
On The Application of

Neural Networks to Symbol

Systems

by Simon Davidson

submitted for a PhD

in the Dept. of Electronic and Electrical Engineering,

at the University of Sheffield

November, 1999

Abstract

While for many years two alternative approaches to building intelligent systems, sym
bolic AI and neural networks, have each demonstrated specific advantages and also revealed
specific weaknesses, in recent years a number of researchers have sought methods of combining
the two into a unified methodology which embodies the benefits of each while attenuating the
disadvantages.

This work sets out to identify the key ideas from each discipline and combine them
into an architecture which would be practically scalable for very large network applications.
The architecture is based on a relational database structure and forms the environment for an
investigation into the necessary properties of a symbol encoding which will permit the single
presentation learning of patterns and associations, the development of categories and features
leading to robust generalisation and the seamless integration of a range of memory persistencies
from short to long term.

It is argued that if, as proposed by many proponents of symbolic AI, the symbol en
coding must be causally related to its syntactic meaning, then it must also be mutable as the net
work learns and grows, adapting to the growing complexity of the relationships in which it is
instantiated. Furthermore, it is argued that in order to create an efficient and coherent memory
structure, the symbolic encoding itself must have an underlying structure which is not accessible
symbolically; this structure would provide the framework permitting structurally sensitive proc
esses to act upon symbols without explicit reference to their content. Such a structure must dic
tate how new symbols are created during normal operation.

The network implementation proposed is based on K-from-N codes, which are shown
to possess a number of desirable qualities and are well matched to the requirements of the sym
bol encoding. Several networks are developed and analysed to exploit these codes, based around
a recurrent version of the non-holographic associati ve memory of Willshaw, et al. The simplest
network is shown to have properties similar to those of a Hopfield network, but the storage ca
pacity is shown to be greater, though at a cost of lower signal to noise ratio.

Subsequent network additions break each K-from-N pattern into L subsets, each using
D-from-N coding, creating cyclic patterns of period L. This step increases the capacity still fur
ther but at a cost of lower signal to noise ratio. The use of the network in associating pairs of
input patterns with any given output pattern, an architectural requirement, is verified.

The use of complex synaptic junctions is investigated as a means to increase storage
capacity, to address the stability-plasticity dilemma and to implement the hierarchical aspects
of the symbol encoding defined in the architecture. A wide range of options is developed which
allow a number of key global parameters to be traded-off. One scheme is analysed and simulat
ed.

A final section examines some of the elements that need to be added to our current un
derstanding of neural network-based reasoning systems to make general purpose intelligent sys
tems possible. It is argued that the sections of this work represent pieces of the whole in this
regard and that their integration will provide a sound basis for making such systems a reality.

Table of Contents

CHAPTER 1 On the Application of Neural Networks to Symbol Systems 1
1.0 The Potential to be Exploited .. 1
1.1 Of Symbols & Synapses .. 2
1.2 Underlying Philosophy of the Work .. 6
1.3 Objectives for the Work .. 8
1.4 The Structure of the Thesis .. 10
1.5 Summary of the Work ... 11

CIIAPTER 2 Surveying The Field .. 13
2.0 Introduction ... 13
2.1. Neuroscience .. 14
2.2 Artificial Intelligence ... 18
2.3 Artificial Neural Networks .. 28
2.4 Artificial Intelligence & Neural Networks .. 38
2.5 Conclusions ... 44

CHAPTER 3 Detailed Review I: Coding and Storage Issues ... 46
3.0 Introduction ... 46
3.1 Connectionist Associative Memories and Coding Issues .. 47
3.2 Recurrent Memories .. 60
3.3 Coding and Representation of Symbol Structures ... 67
3.4 Conclusions ... 84

CHAPTER 4 Detailed Review H: Reasoning Systems .. 85
4.0 Introduction ... 85
4.1 Production Systems ... 86
4.2 Semantic Networks and Inheritance Issues ... 92
4.3 Marker Passing Inference Architectures ... 97
4.4 Other Important Work ... 108
4.5 Summary of Reasoning Systems and Discussion .. 115
4.6 Conclusions ... 117

CHAPTER 5 Architecture Design: Data Representation & Manipulation 118
5.0 Introduction ... 118
5.1 Basic System Architecture .. 119
5.2 Knowledge Bases .. 120
5.3 Data and Control .. 121
5.4 The Symbolic Principle ... 123
5.5 Rejected Candidate Symbol Encodings ... 131
5.6 Development of a Robust and Flexible Symbol Encoding 135
5.7 Look-up versus Computation .. 135
5.8 Hierarchies of Knowledge ... 138

iii

5.9 Hierarchies of Learning ... 142
5.10 Symbol As Representative for a Constituent Structure ... 146
5.11 Unsupervised Development of Symbol Encoding .. 147
5.12 Choice of Symbol Encoding .. 149
5.13 Detailed Architecture Structure ... 150
5.14 Conclusions ... 154

CHAPTER 6 Foundations for the Neural Building Block ... 155
6.0 Laying the Foundations ... 155
6.1 Recurrent Network .. 156
6.2 Replicatable Neural "Unit" .. 156
6.3 The Data Coding Scheme .. 157
6.4 Properties of K-from-N Codes .. 163
6.5 Consequences of Commitment to Redundancy ... 168
6.6 Conclusions ... 171
Appendix: Counting the Size of a 'Neighbourhood' .. 172

CHAPTER 7 Analysis of Storage and Retrieval for the Simple Network •.•......•••.••••• 174
7.0 Introduction ... 174
7.1 The Patterns to be Stored ... 174
7.2 Network Output Updating ... 175
7.3 Storing Patterns ... 177
7.4 Weight Matrix Saturation .. 179
7.5 The Process of Retrieval: Network Dynamics .. 182
7.6 Analysis of Memory Capacity ... 186
7.7 Energy Landscape .. , .. 199
7.8 Simulation of the Simple Network .. 200
7.9 Discussion .. 206
7.10 Conclusions ... 206
7.11 Appendix: Graphs from Simulations ... 208

CIIAPTER 8 Dynamic Patterns .. 214
8.0 Introduction ... 214
8.1 The Idea Behind Dynamic Patterns ... 215
8.2 Information Stored in Each Pattern ... 217
8.3 Alternative Implementations ... 219
8.4 Learning Dynamic Patterns ... 225
8.5 Analysis of Storage Capacity for Dynamic Patterns ... 227
8.6 Case Studies & Simulations .. 233
8.7 Comparison of Static and Dynamic Storage ... 235
8.8 Conclusions ... 239
8.9 Appendix: Graphs of Simulation Results .. 240

CHAPTER 9 Pattern Association and Network Control ... 243
9.0 Introduction .. 243
9.1 Symbolic View of Network Control. .. 243
9.2 Energy Landscape of Network Control .. 244
9.3 'Dual Pattern' View of Control .. 246

iv

9.4 Implementation of Pattern Association .. 248
9.5 Analysis using Dynamic Pattern Learning ... 249
9.6 Simulation and Results ... 251
9.7 Discussion ... 252
9.8 Conclusions .. 253

CIIAPTER 10 Learning Strategies ... 254
10.0 Introduction ... 254
10.1 Learning Hierarchies: Aims and Issues ... 255
10.2 Complex Synaptic Structure .. 258
10.3 Options for the Weight Vector Components ... 263
10.4 Implications of Creating Correlation Between Neurons 269
10.5 Options for Component Interdependence During Learning 271
10.6 A Note on the Generation of New Symbols .. 275
10.7 Investigation of One Strategy for Leaming ... 276
10.8 Simulations of Simple Learning Scheme .. 284
10.9 More Complex Learning Schemes .. 286
10.10 More Complex Synaptic Structure .. 288
10.11 Memory Capacity of a Network Using Learning Hierarchies 290
10.12 Discussion .. 290
10.13 Conclusions ... 291

CHAPTER 11 Towards True Neuro-Symbolic Computation 292
11.0 Introduction ... 292
11.1 Barriers to the Connectionist Dream ... 293
11.2 Issues in Hierarchy and the Limi ts of Real Components 302
11.3 On Escaping the Bottleneck of Forward-chaining Rules 310
11.4 On Parallel Processing at the Symbolic Level .. 319
11.5 Towards a Unified Neuro-Symbolic Theory ... 332

CIIAPTER 12 Conclusions & Future Work .. 334
12.0 Introduction ... 334
12.1 Comparison of Requirements and Results .. 334
12.2 Future Work ... 338
12.3 Future Architectural Expansion ... 341
12.4 Conclusions ... 344

v

List of Figures

CHAPTER 1 On the Application of Neural Networks to Symbol Systems ••••••....•••••••••• 1

CIIAPTER 2 Surveying The Field .. 13
Fig. 2-0 One possible explanation of information flow in the neocortex 16
Fig. 2-1 An example production system ... 21
Fig. 2-2 An example semantic network .. 23
Fig. 2-3 Multi-layered Perceptron, with recurrent output.. ... 29
Fig. 2-4 Kohonen network: Lateral feedback vs. distance from winning neuron 32
Fig. 2-5 Single pattern learning in the non-holographic associative memory 35
Fig. 2-6 Fodor & Pylyshyn's argument for Coherence of Inference42

CHAPTER 3 Detailed Review I: Coding and Storage Issues •••••••••••••.........•••.•••..•..•.•••.• 46
Fig. 3- 0 Storage density vs. proportion of active synapses, Nadal & Toulouse (1990)52
Fig. 3- 1 Cascade Associative Memory (CASM), Hirahara et al. (1997) 62
Fig. 3-2 A syntactic tree with branches of different depths .. 68
Fig. 3- 3 Defining relationships between two objects. From Hinton (1990) 72
Fig. 3- 4 Between-level time-sharing. From Hinton (1990) 73
Fig. 3-5 Tree structure with roles and fillers .. 74
Fig. 3- 6 Symbolic Compression Scheme. From Pollack (1990) 76
Fig. 3- 7 A simple embedded tree ... 77
Fig. 3- 8 Chalmers' syntactic transform model. ... 79
Fig. 3- 9 Chrisman's confluent transformation model. ... 80
Fig. 3- 10 Adamson and Damper's extension of RDR ... 81

CHAPTER 4 Detailed Review II: Reasoning Systems .. 85
Fig. 4- 0 Trade-offs in search and preparation (from Newell, 1990) 87
Fig. 4- 1 The Distributed Connectionist Production System (DCPS) 89
Fig. 4- 2 An example of the problem of redundancy in semantic networks 93
Fig. 4- 3 A problem of semantics: The Nixon diamond ... 94
Fig. 4- 4 Exception inheritance reasoning (AI-Asady, 1995) 95
Fig. 4- 5 A fraction of Lange & Dyers' inference network .. 98
Fig. 4- 6 An example of a predicate and a fact in SHRUTI 100
Fig. 4- 7 An example network from SHRUTI.. .. 101
Fig. 4- 8 An assembly from CONSYDERR ... 104
Fig. 4- 9 Example vectors and tensor for AURA, from Austin (1995) 108

CHAPTER 5 Architecture Design: Data Representation & Manipulation 1l8
Fig. 5-0 High-level System Architecture .. 119
Fig. 5-1 A section of a relational database .. 120
Fig. 5-2 Flow of activity from control to data networks during processing 122
Fig. 5-3 Hierarchical decomposition of a symbol "Sentence" 123
Fig. 5-4 Simple example of the use of symbols in mathematics 127
Fig. 5-5 Pre- and post-processing steps would permit arbitrary encoding 129
Fig. 5-6 A symbol, X, acts as both a source and a target in many processes 131

vi

Fig. 5-7 The single pointer, encoded-usage scheme of symbol encoding 132
Fig. 5-8 Double pointer scheme allocates one pointer to each type of information .133
Fig. 5-9 The triple pointer scheme with inheritance ... 134
Fig. 5-10 A purely look-up table approach to processing ... 136
Fig. 5-11 Creation of a category whose members share a common property 138
Fig. 5-12 Data structure with Inheritance ... 139
Fig. 5-13 Usage pointer for two symbols ... 140
Fig. 5-14 Direct association of two symbols .. 143
Fig. 5-15 Indirect association of symbols using feature extraction 144
Fig. 5-16 Learning hierarchies allow mixtures of features of different levels 145
Fig. 5-17 Adjustment of feature detectors that supersede direct (temporary) links .145
Fig. 5-18 Every symbol can embody multiple symbols of equal complexity 147
Fig. 5-19 Each new association links modified versions of core symbols 148
Fig. 5-20 A more detailed schematic for the symbol processing architecture 151
Fig. 5-21 Symbol D created to represent relationship between A, Band C 152
Fig. 5-22 Unpacking a symbol to access content information 153

CHAPTER 6 Foundations for the Neural Building Block ... 155
Fig. 6-0 Example of the K-from-N code illustrating its robustness 161
Fig. 6-1 Graphs of Information Density vs. Fraction of Firing Neurons 164
Fig. 6-2 Legal K-from-N vectors with redundancy .. 165
Fig. 6-3 Target circles for convergence: initial and final ... 169
Fig. 6-4 Patterns obtained by 'shifting' from a base pattern 172
Fig. 6-5 A vector at shift k can have multiple parents at shift k-1.. 173

CHAPTER 7 Analysis of Storage and Retrieval for the Simple Network 174
Fig. 7-0 Basic network showing N fully connected elements and external input ... 175
Fig. 7-1 Graph of potentials for the neurons in a single region 176
Fig. 7-2 The learning process in the basic network .. 178
Fig. 7-3 Graph of connection probabili ty vs number of stored patterns 181
Fig. 7-4 Potential distributions for neurons in known pattern state 187
Fig. 7-5 Probability that neuron that should be silent might fire 188
Fig. 7-6 Graph of expected errors per pattern vs. the number of stored patterns 189
Fig. 7-7 Graph of total expected errors vs. number of stored patterns 190
Fig. 7-8 Example 5-from-1O vector at several levels of corruption 191
Fig. 7-9 Potential distribution for neurons in a non-learned state 191
Fig. 7-10 Distribution of potential difference between firing and non-firing neurons193
Fig. 7-11 Graph of error probability for two neurons ... 194
Fig. 7-12 Graphs of the total expected error vs. number of stored patterns 195
Fig. 7-13 Graph: expected max. stored patterns vs. # of firing neurons for N=200 .196
Fig. 7-14 Total information stored for perfect recall in an N=200 network 197
Fig. 7-15 An energy landscape forthe simple network. ... 199
Fig. 7-16 Graph of max patterns stored without error vs. size of basin of attraction205

CIIAPTER 8 Dynamic Patterns .. 214
Fig. 8-0 State flow for a fixed-point attractor and a limit cycle 215
Fig. 8-1 Transition between two dynamic patterns ... 216
Fig. 8-2 One dynamic pattern cycle, made up ofL subsets, describes pattern p 217
Fig. 8-3 Graph of information content for one pattern vs. number of firing neurons.218
Fig. 8-4 Feedforward connections one subset to the next during learning 219

vii

Fig. 8-5 State space showing the trajectories of two pattern, pO and pI. 220
Fig. 8-6 Possible connection schemes over multiple time steps 221
Fig. 8-7 External input to a region should cause changes in the output trajectory ... 223
Fig. 8-8 Input specifies point of entry into recall loop ... 224
Fig. 8-9 Alternative stimulation scheme with constant input. 224
Fig. 8-10 Output trajectories of two regions, with B receiving input from A 225
Fig. 8-11 Timelines neuron potential showing influence of refractory period 229
Fig. 8-12 Potential distributions for two neurons ... 232
Fig. 8-13 Max stored patterns vs. size of firing subset, from burst mode simulation.237
Fig. 8-14 Total storage capacity (bits) vs. number of firing neurons per subset. 237

CHAPTER 9 Pattern Association and Network Control ..••.•...••...••.•..•••......••..••..•...•..• 243
Fig. 9-0 Changes in the energy landscape due to changing control input. 245
Fig. 9-1 An implementation of control by association ... 248
Fig. 9-2 Graph of recall errors vs. storage level for network with control. 251

CIIAPTER 10 Learning Strategies ... 254
Fig. 10-0 Traditional hierarchical neural network such as an MLP 256
Fig. 10-1 Modification of a function over time to incorporate one new point. 257
Fig. 10-2 Diagram of the complex synapse studied in this chapter 259
Fig. 10-3 Graphs of synaptic potential against time for two combiners 262
Fig. 10-4 Weight vector for neuron i in terms of components for each synaptic unit.263
Fig. 10-5 Output history vectors as seen by several different synaptic units 264
Fig. 10-6 Weight vector components with restrictions on development. 267
Fig. 10-7 Desired distribution of weights of different synaptic units for each neuron.269
Fig. 10-8 Modifications to the pattern during consolidation make it easier to store.270
Fig. 10-9 Synaptic unit optimisation using ordered sequential dependence 272
Fig. 10-10 Synaptic unit optimisation using ordered, non-sequential dependence .. 274
Fig. 10-11 Movement of the hierarchical weight vector during learning 279
Fig. 10-12 Histograms of neuron potentials (a) before and (b) after consolidation. 280
Fig. 10-13 Potential bands in a more advanced learning scheme 287

CHAPTER 11 Towards True Neuro-Symbolic Computation 292
Fig. 11-0 Desired mode of computation in a neuro-symbolic processor 297
Fig. 11-1 Control of data network using subtraction .. 300
Fig. 11-2 The ideal module ... 304
Fig. 11-3 Hierarchical Network with Limited Fan-in Neurons 306
Fig. 11-4 Collapsing the Hierarchy to Preserve Generality 307
Fig. 11-5 Conjunctive and disjunctive reasoning ... 321
Fig. 11-6 Combining multiple K-from-N vectors ... 326

CIIAPTER 12 Conclusions & Future Work .. 334
Fig. 12-0 Dividing the network into multiple regions .. 340

viii

List of Tables

CHAPTER 1 On the Application of Neural Networks to Symbol Systems 1

CIIAPTER 2 Surveying The Field... 13

CHAPTER 3 Detailed Review I: Coding and Storage Issues ..•..•.•.•..•••..••••••••••••.••.•.••••••••• 46
Table 3-0 Comparison of Network Storage Capacities in the noiseless case. From Casasent &
Telfer (1991) .. 55
Table 3-1 Stored patterns per neuron, MIN, for several network types and several levels of noise
during recall. From Casasent & Telfer (1991) ... 55
Table 3-2 Storage capacity, MIN, for different output encoding schemes and different recall ac-
curacies, P' c ... 56

CHAPTER 4 Detailed Review II: Reasoning Systems ... 85

CHAPTER 5 Architecture Design: Data Representation & Manipulation 118

CHAPTER 6 Foundations for the Neural Building Block .. 155
Table 6-0 Comparison of three data coding schemes .. 159
Table 6-1 Efficiency of information storage for different values of N 160
Table 6-2 Measure of neighbourhood size, no. of golden vectors and storage efficiency for sev-
eral network configurations .. 168

CHAPTER 7 Analysis of Storage and Retrieval for the Simple Network 174
Table 7-0 Comparison of simulated vs. theoretical network capacity of the simple network 204

CIIAPTER 8 Dynamic Patterns... 214
Table 8-0 Comparison of information storage for static and dynamic patterns (in burst mode),
with N = 300 and F = 1. ... 236
Table 8-1 Efficiency of a number of networks, in descending order of efficiency 242

CHAPTER 9 Pattern Association and Network Control .. 243

CIIAPTER 10 Learning Strategies .. 254
Table 10-0 Relative weight vector component dominance for different synaptic levels 265
Table 10-1 Modification of It product for level d leads to reduction in max. product size ... 266

CHAPTER 11 Towards True Neuro-Symbolic Computation .. 292

CIIAPTER 12 Conclusions & Future Work ... 334

ix

List of Symbols

Chapter Six: Foundations for the Neural Building Block
t: time.
N: number of neurons in the network.
p: fraction of neurons in a pattern that are firing (value' 1 ').
K: number of neurons in a pattern that are firing = pN.
p(x): probability distribution of variable x.
I(N): Information content (in bits) for N-bit vector.
EmaiN): Storage efficiency (or storage density) for N-bit vector.
S: Signal strength of an N-bit vector.
<Pj: i-th golden vector.
d(x, <Pj): distance function between vectors x and <Pj.
V(K, N): number of legal K-from-N vectors.
Z(M, K, N): number of legal K-from-N vectors within distance M of a golden vector.
G(M, K, N): maximum number of golden K-from-N vectors.
d: max. distance of final pattern from target pattern after convergence.
e: max. distance of initial pattern from target pattern before convergence.

Chapter Seven: Analysis of Storage and Retrieval for the Simple Network
VI' V 2: Arbitrary vectors.
u: scalar product of two vectors.
Wjj: Weight from output of neuron j to input of neuron i.
Xj(t): Input to neuron i at time t.
Dj(t): Potential of neuron i at time t.
OJ(t): Output of neuron i at time t.
Tj: Threshold of neuron i.
V: Activity regulator, ensures that only K neurons fire.
B: Connection strength between two neurons that make a connection.
Z: number of learned patterns.
h: probability of a connection between two neurons.
Ex: Energy of the system in timestep x.
Edjf(Difference in energy between two states.
Imax(M,K,N): Maximum information content in K-from-N golden vectors at separation 2M.
Zmax(M,K,N): Maximum number of stored K-from-N vectors.
C(M,K,N): Maximum information content of network defined by parameters K, Nand M.
Df and Dof: Expected potential of firing and non-firing neurons, respectively.
(Jf and (Jof: Standard deviation of potential for firing and non-firing potential, respectively.
q: Probability that neuron has a given potential.
G f : Set of firing neurons.
Gof: Set of non-firing neurons.
Nerr(y): Number of erroneous bits in vector for pattern y.
set): State vector of network at time t.
c: level of pattern corruption, or number of shifted bits relative to target pattern.
z: normal deviate (from statistics).
J.l: mean potential of neuron.
erf(x): error function (from statistics).

x

Chapter Eight: Dynamic Patterns
L: number of subsets into which the firing neurons of a pattern are di vided.
D: number of neurons in a subset.
F: number of cycles of forward connectivity between firing subsets.
Do, Dt, DL . t : L subsets ofD firing neurons in a dynamic K-from-N pattern.
I(K, L, N): Information content (in bits) of a dynamic K-from-N split over L cycles.
v: Decay constant for neuron potential.
hD: probability of a connection between two neurons in dynamic pattern case.
P: Pattern set to be learned.
Z: Number of patterns to be learned.
D i

k : k-th subset of pattern i.
B: Connection strength between two neurons that make a non-zero connection.
c: probability that two neurons fire within time F of each other.
cz: probability of forming a connection while learning pattern z.
Zs and ZD: number of stored patterns in a static and dynamic network, respectively.
Trej: length of neuron refractory period in cycles.
ex(t): Number of bit errors in external input pattern at time t.
en(t): Number of bit errors in network state at time t.
a: random variable depending on presence or absence of connection between two neurons.
Nerr: expected number of errors on each cycle of dynamic pattern recall.
E: During simulation, number of patterns recalled without errors.

Chapter Nine: Pattern Association and Network Control
Ll and~: numbers of subsets (and hence periods) of two patterns.
Ir..: beat frequency between two patterns of different cycle time.
~t: tth subset of data pattern j.
Cit tth subset of control pattern j.
X: Set of input data pattern vectors.
Y: Set of output data pattern vectors.
n: Number of pattern mappings (or transformations) made using a given control pattern Cj.

c: Level of pattern corruption = number of erroneous bits in the input vector.

Chapter Ten: Learning Strategies
lVia: Weight vector of level a synaptic unit.
tn: duration of activity of level a synaptic unit after stimulation by pre-synaptic activity.
eta: learning rate of level a synaptic unit.
ea: probability that the level a synaptic unit is present for a given synapse.
0a(t): Output of the level a synaptic unit of given synapse at time t.
Wiim: Indi vidual level m weight component for connection between neurons i and j.
!.tv: Length of vector of level m synaptic weights for given neuron.
OCt): Cumulative output history over several cycles.
Um(t): Neuron potential at time t due only to input from level m synaptic units.
Ba: Standard connection strength for active level a synaptic unit.
S: Number of sources of input to a given neuron.
fj. Wim: Change in level m weight vector for neuron i.
~m: forgetting constant for level m synaptic units.
C: Number of cycles of a dynamic pattern in which consolidation takes place.
1m: Number of repeats of a single pattern during consolidation.
Q(W m): Distortion of level m weight vector due to learning single pattern.
rm: positive constant that decreases for increasing m.

xi

CHAPTER 1 On the Application
of Neural Networks
to Symbol Systems

1.0 The Potential to be Exploited

As we approach the end of the nineties it is clear that the field of neural net
works has still not fulfilled its early promise. In the early days of research there
was much talk of the development of artificial neural machinery that would rival
and even surpass the intelligence of man. With each passing decade the public at
large was told that a solution was only a few years away and the home would soon
be invaded by a swarm of intelligent and obedient robots servants ready to take all
the hard work out of domestic life. Early optimism, as usual, gave way to the
dawning realisation that the issues involved were much more complex than first
imagined and that a solution was decades away.

More than forty years later we are still waiting. Marvin Minsky, one of the
founding fathers of Artificial Intelligence, is quoted as saying that the advent of the
thinking machine is somewhere between four and four hundred years away (Stork,
1997). This is perhaps his way of saying that researchers still have no clear vision
of what the issues are. Fortunately, even after all this time, interest and enthusiasm
to pursue that most elusive of goals are still available in abundance. This is due in
no small way to recent advances in our understanding of the most complex think
ing machine around today: the human brain.

Certainly when we compare the most powerful computers of our age to the
average human brain we find much to encourage us in our development of neurally
inspired computing machines. The amount of computation the human brain is
required to perform, even in the most mundane of daily tasks, is orders of magni
tude greater than anything we are currently capable of reproducing electronically,
while its memory capacity is seemingly without limit. An exercise in reasoned
guesswork (von Neumann, 1958) put the total quantity of information stored in a

human brain at around 1020 bits.

During every moment of its waking life a human brain must interpret a tor
rent of information from the five senses, fuse that data to form a coherent picture of
the world and then co-ordinate its responses appropriately. It must be supremely

On the Application of Neural Networks to Symbol Systems 1

adaptive, learning new relationships between objects and ideas whilst using this
infonnation to plan courses of action in environments in which only partial knowl
edge is available.

There can be no doubt that the understanding of the mechanisms of the
human brain has been one of mankind's most enduring preoccupations. Interest in
this area can be traced back as far as the beginning of recorded history. Much of
this study, however, has been conducted in tenns of philosophy rather than science
largely due to the relative complexity of the issues involved and the relative imma
turity of the mathematical and scientific knowledge available; it is only during this
century that we have had the tools required to make any serious progress in the
'reverse engineering' of the brain and the understanding of that most elusive of
goals: the nature of intelligence itself.

1.1 Of Symbols & Synapses

Over the past few decades, two different approaches have emerged with the
common aim of turning the study of mind and intelligence into an engineering dis
cipline rather than merely a scientific one: one has acquired the name of 'Artificial
Intelligence' (AI) and the other 'Artificial Neural Networks' (ANN).

On the surface they seem to be fundamentally different in the assumptions
they make, the methods they employ and the problems they try to solve. The pres
ence of each has been, at times, an annoyance to the other. At worst, the limited
supply of research funds for research in this area has set one side against the other.

The AI philosophy has been around for about fifty years since the work of
Turing and others led to the first useful computers in the early 1940s. The basic
aim of AI are rather broad and, strictly speaking, do not preclude neural networks
as a sub-field. A single definition is hard to find, but one reasonable attempt is
"The art 0/ creating machines that perform/unctions that require intelligence
when performed by people" (Kurzweil, 1990). The underlying assumption is that
the very processes of thought could be translated into algorithms. Thus, it remained
to discover these algorithms to create intelligent machines.

In the AI approach, knowledge is traditionally represented as structures of
symbols and manipulated using fonnallogic. These symbols are often represented
in a fonn that approximates words of a human language in order to make it easy for
the user to enter new knowledge and, subsequently, to understand the results of any
computation executed on the knowledge database.

The alternative approach, that of Artificial Neural Networks (ANNs) has also
been around for about fifty years. Its appearance has been attributed to the work of
McCulloch and Pitts (McCulloch and Pitts, 1943) who postulated that it would be
possible to realise any logical function using only simple sum-and-threshold units.
The development of neural networks, as a field, moved away from the logical base
of the McCulloch-Pitts model (permitting arbitrary mappings from inputs to out-

On the Application of Neural Networks to Symbol Systems 2

puts of the neural building blocks) while preserving the basic sum-and-threshold
model. As the millennium approaches we find that statistical mechanics, informa
tion theory and the mathematics of chaos are increasingly used to provide the
framework in which research is carried out (e.g. Gardner, 1988; Kelso, 1997).

It would seem that the long term goals of AI and ANN research are the same,
yet the types of problems being studied and the level of representation used for
each problem are often radically different. But what is the true relation between the
two? Does only one approach provide a correct account of intelligence while the
other is merely wasting intellectual effort? Or alternatively, separate though they
are, does each in fact supply a necessary part of the whole solution to practical
intelligent systems implying that greater progress would be made if there were
greater cross-fertilisation between the two?

The assumption in this work is the latter; that both fields of research are nec
essary to help us to make progress in the design of intelligent systems that are both
flexible and robust.

The next few paragraphs contrast some of the features and properties which
are traditionally associated either with AI systems or with neural networks. Each
comparison is made between stereotypic views of the two approaches to highlight
several key concepts.

1.1.1 Representation and Processing of Data

In the AI paradigm, data is traditionally represented as structures of symbols.
Any symbol can be 'accessed' to retrieve its contents and strings of symbols can be
manipulated to generate new structures and symbols. Using a finite number of
grammatical rules and a finite set of symbols, it may be possible to generate an
infinite number of strings, thus permitting the representation of arbitrarily complex
relationships between objects and ideas. By manipulating the hierarchy of sym
bolic data, the system can focus in on a tiny part of the problem or 'zoom out' and
process the relationships between higher level entities. In this way, a system of
limited resources can tackle problems of arbitrary complexity.

The neural network approach sees data as being represented by the output of
units whose typical functionality is to sum and threshold input from other units or
the external environment. In many neural net models the state of these units is able
to evolve in time, by which means it is able to perform some kind of data process
ing. The construction and manipulation of data structures by neural networks is not
a well developed area of study at this time.

1.1.2 Scale of the Problems Tackled

Neural Networks have typically been applied to problems which involve the
mapping of a function or the storage and retrieval of bit vectors. Usually, the statis
tical properties of interacting non-linear elements are under investigation. The
scale of the problems is sufficiently limited that the application of these results to
the real world is often not considered.

On the Application of Neural Networks to Symbol Systems 3

AI research has typically jumped in at the deep end with problems of real
world interest. For example, the representation of the knowledge in a story written
in so called 'natural language' or an algorithm to play chess at grandmaster level
(such as IBM's Deep Blue which made the world press last year in its defeat of
chess champion, Gary Kasparov).

On this point, the AI guru Minsky has argued that one of the major errors in
AI research over the last twenty years or so has been its preoccupation with the
solution of problems in particular domains, such as language, problem solving and
the construction of intelligent robots. This preoccupation, he claims, has led to a
lack of focus on what he regards as the roots of the problem: the fundamental
understanding of learning and knowledge representation (Stork, 1997).

1.1.3 Autonomous Development of Competence

Part of the appeal of Neural Networks is that (depending on the nature of the
problem space) they can be capable of modifying their structure over time by a
process of trial and error in order to 'learn' how to exhibit the appropriate behav
iour. The underlying assumption is that a sufficiently large network with a certain
(but, as yet, undetermined) initial structure could adapt itself to any problem space
without the need for an outside agent to determine the way of representing or solv
ing the problem. The human brain is the ultimate example of this uni versal adapta
bility.

In much of the AI research to date, the object has been to demonstrate that
the program or machine could exhibit enough intelligence to solve a task. Consid
ering the scale of the problem, a mere existence proo/for a solution was sufficient
to be regarded as a success. The fact that its internal structure was painstakingly
devised by a human, and that no evolutionary path can be shown, was irrelevant.

1.1.4 Logic, Truth and Extrapolation

For most of its existence the AI approach to knowledge relied on truth main
tenance whereby every piece of information derived from the knowledge database
was guaranteed to be correct by virtue of the laws of logic, so long as the original
knowledge base contained only true statements. Extrapolation from known infor
mation into the unknown consisted only of deductive reasoning which is regarded
as an ontologie ally safe procedure.

Truth maintenance makes book keeping easy, since every derived 'fact' is
also a fact. But while such an approach is theoretically very appealing, in practical
applications such systems often performed very poorly. The problem with the
basic concept of truth maintenance was that the kinds of data with which most sys
tem would be confronted in the real world usually could not be written as a series
of absolute truths. The notions of uncertainty and probability, which turned out to
be so necessary for real applications, were not readily formalisable in this way.

On the Application of Neural Networks to Symbol Systems 4

The acceptance that the approach was too restrictive led to the development
of more powerful techniques such as fuzzy logic (Zadeh, 1965) and expert systems
(Patterson, 1990) which allowed a richer and more flexible representation of the
relationships between objects and ideas. The formal logic limitation was lifted in
favour of a more quantitative scheme.

From the neural networks perspective, the 'new' concepts which supported
the development of expert systems and fuzzy logic were already built in to the
foundations, so to speak. There has never been a notion of 'truth maintenance' in
the ANN literature. Any attempts to model true deductive reasoning and formal
logic using ANNs has been a peripheral activity (such as Ballard & Hayes, 1984).

The neural network principle is often used to map one set of patterns to
another using the statistical relationships between input and output signals (Rume
Ihart, Hinton & Williams, 1986). A network will usually make mistakes during
learning (and even while in actual use). The training phase is intended to provide
examples of the real data to come in order to minimise the errors the system will
make in the field, but there is usually a probability of error associated with any
result.

Extrapolation in the neural network context can be far from error free and it
is often necessary to pay careful attention to the network's design to ensure that
this generalisation performance is within acceptable error bounds (Bishop, 1995).
It should be noted that the process of generalisation is one of inductive reasoning, a
more flexible method of gaining 'knowledge' than deductive inference but one
which is no longer guaranteed to be truth maintaining.

Returning to the issue of developing AI systems beyond truth maintenance
towards fuzzy and probabilistic representations: in taking that step, the distinction
between AI and neural networks becomes much less clear and one wonders in such
cases whether the remaining differences are more cosmetic than real. A theme
which is central to this work is that neural networks are merely one way of formal
ising a non-linear statistical model. Fuzzy logic and expert systems could be con
sidered as just another way of doing exactly that.

1.1.5 Conclusions

The comparisons made above are not the only ones that can be made; more
will present themselves naturally as the properties of the architecture and network
are considered later on. It should also be noted that the comparisons are somewhat
simplified; for each property described as an advantage of, say, AI it would be pos
sible to construct a neural network which could display the same property. But the
intention here is to try to highlight certain important properties of intelligent sys
tems that we will try to embody in the work later on and to illustrate that each of
these properties has a tendency to be associated with one (but usually not both) of
the two major approaches.

To sum up, we extract one basic theme from the comparisons made in this
section: while neural networks appear to be good at extracting the statistical struc-

On the Application of Neural Networks to Symbol Systems 5

ture of data, so far they have not shown the same ability as a generic AI system to
provide the complex data structures and data manipulation framework that seem to
be necessary for many real-world applications. Conversely, AI systems tradition
ally lack the subtlety of representation either to express the complex relationships
between many pieces of data, or to extract and subsequently apply these relation
ships in a practical and robust way; these are properties which can be demonstrated
in neural networks.

1.2 Underlying Philosophy of the Work

A little research into the aims and results of neural network and AI research
led quickly to a number of key ideas which were pursued in the work to be
described in this thesis. As will become clear, there was insufficient time available
to fully explore the many possibilities encompassed by these underlying assump
tions, either in the architecture or in the neural implementation which followed.
However, to provide an element of context for the what will follow, this section
briefly reviews the key ideas. The rest of the thesis attempts to justify them.

1.2.1 Symbols Represent Objects, Categories or Concepts

A symbol is a token that can represent any object, category or idea. It can be
combined with other symbols in a structured relationship, producing an expression
of arbitrary complexity, which itself can be represented by a single symbol. This
definition of a symbol and its meaning follow the traditional lines laid down in
forty years of AI research and is uncontroversial.

However, also by tradition, the encoding of the symbol itself is arbitrary pro
vided that it is unique: it need bear no relation to the expression that it represents.
Later points in this and later chapters will present arguments why this should not
be so in an efficient neuro-symbolic system.

1.2.2 Symbols Delimit Relationships and Focus Resources

Symbols allow relationships to be defined between objects or categories. For
each such definition, a system of finite resources brings its focus of attention to
bear on a subset of the objects about which it has stored information, thus permit
ting it to break down knowledge structures of arbitrary complexity into chunks of
manageable size.

Learning one relationship between a number of symbols should not affect
other relationships which have been previously stored unless there is a logical rea
son to do so. Thus a symbol is a means of limiting the extent of a learning event,
preventing it from interfering with existing, but unrelated, knowledge.

On the Application of Neural Networks to Symbol Systems 6

1.2.3 Symbol Encoding Must Have Structure

An element of the Classical AI paradigm is the representation of symbolic
relationships in structures and their manipulation by processes which are sensitive
to their constituent structure. If symbol encoding is arbitrary, there is no informa
tion available to an executing process to indicate how it should be handled. Thus,
the symbol encoding itself must have a structure which indicates how it should be
manipulated by any process. Symbols which are to be handled in a similar way
would have similarities in their encoding which could be quantified using some
metric.

1.2.4 Symbols Encoding is also a Function of Content

A symbol can represent an underlying structure (expression), made up of a
number of other symbols which stand in a certain relationship with respect to each
other. This structure is not the same as the encoding of the symbol itself (see the
previous point). Some properties of the underlying expression are relevant to the
expressions which will incorporate the symbol. But many are not. The useful prop
erties should be represented in the symbol encoding in such as way that the symbol
can act on behalf of its expression without having to access it directly (which takes
time and consumes resources). This concept is the same as the previous one, but
viewed from the point of view of the underlying expression, rather than the proc
ess.

1.2.5 Hierarchy and Inheritance are the Keys to Efficient Storage

Efficiency of storage can be obtained by identifying common features
present in the relationships to be learned and representing the relationships in terms
of these features. This is a common theme in neural networks where the features
are statistical relationships between input bit patterns and between input and output
patterns. In symbolic systems the concepts of categories and the inheritance of
properties go hand in hand. Combining statistical feature extraction with inherit
ance is a means of increasing the storage efficiency of a symbolic system in a
quantifiable manner.

1.2.6 Managing Hierarchy and Inheritance is the Key to Generalisation

The promotion of a learned relationship from an object to all elements of a
class to which it belongs is a form of inductive inference since it transcends the
level of explicitly given information.

The management of inheritance consists of the complimentary operations of
the promotion of relationships to parent categories and of the division of one exist
ing category into many during category refinement, which might occur upon
encountering a counter-example. In this way, the system attempts to maintain all
relationships at as high a level as possible (Le. as general as possible).

The process of inheritance management may call upon many sources of
guidance, such as deductive inference using other previously unconnected relation
ships, trial and error, or slow re-convergence of categories through lack of use.

On the Application of Neural Networks to Symbol Systems 7

1.2.7 Symbol Encoding Must Imply Causally Implemented, Correct Processing

Ultimately, the network must be stand-alone, creating symbol encodings and
transforming them as directed by a control process which is itself a network of
encoded symbols. The symbol encoding must be such that this property is upheld.
By the law of infinite regress (also known as the homonculus principle) there can
not be another process at a higher level which interprets the meaning of symbols
and changes the course of processing as a result.

1.2.8 Symbol Encoding Must Change as a Result of Learning

As an extension of the previous point, the encoding of each symbol cannot
be fixed at the time it is created since all of its relationships are not known at that
time. Thus the encoding must change as a result of further learning, allowing it to
make those new mappings as efficiently as possible while at the same time preserv
ing those relationships in which it is already a constituent.

1.3 Objectives for the Work

The first part of this chapter contrasted the twin disciplines of neural net
works and artificial intelligence, describing (in very general terms) some of the
properties they possess in the arena of so-called 'intelligent systems'. The emerg
ing idea from that discussion is that a hybrid AI-ANN system offers (at least in
principle) the opportunity to capitalise on the best ideas from both disciplines. In
effect, to implement some kind of symbol system in a neural framework.

At the beginning of this work it was not clear what the form of the system
should be. Thus, a list of objectives was set to aid in its definition. These objectives
were initially somewhat vague but allowed the scope of the work to be specified at
a high level. The goal definitions were revised as the work proceeded to incorpo
rate an increasing understanding of the issues involved. There were six goals
defined for the work. They are described next.

1.3.1 To Provide a Robust Substrate for Symbolic Computation

The final network must be capable of executing operations on encoded sym
bol structures. Requirements for robust computation must be explored to ensure
that the results produced by the network are quantifiably self-consistent and relia
ble.

By robust, we mean that when subjected to finite input noise and other truth
preserving transformations of the input signal within a defined level of distortion,
the network has the capacity to correct some or all of the errors. By self-consistent,
we imply a higher level of error correction: that given a series of symbols in which
an error has escaped detection at the single symbol level, the network has the pos
sibility of detecting it and correcting for it due to inconsistencies in the symbol
string. Thus, the network will not produce occasional bizarre and contradictory
results without explanation.

On the Application of Neural Networks to Symbol Systems 8

1.3.2 To Provide a Means of Storing Large Amounts of Data Efficiently

Clearly, there is a link between the size of the network (in terms of the
number of neurons, the number of synapses per neuron, etc.) and the quantity of
information that it can store. Whether or not this data can be stored in an efficient
manner is another question.

This goal can be easily quantified. Several metrics have been used in the
past, such as the maximum number of orthogonal patterns reliably recalled or the
maximum number of bits reliably recalled per physical bit of memory in the net
work.

In addition, we might also expand our thinking to include non-orthogonal
pattern sets and more complex data structures. To quantify network storage it will
be necessary to consider more complicated metrics, such as the maximum number
of levels of data structure that can be stored, the maximum number of patterns that
can be associated with any single pattern or the time required to access a given
piece of data.

1.3.3 The Efficiency of the System Should Increase as the Network Size Increases

This goal acknowledges a deep seated expectation that larger networks
should be able to handle their data more efficiently than smaller ones. Feature
extraction, either in multi-layered systems (e.g. the Multi-layered perceptron;
Rumelhart, et al., 1986) or single layered systems (principal component analysis;
Jolliffe, 1986) facilitate more efficient storage by creating representations of new
data in terms of known regularities in the underlying distributions. We expect that,
in principle, the larger the network the greater the opportunity to capitalise on such
regularity.

In order to increase efficiency, the storage capacity of a network must
increase more than linearly with the number of neurons assuming a fixed maxi
mum number of synapses per neuron.

1.3.4 To Make Data Available for Computation as Appropriate

If a network is storing data on a wide range of subjects we expect that some
data will be relevant to the question at hand, while other data will not. Unnecessary
information should not interfere with the ongoing computation, but should be able
to come into playas, and when, required. How does the network decide when
information is relevant and when it isn't? How is data brought to bear when needed
and ignored when it is not needed? Answering these questions is extremely impor
tant if we wish to produce an efficient system from finite resources. This explains
the very deliberate use of the words as appropriate in the goal definition.

On the Application of Neural Networks to Symbol Systems 9

1.3.5 To Provide a Learning Mechanism which Facilitates the Efficient Acquisition
of New Information

One of the hard problems of intelligent system design is providing a means
by which the system can efficiently learn new information. The word efficient is
key here. There must surely be an infinite number of ways to represent a given
piece of knowledge but some are more efficient than others.

In this goal definition, the term 'efficiency' can be measured in more than
one way. Most simply, it could be applied to the quantity of knowledge that can be
stored per unit of system resource; thus we are thinking only of storage efficiency.
But in addition, one might measure the speed with which stored knowledge can be
accessed and brought to bear on any given task. Here we are considering the mem
ory access speed as a function of the database size, which is a kind of execution
efficiency. Both measures of efficiency are important and are implied in the goal
definition.

1.3.6 The System Should Be Realisable

In defining this goal, we seek to disallow solutions which will be impractical
to implement. Clearly, what is not practically realisable today might become so
tomorrow but some obstacles will still remain longer than others such as: (1) sys
tems which rely on levels of interconnectivity which are too high to be realised in
the foreseeable future or (2) systems in which the quantity of information required
for each parameter update must be drawn from too wide a field. Thus the develop
ment of the system should take implementability issues into account.

1.4 The Structure of the Thesis

The remainder of this thesis is divided into eleven chapters. In chapter two,
existing research which is relevant to this work will be briefly reviewed. This
includes important results from neural network theory, AI and neuroscience. Dis
cussion in this chapter will highlight the central ideas which will be brought
together in the architecture development. Chapters three and four will provide
much deeper coverage on key areas of the literature, including associative memo
ries and reasoning systems.

Chapter five presents the network architecture development itself. It focuses
on the requirements for knowledge representation and computation in the network
and defines the system whose implementation and evaluation will form the rest of
the work. The goals outlined in the introduction will be refined and quantified dur
ing this development.

From chapter six onwards, the major consideration switches to the imple
mentation of the neural building blocks. The data coding scheme is consider in
chapter six while in chapter seven the properties of a simple neural unit are
explored. In chapters eight to ten this simple neural unit is developed, successive
chapters adding new levels of complexity to its functionality. Chapter eight dis-

On the Application of Neural Networks to Symbol Systems 10

cusses the use of dynamic patterns to improve storage efficiency and to make the
network more independent of external control. The simple static memory is
thereby replaced with a temporal pattern of activity.

Chapter nine adds both a control network and the capability to form associa
tions between data patterns. In chapter ten, the individual synapses become much
more complex to investigate a concept which is referred to here as hierarchies of
learning, again with the goal of an increase in system performance and efficiency.
Each synapse now requires several bits of data to describe its state, and the algo
rithms which define the learning procedure become more complex.

Chapter eleven returns the focus to the high level architecture, discussing
ideas for a unified neuro-symbolic system. The final chapter brings the work to a
close: recapitulating the objectives, summarising the results and suggesting future
work.

1.5 Summary of the 'Vork

To provide a framework for the rest of the thesis, this section summarises the
major results which will be presented. The survey of existing work in chapters two
to four describes elements of AI and neural network theory, their perceived advan
tages and disadvantages, as well as attempts to overcome the inherent problems
using hybridisation architectures.

The development of the architecture, which follows, is essentially an investi
gation into the necessary properties a symbol encoding must have to be applicable
to a practical neural network implementation of a symbol system. In addition to the
usual properties of being able to represent an expression in other expressions form
ing a hierarchy and being able to access its contents at any time, it is argued that a
symbol in a practical neural system must exhibit additional characteristics that
stem from the idea that the encoding of the symbol itself is directly linked to its
meaning and that this encoding must be hierarchical but not necessarily decompos
able at the symbol level. It is postulated that the symbol encoding cannot be fixed
at its inception since it must evolve as the network learns new relations.

Finally, two potentially related but distinct concepts are presented. First the
implementation of inheritance and hence of generalisation using a hierarchy of
pointers and second the ability of the network to slowly assimilate knowledge of
different persistences by continually evolving its encoding, referred to as learning
hierarchies and again based on a hierarchical pointer approach.

An outline architecture is then proposed which would exhibit those proper
ties of symbol systems that have been identified in the literature as being desirable.
The development describes the sorts of operations that must be executed at the
symbol level and is based around the proposed symbol encoding.

On the Application of Neural Networks to Symbol Systems 11

The remainder of the thesis is concerned with the development and charac
terisation of the neural building blocks which will make up the network. The first
such chapter compares a number of potential neural encoding schemes. From three
candidates the K-from-N encoding is chosen since it represents a controllable and
predictable encoding which the impact of known levels of single bit errors can be
quantified and hence compensated for.

Later chapters analyse candidate networks which use the K-from-N encod
ing. The first structure is based on a recurrent form of the non-holographic associa
tive memory of Willshaw et al. (1969). It is shown that the network is capable of
learning patterns in a single presentation and that for low KIN ratio the capacity of
the network can far exceed that of an equivalent Hopfield network, which it resem
bles. The memory capacity is analysed as a signal detection in gaussian noise prob
lem.

The next stage in the development is to decompose each static K-from-N pat
tern into L subsets of D-from-N, each pattern now stored and recalled with a period
of L cycles. It is shown that this dynamic pattern approach increases the storage
capacity of a fixed size network, but at a cost of transmission bandwidth and signal
to noise ratio.

The network is extended to include associations between triplet of patterns,
implementing the functional mapping aspect of the architecture. While the result
ing capacity is reasonable, it is asserted that it is insufficient to permit the model to
act as the needed building block of the network.

The final chapter in the network development considers the neural imple
mentation of the learning hierarchies scheme proposed during the symbol encoding
development of chapter five. Here, the network tries to develop feature detectors to
optimise the storage of given associations, addressing the stability-plasticity
dilemma and presenting the many available trade-offs in the design of more com
plex learning systems.

The last chapter before the conclusions tries to unify both the neural network
and the symbolic ideas proposed in the work. To do so, it examines the current
impediments that we need to remove in order to realise a true neuro-symbolic com
puter capable of exhibiting general intelligence, proposes some solutions to the
problems and suggests how earlier ideas in the thesis could be used to address
these issues. The weakness of forward-chaining reasoning is examined, as well as
the failure of current reasoning system to handle and generate symbolic structures
capable of modifying the very structure of the machine that generated it. The lack
of focus on the management of limited system resources is also explored as part of
a discussion on possible ways of implementing parallel processing at the rules
level. Finally, a proposal is made for handling sub-symbolic, so-called intuitive,
reasoning.

On the Application of Neural Networks to Symbol Systems 12

CHAPTER 2 Surveying The Field

2.0 Introduction

The study of neural networks encompasses a wide range of disciplines from
pattern recognition, signal processing and statistics through to neuroscience and
applications of chaos theory. By contrast, the science of Artificial Intelligence has
traditionally claimed the language oriented disciplines as its own: natural language
processing and structured knowledge representation. These traditional boundaries
are being continually eroded, however, generating yet more new results as each
discipline cross-fertilises with the other.

Since the fields with which this work is concerned are so wide in scope, the
survey of existing work is divided into three separate chapters. This chapter, while
presenting an overview of the fields of artificial intelligence and neural networks,
will restrict itself only to those aspects which are relevant to the work presented
and mention in passing those areas which have been avoided. The next two chap
ters will examine in depth specific areas that are of particular relevance to the
work.

Being quite long, this chapter has been divided into four major sections. The
first section discusses aspects of the neuroanatomy of the human brain, emphasis
ing particular insights that have influenced the work. This is hardly an extensive
coverage of the subject (which would be out of place here, in any case) but will
illustrate several key concepts which are central to the work. The second section
focuses on the symbolic logic approach which is the field of Artificial Intelligence;
it highlights a number of key concepts in knowledge representation and intelligent
problem solving, including first-order logic, production systems and expert sys
tems.

The third section is concerned with relevant aspects of neural networks. The
final section describes attempts to consolidate the connectionist and AI
approaches. Specifically, it attempts to answer the question whether the neuronal
aspects of a 'neuro-symbolic' system are merely superfluous implementation
details of a Classical symbolic system? If not, how can we benefit from the advan
tages of both disciplines to produce something better than either alone?

Surveying The Field 13

2.1. Neuroscience

Much of what motivates research into intelligent systems comes from the
knowledge that such systems already exist in the brains of higher animals; princi
pally Man. This section describes aspects of the human brain's structure and chem
istry which have influenced this work in some way.

There is no claim here that anything that has been inspired from the working
of the brain should be taken as an explanation of how the brain actually functions.
It will be some years yet before neuroscience has fully unravelled the true nature of
brain function; in the meantime, we have no obligation to restrict ourselves to a
neural architecture that mimics that of the human brain.

2.1.1 A Single Neuron

A single neuron is, in itself, a highly complex biochemical machine. In most
models of a neural network only a small fraction of this complexity is represented.
In a real brain, individual neurons vary considerable in their size and connectivity.
However, most neurons share a large number of characteristics (Crick and Asa
numa, 1986):

Each neuron grows complex input tree structures (called dendrites) onto
which other neurons may make connections called synapses. Each neuron pro
duces a single output connection (called an axon) which projects to many other
neurons, sometimes in distant parts of the brain. Neurons receive electrical stimu
lation from other neurons via chemical messengers transmitted at the synapses.
When enough potential has been received in a certain space of time, the neuron
'fires', generating a spike down the length of its axon. Most neurons can produce
pulses at a rate of up to 500 per second, but on average this rate is between 50 and
100 pulses per second.

After a neuron has fired there is a time when the neuron must reset its elec
tro-chemical apparatus and restore its static potential. During this time, it is unable
to fire again regardless of stimulation. This is called the absolute refractory period
and is between 1 and 2ms in most neurons. After this period is over the neuron
enters a second period called the relative refractory period in which the neuron can
be made to fire, but only with higher than normal levels of stimulation. This period
lasts for about 5ms.

Turning now to the synapse itself, it is known that there is a wide variety of
different chemical messengers used as the medium of information exchange. Some
are fast acting and exist for only a short time, others work only indirectly and their
effects are felt over a much longer period of time. All neurons of a single type
seem to release only a small subset of the possible neuro-transmitters. The distribu
tion of transmitter substances among neuron types is clearly as much a part of the
neuro-architecture of cortex as the physical connectivity of the neurons them
selves.

Surveying The Field 14

2.1.2 Different Types of Neuron

There appears to be a wide variety of neurons which are specialised for a par
ticular function. These specialisations include the size and shape of the neuron, the
neuro-transmitter(s) used to communicate with other neurons as well as the struc
ture of its axon and dendritic tree.

Research into the form and function of the different neuron types have indi
cated that anyone neuron either make excitatory or inhibitory connections to other
neurons, but never both. This contrasts sharply with most mathematical models of
neural networks which permit any neuron to make excitatory and inhibitory con
nections without restriction and even allow an excitatory connection to become an
inhibitory one during learning (such as the MLP of Rumelhart, Hinton and Wil
liams, 1986). In the neo-cortex, this arrangement may have come about only
through constraints of the biochemistry in which it is implemented, or by virtue of
the evolutionary path which shaped it. However, there may be more fundamental
principles built into its structure which provide clues as to efficient methods of
using large parallel networks. This remains to be clarified.

Most neurons in the neocortex are excitatory in nature. Furthermore, most
excitatory neurons are pyramidal in shape. Each pyramidal neuron synapses with
many others of their kind (up to ten thousand) in both its own and surrounding
regions of cortex. In addition, it is these excitatory neurons which provide the main
output of each neural sub-system to other brain systems, as will be described in the
next section.

The inhibitory neurons in the neo-cortex use neuro-transmitters that are dif
ferent from those employed by excitatory neurons and seem to follow different
rules of connectivity to the pyramidals (Crick & Asunama, 1986). They are far less
numerous than the pyramidals, with estimations (Crick & Asanuma, 1986) indicat
ing that every pyramidal neuron is innervated by six such inter-neurons, on aver
age.

Inhibitory neurons make connections only with a small region, hence their
other name of inter-neurons. They never extend their axons into other regions of
the cortex. The conclusion that many researchers, including Crick and Asanuma,
have reached is that these inhibitory inter-neurons provide the negative feedback
that balances the otherwise entirely positive feedback between the information car
rying pyramidal neurons.

2.1.3 Neuronal Organisation of the Neocortex

Our attention now turns to the actual structure of the lowest level of neural
organisation. Within the neocortex, the neurons themselves are not spread out uni
formly. They tend to clump together into groups. According to Shepherd each such
group comprises of about 110 neurons and he gave such groups the name 'micro
column' (Shepherd, 1990).

A higher level of organisation was also identified by Shepherd (which he
named the hyper-column) in which groups comprising about 50,000 neurons could

Surveying The Field 15

I

II

be labelled as a unit by virtue of their noticably dense inter-connectivity. Later
work challenged the modularity of this higher-order unit (Blasdel, 1992 as cited in
Calvin, 1995) though the idea of the micro-column remains valid at this time.

This discussion will concentrate on the low-level micro-column organisa
tion. Within such a column there is a high degree of intercommunication between
neurons with relatively less communication between columns. Shepherd suggested
that the micro-column is the replicatable unit from which the cortex is constructed.

These layers exist in all areas of cortex, but the relative size of each layer
seems to depend on the particular specialisation of the cortical region. Regions in
the sensory areas tend to have denser layers II and III (the input processing layers)
than regions in the motor cortex, which in tum have relatively more developed lay
ers V and VI (the output layers). See the figure below, derived from Shepherd,
(1990).

The following details, on the probable flow of information within the cortex,
are taken from a combination of Crick & Asanuma (1986), Kolb & Whishaw
(1996,), Shepherd et al. (1990), Martin(1996) and Calvin (1995 and 1998). Input
from the senses passes through the thalamus to arrive in layer IV of the neo-cortex.
It is then distributed (via layer I) to the pyramidal neurons of layers II and III. The
output of these layers passes down to layers V and VI and is also distributed to
nearby neocortical regions (again, arriving at layer IV) .

-- ..
/ ~ / - " f \(1

~ ~ ~ ~ [2] Input distributed

III [3] Output passes to (via layer I) to small

large pyramidals in pyramidals in layer II

IV

V

VI

layerVNI

"

• • • •

" to other region. thalamus
or sub-cortical structures

j~

[1] Input arrives
at small stellate neurons
in layer IV

from other region. thalamus
or sub-cortical structures

Fig. 2-0 One possible explanation of information flow in the neocortex.

The output of layers V and VI (from large pyramidal neurons) usually
projects to non-cortical structures, the exact nature of which depends upon the

Surveying The Field 16

function of the particular cortical region. In addition, layer V and VI pyramidal
neurons project back to the thalamus, thereby reciprocating the feedforward con
nections that the thalamus made with layer IV.

Summarising, it would seem that the flow of information begins by entering
the thalamus and then follows the route through cortical layer IV to layer I and
from there vertically downwards through II, III, V, VI and back to the thalamus. It
is interesting to speculate how the pyramidal neurons of layers II/III might form
some kind of map of the input space (distributed via the input layer, IV, and the
superficial layer, I) and likewise the pyramidal neurons of layers V and VI might
form some kind of mapping appropriate for the output of each micro-column.

2.1.4 Neural Activity

In many neural network models, each pattern to be stored is made up of '1' s
and '-1 's such that the mean level is zero and it is uncorrelated with any other pat
tern (e.g. Hopfield, 1982). This implies that 50% of the neurons are 'firing' at any
given time. In contrast, experimental evidence suggests that in the human brain the
percentage of neurons which are active at any given time is closer to 5% (Amit,
1989).

With a lower level of activity the total amount of information that is repre
sented by the pattern of neurons is less than the theoretically maximum value
(which occurs when every neuron is firing half the time and there is zero correla
tion between them). Is there some other reason why the activity is so low within
the human cortex? This point will be taken up again in the review of associative
memories in chapter three and in the discussions on the symbol encoding scheme
in chapters four and six.

2.1.5 Types of Memory

In the last hundred years or so, the field of psychology has given rise to much
data on the mechanism underlying memory in both animals and man. It is now well
accepted that the memory is not a homogeneous slate onto which ideas can be writ
ten and subsequently erased, but a complex hierarchy of different types of memory
which can be classified in terms of the type of information that they store and the
duration for which each memory persists (Klein, 1991).

One example is the declarative, working, memory that is responsible for the
short term storage of relationships between objects and ideas (Graham, 1990).
Items stored here may have a duration of seconds or minutes. Closely related to the
working memory is the long term reference memory which retains such informa
tion over months or years.

It is not yet known if short and long term memories are physical distinct
structures based on potentially different organisational principles, or a single struc
ture which undergoes physiological changes to permanently store data. In recent
years, it has been speculated that memory should not be pigeon-holed either as
long-term or short-term; that a whole range of processes may be involved in con
solidation, creating a hierarchy of 'memory persistencies'. Of course, there is any

Surveying The Field 17

number of theories which attempt to explain these processes (see Lynch & Baudry,
1984a and Crick, 1982, for examples).

What is also clear is that the synapses between neurons, which are now
assumed to be the site of changes involved in learning, are not single-value multi
pliers as they are modelled in most neural network architectures. They embody
highly complex chemical processes (Graham, 1990; Hall, 1992) the analysis of
which is a science in itself.

2.1.6 Summary of Neuroscience

From this brief exposition on cortical organisation, a few key points emerge.
First, the neo-cortex (which represents about 80% of the neural population) is
largely composed of simple repeating units of around 110 neurons. Specialisation
of these units is mainly brought about by virtue of the sources of data that they
process and the relative interconnectivity between cortical regions.

Secondly, information appears to be represented using pyramidal neurons
whose outputs are all excitatory in nature. In an active (i.e. working) area of cortex,
only about 5% of the neurons appear to be firing above a background level. In con
trast, inhibition by locally connected inter-neurons seems to act as control mecha
nism and not as a inter-columnal carrier of information.

Finally, the synaptic connections between neurons are not simple single-val
ued entities but complex biochemical systems in which many interacting chemicals
playa part. Current theories postulate a hierarchy of interacting systems that
together give rise to the process of learning.

2.2 Artificial Intelligence

2.2.1 The Basic Ideas Behind AI

Distilling a single notion of the idea behind AI is no easy task: the subject
itself encompasses a wide range of topics, each of which has its own set of goals.
For example, some approaches are concerned with machines that act or think like
humans whereas others are concerned only with machines that think or act ration
ally (Russell & Norvig, 1995). Cognitive Science (a field hybridised with psychol
ogy) falls into the former category, occupying itself largely with the modelling of
the thought processes of humans and other higher animals.

Since the early days of AI, new fields such as Cognitive Science have been
spawned, each with its own objectives, leaving AI itself as a generic 'applied intel
ligence engineering'. The common thread in all such sub-fields had been the use of
language based schemes for the representation and manipulation of information,
though there are some exceptions, even neural networks itself being a legitimate
areas of research in AI.

Surveying The Field 18

2.2.2 First-Order Logic

Perhaps the most successful formalism of knowledge in AI has been the lan
guage of First-Order Predicate Logic (FOPL or just FOL). It permits the specifica
tion of relations between objects and the definition of properties for objects, using
predicate functions. Objects can be categorised, allowing properties to be assigned
to objects by virtue of their membership of those categories. Expressions are cre
ated using the normal range of logic constructs such as AND (A), OR (v), NOT
(""), together with the implication symbol (~). For example, to say that anything
which is a mammal and has two legs is a human, one could write:

mammal(x) A legs(x, 2) ~ human(x)

Thus for any object, x, for which the left hand side of this expression is true,
the right hand side is also true by implication. The existential quantifier (3) allows
the representation of the fact that at least one case exists in which the expression is
true. For example, to say that there is at least one honest man:

3x, man(x) A honest(x)

Finally, the universal quantifier (V') allows relations to be defined, based on a
shared property. For example to say that every dog dislikes ice-cream, we write:

V'x, dog(x) ~,likes(x, ice-cream)

First-order logic is powerful not only because it allows the formal represen
tation of objects and relations (which can then be manipulated using the rules of
logic) but also because such relations can be defined for whole categories of
objects.

The aim of the logical manipulation might be to prove a formula (such as in
General Problem Solver, Ernst & Newell, 1969) or, in database applications such
as the commercially available Oracle package, to deduce which data items match a
user query.

2.2.3 Knowledge Bases & Deductive Inference

A knowledge base is a collection of facts and/or relations defined between a
set of objects, expressed in a formally defined language. The formality of that lan
guage facilitates the transformation of its sentences to derive new sentences which
are logically entailed from them. The grammar of the language, together with the
rules of inference, ensure that only true statements are produced by a formal sys
tem which is given only true statements as input. In this discussion first-order pred
icate logic (FOPL) will be used as the example language but there are others (e.g.
temporal logic, modal logic).

All inferences in a formal system are deductive rather than inductive in
nature. This is necessary to support the premise that only true statements can
emerge as a result of inference on a knowledge base which itself consists only of
true statements. Induction generates sentences which can be less specific than the

Surveying The Field 19

sentences from which they are derived. As a result they are subject to error, but
permit the system to generalise from previous experiences when presented with
novel situations. In traditional AI, only deductive inference was widely considered.
Only in recent times has induction come in for much scrutiny (e.g. Wolpert, 1995).

The application of deductive inference is usually performed in one of two
ways: either as forward chaining or as backwards chaining, depending on the task
being performed. In forward chaining, every time a new fact is added to the knowl
edge base the system must infer all of the new facts which are now true as a conse
quence. For example, the database contains the following two sentences:

furry(x) 1\ drinks_milk(x) => cat(x)

drinks_milk(x)

Initially, no new inferences can be made. Imagine that the database is now given
the sentence:

furry(x)

then it can apply its inferential rules to all of the sentences of the database in order
to deduce any new truths. In this case it learns using the Modus Ponens rule that:

cat(x)

Proving one fact can trigger the proof of another, and so on. Modus Ponens is
the most well known rule of inference and dates back to the writings of Plato.
There are several others which form the basic set of tools for logical deduction. As
they are not directly relevant to this work, they will not be discussed in detail. (See
Russell & Norvig for a more detailed account). The important point to note is that
the rules themselves are independent of the meaning of any sentence. Instead, they
are executed on symbols which have certain properties, creating new relations as a
function of those properties.

By way of contrast, backwards chaining, while using the same rules of infer
ence, proceeds in the opposite direction. Thus, presented with a goal in the form of
a conclusion, the task is to search the database for premise which will justify it.

Using the same example database as before, then given the query:

cat(x)?

the system can show that it is true by locating the sentences which are necessarily
entail cat(x). In this case the entire set is needed. Some premise might not be justi
fied in which case the rules of inference can go back an indefinite number of levels
to prove the premise upon which the conclusion must be based. If, for example,
furry(x) was not in the database, the system could search back for other relations
which would logically entail it, to support the notion that cat(x).

Forward and backwards chaining are different ways of using the same
knowledge base.The former spends resources up front the ensure that all logical
consequences of its sentences are made explicit even though some conclusions
may not be useful in the future. The latter only uses resources at "run-time" to

Surveying The Field 20

derive needed conclusions but as a consequence it is usually slower for any given
query. To use the current example, the forward chaining method will have already
precalculated the existence of cat(x) (or lack thereof) whereas backwards chaining
must prove it in response to the query.

The use of transformational rules applied to sentences expressed in a formal
language is at the heart of symbolic AI. Deductive inference is a powerful tool
which, as will be discussed later in this chapter, is slow to be developed in neural
systems.

2.2.4 Production Systems

The extension of logical representation to systems capable of acting in an
environment led to the first production systems (such as Xc on which was a compo
nent configuration tool designed for use at DEC (McDermott, 1982). As shown in
the diagram below, such a system consists of a knowledge base of rules (each rule
stating the actions to perform when the given conditions are fulfilled) and a work
ing memory (containing propositions which are true at any given time).

New Percept
@ t=4

A(4)

A(x) 1\ B(x) => add C(x) 1\ add F(x)

B(x) 1\ D(x) 1\ E(x) => delete A(x)

D(x) 1\ A(x) => add E(x) 1\ do Z(x)

B(2) A(3) D(3)

Working Memory

Flg.2·1 An example production system.

Actions to perform
I----~ (e.g. do Z(3))

Modifications to
Working Memory

(e.g. add E(3))

After the arrival of a new percept, (A(4) in the example a time t=4), the con
tents of working memory are applied to the left hand side of all of the rules in par
allel, in what is called the match phase. If any rules have all of their conditions
fulfilled, the right hand side of that rule is marked for execution. Execution can
involve either changes in working memory or actions performed in the environ
ment. In most implementations, there is a phase of conflict resolution after the
matching phase in which any conflicting actions are resolved (such as two firing
rules which collectively want to both add and delete the same item in working
memory). The rules used to resolve conflicts depend on the implementation. In the
final phase, the remaining actions are performed.

New rounds of rule firing can occur at this point, even without the arrival of
a new percept, due to the changes made to working memory as a result of the pre
vious actions. The match, conflict resolution and act phases are repeated until no
new rules are fired during the match phase. The system is then tranquil until a new
percept arrives.

Surveying The Field 21

Production systems are a form of state machine, in that there are state varia
bles (the working memory), input (in the form of new percepts), a mapping from
input to output (the rules) and the generation of both a new state and output signals.

As an implementation of an intelligent agent, the production system design
offers a number of desirable features. Firstly, the rules are evaluated in parallel at
each time step. From an implementation point of view such an approach is amena
ble to execution on a parallel processing system. Secondly, each rule can be written
without reference to any of the others. Thus, the knowledge base can be built up in
incremental fashion rather than be fully specified in advance. As a related point,
the rules can be written without reference to how they will be used (i.e. they are a
function of a particular knowledge domain rather than of a particular problem).

The disadvantages of the system stem both from the parallel nature of the
rules and the restriction to purely logical representations. All of the rules are evalu
ated in parallel, so it is possible for many rules to be activated which are not rele
vant to the problem being solved. The algorithm used in the conflict resolution
phase to prune redundant or conflicting actions seems somewhat arbitrary (for
example, some applications give priority to rules in which the items in their con
junctions arrived most recently in working memory).

One possible approach to reducing the number of rules that are tested when
they are irrelevant is to collect several rules together into a 'block' and permit
whole blocks to be either active or inactive. Inactive blocks would be ignored and
so would not consume resources. Clearly, extra rules would be needed to active
and deactivate these blocks.

There are several drawbacks to such an approach. First, the behaviour of the
system becomes harder to predict since its response to a given stimulus may
change as a function of which blocks of rules are acti ve and which are not. Further
more, any errors in coding of the meta-rules responsible for activating each block
could lead to shifts in behaviour out of proportion with the degree of error. The
whole notion of having some rules which are more critical than others is intuitively
unsatisfying, as is the coarse grained nature of the control. It is unlikely that such
granularity is optimal in most environments.

As an overall comment on production systems, the restriction to purely logi
cal representations implies that they suffer from the same fragility as any purely
logical AI system, although it might be possible to extend the rules to include prob
abilistic or fuzzy representations. (See section 2.2.5 "Semantic Networks" on page
23.)

At a higher level, one might question the philosophy behind the production
system approach. The global use of parallelism eliminates the need to decide
which rules and data are relevant and which are not. The only approach adopted to
deal with this is perhaps too coarse grained. What appears to be missing is a fine
tuned guiding system which applies rules (or even parts of rules?) when they are
potentially involved and suppresses them when they are not. Essentially, there is

Surveying The Field 22

no formal way of efficiently channelling system resources into the useful (or at
least potentially useful) pathways.

Chapter four provides a more detailed review of a number of the implemen
tations of production systems in the literature. For example, a production system
forms the heart of the Soar architecture (see section 4.1.1, page 86). A neural
implementation of a production system are also considered.

2.2.5 Semantic Networks

At the same time as much of the development of first-order predicate logic
(FOPL), a parallel branch of research was under investigation. This approach,
called semantic networks (Quillian, 1968), was viewed by its proponents as pro
viding a more flexible and hence more powerful formalisation of the relationships
between objects and sets. Whether or not this is indeed the case is now a matter of
some debate. However, the use of graphical notation, with nodes representing con
cepts and objects, connected to each other through links representing the relations,
certainly set it apart from the purely textual form of first-order logic.

The essence of semantic networks is to provide a framework for logical
inference, but using the modelling of class membership as a mechanism for inherit
ance of parent properties. The example below, taken from Russell & Norvig,
(1995), illustrates the concepts.

Animals

Ali ve:T

Flies: F

SUb~ ~set
Birds Mammals

Legs: 2 Legs : 4

Flies: T Flies: F

J~ h

Subset Subset

Penguins Cats

Flies: F

J~ ••
Member Member

Opus Bill

Name: Opus Name: Bill

Fig. 2-2 An example semantic network.

Surveying The Field 23

Each box (usually referred to as a node) represents a concept or object. The
arcs connecting nodes indicate relationships between them. Such relationships can
indicate membership of a object or class within a higher level (and hence more
general) class. Finally, within each node are properties associated with it, and the
appropriate value of that property for that node. Taking, for example, the node
'Birds' representing birds, we see that birds have two explicitly assigned proper
ties, that of having two legs and that of flying. Furthermore, by virtue of the links
between nodes, we see that birds are a subset of animals and that penguins are,
themselves, a subset of birds.

The power of semantic networks lies in the way that properties are managed.
If a property of a given node is not specified explicitly, its value can be passed
down, or inherited, from a parent class. Thus, even though the node for birds does
not state that birds are alive (with property alive = True), it can inherit a default
value from its parent class' Animals'. In contrast, the fact that we are told that
Birds do fly (property flies = True) takes precedence over the less specific informa
tion from the parent category (for 'Animals', property flies = False).

The overall effect is that properties are only stated explicitly for a node if the
values of such properties do not conform to those of the class(es) in which it is a
member. Information is managed much more efficiently than in a network in
which every node carries a full set of all properties.

Another important aspect of semantic networks is that they are regarded as a
good framework in which to perform non-monotonic logic. Such logics differ from
standard FOPL in that the addition of a new fact to the database can cause other
'facts' to be invalidated and thus removed. The size of the database is no longer a
monotonically increasing function of time.

Most of the problems associated with semantic networks are well known and
many potential solutions have been proposed in the literature. The principle prob
lem occurs when a class or object has multiple parent classes. It is entirely possible
for the property values inherited from the parents to be incompatible. How does the
system decide which value to accept? Several strategies have been developed and
are discussed in chapter four which considers semantic networks in more detail.

A second problem with semantic networks is the rather vague semantics
associated with the subset relation. In the figure, we see that the node 'Birds' is a
subset of the node 'Animals'. This may be true, but in what respect is it a subset?
In what way is it different from its sibling category 'Mammals'?

One method of deciding this could be to compare the properties and values
for the two sub-classes with respect to each other and also with respect to the par
ent class. Birds are stated as flying. This is a general differentiator for birds. But
penguins, a sub-class of birds, do not fly. So in general it is not possible to give
precise definitions of sub-classes with respect to parent classes and siblings. This
can make the task of assigning a new object to the correct category a resource-con
suming process.

Surveying The Field 24

A less discussed issue is concerned with the usage of semantic networks in
the wider context of intelligent system design. Most research in semantic networks
is concerned with the issues involved in the correct inheritance of properties from
parent to child nodes. Such networks can answer questions about properties of
objects when the information has not been given explicitly, and thus are perform
ing useful computation in their own right. However, one must suppose that once
such implicit properties have been established, the intention is that they be used in
processing other relations between objects and categories. (For example, having
decided that penguins are indeed alive, this result might be needed to decide that
penguins need to be fed). Often this wider purpose is forgotten. This is unfortunate
since the constraints of the overall system would no doubt influence the way in
which the inheritance mechanism functions.

One final point of note is that each time the system needs to establish the
properties associated with a particular node, it must assemble them by searching
the network of connections and dependencies between nodes. In principle, it could
store all of the potential properties with each node as it calculates them, but there
are two problems with this.

First, making all properties and their values explicit for every node would, in
general, consume much more memory than the original tree. Second, any changes
to the network (either a property value in a parent class or a new link) would
require a phase of network updating since a single change could have an impact in
many parts of the network. Depending on the network and the rate at which
changes occur, this might consume more resources than the local regeneration of
properties for a few nodes at run-time.

We can compare this run-time behaviour with the backward/forward chain
ing of first-order predicate logic systems discussed earlier. By reconstructing the
set of properties of a node when needed, the system is performing a form of back
wards chaining. In contrast, forward chaining would be achieved by making all
properties explicit and re-evaluating them at each change in the network.

The issues involved in semantic networks are presented in detail in chapter
four, along with some implementations as neural networks.

2.2.6 Description Logics

Description logics were created to address the problem of vaguely defined
subsets, as mentioned above for semantic memory. In essence, they allow the
notion of classes and membership, but force the knowledge base designer to make
explicit the definition of each category.

An example given in Russell & Norvig, is taken from the CLASSIC lan
guage. Here, the definition of one sub-class, Bachelor, is defined explicitly as the
conjunction of three others:

Bachelor = And(Unmarried, Adult, Male)

Surveying The Field 25

This makes it easy to assign new objects to classes or to decide if a given
class can be subsumed by another (using their respective definitions). However,
they lack a means to express negation and disjunction, as Russell & Norvig note.

2.2.7 Uncertainty, Belief and Expert Systems

One area which will not figure strongly in the work presented in this thesis is
the modelling of uncertainty and belief. Uncertainty allows the system to model its
expectation of the frequency of an event over mUltiple trials. The mathematical
discipline of Bayesian statistics exists independently of AI and provides a solid
foundation for making predictions about the probability density function for cer
tain events given prior data (Bishop, 1995).

Belief allows the system to express its degree of certainty in the truth of a
given proposition. The body of theory behind belief is much more recent and less
well developed than that of probability. Some work on belief (the Dempster-Shafer
rule) seeks to differentiate between uncertainty (where an event is yet to occur but
has a certain probability) and ignorance (where a fact is already established but is
not known by the reasoning agent) (Shafer, 1979).

The use of utility theory allows a planning agent to quantify the desirability
of goals and sub-goals and hence make quantified comparisons of its actions based
on their expected payback. This quantified decision making is the subject of deci
sion theory which embodies both utility theory and probability theory. Decision
theory itself lies at the heart of expert systems which must provide quantified
answers to queries in such domains as medical diagnosis, and financial planning
(Patterson, 1990).

Even though the inability to model such concepts as uncertainty and belief
would render an intelligent system fragile in many real world applications, the
issues involved add a new level of complexity to the architecture and implementa
tion. Their omission is therefore a result of limiting the scope of the research, not
of denigrating their importance in the design of robust symbol systems. It was
envisaged that the architecture would need to be extended at some later time to add
the notions of belief, uncertainty and utility. How that might be achieved is left for
future work.

2.2.8 Case-based Reasoning (CDR)

In the last few years a new discipline has emerged in the AI research arena
which is not only a product of the disillusionment felt towards formal logic prob
lem solving but is also a step towards the neural networks camp in its use of pattern
matching and approximation as primary tools. Case-based reasoning seeks to solve
new problems in a particular domain by calling upon stored knowledge about pre
vious, related cases and adapting the known solutions to fit the problem'S novel
aspects (Leake, 1996).

The process of case-based reasoning when applied to a new problem are
roughly as follows (from Kolodner & Leake, in Leake (ed.), 1996): First, a ball
park solution is proposed based on a case already stored in the database which is

Surveying The Field 26

similar, in certain respects, to the problem at hand. Next, an iterative loop begins in
which the proposed solution is first criticised to identify any aspects which fail to
achieve the desired goals in the new problem, and then an adaptation phase is exe
cuted which is intended to correct any problems encountered with the proposed
solution (again, drawing on the database). The loop is exited only when the system
believes it has a solution which will resolve the problem, or can come up with
nothing better. The next step is to apply the candidate solution to the new problem
and observe the results. Finally, the results are processed and the database updated
accordingly. Both positive and negative consequences of the systems actions are a
viable source of new data.

The intended benefits of CBR are manifold. Applying precalculated results
from previous experiments is potentially much less compute intensive than recal
culating or re-proving a result from scratch every time. Thus, there is a potential to
reduce resources for the same level of performance relative to an expert or produc
tion system. Also, the ability to fill in the gaps of unknown information by analogy
with stored cases is intended to help the system to produce reasonable results while
acting in uncertain environments.

Case-based reasoners differ from expert systems in that the basic unit of cur
rency in CBR is the case rather than the rule: a case is essentially an experiment
which produced a result in the past which can be adapted and re-applied in the
future. Even though the rules used by an expert system may have been built up by
previous experiments, the contexts in which they were used in the past are not
retained. So on the one hand we see the benefit of working only in terms of rules; it
is easy to know if a rule should fire or not as there is little context information nec
essary.

But we can also see the added benefit which CBR brings to such systems, the
property which expert and production systems essentially lack; the ability to use
higher level information to decide on the relevance of knowledge and rules and
avoid wasting computing resources on exploring irrelevant side branches (such as
evaluating rules which will serve no useful purpose in the context of the current
problem). Thus CBR represents a step towards a higher level representation of the
problem and its solution.

2.2.9 Summary of Artificial Intelligence

In this section we have briefly reviewed many broad classes of AI systems.
Several key ideas formed a recurring motif and will be drawn on during the archi
tecture development in chapter five.

First, the idea behind the symbolic approach itself. Elements in the world of
interest can be abstracted as symbols. The relationships between these symbols can
be expressed in a formal language which permits them to be manipulated to derive
new knowledge and to make true statements about the world. It is straightforward
to add a new piece of knowledge to the knowledge base without disturbing existing
data (as long as the new data does not conflict with existing data).

Surveying The Field 27

The second key idea to emerge is the re-usability of relations and knowledge.
A relationship derived in one place can find application in another unrelated area.
Symbols can represent small parts of an given situation, parts which may occur
again and again in different positions and configurations. The symbol system
becomes more efficient by recognising regularity and modularity in the world and
exploiting it. This idea is also the basis for case-based reasoning in which the enti
ties involve are entire episodes of earlier experience, applied to novel problems in
a modified form.

Finally, the fragility of purely truth maintaining systems was highlighted as a
major problem of early AI. By branching out into systems which were better able
to express and reason with belief and uncertainty, more robust frameworks were
created which permitted a forms of generalisation to novel data and situations by
extrapolation from given examples. By moving in this direction, AI systems
designers were, perhaps, tacitly acknowledging that the quantification (of member
ship, probability and belief) inherent in neural network architectures is an impor
tant property for the robust design of even symbol systems.

2.3 Artificial Neural Networks

The study of artificial neural networks as a mathematical discipline arose
from a belief that it would be possible to create brain-like machines, capable of
learning by example and deriving their own internal representations to model the
problem rather than having it formally described. The sub-sections that follow
describe those neural network architectures which were relevant to the work
reported in this thesis, along with a discussion of their advantages and disadvan
tages.

2.3.1 Basic Concept of a Neural Network

There is no single network which could be described as a 'typical' neural
network. The term is rather loose and can be applied to a great variety of structures
which, on the surface, appear to be very different. This section reviews the core of
features common to most neural networks.

The building blocks of network are often referred to as 'neurons', despite the
occasional complaint that they are not, strictly speaking, realistic models for bio
logical neurons. (They are sometimes called either 'units' or 'nodes' to avoid this
problem but these conventions will not be followed here since it should be clear
that the use of the word neuron in terms of a mathematical model does not imply a
true representation of all neuronal processes).

Perhaps the most general network structure is the multi-layered perceptron
(MLP) in its recurrent form, which embodies most of the concepts that are ubiqui
tous in the neural network approach (Rumelhart, Hinton & Williams, 1986b). Such
a network is illustrated in figure 2-2, overleaf.

Surveying The Field 28

Output Neurons

Hidden Neurons

Input Neurons

Feedback
of some
Output
Values

\
Fig. 2-3 Multi-layered Perceptron, with recurrent output.

In the figure, the network has three layers. The number of 'hidden' layers can
be increased without limit. Note the shaded neurons at the input which represent
fed-back output values. This feedback allows the network to act as a state machine.

Within each neuron, there are two major processes. The first is the potential
function, which usually consists of the weighted sum of the inputs. At time, t, the
potential of neuron, i, is given by:

N

Ui(t) = LO/t-l)XWij

j=O

where Vi is the potential of neuron i, OJ is the output value of a neuron, j , on

the previous level of the network and W ij is the weight value of the connection

from neuron j to neuron i. This is a simple mathematical model of the functioning
of the dendritic trees of real neurons. A number of researchers have speculated that
this model is too simple and that a significant proportion of the information
processing occurring in the brain happens in the dendritic trees themselves (Shep
herd & Koch, 1990). Such ideas will not be pursued here.

The second process in each neuron is the output non-linearity, or threshold
ing function. This can take many different forms, depending on the requirements of
the application . The two most common threshold functions are the sigmoid and the
binary threshold.

0i(t) = 1 when Ui(t) > Ti

= 0 otherwise

°i(t) = 1 + exp(-(Ui(t) - Ti) / K)

Binary Threshold

Sigmoid Threshold

Surveying The Field 29

where K is a constant which defines the slope of the function. The sigmoid
function is often used in applications since it is easily differentiated. This permits
the network to learn using a credit-assignment learning scheme such as error back
propagation (Rumelhart et al., 1986).

The action of each neuron is essentially to calculate a dot product between its
input vector and its weight vector. When both vectors are of known length, the dot
product can be used to calculate the angle between them:

x.w
cos e = IxllWi

where X and W are the input vector and weight vector, respectively and e is
the angle between the vectors. When either vector is of unknown length then the
potential of the neuron, and hence its output value, do not provide an exact indica
tion of the similarity between the two vectors. Many applications for neural net
works therefore insist that both vectors be normalised (e.g. Kohonen, 1982a).

2.3.2 Unsupervised Learning

The lack of an external source of the network output is the hallmark of unsu
pervised learning (also called self-organised learning). It is left to the network
itself to "decide" how it will represent the probability distribution of the input data.
This definition permits a wide range of interpretations which differ according to
their criteria for what constitutes "good organisation" and the complexity of the
processing carried out by each neuron. Examples of this paradigm include Princi
pal Component Analysis (Jolliffe, 1986) and the modelling of retinal receptive
fields (Linsker, 1986).

Competitive learning is a non-linear form of self-organising system. Usually
the network is arranged as a set of identical neurons. Each neuron receives the
same input vector and calculates its potential as the dot product of the input vector,
X and its weight vector, Wi' A subset of the neurons are allowed to "win" the com
petition to decide which is fittest to represent the vector. The winning vectors are
those that have the highest potential. In many applications, the subset of winning
neurons is only a single neuron.

The competition phase can be executed either externally, by examining the
potentials of the neurons directly, or using the dynamics of the neurons themselves.
This latter method uses lateral inhibition between neurons such that the neurons
with the highest potential tend to dominate the group. (Such a scheme has imple
mentation advantages for a self-contained neural system).

After each competition, network weights are updated in a manner which
depends upon their status: winners or losers. Usually, winning neurons increase the
weights by an amount proportional to the input vector, X. By doing so, they are
more likely to win the competition for this input vector next time it is presented.To
keep the weight vectors within bounds, they are usually normalised so that learning
corresponds to a change only in the angle of the winning neuron's vector. Losing

Surveying The Field 30

neurons either maintain the same weight vector or are increased by only a small
fraction of the input vector.

A particular example of this genre is considered in more detail next: that of
the self-organising feature map proposed by Kohonen (1982a), building on earlier
work by Willshaw and von der Malsberg (1976).

The advantage of self-organisation is clearly the fact that no teacher input is
required to specify how the neurons should arrange themselves. The general prin
ciple is that each neuron is as important as any other in terms of its representational
significance. To ensure that this is the case, each neuron must be capable of meas
uring its 'importance' in terms of the quantity of information it represents com
pared to its peers and to take individual action if it is either under- or over
representing. If each neuron is to be able to make such a decision alone (a desirable
property for a network with a large number of neural elements) then there must be
certain assumptions about the statistics of the representation scheme and the input
data to facilitate this.

In self-organising systems this is the case because within each group of neu
rons there are a fixed number of winners. Each neuron can track how often it is a
winner, and make adjustments to its behaviour if it wins either too frequently or
too infrequently. But in networks in which any output vector is possible such as an
MLP, it may not be so easy for each neuron to determine how they fit into the
scheme of things. The credit-assignment problem is in evidence once again. In
these cases, information external to the neuron is needed.

2.3.3 Self-Organising Feature Maps

As a special case of the self-organising networks described in the previous
section, that proposed by Kohonen is an important example of the competitive
learning sub-genre. The aim is, once again, to model the probability distribution of
the input data; in this case the medium in which this modelling takes place is a lat
tice (usually in two dimensions) of neurons. Each neuron is fed a copy of the input
vector, as before.

The important difference with this network is the complex form taken by lat
eral inhibition. The neighbourhood function is such that neurons very close to the
winning neuron receive positive feedback from it, while those further away receive
negative feedback. In theory, this function takes the form of the so-called 'mexican
hat' function but for ease of simulation it is approximated by zones of constant
value, as shown in the figure overleaf.

The width of the positive feedback zone, W, is usually a decreasing function
of the learning trial, t. Thus at the beginning almost all of the neurons are involved
strongly in learning, while later on the function becomes much narrower and the
network undergoes local fine tuning.

Surveying The Field 31

Strength of
Lateral

Feedback
J l

.... W ..
Distance fro m Winning Neuron ...

.....

Fig. 2-4 Kohonen network: Lateral feedback vs. distance from winning neuron

Globally, the behaviour of the network is intended to arrange the vectors in
the array so that two conditions are fulfilled. First, that the proportion of vectors in
a particular region of pattern space is proportional to the probability density func
tion, p(x), of the input population. The second condition is that neighbouring vec
tors tend to develop similar directions such that, if the "correct" neuron does not
win the contest (perhaps because of noise in the input vector) a vector very close to
the correct one will. This lends the representation scheme a level of robustness.

However, there are several cautionary points to note. First, the algorithm as it
was proposed by Kohonen does not truly model the probability density function of
the input vector. It was only with the addition of a "conscience mechanism"
(DeSieno, 1988) that the network could achieve this goal. This conscience, as dis
cussed earlier on general self-organising systems, allows each neuron to track the
amount of infonnation it is representing and to make adjustments to its participa
tion in each contest to ensure that it is neither dominating nor under-achieving rel
ative to its peers.

The second drawback is that during some learning trials the lattice can
develop in a twisted fashion and cannot properly fill the representation space.This
can happen when the physical neighbourhoods as defined by the layout of the lat
tice are at odds with the relative directions of the vectors of the neurons them
selves.

But this begs the question of why the physical lattice was present at all. The
physical arrangement of the neurons is needed to apply the lateral inhibition func
tion. This function, in tum, ensures that neighbouring neurons had similar vectors
which is necessary because the I-from-N representation scheme has no degree of
redundancy: if the correct neuron fails to fire (due to noisy input, for example) then
the reSUlting output pattern would have no overlap with the desired pattern. The
lateral inhibition forces correlations between neighbouring neurons in an attempt
to compensate for this.

The addition of conscience within each neuron seems like an appropriate
measure for any self-organising system which aims for robustness. Avoiding the
problems associated with a pre-defined physical neighbourhood is a more interest
ing area for discussion. One possible solution is to eliminate the need for a lattice
altogether. How could this be achieved?

Surveying The Field 32

A scheme in which more than 1-from-N neurons win each competition pro
vide a level of redundancy automatically: consider a system in which K neurons
are selected as winners after each competition. If one of the neurons which should
fire fails to do so, there are still K-1 others which could fire correctly. Thus for
large K the vector of firing neurons is almost exactly as it would be if all neurons
fired correctly. This approach removes the need to build in redundancy by way of
physical proximity and hence avoids any problems of net 'twisting'. These ideas
will be pursued in chapter six when the data coding scheme is discussed.

2.3.4 The Multi-Layered Perceptron

The MLP represented a turning point in the fortunes of neural networks as a
subject of serious study, even though the algorithm it embodies (Rumelhart, Hin
ton & WiIIiams, 1986) was first proposed by Werbos more than a decade earlier
(Werbos, 1974). Its power derives from the learning algorithm employed, usually a
variant of the error backpropagation algorithm. Using this algorithm, it is possible
to train a network containing layers of so-called hidden nodes whose outputs are
not specified by the external environment during learning. It is the role of the net
work to select an appropriate output for these nodes and to ensure that they attain
them. Error backpropagation is one practical solution of the credit-assignment
problem, which was first identified as a serious issue in the context of AI research
(Minsky, 1961).

The error backpropagation algorithm itself advocates the assignment of
blame to a hidden node in proportion to the contribution it has made to each erring
output. The assessment of this contribution relies on the use of a differentiable
threshold function for the neurons themselves.

Since the algorithm is so well known, its details will not be repeated here.
However, several key properties need to be mentioned to provide a contrast with
other networks:

Unconstrained mapping. The network can, in principle, learn to associate
any pairs of patterns, without restriction except that no two output patterns can be
associated with the same input pattern. The linear separability constraint of the sin
gle layered networks no longer apply (Minsky & Papert, 1969).

Multiple presentations. The network learns by incrementally adjusting net
work parameters over multiple presentations of a data set, guided by an energy
function. As such, it is not suited to so-called 'one-shot' learning in which a pattern
can be reliably recalled after a single presentation and learning event.

Convergence problems. The presence of local minima in the energy func
tion can prevent correct network convergence or at least make it extremely slow. A
considerable amount of effort has been expended in the research community to
resolve (or at least contain) the problem, resulting in a wide variety of MLP vari
ants including the use of a momentum term and individual learning constants for
each weight (Jacobs, 1988).

Surveying The Field 33

Generalisation issues. The ability of an MLP to generalise has also received
much attention in the literature. It is widely accepted that the size of a network rel
ative to the complexity of the mapping task is important in determining its general
isation performance (Barron, 1991).

The MLP, although a powerful and much applied network, is unsuitable for
the task to be undertaken here. The reasons for this are largely those given above.
The convergence problems and necessity for multiple presentations of a pattern
during learning are in conflict with the philosophy which motivates this work: the
demand for reliability of recall after even a single presentation.

2.3.5 Non-Holographic Associative Memory

While appearing quite a few years before the multi-layered perceptron, in the
sixties, this type of network has been left until late in the discussion because of its
relative obscurity. In spite of this, it is an important contribution to neural network
theory. The original concept of such networks is due to Steinbuch (1963), but the
approach seemed to make little impact even after it was re-interpreted by Willshaw
et al. in 1969. It is this latter paper that will be considered here. In this context, the
network was first put forward as an optical system in which beams of light (or their
absence) are the carrier of information. The concepts that it embodies can be
extracted and applied to a more conventional (in this case neural) network.

The network has two important properties. First is the ability to learn a new
association after a single presentation of a pattern-pair. Second, assuming the pat
terns are evenly distributed, the capacity of the network (expressed as the number
of pattern pairs that can be stored) tends to M, the number of output nodes, under
certain circumstances. How these properties are achieved and the side-effects of
the learning scheme will be briefly described.

The network learns to associate a set of input-output pattern pairs. Legal pat
terns are constrained, however. Each input pattern is N bits in length and consists
of n 'l's and (N-n) 'O's. Similarly, each output pattern is M bits in length and con
sists of m 'I 's and (M-m) 'O's. These restrictions are essential to the processes of
learning and recall.

The memory of the network, in which the patterns are stored, is a binary
matrix of size N x M. Every entry in the matrix is initialised to zero. During learn
ing, the input patterns, Xi, and the output patterns, 0i' are applied to the input and

output nodes, respectively. Entries of the matrix, Wij , are updated according to the
following prescription:

Wi} = 1, when Xj = 1 and 0 i = 1

= unchanged, otherwise

Surveying The Field 34

The figure below shows the learning of a single pattern pair made up of a 5-
from-8 input pattern and a 4-from-8 output pattern.

o
1
1
o
1
o
1
1

Input
Vecfor, X

(1 100 1 001)

o 0 0 0 0 0 0 0
1 1 001 001
1 1 001 001
o 0 0 000 0 0
1 100 1 001
o 0 000 0 0 0
1 1 001 001

100 1 001

Output Vector, 0

Memory matrix, W

Fig. 2·5 Single pattern learning in the non-holographic associative memory.

During recall, the test input, X', is applied to the matrix, W, producing a
potential in each neuron, U, as given by:

U = WeX'

The value of the output units is a thresholded version of this potential:

OJ = 1 when Uj~n

= 0, otherwise.

where n is the number of '1' s permitted in an input pattern.

If the input pattern exactly matches one of the learned patterns, it is clear that
each output unit which produced a '1' in the learned output pattern will receive a
potential equal to exactly n. It can thus be identified exactly. When the number of
learned association is low, it is possible to learn a new pattern in a single update of
the matrix, W, which can be immediately recalled without error in this way.

The only limiting factor is noise from other learned patterns. When an input
unit produces a '1' it evokes potential into every output unit with which it ever
made a connection during learning. Clearly, the more patterns that are stored in the
network, the greater will be the noise during recall.

An output error can occur if any of the output units which should not produce
a '1' achieve a potential equal to n. This can happen only if a connection was made
to every input node which is itself producing a '1'. But each such connection is
made with probability h, as given by:

(nm)z
h = 1- 1-NM

Surveying The Field 35

where Z is the number of learned patterns. Thus, the chance of all n of the
'1' -valued input units making such a connection with a '0' -valued output unit is
hn. Clearly this probability tend to 1 as Z tends to infinity.

For high Z, it is necessary to keep the fraction of '1' s in the input and output
vectors low. These ideas will be quantified in a later chapter, since the principles of
this network form an important basis of the work described in this thesis.

The network has a number of significant advantages. Most importantly, the
network will learn a new pattern pair after a single presentation. Secondly, the
capacity of the network is high compared to many other networks (such as a Hop
field network, see later). For a network of M output neurons, the capacity
approaches M. This is clear when one realises that each output neuron is calculat
ing, in its potential, the correlation it has with all of the input patterns for which it
was supposed to produce a '1' output. The network will only saturate when every
one of its synapses is set to '1' which, for large M, corresponds to the case when
the number of learned associations is also M. Hence, the storage capacity of such a
network tends to M.

However, the network also has some drawbacks. First, the fact that weight
values are set to one during learning rather than being increased in an additive
manner means that the frequency of presentation of a pattern is not recorded by the
network. Thus, a pattern pair presented 1 % or 50% of the time would produce a
network with the same weights.The second drawback is that, since the input/output
pairs use a representation scheme with a few' 1 's and the rest '0' (known as sparse
coding), the information content of each vector is usually less than that of an
unconstrained binary vector of the same length.

Thirdly, there is no hidden layer in the network. As a consequence, the net
work will suffer the same inability to learn linearly inseparable mappings than
other single-layered networks (Minsky & Papert, 1969).

Overall, the inherent controllability, predictability and high storage capacity
of the network make it a strong candidate for the work ahead. The ideas it embod
ies were developed to try to avoid the disadvantages described here.

The next chapter extends this review by considering developments in corre
lation associative memory (see section 3.1, page 47).

2.3.6 Hopfield Networks

All of the networks considered so far performed pattern-mapping. The input
vectors were either given or an input probability distribution specified. The output
vectors were either given or the system was allowed to generate its own representa
tion scheme according to some criterion such as maximising the information con
tent or modelling the input distribution.

The network architecture proposed by Hopfield is of a very different kind. It
is an auto-associative network with a theory couched in the statistical physics of

Surveying The Field 36

spin glass systems. It has been applied to a range of cost-minimisation problems,
one example being the classic 'travelling salesman problem'.

In his original prescription, Hopfield used noiseless binary neurons (Hop
field, 1982), but this was later extended both to the noisy case and to the continu
ously-valued neural output case (Hopfield, 1984a). The basic structure is
essentially the same, however. The N neurons in the network are fully intercon
nected. A new pattern is learned by adding to each weight an amount proportional
to the product of the outputs of each pair of neurons. For binary neurons, whose
outputs are either + 1 or -1, this means that weight is added between neurons which
produce the same output and is subtracted between neurons that produce compli
mentary outputs. One special case is that no neuron is permitted to make a connec
tion with itself. The resulting weight matrix is always symmetrical which is
important in the study of its properties.

During recall, a noisy or partial pattern is set up on the neurons and the net
work is allowed to iterate alone. In the noiseless case, the network will always
make changes in its state that reduce the energy of the system.

Empirically, Hopfield found that for zero-mean, uncorrelated N-bit patterns,
the total capacity of an N neuron network was less than 0.15N which was very low.
Analysis by Amit on the noisy case showed explicitly by way of mean-field theory
that the actual figure was closer to 0.138N (Amit,1989).

Despite the seeming low capacity, the Hopfield network is important for sev
eral reasons. First, it has applications in non-linear constraint satisfaction problems
which are NP-complete. Second, a pattern can be learned with a single modifica
tion to the weight matrix. Next, an associative memory can be made by using one
half of the neurons as the input and the other half as the output which are initially
'blank' but develop appropriate values during computation. Finally, its properties
of learning and recall are well understood, using concepts from statistical mechan
ics.

In addition to its low memory storage capacity, the Hopfield network suffer
from other problems (described by Arnit, 1989). First, the basins of attraction
around each minima are not of equal width in each direction. Thus, a network
which starts off in a state close to that of a stored vector is not guaranteed to move
towards that vector even in the noiseless case. Second, even though noise may be
added to help destabilise the local minima, this reduces the overall speed of con
vergence of the network and makes it impossible to guarantee that the network will
end up at the lowest point of the well in which it began. This results in unreliable
recall. Next, during recall the network can get caught in local minima. These can
be superpositions of stored memories but in some cases may be unrelated to any
stored pattern, so called 'spin-glass states'.

The review of Hopfield networks is extended in the next chapter to consider
the issues and limitations of such networks as well as to present more detailed
analyses of their capacity (see section 3.2, "Recurrent Memories", page 60).

Surveying The Field 37

2.3.7 Summary of Artificial Neural Networks

This section has discussed a variety of neural network architectures, but
which make up only a small proportion of the population. Each embodies a number
of central ideas.

Most fundamentally, in neural networks information is stored by connections
between neurons and is represented by the firing of the neurons themselves. Learn
ing consists of some form of synaptic modification between neurons, to develop
neurons which are tuned to identify useful features in the input and to make
stronger the connection between features which are statistically correlated.

Next, it was noted that in feedforward type networks, the learning processes
often demands that every pattern be repeatedly shown to the network over many
learning trials to achieve convergence.

In general, learning a new pattern tends to erode previously stored data,
unlike symbol systems where the storage of new data tends not to erase old data
during the storage process itself. The interdependence of stored patterns is much
stronger in a neural network than it is in a conventional AI knowledge database
such as was described earlier.

2.4 Artificial Intelligence & Neural Networks

All the discussion so far has centred around one or other of the major disci
plines of connectionism and AI, describing some key concepts in each field and the
problems left unsolved. Even from the limited selection of examples presented in
this chapter, it seems clear that far from being competitive in nature the two disci
plines in fact complement each other well; each provides possible solutions to rem
edy the drawbacks of the other. This fact has not gone unnoticed in the research
community at large and this chapter continues with a review of the debates that are
moving towards a unified theory of neurons and symbols.

2.4.1 The Proper Treatment of Connectionism?

It is likely that the idea of merging the AI and ANN approaches has been
around for as long as the individual disciplines themselves. However, progress
towards such a goal seems to have begun when Paul Smolensky produced his mag
num opus (Smolen sky, 1988) in which he tried to establish connectionism as the
only true medium for a constructive theory of how mental representation could
work. The scope of his attack was more than just the true nature of human thought
processes, but rather the whole philosophy of knowledge representation and
manipulation by 'intelligent agents'.

The irony of the debate is that Smolensky' s aim at that time does not seem to
have been one of proposing a merging of the disciplines but rather one of defend
ing the whole concept of neural networks against certain prominent members of
the AI community who claimed that connectionism (the cognitive science branch

Surveying The Field 38

of neural networks research) was fatally flawed and would only be capable of pro
ducing an intelligent machine by essentially implementing a Classical AI machine
using neural elements.

But by proposing that a neural network was far more than a medium of
implementation for a symbol system and indeed offered the only true explanation
of mental computation, Smolensky seems to have prompted a critical re-examina
tion of the differences between AI and ANNs which (if it occurred at all) had been
a far less common activity before the opening volleys of the debate.

The loudest voice of Smolensky's opponents belonged to Jerry Fodor, author
of 'The Language of Thought' (1975) and a cognitive psychologist with a long and
distinguished track record in the symbolic computing arena. In his reply to Smo
lensky's work (Fodor & Pylyshyn, 1988) he was unswerving in his belief that the
classical AI approach offered the only currently plausible explanation of thought
and cited four properties that (he claimed) any mental representation must have in
order to qualify as a candidate for a language of thought. Not one of these proper
ties (he claimed) were possessed by any neural architecture yet proposed.

Despite some glaring simplifications made for the sake of argument, the
Fodor & Pylyshyn paper effectively set the standard by which any future neuro
computational architecture would be assessed. Smolensky has continued to refine
his ideas of sub-symbolic computation but it is always to this same yard stick that
he returns for re-assessment. Since it is relevant to the architecture development,
the points made by both sides will be briefly reviewed.

2.4.2 Smolensky's Argument for 'Sub-Symbolic Computation'

In writing this paper, Smolen sky stated that while insufficient research had
been carried out into the connectionist approach to prove its capabilities as the sub
strate for mental computation, nevertheless the stage was set to state what the goals
of such research should be. In every sense, he was staking a claim, but with the
caveat that there was little supportive evidence at this time to justify it. His argu
ment could be summarised thus:

Knowledge can be encoded in a wide variety of ways, as befits the problem
at hand. In verbal and written communication, knowledge is encoded as strings of
punctuated words: language. Due to our intrinsic ability to formalise knowledge in
this way and to manipulate it mentally, we could regard the human mind as a 'con
scious rules manipulator'. Indeed, it is in this way that AI has traditionally mod
elled all aspects of human cognition.

However, in addition to the notion of mind as an entity for explicit manipula
tion of rules, there is second class of 'thought' which does not (at the conscious
level) appear to involve such formal methods. Examples of such processing are
animal behaviour and non-verbal processing (such as being able to reach a conclu
sion without being able to describe the mental processes which led there). This
level, using Smolensky's nomenclature, is the domain of the 'intuitive processor'.

Surveying The Field 39

Where Smolensky and traditional AI begin to diverge is in the handling of
this intuitive processor. By the AI account intuitive processing is just another
example of the application of formal rules. For Smolensky, this was not accepta
ble. He drew a line between two levels of knowledge representation and then
between two styles of processing which describe the computation performed at
each level. First, he defined the conceptualleve! at which individual units in the
machine may represent an object or entity in the outside world and to have the
semantics of natural language. This has traditionally been regarded as the domain
of symbolic computation.

Next, he defined the sub-conceptual level in which a unit can represent only
a part of an entity in the task domain; each entity is represented as a distributed pat
tern of activity over many units. Computation is defined as sub-symbolic and is
characterised not as the manipulation of strings by formal rules but as the evolution
of the state of a dynamic system. Essentially what he describes are just the standard
descriptions of distributed representations and processing.

Smolensky asserted that this lower, sub-symbolic level of computation is the
only way of accurately describing the mechanism of the intuitive processor.
Indeed, he went further: extrapolating its capabilities and aiming to promote it as
the best account for the rule-based symbolic level too, since it would account not
only for rule-following but also for the apparent rule breaking seen in a century of
psychological experimentation. The basis of this attack was that a rule based
approach often fails to exactly capture the full computational picture in any given
modelling problem from psychology. If the symbolic account is only approximate
then it can hardly be an explanation of how the mechanism actually works, he
argued. When re-interpreted as a set of interacting sub-symbolic units, however,
the representation can accurately describe the processing and thus is an adequate
explanation of it.

Smolensky provided no proof of his theories, instead going beyond the mere
refutation of the claim that the Classical approach is the only valid one by postulat
ing that the neural approach is the only valid one, which is also perhaps too strong
a claim. However, when taken as a statement of where we intend to go with the
neural paradigm it surely has considerable merit. The error of judgement in reject
ing Smolensky's argument for the significance of the sub-symbolic nature of men
tal computation would be comparable to the dismissal of neural networks in
general on the grounds that they were incapable of solving the XOR problem (Min
sky & Papert, 1969).

The reply to Smolensky's paper casts considerably more light on the nature
of the problem itself.

2.4.3 Fodor & Pylyshyn's Requirements for Mental Representations

The bulk of Fodor and Pylyshyn's argument against Connectionism was
summarised in their paper presented in Cognition (Fodor and Pylyshyn, 1988). In
essence, they argued that there was no current defined connectionist architecture
that could be made to account for mental representations and their manipulation.

Surveying The Field 40

They posited four properties that any representational scheme must have to be a
valid candidate as a medium of thought. Once again it is reasonable to extend these
arguments beyond the single mechanism of thought itself, to any mechanism for
general knowledge representation and manipulation.

2.4.4 Productivity

This refers to the ability of the representational encoding to handle relations
of arbitrary complexity. Formal grammars can be used to generate strings of
unlimited length from a finite set of terminal and non-terminal characters and a
finite set of rules to concatenate and manipulate them (Chomsky, 1965). The only
limit on string length is the finite memory of the machine which, as highlighted by
Chomsky, is a question of perfonnance rather than of competence.

By way of contrast, Fodor & Pylyshyn argue, current connectionist models
are extremely limited in their productive capability. Productivity arises because it
is possible to build complex things out of simple parts which is something that they
claimed could not be done with any known Connectionist network.

In fact, they are really making two assertions. First, that to be productive
there must be a combinational syntax to establish relationships between the ele
ments in a complex expression. Second, that if a neural network were to be
designed which was capable of creating complex expressions out of simpler ones,
it would merely be implementing a Classical architecture and that the neural
aspects were mere detail.

It is reasonable to agree with the first statement; that combinational syntax is
important for a generic symbol system. Thus, the network should embody a combi
national syntax. However, the second assertion is not acceptable since, as Smolen
sky argues quite reasonably, there are many aspects of the mechanism of mental
computation which are not explainable at the symbolic level. Chapter five will
attempt to clarify many of those aspects.

2.4.5 Systematicity

Here the argument is that the ability to represent a certain state of affairs
should also imply an ability to represent other states. To quote Fodor & Pylyshyn's
own example, the ability to represent:

'John loves the girl'

should reasonably imply the ability to represent:

'The girl loves John'

This is the case with data structures which have a compositional syntax but is
not necessarily true for a neural network in which the ability to represent 'John' as
the subject of the sentence implies nothing about its ability to represent 'John' as
its object.

Surveying The Field 41

At the heart of this argument is the ability to perform variable binding. In
this case, the token John is bound either as subject (in the first example) or object
(in the second). Fodor & Pylyshyn are claiming that variable binding is essential
for knowledge manipulation, that neural networks are not capable of it and that if a
neural network could perform variable binding then it would be merely implement
ing a Classical architecture.

It is reasonable to admit that systematicity is an important property that a net
work should display. However, to claim that variable binding is not possible in
neural networks is an unreasonable assumption. Several examples now exist (for
example that of Sun (1994), which show that variable binding is possible, although
examples were perhaps harder to find at the time that the critique was written.

2.4.6 Compositionality

This issue is closely related with that of systematicity. It states that the indi
vidual symbols retain their intrinsic meaning regardless of how they are arranged.
So, to quote their example once again, the meanings of 'John', 'loves' and 'the
girl' are the same in both sentences:

'John loves the girl' and

'The girl loves John '.

The difference in semantics is due to how each symbols stands in relation to
the others, rather than any changes in the meaning of each symbol alone. Having
fulfilled the requirements for productivity and systematicity, a neural network
would almost certainly meet the requirements for compositionality.

2.4.7 Coherence of Inference

This is the weakest of Fodor and Pylyshyn's four arguments since it is based
largely on the attack of a fairly non-representative member of the connectionist
population, a network for logical deduction, an example of which is shown below:

A and Band C

B andC

Fig. 2·6 Fodor & Pylyshyn's argument for Coherence of Inference.

A firing node represents a logic deduction, as indicated by the node label. An
arrow indicates a positive connection that will cause the child node to fire if the
parent node fires. Thus, activation of the node labelled' A and B' will cause the
node labelled 'A' to fire, indicating that the fact that 'A AND B' is true also
implies that A is true.

Surveying The Field 42

Fodor and Pylyshyn's argument here is two-fold. First, that the deductions
which can be made using this network depend only on the way it was constructed.
For example, no node labelled 'E' appears from the node labelled 'A and E' even
though E would be a logical conclusion of 'A and E'. It would seem that the con
clusions are only exhaustive if the network was exhaustively specified at the begin
ning.

Their second argument is that the causal nature of the network is, in reality,
independent of the labelling. If the label 'A' on the lowest node was changed to
'D' then the network would behave the same, even though it were making an
incorrect deduction, logically speaking. The problem is that the meaning of each
node, as given by the label that it carries, does not causally affect the processing
itself.

Clearly, the example they use is not a neural network in its more general
sense. It is the explicit tokening of variables and expressions using variables in an
arbitrary manner which permits this problem to occur.

Despite the flaws in this argument, the idea of inferential coherence does
illustrate a number of key concepts. First, that the meaning of a pattern of activity
of neurons can only be specified and understood in terms of the causal effect it has
on the evolution of the state of the system. Appealing to labels or other baggage
which is not causally related to processing is to add meaning where it is not. Sec
ond, that by assigning meaning to a particular pattern produced in one step of
processing, one has made an obligation to ensure that this assignment is consistent
in every other interaction it may take part in. This is a consequence of the fact that
its meaning lives or dies by the pattern itself, which was assigned in one context
but may be used in others. This crucial point strongly influences the symbol encod
ing chosen for this work, which is described in chapter five.

Since 1988 there have been developments. The whole debate of how to use
neural networks in a symbol environment is now receiving a great deal of attention
in areas outside of philosophy and psychology (see for example Honovar & Uhr,
1994).

The next two chapters will discuss in depth the major areas of research into
neuro-symbolic systems (section 3.3, "Coding and Representation of Symbol
Structures", page 67 and section 4.0, "Introduction", page 85).

Surveying The Field 43

2.S Conclusions

This chapter has presented a brief overview and critique of the existing ideas
which are relevant to this work. These ideas were drawn from the areas of neuro
science, Artificial Intelligence, Artificial Neural Networks and hybrid architec
tures.

It emerged that in the area of unified neuro-symbolic systems there exists a
potential for significant progress towards systems that combine the best features of
both the Classical and the Connectionist approaches.

From the Classical AI account, we gain the ability to construct and manipulate
knowledge structures of arbitrary complexity and size; to decompose problems
into manageable sub-problems and handle the intermediate results; to explore pos
sible solutions by rearranging sub-parts and then evaluating the resulting whole; to
perform deductive inference; and to learn new data in a single trial without disrupt
ing the ability to recall other, unrelated, data.

From the Artificial Neural Networks account we gain the ability to statistically
extract relevant features in the input data without supervision; to address stored
data by content rather than by index; to have graceful degradation in performance
given noisy or incomplete data; to generalise from existing data (inductive infer
ence by interpolation); to store correlated data efficiently; to use noise and non-lin
ear optimization techniques in the evaluation of potential solutions to a problem.

In combining the two approaches we hope to eliminate (or at least reduce)
the effects of several key problems which persist in either solution alone. In the
Classical AI account the key problems are the prohibitive amount of resource
needed to search a huge knowledge base for relevant data or problem space for a
valid solution; the prohibitive amount of processing resource needed to keep a very
large database consistent; the fragility when faced with new situations, due to poor
generalisation capabilities.

In the Artificial Neural Networks account, the key problems are the inability
to represent data structures of arbitrary complexity; the inability to manipulate data
structures using control strategies as complex as those found in symbolic algo
rithms; the inability to focus on one part of its database at a time, bringing only a
subset of its knowledge to bear on a problem at anyone time; the lack of a good
solution to the variable binding problem; the degradation of stored memories with
each new learning cycle.

In a qualitative sense, one might say that the problems associated with AI
systems are based on the fact that data items are too static: each has a pigeonhole
and does not change unless something changes at the symbol level. This makes it
more difficult to use the information; for a piece of information to be used in any
situation it must be explicitly accessed. Keeping the knowledge base coherent thus
requires an investment of resources; the system could hold two contradictory facts
and must expend 'effort' to find and eliminate such inconsistencies.

Surveying The Field 44

But the ANN approach has the opposite problem. There appears to be rela
tively little stability for its stored knowledge (every learning event helps to degrade
the storage quality of previously stored patterns) and it is difficult to control how
(and if) such knowledge is applied to each recall event. However, as each new pat
tern is learned the network is able to make minute adjustments to the way it
encodes all stored patterns so that there exists the potential to develop an underly
ing unity which can be exploited to keep the database unified.

In short, a hybrid architecture should not be thought of as an unnatural mix
ture of symbols and neurons. That is a superficial detail. The assertion which
underlies this work is that the fundamental issue is one of finding the right balance
between the separation, stability and flexibility of association of data items on the
one hand, and their computational integration and mutability on the other. Further
more, the philosophy presented here is that an architecture which achieves the right
balance, be it implemented in 'neurons' or PROLOG, is the architecture which will
form the basis of systems that can finally rival the intelligence of humankind. The
results to be presented in later chapters represent steps towards finding that bal
ance.

The next two chapters continue the review by considering in more depth the
details of key areas: correlation associative memories and the implementation of
reasoning systems in neural networks.

Surveying The Field 45

CHAPTER 3

3.0 Introduction

Detailed Review I:
Coding and Storage
Issues

The survey presented in chapter two represents an overview of the topics that
were considered at the outset of the work presented in later chapters. This review
now continues with a more in-depth examination of particular elements that are
most directly related to the contents of the thesis.

The in-depth review is divided into two chapters due to its length. The first
of these looks at neural coding issues, including associative memories and
approaches to coding symbol structures as neural representations. The second
chapter of the detailed review will examine the topic of reasoning systems, particu
larly architectures that can be implemented as neural networks.

This chapter, then, is divided into three major sections. The first section
looks at the current literature on connectionist associative memories and issues in
pattern encoding for such memories. Important properties such as retrieval and
storage capacity are considered and will provide a basis for comparison with the
network to be developed in later chapters.

The second section in a similar vein to the first, is dedicated to the recurrent
associative networks, principally the Hopfield network but also some variants such
as the bi-directional associative memory and the Boltzmann machine.

The third section returns to the theme of coding in neural networks, but
addressing the more complex issues involved in representing symbol structures. It
examines a variety of approaches and attempts to identify the benefits and limita
tions of each.

A final section presents a summary of the chapter, highlighting the key
points that will be drawn upon in later chapters.

Detailed Review I: Coding and Storage Issues 46

3.1 Connectionist Associative Memories and Coding Issues

In this section, the literature on connectionist associative memories will be
reviewed in greater depth than the cursory review of chapter two (section 2.3.5,
page 34 and section 2.3.6, page 36). This review begins with a discussion of the
different ways of categorising such memories, before considering individual con
tributors who have provided key results in this area.

The review will begin with the simple feedforward approaches typified by
Kohonen and Anderson. Several memories based on the non-holographic associa
tive memory of Willshaw et al. will also be considered as well as the sparse mem
ory approach of Kanerva. The next section will consider memories with feedback
such as the Hopfield network, the Boltzmann machine and Kosko's BAM network.

In all cases, the objectives will be to consider the parameters which are
important for characterising the memory, how each memory compares in terms of
those parameters, and what trade-offs were available to the designer to achieve his
or her goals.

3.1.1 Categories of Associative Memory

All associative memories share a common basic structure and set of aims. In
each case the goal is to associate an input and an output vector together using a
matrix of connections, or weights. The values of the weights are such that when the
input vector is re-applied to the network, the associated output is produced. Nor
mally many such input-output pairs are stored within the same matrix so that on
any given recall the output calculation is affected not only by the desired pattern
but also by other unrelated activity coming from the other stored vector pairs:
cross-talk. A major part of the design of such memories is to extract the desired
vector from the memory while suppressing or even eliminating the crosstalk.

We can classify the many types of associative memory according to a
number of categories, the most important of which (from the point of view of this
work) will be briefly summarised.

Feedforward or recurrent? In feedforward memories, the input pattern
elicits a single wave of activity through the network and an output vector is pro
duced once. In recurrent networks (such as the Hopfield and BAM networks to be
described in the next section) the output vector is fed back to the input and influ
ences future network activity.

Iterative or non-iterative recall? During the recall process, some networks
allow the output to develop over time by an incremental scheme. This iterative
scheme contrasts the alternative approach where the outputs immediately achieve
their final values. The former method is more compute intensive, but (by the same
token) makes more complex recall operations possible.

Detailed Review I: Coding and Storage Issues 47

Hetero-associative or auto-associative? In hetero-associative networks, the
input and output patterns are permitted to be different. They may even have differ
ing dimensionalities. In the auto-associative case, a pattern is associated with itself.

Binary or bipolar vector encoding? The choice of ei ther {O, I} or { -1, + 1 }
as the set of valid outputs for any neuron impacts the signal to noise analysis and
the learning algorithm.

Vector encoding? The rules which define what constitutes a valid vector.
Some memory architectures are more restrictive than others. Choices for vector
encoding include I-from-N, M-from-N and the so-called 'standard' encoding
(which allows roughly 50% of neurons to be 'on' and the other 50% to be 'off').

Layer structure? Some memories have only a single layer of neurons, while
others permit multiple layers. This choice is a trade-off between required resources
and flexibility since adding more layers allows more complex transformations to
be made with a single network.

Matrix element? The designer may choose either binary elements for the
weight matrix or continuous. An intermediate, quanti sed, element has also been
used to allow the memory capacity as a function of matrix element information
capacity to be assessed.

Synapse modifications during learning? Here we distinguish between
learning algorithms that set the synapse to a pre-specified value (such as '1' for the
Willshaw memory) and those that add to or subtract from the current value (such as
for the Hopfield network).

Learning algorithm locality? Some learning algorithms make synaptic
modification based on locally available information (such as occurs in purely Heb
bian learning). Other algorithms draw on non-local information, perhaps requiring
the whole pattern set to decide on each synaptic value (such as the pseudo-inverse
prescription). Usually it is the latter type that produces the best results.

Pattern modification during learning? A small number of proposed algo
rithms actually modify the patterns that they are storing to make them easier to
store and retrieve.

These are the most important distinctions that will be made in this review.
The rest of this section will look at correlation matrix memories. Discussion of the
recurrent memories is left until the next section.

3.1.2 Correlation Matrix Memories

While the idea of associative memory has existed since antiquity, it was per
haps the work of Hebb which triggered the search for a mathematical treatment of
memory (Hebb, 1949). It took about twenty years for work in this area to really
start to bear fruit, leading to the Steinbuch memory model called the 'Lernmatrix',
in the early sixties (Steinbuch, 1963). This, in tum, led to the Willshaw non-holo-

Detailed Review I: Coding and Storage Issues 48

graphic memory a few years later. A different approach to the learning scheme led
to the correlation memories of Anderson and Kohonen in the early seventies and
we continue by considering these models (Anderson, 1972; Kohonen, 1972) in
more detail.

In both models, a set of vector pairs, P, are to be stored in a matrix of mem
ory elements. Using Kohonen's naming convention, the set of output or data vec-

tors, x(p) are associated with the set of input or key vectors, q(p). This is achieved
via a matrix of elements, Mxq, constructed using the sum of outer products rela
tion:

M·· = c ~ x.(p) • q(p)
JI L.J J I

pe P

where c is a constant. Recall of a particular data vector is achieve by apply
ing its associated key vector thus:

If the key vectors are orthogonal, the data vectors can be recovered exactly.
In the case where the key vectors are non-orthogonal there is interference between
the output vectors, producing noise at the output. From this common starting point
Kohonen and Anderson's investigations took different directions. Kohonen con
sider the possibility of incomplete connectivity by introducing sampling coeffi
cients, Sij' into the matrix, permitting a fraction of the matrix elements to be set to

zero at random. He showed for number of general situations that the number, s, of
matrix elements not set to zero was proportional to the number of components (i.e.
the dimensionality) of the output vector.

Finally, Kohonen analysed the case of essentially moving the position of the
s non-zero elements in the matrix by an iterative process in order to maximise the
mean signal term during each recall. This idea is interesting but it is difficult to see
how it could be used in a large network such as will be developed here, especially
one in which connectivity will be specified in advance.

Anderson's model was slightly different in that he had two groups of neu
rons, with each neuron in the first group making a fixed number of connections, M
with neurons in the second group. The learning prescription was once again the
sum of outer products. He showed that the signal to noise ratio for his network was
proportional both to the number of neurons per group, N, and to the number of
connections per neuron, M, but inversely proportional to the number of stored pat
terns, K.

The common failing of these linear networks is well known: the lack of non
linearity and (as a consequence) the inability to add a useful second layer of neu
rons needed to implement more complex mappings. Even though the means to
address non-linearity were first developed around this time (Werbos, 1974) it was
more than a decade before the principles involved were brought to the attention of
the neural networks community (Rumelhart & McClelland, 1986).

Detailed Review I: Coding and Storage Issues 49

The outer product learning rule is local since it is based on the correlation
between pre- and post-synaptic activity, something that is plausible and straight
forward to implement. This point should be noted for comparison with later net
works which often used more complex, non-local learning rules that can produce
better results but with the cost that they are difficult to implement for large net
works (see later in this section).

In the early seventies, perhaps because the ideas involved were so new, there
seems to have been a number of approaches to the modelling of associative mem
ory that differed in the level of neurological realism incorporated into the model.
The Kohonen approach was to strip away almost all of the biological aspects, leav
ing a problem that was essentially one of extracting signal from noise. Anderson's
model was similarly constructed, although he was at pains to discuss the biological
realism of his proposed architecture. At the other extreme were models typified by
Little & Shaw that took into account the functional implication of many of the bio
logical processes involved in real neurons and their synapses such as the probabil
ity distribution for the release of vesicles and the modification of neuron thresholds
(Little & Shaw, 1975).

The Little and Shaw model was couched in the statistical physics of spin
glasses and seems to be a forerunner of Hopfield's auto-associative network. Their
paper is particularly interesting because it tries to deal with multiple levels of
memory permanence. As well as the short-term memory (represented by the rever
berating pattern of activity) and the long-term memory (permanent changes in syn
aptic strength and number) they also model an intermediate level of memory based
around temporary changes in synaptic value. The idea of multiple levels of perma
nence in the memory is a key concept in later chapters in this thesis, but seems to
have received little attention after Little & Shaw's work.

By the early eighties, more varied models of associative memory began to
appear. One important model was of course the recurrent Hopfield network, first
presented in the last chapter and of which more will be said the next section.
Another was the multi-layered perceptron of Rumelhart et al.(1986), the limita
tions of which act as a catalyst for much of the work in this thesis.

We turn now to some of the work that has appeared on variants of the
Willshaw memory, analysing capacity and considering the recall and learning
trade-offs for a range of different coding schemes and architectural modifications.
The first of these by Baum, Moody and Wilczek, seems to be motivated by the
issues in implementing an associative memory in VLSI, although it provides a
thorough review of some of the storage issues in such networks (Baum et al.,
1988).

They considered a number of possible internal representations for a two
layer network, with N-bit input and output vectors and an intermediate layer of G
bits. Like the Willshaw model, the network was composed of binary synapses,
which all begin as zero but are set to one whenever both the pre- and post-synaptic
neurons fire simultaneously. Their network used polar inputs (+1 and -1) which
permitted a zero input to act as a don't care signal. Their analysis of storage capac-

Detailed Review I: Coding and Storage Issues 50

ity could therefore include recall from a partial input, consisting of b bits out of the
totalofN.

They also considered the precision of each synapse (a major concern for a
VLSI implementation of such a network, where fabrication tolerance of resistors
could introduce significant errors in the potential of each neuron).

They show that for 1-from-G encoding in the intermediate layer, such a net
work can recall any stored pattern given a unique fragment but that fan-out and
fault intolerance place limits on the capacity and reliability of such a scheme.
While they state that a neuron only needs to connect to log M other neurons (where
M is the number of stored pattern pairs) to recall any of M patterns, this leaves no
room for error or for system faults, so should be treated as an absolute lower limit.

For distributed representations they looked at s-from-G encoding, once again
with N-bit input vectors in which only b bits were specified during recall. They
showed that the number of bits, b, that must be specified to activate a particular
pattern in the hidden layer is:

1
b ~ logM + logE + 2a.JbMsIG

which must be solved iteratively for b. Again, M is the number of pattern so
the first term is the number of bits required to uniquely identify the input pattern.
The quantity 1-£ is the probability that the b bits of the pattern are unique, so the
second term represents the number of bits to add to b to attain that expected proba
bility. The third term takes into account the fact that extra bits may be required to
attain the signal to noise ratio, a, demanded for the desired level of confidence in
the result.

They go on to show that the number of stored pattern pairs can exceed the
number of intermediate neurons, G, for sparse coded vectors. Turning to binary
vectors, they show that the synaptic efficiency (defined as pattern bits stored per
synaptic bit) reaches a maximum when half of the synapses are set to '1', which

occurs when the number of bits set to '1' in each vector, s, is given by s = \Ogi
where X is the fraction of firing neurons in each pattern and the log is base two.

Moving on, the work of Nadal & Toulouse was to consider a single layered
Willshaw memory, and its recall characteristics both below and above the satura
tion limit (Nadal & Toulouse, 1990). They also put forward the idea that the capac
ity of the network should be measured not only in terms of the total number of
patterns stored but also in terms of the information stored in each pattern. This is
important for sparse patterns where the actual information stored per pattern can be
low compared to the number of bits in the vector.

Detailed Review I: Coding and Storage Issues 51

After deriving the infonnation density of a sparse coded vector in tenns of
the fraction of '1 's, they go on the show that for a given proportion, q, of synapses
set to '1', the number of bits stored per binary synapse, iw is given by:

iw In2 = In q In(l-q)

which has a maximum at q = 0.5, in line with the result of Baum et al.. Fur
thennore, as the number of stored pattern pairs is increased beyond that point, the
error rate of each stored pattern increases, but there is no catastrophic failure of the
memory as is seen for the Hopfield network. This region of operation they call the
error-full regime since there are almost certainly some errors in every recalled pat
tern. A graph of infonnation stored in the network versus the proportion of syn
apses set to '1' is reprinted below.

In 2

o 112 q
1

Fig. 3- 0 Storage density vs. proportion of active synapses, Nadal & Toulouse (1990)

They show that even when operating in the error full regime, where some
output bits have errors, that the infonnation storage per bit, iw' is still given by

iw In2 = In q In(l-q)

so there is an appealing symmetry in the rise and fall of the storage density as
q varies from zero to one. The optimal capacity, Pc, of such a network (if a single

bit error in any pattern is allowed) is shown to be:

Pc = (In2)3N2/ (1nN)2

As a further line of inquiry, Nadal & Toulouse investigate a Hebbian learn
ing rule, where synapse values are incremented when there is simultaneous pre
and post-synaptic activity. The binary synapses of the original Willshaw model,
are therefore replaced with multi-levelled synapses with no upper bound on their
value. An extra complication is that the threshold, while fixed for the Willshaw
model, is now a non-trivial function of the number of stored patterns. They show
that the synaptic efficiency for the Hebbian scheme in the error full regime tends to
the constant value lI7t bits, a very different result to that of the Willshaw model

Detailed Review I: Coding and Storage Issues 52

where the value tended to zero in the limit as q approached one. They attribute the
variable threshold as the probable cause of this result. A more likely explanation is
that the unbounded range of values for the synapses means that the values do not
saturate as they would in the binary Willshaw network.

A third example of further developments to the Willshaw memory is the
ADAM network (and its descendents) (Austin & Stonham, 1987; Austin, et ai.,
1991). The ADAM network is based on the Willshaw associative memory but has
been enhanced to address the practical use of the memory in a number of environ
ments (principally object recognition, in which the data can be noisy or the object
occluded). The authors made two major enhancements to the Willshaw network.

The first change was to the threshold procedure, which in the Willshaw net
work consisted of setting the threshold for all neurons equal to the number of
active bits in the key vector. The Willshaw procedure is shown to lack robustness
when faced with noisy key vectors. ADAM uses an 'L-max' procedure, in which
the L neurons with the highest potential are permitted to fire. This turns threshold
ing from an absolute into a relative procedure, with all neurons competing against
one another for the right to fire. Austin and Stonham showed that this approach is
more robust than the Willshaw memory in a noisy environment.

The second enhancement in ADAM relative to the Willshaw memory was to
introduce a second layer to the memory and to introduce a set of intermediate key
vectors between the two stages. These so-called 'class patterns' effectively clean
up the signal inherent in the noisy key vectors. During learning, each key vector is
associated with a randomly generated K-from-N class vector in the first memory
and this same class vector is associated with the output (or teach) vector in the sec
ond memory. Austin and Stonham demonstrated that a small, two stage memory
can produce the same results as a much larger single stage memory, representing a
significant increase in the efficiency of resource usage.

Further developments of ADAM resulted in an architecture for symbolic rea
soning. This is discussed later (see section 4.4.1, "Austin's Associative Memory
for Reasoning (AURA)", page 108).

As a final example of further work based on the Willshaw associative mem
ory, we consider work by Casasent and Telfer(1992), who compared a range of
coding methods and learning algorithms for associative memories. The first layer
of a multi-layered system was used to investigate the properties of maximum stor
age and recall accuracy using the target algorithms. This layer was made up of N
bit input vectors mapping to K-bit output vectors via an KxN matrix, M. In all
cases, the algorithms assigned values for the matrix coefficients of M in the equa
tion linking the set of input vectors X to the set of output vectors, Y, which is
Y=MX. As well as the storage capacity of the network, the performance in noise
was also evaluated to assess the robustness of each learning method for real world
applications.

The direct storage nearest neighbour algorithm (DSNN) acted as the baseline
algorithm for comparison purposes and is based on a similarity metric together

Detailed Review I: Coding and Storage Issues 53

with a winner-takes-all threshold permitting a single neuron to fire. Rows of the
matrix correspond to stored patterns, and the synaptic coefficient matrix was

defined as M=XT. Since each output pattern is signalled by the firing of a single
neuron in the output, the maximum number of stored patterns is equal to the
dimensionality of the output vectors, K. This was the best the algorithms in terms
of storage capacity and scored highly for robustness in noise. The disadvantages
are that a winner-takes-all threshold is required over all of the neurons and in prac
tical systems there is no fault tolerance so a single neuron failure causes the total
loss of the stored pattern.

The ubiquitous sum of outer products algorithm, M=YXT, was considered
but with a reported storage capacity of only N/41n N this proved to be the weakest
of the algorithms in the investigation. This result is surprisingly low. Though it is
not clear from the text, it may refer to the capacity of the recurrent Hopfield net
work (which does use outer product as its learning algorithm) and thus should have
been considered apart from the other, purely feed-forward networks. The algorithm
also performed worst in the noisy case.

The pseudo-inverse algorithm was shown by simulation to produce a higher
storage capacity than the two previous approaches for K=N (the DSNN algorithm
can produce better results but only for K>N), being equal to the dimensionality of
the input vectors, N. But the learning procedure itself, involving the minimisation
of an energy function for the complete set of patterns, is both non-local in character
and computationally intensive. Both properties make it unsuitable for the type of
networks that will be studied later in this work. Also, for a system continually
learning in a real-world environment it is not possible to know the entire vector set
before any training can begin.

The next method they compare, the Ho-Kashyap (or HK) algorithm (and sev
eral variants), has a potential capacity of 2N patterns. This is an impressive result
(compared with the Hopfield networks O.l35N, for example). However, this algo
rithm is not only more compute intensive than the pseudo-inverse, it also modifies
the output vectors (using an iterative procedure) to make them easier to store. Such
an approach may be neither practical nor desirable in some problem domains.
However, the notion of modifying the stored vectors themselves is one that was
considered in the work reported in this thesis, both in the architecture (chapter five)
and network development (chapter ten).

In terms of noise performance, Casasent and Telfer note that while the basic
HK algorithm has poor noise performance when the number of stored patterns, M,
is near the input dimensionality N, variants of this basic algorithm (although more
compute intensive to execute) provide good performance in noise even for
M>1.4N.

As a final method in this part of their work, Casasent and Telfer used more
complex codes as the output of the first layer (rather than I-from-K codes as they
had done previously). These codes were intended as addresses into the second
layer or an external memory containing the associated output patterns. This
scheme, they referred to as Content Addressable Associative processors (CAAP)

Detailed Review I: Coding and Storage Issues 54

and they restricted its use to the pseudo-inverse and HK algorithms, only. In both
cases, the absolute storage capacity was not changed. However, the use of a more
compact encoding for the output vectors permitted a reduction in the output dimen
sionality, K. This, in turn, led to an improvement in storage density due to the
reduced total number of synapses. The results of their storage capacity analysis are
shown in the tables below:

Table 3-0 Comparison of Network Storage Capacities in the noiseless case. From Casasent &
Telfer (1991)

Storage Capacity Memory Size Storage Density

Memory Type M NK MINK

DSNN M -> intlnity NM liN

Correlation N/41n N N2 1I4Nln N

Pseudoinverse N N2 liN

HK 2N N2 2IN

Pseudo inverse CAAP N Nlog2 N l!log2 N

HKCAAP 2N N + Nlog2 N 2/(1 + log2 N)

For networks operating in noise the results they obtained for the ratio of
stored patterns to neurons for the case where at least 95% of the patterns are
recalled perfectly is summarised below:

Table 3-1 Stored patterns per neuron, MIN, for several network types and several levels of noise
during recall. From Casasent & Telfer (1991)

Network Architecture

Noise, C1 DSNN Correlation Pseudoinverse 11K

0.00 1,2 0.12 1.04 1.52

0.05 1,2 0.12 0.88 0.88

0.10 1,2 0.12 0.72 0.72

0.20 1,2 0.12 <0.6 <0.6

Overall, a trend is clear. The simplest training methods (such as the vector
correlation or outer product algorithm) give the lowest storage performance and
poorest performance in noise. Better storage requires more complex training meth
ods, even to the extent of modifying the output patterns themselves. Generally,
obtaining good noise performance involves training with noisy vectors, which adds
to the training time.

The only exception to these observations is the nearest neighbour classifier
(DSNN), which provides impressive storage capacity and noise performance with
virtually no training (each input pattern is assigned to one output neuron, as
described above). The problem of fault intolerance and the fact that the number of
stored patterns cannot exceed the number of output neurons are the only drawbacks
and even these may be acceptable penalties for some applications.

Detailed Review I: Coding and Storage Issues 55

In a second part to their work, Casasent and Telfer consider alternative,
denser encodings for the recollection vectors (the outputs to the first network
layer). Four encodings are considered: binary (or standard) coding, Hamming
codes, BCH codes (a variant of Hamming coding) and L-max encoding, in which
only the L neurons with the highest potential fire, all others being silent. The prop
erties of L-max encoding were first demonstrated by Austin & Stonham in their
ADAM network, discussed earlier in this section.

Over a series of tests using a variant of the HK algorithm to train the weight
matrix, it was shown that the L-max scheme offered almost the best performance
in the noiseless case but proved to be superior (i.e. most robust) in the noisy case,
with performance degrading slowly with increasing input noise. The binary encod
ing, while performing best in the noiseless regime, also showed the steepest per
formance degradation with increasing input noise.

Some of Casasent and Telfer's results are shown in the table below which
shows the maximum ratio of stored patterns to neurons (Le. the capacity per net
work processing element) for two different output encodings: the binary encoded
output and the L-max encoding with L = 2. The capacity was measured for a range
of error rates, P' c' defined as the percentage of fully recalled vectors.

Table 3-2 Storage capacity, MIN, for different output encoding schemes and different recall
accuracies, P' c

Binary Encoded Outputs L-max (L=2) EncodedOutputs

Binary Biipolar Keys (number of errors) Binary Encoded Keys (number of errors)

P'c 0 1 2 3 0 1 2 3

90% 1.52 0.80 0.60 <0.60 1.68 1.36 1.04 0.92

95% 1.32 0.68 <0.60 <0.60 1.44 1.16 0.96 0.72

99% 0.92 0.60 <0.6 <0.6 1.24 1.04 0.72 <0.6

The results show that the L-max scheme gives superior storage capacity for
an equivalent number of errors and suffers a lower rate of performance degradation
with decreasing tolerance to errors (i.e. increasing P' c),

On a different topic, the point made by Nadal and Toulouse to the effect that
the information stored per pattern is also a significant factor in determining infor
mation storage capacity was not considered by Casasent and Telfer. Perhaps they
tacitly assumed that ignoring the second network layer (which encodes the output
pattern) would render such considerations irrelevant.

A final point needs to be made concerning their definition of correct recall.
They used the metric of 98% perfectly recalled patterns, so two in every hundred
patterns were permitted to have errors. This, they argue, is because a single error in
the output of the first layer causes the wrong memory to be addressed in the sec
ond. While this may be true, for many practical systems (including the one to be
defined in this work) we require that every single pattern be recalled correctly.
Allowing the odd pattern to fall outside of the defined error bounds is simply not

Detailed Review I: Coding and Storage Issues 56

acceptable since it could lead to total confusion in an ongoing symbolic computa
tion. Having said that, it is much easier to build-in a level of redundancy in each
pattern so that each input vector can contain a non-zero (but bounded) number of
errors and still be correctly transformed by the network. These issues are discussed
more fully in chapter six, which discusses the pattern encoding methodology that
will be used (see section 6.4.2, page 164).

3.1.3 Further Work on Correlation Memories

Here we consider some key points in some other contributions to the under
standing and exploitation of associative memories. Much of the more recent work
has been to examine variants of earlier networks or to apply them to particular
domains.

Both a review and a different interpretation of WiIIshaw memories and their
variants was provide by Palm (1980). He also speculated on their suitability as
models for associative memory in humans and other animals, although he did not
arrive at any definite conclusions.

Graham & Willshaw investigated more complex variants of the original
Willshaw model by including partial connectivity between the input and output
neurons in the calculations (Graham & WiIIshaw, 1995a, 1995b). Such an approach
was designed to address more neurologically plausible models where fully inter
connectivity between cortical cells does not occur.

The complexity that occurs in sparse, randomly connected networks is that
the signal arriving at each output neuron is now subject to variation due to the
missing connections. Graham and WiIIshaw address this problem by modifying the
threshold as a function of the input activity and the output unit usage. They show
that lower connectivity can lead to higher storage capacity and that the optimal
information storage efficiency (stored bits per synaptic bit) is not only a function of
the connectivity but also of the noise level in the input patterns, the required level
of connectivity rising for increasing noise level. At a noise level of 40%, they show
by simulation that the optimum connectivity is slightly below 20%, which they
claim is a possible explanation of the low connectivity of the human neocortex.
These results are extremely interesting and deserve further work at a later time.

As a rare example in work on the tailoring of an associative network for a
given mapping problem, Turner & Austin (1997) provide a probabilistic frame
work for estimating the minimum size of a multi-layered associative memory for a
given level of system performance. Interestingly, the network allowed both partial
matches and multiple simultaneous valid outputs. To facilitate this, the first layer
of the network used a threshold that was lower than the number of '1' s in the input.
Subsequent layers were used to refine and separate the patterns.

3.1.4 Kanerva's Sparse Distributed Memory

Although not a matrix associative memory. the novel approach to memory
drawing on the power of high-dimensional vectors put forward by Kanerva is a
related topic and so it will be included here (Kanerva, 1988).

Detailed Review I: Coding and Storage Issues 57

Kanerva's memory architecture was built around a small number of high
dimensional vectors. He used one million binary vectors each of 1000 bits, which
thus could cover only a small fraction of the pattern space. The value encoded in
each neuron, he called a hard location. The values of the all of the hard locations
were distributed randomly so as to uniformly cover the 1000 dimensional input
space.

The mechanism behind the memory is to allow any input vector, x, to be
stored by first locating the set of hard locations that are within a Hamming distance
r of it (defined as the number of bits to change to transform one pattern into the
other).

The selection is done by applying the pattern vector in parallel to the one
million neurons and selecting those with a potential above a value that is a function
of r. (In the example, r was set so that the number of neurons had a mean of one
thousand). Once the set of vectors has been located, several possible schemes can
be applied to store the associated word. In the simplest, the target word is merely
written to every hard location in the set, either overwriting the old value (if any) or
being stored along with it, in the case of the multi-set (which allows an unbounded
number of independent writes to the memory).

When attempting to read from the memory, the input vector is applied to all
one million neurons, as before and the one thousand with the highest potential
were selected. The value read was either the average of the values associated with
the winning vector set of the most common value.

In an extension to the basic model, a series of reads was used to converge on
the correct answer. The input vector was used as an initial guess and the output was
used as the next guess. Under certain circumstances, the series of vectors generated
in this way will converge on a better result than that obtained from a single mem
ory read.

In fact, the mechanisms of the Kanerva memory have much in common with
those of associative memory and of competitive learning. Many neurons in parallel
compete to represent a given pattern and many patterns are superposed. The cor
rect vector can be extracted from the noise generated in the overlap because its sig
nal is statistically the strongest.

An extension to Kanerva's memory has recently been proposed (Hely et ai.,
1999). The authors point out that the Kanerva memory is only optimal when the
input vectors are evenly distributed and the statistics of the vectors do not change
over time. Thus, for correlated vectors the memory is not optimal.

They propose a variation in which the storage locations are not specified in
advance. Instead, they are created location by location as each new input pattern is
presented, each new storage element taking the exact value of the input vector.
Once all of the storage locations have been allocated, they begin to compete for
new patterns. As in the earlier model, the Hamming distance is used to find the set
of locations closest to the new pattern, but instead of the hard threshold of the Kan-

Detailed Review I: Coding and Storage Issues 58

erva model (in which a particular location is either within the given radius of the
input vector or not), a mechanism based around diminishing signal strength as a
function of distance is used. Locations further from the input vector are modified
less than those lying near to it.

To ensure that the storage locations follow the changing distribution of the
input vectors, periodically there is a purge in which the locations which are used
the least are pruned and new locations are initialised to replace them in areas of the
input space that are more inhabited.

It is clear that this variation takes the model even further towards a competi
tive learning network. Locations effectively move into areas that are populated
with data points, so the competitive element that existed before has become a fight
for life for each storage element.

It is less obvious how such a memory compares with the standard competi
tive learning scheme such as a Kohonen network. For example, in the latter scheme
the input vectors stored in the memory elements are moved in order to track the
input statistics, whereas here this mechanism is performed using a kind of neuronal
'death and rebirth'. Whether this leads to better or worse performance is hard to
tell and further analysis is required.

3.1.5 Summary of Associative Memory and Discussion

This section has presented some of the key contributions and results in the
area of associative memories. It has been shown that using binary associative
memory it is possible to achieve storage levels in excess of N, the number of neu
rons in the memory. When permitting errors to occur in the associated output pat
tern, the storage capacity can be increased still further.

Various storage prescriptions have been compared, leading to the not unsur
prising result that non-local, computationally intensive algorithms using the entire
pattern set lead to more optimal storage than the simple sum-of-outer products
approach. The best method (in terms of both storage capacity and noise perform
ance), called Ho-Kashyap encoding, requires that not only the weight vectors but
the output patterns themselves be modified during network training. This process
involves iterating the vectors in a noisy environment, increasing the computational
load still further. For the type of network to be described in this work (one that
must continue to learn new patterns) there is no opportunity to execute an algo
rithm based on the entire pattern set. This type of learning is clearly unsuitable.

It is interesting to examine the underlying goals of all the associative memo
ries considered in this section. In each there are pattern pairs to be memorised and
an ideal memory would allow anyone to be recalled without interference from any
other. The way that each network designer tries to achieve this goal is to encode
each memory trace in a way that minimises the noise contributed by other memo
ries. This mindset is at odds with that applied to multi-layered perceptrons where
the hidden layer is trained specifically to locate features of commonality between
the patterns and exploit them, thereby reducing the cost of storage. Once the under-

Detailed Review I: Coding and Storage Issues 59

lying regularities of the data distribution has been extracted, an MLP is capable of
generalising in the face of previously unseen patterns, giving an effective capacity
far beyond anything demonstrated in any of the networks considered in this sec
tion.

In the work presented in this thesis a hybrid approach to memory will be
taken, drawing on the most appealing aspects of each type of memory: the one
shot, reliable learning of the Willshaw model and the efficiency gains of the fea
ture extracting MLP. This will be discussed in detail in chapter ten.

3.2 Recurrent Memories

This section will present and discuss the main contributions to our under
standing of recurrent associative memory. Such a history tends to revolve around
the Hopfield network, although non-Hopfield based recurrent networks do exist.

The basic structure of the Hopfield network was presented earlier (see sec
tion 2.3.6, "Hopfield Networks", page 36). In this section, the analysis is presented
in more depth, reviewing the main pieces of work which have appeared, covering
such properties as storage capacity and issues in pattern recall.

Hopfield's original paper provided empirical data on the storage capacity of
N fully interconnected neurons, the output of each being hard thresholded, taking
on values in the set {-I, + I}. As described in chapter two, Hopfield notes an empir
ical result for the maximum number of patterns stored before catastrophic failure
of the network as O.ISN (Hopfield, 1982). It was several years before this result
was shown theoretically to be nearer to O.138N, using a technique from statistical
mechanics called mean field theory (Amit, 1989).

Before the analysis using mean field theory, McEIiece et al. provided an
interpretation of the Hopfield network as an information channel, ascertaining its
capacity using information theory. In a well known paper, they showed that allow
ing a small number of patterns to contain errors permits a storage capacity, m
(defined as the maximum number of patterns stored) of m = n/(2Iog n), whereas
demanding that every pattern be recalled without error reduces the capacity to
m = nl(410g n) in the limit of N tending to infinity (McEliece et al., 1987).

The analysis using statistical mechanics performed by Amit and co-workers
explained in terms of phase transitions why the performance of the network can
undergo an abrupt transition from a working memory to total failure by merely
adding an extra pattern or raising the statistical 'temperature' slightly. However,
from the point of view of this work, we accept the value of O.138N as an empirical
result and will not look further into the statistical mechanics that lie behind it. A
readable account of the mean field analysis of Hopfield networks is to be found in
Hertz et al. (1991).

Vidyasagar analysed a class of dynamical systems called continuous-time,
continuous-state (CTCS) networks, of which Hopfield networks are only a sub-

Detailed Review I: Coding and Storage Issues 60

class (Vidyasagar, 1993). CTCT networks use a single layer of neurons that are
fully connected, but each uses the sigmoid as the output threshold function, allow
ing continuous output values. The output state, H, can be modelled as a continuous
position in n-dimensional space, where n is the number of neurons in the network.
One important generalisation from the Hopfield model is that the interactions
between neurons no longer need to be symmetric, so that in general, Wij * Wji.

The analysis of the model cannot be done using an energy function, since
this can only be defined for symmetrical connections. Instead, Vidyasagar uses
matrix theory to show that for small perturbations of the weights away from the
symmetric case, the equilibria of the network are slightly perturbed, but not desta
bilised. Furthermore, the stable equilibria of such networks always exist in the cor
ners of the output space, that is when the individual neurons have saturated at '0'
or '1'.

These results are interesting since they lend credibility to the idea of building
a non-symmetrical network (as will be done in chapter eight using dynamic pat
terns) and still produce a stable output in response to external stimulus. Though
Vidyasagar's analysis has not yet been applied to the network defined in chapter
eight, this would be an interesting topic for future research. (One adjustment to the
dynamic patterns network would be the replacement of the hard threshold with the
sigmoid or other differentiable, high-gain function, which would be required for
the analysis to proceed).

The storage of hierarchical patterns using a Hopfield-like network, called a
cascade associative memory (CASM), was recently investigated by Hirahara and
co-workers, seeking for more efficient methods for storing correlated patterns
(Hirahara et aI., 1997). The generated a set of n-bit parent patterns by random

selection of vectors from the set {+1, -1 In. From each parent vector, a number of
child vectors were created by randomly perturbing a number of bits of the parent.
Two separate memories were used, ASMI and ASM2. Parent patterns were trained
into ASMl, while the differences between the parent and each child was stored in
ASM2. The structure is shown overleaf:

Detailed Review I: Coding and Storage Issues 61

input vector

ancestor

output vector

Fig. 3· 1 Cascade Associative Memory (CASM), llirahara et al. (1997)

Note that while the parent patterns use a biased encoding, with unequal
chance of a bit being + 1 or -1 characterised by a bias parameter, a, the child pat
terns stored in ASM2 had even greater bias, to the point of being sparsely encoded
with signal bits set only for those few bits which differ between parent and child.
This principle of increasing bias could be applied to a many more levels of the
hierarchy, leading to whole chains of ASMs, each level acting as a delta the level
above.

During recall, the input vector is first characterised by ASMI to determine
the ancestor pattern. This is done using an iterative update, as in the Hopfield net
work. When this has converged, the identified parent pattern is removed from the
input using CN1, leaving only the difference which are then used as the cue for
ASM2. This network iterates to converge on the pattern corresponding to the near
est set of differences for that parent. The selected parent and difference pattern are
put back together by CN2 to give the nearest child pattern to the original input. In
both CNI and CN2 the operation performed is the same: bitwise multiplication.

The authors show that the storage capacity of their network (measured as the
maximum number of stored patterns per neuron) is a function of the bias level of
patterns in that network, with higher bias corresponding to increasing correlation
in the vectors. They showed empirically that for bias b=0.96, a network with
N=1000 neurons approached a maximum storage capacity uc=0.6, well above the
Hopfield limit of 0.138 patterns per neuron.

However, they did not consider the storage capacity as a function of the total
number of neurons in all layers of the system, something which might change the
efficiency results considerably. Also, the fact that the number of layers and their
composition are predefined in advance is a disadvantage for a system in which

Detailed Review I: Coding and Storage Issues 62

there is no foreknowledge of the pattern set that will be applied. Furthermore, pat
tern sets in which some branches of the pattern tree are deeper than others would
not be optimally stored in such an network. It would be much more desirable to
have a system that could detect the structure in the patterns itself and store the
whole hierarchy in a single network, with adjustments for different branch depths
being accommodated at the synaptic level rather than at the level of separate net
works as we see here.

Overall, the principle of hierarchical organisation of dependent patterns is an
intriguing one, and one that will be pursued further in this thesis. In chapter ten the
learning hierarchies principle will be described, which has similar aims to Hira
hara's, that of improving storage efficiency by drawing on correlations in the
stored patterns. Where it differs is in how it tries to organise the hierarchical data,
using only a single network but with more complex synapses.

3.2.1 Gardner-Medwin's Recurrent Memory Model

In a piece of work that for some reason, did not spawn the further work that it
deserved, Gardner-Medwin looked at a variant of the original WiIlshaw memory
from the point of view of a physiologically plausible account of how memory
might function in real cortex as a means of storing sets of associated events (Gard
ner-Medwin, 1976).

His network consisted of a set of N two-state neural units, each of which
could potentially receive excitation from R others (R<N). While bearing striking
similarity to the Willshaw model, it differs in that the neurons are interconnected.
The fact that, at the outset, each neuron was hardwired with a predefined subset of
possible connection that it could make was intended to reflect the initial connectiv
ity in mammalian neocortex; each pyramidal neuron in such regions makes con
nections with only a subset of the surrounding neural population. Only the
strengths of the existing connections could vary as a result of learning.

An event to be memorised consisted of W active and N-W inactive neurons.
Whenever there was an existing 'potential connection' between two firing neurons,
the connection was made between them (thus synapses were binary, once again
following the Willshaw model).

During recall, a subset of a learned event consisting of, say, Wo of the W fir

ing neurons was applied to the network. The excitation from these activated input
cells then spread to other (initially silent) cells via those synapses that had been
activated during learning. If the potential of any neuron exceeded a threshold (the
level of which will be discussed later) then that neuron would become active too,
thereby recalling more of the memory given a fragment.

Gardner-Medwin defined two types of recall: simple and progressive. Simple
recall allowed a single round of updating the take place, so that the final set of fir
ing neurons consisted of the original input set of size Wo plus those that were

directly activated by them. In progressive recall, further rounds of updating were

Detailed Review I: Coding and Storage Issues 63

allowed, so that neurons becoming active at the second and subsequent cycles of
recall did so not only due to the original fragment, but also due to newly recalled
parts of the event.

The most complex part of Gardner-Medwin's analysis, and the weakest part
of the model, related to the setting of the threshold for the neurons. First, for opti
mal results the threshold needed to start with a low value and be increased in a
non-linear manner as a function of the number of firing neurons at each time step.

Second, the recall performance of the network at each timestep was very sen
sitive to the accuracy of the threshold. If the threshold was set too low, the proba
bility of a neuron firing spuriously increased dramatically, corrupting the recall.
(The quoted example is that a 10% error in threshold can lead to a tenfold change
in the expected number of spurious cells). Conversely, too high a threshold led to a
collapse in the support for neurons that had previously started firing, causing them
to stop firing.

If the threshold was set correctly at each timestep, Gardner-Medwin found
that the network could stored vectors of associated events with a bit efficiency
(defined as the number of pattern bits that could be recalled per synaptic bit in the
network) of about 7%, not as good as for the Hopfield network. As in the Willshaw
memory (and for similar reasons) the highest levels of storage were obtained for
sparsely encoded vectors, i.e. with only a small fraction of the N neurons firing for
each event.

Overall, this network differs from both the Willshaw model and the network
to be presented in this thesis in that, during recall, the number of firing neurons is
not constant. Rather, it increases as the active set grows. It shares the property of
recurrence with the network to be presented later, although the premise of Gard
ner-Medwin's approach is to start with a small set of 'correct' events and only
admit new items to the set when they are statistically justified as belonging. This
leads to the need to vary the threshold during recall.

An alternative (and arguably better) approach will be presented later in the
thesis: that of allowing a fixed number of events to be asserted (rightly or wrongly)
and letting network iterations revise the active set to find the most mutually satisfy
ing interpretation of the event. This scheme will make it possible for any errors
which creep into the active set to be removed by later iterations.

3.2.2 Bidirectional Associative Memory

Bi-directional associative memories are a hetero-associative variant of Hop
field network, first proposed by Kosko (1988). Rather than generate a symmetrical
NxN matrix from auto-associative case with one input pattern, Kosko considered

pattern pairs, A and n. Learning took the form of summing the outer products AnT

leading to a weight matrix, M = LAiB;, which is in general neither symmetrical

nor square.

Detailed Review I: Coding and Storage Issues 64

The single pool of N neurons in the Hopfield network is replaced by two
pools of neurons, A and B. An input pattern is applied to the neurons of A and
passes through the matrix in the forward direction. After thresholding, the resulting
output pattern is represented by the neurons in B. For the second iteration, the pat-

tern held on B is used as an input to the inverse matrix, MT. After thresholding this
produces a new pattern on A, designated A'. This process can be repeated until no
further changes occur in either A or B.

Kosko showed that iterating on any matrix M in this way will result in stabil
ity in the limit as time t -+ 00 though the capacity, defined as the maximum number
of pattern pairs that can be stored and recalled exactly, is less than the minimum of
the dimensions of the storage matrix, M.

Further work by Simpson extended the original result of Kosko by consider
ing several different variants of the bidirectional network, including higher-order
connections between neurons Simpson (1990).

For the second order case, there are two matrices defined between pools A
and B. The first is the same as in the BAM network, where a matrix element corre
sponds to the correlation of a single neuron in pool A with one in pool B. The sec
ond matrix holds the higher-order correlations, so that a single element
corresponds to the correlation of two neurons in one pool with one neuron in the
other. Thus the signal term in each sum is the product of output level of three neu
rons.

Simpson shows that an energy function can be established for the higher
order networks and that the resulting network does have stable states correspond
ing to stored pattern pairs. By simulating various network configurations he shows
that the storage capacity of the second-order network is roughly twice that of the
equivalent first-order network (in terms of maximum number of patterns stored).
However, as he points out, the number of synapses in the second order network is
more than twice that of the first-order network, implying a reduction in storage
density (the number of patterns stored per synapse).

Zhang and co-workers re-analysed the bidirectional associative memory
from the perspective of matched filters (Zhang et al., 1993). By replacing the
energy function to be minimised with an exponential function of the pattern vec
tors (a technique that comes from the theory of optimal receiver design) they claim
to improve the storage capacity and stability characteristics of the original BAM.
To do so they introduce a new parameter, y, into the learning and recall equations
that is a function of the total number of memories stored and is connected with the
'noise' in the communication channel between the input and output vectors.

Leung shows that a complex learning algorithm, called the Householder
encoding algorithm, leads to better performance than the sum-of-outer products
originally used by Kosko (Leung, 1993). The algorithm itself is based on finding
the pseudo-inverse of the interconnection matrix, requiring full knowledge of the
pattern set in advance and non-local computation of each synaptic weight. Though
the results of comparative simulations by Leung show that this algorithm is much

Detailed Review I: Coding and Storage Issues 65

better than the local correlations proposed by Kosko, for the purposes of this thesis
it is rejected for further study for all of the reasons just mentioned: non-locality and
computational complexity during learning.

In later work, Leung applies the perceptron learning rule to the training of the
weight matrix (Leung,1994). The matrix is constructed over multiple presentations
of the pattern set, with adjustments made whenever a pattern has been wrongly
classified by one of the output neurons. Like Rosenblatt's original perceptron
learning rule it is local in character but not guaranteed to find a solution (Rosen
blatt, 1958). Also, the fact that training the matrix requires an unspecified number
of repeats of the whole training set makes it undesirable as a learning rule for the
network to be developed in this thesis.

Finally, we consider work, again by Leung, into the theoretical capacity of
second-order bidirectional associative memory (Leung et al.,1995). Simpson's ear
lier work did not include a theoretical analysis of the capacity of second (or higher)
order BAM networks. Leung and co-workers show that the capacity (in terms of
the number of stored patterns with zero tolerance to errors during recall) is

2 2 o(min(_n-. ~») where n is the dimensionality of the input vectors and p is the
log n log p

that of the output vectors.

Since the number of connections for a second order network is n2p + np2 + np

(where the first and second terms are the second-order weights between the n input
and p output neurons) we see that for n>p, the storage density measured as the

number of patterns per synapse is O(pl(n2
Iog p». This shows that the storage effi

ciency is reduced for increasing n.

3.2.3 Other Work in Recurrent Networks

Several areas of recurrent networks, although interesting and important in
their own right, will not be considered in depth since they are less relevant to the
work described here. One such example is the Boltzmann machine variant of the
Hopfield network. Here, the addition of noise in the output function of each neuron
of a Hopfield network allows a form of simulated annealing to take place (Hinton
& Sejnowski (1986). The noise offers the network the opportunity to escape from
local minima with a probability that is a function of the statistical 'temperature'.

The approach has several drawbacks, however.The extra computation this
implies for each iteration of the network makes it much slower to simulate than the
equivalently sized Hopfield network. Even if this problem can be removed by
implementing the system in fully parallel hardware, there are few known methods
for the selection the annealing schedule (which is a description of how the statisti
cal temperature changes over time) leading to a waste in computational time due to
overcautiously cooling the system at too slow a rate. The system is expected to
explore the space of possible output states, driven by a combination of energy min
imisation and random injections of energy due to the thermal component. Even
with an optimally chosen annealing schedule, such an approach is a computation-

Detailed Review I: Coding and Storage Issues 66

ally expensive solution to even fairly simple optimisation problems, as the authors
admit.

Kothari and co-workers developed a synchronous Hopfield network variant
in which the weights are modified by adding the outer product of the current state
to the weight matrix after each iteration (Kothari et al., 1998). They show by simu
lation that this improves capacity and noise performance though it is not clear why
this should be so.

3.2.4 Summary of Recurrent Memories and Discussion

This section has presented many of the key contributions and results in the
area of recurrent memories. The memory capacity of the Hopfield network has
been derived using both information theory and mean field theory. The results are
different for the two analyses, but agree that the maximum number of patterns that
can be reliably stored and recalled is a fraction of the total number of neurons.

This is lower than the result from the feed-forward associative memories
described earlier where a capacity equal to 2N could be achieved for certain learn
ing algorithms. However, it should be noted that none of the work on Hopfield net
works in this chapter drew upon learning algorithms of the complexity of the Ho
Kashyap algorithm that produced the 2N result. Perhaps there is room to improve
even the Hopfield result using such algorithms.

An area that has not been studied in depth is the application of K-from-N
coding (as used in purely feedforward associative memories) to Hopfield-like net
works in which the neurons are fully connected and iterate asynchronously. The
Harahara network used delta encoding and its neurons used +1 and -1 outputs, so
the results may the same if we used pure K-from-N coding and neuron outputs
from the set of { + 1, O}. This topic will be addressed in chapters six and seven.

3.3 Coding and Representation of Symbol Structures

The debate between the AI community and the connectionist as to the appro
priate framework for the development of intelligent systems was presented in the
previous chapter (see section 2.4.1, page 38). One of the key assertions made by
Fodor and Pylyshyn in their 1988 paper was that connectionist systems were sim
ply incapable of representing the complex relationship between entities typified in
the syntactic structures used in traditional AI, relationships that they felt were
essential for a reasoning architecture.

A number of workers in the neural networks camp attempted to refute this
allegation by addressing the issues of representing symbol structures in a neural
substrate. This section presents a number of attempts to do so.

To provide some background for the issues involved in coding syntactic
structures, the first part of this section discusses the way in which symbol struc
tures are stored and manipulated in 'Classical' AI systems.

Detailed Review I: Coding and Storage Issues 67

3.3.1 The Non-Neural Coding and Manipulation of Symbol Structures

The figure below shows a typical tree structure, taken from linguistics, repre
senting a phrase that has already been processed to extract its constituent structure.
In this case, the raw input phrase "John loves the girl eating the sandwich" has
been processed using a set of re-write rules to identify the individual verb and noun
phrases (VPs and NPs, respectively) and the relationships between them. Note that
hierarchical decomposition is possible, as in the noun phrase "the girl eating the
sandwich", which acts as an object to the main verb 'loves' but also contains its
own subject noun, verb and object noun.

Sentence

/ ----------Level 1 NP VP NP
(subject) (verb) (object)

I
NP

/ I ----...
Level 2 NP VP NP

(SUbre!) (verb) (object)

I I
Level 3 John loves the girl eating the sandwich

Fig. 3·2 A syntactic tree with branches of different depths.

In what is termed 'Classical' symbolic processing, the various manipulations
that can be performed on such a tree consist of re-write rules such as:

NP VP NP --> NP

which indicates that the sequence made up of noun-phrase, verb-phrase and a
second noun phrase can be replaced by a single noun-phrase. Processing thus con
sists of pattern matching between the data (as represented by a string of symbols)
and the set of re-write rules (that are also usually represented as sets of strings).

In this case, the rule cannot be applied to the raw input (at level 3) since the
rule is expressed as a relationship between types of word rather than the words
themselves. Other rules are required to categorise the individual words as nouns,
verbs, adjectives, etc. Simple, so-called context free rules could be written thus:

John --> NP, eating --> VP, sandwich --> NP

to provide the necessary categorisation. After this initial mapping the phrase
(now represented at level 2) will match the re-write rule stated earlier and permit
the representation of the entire phrase to be further reduced. Note that by replacing
the sub-phrase "the girl eating the sandwich" with a single NP the information that

Detailed Review I: Coding and Storage Issues 68

the sub-phrase contains is not lost, but is not directly accessible by the pattern
matching algorithm. In this way, detail that is not relevant to the application of a
particular rule is suppressed so that it does not interfere with that rule's operation.
The benefit of this approach is that each rule can be written in the most general
terms possible. It is not necessary to have an exhaustive list of rules to cover every
case of parameters that do not contribute to the nature of the mapping. An example
of this using the re-write rule given above will illustrate this point. The rule:

NP VP NP --> NP

states that for every phrase in which a verb phrase is flanked on either side by
a noun phrase we can treat the whole as single noun phrase. We could spell this
rule out for every possible verb, but this waste rule resources: the result will be the
same for every single verb. Hence the abstraction from a given verb to the VP
token allows compact, efficient representation and facilitates generalisation.

The drawback with such schemes, ironically enough, is also one of effi
ciency and is linked with the control issue. Correct transformation requires the
inputs to be in the correct form, i.e. in the form envisaged when the rule was cre
ated. One of the major challenges, therefore, for the design of such schemes is to
manage an efficient set of rules that can quickly lead to the transformation of a
given input phrase into the required output phrase. In the general case there is no
known algorithm that can optimally guide the transformation process (Le. to select
the minimum subset of transformations that will produce the required output). In
many cases an exhaustive search over the rule-space produces many possible
recodings of the phrase that can, themselves, be used as the input to further trans
formations.

It will be argued throughout this thesis that the inefficiency with Classically
represented symbol structures is amplified by the fact that the detail of the contents
of a symbol are so completely hidden from the rules operating at a given level that
this hinders the optimal transformation of the structure. In other words the totally
arbitrary link between a symbol and its constituent structure make it necessary to
expend more computational resource than is really necessary (although discussions
on how one might measure this are left for future work).

The rest of this section looks at the issues in symbol structure encoding that
are particular to a neural network implementation. It is envisaged that the use of
neural networks as the medium of implementation will allow some of the restric
tions inherent in the Classical implementation of symbol structures to be over
come. Attempting to justifying this view is a central thread of this thesis.

3.3.2 Three Key Issues in Representing Symbols in a Neural Network

While there are many problems to be overcome in the translation of symbol
systems to a neural substrate, three key areas stand out as being most important.
This section presents these issues and later sections describes some attempts to
address them.

Detailed Review I: Coding and Storage Issues 69

The first key issue is the encoding of the symbols themselves and the means
by which they are connected into syntactically meaningful structures. Tradition
ally, a symbol can have any encoding (provided that it is unique). Its purpose is
only to act as a pointer to some other structure and thus the encoding is unimpor
tant. In a neural network this is no longer the case: representation is often the most
important issue in the design of a new network. A good scheme can speed learning
convergence and provide good generalisation capability. Conversely, a bad scheme
could prevent the network from converging at all or make generalisation highly
error-prone.

The second key area is that of variable binding. First-order logic permits the
representation of generic relations such as:

\/x, dog(x) => -,likes(x, ice-cream)

so that for any given value of x, if the predicate on the left is true, then the
predicate on the right is also true. Variable binding allows a system to operate on
individual values of x, using generic rules such as the one above, and possibly to
hold multiple instances of such rules in memory simultaneously, each with a dif
ferent value of x.

The problem in a neural network implementation is how to do this binding. If
dedicated 'hardware' is required for each rule, how can multiple copies of a given
rule exist each with a different value of x?

The third key issue is that of stability of symbols and their relationships. A
symbol can represent something highly significant to the agent, perhaps because it
represents something which occurs frequently in a variety of contexts, or which
has a significant impact on the agent's ability to solve a problem when it does
occur.

In either case, a symbol may be a permanent feature of the knowledge base,
whereas the relationships in which it appears may be varied and each may occur
with much lower frequency. Entire symbol structures, composed of permanent
symbols, may be quickly created, used and then discarded in a short space of time.

The problem with this way of working is that most neural architectures are
not good at differentiating between more or less permanent information. Usually
fairly crude mechanisms are employed such as dividing the memory at a high level
into separate long and short-term blocks, perhaps derived from the simplified mod
els of mind used in psychology (Gross, 1996).

When networks that one might describe as monolithic are used (for example
a single MLP network) learning is usually achieved at a single rate that does not
distinguish between temporary and permanent links between data items. Any new
learning risks to disrupt existing associations. Clearly, more complex learning
schemes are needed to address this issue.

Detailed Review I: Coding and Storage Issues 70

The rest of this section presents work in the literature designed to address
these and other complexities which arise when trying to map complex symbol
structure onto a neural network substrate.

3.3.3 Mapping Whole-Part Hierarchies in Connectionist Networks

With the critique so eloquently provided by Fodor and Pylyshyn (see section
2.4, "Artificial Intelligence & Neural Networks", page 38), it was up to the connec
tionists to refute the claims that, among other things, neural networks were incapa
ble of representing symbolic structures in a way that is both systematic and
productive. The first such attempt at a rebuttal to be considered here is that of Hin
ton (1990).

The work was an extension of his earlier development of coarse coding (Hin
ton, 1986) and was made up of two parts: a general exposition on the key issues
and three example implementations with increasing levels of sophistication.

In the general exposition, he makes a number of important points. For exam
ple, he emphasises the need for the symbol encoding to carry useful information as
well as pointer data. A symbol, in his view, is 'a "reduced description" of an
object'. This is a key point that will be developed further in later chapters (see sec
tion 5.4, "The Symbolic Principle", page 123).

Later, he differentiates between the mechanisms of rational and intuitive
inference (the behaviours of which were debated in Smolensky (1988) and Fodor
& Pylyshyn (1988)). An intuitive inference is arrived at by applying constraints to
the network and allowing the state to evolve until it has 'settled down'. The nature
of this settling process (while not stated) is implicitly that descnbed in his work on
Boltzmann machines (1986).

More complex computation, which might be unachievable in a single settling
might require multiple steps, arranged serially with the results of each feeding into
the next. This sequence, he refers to as rational inference. Thus, to Hinton, even
the logical progression of logical thought is, in fact, an assembly of intuitive steps.
There is no physical separation between the processors for each type of operation.
In this respect, he is agreeing with Smolensky.

Each intuitive inference in a sequence might itself be relatively complex.
Hinton suggests that the completion of a 'schema' (a framework in which one can
assemble several relationships involving a number of roles and their fillers) would
be a plausible candidate for a single intuitive step.

As a separate topic, Hinton discusses symbol encoding and the importance of
allowing the network to develop its own encodings to suit the mappings being
made. This is an important theme in this work, and one that will be explored in
greater depth in chapter five. The figure below shows one scheme he considered.
The network below is used to associate two symbols via a relation. The boxes at
the bottom represent the symbols to be bound, which are coded using I-from-N
(Iocalist) approach. The middle three boxes, one per role, have an encoding which

Detailed Review I: Coding and Storage Issues 71

develops during the course of learning (via back-propagation), Thus, the encodings
can be shaped to meet the requirements of the representation rather than being arti
ficially imposed from the exterior.

----~
Distributed encoding

/
I-from-N encoding

~~

Fig. 3- 3 Defining relationships between two objects. From Hinton (1990).

Three connectionist models for encoding and resource sharing were consid
ered, which Hinton called fixed mapping, within-level time-sharing and between
level time-sharing.

The fixed mapping technique, typified by the McClelland Rumelhart word
recognition model (in McClelland & Rumelhart, 1981) uses a localist representa
tion and allocates one neuron for each role-value pair. In this case, each combina
tion of letter and position within the word is represented by the firing of a single
neuron. As Hinton notes, the neural circuitry needed to recognise any letter in one
position must be duplicated for all of the positions. While appropriate for problems
in which the range both of roles and of possible fillings is limited, such a scheme is
too inefficient and restricted for a general purpose system.

Next the within-level time-share technique, which attempts to reduce the
degree of parallel resources by transferring the letter by letter analysis from the
spatial domain (with repeated circuitry) to the time domain. Now each letter
requires one set of detectors and it is scanned along the words, letter by letter.
While more efficient in terms of resources required, it places extra burden on the
support structure of the system (required to move the input sequence along one let
ter at a time and to store intermediate results).

Finally, the between-level time-share technique, which assumes that regular
ity 'exists all many levels in the hierarchy of a symbol structure, permitting the sys
tem to sequentially process such a structure one node at a time, as shown overleaf.
With each processing step, a different node becomes the "whole" and the structure
directly beneath can be mapped into the finite processing resources of the network.

In the diagram, we see that either node A or node D in the symbol hierarchy
on the left can act as the "whole", with the constituent structure of each being
mapped to the finite resources shown on the right. When looking at node, the dot
ted mapping are used, whilst for node D it is the solid mapping that apply.

Detailed Review I: Coding and Storage Issues 72

- ------- ,
~\WhOle

_---__ D - , - - ---..,- - - - - -, - -.. --.,.--- , " , , \ "

boo
Role! Role 2 Role 3

Fig. 3- 4 Between-level time-sharing. From IIinton (1990).

This third scheme is by far the most general, and could easily be applied to
the parsing of any symbol structure. However, the fact that very little in the way of
the problem space has been represented explicitly as parallel hardware means that
the time element is now increasingly dominant. The network can handle structures
of arbitrary complexity but must do so serially. Some external guidance must be
applied to decide how the hierarchy is to be traversed (which is in stark contrast to
be deterministic or linear styles of the fixed mapping and within-level time-share
methods, respectively).

As a final insight, Hinton briefly discusses the use of short and long-term
weights, with the short term providing a means for recent learning to override the
long term when appropriate. His usage of such weights is to allow a return-from
procedure-call to occur in a procedural network. Later in this thesis an independ
ently developed technique called learning hierarchies will be presented which also
uses parallel weights with differing characteristics, but with a different purpose,
that of addressing the stability-plasticity dilemma.

3.3.4 Tensor Products

Smolensky himself proposed a representation scheme based on tensor prod
ucts (Dolan & Smolensky, 1989; Smolensky, 1991). Here, a form of variable bind
ing is proposed whereby an entire tree structure made up of roles (such as subject,
verb, object, etc.) and their values ("John", "loves", etc.) can be coded together
into a single tensor. Each role is assigned an n-bit vector which is independent of
any of the fillers (the value assigned to a role in any given expression). Similarly,
each filler is assigned an m-bit vector which is independent of any role.

Detailed Review I: Coding and Storage Issues 73

Sentence

/~
Roles NP
(n x 1 vectors) (subject)

Fillers
(m x 1 vectors) John

VP
(verb)

loves

NP
(object)

the girl

Fig. 3-5 Tree structure with roles and fillers.

To create a particular tree, each role-value pair is first combined using the
tensor product operation and then the pairs are combined by vector addition.

Thus for the example linguistic tree shown above, we can construct the ten
sor T as follows:

where R; is an n-bit Role vector,/; is an m-bit filler vector and the ® oper

ation is the vector outer product. T is thus an n x m matrix. The summation is over
the number of components (three in the example). The role vectors are linearly
independent of each other which permits any value to be extracted from the com
posite vector using the role vector as a 'key'.

Finally, it is worthy of note that recursion is possible, allowing tensors to be
embedded inside each other, creating a matrix of increasing dimension with each
added component. A tensor defined thus:

would produce a three dimensional matrix, U.

Smolensky's expectation was that structures of knowledge encoded in single
vectors could be fed in parallel to a neural network permitting true parallel process
ing of a structured representation. He notes that, while defenders of the purely
symbolic view claim to have nothing against parallel processing per se, there was
no evidence of the existence of a parallel processing symbolic architecture that
could act as a benchmark for his tensor product scheme. While this might be true, it
hardy constitutes an argument to justify the validity of his proposal.

There are two principle advantages to the tensor product approach. First is
that it permits symbol structures to be represented as distributed representations

Detailed Review I: Coding and Storage Issues 74

across a set of identical neurons. Second, it incorporates variable binding and
thereby provides a solution to the systematicity problem put forward by Fodor &
Pylyshyn. This, even on its own, is a feat of some merit.

But the method is not a rebuttal of all of Fodor & Pylyshyn's objections.
Three problems with it are worthy of discussion. The first concerns the philosophy
behind the encoding scheme itself. As long as the elementary vectors that are to be
combined have the same dimensionality (e.g. all roles are n-bit vectors and all fill
ers m-bit vectors) then it is easy to see how the combination could be executed to
produce a single matrix. Addition is well defined for vectors or matrices which
have the same dimensionality (n x m in this case). But in a general symbol struc
ture, we could ask to combine structures of different depths such as might be
required for the tree shown in figure 3-2 on page 68.

By creating the NP "the girl eating the sandwich" we have already formed a
tensor of dimensionality n x m and must now combine it with other vectors with a
different dimensionality.

The NP (object) "the girl eating the sandwich" role-filler pair would be a ten
sor of dimensions n x n x m. To match this, the NP(subject) "John" and VP(verb)
"loves" role-filler pairs, each of size n x m, would need to be combined with a
dummy role, an n-bit vector. In effect, every sub-expression must be made to be
the same dimensionality before they can be summed.

Using dummy roles is straightforward to do, but it adds one level of indirec
tion to the affected sub-expressions. Presumably, the processes that must act on
each such expression will be sensitive to (and compensate for) the extra level of
indirection, but the dummy role is still somewhat of a fudge.

The second issue with this scheme is the variable length of the vectors. Han
dling vectors of different lengths is a task which few, if any, neural networks have
excelled at. The reason is clear enough; the weights built up between one layer of
neurons and another (be they input-to-hidden, hidden-to-output, or whatever) are
sensitive to the position in which the bit patterns appear. Translating a pattern pre
sented to a basic MLP, for example, is unlikely to result in the same output except
in cases where translational invariance was specifically added. Similarly, weights
built up with data vectors of one length are by no means guaranteed to produce
similar results with the same data encoded in vectors of a different length. Noting
that the length of a vector increases by a factor of n with each level of hierarchy, it
is not clear how any practical system could be designed to cope with this variabil
ity.

The third issue is more fundamental, being concerned with the goal that we
are trying to achieve. In Smolensky's scheme, all of the information which is
present at the bottom of the hierarchy is carried through all of the layers of coding.
In effect, the coding of an expression does not refer to its constituents, it codes for
them explicitly. While this may be acceptable for a small set of constituents which
can be coded in a few bits, extrapolating to the case of thousands or even millions
of potential constituents forces one to reconsider the philosophy behind it. It is

Detailed Review I: Coding and Storage Issues 75

partly due to the reluctance to shed any information of the lower levels which
explains the explosion in the matrix size as a function of hierarchy depth.

Surely, what should be encoded in a symbol are sufficient properties of the
level underneath it to permit operations performed upon it to execute correctly. In
general there will be much detail hidden in the levels below anyone symbol that is
irrelevant for a given process and there is no reason to burden the process with this
data. Thus the tensor product scheme, while representing the first serious attempt
to model symbol structures in a neural network, is clearly only a partial solution.

3.3.5 Recursive Distributed Representations (RDR)

Following on from the work of Smolensky, other researchers developed the
idea of encoding complex symbolic structures in a connectionist framework. First,
we consider four such attempts, each building on the one before, which were par
ticularly concerned with the idea of transforming strings of arbitrary length into
connectionist representations of fixed length.

The first to be considered is due to Pollack (1990). His approach is illustrated
in the figure overleaf. His aim was to train an MLP network that was capable of
taking pairs of symbols, each of which was encoded as a K-bit vector and com
pressing them to a single K-bit vector. He did this by presenting the pair both as the
input and desired output pattern, allowing the hidden unit layer to develop it's own
representation over K-bits ..

2K Output Units

LEFT RIGHT

2K Input Units

Fig. 3· 6 Symbolic Compression Scheme. From Pollack (1990).

To handle strings of more than two symbols, he allowed the result of one
such encoding to act as one of the input vectors for a further association. This
allowed a stack to be developed, such as could be applied to structures such as the
LISP expression «(Nil X) Y) Z), shown overleaf.

Detailed Review I: Coding and Storage Issues 76

/,z
x Y

Fig. 3- 7 A simple embedded tree.

In simulation, Pollack used ordinary back-propagation to train the network.
As a consequence, many training cycles were required and there was no guarantee
that the network would converge to a correct mapping. Also, he made the decision
that rather than fully training one mapping before using its compressed form in the
next, all pairs of associated vectors should be trained in parallel. Thus, the values
of the hidden units, themselves evolving over time, acted as a 'moving target' for
other learning.

Pollack found that the network, after hundreds of training epochs, was capa
ble of correctly reproducing the given input expressions at the output, passing
through the compressed intermediate format.

Furthermore, he was also able to demonstrate the generality of the internal
encoding: by applying expressions that he had not presented during training he
found a high proportion of them were correctly reproduced at the output. This
implied that the hidden units were able to extract elements of the grammar and
apply them to previously unseen sentences. This is an effective demonstration of
systematicity and goes some way to refuting Fodor's claim that connectionist net
works were incapable of such behaviour.

As an extension, Pollack used his network to perform inference by associat
ing an input expression with an implied output expression such as (from Pollack,
1990):

"If (LOVED X Y) then (LOVED Y X)"

The (LOVED X Y) acts as the input string and the (LOVED Y X) is the out
put that must be derived from the internal representation. He was able to extract the
appropriate mapping even from input strings not previously seen. This is to be
compared with the manipulation of symbol structures in Classical AI (section
3.3.1, page 68) in which a set of re-write rules is applied to an input string to trans
form it.

Overall, Pollack showed that compression of strings of arbitrary length was
possible using connectionist methods. Moreover, the limitations of the model are
also useful in themselves as launching points for future expansion. We now con
sider these drawbacks.

Detailed Review I: Coding and Storage Issues 77

Firstly, the use of backpropagation as the learning algorithm is a problem.
The need to train the network over many epochs, coupled with the lack of any
guarantee of convergence make this an inappropriate model for a practical system.

Secondly, the ability of the system to generalise is not dependable. Pollack
found instances where an attempt to code and then decode an expression not previ
ously seen resulted in an output which was identical to a previously learned expres
sion. He noted that this was caused by the coding of two noun tokens using bit
patterns which differed by only a single bit. Thus, the choice of encoding of his
original tokens was clearly critical.

He further notes that the systematic assignment of bit-patterns to tokens
(such as similar patterns for all nouns) may have helped in the ability of the net
work to generalise relative to a network with random pattern assignment.

Thirdly, despite the ability to generalise in an (almost) systematic manner,
the usefulness of the internal representations must be called into question. It seems
that a compressed expression serves only as an efficient form of storage. No
manipulation of the expression is possible in this form. The property of systematic
ity merely allows the compression abilities of the network to be applied to a wider
range of expressions. It does not render them applicable to a greater range of
manipulations.

Finally, note that access to anyone symbol in a tree requires the sequential
unfolding of the expression until the symbol in question is reached. Again, this is a
consequence of the linear method of putting together an internal representation of
each symbol pair.

An improved representation would not only permit systematicity but would
permit manipulations other than merely compression and decompression.

How does this scheme compare to Smolensky's tensor product scheme? The
obvious difference is that the compressed format in RDR is always a single vector,
whereas the dimensionality of the tensor matrix increases with the number of com
bined elements. But Pollack's compressed format does not allow individual ele
ments to be extracted based on a cue (such as a role vector), which is the essence of
the tensor scheme. Instead, the whole expression in RDR must be unpacked until
the desired element is revealed. So criticism of tensor products for producing
larger representations would be unfair.

Another difference is the way that elements are combined. The matrix addi
tion of tensor products can be executed in a predictable period of time. The results
are guaranteed and the impact that each new learning event will have on existing
knowledge is known, statistically. In contrast, the back-propagation learning of
RDR (as noted above) requires many iterations. The exact number of iterations
may not be predicted in advance, nor the degradation that each new learning event
will imply. This lack of control is a major disadvantage of RDR.

Detailed Review I: Coding and Storage Issues 78

We tum now to the second development on distributed representations to be
discussed. Presented by Chalmers in his 1990 paper, it builds on Pollack's RDR
scheme, concentrating on the possibility of applying transforms to the compressed
format of the vector: in others words allowing computation on the symbol structure
without unpacking it. He notes that being able to do this would provide functional
ity which did not exist for purely classical symbolic structures and would prove
that connectionism was no longer merely concerned with implementation issues of
symbolic architectures.

He quotes Van Gelder (1990) who made the distinction between functional
compositionality (in which an expression is a potentially complex function of its
constituents) and concatenative compositionality (in which constituents are merely
arranged in a particular order but themselves remain unchanged). Only neural net
works were suited to implementing the former, in his view.

The application that Chalmers chose was the association of an active sen
tence with its passive equivalent. To begin with, he used the same compression
scheme as Pollack (except that he combined three elements at a time rather than
Pollack's two). Two such networks were trained: one for auto-associating the
active form of each sentence with itself, the other for the passive forms. The key
idea he proposed was to create a third network (using one layer of hidden nodes)
which could translate the vector from the compressed layer of the active network
into the corresponding vector for the passive network. This would implement a
transformation between the two compressed sentences without reference to their
constituent structures. This is illustrated overleaf.

After 1500 training epochs using back-propagation the network was able to
correctly transform all of the training inputs correctly and also to transform more
than half of a set of previously unseen sentences. This indicates that, as observed
by Pollack earlier, the internal representation was such that generalisations of the
syntactic structure of both active and passive sentences had been made, but the
rules themselves were not perfect as indicated by the performance on previously
unseen test data. Thus, the network could not be described as performing true vari
able binding, for example.

Active Sentence Network

Syntactic

Transform

Fig. 3· 8 Chalmers' syntactic transform model.

Passive Sentence Network

Detailed Review I: Coding and Storage Issues 79

While an important demonstration of the potential of neural networks to han
dle processing in a distributed fashion, the network is not practical when scaled up
for real world applications. First, the training regime is artificial: the individual
RDR networks are first trained (for several thousand epochs) and then the trans
form network is trained afterwards. Ignoring the inherent problems in using back
propagation for a moment, we see that the choice of micro-feature for the individ
ual compressed vectors have no opportunity to take those of the other network into
account. Thus the burden is on the central network that performs the syntactic
transform to associate arbitrary vectors together. This may (or may not) be feasible
for a given problem but is clearly not a good engineering choice since it is not pre
dictable in advance.

Furthermore, there are problems in scaling up the scale of the task. We
require one such transformation network for each pair of associated vector types.
Each requires many training epochs and there does not appear to be a way to com
bine transforms (perhaps to extract a hierarchy of transformational steps which
could be draw upon by many such transforms). However, nothing precludes such a
possibility as future work.

The third approach on recursive distributed representations to be considered
is due to Chrisman (1991) who built on Chalmers' transformation inference
model, defining an alternative called confluent inference. This is illustrated over
leaf. The essential difference is that rather than performing the transformation
between them as a separate step, this network is trained to form a single com
pressed vector which is capable of representing both transforms simultaneously.
This avoids the need for an explicit transformation network and allows translation
in both directions.

Chrisman used this network to learn english phrases in encoder/decoder 1,
and the spanish translation in encoder/decoder 2. After 5000 training epochs, the
network could handle previously unseen phrases. 80% accuracy was achieved for
auto-association(e.g. english-in, english-out) and 75% for a translation from eng
lish to spanish (or vice versa).

Decoder 1

Encoder 1

Fig. 3· 9 Chrisman's confluent transformation model.

Detailed Review I: Coding and Storage Issues 80

These results show that the micro-feature generated across the K hidden
nodes were extracting general properties from the two languages simultaneously.
However, the natures of the errors showed that the performance was a sensitive
function of the chosen encodings. Extending this scheme to a more realistic envi
ronment in which the input encodings cannot be so easily controlled would proba
bly lead to much poorer performance.

In an extension to the basic idea, Chrisman suggests that this network could
be extended to encodings of M arbitrary functions of an input vector x using M+ 1
encoder/decoder pairs (one to auto-associate the input vector x and one for each of
the M functions). In principle this is true, but the danger here is that the more map
pings that we try to squeezer through the same set of hidden units, the more com
plex the mapping task and the longer it will take to train. The generalisation
performance would presumably be adversely affected, as well. None of these
issues are addressed by Chrisman, but deserve further attention.

The fourth and final development of RDR to be discussed is the B-RAAM
model, created by Adamson and Damper (1999). Here, the Chalmers' model of
Recursive Distributed Representation is elaborated to try to correct for a number of
the problems they identify in their analysis, specifically: the number of training
epochs required, the physical number of hidden layer units required for a given
encoding, the bias of the network to recalling recently learned patterns rather than
older patterns and the intolerance to noise due to accumulated error during recall.

Their extension to the model is to use a history of recent hidden layer outputs
as part of the vector to be auto-associated instead of just the previous value. A
delay line provides the mechanism by which this is achieved. During training, the
entire history of the growing tree can be explicitly represented in the input/output
vector pair if the maximum tree depth is no greater than the number of state vectors
that comprise the delay line. This allows the network to consider both recent and
distant parts of the encoding vector equally during learning.

New output vector

-

" \
I
I

State node delay line New input vector /
// - ..,. -- - - -- -

Fig. 3-10 Adamson and Damper's extension of RDR.

Detailed Review I: Coding and Storage Issues 81

In the course of a number of experiments to compare their B-RAAM to
Chalmers' original RAAM, they showed empirically that their network required
fewer training epochs to learn the same task and that fewer hidden nodes were
required. Furthermore, the bias towards recent learning was greatly reduced, as one
might expect from the parallel representation of the compressed vector history.

Overall, this network represents an improvement over earlier RDR
approaches but in the context of this work it is merely an interesting variation on
the idea of compressed structures, which is itself the most important concept to
note.

3.3.6 The Circular Transform in Symbol Structure Encoding

An alternative method of creating distributed representations of symbol
structures was proposed by Plate who used circular transforms to combine role and
filler information (Plate, 1996, 1997). For the case of vectors of length 3, he
defines the circular convolution, t, of two vectors c and x thus:

to = COXo + C2X I + C I X 2

tl = CIXO + COXI + C2X 2

'2 = C2XO + CIXI + COX2

where the elements of each vector are drawn independently from a distribu
tion of mean zero and variance lin where n is the dimension of the vector. This
ensures that the mean vector length is one. Note that the transform represents a
change of bases or, equivalently, a rotation. The vector t now codes for both the
role (c) and the fiIler value (x) even though the size of the all three vectors is n.
Thus, some form of compression has been achieved.

The inverse transform is achieved by multiplying by the transpose of the
matrix, which represents a rotation through the same angle but in the opposite
direction. In this way, given the circular convolution of two vectors, either one of
the two vectors can be used to retrieve the other.

The next step of Plate's development is to generate more complex structures
by combining several such vectors in what he calls a memory trace. Several possi
ble schemes are considered, in which the central method of combination is simple
vector addition. In order to combine and subsequently extract three vectors, a, b
and c, a number of possible schemes are proposed. One possibility is:

where un ® un denotes the circular convolution operation. The constant, a; , per

mits the relative strength of each component of the combined vector to be control
led independently of the others.

By making a l > a 2 > a 3 we ensure that the base vector a is strongest in the mix

and can be easily extracted. This in tum, can be used to extract b by applying the

Detailed Review I: Coding and Storage Issues 82

inverse transform to d using a as the other input. Similarly, c can be extracted from
d using a ® b as the other input to the inverse transform.!n each case, there will be
some noise associated with the result, but a clean-up operation can be applied to
remove it, subject to the non-saturation of the vector, d.

Embedded structures can be created by using a vector such as d as one input
to a further circular convolution.

Overall, the circular transform offers a way to encode structures of variable
depth using a simple matrix transform. Encoded values can easily be extracted
using the associated vector as a key, similar to a correlation associative memory
(see section 3.1, page 47). However, the method is not without problems.

First, note that separate traces cannot be overlapped. Each trace is the sum of
several convoluted pairs. By combining two traces, information of which compo
nent is a part of which trace is lost. (In fact this is not a problem provided that no
one vector appears in both traces but imposing such a restriction would be diffi
cult).

The fact that traces cannot be easily superposed means that, in an implemen
tation of such a system, a given input would need to be matched to each trace in
tum (or each trace must be given its own hardware). This goes against the aim of
associative memory which tries to overlap the storage of mUltiple memories in
order to perform parallel search in a single set of units. (Note that this was also true
of Smolensky's tensor product scheme where role/filler tensors were also summed
for each such memory trace. Once again, summation of multiple traces would lead
to ambiguity over which role/value pairs were associated with which others).

The next point of note concerns the clean-up process that Plate defines for
the output generated by the inverse transform, when a single vector is extracted
from the encoded vector. Here, the noisy output vector must be matched against
the entire set of legal vectors. The closest matching legal vector is used in further
operations.

This is not an issue for a limited vector set, especially in a system in which
the traces are being compared serially (which seems to be the case in Plate's
model). But in a real system this is a source of two types of limitation. Firstly it is a
bottle neck on the speed of computation since each result must be put through a
serialising step that does not lend itself to distributed processing.

Secondly, this is a restriction on the valid results that the system can pro
duce: the only valid output from any operation on an encoded representation is one
of the set of legal vectors defined before processing began. Any structural output
(i.e. containing multiple elements or convolutions) would be cleaned-up to produce
only one of the original set. Somehow, this restriction must be removed if this
encoding methodology is to be put to use in more complex problem domains in
which intermediate results are themselves still in encoded form.

Detailed Review I: Coding and Storage Issues 83

As a final note on this type of representation, it is worth noting that the com
pression process, which on the surface takes several vectors of a certain length and
produces a single vector of the same length, does not do so for free. The com
pressed vector may consist of fewer physical bits than the uncompressed vectors,
but the noise margins of the stored data have been reduced. It is the continual ero
sion of these margins with each level of compression which results in saturation of
the vector at a critical point, and the concomitant loss of retrieval fidelity. These
noise margins are a resource that must be carefully considered as a part of the
design process.

3.4 Conclusions

This chapter has presented two main areas of the literature in some depth:
associative memories and the encoding of symbol structures using neural net
works.

The review of associative memories divided the field into purely feedfor
ward and recurrent memories. Key results on the capacity and performance of a
range of networks was presented and discussed. It was established that the vector
coding is a critical factor in determining the performance of the memory. In terms
of the maximum number of patterns that can be stored and recalled, recurrent net
works such as the Hopfield network appear to be much poorer than purely feed for
ward network such as the Willshaw model.

In the review of methods to encode complex symbol structures, starting with
early work by Hinton, various attempts at compressing structures of arbitrary com
plexity using back-propagation as well as an alternative approach based on circular
convolution were presented and contrasted.

One conclusion was that back-propagation, although powerful, is not the
right algorithm for such work. A better algorithm must be found that is tailored for
making reliable associations between symbol encodings. Also, it was argued that
current techniques for compressing vectors ignore the fact that only part of the
whole structure is relevant to the current process and this should be represented
more prominently in the vector.

Finally, the importance of allowing multiple memory traces to be stored in
the same set of neurons was emphasised. Without such capabilities, it was argued,
the efficiency of the storage would be too low to be applicable to large knowledge
bases.

The next chapter continues the in-depth review with details of existing rea
soning architectures.

Detailed Review I: Coding and Storage Issues 84

-

CHAPTER 4 Detailed Review II:
Reasoning Systems

4.0 Introduction

In this second part of the in-depth review, the highest level of the system will
be considered: that of the information processing architecture itself. Such systems
are characterised by the manipulation of symbol structures and rules, as discussed
in chapter two.

For the purposes of this discussion, reasoning architectures will be divided
into five types: logical inference engines using first-order logic and deductive
inference to derive new facts; production systems, a form of symbolic state
machine; semantic networks, which are a type of knowledge base which permit
properties of classes to be inherited by their members; marker passing inference
architectures, which facilitate parallel inference using a set of parallel rule units
and their dynamic linkage through some form of marker passing. The fifth cate
gory is made up of architectures which fall into none of the above.

Logical inference engines were presented in chapter two in as much depth as
will be required for the work to follow. This review begins with production sys
tems, which were first presented in section 2.2.4, page 21. Here, two implementa
tions are discussed in more detail; the first of these is the Distributed Connectionist
Production System (DCPS) of Touretzky and Hinton, while the other is a hybrid
between a symbolic production system and more traditional search methods, the
SOAR architecture of Newell et al.

Following on from production systems, the properties of semantic networks
are considered, a topic which is extremely important in the design of mechanisms
for robust generalisation. The issues involved in inheritance are presented, along
with attempts to resolve them.

The next section is concerned with marker passing inference architectures.
Here, an number of alternative implementations are presented and compared,
including work due to Shastri, Lange & Dyer and Sun.

Detailed Review II: Reasoning Systems 85

Finally, we consider a set of architectures which fall into none of the main
groups, including the commonsense reasoning architecture of Sun and the AURA
architecture of Austin.

4.1 Production Systems

This review considers two production systems in more depth. The first is the
general purpose problem solving architecture, called Soar, which uses a production
system as a framework but can incorporate other algorithms as required by the
problem domain. The second is the first attempt the construct a purely neural net
work version of a production system, called DCPS.

4.1.1 The Soar Architecture & Unified Theories of Cognition

In 1987 Allen Newell, pioneer of AI and leading exponent of symbolic com
putation, gave the William James Lectures at Harvard University in which he
reported on the development of a 'candidate theory of cognition' called Soar. The
content of those lectures subsequently appeared as a book "Unified Theories of
Cognition" (Newell, 1990).

The philosophy of Newell and his co-workers was to examine the basic prob
lem of problem solving with a view to producing a generic architecture capable of
handling any kind of task domain. In this respect, it is similar to Newell's earlier
work on general problem solving (Newell & Simon, 1963) though far more sophis
ticated. The resulting architecture could be viewed as embodying the fruits of more
than thirty years of leading edge AI research.

The definition of the Soar architecture is sufficiently high level to avoid get
ting bogged down in task-specific detail but manages to be sufficiently detailed to
be more than just an insubstantive thought-experiment. It provides insight at many
level as to how the cognitive process might be successfully modelled. The book is
backed up with several case studies in which the Soar architecture is pitted against
existing (application specific) expert systems with interesting and impressive
results.The architecture itself is founded upon three key concepts.

The first concept is that the essence of intelligence is the ability to solve a
new problem by applying a body of knowledge accumulated through previously
encountering similar situations. This same idea underlies case-based reasoning
which was only in its infancy at that time.

The second key idea is that when confronted with a situation in which there
is no available knowledge that will permit the system to achieve its goal, Soar
should define a sub-goal (whose purpose is to remove the current obstacle), solve
this sub-problem and then return to the solution to the main problem. Sub-goals
can contain sub-sub-goals, etc., ad infinitum.

Detailed Review II: Reasoning Systems 86

In other words, the key is to break the problem down and bring all of the sys
tems resources to bear on each part in series. This permits a problem of arbitrary
complexity to be solved by a machine of finite resources an idea which has always
been at the heart of symbolic AI (for example, the General Problem Solver of
Newell & Simon, 1963).

The third key idea embodied in the Soar architecture is that the way to get
around a impasse which cannot be resolved using the current body of system
knowledge is to define a "space" which contains the required solution and then
search that space until it is found.

Soar is implemented as a production system, similar in function to that
described in chapter two but far more sophisticated in that it has a stack -based
architecture permitting hierarchical decomposition of goals and tasks. The system
also incorporates learning, which in this cases is essentially the generation of new
productions (the term Newell uses is chunking, borrowed from psychology. The
term memoization has also been used (Russell & Norvig, 1995».

Newell draws attention to the basic difference between most AI and expert
systems on the one hand and human cogniti ve performance on the other. It is the
ability of a humans to store up and call upon the responses to previously encoun
tered problems which is currently lacking in contemporary AI systems, he argued.
He illustrated this with a graph of 'Immediate Knowledge' against 'Search Knowl
edge' the former being the product of previous experience (preparation) while the
latter being the result of brute force search. A representation of this graph is shown
below.

Immediate
Knowledge
(Preparation)

Human

Equi-performance

~

Search Knowledge
(Deliberation)

Fig. 4- 0 Trade-offs in search and preparation (from Newell, 1990)

Deep Blue

Detailed Review II: Reasoning Systems 87

Brute force search engines, such as IBM's Deep Blue chess machine would
be placed on the graph at the bottom right-hand side. While expert systems could
by placed towards the middle of the graph, they still do not approach human cogni
tive skill, which, according to Newell, is almost entirely based on immediate
knowledge.

When faced with a new problem domain about which it has no information,
the expectation is that the Soar approach would mimic that of a human in a similar
situation: at first only trial and error would be possible since initially there is no
way to predict the response of the environment. But with each 'experiment'
(whether successful or not) the system will have learned something new. In future,
a sufficiently similar situation will permit the system to draw upon its knowledge
of the earlier results and perform better. On the graph we see that, beginning at the
bottom on the y-axis (possessing little immediate knowledge) and perhaps midway
along the x-axis (having to perform a lot of search), with each new learning experi
ence the Soar-based agent would progress upwards and to the left, depending less
and less on search and more and more on its existing knowledge with the passage
of time.

Unfortunately, Soar is not the answer to every question in cognitive science.
It essentially glosses over a number of critical issues, as Newell himself was read
ily prepared to admit. The architecture has two principle failings, which are
derived from the same source. First, it does not describe how to store knowledge
structure in an efficient and coherent way. From an engineering perspective at
least, this is a vital component of an efficient and practical system.

The second issue is the goal satisfaction itself. Newell describes how Soar
would solve a problem by defining a sub-goal, establishing a problem space known
to contain the solution and then searching the space until the solution is found. In
principle this sounds like a reasonable approach to take. But how does one estab
lish the problem space? What are the algorithms used to search it? Are they suffi
ciently general purpose to be applicable to any problem? If not, how is the correct
one selected?

As an aside, in unrelated work, Minsky discusses the possibility of a mind as
being composed of a large number of parallel agents (which he calls demons, per
haps in deference to Selfridge's Pandemonium Model (Selfridge, 1958», each spe
cialised in a different activity and applying themselves automatically to any part of
a problem to which they are appropriate. Thus the decision as to which to apply in
a given situation vanishes (Minsky, 1988).

The drawback of such an approach is that parallel specialists may not be an
efficient use of resources. Certainly as Minsky describes them, demons seem to be
far too specifically tuned to a particular function. How could such specificity
develop? It could be argued that the specificity used in his examples is merely for
pedagogical reasons and that a real system would use demons of greater generality
leading to a more efficient use of resources.

Detailed Review II: Reasoning Systems 88

Returning to the Soar architecture, we assert that the greatest impediment to
its usage as a general purpose intelligent agent is its dependence on a rule-based
representation of knowledge which is somewhat antiquated (essentially production
system logic, although the notion of chunking is an improvement). The choice of
knowledge representation must be such that large bodies of knowledge can be effi
ciently, coherently and incrementally stored and applied to new problems in an
efficient and coherent manner. Though Soar sketches an outline which is suffi
ciently general to apply to any problem space, it is further asserted that it is the def
inition of the internal mechanisms of knowledge representation which present the
greatest challenge to intelligent systems design and here Soar has little to add to
existing methods.

4.1.2 Distributed Connectionist Production System (DCPS)

Around the same time as the debate on the proper treatment of connection
ism was in full force, work was under way to map the basic idea of a production
system into a neural network: the distributed-connectionist production system
(DCPS) of Touretzky and Hinton (1988). A later extension of the model called
BoltzCONS was applied to list processing (Touretzky, 1990). This latter model
will not be considered since it adds little to the discussion.

At the time of its inception, Hinton and his colleagues of the PDP group were
still in the process of discovering the properties and issues of distributed represen
tations. The DCPS model is, arguably, more concerned with considering the issues
of representation that of seriously addressing the problems of symbols-in-neural
nets, per se .. The model is shown below in a diagram derived from the original
paper.

. - - - - - _. = Gate

Fig. 4· 1 The Distributed Connectionist Production System (DCPS).

Detailed Review II: Reasoning Systems 89

Before considering the unique neural aspects of the model, let us first review
the operation of the system from the symbolic standpoint. A set of 25 symbols was
used, labelled A to Y. Like a standard production system DCPS had a working
memory and a list of rules. The working memory was used to record which sets of
three symbols were valid at any time. A triplet such as (F A D) is a means to
encode a relation, A, between two symbols, F and D, and is thus sufficiently gen
eral purpose to be widely applicable in reasoning.

Rules were encoded in a separate rules space. The format allowed rules with
two triplets on the left hand side, together with an unbounded set of triplet addi
tions or removals on the right. This example is taken from the DCPS paper itself:

Rule-O: (=x A B) (=x CD) => +(G =x P) -(=x R =x)

This rule, which includes a variable x (capable of taking any symbol as a
value provided that the same symbol appears in each position of a given rule), will
fire only if the two triplets on the left occur in the working memory (with the same
first letter) and will cause one triplet to be added and another to be removed from
the memory.

While the rules space and working memory are standard components of a
production system, the clause spaces and bind space are unique to the neural
model. Each of the two clause spaces is capable of taking on an encoding of one
triplet that is active in working memory, focusing attention on it. These two
selected triplets can then feed into the rules space, activating any rule which they
match on the left-hand side. The selected rule then specifies modifications to work
ing memory as dictated by its right-hand side.

Similarly, the bind space can represent a single symbol, which corresponds
to the value of any variable that might appear in an expression. Thus, only a single
independent variable is permitted in any rule (though the authors assert that this
could be extended using further bind spaces).

From the network perspective, the architecture began life as a Hopfield net
work but evolved into a Boltzmann machine due to convergence problems. The
neural popUlations of each representation space are fully and symmetrically con
nected with those of several others (as shown in the figure above).

During the normal operation the contents of working memory are fixed while
the rest of the network is allowed to update its state as a Boltzmann machine.
Beginning at high 'temperature' the cooling process allows the network to settle
into a state consistent both with the rule which matches the active triplets and the
appropriate binding for the variable (if any). At convergence, the working memory
is updated and the cycle begins again.

Each type of representation space has its own hand crafted coding scheme.
For example, working memory encoded triplets in a field of 2000 units. A single
unit has a 'receptive field' of 216 possible triplets, since it is receptive to six possi
ble symbols in the first position, six symbols in the second position and six in the

Detailed Review II: Reasoning Systems 90

third, giving 63 or 216 combinations. Since the assignments were made at random,
each triplet was represented by approximately 40 such units, and any two units
were statistically unlikely to have even two triplets in common. Touretzky and
Hinton present various scenarios, which showed that six or more triplets could be
active in such a memory before the chances of interference between them become
a issue.

The encoding of the clause spaces is similar since one-to-one connections
exist between units in working memory and their counterparts in each clause
space. However, mutual inhibition between all clause space units prevents more
than a single triplet from being active at once, promoting the 'focus of attention'
property. Interestingly, the rules space encoding used groups of units for each rule,
but with no overlap between the firing sets for each rule. The authors claim that
this prevents interference between rules that have similar LHS but very different
RHS during the updating of the working memory.

Overall, the network acts as an existence proof of a neural network as a sym
bol processor. However, on the assumption that it should be possible to implement
a Turing machine in a neural network, this demonstration was a somewhat moot
point.

The real points of interest with this network are more concerned with the dis
tributed encoding of the symbols and the energy that must be expended to over
come the problems that distributed representations brings with it. The encodings
were necessarily hand-crafted for this network. If such care is always required to
map a given problem then this method is clearly not appropriate to large practical
systems. We assume, however, that it will be possible with further work to estab
lish global rules of encoding that can be applied quickly to any problem without in
depth consideration of its content.

The potential benefit of the neural aspects of the architecture is that the serial
search for 'firing' rules in a standard production system are replaced by a parallel
search using energy minimisation in DCPS. As it is implemented here, however,
there is a certain aspect of randomly trying combinations of triplets, rules and bind
ings until a consistent set is found. More careful tuning of the representation might
have provided an opportunity to make a more focused (and hence faster) search
possible.

The use of noise and an annealing schedule also rule this network out as a
practical building block for the work to be presented in this thesis. Not only does
imposing an external rhythm (which greatly modifies network behaviour) impose
extra parameters on the system that may need to be tuned to each problem, but it
also increases the total computation that must be performed by the system for any
given step in the algorithm being executed.

DCPS is an important milestone in the development of neuro-symbolic sys
tems but is perhaps best viewed as a foundation from which to address a whole
myriad of barriers to the realisation of a practical system. Not least among these is
the highly restrictive symbolic framework of the production system itself.

Detailed Review II: Reasoning Systems 91

4.2 Semantic Networks and Inheritance Issues

The concept of a semantic network, both as a means to represent the hierar
chical structure of class membership and as a framework for property inheritance,
was presented as an overview in chapter two (section 2.2.5, page 23). This section
describes the issues and limitations associated with semantic networks in some
detail. Such details are important since at the heart of semantic networks lie a
number of fundamental principles that will enable efficient common-sense reason
ing. The work that will be contrasted is the NETL architecture (Fahlman, 1979),
Touretzky's 'Mathematics of Inheritance Systems' (often abbreviated to TMOIS)
(Touretzky, 1986), the evidential formularisation of Shastri (1988) and the method
of 'Exceptional Inheritance Reasoning', (Al-Asady, 1995).

The major problem with the principle of inheritance occurs when a class may
inherit different values for a given property by virtue of its membership of two or
more parent classes. Two cases are identified, depending on whether or not the par
ent classes are ultimately both members of a third, common class, or not. When
such a common parent exists, the problem is one of redundancy. Otherwise, it is a
problem of ambiguity. Both cases are explained below, along with some of the pro
posed approaches to dealing with them.

The case of redundancy is typified by the 'Tweety-penguin' example, taken
from Al-Asady(1995). (Note that the format for semantic nets in this section is dif
ferent from (and more typical than) that used by the Russell & Norvig example of
figure 2-2 on page 23. Instead, properties appear as nodes and it is often unclear
whether a given node is a member, class or property. Despite this ambiguity, the
format will be used given that it is the more standard notation).

In the network shown part (a) of figure 4- 2, we see that tweety, the penguin,
is a member of the class of bird. Normally, by virtue of its membership of the bird
class it would inherit the property 'flies'. However, the additional negative link
from the subclass penguin to the property flies indicates that any member of the
subclass penguin inherits a different value than the default.

In this case, the inheritance path is unambiguous, since the more specific
information specified for the subclass of penguin overrides the less specific infor
mation inherited from the parent class of bird. We know that the information is
more specific, since the path from Tweety to the property flies is the shortest (two
links). Hence we know that Tweety does not fly.

In part (b) of the figure, extra information is provide that Tweety is a bird,
creating a new link. This information is redundant, but still valid. However, it pro
vides a direct path from Tweety to bird and hence to the property flies, and it does
so in two links, the same path length as that which showed that Tweety does not
fly. Hence, we have a potential conflict.

Detailed Review II: Reasoning Systems 92

Flies Flies

t t
Bird Bird

t t pern pern

Tweety Tweety
(a) (b)

Fig. 4· 2 An example of the problem of redundancy in semantic networks.

In trying to deal with such conflicts, a number of fundamental philosophies
could be employed. Touretzky et al. (1987) distinguish between credulous and
skeptical reasoners. To a credulous reasoner, if there are multiple paths from an
object to a property (and/or its negation) then all such paths should be considered
valid. The idea is that further processing might clarify the situation and prune away
all but one path. Thus it is important not to ignore any potentially valid path. His
own algorithm fits this model. In contrast, a skeptical reasoner assumes that if there
are two paths leading to contradictory conclusions about the inheritance of a prop
erty, then neither path can be considered as valid. This idea leads to a reasoner that
only deals in certainty, but would find limited application in most environments
where handling ambiguity is vital.

To address the Tweety inheritance example, the NETL architecture, which
acts by passing a marker and selecting the path that is the shorter, could give either
inference, depending on which path it considered first. It is neither credulous nor
skeptical, but merely overzealous, choosing the first result that it finds. As Al
Asady points out, its decision making process is then determined by details of
implementation which are unconnected with the semantics. Such mechanisms are
to be avoided.

Touretzky's approach which he called on-path pre-emption or inferential
distance ordering (IDO) was to select one path over another based on the follow
ing principle. The path:

will pre-empt (take precedence over) the path:

A~ ... ~C~P

Detailed Review II: Reasoning Systems 93

if we can establish the presence of a third path showing that B is itself a sub
class ofC:

A-+ ... -+B-+ ... -+C

thereby proving that membership of B provides more specific information
than mere membership of C.

Off-path pre-emption (Sandewall, 1986, as cited in AI-Asady, 1995) allows
the path from A to C to contain multiple links, whereas on-path pre-emption per
mits only a single such link. According to Touretzky this changes the semantics
and can result in counter-intuitive inferences.

We now briefly present the alternative type of conflict in semantic networks,
the case of ambiguity. This is often illustrated using the well-known 'Nixon dia
mond', which was presumably topical at the time when it was first used. This is
shown below.

Pacifist

;;/ ~S-A
Qua~ ;2lican

Dick

Fig. 4· 3 A problem of semantics: The Nixon diamond.

In the figure, the object 'Dick' is a member of two different classes. Dick is
both a quaker (and hence should inherit the property pacifist) and a Republican
(and hence should not be a pacifist). In such conflicting situations, how does the
system decide which (if any) of the property values should be assigned to Dick?

The new difficulty introduced here is that the two classes pacifist and quaker
are unrelated. Nothing in the structure of the graph gives a means to decide which
of the two candidate inheritance paths should be chosen and common sense would
seem to indicate that extra information concerning the pre-disposition of one type
of membership to dominate the other would be needed. Even then, opinion among
individuals as to the relative strength of such affiliation is probably divided for
many cases of interest (such as the quaker/republican case above).

To explain one type of failure of intuition AL-Asady defines what he called
acquired properties. In one illustration (called the George example) George is both
a Marine (and thus drinks beer) and a chaplain (and thus does not drink beer).

Detailed Review II: Reasoning Systems 94

According to common agreement, even though being a marine-chaplain is a
more specific class than merely being a marine, George would more likely inherit
the property of drinking beer. But from AI-Asady's perspective, this is not a viola
tion of the laws of inheritance because the property drinks-beer is a special, non
inheritable property and therefore falls outside the normal laws, requiring individ
ual treatment.

But surely this belief is tantamount to an admission of failure of the whole
formalism of semantic networks? If a mechanism admits common exceptions that
fall outside those that it can deal with, then we must conclude that the mechanism
is inadequate and must be re-structured.

Both Touretzky and AI-Asady point out that more complex examples (which
might combine multiple cases of redundancy and ambiguity in a single inheritance
path) are certainly possible and would require pre-empting several paths. They
show that the order in which paths are pruned can influence the final result of an
inheritance, which is surely another sign that the underlying mechanisms of
semantic networks are flawed.

To try to standardise the mechanisms of inheritance, AI-Asady proposes a
formalisation that he calls Exception Inheritance Reasoning (EIR). Here, he sup
poses that any sub-class that does not conform to its parent class is in fact conform
ing to a different 'virtual' class called the exception class, '¥.

Thus the example semantic net above can be represented thus:

p

\!IX 'c y
1\

Fig. 4- 4 Exception inheritance reasoning (AI-Asady, 1995).

The exception class is a notional concept. It acts to regularise the rule of
inheritance providing a uniform algorithm for dealing with inheritance issues of
several types (not all of which have been detailed here). A further extension using
a form of weights facilitates more intuitive behaviour. None of the proposed mech
anisms corrects the problems of the non-inheritable property, or the multiple solu
tions based on the order of path pruning, both discussed earlier.

A parallel but distinct approach to semantic network is that of Shastri (1988).
His principle strategy was to add a more complete evidential formalism to seman
tic inheritance allowing the strength of inheritance of a property by a given class to
be quantified. This leads to far more intuitive results than were obtained in the all
or-nothing inheritance schemes already described.

Detailed Review II: Reasoning Systems 95

In overview, Shastri's inheritance graphs include structure at each node (cor
responding to an object or class) which list the properties possessed by that object!
class, the possible choices of value for each property and the relative number
observed for each value. These observed numbers can be used to form relative
probabilities. For example (from Shastri, 1988), given the class of Apple, with one
hundred examples observed, sixty of which had the property colour = red and forty
of which had the property colour = green, it is possible to make more reasoned
choices regarding the inheritance of the property by examples of the class, apple
'A-5'. using relative probability, the most likely value of property colour for object
A-5 is Red, in the absence of more specific information to the contrary.

The methodology is based on conditional probability estimation, and thus
has an established body of theory already in place. With such a framework it is rel
atively straightforward to make choices even in the previously ambiguous Nixon
diamond example, since it requires only foreknowledge of the conditional distribu
tions for quakers and republicans with respect to pacifism and the individual a pri
ori probabilities of those classes.

Overall, the principle of semantic networks is an appealing one since the goal
is to reduce the amount of information that needs to be stored about every object or
class in the network and facilitates generalisation to new examples. As such, it
should form the conceptual centre-piece to an efficient knowledge processing
archi tecture.

It is clear however, at least to researchers in the connectionist camp, that the
all-or-nothing inheritance based on a careful pruning of the semantic tree for each
case is not only a bottleneck (due to its serial nature) but also fragile and prone to
failure. The evidential formalisation seems to hold far more promise since it has
the ingredients for robustness and it should give a sound answer in circumstances
where non-evidence based schemes fail.

Even so, the mechanism of inheritance in evidence based networks still
requires a significant amount of computation for each inheritance decision. Shastri
seems to avoid this problem by advocating a highly parallel network in which each
class or object is allocated physical resources. Thus computation also occurs in
parallel. While this may reduce the actual time required for any given inheritance
(a fact much lauded by Shastri), it does not appeal as a practical solution for a very
large knowledge base in which only a fraction of the stored knowledge is needed
for any given problem. This issue will recur again in the discussion of marker pass
ing architectures (section 3.4.4, next). Chapter eleven consists of a lengthy discus
sion on the issues of neuro-symbolic computation and will use the drawbacks of
the Shastri system as one example from which to draw useful conclusions of the
direction that we need to take.

As a part of the next sub-section, which discusses marker-passing architec
tures, Shastri's extension to his work on semantic networks to reasoning systems
will be considered.

Detailed Review II: Reasoning Systems 96

4.3 Marker Passing Inference Architectures

The next few pages will consider the last of the large classes of reasoning
systems to be considered in this thesis: models based on marker passing as a means
to achieve variable binding between rules during processing. Here, we consider
three different networks. Unlike the work on recursive distributed representations
presented in the last chapter (section 3.3.5, page 76) there is little sense of progres
sion in this work, merely three different investigations into the same principles.
Each led to networks which display properties worthy of discussion, and so each
will be considered in tum.

4.3.1 Lange & Dyer's ROBIN Reasoning Architecture

The discussion begins with the work of Lange & Dyer, called ROBIN, which
also serves to present the underlying concept of maker passing (Lange & Dyer,
1989a; 1989b). The basic principles of such architectures are taken from first-order
predicate logic (FOPL) in that knowledge is encoded as a set of rule-like entities
(called frames) which themselves consist of several variables (called roles), each
of which can take on a value in any given instantiation, (the binding). The frame
performs its inference by being active. It does this by two means: first it is acti
vated by another frame whose activation could imply that this frame should acti
vate as a logical consequence and second, that it is more successful at binding the
values propagated forward by the activating frame than other frames which com
pete with it for dominance.

As each frame activates, it passes on to any and all frames which might be a
logical consequence of its activation, a confidence value. This value is used to pro
vide support for all logical consequences of the frame, with frames of higher confi
dence being chosen over frames of lower confidence when the system must select
which is the preferred of two of more possible explanations of the given facts. This
allows the chain of inference to preserve the relative confidence which is held in
each of its intermediate results, which in tum makes it possible to resolve conflict
between two competing theories which interpret any given set of data.

The example used by Lange and Dyer was the interpretation of potentially
ambiguous phrases, such as the following:

PI: "John put the pot inside the dishwasher" and

P2: "because the police were coming."

where from PI alone a normal person would infer that the pot is a cooking
pot in a normal domestic scene, but with the addition of phrase P2 the word pot
takes on the alternative meaning of marijuana and the interpretation of John's
motives are to avoid the detection of an illegal substance by the police. The task
that Lange and Dyer set themselves was to create a network capable of inferring
John's motives either based on PI or both PI and P2. In the latter case, they point
out that to do so requires a chain of inference based on knowledge not included in
the sentence itself.

Detailed Review II: Reasoning Systems 97

\
\

Their architecture proposes that the possible interpretations of facts are
encoded as frames, which describes concepts as collections of roles and in any
instantiation of the frame each role must be bound to a particular value.

An uninstantiated frame is thus a general rule and an instantiated rule is a
particular assertion about the interpretation of a given set of entities. The figure
below illustrates this with a portion of Lange & Dyer's network:

3.1

" "-
"-

Roles

-

.......

/
./

./

Cooking-pot

, ,

Concepts

Signatures

Roles

" Frame , ,
\

Frame

Fig. 4- 5 A fraction of Lange & Dyers' inference network

The figure shows that individual entities that playa role in the computation
(such as 'John', 'the police' and 'cooking-pot' in this example) are each assigned a
unique signature. This is the marker that will be passed to indicate that the entities
is being bound to any given variable during processing. We see that the value rep
resenting John is 3.1. This does not change throughout the processing, but has no
significance other than being a unique value so that we can identify the token for
'John' wherever it might appear.

A frame, such as 'Transfer-Inside' has an activation value, roles and bound
values for those roles. Each role (such as actor, object and location in this example)
is generic but for a given instantiation must be given a specific value (a binding)
which is selected from the available set of entities.

Detailed Review II: Reasoning Systems 98

The activation value indicates how much confidence the system has that the
frame, with its given set of bindings, is a valid interpretation of the current scene.
Closer fitting bindings tend to produce higher confidence, while badly fitting or
missing bindings result in lower confidence.

When a frame is activated, it tends to activate more frames which are possi
ble logical consequences of its activation. The frame's bindings (i.e. the signatures
of objects that are bound to each role) are propagated forward to those frames that
it activates, which is where the variable binding comes in. Chains of inference can
be created in this way, linking instances of frames and propagating the signatures
for which a given inference is true.

From any given set of facts many interpretations may be possible (as is the
case in the 'pot' example used by Lange & Dyer). In such cases, multiple frames
can become activated in parallel and must compete for the right to be the preferred
interpretation. Only the preferred interpretation is permitted to propagate it's bind
ings to other frames and thus new information which changes the preferred frame
can invalidate a whole chain of dependent conclusions requiring recalculation.

The network itself was described a localist connectionist architecture. Indi
vidual frames are realised as parallel entities and computation is effectuated by the
spreading of activity between them.

We note that much of the interpretation of the computation performed using
this network is made by reading the labels attached to each frame. This is a criti
cism that applies to other networks to be reviewed in this section. Due to the com
monalities of the networks (and the similarity of the analysis) criticism will be
presented together in the next sub-section. For the Lange & Dyer architecture, it is
worth noting the unique features that it proposes: the signature, used as the identi
fier for each object of instance, is a unique, real number.

In their papers, Lange and Dyer assume that each object known to the net
work could have a unique signature, fixed for all time. This seems unreasonable for
a huge knowledge base since it requires the resolution of representation for each
signature to depend on a property of the whole database not just on the size of the
'working set' of entities under consideration. Furthermore, it demands that each
newly created object be assigned a number. How does the system handle the fact
that objects may be just variants of an existing type? Does it create a unique identi
fier for every object that is presented regardless of its category? Despite the
authors' assurance that fixed signatures for each object poses no problem, it is
really an implementation weakness of the system.

4.3.2 Shastri's SHRUTI Reasoning Architecture

The second marker passing architecture that will be considered is that of
Shastri & Ajjanagadde (1993), and later Ajjanagadde (1994) and Shastri (1996,
1999). These papers follow on from Shastri's work on semantic networks pre
sented earlier (section 4.2, page 92). As mentioned in the earlier discussion, Shas
tri's variant of semantic networks was the most powerful at that time since it

Detailed Review II: Reasoning Systems 99

combined not only the absolute values of membership or non-membership to a
class, but a quantified evidence value based on a form of likelihood of inheritance.
This allowed it to have something useful to say even in ambiguous circumstances
that would confound less descriptive networks. It is unfortunate, therefore, that
much of Shastri's work in the 1990's has been to lose sight of the evidential frame
work and to rely on all-or-nothing inference for his work on reasoning architec
tures.

The reasoning network proposed by Shastri and Ajjanagadde (hereafter
S&A), which they called SHRUTI, is based on the same principles of marker-pass
ing described for the ROBIN network. SHRUfI augments this with more powerful
handling of roles, variables and variable binding. In addition to being able to rea
son with stored knowledge, SHRUTI permits questions of a certain form to be
posed which is something not handled well (arguably, not at all) in ROBIN.

In their 1993 paper, S&A begin by stressing the need for reflexive reasoning,
a look-up-like mechanism in response to most queries (even symbolically formu
lated ones) that is therefore not based on complex serial processing. This approach
not only follows earlier work by Shastri (1990), but is similar in philosophy to the
chunking principle of AI, embodied in the transition from search knowledge to
immediate knowledge modelled in Soar (see section 4.1.1, page 86).

Furthermore, a key requirement of the performance that S&A demand is that
the time required to make any inference must be independent of the size of the
knowledge base. This is a stringent requirement and impractical for a network with
finite resources due to the computational effort required to combine facts as the
knowledge base is scaled up. We return to this point later.

---....~-,L-From John

----J~--_t_'---t-_ ---+--,~,;::--... -- From Mary

From Book

Fig. 4- 6 An example of a predicate and a fact in SIIRUTI

Detailed Review II: Reasoning Systems 100

The architecture notionally assigns parallel hardware to each different part of
the conceptual and variable binding process, as is illustrated in the figure above
which shows the structure of both a predicate and a fact, as taken from S&A(1993).

In the figure, the lower oval is the predicate for give. It can take part in rea
soning about many instances of giving simultaneously. Meanwhile the upper oval
is the encoding of the single long-term fact "John gave Mary the Book".

The predicate for GIVE has three roles, the giver, the recipient and the object
and binds the entity appropriately. The node e:give is the enabler for the predicate
give, used when in query mode (described later). The node c:give is the collector
node which fires when any fact associated with that predicate is valid.

In each fact node there is a unit which is hard-coded for a particular fact. The
fact FI is tied to the predicate give receiving connections from the enabler node
and role nodes of give. In addition, the output signal from the fact is sent to the
predicate's collector node, c:give. For a particular fact (and there can be many
sharing a predicate) each input from the role nodes coming from give are gated
(inhibited) by connections from the actual objects that this fact is binding. The sig
nal gets through only if the phase of the role signal and the object signal are the
same (the phase is described in a moment). In the figure, a connection from the
node for John is physical made to the giver role of FI, so FI encodes something
about John as a giver.

To understand how these nodes work together during reasoning, it is neces
sary to explain the binding mechanism itself but first we must consider how multi
ple predicates are connected to form a potential chain of inference. An
interconnected network of predicates is shown below, again taken from S&A
(1993). It shows how the activation of one predicate can be fed forwards to other
concepts that can be logically inferred from it. Note these connections form
generic rules, since at this point no fillers have been bound to any roles.:

Give Buy

Own

Can-sell

Fig. 4- 7 An example network from SHRUTI

Detailed Review II: Reasoning Systems 101

Like Lange & Dyers ROBIN model, computation proceeds by a spreading of
activation between the concept along routes defined by the network's connectivity.
The interesting difference is that rather than use the signature transmission system
that Lange & Dyer have (with each entity represented by a unique real number),
S&A opt for what they assert is a more physiologically reasonable system, based
on phase-coded binary markers.

To do this, they impose a clock on the updating of the network and divide the
cycle into a fixed number of phases. Each phase can carry either a zero or a one
and the presence of a one indicates the signature of one entity. Thus the number of
distinct entities that can take part in anyone reflexive inference is equal to the
maximum number of phases sustainable by the network.

A phase is allocated to each entity taking part in the computation and they
begin sending out their respective signatures. To test a particular fact, we active the
enabler node of the appropriate predicate. This in tum tries to activate all of the
facts to which it projects (all facts about the predicate give in this example). If the
phase signal from the role nodes of the predicate (i.e. giver, recip, g-obj) exactly
match the signals coming from their respective entity nodes (i.e. John, Mary,
Book) this means that a perfect match has been achieved. Thus the fact encoded by
FI is true and it activates, passing its signal back to c:give. If any aspect of the
bindings do not match, the activation of node FI is blocked.

In query mode, the system can answer yes/no type of questions based on
predicates and stored facts. The example given in S&A(1993) is based on the pred
icate can-sell which has two roles, the owner p-seller and the object cs-obj. This
predicate is a consequence of the predicate own, so the inference can be made that
is someone owns something they can sell that thing. To ask the question: 'Can
Mary sell the book?' we must see if the predicate can-sell is used in a valid fact
with the bindings of Mary and Book to its roles of p-seller and cs-obj respectively.

To do this, the enabler node of cs-seU is activated, and two phases are
required. One phase is fed to both Mary and p-seller (since they must represent the
same thing) and a second phase is send to both Book and cs-obj (for the same rea
son). This has the effect of a query for that predicate. And the activity now spreads
both to facts based on that predicate and to other predicates that act as antecedents
to it. If the query matches any known fact for that predicate then the collector node
for that predicate activates and the answer to the query is 'yes'. This would occur if
we had explicitly stored the fact that Mary owned the book. In this case, the only
stored fact is that John gave the book to Mary (fact Fl) so c:can-sell remains inac
tive for now.

The enabler of can-sell enables predicate owns via its enabler on the next
cycle because owns feeds in to it. This predicate tries to activate its associated facts
in a similar fashion to can-sell, with the same results. It is only when the activity
reaches give on the third cycle that the fact FI activates, indicating that John gave
Mary a book. This provides sufficient support for an answer to the original ques
tion, and this is propagated down the collector nodes from FI to c:can-sell, answer
ing the question in the positive.

Detailed Review II: Reasoning Systems 102

In essence, the system is performing backwards chaining, looking for condi
tions that will enable a definite 'yes' answer to the question (by default the answer
is 'no'). At each predicate, if a fact exists which matches the search criteria then
the search is over and this information is propagated back along the chain of rea
soning to the start.

Rules with multiple terms in the antecedent such as P AND Q can be
encoded in a similar way, only the collector node of the consequent needs a thresh
old of two (or greater, but equal to the arity of the rule) so that both predicates must
fire to acti ve the rule.

As S&A point out, the use of phase coding is superior to the signature
scheme of ROBIN since phases can be allocated dynamically for a given computa
tion. In contrast, ROBIN has a fixed allocation of values, one per entity in the sys
tem. For a large but realistic knowledge base with 50,000 such entities, they note,
16-bit values would be passed between nodes even if only a few entities were actu
ally needed at one time.

The phase scheme allows a single bit wire between nodes to carry binding
information. The limitation on computation is then defined as a function of the
number of things that the system can consider in parallel rather than as a function
of absolute knowledge base size. This is an important point and brings home once
again the need to consider implementation as a central issue in architecture design.
Another advantage is that the use of phases permits a single predicate to take part
in multiple bindings simultaneously which implies at least some saving on
resources. (But note that the facts themselves are encoded atomically, with one fact
node per fact).

Since there are many common criticisms to make for all of the marker pass
ing networks, further discussion of this network is left until the next sub-section.
First, we consider the final presentation on marker passing network, that of Sun.
His work in this area spans more than a decade and can be divided into three
related elements. The first of these is an implementation of a reasoning system
incorporating variable binding which will be considered here (Sun, 1992).

Later in this chapter, other elements of Sun's work will be discussed. The
first of these will be a reasoning architecture based on causal reasoning, which is
essentially a formalisation of default reasoning (Sun, 1994). The other is an archi
tecture to combine rules and a similarity measure into a single framework, which
he applies to what he calls common sense or robust reasoning (Sun, 1994).

4.3.3 Sun's CONSYDERR Reasoning Architecture

Sun's approach to variable binding is similar in many respects to that of
Lange & Dyer's and thus will be considered only briefly. His reasoning unit
(called an assembly) consists of a node, C, indicating the confidence that the unit
has in its bindings and one node per free variable, Xl, X2, etc. to store binding
information.

Detailed Review II: Reasoning Systems 103

C C

a ----4--+-+--~<r--_+------------_r------__ ~--_4--~
Xl Xl

X2

A B

Fig. 4· 8 An assembly from CONSYDERR

An assembly can represent one predicate. Rules between predicates are
achieved by linking one predicate to another as shown in the figure for predicates
A and B. The rule encoded in the figure is the equivalent of the following from
first-order logic:

A(Xl, X2) => B(Xl)

If the rule fires when bindings a and b are applied (as in the figure), the
resulting mapping is:

A(a, b) => B(a)

As Sun notes, a restriction on rules is that the variables on the RHS must be a
subset of those on the LHS of any rule. This follows since the architecture only
allows old information to be forwarded. This precludes the writing of rules such as:

C(Xl) => D(Xl, X2)

where the variable X2 is not passed on from the C predicate. In an extension
of the basic model, Sun allows variables and constants to be generated inside a
predicate but for variables such as X2 he states that the universal quantifier is
assumed, that is that the variable X2 can take on any value. Is this what we would
expect from such a system? What if we had:

is_son(Fred) => fathecof(Fred, X2)

Surely, this inference implies that if it is true that Fred is a son, then we know
that there is some (currently unknown person) X2 who is the father of Fred. This is
an existential quantifier. The problem with this degree of freedom is that a normal
feedforward reasoner such as CONSYDERR is not capable of then back-tracking
or otherwise searching for evidence that will identify the appropriate value of X2.

This criticism also seems to be true of both Lange & Dyer's and Shastri &
Ajjanagadde's networks although in all cases it would seem to be possible to intro
duce the concept using extra mechanisms.

Detailed Review II: Reasoning Systems 104

The distributed nature of the binding nodes in CONSYDERR allow partial
matching and generalisation which makes this network superior that those of both
Lange & Dyer and S&A.

As a final point, we note that the bindings that are passed between predicate
in CONSYDERR are unique identifiers, thus putting this model in the same cate
gory as ROBIN. Sun points out that the system could allocate, prior to processing,
a set of values to any entities that will take part in that processing. So only active
entities would have a signature. This is reasonable for the limited processing that
will be executed on such a system, but is less appropriate for the type of system to
be developed here in which there is no explicit 'start' and 'end' of processing and
any entity could potentially be implicated in the processing at any time. These
issues are discussed in chapter six.

4.3.4 Marker Passing Architectures: Discussion

The last sub-section presented a number of different architecture which share
the common mechanism of marker passing as a means to perform variable binding
and deductive inference. Each of the three sets of authors were able to demonstrate
that far reaching inferences could be automated in a connectionist network (or at
least a connectionist-like network). Without doubt, each represents a possible
means of implementing variable binding in example domains such as have been
presented in the last sub-section.

However, a considerable fraction of the benefits which appear to accrue from
such networks are illusory, as this section will show. Examining the limitations of
such an approach will be extremely helpful in identifying avenues for future work
in the area of efficient, automated reasoning. Note that in this discussion the
generic word 'frame' will be used to describe the computational unit (although
both 'assembly' and 'predicate' have also been used by the authors). Any reference
to a particular architecture will be clear from context.

The first criticism of marker passing network is that they are essentially an
implementation of first-order predicate logic, with rules being applied to a knowl
edge set and the decision to bind a given value to a variable being conditional on
the firing of those rules. The marker passing itself is thus an implementation detail.
As such, examples of this kind are justification to members of the AI community
such as Fodor & Pylyshyn that connectionist systems are merely implementations
of purely symbol systems. Certainly, the neural level adds nothing to the computa
tional account of the system's operation, which is based purely on the propagation
of symbol values as a result of the firing of rules or predicates. The fact that there
may be a quantitative notion by way of an associated activity value changes noth
ing in this regard.

Also, it is important to grasp that most of the apparent computation is merely
implied by virtue of the labels that each frame carries. Examples such as 'Transfer
Inside' and 'Avoid-Detection' from Lange & Dyer's model, or Shastri & Ajjana
gadde's can-sell predicate give the impression that sophisticated concepts are
being dealt with, but this is not the case. All that the network deals with are con-

Detailed Review II: Reasoning Systems lOS

nected frames and predetermined propagation of bindings. The real intelligence is
manifest in the design of the frames and their connectivity; that intelligence did not
appear from within. (It is interesting to note that similar criticisms of work in AI
was made by Drew McDermott over twenty years ago (McDermott, 1976».

Furthermore, such networks, while handling Fodor & Pylyshyn's constraint
of systematicity, seem to violate all of the others. Such networks do not display
productivity since there is no combinatorial syntax. The limits of what can be rep
resented are proscribed by the designer at the network's inception. The constraint
which Fodor and Pylyshyn called coherence of inference asks that we ignore non
computational labels in the analysis of a system's computational capability. Doing
so in this case robs the network of much of its perceived intelligence since the
frame labels seem to carry most of the meaning of network output.

Next, we consider the cost of implementing such networks. In all of the net
work examples under scrutiny, each frame instance exists as a physical (or at least
parallel) entity in the network. Starting from activity representing the input phrases
or assertions, activity spreads throughout the network, activating frames as
required by the building chain of inferences. Such a scheme is highly wasteful for a
number of reasons.

First, for a given problem, it is likely that only a small fraction of the frames
will be active. Those that never become active serve no purpose and their potential
computational resources are wasted. Second, even for frames which are activated,
they can remain in that activated state for an indefinite period of time while the
spread of network activity switches on other frames. Until the activity 'wave' (for
want of a better word) has reached the ends of the network almost all of the frames,
acti ve or not, have performed all of the computation that they need to. They then
serve merely as memory to maintain the activity wave progressing ahead. It is an
assumption (but a reasonable one) that the cost of implementing the computational
elements of the frame is greater than the cost of the memory required to hold the
results of that computation. Thus the fact that the computational resource is forced
to act merely as a memory is a waste of resources.

A potentially more efficient approach could treat all frames as 'generic frame
resources'. Selected from a pool of available (blank) frames when needed, a frame
could be reused once it had computed its output. Only the output values need be
conserved. Of course, one of the appealing elements of the original frame approach
is that all of the frames act in parallel, scanning the bindings that are being trans
mitted, and activate themselves when they have found a fit for most of their roles.
To mimic this, the system would need to allocate generic frames in advance of
need by anticipating which frames might become active. Once activated, the frame
could be returned to the pool leaving only its output as a permanent trace.

In a similar (but distinct) vein, it would be useful if we could benefit from the
existence of frames which had similar 'meaning' (semantic content?) by overlap
ping in some way the physical or knowledge resources used. This does not seem to
be possible with such an architecture.

Detailed Review II: Reasoning Systems 106

It may be that the designers of these networks did not consider implementa
tion details such as efficient use of resources as a key constraint. But from the point
of view of this work, driven as it is by the requirement to be realisable and effi
cient, it must be a key constraint.

The next issue with marker passing architectures is the robustness of the
knowledge encoding itself. Generalisation is implemented only at the level of con
fidence in the activation of a given frame. It is not clear how the network would
react to variants of known inputs. In the Lange & Dyer example, what if it were not
the police who were coming but the FBI? Do we need to duplicate every frame
which makes particular reference to the police, but with the name FBI instead?
What if it were the Police who were coming, but the rock band rather than the law
enforcement agents? Such an architecture lacks the ability to respond flexibly to
variants of known inputs, a consequence not only of the localist nature of the
encoding but also of the fact that concepts which should be implemented as varia
bles find themselves hard coded into the concept name attached by label to the
frames.

Next, we consider learning. Since the frames are static entities whose mean
ings are defined not only by the links that they make with other frames but also by
the labels that they carry, it is not at all clear how such a network could learn in an
autonomous fashion. Certainly, it cannot inspect its own frame labels and there
appears to be no gradual method to modify links (other than to change the strength
of connection of an existing link between two frames, which offers only a limited
degree of freedom).

Stepping back and looking at the philosophy behind these networks as com
pared to that which is being promoting in this thesis, it is easy to see why these
marker passing networks do not fit with the requirements that have already been
laid out. Such networks embody rules and perform logical rule execution. In each
case the architecture is utterly distinct from the data it produces and for the target
applications this is perhaps acceptable.

But we are looking for something more here. What we want is a unification
between the output of the network and its form. We want the system to manipulate
not just the result of applying the rules, but the rules themselves. We want the out
put of the network to be capable of representing the intention to modify its own
fabric in a certain way and then be able to do so. Furthermore, by these acts of self
modification we expect the system to improve itself, increase its performance and
make itself more able to achieve its goals. All of these elements are missing from
marker passing networks. By not taking the first step of actually representing the
entities they purport to be processing in a manner which influences the outcome of
each computational step, it is hard to see how these networks can ever achieve such
objectives.

Detailed Review II: Reasoning Systems 107

4.4 Other Important Work

This section includes a number of important contributions to the study of rea
soning systems that do not fit into the earlier categories. They are grouped here for
convenience.

4.4.1 Austin's Associative Memory for Reasoning (AURA)

This work is an extension of Smolensky's tensor product scheme and illus
trates its application to practical systems. Austin combines Smolensky's tensors
with his own binary correlation associative memories (Austin & Filer, 1995; Aus
tin, 1997) developed for a related (but distinct) purpose. The goal of the work is to
investigate the properties and limits of binary memories as a framework for sym
bolic reasoning. Rules of the form:

if (A=4) AND (B=TRUE) then (C = FALSE)

are encoded, where A is an integer variable and Band C are binary variables.

The structure of the network is built around two associative memories in
series. The first maps the conditions (the left-hand side of the rule) to a unique vec
tor called the separator. The second maps this separator to vectors representing the
output actions of the rule. Note that ORed terms in the left-hand side are treated as
separate rules since each term can generate the output actions on its own. However,
terms from any given rule always map to the same separator vector as the first step.

The tokens themselves are encoded as N-from-M vectors, in which exactly N
bits are '1' and the rest are '0'. This gives all vectors the same length and makes
the task of identifying signal in noise much easier. Variable names have their own
unique vector encoding, as do constants like TRUE, FALSE and the integers.

Bindings are implemented using the tensor product scheme. Since the ele
ments of each input vector are either '1' or '0', the same is true of the resulting ele
ments of the tensor.

A=[11000] B=[10001] 4 = [0 0 1 1 0]

1 001 1 0

1 o 0 1 1 0

e.g. A: 4 = 0 [00110] = o 0 0 0 0

0 00000

0 00000

Fig. 4· 9 Example vectors and tensor for AURA, from Austin (1995)

Detailed Review II: Reasoning Systems 108

The figure above shows how a binding of the value 4 to the variable A can be
made. The next step is to combine terms which are ANDed together. Austin pro
poses two schemes, one by using n tensors in parallel to represent the n terms in the
condition, while the other superposes (by logically DRing terms) the n input ten
sors into a single tensor.

In both schemes, the number of' 1 's that feed into a single neuron in the mid

dle layer is approximately equal to nN2• Using the same principles as the Willshaw
memory (Willshaw et al., 1969) this known signal strength makes it straightfor
ward to threshold the neurons and obtain the correct separator pattern for a per
fectly matching input pattern.

The system also permits partial matching using only a subset of the input
terms and, as Austin points out, this capability of parallel partial match is a power
ful feature of the architecture.

One drawback with using fewer than n terms to address the n-arity network
is that the signal strength is less than that set during learning. To cure this Austin
proposes n parallel input networks, one for each arity of input. When applying a
query of an arity A, the controller would use the arity A network and apply a

threshold equal to AN2.

Whether this is actually necessary depends on how the network should treat
partial matches. If, given two rules:

A:TRUE AND B:TRUE -> Sl and

A:TRUE -> S2

followed by the unary query:

A:TRUE -> ?

we need to interpret what this query expects for other terms. If the query is
interpreted in the purely logical sense then we read it as 'A must be true and there
must be no other tenns' then Austin's approach of having multiple networks is per
haps justified. The problem arises because the AND mechanism in the term being
represented is not reflected in the mechanism of retrieval of the memory: the
results that would be obtained for each part of the term alone are superposed with
out interference.

However, if the query is interpreted as 'A must be true but other parts a/the
tenn (if any) can have any value' then a single n-arity network can handle this. By

replacing any missing terms in the input stream by a fixed potential of N2 that is
fed to each neuron in the separator layer, an unknown but perfectly matching vari
able-pIus-binding is simulated. For a partial match which does not want to make
commitments for unspecified parts of the input this is probably a better approach.
Such a mechanism could be useful in the control system of an intelligent system.

Detailed Review II: Reasoning Systems 109

Overall, Austin has applied a novel combination of the tensor product
scheme and binary associative memories in a practical way. The fact that multiple
memory traces can be overlapped in the same physical network and that a parallel
search can be executed is a step forward compared to the Plate encoding scheme
discussed earlier. This property seems to be overlooked by most researchers, which
is unfortunate. It would appear that, for its target application space, the AURA
architecture is a potentially powerful approach.

When considered from the point of view of work in this thesis, there is some
similarity. First, the use of N-from-M coding as a controllable medium of represen
tation. This coding scheme is the backbone of AURA just as it is central to the
work in this thesis. Another common thread is that memories are stored in parallel
across the same set of nodes. This similarity is not surprising given that both archi
tectures have a common base in the Willshaw memory.

There are two notable problems, however. The first, as noted by Austin, is
how the network handles partial match searches. Providing different networks for
different arity searches may be appropriate for small-to-medium sized networks
but for very large networks this seems impractical and inelegant.

At a more exacting level, we could consider the serial nature of the rule exe
cution process. Even though an individual search in the memory is effectively a
parallel operation, the architecture restricts the network to perform one such search
at a time. While this is also true of every other architecture to be considered in this
chapter, it may also prove to be a common shortcoming in the long term. (The out
line of an alternative is sketched in chapter eleven (see section 11.4, page 319)).

The other restriction inherent in AURA as presented today is the need to
select near orthogonal separator vectors, one for each rule. Once again, such an
approach may be practical for the target application. For the work developed in this
thesis, however, careful selection of vectors is a luxury that cannot be afforded.
Instead, it will be up to the network to dynamically create new encodings as appro
priate.

Having said that, the principle of separator vectors does exist in this thesis, in
the fabric of the symbol encoding itself. As will be presented in chapter five, a cen
tral issue in the development of adaptive symbol systems must be the encoding of
symbols and their evolution. The symbol must act as a target for some mappings
and as the source for others. In this respect it serves the same purpose as Austin's
separator vectors. The difference is that while Austin circumvents the encoding
problem by computing them off-line, the network to be proposed must rely on
internal algorithms to assign and modify symbols encodings dynamically in
response to changing mappings.

Detailed Review II: Reasoning Systems 110

4.4.2 Sun's Robust Reasoning

Building on his earlier work in reasoning using variable binding, Sun consid
ered the issues involved in both common sense reasoning and in causal reasoning.
The latter is discussed in the next section. Here, we consider his proposal on robust
reasoning (Sun, 1994), which illustrates the possible synergies that could be
obtained from mixing rule-based and connectionist architectures.

The goal of this research was model the kinds of reasoning that humans
make everyday, relying heavily on assumptions and measures of similarity with
known entities to fill in any gaps in knowledge. He distinguishes between two
types of mechanism for associating a property with an object: deductive inference
and similarity. The mechanism for deductive inference is well known and comes
from symbolic AI. He uses the notation:

(A -> B)

to indicate the inference strength between A and B, meaning the conviction
that B is true given that A is true.

The similarity mechanism comes from connectionism and is based on a sim
ilarity metric, in this case chosen to be the dot product between two vectors, repre
senting the distributed representations of the objects involved. He uses the
notation:

(A-B)

to indicate the strength of similarity, meaning the conviction that B is true
given that it has a certain similarity to A which is known to be true.

Using these two mechanisms in combination, Sun goes on to provide a
mechanism for a wide range of reasoning situations. Essentially, he creates a chain
of inferences and estimates of similarity and merely multiplies the resulting confi
dence values together to obtain the overall confidence of the chain of reasoning.
The fact that the mechanism can address so many reasoning cases is, in itself,
impressive. For example, knowing that A is true, that A is similar to B (i.e. A - B),
and that B implies C (i.e. B-> C), allows the confidence that C is true to be esti
mated:

C = A * (A - B) * (B -> C)

where ,*, denotes ordinary multiplication. He implemented the network
using a variant of the variable binding CONSYDERR network developed earlier.

The formalisation covers the two elements that we associate with common
sense reasoning, and thus provides a plausible explanation of this kind of problem
solving. Does it have any drawbacks? There are a number of problems with this
formalism, not in terms of the approach but merely with the simplicity of the oper
ations executed.

Detailed Review II: Reasoning Systems 111

The discussion on semantic networks made it clear that inheritance can be a
complex issue, and yet very simple metrics based on vector similarity are used
here. If an operation as simple as a dot product were to be sufficient, the onus is
placed on the encoding of the features of the vector to correctly model the relative
strengths of similarity to facilitate the correct decision in any case. (Although this
would strictly be true regardless of the similarity measure).

A similar problem can be identified for this network as for the earlier marker
passing architectures: the use of resources is inefficient and inference is serial.
Even if the network can make inferences in parallel, there is no mechanism to act
upon them in parallel. While the nature of the architecture does not preclude such
an extension, it is not clear how such a mechanism would be integrated into the
main data flow.

4.4.3 Sun's Causal Reasoning Architecture

In a section heavy with work by Sun, we briefly mention his investigations
into causal reasoning. This work is based on earlier work by Shoham on what is
essentially a modal logic (Shoham, 1990). He uses what he calls Fuzzy Evidential
Logic (FEL) to model beliefs in a given fact, and defines a formalisation to write
rules in term of necessary or possible conditions.

The result are fairly sound and show that it is possible to write self-consistent
sets of facts in the form of Hom clauses. The two main objections to this approach
are firstly the restrictiveness of the syntax (which is tuned to modelling cause and
effect within fixed boundaries of time) and secondly the disjoint between the
knowledge base and the results. This latter point is the same objection that was
raised for the marker passing networks: that the framework for representing the
output of the network (in the earlier case the activation value of certain frames rel
ative to others while in this case the activity of neurons representing the degree of
belief in a given proposition) is not the same as the framework for representing the
knowledge itself (in the earlier case this was the definition of the frames and their
interconnectivity while here it is the explicit listing of the rules).

The missing element is the closing of the loop that unifies the networks out
put with its structure, permitting it not only to evolve, but to be self-examining.
This idea is synonymous with the refutation of the homonculus as the entity that,
by examining the systems output, gives it meaning. Searching for this unification is
a central theme of the last chapter of this thesis.

4.4.4 Miikkulainen's DISCERN Architecture

One model which tackles the problem of variable binding in a different way
to that used in marker passing networks is the DISCERN script reading architec
ture of Miikkulainen (Miikkulainen, 1993; Miikkulainen 1994). DISCERN is an
implementation of a script architecture, accepting natural language sentences and
identifying which of its pre-stored scenarios most closely matches the data.
Finally, the model is capable of answering questions by filling in the missing parts
of queries from the details of the best match, again using natural language.

Detailed Review II: Reasoning Systems 112

The network itself is highly modular, but is based around a hierarchy of self
organising feature maps. One set of maps is used to compress the incoming stream
of natural language to a vector, while another encodes the knowledge base of the
scripts themselves. These latter maps are arranged like a pyramid, with the smallest
map at the top selecting between one of a small number of story scenarios (restau
rant script, shop script, etc.) based on the input vector (the compressed story).
Lower level maps select between different ways in which each scenario might
unfold as a story until at the lowest level individual features encoded in the maps
represent bindings for the objects and the roles they fill. Thus variable binding is
achieved in a localised way: the firing of a single unit indicates a particular binding
of variable and value.

The detail of how the network functions is both interesting and impressive,
but is less relevant to this discussion. Variable binding in DISCERN succeeds
because the number of variables and possible bindings for each variable is highly
restricted. Overall, the feature map approach to variable binding is heavy on
resources. Such a system would not scale well.

An approach to reasoning systems that does not follow the established rule
based representation of knowledge is that of case-based reasoning. Little work has
been done to date to establish the feasibility of connectionist implementations of
this paradigm. A notably exception to this is the work of Malek & Amy(1997) who
propose a hybrid connectionist-symbolic architecture. The neural component per
forms the case match portion of the algorithm.

4.4.5 Aleksander's Artificial Consciousness

For the sake of completeness, a few points will be made on the Magnus
project of Aleksander, which aims to provide insight into the nature of human con
sciousness through the development of what they describe as artificially conscious
machine (Aleksander et al., 1995; Aleksander, 1996). Such a treatment is cursory
in nature and does insufficient justice to the scope of the project itself.

The Magnus project is concerned with the development of a neuro-symbolic
architecture, which is currently trained by simulation in a virtual environment but
is expected, in time, to be extended to training in the real-world. The core of the
architecture is a state-machine made up of several interacting parts such as sensory
networks, output effector networks and the inner state machine that acts as the inte
grator and central decision-maker.

Symbols (or icons as they are referred to here) are states of this inner state
machine and are therefore distributed over many neurons (perhaps tens or even
hundreds of thousands of neurons are envisaged for a full system). Complex
strings of symbols can be put together by association (Aleksander's example being
the concatenation of three symbols for "dog", "bites" and "man" to form the com
pound icon "dog bites man". Thus, Magnus exhibits productivity and the potential
for systematicity, as one would require of such a system. This work clearly builds
on his earlier work, such as his analysis of the Fodor and PylyshyniSmolensky
debate in which he comes down firmly as both a physicalist (believing that the

Detailed Review II: Reasoning Systems 113

mind can be reduced to and explained in terms of a mechanism) and a connection
ist (believing that a neural network is the most practical way of achieving that goal
(Aleksander & Morton, 1993).

By forcing Magnus to build up its knowledge base through direct experience,
Aleksander seeks to avoid the common criticism of reasoning systems that they
can never be aware of their actions and cannot be said to understand what the sym
bols they use actually mean because such symbols are not grounded in reality
(Searle, 1992). Here, the icons are built up by direct observation of reality (or vir
tual reality in the present model) and associations are made by concurrence in time,
or the connectedness of events (such as "dog bites man") in a manner which Ale
ksander believes parallels human development. He cites many references from
psychology to justify this viewpoint.

As well as tackling the issue of consciousness, Magnus is also intended to
address other, related issues traditionally held to be within the realm of philosophy
alone: the possibility of free-will, awareness of self and mechanisms required for
emotion. All of these are interpreted in terms of state machines, the manner in
which transitions are made and the learning processes they employ.

Offering judgement on many of the philosophical elements of Aleksander' s
work is beyond the scope of this thesis. From the purely mechanistic point of view
of the design of a reasoning architecture it is too early to tell if the project will suc
ceed. Magnus has many of the elements that are probably required for success: it
learns from experience and builds up complex symbolic structure by association.

It is similar in philosophy with the work in this thesis in that it is based on the
postulate that the meaning of the symbol is specified purely in terms of the causal
effect that it has on the systems state. This idea will be central to the architecture
development of chapter fi ve.

One criticism of the work is that some key problems have not been addressed
at this time. Efficiency of memory storage is one such area, as is the interpretation
and re-interpretation of facts in a more statistical manner to try to extract more
complex views of the same observations. In both of these areas, how the data is
represented and managed is critical to success. It is possible that Magnus will be
able to learn to make associations but will be incapable of putting together the
'whole picture' from a set of apparently unrelated facts. One can conceive of a
state machine to perform the former task, without it being capable of performing
the latter. Particular attention is needed to achieve both and it is not apparent that
this line of research has been pursued by the Magnus team.

Chapter eleven enters into much more detail on what, it is argued here, are
the main issues that remain in the design of intelligent systems.

Detailed Review II: Reasoning Systems 114

4.5 Summary of Reasoning Systems and Discussion

The section has reviewed a number of the main contributions to the under
standing of reasoning systems. The review considered production systems, seman
tic networks and marker-passing architectures as well as a few contributions that
fell outside those main categories.

Production systems were seen as a general framework for rules-based rea
soning. The drawback of such systems are three-fold. First, the parallel approach to
checking which rules are ready to fire masks the serial nature of the rule-firing
itself. This bottleneck marks production systems as computationally too weak for
our needs. Second, the forward chaining rules-based approach itself is too con
straining. There are many types of reasoning that we would like to do (such as rea
soning from effects back to causes) which cannot be easily accommodated in such
a framework. Finally, their crude handling of system resources with all-or-nothing
rules firing (many of which might be irrelevant to further processing) is perhaps a
weak foundation for an architecture that must be scaled up to thousands or millions
of rules for the types of systems we wish to design here.

The Soar architecture offers a more generalised framework since it allows
other algorithms to enter into processing as appropriate. The main problem with
Soar is that it is so general that it does not address any of the real issues that must
be faced to design a general-purpose intelligent system. Once again, efficiency is
not considered, nor is the way in which the system might build up its array of algo
rithms.

Semantic networks seem to stand apart from other reasoning architectures,
perhaps because they have not yet be well integrated into architecture which per
fonn chains of reasoning such as we find in a production system. The principle of
semantic networks, that properties that have not been explicitly assigned to an
object can be inherited from a parent class, is a sound one and bodes well for effi
cient storage and implementation. As was noted, however, there are still several
drawbacks. First, a general purpose inheritance mechanism does not seem to exist
yet. Those that do exist are complex and unreliable. The serial nature of the com
putation required for each inheritance operation is a major issue. What is needed is
a mechanism that is not only reliable and covers all cases but works in parallel for
many objects simultaneously and uses minimal resources for each. Such a solution
(if it exists at all) would need to be woven into the encoding of the objects (i.e. the
symbols) and thus places restrictions on the relationship between the encodings for
the parent symbol and those of its children. Chapters five and eleven discuss this
problem further.

At the present time, the marker passing architecture seems to be regarded as
the most promising approach to the design of reasoning systems. It has the appeal
of handling variable binding and hence, of exhibiting the systematicity and produc
tivity required. However, this review has shown several reasons to doubt the effi
cacity of such systems when addressing the real issues that must be faced.

Detailed Review II: Reasoning Systems 115

The efficiency of use of resources is far from optimal in such systems, and
the outputs themselves are not in the same representational space as the knowledge
base that generated them, making it difficult for the output of the network to affect
its structure (vital during learning). Similar to the criticism of production systems,
marker passing architectures handle forward chaining of rules only. They cannot
search backwards, starting from results and identifying root causes. Overall, such
architectures are probably not a fruitful line of future research.

Other approaches have contributions to make to the work in this thesis (and
beyond). Austin's use of associative memory as a means of parallel rules search is
one important example. Aleksander's Magnus architecture, building up complex
representations of the world as combinations of existing objects is another.

Looking back on the various models of reasoning systems that have been
described in this chapter, it is interesting to question the goals and assumptions of
the workers involved. Each architecture modelled aspects of intelligent reasoning,
and was, to a lesser or greater degree, successful in achieving the goals that they
had set for themselves. But this begs the question of what they are ultimately trying
to accomplish. We suppose that each group of authors was interested in making a
contribution to the development of a general purpose intelligent system. To make
such a contribution tractable, they selected a sub-set of the capabilities that one
would expect from such a system and modelled those.

But an implicit assumption is that by addressing a subset of the overall prob
lem one might produce a solution that is a subset of that final whole. This assump
tion is perhaps not justified. History has shown that time spent optimising a given
approach can lead to a dead-end. Work on search methods is, arguably, one such
example. The search approach was the backbone of AI research in the sixties and
seventies but has been replaced by more analogical methods such as case-based
reasoning on the grounds that search is simply not practical for real-world applica
tions.

In the opinion of this author, so much of what has been reported on existing
reasoning architectures falls into the same category. While the feats of deductive
inference that they demonstrate seem to put us well on the way to realising the
machine intelligence that we seek, in fact they may be merely setting aside for later
the main issues and problems that will ultimately necessitate a total redesign of
everything they have put in place. That having relentlessly march to the top of the
hill, they will find that the mountain that they wanted to climb is really in the next
valley.

The alternative is to stop for a moment and consider what we actually want
from out intelligent system and then define a representation scheme that actually
addresses these needs. Though the initial results may seem slower in coming than
those that we are getting from the current lines of research, they might at least hav
ing lasting value. That is the approach that we wish to take here.

Detailed Review II: Reasoning Systems 116

4.6 Conclusions

This chapter has provided a deeper review of the main contributions to our
understanding of neural networks as reasoning systems. This completes the
detailed literature review.

In some instances this review has been highly critical of existing work. It is
hoped that the reader will appreciate that such criticism comes from viewing each
piece of work in the context of the goals established in this thesis. Such goals do
not necessarily coincide with those of the original author and so it should not be
surprising that many proposed architectures were found wanting.

The overall conclusions were that current neural network approaches to rea
soning systems were little more than implementations of existing symbolic archi
tectures. A radical departure in thinking is necessary to make any real progress to
achieving a truly neuro-symbolic system.

Key elements that are rarely mentioned in the development of most existing
architectures include the efficient use of resources and the ability of the system to
represent the intention to modifying its own structure and then to do so. These
missing properties will be investigated in much more depth in chapter eleven.

The next chapter begins the work proper. It presents the majority of the
knowledge architecture development, which in itself is the high-level driving force
for the neural network development of chapters six and beyond.

Detailed Review II: Reasoning Systems 117

CHAPTER 5

5.0 Introduction

Architecture Design:
Data Representation
& Manipulation

This chapter will begin the presentation of the network that was developed to
meet the goals laid out in the first chapter, a development which will consist of two
contrasting lines of enquiry:

The first is to devise an architecture that will provide the functionality neces
sary to achieve the goals. In this case, the architecture must describe the conceptual
form and structure of the data to be manipulated and the operations that can be per
formed upon it. As a baseline the system is expected to implement some form of
rules-based processing, but not necessarily first-order predicate logic.

The second line of enquiry is to develop and characterise the neural network
building blocks that will be put together to implement the architecture. It is impor
tant to know how they function, to understand the limits beyond which they fail
and to able to predict and characterise their behaviour when a failure occurs.

This chapter presents the majority of the development of the architecture (the
rest being presented in chapter eleven). The role of this development is twofold.
First it is to devise a possible solution which fulfils the goals laid out in the first
chapter. The second role is to create a list of requirements and constraints that the
implementation must meet in order to fully realise that architecture.

This chapter wiIl be concerned with both the architecture and the thought
processes that led to its development. The chapters which follow will then address
the implementation, consisting of the development and characterisation of the neu
ral building blocks. Finally, chapter eleven will propose solutions to address issues
not resolved in this chapter. It is located at the end for two reasons. First because it
draws on the results of the neural network development and second, because it is
chronologically the newest part of the work to date.

Architecture Design: Data Representation & Manipulation 118

5.1 Basic System Architecture

The figure below shows a high-level view of the system architecture, made
up of input and output processors, long and short tenn memory and a control struc
ture. The system acts in some kind of environment which is a source of stimulus
and, presumably, is affected by actions perfonned by it.

Input Pre-processor Active Data Output Generator

From Environment Active Control To Environment

Fig. 5-0 High-level System Architecture

The core of the system is conceptually di vided into control and data sections;
each section itself consists of three parts: a long and a short tenn memory as well
as an 'active site' where the two sections interact in the course of data processing.
Note that infonnation from both the long and the short tenn memories can directly
affect the course of computation in both the control and data sections. By way of
contrast there is no reverse traffic directly to long term memory; input to long term
storage must pass first through short term memory, in line with the assumption
stated earlier that infonnation which is scheduled for pennanent storage is a subset
of that which has already been held transiently.

The heavy arrows in the figure indicate that the active data site is strongly
influenced by the twin streams of incoming data from the pre-processor and con
trol infonnation coming from the active control area. It is assumed that the control
area itself receives infonnation both from the data area (in the fonn of results from
each step of computation) and, potentially, some input directly from the incoming
data stream in addition to its own memory stores.

Note how this architecture differs from those detailed in chapter four of the
review. Here, implementation details such as the distinction between long term and

Architecture Design: Data Representation & Manipulation 119

short-term memory are fundamental whereas for many neural network-based rea
soning systems this distinction is either not made or consists in defining short-term
memory as the current activity (with bindings) or its frames/schemas, etc. The
design of this architecture is motivation by the desire to understand how knowl
edge can be stored in such a way as to wield it optimally: making it available when
needed and preventing it from interfering with processing (and consuming pre
cious system resources) when it is not. The division of memories is the first step
towards achieving this objective.

S.2 Knowledge Bases

As previously mentioned, the memory of the system is conceptually divided
into two parts; a short term working memory used as a temporary storage ground
for ongoing computation, and a long term memory which contains a more perma
nent record of the information that the system has about its environment.

The format of the long term memory will be that of a knowledge database or
tree, storing items and the relationships between them. Such a tree is shown in the
figure below. It is seen to be a semantic net although the distinction between object
and property has been removed, since it was never clear from the discussion of
semantic nets why such a distinction existed in the first place.

car Millionaire

h'Uh;/ ~as /"_cu ~es
foucwheels Rolls Royce

!seSjuel
petrol_fuel

Flg.5-1 A section of a relational database.

A knowledge tree, such as that shown in the figure above, allows objects and
relations to be defined in a manner that is easy for humans to understand. Each
'node' consists of one symbol which represents an object, while the symbol
attached to each transition is the control or probe that transforms an input symbol
into an output symbol. For example, we could extract the following relation from
the graph:

human

Architecture Design: Data Representation & Manipulation 120

to indicate that given an arbitrary human being, we expect that the number of
legs possessed by that person is two. While the format is in keeping with normal
predicate calculus, one point of note is the explicit use of two_legs as the result
rather than the generic two, each symbol embodying its meaning rather than
depending entirely on context. This point will be developed in section 5.4.6, page
126, which discusses some of the requirements for a symbol.

One other important point about the tree structure needs to be made, concern
ing the issue of inheritance as typified by semantic networks. We see from the fig
ure above that the tree defines relations between objects without reference to the
generality of that relation. Notice that the statement

usesJuel __ ~.~~ petrolJuel

was made even though the more general relation

car
usesJuel ___ .~~ petrolJuel

might have been applicable. The problems of property inheritance remains
one of central importance in AI. Even in this simple example the generalisation
that was performed is not straightforward.

5.3 Data and Control

The compartmentalisation of control and data is a concept fundamental to
system design. Even though it is perhaps difficult to imagine that the structure of
the human brain can be divided along similar lines, there is extensive evidence
from neuropsychology that certain areas of brain (such as the frontal lobes) are
specialised in the temporal aspects of behaviour (control processes?) while others
such as parietal and temporal lobes are more tuned to spatial tasks and the integra
tion of percepts and relations, respectively (data processes?) (see Kolb &
Whishaw, 1996 for references).

Thus to make such a basic distinction in the system architecture is probably
not to become completely alienated from the brain metaphor.

Data and control in this architecture exist as separate networks, but with a
high degree of coupling between them. In the simplest mode of operation, the flow
of control might flip-flop from one network to the other and back again.

Architecture Design: Data Representation & Manipulation 121

= Control network updating.
data network frozen

Ii5iltiiI = Data network updating.
~ control network frozen

~l>= generated output

Fig. 5-2 Flow of activity from control to data networks during processing.

Thus, while the data network is active (which means that its state is chang
ing), the output of the control network should not be undergoing a transition. It is
tacitly assumed that, in this mode, the output of a network in transition is not
meaningful to any other network. But such a mode is perhaps an overconstraint.
Though we have no proof today, it seems unlikely that the brain works on lines
which restrict one part of the brain to remain in one state while other parts undergo
state transitions.

One might define conceptually more complex modes of operation in which
both control and data are permitted to be in a continual state of change while still
maintaining a meaningful dialogue. However, this simplification makes the net
work analysis more straightforward.

The almost symmetrical nature of the passage from control to data and back
again emphasises the fact that we are able to treat control and data networks as the
same, to first order. The output of one is the input to the other. It would have been
possible to redraw the knowledge tree given at the beginning of this chapter, but
viewed from the perspective of the control network. In that case the transition
labels of the old tree become the nodes in the new one and vice versa. The advan
tage this gives is to permit a single network unit to act as both control and data
structure. However, this blurs the distinction between data retrieval and computa
tion. Both are reduced to two basic operations: pattern retrieval and the association
of previously unassociated patterns. This important idea is explained more fully
throughout this chapter.

Treating control and data networks as the same is important for this architec
ture for two reasons. First, because it renders implementation simple. We have
only a single module type to analyse to establish its functionality and properties.
Second because we adopt the philosophy that the symbolic control structures need
to have the same properties as their data counterparts: to be compositional, system
atic and productive, to allow generalisation and inheritance, etc.

Architecture Design: Data Representation & Manipulation 122

5.4 The Symbolic Principle

This section will discuss some of the necessary properties that an entity must
possess to act as a symbol. The argument will begin by highlighting general prop
erties which are common to any symbol system, its symbols and the processes
which manipulate them. Such properties are well known from traditional AI and
this exposition will draw on much of the discussion from the literature review in
chapters two and four. Additionally, the intent is to try to develop and justify extra
qualities which will be necessary for a symbol system in a neural network context
and which are either less explicit in the literature or do not exist at all.

5.4.1 What a Symbol Represents

To begin, here are some assumptions about what a symbol is and what func
tions it performs. A symbol, in the context of AI, is a representation of an object,
idea or process. One symbol may embody other symbols and the relations between
them to an arbitrary degree of complexity (figure 3-3 shows one example, drawn
from linguistics). Each symbol within such an expression may itself represent
another expression, and so on to an arbitrary depth of embedding.

When an expression containing symbols is manipulated by a set of rules
(which are usually defined such that the truth value of the expression is not altered
by the manipulation) the full expression represented by the symbol does not need
to be made explicit.

This has two principal advantages. First, the irrelevant detail hidden behind
the symbol does not interfere with the manipulation undergone by the symbol
itself. Implicit in this statement is the assumption that the symbol is in possession
of relevant properties, derived from the hidden expression, which inform the proc
ess performing the manipulation of what it needs to know to do so correctly. Sec
ond, it permits a system of finite resources to handle expressions of arbitrary length
and complexity by permitting them to be broken down into a hierarchy of smaller
pieces which could potentially be handled serially.

Sentence

/ I __________
NP

(subject)

John

VP
(verb)

loves NP
(SUbrct)

the girl

Fig. 5·3 Hierarchical decomposition of a symbol "Sentence"

NP
(object)

I
NP

I
VP

(verb)

I
eating

----NP
(object)

I
the sandwich

Architecture Design: Data Representation & Manipulation 123

5.4.2 Within-level and Between-level Relations

In a symbol system there is a within-level relationship between a symbol and
the expression that it represents. That is to say the elements of the expression are
themselves symbols which are potentially as rich and complex as the single symbol
which represents them. By way of contrast, the relationship between a symbol
encoded as a distributed set of microfeatures and an individual microfeature
(which is a recurring theme in the neural network implementation of symbol sys
tems) is a between-level relation, that is to say the microfeatures are not themselves
symbols and do not possess complex structure. This is an often stressed point in the
attacks made by practitioners of AI on the distributed representation models
(again, Fodor & Pylyshyn, 1988, is the classic example of such an attack).

5.4.3 Symbols as Property Carriers and as Pointers

As a consequence of the properties so far defined, a symbol on its own must
contain sufficient information to locate the expression for its meaning (in the ter
minology of the C++ language, the symbol would be acting as a pointer (Strous
trup, 1991». The act of retrieving this information is referred to as a distal access
in recognition of the fact that the needed data may be located far from the point
where it is used (Newell, 1990).

In addition, the symbol must also be a conduit of the properties needed by
any process which will manipulate it. How this is handled is system-dependent.
The symbol itself could embody this data explicitly: part of the intrinsic form of
the symbol could then carry the needed data.

Alternatively, the symbol could act as a pointer to the information just as it
does for its own structural decomposition. In a well designed system we would
expect this usage information to be easier to access (measured as a function of the
resources and time required to obtain it) than the decomposition data. This follows
since usage information is, by definition, more likely to be needed during manipu
lation of expressions containing the symbol than the decomposition of the symbol
itself.

5.4.4 Accessing Properties: Two Approaches

Given a particular object, it is easy to think of several different processes we
might want to carry out for which different properties of the object are relevant.
For example, given is_car(x) we could conceive of two processes each of which is
concerned with different aspects of x as a car. One process, buy-petrol[] might be
concerned with the amount of petrol in any vehicle about which the system is con
cerned. For each object in the system, it needs to check if the amount of petrol it
has is a relevant concept. The usesJJetrol() property of x would be helpful here.
Another process, plan_routell might be more interested in the ability of x to trans
port someone from A to B in a certain time.The uses-petrol() property is less use
ful in this context.

Architecture Design: Data Representation & Manipulation 124

How should this be handled? There is a dichotomy which exists in a lot of AI
on this point. For some applications such as a production system, extra properties
are made explicit:

iS3ar(x) => fasUransport(x)

so that knowledge that x is a car causes other properties to be made explicit
as tokens in working memory. The process plan_route[] might then only be con
cerned withfasctransport(x) and not with is_car(x).

The alternative method used in AI is to attach the properties to the symbols
concerned, creating object-property pairs which are themselves symbols. In the lin
guistic example shown earlier, the symbol "John" was the subject of the sentence.
The symbol for the subject could be manipulated without knowledge that it is John
which is the bound value in this expression, but other types of process may require
knowledge of the particular subject. The hybrid symbol <john-as-subject> is nei
ther the symbol for John nor the symbol for subject. It is another symbol entirely,
which carries properties allowing processes which act upon it to do so without
recourse to other sources of property information about 'John's or about 'subject's.

Of course, the symbol <john-as-subject> can be decomposed into symbols
for John and the generic <subject> symbol, but the goal sought by creating such a
hybrid symbol is to reduce the frequency with which the decomposed symbols
must be used directly.

Are the two approaches doing anything different or are they merely two dif
ferent schemes which produce the same functionality but were developed in differ
ent subfields of AI? In terms of implementation, they are clearly not the same. The
former commits resources to making properties of a symbol into explicit tokens in
working memory, through some function akin to a look-up.

The predicates for the properties of an object have an existence that depends
upon, but is separate from, that of their parent symbol. As a consequence, when the
parent symbol disappears from working memory (i.e. is no longer valid) there must
be a normalisation phase which removes the dependent property symbols, a task
which consumes system resources. This is an common problem in non-monotonic
logic in which predicates which are established as true by a certain set of data, are
invalidated by later information.

The hybrid system does not suffer as much from the problem of truth mainte
nance. Necessary properties are encoded in the symbol itself, or at least are acces
sible directly from the symbol encoding, obviating the need for the look-up and
extra step of making a property explicit as a separate relationship before being able
to use it. This latter approach has the potential to be faster since the bottleneck of
rendering explicit each property predicate and adding it to working memory is
removed. When a symbol is invalidated and removed there are no other tokens in
the form of explicit properties which need to be cleaned up afterwards. However, it
commits the symbol encoding to make those properties available without the inter
vention of an explicit tokenisation step: thus when the creation of the symbol

Architecture Design: Data Representation & Manipulation 125

occurs, its encoding must facilitate access to its properties. It can either instantiate
them explicitly or act as a pointer to them, but in neither case does the property
itself become a separate token in the working memory.

5.4.5 Complexity of Symbol Encoding

A further property of symbols is that the complexity of a symbol (in terms of
the quantity of information needed to specify it uniquely) is not necessarily related
to the size or complexity of the data hierarchy it represents. Thus one symbol of a
certain 'size' might represent only a single other symbol or, say, a data tree of
twenty levels with a branching factor of one hundred.

In the context of implementing a symbol system in a neural network, each
symbol would be represented by a pattern of activity over a fixed number of neu
rons. In the discussion of Smolensky's tensor product encoding scheme, it was
noted that handling variable length expressions is a task not well matched with the
neural network approach. Thus, one extra constraint which it seems reasonable to
impose is that all neurally-implemented symbols have the same 'size' which is to
say that the number of neurons needed to represent anyone symbol is independent
of the symbol itself as well as independent of its contents.

This point reinforces one made earlier, that the symbol acts as a pointer to its
contents rather than containing them explicitly. The pointer approach permits sym
bols to be of fixed size while representing an expression of potentially unbounded
complexity and depth.

Also, note that this constraint was also a moti vation for most of the reported
work on symbol encoding presented in chapter three, including that by Hinton,
Chalmers and Chrisman. In all three cases, the aim of the research was to investi
gate the effects of compressing knowledge trees of variable complexity and depth
down into a single vector of fixed length. The vector acts much as a symbol: being
a token that can be used in other expressions to represent the original symbol tree.

5.4.6 Noise Tolerance in Symbol Encoding and Processing

In a system which is subject to noise (either of input data or due to process
ing error) the physical encoding of symbols should contain sufficient redundancy
to avoid the erroneous classification of one symbol as another. Since the neural
medium is an inherently noisy environment to work in (not only is there noise due
to the probabalistic nature of the firing of each neuron, but in many neural architec
tures the cross-talk between stored memories contributes to the error in every oper
ation) then the processes themselves are subject to error. One further property of
symbols and one that is a consequence of this uncertainty is that of context inde
pendence. In the simple knowledge tree example given above, one relation used as
an example was:

human has_Iegs~ two_legs

Architecture Design: Data Representation & Manipulation 126

In a generic symbol system (implemented in software, for example) the
result of the transition could equally well have been just the symbol two and the
meaning of two legs would have been clear.

human

But this clarity is derived from the context of the given transition has_legs.
This is sufficient when no errors of translation occur. But in a neural network,
despite design effort to minimise the chance of error, the resulting symbol after a
transition is not guaranteed to correspond to the symbol learnt. For example:

human

Extra context built into each symbol allows feedback to the control process
to double check that the result is one of a set of possible correct results. In this
respect, the control process has an 'expectation' of the fonn of the result and can
take appropriate action if the result violates this expectation.

In receiving the result paris_city, the control process, which expected some
thing with a context of _legs, knows that the retrieval process did not execute cor
rectly. How it would handle such events is clearly implementation dependent, but
at the least the control process has the option of going back to the previous state
and trying again, perhaps allowing added noise to bring about an alternative
choice.

5.4.7 Expression Length Limited by Finite Resources

Continuing the discussion of finite symbol size, the symbol approach is illus
trated in figure 5-4 below, with a simple example from mathematics. In (a) no hier
archy is used whereas in (b) the bracketed portion is represented by the symbol x.
The first process applied to both sides is independent of the value of x and so can
be perfonned on the abstracted fonn in (b) yielding a result which is simpler to
represent than that in (a). The second process, simplification requires the contents
of the symbol x to be completed. The result obtained in (b) is thus only partial.

(a) No symbol hierarchy

I-:--'+-'~~ (3 x 2 - 5 + 1) + 1 = 2 + 1 t--'~~~

(b) One level of symbol hierarchy

2 I +lto ~I + 1 2 + J Sjmplj~1 x + 1 = 3 rl= both side x = J .
) ~

/ '\ , ,
(3 x 2 - 5 + 1)

Fig. 5-4 Simple example of the use of symbols in mathematics

Architecture Design: Data Representation & Manipulation 127

In a theoretical sense the length of an expression can be arbitrarily long.
However, in the context of this architectural development there will be a finite
quantity of resources available to represent any given expression in parallel. Thus,
the abstraction provided in (b) will be needed to ensure that no expression requires
more resources than are available. Conversely, an expression which uses less than
the total available resources would be leaving some resources idle which is ineffi
cient.

5.4.8 Structural Sensitivity by Processes

Turning to the processes manipulating expressions made up of symbols, one
requirement demanded by the symbolic approach is that any transformation must
be sensitive to the structure of the expression being transformed. Thus the format
of the input data must be able to influence the way in which the algorithm treats it.
The lack of such sensitivity was one criticism made of existing neural network can
didates for a cognitive architecture (see chapters two and four, or Fodor & Pyly
shyn, 1988).

To facilitate structural sensitivity, the symbol encoding, either directly or by
way of its properties, must provide feedback to the control process to allow the
actions performed upon it to be tailored to its structure.

5.4.9 Symbol Encoding Causally Related to Content

In the pure world of mathematical logic (extended to the realm of program
ming languages with some qualifications), the symbols that can be allocated to
control and data tokens are arbitrary. Thus the symbol two_legs can refer to a crea
ture with two legs, but it could equally well refer to the expression 'y=2x + 7' or to
the concept of communism (Marx & Engels, 1848).

In the implementation of this symbol system, such arbitrary association of
name and meaning is a luxury which cannot be afforded; instead we demand that
the encoding of a symbol be causally related to its designated syntactic behaviour.
Why is this necessary? It stems from the physical implementation of the symbol
system in which the processes which conceptually transform the data symbols are
realised as physical processes which receive only a subset of the whole symbol
being processed.

For example, imagine an adder to be constructed as a simple 8-bit ripple
adder in CMOS logic, which is intended to perform the following hexadecimal
computation: 7 + 6 = D.

The symbols have their usual, hexadecimal meaning. The adder requires
binary coded information, so the symbols '7' and '6' must be thus coded. Each of
the eight bits of the ripple adder is a I-bit full adder and, thus, has three input bits
(a_in, b_in and carry_in) and two output bits (sum and carry_out).

By applying the binary patterns for '6' and '7' to the adder, we observe that
the output binary pattern (from the sum bits) corresponds to the hexadecimal
number 'D' thereby exhibiting the required behaviour at the symbol level. But we
know that even though conceptually the ripple adder summed two 8-bit numbers,

Architecture Design: Data Representation & Manipulation 128

the underlying physical process was implemented as the causal action of single bits
in the medium of transistors. No one transistor was affected by all of the bits of any
operand and so there was never a place we could point to and say 'the symbol
transfonnation process was executed there'.

Returning to the neural network implementation of symbols, the argument
proceeds along similar lines. The physical processes of the network (the neurons)
receive a subset of the pattern for each symbol, and must compute the output of
each operation based only on the infonnation available locally, not on any global
knowledge of what any symbol is in its entirety. Thus it would seem that the
behaviour of a symbol in an expression or relation must be directly related to its
structure.

Despite the preceding argument, it is possible to work with arbitrarily
encoded symbols but the effect is somewhat illUSOry. The idea is to hide the caus
ally-encoded symbols behind a mapping to and from non-causal (arbitrarily
encoded) symbols. In this way we could construct a system which takes arbitrarily
encoding symbols as input, processes them and produces arbitrarily encoded sym
bols as output. Only the central process would be constrained by the causality
property; the translation from arbitrary encoding to causal encoding (and back
again) would be done as a pre- (and post-) processing step.

expression

(arbitrary

encoding)

r--------------,
I

expression expre!:sion Look-up expression
Look-up

Table (causal

encoding)
(causal Table (arbitrary

I
I

encoding) 1.----,..----1 encoding)

I Causal Encoding Region I L ______________ .J

Fig. 5-5 Pre- and post-processing steps would permit arbitrary encoding

While being possible in principle, in practise the addition of a look-up opera
tion both before and after execution of a process will, at best, slow down process
ing. How would the mapping from one set of encoding to the other be maintained?
In a neural implementation, how would the tables of mappings be constructed and
accessed?

There are no apparent gains in adding a level of arbitrary encoding, but the
need to allow mappings between arbitrary symbols does manifest itself transiently
during learning. Consider a symbol, S, whose encoding has been optimised so that
it will operate correctly in whatever relationships have been specified for it. While
learning a total new relationship for S there must be changes in the network struc
ture. These changes must occur either in the mapping from a statically encoded
symbol S to the target symbol, or in the encoding of S itself, or both.

Architecture Design: Data Representation & Manipulation 129

If all changes occur outside of S then the network is essentially making map
pings between arbitrarily coded symbols. This is a situation which we would like
to avoid because, as just described, the arbitrariliy encoded symbol S is a source of
inefficiency to the system as the number of mappings it makes increases. A more
efficient system would also modify S to facilitate the mapping. This scheme will
be adopted in the work to be presented.

However, it is assumed that making changes to S to permit the new mapping
without disrupting existing mappings will take time and so a transient condition
will exist where the new relationship is facilitated by an arbitrary mapping, which
over time will be replaced (made redundant) by subtle changes to S. This is
expanded upon in the next sub-section.

As was noted in the review of reasoning systems in chapter four, the view
that symbol encoding should be causally related to its meaning is not new. The
work of Aleksander, for example, is also founded on the view of a neural reasoning
system as a state machine. States of the network correspond to symbols (or icons in
his nomenclature) and the transition from one symbol to another is a function of
the bit pattern used to encode it. (Reviewed in section 4.4.5, page 113).

If there is one area in Aleksander's work on Magnus that appears to be miss
ing (but is a central theme here) it is that there seems to be no structure in the state
encodings of Magnus. By structure, we mean that the encoding used for any given
symbol, although causally related to the effect that the symbol will have on future
states of the system, could have been arbitrarily chosen since it appears to bear no
relationship to the encoding chosen for any other symbol. It is the structure of sym
bol encodings that we argue will make inheritance and generalisation practical in
large neuro-symbolic networks.

This statement concerning Magnus' internal structure may prove to be incor
rect since details of its internal structure are not well publicised to date. It is hoped
that the Magnus team have addressed this crucial issue themselves. If so it would
be interesting to see how they have approached the problem.

5.4.10 Symbol as Both Source and Target of a Mapping

One property of symbols is implicit in all of the previous discussion: in the
course of any process (which we take to be some form of mapping), a symbol is
both a source and a target. As a target symbol, its encoding must be such that the
process maps input symbols to that particular output symbol. As an input symbol,
its encoding must be such the process will causally produce the correct output sym
bol.

In the previous section, the commitment was made to force a symbol's
encoding to be causally related to its syntactic role in any expression. But consider
a system in which new knowledge is added continually during normal operation.
New relationships for symbol X arrive intermittently, as illustrated overleaf. First,
we learn that symbol X, when operated on by process C must produce symbol P.
Later, we learn that when operated on by process D it must produce symbol Q.

Architecture Design: Data Representation & Manipulation 130

Symbol Q

Symbol X as targl>tet---~-""-- Symbol X as sourc .. f!"---"'~~

FIg. 5·6 A symbol, X, acts as both a source and a target in many processes

As each new relation cannot be anticipated, the symbol encoding assigned
initially for symbol X may become increasingly sub-optimal for facilitating the
appropriate transformations. Later in this chapter, the properties of neural networks
will be used to try to alleviate this problem by permitting the symbol encoding
itself to change over time to try to track the changing web of relationships in which
it is involved.

5.4.11 Summary

This section has presented and discussed many of the properties that a sym
bol is expected to possess to function correctly in a Classic AI environment. While
most properties are globally applicable to any symbol system there are a few, such
as demanding that all symbols are represented using the same number of bits,
which are more relevant to a neural network implementation.

The next section briefly considers some candidate symbol encoding scheme
which were rejected. Following that, the focus fully onto issues of symbol encod
ing in a neural network which led to the final encoding scheme.

5.5 Rejected Candidate Symbol Encodings

At this point, a number of candidate encoding schemes for a symbol will be
presented and then rejected. The reasons for each rejection will be discussed with a
view to clarifying later architectural choices.

Note that in all of these candidate encoding schemes, we are trying to repre
sent two different types of information. First, the contents of the symbol. These
contents are the structure (made up of other symbols standing in certain relations to
each other) that this symbol stands for. The other type of information being repre
sented is the usage information of the symbol itself: those features of the symbol
structure that are most often needed when using the symbol itself in other symbolic
structures and computations.

Architecture Design: Data Representation & Manipulation 131

The various encoding schemes in this section represent several ways to han
dle both these types of infonnation. Two fundamental conduits for the data are to
encode it explicitly in the symbol itself or to encode a pointer to the infonnation in
the symbol. To allow a symbol to be encoded with a fixed number of bits we can
not encode the contents of the symbol within the symbol itself. That option goes
against the most basic philosophy of symbols in any case. Therefore at the very
least a pointer must be used to access the contents of the symbol. Here we are more
concerned with the options for the usage infonnation.

5.5.1 Single Pointer, Encoded-Usage Scheme

In this first scheme, a symbol is made up of a fixed number of bits, N. The
content of the symbol (Le. its constituent structure) is accessed by an address
which occupies a fixed portion of the symbol encoding. However, the usage infor
mation, those properties of the symbol which must be known by any process which
will operate on it, are encoded explicitly in the symbol itself.

It is assumed that the address is encoded redundantly so that a predetennined
number of bit errors can be corrected for. Thus, the probability of data corruption
during processing (due to errors in the address) can be reduced by higher levels of
redundancy, as required. The cost is extra bits in the address field.

Pointer to
Contents ~ t t t t t

I 01 1 1 2 1 1 1 1

~------------ ------------~ /
--.,..-- Usag~rmation Content-Address

Fig. 5-7 The single pointer, encoded-usage scheme of symbol encoding.

The advantages of this system of encoding are that the contents (which are of
indetenninate size and complexity) are only accessed when needed. This approach
is in line with the basic philosophy of symbol systems. The usage information,
however, is directly accessible by the process without a memory access. This per
mits the process to be accelerated in systems where memory access is a bottleneck
to perfonnance.

The disadvantage of this scheme is that it places artificial limits on the quan
tity of usage infonnation that any symbol can display and use. When this limit has
been reached for a particular symbol, how does the system cope with a new proc
ess which requires extra usage infonnation not already coded there? If it abandons
some of the existing data then other processes will no longer work. Thus, the use of
direct coding in the symbol itself is rejected as a methodology for this architecture.

Architecture Design: Data Representation & Manipulation 132

5.5.2 Double Pointer Scheme

In this scheme, a symbol is again given a fixed number of bits, N. These are
divided into two sections: the longer first section is an address or pointer to the
contents of the symbol. The shorter, second, section is an address to the usage
information of the symbol.

Pointer to
Contents~

I 01 I 1 2 1 1 1 1

~ Pointer to Usage
~ Information

1 IN-21 N-,

'-------- -----_.-""\..-_-- ./
Con~ddress Usag'Xcldress

Fig. 5-8 Double pointer scheme allocates one pointer to each type of information

It is assumed that the quantity of content information is larger than that of
usage information. Thus the address range necessary to indicate the location of the
contents data will require more bits to specify.

As before, the indirection in the contents address allows structures of unlim
ited size and complexity to be represented by a single symbol. The usage informa
tion is similarly accessed, avoiding the problems, just described, of explicitly
encoding such information.

There are a number of disadvantages still present in this scheme. The first is
one of efficiency. There is a constant need to make memory accesses to retrieve
usage information, which is potentially a bottleneck to performance.

Secondly, in the event that the location in memory of either the contents or
usage information is changed (such as during memory management operations),
then every instance of every symbol must be located and changed. This problem
could be avoided by using a hash-table encoding for each symbol so that the two
pointers are located in a table and accessed by its entry number. While pointer
updates would need to be performed in only one place, every access to the symbol
would require a look-up to locate its pointers followed by accesses to memory via
the pointers themselves. It is assumed that this scheme is too slow for a very large
network. In any case, it represents a serial bottleneck during computation. Though
we might alleviate this problem by providing multiple copies of the pointer transla
tion tables, such an approach would be counter to the philosophy of parallel, dis
tributed processing.

Finally, such encodings do not seem to facilitate the inheritance of properties
by virtue of membership of a category (generalisation), except by explicit modifi
cation of the usage information on each symbol. If, for example, we have a symbol
which represents a member of a particular class, how do we facilitate the transfer
of properties (as appropriate) from the parent class to the child symbol? We could,
at the inception of each symbol copy parent usage information into its own usage
data structure, but this is a costly operation and requires continual maintenance as
parent classes are themselves updated or refined.

Architecture Design: Data Representation & Manipulation 133

What the scheme lacks is a way of referencing the parent class in the sym
bol's usage information, so that the processes which act upon it know to access the
parent category for usage information that must be inherited. Another way to view
this is that inherited properties should be retrieved dynamically when needed rather
than held statically for each child.

5.5.3 Treble Pointer with Inheritance

To overcome the third and final problem of the double pointer scheme, an
obvious extension to consider is to allow a second usage pointer which allows
access to parent (or class) usage information. Thus, a symbol A which is part of a
class denoted by symbol B could inherit properties from it using a second field.
Any updates to the usage information of the parent usage information would auto
matically affect all symbols which belong to that class since they are accessing
their parent's usage information in addition to their own.

Processes that use symbol A would need to make two accesses: the first to
the parent's usage data and the second to usage data specific to symbol A itself. As
is normal in inheritance schemes, a conflict between the two types of information
is resolve by accepting the symbol specific data in preference to the category data
(Russell & Norvig, 1995).

Pointer to
Contents~

I 01 1 I 2 I I

Pointer to Parent
I Usage Information ~ Pojnter to Usage

./" . ____ InformatIOn

I I I I I IN-li N-I

------------~----- ~-------~-------~ --..,...- -y- •
Content-Address Parent's Usage-Address Usage-Address

Fig. 5-9 The triple pointer scheme with inheritance.

Clearly two accesses would lead to a slower system that one requiring a sin
gle access per symbol. More serious is that such a scheme takes a very coarse view
of inheritance. One might envision that an object is a member of many different
classes to varying degrees and should be able to inherit properties from any and all
of these classes.

To extend the triple pointer scheme to four or even more pointers is clearly
possible, but does not follow one of the stated goals: the system should become
more efficient as it is scaled up. Allowing increasing numbers of classes will slow
down the system in proportion to the number of classes and consume resources in
every symbol. Also, requiring a fixed number of classes per symbol is clearly an
artificial limit. Some entities may belong to many classes, while others may belong
to few. These would lead to an inefficient use of resources.

One of the major objectives in the neural network encoding of the symbol is
to try to avoid these problems; to try to produce a subtle and flexible encoding
which gives the system fine grain access to inherited properties without the cum
bersome requirements of accessing exactly P pointers for P classes.

Architecture Design: Data Representation & Manipulation 134

5.6 Development of a Robust and Flexible Symbol Encoding

The next few sections will outline the thought processes which led to the
form of the neural network-based symbol encoding for the architecture. The dis
cussion begins with the distinction between a mapping based on a function and one
derived from a look-up table. This leads into a few points on generalisation.

The next sections address two issues of hierarchy in the system. First there is
hierarchical knowledge structure which allows symbols to inherit properties from
other symbols. Second, there is hierarchical learning which describes how the
resources used to store symbols and relationships can be shared using higher order
correlations between symbol encodings. This leads into the concept of different
persistencies of memory traces.

Following the discussion on hierarchy is a section on learning issues, in
which the evolution of symbol encoding to facilitate access and to optimise
resource usage will be considered. Next, the operations which can be performed by
the network will be described, followed by areas for future architectural explora
tion.

The last section of the development will reconsider the goals outlined in
chapter one, in the light of the defined architecture. The stage will then be set for
the network development which begins in chapter six.

5.7 Look-up versus Computation

It is appropriate to distinguish the two ends of a continuum which describes
the manner in which data is retrieved by the system from its memory. These two
extremes will be referred to as 'look-up' and 'computation'.

First consider the look-up principle. Given an input and a relation, one could
construct a simple table which provides the output. Processing would consist of
scanning the table to locate the entry corresponding to the two inputs and returning
the associated output. A new entry can be quickly added to the end of the table
without disturbing the other entries.

The advantage of this approach is that data items are not erased by subse
quent additions to the table. As noted earlier in this chapter, this approach is also
amenable to symbols which have arbitrary encoding.

However, there are several disadvantages to the simple look-up table. First,
the larger the table, the slower the look-up process will become (assuming a fixed
finite resource is available to perform the look-up). Second, a system must exist to
maintain the table, to detect and correct inconsistencies between entries. Third,
generalisation is difficult to implement.

Architecture Design: Data Representation & Manipulation 135

Input Symbol Relation Output Symbol

car has wheels four wheels
car uses_fuel petroLfuel

human uses_fuel food_fuel
I I I

millionaire specIes human

Fig. 5-10 A purely look-up table approach to processing.

The process of generalisation depends on the extraction of commonalities
between inputs that allow the system to generate outputs for previously unseen
cases by extrapolating from previous seen cases. In its purest fonn, a system based
on look-up is incapable of interpolation and is, therefore, not applicable in situa
tions in which generalisation is required. (Any fonn of interpolation is defined as
computation in this context. For pure look-up, there is no systematic relationship
either between a given pair of symbols or between any two lines in the table).

At the other extreme of infonnation retrieval is the purely computational.
Here, there is no storage of individual cases. Instead, the output of the retrieval
process is calculated using some function.

Symboioul = f(Symboijn,Reiation jn)

where Symbolout' Symbolin and Relationin are encoded symbols and the func
tionfO is a numeric function which perfonns the mapping. While in the strict
mathematical definition of a function, the possible mappings for 10 could include
the look-up function as a special case, we assume thatj() makes no reference to
any previously seen input symbol. Instead, the function is an extraction of the
underlying process and is applicable equally to previously seen cases or novel
cases.

In the purely computational approach, generalisation is trivial since any sym
bol can be used as an argument of the functionj(), producing the appropriate out
put symbol. But there are fundamental practical problems with this approach. First,
the functionj() must be identified. Perfect identification of the mapping function
would require knowledge of every possible case which, in real systems, is often not
practical. Also, the complexity of the function itself would be a strong detenniner
of the quantity of resources necessary to implement it in a given technology. That
complexity depends upon the encoding of the symbols as well as on the actual
mapping itself.

Furthermore, the readiness with which generalisation can be achieved also
depends upon the symbols encoding. In qualitative terms, a function for which

Architecture Design: Data Representation & Manipulation 136

similar input symbols produce similar output symbols would be smoother than one
for which relatively small changes in the input symbols had a large impact on the
output. In many practical contexts (digital signal processing (DSP) applications or
neural networks, for example) smooth mapping functions are easier to implement
than those with many discontinuities (see, for example, Bishop, 1995).

From the definition of the extremes, it seems that both look-up and computa
tion have advantages and disadvantages. In a symbol system is it necessary to
choose between them? The answer is no. Indeed one of the advantages of a neural
network implementation of a symbol system is that it facilitates the representation
of information at either end of the lookup-computation continuum or even at some
intermediate point. How this might be achieved is the subject of chapter ten.

5.7.1 The Learning Process as a March down the Continuum

Information anives at the sensors of the system from the external environ
ment. This information is discrete, encoded as symbols. These symbols represent
events in the external world. In this chapter these events have taken the form of
simple relations as in a simple database but in principle they could be more com
plex, representing the state of some world and the results of actions performed by
the system in that world. In any case, they are discrete and anive serially. Initially,
the only option the system has is to store them as independent relations. Recall of
those relations then acts as a look-up.

But over time, more and more relations appear and must be stored. The goal
we seek is that given enough examples of certain relations, the system will learn to
extract the regularities from the data, building its own model of the world and be
able to generalise in the face of previous unseen data. To do this, it must internalise
the examples it has and create a function which will perform the mapping in a
range of contexts. The process of doing so transforms the encoding of the stored
relations from simple look-up to a full computation in which individual examples
no longer figure explicitly. We can think of this internalisation as a march down
the continuum from one extreme towards the other.

It is worthy of note that traditionally the AI symbolic approach is best suited
to the look-up form of computation and has performed much more poorly at the
function-based task of generalisation, whereas the neural network approach makes
a form of generalisation easily achievable (based on interpolation between points
in the mappings for two cases which flank an unknown one) but is poorer at
quickly storing unrelated relationships between the codes for two objects.

However, the current interest in hybrid AI-ANN schemes (as discussed in
chapters two and four) is a consequence of the belief that a neural network imple
menting an appropriately coded symbol system could bridge that gap.

Architecture Design: Data Representation & Manipulation 137

5.8 Hierarchies of Knowledge

It is assumed that the world has structure which is manifest in the appearance
of statistical trends in the relationships defined for objects known to the system.
These trends permit the formation of categories or classes which bring together
objects which share common mappings. Using this technique, storage efficiency
can be achieved by defining a mapping once at the class level instead of once for
each member. The concept of inheritance is exploited in AI (Russell & Norvig,
1995) as well as in conventional programming languages such as C++ (Stroustrup,
1992).

This section begins by reviewing ideas on classes and inheritance, then pro
poses a form by which the usage pointer of a symbol could facilitate inheritance by
acting as an incremental vector. Finally, there is a qualitative discussion on the
manner in which a control process could exploit the usage information.

5.8.1 Classes & Inheritance

Consider one coarse grained example. The system is given mappings for sev
eral objects which share a common property. It could use the evidence of similarity
between the results of these mappings to group them together, creating a category
and allowing the members to inherit the property mapping by virtue of their mem
bership to that category.

car

lorry

van

In this way, we might produce the following grouping:

has_wheel~ foucwheels } has_wheel~ four_wheels

has_wheel~ foucwheels

I
van

,~ ~
/ \

/ \
I

lorry
,
car

Flg.5-11 Creation of a category whose members share a common property.

where the dotted arrows denote membership of the category. The new cate
gory 'vehicle' inherits the mapping on behalf of its three members. Queries con
cerning the number of wheels of a car would cause a reference to the parent
category, accessing the mapping there.

As discussed in chapter four in the discussion of semantic networks, inherit
ance permits a form of generalisation, since an object may join a category by virtue
of one set of properties, but may access another property by inheritance which had
never been specified for that object directly. In this way, the object inherited the
value of the mapping by virtue of its similarity to other objects. (See section 4.2,
page 92).

Architecture Design: Data Representation & Manipulation 138

Note that it is usually the case that individual members may override the
default value supplied by the parent by keeping a local value for any given map
ping. Thus we could define a new member, 'Robin Reliant' of the category vehicle
which would inherit all properties of vehicle but may override some:

Robin Reliant has_ wheel~ three_wheels

Thus, a member is not constrained to accept all of the properties of a cate
gory with their values unchanged. In addition, a member could belong to multiple
classes, reflecting different aspects which might be of interest. Inheritance can thus
be made through multiple channels.

Categories may also belong to other categories, creating a network of inherit
ance. How inheritance is handled is implementation dependent. The fact that it per
mits inductive inference complicates the situation since the system must be able to
deal with cases when mappings it makes through inheritance are incorrect. There
may be conflicts due to different mappings arriving from two or more branches of
the inheritance hierarchy. Once again, the system must deal with this.

To implement inheritance in a system where the symbol encoding must be
causally linked with its syntactic role, there must be a level of representation
beneath that of whole symbols in which the membership of various categories is
indicated. In earlier sections, this was referred to as usage information and, for rea
sons that were discussed at the time, the symbol encoding was described as acting
as a pointer to that usage information (see section 5.4.3, page 124 and section 5.5,
page 131).

/
/

/
I

airbase

I

/
/

747

, , ,

, I

seaplane
I

rowboat
van

I

RObin~elia~eel'

three_wheels

Fig. 5-12 Data structure with Inheritance.

Architecture Design: Data Representation & Manipulation 139

5.8.2 Usage Information Encoded as Incremental Vectors

Individual symbols could have their own usage information, but it would be
more efficient if objects shared as much data as possible. Consider a system with N
levels of categorical hierarchy, with level N-l as the highest level (in which we
might define the broadest categories such as 'animal', 'vegetable' or 'mineral')
and level 0 as the lowest, fine grained level at which each object instance resides.

The category at level 1 is still very fine grained and essentially an abstrac
tion of a number of objects at level O. The properties of a category at level 1 are in
some wayan average of properties of its members, while the members are permit
ted individual variations around that average.

Ascending the hierarchy, it is reasonable to assume that each level is more
abstract that the level below. Thus the very highest levels constitute the central ten
dencies of very large and broad categories, with each level below them providing
finer grained information as a delta on the properties inherited from above.

The further down the hierarchy one progresses, the more varied will be the
objects and categories that one encounters, a result of many incremental refine
ments. How does this allow usage information to be encoded?

We expect the rough value of the pointer (its direction in vector arithmetic or
its address in a computing model) to be specified by the highest level of the hierar
chy. Each level below it contributes a delta, so that the pointer reached at level 0 is
unique for each object. For a system in which all knowledge has been well assimi
lated, the adjustments for each level of the hierarchy will be smaller and smaller as
we descend.

SymholA SymholB

#. #
Level 2

Level 2 #

~ ~
I I

Levell I Levell I

~ t_ --Level 0 Level 0 ---
Fig. 5-13 Usage pointer for two symbols.

In the figure above, two symbols are shown. For SymbolA, the level 2
pointer (shared by all members of the highest category) dominates the overall
usage pointer (the solid vector). Each level contributes to the building of the
pointer, but in a well balanced system the contributions of each lower level is less
than the one before.

Architecture Design: Data Representation & Manipulation 140

Now consider SymbolB, which breaks the rule by having a large correction
factor at the lowest level, level o. Here the symbol has recently been involved in
new associations. Properties which had been assumed for SymbolB by virtue of
category membership, were shown by example to be incorrect and so the system
records this by making a modification to the usage pointer which is specific to the
symbol itself (Le. at level 0).

It is possible that the newly learned relationships are truly specific only to
SymbolB, in which case they should not propagate to the categories in which Sym
bolB is a member. However, the new data might be more generally applicable than
SymbolB alone.

How and if the new information is propagated up the hierarchy is not a
straightforward question to answer. Even if we assume that any particular relation
ship which is supplied to the system is true, we are making an inductive leap to
promote it as a property of a higher category. A complex system may be able to use
deductive inference based on other information.

Alternatively, it could use a trial an error approach, based on making the
assumption that the particular situation either is (or is not) generalisable to the level
above and then using test cases to assess the validity of the assumption.

Whatever the induction method used, the system may be forced to reorgan
ise, adjusting the categories to which SymbolB belongs and adjusting the average
value of the pointers in the levels above to capture the central tendencies of the
new class membership. This begins by adjustments in the membership of level 1
and so on up the tree. The higher levels must be much slower to change since they
represent the central tendency of a large number of objects. At the lowest levels the
categories contain only a few highly specific instances and can change much more
rapidly without globally affecting the database.

To facilitate this, we must ensure that two criteria are met: first, that the
degree with which the connections between symbols respond to new learning
events must decrease as one ascends the hierarchy. Thus the lowest levels change
most rapidly and the highest levels change most slowly.

Second, that localised changes in a given level must be capable of overriding
(masking) the effects of the levels above. Thus, when a new relationship for Sym
bolB arrives, the local changes to the mappings for SymbolB can immediately alter
the usage pointer for SymbolB (overriding the central tendencies of the levels
above) but does not affect other symbols which have the same category member
ship as SymbolB. This property should exist for all levels, so a change to a cate
gory at level K should initially affect only its members until such time as its effects
can be generalised to level K+l. How this concept of hierarchy is realised is imple
mentation dependent, but clearly the symbol encoding must incorporate it at a fun
damentallevel.

Architecture Design: Data Representation & Manipulation 141

5.8.3 How The Usage Pointer Would Affect Computation

The purpose of the usage pointer encoded in the symbol is to supply suffi
cient information to the executing process to ensure that its contents are manipu
lated without necessitating a direct access. Thus, in the implementation we would
imagine that the vector representing the usage information must interact directly
with the vector or vectors of the control processes to affect the transformations car
ried out.

The complete usage pointer is the symbol itself and, in the perfect case,
would be unique to that symbol (i.e. no two symbols are identical). By saying that
the executing process is sensitive to the constituent structure of the symbol and that
the usage pointer represents that structure in all relevant ways, we are committing
the executing process to 'decide' how it will treat the symbol (and hence its con
stituents) based solely on information available in the usage pointer: the symbol
encoding itself.

Since it would be impractical to define a specific way of treating each and
every symbol in the context of each and every process, then there must necessarily
be structure in the processes and the usage pointers. Thus, the usage pointer of each
symbol has a structure which allows common features in usage pointer encoding to
trigger common responses from the executing process. The hierarchical nature of
the usage pointer, as described in this section, is one means of achieving this goal.

Similarly, the executing process would interact with the symbol by way of a
hierarchically structured 'execution pointer'. The structure of this pointer would be
developed in such a way as to produce the required transformations of the input
symbols. Symbol and process would develop together during the maturation of the
data organisation. New symbols would necessarily need to conform to the devel
oping principles of organisation in order to be understood. How they might do that
is discussed in a later section.

5.9 Hierarchies of Learning

The review of issues from neuroscience described how the human memory
system appears to have many sub-systems, each dedicated to retention of a differ
ent type of information. Also, the complexity of the biochemistry underlying each
synapse has led researchers to believe that the simple division of memory as either
long or short term may be too rough a categorisation and that more complex mech
anisms of learning may be involved which permit many degrees of persistence.

In this section, some of the consequences of possessing a richer arsenal of
synaptic behaviour will be considered. It begins by considering the benefits of
more complex association between symbols and continues by considering what
properties must be possessed by the underlying units of representation (in this case
artificial neurons) to manifest the desired benefits.

Architecture Design: Data Representation & Manipulation 142

For a memory system, the coarsest distinction that can be made is between
long and short term memory. Permanent relationships between symbols make up
long-term storage (LTM) in this system. Similarly, short term memory (STM)
would include variable bindings and relationships which were recently learned.
The latter use of STM would theoretically permit the system to learn a relationship
and, upon discovering that it was incorrect, to remove it again without damage to
LTM. However, this is not the way that STM is traditionally used. In most models
(e.g. Carpenter & Grossberg, 1994) STM refers only to a reverberation it the activ
ity of the network and does not result in synaptic modification.

The issues highlighted in this section are closely linked with what has been
referred to as the stability-plasticity dilemma in neural network theory (Grossberg,
1988). At its core, the dilemma is the need to trade-off, on the one hand, the flexi
bility of a system when faced with a changing environment and, on the other, the
persistence of pre-established feature detectors or relations whose presence is sig
nificant when viewed over a longer time scale than the short-term changes. In a
system of limited resources there is always a trade-off to be made and this section
proposes a novel approach to the problem using memory persistencies.

Consider the figure overleaf, illustrating two binary vectors. The vectors rep
resent symbols that are to be associated. Whenever SymbolA appears, it should
trigger the recall of SymbolB in a separate network.

SymbolB

Symbol A

Fig. 5-14 Direct association of two symbols.

Learning this association could be achieved by direct connections between
the significant features of SymbolA and those of SymbolB. As more such associa
tions are made, it may be possible to combine the activity by extracting features
from the mapping and creating one or more hidden layers of detectors to perform
this function; this is done in many neural network architectures today (the MLP of
Rumelhart, Hinton & Williams, 1986b, will be used as the example here). Each
level of feature detectors is capable of extracting a higher level of association

Architecture Design: Data Representation & Manipulation 143

between the bits of the symbol vectors. Such a structure is illustrated in figure 5-
15, below.

SymbolB

Level 3 Detectors

Level 2 Detectors

Level 1 Detectors

SymbolA

Fig. 5-15 Indirect association ofsymbols using feature extraction

Traditionally, however, there have been a number of problems with the use
of intervening levels of feature detectors. Firstly, it usually takes many repetitions
of the full set of patterns to learn the mapping. This is due to the necessarily slow
evolution of the weight vectors of the feature detectors themselves.

Second, most known learning processes (such as error backpropagation as
used in most MLP applications) are not guaranteed to converge on a set of feature
detectors which will optimally represent the statistics of the data. Finally, it is diffi
cult to differentiate between associations which are temporary and those which are
intended to be permanent.

What behaviour would we like to achieve? First, that temporary symbols
would be quick to create. Next, that temporary associations would be quick to
make. Third, that permification (or consolidation) of symbols or associations
would be possible, either on demand based on external cues or due to a high fre
quency of usage. Finally we would like one particular learning event to have mini
mal impact upon existing memories (particularly memories which are semantically
unrelated).

While the presence of high-level feature detectors allows important statisti
cal relationships to be extracted, it is also the source of slow learning in associa
tions networks (the MLP being a good example). To try to achieve the best of both,
the model to be adopted is one which permits features extracted at any level to be
used at any higher level. Such a structure is shown in figure 5-16.

Architecture Design: Data Representation & Manipulation 144

In general, the units which form the feature detectors may be the same units
that represent the symbols themselves or may be separate. In either case, new asso
ciations can be made easily by permitting direct, but temporary, connections
between the active units of the input symbol and those of the output symbol.

While the connections remain in place, the symbol association exists. If
unused then within a short time they will decay and vanish, breaking the associa
tion. (Clearly, the definition of 'short' would depend on the learning environment
and system needs).

SymbolB

Level 3 Detectors

Level 2 Detectors

Level I Detectors

SymbolA

Fig. 5·16 Learning hierarchies allow mixtures of features of different levels

If the association is to be made permanent (due to frequency of usage or an
external cue) the level 1 feature detectors must be modified based on statistical cor
relations in the input bits. The choice of which detectors to modify is based on
which require the minimum change in their weight vector to represent the new cor
relation.

Levell
Detector

I temporary
I (fading)

links

iJ
I
I
I
I

Fig. 5·17 Adjustment of feature detectors that supersede direct (temporary) links

Architecture Design: Data Representation & Manipulation 145

Thus, as illustrated above, the level 1 detectors make slight modifications in
order to represent symbolA. The direct links (dotted) fade quickly but their effect
is picked up by more permanent links from the level 1 detectors.

This is repeated at each level of detectors. Each time, links from one level to
the output symbol are replaced by more permanent links from the level above. This
is accompanied by a slight change in the feature detectors at the higher level to
make them sensitive to the pattern at the lower level.

The underlying assumption is that the temporary links have great impact but
only for a short time and in response to specific stimuli. In contrast, the more per
manent links are made by increasingly subtler changes to the synapses, but which
affect the response to a wider range of input stimuli.

The goals in this approach are twofold. First, to accommodate both fast
learning and optimised storage, two apparently opposing requirements. Second, to
allow the significance of a feature to be reflected in its permanence in the network.

While the ideas presented in this section are similar in approach to the
description of classes and inheritance in the last section, to first order they concern
two different concepts. It is interesting to consider how the similarities might be
combined, but the details are implementation dependent and will be left until later
in the network development.

5.9.1 Different Durations of Activation

An extension to the learning hierarchy principle allows the duration of acti
vation of a connection to depend on its position in the hierarchy. Thus, a direct
connection from unit A to unit B would be active as soon as unit A is active and
would cease as soon as unit A is deactivated. For higher level correlations, how
ever, when unit A is deactivated, the connection continues to provide activity to
unit B for a certain duration which depends upon the correlation level of the con
nection.

The idea behind such a scheme is that higher-order features, once detected,
should be able to have an effect on the updating of the network over a longer
period than a low-order feature or direct connection.

5.10 Symbol As Representative for a Constituent Structure

As discussed earlier in the basic properties of any symbol, we know that each
symbol is a point of access to its constituent structure. That structure is made up of
symbols which stand in certain relations to each other, and each symbol is poten
tially as complex as i-ts parent in terms of its own constituent structure.

In this implementation, we place the additional constraint that every symbol
must be encoded using the same number of representational units so that a network

Architecture Design: Data Representation & Manipulation 146

of finite resources can be used handle any symbol without regard to the complexity
of its constituent structure.

Fig. 5-18 Every symbol can embody multiple symbols of equal complexity.

In the architecture, this means that a set of symbol in some relation, each
with their own encoding, must be somehow compressed down to a single symbol
with its own encoding. This new encoding must include not only a pointer to allow
a process to access the original structure but also usage information which is rele
vant to the process concerned.

Clearly, there must be a loss of information between that represented in the
whole expression at one level and the symbol use to represent it at the level above.
Thus, the process, P, which creates the parent symbol (D in the figure) must be
able to select elements of the usage information of the represented expression
which a relevant to the next stage of processing. Thus, the abstraction process is
not executed in isolation but is guided by the control network to fulfil context spe
cific requirements.

5.11 Unsupervised Development of Symbol Encoding

In a simple network such as an MLP, the patterns which must be associated
are supplied by some external agent. In this system however, the network must
provide its own encoding for individual symbols for a number of reasons which
have been argued throughout this chapter. Principally, the fact that the effect of a
symbol must be causally related to its encoding means that the encoding cannot be
arbitrary.

However, if some degree of redundancy is used in defining and interpreting
the encoding of a symbol then there are multiple codes which refer to the same
symbol and which would be interchangeable in the course of normal execution
without changing the result of pre-defined computation (Le. operations for which
the symbolic results of executing a process on a symbol have been specified by an
external source). This level of redundancy permits the network to render a symbol
unique by randomly moving a small fraction of the bits each time a new relation
ship involving it is learned. If the degree of disruption is below the intrinsic level

Architecture Design: Data Representation & Manipulation 147

of redundancy, all such modified symbols will exhibit normal behaviour in exist
ing relationships. This is illustrated in figure 5-19, below.

Furthermore, each unique symbol may form relationships of its own. The
shifted bits are indistinguishable from the original bits in these new learning
events. Furthermore, if context information is coded into a parallel network and
associated with the new mapping, then each learning event causes the symbols
(with their modified, unique bit patterns) to be associated with context information
which is unique to that event.

One way of looking at the process of rendering a symbol unique is that the
original symbol essentially form a category for its children. Alternatively, one
could view the original symbol as an overgeneralisation of the real relationships
involved, which is divided into sub-categories by learning new examples in differ
ing contexts which may produce different results.

In either case, the result is that symbols which form many relationships will
exist in many slightly different forms. If a parallel mechanism were implemented
(at a sub-symbolic level) to cause two frequently used symbols with similar encod
ings to become dissimilar over time, then the encodings of the originally similar
instantiations of the symbol would diverge. To balance this, there would need to be
a convergence mechanism to allow irrelevant divergence to be avoided, perhaps
based on the infrequency of use of one of the encodings.

Associating:

becomes:

Make
Unique

Flg.5·19 Each new association links modified versions of core symbols

The overall behaviour that is sought in this approach is that the encoding for
a symbol is not imposed from the outside ofthe system but is instead driven by the
interdependence of the mappings from one symbol to another. The use of noise in
each new mapping allows the network to diversify its symbol encoding, to react to
new relationships among existing symbols and to pave the way for inductive infer
ence as the next stage of architectural development.

Architecture Design: Data Representation & Manipulation 148

5.11.1 Relation to Ho-Kasbyap Encoding

In the review of Casasent & Telfer's work (section 3.1.2, page 48) the com
parison of several possible learning algorithms for associative memories showed
that a modified version of the Ho-Kashyap learning procedure provided the best
storage capacity among those that were considered. While 2N patterns was stated
as the capacity of a network with N neurons, the demands of the algorithm were to
modify the output patterns themselves during an iterative learning procedure.

For this network, the architecture design demands that the resulting symbols
be modified to facilitate their function. It is interesting to compare the require
ments and results of the Ho-Kashyap algorithm with the procedures we must
define for the symbol encoding.

First, we note that for Ho-Kashyap, it is necessary to compute the pseudo
inverse of the input pattern matrix as the first step of the algorithm. This is, itself, a
compute intensive and non-local computation, which should discourage its use in a
system design that aims for ease of realisation through localised computation.

Next, we note that Ho-Kahyap requires us to pre-compute all of the output
patterns before the network is in use. There is no iterative procedure that can tweak
the encoding 'on-the-fly' when the system is in use. This means that we must know
all of the patterns that must be stored in advance, something which is not possible
in a dynamic, learning environment.

In terms of philosophy, we note that Ho-Kashyap seeks only to make the for
ward mapping from each of a set of input patterns to its corresponding output pat
tern. But here the encoding, even after modification, must maintain all of its
existing relationships both as input and output (i.e. as both a source and a target
symbol, as described in section 5.4.10, page 130). Therefore, we need an algorithm
that is both simpler and more local than Ho-Kashyap, one that can act in an adap
tive fashion in a learning environment and one which gives us control over the deg
radation in the performance of existing relationships.

Fortunately, we do not necessarily need an algorithm that makes optimal
changes to a symbol in a single pass. It may be acceptable to make the changes
over mUltiple cycles or multiple re-uses of the symbol provided that the symbol is
not re-used too frequently before there has been time to modify it appropriately.
This approach takes us more towards a more standard, iterative, learning procedure
such as back-propagation.

5.12 Choice of Symbol Encoding

From the critique of symbolic computation presented in chapters two and
four together with the development of ideas presented in this chapter, it was
decided that the encoding of a symbol should be made up of a single pointer rather
than an allocation of bit fields to multiple pointers. This one pointer must be capa
ble of addressing the constituent structure of the symbol and to provide access to

Architecture Design: Data Representation & Manipulation 149

the usage information required by processes executed on it. In addition, the pointer
must be self-sustaining since the value of a pointer (i.e. the encoded vector) must
be the target of mappings which lead ~o its symbol from others.

[Note that if we consider the N-bit encoded symbol as a vector in N-dimen
sional space, the use of fields to separate multiple pieces of data is equivalent to
treating the N-space as a set of non-overlapping sub-spaces. The symbol vector is
then seen as having a component in each sub-space. Operations which act on indi
vidual fields of the encoding are analogous to vector operations that act within the
separate sub-spaces. With the single pointer approach, we treat the whole vector as
existing in a single space. The benefit of this is that there are no artificial limits on
the boundaries between sub-spaces and the representation can develop such that
each "field" consumes as many "resources" (in this case available dimensions in
N-space) as are needed. Since the resources are limited, the set of fields compete
for them as the encoding develops but note that this is a dynamic process which
continues for the lifetime of the symbol.]

Returning to the choice of symbol encoding, we note that because the system
will be noisy, coupled with the requirement that each symbol encoding must be
able to causally affect computation, we must accept two new constraints. First that
symbols with similar mappings should have similar encoding and second, that the
encoding should have structure of its own to permit generalisation by the executing
processes.

The implementation phase must quantify these concepts in the context of the
neural network medium and the symbol level operations the network is required to
execute.

5.13 Detailed Architecture Structure

This section describes in more detail the structure of the architecture and the
main operations which are available to it. The core of the architecture is the ability
to store and access relationships of the form:

uses_fuel
human .. food_fuel

which will be abbreviated to:

SymbolB
SymbolA ~ SymbolC

In all cases the symbols themselves are coded using the same quantity of sys
tem resources so that the same units which represent symbolA are equally capable
of representing symbolC, and vice versa.

The architecture, illustrated in the figure overleaf, is built around a single
large memory store which hold all of the data for the symbols and their relation-

Architecture Design: Data Representation & Manipulation 150

ships. The output of this memory can sustain the pattern for only a single symbol.
In addition, there is a small working memory which is used only as a short term
storage of symbol encodings. The output of the working memory is also capable of
representing a single symbol. Symbols stored in the small memory are used only to
reactivate the main memory. None of the pointer or relationship information is
stored there.

The rationale behind this scheme is that there is only one place in the symbol
representation hardware where the data structures of symbols and their constituents
is located. The working memory serves only as location for the second symbol in a
pair which will operate on the symbol which is active in the main memory. (An
alternative scheme in which separate and complete networks exist for each of the
three symbols in a relationship makes it difficult to manage the linking of a symbol
in any of the three roles with its other links. Thus it was avoided).

Symbols which are stored temporarily in working memory are tagged by the
control process so that it can access them by tag rather than by content. This per
mits the control process to place symbols there and reactivate them using the tag at
appropriate points in the algorithm.

Control
Process

Relationship Memory

Working Memory

Fig. 5·20 A more detailed schematic for the symbol processing architecture.

5.13.1 Learn New Relation

As a fundamental operation, the system must be capable of learning a new
relationship between existing symbols. Associations are of the form:

SymholB
SymbolA ~ SymbolC

and are executed in two passes. In the first, SymbolA is set up in the main
memory and SymbolB in the working memory. An operation is performed to com
bine the two into a single symbol, still in the main memory, which embodies the
concept <SymbolA-SymbolB>.

Architecture Design: Data Representation & Manipulation 151

During the second pass SymbolC, which is in the working memory, operates
on the hybrid symbol from the first pass, creating a single SymbolD which embod
ies the entire relationship. As was described in the last section, at each step a
number of the bits in each symbol are corrupted by noise to ensure uniqueness in
the relationship. Also, external context information may form a part of the learned
mapping, but such a scheme will not be considered further in this development.

5.13.2 Encapsulation of an Expression as a New Symbol

The creation of hierarchy, a fundamental requirement for the symbolic archi
tecture, is a consequence of the mechanism described above for the learning of a
new relationship. Any number of symbols can be amalgamated in this way,
although only two at a time. Thus all tree structures would have a branching factor
of two.

As is shown in figure 5-21, three symbols, A, Band C which form a relation
ship can be merged to form a single symbol, D which can represent them at the
next level of the hierarchy.

Symbol D must possess certain properties which have been enumerated
throughout this chapter. The most important are that (1) it must act as a pointer to
usage information which is appropriate to the set of symbols that it represents; (2)
it must be capable of being accessed to retrieve the original set of symbols and (3)
it must be representable using the same quantity of resources needed to represent
one of its constituent symbols. This third requirement permits symbol D to take
part in further computation using the same set of units that were used to represent
its constituent structure in an earlier timestep.

r
~Ymbol' I \

I \
I \

I \
I \

I \

Fig. 5-21 Symbol D created to represent relationship between A, Band C

The creation of symbol D is an action instigated by an external cue, such as a
decision by the control network. From arguments presented earlier in this chapter,
the encoding for D cannot be arbitrary; instead it must causally represent the rela
tionship from which it was created.

Architecture Design: Data Representation & Manipulation 152

Once it has been created in main memory, one of two things can happen to
Symbol D. Either it can be operated on immediately, perhaps using symbols in
working memory as other operands of the executing process. Alternatively, it
could move to working memory itself and become an operand for a future opera
tion which acts on another symbol. The control process (another network) makes
this choice, which may be sensitive to the encoding of Symbol D itself.

5.13.3 Access Contents of a Symbol

As a reverse operation to the creation of a single symbol from a set of sym
bols in a relation, it must be possible to 'unpack' the symbol, accessing its contents
and retrieving any of the constituent parts.

Using the same example, Symbol D would be active in the main memory and
the intention is to retrieve one of the three symbols which make up its constituent
structure. To be able to do this, the control process must have knowledge of the
basic roles to which the three symbols are bound. The usage information in the
encoding of symbol D must provide this information, guiding the control process
in its choice of the stimulus it must present to the main memory to cause Symbol D
to transition to the required constituent symbol, A, B or C.

Encapsulate
Symbol
Expression

I

/
I

I

Ir----<

Recall Symbol D
at a later time

Fig. 5·22 Unpacking a symbol to access content information

5.13.4 Sub-symbolic Operations

Unpack symbol
in role C

A number of operations are assumed by the architecture which act at a sub
symbolic level. They all concern the re-organisation of symbol encoding, for vari
ous reasons. First, the optimization of encoding to improve storage capacity.
Second, the permification of data or relationships which were originally stored
only temporarily. Thirdly, for inductive learning, the promotion of properties to
apply to their parent categories requires changes in the encoding of the categories
themselves.

Based on arguments of practicality derived from critical examination of neu
ral and classical AI architectures as presented in this thesis, it is asserted that the
optimisation of the symbol encoding should not be handled at the symbolic level.
Furthermore, it is asserted that the clarification of the interface between these two

Architecture Design: Data Representation & l\fanipulation 153

levels lies at the heart of the problem of creating practical intelligent systems. The
key questions which remain to be resolved concern the exact nature of the symbol
optimisation and the consequences that changing symbol encoding will have on the
performance of the system itself.

5.13.5 Summary

This section has described the data processing parts of the architecture at the
symbol level. The operations that it must execute were described, but the mecha
nisms by which each operation would be achieved are not readily explainable at
the symbol level. The implementation must fill in the missing details, providing a
mechanistic account of data processing at the sub-symbolic level with is consistent
with the operations defined at the symbolic level.

5.14 Conclusions

This chapter has presented the development of the knowledge architecture.
There were two major topics of discussion. First, the properties of a symbol system
were described, both in a general sense and in the context of a neural network
implementation. The encoding scheme of the symbols themselves was described
for a learning system with facility for hierarchical knowledge and inheritance as
well as a variety of memory persistencies.

Second, the scope of the knowledge base to be implemented and the opera
tions which could be performed upon it were outlined. Specifically, the network
will permit the association of objects through a mapping which is defined by a
third symbol. Recall of either operand and/or the operator is facilitated through a
simple look-up. Symbol structure is implemented by transforming the ensemble of
symbols into a single symbol which can be represented using the set of units as one

. of its constituents. This parent symbol carries usage information for its constituents
and can itself be accessed to regain the internal structure, as required for any sys
tem based on symbolic computation.

The architectural level will return to the focus of attention in the penultimate
chapter as an act of unification: looking ahead at the hurdles that remain to consol
idate the symbol and neural levels and realise true neuro-symbolic systems. This
activity is largely one of analysing remaining symbol level issues. It brings into the
discussion elements that emerged in the review of reasoning systems presented in
chapter four. In this chapter these elements have not been the focus of attention, as
more fundamental issues of symbol encoding have dominated. This makes sense
since the next chapter takes the issues of symbol encoding down to the neural
level.

In the next chapter then, we tum to the neural aspects. The chapter is largely
concerned with the encoding of patterns. Subsequent chapters will begin analysing
the simplest network based upon the chosen encoding and then add extra features
with the goal of providing a plaUSible building block for the architecture described
here.

Architecture Design: Data Representation & Manipulation 154

-

CHAPTER 6 Foundations for the
Neural Building
Block

6.0 Laying the Foundations

The previous chapter discussed the high level architecture of the network. By
analysing the necessary properties that the system would need to possess and the
functions it would need to perform, the outline of a candidate architecture was con
structed. Little attention was paid to the actual properties of the neural substrate on
which the machine will be implemented, but along with the architectural definition
came a set of constraints on the encoding of individual symbols within the network
which must be taken into consideration during the implementation phase.

This chapter starts at the other end of the design spectrum from the knowl
edge level. Here attention is focused on the neural building block which will form
the repeatable unit of the implementation level. A cursory inspection of the number
of possible neural network candidates showed that the range is considerable. The
surveys in chapters two and three represent only a subset of the possible network
architectures. It was not assumed at the outset that the "best" neural architecture
with respect to the stated goals would be a single existing architecture such as an
MLP. Instead, the design process was permitted to allow hybrid schemes or even
fundamentally new constructs, where appropriate.

This chapter begins with some general choices for the network substrate. The
bulk of the discussion thereafter will consider the coding scheme that was used to
represent all data items during processing. Next, a first attempt to define the struc
ture of neural building block will be described. It will be left until the next chapter
to define the basic learning procedure and to analyse the properties of this simple
network. Further chapters will then present embellishments to the basic structure,
to produce a network which can implement the full architecture.

One final note is required to put this chapter in context with the rest of the
work. Chronologically speaking, what is presented in this chapter is work which
occurred before the architectural development. It is placed with the other chapters
on network development mainly for the sake of presentation. Thus, some of the
discussion re-examines assumptions that were made during the architectural devel
opment, such as the distributed code.

Foundations for the Neural Building Block 155

6.1 Recurrent Network

At the architectural level it is clear that the fundamental network functional
ity is the transformation and re-transformation of data patterns. A simple feed-for
ward MLP type network is not sufficient: some form of recurrent network is
needed. In principle, an MLP could be used if coupled to a non-neural mechanism
for recirculating the output back to the input. (Indeed, in software terms there is no
difference between this scheme and a fully recurrent network). However, it would
be desirable to use a single homogeneous substrate for the network, using as little
'non-neural circuitry' as possible to implement the system. The rational was that a
homogeneous design should render the system easier to realise, keeping in mind
the goal of being practically implementable.

In fact, the choice of a recurrent network does not eliminate much of the
field. Most neural networks are either inherently recurrent or can be made so by
using some of their outputs as extra inputs. Thus, while discounting purely feedfor
ward networks, the rest of the field remains intact.

6.2 Replicatable Neural "Unit"

Since the original conception of the network saw of the network was that it
would consist of a large number of neurons, it seemed a reasonable simplification
to demand that the network be made up of a large number of identical 'units' each
containing many neurons, as is the case in the human cortex; Practically speaking,
adopting a homogeneous network structure like this has many advantages. The
principle benefits are reviewed below.

First, we can study the properties of a single unit (in a simplified environ
ment representing neighbouring units) and then extrapolate this to the whole net
work. This would be easier to do than to consider the whole network
simultaneously. Secondly, from the point of view of credit assignment during
learning, each unit can be considered independently and share the task equally.

Third, in the implementation of any architecture (for example, an integrated
circuit) the existence of a replicatable unit greatly reduces design time and con
struction costs. Finally, a replicatable unit makes it easier to build fault tolerance
into the network.

But what form should this unit cell take? To preserve generality as much as
possible, only two constraints were placed on the neural unit. First, that it must
consist of a block of N neurons that have high intraconnectivity (Le. with their
peers in the same block). Second, that the connectivity outside of the block is lim
ited to a certain maximum radius, r. How the neurons are actually connected and
what equations govern their operation was left unspecified at that time. The inten
tion of these two constraints was to simplify the analysis by modularising the
whole system as well as to render it more practical to realise by keeping connectiv
ity local.

Foundations for the Neural Building Block 156

As a side note at this point, one major objective that was envisaged was that
the regions are all identical in more than just their basic structure. It was demanded
that all regions should always aim to represent the same quantity of information as
their fellow units. Clearly under transient conditions of learning the actual amount
of information held and transmitted by anyone unit might vary from unit to unit
and this quantity might change over time.

Defining a property such as the equality of data storage was intended to
allow each neural unit to make adjustments to its data storage based on locally
available information, but from which would emerge a global consistency.

Note that this approach rules out networks such as ART and its variants, in
which extra neurons are recruited to represent new patterns that are too different
from template patterns stored by existing neurons (Grossberg, 1976a). The reason
for eliminating such networks is that in an implementation of such a network the
final population of neurons would need to exist from the system's inception and be
activated as needed. Not only does this imply a waste of available resources when
the network learns its first few patterns but it also imposes a hard upper limit on the
number of separate classes that can be represented. Both of these restrictions vio
late key constraints of this work.

6.3 The Data Coding Scheme

The next choice to be made was the coding scheme for the data vectors them
selves. In the architectural development one of the themes which kept recurring
was the critical role played by the choice of data representation. This choice could
not be arbitrary if the goal was a system which was both robust and efficient. This
section looks at candidate schemes, beginning with a look at the characteristics of a
single neuron.

If each neuron, N j , has potential Vj and a threshold value, T j , then its output
is given by:

OJ = 1 when Uj~Tj

= 0 otherwise.

The choice of binary neurons does limit the expressive power of the network,
compared to a network of neurons with graded or sigmoidal response. However, it
will be shown (later in this chapter and in a later chapter on learning) that this step
makes the analysis much easier than one with a more complex output function.

The next step was to decide how the data will be represented on these binary
neurons. The detailed review of chapter three revealed that the literature contains a
wealth of existing work to draw on in this area. Overall, three different coding
styles tended to recur in many of the associative memories that were covered.

The simplest was the I-from-N coding, leading to the grandmother cell
approach to feature representation. This is often referred to as 'one-hot' encoding in

Foundations for the Neural Building Block 157

integrated circuit design and is frequently used to encode control signals (e.g.
Weste & Eshraghian, 1992).

The second was the so-called standard coding in which a set of N neurons
can represent any of the 2N binary patterns available to it. The third scheme is the
K-from-N code in which a fixed number, K, of neurons fire (output = '1 ') and the
rest are silent (output = '0').

Here are some examples of these three codes for a 4-bit vector:

000 1 1100 0000
0010 0011 0100
0100 1001 1010
1000 0110 0111

1-from-N
Vectors

1010 0001
0101 1111

K-from-N
Vectors
(K=2)

Unconstrained
Binary Vectors

The literature survey discussed the use of the three types of coding in an
associative memory from the point of view of achievable storage capacity, general
properties of the codes were often overlooked. For the sake of completeness and to
aid further discussion, several of the key properties of each coding scheme will
next be examined and compared.

6.3.1 Range of Expression

Range of expression, YeN), refers to the number of legal vectors that can be
represented with an N-bit vector using each coding scheme. This is an issue, since
almost all schemes impose limits on what constitutes a legal vector and we wish to
avoid selecting a scheme which permits only a small number of legal vectors.
Clearly, the unconstrained binary vector has the best range of expression since it
places no limits on each binary digit. For the I-from-N code, only a single 'I'
appears in each vector.Thus, only N different legal codes can be generated, making
the I-from-N code a local representation scheme.

Finally, the K-from-N code. The number of legal vectors is now a function
both of the length of the vector, N, and the number of allowed '1' s, K. Calculating
the number of legal K-from-N vectors, V(K,N), consists of finding the number of
ways of picking K identical objects from a set of N. This is given by the standard
formula from combinatorics.The number of legal vectors for the three schemes are
thus:

V(N) = 2N for the unconstrained binary vector

= N for the I-from-N code

N N!
V(K, N) = KC = K!(N _ K)! for the K-from-N code

Foundations for the Neural Building Block 158

Clearly, the range of expression for a 1-from-N code is narrow compared to
the unconstrained binary code. While 1-from-N encoding is useful for simplifying
the control logic of integrated circuits, its expressive power all but rules it out for
large neural network design. However, its worth pointing out that it is often used
for networks which use data clustering algorithms and competitive learning tech
niques. (See section 2.3.2, "Unsupervised Learning", page 30). It has the added
advantage of being easily interpretable by an external observer.

The table below compares the three schemes for various values of N. For the
K-from-N scheme, the number of '1 's in the vector was taken to be 20% of the
total number of bits.

Table 6-0 Comparison of three data coding schemes

No. of Legal Vectors
No.of'l's No. of Legal Vectors No. of Legal Vectors in Unconstrained

No. of bits, N (K-from-N only) in I-from-N Scheme in K-from-N Scheme Binary Scheme

10

20

50

100

200

500

2 10 45 1024

4 20 4845 1.05" 106

10 50 1.03 x 1010 1.13" lOIS

20 100 5.36 X 1020 1.27 X 1030

40 200 2.05 X 1042 1.61 X 1060

100 500 2.04 x 10107 3.27 x IOISO

Even for small values ofN, the limits of the 1-from-N code are clearly visi
ble. For the K-from-N code the numbers are below those for the unconstrained
case, but grow exponentially with N.

It should be noted that the number given here are limits on the number of dif
ferent legal vectors which can be generated in N bits. It says nothing about the
memory capacity of the network itself.

6.3.2 Information Content

Here, we consider two quantities related to the quantity of information that
can be stored in an N-bit vector using each of the candidate schemes: the maximum
amount of information we can store in N bits and the efficiency of the encoding, as
the information stored per bit, given by:

x

leN) = - LP(X) . log p(x)

XE X

Imax(N)
Emax(N) = N bitslbit

where x is summed over the whole set of legal vectors, X. In all of the discus
sions to follow, the base of the logarithm will be two and hence the unit of infor
mation will be the bit. Regardless of the coding scheme used, maximum
information content is achieved when the probabilities for each legal vector are
equal (Cover & Thomas, 1991).

Foundations for the Neural Building Block 159

It is straightforward to calculate these quantities for the three coding
schemes. First, for the unconstrained binary vector, the maximum entropy occurs
when the probability that any bit will be '1' is 0.5. In this case, the entropy and
efficiency are given by:

Imax-unconstraineiN) = N bits

Emax-unconstrained(N) = 1 bitslbit

For the 1-from-N vector encoding, we find that there is always one bit which
is '1' while all others are '0'. Therefore, there can be only N legal vectors, each of
which will appear with probability lIN:

1 1
Imax-lfromN(N) = - N· N logAi'

= logN bits

logN. .
Emax- l/romN(N) = N bltslblt

Finally, in the K-from-N scheme, the number of legal vectors is equal to the
number of ways of selecting K items from N. Thus:

Imax-K/romN(K, N) = -LP(x) . log p(x)

(N-K)!K! .
= - log N! bits

1 (N-K)!K!. .
Emax-K/romN(K, N) = - Ai' . log N! bltslblt

The table below compares the three schemes in terms of the efficiency of
their maximum information content for different vector length, N. For the K-from
N scheme a default value is used for K, equal to 20% of the value of N.

Table 6-1 Efficiency of information storage for different values of N

Efficiency in Information Storage

No.of'l's,K Unconstrained
(K-from-N I-from-N Vector, K-from-N Vector, Binary Vector,

No. of bits, N code only) (bitslbit) (bits/bit) (bitslbit)

10

20

50

100

200

500

2 0.332 0.549 1.000

4 0.216 0.612 1.000

10 0.113 0.665 1.000

20 0.066 0.689 1.000

40 0.038 0.703 1.000

100 0.Q18 0.711 1.000

From the table, we can see that the 1-from-N code is a poor means of storing
information, particularly for large N. The K-from-N code, however, becomes more
efficient with increasing N for a given KIN ratio.

Foundations for the Neural Building Block 160

In the literature review, many of the authors ignored this aspect of the infor
mation storage capacity of their networks, concentrating instead on the total
number of patterns that could be stored. Nadal & Toulouse did consider informa
tion content, also taking into account the reduction in total information per pattern
as a result of errors during recall (see section 3.1.2, page 48). This aspect will be
considered in more detail later in this chapter.

6.3.3 Robustness

In the discussion of the Kohonen feature map (section 2.3.3, page 31), it was
pointed out that one source of problems during the learning phase was the physical
network topology which could conflict with the 'representational' topology as the
network developed leaded to 'twisting' of the resulting net and hence poor repre
sentation of the underlying data.

The reason why this inherent topology was present was to allow the network
to produce reasonable results in the face of unfamiliar or noisy stimulus: if the
stimulus did not activate the correct node, at least it should activate one of the
nodes physically adjacent to the correct one. Physical adjacency was used to iden
tify a 'near-miss'. Without this constraint, the 1-from-N code employed in the net
work would otherwise produce either a correct answer or a totally incorrect answer
(with no hope of even detecting the error, let alone correcting it). In this case, a sin
gle bit error reduces the signal to noise ratio to zero.

In a K-from-N scheme, the presence of an error in one of its K 'I 's modifies,
but does not eradicate, the result. Consider the 5-from-1O code in the figure below.
A network error resulting in a single bit error produces a vector which has a Ham
ming distance of two with respect to the correct vector. The signal to noise ratio for
a single bit error is (K-1)/1. Considering implementations of the K-from-N code
with different values for K, we see that as K approaches O.5N the relative effect of
one erroneous tends to a minimum value.

SIN = 4/1

Correct pattern

1111100000
/ ~ngle bit error

0111100001 1~1~10S
/ ~ / ~econd bit error

SIN=3/20101100101 001110100110101100101001110010

SIN = Signal to noise ratio

Fig. 6·0 Example of the K-from-N code illustrating its robustness

Notice that optimising the value of K for robustness is usually at odds with
optimising it for maximum storage capacity. As discussed in the review of Nadal
& Toulouse's analysis of associative memories, the Willshaw memory has been
shown to have optimal storage efficiency when the number of '1' s in the pattern K
= In N, a figure that is usually far less than the K = O.5N value that leads to maxi
mum robustness. Thus there is a trade-off to be made between storage efficiency

Foundations for the Neural Building Block 161

and robustness and the choice made for K clearly depends on the particular storage
and noise requirements of the environment. If the noise tolerance and the target
storage level are over-constrained for a particular value of N the only recourse
would be to increase the number of neurons.

6.3.4 Easier to Control Interactions Between Regions

Each region may have to interact will many others. In such situations there
will be ample opportunity for positive feedback which is the hallmark of instabil

ity. Notice that the length of each vector is given by In, where n is the number of
'1 'so For both the 1-from-N scheme and the K-from-N scheme this vector length is
always fixed (with values 1 and K, respectively). Changes in each vector affect
only its direction in space.

For the unconstrained binary vector, however, the vector length can vary
with changes in the bits in the vector, since the number of '1 's can vary between 0
and N. In a system with positive feedback, this added degree of freedom would
make systems based on an unconstrained binary representation scheme harder to
control both dynamically and during learning. These ideas will be pursued in sev
erallater chapters.

We note that in the literature survey of chapter three there is a dearth of work
into the use of K-from-N coding in recurrent networks such as the Hopfield of bi
directional associative memory (section 3.2, page 60). This is a puzzling omission
given the above discussion on the extra degree of control that could be exercised
over a fully connected network using such an approach. For purely feedforward,
associative memories, such as those considered by Casasent & Telfer, and Nadal &
Toulouse, the use of K-from-N coding has proved to be a powerful strategy and it
seems interesting to consider what benefits such a strategy could bring to the auto
associative memories for which the storage capacity seems to be comparatively
low.

6.3.5 Equality of Information Contribution

Looking at each region as the transmitter of information and those regions to
which it projects as receivers, we can consider the K-from-N code in a channel (in
the information-theoretic sense). In these terms, the channel in each direction is
one of constant power,.[K, as given by the constant length of the data vector.

There are several possible source of channel noise. Principally: (1) For chan
nels between system inputs and a neural region there is noise on the input signals,
due to sampling as well as fundamental noise in the stimulus being sampled. (2)
Interference from other stored memories. Since the value of this contribution does
not change on the time scale of single updates of the network, this interference is
often referred to as 'slow noise' (Amit, 1989).

(3) Between regions, there will be noise in the data vectors due to the non
zero probability of misclassification. (4) For both input and inter-region channels,
there may be a noise component added deliberately as a part of the networks func
tionality.

Foundations for the Neural Building Block 162

6.3.6 Choice of Coding Scheme: K·from·N

After carefully weighing up the properties of the candidate schemes, the
choice of coding scheme within a neural region will be the K-from-N code. It
seems to share the properties of good information content and range of expression
with the unconstrained binary code as well as the predictability and controllability
properties of the I-from-N code. As such, it represents a good engineering compro
mise. Further analysis of the properties of the K-from-N code will go hand-in-hand
with the rest of the network development.

6.3.7 How To Decide the Value of K?

By selecting the K-from-N coding scheme for the neural unit, a new parame
ter has entered into the problem: K, the number of neurons out of the N which must
fire at any time. How does one decide this value?

As was mentioned earlier, setting K=0.5N allows the maximum number of
different patterns to be represented. Is that the best value to choose? Not necessar
ily: there are more criteria to consider than the information content of individual
vectors. The absolute number of stored vectors is one such consideration, as is the
noise tolerance during recall and subsequent use of the output vector. We might
also consider the requirements of storing complex data structures, something
which may also impose restrictions on the vector encoding. The value of K will
playa role in quantifying all of these concepts. After analysis of the memory
capacity of the network in the next chapter, these ideas will be pursued in more
detail.

6.4 Properties of K·from·N Codes

This section presents further details on the properties of the selected encod
ing scheme: K-from-N codes. We have already established in the last section that
the number of N-bit vectors made up of K 'l's and N-K 'O's, V(K, N) is given by:

N N!
V(K,N) = KG = K!(N-K)!

Two further aspects are investigated here. First, the variation of the informa
tion stored with K and with N. Second, the effect of building redundancy into the
K-from-N encoding.

6.4.1 Information Content

During the process that led to the selection of K-from-N as the choice for
coding, the information content of vectors using the K-from-N scheme was stated
as:

(N-K)!K! .
[max = - log N! bits

Foundations for the Neural Building Block 163

It is interesting to see how the density of information representation (i.e. the
maximum quantity of information that can be represented per bit of the vector)
ImaxlN, changes as a function of both Nand K. The graph below illustrates this, by
plotting this information density against the proportion of firing neurons, p = KJN,
for a number of different vector dimensionalities, N.

1.0

0.9

0.8
z ->< 0.7 ns
.E
.~ 0.6
CJ)
c::
11) 0.5 CI
c::
0 0.4 "Z
ns
E 0.3
~
.E

0.2

0.1

0.0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Proportion of Firing Neurons, p

-- N = 60 -- N = 100 -- N = 200

Flg. 6-1 Graphs of Information Density vs. Fraction of Firing Neurons

Note that as was mentioned in the review of the literature on associative
memories, the density of information stored in an N-bit vector using K-from-N
coding is a strong function of K. This is clear from the graph. The result that the
maximum information content is achieved using K=O.5N is well known, as is the
fact that the total information content tends to zero as K approaches either zero or
N.

What is perhaps less obvious, but clear from the plot is that there is also a
dependency of the information density on N, so that for a given value ofp the
information density ImaxlN tends to its maximum value only as N tends to infinity.

6.4.2 Building Redundancy into K-from-N Code

From the results presented so far, it would seem that for even medium vector
lengths, N, (in the tens or hundred of bits) the number of legal vectors expressible
with a K-from-N code is extremely large: growing exponentially with N. However,
as mentioned earlier, for a robust system there must be allowance for the fact that
errors will creep into the output vector at each step due to noise in the input data,
errorsinclassification,cross-talkbetweenstoredmemories(so-calledslownoise)aswellas
noise deliberately added as part of the networks normal function.

Foundations for the Neural Building Block 164

A sensible approach to such problems is to build redundancy into the code to
permit error correction of faulty bits. We select a subset of the legal vectors and
call them the 'golden' set. Vectors which are similar but not identical to a golden
vector (as deterrrtined by some metric) are assumed to have errors. These errors
can be identified and corrected if they are not too great.

Formally, we define a set of vectors, <p, which are a subset of the full range of
legal vectors, u. Around each vector, <Pi, we define a neighbourhood of legal vec-

tors, rh, none of which belongs to <po For a particular <Pi, the neighbourhood is

defined as the set of legal vectors which satisfy the distance metric, d:

- -
TJi == {x E u : (d(x,<p;) s; M) 1\ (x!C <p) }

N - J

where d(~'~i)==~ L[~j(l-~~)+~:(l-~j)]
; =0

The summation j is over the bits of the vector. Here, ;) refers to the jth bit of
the vector X. The distance metric d(x, <p) is nothing more than a count of the mini
mum number of' 1 's that must be moved to transform one vector into the other.

Note: that the distance d is twice the Hamming distance between any two K
from-N vectors. Also, the metric d has the properties required of any metric; it is
always zero or positive, the self-distance d(<Pi' <pD is zero, it is transitive (so that

d(<Pi' <Pj) = d(<pj' <Pi) for any <Pi' <Pj) and it fulfils the triangular inequality.

Since every legal vector has constant length,jK, we can visualise each
golden vector <Pi as a projection to a point on the surface of an N-dimensional

hypersphere of radius JK, with its neighbourhood of radius M as an area on the
surface on the sphere. This is illustrated in figure 6-2, below.

Golden vectors, <Pi

(
Hypersphere in N Dimensl S

Margin, M

Fig. 6-2 Legal K·from·N vectors with redundancy.

Foundations for the Neural Building Block 165

From the definition of the neighbourhood, any vector which is a distance d ~
M from a golden vector will be classified as that vector. The original selection of
the golden vectors must take account of the fact that no two golden vectors may be
separated by a distance less than 2M+ 11. If this rule is ignored, the neighbourhood
regions could overlap and it would no longer be possible to distinguish between
some pairs of valid vectors.

To clarify matters, here is an example vector for <P i for a 4-from-1O code.

Below is such a vector and examples of neighbourhood vectors at different dis
tances from it. These few examples are only a small subset of the possible vectors
at either distance.

• Distance = 0

<i» 1111 000000

• Distance = 1

io=o 111000001, i l =1011001000

Xl = 1 10 10 10000, i2 = 1 1100000 1 0

• Distance = 2

Xo = 0 1 0 1 000 1 0 I, i l = 0 0 1 1 0000 1 1

i2 = 1 00 11 0000 1. i3 = 1 1000100 1 0

Notice that the vectors at distance = 1 are only a single 'shift' from the origi
nal vector, <Pi' At distance = 2 the vectors are two 'shifts' from the original, etc.

The next issue to consider is the size of each neighbourhood. A large neigh
bourhood keeps the golden vectors well apart and permits a greater number of
errors to be corrected than a small neighbourhood. For example, with a margin
M=3 we permit the vector to have three erroneous' I' s and still be able to correctly
identify the correct (golden) vector. The drawback of a large neighbourhood, how
ever, is that the number of possible golden vectors is reduced as the neighbourhood
size increases.

The next step is to derive a formula which quantifies the size of the neigh
bourhood and hence to calculate the number of possible golden vectors for a given
degree of error correction.

The number of golden vectors, G(M, K, N), is a function of the vector length
N, the number of '1' s in the vector K, and the number of erroneous' 1 's that can be
corrected M. Specifically:

V(K,N)
G(M, K, N) = Z(M, K, N)

1. The value 2M comes from the widths of two neighbourhoods. The 'plus I' takes account of the golden vectors
themselves. For example, for a margin of 3, each golden vector must be at least 7 bit shifts from any other.

Foundations for the Neural Building Block 166

where V(K, N) is the number of legal K-from-N vectors, defined earlier, and
Z(M, K, N) is the number of such vectors in a neighbourhood of width M. Thus, to
calculate G for any given M, K and N we need a formula for Z.

In fact, the derivation of Z is straightforward. It can be shown that the
number of legal vectors at a distance, M, from any golden vector can be expressed
as:

122
Z(M,p,N) = Z(M-I,p,N)x-Z[N p(l-p)-(M-I)N+(M-I)]

M

K
where p == N is the proportion of Is in the vector, and Z(O,p, N) == I

The derivation of this formula has been included as an appendix to this chap
ter. A few points should be noted. Firstly, Z is calculated using a recursive formula
which sums the number of legal vectors at each distance from zero to M. Secondly,
the definition of Z=1 for M=O. This corresponds to the golden vector itself at the
centre of the neighbourhood. There is only one vector at the centre of each neigh
bourhood (M=I) so the value of Z must be one.

The reduction in the number of independent vectors will, of course, impact
the information content of the vectors. The representation efficiency measure is
similar to that used earlier, but now we use the number of golden vectors rather
than the total number of legal vectors in the numerator:

1 (N - K)!K! x Z(M, K, N»)
Emax-K/romN(M, K, N) = -N log N!

where the factor Z(M, K, N) in the numerator of the log accounts for the
reduction in allowable vectors due to redundancy.

Table 6-2 on the following page brings all of these points together. For vari
ous bit vector lengths N, allowed '1 's K, and error margins M, some of the quanti
ties that we have been discussing are calculated: the basic number of legal vectors
using the naive K-from-N formula V, the size of the neighbourhood Z, the number
of golden vectors using that neighbourhood and the representation efficiency,
Emax' Note that values for the margin equal to or greater than half the value of K.
are not permitted since they force the neighbourhoods of two golden vectors to
overlap.

It is clear that even for small values of the margin, M, the size of each neigh
bourhood (in terms of the number of vectors it encloses) is large. Thus, the number
of golden vectors, G, for each case is a small fraction of the total number of legal
vector, V. However, despite the reduction in the number of distinguishable vectors,
their number is still large even for small Nand K.

Finally we see that the representation efficiency, Emax' scales roughly line
arly with N, but the effects of a relatively large margin drastically reduce it. To

Foundations for the Neural Building Block 167

allow both a good level of redundancy (high value of M) and a high efficiency of
representation (high value of Emax), the values of N should be as high as possible.

Table 6·2 Measure of neighbourhood size, no. of golden vectors and storage efficiency for several
network configurations.

Number or
Allowed Legal Vectors Number of Representation

#orBits, Allowed Margin, with no Neighbourhoo Golden efficiency,
N 'l's,K M margin, V dSize, Z Vectors, G Emax (bits/bit)

100 5 1 7.5 X 107 4.8 X 102 1.6 X 105 0.173

100 5 2 4.5 X 104 1.7 x 103 0.107

100 10 2 1.7 x 1013 1.8 x 105 9.56 x 107 0.265

100 10 4 ·5.5 x 108 3.1 x 104 0.149

200 10 2 2.25 X 1016 3.1 X 106 5.3 X 1020 0.344

200 10 4 1.1 X 1010 2.0 X 106 0.104

200 20 4 1.61 x 1027 2.1 x 1011 7.8 x 1015 0.264

200 20 8 3.0 X 1018 5.3 X 108 0.145

6.S Consequences of Commitment to Redundancy

In the forgoing argument, the idea of redundancy was added in a somewhat
cavalier fashion. It was stated that any output vector which was not one of the
'golden set' would be assumed to be erroneous and would be mapped to the golden
vector into whose neighbourhood it fell. This is a reasonable objective, but how
can it be achieved in practice?

The network will be updating itself every time period in accordance with its
own internal dynamics. There will be no resource available to compare the output
at each time step with every exemplar vector to correct for errors explicitly. The
handling of golden and non-golden vectors must be a fundamental property of the
network. We can set the objective for error handling in one of two ways.

6.5.1 Errors are compensated for automatically

The natural dynamics of the network must cause any erroneous vector to
converge to the nearest golden vector as part of normal operation. In this case, the
network must end up in a state corresponding to a golden vector before the control
ler moves on to the next processing step.

6.5.2 Errors are ignored when the output vector is used

In this scheme, errors in the resulting output vector are not corrected for, but
it is assumed that the next stage of processing will be able to ignore them because
the vector is sufficiently close to a golden vector to make no difference on the
results at the next step. Now the onus is on the subsequent stages of processing to
treat this vector as if it were a golden vector, despite the errors.

Foundations for the Neural Building Block 168

Realistically, both schemes will probably come into play. The next sub-sec
tion presents one possible interpretation of these constraints.

6.5.3 Convergence Constraints as Demands on Encoding

Based on the options considered in sections 6.5.1 and 6.5 .2, we postulate one
way in which the encoding might be constrained by the dynamics of the system.
This proposal takes into account both the fact that noise will distort the interpreta
tion of the incoming pattern and the fact that redundancy in the encoding permits
some of the errors to be removed. The next few paragraphs describe the issues in
more detai 1.

Imagine that the state of a region of neurons is represented using a K-from-N
code, such as has been described throughout this chapter. The output of the neural
region will provide input to other regions on the next time step during normal
processing. The list of other regions might well include the source region itself, via
feedback. If the neural regions act like the associative memories discussed in the
review of chapter three (section 3.1.2, page 48 and section 3.1.3, page 57) then the
input pattern will illicit potential due not only to the desired output pattern but also
additional noise due to the overlap of other stored memory traces. Initially, this
noise may cause neurons in the target regions to fire erroneously.

Part of the task performed by the target regions is to correct as many errors as
possible by positive feedback, a process that depends on redundancy in the encod
ing of the pattern to be recalled. We know from the review of existing recurrent
networks that the recall process itself can converge on states that do not exactly
correspond to stored memories. We need to accept that regardless of the architec
ture recall may not be perfect.

Without needing to resort to specific details of the recall process, we know
that the mechanism must correct sufficient errors such that the resulting output pat
tern is sufficiently close to the target pattern. What is sufficiently close? Close
enough that, in its own tum, the resulting pattern will bring about correct pattern
completion on the next cycle. We can define two circles around the target pattern,
as shown in the figure below.

Time t-1 d Timet

Region A Region B

Fig. 6·3 Target circles for convergence: initial and final

Foundations for the Neural Building Block 169

The figure shows two regions. The pattern a that is represented by region A
lies at the centre of two circles. Due to the imperfections of the recall process the
final output of the region A at time t-l may not lie at the exact centre. Instead, we
permit it to lie within a distance, d, of the centre, which defines a circle that we
refer to as the final target circle. This is the inner circle and has the dark shading in
the figure. We leave the issue of fixing a value for d until a little later.

[Note that two timescales are implied in this example. The times t-l and t
correspond to single convergences of the networks. Within each such tick of the
clock there will be many changes in the output state of the networks as they con
verge to a stable state. This lower level of granularity is not important to the dis
cussion and will be ignored].

At time t, the output of region A is passed on to other regions (B in the fig
ure). The intent is to evoke pattern b in the neurons of region B. But interference
from other stored memories in region B causes errors during the first recall made in
region B, so that the initial output of the region could lie anywhere inside a wider
circle of radius e around the vector b, defined by the initial target circle, shown
with lighter shading in the figure.

During subsequent cycles of region B the network will update its state vector
and ideally it would converge on the target vector b. However, as was the case for
region A, we will be content if the final vector lies within a distance d of the target
vector.

Overall, the values for distances d and e are related and depend both on the
memory loading and, more fundamentally, on the memory structure. This depend
ence manifests itself in the size of the basin of attraction in the target region and in
the ability of the network (or lack thereof) to correct the last few errors in the
recalled pattern.

We cannot arbitrarily decide to increase the final radius, d, since this defines
the starting point for the projection into the next region and places constraints on
the initial target radius, e. The two must be decided together. No formal method
will be proposed in this thesis to calculate the values of d and e since such a
method would be tied up with the convergence properties of multiply-connected,
recurrent networks and is non-trivial. Instead, it is left for future work that would
look specifically at the interconnection of regions of neurons.

Foundations for the Neural Building Block 170

6.6 Conclusions

In this chapter, the development of the neural building block for the network
was described. As part of the development, binary neurons with activation values
of' l' or '0' were selected as the basic elements of the network. Next, three coding
schemes for the N-bit data vectors were considered: An unconstrained binary code,
a I-from-N encoding and a K-from-N encoding. The K-from-N code was chosen
since it combines the best features of both the I-from-N and the unconstrained
codes. It is efficient in its coding of information, while the constant vector length
should make it easier to control networks subject to positive feedback. Finally, the
notion of adding redundancy to the coding scheme was explored.

The next chapter will investigate the use of the K-from-N code in the simple
network. This work will begin with the prescription for storing vectors in the net
work and then analyse the network dynamics. Finally, the memory capacity of the
network will be investigated, both theoretically and by simulation.

Foundations for the Neural Building Block 171

Appendix: Counting the Size of a 'Neighbourhood'

Earlier in this chapter, reference was made to a recursive formula for the cal
culation of the size of the neighbourhood surrounding a 'golden vector' of N bits
with K '1 's and (N-K) 'D's. The size of a neighbourhood of radius M is the sum of
the number of unique patterns at each distance O<m<M, as given by:

122
Z(m,p,N) = Z(m-I,p,N)x 2 JN p(l-p)-(m-l)N+(m-l)] (1)

m

K
where p == Ii is the proportion of Is in the vector, and Z(O,p, N) == 1

The derivation of this formula is provided here.

Every legal vector in a K from-N code contains exactly K '1 's and (N-K)
'D's. To transform one legal vector into another is effectively the same as moving
some of the '1 's to other bit positions. The number of' 1 's that must be moved to
generate one pattern from another (the number of 'bit shifts') is the definition of
the distance between them.

Note that a bit shift of one corresponds to a Hamming distance of two, since
two bits of the vector have changed, each by a magnitude of one.

Consider the lega14-from-1O vector, below. It has all '1 's in the first four bit
positions while the rest are '0'. It is, however, a typical 4-from-N vector. To gener
ate vectors at different distances from this base vector, we must move' 1 's from the
left hand side of the vector into the right, one at a time. Note that we never move a
'1' from the right hand side into the left, since that would create a vector which
could have been obtained using a fewer bit shifts.

1 1 1 1100 000 0

/ " t
1 01 1 0 0 0 0 0 1 1 0 110 0 10 0 0

1 1 0 01 1 0 1 0 0 0 0 1 1 01 1 0 0 0 0 1

Base vector

~ Shift = 1

101 110 0 0 0 1 0

Shift = 2

1 0 1 01 1 1 0 0 0 0

Fig. 6-4 Patterns obtained by 'shifting' from a base pattern.

The number of bits that have been shifted, m, starts at zero. This is the base
vector itself. Thus the number of patterns at m=O is one. At each new shift dis
tance, m, B(m, p, N) new patterns are spawned from each pattern at distance m-l.

172

B(m, p, N) is the branching factor and is a function of vector length, proportion of
'I' s and the current distance from the base vector. Thus:

Z(m,p,N) = Z(m-l.p.N)xB(m,p,N) (2)

To find B(m, p, N), we consider how many patterns we can generate at dis
tance m. There were pN 'I 's in the left hand side of the base vector, where p is the
proportion of 'I' s in the N bit vector. But of those pN 'I' s, m-I have already been
moved out. Thus, there are pN-(m-l) = pN-m+1 remaining. Each of these can be
moved to produce a new vector.

Now consider the '0' s into which we could move the selected' 1 '. There
were (1-p)N '0' s in the base vector, but m-I have already been filled with' I' s.
Thus there are (1-p)N-(m-l) remaining to choose from. Anyone could been filled
to generate a valid next vector. Thus the number of valid vectors which we could
generate at this stage is the product of these. i.e. [pN-m+l] x [(1-p)N-m+lJ. How
ever, this is not the value of the branching factor, B. There is one further factor to
take into consideration: duplication. If we consider an arbitrary vector a distance m
from the base vector, we see that there are several vectors at distance m-I which
could have given rise to it.

1 1 1 q 0 1 0 0 0 0

1 1 1 q 1 000 0 0 1 0 1 q 1 1 000 0

101 q 1 0 0 0 0 0
I

Valid source vectors at shift = 1 One vector at shift = 2

Fig. 6-5 A vector at shift k can have multiple parents at shift k-l.

In fact, there are precisely m 'I' s which could have been moved to reach the
vector at shift = m, and precisely 'O's which could have been the one that was just

filled. Thus each vector at shift = m had m2 progenitors at shift = m-l. This pro
vides the denominator to the branching factor, which thereby counts each vector
only once. Thus we obtain:

1
B(m,p, N) == 2[(pN - m + 1) x «1 - p)N - m + 1)]

m

I 2 2
= 2[N p(l-p)-(m-l)N+(m-l)] (3)

m

which, when substituted back into equation (2), gives equation (1) which was
to be proven.

173

-

CHAPTER 7

7.0 Introduction

Analysis of Storage
and Retrieval for the
Simple Network

In the previous chapter, the development of the basic neural building block
was begun. It was decided that the network must be based on some sort of recur
rent structure in order to meet the barest requirements of the architecture specifica
tion. In addition, the fundamental structure of the block was defined as a group of
identical sum-and-threshold units which are highly interconnected. Finally, by
considering the properties of various coding schemes for the data vectors them
selves, the K-from-N coding scheme was selected on the grounds of its efficiency
of information storing and the properties of predictability and controllability.

Having selected the coding scheme, the next logical step was to consider the
basic learning procedure of the network. Essentially, the aim was to answer four
questions: First, how does the network update itself at each time step? Second,
what is the procedure for storing patterns in the network? Third, what happens dur
ing the retrieval process? And finally, how many patterns can be stored simultane
ously?

These key questions will be considered in order. Answering them will com
plete the definition of the basic network. Subsequent chapters will add functional
ity to control the processing performed by the network and to improve its storage
capacity using more advanced learning techniques.

7.1 The Patterns to be Stored

As described earlier, the patterns to be presented to the network for memori
sation were K-from-N vectors. They were drawn at random from the set of all such
legal vectors oflength N. Each such vector contains exactly K '1 's and N-K 'D's.
Choosing any two vectors from this set, it is clear that they are not independent: the
dot product of two such vectors, VIand V 2 is:

Analysis of Storage and Retrieval for the Simple Network 174

N- I

U = L v/ . vi
j = O

K2
Thus, E(u) = N

where EO is the expectation operator. For all useful cases K>O and E(u) is
therefore a positive, non-zero quantity which is a consequence of the non-inde
pendence of elements in each vector. A set of golden vectors as defined in the last
chapter would consist of a subset of the complete set of legal K-from-N vectors.

7.2 Network Output Updating

The basic network is shown in the figure below. The network consists of N
binary-thresholding neurons, each of which receives an afferent connection from
every other neuron. This input is modulated by a set of connection strengths, W.

The outputs of all neurons are monitored to ensure that precisely K neurons
out of the N (those possessing the most potential above their own threshold, T i) are

firing (i.e. have output '1') at any time. The rest are silent (i.e. have output '0').
The K-from-N rule is enforced by an extra input, V, called the activity regulator.

The V input provides an equal background level of input to every neuron in
the region. If more than K neurons fire, this added background level is reduced
until only K are firing. Conversely, if fewer than K neurons fire then the back
ground level is increased until exactly K are firing. The time constant for this back
ground level is sufficiently small that the adjustment is effectively instantaneous
compared to the normal updating of the neurons.

Activity
Regulator,

Net Output
Vector, 0

..cf = synaptic weights, W

Fig. 7-0 Basic network showing N fully connected elements and external input

N- J

Analysis of Storage and Retrieval for the Simple Network 175

The potential, Ui, of a single neuron at time t has three components:
N-I

j=O

where OJ is the output value of neuron j, W ij is the strength of the connection

from neuron j to neuron i. How the values of Wi are assigned will be discussed in

the next section. The Xi term is the external input to neuron i coming either from

the environment or perhaps another network. Finally, the V term is the activity reg
ulator mentioned earlier.

The output of neuron i, 0i' is calculated using the threshold function:

Qj(t) = 1 when U;(/) - T j ~ 0

= 0, otherwise

where Ti is the threshold of neuron i. At each stage of processing. the inputs

are applied to the network and new potentials and outputs are calculated. The
activity regulator, V, is adjusted to ensure that only K from N neurons have enough
potential to fire:

Potential, Vj

D = non-firing potentials

--. D = firing potentials
,
. __ rh..rl,!shold

II = activity regulator, V

V

Neuron

Fig. 7·1 Graph of potentials for the neurons in a single region

The threshold of each neuron is indicated by the dotted line. Note that each
neuron has its own threshold, though the long term aim of each neuron is to try to
maintain the same value as its peers. This point will be expanded upon later.

A useful way of interpreting the output threshold operation is that the K neu
rons which are permitted to fire are those whose potentials surpass their threshold
by the widest margin.

Analysis of Storage and Retrieval for the Simple Network 176

7.3 Storing Patterns

The arrangement of the network is very similar to that of a standard Hopfield
network. However, the storage prescription which was employed was not at all
similar. Replacing the additive formula of the Hopfield network was the learning
scheme of the non-holographic associative memory (Willshaw, Buneman &
Longuet-Higgins, see chapter two).

It should be remembered that this storage prescription was used by Willshaw
et ai. in a solely feedforward, hetero-associative, network to create a matrix of con
nections from inputs, X, to outputs, O. Here, it was applied to a fully connected,
auto-associative, network. A recap on the hetero-associative storage prescription
for the non-holographic associative memory is in order, before adapting it for the
network under study.

Initially, the weight matrix, W, is empty, i.e. all weights are zero. As each
pattern is presented to the network the connections, Wij , are made according to:

Wi} = B, when Xj = 1 and OJ = 1

= unchanged, otherwise

B is a constant, defined as the basic weight strength. Whenever a connection
is made in this simple network, it has strength B. Since ultimately the choice of
which neurons will fire is based on their relative potential rather than an absolute
value then B is an arbitrary constant l .

A small aside is necessary at this point to highlight the difference between
the Hopfield prescription and the "absolute" prescription of the non-holographic
memory. Notice that in the proposed procedure, no change is made to the network
as a result of making a connection if one exists already. This contrasts with the
additive Hopfield prescription where repeated storage, even of the same pattern,
would continue to change the value of weight Wij' This difference has both posi
tive and negative implications for the simple network being discussed.

The non-additive nature of the algorithm is desirable because a stored pattern
is harder to disrupt (a point that will be quantified later on). The undesirable aspect
is that the relative frequency of presentation of a particular pattern is no longer dis
cernable from the network. A network in which one pattern was presented 99% of
the time would have the same weight vector at the end of training as one in which
that same pattern was presented, say, only 10% of the time. For some applications,
this is acceptable but for many it is not.

Returning to the discussion of network storage, what does this storage pre
scription mean in physical terms for the network? It has already been stated that the

1. As the network is developed in later work, extra complexity will be added and it will be necessary to
place constraints on the value of B.

Analysis of Storage and Retrieval for the Simple Network 177

difference between the standard non-holographic memory and this network is that
the hetero-associative mechanism of the former is replaced by an auto-associative
one in the latter. No neurons are designated either as inputs or outputs. Instead all
neurons receive an input and produce an output which is seen by all other neurons.
To illustrate this, the figure below shows the neurons arranged in a 2-D array, with
the K firing neurons shaded.

NeuralRe~

• = firing neuron

o = silent neuron

, = symmetrical connection

o 0 0 •
o •• cI 0

o <\~~.
0>.00 • 0 0\0 0

o 0 • 0

Flg.7·2 The learning process in the basic network

In this example, the number of neurons, N = 32, while the number firing, K =
7. The process of learning a new pattern begins by forcing the pattern onto the neu
rons. (For the basic network this is accomplished using external signals which take
precedence over the internal connections of the network; More sophisticated meth
ods will be discussed in later chapters).

The learning itself consists of setting to a constant, non-zero, value any
weight which connects two firing neurons. In the figure, the black arrows indicate
these new connections for only one of the firing neurons. Every firing neuron
makes connections in this way, but for the sake of clarity only those for a single
neuron are shown.

We can now state the actual learning rule that was used for the simple net
work, as a modified form of the procedure used in the Willshaw memory.

As pattern P j is applied to the network, forcing the outputs of the neurons to

conform to that pattern (such that OJ = Pi), then connections between neurons are
modified such that:

W jj = B when OJ = 1 and OJ = 1 and i*j

= unchanged, otherwise

where B is a constant. Note that the condition i '# j ensures that a neurons
does not make a connection with itself.

After learning Z patterns in this way, the weight matrix will be filled with
elements each of which has a value of either zero or B. Choosing any two neurons,
i and j, at random, the connection from i to j will have the same value as that from
j to i since the storage prescription naturally gives rise to a symmetrical matrix.
The probability that this connection has been made (i.e. has a value of B) is a use
ful quantity in the analysis of the memory capacity of the network. Here, it is gi ven

Analysis of Storage and Retrieval for the Simple Network 178

the symbol h. The more patterns that have already been stored in the network, the
more likely it is that a connection already exists between any two neurons.

The calculation of h follows the same principles as that described in
Willshaw, et al.(1969). Assuming that Z patterns have been stored in the network,
then the probability that a connection exists between any two neurons is given by:

2 Z
h= l-(l-p)

K
where p is defined as the proportion of firing neurons, == N

The proof: on any presentation, the probability that a particular neuron fires
is p. Thus, the probability that two particular neurons fire (and will have a connec-

tion made between them) is p2. The probability that this connection will not be

made for a particular pattern is 1_p2. For the connection to remain unmade for all Z
patterns this independent event must be repeated Z times. Thus, the probability of

no connection over all Z patterns is (l_p2)Z. Finally, the probability that no connec
tion was made between these two neurons during any of the trials is one minus this

probability. Hence we obtain the definition of has h = 1_(l_p2)Z.

The probability, h, is zero when Z=O, i.e. when no patterns have been stored.

As each pattern is learned, this probability increases. Since 0 S (1 - p2) < 1 , then
h -+ 1 in the limit as z -+ 00 •

7.4 Weight Matrix Saturation

In this section, we explore the consequences of the choice of learning proce
dure. This discussion will not consider the network updating procedure nor the net
work dynamics. These will be described in later sections. Instead it will look at
some of the metrics which will be useful to analyse the memory capacity of the
network and the "resilience" of individual patterns in the face of continual learn
ing.

To begin, consider the case where the network is in a state corresponding to a
stored pattern. The output of each neuron, 0i exactly corresponds to the pattern Pi

stored earlier. What are the potentials of the firing and the non-firing neurons?
K-I

Vlirin g
j = L (1 x Wi) = B(K -1)

j=O
K-I

E(U'''-M''i) = E[~(l x Wij)] = BhK

where h == probability of an existing connection

Analysis of Storage and Retrieval for the Simple Network 179

The potential for a firing neuron is equal to B(K-I), the total potential from
K-I connections. Once again, the' -I' term takes into account the fact that no neu
ron makes a connection with itself.

For the non-firing neurons, the potential depends on the statistics of previous
learning so consider only the expectation of the potential which is related to the
probability of a connection, h. Since there are K firing neurons, which have a prob
ability h of make a connection of strength B with a non-firing neuron then the
expected potential is BhK.

Consider the properties we expect for the network whose state corresponds
to a stored pattern. What we demand is that the potential of neurons which are to
fire in the pattern (the "on" neurons) must be higher than the rest (the "off' neu
rons). If this condition is met, the pattern will be a stable point in the network
dynamics. If the potential of one of the "off' neurons is higher than that of an "on"
neuron, then the former will begin firing at the expense of the latter; the pattern is
no longer a fixed point and, to all intents and purposes, has been forgotten. Thus
we need the following condition to be true:

c/iring > c/'0n-firing

B(K-l»BhK

K-l>hK

[Note that this is true only in the thermodynamic limit of N -+ 00 and K -+ 00 , in
which case the actual number of connections between "on" neurons and a particu
lar "off' neuron approaches the expected value, hK. The variability of the number
of such connections is considered later on].

For small Z, h « I; thus the potential of any non-firing neuron will be low rel
ative to that of a firing neuron. None of the non-firing neurons will receive enough
potential to surpass any of the firing neurons so the state will persist indefinitely:
each stored pattern is a stable state of the network.

The next step is to consider some of the factors which influence h, the con
nection probability. From the definition of h, we see that it is a function of p, the
fraction of firing neurons in any pattern and Z, the number of stored patterns. A
graph of h against Z for various values of p appears on the next page.

Examining the shape of the curves, it is clear that h = 0 when Z = 0 and h -+ 1

when z -+ 00 regardless of the value of p. However, p does influence the rapidity
with which this convergence occurs with respect to Z. For small p, the rate of con
vergence is lower than for high p.

Next, we note that the probability of a connection increases as the number of
stored patterns increases. The rate of change of connection probability with
number of stored patterns, dlr'dZ, is positive. But it is also clear from the figure that
this rate itself (while remaining positive) is much higher for low Z than for high Z.
This can be easily shown by differentiating h with respect to Z:

Analysis of Storage and Retrieval for the Simple Network 180

dh 2 2 2 2
dZ =- ln(l - p) x (l - p) > 0, (sinceln(l - p) < O)

2
dh 22 2 2

and, - = - [In(l - p)] x (I - p) < 0
dZ

2

This is in line with intuition; as more and more patterns are stored, the
chances of trying to remake an existing connection will increase. Thus, fewer new
connections will be necessary with each additional pattern stored.

Finally we consider the relationship between h and network saturation. By
definition, that fact that h = 1 implies that every possible connection between neu
rons has been made. The network is incapable of differentiating a known pattern
from an unknown one and is therefore saturated. For the network to be useful the
value ofh should be kept below 1.

1.0

0.9

0.8
.r:.

.~ 0.7
:0 0.6 I'll
.c e

0.5 a.
c::
0

~ 0.4
IV
c::

0.3 c::
0
()

0.2

0.1

0.0
0 10 20 30 40 50 60

Number of stored patterns, Z

-- p=0.1
-+- p=0.3

-- p=0.2
p=O.4

Fig. 7-3 Graph of connection probability vs number of stored patterns

Nadal & Toulouse showed that the maximum storage density in the weight
matrix occurs when h=O.5. However, the approach taken here does not necessarily
seek to achieve the highest storage density. There are other constraints such as the
existence of suitably wide basins of attraction around each stored memory that
were not considered by Nadal & Toulouse, nor any other author discussed in the
review chapters. These considerations prevent us from merely investigating the
h=O.5 case alone.

Analysis of Storage and Retrieval for the Simple Network 181

------~--~---~~~~-- ---------------

For values of p even as high as 0.3, the probability of a connection rises
sharply towards 1 with increasing Z. Therefore, to keep h small for large Z, the
value of p should be as low as possible. But low p corresponds to low information
content per pattern. Thus, there is a trade-off between the maximum number of pat
terns stored and the information content of each pattern, and this trade-off is con
trollable through p.

The disadvantage of a value of p near zero is that the quantity of information
stored in each vector is also low. The analysis of memory capacity is presented
later in this chapter and will quantify this.

7.5 The Process of Retrieval: Network Dynamics

As viewed from the outside, the act of retrieval is essentially a task of search
ing for the stored memory that "best" matches the given input. The definition of
best match is given by the basic difference metric first stated in chapter six.

However, the internal mechanism of the network during retrieval is better
described as a minimisation of an energy function in N-dimensional space. For
each state of the network, there is a corresponding energy, given by:

N-l N-l N-l

E = -2~ L L O;OjW;j + 2~ LT;O;
1=0 j=O ;=0

where Ti is the threshold of neuron i and the sums over i and j range over the
complete set of neurons. This energy is a measure of the relative "goodness of fit"
between the current network state and the stored memories. It has two components;
the first is due to the inter-neuron connectivity. The second component, of opposite
sign to the first, is due to the internal threshold of each firing neuron. It has the
effect of penalising the firing of high threshold neurons with respect to their lower
threshold peers.

External inputs, X, are not considered at this time; they are tacitly present in
the setting of the initial state of the network, but are subsequently removed and do
not affect the dynamics of the simulation.

When the system is in a state other than that of a previously stored memory,
updates will generally cause changes in the pattern of firing neurons. The next step
in the analysis is to show that all such changes reduce the value of the energy func
tion, E. This analysis is similar (but not identical) to that used for the Hopfield net
work (Hopfield, 1982). Recall from chapter two that the state vector in a Hopfield
network consists of '+1' and '-1' values whereas here the values are '+ l' and '0'.
Also the state vector in the Hopfield network can contain + 1 and -1 values in any
proportion; this network requires exactly K-from-N of the bits to be + 1 and the rest
to be O. These differences alone justify a reverification of the dynamic properties
of the network to be sure that properties of the Hopfield network can be reliably
extrapolated to this network. It turns out that they cannot.

Analysis of Storage and Retrieval for the Simple Network 182

The task of the analysis is to show, given the update rule for the neuron out
puts, that the postulated energy function does indeed characterise the system and
hence, that it can be used to make further predictions about network performance.

We proceed by considering the change in system energy, E, between two
time points t and HI. The energy of the system at these two times is gi ven by:

N-l N-l N-l

i=O j=O i = 0

N-l N-l N-l

E(t+ 1) = -2~ L L 0i{t + 1) O/t + 1) Wij + 2~ L T;Oj{t + 1)

i=O j=O 1=0

The change in energy for the whole system is then:

Ediff : E(t + 1) - E(t)

N-IN-l N-l

= -2~ L L[Oj(t+ l)Op+ 1)-Oj(t)OP)]Wjj+2~L[Oj(t+ l)-Oj(t)]T/

i .. OJ = 0 i .. 0

If no neurons have changed state between time t and time HI, then
OJ(H l)=Oj(t); thus, the total change in energy is zero, as expected. If the state has

changed, then the K-from-N rule implies that for every neuron which has begun to
fire, another has ceased. This is the first major di vergence from the Hopfield
model.

Let A denote the neuron which was firing at time t but ceases to fire at time
t+ 1. Let B denote the neuron which begins to fire only at time t+ 1, replacing A in
the active set of neurons. Since we update the neurons asynchronously, the only
changes which can contribute are the change in energy in a single time step are due
to neurons A and B. Therefore, we can simplify the equation for Ediff by including
only terms in which they appear:

i=O / = 0

There are now only three terms, each relatively simple. The third term con
tains threshold information. Only the thresholds of the firing neurons are visible in
the energy difference, so this term represents a change from a contribution by the
threshold of neuron A to that of neuron B. The first and second terms show the
change in energy resulting from every neuron's connections to and from neurons B
and A respectively. The factor of 112 in the original equation has gone since we
have summed two terms for each neuron pair: one from neuron A and one to neu
ron A (idem. for neuron B).

Analysis of Storage and Retrieval for the Simple Network 183

From the above equation, we have an expression for the energy change due
to a non-firing neuron supplanting another in the active set. But at this point there
is no indication of which neuron is supplanting which other. We need to introduce
the dynamic update rule to answer that question. This rule dictates that the K neu
rons that fire are those which have the greatest surplus potential over and above
their own threshold. Since B has supplanted A in the active firing list during the
update from time t to time t+l, we know that

where U A(t+l) and UB(t+l) are the potentials at time t+l of neurons A and B
respectively, and T A and T B are their respective thresholds. These potentials can be
rewritten in tenns of the outputs and weight matrix and then simplified to give a
simple expression for dynamic update rule.Thus:

N-l

)=0

N-l

N-l

j=O

N-I

)=0

N-I

(TB-TA)< L 0/t)(WBj-WAj)

jaO

The result seems intuitively correct. What it is saying is that for neuron B to
overcome neuron A and take its place in the active firing list then not only must B
overcome A in potential (the right hand side) but it must do so by a margin equal to
the difference of the two thresholds (the left hand side). This captures the idea that
the update rule only permits a neuron to start firing if its excess of potential over
and above its threshold is greater than that of an already firing neuron.

The final step in the analysis is to combine this new result with that for the
energy difference, Ediff' given earlier. The easiest way to do this is to note that both
expressions contain a term (T B-T A)' Substitution then gives:

IV -, ,'1-1

1= 0 /,. 0

1=0 1=0 / .. 0

N-I

Ed/ff< ~ L [0/(/) - 0/(1 + l)lWBi

Thus the change in energy can be calculated purely in tenns of weights to
and from neuron B. The sum over the change in output of all neurons, i, reduces to
two tenns, one for A (since 0A(t) = 1 and 0B(t+l) = 0) and one for B (since 0B(t)
= 0 and 0B(t+1) = 1).

Analysis of Storage and Retrieval for the Simple Network 184

For all other neurons, the change in output is zero so their contribution to the
change in energy is also zero. Applying these simplification yields:

1
Ediff < ;y(WBA - WBB)

WBA

<Ii"

In the final line we make use of the fact that no neuron is permitted to make a
connection to itself, so that WBB = O.

The final result of the analysis shows that with the proposed update scheme
the energy, although bounded from above, is still permitted to increase at each time
step, by an amount proportional to the magnitude of the weight between the two
neurons whose states are changing. This is a major divergence from the Hopfield
result and is caused by a hidden asymmetry between the potentials before and after
the neurons are updated.

It should be noted that the update decision is based purely on information
available at time t. At that time, neuron B has acquired more surplus potential than
neuron A and thus is permitted to replace it in the active set. Upon arrival at time
t+l, the energy contributions from every neuron except A and B have indeed been
reduced, as predicted.

The problem arises from the fact that at time t one contribution of potential
which helped neuron B to overcome A came from A itself. At time t+l this contri
bution is now gone and has not been replaced by an auto-associative term since no
neuron is permitted to make a connection to itself. Thus the actual potential of B at
time t+ 1 will be slightly reduced relative to its potential at time t, contributing a
positive term to the system energy. Similar arguments show that neuron A, while
defeated at time t, may see its potential increase at time t+ 1 due to a contribution
from the now dominant and firing neuron B. Each of these effects contributes

1
2NWAB to the energy change.

So does this imply that such a system will gain energy and thus will not con
verge? That depends on the relative contributions of the energy dissipation by the
other firing neurons and the energy generation due to A and B (fixed at W AB)'

Clearly, in the limit of a very large number of neurons, N, the relative contribution
of a single weight will be swamped. Even so, the possibility of gaining energy at
any given step is a source of concern. At best, a positive contribution to the energy
will slow the rate of convergence. At worst it could disrupt convergence altogether.
One task of future development will be to try to eliminate this positive term.

Simulation results of the network, illustrating the issues of convergence, will
follow the section on the analysis of memory capacity.

Analysis of Storage and Retrieval for the Simple Network 185

7.6 Analysis of Memory Capacity

The focus of attention now shifts to another important issue in network
design, that of memory capacity. From the discussion in chapter six on the amount
of information stored in a single vector using K-from-N coding, it was shown that
the maximum information that can be represented is only a fraction of a bit per bit
of the vector. This is due both to the basic coding scheme itself (which imposes a
statistical dependence on the value of each bit given the others) and to the redun
dancy which is added to cope with errors in the vector during processing. The def
inition of the memory capacity, C(K, N, M), of the network is:

C(K, N, M):; Zmax(K, N, M) x [maiK, N, M)

where Zmax is the maximum number of legal vectors that can be stored and
reliably recalled in the network and Imax is the maximum number of bits of infor

mation that can be stored in each vector. Note that all the quantities here are func
tions of K, Nand M.

The definition is simplistic in that it treats the network as a device whose sole
purpose is to store and retrieve unrelated vectors. A more sophisticated analysis of
the network (left for subsequent chapters) will consider more complex powers of
storage and recall based on structure within the patterns themselves and relations
between patterns. Such structured storage cannot increase the fundamental capac
ity of the network in terms of the number of bits it can store. Data structure storage
is usually based on correlations between patterns which hold less information than
their uncorrelated peers. Thus the measure stated above, although crude, does
place a true upper limit on absolute storage capacity and thereby retains some
merit.

Since the value of Imax was considered in the previous chapter for various
values of K, Nand M, it is the derivation of a formula for Zmax which is needed.
The first step in evaluating the maximum number of vectors that can be stored in a
network is to decide what actually constitutes successful storage. A number of
metrics have been proposed and the choice of metric depends on the application.

One possible measure, often applied to MLPs, is to insist upon, say, 99%
recovery of stored bits over the whole pattern set (Rumelhart, et al. 1986). Here,
individual patterns may contain multiple errors; only the ensemble average counts.

A more strict measure places bounds on the number of errors permitted
within each and every pattern (Amit, 1990). This latter measure is more appropri
ate in a system where the output of one processing step feeds directly into the next.
An ensemble average of error is irrelevant if a single pattern is permitted to contain
sufficient errors to lose the sense of a result and thus ruin an ongoing calculation.
Thus the stricter measure will be applied in this analysis.

Analysis of Storage and Retrieval for the Simple Network 186

Thus, for this basic network, a pattern vector, i, can be said to have been suc
cessfully stored if it fulfils two requirements. Firstly, the vector must be a stable
state of the network dynamics. Secondly, when presented with a version of i in
which some bits have been corrupted (up to a known limit, L), the network must be
capable (in a finite number of updates) of correcting enough errors to bring the
vector to within a specified distance, M, of the target vector, as defined by a dis
tance metric, d. The metric d, as specified in chapter six, defines the difference
between two K-from-N vectors as the minimum number of '1 's that must be
moved to transform one vector into the other.

Two scenarios must be considered. The general case allows a certain number
of bits to be corrupted. To say that the memory is retrievable is then to ask that the
network is capable of correcting enough of the errors to qualify it as an example of
the stored memory. The more fundamental case is that in which the network begins
already in a state corresponding to a previously stored memory. If this memory is
correctly stored, this state should be a fixed point, i.e. subsequent updates of the
network should not change its state. We consider this special case first, then follow
with the general case.

7.6.1 Network State Corresponds to Stored Pattern

For a network which lies in a state corresponding to a stored memory, the
graph below illustrates the potentials generated in both firing and non-firing neu
rons.

Each firing neuron makes a connection of strength B with all other firing
neurons. Hence, its potential is B(K-l) with probability one. In the ideal case, the
potentials of non-firing neurons would all be zero. In practice each non-firing neu
ron has a non-zero potential due to connections made to currently firing neurons.
These connections were made while learning patterns other than the current one
and are, therefore, a source of noise in the current context.

Probability, q

1-

BhK

non-firing
neuron, nf

(
'-firing

neuron,f

B(K-l) Potential

Fig. 7-4 Potential distributions for neurons in known pattern state.

Analysis of Storage and Retrieval for the Simple Network 187

Since the probability that a non-firing neuron makes a connection with a fir
ing neuron is h (as defined earlier) then the expected value of the potential that
each non-firing neuron receives from the active neurons is based on K random
events, each of probability h. The binomial distribution gives the mean potential of

each non-firing neuron, Unf, and its variance,(J~! , as:

Un! = BhK

2 2
an! = B h(l-h)K

For large K the distribution approaches that of a Gaussian. Provided the
potential of every non-firing neuron remains below that of every firing neuron, the
stored memory patterns will be stable points in the network dynamics. However, if
a non-firing neuron manages to attain a potential greater than that of a firing neu
ron it will displace it from the pattern, firing in its place and producing an incorrect
output state. The probability that a particular non-firing neuron could reach the fir
ing potential is simply the area under the gaussian curve in which the potential is
greater than B(K-l). This is shown in the next figure.

Proba

'OW set, Gnr

~

BhK

'On' set, Gr

/

B(K·l)

probability
of error

Fig. 7-5 Probability that neuron that should be silent might fire

For the case in which the network state corresponds to a stored pattern, we
know that the only way a non-firing neuron can surpass the potential of a firing
neuron is if it makes a connection with every firing neuron. Its potential will then
be BK, more than the B(K-l) of any currently firing neuron. Since the probability
of making any given connection is h, the probability of making K such connections

is hK . However, any of the (l-p)N non-firing neurons could achieve this potential,
so the expected number of 'off' set neurons doing so for pattern y is:

Nerr(Y) = (l-p)NXh
K

2 Z pN = (l-p)N[l-(l-p) 1

Analysis of Storage and Retrieval for the Simple Network 188

>-
';:' ...
Q)

z
Ii ...
0
Q)
0 ...
Q)

JJ
E
:l
c:

"C
Q)
u
Q)
Q.
x
w

substituting for K and h. For the whole pattern set consisting of Z patterns,
the expected number of errors is therefore:

2 Z p N
= Z«I - p)N[I - (I - p)])

The graph below shows the expected error for a single pattern in a network
of 200 neurons as a function of the number of stored patterns, Z. Each graph corre
sponds to a different value of p.

The rate of divergence can be clearly seen to increase for increasing p. Note
that the expected number of errors even for Z=N=200 is still less than one per pat
tern for p=O.07. This is a statistical effect in the limit of an infinite network, how
ever. In practise the network will become saturated as Z approaches N and it will
become increasingly difficult to differentiate between patterns since the potential
of every neuron will be near maximum and hence nearly identical.

0.30

0.25

0.20

0.15

0.10

0.05

0.00 o
80 100 120 140 160

Number of Stored Patterns, Z

---- p=0.04
-a- p=0.06

-+- p=0.05
p=0 .07

.....
180 200

Fig. 7-6 Graph of expected errors per pattern vs. the number ofstored patterns

The graph in figure 7-7 shows the expected errors over the entire pattern set,
Nerr(Z). Again, a network ofN=200 neurons was assumed and the graph is plotted
for several values of p.

The number of errors as a function of Z grows exponentially. If the goal is to
avoid any retrieval errors then even for the low firing level of p=O.05, then in this
case the network can tolerate no more than 130 patterns before the expected error
is greater than 1 bit.

Analysis of Storage and Retrieval for the Simple Network 189

N'
'-'
Q)

z
v; ...
g

W
"C
~
u
Q)
a.
x
w
"'iii
0

6

5

4

3

2

o
60

o
80 100 120

Number of Stored Patterns, Z

-- p=O.D4
--&- p=0.06

-- p=0.05
p=0.07

Fig. 7-7 Graph of total expected errors vs. number of stored patterns.

7.6.2 Network State is a Corrupted Version ofa Stored Pattern

140 160

In this more general scenario, the initial network state does not correspond to
a stored memory. This is a common situation in which the network is being used to
categorise a new pattern into one of a number of classes specified by the exemplar
templates (the stored patterns). The goal would be for the network state to evolve
in time so as to converge on the stored pattern which is ' closest' to the input pat
tern, ideally in the minimum number of updates.

Let the target stored pattern be the vector G. Let the network state at time t be
set). The initial vector, s(O) is similar to the target vector, G, but a certain number
of ' 1 ' s in s(O) occupy different bit positions to those in G. Let that number of
shifted bits be c. Let the set of neurons which are ' on' in target pattern G be Grand

let the set of neurons which are 'off in target pattern G be G nr. The example below
shows a 5-from-1O target vector, and examples of vectors with c varying from one
to four.

Analysis of Storage and Retrieval for the Simple Network 190

Target vector, G:

Corruption, c=l:

c=2:

c=3:

c=4:

Gr Gor
II

1111~O

1111000001

~
111~0 11

1~0111

1000001111

Fig. 7-8 Example 5-from-1O vector at several levels of corruption

As the network state is updated, beginning at s(O), the aim is for the number
of corrupted bits to be reduced monotonically until the network state coincides
exactly with stored vector, G. But in this general case there are neurons firing
which belong to the set Gnf and thus are a source of slow noise with respect to tar

get pattern, G.

The graph below shows the probability curves for the potentials of neurons
from sets G f and G nf. Notice that the potential of the G f neurons is not constant at

B(K-l) as in the previous case. This time there is a random contribution coming
from the firing members of the set G nf which are uncorrelated with target vector,

G.

Probability, q

1-

'Off' set,
Gnf

~

BhK B(K-c-1)+Bch Potential

Fig. 7-9 Potential distribution for neurons in a non-learned state

As before, the issue is to calculate the probability that a neuron j E Gn!, which

does not fire for the target pattem,·po, in fact has a potential higher than at least one

of the set of neurons i E GI , which is supposed to fire. If this case arises, the net

work state has a chance to diverge rather than converge on the target memory. By
forbidding this case (classifying it as a network error) we prevent divergence of the
network state, but by doing so place heavy constraints on the maximum number of
uncorrelated patterns that can be stored. These limits will be explored next.

Analysis of Storage and Retrieval for the Simple Network 191

For a neuron, x, which is meant to fire (x e Gf) the probability density func

tion is shown on the right hand side in the figure. For c corrupted bits, the mean,Jl,

and variance, 0'2, of the potential of a neuron from this set are:

J.1(xlxe Gf) = B(K-c-l}+Bch

2 2
a (xix e Gf) = B ch(1- h)

For the potential, the first term is due to contributions from the K-c-1 firing
members of Gr which by definition always make a connection of strength B with

every other member. Note that this is the worst case potential for a member of Gr
and strictly is only valid for afiring member of the set, which is not allowed to
make a connection with itself. In contrast, a member of Gr which is not firing (but
should be) would see (K-c) firing neurons from Gr, not (K-c-1).

The second term in the mean potential is due to contributions from the firing
neurons which are part of the set Gor. These neurons are firing erroneously in the

context of the recall of golden vector Po and any potential they contribute to mem

bers of Gr is due to random correlations with other stored patterns. The mean con

tribution from each such connection is Bh, and there are c possible sources, giving
a total mean contribution of Bch.

The variance term for the set Gr is totally dependent on the random contribu
tions due to other stored patterns. There are no contributions to the variance from
the other members of Gr since these connection are always made (i.e. not random).

Turning now to the gaussian for the members of set Gor' the mean and vari
ance are unchanged from the previous case where the network began in a state cor
responding to a stored memory. Thus:

J.1(x/x E Gnf) = BhK

a(x/x E Gnf) = B2 Kh(l- h)

We define the potential of a neuron i e Gf at time t as Ui(t}. Its potential is

drawn at random from the distribution for Gf . Similarly, the potential of a neuron

j e Gnf at time t is defined as UjCt), drawn at random from the distribution for Gnf.

The difference between these quantities we define as Udifc(t}. From elementary sta
tistical theory (Lapin, 1990), we know that the difference between two random var
iables is also a random variable for which the mean is the difference between the
means of the individual variables and the variance is the sum of the indi vidual var
iances. Thus UditrCt) can be described by a gaussian with mean and variance:

E(Udif}t» = B(K-c-I)+Bch-BKh

= B(K(1-h)-c(l+h)-I)

2 2 2
a (Udifft)) = B ch(l-h)+B hK(I-h)

2 = B h(l-h)(c+K)

Analysis of Storage and Retrieval for the Simple Network 192

Neuron j will fire erroneously if its potential is greater than that of neuron i,
i.e . Uj(t»Ui(t), a state which is characterised by Udif£<t)<O. The probability that

this occurs is simply the area of the distribution for Udiff(t) which is less than zero,
shown below. The area sought is found using the error function, erf(Z). As before,
we translate this distribution into the normal distribution for which this error func
tion has been pre-calculated.

Probability, q

Probability
of error, E

~

E(Udiff(t» Potential Difference

Fig. 7·10 Distribution of potential difference between firing and non-firing neurons

Using the mean and variance for Udift"<t), the formula for the normal deviate,

z, becomes

x-~
z = cr

= x_-_B.:.-,(K::::(:=1 =-=h:::) -=c::::(=1 =+=h~) ----"-1)

JB
2
h(1- h)(e + K)

so that the probability that x<O, as given by the error function, is

P (0) ~
O-(K(I-h)-e(l +h)-I»)

r x < = er J h(1- h)(c + K)

This is the probability for a single erroneous transition between neurons i and
j. There are K such neurons in Of and N-K neurons in 0nf' Thus the number of

independent events which must be considered is K(N-K). The expected number of
errors due to transitions at time t is therefore:

Nerr(t) = K(N - K) . Pr(x < 0)

The graphs overleaf in figure 5-11, for the probability of an error for given
neurons i and j, Pr[x<O] and for the expected number of errors for the whole
region, Nerr{t) against the number of stored patterns, Z, for several values of error,

c. In all cases, a 1O-from-200 code is used.

Analysis of Storage and Retrieval for the Simple Network 193

0.30

,-...
0
v
C 0.25
n..
.... -
0
t:: 0 .20
Q)

Q)

C)
r:::

0.15
VI -0

~
0.10

.c
ns
.c
0
n.. 0.05

0 .00
10 30 50 70 90 110 130 150 17 0 190

Number of stored patterns , Z

-.- c=O -e- c= 1

~ c= 2 c =3

Fig. 7-11 ~ raph 01" error probability for two neurons

The total number of errors is the most useful indicator and is shown in the
graph overleaf. When Nerr > c, the pattern will diverge at the next update since the
value ofNerr at time t will become the value of c at time t+ I.For Nerr<c, the
expected behaviour is that the network should slowly converge towards zero
errors. For Nerr=c, the number of errors should remain constant. Therefore, we
should select the maximum number of patterns to satisfy the criteria of the maxi
mum number of bits that must be corrected for.

From the graph it is clear that the storage capacity of a 10-from-200 network
cannot exceed 65 patterns if errors as large as 2 bits are to be corrected. To correct
3-bit errors, only 45 patterns can be stored. Notice also that even for the case when
c=O (which corresponds to the network in a state corresponding exactly to a stored
memory) there is a non-zero value for Nerr. This implies that even a stored mem
ory is not guaranteed to be a stable point of the system as the number of stored pat
terns is increased.

Analysis of Storage and Retrieval for the Simple Network 194

16

14

In 12
z c=3
g
UJ

a3 8
~
~ 6
111

~
4

c=O
2

10 20 Xl 40 50 60 70 00 00 100 110 120 130 140 150 160

turber ci Stcred Patems, Z

Fig. 7-12 Graphs of the total expected error vs. number of stored patterns.

7.6.3 Storage Capacity

Since the expected number of errors at time t, Nerr(t), is

Nerr(t) = K(N - K) . Pr(x < 0)

we can define a maximum error per neuron, Nerr(t)/N as say K/4. This would
permit O.25K error in total, or one quarter of the ' I 's misplaced. For this limit to
apply, Pr(x<O) is restricted thus:

Nerr(t) > !5.(N - K) . Pr(x < 0)
N N

~ > ~(N - K) . Pr(x < 0)
4 N

Pr(x < 0) < -:-:-:-~N~
4(N - K)

The value ofPr(x<O) depends on the level of corruption, c. Taking c=Kf4
gives:

Pr(x < 0) = e r.f(-v)

where v = K(I-h)-O.25K(1 +h)-l
Jh(l-h)(1.25K)

Using the approximation to the error function,
1 2

erf(Y)~ I - - e-Y

./1r.y

Analysis of Storage and Retrieval for the Simple Network 195

0
>;

.t:!
(,)

R!
a.
R!
0
cu
0'1

~
U5
'0
cu
(J
cu
a.
><

UJ

for y ~ 00, together with the fact that erf(-y)= l-erf(y) gives:

N I -v
~:--- >-e
4(N - K) J1r.v

with v defined as before. This can be solved numerically for h and hence Z,
the maximum number of stored patterns. The graph below shows the relationship
between Z and K for a network with N = 200 neurons.

100
90 i'-..

80
70

60
50
40

30
20

10
o
16

~
~

18 20

----- ------- --------
22 24 26 28 30

No. of Firing Neurons, K

Fig. 7-13 Graph: expected max. stored patterns vs. # of firing neurons for N=200

It is important to understand what assumptions underlie this capacity meas
ure. It is not a convergence analysis of the network, which would require more in
depth consideration of the statistical fluctuations of the correlations between pat
terns. To do this, statistical mechanics would probably be a useful approach, but
this is beyond the scope of this work.

Instead, what we have assumed is that the pattern is considered stable if the
number of erroneous bits does not increase. Since we have taken the maximum
number of erroneous bits as 0.25K, we consider a pattern to be correctly retrieved
if, beginning with 0.25K bits corrupted, the expected number of errors is
unchanged from one cycle to the next. This analysis does not take individual fluc
tuations into account and is therefore accurate only in the limit as N tends to infin
ity.

However, the simulations which will be reported on section 7.8 in take into
account the convergence of the network over multiple cycles rather than just the
number of errors after a single cycle. This is a more important metric of network
performance since it is the convergence properties that are really defining the use
fulness of the network in a real system.

Comparison between the theoretically derived results and simulations is pos
sible, but only when we consider those cases for which the theory can provide
valid conclusions: this is limited to the cases where the initial level of corruption of

Analysis of Storage and Retrieval for the Simple Network 196

w-...... ;g
6

i

the pattern is equal to the maximum number of erroneous bits, in this case 0.25K
bits.

Having understood the limitations of the analysis, the final step is to calcu
late the total information stored in the network as the product of the number of
stored patterns and the information content of each pattern. The graph below
shows the total information content of a network of 200 neurons for various val ues
ofK:

1CD

00

~ ED
~

4) ~
(Jj

2) ~
0

16 18 2) 22 24 26 28 :IJ

~ d Rrirg t\Eua"s, K

Fig. 7-14 Total information stored for perfect recall in an N=200 network

In the graph, the green line (corresponding to the right Y-axis) is the maxi
mum number of patterns, Zmax' stored by the network before errors occur on recall,

while the red line (corresponding to the left Y-axis) is the total quantity of inform a
tion stored in the network, Itotal = Imax x Zmax. From the graph it is clear that the
highest total storage is achieved for the lowest K that was considered, K = 16.

We know from the basic theory ofK-from-N codes that the maximum will
occur when K=logz N, or just over 7 bits for a network ofN=200 neurons (see
review ofN adal & Toulouse, 1990, beginning on page 51). As discussed in the last
chapter, however, the optimal value ofK from the point of view of capacity does
not necessarily lead to the greatest tolerance to distortion of the input pattern as
quantified by its basin of attraction. Simulations to justify this will be presented
later (section 7.8.2, page 205).

We note in passing that for K=O (with all neurons silent for each pattern) the
maximum number of stored patterns is infinite since each new pattern contributes
zero to the noise component during recall. However, the number of legal vectors is
only one (the zero vector) and furthermore the information contained in each pat
tern is zero bits, so this result is not very useful, practically speaking.

Analysis of Storage and Retrieval for the Simple Network 197

Returning to our discussion of the graph, it is clear that the change in total
network storage capacity with increasing K is dominated by the falling number of
stored patterns. Why should this be so? We know from the properties of K-from-N
codes, as outlined in section 6.3.2, page 159, that the maximum information con
tent of each pattern is

(N- K)! K!
[max = -log N! bits

Using the approximation that In x! = x In x - x for large x and ignoring the
factor of log2 e required for a change of base 1 , we can approximate Imax as:

[max"" -(N - K)log(N - K) + (N - K)- KlogK + K + NlogN - N

"" NlogN - (N - K)log(N - K)

for large N. The information per pattern is a function of K, rising linearly
with the factor -(N-K) but falling with the factor 10g(N-K). The result is a less than
linear rise for low K.

Turning to the number of stored patterns, we see from figure 7-10 that the
probability of error increases more than linearly with the potential difference at the
tail end of the distribution. The potential difference itself is roughly proportional to
K and (if we consider uncorrupted input so that c=O), we can reasonably take the
number of error bits during recall to be more than linear in K, for low K.

Finally, we note that the storage capacity (which is inversely proportional to
the mean number of errors in the limit of large N) falls off more steeply than a lin
ear decent in K. This tenn dominates the total storage capacity, as shown in figure
7-14, explaining in qualitative tenns why it decreases with K.

Overall this analysis has shown that for a network storing K-from-N patterns
using the learning and recall procedures outlined earlier in this chapter, the use of a
low firing level, K, will produce a higher level of total infonnation storage than
that of a network in which K approaches O.SN.

Comparing the overall scheme to the learning algorithms presented in the lit
erature survey of chapter three (in particular the review by Casasent & Telfer), we
note that the storage capacity seems to be less than the 2N of the Ho-Kashyap algo
rithm. This is not surprising, since the algorithm we use here is essentially based
on simple correlated firing between pre- and post-synaptic neurons.

However, the Ho-Kashyap algorithm was applied to purely feedforward
memories, not the recurrent type used here. The perfonnance of recurrent net
works, in general, was shown to be poorer than feedforward networks although the
recurrent nature of the algorithm allowed error correction to be perfonned at no
extra cost. Furthennore, the Ho-Kashyap algorithm was not suitable for one-shot

1. Alternatively we could have converted the quantity in question from bits to natural bits or nats. However, we are
only interested in the general dependence of Imax on K here, so we omit this added complexity.

Analysis of Storage and Retrieval for the Simple Network 198

learning in a dynamic environment, requiring full knowledge of all patterns in
advance and even forcing the output patterns to be modified to facilitate storage.
The simple scheme outlined here has none of these disadvantages.

7.7 Energy Landscape

In section 5.5 it was shown that the asynchronous neuron update rule would
cause the energy of the system, defined by the equation

N-I N-I N-I

E = -2~ L L OPjWjj + 2~ LT;Oj
1=0 j=O / .. 0

to change according to Ediff < WBAIN where W BA is the value of the weight
between the neuron which is ceasing firing and the neuron which is beginning. In
the limit as N tends to infinity (i.e. a very large network) the proportion of the
energy change contribution by this positive term tends to zero; the energy is
reduced monotonically towards zero, in the limit.

It is well known from analysis of the Hopfield network that local minima in
the energy landscape can be a cause of convergence problems which are often
avoided by using noise (Amit, 1989). Is the same true in this network? Consider a
network in a state A, corresponding to one stored pattern. The energy in this state
is a minimum, and ignoring the threshold related term, is equal to - K(K-l)lN.

Now consider the path across the energy landscape to a state B, also corre

sponding to a stored pattern and thus also with energy -B2K(K-l)lN. Each step
from state A to state B equates to a single' l' in the state vector shifted to a new
position to take it from the vector for state A towards that of state B. Assume for
this example that A and B have no '1' s in common. The graph below shows an
example landscape.

Energy,

E

-K(K-l

N

A

Fig. 7·15 An energy landscape for the simple network.

B State Vector

Analysis of Storage and Retrieval for the Simple Network 199

Since the changes in the state vector always move the' 1 's to positions which
correspond to '1' s in the vector for state B we know that the energy will reach a
new minimum in at most K steps. After n steps from state A, K-n '1 's from the

original pattern remain. With the (n+l)th step, the energy increases by B2(K-n)/N
due to the loss of support from '1' s which remain in the pattern for state A, but

decreases by an amount B2n/N due to a gain in support from' 1 's which are already
in place for the pattern of state B. Random contributions to the energy also occur,
due to cross talk between the K-n firing neurons which remain for state A and the n
neurons which are now firing for state B. Each possible contribution will only be
realised if a connection between the two neurons had been made for another pat
tern, which is a random quantity.

Thus the energy change between the two states is not defined by two smooth
basins but by a complex set of hills which depend on the other stored patterns.
Thus, just as in the Hopfield network case the landscape is littered with local
minima and convergence to a non-stored memory pattern is possible.

7.8 Simulation of the Simple Network

To verify the theory presented in this chapter, simulations were performed on
a variety of networks using different parameter values. The basic idea was to meas
ure the number of patterns which produced errors during recall, even when the ini
tial pattern presented to the network itself contained errors.

It is important to note that for each network size and configuration only a sin
gle run was made. The reason for this is that the run time for each network config
uration was extremely long, ranging from six hours for the fastest to over a week
for the slowest, running on an IBM compatible PC at 100MHz. As a result it was
not possible to produce error bars for the sample data points and all conclusions
from the simulations must be drawn tentatively. Future work should include more
simulation runs of these networks leading to the production of a box plot illustrat
ing confidence levels for the spread of parameter values.

The scope of the simulations was intended to include a range of different net
work sizes and configurations. The analysis provided results whose validity
increases with N and are strictly valid only in the limit as N tends to infinity.
Although we would like to include the large N limit in simulations the simulation
time beyond N==300 was deemed to be too great. To cover a set of different net
work sizes, networks consisting of N==100, 200 and 300 neurons were trained.

For each network, the number of firing neurons, K, was varied. For example,
in the N==100 case, values of K from 8 to 20 in steps of 4 were used. The step size
was chosen to allow the integer noise margin M==0.25K to be defined.

For each NIK pairing, the network learned a set of 150 patterns, in groups of
10. After each group of 10 was learned, the network was tested on the whole
learned set to see if it could recall them correctly. This gradual loading of the net-

Analysis of Storage and Retrieval for the Simple Network 200

work was intended to allow us to establish the rate at which errors creep into the
recall process with each new learning event. Ideally, we would do this one pattern
at a time. The selection of ten patterns per group is a compromise that allows us to
cover the entire set of 150 patterns in a practical length of time.

Recall itself consisted of presenting each pattern with a number of bits, c,
corrupted (i.e. shifted to other bit positions) at random. The number of corrupted
bits varied over the range from zero to one half of the total firing neurons, K, in the
pattern. By testing the network using a single pattern which begins at different lev
els of corruption it allows us to establish the width of the basin of attraction for
each pattern. This corresponds to the parameter e, the radius of the initial target cir
cle, in section 6.5.3, page 169. At corruption level c > 0.5K we can no longer guar
antee that the initial corrupted pattern is closer to its uncorrupted parent than to
another stored pattern and so it makes no sense to investigate corruption levels
beyond this point.

For each corrupted pattern the network was iterated eight times, in which it
was expected to reduce the level of corruption and bring the pattern within the final
target circle as defined by the parameter d in section 6.5.3. We need to have swift
convergence since the output of the network may be used directly by some other
network. Therefore, we allow only two cycles for the state to converge to be within
distance d of the target pattern.

To be sure that the pattern will not subsequently diverge, we demand that for
many subsequent cycles (six was chosen as a compromise between confidence in
convergence and excessive simulation time), the distance of the state vector from
the target vector does not increase beyond d. Hence, correct recall was assumed if,
from the third iteration onwards, the number of erroneous bits in the pattern did not
exceed a defined margin, M. The margin was set at 0.25K, so that even if one quar
ter of the firing neurons were erroneous the pattern was considered to be correct.
Notice that the margin M (measured in shifted bits from one legal vector to
another) is analogous to the distance d (a distance metric between two vectors in
the same vector space) defined in section 6.5.3, page 169.

Graphs of the results are included at the end of this chapter. Each graph cor
responds to one network size, N, and number of firing neurons, K, and plots the
number of patterns which were incorrectly recalled against the number of stored
memories. Individual traces on each graph correspond to different values of c, the
initial number of corrupted bits in the pattern.

[Note that for the network of size N=200 neurons, a set of 300 patterns was
used, but for the network of size N=300 there were insufficient computing
resources available to use more than the base 150 patterns].

There are similarities which are visible across all values of Nand K. First,
there are few, if any, errors for low loading (a low number of memorised patterns,
Z). Even for a significant number of initially corrupted bits, the low-loaded net
work is able to reach a stable state within the error tolerance band. As more and
more patterns are memorised, there comes a point when significant (non-zero)

Analysis of Storage and Retrieval for the Simple Network 201

errors first begins to appear in the recall of the whole pattern set. For a given load
ing, Z, we note that the onset of failed recall occurs first for the highest levels of
initial pattern corruption, c, which in line with intuition since increased initial pat
tern corruption reduces the signal term for all firing neurons.

As the number of memorised patterns is increased beyond the point where
errors first begin to appear there is a fairly rapid transition to a state where most or
all patterns are diverging from their initial level of corruption, c. The rate (as a
function ofZ) at which this occurs increases as the ratio KIN increases. We can see
this by comparing the simulations for a fixed value of N and of c. For instance, the
graphs of N = 100 neurons, with uncorrupted initial patterns (c=O). For K=8, the
first errors begin to appear when Z = 40. As Z increases the number of failed
recalls increases steadily until total recall failure occurs at around Z = 110. If we
now consider a higher proportion of firing neurons with (say) K = 16, we see that
errors first appear at around Z = 20 patterns but total recall failure occurs with only
20 more patterns, at Z = 40. Why should this be?

From the theory, it appears that the increased sensitivity is due to the greater
rate of saturation of the weight matrix. Note that the probability of a connection, h,

at a particular loading, Z, is defined in terms of p2 (where p=KIN). From Figure 7-
3 on page 181, we see that while it is still low, h is itself an increasingly sensitive
function of Z for increasing p=KIN. Increasing KIN ratio therefore implies a faster
rate of saturation of the matrix with memory load, Z.

Furthermore, from Figure 7-10 on page 193, we see that the expected proba
bility of an error is proportional to the area of the gaussian for x<O (corresponding
to the potential difference between firing and non-firing neurons). This is a func
tion of h: the mean is reduced and the variance is increased for increasing h, both
effects leading to increasing error rates as h increases. Thus we see a direct connec
tion between KIN ratio and the rate at which the first appearance of errors leads to
memory failure as the memory load, Z, is increased.

Moving on, we note that for almost every network configuration, saturation
occurs before the full set of 150 patterns have been learned. This is evident from
the convergence of the number of errors with the number of patterns stored, indi
cating complete failure to recall any stored pattern.

The trend in almost all cases is for the number of errors to increase with load
ing, Z.This is in line with our expectations since the noise component to the poten
tial of neurons which should not fire is increasing with Z.The only anomaly occurs
for N = 200, K = 8. Here we see that for two of the traces the number of errors
decreases at around Z = 120. For a single bit of initial corruption, the single pattern
that failed to converge at loading Z=110 succeeded at Z=130. Similarly, for two
bits of initial corruption, while there were 14 patterns that failed to converge at
Z=120, only 11 failed at Z=130. This is counter to our expectations, but there are
two reasons to explain these effects.

First, it is possible for the random, slow noise that is introduced with each
new pattern to work for us as well as against. As noted earlier, we are working with

Analysis of Storage and Retrieval for the Simple Network 202

a low sample size (a single trial for each set of network parameters). Second, the
selection of which bits to corrupt in a given pattern need not give the same result
from one trial to the next. It is possible that one set of chosen bits might result in
failure to converge at Z=120 while the two different corrupted bits that were cho
sen for that pattern at Z=130 might have resulted in successful convergence if they
had been chosen at Z=120. In either case, these are statistical effects due to the low
sample size. As noted earlier, with sufficient computing resources we could
attempt to reduce these effects by averaging over multiple simulation runs.

Looking at anyone graph it is clear that in general, as would be expected, the
number of erroneous recalls increases as the degree of corruption of the initial pat
tern increases. For the characteristics for c=O the total number of patterns which
will be stable is always greater than or equal to that of the case c>O.

For the networks with N = 100, around 40 to 50 patterns could be recalled
without error, while for the N = 200 that limit was pushed up to around 100. In the
N = 300 case, the limit is increased slightly but the trend seems to be that the rate
of change of network capacity is negative with respect to N. This result follows
from the definition of the expected number of errors, Nerf' defined on page 195:

Nerr(t) = K(N - K) . Pr(x < 0)

Since for large N the number of errors is proportional to the number of failed
patterns, we see that this number is proportional both to N and to K. Note that as
the network size is increased in these simulations we have selected p in order to
keep the proportion of firing neurons, p, roughly constant and K=pN. Thus, the
factor K(N-K) increases more than linearly with N, leading to a proportionally
larger fraction of errors for larger N.

This suggests that for increasing N we might consider reducing K, the
number of firing neurons. Obviously, this will impact the infonnation stored in
each pattern, but this is a trade-off that can be made for each network design.

7.8.1 Comparison of Simulation Results with Theory

Next, we compare the storage capacity obtained through simulation with the
expected storage capacity as provided by the analysis. As was noted in section
7.6.3, beginning on page 195, this comparison is not straightforward since the the
ory only provides infonnation on the change in the number of erroneous bits from
one cycle to the other and is, furthennore, only valid in the limit of large N. The
theory derived is not a convergence analysis: the network state could begin by
diverging but then stabilise at or below the maximum allowed number of erroneous
bits.

A full analysis needs to consider the dynamic evolution of the probability
distribution for the state vector. Furthennore it must also take into account the
effects of finite N, which would lead to fluctuations in both the signal and the noise
tenns for each neuron as a function of the stored patterns themselves. Such an anal
ysis is probably best undertaken using statistical mechanics and is beyond the
scope of this work.

Analysis of Storage and Retrieval for the Simple Network 203

However, if we accept the fact that N is finite, we can compare theory with
practise in the one case where the network state begins at the limit of acceptable
recall (in this case we have chosen 0.25K) and the expected number of erroneous
bits is unchanged from one cycle to the next. In the limit of large N this corre
sponds to a stable network state, i.e. correct recall. For the simulations, this case is
also on the limit of acceptable recall, pennitting comparison between the two.

Thus, for each network configuration (defined by Nand K) we can compare
the maximum number of patterns that we can store such that when recalling with
corruption c = 0.25K bits the number of erroneous bits, Nerr, is also equal to c =
0.25K bits.

Using this metric, the table below compares the theoretical storage capacity
with the simulated result for several configurations. Network sizes of N = 100, N =
200 and N = 300 are included.

Table 7-0 Comparison of simulated vs. theoretical network capacity of the simple network

Theoretical Simulated
Capacity (# of Capacity (# of

of Firing Max. Corrupted stored patterns), stored patterns),
of Neurons, N Neurons,K bits, c = O.2SK Zthry Zslm

100 8 2 31 33

100 12 3 19 40

100 16 4 13 15

200 8 2 109 101

200 12 3 69 98

200 16 4 47 90

200 20 5 35 65

300 20 5 77 145

We see from the table that it is for the network of size N = 100 that the
expected and simulated capacities are the most similar. For K = 8 and K = 16 the
results match almost exactly. For the other networks, the simulations show that the
network actually performs progressively better than the theory for increasing N
and K. How are we to interpret these results?

If we recall that the condition for acceptable recall in the theoretical case was
the non-divergence of the expected number of error bits, it is clear that this criteria
is more strict than that imposed on the simulated network. For the simulations, we
allowed the network state to both diverge from and converge towards the stored
vector provided that it was within 0.25K error bits after the first two cycles. It is
reasonable to interpret the improved capacity for larger networks to the networks
increasing ability to rein in a diverging network state to within the error limit.

The close approximation of theory to the simulations for the N = 100 neuron
network seem to show that (for low N) initial divergence of the network state can
not be reversed in subsequent cycles. In that case, the metric of constant expected
error more accurately reflects the ability of the network to converge to within
acceptable error tolerances. In other words, when the expected error increases on

Analysis of Storage and Retrieval for the Simple Network 204

the first cycle of the network (an occurrence that corresponds to a failure for the
network analysed in the theory) it is unlikely that subsequent cycles will cause the
network to converge, leading to a stronger correlation of theoretical and actual
capacity for low N than is seen for larger networks.

7.8.2 Basin of Attraction

N

IU
LL.
OIl
c
0
OIl ...
.2
OIl
m
'C
~
0

(J)

III

E
OIl

IU
Q.

x ..,
~

As a final part of the network simulations, the size of the basin of attraction
around each pattern as a function of the number of stored patterns was measured
for a network of N = 200 neurons. In this experiment, an active set of K = 12 neu
rons was used. After each pattern was stored, the entire pattern set was tested to
measure the width of the basin of attraction (the maximum distance the pattern
could be from the true stored memory before it was unable to converge). Conver
gence corresponded to the network reaching a state in which no more than 0.25K =
3 bits were incorrect. For each pattern under test, multiple trials were carried out in
which the network was presented with the pattern at different levels of initial cor
ruption (' 1 's moved out of place in the initial vector).

The graph overleaf shows the maximum number of patterns that could be
stored before the first convergence failure as a function ofthe initial number of
corrupted bits in the pattern. For c = 0 and c = 1, no failures occurred in the recall
of 1 00 patterns. The size of the basin is inversely related to the number of stored
patterns, which is a result qualitatively similar to that produced by a Hopfield net
work.

This result is in line with our intuition since increasing errors in the initial
vector increase the sensitivity of network convergence to noise. Since that noise
component is directly related to the number of stored patterns, we expect that the
maximum number of stored patterns will be reduced as we demand greater levels
of error correction.

100

90

80

70

60

50

40

30

20

10

o
o

'\
\

\

2 3

ForN = 200, K = 12

~

~

"" "'--~
~

-------4 5 6 7 8 9 10 11

No. of Initially Corrupted Bits, C

Fig. 7-16 Graph of max patterns stored without error vs. size of basin of attraction

Analysis of Storage and Retrieval for the Simple Network 205

7.9 Discussion

From both the theory and the subsequent simulations it quickly became clear
that the selection of p as a constant for various network sizes, N, was not necessar
ily the best choice. As N increases, the actual number of new connections that are
made with each new pattern is increased. These new connections contribute to the
signal term in the recall of the new pattern.

But the total amount of signal required to distinguish a single pattern is not
necessarily a function of N and it is here that we note a limitation of the fully con
nected network. A degree of freedom that has been ignored in this analysis is the
number of connections that a single neuron can make for a given pattern. There is
existing research (for example as reported in Hertz et al., 1991) that shows that for
a Hopfield network the capacity can be increased by setting to zero a random sub
set of the synaptic matrix. This deletion impacts the signal term for each neuron
but also reduces the noise. Provided that the selection of synapses to delete is unbi
ased, the effects can be beneficial.

This idea will be carried into this work in the next chapter. We will restrict
the number of connections that each neuron makes with the other firing neurons
and investigate the effect that this change has on the network properties.

The other reason for making modifications to the learning algorithm is to try
to avoid the problem of increasing energy that was shown to exist for this network
in section 7.5, beginning on page 182. The fact that the energy of the system might
increase cycle on cycle should be a source of concern. It could lead to the di ver
gence of the state vector away from a stored pattern. The modifications to be made
to the learning algorithm should at least address this issue.

7.10 Conclusions

This chapter has presented the basic network which is structurally similar to
a Hopfield Network, and described a learning procedure based on a recurrent ver
sion of the non-holographic memory model of Willshaw, et al .. The dynamics of
the network were analysed as a detection of signal in gaussian noise problem.

It was estimated that the number of K-from-N encoded patterns which could
be stored in such a network can greatly outnumber the 0.135N limit inherent in a
Hopfield network, but at a price of lower information content per pattern. Overall,
the total information stored by the network is greater for low K than for K = 0.5,
due to the dominance of the number of stored patterns, Zmax over the information
per pattern, Imax.

Analysis of Storage and Retrieval for the Simple Network 206

While it was shown that the network was capable of learning a new pattern
with a single presentation, consideration of the energy function shown that, like the
Hopfield network, it suffers from local minima due to crosstalk between stored
memories which prevents convergence to a stored memory with probability 1.

Furthermore, unlike the Hopfield network it is possible for the energy to
increase from one cycle to the next. This effect is due to the fact that two neurons
are changing state with each update and the contribution to the energy (positive or
negative) of one of them is not known until it has been activated.

The capacity of the network was considered for the case where a recalled
pattern was permitted to lie within a margin, M=0.25, of the learned vector and still
be considered correctly recalled. The capacity, C(K, N, M), of an N-neuron net
work with this error bound was obtained by solving the equation:

N l_l
4(N - K) > ./Tc/

where v = K(1-h)-O.2SK(1+h)-1
J h(1 - h)(l.25K)

For a network of 200 neurons, the expected capacity was shown to be
between 40 and 95 patterns for values of K between 16 and 30. While this is a
larger figure than that of an equally sized Hopfield network it is still not sufficient
to be used as a building block for the architecture. This capacity analysis was based
on the constancy of the number of errors from one cycle to the next and did not
constitute a full convergence analysis of the network.

Full convergence simulations of the basic network for a range of values for
the number of neurons, N, and the number of firing neurons, K, showed that the
network does indeed exhibit the expected properties and that the measured capac
ity of the network in terms of the maximum number of patterns that could be stored
without recall error was close to the estimated value, as a function of K.

It was asserted that the full connectivity of the firing neurons led to prema
ture saturation of the network due to an excessive signal term for firing neurons. It
was suggested that a controlled reduction of this signal term, by reducing the
number of connections made for each new pattern stored, might improve the stor
age capacity of the network by also reducing the noise term in the potential of
every neuron. This possibility is explored in the next chapter.

In the next few chapters, several possible avenues of investigation are pre
sented which seek to augment the capabilities of the simple network and to over
come the problems discussed here.

Analysis of Storage and Retrieval for the Simple Network 207

7.11 Appendix: Graphs from Simulations

This appendix presents simulation results for networks of differing N and K.

w

~
g
w
..r:

j
I/)

E
~ -ns
Q..

'0
0
z

w

I/)

E
~
Ri

160

140

120

100

80

60

40

20

0
0

160

140

120

100

80

60
Q.. • 40
'0
o
Z

20

o o

For N = 100, K = 8

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

No of patterns Leamed, Z

-- c=O -- c=1 -- c=2

FerN = 100, K = 12

~
J /

///
.~

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

No. of Pattems Leamed, Z

-- c = 1
c=3

208

For N = 100, K = 16

1~---

1~--------------------------------------~~
w

- 1~--------------------------------~~-------

~ 1~------------------------------~~---------------
~
~
~
~

~

o 10 20 30 40 50 00 70 80 00 100 110 120 130 140 150

r-.h. cI Patterns Learred, Z

-'- c=O -'- c=1 -'- c=2
c=3 -'- c=4

FaN= 100, K=20

1 Uh---

w 1~------------------------------------~~

~ 1~----------------------------~~----

w 1~--------------------------~~----------..c
j

j
~

~

o 10 20 2D 40 50 00 70 00 00 100 110 120 12D 140 150

f\b. ci Patterns Learned, Z

209

For N = 200, K = 8

35

w
30

g
25 w

.£:
20 -.~

(J)

~ 15 --<0 10 a..
'0
0 5
z

/

/
I

/
/'J

I
-L ~ o

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

No. of Learned Patterns, Z

-+- c=O -+- c=1 -+- c=2

For discussion of kinks for c=l and c=2 in above graph, see section 7.8, page
200.

Fa N= an, K= 12

w

o
o ~ ~ 00 ro 100 1~ 1~ 100 100 an m ~ E E~

~. d Pcitans l..arnd, Z

-+- c=O -+- c=1
-+- c=2 c=3

210

w

w

Fa" N= 200, K= 16

o 10 d) ~ 40 50 ED 70 00 00 100 110 120 130 140 150 1ED 170180 100 d)Q

t'b. a Pcttems Leal'"lOO, Z

-+- c=O ""'- c=1 -+- c=2

c=3 -'- c=4

Fer N = alD, K = d)

1~---

o 10 20 30 40 50 00 70 80 00 100 110 1d) 1~ 140 150

t\b. a l.eared Patterns, Z

-'- c=O -- c=1 -'- c=2
c=3 -- c=4 -- c=5

211

w

~

~
w
.r::.
j
(J)

E
~
ni
a..
'0
ci z

80
u
'J)

70
5

60
u

- 50
~
'J) 40

~
~

30
L 20
5
::i 10
~

o

For N = 300, K = 20

6

5 :

4

3 :

2

"
"

/

0'-~~~---'--~--~--'--4~~~~---'--~--~--'--4~~
o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

No. of Patterns Learned, Z

-- c = 0, 1, 2, 3 - e - C = 4 - 4 - C = 5

Note: in above graph, c= 0, 1 and 2 share same trace.

For N = 300, K = 24

,
/

/
/

j 1
/ /

I I
~~

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

No. of Patterns Learned, Z

-- c= 0
c=3

-- c = 1
-- c =4

-- c =2
-- c = 5

212

160
LU

~
140

g 120
LU
.c 100 .j

80 II)

E
~
iii

60
Co 40 '0
0 20
z

0
0

For N = 300, K = 28

1 0 20 30 40 50 60 70 80 90 100 110 120 130 140 150

No. of Learned Patterns , Z

-- c=O -- c=1 -- c=2
c=3 -- c=4 -- c=5

213

CHAPTER 8 Dynamic Patterns

8.0 Introduction

The analysis presented thus far has assumed that the stored patterns in the
network are fixed points in phase space and that the processing of an input vector
consists of applying the vector to the network and continually updating the outputs
until no change in the output vector of the network occurs from one timestep to the
next. According to this view, when the network is in a stable state, the output vec
tor should correspond to a previously stored pattern. The stability of each exemplar
vector was assured by using a symmetrical weight matrix.

Simulations detailed in chapter seven revealed that the memory capacity of
the simple network was O(N) where N is the number of neurons. This is similar to
the capacity of the range of associative memories as presented in the review by
Casasent & Telfer (see section 3.1.2, beginning on page 48). Strangely, for those
working in the field of associative memories, being able to store a total number of
independent patterns equal to the number of neurons appears to be acceptable.
There is perhaps a tacit assumption that if this property can be extended to a brain
like machines with billions of neurons then this will be sufficient for real-world
applications. We argue that this view of the brain, as a slate in which reams of sep
arate memories are stored like books on a shelf, is one that should be put aside if
we intend to make progress with neural networks as reliable tools for mass data
storage.

We note the different mindset that brought about the development of the
multi-layered perceptron: here the mappings from a set of input patterns to a set of
output patterns is not only memorised but the underlying structure of the patterns
set is modelled. This is intended to facilitate generalisation from previously unseen
patterns and, when the modelling has been performed successfully, to correctly
predict the associated output pattern.

Another way to look at this property is that it gives the network the appear
ance of storing far more patterns than those that have been learned explicitly. This
process, we would like to capture for the network we are developing here. Pursuit
of this idea is left until chapter ten, when we introduce 'learning hierarchies'.

Dynamic Patterns 214

An additional problem of the simple network was that local minima are
present which can prevent convergence to a stored pattern. In this respect the net
work is similar to the Hopfield network. If there is a significant chance that the net
work will not converge, or will converge to an incorrect output, then such a
network is not suitable as the building block of a larger system which may contain
hundreds or thousands of such modules. Thus, more reliable convergence is neces
sary.

Turning to the control aspects discussed briefly in the last chapter, it was
suggested that a flexible and reliable means of making transitions from one stored
memory to another is a basic requirement of the neural building block. How this
might be achieved using a learning strategy which is only concerned with stabilis
ing individual patterns without regard to the others is not clear. A better strategy is
one in which stability and transition use exactly the same mechanisms. The use of
'dynamic patterns' is intended to achieve that end.

This chapter presents the development of dynamic patterns in the network,
which unfortunately renders obsolete a lot of the work already presented and
necessitates a re-analysis of many of the properties already studied. It will be
shown that the use of dynamic rather than static patterns goes some way toward
overcoming the problems of memory capacity, flexible control and reliability of
recall.

The exposition begins with the definition of dynamic patterns in the context
of the work. Next, possible alternative implementations are presented together with
a critique on their merits and limitations. A series of case studies with simulation
results follows, before a final discussion on the remaining limitations.

8.1 The Idea Behind Dynamic Patterns

In a dynamic pattern approach, not all of the firing set for a given pattern is
active at once. Instead, this set is divided into subsets, each subset firing in tum.
Once all of the subsets have fired, the cycle begins again. Thus, a single pattern has
both a spatial and a temporal component. In state space, the fixed point attractor of
the existing static implementation is replaced by a limit cycle in the dynamic
approach. State space schematics of each are shown below.

Fixed-point attractor Limit cycle

Fig. a-o State flow for a fixed-point attractor and a limit cycle.

Dynamic Patterns 215

In figure 6-0, an 'X' marks each state of the network. For the fixed-point
attractor, the system in state X remains there indefinitely. In the case of a limit
cycle, the state changes on every update of the network but repeats a sequence of
states indefinitely (the period is five in this example).

At each timestep, the network must essentially perform a pattern recognition
based on the network state that existed in the recent past; how recent depends on
the connections made during learning. A stable pattern corresponds to a set of
states which would repeat indefinitely in the absence of any change in external
stimuli. Changes from one pattern to another correspond to transitions from one
cycle of states to a different cycle of states, prompted by external stimuli.

Flg.8·1 Transition between two dynamic patterns.

8.1.1 Desired Benefits

Clearly, moving to a dynamic pattern complicates the network updating and
the analysis of the system. What benefits are expected by making such a change?
As discussed in the previous chapter, the simple network in which static patterns
are stored suffers from local minima in points of the state space which do not cor
respond to the stored vectors.

To some extent the local minima problem occurs because of neglect in the
specification. The user, by virtue of the learning procedure, demands only that the
points given as vectors to learn be global minima of the energy function but there
is nothing in that specification to control the energy at any other point. That fact
that it corresponds to various combinations of the input vectors should therefore
not be surprising.

In contrast, the dynamic pattern approach seeks to control the evolution of
the system not just around stored vectors but also during the transition from one to
another. It does this by making no basic distinction between a state corresponding
to a stable, recalled pattern and an unstable, transitional state. In both cases the
state is changing at each timestep, but for the stable pattern the state sequence
repeats itself indefinitely.

The goal with the dynamic approach is to be able to program transitions into
the network by making minor modifications to the mappings at points around the
loop to cause the pattern to exit the loop and form a new stable orbit based around
a different stored memory.

Dynamic Patterns 216

8.2 Information Stored in Each Pattern

In chapter six the maximum information content of a single vector using a K
from-N encoding was shown to be

Imax -KjromN{ K, N) = -Lp{x) . log p{x)

{N-K)!K! .
= log N! bIts

For the dynamic pattern, the K firing neurons are divided into L subsets, each

consisting ofD neurons, such that D = I' At any given time, t, only D neurons now

fire . Over L time steps, each subset of D fires once so that during a full cycle of L
steps all of the K firing neurons from the original pattern have fired exactly once.

Fig. 8-2 One dynamic pattern cycle, made up of L subsets, describes pattern p.

The maximum information content of a single D-from-N subset of the origi
nal pattern is

(N-D)!D!
Imax -DjromN{D, N) = log N! bits

Since there are L such subsets, the total information is L times this quantity.
In addition, the ordering of the L subsets is a source of extra information. There are
L! possible orders, which require 10g(L!) extra bits to specify assuming that all
orderings are equally likely. By substituting for D in terms of total number of firing
neurons, K, and the number of steps, L, we obtain the maximum total information
content of the dynamic pattern:

Lsubws (N - ~}(~}
I max _ KjromN{ K, L , N) = L log N! + log L! bilS

Dynamic Patterns 217

[In fact, this is a slight overestimate, since the D-from-N subsets are not
independent. They are not permitted to overlap, so the nth subset is really a D
from-[N-(n-l)D] code, reducing the true quantity of information that the vector can
contain. For N » K the error is small and so will be ignored.]

The graph below compares the information content of a straight K-from-N
code with that of a dynamic D-from-K-from-N code for various values ofL. In all
cases, N was set to 200.

600

...-.
III -e

12 24 36 48 60

Number of Firing Netrons, K

-- L=1
L=4

-*- L=2 -+- L=3

-+- L=6 -- L=8

Fig. 8-3 Graph of information content for one pattern \'S. number of firing neurons.

The baseline case, L=l , corresponds to the non-dynamic pattern in which all
K neurons fire simultaneously. For higher values ofL, the number of concurrently
firing neurons, D, is reduced such that K is held constant. Note that for L=8, not all
points are defined since D(=KlL) must be an integer.

From the graph it can be seen that the efficiency of the pattern increases as L
increases; the information content at L=4 is greater than that at L=2 for any K.
However, the rate at which the information increases with L is itself decreasing, a
fact which manifests itself in the way the lines are converging with increasing L.
Finally, note that the information has been increased by a factor which depends on
K. Multiplication factors as high as four can be achieved for K=96.

The drawback of the dynamic approach is that the pattern takes L cycles to
reproduce itself. In communication theory, dynamic patterns can be viewed as time
domain mUltiplexing ofthe information. The total 'bandwidth' required to transmit

Dynamic Patterns 218

the pattern to other networks is effectively L times the bandwidth in the static case.
Thus, the information transmitted per cycle is given by:

Lsub sets L . L' 1 (
N _ Ii) ,(Ii),

I per-rycle(K, L, N) = log N! + Llog L! bits

In conclusion: one benefit of dynamic patterns is the increase in the total
amount of information stored in a pattern, but only by a maximum factor of four
for L<9. There are disadvantages to such a scheme, however, which will become
apparent later. One problem is that the signal term is now related to D rather than
K. Since D is usually much less than K, we would expect the system to be more
susceptible to noise.

8.3 Alternative Implementations

There are several possible implementations of the basic dynamic pattern
idea. This section presents some of the options that were considered and the
choices that were made. The options are broken into three categories. One consid
eration is the way in which feedforward connections are made from one subset of
neurons to the next. A second is concerned with the way that neuron potential is
modelled, while a third concerns the form of the input vector and the way it is pre
sented to the network.

8.3.1 Interconnectivity Options

The aim is to store a pattern made up ofL subsets, (Do, D 1, ... , DL_,), each

consisting of D firing neurons. The subsets fire in order of increasing index. Using
a modified version of the simple learning scheme described in chapter seven, the
simplest option is to make a connection of strength B from a neuron i to neuron j if
neuron i is active in subset I and neuronj is active in subset 1+1 (with wrap-around
such that Do = DL). Thus, at each instant of time, t, the active set Dt is feeding

activity to the next subset which will replace it at time t+1. This is illustrated
below.

000 0000
0.0 000.
00 00
@ OO~OOO
O.OO ~~ OO

00.00000

I = feedforw.ard
connectIOn

• = active at time t

@ = active at time t+ 1

Fig. 8-4 Feedforward connections one subset to the next during learning.

Dynamic Patterns 219

For subsets of size D, D2 connections are made at each step between the D
currently firing neurons and the D neurons which will be firing at the next time
step. By extension to the L steps, the total number of connections needed to com-

plete the loop is LD2.

How does this compare with the static case? Since D=KIL, the total number

of connections can be re-written as K21L; the number of connections needed to
store a K-from-N encoded pattern is inversely proportional to the number of steps,
L. However, the signal term has been similarly reduced, from K to D (=KIL) at
each step.

This is the simplest connectivity option but suffers from the reduction in sig
nal strength. For a particular pattern, Po, when the network is in a state correspond-

ing to subset DOi , say, we want it to move on to state DOi+1 in the next cycle. But

with this simple connecti vity there will be a problem if this same subset of neurons

is encountered in a different pattern PI in which the successor subset is D1
i+I.

Sl

S2

Fig. 8·5 State space showing the trajectories of two pattern, Po and Pl'

In the figure, the two patterns have a point in common, one subset of the fir
ing neurons indicated by the point X. Upon arriving at this point, there is no infor
mation to help decide which path the network should now follow. In practice, the
potentials of neurons for both successor states will be high and it is likely that the
next state will be a mixture of the successor states of the two patterns, leading to a
breakdown in the recalled memory.

To escape this dilemma there are several potential solutions. We could
arrange that no two subsets are the same so that trajectories never cross. But how
would this be achieved in practice? This does not seem like a realistic solution,
especially if we are to introduce an element of robustness later on. To allow for
noise we would need to specify a guard band around each subset and demand that
the guard bands of all patterns must be mutually exclusive. Again, this seems
impractical.

Dynamic Patterns 220

Alternatively, the network could be given extra information to help differen
tiate between states which belong to different trajectories. Such options for the
connectivity can be obtained by making feedforward connections two or more time
steps further on in addition to the next-state case just described. This increases the
signal term for each neuron at a cost of extra connections. This is illustrated below.

Time evolution of pattern

D ~D ~D - .. ~~D ---~D o 1 2 3 L-I

\~l /
\~F>=2 Degrees of forward connectivity, F

Fig. 8-6 Possible connection schemes over multiple time steps.

The degree of forward connectivity, F, is defined as the number of subsets
ahead of the current one, D t at time t, which make synaptic connections with Dt • As

before, all synaptic connections are given a constant strength, B.

Thus, for neurons which belong to subset D2, connections would be made to

provide input from neurons in subset Dl if F>O, also with Do if F> 1 and also with

DL-1 if F>2, etc. These connection are unidirectional so there is no reciprocal con

nection from elements of subset Dl back to elements of subset D2 (at least in the
context of learning this particular pattern; such connections due to other patterns
are not prohibited). At each step, the number of connections to the active set, D t, is

now PD2, since input is coming from the F previously active sets of neurons. Over
L time steps, the maximum number of connections made to stored one pattern is

FLD2. The signal term at each time step is now PD.

Examining in this case the problem of crossing trajectories, we see that the
potentials which will determine the state at time t+l are no longer solely deter
mined by the state at time t. Instead the state for the F previous cycles is involved.
Two patterns would need to have been identical over the previous F cycles to cre
ate a conflict over the next subset of firing neurons.

Clearly, for F=I, this new case reduces to the simpler option of connecting
forward only to the next active subset of neurons at each timestep. Conversely, for
F=L, every one of the K firing neurons in the pattern connects to every other such
neuron including other neurons in the same subset. The weight usage is no better
than in the simple network. This case is somewhat special, however. As long as the
pattern remains in the same cycle, the potential of all neurons would remain con
stant and it is not clear how the network would decide from one time step to the
next which subset should be the next to fire. Thus, it is reasonable to eliminate F::L
as a possible candidate for the dynamic pattern case.

Dynamic Patterns 221

As a final point, note that the case when F = 1 could be analysed as a Markov
process, since each state transition depends only upon the current state and current
input (Narendra & Thathachar, 1989). For higher values of F, a Markovian
approach would require a super-state vector corresponding to the vector product of
the state vectors of the F previous timesteps, so for a network which can be in any

of S states, the Markov process would be defined for a state vector of length SF.
Such an approach will not be considered here, since the stochastic behaviour of the
system is not required at this time. It might, however, form the basis of future
work.

For the interconnect policy, the most general case allows an arbitrary degree
of feedforward connectivity, F, and so this will be adopted. Part of the investiga
tion will centre on the choice of the parameter F and the implications of that
choice.

8.3.2 Potential Decay Options

The second area which will need clarification for the dynamic pattern case is
the manner in which the potential of each neuron is to be handled. In the simple
network, the potentials of all neurons were reset to zero and recalculated at each
time step. However, for the dynamic case several other options will be considered.

Firstly, the potential could decay exponentially to zero with a time constant
to be determined. Thus, the time course of the potential, U, would be governed by
an equation of the form:

where v is a decay constant in the range 0 < v < 1 • In this scheme, the potential
fed forward from subsets which have already fired will decay slowly to zero. No
memory is required of any state other than the current active subset of neurons.

This case is closer to the functionality of real neurons than the simple recal
culate-at-each-timestep case (see e.g. Hall, 1992), but renders the analysis more
complicated.

A second choice would force the potential to be reset and recalculated as
before but with additional terms to account for previous active subsets feeding
activity forward over multiple timesteps. In this case, the system is acting like a
digital signal processor (DSP): previous state must be held over F cycles (where F,
the degree of feedforward connections, was described in the last section) and a
delayed version is presented to the network. In this case, the potential is described
by an equation of this form:

F-I D-I

Uj{t + 1) = L L Wjj . op -f)

/= 0 } .. o

Dynamic Patterns 222

where f ranges over the number of steps ahead a feedforward connection
exists . Note that when a neuron fires, its activity, though lasting for only a single
cycle, is felt by neurons downstream for F cycles.

At the end of this time, the activity is removed abruptly. There is no slow
decay. Despite the benefits such a scheme offers, in terms of a well defined signal
and easily defined cut-off point, the requirement to hold the state of the entire net
work over multiple cycles makes this a less practical option, viewed from the per
spective of the implementation.

The decision was to use the simple digital signal processing approach allow
ing input from the previous F cycles of activity, since this would simplify the anal
ysis. It was envisioned that future work would include an investigation into the
more realistic and more realisable potential decay options in the dynamic pattern
context.

8.3.3 Interface with Stimulus Options

Up to this point, the manner in which each region will interface with other
regions or with external input has not been discussed in detail. With the addition of
dynamic patterns, a number of possible options have appeared and so it seems
appropriate to mention them at this point. Analysis will be presented in a later
chapter.

Consider a single region connected to a source of stimulation, either an exter
nal input or another region.The stimulus is either static, or is itself a dynamic pat
tern. In the simple case it is static. It supplies activity to the neurons in the region in
addition to the stimulus they receive from other neurons within the region. We
assume that the input stimulus is enough to affect the pattern of activity within the
region (if not, then the network is not performing any useful function with the
incoming data).

Input Stimulus

Fig. 8·7 External input to a region should cause changes in the output trajectory.

The change to the trajectory could be brought about in several ways. The
simplest scheme has the region devoid of activity until the input appears. The input
is used to set up the network in a particular state and then the input is removed
allowing the network to proceed from that point, tracing out the stored memory.

Dynamic Patterns 223

In this case, the input is only used to specify a single subset, D i , of the pat
tern. After it has been removed, the tracing of the rest of the pattern is in effect an
associative recall between the single input stimulus and a pre-specified memory.
This will be referred to as 'burst mode' since the input pattern appears briefly as a
burst of activity and is then removed.

t
Input

Stimulus

,------ Output trajectory
acts as an
associated output

Fig. 8·8 Input specifies point of entry into recall loop.

The output pattern as defined by the trajectory can be totally unrelated to the
input vector and is a straightforward way to use such a network for associative
recall.

Clearly any input stimulus which triggers a subset of a given pattern could
produce the same output pattern, albeit phase shifted by an amount which depends
upon the point of entry into the loop. One issue which might prevent such useful
functionality is a dependence on feedforward activity from F previous subsets of
neuronal firing (as described in the earlier section on interconnectivity). When the
input is applied, there is no previous history from earlier sections of the loop and so
the transition to the next step around the loop may be prevented due to insufficient
signal.

An alternative option has the network initially silent, as before, but when the
input is applied it is not removed and forms a permanent input to the region while
pattern traces its trajectory. The advantage of such a scheme is that there is now
extra information to differentiate two otherwise identical states even if feedforward
activity is only from one subset to the next. The disadvantage is that the ever
present input signal places constraints on the potential of every neuron in the
region at all times and so makes an arbitrary output pattern more difficult to
achieve.

Input stimulus = static vector

Input
Stimulus

Fig. 8·9 Alternative stimulation scheme with constant input.

Dynamic Patterns 224

The third and final scheme to be considered was one in which the input stim
ulus itself is allowed to be a dynamic pattern. Thus, the stimulus is present at all
times as in the scheme just described but the input pattern itself is changing every
cycle, tracing out its own trajectory. If the region is to perform useful work then its
output trajectory is not just an image of the input trajectory, but is a function of it.

Feedforward Region B

Region A

FIg. 8·10 Output trajectories of two regions, with B receiving input from A.

Since the eventual goal is to have many regions interacting using dynamic
patterns, the choice for the input stimulus was that of interaction via dynamic pat
terns. This is the most complex of the proposed schemes but it was expected that
justification of this choice would be an extension of the justification of the entire
philosophy of dynamic patterns as a means of representing information.

8.4 Learning Dynamic Patterns

The network is to learn a pattern set, P, consisting of Z patterns which are K
from-N coded and ordered as L subsets each made up of D firing neurons (D=KI
L). In any such set, a firing neuron has output value +1 and a non-firing neuron has
output value O.

Initially, the synaptic weights between neurons are set to zero. W=O. Each
pattern is presented only once. The order of pattern presentation is unimportant,
but the ordering of subsets within each pattern is predetermined. For pattern Po,

one subset, D°k> is selected at random to be learned, k being the subset index. At

time t, the subset DOk is made to fire in the network while all others are silent. For

all firing neurons, Diet), in subset D\, the synaptic weights are adjusted as follows:

Wij = B if op - h) = 1, 1 $ h $ F

= unchanged, otherwise

so that any firing neuron in the previous F cycles will make a connection of
strength B with a firing neuron in the current firing subset. The index of the subset,
k, is incremented at each timestep, but will wrap around with period L, so that

Dynamic Patterns 225

DOO=DO
V For the first F subsets, there will be insufficient history of outputs O/t

h) to make all of the necessary connections. The problem can be avoided by adding
F extra cycles after the first period to add the final few connections.

The learning procedure is repeated for each of the Z patterns in the set, P. At
the end of a single training epoch in which every pattern has been presented once,
the training is complete.

8.4.1 The Dynamic Connection Probability, hD

In chapter seven the analysis of the simple network included a parameter h
which was the a priori probability of a connection between any two neurons in a
network of N neurons having learned Z K-from-N patterns. This parameter was
used in the noise analysis of the network and it is useful to calculate a similar quan
tity for the dynamic network.

Consider the learning of a pattern pz from set P. This learning consists of

making connections for each subset of the pattern. Consider the learning of subset

D\. Given two neurons, i andj, what is the probability that a connection is made

from j to i during the learning of this subset? For a new connection to be made, we
require two separate events to occur. First, neuron i must be one of the currently

firing subset, DZ
k. Given that neurons are selected at random, the probability of

this event is DIN. Second, neuronj must have been one of the firing neurons in one
of the F previous subsets, which occurs with probability DFIN.

Thus, the probability, c, of making a connection is the product of the two
independent events on i andj:

D DF
c= N'N

making use of the relations D=K!L and p=KIN. This connection could be
made for any of the L subsets of pattern PZ' This the probability, cz' of making that
connection at some time during the learning of pz is

c .. = c· L

2 F
= P 'L

The quantity c'l. = 1 - c .. is the probability that no connection was made

between two particular neurons during the learning of Pz' To remain unmade over
the whole pattern set (which consists of Z patterns) this event of probability c'
must be repeated Z times. Thus, the probability, hD' of making a particular connec

tion at some time during the learning of the entire set of Z patterns, P, is

Dynamic Patterns 226

In the case when the number of subsets L=1 and the degree of forward con
nectivity F=l, the learning algorithm reduces to that of the simple network
described in chapter seven. In that case, the connection probability, hD' reduces to

the original value, h, derived for that network.

Comparing the number of stored patterns, Zs, in the simple (static) with that

for the dynamic network, ZD' for equal weight utilisation (h=hD) we see that:

Next, an approximation of each side is made using the binomial expansion,
using the fact that the value of p=KIN is the same in both the static and dynamic
cases:

2 F 2
l- Zsp = l-ZDL P

ZD L
:. Zs = F

Thus, given identical weight usage the ratio of the number of patterns that
can be stored is proportional to the number of steps in the cycle, L, and inversely
proportional to the degree of forward connectivity, F, to first order. This knowl
edge permits a trade-off between the number of stored patterns (increased with
increasing L to F ratio) and the signal strength of each pattern (increased by
decreasing the L to F ratio).

8.S Analysis of Storage Capacity for Dynamic Patterns

As for the simple network, the storage capacity is made up of two terms: the
number of patterns which can be stored and subsequently retrieved, Z, and the
information content per pattern, I. The storage capacity will be taken as the product
of these two terms.

Previous sections in this chapter have discussed the information content of a
dynamic pattern. This section will consider the signal to noise analysis of the
dynamic pattern case, leading to the conditions for stable recall of stored memo
ries. This will follow the same process as presented in chapter seven.

The first step in analysing the recall of stored dynamic patterns is to decide
what constitutes correct recall. The simple fixed point attractor of the static pattern
case is now no longer applicable. Instead, a recalled pattern is characterised by a

Dynamic Patterns 227

cycle of period L in which any subset DOi of pattern Po which fires in cycle i must

also fire in cycle i+L. If this condition is met then the subsets must fire in the cor
rect order as specified by the original pattern, Po and will continue to do so indefi-

nitely unless interrupted by some external event.

Next, since we accept that recall may not be perfect, we must define an
acceptable margin of error which requires a suitable definition for the error. Two
possible candidates were considered but it was clear that one of them was inappro
priate. The simplest solution is to take the total error, given by the number of erro
neous bits over the whole pattern. Using this measure, the error would be the same
whether individual errors occurred spread throughout the recall of each subset Di

or concentrated in a single subset.

The problem with the total error approach is that it does not take into account
the reality of recall: each neuron in the next firing subset, Dj+ l' must depend upon

the current firing set, Dj, and the F-I previous such subsets to specify which neu

rons must fire next and which must remain silent (external input still being ignored
at this point).

The alternative choice (which was adopted as the error criterion) is the sum
of the individual errors which are visible to the next set of neurons to fire. Thus,
the margin of error, MD, is specified as the total number of errors present in any F

consecutive subsets, Dj, of the pattern while still being able to maintain a stable

cycle of period L. The subscript of MD denotes that this margin is for the dynamic
case.

Next, we consider the process of recall itself. Initially, the potential of every
neuron is zero. Assume that the network has no activity at time t. At this time a
corrupted version of a pre-learned dynamic pattern, Po, is applied to the network.

The state at time HI, So' consists ofD firing neurons but may contain errors due to

noise or misclassification.

We define a parameter, en(t), to be the number of erroneous bits in the cur

rently firing subset at time t (the n subscript indicates that it is the network error).
This parameter will vary with each cycle of the network. Similarly, we define ex(t)

as the number of erroneous bits in the external stimulus. The network is said to
exhibit perfect recall if

3Tperl' e,,(t) = 0, t ~ Tperf

In other words, if the value of en is zero for all time after a time t=Tperf' per

fect recall has been achieved. During the recall process the desired goal is the fast
convergence of en(t) to zero.

Finally, note that en(t) is also a measure of the noise generated by the subset

of neurons firing at time t, as perceived by the next F subsets of neurons. In this
analysis, correct recall was assumed only if the value of en(t) did not exceed O.5D

for the first two cycles and did not exceed O.25D thereafter. This gives the network

Dynamic Patterns 228

two update cycles to bring the network state to within O.25D bit shifts of a stored
pattern starting from a highly corrupted pattern.

At time t, each neuron recalculates its potential based on the activity it
receives from the firing sets over the previous F cycles:

F-\

u;(t + 1) = B L L W;j . 0/1 - f) - T;

/=0 j

The D neurons having the largest potential are pennitted to fire and the rest
are silent. One a neuron has fired, its potential is reset. This prevents a neurons
with the highest potential remaining the winner over the course of multiple cycles.
In addition, a neuron having fired is not pennitted to fire again for a certain period
of time, Cref, specified in cycles. The purpose of this restriction is to ensure that
any complete pattern made up of L subsets will not contain the same neuron multi
ple times.

The rule does have an analogy in real neurons: the absolute refractory period
is the time after having fired that a neuron is physically incapable of firing again.
Clearly, in the biological case this period is demanded by the biochemical process
underlying the resting potential of the cell, but it is not impossible that its presence
was used by the infonnation processing level of the neural system to ensure that no
one neuron was able to dominate in the firing set.

How long should the refractory period be? This issue will be considered in
the context of the potential decay model for two reasons. First, it is expected that
the network will move to this more complex model of neuron potential at a later
time and second, the refractory period has a greater impact on the workings of this
model than it does on the DSP model employed in the current network.

(a)

(b)

Refractory

Neuron
Potential

Period, Cref F cycles -- ---r"'~~~::::::::!::=:===+-I- -- -
time ~

fires fires

reduced potential

~ / 1'----_-~~1
Refractory F cycles

Neuron
Potential

Period, Cref ~

------~f ~====~--~----
time ~

fires fires

Flg.8-11 Timelines neuron potential showing influence ofrefractory period.

Dynamic Patterns 229

Thus, following the potential decay model, if the dead cycles following fir
ing overlap with the F cycles which should precede the next firing of the neuron,
then part of the support set of neurons will be ignored. When the neuron is due to
fire, its potential will be less than the full amount that it would have otherwise
received.This is illustrated below

Thus we can constrain the length of the refractory period, Tref to fulfil the
inequality

where L is the period of the pattern in cycles. Note that if the refractory
period is much less than L-F the neuron will have time to build up potential before
the start of the F cycles. This potential comes from the activity of neurons which
are outside of the F cycle range, but which make connections with the neuron in
patterns other than the one being recalled. In other words, noise due to crosstalk.
While this potential is undesirable for the recall of the current pattern, it may be
involved in the transition to another pattern in later network developments, so
increasing the refractory period such that the neuron is only actively involved for
the F cycles prior to its designated firing cycle might make network control more
difficult.

Consider first a neuron in the firing set for the next time step, t+ 1. It recei ves
input from two sources. First, from the external stimulus to be classified, and sec
ond from the internal activity of the previous F cycles. In this case, separating the
signal and noise terms in the expression for the potential at time t+l gives

F-l

f= 0 '---_____ ---/ '--- ~

~ -----~-----signal noise

where a is a random variable and depends on the presence or absence of a
connection between a neuronj (which fired erroneously during the F previous
cycles) and the neuron i in question. The variable a has mean hD' the mean connec-

tion probability for the dynamic case, and variance hD(1-hD). Thus Uf
i(t+l) is itself

a random variable whose mean and variance depend on the history of errors e(t).

Now consider a neuron which is not in the firing set for time t+ 1. To find out
if it will fire erroneously and create an error bit, we need to form a probability dis
tribution for its potential and use the error function to determine the probability
that it has greater potential than one of the firing set for the next cycle.

There are two relevant cases for the non-firing neuron. The simplest is a neu
ron which takes no part in the firing of the current pattern at any time step. Thus all
of its potential is due to crosstalk noise:

u"f;(t + 1) = BaDF - T/
Y
noise

Dynamic Patterns 230

where again a has mean hn and variance hn(l-hn). Thus, Unf
i(t+1) is a ran

dom variable of mean BDFhn -Ti and variance B2DFhn(l-hn).

The second case which must be considered is that of a neuron which,
although not about to fire, does belong to a firing set which is due to fire in a
number of cycles less than F in the future. Thus, it has made connections with
some of the previous F firing sets with much higher probability than has a neuron
which will not fire at all for the current pattern. The worst case is a neuron which
will fire at time t+2, since it has received F-1 cycles of full potential as against F
cycles for a neuron that will fire at time t+ 1:

F-2

f= 0 "- .J "-_____ ---~ l J
------~------ ~ -,r-

signal noise-int noise-ext

where Udfi(t+ 1) is the potential of the delay-firing neuron, and the noise

terms are divided into noise-int for noise due to pattern errors and noise-ext due to
crosstalk from other memories at time t-(F-1).

For perfect recall, the potentials of all members of the next firing set, Gf ,

must have potentials higher than any other neuron. If we demand only than the
number of erroneously firing neurons is no greater than O.25D this will permit a
higher storage capacity.

As with the analysis of the simple static network, we next ask: what is the
probability that a neuron which is a member of the non-firing subset has a potential
greater than one which is a member of the firing subset? Two cases are considered,
one for a non-firing neuron which is part of a later firing subset, the other (which
represents the overwhelming majority of the neural population) representing a neu
ron which is not a member of any firing subset of this pattern.

To simplify analysis, all neurons in the soon-to-fire subset were taken as fir
ing on the next cycle. This is, strictly speaking, more pessimistic than the worst
case. Also, the number of erroneous bits was assumed worst case, such that e(O) =
O.5D, e(1)=O.5D, e(2), e(3) ... =O.25D.

Thus the mean and variance of a firing neuron, i, are:

i
J..l. uf = 2B(1.5D + O.5DhD - (1 - ex)hD) + (F-2)B(1.75 + O.25hD - (1 - ex)hD) - T;

I 2 2
cr Uf = B hD(l- hD) . [2(O.5D + ex) + (F - 2)(O.25D + ex))

where the first term of the mean is due to the two start-up cycles in which the
output pattern can be corrupted by up to c=O.5D, the second term is for the remain
ing F-2 cycles, and the third term is the threshold, as before. The single external
error value, ex' is the number of bits which are allowed to be erroneous on each

Dynamic Patterns 231

cycle of the pattern. For a neuron which should take no part in the firing of the pat
tern, the mean and variance of the potential are more simple:

j

~ unf = FBhDD - Tj

j 2 2
(J unf = FB D hD(l - hD)

Finally, for the neuron which will fire in the next firing subset the mean and
variance of the potential are:

~jlldf = 2B(l.5D + O.5DhD - (1 - ex)hD) + (F-3)B(1.75 + O.251zD - (I - ex)h D) + 2BhDD - Tj

j 2 2
(J udf = B hD(l - hD) . [2(O.5D + eJ + (F - 3)(O.25D + ex) + 2D]

We consider the two possible causes of error. The first case considers the
probability that a neuron that is not intended to fire for this pattern, j, has more
potential than a neuron, i, of the currently firing subset.This is the probability that
the difference in potential between neuron i and neuronj is negative.

Probability, q

Distribution for

1

Distribution for

Potential

Fig. 8·12 Potential distributions for two neurons.

The difference in potentials (Uj-Uj) can itself be represented by a probability

distribution, as was shown in chapter seven for the simple network. The mean of
this gaussian is the difference of the individual means while the variance is the sum
of the individual variances. Thus, the probability of one error from a non-firing
neuron, Perr-nf, is the area under the curve for which (Uj-Uj)<O.again, this is given

by the error function, <1>(x).

To obtain the expected number of errors, we note that there are D firing neu
rons, any of which can be surpassed by a non-firing neuron. The number of such
non-firing neurons is N-(l + Tref)D, where Tref is the refractory period after firing

during which time a neuron cannot become active.Thus the total number of inde
pendent events is D x [N-O+Tref)D).

Dynamic Patterns 232

For a near-threshold neuron, k, similar arguments between neurons i and k
give a probability of one error, P err-df:

Pr[(U-U)<O] = pr[X-lldiff-U.k) < 0]= <1>.10)
I k a+a dl'

f df

In this case, the number of neurons which can be surpassed is still D, but the
population which supplies the near-threshold neuron, k, is only (F-l)D, corre
sponding to the firing neurons over the next F-l cycles. Thus the expected number
of errors is D x (F-l)D.

Thus the total number of expected errors, Nem at each time step is given by:

and we note that the probability of error, <1>X<O) , for each term is a function of

the number of corrupted bits, ex' in each subset of the input pattern. Increasing ex

leads to increasing probability of error and hence to increasing total error, Nerr•

8.6 Case Studies & Simulations

Simulations were divided into two sections based on the form of network
input supplied. In the first, 'burst input', the network was set into a state corre
sponding to one subset of a pattern and then released. The expectation was that the
updating of the network state would trace out the rest of the pattern, performing an
associative recall.

In the second mode, 'continuous mode', the input was itself a dynamic pat
tern made up of L firing subsets, each of size D. At each time step the input pattern
corresponded to a corrupted version of one subset of the input pattern (which is
assumed to come from a network similar to that which is under test). For both input
modes, the network parameters which were varied were the number of neurons N
(100, 200 or 300 were used), the number of subsets, L, ranging from 4 to 12, the
size of each subset, D, ranging from 12 to 32, and the degree of forward connectiv
ity, F, ranging from 1 to O.SD.

The refractory period of each network was set as two so that a neuron, once it
had fired, would be unable to fire again for at least two cycles. The only exception
to this rule was for pattern with total period L = 2, in which case the refractory
period was set to one.

Early simulations in which no refractory period was assumed always resulted
in immediate failure to recall stored memories. On reflection, this is an understand
able result since during the cycle after a neuron has fired the support set it receives
from the F -1 previous cycles of activity corresponds very closely with the set
which made it fire one cycle previously. Thus, there is a high probability that a fir
ing neuron would fire again immediately if permitted to do so.

Dynamic Patterns 233

As for the static network, each network configuration was simulated only
once due to the long simulation time (days to weeks on an IBM compatible PC at
100MHz). As before, our confidence in the results cannot be absolute and all con
clusions that we draw must be tentative at this stage.

For each network configuration, patterns were learned in groups of ten and
the network performance was measured as the number of patterns from the learned
set that could be recalled correctly. Correct recall was assumed if the number of
erroneous bits in the firing subset at each timestep was never greater than 0.25D
during one entire circuit of the pattern. A grace period of two timesteps was
allowed at the start of recall to give the network time to settle before the conver
gence constraint was imposed.

8.6.1 Comparison of Burst and Continuous Modes

The graphs included at the end of this chapter compare the network storage
capacities of several networks. In each case, the number of neurons, N = 300 and
the number of subsets, L = 4. The graphs show the number of errors recorded
against the number of stored patterns.

For burst mode, all cases in which F > 1 resulted in immediate breakdown of
recall; The network diverged immediately. This was probably due to the fact that
the support set for the pattern consisted of at least two subsets of size D (from mul
tiple previous firing subsets), whereas the burst mode input provides only a single
subset as the initial state. Thus the initial signal is at most half of that present dur
ing learning and was presumably insufficient to initiate the recall cycle.

For continuous mode, in which the input pattern was also dynamic and was
continually provided to the network, the storage capacity was greater than that in
burst mode in every case. Graphs for N = 300, L = 4, D = 12 show that the capacity
(expressed as the number of patterns stored before the first recall error) is almost
doubled for any given value of corruption, c.

8.6.2 Comparison of Networks with Different Degree of Forward Connectivity, F

For continuous mode networks, the cases in which the degree of forward
connectivity, F, were greater than one did not necessarily lead to pattern diver
gence during recall. The graphs at the end of the appendix compare the cases of F =
1 and F = 2, for a network of 300 neurons, using L = 6 firing sets of D = 12 neurons
each.

We note that the higher connectivity option, F = 2, leads to a lower limit for
storage before saturation and divergence occur, as we would expect. For example,
for two bit errors per pattern, c = 2, the network can store 100 patterns using F = 1
connectivity before the first errors of recall occur. For F = 2 this is halved to only
50 patterns. However, we know that the signal term is doubled in moving from the
F = 1 to the F = 2 connectivity scheme. Thus, we see evidence that the designer can
trade-off storage capacity against signal-to-noise ratio in a simple way.

Dynamic Patterns 234

8.6.3 Comparison of Network Storage Efficiency for Different network
Configurations

Finally, the table in the appendix compares the storage efficiency of the net
work as measured by the total number of stored patterns per synapse for a range of
different networks. The rows are arranged in descending order of storage effi
ciency, which is taken as the number of stored patterns per synapse in the network
expressed as a percentage.

Note that for the continuous dynamic pattern, the number of synapses is dou
ble that for the other network types, since there are connections both between neu
rons in the network and between the network and the source of the input pattern.

In general, the burst dynamic network has the best efficiency, but it should
again be noted that in this case the signal terms is low, being based only on the
activity of a single subset in the initial state of the network. During updating, only
the D previous firing neurons determine the next state, compared to the 2D neurons
for the continuous dynamic network and the K (=DL) neurons for the static case.

8.7 Comparison of Static and Dynamic Storage

The table below compares the dynamic pattern case with that of static pat
terns, not just in terms of the maximum number of stored patterns, but also the
information content of each pattern. Only the burst mode dynamic model was con
sidered to provide a fair comparison with the static pattern storage of the simple
network

For each value of K from the static case, several possible ways of partition
ing it between L subsets of 0 firing neurons are shown, with the maximum number
of patterns that could be reliably stored and recalled, Z and the information content
of each pattern Imax. In every case, patterns were learned in groups of ten, so the
maximum resolution that was obtained was set at ten patterns.

In each case, no bits in the patterns were corrupted; thus correct recall was
assumed if an initial network state corresponding to stored patterns did not diverge
beyond a margin M = 0.250 or M = 0.25K (for the dynamic and static pattern
cases, respectively) during eight updates of the network.

Table 8-0, below, compares different values of Land D for a dynamic net
work using burst input against the same number of firing neurons, K = D x L, in a
static pattern network.

The three columns on the left are the simulation results for the static pattern
case, while the four columns on the right are for the dynamic case. The columns
indicating the maximum number of stored vectors in each case have been shaded.

Dynamic Patterns 235

---------------- .----.~---.~--

From the table, it is clear that in general the number of stored vectors under
dynamic storage is at least twice that of the static case and that the information per
vector is also higher for the dynamic case.

Table 8-0 Comparison of information storage for static and dynamic patterns (in burst mode),
with N = 300 and F = 1.

Max. Max Max
Information Patterns Information Patterns

Total Stored per Stored No. Firing per Stored
Firing Pattern, without No. of per subset, Pattern, without
Neurons,K Imax (bits) Error, Z Subsets, L D I O-max (hits) Error,Zo

24 117 > 100 2 12 140 260
40 166 80 2 20 206 130
56 204 50 2 28 262 100
48 186 70 4 12 283 100
80 247 30 4 20 415 60

112 282 20 4 28 527 40
72 234 30 6 12 427 70
120 287 20 6 20 625 40
168 292 10 6 28 793 30
96 267 20 8 12 572 50
160 295 10 8 20 835 30
228 240 10 8 28 1060 30

In spite of the increased number of stored patterns in the dynamic case, and
the increased information stored per pattern, an equivalent static pattern is more
robust since each corrupted bit is a smaller fraction of the entire firing set (K bits as
compared with only D=KIL bits for the dynamic pattern). Thus for increasing L,
the total signal term is reduced

The graphs overleaf show the fall-off in the number of stored patterns with
increasing cycle period length, L, and the total information stored in the network,
respectively. Considering the first graph of stored patterns against subset size, we
note that more patterns can be stored for low D, all other parameters constant,
which is similar to the result for the static pattern network in which low activity, K,
permits a higher total number of stored patterns, Zmax' Increasing cycle length
leads to a reduction in Zmax' due to a fall in the ratio of signal to noise.

Dynamic Patterns 236

FaN=300,F=1

300.---

i:~~
~ ~
~ 1~1r_--------------~--~~------------------------
~ ~
~
~
()j

~
12

SbsEt Sze, D

.... L=2 L=4

.... L=6 L=8

Fig. 8-13 Max stored patterns vs. size of firing subset, from burst mode simulation.

3acga~inBts

t-b. ct Rrirg ra.rcns r:e- SbsEi, D

-- L=2 -- L=4
-- L=6 L=8

Fig. 8-14 Total storage capacity (bits) vs. number offiring neurons per subset.

•

Dynamic Patterns 237

We now turn to the second graph, in figure 8-14, which shows the effect of
subset size, D, on the total information capacity of the network. Note that, some
what surprisingly, there is no smooth flow in the lines for each cycle length, L.
Instead lines cross each other making it difficult to detect any trend. This is proba
bly due to the effects of noise, coupled with the small network and training set
sizes and reminds us that the simulation run was performed only once for each net
work configuration. It would be useful to run the simulations several times for each
such network. It is left for future work and a more powerful computer.

Tentatively, for various values of D and L, we conclude that the total quan
tity of information stored in the network is approximately constant.Thus, to first
order the designer may trade off the maximum number of stored patterns against
the information content per pattern for a network of fixed storage capacity.

Finally, we compare the total quantity of information for the dynamic net
work against a Hopfield network in which the N units have a value + 1 or -1 with
probability 0.5, so each vector hold N bits of information. It is known that the sta
tisticallimit of such a network for large N is that approximately O.l38N patterns
can be stored. Thus, for a network ofN = 300 neurons we expect to store 41 pat
terns of 300 bits each, giving a total storage capacity of 12,420 bits. For values of L
between 2 and 8, and for values of D between 12 and 28, we note that the total
capacity never falls below 20,000 bits, in a network of 90,000 I-bit connections.

Thus, the storage of low activity dynamic patterns is clearly a more efficient
means of storing information although the Hopfield network has a larger signal
term (all N bits, compared with a total of K = L x D for the dynamic network).
Thus we would expect the ability of a Hopfield network to correct errors to be
greater, in general.

Dynamic Patterns 238

8.8 Conclusions

This chapter has presented the extension of the network to the storage and
retrieval of dynamic patterns. The simple static vectors learned by the network in
chapter seven have been replaced by a time domain multiplexed pattern of activity
which forms a cycle of constant period, L.

The aim of such a development was twofold. To improve the capacity of the
network and to exercise more control over the network when in a state which did
not correspond to a stored pattern. This second goal was intended to overcome the
local minima problem inherent in the simple network and others such as the Hop
field network.

It was shown that the total information content of a K-from-N vector is
increased when it is divided into L subsets, each of size D, but must be replayed
over L cycles. Thus the overall bandwidth required to transmit such a pattern to
other networks is increased by a factor of L.The increase in information content is
increased by a factor less than L, thus the transmission efficiency is reduced for the
dynamic case.

Simulations showed that the capacity of the network was indeed increased,
both in terms of the information stored in each pattern and in the number of pat
terns stored simultaneously in the network.The total storage capacity using burst
mode dynamic patterns was shown to be fairly constant for a particular K = D x
L.Thus, the designer could choose to store more patterns at a cost of fewer bits of
information per pattern by selecting large, or vice versa.

Comparison with a Hopfield network of equivalent size showed that the stor
age of low activity dynamic patterns leads to a much higher overall information
storage.

However, in spite of the improvement in network storage capacity, in abso
lute terms it is still very limited. In addition, any improvements in the controllabil
ity of the network have yet to be demonstrated. A later chapter will build on the
dynamic principle by introducing 'hierarchies of learning'. The aim will be to
facilitate the assimilation of new data by re-interpreting it in terms of previously
stored data. This step will reduce the quantity of network resources needed to store
each new association, leading to an overall increase in effective network capacity.

The next chapter on network control will show how the dynamic approach
can be used to control the transitions from one stored memory to another.

Dynamic Patterns 239

8.9 Appendix: Graphs of Simulation Results

8.9.1 Burst Mode & Continuous Mode Results

w

III

E
~
iii
a.
'0

200

180

160

140

120
100

80

60

40
ci
z 20

Burst Mode
For N = 300, L = 4, D = 12, F = 1

/ /
/'/ I

/ / L
L i 1

I ! /
/ L~
~

/

o o 20 40 60 80 100 120 140 160 180 200

w

j-
= .~

(/)

~
i a.
't5

~

250

:;m

150

No. of Patterns Learned, Z

-+- c=o -+- c=1
-+- c=2 c=3

Continuous lVDde
FaN = 300, L=4, D= 12, F= 1

o ~ 40 00 00 100 1~ 140 100 100 ~ ~ 240 200 200 :m

No. cI Staed PattErnS, Z

-'- c=O -'- c=1 -- c=2
c=3 -'- c=4

240

w

100
w 90
~ 80 g
w 70
.c 60 'j
VI 50
E

40 ~
iii 30 a..
'0 20
ci 10 z

0
0 10 20

Burst Mode
For N = 300, L = 4, 0 = 20, F = 1

30 40 50 60

No. of Patterns Learned, Z

-- c=O -- c=1 -- c=2
c=3 -- c=4 --*- c=5

Continuous Mode
For N = 300, L = 4, 0 = 20, F = 1

100.--

1~r---~~-

~ 120~-----------------------------------=~-------

w 100'r---------------------------------~~~~------------
£i
.~

I/)

~
~
'0
ci z

00,r---------------------------~~--~_+~---------------

~,r-------------------------~~~_+~----------------

2O'r-------------------------~~~~+_~-----------------

o 10 20 30 ~ 50 00 70 80 90 100 110 120 130 1~ 150

No. of Patterns Leaned, Z

-- c=O -+- c=1 -+- c=2
c=3 -+- c=4 -- c=5

241

8.9.2 Comparison of Networks with Different Degree of Forward Connectivity, F

For N = 300, L = 6, D = 20

200

100

w 100

~- 140

1:D
.c
·31 100
VI
E
Q)

iii
a..
'0

~

o 10 20 30 40 50 60 80 90 100 110 1al 130 140 150 100 170 100 100 200

No. of Pcttems Learned, Z

""'- F=1,c=0 --- F=1,c=1
F = 2, C = 0 -e- F = 2, C = 1

-+- F=1,c=2
-+- F = 2, C = 2

8.9.3 Efficiency of Storage For Various Network Configurations

Table 8-1 Efficiency of a number of networks, in descending order of efficiency.

No. of
Network Stored
Type Degree of Patterns

No. of (Static, No. of No. Forward without
Neurons, Burst or Synapses, Firingper No. of Connect- Error,
N Continuous) s Subset, D subsets, L ivity, F Zmax

300 Burst 9 x 104 20 2 1 130

300 Durst 9 x 104 12 4 1 100

300 Static 9 x 104 40 1 1 80

300 Burst 9 x 104 20 4 1 60

300 Continuous 1.8 x 105 20 4 1 100

300 Static 9 x 104 56 1 1 50

300 Burst 9 x 104 20 6 1 40

300 Continuous 1.8 x 105 20 6 1 60

300 Continuous 1.8 x 105 28 4 1 60

300 Static 9 x 104 72 1 1 30

300 Continuous 1.8 x 105 20 6 2 40

300 Static 9 x 104 120 1 1 20

Efficiency
= Zmaxl

s x 100%

0.14

0.11

0.09

0.07

0.06

0.06

0.04

0.03

0.03

0.03

0.02

0.02

242

CHAPTER 9

9.0 Introduction

Pattern Association
and Network
Control

The architecture described in chapter five developed, in qualitative terms, a
set of operations required for a symbolic system implemented using a neural net
work or similar structure. Subsequent chapters developed a coding system for the
patterns/symbols and analysed its developing storage and recall capabilities. This
chapter focuses on the middle ground between these two parallel threads. Specifi
cally, on the application of the neural building block to the association of patterns
and the method of controlling the evolution of the network output using an external
control pattern. This control input will permit not only the storage of individual
patterns, but of the mappings between them.

The plan for this chapter is roughly as follows. First, the interpretation of
control in the context of the network will be discussed. Next, the mechanism for
associating patterns will be developed that permits the control network to force
transitions from one stored pattern to another by virtue of pre-stored mappings.
Finally, simulations will examine the performance of the network for a set of pat
terns and associations.

9.1 Symbolic View of Network Control

In symbolic terms, the control pattern is intended to facilitate the translation
of one pattern into another. In chapter five, this translation was represented thus:

SymbolA SymbolB ~ SymbolC

For example:

France

Pattern Association and Network Control 243

Generically, symbolA is transfonned into symbolC by virtue of control pat
tern SymbolB. The source of the transfonning symbol, SymbolB, is the control
network. The input and output symbols are represented by the data network. Each
association is made between existing symbols, thus we assume in the example that
the symbols France, Paris_city and has_capital are already in existence and may
already be involved in numerous other relationships.

In the neural network implementation of this model, existing patterns which
represent the individual symbols must be associated in such a way as to facilitate
the given transfonnations. The object of this chapter is to propose and analyse
potential mechanisms for this process. Two alternative ways of handling control
will be discussed.

9.2 Energy Landscape of Network Control

In this scheme the pattern to be transfonned is represented on the data net
work while the control pattern acts as an external input. When the control pattern is
changed, the state of the data network is forced to make a transition to a state corre
sponding to the associated pattern. Thus, network control is achieved by manipu
lating the shape of the energy landscape of the data network using the external
control pattern. Consider the recall of an existing mapping of pattern A onto B
when subject to control input d at time t.

This process is illustrated in the figure below which begins by considering a
pattern as a static vector, before being extended to the dynamic pattern case. The
state of the network can thus be represented as a point in N-dimensional space.

Initially, the network state begins in a state, A. It is assumed that the network
arrived in this stable cycle due to some previous control pattern, c. At this time the
cycle corresponding to B is inaccessible (figure a). At time t+ 1, the control input
changes to d. The desired result is that, due to some previous learning, the network
state will now be transfonned to that of state B, perfonning the mapping. To do
this, the effect of control input d must be to change the shape of the energy land
scape around state A, destabilising it, and thence to cause the network state to
evolve towards state B. This is illustrated in figure (b) overleaf.

Pattern Association and Network Control 244

(a) Time:t

Control c
B

• ~.---.-__ .-.1110..~ ~. -
A Controld B

Time: t+l (b)

Fig. 9-0 Changes in the energy landscape due to changing control input.

The state of the network will arrive at state B as prescribed. At the next time
step (t+2) a new control input ('e', not shown) arrives that destabilises state B, and
so on. Thus, control inputs act by changing the underlying shape of the landscape.
The network state merely has to evolve in an energy-reducing manner to imple
ment the required transformations.

Note that in the preceding discussion, the evolution of the control patterns
was not considered. It is assumed at this point that the control network undergoes
similar changes in its energy landscape, guided by the output of the data network.
In its conceptually simplest form some gating or timing mechanism must exist to
ensure that the state of the data network has stabilised before the control network is
allowed to change its state, and vice versa. Thus, the focus of activity is 'ping
ponged' between the two networks.

9.2.1 Energy Landscapes using Dynamic Patterns

The basic view of control as the manipulation of the energy landscape can be
extended, with some cautionary notes, to the case of dynamic patterns. A stored
pattern is now a cycle in state space rather than a fixed point, so a transition now
represents a change in the closed set of states which the network will visit rather
than a simple change from one particular state to another.

In spite of this change in definition for a stored memory, the essential idea
remains unchanged. In this context, an input pattern in the context of one control
pattern will settle into a particular cycle of states which will persist until the con
trol input changes. At this time, the closed cycle of states will be exited and the
network will enter a new cycle of states, corresponding to the new pattern.

Pattern Association and Network Control 245

9.3 'Dual Pattern' View of Control

An alternative way of implementing pattern association and control is as a
mapping of two input patterns (external stimuli) onto a single pattern on the data
network. The input data and control symbols could be considered as a single input
pattern, made up of L subsets each of size 2D.

SymbolA + SymbolB ---II~~ SymbolC

We could consider two cases, one in which the two patterns were synchro
nised and another where there may be an unknown phase lag from one to the other.
Detecting and correcting for this phase difference would presumably place extra
constraints on the patterns themselves leading to a lower storage capacity.

Up to this point in the work the problem of phase difference has been
avoided by insisting that a pattern is recalled in phase with the stimulus. An output
pattern which is out of phase with respect to the input would thus be considered as
an erroneous recall. For a single stimulus this is not a problem since the recalled
pattern is automatically in phase with the input. When extending the network to
two input stimuli (such as we have in control case) the difficulty arises when the
stimuli themselves are not in phase with one another.

For simplicity we assume that there is no phase lag between the input pat
terns and that the output is therefore generate in phase with them also. By making
this assumption we are placing constraints on the rest of the system and in particu
lar on the degree of synchronisation which is maintained between any pair of inter
acting sub-systems (that is, two networks which receive non-overlapping input
perhaps from entirely different sources).

During recall then, the dual pattern SymbolA+SymbolB is applied to the net
work whose state evolves normally to produce the output pattern, SymbolC, which
was associated with that pair of input patterns during training.

The advantage of this scheme, compared to the energy landscape method, is
that it is easier to analyse. Essentially, the network acts as a pattern associator. The
disadvantage is that there must be a mechanism to transfer a stable pattern from the
output of the data network to another network which will act as the source of exter
nal input to the data network in some future computation. This could either be han
dled by the control network as an explicit step or by some non-network based
entity which uses the stability in the output pattern as a trigger to make the transfer.

Neither approach seems satisfactory for a number of reasons. In the first
case, relying on the control network to initiate the transfer leads to a circular argu
ment, since some other agent would presumably be required to perform the same
action for the control network (which was assumed to be based on the same net
work architecture). Thus, some implicit mechanism must be involved which is out
side of the explicit control of either control or data networks. The use of output
stability as a trigger during sequential computation was suggested by Amit (Amit,

Pattern Association and Network Control 246

1989) but suffers from three obvious drawbacks. Firstly, it is an inherently danger
ous criterion since there may be low level changes in the pattern during each cycle
due to noise which would reduce the detection of stability to a probabilistic event.

Secondly, it may be inefficient to wait until the network has completely con
verged to a stable point when a semi-stable point may contain enough information
for the next stage of computation to begin. The speed of operation of the network
might be compromised if the transition between timesteps is based on such a
highly conservative criterion. However, it is noted that the extent to which this is
true is clearly a strong function of the symbol encoding and the network implemen
tation itself.

The third issue with stability as a trigger for the next computational step is
less rigorous and thus more open to criticism, being concerned more with the phi
losophy of the neural network approach. It is that the digital nature of the transition
seems out of character with the highly fluid and dynamic environment we wish to
create.

It seems difficult to imagine the human brain using a 'start-stop' architecture
for each of its computational steps. Of course it is dangerous to assume that this is
not the case since we have little knowledge today as to how the brain actually per
forms such sequential computations. It is conceivable that it does in fact undergo a
set of digital transitions, but at a level that is difficult for us to analyse using cur
rent measuring techniques. More likely however, is that the energy landscape
approach is a more accurate model, in which the state of the data network evolving
continuously in time in parallel with that of the control network without explicit
hand-over of control or the abrupt shunting of patterns from one network to
another. This approach is taken by a number of current researchers. A prime exam
ple is Kelso who treats the evolution of the brain state as a chaotic attractor and is
seeking an explanation of neural activity in terms of the order parameters which
characterise its dynamic evolution (Kelso, 1997).

For the purposes of this work however (which is inspired by the human brain
without claiming to be representative of it) the solution to be adopted is the simpli
fied dual pattern approach. This will act as a simple demonstrator of the basic ideas
presented in the architecture and may form some part of a more powerful and real
istic interpretation in future work.

One further assumption that was made was that the cycle time L of all pat
terns was assumed to be constant for every network. If this constraint is not used,
the phase between the dynamic patterns on two connected networks would vary

linearly with time, leading to a beat frequency fb = ~ - ~ between patterns with
1 2

periods Ll and Lz, with L1<Lz.

Pattern Association and Network Control 247

9.4 Implementation of Pattern Association

The objective of this part of the work is to cause the appearance of two given
symbols patterns to trigger the recall of a third. The next logical step is to ask how
the required associations are made. The figure below illustrates the network set-up
required to achieve this.

Data Network

SymbolA SymbolB

Flg.9-1 An implementation of control by association.

The figure shows that three networks are required, one for each symbol in the
association. The control symbol is held in a control network and is selected by the
control mechanism based on the data network output at time t-1. The temporary
storage, as discussed in the architectural development, contains only a few pat
terns, all of which have been recently evolved in the main data network. For rea
sons given in that earlier chapter, only the data network is capable of representing
the associations between the symbol patterns.

The association process consists of two steps. First, the three patterns are
first set-up on the three networks. Next, connections between all three symbols are
made by short-term learning.

9.4.1 Dynamic Learning Algorithm for Association

Association between patterns will be implemented using the same learning
algorithm for dynamic patterns as was described in the previous chapter. The out
put symbol, input data symbol and control symbol will be represented on the data
network, Nn, the temporary store, NT and the control network, Nc , respectively.

Initially, the outputs of each network are set-up with the required patterns to
be associated. Thus to make the association:

SymbolA _S_y_m_b_o_lB __ ~~ SymbolC

then symbolA, symbolB and symbolC are set-up on NT' Nc and ND, respec

tively. Connections are then made between the firing subsets of the data network

Pattern Association and Network Control 248

and those of the temporary store and control network, according to the following
prescriptions. For the weights between the data and control networks:

~jj = B if ODj(t) = 1 and OCj(t - f> = I, 1 ~f~ F

= unchanged, otherwise

where we ij is the weight vector between the two networks, aD; is the output

of neuron i in the data network and Oej is the output of the neuron j in the control

network. The variable f allows the firing of the pre-synaptic neuron to occur up to
F timesteps in the past and still create a new connection, where F is the degree of
feedforward connectivity, as defined for the dynamic pattern network.

For the weights between the data network and the temporary store:

WTjj = B if ODj{t) = 1 and OTj(t - f> = I, 1 ~f~ F

= unchanged, otherwise

where this time WT ij is the weight vector between the data network and the

temporary store and OTj is the output of neuron j of the control vector.

As for all networks discussed so far in this work, learning is a one-step oper
ation. The expectation from this association is that after a single presentation of the
three patterns together during learning, the subsequent application of the two input
patterns will be enough to trigger the production of the output pattern, as required
by the architecture.

As the results of simulation will show, this is indeed the case, although the
total storage capacity of the network is still not sufficient for the purposes defined
in the architecture.

9.5 Analysis using Dynamic Pattern Learning

The analysis begins assuming (i) that a number of patterns have been inde
pendently stored in the network and (ii) that a number of associations between tri
plets of patterns have been established using the learning rule just described. The
aim of this analysis is to show that the scheme itself, while sufficient for a few pat
tern associations soon leads to network saturation and so, in its current form, is not
sufficient to implement the architecture.

The potential of any neuron using the control scheme detailed in the last sec
tion is given by the following general expression:

Pattern Association and Network Control 249

F-I F-I F-l

/=0 j 1=0 j /",0 j

.......... _--"Y" ./ ~----"Y" ../ ~----.~----_./
Internal connections From temp. store From control

where the symbols have their usual meanings. The analysis of storage capac
ity follows similar lines to that used for the dynamic case except that there are now
two sources of external input. We could consider the input as a single vector of size
2N, which produces a firing pattern of2D active neurons (D 'l's in each half of the
2N-bit vector) with the pattern repeating every L cycles, as before.

Assume that the network is presented with uncorrupted versions of the input
patterns Co and Po on the control and temporary storage networks, respectively, and

that these patterns were associated with the output pattern PI due to previous learn-

ing. Let the network inputs at time t from each input network be pOt and COt respec

tively. From work done on the dynamic pattern network, we would expect that the

potentials of the neurons in the next firing set pi HI at time t would be maximum

while those of the non-firing set, while being positive, should be less than that of
any neuron in the firing set. At each timestep we expect this situation to repeat, so

that after a single cycle of L steps, the output pattern pI has been expressed by the
data network, as required.

Now, assume that the control pattern Co has been used to transform a set of

input patterns, X, into a set of output patterns, Y. Let the number of such associa
tions be n, and include the mapping of pattern Po to pattern Pl' When the network

is presented with control pattern co' it will send activity to all of the neurons in the

data network with which it has been associated in any pattern mapping. The only
way that the data network can decide among its n possible output patterns is by
using the input pattern provided by the temporary store to differentiate between
them. Thus, for any given input symbol there is already a high degree of correla
tion between the potentials of the intended firing neuron and those of many of the
intended non-firing neurons. Essentially, such patterns have 50% of the firing neu
ron in common with every other pattern that is the target mapping of a transforma
tion which uses Co as the control pattern.

If we assume that the number of control patterns will be much less than the
number of data patterns, one remedy would be to reduce the number of active neu
rons in the control pattern, or even reduce the total number of control pattern neu
rons. By doing so, the proportion of the potential due to the control pattern would
be reduced making it easier for the network to differentiate inputs using the same
control pattern. While this might reduce the problem, however, it will not solve it.

The essential problem with the simple association schemes presented so far
in the work is that the patterns themselves are uncorrelated. After a fairly small
number of patterns are linked using an association, we find that every neuron has

Pattern Association and Network Control 250

been associated with (and hence made a connection with) every other at some point
in the learning process. Using the simple set-to-one principle, this means that every
connection has been set to one and the network is entirely saturated.

The next sections presents simulation results to substantiate this hypothesis.

9.6 Sim ulation and Results

Simulations were carried out using a network ofN = 400 neurons, with L = 8
subsets each of size 0 = 16. Ten control pattern were defmed, and learning pro
ceeded by associating a pattern p with pattern p+ 1 using pattern 10 MOD P as the
control pattern. Thus, each control pattern appeared in many associations while
each data pattern was used once as an input pattern and once as an output pattern.

Patterns were learned in blocks often, with each pattern serving as an input
and an output pattern, as described above. After each block of patterns and associ
ations was learned, the network was tested on the entire pattern set that had been
learned. Levels of corruption, c, ranging from 0 to D/2 were used, the same level of
corruption being applied to the control as the data pattern.

In each learning trial , correct recall was assumed if the number of incorrect
bits in the output pattern did not exceed 0.25D, the number of firing neurons, at
any timestep after the first two (again, allowing the network time to settle). The
graph overleaf shows the storage capacity of the network as a function of the
number of pattern blocks learned.

For N = 400, L = 4, 0 = 16, F = 1

-l!! 250
0 w 200
.c -'i 150
~w ...
GI 100 = ra c.

50
0

ci
0 z
~ ~ ~ ro(J 'b~ ~~ ~ ~ fo~ 'b~ R}~ '"

~ '" ~ ~

No of patterns stored and associated, Z

I --- c=o -+- c= 1 c=2 --- c=3 -- c=4 -- c=51

Fig. 9-2 Graph of recall errors vs, storage level for network with control.

Pattern Association and Network Control 251

.~------- ----------- -.- ----- -

We see that for any significant level of initial pattern corruption, c, only of
the order of 100 patterns can be stored and associated before the error in recall is
greater than the margin 0.2SD. Even so, it should be noted that in this learning
scheme, the output pattern is unrelated to either of the two input patterns. Thus the
computation performed by the network is not merely to complete a corrupted pat
tern as was the case in all of the previous networks. Thus, useful work is being
done even if the resulting output pattern contains some corrupt bits.

Overall, the network is capable of making an association between two input
patterns and a single output pattern with a single presentation of the triplet. The
total number of patterns that can be stored in this way is a significant fraction of N
the number of neurons in the network. while this capacity is far greater than the
O.13N of the Hopfield network, it is still less than the number of neurons, N, and as
such is not sufficient to make it a good candidate for the neural building block
required by the architecture.

9.7 Discussion

The lack of correlation between any given pair of stored patterns leads to net
work saturation for a small number «N) of stored pattern mappings. If there were
a higher correlation between firing neurons from one pattern to another, this would
reduce the number of new connections that were made during each learning event,
which we would expect to allow more associations to be made before network sat
uration.

Unfortunately, the firing subsets for each pattern are established in advance
of training and the network does not have any prior information to indicate which
patterns are to be associated nor which control pattern will evoke the transforma
tion. In normal operation, we must assume that any data pattern can be associated
with any other. Thus, schemes which permit the firing subsets of each pattern to be
selected with foreknowledge of the associations to be made are not interesting even
if they may provide optimal results.

There would seem to be only two acceptable solutions to the problem. First,
we accept that the network capacity is limited and must increase the network size
N until it is capable of storing the desired number of patterns and associations. For
some applications this might be an acceptable solution, but we will proceed on the
more reasonable assumption that it is not and that a more efficient implementation
is needed.

The alternative solution, and one which is in line with the architectural devel
opment of chapter five, is that the patterns themselves must undergo modification
to make them easier to store. A subset of the firing neurons in the pattern is
replaced with others which are more highly correlated with previously learned pat
terns and associations. This will reduce the rate of saturation of the network and
hence increase the storage capacity.

Pattern Association and Network Control 252

The disadvantage of this scheme is that the pattern itself is being deliberately
corrupted. There is clearly a trade-off between the degree of corruption and the
ease of storage that must be evaluated and maintained. This is the subject of the
next chapter.

9.8 Conclusions

This chapter has presented the addition of control structures to the simple
network which enable the association of data items and subsequent recall of those
associations given the appropriate cues. In theory, it represents a possible imple
mentation of the architectural requirements of association between symbol pat
terns.

Analysis showed that such an approach leads to network saturation even for
a numbers of associations less than the number of neurons, N, due to the lack of
correlation between associated patterns.

Simulations were carried out on a network of N = 400 neurons, using L = 8
subsets, each of size D = 16. It was shown that after a single presentation of a tri
plet of patterns (two inputs associated with one output pattern) the network was
capable of recalling the associated output even when the inputs were themselves
corrupted and the number of associations was of the order O.25N.

This result, while not without merit for other less demanding applications,
shows that the simple association scheme which has been used so far in the work is
inadequate as a candidate for efficient long term storage the neural building blocks
needed to implement the architecture.

In the next chapter, methods of increasing the network storage will be con
sidered, based on the extraction of features from the pattern set and subsequent re
interpretation of the patterns in terms of those features. A consequence of this
change is that the encodings of the patterns themselves is no longer fixed. This
leads to a trade-off between the storage efficiency of the data and the integrity of
the patterns themselves.

Pattern Association and Network Control 253

CHAPTER 10 Learning Strategies

10.0 Introduction

The advantages of the non-holographic memory of Willshaw et al. are the
speed with which new memories can be added to the network and the reliability of
the network to learn new information "in one shot". Such a memory was the basis
for the first, simple network described in chapter seven. As was demonstrated in
the analysis of that network, however, the price that must be paid for simplicity is
low storage capacity.

The introduction of dynamic patterns of activity altered the way in which
patterns are stored in the network in an attempt to improve network storage effi
ciency. Yet at heart the principle remains the same: a K-from-N coding scheme
with the same properties of one-shot learning, controllability and robustness which
stem from the common base in the non-holographic memory.

Finally, the addition of pattern association in the previous chapter high
lighted the limitations of the simple association approach upon which the imple
mentation has depended thus far. It was shown that the capacity of such a network
was insufficient to make it a good candidate for the neural building block and that
a more complex learning algorithm was needed.

To that end, this chapter provides a preliminary introduction to the concept
of hierarchies of learning, building on the idea of more complex synapses which
was presented qualitatively in the architectural development in the context of
addressing the stability-plasticity dilemma (section 3-9). The aims of learning hier
archies are fourfold.

First, to try to increase the storage capacity of the network still further by
tuning feature detectors which use higher order correlations between the patterns,
with a concomitant increase in storage efficiency. Secondly, to introduce a means
of seamlessly integrating memories with a range of persistencies from short-term
to long-term. Thirdly, to facilitate generalisation by facilitating structured repre
sentations for the stored patterns. Fourthly, and perhaps most importantly, to try to

Learning Strategies 254

address the stability-plasticity problem which is a major issue in networks which
continue to learn in a changing environment.

10.1 Learning Hierarchies: Aims and Issues

10.1.1 Feature Extraction

In the simple network, the storage of each K-from-N pattern (be it static or
dynamic) was the result of a first-order correlation between the firing of individual
neurons; a connection is made between two neurons when they are both firing for a
particular pattern (for the case of static patterns) or when the post-synaptic neurons
fires within a short time of its pre-synaptic neuron (for the case of dynamic pat
terns).

Much of neural network theory, is concerned with the extraction of relevant
features from the input patterns (Bishop, 1995). There are a number of reasons for
this. First, it is usually more efficient to represent the data in terms of its important
features than in its raw form. Also, feature extraction facilitates generalisation by
allowing the network output to be generated from an underlying extracted model of
the mappings. Refinement of the extracted features corresponds to increased accu
racy of the identified model and hence to better generalisation performance.

In a hierarchically organised model, each layer in the hierarchy usually
develops a set of features based on the output of the layer below. One drawback
with such a scheme for many network architectures is that the different levels take
time to develop, over several presentations of the complete pattern set (Rumelhart
et ai., 1986).

Trying to learn a single new pattern mapping can take many presentations
and incremental changes to the weight matrix since the feature detectors at all lev
els must be changed during learning. Some architectures (such as those based on
radial basis functions) use a fixed bottom layer with elements centred on known
data points to speed up convergence (Haykin, 1994).

The aim of the adjustments to each feature detector made during learning is
to cause the network to be capable of making the given mapping and many others
like it. The number of such mappings can (and often does) far exceed the number
of neurons in the network. By developing features the network has extracted the
underlying structure of the mapping and is able to generate new mappings for pre
viously unseen input data; essentially storing more patterns "for free",

Thus the development of feature detector can be viewed as a process of
model identification which is itself usually a means of reducing the total quantity
of data necessary to produce an appropriate response in any given situation by cap
turing the state and output generation process rather than merely the individual
outputs.

Learning Strategies 255

Fig. 10-0 Traditional hierarchical neural network such as an MLP.

10.1.2 Stability vs. Plasticity

Output units

2nd Layer
Feature Detectors

lst Layer
Feature Detectors

Input Units

The term 'stability-plasticity dilemma' was coined by Grossberg to refer to
the apparent conflict between the ability of a network to cope with non-stationarity
in its environment and its ability to retain knowledge learned in the past (Gross
berg, 1988). Networks such as the MLP trained using standard back-propagation
suffer from this, as was just described, since it usually takes many learning cycles
for the multiple small adjustments to be made to each feature detector to train it
appropriately for a new pattern. By making many small adjustments rather than
one large one during the learning of a given pattern, the intention is to converge on
a feature set which allows the optimal storage of many different patterns and,
hence, to try to minimise the disturbance to previously learned patterns.

Both the Hopfield network and basic network described here do not suffer
from problems of stability other than as a consequence of saturation (since a
learned pattern does not decay) but the price that must be paid for this is the rela
tively low storage capacity, as has been re-iterated many times here.

Turning to the details of the architecture, we see that any triplet of patterns
could be associated at any time. Thus, there would be no opportunity to optimally
select the encoding of each pattern based on a priori knowledge of the database.
Features which were painstakingly extracted for one set of patterns could be dis
rupted with the acquisition of a single new association. Thus, the stability-plastic
ity dilemma is a critical issue for this network.

In the architectural development, the evolution of the network during learn
ing was described as the identification of a function which will perform the given
mappings. A new mapping, if it brings any new information to the network, must
by definition require the network to produce an output which is at odds with that

Learning Strategies 256

which would have been produced before the learning had taken place (see the fig
ure below). Ideally, all other mappings made by that function are unaffected, the
new mapping forming a discontinuity in the map.

If we require the network to be able to generalise based on this new learning
event, then over a period of time the function must adapt itself to integrate the new
mapping, distorting the mappings made by similar inputs in the process. This step
is clearly an inductive one and the manner in which it is handled is open to many
possible interpretations which have a direct bearing of the generalisation perform
ance of the network.

(a) (b)
.... x ::3 ::3
0. 0.
::3 ::3
0 0

~ ~ ~
0 0
~ ~
Z ~

Z

Input Pattern Input Pattern

(c)

Input Pattern

Flg.10-1 Modification of a function over time to incorporate one new point.

(Note that in this discussion, it is assumed that each new point is correct and
that the intention is to learn it. At this stage, we avoid the complexity of handling
noisy or potentially erroneous data as well as information which may be required
for only a short period before being discarded).

It should seem clear that a major issue with the simple structure of the multi
layered perceptron is that the learning process only admits a single goal: that of
updating the feature detectors at all levels simultaneously to slowly converge on a
structure which can represent all of the mappings. The failure to form correct map
pings early in training is not as important as achieving good performance at the end
of the training cycle. Also, each pattern is equally important and has equal persist
ence. No wonder, then, that the stability-plasticity dilemma is such a problem in
the MLP. There is no distinction between old learning which may represent long
term features in the data and recent, but highly temporary, data.

Learning Strategies 257

An alternative strategy might add additional goals and constraints, poten
tially leading to much different behaviour. Such a strategy will be presented here
and can be summed up as follows. There are two fundamental requirements for the
learning algorithm. First, that a learned pattern or association should be accurately
recallable even after a single presentation. Second, that data which must be stored
for a long duration should be represented in as efficient a manner as possible. The
goal is to find a learning scheme in which these two requirements compete as little
as possible.

How might such an approach be realised? The network should learn a new
pattern in a single presentation using a learning method in which efficiency of stor
age is secondary to reliability of recall. Subsequent levels of optimisation then
recast or re-express those patterns which will be retained for long term storage
within the same network but allowing storage efficiency to be an increasingly
higher priority. The rest of this chapter will explore the possibilities of this
approach.

10.2 Complex Synaptic Structure

As a starting assumption, it was decided that the layered approach to feature
extraction would be avoided for the reasons discussed so far in this chapter.
Instead, the same regions of N neurons was used to represent features at all levels.
Changes in the synapses between neurons were made to handle the hierarchical
nature of feature extraction. In place of a single valued multiplier, each synapse
possessed a set of multipliers, each of which represented a level of persistence in
one connection. It remained to be justified that the investment in terms of model
complexity would be repaid with a more powerful network in terms of its storage
capacity and flexibility.

To begin the explanation of the proposed structure, we first consider the
essential characteristics possessed by one synapse. They are: (1) the synaptic
weight value, W, which is multiplied by the firing strength of the pre-synaptic neu
ron and can be modified by learning; (2) the duration, ts for which the activity is

supplied to the post-synaptic cell after the pre-synaptic cell has fired; (3) the rate,
a, at which the weight value is changed during learning; (4) the probability, e, that
the synapse can have a non-zero value (i.e. that a connection exists).

We could conceive of a network in which the four parameter values could be
different for each layer of the network or even for each neuron. In this work, we
take the idea to an even lower level of granularity. Here, each synapse possesses
multiple parallel 'units of connectivity', each of which is a single valued multiplier
with a particular value for each parameter. Each synapse then acts as multiple sim
ple synapses in parallel. The figure overleaf illustrates such an arrangement.

The outputs of the parallel multipliers are combined in some way, with the
resulting value sent to the body of the neuron for summation with the contributions
from the other synapses. Possible options for the 'combiner' block include simple

Learning Strategies 258

summation and a max function (taking the output of the multiplier with the highest
value). These options will be considered in more detail later.

In gross terms, the intended behaviour is that the more volatile synaptic units
are capable of capturing a new pattern or association after one learning event, dom
inating the more slowly varying units whose task is to converge over longer times
cales to capture the global characteristics of the data distribution.

r-------------,
I t a Synapse I

I xW I

I I

t-L-'-'......u.~I-4 I Dendrite
I Combiner 1-+--.-----
I (to neuron body)

I
Pre-Synaptic Neuron I L...---.1

Post-Synaptic Neuron

I ~~~ I
L ___ Mult!QJiers _______ .J

Fig. 10·2 Diagram of the complex synapse studied in this chapter.

Using the four parameters it would be possible to define a wide variety of
synaptic behaviours. In this work, the number of possible options will be restricted
to supply a small set of allowed synaptic unit types, each of which fulfilling a spe
cial purpose during normal operation. We can identify two extremes of synaptic
unit behaviour; these extremes characterised the whole concept of learning hierar
chies. By interpolating between the parameter values of these extremes, we can
produce the other cases.

At one extreme we would like a synapse which facilitates one-shot memori
sation of a pattern, as described in the simple and dynamic networks. Such a syn
apse will have a large learning rate, a, to ensure that only one learning trial is
required to transform the weight value from low to high.

Since we want to ensure learning in a single trial, we ensure that a high pro
portion of synapses has such a unit; thus the probability, e, that a connection can
potentially exist is high (perhaps equal to one).

At the other extreme, we would like a synapse which represents global fea
tures of the data, extracted over many learning events. It should be relatively slow
to change to prevent new learning disrupting long held experience. For reasons that
will become clear later on (section 10.3.2, page 268) the probability, e, that a given
connection might exists may be much less than one.

Allocating the other two parameters to these extreme synaptic layers offers
us the opportunity to consider two alternative scenarios. Notice that, in terms of
magnitude, a given layer could dominate the potential supplied to each neuron
either by virtue of having a long weight vector W, or a large duration of activity ts'

Learning Strategies 259

The former case corresponds to a high mean strength of connection between neu
rons via that particular layer, while the latter corresponds to continued activity long
after the firing (pre-synaptic) neuron has entered its refractory period. To prevent
one layer dominating all others, we could arrange for something akin to inverse
proportionality to exist between the value of W for that layer and its value for ts.

The product Wts would then be approximately constant. It remains to choose

whether it is W or ts which increases with increasing synaptic layer. Let us con

sider both options.

Option 1: Increasing weight vector magnitude with level

Here, the fast (level a) synapses have the shortest weight vector. Since it is
important for the firing of these synapses to dominate the neuron potential when
required, we compensate for this short vector using a large ts. Once the synaptic a
unit is stimulated, it continues generating potential for a long time relative to the
refractory period of the neuron.

By contrast, the highest level (level g) synapses have the long weight vec
tors. These vectors represent the long term history of the neuron's learning and do
not change rapidly. To prevent previous learning dominating the neuronal poten
tial, we insist that such synaptic units, once activated, produce potential for only a
short time, that is to say they have a short ts.

The overall philosophy with this option is for the high-level g synapses to
dominate the underlying potential on a cycle by cycle basis. The short activation
time of each individual synaptic unit allows a fine grained pattern of potential to be
maintained. This pattern changes only slowly with learning, since the learning con
stant, a, is low. Transient modifications using the level a synapses must compen
sate for lack of individual strength by force of number. As will be presented later,
the activity vector 'seen' by each neuron is dominated by the synaptic level which
remains active for the longest time.

Option 2: Increasing duration, ts' with level

In this alternative approach, the low level, a synapses have the longest
weight vector but each synapses is active for only a short time. Thus learning not
only makes a large percentage change to the level a weight vector, but the absolute
magnitude itself is also large.

By contrast, the high-level g synapses are not only slow to modify during
learning but, once activated by pre-synaptic firing, remain active for the longest
time.The short weight vector of these units prevents them from dominating the net
work potential. These units therefore represent both long term trends in learning
and provide a slowly varying background level of potential during all aspects of
processing.

Learning Strategies 260

Between the two extremes of synaptic type, from level a to g, we define a
range of synaptic parameter values with decreasing learning rate, <Xj and probabil-
ity of existence, ej. The trends for Wj and tj depend on the option chosen.

The values for these parameters and the number of different units in the
range would be determined empirically based either on a specific environment or
generically (i.e. selected as a compromise over a range of environments).

Choice of Option

For the remainder of the work carried out for this thesis in the area of learn
ing hierarchies, we choose option 2 for the allocation of parameters for Wand ts.
Thus, the level a synapses have the shortest weight vector but are active for the
longest time. This choice reflected the belief at that time that the best use of the
higher level synapses was to capture global features of the data. These long term
trends could act as a reference for all other activity so that each layer beneath level
g would add to its output in a form of delta encoding.

[Simulations (to be presented later in this chapter) will show that this philos
ophy has not yet been shown to be effective. It is possible choosing option 1 at this
point might have yielded better results since one of the potential dangers of option
2 is that the weight vectors might slowly converge to averages of all of the input
vectors. The benefits of both options remain to be proved by future work.]

For the sake of clarity, we present the trends to be used for the parameters W
and tj:

During normal operation, new learning events would initially impact only
the a units within each synapse. Knowledge encoded only here must soon fade to
prevent network saturation. A mechanism must exist to consolidate the new data if
it is to be retained for more time than is granted by short-term storage. Options for
these mechanisms and the issues involved are discussed later.

Note on nomenclature

In the discussion to follow, synaptic units will be given letters from a to g.
Unit a has parameters for short-term memory, while unit g is tuned for long term
storage.The synaptic units of a particular level (say a) will be referred to, vari
ously, as unit a synapses, a units or level a synapses. The meaning is the same in
each case.

10.2.1 Options for the Synaptic Combiner

The model for the synapse is made up of a number of multipliers in parallel,
feeding into a combiner that produces a single value. This value is conceptually
propagated down the dendrite to the neuron body for summation with the contribu-

Learning Strategies 261

tions from the other synapses. Two possible models were considered for the com
biner unit. The simplest is the sum of the outputs of the individual synaptic units. If
the output of unit i is designated 0i' then the output of the synapse, 0s(t) is:

When the pre-synaptic neuron first fires, the synapse output will consist of
the sum of the outputs of each unit. As time passes, one by one, beginning with
unit a, the output of each unit will fall abruptly to zero. This is illustrated below.

The alternative choice is to select the unit which produces the highest contri
bution to the potential. Here the synaptic output is given by:

o.(t) = max(Oa(t), 0b(t), ... , 0g(t»

For this max scheme to work, we must ensure that the weight value of the
shortest duration output (unit a) has the potential to become the largest (even
though in any particular case it may not be the largest) and so on down the line,
with the longest duration output (unit g) having the lowest mean value. If this is not
that case, then certain units could never win the competition and their value would
always be ignored.

However, if the constraint is met then in response to pre-synaptic activity
unit a will win first and send potential Wa to the neuron body. But since its activity

occurs only for a short duration, its output will drop to zero and unit b, which had
the second highest output value, will take over. The synaptic output will now be
reduced to Wh. Over time each unit will have its tum until finally (long after the

pre-synaptic neuron has fired and gone silent) the long duration unit g will be the
only one still active and will have its tum as the provider of the potential. When it
has gone silent the synapse will send no more activity to the neuron body until the
recurrence of pre-synaptic activity.

::r (a) Synaptic Output Using Summing Combiner ';:)'" (b) Synaptic Output Using Maxval Combiner
cJ
';3
~
e£ u Wa . .,
[
til

] Wb
C!
CI)

i:l We ~
o W4~==..!ll::=~:::::::3~~

Time. t

cJ

J
u . ., W~-...,

~ a

~
til W

li 1
CI) We
~ Wd ~ tc

Time.t

Fig. 10-3 Graphs of synaptic potential against time for two combiners.

One aspect of the summation combiner is that the weight values at all levels
have some influence on the potential of the post-synaptic neuron at all times. For
the max combiner this is not the case: only a single synaptic unit influences the
synapses contribution to the potential. This may have an impact on the learning

Learning Strategies 262

algorithm, as will be discussed later in this chapter. As a result, in subsequent anal
ysis the combiner that will be used produces the linear sum of the contributions of
the individual synaptic units.

10.3 Options for the Weight Vector Components

This section will consider the breakdown of the weight vector Wi for each
neuron, i, establish properties which depend upon certain parameters of this break
down and consider some of the trade-offs that could be made in a range of different
implementations. We begin with some definitions. First, we write the weight vec
tor as the sum of several independent vectors, one for each set of synaptic units.
This is valid since we are adopting the simple summation as the synaptic combiner.
Thus for neuron i:

where a to g are the indices of the synaptic units. Note that the actual number
of levels within each synapse is yet to be determined. For now, a to g will be used
as the default range.

Next, let the length of each contribution to Wi be 1m> where m ranges from a
to g. The definition of 1m is based on the sum of the absolute values of the vector

components (in the range j = 0 to j = N-l). For neuron i:
N-l

lim = L I Wijml
}=o

allowing the vector to be approximated as shown in figure 8-7. below.

lig •••••

:~"Wig

f
1 .. Wid
id,

-- -~ia
lia- • -

Fig. 10-4 Weight vector for neuron i in terms of components for each synaptic unit.

To allow the dynamics of the network to be controlled as before, we insist
that the values of 1m be fixed for each m. This will act as a target for each synaptic
unit.

Finally. note that once triggered by pre-synaptic activity a synaptic unit, m,
will generate potential for tm cycles, as discussed earlier in this chapter. Once
again, the value of tm is independent of the neuron index i.

Learning Strategies 263

The potential of neuron i at time t will be given by the following equation:

m=ad=O

where the two sums range over the synaptic unit types and the time for which
they are active. The vector O(t) is a record over time of the network activity and is
made up of '1 's (for active neurons) and 'O's (otherwise).

In figure 8-8, the network state over several iterations is shown for a simpli
fied I-from-8 encoding, together with the output history as seen by three different
synaptic units, 01 (t), 02(t), 03(t). The index shows the number of cycles for which
the synaptic unit is active once stimulated. We see that the effective input vector as
seen by the synaptic units of long duration is the sum of the output vectors over
several cycles, and is increasingly full of '1' s.

Time Network Output Output History at time t

t 00000001 °1(t) 00000001
t-l 00000100 °2(t) 00000101
t-2 00100000 °3(t) 00100101
t-3 10000000

Fig. 10-5 Output history vectors as seen by several different synaptic units.

Ignoring the threshold term for the moment, the potential of a neuron due to
each synaptic unit, Um(t) is essentially a function of four terms:

respectively the mth component of the weight vector, the network activity
vector, the firing subset size and the time of action of the synaptic unit itself, once
stimulated. We see that the maximum contribution that each type of synapse can
make to the potential of neuron i is:

where 1m and 1m are the vector length and activity time for synaptic unit m,
respectively, and S is the number of sources of stimulation (which is two for the
case of one external stimulus together with the internal connections between the N
neurons of the network).

We note that if connections made with synaptic a units are to be capable of
dominating the neuron potentials and dictate which neurons will fire after a single
learning event (which was the case for the simple and dynamic networks for low
enough storage, Z), this implies that for a given neuron the potential coming from

Learning Strategies 264

a units must be able to surpass the sum of the potentials from the non-a units of
any other neuron,j. In other words for a neuron i:

max (Uia(t» > max [i Ujm(t)j

m = b

for any neuronj. Were this not to be the case, previous learning in an arbi
trary neuronj could permit it to have more potential that neuron i even immedi
ately after learning a new pattern in which neuron i is intended to fire at time t.
This would prevent neuron i from firing, corrupting (and possibly disrupting) the
pattern.

The inequality translates into the following expression for a single pattern
stored in unit a synapses, in terms of the activity time and maximum vector length:

g

S L (ljmtm) < SBaD

m=a

where Ba is the strength of a made connection for a unit a synapse, D is the

firing subset size, and S is the number of sources, as defined earlier. Clearly, this
argument can be repeated for the case where a pattern stored in unit b synapses
(unit a weights having decayed) must be recallable in spite of previous learning in
levels c and above. For a pattern stored only in level n synaptic units:

g

S L (ljmtm) < S lintn
m= n+l

which essentially means that the product lintn must decrease for higher values
of m such that the value at level n is greater than the sum of the val ues for all levels
above it. If we assign the arbitrary value '1' for level g, then it is simple to con
struct a table of values for the other levels which would fulfil this requirement:

Table 10-0 Relative weight vector component dominance for different synaptic levels.

Level a b c d e r g

Product, 64 32 16 8 4 2 1

In X tn

Justification 64>32+16 32>16+8+ 16>8+4+2 8>4+2+1 4>2+1 2>1+0 1>0
+8+4+2+1 4+2+1 +1

Thus for a seven level system (as given above) using a base value of 19l9 = 1,

the unit a synapses, would need a lata of value 64 times as great as a unit g synapse

to guarantee one-shot learning, in the worst case.

There are a number of caveats to this result. First, if we relax the simple but
potentially over-strict requirement of one-shot learning even in the pathological
and improbable situation presented above, this multiplier value can be reduced for
all levels. To do so requires more complex analysis of the probability distribution
of the component vectors and any result would carry with it a probability of error
since we cannot guarantee that such a pathological situation will never occur.

Learning Strategies 265

Second, we should reconsider the assumption that the network must assimi
late each pattern such that it will always be perfectly recalled as it is consolidated.
With such an assumption, a learned pattern would always be consolidated so as to
become a permanent part of memory. But we might not intend this level of storage
for every pattern. Here we consider two alternative schemes.

First, we might desire a system in which it is initially important to memorise
a pattern after one presentation and be able to recall it perfectly for a short time
thereafter, but as it is slowly assimilated into the long-term memory, we do not
require such perfect recall.

In another scenario, we might use frequency of presentation as an indicator
of importance for long-term storage. Thus, a pattern presented only once may be
initially learned but soon forgotten, leaving only a minor trace in the higher levels
of storage which is insufficient to recall the whole pattern. Repeated presentation
of the same pattern, perhaps widely separated in time, indicates relevance to the
system and should lead to an accumulation of the small traces in higher level mem
ory to the point where it can be recalled using them alone.

In both presented scenarios immediate and reliable recall is needed after a
single presentation but several pattern presentations (perhaps with time between
each for individual consolidation) would be necessary (and even desirable) to initi
ate long term storage. Consider the alternative table below.

In this example, for level d the product ldtd has been set to be less than the

sum of the products at the levels above. Patterns reaching level d, with no support
from levels a to c, may not be stable even for low storage since the contributions to
the potential from these synapses may not be able to overcome that of the synaptic
units on levels e to g.

Relaxing the constraint for level d has allowed the relative lix product of

each of levels a to c to be reduced while still leaving them stable after one-shot
learning, however. This can be seen from the fact that the products for levels a
through c are still larger than the sum of all products in the levels above them.This
example illustrates the flexibility available to the designer: to control, in a very
general way, the information preserving-power of each level of the learning hierar
chy.

Table 10-1 Modification of It product for level d leads to reduction in max. product size.

Level a b c d e r g

Original Product. 64 32 16 8 4 2 I

In X tn
<.

New Product. 56 28 14 6 4 2 I

In X tn
~-

Exact knowledge of the learning algorithm itself is needed to refine the
trade-offs that can be made, although even in the very high level analysis presented
thus far some of the inter-related parameters that are under the control of the

Learning Strategies 266

designer when using the hierarchical approach to learning are becoming clear: First
is the maximum speed of learning which still facilitates accurate recall. Second is
the relative dominance of newer learned patterns over old.

Next, the rate at which learned data can become a pennanent part of mem
ory. Finally, the point (or points) in the consolidation process where information
learned 'one-shot' begins to lose its recall sharpness (blur), requiring multiple
presentations to facilitate sufficient reinforcement for pennanent storage and
recall.

The analysis of the learning algorithm will quantify these trade-offs.

10.3.1 Balanced Contributions from Each Neuron

One of the central tenets in the development of this network has been that
each neuron is essentially identical: the a priori probability of firing for any neuron
in the network is the same and each should contribute the same amount of informa
tion to the network output. This idea will be carried forwards into the weight vector
itself.

We could envisage a network in which the weight vector of one neuron had
all of its sub-vectors aligned so that for certain patterns its potential was very high
while for the majority of the time the potential would be very low for the same rea
son. Such a neuron would always tend to win in a competitive environment, a situ
ation which often leads to misrepresentation of the probability distribution which
underlies the pattern set. In addition, such a situation is not in keeping with the phi
losophy of one neuron participating in the active set for many different patterns.

One way to avoid the dominance of one neuron is to prevent the individual
sub-components of its weight vector either from growing without limit or from
aligning. Limiting growth can be handled with the periodic normalisation of the
vector. Prevention of component alignment could be handled by inhibiting the
development of a weight vector at level k when there is also a significant contribu
tion to the potential from the weight vector at level k+1. Such a scheme would
allow only every second component of each weight vector to align. By extension, a
scheme which prevents the development of a vector at level k when it will become
too close to the weight vector on levels k+ 1 or k+2 would allow only every third
level to align. Examples of this are illustrated below.

(a) (b)

Fig. 10·6 Weight vector components with restrictions on development.

Learning Strategies 267

The effects of such restrictions on weight vector development are twofold:
first, each neuron is more able to respond to a range of different input vectors since
it is not pennitted to commit all of its weight vector components to a single direc
tion (leading to a neuron which responds significantly only to a single input vec
tor). This is beneficial in the development of fully distributed representations
where we wish to avoid specialisation of individual neurons with respect to an
individual pattern.

Second, the potential of each neuron is less subject to fluctuations in
response to any given pattern of input. The drawback with this scheme is that it
places extra constraints on the learning algorithm in two ways. First, to evaluate a
change in a synapse of a level k unit, the algorithm must consider the component
values at level k+l and so on, increasing its complexity.

Secondly, in its strictest sense the algorithm is no longer local to one synapse
since the effect that one level has on another is in tenns of the similarity of the
weight vectors not the individual components. Nevertheless, the algorithm would
still be local to each neuron and so retains some degree of 'locality'.

10.3.2 Uneven Distribution of Weight by Synaptic Unit Type

As discussed in the previous chapter, the association of uncorrelated patterns
makes it equally likely for any neuron to make a connection with any other, lead
ing to saturation. If it could be arranged that certain connections are used with
higher frequency than others, the saturation of the network could be delayed
because the infrequently used connections would decay to zero and the highly used
connections would grow stronger.

Depending on the algorithm used, a highly used connection might occur
between two neurons which are highly correlated over a number of different pat
terns. This is usually the case in standard competitive learning, as described in
chapter two. Thus, what is sought is a correlation between firing neurons, even
though the arbitrary association of a priori uncorrelated patterns would suggest
that such correlations do not exist.

To reconcile these two apparently contradictory requirements, it is necessary
to modify the pattern during consolidation such that the correlations between neu
rons is increased as the pattern is assimilated. Thus, the short-lived connections
using a unit synapses have an equal probability of occurring between any pair of
neurons due to the uncorrelated patterns which are associated. Each successive
layer of synaptic units, however, demands higher and higher levels of correlation
between firing neurons. The synaptic g units, at the extreme, must have weight val
ues which are significant only for a small subset of the possible connections. This
is illustrated overleaf.

In the graph, the values of all of the weights for a single neuron are shown.
The x-axis is the weight number, corresponding to the index of the neuron to which
the connection is made. The y-axis is the value of the weight.The target distribu
tion for the weights of each synaptic unit is shown. Note that the order on the x-

Learning Strategies 268

axis is different for each synaptic unit, so there is no constraint which insists that
the highest value of the g unit synapse and a b unit synapse occur in the same phys
ical connection.

g
"'@
>

..c:
co
.~

a units]
8.
~
.~-----.----~--------~----~~ weight number

Fig. 10-7 Desired distribution of weights of different synaptic units for each neuron.

What this graph illustrates is that the a unit synapses are equally likely to
occur between any pair of neurons whereas we aim for g unit synapses to be lim
ited to only a small number of connections, leading to a higher correlation of activ
ity between those neurons. How this might be achieved will be considered in the
exposition of the learning algorithm later in this chapter. The implications for an
general algorithm are discussed next.

Note that the parameter e that was specified earlier (section 10.2, page 258)
is intended to quantify the concepts described in this section. A low value of e, as
possessed by a level g synapse, would correspond to a low probability of the exist
ence of a connection.

10.4 Implications of Creating Correlation Between Neurons

The last sub-section discussed the correlation of firing between neurons dur
ing pattern recall or association. Since a pattern or association may connect any
neuron with any other with equal probability, this leads to saturation of the net
work, as was shown throughout chapters seven, eight and nine.

It was stated that by re-using connections that were already existing, the net
work could delay saturation. Higher level synaptic units would become increas
ingly polarised so that, for the highest level units only a small subset would have
weight values significantly above zero.

For the values of a subset of synaptic connections to dominate, however,
there must be an uneven probability of a particular connection being activated.
Assuming a Hebbian-like learning algorithm, in which concurrent activity of the
pre- and post-synaptic neurons leads to strengthening of the connection between
them, then activation of a connection will tend to strengthen it still further and the
positive feedback thus established will ensure that the inequality is maintained and

Learning Strategies 269

increased. In fact, this is the first principle of self-organising systems, as defined
by von der Malsburg (in Haykin, 1994, p353).

Such a scheme brings consequences both for the learning algorithm and for
the operation of the network as a whole, however. For a learning algorithm based
on Hebbian learning the probability of the activation of a particular connection
between neurons must differ from one connection to another despite the fact that
the patterns and associations are a priori uncorrelated.

To deliberately re-use connections in a situation where the pattern was cre
ated independently of existing network structure, the units which fire to encode the
patterns must mould the pattern to the existing order of the network: changing the
firing subsets to use neurons whose connections are already better suited to acti vat
ing the firing subset at the next timestep than those current in the pattern. Hence
the pattern (or at least a fraction of it) is maintained with minimal changes to the
current connections. The figure below illustrates this using three timesteps of a net
work region.

(a) Before Consolidation (b) After Consolidation

Time Time

t+1 oeooeooe t+1 oeooeooe

reOXOl O\Y\OOI
eo~~o OO'i~O

t-1 ~/o\o t-l :~I/g\g o 0 000

Fig. 10-8 Modifications to the pattern during consolidation make it easier to store.

In figure (a), the firing subsets (shaded) change from one cycle to the next.
One neuron (light shaded at time t) has a potential near to firing but is not part of
the firing subset at that time. During learning, the algorithm should seek to locate
neurons such as the lightly shaded one which are near to firing and can be made to
fire with minimal changes to their weight vector. In doing so, one of the firing neu
rons in the subset at time t falls silent and is replaced.

How the replacement neurons are located is another issue. Noise could be
one method, executing many complete cycles of the pattern adding noise of zero
mean and fixed variance at each timestep. Those neurons close to firing would do
so with much higher frequency than those whose are far from firing. An alternative
scheme might allow the level a synapses to decay slowly in value: while initially
the level a synapses alone are enough to dominate the potential of each neuron, as
they decay the underlying (i.e. existing) pattern of weights would become more
significant and increasingly we would expect to see neurons which should not fire

Learning Strategies 270

for the current pattern begin to do so. The learning scheme must profit from the
information contained in the changing firing sets to update the weights appropri
ately. This latter scheme will be discussed in more detail later.

The consequences of modifying the pattern during consolidation are clear:
the pattern itself is distorted and is therefore less able to act as an input cue for all
of the patterns with which it is associated. There are a number of cautionary points
to make, however. If consolidation is occurring at the creation phase of the pattern,
then there are no associations in which it is involved, and therefore no penalty if it
is modified. However, in normal operation as described in the architecture it is
defined as normal practice to create a symbol and then to use it immediately after
wards. This symbol might exist, for example, only at levels a and b of the synaptic
hierarchy when first put to use in temporary associations which might become
more permanent with the progress of time. The objective at that point would be to
consolidate the pattern (with possible changes in its firing subsets, as just dis
cussed) while maintaining the associations already made.

Two solutions are readily forthcoming and ostensibly plausible. First, if all
of the associations that the pattern makes are exercised often enough, then each
time one is used the connections made during its association could be modified to
track the distortions to the pattern. This may be feasible for some applications but
for a large memory system with a lot of associations, the probability of exercising
all of them without doing so deliberately seems low and somewhat artificial and
restrictive.

The alternative solution is to ensure that the modifications are aligned in
such a way as to preserve the mappings rather than scramble them. Now we are
trying to meld the concept of the re-use of connections by creating correlations
with the concept of feature extraction (in which common associations between pat
terns are picked out and new patterns and assocations are made in terms of those).
While the latter is a process of identification (or existing correlations between pat
terns), the former is one of creation (deliberately modifying patterns to make them
more similar).

As a final point, we note that the problem of the evolving symbol encoding
to allow inheritance and generalisation (presented in the context of the architec
tural development) is a highly related issue and this is no accident.

10.5 Options for Component Interdependence During
Learning

During the learning procedure, the individual components which make up
the weight vector of each neuron will be updated according to a prescription to be
analysed in a later section. While updating level k in the synaptic unit hierarchy,
several options remain for the participation of the other levels in the calculation of
neuron potential. These options are considered first.

Learning Strategies 271

10.5.1 Ordered Sequential Dependence

In this scheme, the levels below that which is being consolidated are disa
bled. Thus all contributions to the neuronal potential comes from levels k and
above. This is shown in the figure overleaf for two levels.

The shaded section of each pyramid shows the levels of synaptic units which
are active (generating potential) during learning. Although the levels not included
in this set are disabled, the weight values themselves are not affected. However,
they are inactive and thus contribute nothing to the neuronal potential.

Levelg
,

Level g 7
Levelf \ Level f I

\ I
\ /

Level c \ Levelc /
\ /

\ Levelb / \ Levelb /

\ Level a 7 \ Level a 7
\ / \ /

\ / \ /
v v

Optimisation of Level c Optimisation of Level f

Fig. 10-9 Synaptic unit optimisation using ordered sequential dependence.

What effect would this have on the consolidation of a pattern at level k?
When searching for other neurons to fire and take over the pattern, potential is gen
erated only by synaptic units at levels k and above. Thus, the network is searching
for stable features which have been learned by these higher level synapses with the
intention of representing the pattern being consolidated in terms of them.

By virtue of the lower learning rate, ex, for the units at these higher levels, we
know that the synapses at levels k+ 1 and above will change little over timescales
which will see large changes in synapses at level k. Thus, to all intents and pur
poses the ordered dependence scheme should provide a stable set of features with
which to encoded more volatile patterns.

There are two principle disadvantages of this scheme. First is that a special
network mode is needed during consolidation which begins with all of the synaptic
units enabled but then disables them level by level, each time consolidating the
lowest active level into those above it. The optimum frequency of this special
mode and what parameters might govern its operation are also new unknowns.

Second is the emergence of a property which is common to most simple neu
ral networks (including the Hopfield) but which is a source of problems when such
networks are applied to symbol structures: the inability to prevent the involvement
of a stored memory in recall when it is not relevant.

Learning Strategies 272

Consider a basic Hopfield network during recall, gi ven a corrupted version
of a stored memory. At every update, the accumulated memories of every stored
pattern influences the choice of the next state for every neuron. This occurs
whether or not the memory is relevant to the current computation. In a sense, the
memory acts as a monolithic slab and is incapable of breaking its stored data down
into a number of independent sets of patterns with only one such set affecting the
updating of the network at a time.

By extension, we see that using the ordered sequential update scheme, the
modifications to the longest-term synaptic units also occurs outside of the context
of any lower level partitioning. Thus the ordered scheme suffers from the same
problem as the Hopfield network: the long term behaviour of the g unit synapses is
in some wayan average over all patterns learned by the network and they have an
unconditional impact on all network activity.

10.5.2 Unordered (Parallel) Dependence

In this scheme the individual levels of the synaptic units are updated
together, with each contributing in parallel to the neuronal potential, just as in nor
mal network operation. When noise is added to the potential of each neuron to pro
voke activity from otherwise non-firing neurons, all components of the weight
vector contribute to making the firing event occur.

The benefit of this scheme, in contrast to the ordered one, is that no special
network state is required. The updating could occur in parallel to normal network
operation.

One possible disadvantage is that changes made to high level (long-term
storage) synaptic units are made in the context of particular lower level (short-term
storage) features. The fact that this may constitute a problem can be illustrated by
example. We could envisage a situation in which a positive change in a level g syn
aptic weight value might be made when the neuron fires even though the majority
of the potential in that neuron comes from a recently acquired set of unit b weights.

Soon thereafter (on the timescale of a significant change of the unit g
weight) the short term record held in the unit b weights has been significantly mod
ified and the earlier change to the unit g synapse is both insufficient to recall the
original pattern and serves little or no purpose in the recall of any others.

The basis of the problem is that the long term connections are being consoli
dated in terms of shorter term, more volatile features. Building on such unstable
foundations would not seem to be a sensible principle. This apparent disadvantage
may prove to be illusory, however. If the changes to the synapses at lower levels
are uncorrelated, then any minor fluctuations that they create in the higher level
weights should be smoothed out.

Furthermore, there may be positive correlation between the lower-level syn
aptic units and the higher which is in fact due to the high level units. In that case
the positive feedback during learning will tend to make large weight values get
larger, a central mechanism in competitive learning. Thus, the apparent disadvan-

Learning Strategies 273

tage of optimising all of the levels in parallel may be turned to an advantage. To
understand this case properly, detailed analysis using stochastic processes is proba
bly required, and is left for future work.

Finally, we note that the very fact of not relying on more volatile synapses
was quoted as a disadvantage for the case of ordered, sequential dependence since
it leads to a monolithic memory. Is there a middle-ground alternative solution?

10.5.3 Ordered Non-Sequential Dependence

This consolidation scheme combines the other two, seeking to fonn stable
memories and, also, to allow subsets of memories to fonn, breaking up the "mono
lithic slab"-like memory described earlier. As in the ordered, sequential scheme the
layers are optimised one by one starting from the a units, but one low level (b in
the figure below) is always involved in consolidation.

The effect of the level b synapses is to act as context for the recall of more
pennanent infonnation in the higher levels. We could imagine the pattern stored in
the b units as a subject area or category, such as peoples names or the capital cities
of countries. Using the subject pattern as context, the consolidation of another pat
tern ("Fred" or "La Paz") at level c or above occurs, the choice of neurons to carry
the pattern being influenced by the context ("names" or "cities"). A short while
later, the subject pattern is forgotten and the associated memory, lacking part of the
weights which were involved in its consolidation, is more difficult to retrieve.

But being more difficult to retrieve is not entirely a disadvantage: a pattern
which has lost some of its support set will have a lesser impact on the recall of
other patterns. To a certain extent, the consolidated pattern lies "donnant" in
longer term storage; its effect on ongoing computation is much reduced but it is not
erased, by virtue of the slowly changing synaptic units which encode it.

\ Levelg 7
' ... ____ L_e~v-el-f---.,1

'()

\~----~----~/
\ Level c /

\ /

\ Levelb I
\ Level a ;

\ /
\ /

v

Fig. 10·10 Synaptic unit optimisation using ordered, non-sequential dependence.

How would recall be achieved? When the network decides to recall some
thing which it knows to be a capital city ("Query: what is the capital of Bolivia?"),
it only needs to re-establish the b unit connections for that subject pattern ("cit
ies"). Doing so re-establishes the environment in which the high-level synaptic
units learned the desired pattern and others of that class. The network can then

Learning Strategies 274

retrieve the correct response given an appropriate input cue using a mechanism
such as was presented in the last chapter.

Overall, the use of short-term memory to store subject patterns would permit
a single memory system to be accessed as if it were many separate memory sys
tems by a technique of advanced priming.

But where does the network store the subject/category patterns? The easy
answer is that they are stored in some other memory and retrieved by the control
network. While this is a plausible option in terms of implementability, for an
autonomously learning system it is somewhat fraudulent since it is essentially
"self-bootstrapping". How does this separate memory store its patterns? Does it
group its subjects into higher level subjects? If so, are these stored in a separate
memory?

A more integrated solution would include the set-up of one subject class
based on the retrieval of an earlier pattern (or patterns) from the same memory.
This could occur in many ways, two of which seem particularly useful. The first
allows the control network to retrieve the subject pattern explicitly and re-consoli
date it as an explicit priming step. An alternative and more subtle solution allows
every recalled pattern in a particular class to complete itself when it has missing or
erroneous elements, followed by short-term consolidation of those missing ele
ments. This completion could be used to re-establish the class context in short-term
memory and act as a boost to recall of patterns in the same or a similar category.

To use the human analogy, recall of an almost forgotten memory could be
achieved by thinking about other related events/objects until enough context has
been established to complete the desired pattern.

In this work, the usage of short-duration patterns as a means of defining sub
memories will not be pursued further, although it is noted that such an investiga
tion would form a valid area of further study. Instead, the unordered (parallel)
dependence learning mode will be adopted as a demonstrator.

10.6 A Note on the Generation of New Symbols

Throughout the development of the neural building blocks, the patterns were
selected at random, with zero correlation between the selected firing neurons. In
consolidating each pattern there was a conflict between the required output and the
actual output which was resolved by allowing a fraction of the pattern to be cor
rupted at each level of assimilation.

We contrast the network view of the patterns with the architectural view: as
symbols. In chapter five, the creation of new symbols was highlighted as an impor
tant element of the architecture. It was stated that a symbol encoding must incorpo
rate not only a means of accessing the expression that it represents but also

Learning Strategies 275

properties of that expression which can be used in computation without accessing
the symbol contents. To ensure that each symbol is unique a quantity of noise was
postulated: shifting some of the '1' s at random.

In spite of the noise, the symbol patterns will not be random. Each must be
constructed using some procedure (as yet undefined) which will imbue it with the
necessary properties to fulfil its function. Noise would, therefore, reduce but not
eliminate in-built correlations between existing connections and those which are
necessary to store the new symbol. Further analysis of the consequences of these
correlations must wait until the symbol generation procedure has been completely
specified.

In its usage, however, the assumption that any symbol can map to any other
is still valid. Therefore, any analysis of the mapping process that assumes random
associations would still be valid.

10.7 Investigation of One Strategy for Learning

The results presented in this section represent one possible interpretation of
the implementation possibilities presented in this chapter. There are many others,
using different combinations of parameters and/or making different choices for the
options that have been outlined. Exploration of all of the alternati ves is left for
future work.

To recap, the network which will be considered in greater depth uses the
additive synaptic combiner, places no constraint on the angle between weight vec
tors of consecutive synaptic levels and learns using an unordered (parallel) depend
ence of weight vectors. All levels of synaptic units are updated in parallel with
each new pattern presentation.

The section begins by presenting the learning algorithm and then proceeds to
the analysis, which consists of two parts: first, the impact that each learning event
has on the networks ability to recall the learned pattern; second, the impact that the
learning event has on the recall of other, unrelated, patterns. This provides a means
of quantifying several properties of learning and establishing the trade-offs which
can be made.

10.7.1 The Learning Algorithm

To begin each learning event, a dynamic pattern is set-up on the region of
neurons using standard D-from-K-from-N coding. The pattern is held in short term
memory by making direct connections of strength B between each of the neurons
firing at time t and those firing at time 1+ 1 for all L cycles of the complete period.

The learning takes place by updating the synaptic connections at all levels
using the formula given below. Updating occurs during C complete periods of the
pattern (Le. a total of CL timesteps) during which time the pattern held in short

Learning Strategies 276

term memory decays (to simulate forgetting). After CL timesteps, the pattern is
replaced with the next one to be learned.

At each timestep, the potentials of the neurons are updated as normal. The
weight vector, Wim, of the level m synaptic units of neuron i is updating using the
following rule:

(

I ..

.1Wim = OJ(t)um LO(t-d))-Oj(t)~mWjm
d=O

Consolidation Normalisation

where 0i(t) is the output of neuron i at time 1, am and f3m are the learning and
forgetting constants and O(t-d) is the network output vector d cycles in the past.
The bracketed term thus represents the history vector of firing neurons which the
synaptic units of level m can "see" when updating. The longer the firing time 1m of

a synaptic unit, the longer in past can a pre-synaptic neuron have fired and still be
visible to a neuron now firing.

Since both terms contain OJ(t) then the weight vectors at all levels of a given

neuron are only updated when the neuron itself fires.

The two terms represent the balance between consolidation (moving the
weight vector towards the input vector) and normalisation (removing weight from
synapses where the pre-synaptic neuron did not fire recently enough).

It is clear that this particular interpretation of the principles of learning hier
archies is close to basic competitive learning, discussed in chapter two. The essen
tial differences are the mUltiple synaptic layers (each optimising over different
timescales of activity), the D-from-K-from-N coding which allows multiple "win
ner" at each timestep (using the jargon of competitive learning) and the cyclic,
recurrent nature of the patterns themselves.

We note that the changes to the weight values for a given synaptic unit do not
have to all be of the same sign. Consider a synapse between two neurons i and j
and what happens if neuronj fires first then neuron i fires at a time between tb and

Id cycles in the future (tb < td). The level b synaptic unit would reduce in value since

there was no activity from its pre-synaptic neuron within tb cycles, whereas the

level d weight in the same synapse would increase in value. Thus the two weight
values are tracking correlations of activity on different timescales.

The changes in the weights at all levels are such to increase the potential of
each firing neuron in the face of the current pattern. To ensure that the weight vec
tors do not become saturated, we insist that the length of each vector be held con
stant. This establishes a relationship between the learning and forgetting constants,
am and f3m•

Learning Strategies 277

Using the definition of weight vector length as the sum of the absolute values
of the components, we demand zero change in the sum of the weight vector
changes, that is:

L~Wijm =0
J

by summing the elements of the weight vector at level m for neuron i. For the
given learning algorithm this implies that for a neuron whose weight vector is
changing (i.e. for which OJ(t)=l):

L~Wijm = 0 = <lm~[i:O(t-d)J- ~~mWijm
J J d=O J

<lmDtm = 13mlm

where in the second line we have made use of the facts that the summations
over j and d merely produce the total number of '1' s which appeared in firing vec
tors over the last tm cycles, i.e. Dtm.

The summation over the elements of the weight vector, W ijm' gives the length
of the vector, 1m, as defined earlier.

Setting am according to this equation will ensure that any increases made to

the synaptic weights between neurons are paid for by reductions in weights
between the post-synaptic firing neuron and all other neurons (even those that are
firing), The cost is divided such that each weight is reduced by the same propor
tion.

We note that there are several degrees of freedom still remaining to be con
strained; the learning rate, am' the vector length, 1m, and the relati ve values of these
parameters across the levels of the synaptic hierarchy. Also, the number of layers
in the learning hierarchy is itself a degree of freedom which has not yet been
addressed. The values of these parameters are crucial to the behaviour of the sys
tem, as will be made clear in the discussion presented next.

10.7.2 Effect of Learning on the Recall of a Learned Pattern

During the C cycles in which a pattern is being consolidated, small changes
are made in the weight vectors of every firing neuron with a goal of allowing that
pattern to be stable even after it has vanished from short-term memory (the a unit
synapses),

In this simple version of the learning algorithm (borrowed from well estab
lished competitive learning techniques) the winning neurons move their weight
vectors so as to be more aligned with the input vector. The amount by which the
vector at each level in the synaptic hierarchy moves depends on the learning con
stant, am' for that level and also on the overall length of the weight vector, 1m, at

that level. If both of these terms are large then the change in potential that can be

Learning Strategies 278

achieved in a single update is relatively large. This should be the case for the low
level synaptic units.

Conversely, a small value for both am and 1m will result in very little change
in potential per update.This is illustrated below in a diagram which is simplified by
ignoring the fact that each level of the synaptic hierarchy is responding to a differ
ent output history vector which depends upon the duration for which that unit is
active once stimulated. The basic idea remains the same, however.

(a) before learning
4

Stimulus

(b) after learning

Stimulus

Weight Vector
Components

Fig. 10-11 Movement of the hierarchical weight vector during learning.

In the figure, the level two synaptic units produce the greatest change in
potential after a learning event. The level three and four units have moved in the
right direction but their changes are progressively more modest with increasing
level.

The aim of learning is that the changes should be sufficient to give those neu
rons which are intended to fire more potential than the others even after the level
one synaptic units have decayed to zero (and thus forgotten the pattern being
learned). How the potential is distributed between the various layers is irrelevant in
the short-term since the network is only concerned with faithfully representing the
current pattern of potentials as the pattern is played out.

If the pattern was to be learned with no modifications to the subsets of firing
neurons, this could in principle be achieve in a single cycle if the learning parame
ters, am' were sufficient to move the weight vector a large distance towards the
stimulus. However, as discussed earlier, the decay of level a synapses during con
solidation will permit the network to locate neurons which currently do not fire in
the original encoding of the pattern but which could carry the pattern with smaller
changes to the weights than would be needed for the original firing subsets. To do
this in such a way as to allow both the original pattern and the existing weight dis
tribution to guide the updating process, the changes to the weight vectors are made
slowly over many cycles of the pattern.

Learning Strategies 279

The potential of each firing neuron will include a term of size DB where D is
the number of neurons in each firing subset and B is the strength of each level a
connection between firing neurons in the pattern. It is this strength B which is sub
ject to decay during consolidation. The value of BL, though decaying, is identical
for all neurons in the firing subset. Thus any variation in the potential of such a
neuron is due either to noise in the firing subsets (in other words erroneously firing
neurons) or to the potential contributions from other components of its weight vec
tor which themselves are the product of previous learning.

The figure below shows the potential of the neurons in the region at time t
and again later at time t'. The learning in the level a synaptic units (corresponding
to the pattern to be consolidated) is shaded dark. The light shading corresponds to
the potential contributed by the other components of the weight vector.

(a) Potential Distribution at time t near the start of consolidation.

_ Thr.e.shold_

(b) Potential Distribution at time t' at the end of consolidation.

Fig. 10-12 Histograms of neuron potentials (a) before and (b) after consolidation.

The schedule for the decay of level a connections is a parameter of the net
work. Linear decay has been assumed, though exponential decay is another possi
bility. In either case, on every successive circuit of the pattern, the fading power of
the level a synapses should allow neurons which do not belong to the pattern to
become more frequent in the firing subsets. These are all neurons which have high
potential even without the level a synapses and, therefore, require relatively small

Learning Strategies 280

changes in their weight vector to join the pattern. Small changes equate (in general
terms) to little perturbation in the established learning.

The disadvantage of recruiting other neurons to replace the firing subsets, as
discussed earlier, is that the information stored in the pattern is eroded as a result.
The firing subsets themselves not only support the current pattern but are involved
in the associations that it makes with other patterns, so any degradation of the pat
tern is a source of noise to every association it is involved in.

There are two important points to note here. First, there is clearly a balance
between the optimality of storage (which would tend to re-use any neuron which
required few changes to carry the pattern) and fidelity of recall (which demands
that the same firing subsets be maintained and fire in the same order after consoli
dation as before). Recall that in all previous analysis of the K-from-N code (and its
dynamic variant, the D-from-K-from-N code) there was always a margin for error
in terms of the number of erroneous bits which were permitted at any time. We
now use this margin as a source of flexibility, permitting errors to enter the encod
ing up to the limit allowed by the neighbourhood size around each pattern.

The second point to note is that a neuron that has large weight values in the
higher levels of its synaptic units biases the neuron selection towards choosing it to
carry the pattern. Thus, neurons which win the competition to fire will tend to do
so again: positive feedback leading to greater differentiation of the weight vectors.

In the next step in the analysis we consider, in very rough terms, the number
of cycles of the complete pattern, C, needed to consolidate the pattern being
learned and the relationship with the learning constant and the reliability of the
memorisation.

In each cycle, the weight vectors of the firing neurons move towards the
stimulus vector by an amount which depends on the learning constant, am' for each
weight vector component. After only a few such learning events, we must ensure
that the levels of the hierarchy from b to g are sufficient to support the pattern reli
ably. But the weight vectors at level b are themselves subject to change while
learning other patterns. For this pattern to survive for a longer duration it must be
assimilated into even higher levels.

After a single presentation, the pattern should not have elicited sufficient
change in the levels above level b to be stable if the level b weights were to be
erased. To quantify these concepts, we define a new set of constants,fm' as the

number of presentations needed for a single pattern to become stable in layer m.
For layer a this value is unity while for layer b it must still be very low. Higher lay
ers would permit larger values for 1m and would depend on the system require
ments.

We assume that, at the start of learning, the vector W m is in a direction which

is random with respect to the desired (target) direction, Wt
m. For the vector com

ponent to fully capture and represent the pattern after 1m presentations each of C

Learning Strategies 281

cycles, the total number of modifications is Clm. Correlations between patterns

may aid in the learning process, reducing the total change necessary for consolida
tion to level m, but for this simple analysis we assume that no such correlations
exist.

The ensure that the weight vector at level m for neuron i can reach the target
vector in Clm steps, requires the following inequality to be true in the worst case:

Iw .. -w·1 a > max.(IJm IJm)
m J elm

where the max function ranges over every neuron. Since we assume that the
weight vector before and after are independent, the worst case for the difference
between them is that a single weight value which is initially at zero must reach the
maximum value possible, which occurs when the vector consists of Dtm weights of

magnitude ImlDtm and the other bits zero. Thus:

This constitutes a lower bound on the value of the learning constant for a
synaptic layer that must be able to guarantee convergence inlm presentations of a

pattern and allows for the worst case situation: a complete transfer of weight to a
direction in which there was previously none.

10.7.3 Effect of Learning on The Recall of Other Patterns

While modifying the synaptic weights to store pattern Pi' the changes made
during the storage of all other patterns are being eroded. The quantification of this
erosion will be considered in this sub-section.

When a pattern is learned, the weight vectors which were put in place for the
previous pattern are subject to some disturbance. By careful choice of the parame
ters of the network, the lower level synaptic units will have made the largest
changes during the consolidation of the last pattern while the high level units will
have changed only slightly. These are necessary features of the weight vector
dynamics to differentiate one extreme of the synaptic levels as short-term and the
other as long-term storage.

One aspect of this hierarchy which has perhaps been under-emphasised
throughout the development is that the changes in the lower levels of the synaptic
hierarchy, though large, should have a lesser impact on the recall of other patterns
than the concomitant changes in the higher levels, due to the longer duration of the
high level units once activated. This is the opposite of the effect of those same
changes on the storage and recall of the pattern being consolidated.

In order to quantify the effects of learning on the existing patterns, consider a
neuron, i, which has been taught to fire during cycle k in a pattern, po. Upon learn-

ing a new pattern, PI' the weight vectors which made neuron i fire will have been

Learning Strategies 282

altered only if neuron i fired during the consolidation of Pl' If not, the neuron is
unaffected under the learning algorithm. If its weight vectors were changed, we
need to assess how the modifications made at each level of the synaptic hierarchy
contributed to that change and to ensure (by selection of parameters) that those
contributions become less at each higher level. If this is not so then the longer term
storage levels (g,f, etc.) are less stable than the lower levels (a, b, etc.) which is
counter to the principles of hierarchical learning.

The distortion, Q(W m)' of each component of the weight vector as a result of
learning a single pattern is defined as the ratio of the change in the vector to its
length. In the worst case this is:

Iw -w I
Q(W) = m m

m JWmJ

= f- Llwm - W ml
m j

where W m is the weight vector after the new learning, W'm is the same vec
tor before learning and C is the number of cycles of the pattern in which learning
takes place.

In the final line, the difference between the two vectors is replaced with the
worst case value, which occurs when the firing subsets visible to the synapse at
level m are constant through the learning process. In that case, Dtm of the input

weights increase by an amount am' while the other (N-D)tm elements are reduced

by an amount ~m on each cycle of the pattern. Substituting for Pm in terms of am
gives:

Ctm(amDtm)
Q(Wm) = T,; Dam+(N-D)~

Ct Da I = m m (1 + .!!!(N-D»
1m 1m

We demand that the distortion due to learning a single pattern is lower for
increasing level, m. Since N, C and D are constants, then lower distortion for

2
. . tmam
lOcreasmg m corresponds to reducing the ratio -2- as the index m is increased.

1m

Complications arise, however, since value of 1m increases with the level

index m: this was a consequence of choosing option 2 in the initial definition of the
synaptic hierarchy where it was deemed appropriate that the longer term storage
elements should provide potential to the neuron for a relatively long period after

Learning Strategies 283

pre-synaptic stimulation. The rational behind this decision was that such units
would extract common features in the input patterns and allow other features to be
coded in terms of them. Thus, tm is large for large m.

,
a

This implies that the ratio 2
m must tend to zero even more strongly with

1m

increasing m to compensate for the increase in the term in tm
2• If we define rm as a

positive constant which decreases for increasing m, then the constraint on 1m for

reducing the distortion for increasing synaptic level, m, is:

If the value of 1m does not fulfil this condition, higher levels of the hierarchy

(which are supposed to be more stable in the face of each learning event) may be
less stable than the lower levels and the memory system is liable to wander without
convergence at each learning event.

10.7.4 Summary of Learning Constant Constraints

Two basic constraints have been developed to restrict the selection of learn
ing constants in the network. To ensure that the network can learn a pattern in a
given number of presentations, the first constraint is:

1m
am> DC' t

Jm m

while the requirement of reducing the distortion of a single learning event at
each level of the hierarchy leads to the following:

Combining both expressions creates a range of values for the learning con
stant:

I 2 I
rm(f) >a > DC; t

m m Jm m

10.8 Simulations of Simple Learning Scheme

To verify the algorithm developed in this chapter, a network of N = 1000
neurons was used to store dynamic patterns consisting of L = 8 subsets of D = 16
neurons. A four level synaptic hierarchy was used, with the a units providing short
term storage during consolidation, as described in the learning algorithm. Thus,
three levels remained for medium and long term storage.

Learning Strategies 284

The simulation consisted of tracking the learning of a block of twenty pat
terns looking at the changes in each of the synaptic levels. During one pass of the
pattern set, each pattern was set up in short term memory using the a unit synapses,
remaining there for twenty complete periods.

During each period the weights were updated using the learning algorithm
already described. After every pass of the pattern set, the ability of the network to
recall each learned pattern, but this time with the a unit synapses reset. Thus the
short term memory was empty and the network had to rely only on its medium and
long term store.

The results obtained for the algorithm were disappointing. While the network
adapted at each trial to the pattern currently being learned, any changes made were
quickly erased by the next pattern.

The failure could be attributed to one of six causes. First, the network itself
could be too small. Increasing the network size might lead to more freedom to cre
ate correlations between firing subsets and lead to more optimal storage.

Second, the parameters of the firing patterns, D and L, may be set incor
rectly. Either increasing or decreasing these parameters would have both advan
tages and disadvantages, however. Reducing them would reduce the number of
neurons changing for each pattern with a possible reduction in the distortion on
each learning event. It would also reduce not only the quantity of information
stored in each pattern but also its signal to noise ratio. This in tum would reduce
the maximum size of each neighbourhood, demanding more faithful storage of
each pattern to preserve enough information to remain distinct. This might, in
itself, demand greater distortion of existing learning, leading to worse overall per
formance.

Conversely, increasing D and L would increase the number of neurons
changing in each update but, for the same reasons given, might reduce the distor
tion by permitting greater overall distortion of the pattern while still leaving it suf
ficiently distinct to be useful.

The third possible cause of the failure could be that the parameter values are
not set correctly. The first place to look here would be the choice made earlier for
the trends in the two complimentary parameters Wand t (section 10.2, page 258).
At that time, the desire to have the level g synapses weak (Le. short W) but acti ve
for a long time, t, (in order to permit a form of delta encoding by providing a stable
undercurrent of potential for the lower levels) made the choice of increasing t with
level the appropriate one. The analysis revealed that this choice acted against the
need to reduce distortion with increasing level. The distortion term was propor-

2

tional to tm~m • Repeating the analysis for option 1 might prove more fruitful.
1m

Learning Strategies 285

Furthermore, more detailed analysis may reveal that there are further con
straints on the learning parameters for the chosen algorithm which have not yet
been met and which would allow the simple variant of the learning hierarchies
approach to achieve its potential.

Fourth on the list of potential problems is the time course of the decay of
level a synapses. A linear reduction was assumed but this may not be optimal.
Faster initial decay would bias the learning in favour of re-enforcing the existing
synapses rather than imposing the new pattern. Conversely, a slow initial decay
followed by faster decay towards the end would favour the new pattern: most
changes would occur while the new pattern was still relatively intact.

As a fifth possibility, it may be that, even though the learning hierarchies
approach is valid, the simple algorithm chosen (based on standard competitive
learning) may be inadequate for the task given the many extra complications intro
duced using learning hierarchies. This is a likely reason given the simplicity of the
algorithm. In its original habitat, the weight vectors of each neuron are permitted to
evolve slowly whereas, in the current context of learning hierarchies, they are
forced to converge SWiftly. Also, the optimisation of feature detectors has not been
addressed rigorously and it may be that a greater degree of care is needed to locate
features that are stable in the face of new learning using learning hierarchies.

Final1y, it is possible that the whole concept of learning hierarchies is funda
mentally flawed and no amount of effort to tune the algorithm or its parameters
will be enough to make it work. This remains to be proven, but the basic principles
of learning hierarchies (using parallel synapses each of which possessing different
parameters and properties) not only seem to address the stability-plasticity
dilemma in a relatively simple way but also open the way for a whole new range of
options for balancing the demands of responsiveness and accuracy which should
not be written off based on a single result using an ad hoc choice of parameters.

At this time, it is assumed that it is the algorithm and the choice of parame
ters which needs further work, rather than a fundamental error in the learning hier
archies approach. However, there is no evidence which supports learning
hierarchies as a viable concept and so much further work is clearly needed to hone
the principles presented in this chapter into a working solution.

10.9 More Complex Learning Schemes

The failure of the learning hierarchies algorithm to display the expected
properties has been assumed to be mainly due to the overly simple choice for the
learning algorithm and parameter values. In this section, a more advanced scheme
will be presented which has not yet been fully investigated, but which may lead to
better network performance.

Learning Strategies 286

10.9.1 Learning Only To Maintain Potential Within Bounds

Here, the target of learning is to preserve the potential of each neuron within
precise boundaries, depending on whether it are firing or not. The weight vectors
are no longer fixed in length but grow and shrink depending on the potential of the
neuron when it is both firing and silent.

Figure 8-16, (overleaf) illustrates this, showing a number of potential bands
which act as targets for firing and non-firing neurons respectively.

When firing, a neuron should have a potential inside the band marked 'firing
only'. All non-firing neurons should have potentials below the area marked as
guard band. Any non-firing neuron whose potential enters the guard band region
may achieve firing potential erroneously, either through further learning or through
noise and so it is prudent for the network to reduce the potential by moving the
weight vector of such neurons directly away from the stimulus instead of towards
it. This idea is, in fact, one facet of nonnal Hebbian learning.

too high

¥'"
umax

firing only
Unorm

guard band
Uguard

~
erroneous firing

likely

firing neurons non-firing neurons

Neuron index, i

Fig. 10-13 Potential bands in a more advanced learning scheme.

At any time step, a firing neuron should have a potential between unonn and

umax' If it is too low it risks being overtaken by a neuron from the non-firing sub
set. If it is too high (above umax) its weight vectors are too long, which is a source

of excessive noise when the neuron in question is part of the non-firing subset at
other times. It should reduce its potential, again by moving its weight vector away
from the stimulus vector.

The effect that this learning algorithm has on the generalisation perfonnance
of the network is not clear since the statistics of the input stimuli are being dis
torted by the network: if the potentials of every neuron fall into the correct band
when a new stimulus is presented to the network then no changes are made to the
weight vectors. This is satisfying from the point of view of making corrections to
the weights only if they are necessary but is a source of distortion to the optimal
representation of a given probability distribution.

Learning Strategies 287

10.10 More Complex Synaptic Structure

This section briefly considers another level of complexity which might be
considered for the synapse. Two ideas are discussed which focus on the time
response of the synapse, one for signalling and one for learning.

10.10.1 One Interpretation of the Lynch & Baudry Theory

This scheme is inspired by the Calpain-Fodrin hypothesis of long-term
potentiation (LTP) (Lynch & Baudry, 1984) in which it is suggested that LTP is
effected by revealing ion channel in the post-synaptic membrane which were ever
present but hidden by a web of protein (fodrin). Learning is achieved by action of a
catalytic protein (calpain) released during excessive pre-synaptic stimulation
which breaks down the fodrin and makes the ion channels available in the mem
brane.

The theory is interpreted in the context of learning hierarchies as follows:
certain levels of the synaptic hierarchy are initially dormant (i.e. contribute nothing
to the potential of the neuron) until stimulated by pre-synaptic activity, at which
time they become active but still contribute no potential. If subsequent pre-synap
tic activity occurs within a short time then the synaptic unit responds at full
strength, adding to the neuron potential. However, once a time limit has elapsed
without re-stimulation the unit again becomes dormant!. New stimulation will re
awaken it but will not produce any contribution to the potential until a further
action potential arrives within the time limit.

What overall effect does this produce? Essentially it allows the neuron to
respond differently to two pulses from the same neuron depending on whether they
occur within a certain space of time or not. This may be useful in a network, such
as this one, where the patterns are cyclic with a period which is within the 'primed'
period of the synapse since it allows a cycle (Le. a known pattern which has been
recalled) to trigger a new behaviour without external stimulus whereas a non
cyclic pattern could permit the network state to wander for a long time without re
stimulating the same connection and initiating the new behaviour.

This is not the same as Arnit's investigation into temporal pattern retrieval
using a variant of the Hopfield network (Amit, 1989) since he used synapses which
consisted of a fast and a slow component. Once activated the synapse is guaranteed
to deliver activity in proportion to each weight but with the slow component
delayed in time. The effect is not the same, since Amit's scheme did not allow the
same pair of neurons to be coupled in two different ways dependent on the stimula
tion which is the case with the idea presented here.

In fact, it turns out that this kind of synaptic behaviour has been proposed
before. In his exposition of the searchlight hypothesis for the thalamus, Crick
draws upon earlier work by von der Malsburg on a synapse that can take on two

1. The Lynch & Baudry theory does not postulate a return to the dormant state if the synapse remains unstimulated.
However, it does not rule it out, either.

Learning Strategies 288

values depending on whether or not it has been activated (Crick, 1984; von der
Malsburg, 1981). In Crick's hypothesis however, this activation is achieved by vir
tue of a set of dedicated connections directly to individual synapses and hence it
differs from the proposal presented here. Whether or not the scheme as described
by Crick is a true explanation of the thalamic processes he seeks to describe, such
an approach is impractical for use in every synapse in the network. By avoiding an
external agent to activate the synapses, this proposal offers a more practical
method of achieving more complex (and hence more powerful) synaptic behav
iour.

We could view the two-valued synaptic unit as another level of complexity
in the learning hierarchies approach. It is clear that the potential increase in per
formance that this added layer of complexity brings also entails an increase in
complexity of the associated learning algorithm. We must now optimise both the
active and the inactive synaptic value, and do so for each level in the synaptic hier
archy. In addition, we now have two extra network parameters. The first is the
degree of activity required to active the higher synaptic value and the second is the
time delay between activation and deactivation.

Furthermore, if we also model the synaptic unit as being made up of many
parallel ion channels, as in a real synapse, the activation and deactivation processes
could be modelled as many parallel random processes governed by a time constant.
This would transform the abrupt transitions between active and inactive states into
a probabilistic mix of the two types. Such a level of detail may add something to
the network, but exactly what that might be is left for future work.

10.10.2 Different Learning Response for Each Synaptic Level

Here, we consider the possibility of varying the time course of learning by
synaptic level, permitting synaptic units at the low levels not only to respond more
strongly than those at high levels but also more quickly. This is important when we
take into account that during consolidation the new pattern is initially represented
accurately by the level a synaptic units but as time passes and the value that they
hold decays, the pattern will be modified even as it is consolidated as a result of the
existing connections between neurons.

By altering the time course of learning for each synaptic level it would be
possible, for example, to modify the high level units only late in the consolidation
phase when the value of these units is more dominant in the pattern. This would
increase the tendency for the weight value of the high-level synaptic units to self
amplify rather than being dominated by the randomly distributed patterns.

10.10.3 Conclusions

This section has presented a number of avenues for increasing the capabili
ties of the network by increasing the complexity of synaptic behaviour. The use of
more complex synapses may facilitate a whole new level of complexity in the
model but brings with it the burden of more complex analysis.

Learning Strategies 289

10.11 Memory Capacity of a Network Using Learning
Hierarchies

The analysis of the storage capacity has not been attempted as yet. Compared
with the simpler schemes of the static and dynamic networks already presented
there are two sources of added complexity in the learning hierarchies model.

The feature extraction performed by the network is intended to increase the
storage capacity by extracting essential characteristics from the patterns. Just as
would be observed in a multi-layered perceptron (MLP), however, the network is
able to generalise (to some degree) by generating output in response to previously
unseen input using its extracted features. Thus, the network can no longer be ana
lysed purely on its ability to retain and recall known patterns but rather to make
correct assignments on the basis of category,just as an MLP does.

The second source of complexity is the fact that the patterns themselves are
deliberately modified as a result of learning. Thus the distinction between an error
and a modified pattern must first be made. In the context of the evolving network
in which the relations between patterns must evolve with the patterns themselves,
the identification of this boundary is not easy to define. But this is a first step to
assessing the true quantity of information stored in each pattern vector.

10.12 Discussion

The implementation of learning hierarchies that has been presented in this
chapter represents only one possible choice of the options and parameters that are
possible. The values of the parameters were chosen in an ad hoc fashion, though in
depth analysis will no doubt allow more optimal selection even for the simple algo
rithm. It is possible that alternative algorithmic choices will lead to a learning per
formance which shows the advantages of learning hierarchies, although it is
unlikely that there will be a single set of optimal parameters, merely optimal solu
tions to a set of constraints imposed by a given problem.

It is also important to note from the architectural development of chapter five
that the network equivalent of inheritance (intended as the mechanism by which
the network will implement generalisation) is not necessarily realised by this learn
ing hierarchies approach. However, it is envisaged that correct tuning of learning
hierarchies will facilitate inheritance, subject to additional constraints which
remain to be elaborated.

What has been shown in this chapter is a range of new network options,
which may be applicable in addressing the stability-plasticity dilemma. The envis
aged goal of the approach is that the volatile element of each weight vector can
aggressively adapt to represent a novel pattern or mapping, while producing little
impact on the network's ability to implement its existing mappings. The less vola
tile, slowly adapting elements of the same weight vector have a different set of
goals, placing more emphasis on global features and optimal representation of data

Learning Strategies 290

rather than learning after a single presentation. The range of elements in between
these extremes seeks to smooth the transition from short to long term memory. A
by-product of assimilation in this scheme is that the pattern must adapt to the net
work as well as the network to the pattern; a concept which has not received much
attention in the literature to date.

Even with the learning hierarchies approach (using an admittedly simple
learning algorithm as an example) is has not been shown that the capacity of the
network has reached the sort of levels necessary for the type of system envisaged
in the architectural development. However, the foundations upon which learning
hierarchies are based is viewed here as a starting point for explorations into new
and more complex learning algorithms which are capable of the required level of
mass storage. More detailed analysis is needed to thoroughly investigate the ave
nues that have been opened up in this preliminary investigation. It would seem
appropriate to bring stochastic analysis to bear on the problem, since the network
acts as a state machine subject to noise, which makes the transition matrix itself
stochastic in nature.

10.13 Conclusions

This chapter has quantified a number of key ideas that were developed in the
context of symbol encoding for the architecture presented in chapter five. In it, the
notion of a complex synapse made up of a number of parallel units each with its
own set of parameters was developed and analysed. Learning, on both the short
and long term timescales was presented as the re-arrangement of synaptic weights
between the parallel synapse units of multiple neurons. In the course of this presen
tation, a range of possible architectural options was considered and contrasted.

The described benefits of synaptic rearrangements were manifold: to opti
mise the data structure by maximising the reuse of existing connections; to mini
mise disturbance to existing memories during consolidation of new patterns; to
provide a potential solution to the stability-plasticity dilemma and to enable classes
of memories to be created, using a priming pattern to access them. The drawback
with the scheme was that the patterns themselves were modified as a result of con
solidation reducing the information contained in each pattern but permitting more
optimal storage and faster consolidation of each pattern.

It was noted that a more detailed study of the concepts of learning hierarchies
would be necessary, probably based around the theory of stochastic processes.
Several new avenues of exploration based on more complex learning or synaptic
structure were proposed which may lead to improved performance and storage
capacity but at the same time would require more involved analysis.

The next chapter brings together the threads that have been woven through
out the thesis. It explores some of the questions that remain unanswered and some
of the high-level architectural issues that must be addressed to create a general
neuro-symbolic processor.

Learning Strategies 291

CHAPTER 11

11.0 Introduction

Towards True
Neuro-Symbolic
Computation

As the final stage of the work, this chapter presents an attempt to draw
together the different threads that have been presented and to try to bridge some of
the gap between the work as it stands today and the realisation of a general purpose
neuro-symbolic computer. By attempting to unify what may appear to be unrelated
material the principle disadvantage is that the ideas presented in this chapter are
more like pointers to future work than solutions in themselves. Hopefully they
form a valid framework in which to accelerate future progress. Like the architec
ture and learning hierarchies chapters that have preceded it, this chapter describes a
number of independent ideas. The serial nature of writing forces them to be pre
sented in linear fashion.

The first section sets the scene by presenting a few key impediments that still
stand between the connectionist and his goal of constructing a general purpose
intelligent system, which we now tacitly assume will be a neuro-symbolic system.
For some of the topics that are raised, the discussion will go no further in this the
sis. The exposition of meta-knowledge is one such topic. For others, this section is
only a starting point and the remainder of this chapter will try to widen the scope of
the discussion. In many cases the goal is to bring together some of the pieces
developed earlier that did not seem to fit anywhere, including drawing from the
work of others as reviewed in the second, third and fourth chapters. Hopefully by
the end of this chapter a more coherent whole will begin to emerge.

To help develop the processing model, the next section reviews the roles of
hierarchy and modularity in a general purpose component for an intelligent system
by considering the compromises that must be made to an ideal module to take real
ity into account.

The third section looks at alternative rule-based algorithms to the forward
chaining used in most rule-based architectures. It is particular concerned with
highlighting the fact that hooks are already in place in the neuro-architecture pro
posed in this thesis to accommodate a range of such alternatives in a relatively
seamless fashion.

Towards True Neuro-Symbolic Computation 292

The failure of current neuro-symbolic systems to provide true parallel
processing is the subject of the next section. Alternative strategies for parallel
processing are considered, leading to further constraints on the symbolic encoding.
The importance of managing finite resources is considered and used as the impetus
for an alternative theory of intuitive reasoning based on unguided sub-symbolic
processing.

The final section presents conclusions and discussion on the main areas for
future research arising from work in this chapter.

11.1 Barriers to the Connectionist Dream

Since the publication of the PDP volumes (Rumelhart & McClelland, 1986),
a certain air of expectation has existed throughout the connectionist community
that at some point it would be possible to construct a connectionist system that
would outperform all existing rules-based, symbolic systems in all categories in
which they currently excel: problem solving, flexible application of knowledge,
systematicity, etc. But more than a decade after the gauntlet was thrown down, so
to speak, that day has not yet arrived and despite the considerable progress that has
undoubtedly been made there are a number of key issues that are perhaps not as
central to the debate as they should be.

This section reviews some of the expectations that have been put forward for
neural networks as a framework for reasoning systems and identifies key areas
which need further exploration. They are, in the opinion of this author, barriers to
the realisation of efficient neuro-symbolic systems. The aim here is to reiterate the
importance of these areas of research and to explore the issues in greater depth.

11.1.1 Common Mechanism for Rule & Intuitive Processing

In his 1988 paper, Smolensky defined two types of processing that he
expected an intelligence system to be capable of. One of these was a rules proces
sor and the other an intuitive processor. He likened the rules processor to the many
symbol processing architectures proposed in the AI community. But to Smolensky
the types of operations performed by the intuitive processor could not be easily
captured by rules and it was here that he envisaged a connectionist approach to be
more appropriate.

But beyond his account of the two types of processing was the even more
radical notion that both types of processing could be performed in the connection
ist framework, since (among other benefits) such an approach could provide a bet
ter explanation of how rule following and rule breaking behaviour could be
handled seamlessly together.

This view is also adopted here. It is not enough for us to create a system
which merely implements rules following. It is also not enough to create a system
which, like a Boltzmann machine, can simulate "feats of intuition" using a settling
procedure. Instead we are looking for a single network which has a continuum of

Towards True Neuro-Symholic Computation 293

modes of operation, the extremes of which one could describe as strictly rules fol
lowing and strictly intuitive. Since this is a major topic, it will not be pursued fur
ther in this section. However, the requirements for co-existing rules-based and
intuitive processing will be developed in later sections (see section 11.3, page 310
and section 11.4, page 319).

11.1.2 Emergent Computation, Even of Symbol Structures

One of Fodor & Pylyshyn' s major criticisms of the connectionist approach in
their 1988 paper was that even if neural networks were able to demonstrate key
properties such as systematicity and productivity (which they saw as crucial to
developing truly intelligent machines) then such networks would be merely imple
menting classical, symbolic algorithms anyway. But central to Smolensky's phi
losophy was that, on the contrary, it would be possible to construct a neural
network that, in addition to demonstrating the necessary properties would have
additional (but also vital) properties, undreamt of in the symbolic philosophy,
whose identification would vindicate the whole connectionist approach.

In the early years following the SmolenskylFodor debate several of the
researchers working in the field addressed this point. As presented in chapter three,
work by Pollack, Chalmers and Chrisman attempted develop the idea of distributed
representations from merely an efficient means of compressed storage (requiring
symbol structures to be decompressed before use) into an encoding scheme which
was intrinsically useful (that is, facilitating direct manipulation of compressed data
during processing without the explicit recovery of constituent structure). Why
would we want to do this?

There are a number of reasons. First, we assume that operating on a packed
vector will be more efficient than unpacking the vector, operating on the individual
pieces and then, potentially, re-pack the result into a certain form. If it is possible
to achieve all of these individual operations in a single step, this would appear to
be desirable. But it pre-supposes that the single step operation requires fewer com
putational resources than those required to unpack, transform and then re-pack the
symbol structure. We must be sure that the format of the compressed vector is such
that we can meet this constraint.

Another reason for operating on compressed vectors is that it might be possi
ble to reduce the amount of resources required for storage in long-term memory.
However, this is not guaranteed. For example, it is unlikely that the compressed
formats proposed by Pollack et al. would require fewer resources for storage than
the original structures. This might seem to be at odds with intuition since in each
case a set of vectors each of size K is compressed to a single vector of the same
size. It would be easy to assume that this single vector would require less resource
to store it than the complete structure. But the information content of the com
pressed vector is approximately the same as that of the original structure. The
binary bits of the individual vectors have been transformed into multi-valued out
puts in the compressed format and so all of the original information has been pre
served.

Towards True Neuro-Symbolic Computation 294

Notice that this stands in stark contrast with the symbol encoding proposed
in this thesis. A key point in the architectural development of chapter five was to
argue that symbol should explicitly represent only that information which was
needed for the type of operation in which it was used, together with sufficient
information to retrieve the full content that the symbol replaces. This alternative
compressed format need not have the same content as the original structure and so
it should require fewer resources to store it than the original. The issue then
remains as to whether the content that is not readily accessible can be retrieved in a
sufficiently short period of time to be practical. In a well designed and efficient
system the more often we need to access the information the less time and energy
we should need to spend retrieving it.

This leads us on to the mechanism of processing that we would use with such
compressed vectors. Consider the syntactic transform proposed by Chalmers. His
network permitted one compressed vector to be associated with another, with the
intent of extracting the underlying structures of the two formats as a means to
implement generalisation (where generalisation in this case is akin to productivity
in the nomenclature of Fodor and Pylyshyn). In this regard he was partially suc
cessful although the mechanism was not very robust.

The goal that both he and Chrisman were seeking to attain is a vitally impor
tant one. Without achieving it, it is doubtful that the superiority of connectionism
as an alternative to the rule-based paradigm will be demonstrated. Ultimately, what
we want to achieve is a processing mechanism that uses spreading activation
between neurons that are capable of setting on new (i.e. never before seen by the
system) patterns that can be unpacked to reveal hidden structure. To do this, the
sub-symbolic operations that are causally related to the network's connectivity
must somehow implement syntactically correct transforms at the symbol level.

One of the major problems that Chalmers and Chrisman had with their inter
nal representations was in the use of the back-propagation algorithm, which,
despite its ability to handle a wide range of association problems, is actually
unsuitable for such work for a number of reasons.

The most important of these, as has been stated, is that the structure of the
internal representation is not well controlled. The global structure of syntactic rules
is inseparable from the rawest association between example vectors. For the pur
pose of this discussion we will refer to the structure that does develop through
back-propagation as weak structure. Traditionally, it is almost with pride that con
nectionist researchers announce that their internal representations are indeciphera
ble by humans. Any hand-crafting in the structure is seen as somehow unclean or
sub-optimal.

But it is perhaps erroneous to suppose that having weak, unconstrained,
structure in an internal representation will lead to better performance. There should
be a way that allows the representation to develop more complex structure without
making it necessary to constrain how it achieves it at a high level. One way to do
this would be to build structured learning directly into the learning algorithm at the
neuron level. Structured learning, leading to what we will refer to as strong struc-

Towards True Neuro-Symholic Computation 295

ture, could be interpreted as putting richer information at the disposal of the learn
ing algorithm than the firing or silence of bits in the current vector. Although more
structured techniques such as adding a momentum term to the learning algorithm
have proved successful in MLP simulations, it is often the case that consecutive
learning trials are unrelated and it is not clear whether the momentum term is help
ing in a systematic manner.

This thesis has outlined a number of new approaches to learning structures
using a hierarchy of independent synaptic layers. The intention of these
approaches, based on the far more predictable performance of associative memo
ries, is to address the limitations of back-propagation in this regard by providing a
robust and predictable alternative. The underlying assumption of this approach is
that the structure that exists in the multi-levelled weight vectors will allow the
internal representations to develop on several level simultaneously. Structure that
exists in the input vectors at any particular level will be self-reinforcing and hence
will be extracted.

More work is required to justify these expectations and to fully explore the
many options that learning hierarchies could offer in this regard. Certainly, the
results of chapter ten have not yet shown that trust in this approach is justified.

As a final point about the problems of back-propagation (although less rele
vant to this discussion) we mention briefly the well known problems of back-prop
agation requiring a large (but unpredictable) number of learning trials to converge
on an acceptable representation, as well as the fact that convergence is by no
means guaranteed.

Returning to the main topic, there is other reason for operating on com
pressed vectors rather than whole structures. It is that such an approach might per
mit us to process more than one piece of information at a time, leading to an
improvement in processing efficiency. This possibility is discussed in more detail
later (section 11.4, page 319).

The figure below shows how a given input structure is first translated to a
compressed format and then undergoes a series of transformations, T l' T 2' etc. At

each step of processing, it would be possible to re-extract a symbol structure from
the distributed internal representation.

In Chalmers' network, a single transform T 1 was effected between two pre
viously learned formats and even this on its own was an impressive result. But we
require a level of systematicity that goes much further. Not only must we be able to
perform transform T 1 and then unpack the results into a separate symbol structure

but we must also be able to perform a series of transforms, T 2'-> Tn' For each

transform, there may be restrictions on what counts as acceptable input but the sys
tem cannot verify in advance that any given series of valid transforms will preserve
the syntax of the original structure. We see that performing multiple transforms in
series on the compressed vector places demands on the fidelity of each transform:
accumulated error must be kept within known tolerances or else we risk losing the
structure of the symbols.

Towards True Neuro-Symbolic Computation 296

~
j~

Input
Symbol

Structure

--Tl

Distributed, Internal Format

~
"

Output
Symbol

Structure 1

....

.....
T2 ~

"

Output
Symbol

Structure 2

"

Output
Symbol

Structure n

Fig. 11-0 Desired mode of computation in a neuro-symbolic processor.

So the syntax of the compressed vectors must be systematic and productive,
as Fodor & Pylyshyn demand, but also robust. It is hard to believe that a system
could learn to effectuate whole series of transforms that could occur in any order
by slowly learning each one independent of the others. It seems reasonable to
depend on a more structured learning that can identify generic and essential fea
tures to act as keys in the transformations and to ensure that vital structure is
passed on with fidelity.

To ensure this, we must define enforceable rules for the ways in which the
compressed formats are composed and transformed. If these rules are specified
(and hence enforced) at the symbol level, as they would be for a classic AI archi
tecture, then the battle is already lost. A sub-symbolic architecture would be
impractical if some external agency was required to police representations at the
symbol level. Thus, we can take it as a constraint that the rules must be specified at
a sub-symbolic (Le. neural) level.

The only way to enforce rules at the neuron level is to build them into the
fabric of the network by way of the network update procedure and the learning
algorithms which change the strength of connections. This is where the notion of
emergent computation comes into play: the rules which govern the systematicity of
the whole are specified only at the local level. Global order must emerge from
local ordering.

In the work of Chalmers and Chrisman, it was the lack of sufficient rules at
this level which leads to a lack of control over the structure of the compressed
layer during learning. This in tum is a limiting factor on the ability of the network
to generalise.

Towards True Neuro-Symbolic Computation 297

11.1.3 Meta-information during Processing

An anecdote that seems to reappear from time to time in the public domain is
that the main difference between a human being and a computer is that, when
given a question for which it does not the answer, a human being will tell you that
he does not know, a computer simply does not know that it does not know. This is
of course a simplification, but it does bring to light another key issue that must be
addressed by connectionist implementations of symbolic systems: dealing with
what we might call "meta-information" during processing. Consider the following
example.

Imagine a university department that decides to test two different systems to
store details of every staff member. The first system is a Hopfield-like network in
which each record is stored as an attractor state, while the second is an off-the
shelf database package for a PC, using a normal record format with fields and asso
ciated values. When the two systems are given a partially correct name, the net
work can often complete the name and return the department and office number of
that person. The database also has algorithms that allow it to retrieve any name that
matches most of the letters and produces a correct answer almost as often as the
network. But what happens when the name given is nothing like any of the stored
names? The PC checks against all of its records and returns a message like "no
matching record". It knows that it doesn't know. The network on the other hand,
has to settle into an attractor corresponding to the nearest stored pattern and there
fore it eventually returns a valid result, unfortunately the wrong answer.

What is missing is information above and beyond the record information that
was stored. This meta-information should be able to indicate that the network
could not converge, and that the process initiating the retrieval must conclude that
it doesn't know the answer.

This is one example of meta-information. In their work on attractor net
works, Amit and his co-workers simulated sequential processing using a Hopfield
network as the main body of a state machine. At each timestep the network was
required to settle into a new state corresponding to the appropriate output vector
and new state. This was fed back for the next cycle. The failure of the network to
reach a stable state after a fixed number of network updates was signalled as a
"don't know" state. (Amit, 1989).

There are two problems with this approach. First, the "don't know" signal
did not exist in the same representation space as a normal result. This means that
the loop is broken between the network's output and its input. The system cannot
process the fact that it doesn't know in the same way that it processes normal data.
It needs a homonculus to watch the network state and to signal different behaviour
if something goes wrong. That is a mechanism that we want to avoid. Secondly, a
simple "don't know" signal conveys little information that is useful in deciding
what the system should do next. If we assume that it must be capable of deducing
the cause for the failure and taking corrective action (perhaps seeking out new
information or trying other memory cues in the case of retrieval failure) then the
control process (itself a neural network) should have more information about what
went wrong, including the opportunity to dissect a partial result.

Towards True Neuro-Symbolic Computation 298

[Note that in the architectural development, the use of context information in
the symbol encoding (such as 'Paris_city') was suggested as a means of detecting
failed convergence. The '_city' tag, suitably encoded, provides expected content
for the control process so that failure to retrieve something with this tag indicates
that the recall is probably invalid. See section 5.4.5, page 126].

A second example of meta-information that needs to be addressed in the
same manner as the "don't know" signal is an indication of the difficulty that the
system has in retrieving a piece of information from its memory. In a simple asso
ciative network, as discussed in detail in chapter three, each new traced stored in
the network reduces the margin for the retrieval of other memories. In more com
plex storage prescriptions, such as learning hierarchies approach of chapter ten,
there may be other impediments to retrieval, such as the inability to set-up the right
cue, or degradation of the storage of access pointers. In all of these cases, problems
or potential problems with retrieval must be brought to the attention of the system
to permit corrective action to be taken. (Such corrective action might include re
learning or re-coding problematic memory traces).

A third and more subtle example of meta-information, related to the second,
is becoming aware of the fact that a particular set of facts is difficult to learn. The
system may have an expectation of the degree to which it should have forgotten the
information after one presentation, say. Due to the re-coding of information in
terms of existing information, as outlined in the previous chapter, it is likely that
some new facts will be easier than others to relate to known data, leading to differ
ences in learning efficiency. Any divergence from expected tolerances (for better
or worse) would be useful information to bring to the attention of the system.

The fourth and final example of meta-information is, perhaps, the most
important and its presentation will occupy the rest of this section. It is the opinion
of this author that finding a mechanism to capture this class of meta-information in
a more useable form is one of the key requirements (if not the key requirement) for
closing the loop and allowing us to construct intelligent autonomous machines.

The critical focus for our attention should be the comparison operation
between symbol structures: traditionally it produces meta-information but it must
be remodelled as a subtraction operation over distributed representations of sym
bolic structures.

By comparison operation we mean a process taking two inputs from the
same representation space (usually vectors in connectionist networks) and produc
ing a scalar output indicating their similarity based on some metric. By a subtrac
tion operation we mean a process which takes those same two inputs and produces
an output in the same representation space as the inputs that is in some wayan
image of the exact differences between them. This output could be immediately
reused as one of the inputs in an identical subtraction operation. As before, by
meta-information we mean an output that is coded in a different (usually less
descriptive) representational space than the inputs.

Towards True Neuro-Symholic Computation 299

The reasons why the subtraction operation is so important are twofold: first it
provides more detailed information on the differences between the inputs that can
be used to trigger a more finely tuned set of follow on operations; but more impor
tantly, the result exists in the same representational space as the inputs. This is cru
cial since it is a necessary condition to allowing knowledge about knowledge to be
derived in an automatic manner. It permits the system to reason about what it
knows. This was the key element that was missing from the marker passing net
works of Lange & Dyer, Shastri & Ajjanagadde and Sun (see section 4.3, page 97).
So the model of processing is now:

Data Output
Network Formatter

Output
Senso~ D Effectors

~

Input
Preprocessor

~
Control Subtracter
Network

Fig. 11-1 Control of data network using subtraction.

In the figure is a revised diagram for the system. For this discussion we can
ignore the input and output processing networks. Their function is to act as appro
priate interfaces to the environment. Our concern is with the central loop, consist
ing of the control network, data network and the subtracter.

The control network produces patterns which guide the transitions of the data
network (this idea was pursued in chapter nine although the results obtained thus
far are not sufficient for our purpose). We would expect that the control network
does not require (and would be confused by) the entire data pattern coming from
the data network. In fact, it is concerned only with a set of key elements from the
data structure which are needed to generate the next control pattern. Hence we
require a notional third network.

The new network is located between the two main networks and acts as both
a filter and a subtracter. It must filter the data output to remove the irrelevant
details that make no difference to the computations required for control, leaving a
skeleton of the structure. Then it must subtract a representation for the expected
skeleton structure leaving a new structure, one which represents the differences. It
is this structure which must somehow contribute to the decision of control pattern
for the next "cycle".

Towards True Neuro-Symbolic Computation 300

The requirements for subtraction place new demands on the encoding and
retrieval operations of the network. For encodings, we now require not only that
each vector represents a valid symbolic structure but that even the subtraction of
two such vectors represents a valid symbolic structure. Clearly, the choice of repre
sentation is now much more constrained. To progress further we need to know
more about the mechanism behind the subtraction.

Two scenarios present themselves readily to mind that differ in the onus they
place either on the representation or on the subtraction mechanism. At one extreme
we could aim for a simple vector encoding and ignore any requirements for sub
traction. This leaves all of the work to the "subtraction" algorithm and would prob
ably lead to a highly complex operator, needing a large resource to execute it. For
example, it might be required to process the vectors bit by bit, or extract features
from each vector and correlate them to ascertain the probable points of commonal
ity. Note that although this operation carries the name "subtraction" the operation
it is required to perform may be considerably more complex than a standard sub
traction between two vectors.

At the other extreme, we could devise an expansive vector representation,
hand-crafted to make subtraction easy. The subtraction operator itself might be a
sim~le as executing true vector subtraction between two multi-valued n-bit vec
tors . The price we pay here is that the vectors themselves might be much longer
than those in the other case. They may also be ill adapted for use elsewhere in the
network. In the manner of all engineering problems, we would try to select an
appropriate compromise between the two extremes as the best balance between
competing requirements.

The other constraint that the subtraction operation places on the architecture
is in the act of retrieval itself. We view retrieval as the central operation of the net
work. Even computation is viewed as retrieval, although the patterns retrieved
might never before have been produced by the network. If the output of the data
network is often gibberish, then the subtraction that follows will presumably pro
duce gibberish as the output. This is certainly an indication to the control network
that something went wrong with the retrieval, but offers little insight into how to
put things right. Thus, it is important to avoid producing a nonsense result from the
data network. Even in the case of failure, we would like the pattern produced to
carry some useful information. Enough to guide further useful operations from the
control network.

Taking a step back, we note that the control network itself must also transi
tion from one valid structure to another. If the control network fails and produces
gibberish then the whole system state would soon collapse into chaos. There
appears to be no network to monitor the control network and make changes to its
patterns in times of difficulty. (Quis custodiet ipsos custodes? P

1. Although the use of K-from-N coding at the lowest level would require even the simplest of subtraction algorithms
to be more complex than this.

2. Who guards the guards? Juvenal, Satires, VI, 347

Towards True Neuro-Symbolic Computation 301

We are therefore obliged to ensure that the control network output remains
consistent and coherent. Once we have devised a mechanism to do this, it should
then be straightforward to reuse the same mechanism in the data network. This
probably necessitates a particular way of working at the lowest levels of the sys
tem: the synapses, their dynamics and the learning algorithms that they employ.
Earlier work in learning hierarchies, together with speculation of further enhance
ments to synaptic function, could provide a framework in which to realise the level
of dependability and robustness needed to make such a system work (see section
10.1, page 255 and section 10.10, page 288).

11.1.4 Conclusions

This section has discussed a number of the results from the literature in terms
of the objectives they were seeking to achieve and why the results they obtained
fell short of those objectives. In doing so the aim was to highlighted a few key
areas in which further work is urgently required if we are to realise the potential of
the connectionist approach.

The first such area was the co-existence of both rule-based and "intuitive"
behaviour within the same network. Next we considered the requirement to have
entire symbol structures emerge fully formed from the co-operative interaction of
many neural elements.

The transformation of meta-information into a form that can be manipulated
by the system is one such operation. The subtraction operation between symbol
structures in vector form is a particularly important example of this category.

11.2 Issues in Hierarchy and the Limits of Real Components

The development of a neural building block suitable for the implementation
of a general purpose neural computer has occupied most of the thesis. From the
simple static K-from-N coding, through dynamic patterns to the complex synapses
of learning hierarchies the goal was to optimise the performance of a fully con
nected region of N neurons with respect to the goals (such as memory capacity,
reliability, etc.). Progress was made in this area although the work is far from com
plete.

The logical next step, having attained a working building block is to consider
issues in their interconnection to form a complete system. Some important issues
in this development are presented here, albeit in qualitative form.

The intention of this work has always been to view the neural building block
as fitting into a general purpose module of two parts, each performing a compli
mentary function. The first part is required to recei ve inputs from other such mod
ules and transform them into a form that can be used internally by the module. The
second part is required to generate an output which is of a form that is usable by
other (structurally identical) modules in their own processing. This simple input!
output structure is standard and unremarkable as an engineering concept. It also

Towards True Neuro-Symbolic Computation 302

seems to have relevance as an explanation of the structure of the so-called "hyper
column" of neo-cortical organisation (see, for example, Calvin, 1995).

For the purposes of this discussion, we will refer to the input part as the rec
ogniser and the output part as the action generator. This section considers ways in
which both structures must be modified to take into account real world constraints
such as learning, maximum fan-in and redundancy. We begin by considering the
ideal module, free from these extra constraints.

11.2.1 The Ideal Module

The ideal module consists of two layers of neurons (the white triangles) sep
arated by a I-from-N selector. Each layer is effectively infinite in size. Each neu
ron in the input layer receives data from all sensors. Each matches the pattern it
receives with its stored vector, as in a Kohonen net. The winning neuron is that
which has the highest potential. This neuron is allowed to fire by the I-from-N
selector. In the ideal case, using an input layer of infinite size, this is sufficient to
classify any input vector into a unique I-from-N code.

In the second half of the network the I-from-N code is transformed into the
required output (or action) vector. Output neurons make a connection from every
neuron in the input layer (by way of the winner-takes-all network). Since the input
to this layer is I-from-N coded, the translation to the output vector is a trivial one.

Data flow in the module is uni-directional, from input to output. Each neuron
in the input layer receives all of the information necessary to make the correct deci
sion, there is no need for feedback or any other type of interaction between neurons
(such as interconnections within the same layer).

This module can be replicated and whole sets of such modules can be inter
connected to form more complex systems, as required. However, the fact that datu
from all of the systems sensors could be supplied to one module implies that a sin
gle (but ideal) module would be sufficient for any purpose.

This account of the ideal module does not address issues of learning (that is
to say how the individual neurons came to exhibit the correct behaviour), as such
considerations form part of the limits imposed by reality (which follow).

Towards True Neuro-Symbolic Computation 303

Output
Neurons

1-from-N
Selector

Input
Neurons

Fig. 11-2 The ideal module.

Output (Action) Vector

Input (Sensory) Vector

Output
Receptive

Fields

Input
Receptive

Fields

Now, we consider the changes that must be made to take the issues of engi
neering reality into account. The main areas that will be considered are layer size,
fan-in, locality of data, performance, learning and redundancy. A counter require
ment of generality is also discussed.

11.2.2 Limits of Layer Size

The most obvious restriction on the ideal module is that the layers cannot be
infinite in size. Indeed, reducing the amount of resources required for the system is
usually a key driver in the design process since resources equates with cost.

Therefore, the first area of investigation will be the effects of a finite layer
size. Clearly, it may no longer be possible to provide a dedicated detector for each
feature in the input space (we will make this assumption for the rest of this discus
sion, but it is a reasonable one for the type of systems we are considering). Two
common solutions, often used together, are distributed representations and hierar
chy.

The meaning of distributed representations is well known to most connec
tionists, but is redescribed here to help raise two important points. In a distributed
representation, a single neuron will fire for many patterns, but the collective pat
tern across the whole layer is usually needed to uniquely identify the object being
represented. The advantage of such a scheme is that, from only N possible I-from
N codes in the original network, the number of distributed (binary) codes is expo
nential in N (chapter six gave more details on the coding issues).

Towards True Neuro-Symholic Computation 304

There are two important problems which distributed representations intro
duce, however. The first is that modifying a neuron to learn a new pattern disturbs
all of the learning that has taken place for other patterns. This is the stability-plas
ticity dilemma, about which chapter ten had much to say by proposing the learning
hierarchies principle as a possible (but non-ideal) solution.

The second issue is that there is no longer a single point in the neural layer
which can be used to identify the object being represented. The meaning is spread
out. We would need to construct a (perhaps virtual) layer above the distributed
layer to detect the pattern of '1 's and 'O's that make up a given valid code to 'refo
cus' the meaning back into a single neuron (to rebuild a I-from-N code). But by
extending the argument for this module to all the other modules in the system, it is
clear that creating this refocusing layer serves no purpose. Therefore, the network
should be composed entirely of interacting layers using distributed representations.

Turning to the other means of better using finite resources, that of adding
hierarchy, we see that such an approach depends on finding sub-patterns of com
monality between input patterns (features) and using the first layer neurons to
extract them. Subsequent layers perform the same task but on the output of the
level below. In order for this to work, there must already be structure in the input
patterns themselves so the success of hierarchy as a technique for improved effi
ciency of resource usage depends on the existence of redundancy in the input vec
tors.

11.2.3 Limits of Fan-in

In real systems, individual neurons can not have infinite fan-in. If we are to
build a large network (that is, one with perhaps millions or even billions of neural
units) it will be almost impossible to allow every neuron to make a connection with
every other. Thus, we will assume that the ideal module, in which every neuron on
a given hierarchical level receives input from every neuron on the level below, is
unachievable and we must restrict the inter-neural connectivity. This can be done
by breaking down a single layer of high fan-in components into a hierarchy of
lower fan-in components. Such a technique is employed in electronic design for
logic synthesis (see, for example, Weste & Eshraghian, 1992). Reducing the maxi
mum fan-in of each component always leads to an increase in the number of levels
of hierarchy.

Restricted fan-in introduces a new problem to the design process. It is now
no longer possible for a single neuron at one level to see all of the information at
the level below. Therefore, winner-take-all processes must operate only on sub
populations of the entire layer and it is left for neurons higher in the hierarchy to
bring together the results of disparate groups in order to make a unified decision.

Towards True Neuro-Symbolic Computation 305

Layer Z o
/ "'" Virtual cut-ofT -- - - -"7 - - -~ - - - - - (see text)

°xOXO~ ~Neuron
Layer Y

A B c D

Lower layers and Input Sensors

Fig. 11-3 Hierarchical Network with Limited Fan-in Neurons

The figure shows how the receptive fields (as they are referred to in neuro
science) of the neurons are limited (to three neurons in the layer below in this
example). The three layers X, Y and Z could occur anywhere in the hierarchy. So
the input to layer X could be directly from the sensors or from a lower level. The
letters A, B, C and D refer to signals arriving in the different receptive fields. They
could be from sensors or from lower level neurons, as noted above.

Note that the hierarchy has been drawn as a triangle, with fewer neurons at
each higher level. This need not be so. The actual numbers would depend upon the
complexity of the input pattern structure (a point we come to in the next sub-sec
tion).

To detect a feature which depends on sensory events A and B, a neuron at
level X is sufficient since the two signals are within the receptive field of one neu
ron at level X. A feature which required the simultaneous presence of events at A
and C would only be detected at level Y since the data from two level X neurons
must be combined. Similarly, features involving events A and D could be detected
first at level Z.

The virtual cut-off represents the fact that the hierarchy does not reach the
level at which items are represented as I-from-N codes, as described for the ideal
module. Instead, we must reach a level in which the coding is still distributed but
no further merging can occur. Either this layer contains few enough neurons for a
single K-winners-take-all mechanism to produce a solo representation of the object
(as a K-from-N code) or if not, some way to combine the results laterally in multi
ple steps must be found. The third alternative is to allow parts of the output code to
remain unaffected by other parts so that a form of schizophrenic coding occurs. We
take this choice to be unacceptable since the system will not be operating as a sin
gle entity.

Towards True Neuro-Symbolic Computation 306

As it turns out, the problem of handling the virtual cut-off resolves itselfas a
by-product of resolving the final question in this sub-section. It is this: if we wish
the module to be general, how can we decide in advance how many neurons to put
in each layer of the hierarchy and how many layers we need?

Trying to add extra neurons as the need arises (an approach taken by the
many ART networks of Grossberg, (such as Grossberg (l976a)) is counter to the
philosophy of this work since one of the main goals was to build a general purpose
system which could be physically implemented. Adding neurons on a module-by
module basis is not in line with this strategy. This dilemma gives rise to the coun
ter-requirement of generality.

11.2.4 Counter-requirement of Generality

The last sub-section described how a hierarchy makes it possible address
real-world constraints on the network design but seems to force the designer to
allocate resources in the form of the number oflayers and the composition of each
layer before the network has been constructed, perhaps even before the target
domain of application is known. This is something we wish to avoid, if possible.

The alternative solution is to collapse the hierarchy and move the burden for
maintaining its function from the neural level to the synaptic level. This can be
done conceptually in two steps as shown below overleaf.

In the frrst step, the hierarchy is collapsed to form a single layer. Note that
the function of each neuron is preserved, as is the connectivity (not shown in the
figure). This step represents the mixture of neurons into a single layer. Adjacent
neurons on the same level may now be representing features at different levels of
complexity. But the mix of neurons (i.e. how many are from each level) and the
hierarchical connectivity between them are still preset, so the goal is not yet
achieved.

• • • • • • • • •

• • • • • • • • •

Fig. 11-4 Collapsing the Hierarchy to Preserve Generality

Original Hierarchy

Collapse to a
Single Layer

Distribute Hierarchical
Significance

Towards True Neuro-Symbolic Computation 307

In the second step, the hierarchical label for each neuron is removed, so that
any neuron may now represent a feature at any level of the hierarchy. Neurons are
now fully inter-connected. An incoming pattern of activity begins by activating
neurons corresponding to the lowest level of feature detectors. These, in tum acti
vate neurons on the second level due to internal connectivity, and so on up the vir
tual hierarchy. To an external observer the act of recognising an input pattern
would appear as a spatio-temporal pattern playing across a single layer of neurons.

The final pattern achieved would need to correspond to the output of the
highest level of virtual neurons. It might be static or dynamic, depending on the
architectural design. Note that for one pattern a particular neuron might fire to rep
resent a low level feature while for another pattern that same neuron might repre
sent a high level feature. Thus, we have extended the notion of distributed
representation, allowing a distribution across hierarchical layers to take place. Just
as for standard distributed representations there are issues of cross-talk, but in a
similar fashion a large enough layer can theoretically take care of any given level
of such representational ambiguity.

This approach should be compared with the development of the neural build
ing block in chapters six to ten. A single layer of neurons was developed that per
formed a pattern recognition and could produce a temporal pattern of activity as
the output. The more complex synapses of learning hierarchies should (with fur
ther work) provide the means to capture the fact that a hierarchical computation is
taking place within a non-hierarchical module of neurons.

Overall, the goals is that a fixed module of neurons can capture of hierarchy
of variable size and complexity by modifications of the synaptic connections. In is
in the synapses that we capture the variable aspects of the hierarchies structure.
This is a much more efficient place to perform this function for two reasons. First,
because no new neurons are added and we assume that neurons and their connec
tions are costly to add. Second, because the synapses will already be present and
we are merely changing their values with learning.

11.2.5 Requirement of the Locality of Data

In the construction of real neural networks (rather than mere simulations) the
high degree of interconnectivity between the neurons causes a considerable design
constraint. This is as true for real brains as for artificial ones; the volume of the
human brain is dominated by the white matter ofaxons, while the computational
grey matter forms only a thin crust around the outer layer of the cortex (see any
textbook on neuroanatomy, such as Martin(1996».

Even though we have insisted that layers are of finite size and that neuron
fan-in must be restricted, so far there has been no restriction on the distance that
any given axon may travel to make connections with other neurons. Neuro-ana
tomical evidence suggests that the pyramidal neurons, which make up the main
information processing and propagation circuitry of the neo-cortex, make connec
tions in particular patterned ways (Calvin, 1998). Connections are either local
(between neighbouring neurons of mini-columns in the same layer), near-local

Towards True Neuro-Symbolic Computation 308

(groups of neurons systematically connection to a neighbouring gyrus, perhaps a
few centimeters away) or distant (groups of neurons systematically connected to
the opposite hemi-sphere or to a sub-cortical structure). The dominant connection
type is local or near-local.

Making connections is costly and resources spent in communication do not
contribute directly to the computational output of the system. Therefore, a sensible
designer would attempt to minimise the distance between communicating entities
and to keep such distances in inverse-proportion to the level of communication
expected (to first order). This would imply placing functional units that were
highly interconnected closer together than units that have little or no communica
tion paths between them.

11.2.6 Requirements for Attaining a Stated Level of Performance

In real-world applications we may find that some tasks can be performed in
an acceptable period of time by a general purpose network acting serially. Other
tasks will be sufficiently computationally intensive or will be needed so frequently
that it will make sense to provide dedicated hardware to subserve them.

Looking at the mammalian brain we see that a large proportion is devoted to
vision. Even within that sensory modality there are parallel entities dedicated to
colour, movement and line extraction (Hubel & Wiesel, 1977). Clearly, the need to
maintain constant visual processing forced nature to dedicate a considerable pro
portion of brain resources to that function.

We expect that a general purpose machine acting in the real world would
also need to dedicate hardware to function such as vision and so we must be pre
pared to construct systems of many interacting modules with some dedicated to
special functions and other more general in purpose. Recall that a similar approach
is anticipated by Aleksander in his Magnus project (reviewed briefly in section
4.4.5, page 113). The eventual system is envisaged as a set of networks each dedi
cated to one sensory modality, interacting with a central network which acts as the
general purpose integrator and planner (Aleksander, 1996».

Creating dedicated modules to handle specified functions demands that care
be taken in determining how the modules interact; whether one dominates the oth
ers, etc. It would seem reasonable to allow the vision module to drive the memory
module during the memorisation of a scene but during the recall of that scene the
route of data would be in the other direction. Considerations of this sort are left to
future work.

11.2.7 Requirements for Learning

The more complex the structure of the input patterns, the more difficult it
will be for a simple learning algorithm to capture and internalise it. This places
restrictions on the size and complexity of the input patterns to the module.

The development of learning hierarchies in chapter ten was intended to
address the main issues in learning for neuro-symbolic systems. The underlying

Towards True Neuro-Symbolic Computation 309

assumption with the learning hierarchy approach is that the input vectors do have
structure, containing a hierarchy of sub symbols that recur in different orders and
positions. The algorithms derived from the basic concept have a common base, that
of mimicking the structure of the data in the structure of the synaptic connections.
Since there are several parallel connections at work on several timescales, there is
an opportunity to extract and learn regularities on several levels simultaneously.

If the learning hierarchies approach differs in any way from traditional learn
ing methods it is in that there is no perfect representation to which the network
tries to slowly converge. It can quickly learn an association on one 'level' and
while simultaneously making progress to learn the association on the others. Thus,
complex feature detectors are slowly tuned as they would be for an MLP, but the
network does not need to wait for them to converge to 'correct' values in order for
the current learning event to take place. In any real-world application this is an
important and desirable property.

11.2.8 Requirement for Redundancy

The final facet of the discussion on the limits imposed by reality on the ideal
module is an obvious and simple one: that of redundancy of representation. The 1-
from-N coding proposed for the ideal module allows no room for the failure of a
single neuron. Any such failure results in a completely different neuron winning
the competition to interpret the sensory data. As discussed in the review of the'
Kohonen network in chapter two, this places the onus on the next stage of process
ing (which uses the result of the I-from-N unit) to produce similar outputs for sim
ilar inputs to attempt a recovery (see section 2.3.3, page 31).

Redundancy allows us to avoid these kinds of problems. This was one of the
drivers for the choice of K-from-N coding for the lowest level of coding in the sim
plest neural building block (chapters six and seven).

11.3 On Escaping the Bottleneck of Forward-chaining Rules

The use of neural networks was inspired, at least in part, by the desire to
escape from the straightjacket which is simple rule-following behaviour. Many AI
researchers who turned to connectionism in the eighties did so because, no matter
how many rules were stored and applied in parallel, they could not bring them
selves to believe that a thinking machine like the brain could be practically realised
in a purely rule-based system (one notable holder of this view being Rumelhart as
described in Rumelhart & McClelland, 1986).

And yet, more than a decade after trying to break away from the rule-based
production system architectures the focus of attention in reasoning systems is still
exactly that: rules-based, but now implemented in neural networks instead of
purely symbolic computers. This was a major criticism of the marker passing
architectures of Lange & Dyer, Sun and Shastri (section 4.3.4, page 105).

Towards True Neuro-Symbolic Computation 310

The intent of this section is to re-iterate the fact that alternatives exist and to
suggest that far more powerful (and flexible) reasoning systems could be con
structed simply by being more bold in bringing together alternatives drawn from
the wealth of already existing approaches. The assumption is that by careful study
of some alternatives we may find much commonality that will lead to an efficient
implementation. However, this section does not constitute an in depth survey of
such alternatives (which is left for future work).

11.3.1 Inverting Rules: From Effects to Causes

The most obvious place to start is to lift the restriction of using rules only in
a forward chaining mode. The original restriction made sense when we demanded
that the rules of logic be followed strictly. It is also useful as a means of generating
actions, as in production systems. Forward chaining, as noted in chapter two, cor
responds to the deductive inference, also called modus ponens. Consider the fol
lowing rule:

fatherOf(X, Y) AND fatherOf(Y, Z) => grandfatherOf(X, Z)

Deductive inference allows us to reach a conclusion relating X and Z if the
two conditions on the left are fulfilled for some X, Y and Z. In this case, the
inverse rule is also safe under modus ponens, but could introduce an unknown. If
we had a concrete example:

grandfatherOf(John, David) => fatherOf(John, Y) AND fatherOf(Y, David)

which is similar to a case studied by Sun (section 4.3.3, page 103) in which
making the inference has introduced an unknown. We know that if David is the
grandfather of John then there is someone else (Y) who is the father of one and the
son of the other. We need to be able to represent that fact, and if it is relevant, ded
icate computing resources to identifying who Y is.

In most cases, however, inverting the rule does not lead to valid inference.
The general rule, such an inference is an inductive one, since we are making a
statement that mayor may not be true. For example, the first rule holds but the sec
ond, created by inverting antecedents and consequents does not:

TRUE: drop(glass) AND material(floor, concrete) => broken(glass)

FALSE(?): broken(glass) => drop(glass) AND material(floor, concrete)

We can be fairly certain that dropping a glass when the floor is made of con
crete will result in a broken glass. However, working the other way, the fact that
the glass is broken does not imply either that it was dropped or that the floor is
made of concrete.

It seems to be often the case with reality that many causes can lead to the
same effect, so that reasoning from cause to effect is safer than reasoning from

Towards True Neuro-Symbolic Computation 311

effect to cause. Even so, it would be wasteful to ignore information that we could
obtain from the inductive leap from a given outcome back to its root causes.

Each of us, drawing on our own everyday experience, knows that we make
inductive leaps of this kind as a matter of course. Upon learning that John will be
late arriving by plane from Aberdeen, we might assume that his plane was late or
there was a traffic jam from the airport. An intelligent system might benefit from
generating possible hypotheses such as this and using them to help plan new
courses of action (such as asking further questions to clarify assumptions).

How might it do this? If we take a rule as being represented as a pattern of
activity then the normal flow of processing (as used in deductive inference) is to
identify which conditions on the left hand side of the rule match for a given set of
variable bindings and use this match to retrieve the pattern for the right-hand side.
(This approach was used in Austin's AURA network, as described in section 4.4.1,
page 108 and is also the basis for production systems and expert systems). We can
easily extend this model by allowing matches to take place on the right hand side
of the rule instead, using this to retrieve the corresponding left-hand side.

When a match occurs, the resulting symbol structure is the LHS of the rule,
with the appropriate variables bindings propagated from the RHS to the LHS and
some measure of the degree of confidence that the system has of the truth of the
result. As noted above, there may be unknowns generated for some variables, but
this is something we must deal with in the forward chaining case anyway (as dis
cussed during the review of Sun's CONSYDERR system, section 4.3.3, page 103).

There are two points to note here. First, the idea of attaching a confidence
value to the output of an inference can also be applied to the normal forward chain
ing case, replacing strict deductive inference with a softer representation based on
degrees of belief.

Secondly, the whole proposal being made here is already described at the
symbolic level in belief networks. The idea behind belief networks is the model the
probabilistic cause-and-effect relationships between predicates leading to a quanti
tative theory to explain and predict events (Russell & Norvig, 1995, chapter 15).
All that remains for us is to properly integrate them into the neural framework.
Using a pattern matching technique to identify matches (or potential matches, in
the case of missing elements) seems like a reasonable way of linking the two but
there has been little work in this area to date. Further development of these possi
bilities is left for future work.

11.3.2 Modelling Multiple, Exclusive Consequents

Another area of rules-based logic which seems to be generally ignored by the
research community is the modelling of multiple possible conclusions. For exam
ple consider the following instantiated rule:

won(Fred, $30,000) => buy(Fred, sports_car) OR repay(Fred, mortgage)

Towards True Neuro-Symholic Computation 312

Here the fulfilment of the conditions (Fred winning $30,000) allows us to
conclude either that he will buy a sports car or that he will payoff his mortgage.
Such mUltiple, exclusive conclusions present a major problem as they lead into the
multiple worlds scenario that will be discussed in more detail later (section 11.4.2,
page 321).

If this rule were part of another intelligent agent's knowledge base, it could
be used to assess the probability with which Fred might take either course of action
(perhaps requiring a search for other information commensurate with that agent's
goals). If it forms a part of Fred's own reasoning system, the rule could be viewed
as an option generator to allow Fred to decide what to do with his money.

As a final point, note that modelling of multiple consequents must also
include the distinction between inclusive and exclusive OR. In this example, Fred
might be able to buy a car and also to pay of his mortgage with the money he has
won. In other examples, such as how Fred will spend his evening, he might be
restricted to choosing a single answer from a list of alternatives.

11.3.3 On Not Hardcoding First-Order Logic

Many AI systems, such as have been described at several points in this
work., use first-order logic at the core of their processing. The benefit of hardcod
ing such logic is that the results are always logically valid. Such concepts as 'for
all' and 'there exists' are formally defined and there are well defined transforma
tions that can be applied to transform sentences of one type into equi valent sen
tences of the other type.

But as has also been noted many times, the restrictiveness of first-order logic
has caused it to be abandoned as the core of our system development. In the con
nectionist approach predicates (encoded in a certain way) are associated with other
predicates to form rules. But concepts such as 'there exists' and 'for all' have now
been lost at the lowest level of processing. Is it possible to recapture them, but at a
higher level? And if so, what would that mean?

There is already an example of work in this area, once again that of Ale
ksander in his investigations into artificial consciousness as reviewed in chapter
four (section 4.4.5, page 113). He postulates that the universal and existential
quantifiers should not form a fundamental basis for representing relationships
between predicates and objects, as they do in first-order logic. Instead, concepts
such as 'all men' must be learned by the system in the course of many trials, per
haps by induction with many examples involving objects all belonging to the cate
gory 'men'.

The system creates an icon which refers to the concept of the group of all
men and can use this icon in other relationships such as 'all men are mortal' in the
same way that it can represent 'Socrates is mortal'. Thus, unlike most reasoning
systems, Magnus is not hardwired for first-order logic. This is a very appealing
idea for a number of reasons.

Towards True Neuro-Symbolic Computation 313

Firstly, it breaks a hard-wired mechanism that was restricting the potential
richness in the relationships between concepts. Secondly, concepts which resemble
'aU' but which do not exist in first-order logic (such as 'a few', or 'most') could be
constructed in a similar way to 'all'.

In the earlier discussion of rules-based logic, the generation of unknowns
was mentioned as a potential source of difficulty. Such unknowns are normally
handled in first-order logic by the existential operator: 'there exists y such that...'.
So in this network, we also need to represent the existence operator but in a richer
manner. It must be richer since we require the reasoning process to encode the fact
that a new variable has appeared, that it has no assigned value but is not uncon
strained. We might include a mechanism to identify potential values for y from
several independent pieces of evidence, perhaps implemented as a recognition
process. For example, there could be multiple activated rules in working memory
of the type:

grandfatherOf(John, David) => fatherOf(John, Y) AND fatherOf(Y, David)

and it remains for the system to track down values for Y which satisfy all
conditions in parallel either by retrieval from memory or by seeking out the infor
mation in the outside world.

11.3.4 Analogical and Case-Based Reasoning

An area of fruitful research in the 1990s has been the case-based or analogi
cal approach to reasoning in which the intelligent agent explicitly draws upon
knowledge of previous experiences it has had and situations it has "encountered"
to provide support for its decision making in novel situations (Leake, 1996, Kolod
ner, 1993). Newell's Soar architecture is similar in this respect (Newell, 1990; and
this thesis, section 4.1.1, page 86).

From the point of view of this work, the appeal of an analogical reasoning
system is that it is based around a recognition task and neural networks are good at
such tasks. In case based reasoning, for example, the first step of solving a new
problem is to extract key features such as goal, context and constraints and try to
match them to known cases. Having identified candidate cases, the previous solu
tion can be retrieved and (if it was successful!) applied. Of course, modifications
are often needed since a new situation is not guaranteed to conform to the old one
in every respect.

Not only is the search by pattern matching suited to neural networks in gen
eral but we can also find parallel between the identification of differences between
the old and new situations and the symbolic subtraction discussed at length in sec
tion 11.1.3, page 298. Such a mechanism is required not only to establish that the
two cases (old and new) are not the same, but also to pinpoint the main areas of dif
ference.

1. The solution might be applied even if it wasn't successful last time. if the system can identify what went wrong
before and can either correct for it or decide that the previous impediment does not exist in the new situation.

Towards True Neuro-Symbolic Computation 314

11.3.5 More Flexible Recall

As has been described earlier, most rule-based systems follow the path from
cause to effect. A generic rule defines how a given set of input variables that con
form to certain types can be transform into another set of variables that conform to
certain types.

It is worth pointing out that the architecture put forward in chapter five treats
the input, output and transforming symbols as the same from the point of view of
the association process. Three symbols are brought together and any two can be
used as key to retrieve the third.

In the simplest case of an instantiated rule, a set of input variables (with val
ues bound to them) are transformed by a generic rule to produce a set of output
variables (with new values or values related to those bound at the input). This is the
case in production systems and the reasoning architectures based on marker pass
ing, detailed in chapter four. We can generalise the approach so that, in addition to
the production system like mechanism of:

input variables and bindings + rule => output variables and bindings

we could also reason from effect to cause using:

output variables and bindings + rule => input variables and bindings

or perform a sort of explanation based reasoning using:

output variables and bindings + input variables and bindings => rule

It is left for the control network to correctly interpret the output. During
'rules-based' processing this task is made easier by the fact that it is the control
network itself that has set up the retrieval in the first place and is expecting output
of a certain form, as discussed in section 5.4.6, page 126.

However, as will be discussed next, trying to execute intuitive processing
will render the results more difficult to interpret since there is less control over
their generation. The onus is then placed on the result to be self-explicit. That is to
say that while the resulting symbol structure may be grounded (so that they can
only be interpreted in terms of other symbols) there is no need for state in the con
trol network to help interpret the operation for which this is the result. Aspects of
intuitive reasoning will be treated next.

11.3.6 Bringing Together Rules-based and Intuitive Processing

As noted near the beginning of this chapter, one of the key drivers in
attempting to use neural networks as the substrate for symbolic processes is the
belief that such an approach will lead to a better explanation of both rules-based
and so-called "intuitive" processing. While it might be possible to construct a sys
tem in which each of the two types of processing was served by a uniquely crafted
network so that there was little similarity in the way in which rule-based and intui-

Towards True Neuro-Symbolic Computation 315

tive processing take place, we take the alternative approach here and assume that a
single framework could be constructed that could exhibit both types of processing
and a continuum of intermediate types. This is desirable both because it is likely to
be more efficient and because it is probably more flexible than an architecture that
separates the two processes.

What would such a framework look like? To understand this we need to
know what behaviour we require from each end of the continuum and to generate a
single network which embodies both. Rule-following behaviour is the easier of the
two to define, not only because of the depth of scrutiny rule-based systems have
undergone over the past forty years, but, more fundamentally, because rules are
built on language and language is a medium in which we can readily express our
selves precisely.

A rules are traditionally made up of a number of conditions and a conclusion
(or list of actions). If the conditions are satisfied, the conclusion is justified (or the
actions are executed). By way of contrast, attempting to formalise the "intuitive"
level is much more difficult. Even though one could argue that, by definition, the
intuitive level cannot be described in any formal manner, here we take the physi
calist view that intuitive processing is still a mechanism (albeit one that operates at
a lower level than that of symbols). Thus, we should in principle be able to find an
algorithm to describe it.

Intuitive (or lateral) thinking is often seen as not conforming to the laws of
logic. It might be generally described as a process in which links are made between
ideas in a manner that are not logical, but that the results obtained from such a
process are relevant in the real world, and may even be logically coherent in spite
of the process used to produce them.

Note that by demanding that the results of intuitive reasoning are relevant to
the real world we allow conclusions that cannot be logically derived from the given
facts (even by working backwards logically after the solution has been obtained
intuitively) but exclude nonsense results that are the product of insanity (such as
intuitively deciding that the way to cross a river using only a length of rope is to
throw the whole rope in the river and watch as it floats away). Thus, while intuition
is allowed to be illogical it must at least have the potential to generate valid results.

Note that by this definition we have excluded such non-verifiable types of
intuition as artistic temperament. While valid in their own right, our inability to
logically validate any conclusions resulting from such 'computation'puts this kind
of intuition outside the scope of engineering discussion at this time.

The mechanisms of human intuition are not known today (any more than the
mechanisms underlying rule-based processing) and will no doubt be difficult to
establish. The connectionist approach to modelling the phenomenon often uses
constraint satisfaction as a means of performing intuitive inference. In this
approach, the process of solving the problem consists of finding the most mutually
satisfying (in terms of energy) values for the free variables by defining an energy
function which embodies the constraints. The Bopfield network as applied to the

Towards True Neuro-Symholic Computation 316

solution of the travelling salesman problem and (more generally) applications of
simulated annealing are examples of this style of processing (Hopfield & Tank,
1985). Such methods are a form of search through the space of possible solutions.
The use of an energy function and an appropriate update rule for the neurons is to
try to ensure that resources are concentrated in more plausible parts of solution
space than would be the case if an exhaustive search were being executed.

But such examples seem hardly to describe the ways in which everyday
problems seem to be solved intuitively. The main restriction of such methods is
that the set of constraints must be known in advance. A vital aspect of intuition that
is, arguably, missing from such a formalisation is it is often the case that even the
method of finding the solution is missing and that constraints are added to, and
removed from, the set of working constraints in a dynamic fashion as one works
through a particular problem. Thus the fluid nature of the developing solution must
surely be taken into account in any plausible explanation of intuition.

A additional problem with putting all of the constraints together in one
energy function and searching for the global minima is that a real-world problem
often has so many degrees of freedom that finding a solution is often computation
ally intractable. We can see parallels with the comment made above about the fluid
nature of our own intuitive processes. Perhaps as intuitive thinkers we are capable
of breaking down a large number of variables into groups, fixing the values of
some and exploring the energy function while varying the others. The results of
such steps could lead to changes in which variables have their values fixed and
which are allowed to be free floating. Such changes would need to be orchestrated
at the sub-symbolic level to continue to qualify the process as intuitive (although,
as noted below, we would want to allow both symbolic and sub-symbolic to inter
act at appropriate times).

How could a system exhibit both types of behaviour in the same piece of
hardware? Let us again consider both extremes of the continuum, using the pro
duction system are a framework for this discussion. First, we can examine rule
based behaviour in its strictest form. In the course of processing the system admits
only true facts into its working memory. If the conditions are not fulfilled exactly,
the rule does not fire and its conclusions are not accepted as new facts. In the net
work, new associations are made strictly when it is decide that it is valid to do so.
Results do not fade as they must remain in working memory until the current task
is complete or until explicitly removed.

In situations where the method of solution of a problem is known and can be
executed at the rules level, the network can easily apply its rules in serial order,
guided by the control network which decides which rule to apply. When such an
algorithm does not exist, the control network must be less rigid with the choice of
avenues that it explores. We assume here that the same knowledge base acts as the
source of raw information for both intuitive and rules-based processing, but the
former case resources are being used much less rigidly. Thus, rules whose condi
tions are not completely filled could stilI fire, only with less than 100% strength.

Towards True Neuro-Symholic Computation 317

The overall effect is to allow the system to explore avenues not justified on
strictly logical grounds but still more likely to succeed than a purely random search
through all possible combinations.

As a final note, in domains where a logical double-check is possible, we
could conceive of a system which uses intuitive processes to generate possible
solutions and then use more reality-based logic to verify the conclusions reached.
There might also be much benefit in allowing rule-based and intuitive processes to
interact in the course of generating a solution.

Even if the intuitive process was simply one of constraint satisfaction, it
would be useful to allow a rules-based process to add and remove constraints, or
fix variables to restrict the search space. Such decisions could, themselves, arise
from conclusions reached during intuitive processing.

,
To summarise and conclude this sub-section, it is postulated that it should be

possible to represent both rules-based and intuitive processing in the same neural
substrate. The way in which the network was used would determine the type of
processing exhibited. The demands of intuitive processing are probably as evident
in the control network as in the data network and an important part of realising
intuitive processing will be in understanding the way in which constraints and pos
sible solutions are explored and discarded dynamically. This is nominally a control
issue.

11.3.7 Conclusions and Discussion

This section has presented and discussed a number of existing alternatives to
the forward-chaining mechanism that currently dominates rule-based processing
both in AI and (with less justification) neural reasoning systems. Despite a current
lack of focused attention, these other mechanisms not only bode well for more
flexible reasoning, but also seem (to a greater or lesser extent) well suited to imple
mentation within the neural network developed in this work.

More fundamentally, the introduction of the idea of releasing the system
from the constraints of first-order logic, although not strongly represented in this
thesis, has always been a fundamental tenet of the system and will probably playa
larger role in future work than it has done so far. The implication of such an idea is
that logical behaviour is something that the system must learn like any other activ
ity. Researchers are, arguably, too entrenched in first-order logic as the way to
model the world. This is understandable since every system needs a core of hard
wired functions from which to build more flexible functionality by composition.
First-order logic is intuitive and parallels a way of thinking that has existed since
antiquity. The objection to it here is as the source of the core set of operations. In
this work, what will replace logical reasoning as the means of finding ordering in
the world is the extraction of similarity between objects and Gust as importantly)
events. For events, we assume a modelling of consistent cause-and-effect as the
main mechanism. More work is required to justify this view.

Towards True Neuro-Symbolic Computation 318

11.4 On Parallel Processing at the Symbolic Level

One of the much vaunted properties of neural networks is the potential abil
ity to represent and operate upon many pieces of information in parallel. However,
in all practical networks the encoding methods employed, together with the overall
system architecture, impose limits on the true degree of parallelism obtained. It is
almost expected of a neural network to perform operations in parallel. Parallel
search is at the heart of simulated annealing, for example, which is itself the core
of the Boltzmann machine.

However, when we consider how neural networks have been applied to
rules-based architectures, the general rule is that a parallel search of the knowledge
base is followed by a serial selection of a winning rule to use (for example, Hinton
and Touretzky's distributed connectionist production system and Austin's AURA
architecture).

The serial bottleneck is something that we would like to avoid to improve
system efficiency. Is this possible? This section examines some of the issues in try
ing to operate on multiple symbolic structures in parallel and considers ways in
which the symbolic level might be parallelised without merely replicating the net
work to mirror the parallelism of the symbols. Thus, the issue is one of improving
the efficiency of a single network.

This section acknowledges the fact that attaining the required behaviour
requires us to consider issues at both the symbol level and at the neural level. We
begin with the symbol level to establish the types of operations we would like to
perform in parallel them consider the lower level problems this creates later on.

11.4.1 Rules as Transformations

As far as implementation is concerned, we can think of a rule as merely a
transformation of one framework into another, with a corresponding transfer of
variables and their bindings from one to the other. For example consider the rather
contrived and specific rule:

missed(X, Y) OR broke_down(Z, Y) => late(Y)

Assuming a production system structure of rules memory and working mem
ory, then given that either the true predicate missed(plane, John) or the alternative
broke_down(car, John) are present in the working memory the following instantia
tion of the rule will occur:

missed(plane, John) OR broke_down(car, John) => late(John)

allowing the new predicate late(John) to be placed in the working memory.
In the implementation, a match is performed between the conditions required to
fire each rule and the contents of working memory. When the rule fires for a gi ven
set of variable bindings, a new predicate (late) is created (set to true) with a varia
ble binding (Y=John) propagated forward from the conditions.

Towards True Neuro-Symbolic Computation 319

The bottleneck to processing is that (usually) on a single rule is allowed to
update the contents of the working memory at a time. This decision making phase
consists of a number of parts, each requiring resources. The winning rule must be
selected, its consequents (late(Y) in this case) must be retrieved the value of its var
iables (if any) must be attached to the new predicate and the whole must be written
to the working memory. This could be done for multiple rules in parallel but each
such rule would normally require parallel hardware (extra rule-firing decision
logic, extra variable binding propagation paths, extra ports into the working mem
ory, etc.).

It is also clear that it would be difficult to allow multiple rule to fire if one is
dependent on the outcome of another. In other words, forward chaining in which
the consequent of one rule forms the antecedent of the next would still be executed
in serial order on the type of production system we have described. Later sub-sec
tions consider briefly how the need to reason about changing the state of the world
impacts the achievable parallelism.

The same arguments that have just described rule-based behaviour can also
be used for the more complex schemas of Arbib (1994), and to the yet more com
plex cases of case-based reasoning (Kolodner, 1993). We note that as the rules
become more complex, the frequency with which all of the conditions are met for a
given 'rule' is reduced. We are therefore obliged to reduce the level of strictness
applied in rule matching.

In schema theory, each individual schema can be activated with a certain
confidence value based on the degree of match of its arguments. This value can, in
tum, propagate forward to other schemas. Note that many schemas, representing
many potential interpretations of the same set of facts, can be active at once with
decisions being made based on the schemas with the highest degree of confidence
within a competing set of interpretations. This allows chains of dependencies,
quantified by the parallel chain of confidence values to be established. Decisions
can be made only at the end of chains so that evidence from many possible worlds
(interpretations of the facts) can be considered in parallel. There is much in schema
theory that is appealing but it will be argued a little later in this chapter that it is a
simplistic view of processing which is unworkable as a solution for general pur
pose intelligence because the lack of decisions leads directly to a lack of control
over scarce resources.

For case-based reasoning, partial matches on stored cases are allowed, but
this demands the introduction of an accommodation phase to map the stored
actions of the winning case to the current situation to take account of the points of
difference between the old and new situations. An advantage of the case-based
approach is that the "unit-step" in forward chaining can be very much larger than
for a simple rule. What this means is as follows: first, we recognise that a case
could have been constructed at some earlier time by a long series of logical steps
and then stored as a single unit. During recall the mapping of one case to the cur
rent problem eliminates the need for the sequential series of steps. It is an example
of chunking, a term used in psychology and discussed earlier in relation to the Soar
architecture (section 4.1.1, page 86).

Towards True Neuro-Symbolic Computation 320

The use of cases is one way in which parallelism (on this occasion, a distrib
uted case-searching algorithm) can replace a section of sequential logic, but it is
also quite clearly a process that is open to error due to non-exact matches. Without
actually executing the sequential operations in the current context it might not be
possible to identify certain crucial points of mismatch between the current problem
and the stored case. A single such point of difference might render inappropriate
the choice of that particular case for the current problem.

Overall we note that chunking on its own is a technique that, for all of its
advantages of efficiency, must be backed up by more fine grained analysis. Due to
its efficiency, we postulate that chunking (in one form or another) is a fundamental
tool in the architectural arsenal and its use should at least give the impression of
executing mUltiple rules in parallel even if the true mechanism being applied is
somewhat different.

11.4.2 Parallel Paths, Many Worlds and Search

It is well known in AI research that, while handling the conjunctive case is
relatively straightforward, handling the disjunctive case is often an intractable
problem for situations of real-world interest. The conjunctive case corresponds to a
single thread of reasoning while the disjunctive case (common for planning in
which one of a number of possible actions must be chosen at each timestep, the
classic example being the game of chess) leads to a tree-like structure, with multi
ple branches possible at each decision point.

Conjunctive
(sequential)

Disjunctive

Time: t

•
t+I

•

• = decision point

Fig. 11·S Conjunctive and disjunctive reasoning

t+2

•
t+3

•

Consider the disjunctive case in the figure. If the system is considering a par
ticular state of the world, say X, it knows that there are multiple possible states to
which it could transition. The choice of new world might depend upon the choice
made by the system (as in chess) or may involve other outside factors (perhaps the
actions of the other player in chess or, more generally, the random response of a
probabilistic environment).

Towards True Neuro-Symbolic Computation 321

The problem with this type of problem is that each state represents a different
possible world. The same action taken from two different states might produce two
entirely different outcomes and so the decision making process must take the state
of the node into account for the evaluation of the utility of each action.

An extra complication can arise if the choice of action itself is determine by
the state. Now, not only is the actual state information different from one world to
the next, but each state could demand a different set of inputs from the control net
work to generate the next states.

Thirty years ago, using search algorithms was the only real choice for such
situations and a significant investment in AI research in the sixties and seventies
was into algorithms to search the nodes of the tree, state by state, to find the best
solution. The development of heuristic algorithms sometimes led to a speed-up in
finding the solution, but the approach was still a sequential process from state to
state. The only difference was in the choice of which states to explore and which to
ignore (see Russell & Norvig(1995) for a review of a range of search algorithms).
We want to avoid the sequential nature of the computation by devising a system
capable of evaluating multiple solutions in parallel, but does such an architecture
exist?

11.4.3 Parallel Computation Using Extra Resources

The trivial solution is to duplicate resources for each fork. Such an approach
has been applied in superscalar microprocessor design, where the decision of
whether or not to take a conditional branch (a similar disjunctive problem) must
often be made before the branch condition can be evaluated. When resource costs
are not a problem, it is feasible to take both forks at once (using parallel hardware),
discarding the results of the incorrect branch when the actual result is known
(Johnson, 1991). Here, this approach will be ignored since it does not represent an
efficiency improvement in resource usage. (Also, it requires an exponentially
increasing number of resources in parallel as a function of the depth of search).

11.4.4 Parallel Computation by Superposing Solutions

The alternative solution is to use a fixed quantity of resources but to try to
represent and operate on multiple solutions in parallel. If this is possible, it would
increase the efficiency of the resources and therefore represents the ideal solution.
There are eight scenarios within this solution which are the result of making three
independent decisions. The first is the independence of the parallel solutions, the
second is the way in which the evolving state and the short-term memory interact
and the third is the nature of the trace that is assembled during processing.

We consider all three questions, beginning with the independence of the
solutions. For this question we consider two extremes, one in which each solution
is truly independent of all others and the opposite extreme in which there is only a
single evolving solution with a list of variations.

Towards True Neuro-Symbolic Computation 322

For independent solutions, we allow the state of the system to evolve at each
timestep in such a way that the set of states that are currently represented at time t
are replaced with their multiple successor states at time 1+ 1. The algorithm is
allowed to prune a branch at any time. It might do this because it concludes that the
state represents an invalid or costly solution. So the state vector represents all valid
solutions at the current time step and, provided the number of states does not
exceed a limit for the network, it can maintain them all in parallel.

Part of the design process for such a system is to ensure that all solutions
remain orthogonal (in some sense akin to that of vectors) so that no interference
occurs between them and each solution evolves as if it were alone in the network.
The onus is placed on the network to correctly interpret the superposition of state
vectors and apply the correct control patterns to each component. The individual
control vectors would also be subjected to some kind of superposition.

The likely problem with the orthogonal solution is that either the maximum
number of vectors that can be handled simultaneously is low or the quantity of
resources required would be high. Such resources, if provided, might remain idle
for much of the time. Issues in representing and operating on multiple entities in
parallel are discussed later (section 11.4.5, page 325).

The opposite end of the spectrum in answering the question of solution inde
pendence is to create a single evolving state in which solutions are not represented
explicitly. Instead, the differences and (most importantly) the dependencies of pos
sible states are represented explicitly. At each time step, a new operation is applied
to the state but instead of generating new states, the single structure is modified to
take account of the changes to some of the possible worlds it represents.

For example, many future worlds might depend upon the assumption that a
certain belief is true. Learning that the belief was false would prune off all of these
possibilities. This does not involve finding and removing explicit possible states in
a superposed vector (as was the case before) but merely removing the component
of the vector that corresponds to that dependency. A potential benefit of this
approach is that by storing solutions as differences and dependencies, it might be
possible to use resources more efficiently, especially when the many solutions are
quite similar.

The drawback with this second option is that only a single control operation
can be applied to the state at any time. Thus we have a kind of sequential process
ing, but acting on many possible solutions. (In computer architecture terms, this is
a Single-Instruction, Multiple-Data, or SIMD architecture). From the point of view
of control network design this is a beneficial simplification, however. The differ
ences between the two extremes are subtle and much further work is required to
clarify the issues of this method of representation.

The second question concerns the way in which the evolving vector and the
short term memory interact. At one extreme, the whole detailed content of each
solution could be represented in the single vector of evolving state, accessing a
fixed long-term memory and guided by an external controller.

Towards True Neuro-Symholic Computation 323

At the other end of the spectrum, however, we could allow parts of the con
tent of the state vector to be written to short-term memory as and when required.
Remember that in the architecture presentation of chapter five, the state vector is
itself merely a symbol that acts both as a carrier of immediately relevant informa
tion and as a pointer to potentially larger structures in the higher levels of memory.

Up until now in the discussion of parallel processing at the rules level, we
have considered the state vector as storing the whole symbol structure itself, but
this is outside of the original architectural philosophy. How could we bring the two
into line? The state vector is meant to point to a symbol structure. That structure
could itself hold either the multiple solutions or the single set of differences and
dependencies (as decided by our answer to the first question).

As it evolves, new facts and possibilities are added to the structure either
based on or related to existing elements. Such elements could be made 'permanent'
by rapidly registering them in the lowest level of memory (the term 'level a syn
apses' was used in the discussion on learning hierarchies). At that point they move
from being explicitly represented in the symbol to being merely pointed to by it.

There are a number of points to note here. First, note that each timestep as it
has been described, is represented by one recall step. Such a step would allow
enough time to fully access the memory of the data network, drawing on the full
range of its knowledge base. Therefore, the fact that information has been moved
out of the active symbol and into memory (although there will surely be implica
tions on how it can be used) does not render it inaccessible to the on-going compu
tation.

Next, note that the movement of such information must be a reflex action,
that is not requiring a decision on the part of some other entity. To be reflexive it
must be based on decisions made at the neural level. If this were not so, the bene
fits of parallelism in the data network would be lost as some other network worked
out what should be transferred to memory. In moving to memory, the information
must also leave the symbol encoding at the same time. For this to occur seamlessly
the symbol encoding will presumably be even further constrained.

For future work, this latter solution seems the most appropriate one since it
fits in with the rest of the architecture. Indeed, it calls upon us to address some of
the issues left unresolved after the architecture development of chapter five (such
as how information is split between direct encoding in the symbol itself and the
symbolic structure for which the symbol is a pointer).

The third and final question in the discussion of options for parallel process
ing of symbol structures concerns the nature of the trace that is assembled during
processing. We could devise a system in which multiple solutions could evolve in
parallel without a method of tracing the line of reasoning which led from the start
ing state to the end result. Alternatively, we could include sufficient extra informa
tion in the evolving state to allow the sequence of logical steps to be reconstructed
at some subsequent time.

Towards True Neuro-Symholic Computation 324

To illustrate this, consider the time worn example of the chess computer.
Critics of such machines as candidate 'intelligent entities' argue that even if a
machine can beat a grandmaster at chess, it cannot explain what thought process
led it to make a critical move nor describe what alternatives it rejected and why.
We know that chess playing machines, such as IBM's Deep Blue work by search
ing the tree of possible moves and retaining more than the score of the fitness of
each state visited is not practical. Such an algorithm is no use for reconstructing the
trace of the reasoning process.

For people, things seem to be different. We do retain some sort of trace. We
can reconstruct in our own minds the critical paths that we considered and the
thoughts that we had at certain instants of our deliberations. Therefore, some
mechanism, either within the same network as the reasoning process itself or in
another network, is able to record a trace of events.

A trace such as this is more useful than a means of providing a post-mortem
long after the decision making process is over. At any time new information could
invalidate old conclusions requiring a re-examination of the possibilities. Trace
information allows the system to narrow down its search and avoid retreading the
same fruitless ground. Indeed, we would probably be loathed to attribute intelli
gence to any entity which was forced to re-evaluate a set of states because it had no
trace of what it did five minutes ago.

One final note is that since the trace information is not critical to the evolving
state it could be easily transferred to short term memory and not clutter the current
computation. Therefore, although the use of tracing could be decided independent
of the decision on the integration of state evolution with short-term memory usage,
it probably makes sense for tracing to only exist if the transfer to memory is also
employed. The trace function will not be considered further here, but will be men
tioned in the future work section of the last chapter (section 12.3.2, page 342).

11.4.5 Limitations of Distributed Representation for Parallel Processing

In this sub-section, we consider the implications at the neural net level of try
ing to represent multiple symbol structures in parallel. The vector coding proposed
in chapter six is a K-from-N code, a member of the class of distributed representa
tions, a technique that is also called coarse coding. For all of its improved effi
ciency of bit usage, coarse coding suffers relative to a more localist representation
in the number of separate items it can represent ambiguously in parallel on a given
set of units.

For example an N-bit vector using 1-from-N coding could, in principle, rep
resent N different things and potentially all of them in parallel. The same N bits

used in a single K-from-N code can represent cZ things, but only one at a time. An

obvious way to try to improve the representational power of such a vector is to
divide it into fields and allocate a subset of the bits to each field.

This has two disadvantages, however. First, each field contains only a frac
tion of the total number of bits, N. (Let's say /fields of n bits each). So the number

Towards True Neuro-Symbolic Computation 325

of valid vectors that can be represented is much reduced (a topic that was discussed
at length in section 6.3, page 157 and section 6.4.2, page 164).

The second problem is that unless the vector can be shifted and processed
one field at a time, the network which processes each field must be duplicated (as
was the case in Hinton's within-level timeshare network described in section 3.3.3,
page 71). This is undesirable since we want to avoid high-level operations like vec
tor shifting. Also, the aim of this chapter is to try to implement parallelism at the
symbol processing level, a result that is not achieved using a serial, timeshared
machine.

Let us consider the issues in overlapping valid vectors, beginning with the
static case as it is simplest to visualise. We could allow several valid K-from-N
vectors to co-exist in a single string of bits as shown below. In the figure below,
three separate, valid patterns are superimposed creating a vector which is poten
tially 3K-from-N. (Note that non-zero bits in the combined pattern are set equal to
their pattern number merely for sake of comprehension. In reality all firing bits are
set to '1 '). The question we need to ask is how does the network make sense of the
overlapping vectors?

Pattern 1: 0 0 0 1 1 1 0 0 0 0

Pattern 2: 1 0 1 0 0 0 0 0 1 0

Pattern 3: 0 0 0 0 0 1 0 1 0 1

Combined: 2 0 2 II? 0 3 2 3

Fig. 11-6 Combining multiple K-from-N vectors

From the analysis provided in chapters six and seven on the simple network
it is clear that the sudden increase in firing neurons will cause a problem. For a
given K-from-N pattern, any extra firing neurons are a source of noise. In the
recurrent network of chapter seven, that noise can destabilise an otherwise stable
pattern.

Theoretical analysis and subsequent simulation showed that the basin of
attraction of a given pattern is difficult to extend beyond half the number of firing
neurons in the pattern unless unacceptably low loading of the memory is
employed. Here we expect to merge multiple patterns, creating a noise component
at least as large as that of the signal (and greater still for three or more simultane
ously active patterns). Without modification, the simple network would immedi
ately fail in such circumstances.

Even if it were possible to modify thresholds to maintain a stable, multi-vec
tor state, the thresholds would need to be modified again if any more vectors were
added to the representation. This problem is similar to that faced by Austin in his
AURA network, where cues to the memory could have a variable arity (section
4.4.1, page 108). For AURA, the problem was solved by using multiple parallel

Towards True Neuro-Symbolic Computation 326

memories each looking at a different arity. This is unacceptable here, as we are
looking for a way to represent multiple things in the same network.

More fundamentally, a key driver in selecting a fixed K-from-N encoding
was that for low KIN the number of vectors that could be stored was high relati ve
to a KIN of -0.5. A fixed number of firing neurons is also much more easily
enforced at the network level than a value that must change as the number of paral
lel solutions builds up. To vary this value presumably requires external signals
derived from some other agent: there is a danger of summoning up the homonculus
that we are trying hard to banish.

In summary, we see that the memory storage and recall properties as well as
the mechanisms that keeps the network in the normal working regime are critically
dependent on the number of firing neurons. If we are to permit multiple parallel
solutions, the mechanism to do so should not impact the lowest level of functional
ity of the network. What alternative exists?

If a single valid K-from-N vector is all that we are permitted to represent
simultaneously, and such a vector can represent only one symbol (and thus one
constituent structure) then one possible answer is to hold multiple solutions in mul
tiple branches at the top of the syntactic tree which the symbol represents. So the
first branch point delineates the mUltiple solutions (with branch labels to distin
guish between the different choices that were made for each solution) and the tree
beneath each solution constitute the data for that solution.

To pursue this interpretation, we need to fill in the details of how the network
could process these multiple solutions in parallel. (It is assumed that serially
processing the single tree is trivial, but does not provide the parallel symbolic
processing that we are searching for). This mechanism would be the same as that
required for a single symbolic tree, since in both cases the tree is of arbitrary com
plexity. It would be expected that in both the parallel and singular cases, larger
trees will lead to less exact solutions since the network has only finite resources (a
issue we turn to next).

Remember that one of the key properties of a symbol is to bring to the fore
important parts of the underlying structure, which implies that other parts are less
accessible. As the number of solutions builds up, the attention to the details of each
will be necessarily reduced. It will then be up to the control network to decide to
break up the solutions and consider them in sub-groups or singly, as required. It is
expected that to guide the control network in making this decision, the subtraction
mechanism described earlier will play an important part.

So in summary, it is proposed that multiple solutions might be handled by
creating a single super-structure containing many possible solutions in parallel.
The normal mechanisms that must be created to handle any symbolic structure
would process this super-structure. It remains to define the normal mechanisms for
handling symbolic trees, a task that is not complete today. Later, we consider a
sub-symbolic mechanism for generating possible symbol structures, more akin to
intuitive than strictly rule-based processing (see section 11.4.7, page 329).

Towards True Neuro-Symholic Computation 327

11.4.6 On the Importance of Managing Finite Resources

In this sub-section, we argue that a central problem in network design should
be the management of computing "resources", being the networks ability to store
and manipulate complex data structures. The reason for this is simple. For the
kinds of system we are describing, operating in the real world, not only is the total
quantity of resources for the system likely to be fixed at its inception but it is also
likely that the system will be capable of actively representing only a fraction of the
total number of relevant pieces of information at a time for a given problem.

A common criticism of much of the existing work presented and discussed
throughout this thesis has been the failure either to manage these finite resources
or, in most cases, even to acknowledge that the problem exists.

For example, the marker passing networks of Lange & Dyer, Sun and Shastri
assumed fully parallel instantiations of their units of computation (be they frames,
schemas, predicates, or whatever). Shastri was keen to stress that the inference
time of his network was roughly proportional to the length of the longest single
chain of inference in the knowledge base, but he downplayed the fact that the par
allel resources that are assumed in this result scaled with the size of the knowledge
base and were thus without an upper bound. Similarly, the schema theory of Arbib,
although appealing as a flexible way of modelling multiple possible interpretations
or actions in parallel would also be crippled by its equal liberality with resources.

For practical systems, the management of resources must be a prime focus of
attention. Whenever the reasoning process encounters a set of parallel, but mutu
ally exclusive, options and insufficient information exists to make a single choice
we would like to keep all of our options open and wait for further data. But as the
number of branch points increases and the number of possible solutions grows
exponentially there must come a point at which we are forced to make tentative
decisions to close off some of the open paths. Couched in the terminology of the
schema theory world, this would correspond to choosing one from the many com
peting interpretations of a set of facts and assuming in further processing that the
one selected schema is correct. All other competing schemas are removed from the
active list and are either erased or moved to a lower cost (inactive) store such as
hard disc (for a computer simulation) or long-term store (for a brain-like network).

Subsequent processing should allow any taken decision to be checked.
Future information may reveal that the wrong choice was made. This scenario is
common in our own reasoning process as we explore various options. Our only
recourse in such situations is to backtrack, removing the erroneous conclusions and
re-instantiating the multiple schema options that existed at the point where we
made the wrong choice. A new choice can then be made and reasoning can proceed
from there. In all of this deliberation the system should try to keep as much infor
mation around as possible to facilitate good decision making, but the key point
being made here is that the system must be prepared to commit to a decision when
required to avoid running out of resources. It also needs to remember what deci
sion it made and where, both for explanatory purposes and to facilitate back-track
ing in case of errors.

Towards True Neuro-Symholic Computation 328

In passing, a note is probably in order to describe the kinds of resources that
the system we are describing will have. It is not envisaged that there will be whole
functional units for the system to allocate and de-allocate, like blocks of computer
memory. Instead, it is probably more accurate to think of resources like a single
slab of memory and the total quantity of resources is measured in terms of the sep
aration of patterns in that memory. When the memory is almost empty the vectorial
distance between patterns stored there is large. As the memory fills up there is
increasing cross-talk between parallel patterns. The noise margins are eroded until
finally the point is reached where the interference between memories generates too
many errors and inhibits performance.

11.4.7 Exploring Possibilities Without Guidance

The restrictions on representation using distributed coding have been shown
to limit the number of items that can be simultaneously and unambiguously repre
sented in parallel in a single N-bit vector using K-from-N coding. it was concluded
that trying to represent multiple solutions was best done at the symbolic level
rather than by modification of the fundamental coding strategy of the network (dis
cussed in section 11.4.5, page 325). It was assumed that for such processing, spe
cific, known transforms are applied to the growing set of solutions, in a manner
akin to exploration of a state space.

An alternative way of processing information in parallel, more akin to intui
tive than rule-based thinking, is to remove the driving control network altogether
and allow the data network to build-up solutions based on a sub-symbolic explora
tion of its representation space.

This method draws on three main areas of previous work. The first is the dis
cussion of the use of finite resources just presented. The second is the exploration
of the issues in intuitive reasoning from earlier in the chapter. The third is the
whole concept of learning hierarchies, as developed in the previous chapter.

To proceed we ask: what is the processing we want to achieve? If a group of
N neurons can represent a single K-from-N vector, but that vector can itself repre
sent a whole symbol structure then the act of processing, being to generate new
knowledge is to create a new K-from-N code that defines a new relationship
between existing stored entities, encoded as a symbol structure.

If the new symbol structure is arrived at by logical means and driven by a
control network, we look upon the style of processing as rule-based. But what if we
don't know how to proceed in generating the new structure? What if no algorithm
exists and all that we have are a large number of facts and a goal? One answer is to
explore possibilities by making free associations and seeing if the resulting struc
ture solves the problem. To do this, we think of the network as a hierarchy in
which all of the knowledge and constraints have been coded. We could apply any
control patterns to the network as inputs, if we wish, and generate output patterns
corresponding to new derived facts, logically arrived at. What we can't do is acti
vate all of the stored facts simultaneously (in an attempt to generate all logical con
clusions derived from all ofthe stored facts) because this would merely saturate the

Towards True Neuro-Symbolic Computation 329

representational power of the layers. So the use of free association is to allow indi
vidual facts (or sub-facts as shall be described next) to become active and associ
ated with others in a random manner in the hope of serendipitously stumbling upon
new and interesting results.

The Boltzmann machine (Hinton & Sejnowski, 1986) and Harmony theory
(Smolensky, 1986) are two examples of networks that use noise and a simulated
annealing algorithm to search the space of possible solutions subject to a set of
constraints. In this proposal, we apply a similar approach of using noise to illicit
activity in the network and forging new, but temporary connections. Since the indi
vidual facts or associations are stored as distributed representations, the random
activation of a set of units corresponds to sub-symbols. The benefit of noise is that
it allows random combinations of sub-symbolic to become active in parallel. If
they are well matched (in some sense) a temporary link is made, indicating some
sort of feature has been detected.

Three important questions are in order. First, how does using noise in this
way represent an efficient method of processing? Second, how do we ensure that
the addition of noise produces valid and useful results? Third, how does the hierar
chy map onto the flat group of N neurons in the standard building block put for
ward in this thesis? The first question is an interesting one, since one of the major
criticisms of earlier work on simulated annealing was that it is highly compute
intensive and convergence to a good solution is not guaranteed. Perhaps one prob
lem with the Boltzmann machine was that the search space was rather flat, mean
ing that one units activation was much like another. To try to avoid this, the
approach taken here is a more hierarchical one.

Imagine the random activation of units at the bottom of the hierarchy. Each
such unit detects the occurrence of a feature stimulate by noise. But it means that
for the time the unit is active, the network is 'thinking' about that feature, feeding
information about it to the neurons at the level above. In an instant, the unit deacti
vates and other units fire to take its place. Now imagine a unit on a higher level. If
it gets to fire it is due to the random occurrence of active features on lower levels
that it is already tuned to recognise. By firing, it is focusing the networks attention
on a higher level feature, one that occurs less frequently than the occurrence of any
of the lower level features that comprise it. Because of this, we force the higher
level feature to remain active for longer, signifying that some thing important has
been detected.

We can continue up the hierarchy in similar fashion, with each level detect
ing more and more complex (and hence rarer and rarer) features and hence being
active for longer and longer once activated. (To compensate for longer activation,
we suppose that the higher levels must be slower to activate also or else saturation
at the higher levels would soon occur). By temporarily strengthening the connec
tions between firing neurons in the hierarchy, we make it more likely that the noise
will re-establish the firing of a higher level neuron than the previous time. The idea
is to try to balance two competing requirements, trying to explore as many states as
possible but trying to focus resources (in this case the resource in question is time)
on combinations that might lead to useful results.

Towards True Neuro-Symholic Computation 330

Links made in free association should be made to fade quickly to prevent sat
uration of the network and to prevent it becoming entrenched in a small fraction of
the search space. We should allow for the possibility that links at different levels
fade at different rates and that in spite of the fading, entrenchment might occur
from time to time (to make the human analogy, the standard solution would be to
take a break and 'clear the mind', allowing time for links to fade before returning
to the process).

Combinations that represent valid structures could trigger a response form
the control network and should lead to registration in memory in a form that is
more durable than the temporary links made during the course of free-association.
This requires an explicit decision to store something in memory. How this should
be done without recourse to the homonculus is not yet clear.

We return to the second question that was posed earlier: how do we ensure
that the addition of noise produces valid and useful results? The simple answer is
that we cannot guarantee it. The use of random associations between sub-symbolic
vector components means that the state of the data network need not correspond to
a valid fact, nor even a valid symbolic structure, at any given time. The control net
work must not 'crash' (in the modern computer science meaning of the term) as a
result of trying to interpret a nonsense vector from the data vector, a point that was
made in the description of the subtraction network in section 11.1.3, page 298.
Requiring that a valid symbol carries within its encoding a tag (such as the chapter
five example of 'Paris_city') is one means to control this problem, while the
demand that symbols be hierarchically organised is another. (Such an organisation
is to try to ensure that even if the symbol is not exactly correct, some valid infor
mation remains within to aid the control network in tracking down any problems.
For this to work, the higher levels of the symbol must fonn first and lower levels
must depend upon those above!).

Finally, we consider the third question posed earlier, how does the hierarchy
of neurons described for this style of processing map onto the flat group of N neu
rons in the standard building block put forward in this thesis? The answer to this
question has already been considered in this chapter, in the early section on the
ideal and practical module (section 11.2.4, page 307). By trying to remain general
purpose and yet represent an arbitrary hierarchy, the network uses fully intercon
nected neurons but relies on the multiple parallel synaptic units of the learning
hierarchy to act as if it were a hierarchically organised network. Thus the proposal
put forward for a hierarchy as the framework for free-association should be amena
ble to mapping directly onto the N neuron networks already proposed. How to do
this is left for future work.

1. In this context. the level of organisation of the symbol are no the same as the levels in learning hierarchies. They
refer to the hierarchy of category membership for an individual symbol. as explained in section 5.8. page 138.

Towards True Neuro-Symbolic Computation 331

11.4.8 Conclusions and Discussion

This section has tried to outline some of the issues and possible options for
taking better advantage of the parallelism in neural networks and applying it to
more rule-based reasoning. No matter how desirable, it is not expected that the net
work presented in this thesis will supply a solution that will allow perfect superpo
sition of network states each representing an independent symbol structure.
However, a number of other possibilities have been put forward that, although
vaguely defined at this time, probably represent better avenues for research for the
medium term. These other possibilities include the evolution of a single vector rep
resenting multiple solutions in terms of their dependencies and differences, as well
as the proposed interaction between state and short term memory as a means of off
loading non-critical data and hence improving the efficiency of the state vector.

It is difficult to escape the feeling that somewhere beneath the surface that
we can understand and explain today, there exists a unification between the mech
anism of intuitive reasoning, the development of multiple parallel solutions to a
problem and the efficient use of computing resources. It is hoped that a better
understanding of more complex memory systems will lead to a more tangible
model of the feedback between the network state and the lowest levels of memory,
as defined in the chapter of learning hierarchies. This, in tum, should provide a
platform to investigate, clarify and quantify the options presented in this section on
parallel rules processing.

11.5 Towards a Unified Neuro-Symbolic Theory

This chapter has attempted to draw in the threads of many different colours
with the intent of weaving a unified tapestry which could form the basis of a gen
eral purpose intelligent system. In doing so, it has drawn from the work carried out
for this thesis as well as other pieces of relevant work from the field.

While the definition of such a system is still beyond the reach of the today's
research community, it is clear that in the last decade the focus on hybrid neuro
symbolic architectures has brought the possibility of achieving that goal much
closer to hand.

This chapter has explored many of the issues that must be resolved to realise
such a system and, it is hoped, has concentrated on the most important among
these. The development of ideas presented in this thesis, although made up of two
parallel branches (symbol architecture and neural building block) are intended to
have an underlying unity, albeit one which is not formally defined at this stage of
the work. This unity will ultimately flow from the fact that a single set of goals are
being addressed and work in both areas is required to achieve those goals. At this
point the list of topics left to explore is long and it seems that every step forward
uncovers several new paths to explore. The expectation is that as we cover more
and more ground, the paths will start to converge more than they diverge.

Towards True Neuro-Symbolic Computation 332

To realise a practical neuro-symbolic system, there appear to be many major
problems to overcome. At the neural level the capacity and reliability of currently
proposed associative memory is simply not good enough. There is a tendency for
researchers to focus only on storing a set of unrelated patterns while a more power
ful (and potentially more reliable) approach is to look at patterns as part of a hierar
chy and to exploit this idea by representing new patterns in terms of existing ones.
Merely scaling today's associative memory architectures to create larger memories
is not the answer. This work has tried to find more powerful alternative memory
architectures and has proposed a number of schemes (centred around the learning
hierarchies principle) which might bare fruit with more investment of research
resources.

Turning now to the symbolic level, there is a gap which few seem to be try
ing to fill at this time. This gap is a definition of more flexible reasoning architec
tures and a means of integrating the results of each processing step with the choice
of the next step and with modifications of the structure of the knowledge base
itself. Existing work in this area has been criticised as avoiding the real issues. This
chapter has elaborated on what some of these issues might be and to suggest other
areas of reasoning that have been neglected but could be integrated into the archi
tecture with a little effort.

At an intermediate level, there is no good solution on the table to bring
together the neural and symbol-structure levels. In this thesis, we have again been
critical of existing work (largely based around back-propagation), but in spite of
the advocacy of the learning hierarchies approach as a better basis for extracting
symbol structure, no alternative methodology has been put forward in a concrete
form to date. This area of research might be a fruitful one to pursue in the short
term.

The final chapter presents both a recap of the work presented in the thesis
and a list of more areas to explore that have received no coverage at all in this
work.

Towards True Neuro-Symholic Computation 333

CHAPTER 12

12.0 Introduction

Conclusions &
Future Work

The current wave of interest in the development of hybrid symbolic/neural
architectures is, in large part, fuelled by the belief that a system which embodies
both disciplines can overcome the disadvantages of both in the realm of intelligent
system design. This work has outlined an architecture which could meet the
requirements for such a system and has proposed a symbol encoding scheme and
developed a neural building block which is tuned to the representation of symbols
using that encoding.

This chapter will review and summarise the new ideas and development
work presented in this thesis, before outlining possible future areas of research
which are intended to address the shortcomings of the proposed solution and to
extend the scope of the work to consider more complex applications and structures.

12.1 Comparison of Requirements and Results

This section will review the results of the work. Specifically, what positive
results were obtained, in what way the implementation fails to implement the pro
posed architecture and to what extent the architecture-implementation pair fulfils
the goals first laid out in chapter one.

12.1.1 Results Obtained

A review of many key developments in the fields of Artificial Intelligence
and Neural Network theory has been presented and the major differences between
them (both real and apparent) have been discussed. The rational behind a hybrid
approach was described along with work in that direction. This review led to the
conclusion that in the design of large scale intelligent systems both AI and ANN
theories have vital elements to contribute. The rest of the work was devoted to an
investigation of the necessary properties of both the symbolic and the neural levels
of such a system.

Conclusions & Future 'Vork 334

An architecture has been outlined which addresses many of the requirements
for a robust symbol system imbued with sufficient flexibility to handle a complex
and evolving database of relationships between objects. This architecture is aimed
at the implementation of the knowledge base of an intelligent agent which must
develop and optimise its own representations, including developing categories and
generalising. A set of constraints was enumerated which a symbol encoding must
meet in order for the system to exhibit the required properties and a symbol encod
ing was described which would meet those constraints.

A neural network has been proposed and developed to fill the role of the
building block for the architecture. The initial network was a combination of a
Hopfield network and the non-holographic associative memory using a K-from-N
encoding scheme which was itself consistent with the symbol encoding properties
of the architecture. This network displays a number of useful properties including
one-shot learning and reliable recall up to a certain limit which was shown both by
analysis and subsequent simulation to give better performance than the basic Hop
field network.

Further network development added a time-sequential element to the pattern
encodings, leading to patterns of fixed period L. Networks storing these patterns
were shown to have a higher storage capacity than in the simple static case,
although the signal to noise ratio was reduced and each pattern was now expressed
over L cycles, increasing the bandwidth necessary to transmit it.

The addition of a control structure, which facilitated the association of two
patterns using a control pattern to perform the mapping, showed that the simple
learning algorithm developed so far was insufficient to handle a large number of
patterns and associations.

Next, the added complexity of learning hierarchies was introduced in which
each synapse possesses significant internal structure, facilitating the development
of feature detectors in the neural population. This scheme led to a trade-off
between the storage capacity of the network and the degree of fidelity of recall of
the pattern. Over time, pattern encodings would experience 'drift' but it was pro
posed that the creation of correlations between pattern bits could be used as a vehi
cle for inheritance and generalisation. This remains to be proved, however.

Finally, several key issues in the implementation of a general purpose neuro
symbolic machine were presented and discussed, both in the context of the litera
ture and of the ideas developed in this thesis. It was shown how key problems such
as sub-symbolic reasoning should be well suited to implementation in the learning
hierarchies network.

In addition, some key areas that are not well represented in the literature,
such as the handling of meta-knowledge, were discussed. The requirement for and
putative properties of a subtraction network were put forward to handle some of
the functions that are currently handled outside of the representational space of the
most existing reasoning networks (if they are handled at all).

Conclusions & Future 'York 335

Several approaches to handling parallel processing at the rule level were put
forward. It was argued that the K-from-N coding would be difficult, if not impossi
ble, to modify in order to represent multiple developing solutions in parallel. Alter
native choices put forward for this level of parallelisation were to represent
multiple solutions as parallel branches in a syntactic tree, or to attempt an intuitive
(non-rule) based scheme using noise to drive activation of neurons and the subse
quent exploration of the solution space.

12.1.2 Implementation of the Architecture

A network building block has been proposed which is intended to implement
the architecture. It has displayed many of the properties that were deemed neces
sary for such a unit in order for the system to develop and learn in an unknown
environment. Such properties include one-shot learning and the consolidation of
any given pattern or association of patterns.

Key to the neural building block development is the K-from-N code, which
has been extended into a D-from-K-from-N code with period L, increasing the
maximum number of stored patterns in the network at a cost of lower signal to
noise ratio. This architecture gives the designer extra degrees of freedom in net
work design.

The coding scheme was shown to grant powers of stability, noise immunity
and controllability to the network, each property being crucial in a large system
which might consist of very many such networks, heavily interconnected and oper
ating in a noisy environment.

However, at this time, several architectural features have not yet been imple
mented and the computational perfonnance of the network has only been partially
assessed. As a result, some of the assumptions made in the architecture develop
ment are not yet justified. For example, the control network which guides the data
network from state to state is not fully specified. This is a necessary step in 'clos
ing the loop' to produce an autonomous system. In addition, certain features of the
network operation, such as the mechanism which decides which network (data or
control) is updating at any given time, are not fully described.

At each step of network development, the memory capacity and dynamic
behaviour of the model were analysed. Additionally, the perfonnance of the nct
work was assessed by simulation and compared to earlier steps in the development.
Simulations backed up the analysis to a reasonably high degree and showed that
the memory capacity was better than that of an equivalent Bopfield network and
that the convergence of the network in the case of noisy input was more predicta
ble, based on a basin of attraction around each stored memory.

Conclusions & Future 'York 336

12.1.3 Fulfilling the Goals

The goals of the work are recapitulated below, with comments on the extent
to which each has been addressed.

- To Provide a Robust Substrate for Symbolic Computation. The proposed
architecture should provide such a substrate. The symbol encoding developed in
chapter five is the basis for robust and reliable computation and data storage, when
used in conjunction with the concepts of knowledge hierarchies and learning hier
archies that were also developed as part of the architecture. Simulations of the
developing network show that many of the required properties have been achieved,
although it is clear that much work remains.

- To Provide a Means of Storing Large Amounts of Data Efficiently. It was
shown that the network storage capacity was higher than that of conventional net
work architectures. This was due to a combination of the sparse coding approach
and the use of dynamic patterns expressed over several cycles. Storage efficiency
has not yet reached adequate levels for the proposed architecture, however. The
recasting of patterns using learning hierarchies should be the vehicle to improve
the efficiency to the needed levels.

- The Efficiency of the System Should Increase as the Network Size Increases.
The capacity of the network was increased as the number of neurons increased, as
one would expect. For the simple and dynamic networks the efficiency of storage
was significantly improved with increasing network size. The use of feature
extraction, through the learning hierarchies approach, is intended to address this
goal but while the approach seems valid in theory, it has not yet been shown to be
true by simulation.

-To Make Data Availablefor Computation as Appropriate. The symbol
approach outlined in the architecture fulfils this goal, since the symbol output of
the network acts as the primer for the next recall. For example, we see that for the
association network of chapter nine, each control pattern acted to restrict the set of
possible output vectors to a fraction of the whole pattern set, suppressing the influ
ence of unrelated output vectors. In addition, the use of a subject pattern, as out
lined in the exposition of learning hierarchies, will break up the monolithic
memory into sub-memories, so that patterns from one such memory do not inter
fere with the recall of patterns in another.

-To Provide a Learning Mechanism which Facilitates the Efficient Acquisi
tion of New Information. The concept of learning hierarchies, presented and devel
oped in this thesis, is centred around the ability to store new data in terms of
previously learned relationships. The rationale behind this development is to
improve the learning efficiency of the network and, hence, the storage capacity. At
the same time, learning hierarchies is a mechanism which permits the seamless
integration of memories which are intended for short-, medium- and long- term
storage and thus has the potential to be a powerful design approach in addressing
the stability-plasticity dilemma which has been a problem in adaptive filter and
neural network design since their inception.

Conclusions & Future \Vork 337

- The System Should Be Realisable. In the development of the neural building
block, implementabilty was a key concern; the output of each neuron is binary and
all learning algorithms use only information which is local to the neuron undergo
ing synaptic modification. Each such decision was taken to simplify the task of
implementing the system. A network of a few hundred neurons using the proposed
architecture would be realisable even with the silicon technology available today.

12.2 Future Work

The possibilities for future work are considerable. They can be divided
grossly into four sections. First, into elements which make up the complete imple
mentation of the architecture proposed; second, into investigations of many of the
options where several possibilities were proposed but only one was chosen for fur
ther study at that time; third, into extensions of the network implementation and
fourth, into future enhancements to the architecture and their subsequent realisa
tion. This section considers some of these possibilities.

12.2.1 Completing the Architecture & Implementation

As outlined in the last section, there is a number of tasks remaining to com
plete the basic architecture and implementation. In the architectural exposition, the
mechanism of generalisation via inheritance was outlined using a hierarchical
pointer structure. This structure must be formalised in order to proceed to the sec
ond step, implementing the full control network and 'closing the loop'.

It was felt that to adequately formalise the architecture and symbol encoding
would require detailed knowledge of the network implementation, an assumption
that lies at the heart of the connectionist views of neural networks as more than a
mere medium of implementation for practical symbol systems. Thus, the work
done on the implementation and its implications for the symbol encoding should
prove invaluable in this regard, acting as background for the formalisation process.

It was noted in chapter five that while the concept of learning hierarchies
(which was implemented in chapter ten with accompanying discussion) appears to
furnish properties similar to those required by symbol encoding in the inheritance
model, it does not follow that any scheme of learning hierarchies will necessarily
represent an environment for valid inheritance. Further work is required, firstly to
justify that there are sufficient conditions in which learning hierarchies can
robustly implement inheritance and secondly, to identify the necessary structural
and learning constraints for this to occur.

Chapter eleven discussed many of the remaining issues that must be over
come to construct a true neuro-symbolic intelligent system. The most significant
among these are the symbol-structure subtraction mechanism, the handling of mul
tiple evolving solutions and the realisation of non-rule-based, intuitive processing.
It is asserted that the neural substrate and architecture proposed in this thesis form
a useful framework within which to address these key topics.

Conclusions & Future 'York 338

12.2.2 Investigating Other Options

In chapter eight, the development of the dynamic pattern network described a
number of options for the calculation of neuron potential. The chosen option was
the digital signal processing (DSP) approach where the firing of a neuron affects
others for a fixed number of cycles after it has fired. This simplifies analysis but
places a burden on the implementation in the storage of multiple rounds of firing
neurons. A more natural approach is to model the neural potential as a differential
equation so that the change in the potential at each timestep is made up of an incre
ment from firing neurons and a leakage term. The more complex analysis involved
may be compensated for both by easing the implementation and, perhaps, by an
increase in storage capacity.

Next, in chapter ten, the development of learning hierarchies proposed two
simple means of combining the output of the parallel synaptic units. The linear
combiner was selected for analysis, again based on the simplification of the analy
sis. The max function was also presented but not analysed. There may be other
options which possess different properties.

Also in chapter ten, the learning algorithm used in consolidating learned pat
terns allowed numerous combinations of parameters to be considered. Only a few
options were given in depth treatment, while many potentially useful combinations
were ignored. One outstanding example of this occurred in the choice of the a unit
synapses as those with longest duration and lowest weight vector length (and con
sequently the g unit synapses as shortest duration but longest weight vector
length). The alternative choice was to reverse these trends, which might lead to
better performance of the learning hierarchies approach.

One other interesting area of investigation would be to quantify the consoli
dation process. The process itself involves the trade-off between well defined
potentials for firing neurons after multiple rounds of consolidation on the one hand
and disruption to the slow moving unit g synapses on the other.

12.2.3 Unconsidered Implementation Possibilities

A major area of implementation which was not considered in depth is the
breakdown of the fully inter-connected neural region into overlapping sub-regions.
Such a notion is inspired by our knowledge of the structure of the mammalian neo
cortex, in which the axons of individual neurons have a limited span, making con
nections with near neighbours with very high probability but having little or no
direct intra-cortical connectivity with neurons beyond a certain distance. Consider
the figure overleaf, which shows a data network divided into a number of regions.

Each hexagon in the figure represents a region such as has appeared through
out this work. Each region consists of N neurons and is constrained to reproduce
patterns using the D-from-K-from-N rule. Now, we expand the sources of two
types of input, the external and the internal, inter-neural inputs.

Conclusions & Future \Vork 339

(a) Inter-regional
Connedivity

Fig. 12-0 Dividing the network into multiple regions.

(b) Input Distribution

In the inter-region case, each neuron in addition to input from neurons in it
own region, also receives input from neurons in regions a distance r away (in part
(a) of the figure, r = 2). Each such region uses D-from-K-from-N coding, 0 that
for r=2, the total internal input to a neuron comes from 19 regions or 19D firing
neurons.

For the external input, we define a radius, x, over which an input signal i
distributed. In the figure x = 3, so that an external input aniving at the dark haded
region is connected directly to a total of 37 regions. Each neuron receive activity
from 37D firing neurons at any time. This clearly increases the level of redundancy
in the representation, since regions less than a distance x from each other will
receive overlapping inputs.

The objectives of this modularity are threefold. First, to increase the redun
dancy in the system by distributing input across multiple region . No two region
will receive exactly the same input vector: neighbouring regions will receive
almost identical input but the overlap will decrease with distance. The increa e in
redundancy is intended to improve the accuracy of recall and to permit graceful
degradation in perfonnance in the face of damage to some neurons or region.

The second objective is to increase storage capacity by reducing the inter
connectivity between the firing subsets while still having a large network. Reduc
ing the overall connectivity between firing sets has been shown Lo increase the total
number of patterns that can be stored in the network before saturation at a co t of
lower signal to noise ratio for any given pattern.

The shift from static to dynamic pattern encoding was one step to reducing
the number of firing neurons which connect with each other while learning a single
pattern. Modularising the network so that the firing subsets do not have to be fully
connected is based on the same idea. As was shown for the dynamic case, we
would expect the reduction in connectivity to also lead to a reduction in ignal for

Conclusions & Future Work 340

any given firing neuron which would presumably lead to an increased sensitivity to
noise. Analysis is needed to quantify the trade-offs involved.

The third reason for modularisation is to render the system more impJe
mentable. By modularising, we are breaking the system down into many identical
sub-units whose connectivity is restricted, spatially. For very large networks (con
sisting of many hundreds or even thousands of neurons) such an approach should
certainly lead to a more practical implementation in silicon.

In the future, alternative media of implementation may become available.
Even then, it is unlikely that the premise that modularity will lead to a more practi
cal realisation will not be equally valid. Certainly the mammalian brain itself,
implemented in a biochemical substrate, appears to be bound by similar con
straints.

12.3 Future Architectural Expansion

The presentation of further work in the architecture is a section unto itself
since it consists of two sub-topics. The first is in the use of inductive learning to
extend the knowledge base to cover relationships not explicitly given to the net
work by extrapolating from known data. The second is related to the issues of
induction and concerns an extension of the memory system to aid in restructuring
after inductive learning. Here, we add a parallel memory dedicated to recording the
events as perceived by the system. The goal with such a scheme is to allow the sys
tem to restructure its knowledge tree based on past trials and has application in
inductive learning and case-based reasoning.

12.3.1 Inductive Learning

While deductive inference has been intensely studied as a tool in AI for the
whole of its existence (Russell & Norvig, 1995), inductive inference has been
largely neglected and it is only in recent years that it has come in for serious scru
tiny (see Wolpert, 1995 for examples). It is not difficult to understand why: deduc
tive inference is inherently safe, taking true propositions as input always results in
true logical inferences as output. Inductive inference, on the other hand, is tenta
tive, non-truth preserving and usually demands a more complex encoding scheme
to represent the degrees of belief that the system possesses with respect to given
propositions.

As was discussed in chapter two, in the comparison of symbolic and neural
architectures the symbolic approach has often been criticised for its inflexibility in
the face of novel stimuli: current symbolic architectures are not efficient at gener
alisation. Neural networks have an inbuilt generalisation capability, since novel
stimuli are can be mapped to a novel output based on interpolation between known
examples, which is a simple form of generalisation. However, the ANN paradigm
is not yet well enough advanced to offer a complete solution to the induction prob
lem since current neural networks are not well suited to representing structured
data and it is in this area that induction is both desirable and currently unobtained.

Conclusions & Future 'York 341

In this chapter, the idea of inheritance as a shared, structured pointer was
proposed. It was envisioned that learning events could occur both at the level of
specific instances of a concept and at the higher, category level and that the conse
quences of that learning could be propagated in both directions. Downwards, to
permit instances of a category to inherit the relationship learned at the level above,
as a process of deductive inference. Upwards, to permit the higher level category to
share the newly learned mapping, this time as a more tentative process of inductive
inference.

There are many issues associated with such a scheme. The rate at which
associations at one level are absorbed into the level above needs careful considera
tion. Too fast and the system will be inclined to over-generalise, drawing conclu
sions based on joint membership of a category when in fact such conclusions are
unjustified. Conversely, too slow a rate leads to a system which is over cautious in
its application of knowledge obtained in one situation to a related one. Ideally, the
'rate of induction' should be constant for the system, but should be related to the
content of the knowledge base itself.

How the generalisation of one relationship to a whole category affects the
membership of other members of the category is also a topic for future exploration.
Consider a generalisation of a property at level n is made at level n+ 1. Thus all
members of that category at level n+ 1 now inherit the property. If this is a valid
generalisation then no problems occur. But if it is not, how does the system detect
the problem and subsequently recover from it? Detection would involve either
introspection (however that might be achieved) or a counter example arriving from
the external world. In either case, the system is faced with an example mapping
which does not match its expected result. It could divide the category in two, creat
ing two separate categories which share all previous features and mappings except
the one which caused the problem.

But how does the system assign the existing members to one of the two new
categories? The safest scheme is to allocate the new counter-example to one catc
gory and leave all other members in the other. But there are two problems with this
approach. First, this choice of partition may well be an oversimplification of an
underlying schism in the category membership, which will only be revealed slowly
over time as more and more counter-examples appear and are individually trans
ferred from one category to the other. Second, it is possible that the real problem
was the over-generalisation of the property in the first place. In this case, mecha
nisms should exist to withdraw the generalised property from the category at level
n+l and leave it as an association specific to certain members at level n.

These are all issues in the extension of the basic architecture to inductive
learning and should provide a source of much future work.

12.3.2 Episodic & Semantic Memories

A century of psychological testing has convinced researchers that the mam
malian brain does not contain a single memory store but many, each responsible
for the storage and retrieval of a distinct type of information (see chapter two for
references).

Conclusions & Future 'York 3-12

Leaving aside the distinction between the storage of memories of. say. audio
or visual information. one division of memory type is particularly relevant to this
work: the distinction between episodic memory and semantic memory. The func
tional differences between these types of memory were highlighted by Tulving,
and his work was. in tum. referenced by Klein (1991). In the context of a learning
symbol system. these differences are important. for reasons which will soon
become clear. First, what are these two types of memory?

Semantic memory is used to store universal relationships (objective knowl
edge about the world). whereas episodic memory is more a chronological record of
events from a personal perspective. Thus. when one learns at school that the capital
of France is Paris. there are initially two learning processes going on in parallel:
one is to semantic memory where it is recorded that the capital of France is Paris.
The second learning process is a personal record of the actual event of learning this
fact: one might remember that the learning took place in the dark classroom at the
end of the hall. that it was a Friday. etc. There might be connections to other events
which occurred before, during or after, such as the fire alarm sounding in the mid
dle of the lesson.

The relevance of these differences to a memory system stems from the way
in which stored knowledge in the semantic memory is developed and extrapolated
from individual learning events. Ones semantic memory develops with the acquisi
tion of new knowledge; simple categorisations become richer and more complex as
ones knowledge of a subject deepens. This process must result in changes in the
relationships between items and categories. In contrast. the individual events
which led to the acquisition of each new relationship are themselves unchanging.

Consider a system which makes a decision at time t based on information in
its semantic memory. Its action results in new information which causes it to
update semantic memory. A record of the event held in episodic memory makes it
possible to reconstruct the state of semantic memory as it was before the learning
event took place which is useful for introspection and reasoning.

Consider an example. An agent believes that the capital of France is Berlin.
perhaps due to a misunderstanding or misinformation at an earlier time. Upon
receiving information that the correct answer is Paris, how does the system
respond? Should it reject the new information because it conflicts with the old?
Should newer information always be considered more reliable than old? By retain
ing a record of the event of learning that the answer was Berlin. the agent can re
examine the evidence which led to the changes in semantic memory. perhaps with
the benefit of new processes and insight not possessed in that earlier time. to help it
decide which answer is the more reliable.

Another good example is the level of generalisation. Given an assignment of
object x to category y. the agent might assume that all properties of objects in y
apply to x. Every experience it has had might confirm this assumption until one
event occurs which appears to violate the rule. Access to knowledge about the pre
vious trials might permit the agent to discern which aspects of the new situation are
different from the previous ones and hence to split category y into yJ and y2 which
are distinguished by the differing contexts.

Conclusions & Future 'York 3~3

The episodic memory essentially keeps track of the results of trials and the
context in which they occurred (even context which appears to be irrelevant may
be retained, since it might become significant later on during category refinement).

How all of this might be achieved in the context of this architecture is left for
future work since the ideas presented here are far too vague at this point to be
incorporated directly. However, it is envisaged that such a memory would be a step
towards applying the architecture to case-based reasoning or in a more general
sense to an architecture which is able to apply meta-reasoning: to re-examine the
assumptions it is making about its own knowledge base and make adjustments. As
such, it is worthy of further consideration.

12.4 Conclusions

This thesis has presented the results of many years of study into the issues
involved in applying neural networks to a symbol-based computing system. A neu
rally-implemented symbol architecture has been outlined which is intended to
address many of the short-comings of, on the one hand, the Classical symbolic
architecture as it has been traditionally implemented on conventional computers
and, on the other, the simple neural network models which are often overly con
cerned with the meticulous extraction of optimal features while ignoring the
(potentially simpler but sufficient) challenge of quickly learning patterns and the
relationships between them.

A number of well known ideas from past neural network research have been
revived, adapted and synthesised into a network structure which has been demon
strated as offering superior levels of perfonnance in some categories than other
auto-associative networks as well as improved levels of control in the trade-off
between key network properties.

While many issues remain to be resolved, it is the belief of this author that
the fundamental direction in which this work is heading is the right one in the
search for a robust and flexible architecture for the design of intelligent systems.
This belief is supported by two notions. First, by many (intuitively necessary)
properties of symbol systems which are not fully supported by traditional symbol
architectures but which are facilitated by a foundation in a neural substrate. Sec
ond, by the generality, flexibility and representational power inherent in symbol
systems which current neural networks lack.

The biggest remaining puzzle is, perhaps, why it has taken until the nineties
for those active in the field of AI and neural networks to realise the potential that
has been there since the beginning.

Conclusions & Future 'York 344

A

n

List of References

Adamson. M.J. & Damper. R.I .• 1999. B-RAAM: A Connectionist Model which Develops
Holistic Internal Representations of Symbolic Structures. Con. ScL. Vol. 11. No.1. pp
41-71 ... 81

Aijanagadde. V .• 1994. Unclear Distinctions lead to Unnecessary shortcomings: Examining
the rule vs fact. role vs filler. and type vs predicate distinctions from a connectionist rep-
resentation and reasoning perspective. Proc. of AAAI-94 99

AI-Asady. R. 1995. Inheritance Theory: An Artificial Intelligence Approach. Ablex Publish-
ing ... 92.94

Aleksander. I. & Morton. H.B.. 1993. Neurons and Symbols. Chapman & Hall 114

Aleksander. I .• 1996. Impossible Minds: My Neurons. my consciousness. Imperial College
Press ... 113.309

Aleksander. I.. Brown. C .• Evans. R.o. & Sales. N.J .• 1995. MAGNUS: A review of current
work in learning cognitive skills. WnnW 95. University of Kent at Canterbury ... 113

Amit. D.J .• 1989. Modelling Brain Function. Cambridge University Press 17.37.60.162.
247 ... 288.298

Anderson. J.A .• 1972. A simple neural network generating an interactive memory. Math. Bio.
14. ppI97-220 ... 49

Arbib. M .• 1994. Schema Theory:Cooperative computation for brain theory and distributed
AI. In Honovar. V. & Uhr. L. (eds). Artificial Intelligence and Neural Networks: Steps
towards principled integration. Academic Press .. 320

Austin. J. & Filer. R .• 1995. Using Correlation Matrix Memories for Inferencing in Expert
Systems. Advanced Decision Technologies. Brunei University 108

Austin. J. & Stonham. T .• 1987. Distributed associative memory for use in scene analysis. Im-
age and Vision Computing. 5. 251-260 .. 53. 56

Austin. J .• 1997. A distributed associative memory for symbolic reasoning. In Sun. R.& Al
exandre. F. (eds.). Connectionist-Symbolic Integration. Lawrence-Erlbaum 108

Austin. J .• Jackson. T. & Wood. A .• 1991. Efficienct Implementations of Massive Neural Net
works. in Delgado-Frias. lO. & Moore. W.R (eds). VLSI for Artificial Intelligence and
Neural Networks. Plenum Pub. Corp ... 53

Barron. A.R. 1991. Complexity regularization with application to artificial neural networks.
In (Roussas. G .• ed.). Non-parametric functional estimation and related topics 34

C

D

E

Baum, E.B., Moody, J. and Wilczek, F., 1988, Internal representations for associative mem-
ory, BioI. Cyber., 59, pp217-228 .. 50

Bishop, C.M., 1995, Neural Networks for Pattern Recognition. Oxford Press.26, 137, 255

Calvin, W.H., 1995, Cortical columns, Modules and Hebbian Cell Assemblies. In Arbib,
M.A.(ed), The Handbook of Brain Theory and Neural Networks, Bradford ... 16, 303

Calvin, W.H., 1998, The Cerebral Code: thinking a thought in the mosiacs of the mind. MIT
Press ... 16, 308

Carpenter, G.A. & Grossberg, S., 1994, Integrating Symbolic and Neural Processing in a
Self-Organizing Architecture for Pattern Recognition and Prediction. in 1I0novar, V. &
Uhr, L. (eds.), Artificial Intelligence and Neural Networks. Academic Press 143

Casasent, D. & Telfer, B., 1992, High Capacity Pattern Recognition Associative Processors.
Neural Networks, Vol. 5, pp687-698 ... 53

Chalmers, D. J., 1990, Syntactic Transformations on Distributed Representations, Con. Sci.,
Vol. 2, Nos 1 & 2, pp 53-62 ... 79

Chomsky, N., 1965, Aspects of the Theory of Syntax. MIT Press41

Chrisman, L., 1991, Learning Recursive Distributed Representations for Holistic Computa
tion, Internal memo CMU-CS-91-154, Carnegie Mellon University, Pittsburgh 80

Cover, T.M. & Thomas, lA., 1991, Elements of Information Theory, Wiley-Interscience.
159

Crick, F. & Asanuma, C., 1986, Certain Aspects of the Anatomy and Physiology of the Cer
ebral Cortex. In Parallel Distributed Processing, vol. 2. Cambridge: MIT Press 16

Crick, F., 1982, Do dentritic spines twitch? Trends in Neurosciences, 5,44-46 18

Crick, F., 1984, Function of the thalamic reticular complex: the searchlight hypothesis. Proc.
of Nat. Acad. of ScL, 81, pp4586-4590 .. 289

Desieno, D., 1988, Adding a Conscience to Competitive Learning, IEEE Int. Conf. on Neural
Networks, vol.l .. 32

Dolan, C.P. & Smolensky, P., 1989, Tensor Product Production System: a Modular Architec-
ture and Representation, Con. ScL, Vol. 1, No.1, pp 53-68 73

Ernst, G.W. & Newell, A., 1969, GPS: A Case Study in Generality and Problem Solving.
New York Academic Press .. 19

ii

F

G

II

Fahlman. S .• 1979. NETL: A System for Representing and Using Real World Knowledge.
MIT Press ... 92

Fodor. J .• 1975. The Language of Thought. Harvard University Press 39

Fodor. J.A. & Pylyshyn. Z.A .• 1988, Connectionism and Cognitive Architecture: A Critical
Analysis. Cognition 28: 3-72 ... 39. 71. 128

Gardner. E .• 1988. The phase space interations in neural network models. Journal of Physics.
21A. p257 ... 3

Gardner-Medwin. A.R. 1976. The recall of events through the learning of associations be-
tween their parts. Proc. R Soc. Lond. B. 194. pp375-402 63

Graham. B. & Willshaw. 0.1 .• 1995. Capacity and information efficiency of a brain-like as-
sociative net. NIPS 7:513-520 .. 57

Graham. B. & Willshaw. D.J .• Improving recall for an associative memory. BioI. Cyber.
72:337-346 .. , 57

Gross. R.D .• 1996, Psychology. The Science of Mind and Behaviour. 3rd ed .• Hodder &
Sloughton ... 70

Grossberg. S .• 1976a. Adaptive pattern classification and universal recording: I. Parallel de-
velopment and coding of neural detectors. Bio. Cyb. 23. 121-134 157. 307

Grossberg. S .• 1988. Competitive learning: From interactive activation to adaptive resonance.
in S. Grossberg. (ed.), Neural Networks and Natural Intelligence. Cambridge. 143. 256

lIall. Z.W., 1992. An Introduction to Molecular Neurobiology. Sinauer 18. 222

lIaykin. S .• 1994. Neural Networks. A Comprehesive Foundation. MacMillan 255. 270

Hebb. D.O .• 1949. The organisation of behaviour. Wiley .. 48

Hely. T.A.. Willshaw. 0.1. & Hayes. O.M .• 1999. A new approach to Kanerva's sparse dis-
tributed memory. To appear in IEEE trans. on neural networks 58

Hertz. J .• Krogh. A. & Palmer. RG .• 1991. Introduction to the theory of neural computation.
Addison-Wesley ... 60.206

Hinton. G.E. & Sejnowski. T.J .• 1986. Learning and Relearning in Boltzmann Machines. in
Rumelhart. D.E. & McClelland. lL.. Parallel Distributed Processing. MIT Press 66.
71 ... 330

Hinton. G.E .• 1990. Mapping Part-Whole Hierarchies into Connectionist Networks. Art. Int.
46(1-2):47-75 ... 71

iii

J

K

Hinton, G.E., McClelland, J.L. & Rumelhart, D.E., 1986, Distrbuted Representations. In Par-
allel Distributed Processing, vol. 1. Bradford .. 71

Hirahara, M., Oka, N & Kindo, T., 1997, Associative memory with a sparse encoding mech
anism for storing correlated patterns. Neural Networks, Vol. 10, No.9, pp1627-1636
61

Honovar, V. & Uhr, L., eds., 1994, Artificial Intelligence and Neural Networks. Steps To-
wards Principled Integration. Academic Press .. .43

Hopfield, J.1. & Tank, T.W., 1985, 'Neural' computation of decisions in optimization prob-
lems. Bio. Cyb. 52, 141-152 ... 317

Hopfield, J.J., 1982, Neural Networks and Physical Systems with Emergent Collective Com-
putational Abilities, Proc. Nat. Acad. Sci. of USA, 79 17, 37,60

Hopfield, J.1., 1984a, Neurons with Graded Response have Collective Computational Prop-
erties like those of Two-State Neurons, Proc. Nat. Acad. Sci. of USA, 81. 37

Hubel, D.H. & Wiesel, T.N., 1977, Functional architecture of macaque visual cortex. Proc.
of Roy. Soc. of London, Series B 198, 1-59 .. 309

Jacobs, R.A., 1988, Increased rates of convergence through learning rate adaption. Neural
Networks 1, 295-307 .. 33

Johnson, M., 1991, Superscalar Microprocessor Design, Prentice Hall, 322

Jolliffe, LT., 1986, Principle Component Analysis. New York: Springer-Verlag 9,30

Kanerva, P., 1988, Sparse Distributed Memory, MIT Press .. 57

Kelso, J.A.S., 1997, Dynamic Patterns. The Self-Organisation of Brain and Behaviour. MIT
Press ... 3, 247

Klein, S.B., 1991, Learning: Principles & Applications. 2nd Edition. McGraw-HiI1.l7, 343

Kohonen, T., 1972, Correlation matrix memories, IEEE Trans. on Computers C-21. pp353-
359 .. 49

Kohonen, T., 1982a, Self-organised formation of topologically correct feature maps, Biolog-
ical Cybernetics 43 ... 31

Kohonen, T., 1982a. Self-organisation of topologically correct feature maps. Biological Cy-
bernetics 43, 59-69 ... 30

Kolb. B & Whishaw, LQ., 1996, Fundamentals of Human Neuropsychology, 4th cd., Free-
man ... 16, 121

iv

L

Kolodner, I., 1993, Case Based Reasoning. Morgan Kaufman 314, 320

Kosko, B., 1988, Bidirectional associative memories. IEEE Trans. on Sys., Man & Cyber.,
18: 49-60 .. 64

Kothari, R., Lotikar, R. & Cahay, M., 1998, State-dependent weights for neural associative
memories, Neural Computation 10, pp59-71 ... 67

Kurzweil, R., 1990, The Age of Intelligent Machines. MIT Press 2

Lange, T.E. & Dyer, M.O., 1989, Frame Selection in a Connectionist Model of High-Level
Inferencing. Proc. of the Ann. Conf. of Cog. Sci. Soc., pp 706-713 97

Lange, T.E. & Dyer, M.O., 1989, High-level Inferencing in a Connectionist Network, Con.
Sci., Vol. 1, No.2, pp 181-217 .. 97

Lapin, L.L., 1990. Probability and Statistics for Modem Engineering. 2nd Edition. PWS-
Kent .. 192

Leake, n.B., 1996, Case-Based Reasoning. Experiences, Lessons & Future Directions. MIT
Press ... 26, 314

Leung, C.S., 1993, Encoding method for bidirectional associative memory using projection
on convex sets. IEEE Trans. on Neural Networks, vol. 4, no. 5, pp879-881. 65

Leung, C.-S., 1994, Optimum learning for bidirectional associative memory in the sense of
capacity. IEEE Trans. on Sys., Man & Cyb., vol. 24, no. 5, pp791-796 66

Leung, C.S., Chan, L.-W. & Lai, E., 1995, Stability, capacity and statistical dynamics of sec
ond-order bidirectional associative memory, IEEE Trans. on Sys., Man and Cyb., vol.
25, no. 10, ppI414-1424 ... 66

Linsker, R., 1986, From Basic Network Principles to Neural Architecture. Proc. of the Nat.
Acad. of Sciences of the USA, 83 .. 30

Little, W.A. & Shaw, O.L., 1975, A statistical theory of short and long term memory, Bahav.
Bio., vol. 14, ppI15-133 ... 50

Lynch, O. & Baudry, M., 1984a, The biochemistry of memory: A new and specific hypothe-
sis. Science, 224, 1057-1063 .. 18

Malek, M. & Amy, B., 1997, A preprocessing model for integrating case-based reasoning and
prototype-based neural betwork. In Sun. R. & Alexandre, F. (eds), Connectionist-Sym-
bolic Integration. Lawrence-Erlbaum Assoc .. l13

Martin, I.H., 1996, Neuroanatomy: text and atlas, 2nd Edition. Appleton & Lange16, 308

Marx, K. & Engels, F., 1848, Manifesto of The Communist Party 128

v

N

p

McClelland, J.L. & Rumelhart, D.E., 1981, An interactive activation model of context effects
in letter perception, part 1. Psychol. Rev. 88, pp375-407 .. 72

McCulloch, W.S. & Pitts, W.A, 1943, A logical calculus of the ideas immanent in neural
nets. Bull. Math. Biophys. 5 ... 2

McDermott, D., 1976, Artificial Intelligence meets natural stupidity. Reprinted in Haugeland
(ed.), 1981, Mind Design. MIT Press ... 106

McDermott, J., Rl: A Rule-Based Configurer of Computer Systems. Artificial Intelligence,
19(1):39-88 ... 21

McEliece, RJ., Posner, E.C., Rodemich, E.R & Venkatesh, S.S., 1987, The capacity of Hop
field associative memory. IEEE Trans. on Inf. Theory, vol. IT-33, No.4, pp461-68160

Miikkulainen, R, 1993, Subsymbolic Natural Language Processing: An Intgerated Model of
Scripts, Lexicons, and Memory. MIT Press ... 112

Miikkulainen, R, 1994, Integerated Connectionist Models: Building AI systems on Subsym
bolic Foundations. In Honovar, V. & Uhr, L.(eds). Artificial Intelligence and Neural
Networks. Steps Towards Principled Integration. Academic Press 112

Minsky, M., 1988, The Society of Mind. Touchstone, Simon & Shuster 88

Minsky, M.L & Papert, S.A., 1969, Perceptrons. MIT Press 33, 36,40

Minsky, M.L., 1961, Steps towards Artificial Intelligence, Procs. of the Institute of Radio En-
gineers 49, 8-30 .. 33

Nadal, J-P. & Toulouse, G., 1990, Information storage in sparsely coded memory nets, Net-
works, vol. 1, pp61-74 .. 51

Narendra, K. & Thathachar, M.A.L., 1989, Learning Automata, an Introduction. Prentice-
Hall ... 222

Newell, A & Simon, H.A., 1963, GPS, a program that simulates human thought. In E.A.
Feighbaum & J. Feldman (eds.), Computers & Thought. McGraw-Hill. 86, 87

Newell, A, 1990, Unified Theories of Cognition. Harvard 86, 124,314

Palm, G., 1980, On associative memory, Bio. Cybernetics, 36, ppI9-31 57

Patterson, D.W., 1990, Introduction to Artificial Intelligence and Expert Systems. Prentice-
Hall ... 26

Plate, T., 1996, Holographic reduced representations: convolution algebra for compositional
distrbuted representations. Proc. of the 12th nCAI. .. 82

vi

Q

R

s

Plate, T., 1997, Structure matching and transformation using distributed representations. In
Sun, R& Alexandre, F., (eds), Connectionist-Symbolic Integration, Lawrence-Erl-
baum ... 82

Pollack, J.B., 1990, Recursive Distributed Representations, Art. Int., 46(1-2): 77-105 .. 76

Quillian, M.R, 1968, Semantic memory. In Minsky, M., (ed.), Semantic Information
Processing, MIT Press .. 23

Rosenblatt, F., 1958, Principles of Neurodynamics. Spartan ... 66

Rumelhart, D.E. & McClelland, J.L. (eds), 1986, Parallel distrbuted processing, vols. 1 & 2.
Bradford ... 49, 293

Rumelhart, D.E., Hinton, O.E. & Williams, R.J, 1986b, Learning internal representations by
error propagation. In Parallel Distributed Processing: Explorations in the Microstructure
of Cognition., Vol. 1, MIT Press .. 28, 50, 143

Russell, S. & Norvig, P., 1995, Artificial Intelligence: A Modern Approach. Prentice-Hall.
18, .. 23,87, 134,312,322

Sandewall, E., 1986, Non-monotonic inference rules for multiple inheritance with excep-
tions. Proc. of IEEE-86, vol. 74, pp1345-1353 .. 94

Searle, J.R, 1992, The Rediscovery of the Mind. MIT Press .. 114

Selfridge, 0.0.,1958, Pandemonium: a paradigm for learning. In Anderson, RA., (ed), 1989,
Neurcomputing: Foundations of Research ... 88

Shafer, G.A., 1979, Mathematical Theory of Evidence. Princeton 26

Shastri, L. & Ajjanagadde, V., 1993, From simple associations to systematic reasoning: A
connectionist representation of rules, variables and dynamic bindings using temporal
synchrony. In Brain and Behav. Sci., 16, pp417 -494 ... 99

Shastri, L., 1988, Semantic Networks: An Evidential Formalization and its Connectionist Re-
alization. Pitman, London .. 92, 95, 96

Shastri, L., 1990, Connectionism and the Computational Effectiveness of Reasoning. Theo-
retical Linguistics, vol. 16, no. 1, pp65-87 ... 1 00

Shastri, L., 1996, Temporal Synchrony, Dynamic Bindings, and SHRUTI: a representational
but non-classical model of reflexive reasoning. Behav. and Brain Sci., 19 (2), pp 331-
337 .. 99

vii

T

Shastri, L., 1999, Advances in SHRUTI - A neurally motivated model of relational knowl
edge representation and rapid inference using temporal synchrony. To appear in Applied
Intelligence ... 99

Shepherd, G.M. & Koch, C., 1990, Introduction to Synaptic Circuits, in The Synaptic Organ-
isation of the Brain, 3rd Ed. OUP .. 29

Shepherd, G.M. (ed), 1990, The Synaptic Organisation of the Brain (3rd ed). New York:
OUP .. 15, 16

Shoham, Y., 1990, Non-monotonic reasoning and causation. Cog. Sci., pp913-923 112

Simpson, P.K., 1990, Higher-order and intraconnected bidirectional associative memories.
IEEE Trans. on Sys., Man & Cyber., vol. 20, no. 3, pp637-653 65

Smolensky, P., 1986, Harmony Theory, in Rumelhart, D.E. & McClelland, J.L., Parallel Dis-
tributed Processing, vol.l, MIT Press .. 330

Smolensky, P., 1988, On the Proper Treatment of Connectionism. Behavioural & Brain Sci-
ences 11, 1-74 ... 38, 71

Smolensky, P., 1991, Connectionism, Constituency, and the Language of Thought. In Loew-
er, B. & Rey, G. (eds), Meaning in Mind: Fodor and his Critics. Blackwell 73

Steinbuch, K., 1963, Automat und Mensch. Springer .. 34,48

Stork, D.G., 1997, Scientist on the Set: An interview with Marvin Minsky. In HAL's Legacy:
2001' s Computer as Dream and Reality. MIT Press .. 1, 4

Stroustrup, B., 1991, The C++ Programming Language. 2nd Edition. Addison Wesley124

Sun, R., 1992, On Variable Binding in Connectionist Networks. Con. ScL, vol. 4, No.2,
pp93-124 ... 103

Sun, R., 1994, A Neural Network Model of Causality. IEEE Trans. on Neural Networks, vol.
5, No. 4, pp604-611 .. 103

Sun, R, 1994, Logics and Variables in Connectionist Models: A Brief Overview, in Honovar,
V. & Uhr, L. (eds.), Artificial Intelligence and Neural Networks. Steps Towards Princi-
pled Integration, Academic Press ... 42

Sun, R, 1994, Robust Reasoning: Integrating Rule-based and Similarity-Based Reasoning.
Internal Memo, Dept. of Compo Sci., Univ. of Alabama 103, 111

Touretzky, D.S. & Hinton, G.E., 1988, A Distributed Connectionist Production System, Cog.
Sci. 12, pp 423-466 .. 89

Touretzky, D.S., 1990, BoltzCONS: Dymamic Symbol Structures in a Connectionist Net-
work, Art. Int. 46, pp5-46 ... 89

viii

Tourezky, D.S., 1984, The Mathematics ofInheritance Systems. Pitman, London 92

Tourezky, D.S., Horty, J. & Thomason, R., 1987, A clash of intuitions: the current state of
non-monotonic inheritance systems. Proc. of IJCAI-87, pp476-482 93

Turner, M. & Austin, J., 1997, Matching perfonnance of binary correlation matrix memories.
Neural Networks, Vol. 10, No.9, pp1637-1648 .. 57

v
Van Gelder, T., 1990, Compositionality: a connectionist variant on a Classic theme. Cog.

Sci., 14 .. 79

Vidyasagar, M., 1993, Location and stability of the high-gain equilibria of nonlinear neural
networks, IEEE Trans. on Neural Networks, Vol. 4, No.4, pp660-67 1.. 61

von der Malsburg, C., 1981, Internal Report 81-2, Dept. of Neurobiology, Max-Planck Insti-
tute for Biophysical Chemistry .. 289

Von Neumann, 1., 1958, The Computer and the Brain. Yale University Press 1

W

z

Werbos, P.J., 1974, Beyond regression: New tools for prediction and analysis in the behav-
ioural sciences. PhD thesis. Harvard University .. 33, 49

Weste, N.H.E. & Eshraghian, K., 1992, Principles of CMOS VLSI Design: A System Per-
spective. 2nd Edition. Addison-Wesley ... 158, 305

Willshaw, DJ. & von der Malsberg, C., 1976, How patterned neural connections can be set
up by self-organisation, Proc. of the Royal Soc. of London, B 194:431-445 31

Willshaw, DJ., Buneman, a.p. & Longuet-Higgins, H.C, 1969. Non-holographic associative
memory. Nature (London) .. 34, 49, 109

Wolpert, D.H. (ed.), 1995, The Mathematics of Generalisation. Proceedings of the SFIICNLS
Workshop on Fonnal Approaches to Supervised Learning. Addison-Wesley 20

Zadeh, L.A., 1965, Fuzzy Sets. Infonnation & Control, 8:338-353 5

Zhang, B.-L., Xu, B.-Z. & Kwong, C.-P., 1993, Perfonnance analysis of the bidirectional as
sociative memory and an improved model from the matched-filter viewpoint. IEEE
Trans. on Neural Networks, vol. 4, no. 5, pp864-872 .. 65

ix

