small
sectors, using a similar approach with a modified Riccati equation

being used to design the controller (Kawasaki & Shimemura, 1988).
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Some work has also been done on root clustering using a
Lyapunov type approach with Kronecker product matrices (Abdul-
Wahab, 1990). An eigenvalue location method involving mapping
onto a region of the complex plane has also been considered
(Bogachev, Grigor’ev, Drozdov and Korov’yakov, 1980). This method
involves the solution of a modified Lyapunov equation in the
design of the control law. All of the above methods are fairly
complicated to use, since they either involve iterative processes,
or calculations of Kronecker matrix products, or complicated
transformations, and they all involve rigidly specified regions in
the left-hand half-plane.

In this chapter we shall consider two regions in the left-
hand half-plane which are specified in a straightforward manner.
The first region under consideration is that of a disc in the
left-hand half-plane, which is specified by its radius, r, and its
centre, -a + 0j. The second region under consideration is that of
an infinite vertical strip in the left-hand half plane, which is
specified by its real axis crossing points. In Chapter 4 a more
general region of the left-hand half-plane will be considered.

In section 3.2 the general theory for placing eigenvalues in
a disc (Furuta and Kim, 1987) is described, and is then extended
for application to a Variable Structure Control System. 1In
section 3.3 the general theory for placing eigenvalues in a
vertical strip (Shieh, Dib and McInnis, 1986) is described, and is
then extended for application to a VSC system. This section also
includes some discussion of three of the methods of solution of

the continuous Riccati equation with the Q matrix equal to the
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null matrix. Section 3.4 contains some illustrative numerical
examples for the two methods, and a brief discussion of the

results is presented in section 3.5.

3.2 Controller Design For Eigenvalues in a Disc

The technique of placing all the closed-loop eigernivalues of a
system within a specified disc with centre -a + 0j and radius r
(Fig 3.1) has been adapted for use with a VSC system. In this case
the n-m closed-loop eigenvalues of the reduced order equivalent
system are required to be placed within the specified disc.

Furuta and Kim (1987) have studied the standard linear
regulator problem for systems of the form (2.2.2) with linear

feedback u = Fx. Consider the matrix equation

3 .
-dA P - aPA + APA + (a2- r2)pP = -Q (3.2.1)

where Q is an arbitrary symmetric positive definite matrix,

* denotes the matrix conjugate transpose, and a and r are scalars.

Let A and v be an eigenvalue and right eigenvector of A, then

AV = AV and via = o' (3.2.2)

Premultiplying equation (3.2.1) by v*, postmultiplying it by v and

substituting for Av and v*A° from equation (3.2.2) gives

(= (X + A) + |A|2+ a2 - r2)p*pPy = -p*Qv (3.2.3)
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Now let A = X + jy with A = x - jy. Substituting for A and A in

equation (3.2.3) gives

((x = a)+ y2- 2)p*Py = -p*Qu (3.2.4)

Since Q is positive definite, and we require P to be positive

definite, it follows that

(x —a)2+ y2-r2< 0 . (3.2.5)

So, if there exists a positive definite solution P of
(3.2.1), all the eigenvalues of A will lie within the disc with
centre -a + 0j and radius r. This is the necessary condition for
the eigenvalues of A to lie within the disc, and the proof of

sufficiency is contained in Furuta and Kim (1987).

In this case, the eigenvalues™of the closed-loop system
A + BF, where F is a control gain matrix, are required to be

within the disc, so equation (3.2.1) becomes

- (A+BF) "P-aP (A+BF) + (A+BF) P(A+BF) +(a’+t%)P = —Q (3.2.6)
with

F = -(r°R + B'PB) 'B'P(A - aI)

This matrix Riccati equation may be solved using the discrete

method, which takes the iterative form for s = 0,1,2,...

_ | (a=a1) TP, (A-al) +r2Q- 2
(A-aT) "P,B(r2R+B'P,B) "'B'P, (A-a1) /v (3.2.7)

g+l
where R and Q are arbitrary symmetric positive definite matrices.
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The desired P in equation (3.2.6) is the steady state solution
P, from equation (3.2.7), since in the limit, as k » o, P, = P

(Furuta and Kim, 1987).

For the sliding mode design, we require the (n-m) left-hand
half-plane closed-loop eigenvalues of the reduced order equivalent
system, A,; - A;;F, to lie within the specified disc (Woodham and
Zinober, 1990). The discrete matrix Riccati equation to be solved

for the reduced order system is therefore

_1 T 2
Pu = = {(Bn - «D)'P(Ay - o)+t
r

T 2 T -
(Ay,-aI) TP,AL, (FPRHALP,A,,) ‘A{zps(Au—aI)} (3.2.8)

where Q and P are (n-m)x(n-m) matrices.

-

The control matrix is given by
2 T -1, T
F = (r"R + A3PA;3) "ApP(A - al) (3.2.9)

The control matrix will have the opposite sign to that for

the general system (A + BF) for the obvious reason that the system

now under consideration is of the form A - BF.
The eigenvalues of the reduced order system (A,, - A,,F) will

then lie in the specified disc, and the sliding hyperplane matrix

C may now be obtained.
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Recall from Section 2.2 that
T ~1
cr’ = [c1 cz] and F = Gl'c

Since the product CB is non-singqular, CTJTB, B, and C, are

nonsingular, and cT' may be written

T -
CT = C; [ca‘c1 I,]

where I, is the m-dimensional identity matrix.

Now (T'T)"1 = T, and choosing C, = I,, since the product CB is not
critical to the design, (Utkin and Yang, 1978), the sliding
hyperplane matrix C is given by

C = [F I,]T (3.2.10)
So (n - m) of the closed-loop eigenvalues of the full order systenm

x = [I, - B(CB) 'C]Ax (3.2.11)

will lie in the required region and the remaining m eigenvalues

will be zero (Dorling and Zinober, 1986).

The choice of the two arbitrary matrices, Q and R, in
equation (3.2.8) will affect the positioning of the eigenvalues
within the specified disc, and this will be discussed in more

detail in Chapter 6.
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3.3 Controller Design for Eigenvalues in a Vertical Strip

The problem of placing all the closed-loop eigenvalues of a
system within an infinite vertical strip (Fig 3.2) in the left-
hand half-plane (Shieh, Dib and McInnis, 1986) has been extended
for use with the sliding mode.

Consider the general system given in equation (2.2.2), and
two positive real numbers h, and h, with h, > h;. These two
positive values specify the open vertical strip crossing the
negative real axis at the points -h, and -h,.

A
Define the matrix A

Suppose that (Shieh, Dib and McInnis, 1986)

u = -R'B'Px e (3.3.2)

where R is an arbitrary m«m positive definite matrix, P is the
positive definite solution of the continuous matrix Riccati
equation with its right-hand side equal to zero
-1_.T AT A
PBR BP - AP - PA =0 (3.3.3)
and the constant gain u is chosen to be
(hy = hy)
H=20.5+ —r—— (3.3.4)

Ay
2Tr(A)

where Tr(ﬁ’) is the sum of the positive eigenvalues of A.

Then the resulting closed-loop system is
x(t) = (A-uBK)x(t) (3.3.5)
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Fig 3.2 Strip with limits -h, and -h,
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If A has pure left-hand half-plane eigenvalues A; (i = 1,..,n"),
and pure right-hand half-plane eigenvalues Ay (i =1,..,n*), then
the eigenvalues of the closed-loop system (A - BR"BTP) will be
A; (i =1,..,n)and -A] (i = 1,..,n*), where P is the positive
definite solution of the Riccati equation given in equation
(3.3.3). The eigenvalues of (A - uBR'IBTP) , where u = 1, will be
A, (i=1,..,n7), and n* pure left-hand half-plane eigenvalues.

If h, > max{|Re(A,) |} for all i, where A, are the negative
eigenvalues of A, then the eigenvalues of (A- uBK) will all lie
within the vertical strip which crosses the real axis at the
points [-h,, =-h;] (Shieh, Dib & McInnis, 1986).

For the sliding mode design, we require the (n - m) left-hand
half-plane closed-loop eigenvalues of (A;; - A;F) to lie within
the spec:}fied vertical strip (Wopdk}gm and Zinober, 1990). The

matrix Riccati equation to be solved is therefore

PAIZR A12P -AP-PA=0 (3.3.6)

A

where A is given by

A
A= A11 + hII (3.3.7)

and A,;, and A;; are as given in Section 2.2, (page 11). The

control matrix F is given by

F = uR ‘AP

which has the opposite sign to the control matrix for the system
(A + BF) for the reason stated earlier (Section 3.2). The

constant u is defined in equation (3.3.4) with 3 as defined in
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equation (3.3.7). So all the closed-loop eigenvalues of the
reduced order system will lie in the vertical strip which crosses
the real axis at -h, and -h;,. The sliding hyperplane matrix, C,
is then obtained from equation (3.2.10) and (n-m) of the closed-
loop eigenvalues of the full order system given in equation
(3.2.11) will also lie in the required region. The remaining m

eigenvalues will be zero (Dorling and Zinober, 1986).

It should be noted that it is not possible to move the
original eigenvalues (those of A;;) towards the right-hand half
plane, so the value of h, is limited by the eigenvalues of A,
(Shieh, Dib and McInnis, 1986). This is because of the invariance
of the negative open-loop eigenvalues to the closed-loop

transformation.

In practice, it has been found that if equation (3.3.3) is
solved using the lqr program from MATLAB, a difficulty arises,
since the right-hand side is zero. This leads to a divide by zero
warning and some inaccuracies in the resulting P matrix. The
problem arises because the trivial solution of equation (3.3.6) is
P = 0. A straightforward way round this problem is to set the Q
matrix to be of the form qI, where q is a very small positive
scalar, of the order of 1dQ°,which gives an acceptable result.

The results for both Q equal to zero and Q equal to qI are

contained in section 3.4.

A better solution to the problem, mathematically speaking,
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would be to use a method of solving the continuous Riccati
equation which works even if Q is the null matrix, if such a
method exists. Several different methods will now be considered

for the solution of this problenmn.

The method used in the MATLAB toolbox is that of eigenvalue
decomposition of an associated Hamiltonian matrix, which is known
as the Macfarlane-Potter-Fath method (Kailath, 1980). Two other
methods for solving the continuous matrix Riccati equation, which
may be considered, are an iterative method and a Schur method
(Laub, 1979) which allows Q to be greater than or equal to zero.
These three methods will be described briefly below, and their
suitability for this particular problem (that of a null Q matrix)

will be discussed.
consider the iterative method (Anderson & Moore, 1971) for
the continuous matrix Riccati equation
T “1.T
AP+ PA-PBRBP+Q=20 (3.3.12)

This method uses the following transformations

1l

== (I- AT)P(I - &) (3.3.13)
E= (I -Aa)7(I+A) F=2(I-a)2B
=R+ BY(I - A1 -27'B fi = (I - A)'B

Using these transformations, equation (3.3.12) may be written

-1 T
Fof -a- [E’ai-‘* . ﬁ] [a . ﬂis] [1-":%%" . ﬁ] rQ=0 (3.3.14)
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The existence of a unique non-negative definite solution P of
equation (3.3.12) implies the existence of a unique non-negative
definite solution & of equation (3.3.14). This solution may be

obtained by solving equation (3.3.14) using a discrete method, as

follows
. -1 T

3, E0,E - [ﬁ%thﬁ] [§+FT¢,§] [ﬁ%,hﬁ] +Q . (3.3.15)
where

® = lim &, and ¢ =0

1 o o
P is then determined from
T, - -
P =2(I-A)8(1I -2 (3.3.16)

At first sight, this would seem to be a good method to use,
as a null Q matrix will clearly not.give rise to any zero divide
warnings. However, it becomes clear on closer inspection that if
Q is the null matrix, then H is zero and so the first step with
¢ =0 leads to Q1 = 0. Therefore, in the limit, as i » o, & = 0.
It is possible that it is not necessary for & to be equal to
zero, and this will be investigated in the next section. It is
also clear from equations (3.3.13) that the method will not work

if the matrix (I - A) is singular, and so care must be taken with

the choice of the matrix A.

An approximate answer can perhaps be obtained by setting Q to
be of the form qI, where g is a very small positive scalar, but
this may again lead to an approximate answer. This approximation

will also be investigated in the next section.
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The Macfarlane-Potter-Fath method (Kailath, 1980), which is
used by the MATLAB routine for solving the continuous matrix
Riccati equation, solves equation (3.3.12) by considering its

associated Hamiltonian matrix

A -BRBT
-Q -A )

Assuming that equation (3.3.12) is an n-dimensional matrix
equation, the Hamiltonian matrix, M, will be a 2n-dimensional
matrix.

-I 0

Let J = [ I], so 3 = 3! = -3, then :

M is Hamiltonian if J7'M'J = -Mm
M is symplectic if Jmly = ﬂri
Two important properties of Hamiltonian matrices are :
i) If A is an eigenvalue of WM, then -A will also be an eigenvalue
of M, with the same multiplicity.
ii) If M is Hamiltonian and U is symplectic, then U'Mu is

Hamiltonian (or symplectic).

suppose that M has 2n distinct eigenvalues and that its

eigenvectors may be partitioned as follows

‘1 ;l .
= A 1 = 1 2 e ¢ oo
m o, | g, 12, ,2n (3.3.18)

where {l,} and {q,} are sets of n vectors.
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Choose the eigenvalues with negative real parts, {AI i=1,...,n}

and let {21,5{} be the corresponding eigenvectors. Then P can be

calculated as

-1
p = [51,....,6,,][21,....,2“] (3.3.19)

There are two problems which can occur with this method, when
Q is the null matrix. The first problem is that there may not be
sufficient negative eigenvalues of M to form the P matrix.
Suppose that there are n, negative eigenvalues of M, where n; < n.
This problem may be overcome by using the eigenvectors of n-n, of
the zero eigenvalues, thus enabling the P matrix to be formed.
The second, more common, problem is, that the 2n eigenvalues of M
are not distinct, in which case the method is not valid. A
possible approach to this problem is to assemble the P matrix in
the usual way, with generalized eigenvectors in the case of non-
distinct eigenvalues. This modified version of the Macfarlane-
Potter-Fath method may lead to an inaccurate P matrix. Numerical

results for this modified method are contained in Section 3.4.

Laub (1979) claims that the Schur method will solve the
continuous matrix Riccati equation (3.3.12) for Q = 0.
consider again the associated Hamiltonian matrix M given in

equation (3.3.17). Let M have eigenvalues A,,...,A,, then there

n!

exists a unitary transformation U such that U'TU is upper

triangular with diagonal elements A,,...,A,.
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There also exists an orthogonal transformation, U, such that u'mu
is quasi-upper triangular, with the 2x2 and 1x1 diagonal blocks in
any order, with a suitable choice of U. The Hamiltonian matrix M

may therefore be represented as

S,, S
_ T - 11 12
M = USU with s [ o Szz] (3.3.20)

where the S;; are all nxn matrices.

The orthogonal transformation U may also be partitioned into nxn

blocks to give

U = 3.3.
Ua U, (3.3.21)

- - -t

Then the solution of equation (3.3.12), P, is given by
-1

The problem with this method is that when Q is equal to zero,
the Hamiltonian matrix, M, given in equation (3.3.17) is already
in Schur form as can be seen from equation (3.3.20), and so U, is
zero, and hence, trivially, P is zero. Again, it may be possible
to use a Q matrix of the form qI, where g is a very small positive
scalar to force U,; to be non-zero, and hence P to be non-zero,

and this will be investigated in the next section.
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3.4 Numerical Examples
For the first example, consider the following system which
has five states (n = 5) and two control inputs (m = 2). The

system matrix A and the interface matrix B are given by

OO0OOKKO
[eNel NolNo]
Or OO0
w
i
HOOOO
OMKFOO

The transformation matrix T is taken as

2 0 0 0
0 V2 1 -1
T = -0.5|0 V2 -1 1
0 0 0 0
0 0 Vv2 V2

ONOOO

Partitioning the product TAT', as outlined in Section 2.2, (p.11)

gives
-4 2v2 2v2 4] 0
A, = 0.25| 0 -5+V2 =3-v2 A, = 0.25|-2 2+V2
0 =-3+V2 =5-V2 2 2-V2
For the disc, choose r = 2 and « = -6 + 0j. Solving the

discrete Riccati equation gives

3471.4500 589.4871 626.9800
589.4871 123.8504 103.0881
626.9800 103.0881 171.0469

P

So the control matrix is

_ [ 7.1830 -0.8451 7.6267
F=1,4.2803 7.9984 6.5819
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The (n-m) closed-loop eigenvalues of (A;; - A;,F) are -5.2958,
-5.1979 and -5.0332.
After transforming back to the full state space, the sliding

hyperplane matrix, C, is found to be

C = -7.1830 -4.7953 4.2359 -4.2359 -
~ |-24.2803 -10.3098 -1.4154 0.0011 0

Of course, (n-m) of the closed-loop eigenvalues of the full order
system given in equation (3.2.11) are found to be the same as
those for the reduced order system. The remaining m eigenvalues

of the full order system are found to be zero.

For the strip, choose h; = 1.5. The eigenvalues of A,; are

-2, -1 and -0.5, and choosing h, = 2.5 gives u = 0.8333.

As discussed in section 3.3, there are problems when solving
the continuous matrix Riccati equation with the right-hand side
set to zero. The iterative method will only give the trivial
solution if Q = 0, and will not give a solution with Q set to qI,
since when h;, = 1.5, the matrix (I - 1.5A) is almost singular.
Choosing h; = 1 solves this problem, and gives u = 2, and the

following P matrix, after 100 steps

3 0 0 0
P = 1x107|1.0928 1.6396 -0.0942
1.0928 -1.6396 0.0942

[oNe N
(o N Sl )
=00

This P matrix is clearly not acceptable, since not only is it not

a symmetric matrix, but it is not positive definite.
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Consider the same example, with h, = 1, but with ¢ = Ina which

gives the following solution

0.44 0.4063 0.2160
P = ]0.4063 1.0490 -0.4744
0.2160 =-0.4744 0.7798

Q = 1.0e

OO
oo
= OO0

This P matrix is clearly symmetric, and has no zero elements, and

the control matrix is given by

F = -0.1903 -1.5234 1.2534
- 0.7568 1.6517 -0.5815

The closed-loop eigenvalues of A,,-A,,F are -1.374, -2 and -2.839.

It is clear the the smallest ¥igenvalue is not within the
vertical strip with bounds -1 and -2.5, and so despite giving an
acceptable-looking P matrix, the iterative method with Qo non-zero

and Q = qI appears not to work.

Returning to the original strip, h; = 1.5, the precise
Macfarlane-Potter-Fath method will not give a solution since the
eigenvalues of the Hamiltonian matrix M are not distinct. Using
the modified version of this method outlined in section 3.3 gives

the following P matrix

1.8762 1.1182 1.5351
P = |1.4159 2.1772 -0.1748
1.2374 -0.5958 2.3458
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It can be seen that this P matrix is not symmetric; the
differences between the corresponding symmetric elements are of
the order of 107}, Calculating the control matrix from this P

matrix gives

P = -0.0744 -1.1554 1.0503
- 1.1582 1.4759 0.1619

and the (n-m) closed-loop eigenvalues of (A;; - A,,F) are

-1.9432 *+ 0.1274j and -2.

These eigenvalues are clearly within the vertical strip
crossing the real axis at the points -2.5 and -1.5, and so it
appears that the inaccuracy of the P matrix is not too critical
for thi;_particular example. TQergfore, the modified version of
the Macfarlane-Potter-Fath method gives a sufficiently accurate
result. After transforming back to the full state space, the

sliding hyperplane matrix is found to be

Cc = 0.0744 0.0744 1.1028 -1.1028 -1
- 1-1.1582 -1.1582 -1.3641 -0.0501 0

A further improvement to this modified Macfarlane-Potter-Fath
method would be to force P to be symmetric by choosing the off

diagonal terms to be of the form

2

[
#
.

Py = (3.4.1)
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For this example, P would become

1.8762 1.2671 1.3863
P= |1.2671 2.1772 -0.3853
1.3863 -0.3853 2.3458

The resulting control matrix is

P o= 0.0497 =-1.0677 1.1380
~ ]11.0704 1.5016 0.0122

and the (n-m) closed-loop eigenvalues of (A;, - A ,F) are -1.7119,
-2 and -2.1745.

These eigenvalues are clearly within the vertical strip,
crossing the real axis at the points -2.5 and -1.5. After
transforming back to the full state space, the sliding hyperplane

- e

matrix is found to be

Cc = -0.0497 =0.0497 1.1028 -1.1028 -1
-~ |-1.0704 -1.0704 -1.4518 0.0376 0

If instead of setting Q to be the null matrix, it is set to
be a matrix of the form gI, where g is a small positive scalar,
the eigenvalues of the Hamiltonian matrix M are distinct, and the
Macfarlane-Potter-Fath method works without any modifications.

The following solutions result from this method :

-20 100 2.4373 1.4526 1.9942
Q = 1l.0e 010 P = |1.4526 2.1991 -0.1448
001 1.9942 -0.1448 2.9695
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As would be expected from this method, the P matrix is clearly

completely symmetric. The control matrix is

F = 0.2257 -0.9766 1.2958
1.2766 1.5465 0.2589

and the (n-m) closed-loop eigenvalues of (A;; - A;,F) are -2 and
-1.9971 * 0.14627.

These values are clearly very close to the ones obtained with
Q set to the null matrix since the complex pair differ only in the
second decimal place, and the real value is the same. The results
from this method are accurate since the method used was the
unmodified Macfarlane-Potter-Fath method, but of course Q was not
set to the null matrix. After transforming back to the full state

space, the sliding hyperplane matrix is found to be

c = -0.2257 =0.2257 1.1362 -1.1362 -1
- |-1.2766 -1.2766 -1.3509 -0.0633 0

Another solution to the problem of solving the continuous
matrix Riccati equation when Q is the null matrix is to use the
Schur method described in section 3.2, with the Q matrix set to qI

where g is a small positive scalar. This gives the following

results
20 1 0 O 0 0 0
Q = 1.0e o 1 0 P=1]0 0.9142 -2.5
o 0 1 0 -2.5 1.942

Although this P matrix is symmetric, it is clearly not a

satisfactory result, since P is not positive definite.
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It is unlikely that a P matrix of this form will give the required
eigenvalues. It is presumed that the inaccuracies in the P matrix
arise because although U, is not zero, it is very small.

The control matrix is

F = 0 -1.4226 0.2441
~ 1o 0.3452 -2.0118

and the (n-m) closed-loop eigenvalues of (A,, - A,,F) are -1,
-1.1666 and -2.1666. Clearly, only one of these eigenvalues is
within the strip with limits -2.5 and -1.5, and so, as was
surmised from the form of P, this method does not work when Q is

close to the null matrix.

For the second example, consider the robot arm discussed in
Chapter 2. This system has four states (n = 4) and two control
inputs (m = 2). The system matrix A and the interface matrix B

are given by

0 1 0 0 0 0

A = 0 -0.332 O 0.0187 B = 130.83 -308.33
0 0 0 0 - 0 0
0 0.783 0 -=0.1914 -308.33 3155.39

The transformation matrix T is taken as

1 0 (o] 0

_lo o 1 o0
T=1|o -0.3906 0 0.9206
0 -0.9206 0 =-0.3906

Partitioning the product TAT', as outlined in Section 2.2 gives

A, = 0o O A, = -0.3906 -0.9206
11 0 O 12 0.9206 -0.3906
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For the disc, choose r = 2 and a = -4 + 0j. Solving the

discrete matrix Riccati equation gives

p = |13.3007 O
=1lo 13.3007

So the control matrix is

F = |-1-2012  2.8309
= |-2.8309 -1.2012

The (n-m) closed-loop eigenvalues of (A;; - A,;F) are a double
root at =-3.0752, which are clearly within the specified disc.
After transforming back to the full state space, the sliding

hyperplane matrix is found to be

- - -

C = -1.2012 -0.3906 2.8309 0.9206
-2.8309 -0.9206 -1.2012 -=0.3906

For the strip, choose h;, = 2.0, which gives rise to a matrix
3 whose eigenvalues are both 0. Choosing h, = 3 gives u = 0.625
and the strip crosses the real axis at the points [-3,-2].
Solving the continuous matrix Riccati equation with the right-hand
side set to zero by the Macfarlane-Potter Fath method again gives
a Hamiltonian matrix with non-distinct eigenvalues. Using the
modified version of this method to overcome this problem gives the

following P matrix
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This P matrix is clearly symmetric, and may be shown to be an
exact solution of (3.3.6) for this example, and so despite the
eigenvalues of the Hamiltonian matrix not being distinct, there

are no obvious errors. The control matrix is

p = |-0-9765 2.3014
= |-2.3014 -0.9765

and the (n-m) closed-loop eigenvalues of (A,; - A;F) are a double
root at -2.5. After transforming back to the full state space,

the sliding hyperplane matrix is found to be

c = [-0.9765 -0.3906 2.3014 0.9206]

-2.3014 -~0.9206 -0.9765 -0.3906

solving the continuous Riccati equation by this method, but
with the Q matrix of the form qI, where g is a small positive
scalar, still results in the Hamiltonian matrix having indistinct

eigenvalues, and gives the following results

201 0 [ a 0
Q = 1.0e [o 1] P = [—o.ooz 4]

These results are almost the same as those for Q equal to the null
matrix, but in this case, the P matrix is not quite symmetric, as
there is an error of order 10”2 on P,;. The control matrix is
given by

_ [-0.9766 2.3014
F=1_.3009 -0.9765
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The (n-m) closed-loop eigenvalues of (A;; - A ,F) are again a
double root at -2.5. After transforming back to the full state

space, the sliding hyperplane matrix is found to be

c = -0.9776 -=0.3906 2.3014 0.9206
~ |-2.3009 -0.9206 <-0.9765 =0.3906

The results from this method with the P matrix forced to be
symmetric, but with errors of the order 10~ on both P, and P,,,

as outlined in equation (4.3.1) are

p = 4 =0.001 F = -0.9771 2.3016
- |-0.001 4 -2.3012 -0.9760

The (n-m) closed-loop eigenvalues of the reduced order system
(A;; - A;oF) are -2.4994 and -2.5006, which are clearly within the
strip. After transforming back to the full state space, the

sliding hyperplane matrix is given by

_ [-0.9771 -0.3906 2.3016 0.9206
C=1_2.3012 -0.9206 =-0.9760 =-0.3906

3.5 Discussion

It can be seen that the method of placing eigenvalues in a
specified disc can be successfully applied to the problem of
eigenvalue placement in a Variable Structure Control System. It
is clear that this method is less restrictive than a method of
choosing precise eigenvalues. The sensitivity of this method to
changes in the arbitrary matrices will be considered in Chapter 6,

along with the problem of positioning eigenvalues within the disc.
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With regard to the placement of eigenvalues in an infinite
vertical strip, it can be seen that this theory may be
successfully applied to a Variable Structure Control System.

This method also allows a much less rigid specification of the
eigenvalues and therefore gives more flexibility of solution.
The robustness of this method to changes in the arbitrary matrix
is also discussed in Chapter 6.

Some difficulties arise with the solution of the continuous
matrix Riccati equation when Q is the null matrix. The
Macfarlane-Potter-Fath method uses the associated Hamiltonian
matrix of the system, and it appears that when Q is null, this
results in the eigenvalues of this matrix not being distinct.

As has been outlined in section 3.3 and illustrated in
section 3.4, some modifications to the Macfarlane-Potter-Fath
method enable this problem to be overcome, and also force the
resulting P matrix to be symmetric. Both the iterative method and
the Schur method outlined in section 3.3 will give either a null P
matrix or a P matrix which is not positive definite, which is
clearly unsatisfactory. The reason for the problems connected
with the solution of the continuous matrix Riccati equation with
the right-hand side equal to zero can be seen by looking at
equation (3.3.6), since it is clear that the trivial solution is a
null P. The only method discussed in this work in which this
inherent problem can be overcome is that of the modified
Macfarlane-Potter-Fath method. There may possibly be a better way
of solving equation (3.3.6), and this will be considered in the

future.
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4. EIGENVALUE PLACEMENT IN A SPECIFIED SECTOR

4.1 Introduction

In this chapter the problem of placing eigenvalues in a
region other than a disc or a vertical strip will be considered,
and a new method will be developed to place the closed-loop
eigenvalues of a system within a sector in the left-hand half-
plane (Woodham and Zinober, 1991). Some work has been done
recently on a similar problem for the very specific case of
rotational systems (Kim and Lee, 1990). This method enables the
system to be described by complex matrices, and the method used to
place the eigenvalues within the chosen region results in a
complex control matrix. There is no indication in this work of
how to map this result back to the "real world".

The selection of weighting matrices to give the required
eigenstructure has been considered (Harvey and Stein, 1978), and
numerical methods for robust eigenstructure assignment have been
studied (see for example, Kautsky, Nichols & Van Dooren, 1985,
Burrows and Patton, 1990,a & b). The problem of root clustering
for real and complex matrices has been addressed (Gutman, 1979,
Gutman and Vaisberg, 1984) and the conditions for the eigenvalues
of a matrix to lie within a particular sector are obtained from
particular classes of matrices. However, this work does not give
any indication of how to move the eigenvalues into the sector.
Methods to determine whether the roots of a polynomial lie to the

left of a vertical line (Soh, 1990), or in a sector in the left-
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hand half-plane (Foo & Soh, 1990) have been developed. Again, no
method is given for moving roots into the required region.

Some work has also been done on the robustness of eigenvalue
assignment in regions bounded by straight lines (Juang, Hong and
Wang, 1989). Once again, there is no strategy given to place the
eigenvalues of a system within a particular region.

The method which will be described in this chapter, and
jllustrated with a numerical example (Woodham & Zinober, 1991),
has no restrictions on the real system matrices. The method for
ensuring that the eigenvalues will lie in the required region is
developed in detail, and involves the solution of a complex
continuous matrix Riccati equation. The resulting control matrix
is also real, and thus possible to implement in a physical
problem. The region which will be gonsidered is an open ended
sector bounded by a straight line cutting the left-hand half-
plane, and its reflection in the real axis (Fig 4.1).

In section 4.2 the approach will be developed using the
standard regulator theory, and it will then be applied to the
particular problem of Variable Structure Control systems. 1In
section 4.3 the extension of this work to a region bounded by two
intersecting sectors is considered, and some of the problems are
highlighted. Section 4.4 contains some examples of the method,
applied to the two systems described in Chapter 3. In section 4.5
the effect on the method of particular pairs of a and 6 values is
jnvestigated. It can be seen that there are limiting values of &
for each a value, and a possible method of predicting these values

is outlined. Section 4.6 contains a discussion of the results.

62



10

B

(1)

Fig 4.1

Sector with angle 6 and real axis

crossing point «
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4.2 Technique for the Regulator System
The technique for placing all the closed loop eigenvalues of
a system within a specified sector in the left-hand half-plane

will now be developed (Woodham and Zinober, 1990).

Let us define a region bounded by a line at an angle 6 to the
imaginary axis, and crossing the real axis at o, where a is any
real number, and the reflection of this line in the real axis
(Fig 4.1). The angle 6 is measured in an anti-clockwise direction

from the imaginary axis, and lies between 0° and 90°.

We want to determine the state feedback, u = Fx, such that
all the eigenvalues of the closed loop system lie within the

required region.

- -t

The equation of line (1) is given by

1, : ysin@ + (x - a)cos® = 0 0° s @ = 90° (4.2.1)
The region we are considering is to the left of this-line, and
excludes the origin, so we require

ysine + (x - a)cos8@ < 0 (4.2.2)

The equation of line (2) is given by

]

1, : ysiné - (x - a)cos8 = 0 0° = 8 = 90° (4.2.3)

The region we are considering is to the left of this line, and

excludes the origin, so we require

ysine - (x - a)cosé > O (4.2.4)

64



Let us now consider the general system (2.2.2) and the matrix

equation

e’eA'P + e"ePA - 2aPcos@ = -Q (4.2.5)

Q is an arbitrary positive definite matrix and * denotes the
complex conjugate transpose. Let A and v be an eigenvalue and

corresponding right eigenvector of A, so that

L

AV = AV and va" =0

Premultiply equation (4.2.5) by v* and postmultiply by v to give :

v a’py + e 8'Pav - 2av*Prcose = -viqu (4.2.6)

Substituting for Av and v‘A‘, and rearranging gives

v*'PY [e’e X+ el - Zozcose] = *v'Qv (4.2.7)

Let A = x + jy and hence X = x - jy. Substituting into equation

(4.2.7) gives
2[(x - a)cose + ysine]v'Pv = -v'Qv (4.2.8)

Since Q is positive definite and we require P to be positive

definite it follows that
(x - a)cosé + ysiné < 0 (4.2.9)

In other words, if there exists a positive definite solution P to
equation (4.2.5), all the eigenvalues of the matrix A lie to the

left of the line defined by
(x - a)cos6 + ysine = 0.
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consider the state feedback u = Fx. The conditions for the
eigenvalues of the closed loop system A + BF to lie within the

region are required. Consider the following equation

e’e(A + BF)'P + e'JeP(A + BF) - 2aPcos8 = -6 (4.2.10)

where Q is an arbitrary positive definite symmetric matrix.

It will now be shown that the eigenvalues of A + BF all lie
in the required region if there exists a positive definite
solution P satisfying (4.2.10). Let us now consider a continuous

matrix Riccati equation of the form

e - a1)’P + e°P(a - aI) - e 'OPBRE"P = -3 (4.2.11)

- -es

Let F = -R 'B'P, where R is an mxm positive definite symmetric

weighting matrix, and substitute for F in equation (4.2.11) to

give

e®@ - a1)'P + % (a - a1) + ¢%BF = -3 (4.2.12)
Expanding equation (4.2.12) gives

e®a"p-0e’®p + efp(a + BF) - ape™® = -5 (4.2.13)

Rearranging equation (4.2.13) gives

Je =

e’fa'p + e"eP(A + BF) - otP(eje + e )

]
1
©

(4.2.14)
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Now e’° + e’ = 2cosf, so substituting for this expression in

equation (4.2.14) gives

e®a’p + e%p(A + BF) - 2aPcose = - (4.2.15)

Comparing equations (4.2.10) and (4.2.15), it is clear that we
must add eﬂa(BF)'P to both sides of equation (4.2.15) to obtain
the left-hand side of equation (4.2.10). So equation (4.2.15)

becomes
e’ (a+BF) "P+e P (A+BF) -20Pcose = -G+e!® (BF) P (4.2.16)

Now (BF)'P = F'B'P = ~F'RF (since F and B are real), so

substituting for (BF)'P in equation (4.2.16) gives

&’ (a+BF) "p+e ®P (A+BF) -2aPcose = -0 - e'°F'RF (4.2.17)

since 0 and R are arbitrary positive definite symmetric matrices,
we can choose positive definite symmetric matrices Q and R such

that

0 =08 + e°FRF and 185

w
]
®
o)

Then equation (4.2.17) may be written
18 . -8
e’°(A + BF) P + e "P(A + BF) - 2aPcosé = -Q (4.2.18)

It is clear that equation (4.2.18) and equation (4.2.10) are

identical.
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The eigenvalues of (A + BF) will, therefore, lie in the required
region if there exists a positive definite solution P to equation

(4.2.18) satisfying

L ] - -
% - aI)'p + % (a - a1) - PBR'B'P = - (4.2.19)

where F = -R'B'P.

Since the eigenvalues of (A + BF) will be either real, or
complex conjugate pairs, they will lie in the region bounded by
line (1), and its reflection in the real axis, line (2).
Conditions (4.2.2) and (4.2.4) will therefore be satisfied, and
the eigenvalues of (A + BF) will lie in the required sector in the

left-hand half-plane.

- -

In general, the solution matrix P of equation (4.2.19) has
complex elements except on the leading diagonal, unless the angle
@ is zero. 1If 6 is zero, then equation (4.2.19) is not a complex
equation and so P will be a real positive definite matrix. The

general form of the P matrix when @ is not equal to zero is

Py Pyo=Piad Pia=Piad ooo. Pyu—Pypd
P,,+Pyo] Py Pza+§23j cecsee Pzn"'f’anj
Py +Py3) Pas-Basj P35 ceeeesPy=Py]
P= - e e o0 0 - (4'2'20)

Pia+Pind Pon=Paid P3n+§3nj ceeess P

nn
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The P matrix is a Hermitian matrix, since P = P, which can
be seen from equation (4.2.19).

Now consider equation (4.2.19) with 6 replaced by -6
e % - a1)’P, + %P, (A - aI) - PBR'B'P, = -0 (4.2.21)

This gives rise to a solution P; which is also a Hermitian
positive definite matrix and is the complex conjugate transpose of
the solution P of equation (4.2.19). Substituting P’ for P, in

equation (4.2.21) gives

- L R L -
e - an)’p’ + % (a - a1) - P'BRBP’ = -0 (4.2.22)

The complex conjugate transpose of equation (4.2.19) is

9" (a - a1) + e9(a - a1)"P" - P'B'RBP" = @ (4.2.23)

L -

It ;an be seen that equatiéﬁ (4.2.22) and equation (4.2.23)
are very similar, and so clearly the solutions of equation
(4.2.19) and equation (4.2.21) are very closely related. Since we
require the control matrix to be real, and since the solutions of
equations (4.2.19) and (4.2.21) are so closely related we shall

define the control matrix to be

-1 T4
F=-R BP (4.2.24)

where P is defined to contain the modulus of the elements of the

A

Hermitian positive definite matrix P. In other words, P is

defined to be

By = |[P,,§,,] (4.2.25)
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If there exists a Hermitian positive definite solution P to
equation (4.2.19) and if the control matrix is defined by equation
(4.2.24), then it is postulated that the closed-loop eigenvalues
of the system will lie between the line specified by a« and 6 and
its reflection in the real axis. This will be illustrated

numerically in Section 4.4.

For the sliding mode design we require the (n-m) left-hand
half-plane closed-loop eigenvalues of the reduced order equivalent
system (A;; - A,pF) to lie within the specified region. The

matrix Riccati equation to be solved is therefore

e . -18 -
e’ (a,,-aI) P + e °P(a,~aI) - PARTALP = -Q (4.2.26)

and the control matrix, F, is givefi by

- A
F = R'a[,P

A
where P is as defined in equation (4.2.25). The control matrix
has the opposite sign to that of the system A + BF, since the

system now under consideration is of the form A - BF.

The eigenvalues of the reduced order system A,; - A,,F will
then lie in the required region. The sliding hyperplane matrix,

C, is obtained in the same way as before, and is given by
c = [F I,,]'r

where T is the transformation matrix defined in Chapter 2.
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The choice of the weighting matrix R has an effect on the
positioning of the eigenvalues within the region, and also enables
them to be placed within a region at an angle greater than the
limiting @ value (Section 4.5). This effect will be discussed in
the chapter on dependence of eigenvalue placement techniques on

the design of the R matrix, Chapter 6.

4.3 Technique for a Region Bounded by Two Sectors

The extension of the technique for placing all the closed-
loop eigenvalues of a system within a region bounded by one sector
to a technique for placing all the closed-loop eigenvalues in a
region bounded by the intersection of two sectors will now be

considered.

The first sector is defined to be bounded by a line at an
angle 6 to the imaginary axis, crossing the real axis at «, and
the reflection of this line in the real axis. The second sector
is defined to be bounded by a line at an angle ¢ to the imaginary
axis, crossing the real axis at B, and its reflection in the real
axis (Fig 4.2). Both @ and ¢ are assumed to lie between 0° and

[+]

90 .
Wwe want to determine the state feedback u = Fx such that all

of the eigenvalues of the closed-loop system lie in this region of

the left-hand half-plane.
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From section 4.2 we may recall that for line (1) and its

reflection in the real axis we have the following conditions

ysine + (x - a)cosé < 0 (4.3.1)

ysine - (x - a)cosé > 0 (4.3.2)

Similarly, for line (2) and its reflection in the real axis, we

get the following conditions

ysing + (x - B)cos¢ < 0O (4.3.3)

ysing - (x - B)cos¢ > 0O (4.3.4)

As shown in the previous section, due to the symmetry of the
eigenvalues of a matrix about th Egal axis, all of the closed-
loop eigenvalues of the system will lie in sector 1 if there

exists a positive definite matrix, P, satisfying
J8 . -8 -1.T
e (A - aI) Pl + e Pl (A - aI) -P18R1 B Pl = -Q1 (4-3.5)

All of the closed-loop eigenvalues of the system will lie in

sector 2 if there exists a positive definite matrix, P, satisfying
L4 - -
e (a - 81)°p, + e ¥p,(a - 1) -PER;'E'P, = -q, (4.3.6)

If all the closed-loop eigenvalues of the system are to lie in the
region bounded by the intersection of the two sectors, then P, and
P, must be positive definite, and satisfy equations (4.3.5) and

(4.3.6).
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Let us consider the general system (2.2.2) and the following
matrix equation, which is a combination of equation (4.3.5) and

equation (4.3.6)
(e59+e3¢)A'P + (e"9+e"¢)PA-2P(acose + Bcos¢) = -Q (4.3.7)

where Q is an arbitrary positive definite matrix, and '_denotes
the complex conjugate transpose.

Let A and v be an eigenvalue and the corresponding right
eigenvector of A, as defined in section 4.2. Premultiply equation

(4.3.7) by v’ and postmultiply it by v to give

e

(e’e + em)v'A'Pv + (799 + e'm)v.PAv

- 2(acosé + Bcos¢)v'Pv = -V'Qv (4.3.8)

- - -

Substituting for Av and v'a", and rearranging gives

"'P"[(e’e+e’¢)i'+(e"e+e"¢)A—z(acose+3cos¢)] = -vQ (4.3.9)

Let A = x + jy and hence A = x - jy. Substituting into equation

(4.3.9) gives

. cos@+cosé+] (sing+sing) ) (x-jy) +(cose+ e
v Pv[(cosdb-j (siné+sing)) (x+jy) -2 (acose+3cos¢)]“" Q  (4.3.10)

Expanding the expression in the brackets in equation (4.3.10), and

rearranging gives

e [2%(cose + cos¢) + 2y(sin6@ + sin¢) - .
v Pv[ 2(acose + Bcosg)| = VW (4.3.11)
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Since Q is positive definite, and we require P to be positive

definite, it follows that
x(cos6+cos¢) + y(siné+sing) - (acosé+B8cos¢) < 0 (4.3.12)
Equation (4.3.12) may be rewritten in the form

(x - a)cos6 + ysiné + (x - B)cos¢ + ysing < O (4.3.13)

However, equation (4.3.13) does not imply that conditions (4.3.1)
and (4.3.3) hold, except in the particular case when o = 8 and
9 = ¢.

Consider the associated matrix Riccati equation

[(e’9+e’¢)A' - (aeJG+BeJ¢)1)p — (e %+e 7% pBR!B'P +

L

P{(e"9+e"¢)A - (ae”eﬂse'”’)x] = -Q (4.3.14)

It can be seen that if both 6 and ¢ are equal to 0, equation

(4.3.14) becomes
[zA' - (a +B)I]P + (2a - (a +8)I) - 2PBRV'B'P = -Q (4.3.15)

The solution of equation (4.3.15) will give a control matrix which
it is postulated will place the closed-loop eigenvalues to the
left of the line intersecting the real axis at the point

-(a + B)

X = ————
5 (4.3.16)
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It is clear that equation (4.3.7) does not lead to a solution
which places the eigenvalues in the required region, except in the
particular case when a = 8. The choice of a continuous matrix
Riccati equation formed from the combination of equation (4.3.5)
and equation (4.3.6) was clearly not entirely suitable for the
solution of the problem of placing the eigenvalues in a region

bounded by two intersecting sectors.

Consider instead a continuous matrix Riccati equation which
is an approximation to the intersection of equation (4.3.5) and

equation (4.3.6).

e’eemA'P + e"'ee'wPA - 2P(acos (6+¢) + Bcos¢) = =Q (4.3.17)

Let A and v be an eigenvalué'énd the corresponding right
eigenvector of A, with the same definition as before, and
premultiply equation (4.3.17) by v’ and postmultiply it by v to

give

&t (6+) ,*a'py + e 1(O18) ,ppy,

2v'Pv(acos(e+¢) + Bcos¢) = -v’Qv (4.3.18)

Substituting in equation (4.3.18) for v'a" and Ay, and rearranging

gives

[ej(9+¢)i+é”(e+¢)A-z(acos(e+¢)+3cos¢)]V'PV = -vov (4.3.19)
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Let A = x + jy and hence A= x - jy, and recall that

o) (849) _ cos(a+¢) + jsin(6+9)

e”(9+¢) = cos(6+¢) - jsin(6+¢)

Substituting in equation (4.3.19) for a, X, e'(€%®) ang o1(6%4)

and rearranging gives
(2xcos(e+¢)+2ysin(6+¢)-2acos(e+¢)-23cos¢]v'pv = .1va (4.3.20)

Since Q is positive definite, and we require P to be positive

definite, it follows that
xcos (6+¢) + ysin(6+¢) - acos(6+¢) - Bcos¢ < 0 (4.3.21)

Equation (4.3.21) may be rearranged to give

-

(x - a)cos(6+¢) + ysin(6+¢) - Bcos¢ (4.3.22)

Equation (4.3.22) is the equation of a straight line at an

angle of 6+¢ to the imaginary axis which crosses the real axis at
pcos¢

the point ———— + «.
cos (6+¢)
It can be seen from Fig 4.3 that this region is a sector
inside the required region, so that although the closed-loop
eigenvalues will be within the required region, there is an area

of this region in which they will not be placed, indicated by the

shading.
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However, this method gives eigenvalues in a subregion of the
required region, and so may be useful. The conditions for the
eigenvalues of the closed-loop system A + BF to lie within the
region are required. Consider the state feedback u = Fx and
equation (4.3.17). We will now show that the eigenvalues of
A + BF will lie in the required region if there exists a positive

definite solution P to equation (4.3.17)

Consider a continuous matrix Riccati equation of the form

e*®(e-16 (a-a1) -p1] '+ %8 (c-16 (n-a1)-p1) -

e % 9pBR'B™P = - (4.3.23)

Let F = -R 'B'P, where R is an mxm positive definite symmetric
weighting matrix, and substitute for F in equation (4.3.23) to

give
: -
e® (e18 (a-a1)-61) P + &P (e18 (a-ar) -p1) +
e % Cppr = -3 (4.3.24)
Expanding equation (4.3.24) gives
e’¢ejeA'P-eJ¢e’9aP-eJ¢BP + e"¢e-’8P(A + BF) -
e%e%p - ¢ ¥¥%p = - (4.3.25)
Rearranging equation (4.3.25) gives

'?e%2°p + e % %p(a + BF) -

P[a(e'me"e + e"¢e’9) + B(e"¢ + e’¢)] = =Q (4.3.26)

79



Now e'w + e’¢ = 2cos¢ and e‘""e“e + e'-‘¢e"6 = 2cos(8+¢), so

substituting for these expressions in equation (4.3.26) gives
e%e®a’p + % %p(a+BF) - 2P(acos (9+4)+Bcosd) (4.3.27)

Comparing equation (4.3.17) and equation (4.3.27), it is clear
that we must add e’¢e’e(BF)'P to both sides of equation (4.3.27)
to obtain the left-hand side of equation (4.3.17). So equation

(4.3.27) becomes
e%e®a + BF)'P + e % °p(a + BF) -
2P(acos(e + ¢) + Bcos¢:] = -Q + emeje(BF)'P (4.3.28)
. T T T= .
Now (BF) P = FBP = -FRF (since F and B are real), so

substitu—ting for (BF)'P in equatioﬁ (4.3.28) gives

%9 (a + BF)P + €% °p(a + BF) -

2p[acos(e + ¢) + Bcos¢) = -3 - ¢'%%F }r (4.3.29)

Since 0 and R are arbitrary positive definite symmetric matrices,
we can choose positive definite symmetric matrices Q and R such

that
0 =0 + e FRrF and R = %%k
Then equation (4.3.29) may be written

o’9e’8 (a+BF) ‘P+e?e %P (a+BF) -2P [acos (8+¢) +Bcos¢] =-Q (4.3.30)
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Clearly, equation (4.3.30) and equation (4.3.17) are identical,
and so the eigenvalues of (A + BF) will lie in the required region
if there exists a positive definite Hermitian solution P to

equation (4.3.30) satisfying

el¢[e-,9 (A_al)_m]-p + e-s¢p[e_,e(A_aI)_BI] -

PBR'B'P = -Q " (4.3.31)

where F = -R'8"p.

Again, the solution matrix P of equation (4.3.31) will be

Hermitian, and so the control matrix will again be defined to be

-1.,TA
F=RBP (4.3.32)

A
where P is again defined as

Byy = |[P,,1'>,,] (4.3.33)

So, if there exists a Hermitian positive definite solution P
to equation (4.3.31), and if the control matrix is defined by
equation (4.3.32), then all the closed-loop eigenvalues of the

system will lie in the required region.

For the sliding mode design, we require the (n-m) left-hand
half-plane closed-loop eigenvalues of the reduced order equivalent
system (A;;-A;oF) to lie within the specified region. The control

matrix will have the opposite sign to that for the system (A+BF).
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The matrix Riccati equation to be solved is therefore

e’¢[e‘19 (Au-al)-BI] P+ e"¢p[e-19(Au-a1)-31] -

PA,;R AP = -Q (4.3.34)

and the control matrix, F, is given by

where P is as defined in equation (4.3.33).

The control matrix has the opposite sign to that for the
system A + BF, since the reduced order equivalent system now being
considered is of the form A - BF, as explained earlier.

The closed-loop eigenvalues of the reduced order equivalent
system A,; - A;F will then lie in the required region. The
sliding hyperplane matrix, C, is obtained in the same as in the

previous section, and is given by
c = [F I_,]'r
where T is the transformation matrix defined in Chapter 2.

The effectiveness of this method will be illustrated with a

numerical example in section 4.4.
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4.4 Numerical Examples
As a first example, consider the five state system defined in
Chapter 3, Section 3.4. The matrices for the reduced state system

were obtained in that chapter, and are as follows

-4 2v2 2v2 0 0
A,, = 0.25| 0 -5+v2 -3-v2 A, = 0.25]|-2 2+v2
0 =-3+V2 -5-v2 2 2-V2
Choose 6 = 30° and a = -2. The Hermitian positive definite

solution of the continuous matrix Riccati equation is

13.5643 4.1713-1.58243 6.6808-0.94627
4.1713+1.58243 3.8012 1.0911+0.57617j
6.6808+0.9462j 1.0911-0.5761j 7.1139

P

So the control matrix, F = R'lAzai;, is

F = -1.1431 -1.2873 -2.940
~ |=-4.7961 -=3.4252 -2.095

and the closed-loop eigenvalues of (A, - A,F) are -2.4934 and

-3.1744 + 0.21193.

After transforming back to the full state space we get

~ [-1.4131 -1.1712  2.1119 -2.1119 -1
c -4.7962 -3.9034 =-1.3722 -0.0420 O
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For the second example, consider the robot arm discussed in
Chapter 2. The matrices for the reduced order (n - m) system were

obtained in Chapter 3, section 3.4 and are as follows

A, = 0O O A, = -0.3906 -0.9206
11 0o o 12 0.9026 -0.3906
Choose 6 = 30° and « = -2. The Hermitian positive definite

solution of the continuous matrix Riccati equation is

p = 3.7321 O
I ) 3.7321

So the control matrix F = R"Azzf’ is

_ [1.4578 -3.a356
F = 13.4356 1.4578

and the closed-loop eigenvalues of (A;, - A,,F) are -3.7231 and
-3.7231. After transforming back to the full system, the sliding

hyperplane matrix, C, is found to be

_[-1.4578 -0.3906 3.4356 0.9206
C=]_3.4356 =-0.9206 =-1.4578 =0.3906

consider the method for placing the closed-loop eigenvalues
in a region bounded by the intersection of two sectors, which has

been outlined in section 4.3.
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Choosing « = -4, 6 = 30°, B = -2 and ¢ = 45° results in the
following Hermitian positive definite solution of the continuous

matrix Riccati equation

1.7726 0.0906-0.2557j 0.1777-0.2531]
P = [0.0906+0.2357j 0.0908 0.0600+0.01303
0.1777+0.2531j 0.0600-0.0130j 0.2131

- A A
The control matrix, F = R’KLP, with P as defined in equation

(4.3.33) is given by

g o [ -1.0018 1.4720 -7.5854
= |-27.6827 -8.6487 -8.3575

and the (n-m) closed-loop eigenvalues of the reduced order
equivalent system, (A;;-A,;F), are -6.9475 and -4.8436 + 0.0691j,
which are within the required sector. After transforming back to
the full state, the sliding hyperplane matrix is found to be

c = -1.9018 -4.3228 4.5287 -4.5287 -1
- |-27.6827 -12.0251 -0.8527 -0.5615 0

4.5 Effects of Alpha and Theta on the Eigenvalues

The choice of a and €& is restricted to some degree because we
shall see that there are some values for which the eigenvalues do
not lie in the required region. There is clearly a connection
between the root locus plot of the reduced order system, and the

feasible regions for the eigenvalues.
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The following maximum & values for various a values have been
determined for the five state example, assuming that both R and Q

are set to the identity matrix of the appropriate dimensions.

Table 4.5.1 Limiting @ and 6 values for the 5 state system

o 10 5 2 1l 0 -0.5 -1 =2

o°| 88 87 85 83 78 72 62 60

o| -3 -4 -5 -6 -7 -8 -9 -10

e°| 47 49 50 51 52 53 53 54

o |-20 =30 -40 -50 -100 -1000 -1x10°

e°| s6 s6 57 57 S8 59 59

Comparing these results with the root locus plot (Fig 4.4)
for varylng r (R = rI, and Q = ), it can be seen that for «
values to the right of all the root locus points, the maximum 6

value can be predicted as follows :

i) draw a line through a and the locus point with the largest
imaginary part.
ii) calculate the angle between this line and the imaginary

axis.

Some of these lines have been drawn in on Fig 4.4, and they
show the appropriate 6 values for a values of 0, -0.5, -1, -2, and
-3. However, once the a value is smaller than about -1.2, in
other words it is no longer to the right of all the root locus

points, the maximum @ value is no longer easily predicted.
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Fig 4.4 Root locus plot for the reduced order system

of the five state system
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If we consider the root locus plot for the full state space,
we can see from Fig 4.5 that it contains more complex values than
the plot for the reduced order equivalent system (Fig 4.4). The
two arcs of complex values which appear in the plot for the
reduced order system (Fig 4.4) are present, and there is also a
third arc, which crosses the x-axis, and a ring shape. Again,
some lines for various a and 6 combinations have been drawn in,
and despite the increased complexity of the plot, the same problem
of predicting the limiting a« and @ values can be seen here. Once
the o value is within the ring shape, or to the left of it, there

is no obvious way of predicting the limiting 6 value.

It can be seen from Table 4.5.1 that the 8 value reaches a
limiting value of 59° for a values smaller than or equal to -1000.
It can aiso be seen that the maximum 6 value decreases as «
becomes more negative, until some minimum value is reached, and
then it increases again until it reaches this steady state value.
There is no obvious way of predicting the minimum value of @,
since it occurs for a value of a which is smaller than the

smallest o value for which the limits can be predicted, in other

words a lies either within or to the left of the ring shape.

If the R matrix is altered from the identity matrix to some
other positive definite matrix, it may be possible to place the
eigenvalues in a wider range of regions. It may be possible to
alter the limiting values of « and 6, and it might be possible to

predict these new limits, and this will be discussed in Chapter 6.
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Let us now investigate the limiting values of a and @ for the

robot arm discussed in Chapter 2.

Table 4.5.2 Limiting ¢ and 6 values for the robot arm

o 10 5 2 1l 0 -0.5 -1 -2

8’| 90 90 90 90 90 90 90 67

o -3 -4 -5 -6 -7 -8 -9 -10

e’ 63 62 61 60 60 60 60 60

o« | =20 -30 -40 -50 -100 -1000 -1x10®

6°| 60 60 60 60 60 60 60

Consider the root locus plot for the reduced order system for
the robot arm (Fig 4.6). 1In this case, all the eigenvalues are
real, so it will be more difficult to predict the limiting « and @
values f&r this example. From the.results in Table 4.5.2 it can
be seen that for a values z -1 there is no bound on the 6 value,
apart from the initial restriction that 6 = 90°. From the root
locus plot (Fig 4.6), it can be seen that the largest eigenvalue
is -1. Between a = -2 and a = -6, the 6 limit drops to 60° and
remains there for all a values < -6. A root locus plot of the

full system, Fig 4.7, also has only real eigenvalues.

If the R matrix is altered from the identity matrix to some
other positive definite matrix, it may be possible to place the
closed-loop eigenvalues of the system in a wider range of sectors.
It may then be possible to predict the limiting 6 values in some

way, and this will be investigated in Chapter 6.
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Fig 4.6 Root locus plot for the reduced order system

of the robot arm
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Fig 4.7 Root locus plot

for the full Robot arm system
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4.6 Discussion

It has been shown that it is possible to place the closed-
loop eigenvalues of a system of the form X = Ax + Bu in a sector
bounded by a straight line at an angle 6 to the imaginary axis,
crossing the real axis at a, and its reflection in the real axis.
It is also possible to place the eigenvalues of the reduced order
equivalent system in this sector, and hence it is appropriate to
use this method to choose the sliding hyperplanes of a Variable
Structure Control System. The specification of a region of the
left-hand half-plane in this way is more flexible than the region
specifications discussed in Chapter 3, since this sector stretches
to negative infinity at its left-hand end. It is also clear that
it is much easier to specify a region in this manner than to have
to select exact eigenvalues in theuleft-hand half-plane. The
method i; straightforward to use, and the choice of a real control
matrix, obtained from the complex Hermitian P matrix gives

satisfactory results for the numerical examples considered here.

This method has also successfully been extended to give a
solution to the problem of placing the closed-loop eigenvalues in
a region bounded by two intersecting sectors (Fig 4.3). There is,
however, a part of the chosen region in which the eigenvalues will
not be placed, the shaded region in Fig 4.3, but they will be
within the required region. Again, this technique can be extended
to assign the sliding hyperplanes of a Variable Structure Control

System.
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The limiting values of a and 6 have been considered for the
region bounded by a single sector, and it can be seen that there
is a maximum 6 value of ~ 60° for both examples, when a is smaller
than a certain value. From the numerical results presented in
Section 4.5, for two very different systems, it would appear that

the following conclusions can be suggested :

1) If the root locus plot is purely real and a is greater than
the largest root locus value then there is no restriction on 6
apart from the 90° restriction imposed initially.

2) If the root locus has complex values and a is greater than the
real part of the the largest complex pair, then the limiting 6
value may be obtained from the root locus plot by calculating
the angle between the imaginary‘axis and the line joining the
real—axis crossing point, o, and the largest complex
eigenvalue.

3) When a is smaller than the majority of the root locus values,

the 6 value will be approximately 60°.

There is a range of values of a which will fall between
conclusions 2 and 3, and for which it is not obvious how to
predict the limiting 6 value. However, it is useful to be able to
predict the limiting 6 values for most of the range of « values,
and the problem for the values for which 6 can not easily be

predicted, may be surmounted by selecting smaller 8 values.
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5. DEPENDENCE OF EIGENVALUE POSITION ON THE R MATRIX DESIGN

5.1 Introduction

The dependence of the solution of a general matrix Riccati
equation, continuous or discrete, on the design of the arbitrary
matrix R is a property which can possibly be used to poéition the
closed-loop eigenvalues of a system within a chosen region. It
would clearly be useful to be able to position the closed-loop
eigenvalues of a Variable Structure Control System within the
chosen region and to predict which, if any, of them will be
complex. It could also be useful to control the scatter of the
eigenvalues within the chosen region. Some work has been done on
choosing the weighting matrices of the Riccati equation (Harvey &
Stein, 1978), Work has also been done on the eigenvalue bounds of
the solutions of both the Riccati and Lyapunov equation (Karanam,
1982, Kwon, Youn & Bien, 1985, Komaroff, 1988). The robustness of
eigenvalue assignment techniques for non-VSC controllers has also
been considered (Burrows & Patton, 1990, a & b).

In section 5.2 the dependence of the solution of the discrete
matrix Riccati equation, used in section 3.2 to place the closed-
loop eigenvalues of a VSC system in a specified disc, on the
design of the arbitrary R matrix, and in the disc size is
considered. Section 5.3 contains a similar investigation for the
continuous matrix Riccati equation used in section 3.3 to place
the closed-loop eigenvalues of a VSC system in a vertical strip.

Section 5.4 contains a discussion of the results.
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5.2 Design of R for Eigenvalue Positioning within a Disc

Some work on eigenvalue positioning within the disc has been
carried out by Furuta and Kim (1987), and this will be briefly
considered here. This analysis depends on the eigenvalues of the
product BTPB, which are not easy to predict, and so a further
investigation of predicting eigenvalue positioning without using
these eigenvalues will also be carried out.

If R is chosen to be diag{(r,,r,,.., r,) and the linear
control has each channel multiplied by a gain X, then it may be

written u = KFx where X = diag(k, k;,..., k). The bounds on this

gain, a;mﬂ and g,,,,; satisfy

A 1 <k < 1l A . 1.2
_— e— ——— = l = ® e @ m 5. .
9nin, 1 1+a, i 1-a, Imax, § XY ' (5.2.1)
where )
rar‘
al = (50202)

(r"’r, + }‘max)
Apay = Max[’*a(A}szm)] (5.2.3)

where A,, is the appropriate part of the partitioned matrix TAT’
(see Section 2.2), Ay, i =1,..,n-m are the eigenvalues of A},PA,,

and r is the radius of the disc (Furuta and Kim, 1987).

It can be seen that a, approaches zero as r-0, unless A, =0,
so the difference between the gain bounds, g,, decreases. This
will result in all the eigenvalues of the closed-loop system being

assigned to the same point (Furuta & Kim, 1987).
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To investigate the difference between the gain bounds for
various discs, let us consider again the five state system
described in Chapter 3. Choosing o to be -6 + 0j and allowing r,
the radius of the disc, to vary, gives the following values of the
minimum and maximum gains, equation (5.2.1), the maximum eigen-

. A A
value of AIZPAIZI A,, equation (5.2.3), and gp = Inax,1 ~ Ymin,t°

Table 5.2.1 Parameter values for a = -6+0j and varying r

A

r Jatn, i nax, 1 dp An Eigenvalues of A,,-A,,F

1.0 |0.9568|1.0473]0.0905 |4.8998x10%|-5.7565;-5.7997;-5.823
0.5 |0.9888[1.0114/0.00226{1.9604x10° [-5.9390;-5.9499;-5.956
0.25]/0.9972(1.0028[0.0056 |7.8397x10° |-5.9848;-5.9875;-5.989
0.1 [0.9995{1.0005[0.0010 |[4.8993x10° {-5.9976;-5.9980;-5.998

It éan be seen from Table 5.2.1 that if the radius is small,

L] (] A
then the maximum and minimum values of the gain margin, g,,; and

a“md, both tend to 1, as would be expected, and equation (5.2.1)
becomes
r->0 ki » 1 (5.2.4)

If we now consider the effect of altering the R matrix, we
can see that equation (5.2.2) does not lead to any conclusive
results. If r; » 0, then the a, will tend to zero, but if r, is
simply very small, the value of A, is not necessarily very large
and hence the a, could be quite large, as can be seen from

equation (5.2.2).
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Consider the same five state system, and choose a disc
specified by a = -6 + 0j and r = 4. The R matrix is allowed to

vary in the following way

R = RfactI (5.2.5)

This leads to the following values of the minimum and maximum
values of the gains, g, ; and am.,, gp, the closed-loop

eigenvalues and A, for various values Of Rp,c-

Table 5.2.2 Parameter values for varying Rg,. Values

A A
Rfact gnln,l gnax,l gD Am Elgenvalues of A11-A12F

1.0 |0.7152]/1.6618[0.9466[47.7516|-3.8808;-4.1879;-4.4259
1x1071|0.7495|1.5020|0.7525] 7.1571|-4.2782%0.1649];-4.8338

1x107210.8423(1.2304|0.3881| 2.4764|-4.3125;-5.2137;-5.6482
3

1x107|0.9356(1.0739{0.1383| 1.8896|-4.3036;-5.8634;-5.9543
1x107*]0.9783|1.0227/0.0444| 1.8251|-4.3029;-5.9851;~5.9953
1x10°°/0.993 [1.0071|0.0141| 1.8186|-4.3028;-5.9985;-5.9995
1x107°|0.9978(1.0022{0.0044| 1.8179|-4.3028;-5.9998;~6.0

1x10°%/0.99981.0002{0.0004| 1.8178|-4.3028;=6.0 ;=6.0

It can be seen from Table 5.2.2 that when R, is 1x10°, dp
is 4.4x10"°, compared with a value of 1x10"° for a disc of radius
of 0.1, with R, equal to 1. Clearly then, the R matrix has to
be about 10° times smaller than its nominal value, I,_., to have
the same effect as decreasing the radius by an order of 2, and

this would appear to be due to the effect of A., the largest

eigenvalue of AjPA,,. When Ry, = 1 and r = 3, it can be seen

from Table 5.2.2 that A, = 47.7516, and it can be seen from Table
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5.2.1 that decreasing the radius from 3 to 0.5 gives an increase
in A, of 1.9126x10°. If Ry iS decreased from 1 to 1x10~°, it
can be seen from Table 5.2.2 that A, only changes by 45.9338. A
further point to note is that when R, is small, only two of the
closed-loop eigenvalues are close to the centre of the disc, and
the third is at a point near to the right-hand edge of the disc.
Thus, by choosing a small value for R, it is possible to
have at least some of the closed-loop eigenvalues close to the
centre of the disc, without having to make the radius of the disc
particularly small. Since the radius of the disc is not small,
the difference between the gain bounds will not be small, which

can be advantageous.

Consider the effect on the closed-loop eigenvalue position of
a small value for R, and various values of the radius. Choose
R, = 1x10°° and o« = -6 + 0j with the R matrix defined as in

equation (5.2.5).

Table 5.2.3 Eigenvalues for Rp,.=1x10"° and varying radii r

A A

T |9ain,1 | Ymax,t dp Ag Eigenvalues of A,,-A,,F

6.010.99411.0060]{1.2x107%| 1.0265|-1.362;-5.9994;-5.9998

5.0{0.9552[1.0048]9.6x10™| 1.0771|-1.905;-5.9996;-5.9993
4.0/0.9956(1.0036[7.1x10™°| 1.269 |-3.081;-5.9997;-5.9999
3.0/0.9978[1.0022|4.4x107°| 1.8179|-4.303;-5.9998;-6.0
2.0/0.9989(1.0011{2.2x107%| 3.5635|-5.236;-5.9999;-6.0
1.0]0.9997{1.0003|6.0x107*|13.2804{-5.808;-6.0 ;-6.0
0.5/0.9999(1.00012.0x107*|52.2742|-5.952;-6.0 ;-6.0
0.1]1.0 1.0 0.0 1.3x10° |-5.998;-6.0 ;-6.0

3
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From the results in Table 5.2.3 it can be seen that if R,
is small, decreasing the magnitude of the radius moves the off
eigenvalue nearer to the centre of the disc. However, the radius
still has to be about the same magnitude for the eigenvalues to be
close to the centre whether Rg,. is 1x10™° or 1.0, so it is clear
that the effect of the radius on the closed-loop eigenvalues is
the dominant effect.

It is clear from these investigations that when R, is very
small, A, is small when r is large, and increases as r decreases.
Hence, from the theory outlined earlier, the expression for a,
when Rg, is small and the radius of the disc, r, is greater than

1, from equation (5.2.2), is

A A
and SO Jg,,1 and g, ; become
A A
Gain, 1 > 1 and gmax,l -1

and it can be seen that the difference between the gain bounds,
gp, Will tend to zero. The value of A, counteracts the effect of
a change in the radius to some degree, and this effect is
difficult to predict. If the radius of the disc is equal to 1, a,
is of the order of 10, for small Rg, and the expression for the
a, will once again tend to 1. This is again due to the effect of

Ans Which dominates the expression for a, when r = 1 and R, is

small. Again, guy,,; and gg,; Will tend to 1, and hence g; - 0.
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If the radius is smaller than 1, then A, is of the order of 103,
If Rp,¢ is much larger than r 2, rzi"i will be small, and so the

expression for the a; becomes

In this case, the minimum and maximum gain values will again both
be 1, and so the difference in the gain bounds will be zero.
Hence, the system is again at the critical point with regard to
its stability. It would appear therefore, that the effect of a,
can lead to critical stability for various combinations of the
radius r and the R matrix elements r,. However, it is not
straightforward to predict the size of A, from r and r,.

The effect on the closed-loop eigenvalues of the arbitrary R
matrix is harder to predict, partly since the effect of the radius
is dominant and partly because it is difficult to predict the
effect of R on the solution of the discrete matrix Riccati
equation, equation (3.2.8). However, from the results presented
so far, it can be seen that it is particular values of R, which

result in complex eigenvalues, rather than particular values of

the radius.

It would be useful to be able to choose the R matrix so as to
predict the closed-loop eigenvalue positions for a disc with a

radius greater than 1 (say).
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Consider the same five state system, with a = -6 + 0j and
r = 4, and vary R,., with R calculated as outlined in equation

(5.2.5).

Table 5.2.4 Eigenvalues for a=-6, r=4 & varying Rg,.

React |det (R) |Eigenvalues of A;;-A,,F

1x10~° [1x107® |-3.0806;-6.0 ;-6.0
1x1077 |1x10™** |-3.0806:;-6.0 ;-6.0
1x10°® |1x107? |-3.0806;~5.9997;-5.9999
1x10™° |1x2107° [-3.0807;-5.9973;-5.9992

1x10™* |1x10™® [-3.0807;-5.9736;-5.9916
1x107% |1x10™® |[-3.0817;-5.7627;-5.9194
1x1072 [1x10™* [-3.0925;-4.7351;-5.4004
5x1072 {2.5x1073|{-3.1792;-3.5853;-4.4849
8x1072 |6.4x1072|~3.2467£0.1852);-4.1920
- 0.1 |1x107% |-3.1875%0.23833j;-4.06

2

0.2 |4x107% |-3.0243$0.29545;-3.7012
0.5 0.25 -2.8483+0.26853;-3.37

1.0 1.0 -2.7404+0.20085 ;-3.2425
2.0 4.0 -2.6533%0.05707 ;-3.1681
3.0 9.0 -2.4773;-2.7458;-3.1425
5.0 25.0 -2.3608;-2.7746;-3.1219
10.0 |1x10® |-2.2537;-2.7890;-3.1064
1x10° [1x10* -2.0809;-2.7990;-3.0925
1x10° |1x10° -2.0257;-2.7999;-3.0911
1x10* [1x10® |-2.0082;-2.8 ;-3.0909

1x10® [1x20'® |-2.0 ;-2.8 ;-3.0909

It can be seen from the results in Table 5.2.4 that as R,
is increased, the closed-loop eigenvalues tend to the limiting
values -2, —-2.8 & -3.0909, and as R, is decreased the closed-
loop eigenvalues tend to the limiting values of -3.0807, -6 & -6.

When R, is large, one of the eigenvalues is on the right-hand
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edge of the disc (which is at -2 in this case), the second
eigenvalue is close to the right-~hand edge of the disc and the
third eigenvalue is about a third of the way between this edge and
the centre of the disc, but nearer to the edge. When R, is
small, the position of this third eigenvalue is almost unchanged,
but the other two eigenvalues which were on, or near to, the edge
of the disc move onto the centre of the disc. It appears,
therefore, that the closed-loop eigenvalues are never assigned to
the semi-circular region to the left of the disc centre, so in
fact they are being assigned to a vertical semi-circle of centre «
and radius r.

When R, lies between the values which position the closed-
loop eigenvalues on one or other set of limiting values, the pair
of eigenYalues which move within‘the bounds of the disc take a
range of values, both real and complex. It would be helpful if
the R, Values associated with the real set of eigenvalues could
be picked out from those associated with the complex set of
eigenvalues.

For this particular system, complex conjugate pairs of
eigenvalues occur for values of Rg, between about 2 and 0.08,
and the corresponding determinants of the R matrix are between 4
and 0.0064.

It is possible that the determinant of the R matrix could be
used to help to predict the closed-loop eigenvalue positions,

perhaps in conjunction with the disc radius.

Some results of an initial investigation into the effect of
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the determinant of R on the solution are contained in Table 5.2.5.

The disc has «

Table 5.2.5 Eigenvalue variations for det(R)

R matrix

Eigenvalues of A ;-A,,F

10 O
L0 0.1

1 (10 o.1
0.1 0.101
.

(10 0.316
| 0.316 0.11

(12 0
0 0.0833

\

(12.4 0
0 0.081

.

(12.5 0
0 0.08

.

(20 0

0 0.5
.
-

50 0

0 0.02
-

(100 ©
0 0.01

.

|

-2.7404:0.2008j;-3.2425

-2.5267;-2.8282;-3.4568

-2.7903+0.162973;-3.2859

-2.6422;-2.8615;-3.5872

-2.834620.1095j;:;-3.4606

-2.857940.03587j;-3.9086

-2.8540£0.0252j;~-3.9144

-2.8171;-2.8743:-3.927

-2.8599t0.0139j;-4.0181

-2.2602+0.0047j;-4.0383

-2.8559;-2.8647;-4.432

-2.8203:;-2.9066;-4.3441

-2.8066:;-2.9259;~-4.9346

-2.8031;-2.9310;-5.3148
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From the results in Table 5.2.5 it can be seen that if
R(1,1) s 12, and if the off-diagonal elements are smaller than all
of the diagonal elements, then the closed-loop eigenvalues
comprise a complex conjugate pair and a real value. As R(1,1) is
increased, the real eigenvalue moves towards the centre of the
disc, and the complex conjugate pair move closer to the real axis.
When R(1,1) > 12, or if the off-diagonal elements are bigger than
the diagonal elements, then all the eigenvalues are real.

Consider the same example as that used for Table 5.2.5, but

choose the determinant of the R matrix to be 5.

Table 5.2.6 Eigenvalue variations for det(R) = §

R matrix Eigenvalues of A;; - A,F
r

5 0 -2.740.04243;-3.1771

) 0 1 s

.

r

4.5 0 .

o 1.11] 2.690£0.02975;-3.1715
(4 0

: 1.25] -2.6686;-2.6916;-3.1666
.

(4 43

13 2] -2.4123;-2.8208;-3.2357
.

(2.5 0

26 , ] -2.5945;-2.6992;-3.1593
.

(7 3

; 2] -2.4278;-2.8531;-3.3225
-

g i] -2.5537;-2.8489;-3.3125
:10 0

o o.s] -2.7685£0.07113;-3.2567
(20 0

E 0.25] -2.8211%0.04815;-3.4525
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It can be seen from Table 5.2.6, that the results for
det(R) = 5 are not conclusive. When R(1,1) = 4.5 and the off
diagonal elements are smaller than all of the diagonal elements,
then the eigenvalues comprise a complex conjugate pair and a real
value. If R(1,1) < 4.5 or if the off diagonal elements are larger
than any one of the diagonal elements, the eigenvalues are all
real. In this case, two of the eigenvalues are close together and
near to the right-hand edge of the disc, and the other one is

nearer to the centre of the disc.

It is clear that there is some connection between the
determinant and form of the arbitrary R matrix, the position of
the eigenvalues within the disc, and the radius and centre of the
disc. A series of runs has been carried out for three different
discs, a;d R matrices with determinants of 0.1, 0.5, 1 and 10.

The eigenvalues have been plotted in each case and the results are

shown in the following figures

]
>
-

Fig 5.1 r o = -6 + 03

Fig 5.2 r =4, a = -5+ 0]

Fig 5.3 r=4, a = -4 + 0j.

It can be seen from the results for r = 4 and a = -6 + 03
(Fig 5.1) that as the determinant of R increases from 0.1 to 10,
the complex conjugate pairs of eigenvalues approach the real axis,
until, when det(R) = 10, all the eigenvalues are real, and in
three clusters. These three clusters are close to the limiting

eigenvalues for large values of R;,.. and det(R).
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Eigenwlues in a disc rad « 4 alpha = 6 & detr = 0.1

Eigenvalues in 8 disc rad = 4 alpha = 6 & detr = |
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Eigenwalues in a disc rad = 4 alpha = -4 & deur = (]
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The results for a = -5 + 0j and r = 4 (Fig 5.2) demonstrate that
for all the choices of det(R), the eigenvalues are real and in
three clusters. As det(R) increases, the clusters move closer to
the limiting eigenvalues for large values of R, and det(R).

The results for a = -4 + 0j and r = 4 (Fig 5.3) demonstrate that
when det(R) = 10, the eigenvalues comprise a complex conjugate
pair close to -1, and a real value at 2.14, and as det(R)
decreases, the complex conjugate pairs tend to the real axis

until, at det(R) = 0.1, all the eigenvalues are real.

It is not possible to draw any general conclusions from these
results, as a change in the disc centre changes the positioning of
the eigenvalues within the disc very dramatically. Some further
runs havg»been carried out for two_different values of the disc
radius, r = 3 and r = 5. The disc centres have been chosen so
that the differences between the disc radius and the disc centre
are the same as for the runs for r = 4. The results for these

runs are displayed in the following figures

and «

I
(&)

Fig 5.4 r -7 + 0j Fig 5.7 r = 3 and « -5 + 03

Fig 5.5 r = 5 and « -6 + 0j Fig 5.8 r = 3 and « = -4 + 0j

Fig 5.6 r =5 and a = =5 + 0j Fig 5.9 r =3 and a = -3 + 0j

The results for r 5 and « = -7 + 0j (Fig 5.4) show that
when the determinant of R is small, there are a lot of complex
conjugate pairs of eigenvalues. As det(R) increases, the number
of complex conjugate pairs decreases until, when det(R) = 10,

there are only a few complex conjugate pairs of eigenvalues.
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Eigeowlues in 8 disc rad = S alpha = -7 and detr = 0.1

Bigenvalues in a disc rad = § alpha = -7 and detr = 1
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Eigeavalues in 8 disc rad » S alpha « .5 and detr = Q.1

Eigeavalues in a disc rad = S alphs = -5 and detr = |
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The results for r = 5 and a = -6 + 0j (Fig 5.5) show that the
eigenvalues are real for all choices of the determinant, and as
the determinant increases, they move towards the right-hand edge
of the disc. When r = 5 and a« = -5 + 0j (Fig 5.6), the eigen-
values are all real when the determinant is small. As the
determinant increases complex conjugate pairs of eigenvalues
approach the real axis, until when det(R) = 10, the eigenvalues
comprise one real value and one complex conjugate pair. The
results for r = 3 show the same characteristics for the three «

values as those for r = 5 and r = 4,

The example of the robot arm, described earlier, has also
been investigated for various discs. It was found from these
investigations that for all choices»of the R matrix, the

eigenvalues were real. The results for two discs are shown in the

following figures

Fig 5.10 r = 4 and a = -4 + 0j

3 and ¢ = -4 + 0j

Fig 5.11 r

The results in both of these figures show that when the
determinant of R is small, one of the eigenvalues is very close to
(or on) the centre of the disc, and the other one is near to the
right-hand edge of the disc. When the determinant of R is large,
one of the eigenvalues is near to the right-hand edge of the disc,
and the other one is on (or almost on) this edge. This pattern

was found for the five state example.
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Robot Eigenvalucs in a disc alpha = <4 rad = 4 & dets = 1
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It would seem that if the root locus plot of the system has all
real eigenvalues, then regardless of the choice of the R matrix,

or the disc, the eigenvalues will always be real.

It would appear from these results that if r = |a|, then an R
matrix with a large determinant gives real and complex conjugate
pairs of eigenvalues, and an R matrix with a small determinant
gives purely real eigenvalues. If |a| - r =1, then the eigen-
values will be purely real for any choice of R matrix. Finally,
if Ial - r > 1, then an R matrix with a small determinant gives
real and complex conjugate pairs of eigenvalues, and an R matrix

with a large determinant gives mostly real eigenvalues.

5.3 Design of R for Eigenvalue Positioning within a Strip

An investigation into the effect of changes in the arbitrary
R matrix on the solution of the continuous matrix Riccati equation
given in equation (3.3.3), and hence on the position of the

closed-loop eigenvalues, will now be performed.

consider once more the five state system discussed in
previous chapters, and its third order equivalent system. If h,
is chosen to be 1, then the real eigenvalue of A,, + h,I with the
largest magnitude is A = -2. Since h, has to have a magnitude
jarger than the magnitude of A, choose h, to be 3. The vertical

strip then crosses the real axis at the points -3 and -1.
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Using the Macfarlane-Potter-Fath method outlined in Chapter 3,
section 3.3, to solve the continuous matrix Riccati equation with
a null Q matrix, given in equation (3.3.6), and varying the R

matrix as before gives the following results

Table 5.3.1 Eigenvalues for varying R,

Rract |Eigenvalues of A;; -~ A ;F|det(R)

1.0 =-1.0;-2.0;-3.0 1.0
2.0 -1.0;-2.0;-3.0 4.0
3.0 -1.0;-2.0;-3.0 9.0
0.5 -1.0;-2.0;-3.0 0.25
0.1 -1.0;-2.0;-3.0 0.01

It can be seen from the results in Table 5.3.1 that the
closed-loop eigenvalues of the reduced order equivalent systen,
A,,-A;;F, remain unchanged for the range of R, Values

investigated.

It would therefore appear that for any choice of the
arbitrary R matrix which is a multiple of an identity matrix of
the appropriate size, the positions of the eigenvalues within the
strip remain unchanged. This would suggest that the control
matrix, F, is unaffected by changes in the R matrix, and that the
solution of the continuous matrix Riccati equation, P, is altering

in proportion to the R matrix.

The solution to the continuous matrix Riccati equation
outlined in equation (3.3.6), P, and the corresponding control

matrix outlined in equation (3.3.7), F, will now be obtained.
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The R.,.. Values are those given in Table 5.3.1, and the resulting

P and F matrices are as follows

Table 5.3.2 P and F matrices for various R, Values

React P matrix F matrix

4 9

0o 0 0 (

1.0 0 0.666 -0.666
0 -0.666 0.666 L

P

0 -1.6666 1.6666]
0 1.1785 -1.1785
o

r 3
0 0 0 (0 -1.6666 1.6666]

2.0 |o 1.333 -1.333
0 -1.333 1.333 0 1.1785 -1.1785)
- o
(0 0 ) . i
3.0| |o 2.0 _g 0 0 -1.6666 1.6666
0 -2.0 270 0 1.1785 -1.1785)

0 -1.6666 1.6666)

0
0.5 g 0.333 -0.333 0 1.1785 -1.1785)

-0.333 0.3334 \

0 -1.6666 1.6666)
0 1.1785 -1.1785
o

0]
“0.1 0 0.066 -0.066
0 -0.066 0.066 \
7

It can be seen from Table 5.3.2 that all the control matrices
are identical, as would be expected, since the eigenvalues of
A,; - A,pF are identical in each case. It can also be seen that
the P matrices are all multiples of the solution of the Riccati

equation for Re,. = 1.

This result will now be proved for the reduced order
equivalent system of any system of the form of equation (2.2.2).
when R, is chosen to be 1, R is an identity matrix of the

appropriate dimensions.
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suppose that the solution of the continuous matrix Riccati

equation when R = I is P, then

React = 2 R = 21 P = 2P
React = 3 R = 3I P = 3P
Rppet = 0.5 R = 0.5I P = 0.5P
Repet = 0.1 R = 0.1I P=0.1P

Consider the continuous matrix Riccati equation with a zero right-

hand side, equation (3.3.6)
-1, T oT A
PA;.R A;;,P - AP - PA =0 (5.3.1)

A
where A and the control matrix, F, are given by

R .
A =2, +hI (5.3.2)

-1, T
F = uR AP (5.3.3)

et R =R, and P = P;, and then equation (5.3.1) becomes

A

-1, T AT
P;A;5R, APy - APy - P/A =0 (5.3.4)

Now choose the arbitrary matrix, R, to be of the form r = «R,,
where « is any positive real number. Let us suppose that the
solution to the matrix Riccati equation is P,.

Then equation (5.3.1.) becomes

1 -1,T AT A
z (PA;,R, A;pP;) = AP, - PA =0 (5.3.5)
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Substituting P, = «P, into equation (5.3.5) gives
1 -1, T AT A
Equation (5.3.6) may be rearranged to give
-1,T 2T 2
«PiA\oRy APy - @A'Py - aPjA = O (5.3.7)

Clearly, if equation (5.3.7) is divided by the scalar «, it is

jdentical to equation (5.3.4).

Hence, if an arbitrary matrix R gives rise to a solution P of
equation (5.3.1) then an arbitrary matrix R, = «r will give rise

to a solution matrix P, = «P for all positive real scalars «.

consider equation (5.3.3) for the control matrix, when R = R, and
P=P1°

Let the control matrix be F;, given by
-1,T

Let R, = aR;, and then the corresponding solution P, will be equal

to «P;, and the control matrix will be given by

-1, T

substituting for R, and P, in equation (5.3.9) gives

LT
F, = — R'AueP, (5.3.10)
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Clearly, since « is a scalar, the right-hand side of equation
(5.3.10) is identical to the right-hand side of equation (5.3.8)

and hence F1 = on

It has therefore been proved the solution matrix of the
continuous Riccati equation (3.3.6) with R replaced by «R will be
«P, where « is a positive real scalar, and hence the control
matrix will remain unchanged. This results holds for all systems
of the form of the standard regulator problem given in equation
(2.2.2). The solution of this method of placing all the closed-
1dop eigenvalues of the reduced order equivalent system of a
variable Structure Control system, and hence (n-m) of the closed-
loop eigenvalues of the full order VSC system, within an infinite
verticalﬂstrip in the left-hand half-plane is therefore unaffected
by positive scalar multiple changes in the arbitrary positive

definite symmetric R matrix.

The effect of a change to the R matrix which is not obtained
by multiplying an identity matrix of the appropriate dimensions by

a positive real scalar will now be investigated.

Consider the same five state example which was used before,
which has a third order equivalent system. Suppose that the
required vertical strip crosses the real axis at the points -3 and
-1, so that h; = 1 and h, = 3, since the magnitude of the smallest

eigenvalue is 2.
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Allowing the R matrix to vary by a different factor in each

element gives the following results.

Table 5.3.3 Eigenvalues for various R matrices

R matrix |Eigenvalues P matrix F matrix
Of AII-AIZF
(0 o o r
r 8 3
é g -1;-2;-3 0 0.66 -0.66 o "i'igg-_i'ggg
\ ) 0 -0.66 0.66 { : =13
" P
; (0 o o ] r ;
]
P 0 -1.250 1.250
-1;-2;-3 0 1.0 -1.0
o 1 o -10 10 0 1.768 -1.768]
r
r 0O O (4] r 9
20 5] ~1;-2;-3 0 0.66 -0.66 o 0533 5.8
0 . 0 -0.66 0.66] \ . -357]
\
r
r 0 O 0 r 9
5 g] -1;-2;-3 0 1.43 -1.43 0 5 a3s _o-l2
0 0 -1.43 1.43 L . -3525]
. J
r 3
(10 "0 ) c 0 - 0 (0 -0.576 0.576)
9 -1;-2;-3 0 1.21 -1.21 o 9lo05 _9->7¢
| 0 0 -1.21 1.21 \ - -722]
o
.
. 0o o 0 . ;
0.1 0.01] 0 -1.631 1.631
-1;-2:-3 0 0.06 -0.06
0.01 0.1 0 -0l06 0.06) 0 1.229 -1.229

It can be seen from Table 5.3.3 that the closed-loop
eigenvalues of the reduced order equivalent system A;; - A,,F
remain unchanged for all the R matrices used. 1In this case, the
control matrices are not the same, but they are equivalent to one
another, since each one can be obtained from any of the others by
elementary transformations (Hohn, 1958). It can be argued that,
provided the control matrices are equivalent to one another, the

eigenvalues of A;; - A;,F will remain the same.

121



Thus, the solution of this method of placing the closed-loop
eigenvalues of the reduced order equivalent system of a Variable
structure Control system within a vertical strip in the left-hand

half plane is unaffected by the choice of the arbitrary R matrix.

Consider the robot arm system discussed in previous chapters,
and its second order equivalent system. If h, is chosen to be 1
then the real eigenvalue of A;; + h;I with the largest magnitude
is A = -1. Since h, has to have a magnitude greater than that of
A, choose h, to be 3. The vertical strip then crosses the real
axis at the points -3 and -1. Using the Macfarlane-Potter-Fath
method outlined in Chapter 3, section 3.3, to solve the continuous
matrix Riccati equation with a null Q matrix, and varying the R

matrix, gives the following results

Table 5.3.4 Eigenvalues for varying R matrices

R matrix |E-values P matrix F matrix

r 3

. -0.781 1.841

1 2 -2 21 -1.841 -0.781

. o

(~0.781  1.841)

21 =2 -2 41 -1.841 -0.781

(~0.781  1.841)

3 =2 i -2 61 -1.841 -0.781]

(-0.781  1.841)

0.5I =2 i 2 I -1.841 -0.781
.

> N

L -0.781 1.841

0.1T 2 ; -2 0.21I lsa1 -ol781)

1 0 s -2 1.1526 =-0.3596] |(~-0.781 1.841)

0 0.5 i -0.3596  1.8476) ||-1.841 -0.781

o

100 0 o ; -p|[ 30-532  71.0083)|f-0.781 1.841)

0 0.01 i -71.9083 169.4880f | |-1.841 -0.781]
.
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It can be seen from Table 5.3.4 that the relationship between
the R, P and F matrices outlined in equations (5.3.1) to (5.3.10)

holds, namely

which would be expected, since these equations hold for all a,,

and A,, matrices, and hence all full order systems of the form

e
I

Ax + Bu (5.3.12)

However, it can be seen from the results in Table 5.3.4 that even
if R, is not a scalar multiple of R, F, is still equal to F, and
this result will now be considered. For the robot arm example,
recall from Chapter 3 that the reduced order system matrix a,, is
the null matrix, and this will have an effect on the solution of
the Riccati equation (3.3.6). Substituting A,, = 0 into equation

(3.3.6) gives
PA12R-1AI2P - (I)'P = P(yI) = 0 (5.3.13)

since h, is a real scalar, equation (5.3.13) may be rearranged to

give
pA,,R'A[,P - 2h,P = 0 (5.3.14)
post-multiplying both sides of equation (5.3.14) by P! gives
PA,R'Aj; - 2h; = 0 (5.3.15)
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Since A,ZR"A{Z is always a square matrix, as A,, is (n-m)xm and r
is mm, and assuming it is non-singular, equation (5.3.15) may be

rearranged to give

-1
P = 2h, [AizR-lAIZ] (5.3.16)

The control matrix F is then given by

-1
-1.T -
F = 2uhR Axa[AlzR 1A.fz:l (5.3.17)

It can be seen from equation (5.3.17) that in the particular
case when A,, is zero, the F matrix is independent of the solution
P of the matrix Riccati equation (3.3.6). This is illustrated in
the results in Table 5.3.4 for the.R matrices which are not a
scalar multiple of the identity matrix. If A, is a square

matrix, then equation (5.3.17) may be further simplified to give
F = 2uhAj; (5.3.18)

10

As an example, consider the case when R = [0 0.5

-1 _ 1|10
R = 1o 2|

From equation (5.3.16), since h, was chosen to be 1, P is given by

], and hence

-1

_ _|[-0.3906 =-0.9206]{1 0][-0.3906 0.9206 5 3.19
P =211 90.9206 -0.3906(|0 2|[-0.9206 -0.3906 (5.3.19)
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Multiplying out the bracketed expression in equation (5.3.19)
gives
=1

P = 2[1.8476 0.3596]

0.3596 1.1526 (5.3.20)

since the determinant of the matrix to be inverted in equation

(5.3.20) is equal to 2, P becomes

(5.3.21)

p = 1.1526 -0.3596
~ |-0.3596 1.8476

It can be seen that the P matrix obtained in equation (5.3.21) is

identical to that obtained earlier, and displayed in Table 5.3.4.

Since, in this example the matrix A;, is square, F may be obtained

from equation (5.3.18).

-1
i 4 _ [-0.3906 -0.9206
F = 2uhA = 2[ 0.9206 -0.3906] (0 = 1) (5.3.22)
so the control matrix, F, becomes
_ [-0.781 1.841
F = |-1.841 -0.781 (5.3.22)

It is clear that the F matrix given in equation (5.3.22) is
jdentical to the F matrix for the appropriate R matrix given in
Table 5.3.4, and will be the same for all choices of the arbitrary

R matrix.
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It may be concluded, therefore, that for a general system of
the form X = Ax + Bu, in the particular case when its reduced
order equivalent system matrix A;; is zero, the solution of the
continuous matrix Riccati equation given in equation (3.3.6), P,
will be given by equation (5.3.16) and that the control matrix, F,
will be independent of the solution matrix P and will be given by
equation (5.3.17). In addition, if the reduced order equivalent
system matrix A, is a square matrix, in other words, if n-m = m,
then the control matrix, F, is only dependent on the right-hand
strip limit h;, the matrix A,; and u, as can be seen from equation

(5.3.18)

5.4 Discussion

It has been shown that the positioning of the closed-loop
eigenvalues of a system within a specified disc in the left-hand
half-plane depend more on the determinant of the arbitrary R
matrix than on its structure, and also depend on the choice of the
disc centre and radius. Owing to the complexity of the solution
of the discrete matrix Riccati equation, it is not easy to
determine the exact relationship between the R matrix, the disc
centre and radius, and the positioning of the eigenvalues.
However, from the investigations contained in this chapter, it
would appear that there are some generalizations which can be made
about the relationship between eigenvalue positioning and the
choice of the R matrix and the disc parameters, for a fixed

arbitrary positive definite symmetric Q matrix.
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From the numerical results obtained from two very different

systems, the following conclusions are suggested :

1)

2)

3)

4)

If the root locus plot of the system comprises only real
eigenvalues, then regardless of the choice of R matrix and
disc parameters, the eigenvalues will always be placed along
the real axis, within the disc.

If the root locus plot has complex values, and the radius and
the modulus of the centre of the disc are equal, then an R
matrix with a small determinant will lead to real eigenvalues
within the disc, and an R matrix with a large determinant will
lead to real and complex eigenvalues.

If the root locus plot has complex eigenvalues, and the
difference in magnitude between the radius and the centre of
the disc is equal to 1, then thg eigenvalues will be real for
all choices of the R matrix. An R matrix with a large
determinant will place the eigenvalues close to the right-hand
edge of the disc.

If the root locus plot has complex eigenvalues, and the
difference in magnitude between the radius and the centre of
the disc is greater than 1, then an R matrix with a small
determinant will lead to complex and real eigenvalues within
the disc, and an R matrix with a large determinant will lead
to all real eigenvalues.

It is therefore possible to choose an R matrix with an

appropriate determinant, depending on the choice of disc, to

ensure that the eigenvalues are all real or a mixture of real and

complex conjugate pairs.

127



The investigation into the effect of the arbitrary R matrix
on the positioning of the eigenvalues within a vertical strip
crossing the real axis at the points -h; and -h, leads to the
following conclusions, which have been demonstrated for all
gystems in the form of equation (2.2.2) :

1) If the arbitrary R matrix is multiplied by a positive real
scalar, then the solution of the continuous matrix Riccati
equation will be multiplied by the same scalar, and the
control matrix, F, and the closed-loop eigenvalues will remain
unchanged.

2) If the R matrix is not a multiple of the identity matrix, the
solution matrices of the continuous matrix Riccati equation
are scalar multiples of each other, the control matrices are
equivalent to one another, and.ghe eigenvalues are unchanged.

3) If the reduced order system matrix A;; is zero, then the
control matrix is independent of the solution of the
continuous matrix Riccati equation. If the reduced order
system matrix A,, is a square matrix, then the control matrix
is independent of the arbitrary R matrix, and so only depends
on hy, A, and u.

It has therefore been proved that eigenvalue placement within
a vertical strip is independent of any change in the arbitrary R
matrix. In the particular case when A;; is zero, and A,, is
square (n-m = m), the control matrix is independent of both the
solution of the continuous matrix Riccati equation, and the

arbitrary matrix R.
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6. DEPENDENCE OF EIGENVALUE POSITIONING WITHIN A SECTOR ON

THE R MATRIX DESIGN

6.1 Introduction

The dependence of the positioning of the closed-loop eigen-
values within the sector described in Chapter 4 on the design of
the R matrix will now be considered. This will involve some
investigations into the effect of the arbitrary R matrix on the
solution of a complex continuous matrix Riccati equation with a
non-zero arbitrary matrix Q. This work follows on, to some
degree, from the investigation carried out in Chapter 5, Section
5.3 on the effect of the R matrix on the solution of a real
continuous matrix Riccati equation.with a zero Q matrix. The
robustne;s property may be more useful in the case of the sector
than in the cases of the disc and the strip discussed in the
previous chapter, since it might be possible to place the eigen-
values in sectors outside those described by the limiting 6 and «
values discussed in Chapter 4. It would also be useful to be able
to predict the position of the eigenvalues within the sector, and
in particular, to predict whether they will be real or complex.

The placing of the eigenvalues in wider range of sectors than
was shown to be possible in Chapter 4, Section 4.5, is considered
in section 6.2. Section 6.3 contains the investigations into the
possibility of predicting the positioning of the eigenvalues
within the sector, and Section 6.4 contains a discussion of the

results.
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6.2 Effect of the R Matrix on the Limiting Alpha & Theta Values

The effect of the arbitrary R matrix on the solution of the
continuous matrix Riccati equation given in equation (4.2.30), and
hence on the limiting a« and 6 values discussed in Chapter 4,
section 4.5 will be considered.

Consider once more the five state VSC example, outlined in
section 3.4, when a = -2 and 6 = 65°, bearing in mind that the
maximum 6 value for a = -2 was previously found to be 60° (see

section 4.5). The R matrix is varied as follows

R = RfactI (6-2-1)
Table 6.2.1 Eigenvalues for 6 = 65°, a = -2 & varying Rg,.
React Closed-loop Eigenvalues

- 1.0 -1.9991 + 0.2091j) ; -2.8783
2.0 -1.8216 * 0.2596) ; -2.7662
3.0 -1.7419 * 0.2589j ; -2.7175
4.0 -1.6442 * 0.2518) ; -2.6888
5.0 -1.6617 * 0.2437j ; -2.6694
0.9 -2.0314 + 0.189437 ; -2.8995
0.8 -2.0694 + 0.15907 ; -2.9248
0.7 -2.1148 * 0.1033j ; -2.9559
0.6 -2.0697 ; -2.2714 ; -2.9953
0.5 -2.0383 ; =2.4440 ; ~3.0478
0.333| -2.0411 ; -2.7878 ; =3.1985
0.25 -2.0616 ; -3.0264 ; -3.3561
0.2 -2.0826 ; -2.1961 ; -3.5311
0.1 -2.1600 ; =-3.6740 ; -4.4009

It can be seen from the results displayed in Table 6.2.1,
that as R, is increased the real eigenvalue, which is within
the required sector, moves towards a, the right-hand limit of the
sector. For a suitably large value of R, this eigenvalue may

possibly move beyond «, and out of the required sector.
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The real part of the complex eigenvalues, which are outside the
séctor for R;,.. Values greater than or equal to 1, move closer to
the origin as R, increases, and away from the origin and hence
into the sector as R, decreases. The imaginary parts of the
complex pairs of eigenvalues are outside the required sector for
all the a values displayed in Table 6.2.1, and their magnitude
increases as R, increases, until it reaches some maximum value,
and then it decreases again. As R, decreases, the imaginary
parts move nearer to the real axis, but are always outside the
required sector. If Rg, is smaller than or equal to 0.6, the
eigenvalues are all real, and all lie within the required sector,
and as R, decreases beyond 0.6, the eigenvalues move along the
real axis, towards a. It can be seen from these results that a
suitable choice of value for Rg,. Will increase the maximum value
of @ from 60° to 65°. It is possible, therefore, that if R, is
made suitably small, the restrictions on the choice of a and 6

could be relaxed.

Using MATLAB, a routine has been written which alters the R
matrix by multiplying it by a scalar until the eigenvalues lie in
the required sector. Consider once more the five state example,
and the case when a = -2, and let 6 hold a range of values greater
than its previous maximum value of 60°. The R matrix is altered
according to equation (6.2.1) and the R, values which result in
the eigenvalues lying in the required sector are contained in

Table 6.2.2.
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The closed-loop eigenvalues of the reduced order equivalent system

A;; - A oF and the appropriate 6 values are also displayed in

Table 6.2.2.

Table 6.2.2 Comparison of R, 6 & eigenvalues for a = =2

e° React Closed-loop Eigenvalues
55 1 -2.1105 ; -2.6100 ; -2.7800
60 1 -2.1602 t 0.0762j ; -2.8686
65 0.6 |-2.0697 ; -2.2714 ; -2.9953
70 0.5 |-2.0149 ; -2.1687 ; -3.0575
75 0.05 |-2.0093 ; -4.2078 ; -5.5167
80 0.01 |-2.0407 ; -6.9188 ; -10.9108
81 0.01 |-2.0204 ; -6.9120 ; -10.8893
82 0.01 |-2.0004 ; -6.9071 ; -10.8677
83 0.007|-2.0025 ; -7.8734 ;  -12.7947
84 0.005|-2.0011 ; -8.9593 ;  -14.9597
85 0.003|-2.0050 ; =-11.0065 ; =-19.0494
86 0.002{-2.0012 ; -13.0500 ; =-23.1282
87 0.001|-2.0028 ; =-17.6713 ; =-32.3649
88 4x10™* |-2.0029 ; -26.8507 ; ~-50.7169

- | 89 1x10™* [-2.0011 ;. -51.8421 ; -100.6919
89.5 |2x10™° |-2.0013 ; =-113.6408 ; =-224.2860
89.9 [1x10™° |-2.0000 ; =100.7000 ; =-501.8000
89.95(2x107" |-2.0000 ; =-1119.9000 ; -2236.7000

It can be seen from the results displayed in Table 6.2.2 that
by choosing a suitable value for R, the limiting value of 6

for « = -2 can be increased from 60° to 89.95°. However, it is
clear that as R;,. becomes very small, and 6 moves closer to 90°,
two of the eigenvalues move further away from a in the negative
real direction, and the other eigenvalue moves very close to «.
This results in the spread of the eigenvalues being considerable,
as can be seen from the results displayed in Table 6.2.2 for

Regee = 2x107.
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Consider the a values and their corresponding limiting 6
values displayed in section 4.5, Table 4.5.1. For these «a values,

the R matrix has been altered as described in equation (6.2.1),

and the new limiting 6 values of the various a values are

displayed in Table 6.2.3, along with both the old and the new

closed-loop eigenvalues.

Table 6.2.3

New limiting 8 values for various a values

a 6, |Eigenvalues for 6, |Rp. |6n |Eigenvalues for g,
10 |88]|-1.139+0.223;-2.383(3x107" [90|-1.648;-2.013;-3.242
5 |87]-1.177t0.235;-2.420(3x10"! |90|-1.648;-2.013;-3.242
2 |85|-1.210%0.24j;-2.440|3x10"" |90|-1.648;-2.013;-3.242
1 |83[-1.225%0.243;-2.436|3x10"" |90|-1.648;-2.013;-3.242
0 |78|-1.257%0.245;-2.424|3x107! |90|~1.648;-2.013;-3.242
-0.5]72|-1.306%0.25§;-2.423 |3x107" |90]|-1.648;-2.013;-3.242
-1 62|-1.470%0.253;-2.467 [3x10"! |90]|-1.648;-2.013;:-3.242
-2 |60]|-2.160%0.083;-2.869 |2x107*!|89]|-2;-1.1x10%;~2.2x10°
-3 |47|-3.037:;-4.220%0.337 |6x107° |67]|-3;-22.738;-42.413
-4 |49]|-4.012;-5.472$0.31j [1x10"" |64|-4;-1583.9;-3164.4
-5 |50|-5.062;-6.224%0.257j |2x107® |62|-5;-356.880:-709.109
-6 |51]-6.092;-7.920t0.145 [2x1077 |61|-6;-1129.1;-2239.3
-7 |52|-7.085;-8.864;-9.25|2x10"" |61|-7;-1122.4;-2239.8
-8 |53|-8.033;-9.82;-10.46|6x10"° {61{-8;-209.02;-412.53
-9 |53|-9.14;-10.99;-11.77|3x10"" |61|-9;-918.24;-1830.52
-10 |54|-10.02;-11.9;-12.85|7x10"® |60|-10;-1895.7;-3784.9
-20 |56|-20.03;-22.4;-24.28{1x10"° |60|-20;-169.34;-326.71
-30 |56]/-30.69;-33.6;-35.98]|1x107° |60|-30;-516.14;-1015.44
-40 |57]-40.33;-43.6;-46.50{5x10"" |60|-40;-728.30;-1434.69
-50 |57|-50.84;-57.8;-54.49|2x10" |60|-50;-1144.2;-2261.54
-100 |58]-100.9;-106;-110.83|1x10"° |60|-100;-5051.2;-1x10"
-1000 |59|-1014.2;-1030;-1045|1x10""%|60|-1000;-5x10%; ~1x10°
~1x10° |59 |-1x10%;-1x10%;-1x10° |1x207%°|60|-1x10°;-2x10%; -3x10°
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It can be seen from Table 6.2.3 that for a« =z -1, the limiting
value of 6 is 90° for a suitable choice of R, and for a < -1,
the limiting value of 8 drops to 60°, which appears to be the

1imiting value of & for all small « values.

Consider the robot arm example outlined in section 2.4, and
jts a values and corresponding € values displayed in section 4.5,
Table 4.5.2. The R matrix is altered as described in earlier, and
the new limiting 6 values for the o values smaller than -1 are
displayed in Table 6.2.4, along with the old and new closed-loop
eigenvalues. It is unnecessary to consider the cases when o z -1,

since the limiting 6 value is 90° for these values when R = I.

Table 6.2.4 New limiting 6 values for the robot arm

a e, Eigenvalues React 6. | Eigenvalues
for 6, for 6,
-2|67| -2.0506; -2.0506]1/4 90 -2 ; -2
-3|63| -3.0567; -3.0567|1/9 90 -3 ; -3
-4|62| -4.0054; -4.0054|1/16 20 -4 ; -4
-5|61| -5.0463; -5.0463|1/25 90 -5 ; -5
-6|60| -6.1623; -6.1623|1/36 90 -6 ; -6
-7|/60| -7.1401; -7.1401}1/49 90 -7 : =7
-8l60| -8.1231; -8.1231|1/64 20 -8 ; -8
-9|60| -9.1098; -9.1098{1/91 90 -9 ; -9
-10]60|-10.0990;-10.0990[1x1072 90| =-10 ; -10
-20|60|-20.0499;-20.0499|2.5x10"% |90 -20 ; -20
-30{60[-30.0333;-30.0333|1.1x10"> |90| -30 ; -30
-40|60]-40.0250;-40.0250[6.25x10"*|90| -40 ; -40
-50|60|-50.0200:-50.02004x107* 90| =50 ; =50
-100{60|-1.0x10%;-1.0x10° |1x107* 90| -100 ; =-100
-1000|60|-1.0x10%;-1.0x10° |1x10™®  |90|-1000 ;-1000
-1x10° |60]-1.0x10%;-1.0x10° [1x107° |90|-1x10%;-1x10°
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It can be seen from the results displayed in Table 6.2.4,
that for all choices of a, the limiting 6 value may be increased
to 90°, by a suitable choice of the arbitrary matrix R. It can
also be seen that the appropriate choice of R, for the
eigenvalues to be on the right-hand point of the sector is 1/¢° in

each case.

The results noted from the investigations of these two
systems will now be verified for the reduced order equivalent
system of any system of the form of equation (2.2.2).

Je

When 8 is equal to 90°, e~ and e become j and -j respectively,

so substituting for them in equation (4.2.29) gives

§(Ay - «I)'P - JP(A; - aI) - PA,le'IAIZP = -Q (6.2.2)
Equation (6.2.2) may be expanded to give

(-324,) P - aiP + P(-JA;;) + ajP - PARALP = —Q (6.2.3)
The a terms in equation (6.2.3) cancel, to give

("J'Au)’P + P(-3jAy) - PAR AP = -Q (6.2.4)

Equation (6.2.4) is clearly a standard form of a continuous
complex matrix Riccati equation which is independent of a for all
matrices A, and A;;. Thus, if 6 = 90°, the Riccati equation has
the same solution for all values of «, provided that the R matrix

is chosen to be the same in each case.

135



Clearly, for the closed-loop eigenvalues to lie in the required
region, the « value must be smaller than all the real negative
eigenvalues of A,; - A,,F, where F = R”AI,_P. This result holds
for all A,, and A, matrices, and it is illustrated in the results
in Table 6.2.3, and in the results for the robot arm in Table
4.5.2. When & = 90°, the eigenvalues of A,, - A,,F for this
example are -1.648, -2.013 and -3.242 and so the limiting 6 value
will be 90° for a.t -1.648. When a = -2, only one of the eigen-
values of A;; - A,,F is larger than a and so a small R matrix will
give a limiting & value of 89°, for the five state example. When
a = -3, two of the eigenvalues of A,; - A,F are larger than a« and
so the limiting @ value is only 67°, for the five state example.
Wwhen a < -3, all three eigenvalues of A;; - A,,F are larger than
a, and the limiting @ value drops quickly to its steady state
value of—60°, for the five state example. The robot arm example

will have a limit of 90° for all « values, provided that

Rtact. = 1/ az'

In general, the limiting value of 6 will be 90°, for a

suitable choice of the arbitrary R matrix, providing the following

condition described above, holds

az max[Real{A,(Au - A12F)}] , 1=1,..., n-m (6.2.5)

where Real{A,) denotes the real eigenvalues.

When a does not satisfy the condition given in equation

(6.2.5), then the limiting 6 value will drop back to 60°.
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For the robot arm, the reduced order equivalent system matrix
A,; is zero, and the reduced order equivalent system matrix A,, is
orthogonal (A;; = AIZ) and so it is a special case of the above

theory.
substituting A;; = 0 into equation (6.2.4) gives

-PA,R AP = -Q . (6.2.6)
If Q = I, , and R = Ry I,, then equation (6.2.6) becomes

T
P’ = ReactB12Bs2 (6.2.7)

Since A,, is orthogonal, the expression for P becomes

P = Rfact, I (6-2.8)

The control matrix, F = -R'lAIZP, is therefore given by

T
Ay (6.2.9)

and the closed-loop reduced order system is given by

)

Ay~ AF = I (6.2.10)

5

The closed-loop eigenvalues are therefore a double root at

ury

(6.2.11)

5
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If the eigenvalues are required to be = a, then, from equation

(6.2.11), Rg,, must be chosen to be

React = 1/(!2 (6.2.12)

This result has thus been proved for all systems where the
reduced order equivalent system matrices comprise a null matrix
A,;, and an orthogonal matrix A,,. The results for the robot arm

in Table 6.2.4 clearly illustrate this result.

In these examples it can be seen that for a suitable choice
of the arbitrary matrix, R, the limiting values of & can be
increased, and so the closed-loop eigenvalues of the reduced order
equivalent system of a VSC system can be placed in a wider range
of regions, including the region which is part of the negative
real axis. If the condition in equation (6.2.5) holds then the
1imiting value of 6 will be 90°, otherwise it will fall in stages,

until it reaches 60°.

In the particular case where the matrices of the reduced
order equivalent system comprise a null matrix A;; and an
orthogonal matrix A;,, the limiting & value will be 90° for all
choices of «, provided R, satisfies equation (6.2.12). In this
case, the solution of the continuous matrix Riccati equation, P,

may be found from equation (6.2.8).
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6.3 Effect of the R Matrix on Eigenvalue Positioning

The theory of the dependence of the positioning of eigen-
values within a disc on the design of the R matrix will now be
investigated for the case of a specified sector in the left-hand

half-plane.

For the initial investigation, the five state example was

again considered, and the values of a and 6 were chosen to be

30°. The R matrix was altered according to

a=-—2and9

equation (6.2.1), and the resulting eigenvalues are displayed

below.
Table 6.3.1 Eigenvalues for 6 = 30° and a = -2
React Closed-loop Eigenvalues

- 1l -2.4934 ; -3.1744 * 0.21193

2 -2.3253 ; -3.0810 * 0.2382j

3 -2.2466 ; =-3.0457 + 0.23967]

4 -2.1985 ; =-3.0265 * 0.2386j

5 -2.7122 ; -3.0143 t 0.2374)

1/2 -2.7122 ; =-3.2364 ; -3.4288

1/3 -2.8693 ; -3.1693 ; -3.7682

1/4 -2.9925 ; -3.1624 ; -4.0228

1/5 -3.0761 ; -3.1880 ; -4.2455

It can be seen from the results displayed in Table (6.3.1)
that when R, = 1, the closed-loop eigenvalues comprise a real
value and a complex conjugate pair. When R, < 1, the eigen-
values are all real, and move further away from a as R,
decreases. It would clearly be useful if this result held for all
gsectors, but it must be noted that for this particular choice of «
and 6, the eigenvalues lie within the sector without having to

alter the R matrix.
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Consider the same example , but let 6 =

65° and « = -2, and

recall from the previous section that R, must be 0.6 or smaller

for the eigenvalues to lie in the required region.

for this investigation are shown below.

The results

Table 6.3.2 Eigenvalues for 6 = 65° and a = -2
R Eigenvalues of A;; - A,,F within
sector
1I =1.9991 * 0.20903j ; -2.8783 no
0.91 -2.0314 *+ 0.1894j) ; =-2.8995 no
0.71 -2.1147 * 0.1033j) ; -2.9559 no
0.6I -2.0697 ; -2.7140 ; -2.9953 yes
0.6 0.5]]_ . - . -
[0.5 0.6] 1.9760 ; -2.5869 ; -4.3098 no
0.6 0.1]|_ . - . -
[0.1 0.6] 2.0525 ; -2.4632 ; 2.8536 yes
0.2 -2.0826 ; -3.1962 ; -3.5311 yes
0.01I -2.3740 ; -6.9730 ;-11.2354 yes

It can be seen from the results displayed in Table 6.3.2,
that when R, is greater than 0.6, the eigenvalues comprise a
real eigenvalue, which is within the required sector, and a
complex conjugate pair of eigenvalues, which are outside the
required sector. When R is less than or equal to 0.6, the
eigehvalues are all real, and are all within the required sector.
If the R matrix has some non-zero off-diagonal terms, then the

eigenvalues are still real, but are outside the required sector if

the off-diagonal terms are very close to the diagonal terms.

These results suggest that if R, has to be smaller than 1
for the eigenvalues to lie within the required sector, then the

eigenvalues will lie in the sector and be purely real. If Ry,
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can be equal to, or larger than 1, then if R has off-diagonal
terms very close to the diagonal terms, the eigenvalues will lie
in the sector and be purely real. If the R matrix is a diagonal
one, then the eigenvalues will lie in the sector and comprise at
least one complex conjugate pair. It also appears that a matrix
with off-diagonal terms close to the diagonal terms will place the
eigenvalues in the required sector, where a diagonal matrix of the
same magnitude will not. Conversely, if a diagonal matrix results
in the eigenvalues being just inside the sector, then the
introduction of off-diagonal terms of a similar magnitude will

push some of the eigenvalues back out of the sector.

To investigate these suppositions, some runs have been
carried out for two sectors with the R matrix being altered using
two diff;rent methods. The first method is to alter R, from 10
to 1 in steps of 0.5, with R = R, I, and the second method is to
alter the leading diagonal in the same way as in the first method,
put to choose the off-diagonal terms so that the determinant of R

is equal to 0.5. The results for these runs are displayed in the

following figures :

Fig 6.1 «a = -2 6 = 30 det(R) = 0.5
Fig 6.2 a = -2 6 = 30° R = Rppeel
Fig 6.3 o = -6 6 = 25° det(R) = 0.5
Fig 6.4 a = -6 6 = 25° R = Rpel

141



k
\

Eigenvalues in a sector : alpha =

-2, theta = 30 and detr = 0.5

0.2

0.15

T

o1}

~r

OF # ¢ ¢ 20 0 ¢ ¢ 2 2 =« =« v ¢ = » » ™ Ry Sp——
0.05} i
0.1+ i
015} A
2 7 ~ i 4 3 2
Fig 6.1 Eigenvalues for o = -2, 8 = 30° and det(R) = 0.5
Eigenvalues in a sector : alpha = -2, theta = 30 and r = Rfact]
0.3 T . ' . — '
- ll“
0.2} * 9
01} |
]
0% - . L S R R PR T -
0.1+ 4
0.2 . _:
* o o I
i
033 32 3 28 26 24 22 2
= -2, 8 = 30° and R = R,,I

Fig 6.2 Eigenvalues for «a

142



Eigenvalues in a sector : alpha = -6, theta = 25 and detr = 0.5

0.2
015+

0.1r

0.05

Of2esernuer oo

T

-0.05

0.1

T

.15

T

T

=T

»*

-

Ll (IR RERT. " 4 !

0.2

Fig 6.3

s

14

13

12

Eigenvalues for «

a1

-6'

e

10 9 Y
25° and det(R) =.0.5

Eigenvalues in a sector : alpha = -6, theta = 25 and r = Rfactl

04

03r

0.2r

0.1

0 {.
0.1+
02+

-0.3r

‘am

—

0405

Fig 6.4 Eigenvalues for o = -6, 6

104

102

-10

938

9.6

143

94 92 9 =8

25° and R = Rppeel



It can be seen from figures 6.1 and 6.2, that introducing
non-zero off-diagonal terms to the R matrix, so that its
determinant is equal to 0.5 places all the eigenvalues on the real
axis. When the off-diagonal terms are zero, the eigenvalues
comprise a real value and a complex conjugate pair. These results
are repeated for the second sector, as can be seen from figures
6.3 and 6.4. This result will only hold if the eigenvalues are

within the required sector for the diagonal R matrix.

An investigation into the largest diagonal R matrix, and the
largest non-diagonal matrix required to place the eigenvalues
within the required sector has been carried out for various
sectors. The results are displayed below.

Table 6.3.3 Largest R matrices for placement within the sector

a 18° [|React |Eigenvalues Ry | Ry Eigenvalues

olgol0.7 |-1.39%0.245:;-2.56|1x10%[9.99x10%|-1.20;-1.90;-3.63

-1/65/0.8 |-1.54:0.243:-2.52|1x10°|9.99x10°|-1.29;~1.94;-3.86
-2|75|0.05|-2.01;-4.21;-5.52| - - -
-3|60|0.05|-3.01;-5.05;-6.41| - -
-4/55/0.07|-4.03;-6.00;-6.70{0.02 [0.0199 |-4.02;-4.84;-34.1
-5|58|0.01|-5.08;-9.11;-13.2] - -
-10ls6/0.01|-10.2:-14.1;-17.2|0.1 [0.099 [-10.7;-11.4;-38.1

It can be seen from the results displayed in Table 6.3.3 that
for some sectors, it is possible to use a very large R matrix,
provided its determinant is small, and still have the eigenvalues
within the required region. For other sectors, the largest R

matrix which places the eigenvalues within the sector is that of

the fom R = Rfuct.I°

144



It is clearly possible to have some control over the form of
the eigenvalues, in other words whether they are real or complex,
depending on the sector chosen. In general, if Ry, has to be
smaller than 1, with the R matrix given by R(,,I, for the closed-
loop eigenvalues to be within the required sector, then the
eigenvalues will be real. If the leading diagonal elements of R
are = 1, with the off-diagonal elements close to the leading
diagonal elements, and the closed-loop eigenvalues are within the
required sector, then they will also be real. If a matrix of the
form RgectI, where R, is a positive scalar, places the closed-
loop eigenvalues within the required sector then some of the
eigenvalues will be complex. If the R matrix has to be very
small, in other words Rg,. must be small, to place the
eigenvalues within the required sector, then there is little scope

for moving them around within the sector.

In the particular case when the reduced order system matrices
comprise a null matrix A;, and an orthogonal matrix A,, (for
example, the robot arm system), the closed-loop eigenvalues are
given by equation (6.2.11). It is clear from this equation that
the eigenvalues will always be real, since the arbitrary matrix,
R, from the continuous matrix Riccati equation, must be positive

definite, and hence the scalar Rp,, cannot be either negative or

zZexo.
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6.4 Discussion

It can be seen, therefore, that the closed-loop eigenvalues
of a VSC system may be placed in a wider range of sectors than was
previously supposed (section 4.5), provided that the arbitrary R
matrix from the continuous matrix Riccati equation is chosen
appropriately. Some general rules have been verified, for systems

of the form given in equation (2.2.2), and they are as follows :

1) If « is z the largest real closed-loop eigenvalue of the
reduced order equivalent system, then the limiting @ value

]

will be 90°, for a suitable (small) choice of the R matrix.

2) If a is < the largest real closed-loop eigenvalue of the
reduced order equivalent system, then the limiting 6 value
drops to 60°, for a suitable choice of the R matrix.

3) For the particular case when the system matrices of the
reduced order equivalent system comprise a null matrix A,, and
an orthogonal matrix A,,, provided that the R matrix is chosen

to be I/az, the limiting @ value will be 90°, for all choices

of «a.

The above conditions may be successfully applied to the
reduced order equivalent systems of all systems of the general
form given in equation (2.2.2). It is therefore possible to
ensure that the closed loop eigenvalues lie within the required
sector, provided that the sector chosen satisfies these

conditions.
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The positioning of the eigenvalues within the required sector
has also been considered, and some control over their form, real
or complex, is available. The following general conditions have

been deduced

1) If the R matrix has to be smaller than the identity matrix for
the eigenvalues to be within the required sector, then the
eigenvalues will all be real.

2) If an R matrix which is larger than the identity matrix will
place the eigenvalues within the required sector, then the
eigenvalues will be real and complex if R is a scalar multiple
of the identity matrix, and purely real if the R matrix has
off-diagonal elements very close to the leading diagonal
elenents.

3) In the particular case when the system matrices of the reduced
order equivalent system comprise a null matrix A;; and an

orthogonal matrix A,,, the eigenvalues will always be real.

It is clearly possible to force the eigenvalues to be either
all real, or a mixture of real values and complex conjugate pairs
for some sectors in the left-hand half-plane. The properties
above, coupled with the conditions on the R matrix for the eigen-
values to be in the required sector, enable the eigenvalue forms

to be predicted, and in some cases influenced.
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7. MINIMIZATION OF THE LINEAR CONTROL

7.1 Introduction

In this chapter, the effect of "minimizing" the linear part
of the control is investigated. The technique of finding an
optimal control which minimizes the performance index of a system,
is well-known (see for example, Anderson and Moore, 1969 & 1971,
Grimble and Johnson, 1988). Work has also been done on optimal
eigenstructure assignment (see for example Fahmy and O’Reilly,
1982, Kautsky, Nichols and Van Dooren, 1985, Burrows and Patton,
1990, a & b). Little work appears to have been done regarding
minimizing the control effort of a VSC system. It is clearly more
efficient to use the smallest effective control possible, bearing
in mind other design considerations such as the choice of the
closed-loop eigenvalues. The choice of both the the sliding
hyperplanes and the m remaining eigenvalues for the linear
feedback system affect the form of the linear control. If the
sliding mode eigenvalues are being chosen explicitly, then there
is no flexibility for minimizing the linear part of the control,
except by suitable choice of the m remaining eigenvalues. If,
however, the sliding mode eigenvalues are simply required to be in
a particular region of the left-hand half-plane then there is
clearly scope for positioning the eigenvalues within the chosen
region and minimizing the linear part of the control. It is
therefore possible to combine one of the eigenvalue assignment
methods outlined in Chapters 3 and 4 with a minimization of the

jinear part of the control, and this will now be considered. It
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is not possible to predict the effect of this minimization on the
resulting control, or on the performance. The effects of both the
sliding mode eigenvalues and the m remaining eigenvalues on the
control magnitude, and on the performance will be investigated in
this chapter.

Section 7.2 contains an outline of the theory of controller
design, once the sliding hyperplanes have been chosen, and the C
matrix calculated, and these results are used in later sections.
section 7.3 contains an investigation of the effect of minimizing
the 2-norm of the linear part of the control, using the robot arm
simulation outlined in Chapter 2. Section 7.4 contains an
jnvestigation into the effect of minimizing the condition number
of the closed-loop matrix for the linear part of the control,
again using the robot arm simulation. Section 7.5 contains a

prief discussion of the results.

7.2 Controller Design Theory

once the sliding hyperplane matrix, C, has been chosen, using
one of the methods outlined in previous chapters, the state
feedback control function u : ®R" » ®" must be selected. The
function of u is to drive the state x into the null space of C,
and then to maintain it within this subspace. 1In general, the
variable structure control law consists of two parts, a linear

part u" and a non-linear part u, and these are added together to

form the control u.

u=u +u (7.2.1)
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The linear control, uL, is a state feedback controller of the form
L
u (x) = Ix (7.2.2)

The nonlinear control, u", incorporates the discontinuous
elements of the control law, and has several possible forms which
have been discussed elsewhere (Zinober, 1991, Young, 1977, Ryan,
1983). Here, the unit vector method, (Ryan & Corless, 1984) will
be considered, which works on the principle of rapid motion onto a
subspace within the state space, followed by slower transient
motion within the subspace, which approaches the state space
origin asymptotically. The individual controls are continuous,
except on the final intersection of the hyperplanes, ¥(C), where
all the confrols are discontinuous together. The design technique
ensures that the motion is always towards the final target, the

null space of C, ¥(C). The control structure has the form

p

Jpex|

where the null spaces of N, M and C are coincident.

u(x) = Lx + Nx (7.2.3)

N(N) = ¥(M) = ¥(C) (7.2.4)

Recall the transformed state y, outlined in Chapter 2, which is of

the form y = Tx, and the transformed system

y = TAT'Y + TBu with CT'y = 0 (7.2.5)
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consider a second transformation, T, : R" 5 R", of the form

z = Ty (7.2.6)
where
I 0
T, = [F"" I,,] (7.2.7)

F is the control matrix for the reduced order equivaleni: system.

The inverse of T, is given by

I 0
-1 n-m
T2 = [-p 1_] (7.2.8)

partition z into z, € "™ and z, € ®", so that z' = [z] z.).
Equation (7.2.6) may then be similarly partitioned to give the

systen equations of the second transformation

zZ, =Y (7.2.9a)

z, = Fy; + Y2 (7.2.9b)

The transformed system equations are therefore

Y1 = 21 » Yi = 24

Yz = 22 - F2y » Y> = 2 - Fz, (7.2.10)

Recall from Chapter 2 that the partitioned system equations of the

reduced order system resulting from the first transformation, T

are
y1 = A * AnY. (7.2.11)
ya = AnYy + AxY, *+ Bu (7.2.12)
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substituting for y, and y, from equation (7.2.10) into equation

(7.2.11) and rearranging gives
zy = (A - AF)z, + Az, (7.2.13)

substituting for y, and y, from equation (7.2.10) into equation

(7-2.12) gives
éz - le = AZizl + A2222 - AZZFZI + Bau (7-2'14)

Substituting for é, from equation (7.2.13) into equation (7.2.14)

and rearranging gives

Z, = (B —AxF+FA-FA,F)2z; + (A,+FA;)z, + Byu (7.2.15)

Equations (7.2.13) and (7.2.15) may be simplified by using the

following substitutions

E = Ay - AF
¥ = A22 + FAlz

A21 - AzzF + FAII - FA12F = A21 - AzzF +FZ

p 4

substituting for these expressions in equations (7.2.13) and

(7.2.15) gives

z, = X2y + A2, (7.2.16)

z, = Xz, + ¥z, + Byu (7.2.17)

In order to obtain the sliding mode, 2z, and éz must be forced to

zero. If éz is zero, equation (7.2.17) becomes

B,u = -xz; ~— ¥2, (7.2.18)
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Now, recalling that B, is an mxm non-singular matrix, define the

l1inear part of the control to be
u(2) = -B'[xz +(¥ - %3] (7.2.19)

where ¥. is any mxm matrix with left-hand half-plane eigenvalues.

known as the range space eigenvalues, ¥. may be set to

diag{c, : i= 1,....,m}.

Transforming equation (7.2.19) back to the original x space,

recalling that z = T,y and y = Tx, gives
L = -Bi‘[x (¥ - \I’.)]TZT (7.2.20)

The linear part of the control, u", will drive the state component

z, to zero asymptotically, since substituting for u from equation

(7.2.19) into equation (7.2.17) gives z, = -¥,2,. The non-linear

part of the control, u", must be designed so as to attain ¥#(C) in
finite time. The non-linear control is discontinuous when z, = 0,
and continuous elsewhere. Let P, be the unique positive definite

solution of the Lyapunov equation
Pp¥e + VePp + I, = 0 (7.2.21)

Then Ppz, = 0 if and only if z, = 0.
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The linear control can be chosen to be

u"(z) S B;Pnzz (z; = 0) (7.2.22)

Ip,,zzl

where p > 0 is a scalar parameter selected by the designer to be

sufficiently large.

when z, = 0, u" is undefined, so it may be arbitrarily defined to
be any function satisfying IuNI s p. The control u = " + " is

then given by

P

|7o7|

u = -B;' [xzx + (¥ - ‘I")zz] - B;'Ppz, (7.2.23)

This control will drive an arbitrary initial state z° to the

sliding subspace in time T, given by

(7.2.24)

where Og,(Pp) denotes the minimum eigenvalue of P, and <.,.>
denotes the Euclidean inner product on ®". Transforming the

nonlinear control into x space gives
-1
N = -B; [o PD]TZT (7.2.25)

M= [0 Po]TzT (7.2.26)

Therefore, the control in x space is given by equation (7.2.3).
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To minimize the control effort required to drive the state
onto the subspace, it is clearly necessary to "minimize" the
1inear part of the control in some way, and two possibilities will
now be considered. The linear part of the control, L, depends on
the choice of the control matrix, F, as can be seen from equation
(7.2.20). It is clear, therefore, that there are restrictions on
the design on the linear part of the control, imposed by the

design of the control matrix F and the range space eigenvalues.

If the sliding mode eigenvalues are being explicitly chosen,
then there is clearly no scope for minimizing the linear part of
the control by a suitable choice of the control matrix, since it
has therefore been fixed. The sliding mode eigenvalue placement
methods in Chapters 3 and 4 offer some degree of flexibility in
the F matrix, and hence in the choice of L, since they only
require the eigenvalues to be within a particular region of the
jeft-hand half-plane. A method for the minimization of the linear
part of the control will therefore be investigated for these
methods. A similar method could be applied to exact sliding mode
eigenvalue placement techniques, provided that there were
tolerances on the required positions of the closed-loop eigen-
values. The choice of the range space eigenvalues has an effect
on both the linear part and the non-linear part of the control,
and so a suitable choice could lead to a minimization of the

1inear part of the control.
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7.3 Minimization of the 2-norm of L

The 2-norm of a matrix may be defined to be the maximum value
of the ratio between the norm of the product of the matrix with a
vector, and the norm of the vector. This shows the amount by
which the transformation can magnify the Euclidean norm of the
vector. The 2-norm of the linear control gives the magnification
of the distance of any vector from the origin, by the controller.
since the function of the linear control is to drive the state to
the origin, it seems appropriate to try to minimize this
magnification. It is not feasible to minimize the 2-norm of L,
and hence the linear control effort, at each time step, and so the
2-norm of the control matrix L will be minimized by a suitable
choice of the closed-loop eigenvalues of the reduced order
equivalent system. A suitable choice of the range space eigen-
values will decrease the value of the 2-norm of L. Some work has
peen done eigenstructure assignment for a low norm linear feedback

control law (Burrows and Patton, 1990, a & b).

Consider first the effect of minimizing the 2-norm of the
1inear part of the control, L, on the control effort. The 2-norm

of L is defined to be

ILx
ILL = max bl = JA...,[L’Ll (7.3.1)

where A, is the maximum eigenvalue of (r'rj.
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In the first instance, this investigation was carried out
using the optimization package in MATLAB, and in particular the
routine "attgoal" (Grace, 1990). This is a very general routine
which attempts to minimize the objectives returned by a user-given
function, using a sequential quadratic programming method. The
goal values are given by the user, along with weighting values for
the goals. The initial value of a design variable k must be
chosen, along with its bounds. k is varied by the routine to try

to achieve the goals, and can be a scalar or a matrix.

For our investigation we require the 2-norm of L to be
minimized whilst the closed-loop eigenvalues remain in the sector
(section 4.2). The variable k will be used to alter the R matrix

as follows
newr = K*R (7.3.2)

where k is a positive scalar, and R is fixed by the designer.

For the sector, the goal is to minimize “L“2 whilst placing

all the closed-loop eigenvalues of the reduced order equivalent
system within a sector specified by « and & (section 4.2). Since
the requirement for the eigenvalues to be within the required
sector is a rigid one, a switch variable, reg_pen, is set up, and
is given the value 1 if the eigenvalues are within the required
sector, and 10 otherwise. The weighting value for reg_pen must be
zero, since all of the closed-loop eigenvalues must be within the

required sector, even if the value of "L" is not minimized.
2
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Consider again the five state example, and choose a = -2,
e ==30°, and the range space eigenvalues, {,, to be [-2.5,-5].
Using the eigenvalue placement technique outlined in section 4.2,
with Q = I, , and R = I,, gives the closed-loop eigenvalues of
A,y - AoF as -2.4934 and -3.1744 % 0.2119j, which are within the

required sector, so reg_pen = 1. The initial value of HL“Zis

19.499 and the initial value of k is 1.

The following results are obtained after 202 steps, with the

closed-loop eigenvalues within the required sector :

|L| = 14.0072 k = 27.1509
2

Closed-loop eigenvalues : -2 and -2.9643 * 0.2272j

It is clear that the closed-loop eigenvalues are within the

required sector, and that |LL is smaller than it was for k = 1

4

put the minimum has not been reached after 202 steps, and the

computational time is excessive.

As as a second example, using the same five state system,
choose ¢ = -2 and 8 = 65°, with the same range space eigenvalues.
Using the same eigenvalue placement technique as for the previous
case, with Q = I, , and R = I,, gives the closed-loop eigenvalues
of A, - A F as -2.8783 and -1.9991 + 0.2091. These eigenvalues
are clearly not all in the sector, so reg_pen = 10. The initial

value of HLL is 11.4911, and this will probably increase since

the eigenvalues are not all in the sector. k is chosen to be 1.
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The following results were obtained after 202 steps, with some of

the closed-loop eigenvalues outside the required sector :

|L|2 = 11.4911 k=1

Closed-loop eigenvalues : -2.8783 and =-1.9991 * 0.2091j

It is clear that after 202 steps, there is no change in k and

two of the eigenvalues are still outside the required sector.

There are clearly problems with using this very general
optimization package with a discontinuous variable such as
reg_pen. The main difficulty is that the eigenvalues are either
within the required sector, or outside it, and attgoal seems to
f£ind it difficult to cope with a variable which switches between
two values, as reg_pen does, rather than continuously iterating
with each step. This results in the program oscillating between
g£wo k values and being unable to find an acceptable answer.
Alternatively, k may be moved in the wrong direction, since the

program is unable to tell which direction is correct from reg_pen.

To overcome this problem, a more specific MATLAB routine has
peen written, which can cope with the variable reg_pen switching
petween two values, and will not search in the wrong direction for
a large number of steps. This routine uses an iterative one-

variable search to find the R matrix which will minimize the 2-

norm of L.
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The R matrix is altered as outlined in equation (7.3.2) by a

positive scalar, Rg,, Which is increased or decreased, until :

1) the minimum of HLI is obtained.
2
2) the "computational steady state" of min“L“ is obtained.
2
3) the smallest possible value of "L" is obtained, whilst still

2

having the closed-loop eigenvalues within the required sector.

The "computational steady state" of the minimum is defined as a

value which changes marginally (< 1xldﬁ) for a step change in

Rfact

Table 7.3.1 contains the results for various sectors with the

value of HLHZ for Reyee = 1, [“Lllz] and the value of reqg pen for
o

k =1, rﬁo given for comparison. The {, are the range space

eigenvalues, [ﬂlJz] is the minimum "L"2 value, and 3s is the
min

number of steps taken to reach the minimum. rp represents the
final value of reg pen, and an indication is given of whether the

minimum value has been reached.

Table 7.3.1 Minimum “L“2 values for various sectors
e’ la |rp, [ﬂL' ] Cy ["L" ] 3s|rp| Rppee |Minimum
2|, 2
min
reached
30|-2 1 12.9599(-2.5;-3.5 9.43521141| 1| 25 Y
601-21 1 8.4912(-2.5;-3.5 8.4912(221{ 1 1 Y
651-2110 7.7137(-2.5:;-3.5 8.7343(27] 1 0.6 Y
35|-4} 1 1175.1379{-4.0;-8.0{169.4164]22} 1{110 Y
60|-4{10 77.4880|-4.0;-8.0(224.361842| 1 0.01 Y
20]-6] 1 |617.3135(-4.0;-8.0](614.2129|16| 1| 40 Y
55|-6{10 |244.0771|-4.0;-8.0/328.0779(39| 1 0.04 Y
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It can be seen from the results displayed in Table 7.3.1 that

in all cases a minimum value of ﬂLﬂz is reached, and the closed-

loop eigenvalues of the reduced order equivalent system are within
the required sector. Three of the cases listed in Table 7.3.1
initially have eigenvalues outside the required sector (rp, = 10),
and it can be seen that the method used finds the smallest value

of ﬂLHz for which the eigenvalues are within the requiréd the

sector.

This specialized routine is clearly successful for the
particular problem of minimizing a system containing a
discontinuous variable, and the number of steps required is not
too large, even in the cases where the eigenvalues are initially

outside the required sector.

It can be seen from the results in Table 7.3.1 that for some
sectors, 6 = 30° and a = -2 for example, it is possible to alter

the value of HLH by a reasonable amount (~ 25%), and for other
2
sectors, 6 = 35° and a = -4 for example, the value of HL“ is not
2

altered very much (< 4%). In the case of 6 = 60° and a = -2, for

example, the minimum value of nLﬂ occurs when R = I,. There is
2
clearly a lot of variation in the value of “L" for the various
2

sectors, and a lot of difference in its minimum value, and so the
effect on the linear part of the control will vary depending on

which sector is being considered.
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It can also be seen from the results in Table 7.3.1 that as

React iNcCreases, the value of HLHZ decreases. It was observed

from the results obtained in section 6.2 that as R, , decreases,
the eigenvalues move away from the origin, and further into the
sector. It is therefore clear that there is a trade-off between

the value of R, which gives the minimum value of NL", and the
2

value of R, which results in the eigenvalues being in the
required sector. If the eigenvalues lie well within the required
sector when R = I,, and hence Rg, = 1, then there is clearly
scope for increasing the size of Rg,. Without pushing the
eigenvalues out of the sector, and so "L"2 may be minimized.

If, however, the eigenvalues are only just in the sector when
React = 1, or if Rg,, had to be decreased to push the eigenvalues
into the_required sector, then there is clearly very little scope
for altering R, and hence very little scope for minimizing

IL" by choice of the control matrix.
2

The method for placing the closed-loop eigenvalues of the
reduced order equivalent system in a disc may also be adapted for

the minimization of "L“a. This method, outlined in section 3.2,

was found to place the closed-loop eigenvalues within the required
disc for all positive choices of R,,.., as can be seen from the

robustness results presented in section 5.2.

The minimization of uLuz whilst placing the closed-loop

eigenvalues within various discs will now be investigated.
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The results for the various discs, of radius r and centre «, are

given in Table 7.3.2.

Table 7.3.2 Minimum HLH values for various discs
2

olr [lLﬂz] & [HLL] 8s| Rpuee |Min/st-st
o min
reached
—6|4| 14.7742]-2:-4| 10.1634|70|195310 Y
-6|2|138.0144|-4:-8[136.7579|17 45 Y
-6|6| s5.0419|-1:-6| 4.6391|22] 110 Y
-4|1| 43.2668|-1;-6| 42.3589]20 60 Y
-4|4| 5.0050|-1:-6| 4.6390|22] 110 Y
-3|1| 11.5615|-2;-4| 8.6177|70|195310 Y

It can be seen from the results displayed in Table 7.3.2,

that HLHZ is minimized within a reasonable number of steps for the

various combinations of a and r. It can also be seen that if the
difference between a and r is the same then, regardless of their

actual values, the values of HLH for R,,.¢ = 1, and the minimum
2
of HLH are very similar. It was noted in section 5.2 that, as
2

React 18 increased, some, or all of the closed-loop eigenvalues
are moved towards the right-hand edge of the disc. It can be seen
from the results in Table 7.3.2, that as R, increases, the

value of HLH decreases, until either a minimum or a
2

ncomputational steady state" value is reached. There is no
problem, with this method, of the closed-loop eigenvalues moving
out of the required disc, for large values of the scalar Rg,.
The closed-loop eigenvalues will always lie in the required disc,

for any positive definite choice of the matrix R.
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It is also possible to minimize "LII2 by choosing appropriate
values for the range space eigenvalues. The effect of this
minimization method will be harder to predict, since the choice of
the range space eigenvalues also affects the non-linear part of
the control, as can be seen from equation (7.2.22). A MATLAB
routine which linearly alters the range space eigenvalues until

the minimum of ILH is reached has been written. There is clearly
2

a restriction on the choice of the range space eigenvalues, since

they must be negative.

The results for the five state system for various sectors are
displayed below, with the initial value of {; being (-1 -10] in

each case.

Table 7.3.3 Minimum uLu2 values for different choices of {,

e°| « L C L 8s
[u uz]o 1 [u nz]m
30|-2| 41.6831)-0.92;:-2 6.8334 |17
60|-2 27.0482|-0.92;-2 4.6394117
351-41222.4532{-0.92;-2 33.43221(17
20|-6]786.9282-0.92;-21120.082117
40]|-6(1532.7077|-0.92;:-2 80.8720|17

It can be seen from the results displayed in Table 7.3.3 that

the minimization of MLHZ is affected much more by the choice of

the range space eigenvalues, than by the choice of the sliding

mode eigenvalues. In each case, the value of "L" is altered by
2

about 80% which is a bigger difference than was obtained by

altering the control matrix, and also gives consistent results
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which are independent of the sector chosen. It is possible that a
combination of these results for choices of control matrix and
range space eigenvalues will give good performance results, and

this will now be investigated.

It has been shown, therefore, that the value of ﬂLu may be
2

minimized by a suitable choice of the value R, whilst still
having the closed-loop eigenvalues of the reduced order equivalent
system within the required sector or disc. It has also been shown

that the value of HLH2 may be minimized by a suitable choice of

the range space eigenvalues. However, it is difficult to assess

the effect of the minimization of nan on the performance of a

system, since the choice of the control matrix, F, and the choice
of the range space eigenvalues affect the components of the linear
part of the control, and the choice of the range space eigenvalues
affects the non-linear part of the control, as can be seen from
equation (7.2.22). It is clearly not easy to predict, in general,
the effect of altering the non-linear part of the control on a
system. The effect must be considered for each particular example

separately.

The numerical example which will now be considered is the
model-following example of the robot arm, described in Chapter 2.
This example has been chosen since it will be possible to see the

effect of minimizing HLla on the 6, and ¢, errors of the robot

arm, as well as on the components of the control.
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Firstly, a suitable choice of a sector must be made, so that

the minimum value of HIMZ differs as much as possible from its

value when R, = 1, to enable the differences in the results to

show up clearly.

The system matrices, the transformation matrix, T, and the
matrices of the reduced order equivalent system for the robot arm
are obtained in section 3.4, and the simulation of the performance

of the robot arm is discussed in section 2.4.

Consider various sectors for the closed-loop eigenvalues of
the reduced order equivalent system of the robot arm system to lie
within. The results of the investigation into the sector which

gives the biggest change in the value of "Lu are displayed in
- et >

Table 7.3.4. The variables displayed in this table are the same
as those displayed in Table 7.3.1, and the range space eigenvalues

are initially set to (-1 -10].

Table 7.3.4 Minimum Ilﬂz values for various sectors

o [6°|rp, [IL ] [HLH ] 8s|rp|Rpaey  [Minimum
2 (o] 2 min

reached
-2 30| 1 0.3805 0.3556(28| 1 260 Y
-2 40| 1 0.3460 0.3186(29| 1 285 Y
-2 60| 1 0.2592 0.2225(33]| 1 685 Y
-4 30( 1 0.6968 0.6835{19} 1 55 b4
-6 30 1 1.0241 1.0152(17| 1 45 Y
-1 30 1 0.2391 0.1993(35| 1 935 Y
-1 60| 1 0.1896 0.1409{39| 1| 1435 Y
-1 10} 1 0.2596 0.2198(34( 1 810 Y
-0.5|30) 1 0.1817 0.1314|39| 1| 1435 Y
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It can be seen from the results displayed in Table 7.3.4 that

the biggest percentage difference between the value of llj when
LY

React = 1, and its minimum value, occurs when a = -0.5 and
@ = 30°. The robot arm simulation will be run for this sector

with both the nominal value of “LH and its minimized value.
2

The simulation will also be run for the minimization of uLH
2

by choice of the range space eigenvalues, for comparison.

The minimization of HL“ by choice of the range space eigen-
2

values will now be investigated for the robot arm. Again, the
sector giving the biggest difference between the initial and

minimized values of “LHZ is required. The initial choice of the

range space eigenvalues is [-1 -10]}.

Table 7.3.5 Minimum "Luz values for different choices of (,

Lo ([11) | oo feel 1o

30(-2 0.3805 |-0.92;-2(17]0.0902
40 -2 0.3460 |-0.92;-2(17]0.0823
60| -2 0.2592 |-0.92;-2(17|0.0621
30|-4 0.6968 |-0.92;-2{17|0.1624
30|-6 1.0241 |-0.92;-2{17|0.2367
30(-1 0.2391 |-0.92;-2(17[0.0547
60| -1 0.1896 |-0.92;-2|17|0.0445
l0|-1 0.2569 |-0.92;-2(17{0.0616
30({-0.5/0.1817 |[-0.92;-2(17{0.0435

It can be seen from the results displayed in Table 7.3.5 that

the percentage differences between the initial value of “Ln and
2

the minimum value of "Lﬂ2 are the same for all of the sectors
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investigated. Again, the minimization of "Lu by the appropriate
2 .

choice of the range space eigenvalues, appears to be more

effective than the minimization by choice of the sliding mode

eigenvalues. This method of minimizing ILH is also more
2

consistent, since the results do not depend on the choice of
sector. The robot arm simulation will therefore be run for the

[+] y .
, for ease of comparison

sector defined by a = -0.5 and 8 = 30
with the minimization by choice of sliding mode eigenvalues

method.

The results of the simulation runs for the three examples,
for 6, error, ¢, error, ul and u2 are displayed in figures 7.1 to
7.6, with the parameters as follows :

Fig 7.1 & 7.2 Plots for {, = [-1 -10] and “Lu not minimized
2
Fig 7.3 & 7.4 Plots for “Ln minimized by sliding mode design
2

Fig 7.5 & 7.6 Plots for “L“ minimized by range space design
2

The errors in all these cases are larger than for the run in
Chapter 2, which is due, in part, to coupling effects between the
angles. The simulation run in section 2.4 used partial eigen-
vector assignment to remove this coupling effect, which resulted
in very small errors. The eigenvector assignment has not been
included for these investigations, since it would mask the effects

of the minimizations.
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It can be seen from figures 7.1 and 7.3 that when HLH is
2

minimized by choice of the sliding mode eigenvalues, the 6, and ¢,
error plots are very similar in shape, but those for the minimized

value of HLH are larger than those for its nominal value. The
2
error plots for 6, and ¢, for the minimization of “Im by choice
2

of the range space eigenvalues (Fig 7.5) are again the same shape,
put are larger again. The angle error plots for all thfee cases
have spikes when the robot arm changes direction, and the worst
spikes occur at the changes of direction during the sinusoidal
part of the trajectory. The steady state and worst case errors

are as follows :

Fig 7.1 6, = 12.6° (worst case) 6, = 2.86° (steady state)

¢, = 1.43 ¢, = 0.29

Fig 7.3 6, = 17.2° 6, = 5.73°
¢, = 2.01° ¢. = 0.46°

Fig 7.5 6, = 37.2° e, = 17.2°
¢, = 0.89° ¢, = 0.57°

It can be seen from figures 7.2 and 7.4 that the control

effort is slightly smaller when "L“ has been minimized by
2
choosing appropriate sliding mode eigenvalues. If HL" has been
2

minimized by choosing appropriate range space eigenvalues, it can
be seen from figure 7.6 that the control effort is increased by

about 50% compared with the other two results.
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The control plots are all very similar in shape, smooth waves

about a constant value and these values are as follows :

Fig 7.2 ul : 1.5 uz : 0.025
Fig 7.4 ul : 1.4 u2 : 0.02
Fig 7.6 ul : 3.3 u2 : 0.28

It is clear from these results, that minimizing ELH by
2

choosing the appropriate range space eigenvalues leads to both a
larger control effort, and larger errors in the angles than either
minimizing ILH by choosing appropriate sliding mode eigenvalues,

2

or not minimizing ﬂLﬂz at all.

It would appear from these results that the effect of the
range space eigenvalues is more significant than the effect of the
size of HLHZ. If HLHZ is minimized by choosing the appropriate
sliding mode eigenvalues, then it appears that choosing the range
space eigenvalues to be small (ie large and negative) gives a
small decrease in the control effort and a small increase in the

angle errors.

Minimizing HLH2 by choosing the appropriate range space
eigenvalues leads to an increase in both the control effort and
the angle errors. It would appear, therefore, that a smaller
control effort could be obtained simply by choosing the range
space eigenvalues to be large and negative, which would have the

effect of maximizing the value of "L"z.
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The magnitude of the control effort clearly depends on the
choice of the range space eigenvalues, and the choice of the
sliding hyperplanes, and the size of nLﬂz. It is not obvious from
the theory how these interact, and it might be necessary to

minimize ﬂ112 by simultaneous choice of the sliding hyperplanes

and the range space eigenvalues. There is clearly scope for an
jnvestigation into a far more complicated optimization problem

than has been considered in this work.

7.4 Minimization of the Condition Number of (A + BL)

Suppose a matrix transformation maps vectors onto a surface
6. Then the condition number of the matrix is defined to be the
ratio of _the largest to the smallest distances from the origin to
a point on this surface 6, and it will always be = 1. A matrix
with a condition number close to 1 is called a well-conditioned
matrix. Again, since the linear control drives the state to zero,
it is appropriate to try and minimize its condition number, and
hence the ratio of distances. The condition number will be
minimized during the design process by choice of the sliding mode
eigenvalues. Suitable choice of the range space eigenvalues will
lead to a decrease in the size of the condition number.

Consider the effect of minimizing the condition number (with
respect to the 2-norm) of the closed-loop system for the linear
control, (A + BL), on the control effort and the system

per formance.
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The 2-norm condition number of the linear closed-loop system is

defined to be

k(A + BL) = H(A + BL)LI(A + BL)"L (7.4.1)

where I ﬂz is as defined in equation (7.3.1).

The optimization package in MATLAB (Grace, 1990) was not used
to investigate this minimization problem, since the same

difficulties experienced when trying to minimize “L“ , outlined in
2

the previous section, will clearly arise.

A MATLAB routine for the specific problem of minimizing the
condition number of (A + BL), whilst placing the closed-loop
eigenvalues of the reduced order equivalent system within the
required sector of the left-hand half-plane has been written. The

R matrix is altered in the following way
newr = Rg,.R (7.4.2)

where R, is a positive scalar, and R is the chosen starting
matrix, usually set to I,. The scalar R, is altered, as

appropriate, until :

1) The minimum of the condition number of (A + BL) is reached.
2) A “"computational steady state" minimum value is reached.
3) The smallest possible value of the condition number of

(A + BL) is obtained, whilst still having the closed-loop

eigenvalues within the required sector.
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The results for an investigation into minimizing the

condition number of (A + BL) for a sector defined by a and 6 are

contained in Table 7.4.1, with the values of k(A + BL) for

React = 1 given for comparison.

rp, and rp are the switch values

for R;,¢ = 1 and the minimum value of the condition number of (A

+ BL), (K(A+BL))D, respectively, and will be set to 1 if the

eigenvalues are within the required sector, and 10 otherwise.

Table 7.4.1 Minimum k(A + BL) values for

various sectors

6°| a|rp, (K(A+BL)]° ¢, (K(A+BL)]m 8sS| Rpaet |Tp{minimum
30(-2] 1 24.5883 |-2.5;-3.5 16.7203 |14 25 1 Y
601-2]| 1 14.149 -2.5;-3.5 14.1496 |22 1 1 Y
65{-2]|10 12.5349 |-2.5;-3.5 14.5527 |27 0.6 1 Y
35|1-4| 1 510.7013 (-4.0;-8.0| 490.1365 {24160 1l Y
60|-4|10 193.5621 |~-4.0:;-8.0| 717.5465 |42 0.01] 1 Y
20|-6] 1 |2021.2 -4.,0;-8.0]2001.85 17 45 1l Y
55|-6]10 724.2187 |-4.0;-8.0]1039.9 39 0.04] 1 Y
It can be seen from the results in Table 7.4.1 that in all
cases a minimum, or a steady state value of the minimum, of
k(A + BL) is reached, and the closed-loop eigenvalues of the

reduced order equivalent system are within the required sector.
Three of the cases listed in Table 7.4.1 initially have eigen-
values outside the required sector (rp, = 10), and it can be seen
that the method used finds the smallest value of k(A + BL) for

which the eigenvalues are within the required the sector.

This specialized routine is again clearly successful for this
particular minimization problem, with a discontinuous variable,
even in the cases where the eigenvalues are initially outside the

required sector.
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It can be seen from the results in Table 7.4.1 that for some
sectors, 8 = 30° and a = -2 for example, it is possible to alter
the value of (k(A + BL) by a reasonable amount (~ 33%), and for
other sectors, 6 = 20° and a = -6 for example, the value of
k(A + BL) is not altered very much (< 1%). 1In the case of 8 = 60°

and a = -2, for example, the minimum value of k(A + BL) occurs

when R = I,, and this is also the point where the minimim of ILH
2

occurs. There is clearly a lot of variation in the value of
x (A+BL) for the various sectors, and a lot of difference in its
minimum value for the various sectors. The minimum value of
k(A + BL) occurs for the same R, Value as the minimum value of

ILH does, for all of the sectors investigated in Table 7.4.1,
2

except for @ = 35° and « = -4 and 6 = 20° and a = -6. The values
of k(A +_BL) for the various sectors are much bigger than the

values of HLHZ, and the differences between the condition number

when Ri,.. = 1 and the minimum value of the condition number are

generally much larger, of the order 10 in some cases.

It can also be seen from the results in Table 7.4.1 that as
R;act increases, the value of x(A + BL) decreases. It was
observed from the results obtained in section 6.2 that as R,
decreases, the eigenvalues move away from the origin, and further
into the sector. It is therefore clear that once again there is a
trade-off between the value of Rg,. which gives the minimum value
of k(A + BL), and the value of R, which results in the eigen-
values being in the required sector. If the eigenvalues lie well

within the required sector when R = I, and hence R, = 1, then
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there is clearly scope for increasing the size of R,,, Without
pushing the eigenvalues out of the sector, and so the value of
k(A + BL) may be minimized. If, however, the eigenvalues are only
just in the sector when Rg = 1, or if Rg, had to be decreased
to push the eigenvalues into the required sector, then there is
clearly very little scope for altering R;,., and hence very

little scope for minimizing k(A + BL).

The method for placing the closed-loop eigenvalues of the
reduced order equivalent system in a disc will adapt itself well
to the minimization of k(A + BL), and will now be investigated.
The results for the various discs, of radius r and centre «, are
given in Table 7.3.2. The other values listed in the table are
the same as those for Table 7.4{1,”except that in this case there
is no né;d for the variable reg_pen, since the closed-loop

eigenvalues are always within the required disc.

Table 7.4.2 Minimum k (A+BL) values for various discs

olr (:c(A+13L)]o Z [x (A+BL))m 85| Reaee |Min / st-st
reached
~6|4| 28.0092 |-2;-4| 18.0119 |73|429690 Y
-6|2| 385.7116 |-4;-8| 381.4360 |18 50 Y
-6/6| 11.4562 |-1;-6| 11.4562 |22 1 Y
-4|1! 94.1963 |-1:-6| 91.0061 |24 160 v
-4|4] 11.5075 |-1:-6| 11.5075 |22 1 Y
31| 20.8214 |-2;-4| 14.9933 |{70/195310 Y

It can be seen from the results in Table 7.4.2 that x(A + BL)
is minimized within a reasonable number of steps for the various

combinations of a and r. It can also be seen that if the
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difference between the magnitudes of a and r are zero then, the
initial values of k(A + BL) are very similar, and the minimum
values occur when R;,. = 1. For this example, except in the case
when « = -3 and v+ = 1, the minimum of the condition number of

A + BL does not occur for the same R, Value as the minimum of

ILI occurs. In the case where a = -6 and r = 2, for example, the
2

minimum of the condition number occurs one step later than the
minimum of the 2-norm. Again, as R, 1is increased, the
condition number decreases, but since the eigenvalues will always

l1ie in the disc, this does not cause any problems.

It is also possible to minimize k(A + BL) by choosing
appropriate values for the range space eigenvalues. The effect of
this minimization method will again be harder to predict, for the
reasons outlined in the previous section. A MATLAB routine which
alters the range space eigenvalues by scalar multiplication, until

the minimum of k(A + BL) is reached has been written.

The results for the five state system for various sectors are
displayed below, with the initial value of {, being [-1 -10] in

each case.

Table 7.4.3 Minimum k(A + BL) values for different (,

8°| « [x(A+BL)] ¢, (K(A+BL)] s

-] m

30(-2 90.4474 -0.92;-2} 14.6921 17
60| -2 55.9696 -0.92;- 9.8194 17
35|/-4| 532.3128 =0.92;-2| 72.3342 17
20|-6]2095.2 -0.92;-21260.3421 17
40|-6]1388.2 -0.92;-2(175.2452 17
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It can be seen from the results displayed in Table 7.4.3 that
the minimization of k(A + BL) is affected much more by the choice
of the range space eigenvalues, than by the choice of the sliding
mode eigenvalues. In each case, the value of k(A + BL) is altered
by about 80% which is a bigger difference than was obtained by
altering the control matrix, and also gives consistent results
which are independent of the sector chosen. Again, a combination

of these minimization techniques will be considered.

It has been shown, therefore, that the value of x(A + BL) may
be minimized by a suitable choice of the value R, whilst still
having the closed-loop eigenvalues of the reduced order equivalent
system within the required sector or disc. It has also been shown
that the value of k(A + BL) may be_pinimized by a suitable choice
of the range space eigenvalues. However, as was found in the
previous section, it is difficult to assess the effect of the
minimization of k(A + BL) in general, due to the effects on both
the linear and the non-linear part of the control of these two
minimization techniques. The effect on the performance of a

system must be considered for each individual case.

The model-following example of the robot arm will again be
considered, so that the effects on performance as well as on the
control magnitude can be seen. Firstly, a suitable choice of a
sector must be made, so that the minimum value of k(A + BL)
differs as much as possible from its value for R;, = 1, to

enable the differences in the results to show up clearly.
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Investigating various sectors for the robot arm system, with
the values displayed in Table 7.4.4 the same as those displayed in
Table 7.4.1, and the range space eigenvalues initially set to

(-1 -10], gives the following results

Table 7.4.4 Minimum kx(A+BL) values for various sectors

a |6°|rp, [x(A+BL)]o [n(A+BL)]m 55 |rp|React |min / st-st
reached
-2 301 1 64.7675 61.2386 [27] 1t 235 Y
-2 40| 1 59.8787 56.0377 (28{ 1| 260 Y
-2 60| 1 47.9311 43,2057 (30| 1) 310 Y
-4 30| 1 110.6398 108.7009 [19] 1 55 Y
-6 30| 1 158.6691 157.3581 |16 1 40 Y
-1 30| 1 45.2984 40.4466 |30 1| 310 Y
-1 60| 1 39.3652 35.9382 {20{ 1 60 Y
-1 101 1 47.6224 42.8779 |30 1} 310 Y
-0.5(130| 1 38.5434 35.9353 8] 1 8 Y

It can be seen from the results in Table 7.4.4 that the

biggest difference between the initial value of k(A + BL) and the
minimum value of k(A + BL) occurs when « = -1 and 6 = 30°. The
robot arm simulation will be run for this sector with both the

nominal and minimized values of k(A + BL).

The simulation will also be run for the minimization of
k(A + BL) by choice of the range space eigenvalues, for

comparison.

The minimization of k(A + BL) by choice of the range space
eigenvalues will now be investigated for the robot arm. Again,
the sector giving the biggest difference between the initial and

minimized values of k(A + BL) is required.
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The initial choice of the range space eigenvalues is [~1 -10].

Table 7.4.5 Minimum k (A+BL) values for

different choices of (;

8°| « [x(A+BL)]° ¢, 8s [x(A+BL)]
m
30(-2 | 64.7675 |-0.92;-2|17]| 16.0361
40|/-2 | 59.8787 |-0.92;-2|17] 14.8996
60| -2 47.9311 -0.92;-2|17| 12.1217
30|-4 |110.6398 |-0.92;-2|17| 26.6973
30| -6 158.6691 -0.92;-2|17| 37.8584
30|-1 45,2948 -0.92;-2117| 11.5085
60|-1 39.3652 -0.92;-2117| 10.1290
10|-1 47.6224 -0.92;-2117| 12.0499
30|-0.5| 38.5434 -0.92;-2{17 9.9378

It can be seen from the results displayed in Table 7.4.5 that

the percentage differences between the initial value of x(A + BL)

and its minimum value are the same for all the sectors. Again,
the minimization of k(A + BL) by the appropriate choice of the
range space eigenvalues, appears to be more effective than the

minimization by design of the sliding mode. This method of

minimizing k(A + BL) is again more consistent, as was found in the

minimization of ﬂLﬂ case. The robot arm simulation will
2

[+]

therefore be run for the sector defined by a = -1 and 6 = 30, for

comparison with the minimization by design of the sliding mode.

The results of the simulation runs for 6, and ¢, error, ul

and u2 are displayed in figures 7.7 to 7.12, as follows

Fig 7.7 & 7.8

Fig 7.9 & 7.10

Plots for {; = [-1 ~-10], k(A+BL) not minimized

Plots for k(A+BL) minimized; sliding mode design

Fig 7.11 & 7.12 Plots for k(A+BL) minimized; range space design
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Again, the errors in all these cases are larger than for the
simulation run in Chapter 2, due, in part, to coupling effects

between the angles, discussed in the previous section.

It can be seen from figures 7.7 and 7.9 that when k(A + BL)
is minimized by choice of the sliding mode eigenvalues, the 6, and
¢, error plots are very similar in shape, but those for the
minimized value of k(A + BL) are larger than those for its nominal
value. The error plots for 6, and ¢, for the minimization of
k(A + BL) by choice of the range space eigenvalues (Fig 7.11) are
again the same shape, but are larger again, except for the
sinusoidal part of the trajectory, when the ¢, errors are smaller
than those in figures 7.7 and 7.9, by about 30%.

The angle error plots for all three cases have spikes when
the robot arm changes direction, and the worst spikes occur at the
changes of direction during the sinusoidal part of the trajectory.

The steady state and worst case errors are as follows :

Fig 7.7 6, = 9.74° (worst case) 6, = 2.29° (steady state)

¢, = 1.15° ¢, = 0.23°
Fig 7.9 6, = 11.5° 6, = 2.86°
¢, = 1.29° ¢, = 0.29°
Fig 7.11 e, = 28.1° 6, = 11.5°
¢, = 0.77° ¢, = 0.40°
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It can be seen from figures 7.8 and 7.10 that the control
effort is indistinguishable for the nominal and minimized by
sliding mode design values of k(A + BL). If k(A + BL) has been
minimized by choosing appropriate range space eigenvalues, it can
be seen from figure 7.12 that the control effort is increased by
about 50% compared with the other two results, and varies less,
after the first second, than the other two control plots do. The
control plots are all very similar in shape, smooth waves about a

constant value and these values are as follows :

Fig 7.8 ul : 1.6 u2 : 0.035
Fig 7.10 ul : 1.6 u2 : 0.035
Fig 7.12 ul : 3.5 u2 : 0.3

It is clear from these resultg, that minimizing k(A + BL) by
choosing the appropriate range space eigenvalues leads to both a
larger control effort, and larger errors in the angles than either
minimizing k(A + BL) by choosing appropriate sliding mode eigen-

values, or not minimizing (A + BL) at all.

It would appear from these results that the effect of the
range space eigenvalues is more significant than the effect of the
size of k(A + BL). If k(A + BL) is minimized by choosing the
appropriate sliding mode eigenvalues, then it appears that
choosing the range space eigenvalues to be small (ie large and
negative) gives a small decrease in the control effort and a small

increase in the angle errors.
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Minimizing k(A + BL) by choosing the appropriate range space
eigenvalues leads to an increase in both the control effort and
the angle errors. It would appear, therefore, that a smaller
control effort could be obtained simply by choosing the range
space eigenvalues to be large and negative, which would have the

effect of maximizing the value of k(A + BL).

7.5 Discussion

It is clear from this work that it is possible to minimize
either the 2-norm of the linear part of the control, or the
condition number of the linear closed-loop feedback system, or in
some cases both simultaneously, whilst the closed-loop eigenvalues
of the reduced order equivalent system remain in the required
sector or disc in the left-hand half-plane. The specialized
MATLAB routines seem to work very efficiently when solving these
problems, and the difficulties experienced when trying to use a
very general MATLAB optimization routine to solve these problems

have been overcome.

However, it appears that the effects of these two different
minimizations of the linear part of the control are very small,
and for some of the examples used here, they are dominated by the
effects of the choice of the range space eigenvalues. It is
clearly not straightforward to predict these effects on the
control effort and performance from the theory, partly due to the

complexity of the interactions, and partly because the choice of
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the range space eigenvalues affects the non-linear part of the
control as well as the linear part of the control. The effects of
the minimization of the condition number of the linear feedback
system on the control effort and the performance would appear to
be as small as the effects of the minimization of the 2-norm of

the linear part of the control.

The most critical effect on the performance of the system
would appear to be due to the choice of the range space eigen-
values. The following effects of the range space eigenvalues have

been deduced from these investigations :

1) If the range space eigenvalues are small and negative, then
the 2-norm and the condition number will be minimized,
simﬁitaneously, and the resﬁlting control will be increased by
about 50% .

2) If the range space eigenvalues are chosen to be large and
negative, then the 2-norm and the condition number will be
maximized, and the control effort will be decreased.

3) If the 2-norm or the condition number is minimized by design

of the sliding mode, and the range space eigenvalues are large

and negative, then the control effort may be decreased.

It would appear, therefore, that the most satisfactory way to
decrease the effort of the linear part of the control, without
increasing the system errors, is to choose the range space

eigenvalues so as to maximize the 2-norm or the condition number.
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8. CONCLUSIONS AND FURTHER WORK

It has been illustrated in this thesis that the Variable
structure Control approach to the solution of the problem of
deterministic control of uncertain time-varying systems compares
very well with the method of Lyapunov Control. The accuracy of
these two methods has been confirmed by the detailed consideration
of a non-linear uncertain model-following control system, a
trajectory-tracking robot manipulator.

The design of the sliding hyperplane matrix of a Variable
Structure controller, by specifying different regions in the left-
hand half-plane in which the closed-loop eigenvalues of the
reduced order equivalent system must lie, has been investigated.
The method of eigenvalue placement within a vertical strip has
necessitated an investigation into.Fhe suitability of methods of
solution of a real continuous matrix Riccati equation for the
particular case when the right-hand side of the equation is equal
to zero. The theory for the placement of the closed-loop
eigenvalues of a general system within a disc or an infinite
vertical strip has been developed for use in the hyperplane matrix
design method.

Two new regions of the left-hand half-plane have also been
considered, namely a sector and a region bounded by two
intersecting sectors. The necessary theory for ensuring that the
eigenvalues of a system lie within these regions has been
developed, and then extended for use in the design of the sliding

hyperplane matrix.
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This has involved an investigation into the solution of a
complex continuous matrix Riccati equation, and a reliable method
leading to a satisfactory solution has been developed. The
restrictions on the magnitude of the angle describing the sector,
for satisfactory closed-loop eigenvalue placement within the
sector, have been established for a general system of the form of
equation (2.2.2).

The robustness of the three different regions to changes in
the positive definite symmetric R matrix has been investigated.
The choice of the appropriate R matrix to give the desired eigen-
values, real or complex, and to specify their positions within the
required region have been obtained for a general system of the
form of equation (2.2.2). Some further results on the positioning
of the eigenvalues within the required region have been proved for
a system of a particular specialized form.

The minimization of the magnitude of the control effort has
been considered, and two different options have been investigated,
namely the minimization of the 2-norm of the linear part of the
control, and the minimization of the condition number of the
linear closed-loop feedback system. These minimizations have been
obtained by choice of the sliding hyperplanes, or by choice of the
range space eigenvalues. The results for these two investigations
have shown that the magnitude of the range space eigenvalues has a
very considerable effect on the magnitude of the control effort,

which dominates the effect of the choice of the sliding

hyperplanes.
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There is clearly scope for further work in this area, and the

obvious particular paths to be considered are as follows :

1)

2)

3)

4)

Rationale for a 60° limit on the angle describing a sector in
the left-hand half-plane whose end point is smaller than the
smallest real eigenvalue of the reduced order equivalent
systen.

Full theoretical proof of the method of solution of a complex
continuous matrix Riccati equation.

Improved accurate method for solving the standard real
continuous matrix Riccati equation, with its right-hand side
equal to zero.

Further investigation into the effect of the range space
eigenvalues and the design of the sliding hyperplane matrix
on the magnitude of the control effort, and on the performance

of a Variable Structure Control system.
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