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Abstract 

Air Traffic Management (ATM) systems are undergoing a period of major 

transformation and modernisation, requiring and enabling new separation 

management (SM) methods. Many novel SM functions, roles and concepts are being 

explored using ATM simulators. Commercial simulators are capable, high-fidelity tools, 

but tend to be complex and inaccessible. The Airspace Simulator is a fast-time, discrete 

event simulator originally designed for exploratory ATM research. This thesis describes 

the redevelopment of the Airspace Simulator into a simulation platform better suited 

for researching and evaluating SM in future airspace. The Airspace Simulator-II has the 

advantage of new functionality and greater fidelity, while remaining high-speed, 

accessible and readily adaptable. 

The simulator models FMS-like spherical earth navigation and autopilot flight 

control with an average cross track error of 0.05 nmi for waypoint-defined routes in 

variable wind-fields. Trajectories are computed using the BADA v3.8 tabulated 

database to model the performance of 318 aircraft types. The simulator was 

demonstrated with up to 4000 total aircraft, and trajectories for 300 simultaneous 

aircraft were computed over 900 times faster than real-time. 

Datalink and radio-telephony communications are modelled between the air traffic 

and ATM systems. Surveillance is provided through ADS-B-like broadcasts, and an 

algorithm was developed to automatically merge instructions from conflict resolution 

systems with existing flight plans. Alternate communication, navigation, and 

separation modes were designed to permit the study of mixed-mode operations. 

Errors due to wind, navigational wander, communication latencies, and localised 

information states are modelled to facilitate research into the robustness of SM 

systems.  

The simulator incorporates a traffic visualisation tool and was networked to 

conflict detection and resolution software through a TCP/IP connection. A scenario 

generator was designed to automatically prepare flight plans for a large variety of two-

aircraft encounters to support stochastic SM experiments. The simulator, scenario 

generator, and resolver were used for the preliminary analysis of a novel concept for 

automated SM over radio-telephony using progressive track angle vectoring.  



 

v 
 

[Page intentionally left blank] 

  



 

vi 
 

Acknowledgments 

I would like to thank the many individuals who supported me and made this work 

possible. In particular, I wish to acknowledge Professor D.J. Allerton, Dr. Graham 

Spence, and Bill Flathers; the expertise they provided and the advice they gave was 

invaluable. Karen Feigh provided the foundation for this research, and I am glad she 

has allowed me to extend what she began. I am also grateful for the generosity of the 

Marshall Aid Commemoration Commission, the oversight of the Air Force Institute of 

Technology – Civilian Institutions Program, and the support of my family and The 

Crowded House – Refuge GC. Rah VA Mil! 

Disclaimer 

The views expressed in this thesis are those of the author and do not reflect the 

official policy or position of the United States Air Force, Department of Defense, or the 

U.S. Government.  



 

vii 
 

[Page intentionally left blank] 

  



 

viii 
 

Table of Contents 

 

Abstract iv 

Acknowledgments vi 

Disclaimer vi 

Table of Contents viii 

List of Tables xiii 

List of Figures xiv 

Notation xvi 

CHAPTER 1: Background and Motivation 1 

1.1 Air Traffic Management 1 

1.2 Air Traffic Management Modernisation 2 

1.2.1 The Need and Direction of Modernisation 2 

1.2.2 Trajectory Based Operations 3 

1.2.3 Communication 5 

1.2.4 Surveillance 6 

1.3 Separation Management 6 

1.3.1 The Current Separation Management Process 7 

1.3.2 New Concepts for Separation Management 8 

1.3.2.1 Automated Conflict Detection and Resolution Systems 8 

1.3.2.2 Levels of Automation 9 

1.3.2.3 Delegated Separation Responsibility 11 

1.3.2.4 Mixed-Equipment Operations 12 

1.4 Simulators for Separation Management Research 14 

1.4.1 Commercial Simulation Platforms 15 

1.4.1.1 TAAM 16 

1.4.1.2 RAMS Plus 16 

1.4.1.3 FACET 17 

1.4.1.4 Limitations 18 

1.4.2 Non-Commercial Simulation Platforms 19 

1.4.3 The Airspace Simulator by K. Feigh 20 

1.4.3.1 Case for Improving the Airspace Simulator 21 

1.5 Research Aims 23 

1.6 Organisation of Remaining Chapters 24 

CHAPTER 2: Simulator Requirements and Design 25 



 

ix 
 

2.1 Simulation Requirements 25 

2.1.1 Capabilities 25 

2.1.2 Constraints 27 

2.2 Programming Language and Operating System 28 

2.3 Simulator Organisation 29 

2.3.1 Scenario Generation Module 30 

2.3.2 Air Traffic Module 31 

2.3.3 Navigation and Trajectory Module 32 

2.3.4 Wind Field Module 32 

2.3.5 Communications Module 32 

2.4 Operational Data Structures 33 

2.4.1 The Master Array 33 

2.4.2 The Aircraft Array 34 

2.4.3 The Data Block 36 

2.5 Logical Design 37 

2.6 Synchronisation with External Systems 40 

2.7 Simulator Outputs 44 

2.7.1 Permanent Record 44 

2.7.2 Traffic Visualisation 46 

2.8 Summary of Changes Made to the Airspace Simulator 47 

CHAPTER 3: Navigation and Trajectory Module 49 

3.1 Requirements for Modelling Navigation and Trajectories 49 

3.2 Trajectory Modelling Overview 51 

3.2.1 Flight Plans 53 

3.2.2 ATC Instructions 54 

3.3 Performance Modelling 55 

3.4 The Flight Management System 56 

3.4.1 Lateral Guidance 56 

3.4.1.1 Great Circle Navigation 57 

3.4.1.2 Turn Anticipation 59 

3.4.1.3 Lateral Offsets 60 

3.4.2 Longitudinal Guidance 61 

3.4.3 Vertical Guidance 62 

3.5 The Autopilot/Flight Director System 62 

3.5.1 Lateral Control 62 

3.5.2 Longitudinal Control 64 



 

x 
 

3.5.3 Vertical Control 64 

3.6 Equations of Motion 66 

3.7 Navigation Error and Uncertainty Modelling 67 

3.7.1 Flight Technical Error 67 

3.7.2 State Estimation Noise 68 

3.8 Verification and Evaluation of the Module 69 

3.8.1 Verification of the BADA v3.8 Database Implementation 69 

3.8.2 Evaluation of the Flight Control System 70 

3.8.3 Evaluation of the Flight Management System 73 

3.8.3.1 Evaluation of Navigation Accuracy 74 

3.8.3.2 Verification of Flight Plan and ATC Instruction Following 75 

3.8.4 Verification of the Flight Technical Error Model 79 

3.8.5 Evaluation of Module Execution Speed 80 

3.9 Summary 81 

CHAPTER 4: Communications Module 82 

4.1 Requirements for Modelling Communications 83 

4.2 The Communications Process 84 

4.2.1 The Message Set 85 

4.2.2 The Message Queue 86 

4.2.3 Incorporating Flight Plan Modifications 87 

4.3 Latency Modelling 91 

4.3.1 Datalink Latencies 92 

4.3.2 Radio-Telephone Latencies 93 

4.3.3 ASAS Resolutions 96 

4.4 Surveillance Broadcasting 96 

4.5 Evaluation of the Module 98 

4.5.1 Verification of Surveillance Broadcast Failure Model 98 

4.5.2 Verification of Latency Modelling 98 

4.5.3 Verification of Trajectory Exchange 100 

4.6 Summary 102 

CHAPTER 5: Scenario Generation 103 

5.1 Motivation 103 

5.2 Pair-Wise Conflict Scenario Generator 105 

5.2.1 Aircraft Type Selection 106 

5.2.2 Mode Selection 107 

5.2.3 Flight Plan Generation 108 



 

xi 
 

5.2.4 Start Time Control 113 

5.3 Verification and Discussion of Scenario Generator 113 

5.3.1 Distribution Goodness-of-Fit 114 

5.3.2 Scenario Geometry 114 

5.3.3 Fast-Time Performance 117 

5.3.4 Discussion 117 

5.4 Verification of Fast-Time Performance 118 

5.5 Summary 120 

CHAPTER 6: Research Application – Vector Navigation 122 

6.1 Automation Support for Mixed-Equipage Traffic 122 

6.1.1 The Need for Improved Automation Support 123 

6.2 Design of an RMAT System 127 

6.2.1 Initial Processing Module 130 

6.2.2 Resolution List Manager 132 

6.2.3 Manoeuvre Modelling 134 

6.2.3.1 Placement of the Alert Trigger 134 

6.2.3.2 Placement of the Transmission Trigger 135 

6.2.4 Implementation in the Airspace Simulator II 137 

6.3 Initial Evaluation of RMAT 138 

6.3.1 Comparison of RMAT to Datalink 138 

6.3.2 Effects of Communication Timing Uncertainty on CPA 141 

6.4 Chapter Summary 145 

CHAPTER 7: Discussion and Conclusion 147 

7.1 Discussion 147 

7.1.1 Execution Speed 147 

7.1.2 Fidelity 149 

7.1.3 Functionality 150 

7.2 Conclusion 151 

7.2.1 Satisfaction of Requirements 152 

7.2.2 Suggestions for Further Work on the Airspace Simulator – II 156 

7.2.2.1 Expanding the FMS Functionality 156 

7.2.2.2 Expanding the Scenario Generation Method 156 

7.2.2.3 Incorporating a Native CD&R System 157 

7.2.3 Suggestions for Further Work on Automated Vectoring 157 

Glossary 159 

Appendix A: Simulator Configuration File 161 



 

xii 
 

Appendix B: Output File Format 164 

Appendix C: Flight Plan Format 167 

Appendix D: Scenario Generator Configuration File 169 

Bibliography 171 

  



 

xiii 
 

List of Tables 

 

2-1: Summary of requirements .............................................................................. 28 

2-2: The Master Array ............................................................................................ 34 

2-3: The Aircraft Array ........................................................................................... 36 

3-1: Flight technical error parameters ................................................................... 68 

3-2: Manoeuvre durations (seconds)  .................................................................... 70 

3-3: Comparison of flight technical error parameters ........................................... 80 

4-1: The surveillance output data set .................................................................... 86 

4-2: EUROCAE Effective Update Period performance requirements .................... 97 

4-3: Minimum allowable single message probabilities of reception ..................... 97 

4-4: Sampled latency distributions ........................................................................ 99 

5-1: The ten most frequent aircraft types in European airspace ........................ 107 

5-2: Distribution of encounter angles .................................................................. 110 

5-3: Chi-Squared goodness-of-fit test results ...................................................... 114 

5-4: Regression results of tLOS standard deviation ............................................... 116 

5-5: Flight summaries for concurrent aircraft test .............................................. 118 

5-6: Concurrent aircraft test results .................................................................... 119 

6-1: Linear regression results on datalink and RMAT CPA .................................. 141 

6-2: Radio-telephony latency settings and the resulting average error .............. 142 

B-1: Header data fields ........................................................................................ 164 

B-2: Master Array data fields ............................................................................... 166 

B-3: Traffic state data fields ................................................................................. 166 

C-1: Leg segment data fields ................................................................................ 168 

  



 

xiv 
 

List of Figures 

2-1: Simulator organisation ................................................................................... 30 

2-2: Relationship between the Master and Aircraft Arrays ................................... 35 

2-3: The simulator logical design ........................................................................... 37 

2-4: The setup phase .............................................................................................. 37 

2-5: The outer simulation loop .............................................................................. 38 

2-6: The inner simulation loop ............................................................................... 39 

2-7: The shutdown phase....................................................................................... 40 

2-8: Speed-controlled synchronisation mode ....................................................... 41 

2-9: The handshake synchronisation mode ........................................................... 43 

2-10: Log-log plot of permanent record file size ................................................... 45 

2-11: Log-log time profile of data recording .......................................................... 45 

2-12: TViz Screenshot ............................................................................................. 47 

3-1: Illustration of lateral navigational accuracy bounds ...................................... 49 

3-2: Direct-to manoeuvre ...................................................................................... 50 

3-3: Lateral offset manoeuvre ............................................................................... 51 

3-4: Path stretch manoeuvre ................................................................................. 51 

3-5: The navigation and trajectory modelling process .......................................... 52 

3-6: Fly-by waypoint (A), and fly-over waypoint (B)  ............................................. 53 

3-7: Linked list data structure ................................................................................ 54 

3-8: Great Circle navigation geometry ................................................................... 58 

3-9: Constant bank turn ......................................................................................... 59 

3-10: Turn correction for lateral offsets ................................................................ 61 

3-11: The lateral flight controller ........................................................................... 63 

3-12: Longitudinal flight controller ........................................................................ 64 

3-13: The vertical flight controller ......................................................................... 65 

3-14: Lateral controller response to 90 degree heading change .......................... 71 

3-15: Vertical controller response to a 2000 ft climb ............................................ 72 

3-16: Longitudinal controller response to a 30 knot speed change ...................... 73 

3-17: Sample points in navigation test .................................................................. 74 

3-18: Radar plot of navigational accuracy ............................................................. 75 

3-19: Test route ...................................................................................................... 76 

3-20: Segment transition test ................................................................................ 76 

3-21: Route modification test ................................................................................ 77 

3-22: Heading, track angle, and direct-to test ....................................................... 77 

3-23: Lateral offset test .......................................................................................... 78 

3-24: Test of timed altitude (A) and speed (B) instructions .................................. 78 

3-25: Time series of flight technical error .............................................................. 79 

3-26: Breakdown of simulator execution time ...................................................... 80 

4-1: The communications input process ................................................................ 84 

4-2: The communications output process ............................................................. 85 

4-3: Data structure of message queue and type definitions ................................. 87 



 

xv 
 

4-4: Scenario requiring merging of resolution waypoints ..................................... 88 

4-5: Resulting ground tracks of two incorrect merges .......................................... 89 

4-6: Wayline for fly-by and for fly-over transitions ............................................... 89 

4-7: An automated algorithm for merging route modifications............................ 90 

4-8: Resulting ground tracks after merge .............................................................. 91 

4-9: Pseudo-code model of transmission delay ..................................................... 95 

4-10: Transmission delays due to channel occupation .......................................... 95 

4-11: The effect of radio-telephony latency ........................................................ 100 

4-12: TViz screenshot before and after conflict resolution ................................. 101 

5-1: A pair-wise conflict scenario at initialisation ................................................ 106 

5-2: A pair-wise conflict scenario at initialisation ................................................ 108 

5-3: Velocity triangle geometry ........................................................................... 111 

5-4: A pair-wise conflict scenario at initialisation ................................................ 112 

5-5: A screenshot of a pair-wise conflict scenario at tLOS.  ................................ 114 

5-6: Scatter plots of tLOS verses encounter angle and speed differences .......... 115 

5-7: CPA histogram .............................................................................................. 115 

5-8: Execution time per concurrent aircraft ........................................................ 119 

5-9: Fast-time gain per concurrent aircraft ......................................................... 120 

6-1: Mixed-equipage operations using an RMAT system .................................... 127 

6-2: RMAT system architecture ........................................................................... 129 

6-3: Initial Processing Module control flow ......................................................... 130 

6-4: Location of alert and transmission trigger points ........................................ 132 

6-5: Resolution List Manager control flow .......................................................... 133 

6-6: Placement of the alert trigger ...................................................................... 134 

6-7: Effective waypoint and transmission trigger point geometry ...................... 136 

6-8: RMAT Implementation ................................................................................. 137 

6-9: Histogram of the closest points of approach ............................................... 139 

6-10: Summary of CPA statistics by run ............................................................... 140 

6-11: Effect of communication timing errors on the RMAT flight path .............. 142 

6-12: CPA statistics by simulation run ................................................................. 143 

6-13: Difference of RMAT and Datalink CPAs, plotted by scenario CPA ............. 144 

6-14: The absolute value of CPA Difference statistics by simulation run ............ 144 

6-15: Illustration of cross track error from along track error .............................. 145 

7-1: Functional decomposition of the APFDS ...................................................... 148 

A-1: Example configuration file ............................................................................ 162 

B-1: File organisation ........................................................................................... 164 

C-1: Example flight plan ....................................................................................... 167 

D-1: Example configuration file ........................................................................... 169 

 

 

 

 



 

xvi 
 

  



 

xvii 
 

Notation 

Name Symbol 

Along-Track Error ATE 

Altitude h 

Bank Angle   

Cross-Track Error XTE 

Degrees deg 

Estimated or Predicted Value    

Feet ft 

Flight Level FL 

Flight Path Angle   

Ground Speed      

Heading   

Knots kts 

Latitude   

Longitude   

Metres m 

Nautical Miles nmi 

Radians Rad 

Seconds s 

Time Rate of Change    

Track Angle   

Track Angle Change   

True Airspeed      

Wind Direction      

Wind Speed      





 

1 

Chapter 1 

Introduction and Motivation 

 

1.1 Air Traffic Management 

In 1956, a Trans World Airlines Super Constellation and a United Airlines DC-7 

collided over the Grand Canyon, Arizona, killing all on board. The tragedy highlighted 

the need for a formal system of Air Traffic Control (ATC) in the United States and led to 

the creation of the Federal Aviation Agency (FAA) (Nolan, 2004). Preventing collisions 

between aircraft operating in the system remains the primary purpose of ATC (FAA, 

2010). However, ATC has evolved globally as air transportation became more popular 

and as new technologies were developed, and ATC responsibilities have grown to 

include the task of organizing and expediting the flow of traffic, as well as providing 

other support to aircraft on a capacity-available basis. ATC is now often referred to as 

ATM (Air Traffic Management), reflecting the shift from strictly controlling traffic to 

the more encompassing task of managing traffic. 

The domains of ATM activity are often categorised as communications, 

surveillance, and navigation. Air traffic controllers currently use VHF AM radios to 

maintain voice communications with aircraft under their control. Digital data 

communication (datalink) is commonly used by commercial aircraft to communicate 

with their airline operation centres. ATM use of datalink has been introduced in 

various airspace regions under the Controller-Pilot Datalink Communications (CPDLC) 

program, automating routine communications such as frequency and transponder 

assignments, a limited set of ATC clearances, and microphone checks – tasks that can 

occupy up to 50% of controller activity (Gonda, et al., 2005, EUROCONTROL, 2010b). 

Traffic surveillance is primarily accomplished through the ATC Radio Beacon 

System (Nolan, 2004). Ground-based secondary surveillance radars (SSR) periodically 

interrogate all aircraft within range. Aircraft equipped with transponders are capable 

of replying to the interrogation, providing range and bearing, as well as encoded data 
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such as identify and altitude. However, in some remote and oceanic areas, radar 

surveillance is limited or non-existent. In these cases, verbal position-reports and flight 

plan tracking are used in lieu of radar surveillance. 

Navigation services are provided to aircraft though an extensive network of 

ground-based navigation aids, such as VOR and DME stations (Nolan, 2004). Traffic 

routes were developed to correspond with these navigation aids in order to effect 

organised and efficient flight operations and to ensure navigational coverage. Aircraft 

navigation capabilities have improved dramatically with the advent of advanced on-

board navigation systems such as precise inertial navigation systems (INS) and Global 

Navigational Satellite Systems (GNSS). 

1.2 Air Traffic Management Modernisation 

However, Air Traffic Management (ATM) systems throughout the world are 

undergoing a period of major transformation and modernisation, driven by the 

limitations of the current ATM system and the growth in air traffic demand. 

1.2.1 The Need and Direction of Modernisation 

The national airspace system in the United States is approaching maximum 

capacity. In 2007, the FAA reported record levels of air traffic delays and predicted 

they would continue to grow until the system becomes gridlocked around the year 

2015 unless action was taken (FAA, 2007). Despite the global economic downturn and 

the resulting decrease in the number of commercial flights in 2009, the FAA forecasts 

that air traffic will grow 19% over the next 8 years (FAA, 2010). The Joint Development 

and Planning Office (JPDO) – the organisation responsible for overseeing ATM 

modernisation in the United States – warns that “The current method of handling 

traffic flow will not be able to adapt to the higher volume and density demanded of it 

in the future, even if twice as many or more resources are devoted to it” (JPDO, 2004). 

The JPDO has developed a long-term plan, called NextGen, to guide the development 
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of these new methods of handling traffic with the goal of increasing safety, security, 

and capacity. 

Europe faces a similar challenge; on a peak day in 2005, Europe’s ATM system was 

responsible for nearly 30,000 commercial flights (SESAR, 2006).  EUROCONTOL 

forecasts that traffic growth will recover by 2011 to a rate of 3% per year, resulting in a 

nearly 22% increase in IFR traffic between 2009 and 2016 (EUROCONTROL, 2010a). A 

public-private consortium responsible for Europe’s ATM modernization, called the 

Single European Sky ATM Research (SESAR) Programme, has concluded that “There is a 

need for a paradigm shift in today’s concept of operation to break through the 

capacity barrier predicted to occur around 2015” (SESAR, 2006). 

In order to meet this demand, while simultaneously improving the safety and 

efficiency of flight operations, both SESAR and NextGen foresee a future airspace 

system transformed by the concept of trajectory based operations, and leveraging new 

technologies in the communications and surveillance domains. 

1.2.2 Trajectory Based Operations 

Trajectory based operations (TBO) represent a shift away from the broad, static 

directives and the fragmented airspace that characterise the current air traffic control 

system. Instead, precisely defined flight trajectories will provide the basis for planning 

and executing all flight operations. Unlike current-day flight plans, these trajectories 

will be described by a series of Earth-referenced waypoints that define the centreline 

of the flight path (including position uncertainty), unconstrained by the current route 

structures and ground-based navigation aids (SESAR, 2007). While full-TBO involves 

precise management of an aircraft’s 4D trajectory in time and space, the concept is 

scalable to accommodate 2D (lateral) or 3D (lateral and vertical) trajectories which are 

appropriate for lesser equipped aircraft. 

The NextGen Concept of Operations notes that with TBO, “The traditional 

responsibilities and practices of pilots/controllers will evolve due to the increase in 

automation, support, and integration inherent to trajectory management” (JPDO, 
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2009). Under TBO, desired trajectories will be negotiated between the aircraft 

operators and the Air Navigation Service Providers (ANSP), tailored to individual flight 

preferences and airspace constraints. Aircraft will then be contracted to fly this 

trajectory within a required navigation performance, and any subsequent trajectory 

modifications will be renegotiated. 

Trajectory-based operations are expected to increase the capacity, efficiency, and 

safety of the global air transporta on system by permi ng op mised,  exible rou ng 

from gate-to-gate ( unabiki, et al., 2003; Prev t, et al., 2003; Wichman, et al., 2007). A 

major limitation to efficient flight routing in the current ATM system is the fixed route 

structures which were designed around ground-based navigation aids. Nolan notes 

that “During any given day, pilots using the low-altitude victor airway system add 

approximately 125,000 miles of extra distance to their flight plans as a result of 

preferred routes” (2004). However, the evolution of advanced Flight Management 

Systems (FMS) and improvements in navigation technologies such as Global 

Navigational Satellite Systems (GNSS) and multi-sensor data fusion have made it 

possible to navigate precisely apart from the fixed route structure – this capability is 

known as area navigation (RNAV). RNAV procedures have already shown significant 

reductions in fuel burn, emissions and flight time (Jha & Crook, 2009; Sprong & Mayer, 

2007). TBO will permit aircraft to take full advantage of RNAV through unique, 

dynamic RNAV routes. 

Additionally, TBO intends to reduce navigational uncertainty through widespread 

application of the Required Navigation Performance concept (RNP). Under RNP, 

aircraft are required to navigate along the designated route of flight to a given 

accuracy and precision, with on-board performance monitoring and alerting. 

Constraining the navigational uncertainty in this way increases airspace capacity by 

permitting reduced separation standards and more closely spaced traffic flows (FAA, 

2006). 
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1.2.3 Communication 

A second fundamental shift from the current ATM system is that the digital data 

exchange of trajectories will become the primary mode of communication between an 

ANSP and flight operators, replacing the verbal delivery of ATC clearances (SESAR, 

2007; JPDO, 2009). Although voice communications using the legacy VHF radio-

telephony (R/T) systems will remain, their role will likely change to being used for non-

routine communications and to provide a back-up means of communication in the 

event of datalink failure. 

Datalink communications enable complex message sets (such as the uplink and 

downlink of detailed trajectories) to be transmitted. Trajectory exchange between 

ground ATM systems and airborne FMS using datalink has been successfully 

demonstrated both in hardware-in-the-loop simulation studies and in flight trials (van 

Gool & Schröter, 1999; Jones & Schleicher, 2001; Mueller, 2007). Furthermore, from 

flight trials in a NASA Boeing-737 test aircraft, Knox and Scanlon have shown that 

datalink can significantly reduce communications errors between pilots and controllers 

compared to conventional radio-telephony procedures (1991). One concern about 

datalink communications, however, is the possibility of reduced situational awareness 

due to the lack of the ‘party-line’ effect with datalink ( an & Kuchar, 2000). New 

avionics, Cockpit Display of Traffic Information (CDTI) systems, have been introduced 

as a solution, greatly improving flight crew situational awareness (SESAR, 2007; JPDO, 

2009). 

Frequency congestion and channel saturation are a further incentive for the 

transition to datalink communications (DLBST, 1996). Although VHF channel spacing 

has already been reduced in Europe from 25 kHz to 8.33 kHz to increase the number of 

available channels, frequency congestion remains an issue. A study of over 60 hours of 

radio traffic in French en-route sectors found that on average, the frequency was 

congested more than 40% of the time (Graglia, 2002). The expansion of CPDLC is 

intended to address this concern. 
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1.2.4 Surveillance 

The accuracy, extent, and availability of surveillance information will also be 

improved in future ATM systems by integrating airborne and ground-based sources 

(SESAR, 2007; JPDO, 2009). In the Automatic Dependent Surveillance – Broadcast 

(ADS-B) concept, all aircraft will periodically broadcast position, velocity, and intent 

data to other traffic and the ANSP. ADS-B can provide surveillance in remote areas not 

currently covered by radar, as well as an air-to-air surveillance capability (Lester & 

Hansman, 2007). This detailed knowledge of both the current aircraft state and the 

intended flight trajectory can help improve the accuracy of trajectory predictions 

made by ATM decision support tools (DST) and automation. Better trajectory 

predictions, in turn, can facilitate more accurate conflict detection, traffic flow 

management, and strategic airspace planning (Mondoloni, 2006; ECC, 2009). 

ADS-B can also be augmented by both legacy ground-based systems such as 

secondary surveillance radar (SSR), as well as emerging technologies such as Wide 

Area Multilateration (EUROCONTROL, 2005). Surveillance information gathered by the 

ANSP will be shared with all traffic through Traffic Information System – Broadcast 

(TIS-B) and displayed by CDTI systems (SESAR, 2007; JPDO, 2009). 

Technology and architecture independent standards are being established to 

define the high-level system performance requirements for surveillance applications. 

These Required Surveillance Performance (RSP) standards will define the accuracy, 

availability, integrity, latency, update rate, and continuity required of surveillance 

systems, allowing airspace designers to set safe separation minimums to enable more 

efficient airspace usage (Thompson, et al., 2006). 

1.3 Separation Management 

Assuring safe aircraft separation is the highest priority of Air Navigation Service 

Providers (FAA, 2010). The growing traffic levels and the modernisation plans 
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described above have significant implications for the separation management process 

– both requiring and enabling new separation management methods. 

1.3.1 The Current Separation Management Process 

Currently, separation management (SM) is primarily a manual process. That is, air 

traffic controllers must make cognitive operational judgements to identify and resolve 

possible conflicts on the basis of information from surveillance radars, flight progress 

strips, and experience (Prevot, et al., 2005). Ensuring safe separation takes place in 

conjunction with other controller tasks such as: 

 managing communications 

 coordinating with other controllers 

 responding to pilot requests 

 monitoring convective weather and other airspace hazards. 

Airspace design, structured routing, and standard flight rules prevent many 

conflicts from forming in the first place. In addition, a limited range of decision support 

tools have been developed to assist with separation provision. For example, modern 

surveillance displays allow controllers to show range rings around selected aircraft to 

help visualise separation distances, as well as trajectory prediction lines from the 

radar-derived velocity vector to help visualise future aircraft positions (Prevot, et al., 

2005). Conflict detection tools such as the Medium-Term Conflict Detection (MTCD) 

system can help alert controllers of potential conflicts up to 20 minutes ahead, 

showing the time of conflict and predicted minimum separation (Kauppinen, et al., 

2002). Conflict probes such as the User Request Evaluation Tool (URET) can then be 

used to search for conflict free routes (Brudnicki, et al., 2007). 

Despite these tools, air traffic controllers remain strictly responsible for conflict 

detection and resolution. As a result, they must maintain constant situational 

awareness of all aircraft under their control. To ensure the traffic load does not exceed 

the cognitive capabilities of the controllers managing a given sector, limits are placed 

on the number of aircraft that can operate safely in that sector (Prevot, et al., 2005). 
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These limits, however, do not reflect the true potential capacity of the airspace. For 

example, in an analysis of two US en-route sectors near the workload limit of the 

controllers, Andrews observed that less than half of the aircraft in the sector ever 

came within 20 nmi (Andrews, 2001). He further concluded that the airspace volume 

had the capacity to handle more than four times the number of aircraft allowed by the 

controller workload limit.  

1.3.2 New Concepts for Separation Management 

To overcome the limitations of the current SM process, new automation functions, 

roles, and operational concepts are being explored to help ensure safe and efficient air 

transportation for up to three times the current traffic levels. 

1.3.2.1 Automated Conflict Detection and Resolution Systems 

Initial research has suggested that more highly automated, trajectory-based 

separation management has the potential to maintain safe aircraft separation in high 

density, high complexity airspace (Erzberger & Paielli, 2002; Andrews, et al., 2006; 

Callantine, 2007; Gawinowski, et al., 2008). In future ATM systems, improved 

surveillance information and knowledge of aircraft intent will allow better automatic 

conflict detection with fewer false alarms and undetected conflicts. Conflict resolution 

algorithms can then be used to generate optimised, conflict-free trajectories. These 

resolutions can be uplinked directly to the aircraft flight guidance system, ready for 

flight crew approval, using digital datalinks coupled to the FMS. Consequently, 

NextGen foresees that SM in future TBO airspace will be based on intelligent 

automation, with a shift in roles for air traffic controllers from tactical separation 

between individual aircraft to the strategic management of traffic flows in high-density 

airspace (JPDO, 2009). Similarly, SESAR intends to use automation to support 

conflict/interaction detection, situation monitoring, and conflict resolution (SESAR, 

2007). 

Methods and algorithms for automatically detecting potential conflicts and 

generating resolutions have been discussed in the literature since at least 1973 
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(Flanagan, et al., 1973). An extensive review of conflict detection and resolution 

(CD&R) methods conducted in 2000 by Kuchar and Yang revealed 68 separate systems 

that were under development (2000). However, the design and evaluation of new and 

improved systems remains an active field of research. Numerous other CD&R systems 

have been published subsequently to the Kuchar and Yang review, including at least 10 

new algorithms or methods in 2008 and 14 in 2009; for example Lei, et al., (2008), 

Archibald, et al., (2008),  Vela, et al., (2009), and  Karr, et al., (2009). 

However, before any new CD&R system can be operationally implemented, the 

safety and efficiency performance must first be thoroughly evaluated. Safety is 

paramount to any CD&R system; if the SM process is to be more highly automated, 

then conflicts must be detected and resolved with a high degree of accuracy and 

integrity, even in complex, high density traffic scenarios (Erzberger & Paielli, 2002). 

The system must be shown to be robust against faults and uncertainties in the 

requisite navigation, communication, and surveillance systems. Efficiency is also 

important; CD&R systems should produce resolutions that minimise flight delays, fuel 

consumption, traffic disturbances, and the environmental impact. Many resolvers use 

a cost function to find an efficiency-optimised resolution, such as the fuel-optimal 

integer programming algorithm described by Vela, et al. (2010). 

In addition to the design and analysis of novel CD&R systems, there is also 

considerable work underway to develop operational concepts that integrate these 

systems effectively into future airspace, particularly with a focus on acceptable levels 

of automation, the delegation of separation responsibility to flight crews, and mixed-

mode operations. 

1.3.2.2 Levels of Automation 

Although SM will be based on “intelligent automation,” the acceptable and 

appropriate level of automation is being debated (Kirwan & Flynn, 2002; Zemrowski, 

2008; Dwyer & Landry, 2009). Ideas for levels of automation range from maintaining 

the current SM process, but with more capable tools, to fully automated conflict 

detection and resolution that does not require any controller involvement (Prevot, et 
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al., 2005). Variations exist within this ranking, but the general progression of 

automation levels is: 

1. Assisted conflict detection, with limited resolution assistance (conflict probing); 

2. Automated conflict detection, with limited resolution assistance (conflict 

probing); 

3. Automated conflict detection, with automated resolutions upon the 

controller’s request; 

4. Automated conflict detection, with automated resolutions, ranked and 

displayed for the controller’s selection; 

5. Fully automated conflict detection and resolution. 

EUROCONTROL has been developing a suite of tools to support level-4 automation 

(Kirwan & Flynn, 2002) under the Automated Support to Air Traffic Services (ASA) 

programme. Using the MTCD system and a conformance monitoring tool for conflict 

detection, the Conflict Resolution Assistant (CORA) tool generates a set of ranked 

resolutions. Kirwan and Flynn observe that “CORA is not intended to replace the 

controller’s skill of conflict resolution, but rather is meant to support it and extend the 

controller’s abilities and capacity for handling more traffic safely and expeditiously” 

(2002). Zemrowski cautions, though, that relegating the human to a monitoring role in 

this way could reduce alertness; rather, “attention must be made to ensure that the 

mundane monitoring can be done by the automation and that the role of the human is 

kept challenging but not frantic” (Zemrowski, 2008). 

A series of controller-in-the-loop simulations were conducted by the NASA Ames 

Research Center to evaluate the effect of various levels of automa on support on 

controller workload and separa on viola ons (Prev t, et al., 2008). Reassigning 

responsibility for conflict detection from controllers to automation (as with levels 2 to 

5) was found to significantly reduce controller workload. But the study also found that 

even level 3 and 4 automation may not be adequate in future high density, high 

complexity traffic. Attempting to search manually for conflict free trajectories using an 

advanced graphical conflict probe at peak traffic densities (three times the current 
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levels) resulted in numerous separation violations. Selectively using the automation to 

generate a resolution (level-4) still resulted in very high workload in high density 

situations. The study concluded that higher levels of tra c density required higher 

levels of automa on to maintain safe separa on. Summarising this research and 

previous work, Prev t, et al, said that “The HITL [Human-In-The-Loop] research so far 

has indicated that ground-based automated separation assurance is a generally sound 

concept for trajectory-based operations in high density en route airspace. Trajectory-

based conflict detection and resolution automation integrated with data link should 

become a core NextGen technology and could possibly be opera onally evaluated in 

the near future” (Prev t, et al., 2009). 

However, relying on automation raises the significant safety issue of handling 

failures. The NextGen concept of operation notes that the increased reliance on 

automation must be coupled with fail-safe modes that do not require full reliance on 

human cognition as a backup for automation failures (JPDO, 2009). Similarly, the 

SESAR consortium has called for “automation that is coupled with fail-safe modes that 

do not require full reliance on human situational awareness as a backup for 

automation failures” (SESAR, 2007). One solution is a layered approach to SM across 

different timelines. Erzberger and Paielli have proposed a concept that uses a strategic 

CD&R system (approximately 2 to 20 minute horizon) to generate optimised 

resolutions based on the aircraft’s intended 4D trajectory (2002). The strategic system 

would operate in parallel with a separate, fully-independent tactical CD&R system 

designed to identify and resolve short-term conflicts (0 to 2 minutes) when, for 

example, aircraft deviate from their flight plan. The legacy Traffic Collision Avoidance 

System (TCAS) would remain a final safety net to prevent collisions in the event that 

both the strategic and tactical resolvers fail to resolve the conflict. 

1.3.2.3 Delegated Separation Responsibility 

Trajectory based operations and improved communication and surveillance 

technology will also allow the delegation of some separation responsibility to flight 

crews (SESAR, 2007; JPDO, 2009). Aircraft properly equipped with on-board conflict 
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detection and resolution capability, called Airborne Separation Assurance Systems 

(ASAS), and CDTI displays will be permitted to self-separate from other traffic, thereby 

reducing controller workload while simultaneously enabling more user-preferred 

routing. 

The feasibility of self-separation has been demonstrated by several large research 

programmes including the FREER (Free-Route Experimental Encounter Resolution) 

programme and the free-flight research by the National Aerospace Laboratory of the 

Netherlands (NLR) (Duong, et al., 1997; Ruigrok & De Gelder, 2006). However, 

operational concepts for implementing ASAS are still under consideration and must 

address a number of significant questions, including: 

 Will both conflict resolution and detection be delegated? (Loscos, et al., 2007) 

 What systems or strategies will be in place to mitigate failures? (Loscos, et al., 

2007) 

 Will self-separating aircraft be segregated into different airspace from 

conventionally managed aircraft? (Hoekstra, et al., 2000) 

 How will fairness be managed? That is, in a conflict, which aircraft should 

manoeuvre? (Jonker, et al., 2005, Del Pozo de Poza, et al., 2009) 

To address some of these questions and make progress towards initial ASAS 

operations in Europe, the Advanced Safe Separation Technologies and Algorithms 

(ASSTAR) project was conducted to establish a “common endorsement of the 

proposed ASAS applications” (Loscos, et al., 2007). Similarly, in the United States the 

NASA Distributed Air/Ground – Trajectory Management (DAG-TM) programme has 

been exploring the human-factors implications of ASAS equipment and operations 

(Lee, et al., 2003). 

1.3.2.4 Mixed-Equipment Operations 

Any new concept for SM must also consider methods to safely and efficiently 

handle traffic that is not fully equipped for trajectory-based operations. 
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There are two main reasons why air traffic may have mixed equipment or levels of 

capabilities. Firstly, with advances in technology, many features of TBO will require 

advanced avionics such as an RNP-capable FMS, ASAS equipment, and CDTI displays, as 

well as improved communications equipment such as an FMS-integrated datalink. 

Major avionics upgrades often take place over major maintenance periods – 

sometimes as infrequently as 7 years (Zemrowski, 2008). Thus, the transition from the 

current, clearance-based ATC system to a more highly automated, trajectory-based 

system will be gradual and ANSPs will need to provide different levels of service to 

some users. Secondly, ATM systems must account for the possibility of equipment 

failures. Strategies specific to TBO must be developed to mitigate the effects of faults 

due to human error or automation failure. 

However, mixed-capability operations introduce a significant challenge to air traffic 

controllers. A study of mixed-RNP capability in oceanic operations by Forest and 

Hansman found that controllers reported a greater level of difficulty and a loss of 

situational awareness in scenarios where only 50% of the traffic was RNP equipped 

(2006). A subsequent simulation study by Pina and Hansman suggest that controllers 

have difficulty correctly identifying conflicts when equipage is less than 50% (2004). 

In light of the difficulty of mixed-capability operations, one solution is to designate 

certain airspace for TBO traffic and exclude all aircraft that cannot be supported by 

either ground-based or airborne SM automation. ‘Segregated’ airspace could provide a 

homogeneous operating environment where all aircraft use similar procedures and 

automation tools to maintain safe separation, and could also encourage users to invest 

in advanced equipment (Forest & Hansman 2006; Kopardekar, et al., 2009). In a 

proposal for a more highly automated ATM system, Erzberger and Paielli concluded 

that, “The level of difficulty in handling encounters will strongly depend on the density 

of traffic and on the complexity of the traffic flow. As a rule, an unrestricted mix of 

equipped and unequipped aircraft will have to be avoided, since it would reduce 

capacity and efficiency” (2002). The segregated airspace solution is also supported by 

the NextGen Concept of Operations (JPDO, 2009). 
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Other research, however, has questioned the necessity of segregation (Hoekstra, 

et al., 2000; Kopardeker, et al., 2009). To highlight this, Doble, et al., conducted a 

simulation study of a mixed-ASAS concept where properly trained flight crews with 

ASAS-equipped aircraft assumed responsibility for separation from other ASAS aircraft 

and from Instrument Flight Rules (IFR) aircraft (2005). Ground-based air traffic 

controllers managed the separation of IFR traffic and issued flow management 

constraints to all aircraft. Under this operational concept, the number of ASAS aircraft 

in the sector was shown to have very little effect on controller workload in providing 

separation assurance for the IFR traffic, indicating that integrating mixed capability 

traffic in the same airspace may be feasible within certain constraints. Integration 

could even have a number of advantages over segregation. As has been stated, mixed-

capability operations may be the normal state for an extended period. Restricting 

airspace access may come at the cost of underutilized airspace capacity and reduced 

flexibility, possibly offsetting the benefits of TBO (Kopardeker, et al., 2009). 

1.4 Simulators for Separation Management Research 

The new SM methods that are under development promise to help overcome the 

capacity barrier and ensure safe separation in future airspace, but also raise many new 

questions; systems and concepts are evolving and many uncertainties remain. 

Arguably, simulation can provide a key tool to answer these questions. Simulators can 

support the design, analysis, and verification of new systems by providing insights into 

safety, performance, and implementation issues (Galati et al 2003). As a result, 

simulation is used extensively to aid nearly every step of ATM research and 

development. 

Unlike flight simulators, which are designed to model a single aircraft, air traffic 

simulators are used to model entire air traffic systems consisting of: multiple, 

simultaneous aircraft with a variety of performance profiles and flight plans; air traffic 

management services; weather and atmospheric effects; as well as the associated 

communication, navigation, and surveillance functions to provide interaction between 
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simulated entities. Air traffic simulators make it possible to research the relations and 

effects of complex, stochastic, highly-coupled systems over a range of conditions that 

would be impractical or unsafe to test with live trials (Sweet, et al, 2002). 

The level of fidelity – that is, the degree of realism – of air traffic simulators varies 

according to the intended use. High fidelity simulators often contain detailed, complex 

airspace and aircraft models, and are used when accuracy and confidence in the 

results are important, such as pre-operational validation. Lower-fidelity simulators are 

used when the level of detail and realism is not as important, and when the complexity 

of higher-fidelity models would hinder efficient research. Lower-fidelity simulators are 

often used early in the development process, before designs and concepts of 

operation have been finalised, for example, to support ‘what-if’ analysis, to 

demonstrate feasibility, or to compare alternative designs and concepts. 

Similarly, the speed of air traffic simulators varies according to the intended use. Real-

time simulators compute one simulated second in one actual second, and are 

principally used when human interaction is required, such as human-in-the-loop 

research that involves real pilots and controllers. With fast-time simulators, one 

simulated second is computed in less than one actual second. Because fast-time 

simulators are able to compute scenarios in a fraction of the time required by real-

time simulators, they are well suited for large-scale, stochastic simulations that would 

be unfeasible to conduct in real-time. As a result, fast-time simulators are valuable for 

initial research into new SM concepts and systems since they are able to provide 

coverage over a large set of possible scenarios. For example, some of the proposed 

CD&R algorithms are heuristic; requiring extensive simulations to prove their 

effectiveness, and ultimately, their safety. Higher fidelity, real-time simulators can 

then be used for a more focused set of human-in-the-loop experiments. A number of 

fast-time air traffic simulators have been developed to model future ATM 

environments that could be applied more specifically to SM research. 

1.4.1 Commercial Simulation Platforms 
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Three commercial simulation packages are available and widely used by the ATM 

industry to examine the current air transportation system as well as new ATM 

concepts and systems: TAAM, RAMS Plus, and FACET. All three are fast-time, discrete-

event simulators – that is, aircraft movement is updated at discrete time intervals. 

1.4.1.1 TAAM 

The Total Airspace and Airport Modeller (TAAM) was developed by The Preston 

Group in association with the Australian Civil Aviation Authority, and is now 

maintained by Jeppesen, a subsidiary of The Boeing Corporation (Jeppesen, 2008). 

TAAM is described as a “fast-time gate-to-gate simulation tool that enables operators 

to accurately predict and analyze the impact of present and future airspace and airport 

operations, whilst maintaining safety and efficiency.” (Jeppesen, 2008)  TAAM is 

particularly valuable for high-fidelity simulations of terminal and airport operations, 

including ground movement and handling. 

Comprehensive input data is needed to describe the airspace and ATC system in 

order to model a customised air traffic scenario; the level of fidelity of the simulation 

can then be managed by the level of detail provided in the input data (Feigh, 2003). 

TAAM can produce 3D visualisations of airport and traffic scenarios, as well as output 

data directly to databases and spreadsheets. The tool has been used to (Jeppesen, 

2008): 

 Plan airport improvements and extensions 

 Study noise impact and the effect of severe weather 

 Assess controller workload 

 Design new terminal procedures 

1.4.1.2 RAMS Plus 

RAMS Plus is a high-fidelity, fast-time simulation tool that can be used to model 

gate-to-gate ATM and airport operations (Geisinger, 2003). Originally developed as the 

Reorganised ATC Mathematical Simulator by EUROCONTROL in 1991, the software is 

now licensed and maintained by ISA Software. RAMS Plus is scalable from the macro to 
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micro level, and can be used to as a planning and feasibility tool to investigate 

proposed changes to existing ATM systems, the impacts of new ATM elements, as well 

as classic controller workload analysis. As with TAAM, the simulator is fully data-driven 

requiring comprehensive input data (ISA Software, 2003). To model a basic airspace 

scenario, data is needed for navaid names and geographic locations; traffic schedules; 

traffic routes; sectorisation boundaries, and weather patterns. Default data is provided 

for aircraft models, aircraft performance, airport locations, ATC event rulebases, and 

country frontiers. 

RAMS Plus executes on a single desktop PC and is capable of producing a range of 

outputs including 2D visualisations, ASCII text, and XML metadata. An interoperability 

framework makes it possible to integrate other tools with the simulator. The main 

strength of RAMS Plus is the ATC rulebase that can be customised into an artificial 

intelligence model of air traffic controller tasks such as conflict detection, resolution, 

and traffic flow management (Geisinger, 2003). The principle application areas of 

RAMS Plus have been (ISA Software, 2003): 

 Evaluating alternative sectorisations 

 Measuring airspace and conflict complexity and density  

 Measuring airspace safety in relation to separation violations.  

 Investigating free-routing and Reduced Vertical Separation Minimums (RVSM) 

concepts. 

 Measuring the effect of ATM procedures on fuel burn. 

1.4.1.3 FACET 

The Future ATM Concepts Evaluation Tool (FACET) is a fast-time simulation 

platform designed at the NASA Ames Research Laboratory for the exploration, 

development, and evaluation of advanced ATM concepts (Geisinger, 2003). FACET is 

now commercially licensed and is promoted for visualization, off-line analysis, and 

real-time planning applications. FACET models the system-wide en-route airspace 

operations over the contiguous United States, using an airspace database, weather 

database, aircraft performance database, and traffic data (tracks, flight plans, and 
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schedules)(Bilimoria, et al., 2001). To facilitate fast execution on a single PC, aircraft 

trajectories are simulated with spherical earth kinematic equations, using lookup 

tables of aircraft performance. 

FACET includes functionality for aircraft self-separation; prediction of aircraft 

demand and sector congestion; traffic flow management constraints, and wind-

optimal routing. The simulator has principally been used to evaluate the feasibility of 

new concepts for distributed air/ground traffic management and advanced traffic flow 

management, as well as new decision support tools for air traffic controllers (Bilimoria, 

et al., 2001). 

1.4.1.4 Limitations 

All three of these simulators are very capable, high-fidelity tools and there are 

compelling reasons to use them for researching new SM concepts and systems. As 

commercial products, they have been thoroughly validated, and are trusted and used 

by NASA, EUROCONTROL, the FAA, as well as airlines. Both FACET and RAMS Plus have 

already been used to demonstrate aircraft self-separation concepts. 

However, these tools also have some limitations that present challenges to 

researchers. The first is the inherent complexity of these simulators and the need for 

extensive input data. Commenting on TAAM and RAMS Plus, Donohue and Laska 

concluded that “These models provide a detailed analysis, but require significant 

amounts of data that are sometimes difficult to obtain. Learning to use these models 

takes considerable time and effort limiting their use to specialized individuals” (2001). 

FACET, on the other hand, is simpler but currently only models the high-altitude, U.S. 

airspace system (Bilimoria, et al., 2001). As a result, FACET is more appropriate for 

examining the system-wide effects of new procedures, rather than the local analysis of 

new conflict detection and resolution methods. 

In addition, as commercial products, these simulators are generally closed-source 

(RAMS Plus has an open interface, but the source code is still inaccessible), limiting the 

ability of researchers to modify the simulators for specific applications – for example, 
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by adding customised models of navigation, communication, or surveillance 

uncertainties and errors; modelling datalink trajectory exchanges as with future TBO 

airspace; or integrating with novel conflict resolvers that do not use the standard 

rulebase. Furthermore, both TAAM and RAMS Plus are prohibitively expensive for 

individual researchers, although a free, limited university licence is available for RAMS 

Plus. 

1.4.2 Non-Commercial Simulation Platforms 

Non-commercial airspace simulators are also used to support ATM research and a 

number of these tools are discussed in the literature. However, these simulators were 

also found to be either too inaccessible or restrictive for exploratory SM research. 

Large research organisations, such as NASA, NLR, and EUROCONTROL have 

developed their own high-fidelity simulation platforms. The NASA Airspace Concept 

Evaluation System (ACES) is a large-scale, distributed simulation framework to support 

system-wide evaluations and is highly integrated with other NASA simulation tools 

(Sweet, et al., 2002). NASA also uses the Center-TRACON Automation System (CTAS) 

which is used operationally as a trajectory prediction engine for decision support tools, 

but can also be used as a simulation platform (Murphy & Robinson, 2007). The NLR 

ATC Research Simulator (NARSIM) is a real-time ATM simulator that is distributed over 

multiple computers and controller workstations, and is primarily used to study human-

machine-interfaces (Hoekstra, et al., 2000). Similarly, EUROCONTROL has developed 

the ESCAPE simulator (EUROCONTROL Simulation Capability and Platform for 

Experimentation) to study air traffic control in real-time (EUROCONTROL, 2007). These 

simulators provide accurate and detailed models of ATM systems, but consequently 

are very complex and require dedicated equipment, limiting their portability and 

extendibility. Furthermore, these simulators are generally unavailable for researchers 

not professionally associated with the research group. 

Smaller, simpler simulators are also used by researchers, but unfortunately, these 

tend to be limited by a lack of public documentation, and are of unknown fidelity and 

quality (Feigh, 2003). For example, simulations are commonly used in studies of new 



Chapter 1. Introduction and Motivation 

 

20 

CD&R algorithms, but often are only referenced in the background and are designed 

for specific algorithms, as with Vela, et al., (2010), and Cetek (2009). Other simulators 

are developed for a specific applications, such as the Complete Air Traffic Simulator 

(CATS), introduced by Alliot, et al.,(1997) for evaluating reduced vertical separation 

minimums, or the Air Transportation System Simulator described by Carr, et al.,(2005) 

that is used for national-level simulations of U.S. airspace. As a result, they lack 

flexibility to easily add or modify components, a restriction that impedes their 

usefulness for exploratory research of novel CD&R algorithms and methods. 

1.4.3 The Airspace Simulator by K. Feigh 

To address the complexity and inaccessibility of existing simulators, Karen Feigh 

developed the Airspace Simulator at Cranfield University with the aim of providing an 

open source, low fidelity simulator that can be run on a single PC in fast-time (Feigh, 

2003). The purpose was to provide ATM researchers with a simple yet flexible, non-

proprietary airspace simulation platform for exploratory research into new ATM 

operating concepts and systems.  

The Airspace Simulator was designed with a modular structure to make it portable 

and readily extendable. In the simulator, 4-dimensional aircraft trajectories are 

modelled using the kinematic BADA v3.3 performance database, which tabulates the 

cruise, climb, and descent performance at different fight levels for 186 different 

aircraft types. The use of the BADA database enables the simulator to rapidly calculate 

the position and velocities of a large number and variety of simulated aircraft at 

discrete time intervals, although this speed comes at the cost of reduced fidelity. 

At the beginning of the program execution, the Airspace Simulator reads 

configuration files specifying the flight plans and initial conditions for every aircraft 

type. Aircraft are then guided along the flight plans using great circle, spherical earth 

navigation. Winds aloft are modelled with four dimensional wind fields, interpolated 

from observed wind data from the NOAA Profiler Network. 
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An indexed point-region quadtree is used to organise the simulated aircraft. This 

technique enables the simulator to locate all aircraft within a given geographic region 

very quickly, which is necessary to facilitate efficient conflict detection and range-

limited radio transmissions. Air Traffic Control is provided through rule-based conflict 

resolution, defined by natural language scripts in order to model the behaviour of 

controllers. Information exchange between the ATC module and the pilot module 

takes place through a simple datalink model. 

Test cases were run to simulate North Atlantic crossings, terminal manoeuvring at 

London Gatwick, and en-route operations between nine European airports. Feigh 

successfully demonstrated the simulator for up to 300 aircraft simultaneously and 

4000 aircraft total over the simulated 16 hour period, representing twice the predicted 

2020 traffic level of Europe’s busiest airport (London Heathrow).  

1.4.3.1 Case for Improving the Airspace Simulator for Separation Management 

Research 

The Airspace Simulator shows potential to be a valuable fast-time, low-fidelity 

simulation platform for SM research. Because it is open-source with a modular 

architecture, the simulator could be adapted to specific applications. As a fast-time 

simulator with coverage of commercial aircraft performance, it could be used to 

conduct stochastic simulations of new CD&R algorithms and concepts over a range of 

conditions and traffic scenarios. However, upon closer evaluation it was apparent that 

there were four primary factors of the original design that limited the usefulness of the 

Airspace Simulator for SM research. 

1) Difficulty of integrating new CD&R systems; Unfortunately, the navigation, 

communication, and air traffic control functions were not implemented distinctly, but 

were merged into one module, which made it difficult to integrate new CD&R systems, 

other than the included script. Although the natural language scripts are useful for 

modelling controller behaviour in current operations, it would be impractical to 

translate many of the conflict detection and resolution tools described in the literature 

into scripts of the form used by Feigh. 



Chapter 1. Introduction and Motivation 

 

22 

2) Restricted navigation and flight control functionality; The flight guidance 

produced by the navigation function was limited to great circle waypoint-to-waypoint 

navigation, and speed and altitude commands. Although waypoint-navigation is 

expected to be the predominate type of navigation in future TBO airspace, conflict 

resolution systems can issue a range of instructions, including: 

 Speed assignments 

 Altitude assignments 

 Heading vectors 

 Direct-to clearances 

 Lateral offsets 

 Sequences of waypoints 

The simulator must be able to implement these instructions. There was also no 

provision for a navigation error model. Miquel, et al., has shown that navigation errors 

can significantly increase the percentage of unresolved conflicts in state-based ASAS systems. 

Such errors should be modelled when evaluating new CD&R algorithms (2007). 

Furthermore, aspects of the navigation model were unnecessarily simplistic, such 

as instantaneous transitions between level flight and climbs/descents, and fixed-rate 

turns, reducing the fidelity of the model and introducing errors in experiment results. 

To highlight this, the Airspace Simulator models all heading changes as constant 3 

degree per second turns. However, commercial transport aircraft at cruising airspeeds 

typically use constant bank turns (Mondoloni, 2006). The difference in the turn radius 

is significant; at 450 knots, a 3 degree per second turn will produce a turn radius of 2.4 

nmi, while a constant bank turn with a 25 degrees bank angle will result in a 6.3 nmi 

turn radius. 

3) Restricted communications functionality; Although the Airspace Simulator 

models basic datalink communication, the message set was limited and not easily 

extendable; for example, it does not support messages containing multiple waypoints 

(i.e. route modifications). As with the navigation model, there was no capability to 

model communication uncertainties such as transmission latencies and pilot response 
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delays. Additionally, the simulator did not contain a model of radio-telephone 

communications. An RT model requires a different message set than a datalink model, 

as well as different latencies and errors such as the verbal duration of the message and 

radio channel congestion. Although datalink is expected to be the primary mode of 

communications in future ATM systems, voice will continue to be used to control 

unequipped traffic and for off-nominal events. Without a RT model, the simulator 

cannot be used to investigate new voice-based automation tools, mixed-mode 

operations, or datalink failure effects. 

4) Impractical scenario generation method; The scenario generation method 

simulates a steady traffic flow, with aircraft repeatedly flying a set of pre-defined flight 

plans. New aircraft enter the airspace at pseudo-random intervals, according to a 

Gaussian distribution. While this is useful for simulating a period of sustained traffic 

over known route structures, such as a stream of aircraft at an arrival fix, it is 

impractical for other common air traffic scenarios used to test CD&R algorithms and 

operational concepts, such as stochastic, replicated runs of crossing and passing traffic. 

Reviewing the published literature, it is clear that research into new SM concepts 

and systems is active and ongoing. But it can also be seen that although a number of 

high-quality commercial and non-commercial ATM simulators exist, there is a lack of 

simple, flexible, and accessible fast-time simulators that are well suited for exploratory 

SM research. However, if the four limiting factors outlined above could be overcome, 

 eigh’s Airspace Simulator could fulfil that role. 

1.5 Research Aims 

The purpose of the research presented in this thesis was to redevelop the Airspace 

Simulator into a more useful platform for evaluating the functionality, feasibility, 

performance, and robustness of new methods, algorithms, and strategies for 

separation management in future airspace. 
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1.6 Organisation of Remaining Chapters 

The remaining chapters discuss the redesign and application of the Airspace 

Simulator. Chapter 2 derives the specific requirements needed to make the Airspace 

Simulator more useful for SM research, and discusses the overall design of the 

modified simulator. Chapter 3 focuses on the redesign of the navigation model. 

Similarly, Chapter 4 focuses on the redesign of the communications model. Chapter 5 

then discusses the scenario generation method and the overall speed performance of 

the simulator. 

The verification process ensures that the simulator performs as designed. 

Verification was completed for each module and is discussed in Chapters 3, 4 and 5. 

Final verification of the completed and integrated simulator is presented in Chapter 5. 

The validation process ensures the simulator adequately satisfies the intended 

purpose. To provide validation, the simulator was used as a platform for the 

preliminary analysis of automated SM support for mixed-equipage traffic using 

automated track angle vectoring. Chapter 6 develops the idea of automated vectoring, 

and discusses the results of the simulations. 

Finally, Chapter 7 concludes with a summary of the work that was completed on 

the simulator, highlights the new insights into the flight guidance accuracy of vector 

navigation, and raises ideas for future work. 
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Chapter 2 

Simulator Requirements and Design 

 

The Airspace Simulator described in Section 1.4.3 was redeveloped into the 

Airspace Simulator–II to overcome the limitations of the original design and to meet 

the need for a simple, flexible, and accessible fast-time airspace simulation platform 

for separation management research. This chapter discusses the simulator design 

requirements and describes the overall software structure of the redeveloped 

simulator. The chapter concludes with a summary of changes made to the Airspace 

Simulator. 

2.1 Simulation Requirements 

The functional and performance requirements for the simulator were derived from 

the capabilities and constraints that were considered necessary for the software to be 

a useful tool to investigate separation management methods. These requirements are 

summarised in Table 2-1. 

2.1.1 Capabilities 

The functional requirements were established from the following five capabilities: 

 To simulate future air traffic systems. The simulator must be capable of 

modelling the expected baseline ATM system in the 2015 to 2025 timeframe, 

including the communications, navigation, and surveillance domains. A basic 

requirement for any airspace simulator is the ability to model the performance 

and trajectories of multiple aircraft. But in addition to aircraft models, the 

transition to trajectory-based operations necessitates simulating trajectory 

exchanges over digital datalink, including downlink of trajectory intent and the 

uplink of trajectory modifications. To support TBO, both SESAR and NextGen 

call for area navigation with an accuracy of at least 1 nautical mile 95% of the 

time, so FMS-like flight guidance should be simulated within RNAV-1 
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(EUROCONTROL, 2008; JPDO, 2009). Modelling the future surveillance system 

requires ADS-B-type broadcasting of aircraft state and velocity data. 

 To integrate with CD&R systems. Numerous CD&R systems have been proposed 

in the literature. For the simulator to be a useful tool for exploring the 

functionality, feasibility, performance, and robustness of these systems, it must 

be able to be integrated with centralized and decentralized CD&R tools.  The 

simulator must be capable of outputting traffic surveillance and trajectory 

intent information to conflict detectors, and of receiving and implementing 

conflict resolutions from resolvers. 

 To simulate mixed-mode operations. The study of separation management in 

mixed-mode operations is ongoing and is critical to determining the effects of 

system failures and the transition period from the current ATM system to a 

more highly automated system (Kopardekar, et al., 2009). The simulator should 

be capable of specifying and modelling different communication modes 

(datalink or voice) and navigational accuracies for different aircraft, and be able 

to designate either self-separation or centralised-separation responsibility for 

each aircraft. 

 To simulate errors and uncertainties. The simulator should incorporate models 

of errors and uncertainties such as communication latencies, surveillance 

noise, and navigational wander. This capability is important because separation 

management is essential to the safety of fight, so any conflict detection and 

resolution process must be shown to be robust against errors and uncertainties 

in the communication, navigation, surveillance systems. 

 To support exploratory separation management experiments. To simplify setup, 

the simulator should have the ability to automatically generate pseudo-random 

traffic scenarios, but it must also be possible to manually specify the scenario. 

Furthermore, it must have the ability to record experimental data for post-

simulation analysis. It is also desirable to be able to visualise the traffic and to 

be able to control the speed of the simulation. Generally, the simulator must 
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be flexible and accessible to accommodate new functions, procedures, and 

applications.  

2.1.2 Constraints 

The simulator must operate within the constraints of speed and fidelity 

requirements. As discussed in Chapter 1, speed is defined as the number of discrete 

movements that can be calculated within a given period of time, and is influenced by 

the efficiency of the software design, the performance of the computer hardware, as 

well as the fidelity of the simulation. Fidelity describes the relative accuracy with which 

a simulation models a system. Higher fidelity models typically require more 

calculations per unit of simulated time than lower fidelity models, and as a result, can 

be slower. 

Considering the simulators discussed in Section 1.4, there are several high fidelity 

commercial and non-commercial ATM simulators available, although at the cost of 

increased complexity and reduced accessibility. The need is for a simple, high speed 

simulator that can be used for exploratory research. So, it was decided that although 

aspects of the simulator fidelity would need to be improved, such as the navigation 

and uncertainty modelling, the general fidelity of the original Airspace Simulator was 

adequate for these purposes. In particular, it was decided to continue to use the 

tabular BADA aircraft performance database as the basis of the trajectory model, since 

the trajectory modelling method is known to be a significant factor of the total speed 

and complexity of an air traffic simulator (Suckhov, et al., 2003). The original speed 

requirement was maintained: to run faster than real-time for at least 300 

simultaneous aircraft, and to simulate up to 4000 aircraft in total over a period of 12 to 

16 hours, representing twice the projected 2020 peak traffic level at London Heathrow 

airport, the busiest airport in Europe (Feigh 2003). 

Finally, to be accessible for research, the following constraints must also be met: 

 Must be able to run on a single PC 

 Must be non-proprietary 
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 Must be open-source 

(Req. 1) Capable of fast-time simulation of up to 300 aircraft simultaneously 

(Req. 2) Capable of simulating of up to 4000 aircraft in total 

(Req. 3) Simulates waypoint-to-waypoint flight guidance within 1 nmi 

(Req. 4) Capable of connecting with external CD&R software 

(Req. 5) Simulates broadcast of traffic state and trajectory intent 

(Req. 6) Allows input and execution of conflict resolutions 

(Req. 7) Simulates datalink and voice communication 

(Req. 8) Simulates navigation errors and uncertainties 

(Req. 9) Simulates surveillance errors and uncertainties 

(Req. 10) Simulates communications errors and latencies 

(Req. 11) Simulates mixed-mode traffic 

(Req. 12) Allows automatic generation of pseudo-random traffic scenarios 

(Req. 13) Allows manual setup of traffic scenarios 

(Req. 14) Capable of running on a single PC 

Table 2-1: Summary of requirements 

Significant modifications and improvements were made to the original Airspace 

Simulator in order to meet these requirements. The remaining sections of this chapter 

provide an overview of the redesigned simulator. 

2.2 Programming Language and Operating System 

The original Airspace Simulator was written in the Modula-2 programming 

language for the Linux operating system. Modula-2 has many features in common with 

C, C++, and FORTRAN, such as specialised data types and pointers, but has the 

advantage of requiring stricter syntax and data type definitions, thereby helping 

reduce programming errors. Unfortunately, Modula-2 is no longer commonly used and 

the original compiler, the Garden's Point Modula-2 compiler, is not supported on 

current Linux platforms. The first step in redeveloping the Airspace Simulator was to 

translate the source code into the C language. Standardised ANSI C was chosen 

because it is familiar to many engineers and researchers, and typically executes faster 
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than higher-level languages such as C++, C#, and Java (Kernighan & Ritchie, 1988). 

Good programming practices can help prevent syntax and type errors, and debuggers 

such as the open-source GDB can be set to enforce strict syntax and type 

requirements.  

The Airspace Simulator-II compiles with the GCC (GNU Compiler Collection) 4.4.0 

and executes in the Windows XP, Vista, and 7 operating systems on a single desktop or 

laptop PC. GCC is a free Linux-based compiler that is widely used and can be 

implemented in Windows through the MinGW software port. The use of ANSI C and 

GCC significantly improve the portability of the simulator. 

The structure of the software directly affects the speed performance and 

accessibility of the simulator. The simulator organisation, key data structures, and, 

logical flow, described below, were all redesigned to meet the required capabilities 

described in Section 2.1.1, within the constraints of Section 2.1.2. 

2.3 Simulator Organisation 

The Airspace Simulator-II has been reorganised from the original design in order to 

better support the integration of new CD&R tools into the simulator with minimal 

modifications. The organisation, shown in Figure 2-1, groups the core functions into 

five modules, making it possible to enhance and customise the simulator by adding, 

modifying, or removing individual modules or sub-modules as needed. 
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Figure 2-1: Simulator organisation 

2.3.1 Scenario Generation Module 

Simulated air traffic scenarios are arranged and controlled through the Scenario 

Generation Module. In keeping with the original design, scenarios can be manually set 

up through ASCII text files of aircraft flight plans and a configuration file listing aircraft 

assignments. These files are read by the Scenario Generation Module during the 

initialisation phase of the simulation. The flight plans describe the intended lateral and 

vertical flight trajectory from the initial aircraft position to the destination. They are 

discussed further in Section 3.2.1. The configuration file contains a list of every aircraft 

to be simulated over the course of the scenario. The list assigns each simulated aircraft 

to a performance type from the BADA database, a flight plan, a start time when the 

aircraft is to enter the traffic, a flight control mode (autopilot, or flight director), a 

communication type (ideal, datalink, or radio-telephony), and a separation mode 

(centralized, self-separation, or uncontrolled). The configuration file makes it possible 

to specify arbitrary traffic scenarios from 1 to 4000 aircraft, including mixed-mode 
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traffic. The file also contains basic simulation parameters such as time and aircraft 

limits, the data recording frequency, and the nominal surveillance broadcast rate. An 

example of the configuration file is presented in Appendix A. 

It would be impractical to manually prepare flight plans and traffic assignments for 

a large number of aircraft – this was one limitation of the original Airspace Simulator. 

So, to better facilitate large, stochastic experiments, a sub-module of the Scenario 

Generation Module was designed to optionally generate pseudo-random flight plans 

and traffic assignments. This capability is described in Chapter 5. 

2.3.2 Air Traffic Module 

The core of the simulator is the Air Traffic Module. The purpose of this module is 

 to maintain the information state of every actively simulated aircraft 

 to generate new aircraft when prompted by the Scenario Generation Module 

 to remove aircraft from the simulation when the aircraft arrives at the 

destination. 

In order to eliminate the need to specify detailed initial conditions for each aircraft, 

as with the original Airspace Simulator, all aircraft are initialised at the first waypoint in 

the flight plan and are assumed to be in level, un-accelerated flight at cruise airspeed, 

heading along the course of the initial flight plan leg. 

The Air Traffic Module controls the progression of the simulation. As a discrete 

event simulator, the simulation state is advanced iteratively by a fixed time step, ∆t. 

This step size can be set in the configuration file, but is by default one simulated 

second per time step. The aircraft motion is modelled with the Euler forward 

integration method, and therefore a smaller ∆t will result in smaller integration errors 

and more accurate trajectory modelling, but will increase the number of discrete 

events for a simulation of a given duration, thereby reducing the speed. 
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Finally, this module also organises the traffic spatially using an indexed-region 

quadtree to minimise the search time required to locate a specific aircraft or set of 

aircraft, as described by Samet (1989) and implemented by Feigh (2003). 

2.3.3 Navigation and Trajectory Module 

The Navigation and Trajectory Module interacts with the Air Traffic Module to 

guide aircraft along their flight plans, updating the air traffic trajectories at every time 

step. This module is decomposed into the Performance, FMS, Autopilot/Flight Director 

System, Dynamics, and Flight Technical Error sub-modules, and was completely 

redesigned in order to meet the project requirements. The new design and verification 

are discussed in detail in Chapter 3. 

2.3.4 Wind Field Module 

Wind disturbances have been shown to significantly affect the performance of the 

trajectory predictors that underlie conflict detection and resolution tools (Mondoloni, 

2006; Cole, et al., 2000).  To simulate variable wind fields, the Wind Field Module uses 

actual wind data extracted from 24 hours of archived readings of the NOAA Profiler 

Network (NPN) weather radars. The module interpolates the wind database according 

to the 4D aircraft location (latitude, longitude, altitude, and time of day). The 

magnitude and direction of the local winds can then be included in trajectory 

calculations by the Navigation and Trajectory module. The Wind Field Module is largely 

unchanged from the original; for a full description, refer to Feigh (2003). However, the 

ability to set a constant wind magnitude and direction in the configuration file was 

added to provide an additional wind option. 

2.3.5 Communications Module 

The Communications Module was developed to provide an interface between the 

Air Traffic Module and any external ‘third-party’ systems connected to the simulator. 

External systems, such as CD&R tools, traffic flow management tools, or visualisation 

tools, can either be implemented natively in ANSI C, or can be connected over a TCP/IP 

or UDP network. 
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The Communications Module simulates ADS-B-type surveillance by periodically 

broadcasting state and velocity data of all aircraft, and transmitting the trajectory 

intent when the aircraft is initialised or when the flight plan is modified – thereby 

allowing any connected systems to monitor the traffic. The module can also receive 

ATC instructions and flight plan modifications, enabling the connected systems to 

interactively manage the traffic. These communication exchanges can be modelled as 

datalink or VHF radio-telephone messages, using sub-models of latencies, noise, error 

rates, broadcast rates, and radio frequency occupation. The Communications Module 

is discussed further in Chapter 4. 

2.4 Operational Data Structures 

The simulator has three primary operational data structures: 

 The Master Array to define and control the simulation; 

 The Aircraft Array to store data between time steps; 

 The Data Block to store the traffic state before being written to permanent 

memory. 

2.4.1 The Master Array 

The Master Array is necessary to store traffic assignments that are made by, or 

read by, the Scenario Generation Module during initialisation. The array is used by the 

Air Traffic Module to determine which new aircraft should enter the simulation, and 

under what mode of operation. The data fields of the Master Array are described in 

Table 2-2. The length of the array is set to the total number of aircraft to be simulated, 

as defined in the configuration file. At the completion of the simulation, the Master 

Array is written to the permanent record to serve as a log of the air traffic. 
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Field Description 

Aircraft ID The unique aircraft identification number 

BADA Index The enumerated reference of the BADA aircraft performance model 

Flight Plan Name The name of the initial flight plan, limited to 20 characters 

Start Time The time the aircraft is to enter active simulation, defined in seconds 

from the beginning of the simulation where t = 0 

Finish Time The timestamp of when the aircraft was removed from active 

simulation 

Control Mode Specifies ideal, autopilot or flight director control modes, as discussed 

in Chapter 3 

Communications 

Mode 

Specifies ideal, datalink, or radio-telephony communications mode, as 

discussed in Chapter 4 

Separation Mode Specifies if the aircraft is self-separating, controlled by a centralised 

system, or uncontrolled 

Aircraft Array Index The location of aircraft data in the Aircraft Array, to allow quick 

lookup 

Table 2-2: The Master Array 

2.4.2 The Aircraft Array 

At any given point of a simulation, a subset of the aircraft defined in the Master 

Array is being actively simulated. These aircraft are allocated an element of the 

Aircraft Array, a structure to store the dynamic flight data that is generated and used 

during the simulation. The relationship between the Master and Aircraft Arrays is 

illustrated in Figure 2-2. 
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Figure 2-2: Relationship between the Master and Aircraft Arrays 

The length of the Aircraft Array is set during initialization to the concurrent aircraft 

limit. The limit can be specified in the configuration file for up to 2500 aircraft. The 

Aircraft Array is organised into sub-structures that store aircraft-specific parameters 

and the instantaneous information-states of the active traffic, shown in Table 2-3. 

Pointer arguments were used for functions with struct arguments (i.e., the Aircraft 

Array and sub-structures) to ensure fast programme execution through the C pass-by-
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data, and the navigation data. This repetition was necessary in order to model distinct, 
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SESAR, 2007). For example, the estimated aircraft position used in an aircraft 

navigation computation, as derived by the FMS, may be different from the position 

estimate used by the CD&R routine, as derived by a multi-sensor surveillance system. 

The difference between the airborne and ground estimates could result in unpredicted 
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or undesirable CD&R performance. Maintaining separate copies of position, velocity, 

and the winds aloft in the navigation and surveillance structures enables the simulator 

to be used to gain a better understanding of the effects of localised, noisy data. 

Field Description 

True Aircraft 

State 

-  The current position, velocity, and mass of the aircraft 

-  The local winds aloft 

Communications 

Data 

-  Message queue of resolutions waiting to be executed 

-  Parameters such as latency statistics and probability of reception 

Navigation Data -  Copy of the aircraft flight plan 

-  Own-ship estimation of position, velocity, and winds aloft 

-  FMS operational data such as the current waypoint and distance to go 

-  Reference headings and altitudes for the autopilot system 

Surveillance Data -  Estimation of the aircraft position and velocity 

-  Estimation of the winds aloft 

Aircraft 

Parameters 

-  Parameters such as aircraft ID, mode of operation, and active flag 

-  Current quadtree index 

-  Pointer to the BADA performance lookup table 

Table 2-3: The Aircraft Array 

2.4.3 The Data Block 

In keeping with the original Airspace Simulator, the Data Block is used to store 

blocks of traffic data before being written to permanent memory. Feigh demonstrated 

that the speed of the simulation could be improved by writing large blocks of data at 

once, rather than separately writing data for every aircraft at every time step. The 

Data Block is a two-dimensional array, where each element stores the position, 

velocity, and mass of an aircraft for a given time step. The data structure is described 

in detail in Appendix B since it forms a part of the output file format. The columns and 

rows of the Data Block are used to index an aircraft in the Aircraft Array and a time 

step, respectively. Traffic data for 10 time steps are stored in the Data Block, before 

being flushed to the permanent record.  

However, in order to increase flexibility and reduce memory requirements, a data 

resolution parameter can be set in the configuration file, defining the number of time 
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steps between traffic data storage operations. For example, if the data resolution is set 

to two, then the traffic data from every other time step would be stored in the Data 

Block; this data would be flushed every 20th time step, halving the memory 

requirement. 

2.5 Logical Design 

The program flow and the operational interaction of the core modules is evident 

from the logical design of the simulator, which has been organised as three distinct 

phases (Figure 2-3): the setup phase, simulation phase, and the shutdown phase. 

 

Figure 2-3: The simulator logical design 

The setup phase is shown in Figure 2-4. The purpose of the initialisation routine is 

to read and store all input files (BADA, observed winds, configuration, and flight plans), 

to allocate and initialise data structures and variables, and to open a random access 

file as the permanent record. The scenario generation routine then populates the 

Master Array with pre-defined or pseudo-random traffic assignments. 

 

Figure 2-4: The setup phase 
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in Figure 2-5, is executed once per time step and contains routines that apply airspace-
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Figure 2-5: The outer simulation loop 

The outer loop first checks the Master Array to determine if any new aircraft 

should be initialised in the airspace. The Master Array is sorted by aircraft start time. 
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Figure 2-6: The inner simulation loop 

The inner simulation loop is composed of the routines that apply to individual 

aircraft at each time step. First, the direction and magnitude of local winds are 

interpolated by the wind module. If the aircraft is set to self-separation mode, then the 

decentralised resolver is called to generate a resolution for any detected conflicts. Any 
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are skipped by the inner loop. New aircraft can reuse inactive slots, and overwrite the 

data contained in that array element. 

The outer simulation loop resumes upon reaching the end of the Aircraft Array, 

when all active aircraft have been updated. 

 

Figure 2-7: The shutdown phase 

The outer loop of the simulation phase exits when all aircraft have completed their 

assigned flight plans or when t reaches a time-out value defined in the configuration 

file. The shutdown phase (Figure 2-7) then writes any remaining traffic data to the 

random access file, along with the Master Array. The file is closed, completing the 

simulation. 
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software implementation of the connected tools will determine the ease and extent of 
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as flexible as possible and minimise the modifications required of the connected 

systems. 
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advance at a faster rate than the CD&R systems are able to detect conflicts and 

calculate resolutions. Two connection modes were developed to accomplish time 

synchronisation while preserving flexibility: speed-control and handshaking. 

With the speed-control mode, synchronisation is maintained by limiting the 

simulation speed to the fastest speed supported by the connected system. For 

example, if it is known that under certain conditions the CD&R software can run at 

least 2 times faster than real time, then the slaved simulator speed should be set to 

0.5 seconds per simulated seconds. If 0.5 simulated seconds are computed in less than 

0.5 actual seconds, then the simulation is delayed. 

 

Figure 2-8: Speed-controlled synchronisation mode 

The speed-control mode is simple because it does not require the connected 

system to incorporate any handshaking routines with the simulator. Rather, both the 

simulator and the connected system are allowed to execute independently, as shown 

in Figure 2-8. The simulator periodically transmits traffic surveillance data and 

periodically checks a message buffer to determine if any resolutions are waiting to be 

received. The conflict detection routine of the CD&R system runs continuously in 
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parallel. If at any point a conflict is detected, then a resolution is generated and 

transmitted to the simulator. 

The drawback of the speed-control mode, however, is that the speed of the 

simulation is restricted to the ‘worst-case’ speed of the connected systems. The 

connected systems may actually be able to process faster than the constrained 

simulator speed. So, a handshaking mode was also developed in order to permit the 

simulator and any connected systems to run as fast as possible. In this mode, the 

simulator and connected systems run in series, using handshaking to maintain 

synchronisation, as shown in Figure 2-9. Both systems are allowed to execute at full 

speed when not waiting for handshake. However, the external systems must also be 

capable of implementing the handshaking procedure. 
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Figure 2-9: The handshake synchronisation mode 

In both connection modes, the overall speed of the simulation will be directly 

affected by the performance of the connected systems. Thus, algorithm and software 

efficiency are important considerations when developing CD&R systems, in order to 

facilitate fast-time testing and analysis. 
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2.7 Simulator Outputs 

2.7.1 Permanent Record 

Simulation data is periodically recorded to a binary-format random access data file 

for post-simulation analysis. The file consists of a header, the master array, and the 

time series of traffic state data from the Data Blocks. The details of the file format are 

described in Appendix B. 

At initialisation, the file pointer is offset to allocate space so the header and Master 

Array can be written at the beginning of the file during the simulator shutdown phase. 

The header records the basic simulator settings such as the time step size and wind 

source. In addition, the header stores global simulation results, including the total 

number of simulated aircraft, the duration of the simulation, and the programme 

execution time. The Master Array is then written to the file as a record of the traffic 

modes, flight plans, and aircraft models. The Data Blocks that are periodically written 

to the random access data file form a time series of traffic state data. Consequently, 

the Master Array also contains the traffic start and finish times and the index of the 

Aircraft Array, enabling the time series to be efficiently parsed. 

The size of the recorded data is primarily a function of the number of events 

recorded and the number of concurrently simulated aircraft. The number of events 

recorded is the total number of time steps, divided by the data resolution. For 

example, simulation of a one hour traffic scenario with a one second time step and a 

two second data resolution will result in 3600/(2x1) = 1800 recorded events. A series 

of test simulations were conducted for a range of recorded events and concurrent 

aircraft counts. The resulting file sizes are plotted in Figure 2-10. It can be seen that 

the permanent record can become very large (>1 GB) for a large number of aircraft 

and recorded events. A warning is raised during initialisation if the file size is estimated 

to be greater than 700 MB, in order to ensure that the results of simulation can be 

written to one standard CD. However, the size limit can be adjusted as required. 
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Figure 2-10: Log-log plot of permanent record file size 

In order to evaluate the efficiency of the data recording method, the cumulative 

time elapsed in the data recording process over the course of a simulation (copying 

aircraft data to the Data Block, writing the Data Block to the file, as well as writing the 

header and Master Array) was measured for a range of recorded events and 

concurrent aircraft counts. These tests were conducted on a laptop computer with 2 

GB RAM and a 2.2 GHz dual core CPU. Figure 2-11 shows the averages of 5 repeated 

trials. The tests did not include cases where the file size was greater than 700 MB. 

  
Figure 2-11: Log-log time profile of data recording 

On average, the data was recorded in less than 0.7 seconds. As expected, the 

results indicate that the elapsed time generally increases with both the number of 

recorded events and the number of concurrent aircraft. However, even for 86400 
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recorded events (corresponding to 24 hours of simulated time with a 1 second time 

step) for 100 concurrent aircraft, the average elapsed time in the data recording 

process for the 5 trials was less than 5 seconds. The worst case standard deviation of 

the 5 trials was 1.07 seconds, but the mean of the standard deviations was only 0.12 

seconds. These results indicate that the data recording method is efficient, and will 

typically consume less than 10 seconds. 

2.7.2 Traffic Visualisation 

Graphically displaying the air traffic as the simulation progresses can be a helpful 

tool for analysis. To provide visualisation, the Java-based Tviz mapping application, 

developed by Spence, was connected to the simulator using UDP network protocol 

(2009). The speed control connection mode was used because the visualisation 

becomes incomprehensible if the simulator is allowed to run at full speed. The 

synchronising speed is set to ten times faster than real-time if Tviz is used. Using the 

surveillance data output from the Communications Module, Tviz provides an ATC-like 

plan view display of aircraft, flight plans, as well as the locations of airports and 

navigation aids, as shown in Figure 2-1. Additionally, the Tviz user interface can show 

range rings, linear predictions of aircraft position, and distance/bearing lines. 

Integrating TViz highlights the advantage of the modular design and flexible 

connectivity of the simulator – the functionality of the simulator was expanded by 

connecting to a third-party, stand-alone module. 
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Figure 2-12: TViz Screenshot 

2.8 Summary of Changes Made to the Airspace Simulator 

The continuity with the original simulator lies primarily with the basic software 

structure and methodology. The core functions were reorganised into the modules 

shown in Figure 2-1 to better support the integration of new CD&R tools into the 

simulator with minimal modifications. The Navigation and Trajectory Module and 

Communications Module were both completely rewritten to meet the project 

requirements. The Scenario Generation Module was significantly expanded with the 

addition of the pairwise scenario generator. The design of these three modules, which 

constitute more than 50% of the total physical source lines of code, will be discussed in 

the following three chapters. 

The operational data structures described in Section 2.4 were based on the 

structures used by Feigh, but redeveloped to support the changes in the Navigation 

and Trajectory Module and Communications Module, and with new functionalities, 

including: 
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 the addition of navigation, communication, and separation mode specifications 

 the addition of compartmentalized aircraft state information for the 

surveillance and navigation models 

 the addition of the communications message queue 

The logical design was also based on  eigh’s work, but with the addition of the 

time-synchronisation capability, surveillance broadcasting, and monitoring for conflict 

resolution messages. 

A further major change was the ability to network the simulator with external tools 

such as TViz and CD&R systems. Many other smaller modifications were made, 

including the addition of the data recording resolution parameter, provision for 

constant wind fields, and simplification of the configuration file. Components that 

remain largely unchanged include the BADA performance modelling, the quadtree to 

spatially-organise the traffic, and the wind modelling, representing 15% of the physical 

source lines of code. 
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Chapter 3 

Navigation and Trajectory Module 

 

The purpose of the Navigation and Trajectory Module is to simulate the 

performance and navigation of modern commercial aircraft and to compute their flight 

trajectories at every time step. Section 3.1 elaborates on the requirements that are 

specific to the Navigation and Trajectory Module. Section 3.2 then presents an 

overview of the method used, and Sections 3.3 through 3.7 discuss the design of the 

module in detail. The module is then evaluated in Section 3.8. 

3.1 Requirements for Modelling Navigation and Trajectories 

Future ATM systems will afford improved navigational accuracy in comparison with 

current operations. Given a series of Earth-referenced waypoints defining the 

centreline of the flight path, Precise-RNAV specifications for en route procedures 

under NextGen and SESAR require aircraft to remain within navigational bounds ±1nmi 

of the centreline for 95 percent of the flight time, as illustrated in Figure 3-1. The 

Navigation and Trajectory Module must be capable of guiding aircraft along the flight 

plan within these bounds. In addition to this basic navigation requirement, the module 

should be capable of modelling navigational errors and uncertainties in order to 

simulate realistic traffic behaviour when evaluating CD&R concepts and systems. 

 

Figure 3-1: Illustration of lateral navigational accuracy bounds 

Furthermore, the module must be capable of responding to conflict resolutions 

issued by CD&R systems. Common conflict resolution manoeuvres include: 

 Speed assignments 

Desired Path 

Lateral Bounds (95%) 
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 Altitude assignments 

 Heading vectors 

 Direct-to clearances 

 Lateral offset assignments 

 Sequences of waypoints 

Speed and altitude changes are common conflict resolution methods used by air 

traffic controllers as well as automated CD&R systems (Kirk, et al., 2001; Paielli, 2008; 

Erzberger, 2006). Similarly, heading vectors are used by air traffic controllers for lateral 

conflict resolution. Heading vectors instruct aircraft to suspend lateral waypoint 

navigation and follow a constant specified heading. When the aircraft is clear of the 

conflict, the flight is permitted to resume its flight plan. Some automated CD&R 

systems, such as the TSAFE system, also generate heading vectors to resolve short 

range conflicts (Erzberger & Heere, 2010). 

Direct-to clearances instruct the aircraft to proceed directly from its current 

position to a specified waypoint, as shown in Figure 3-2. This instruction is a useful 

resolution method in terminal environments because it allows aircraft to ‘cut the 

corner’ of a flight plan, altering the lateral flight profile and reducing flight delays (Karr, 

et al., 2009). 

 

Figure 3-2: Direct-to manoeuvre 

Lateral offset resolutions instruct the aircraft to fly a route parallel to a flight plan 

segment, offset by a given distance, as shown in Figure 3-3. Although many FMS have 

this capability, lateral offsets are rarely used in current ATM systems. However, 

Herndon, et al., have argued that lateral offsets could play a central role in en-route 

conflict resolution in future ATM systems, allowing trailing aircraft to overtake leading 

aircraft (Herdon, et al., 2004). 
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Figure 3-3: Lateral offset manoeuvre 

Data link and increasing flight deck automation also make it possible for CD&R 

tools to precisely define a resolution manoeuvre using a sequence of waypoints (Karr, 

et al., 2009). For example, path-stretch manoeuvres (also known as turn-point 

manoeuvres) use two waypoints to create a ‘delay leg’ in the flight plan (Bach, et al., 

2009). The aircraft is directed off the original path at the start point and then cleared 

direct to the active waypoint upon crossing the turn back point, as illustrated in Figure 

3-4. 

 

Figure 3-4: Path stretch manoeuvre 

The simulator should be capable of modifying the original flight plan with any of 

the resolution methods described above. 

3.2 Trajectory Modelling Overview 

The precise navigation that is called for in future ATM systems is made possible 

through advanced avionics, which includes Flight Management Systems and 

autopilots, that can assist the flight crew in managing many aspects of the flight, from 

flight planning, to guidance and control. A modern FMS permits the crew to input 

objectives and constraints for the flight via the flight plan and direct entries; the FMS 

can then calculate a lateral and vertical/energy profile of an optimised trajectory. In 

flight, the FMS produces guidance to follow this trajectory, in order to achieve the 

objectives, given the constraints. When coupled to an Autopilot/Flight Director System 

(APFDS), the flight guidance produced by the FMS can be used by the APFDS to control 
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the aircraft. Autopilots provide automatic control of pitch and roll according to the 

selected mode of operation, such as tracking the FMS-defined trajectory. Alternatively, 

the flight director can present the pitch and roll cues directly to the crew, allowing the 

crew to manually control the flight along the desired trajectory. Longitudinal control is 

provided by an auto-throttle system or manual throttle inputs. 

In order to simulate this behaviour, as well as ensuring that the navigation and 

trajectory modelling process is flexible, accessible, and easy to modify, it was decided 

to separate the flight guidance, control, and dynamics functionalities into sub-

modules. The resulting process used to simulate aircraft trajectories is shown in Figure 

3-5, and includes the aircraft performance model based on the EUROCONTROL Base of 

Aircraft Data (BADA), flight guidance by the Flight Management System, flight control 

by the Autopilot/Flight Director System and flight dynamics derived from the 

equations of motion. The desired trajectory is defined by flights plans and ATC 

instructions. Disturbances to the system are introduced by wind, navigation errors and 

state estimation errors. 

 

Figure 3-5: The navigation and trajectory modelling process 

Spherical earth navigation was assumed to avoid the added computational 

complexity of ellipsoidal equations. All navigation calculations were performed using 

double-precision floating-point numbers to minimise rounding errors in trigonometric 

calculations. 
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3.2.1 Flight Plans 

Every simulated aircraft is assigned a flight plan, which is read from an ASCII text 

file, consisting of a sequence of flight plan segments that describe the intended 

trajectory for the duration of the segment, where each segment in the flight plan 

contains the following data: 

Segment name: An 8-character segment identifier. 

Phase of flight: One of the following 3-character phase of flight identifiers: departure 

(DEP), en-route (ENR), manoeuvring (MNV), terminal (TRM) or missed approach 

(MAP). This value is used when determining manoeuvring limitations, as discussed in 

Section 3.4.1.1. 

Segment Type: Three segment types have been defined: Initial Fix (IF), Track-to-Fix (TF) 

and Direct-to-Fix (DF) segments. The Initial Fix segment is always the first line of the 

flight plan, and defines the starting coordinates and altitude of the aircraft. The 

remaining lines consist of Track-to-fix and Direct-to-fix segments which define Great 

Circle arcs between two waypoints (fixes). For TF segments, the arc is measured from 

the previous waypoint in the flight plan to the segment waypoint. DF segments are 

used to implement direct-to instructions; the DF arc is measured from the aircraft 

position (at the point the DF segment is activated) to the segment waypoint. 

 

Figure 3-6: Fly-by waypoint (A), and fly-over waypoint (B) 

Transition Type: Specifies how an aircraft transitions to the following segment. For fly-

by transitions (FB), the FMS anticipates the turn to the next segment. For fly-over 

(A) (B) 
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transitions (FO), the aircraft overflies the waypoint before beginning the turn to the 

next segment, as shown in Figure 3-6. 

Waypoint Coordinates: The latitude and longitude of the segment waypoint, in degrees 

and decimal minutes. 

Segment Altitude: The target altitude in feet of the segment above mean seal level. 

Segment Speed (optional): The target true airspeed of the segment, in knots. If not 

specified, the target airspeed is set from the BADA performance data. 

Lateral Offset (optional): The target parallel offset distance in nautical miles, using the 

convention of positive for right of path, and negative for left of path. 

Flight plans are read into the simulator during initialisation and stored in memory 

as a doubly-linked list, where the data structure for every segment contains pointers 

to the next and the previous segments, as illustrated in Figure 3-7. Linked lists enables 

the route to be easily modified in flight by inserting or removing segments and also 

minimises the memory used in comparison to allocating space for a fixed number of 

flight plan segments. The flight plan format is described in Appendix C. 

 

Figure 3-7: Linked list data structure 

3.2.2 ATC Instructions 

In addition to basic waypoint-to-waypoint navigation, the trajectory modelling 

process must implement conflict resolutions that are not referenced to underlying 

waypoints. Therefore, an input to the Navigation and Trajectory module is ATC 

Instructions, which temporarily override navigation along the lateral, vertical, and/or 

longitudinal modes of the flight plan. Lateral instructions include constant heading, 

constant track angles or a lateral offset. Vertical and longitudinal instructions include 

Seg1 *Nxt *Prv Seg2 *Nxt *Prv Seg3 *Nxt *Prv NULL NULL 
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altitude and true airspeed. The instructions are terminated either upon receipt of 

another instruction or automatically after the optionally-specified instruction duration. 

By combining route modifications and instructions, it is possible to construct each 

of the required conflict resolution manoeuvres. For example, turn-point manoeuvres 

can be implemented as a route modification by merging two TF segments into the 

flight plan. Heading vectors can be simulated by a heading instruction followed by a DF 

segment when the aircraft is clear of the conflict; a demonstration of this is shown at 

the end of the chapter in Figure 3-22. 

3.3 Performance Modelling 

The BADA aircraft performance models, developed and maintained by the 

EUROCONTROL Experimental Centre (EEC), are widely used in fast time air traffic 

simulations and trajectory prediction tools (Suchkov, et al., 2003; Fairley & McGovern, 

2009; Alam, et al., 2008; Mayer, 2002; Signor, et al., 2004). The simulator now uses 

version 3.8 of the database, containing the operational performance parameters and 

standard airline operating procedures for 111 of the most common aircraft types 

(Nuic, 2010). In addition, 207 types have been identified as having equivalent 

performance to one of the directly modelled aircraft; effectively allowing up to 318 

aircraft types to be simulated, covering over 98% of the 2008-2009 European air traffic 

(Sheehan, 2009). 

BADA uses the kinetic approach of trajectory modelling, where the equations of 

motion are simplified by independently modelling thrust and drag, rather than the full 

set of differential equations. This simplification can be justified for relatively small 

flight path angles typical of commercial transport aircraft (Suchkov, 2003). A kinetic 

approach allows aircraft to be modelled with a reduced point-mass equation called the 

Total Energy Model that equates the rate of work done by forces acting on the aircraft 

to the rate of increase in potential and kinetic energy 

                          (Eq. 3-1) 
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where T is thrust along the velocity vector, D is aerodynamic drag, VTAS is true airspeed, 

m is aircraft mass, g is gravitational acceleration, h is geodetic altitude, and the dot 

accent mark indicates the time derivative (Nuic, 2010). The database contains the 

coefficients needed to derive the thrust and drag for various conditions, effectively 

allowing any two of the three variables of thrust, speed, or rate of climb/descent to be 

controlled.  

The BADA data is also published in kinematic form by solving Equation 3-1 a priori 

in the form of look-up tables of airspeeds, rates of climb/descent and fuel 

consumption at various flight levels and phases of flight. Using the tabulated form of 

the BADA data significantly reduces the computational complexity of generating 

aircraft trajectories and increases the speed of the simulation, although at the cost of 

reduced fidelity. This compromise was considered acceptable for the purposes of this 

research because the typical flight profiles of commercial transport aircraft are 

dependent on the use of flight management systems and automatic flight controllers 

resulting in relatively consistent and parameterised trajectories, reducing the errors of 

the model simplifications. Furthermore, the tabulated data approach simplifies the 

simulation by removing the need to input extensive flight data such as airline 

procedure and speed schedules. 

3.4 The Flight Management System 

Lateral, vertical, and longitudinal flight guidance along the flight plan or in 

response to ATC Instructions is provided by the Flight Management System model, 

which calculates commanded headings, altitudes and speeds for the flight control 

system. 

3.4.1 Lateral Guidance 

The FMS was designed to provide a heading reference for the flight controller, 

    , to guide the aircraft along the heading or track of the active flight plan segment. 
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For heading instructions,      is simply the heading specified in the instruction. For 

track angle instructions, the specified track angle,     , can be converted to heading 

guidance,     , by correcting for wind drift as follows. The wind correction angle, 

WCA, can be found from the standard wind triangle 

           
                  

    
  (Eq. 3-2) 

where (         ) is the aircraft’s inertial velocity vector, (           is the wind 

velocity vector, and (      ) is the aircraft’s air-mass velocity vector. The reference 

heading can then be calculated by adding the wind correction angle to the desired 

track angle, normalising the resulting angle to ±π radians. 

                        (Eq. 3-3) 

Course guidance for flight plans is more complex, because, with the exception of 

flights along the equator and meridians, Great Circle paths do not follow a constant 

course. Rather, the actual course varies as the aircraft follows the path. The desired 

course, θAlong Trk, at any instantaneous point along the flight plan path can be found by 

the following method. 

3.4.1.1 Great Circle Navigation 

From the Spherical Law of Cosines, the Great Circle distance between any two 

points is given by 

                                                       (Eq. 3-4) 

where   is the latitude and    is the longitude of point n, and Ro is the radius of the 

earth = 3440.655273 nmi (Paielli, 2005). Sinnott has argued that the Haversine formula 

is better suited for computing Great Circle distances because the inverse cosine 

function is not well conditioned for small distances due to rounding errors (Sinnott, 

1984). However, the errors are less than 1 metre when using double precision floating-

point numbers on computers with a 32bit word size. Additionally, the Haversine 

formula is more complex, requiring more than twice the computational time of 

Equation 3-4. 
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The initial bearing can be found as 

            
                  

                                          
  (Eq. 3-5) 

where atan2() is the four-quadrant arctangent(y/x) function (De Smith, et al., 2009). 

Using Equations 3-4 and 3-5 and Napier’s Rules for right spherical triangles, the 

cross track error, δXTE, along-track distance, dAT, as shown in Figure 3-8, can be 

computed 

    
    

  

                      
     
  

  (Eq. 3-6) 

    
     
  

      
   

  

     
    

  

  
(Eq. 3-7) 

 

Figure 3-8: Great Circle navigation geometry 

The location of the along track point, PAT, can then be found by projecting a point 

from WptA a distance dAT with the initial bearing θA,B using 

                      
   
  

             
   
  

            (Eq. 3-8) 

             

 

 
 
             

   
  

         

    
   
  

                 
 

 
 

 

(Eq. 3-9) 

Thus, the along track course, θAlong Trk, can be found from this point as θAT,B. 

A reference course, θref, can then be computed using a linear control law that 

minimises the cross track error between the aircraft position and the flight plan 

segment 
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  (Eq. 3-10) 

where sign() returns +1 or -1 according to the sign of the number and r is the turn 

radius (Peters & Konyak, 2003). 

The turn radius, r, of a coordinated, constant bank turn is 

  
    

 

        
 (Eq. 3-11) 

where   is the nominal bank angle, and g is gravitational acceleration (Mondoloni, 

2006). The actual bank angle varies according to operator preferences and the phase 

of flight. The simulator uses the EUROCONTROL recommended schedule of 15 degrees 

for departure, en-route, missed approach flight and 25 degrees for terminal and 

manoeuvring flight, as specified in the segment data of the flight plan (2003). 

The control law in Equation 3-10 limits the interception angle to ±45 degrees for 

δXTE distances greater than half the turn radius, proportionally reducing the intercept 

angle until δXTE is zero. The reference course is converted to heading guidance,     , 

for the flight controller by correcting for the local winds using Equations 3-2 and 3-3. 

3.4.1.2 Turn Anticipation 

Fly-by turns must be initiated before the waypoint in order to complete the turn on 

the next path. The turn anticipation distance can be derived from the manoeuvre 

geometry shown in Figure 3-9. 

 

Figure 3-9: Constant bank turn 
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Turning manoeuvres of commercial air traffic at cruising altitudes and airspeeds 

are often assumed to be constant bank turns, allowing them to be constructed as a 

circular arc with radius given by Equation 3-11 (Mondoloni, 2006; Nuic, 2010). 

Assuming a linear bank rate, the distance required to establish the full bank angle is 

              
 

  
 (Eq. 3-12) 

where    is the bank rate. One simplifying approximation is to assume the heading 

does not change until the nominal bank angle is achieved. Mondoloni has shown that 

omitting heading change during roll-in and roll-out is insignificant to the predicted 

position at the completion of the turn; the position error is typically less than 35 feet 

(2006). As with the bank angle, actual bank rates vary by operator preference and by 

the control mode. The simulator uses a bank rate of 3 degrees per second for aircraft 

assigned the Ideal or Autopilot control mode and 5 degrees per second for aircraft 

assigned the Flight Director control mode, as per EUROCONTROL recommendations 

(2003). 

The turn anticipation distance, dTurn, for a given heading change,   , is then 

          
  

 
       

 

  
 (Eq. 3-13) 

The turn is initiated and the current flight plan segment is sequenced once the 

distance from the aircraft to the active waypoint is less than dTurn. 

By definition, turn anticipation is not used for fly-over waypoints; rather the 

segment is sequenced when the aircraft crosses a line perpendicular to the active 

segment course at the terminating waypoint. 

3.4.1.3 Lateral Offsets 

Lateral offsets can be considered as ‘desired’ cross track error; so, to provide an 

offset capability, the desired offset value, dOffset, is subtracted from the calculated cross 

track error value from Equation 3-6. Thus, in minimising the remaining cross track 

error, the lateral path control law (Equation 3-10) will guide the aircraft along the 

track, offset by a constant distance. 
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However, when a lateral offset is used in conjunction with fly-by turns, the turn 

anticipation distance must be corrected, as illustrated in Figure 3-10. 

 
Figure 3-10: Turn correction for lateral offsets 

The correction distance, ∆dTurn, can be found from Napier’s Rules for right spherical 

triangles 

    
       

  

      
      
  

        (Eq. 3-14) 

where β is half the interior course change angle. The correct turn anticipation distance 

is the sum of dTurn and ∆dTurn. 

3.4.2 Longitudinal Guidance 

The output reference airspeed, VTASref is found by interpolating the BADA lookup 

tables for the current altitude and phase of flight. The data in the tables was compiled 

using speed and power profiles corresponding to common airline operational 

procedures, including: 

 A 250 knot calibrated airspeed (CAS) limit below 10,000 ft; 

 Constant CAS climb/descent between 10,000 ft and the Mach transition 

altitude (typically around 30,000 ft); 

 Constant Mach climb/descent above the Mach transition altitude; 

 Reduced power climb settings up to 80% of the aircraft ceiling. 

It was also important for the simulator to be able to implement speed resolutions. 

For example, if an airspeed value is specified in the flight plan segment data or by an 

ATC instruction, then VTASref should be set to that speed. However, setting abstract 

reference airspeeds highlights a limitation of using tabulated performance data. The 

total energy equation (Eq. 3-1) shows that thrust, airspeed, and vertical speed are 

β 

∆dTurn 

dOffset 
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interdependent. Thus, if the airspeed is altered from the table values, the 

corresponding table values for either the fuel flow or rate of climb/descent will be 

inaccurate, because two of the three variables of thrust, speed, or rate of 

climb/descent can be controlled (fuel flow is a function of the thrust). Despite this 

known inaccuracy, it was decided to allow abstract reference airspeeds in the 

simulator because there are occasions where it is useful to control the speed 

independent of climb/descent or fuel flow inaccuracies, for example in evaluating 

speed-based resolvers for horizontal conflicts. 

3.4.3 Vertical Guidance 

As discussed above, the rate of climb and descent cannot be controlled 

independently from the airspeed and fuel flow. Consequently, the vertical guidance 

function of the FMS sets the altitude specified in the active flight plan segment or the 

ATC instruction as the reference altitude, href, for the flight controller. In keeping with 

current operational procedures, the aircraft is then permitted to climb or descend at 

an optimal rate; in this case, the rate defined in the performance tables until href is met 

(FAA, 2004). Because the flight controller includes a vertical speed control loop, it 

would be possible to further develop the FMS to provide vertical speed guidance. 

3.5 The Autopilot/Flight Director System 

The simulator APFDS models the lateral, vertical, and longitudinal flight control 

behaviour of pilots and autopilots using the proportional feedback controllers shown 

in Figures 3-11, 3-12, and 3-13. Proportional control was chosen because the system 

was observed to be stable and responsive over the operating ranges, thereby 

marginalising the advantages of derivative, integral, or other more advanced control 

methods given their additional complexity (Allerton, 2009). 

3.5.1 Lateral Control 
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The lateral flight controller uses the two control loops shown in Figure 3-11 to hold 

the reference heading, ψref, from the FMS module. The output is the new aircraft bank 

angle, used to derive the aircraft heading by the equations of motion. 

 

Figure 3-11: The lateral flight controller 

The Kp1 term is used to control the turn rate,   , from the error between the 

reference and actual aircraft heading. The turn rate is then limited and converted to a 

bank angle,      . The turn rate of commercial air traffic is typically limited to ±3 

degrees (Mondoloni, 2006). The relation between the bank angle and turn rate is 

           
              

 
  (Eq. 3-15) 

where γ is the flight path angle. However, for small flight path angles and given that 

both the turn rate and bank angle are limited, Equation 3-15 can be approximated as 

(Allerton, 2009) 

      
       

 
 (Eq. 3-16) 

For flight path angles between ±10 degrees and turn rates between ±3 degrees, the 

worst case approximation error is 3.7% at 250 knots and 3.3% at 500 knots true 

airspeed. As discussed in Section 3.4.1.1, the bank limit is set to 15 degrees for 

departure, en-route, missed approach flight and 25 degrees for terminal and 

manoeuvring flight. 

The Kp2 term is then used to control the bank angle rate from the error between 

the reference and current aircraft bank angle. The bank rate is limited to 3 degrees per 

second for aircraft assigned the Ideal or Autopilot control mode and 5 degrees per 

second for aircraft assigned the Flight Director control mode, and is then integrated 

with the current aircraft bank angle to derive the new bank angle. The controller was 

manually tuned to Kp1 = 0.07 and Kp2 = 0.75, which showed satisfactory response, 
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damping and stability for airspeeds between 50 and 500 kts and bank angles between 

15 and 25 degrees with a time step of 1 second. 

3.5.2 Longitudinal Control 

The speed controller that was designed for the simulator is shown in Figure 3-12. 

 

Figure 3-12: Longitudinal flight controller 

As discussed in Section 3.4.2, the reference airspeed input is provided by either the 

flight plan segment data or the BADA database. A longitudinal acceleration, dV/dt, is 

commanded through the Kp term and the airspeed error, proportionally reducing the 

acceleration to zero as the aircraft approaches the reference airspeed. 

The BADA user manual recommends that longitudinal acceleration be limited to 2 

f/s2 (1.1850 knots/s; 0.6096 m/s2) (Nuic, 2010). However, Mondoloni suggests that a 

more typical value for acceleration in commercial air traffic for small speed 

adjustments is 0.69 f/s2 (0.4 knots/s, 0.2068 m/s2) (2006). So, when the difference 

between the current speed and the reference speed is less than 8 knots, the limit is 

lowered to 0.69 f/s2, otherwise, the limit is 2 f/s2. The longitudinal acceleration is then 

integrated to derive the new airspeed. The speed controller was manually tuned to Kp 

= 0.8, which showed satisfactory response, damping and stability for airspeeds 

between 50 and 500 kts with a time step of 1 second. 

3.5.3 Vertical Control 

The vertical flight controller is equivalent to the autopilot height hold function. The 

two control loops shown in Figure 3-13 maintain the reference altitude, h ref, provided 

by the  MS module. The output is the new flight path angle, γ, which is used to derive 

the aircraft altitude. 
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Figure 3-13: The vertical flight controller 

First, a vertical speed command is set from the Kp1 term and the altitude error. The 

vertical speed limits are interpolated from the BADA lookup tables for the phase of 

flight, altitude, and mass. 

The commanded flight path angle can then be derived from the reference vertical 

speed as 

      
  

    
  (Eq. 3-17) 

However a small angle approximation of  

  
  

    
 (Eq. 3-18) 

can be made with less than 1% error for flight path angles between ±10 degrees and 

groundspeeds between 100 and 500 kts. 

The Kp2 term is used to control the flight path angle rate. In order to limit the 

aircraft’s normal acceleration to 5 fps2, as per the guidance of the BADA user manual, 

the flight path angle rate is limited to  

        
   

    
 (Eq. 3-19) 

(Nuic, 2010). The flight path angle rate command is integrated to derive the new flight 

path angle. The vertical flight controller was manually tuned to Kp1 = 0.15 and Kp2 = 

0.55, which showed satisfactory response, damping and stability for airspeeds 

between 50 and 500 kts with a time step of 1 second. 
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3.6 Equations of Motion 

Once the bank angle, flight path angle, and true airspeed are calculated from the 

flight control module described above, the following equations of motion are used to 

derive the remaining aircraft state and velocity vector terms. 

Rearranging Equation 3-15, the turn rate,   , can be computed from the bank angle 

and integrated to derive the new aircraft heading,  . 

   
            

            
 (Eq. 3-20) 

The aircraft inertial velocity is then converted to the North, East, Down vector 

components 

 

  
                   (Eq. 3-21) 

  
                   (Eq. 3-22) 

  
             (Eq. 3-23) 

The Earth-Centred, Earth-Fixed velocity vector are found by adding the wind 

vector, Vwnd, from the Wind Field module 

     
    

    (Eq. 3-24) 

     
    

    (Eq. 3-25) 

     
    

    (Eq. 3-26) 

The latitude and longitude rates can be found from the North and East vector 

components by 

           
  

    
 (Eq. 3-27) 

   
                

    
 (Eq. 3-28) 

The new position and altitude is obtained using Euler forward integration, where 

(Kayton & Fried, 1997) 

               (Eq. 3-29) 
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The final step is to interpolate the fuel flow (in units of kg/s) from the BADA 

database for the respective aircraft type, which is integrated to obtain the new aircraft 

mass. 

3.7 Navigation Error and Uncertainty Modelling 

In addition to the basic performance, navigation, and trajectory calculations 

described above, an important functional requirement was the ability to model 

navigation errors and uncertainty in order to simulate the navigational noise of actual 

air traffic. This requirement has been addressed primarily through the Flight Technical 

Error model, with provision for modelling additional error through own-ship state 

estimation noise. 

 

3.7.1 Flight Technical Error 

The inability of actual flight control systems to steer aircraft perfectly along the 

desired course is known as Flight Technical Error (FTE). Equipment design and ambient 

environment variables, such as control dynamics or air turbulence, both influence FTE 

(ICAO, 1999). However, flight trials indicate that the predominate factor is the control 

mode: in one study the en-route FTE for manually-piloted flights using the flight 

director was 0.7 nmi (1296.4 m), while for autopilot coupled flights the error was 

reduced to 0.13 nmi (240.8 m) (Hunter, 1996; cited from Peters & Konyak, 2003). In 

both cases the period varied between 4 and 8 minutes. 

FTE is significantly auto-correlated due to the feedback control loop of most flight 

control systems (Levy, et al., 2003). Given that, a reasonable stochastic model is a 

second order Gauss-Markov process: 

 
      
      

    
    

   
       

  
     
     

    
 

    
  (Eq. 3-30) 

where δrFTE is the lateral position error, δvFTE is the lateral position error velocity, c is 

the scale factor of the forcing function, ω0 is the natural frequency of the system, β is 
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the damping of the system, and uFTE is zero mean unity variance Gaussian white noise. 

The simulator implements the discretized form of this process with the parameters of 

Table 3-1 to generate lateral position wander at each time step, eliminating the need 

to separately model FTE factors such as air turbulence and pilot control imprecision 

(Peters & Konyak, 2003). 

 B ω0 (mHz) FTE, 1σ (m) 

Manual 0.50 2.78 1296.4 

Autopilot 0.50 2.78 240.8 

Table 3-1: Flight technical error parameters 

The FTE function is called before the FMS computations. The resulting δrFTE is then 

passed to the FMS and added to the lateral offset from the flight plan data or ATC 

instruction. This causes the FMS to produce guidance commands that direct the 

aircraft to ‘follow’ the δrFTE in relation to the underlying flight plan track. 

If no flight technical error is applied to a given aircraft, then the control mode in 

the Master Array can be set to Ideal. Otherwise, the control mode can be set to either 

Autopilot or Flight Director to specify the FTE category to be incorporated with a 

particular aircraft. These modes enable the simulator to model traffic with varying but 

appropriate levels of navigational accuracy. 

3.7.2 State Estimation Noise 

In addition to FTE, another source of navigational error is own-ship state 

estimation noise. Own-ship estimation noise is any error between the estimated 

aircraft state used by the navigation routines, and the true aircraft state. Provision has 

been made for this type of navigational error by including a data field for the 

estimated aircraft states in the FMS data structure, separate from the true state data. 

The estimated (noisy) state data is used in the guidance and control functions, while 

the true data is used to update the actual aircraft state from the flight control inputs. 
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Because the appropriate noise model is highly dependent on the application and 

assumptions about sensors, and due to project time restrictions, a specific state 

estimation noise model was not implemented. Rather, a placeholder function has been 

included to add user-defined noise to the true aircraft state data when it is copied to 

the FMS data structure. The function can be further developed as necessary. 

3.8 Verification and Evaluation of the Module 

A series of simulation tests were conducted in order to ensure correct 

implementation of the described models, and to evaluate the performance of the 

trajectory modelling process in terms of navigation accuracy, functionality, and 

computational complexity. 

The first step of the verification process was to confirm the BADA database was 

correctly applied in the simulator, in order to ensure that accurate aircraft 

performance data was being supplied to the navigation and trajectory functions. Next 

the flight controller was tested to ensure the lateral, vertical, and longitudinal 

controllers functioned as designed. The FMS functionality was then tested to establish 

the navigational accuracy of the system and to verify correct flight plan and ATC 

instruction following. Once the FMS, flight controllers, and performance models were 

verified, the flight technical error model was tested to demonstrate the ability to 

simulate navigational uncertainty. Finally, the execution speed of the module was 

tested in order to assess the impact of the computational complexity on the 

performance of the simulator. 

3.8.1 Verification of the BADA v3.8 Database Implementation 

Verification of the aircraft performance data was accomplished by comparing the 

durations of climb, cruise, and descent manoeuvres in the simulator to the expected 

duration, as derived directly from the aircraft’s BADA Performance Table  ile. The 

expected flight time for a level cruise of a given distance can be found from the true 

airspeed values in the BADA database by 
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 (Eq. 3-31) 

Similarly, the expected duration of a climb or descent over a given altitude can be 

found from the average of the Rate of Climb/Descent (ROCD) speeds between the 

lower and upper altitudes as 

         
                   

            
 (Eq. 3-32) 

A Boeing 747-200 and Airbus A320 were tested in the simulator and the flight 

times of the manoeuvres were recorded. Table 3-2 compares the simulated and BADA-

derived cruise, climb, and descent flight times to the nearest second. 

 

CRUISE 

1000 nmi at FL330 

CLIMB 

From FL290 to FL330 

DESCENT 

From FL330 to FL290 

 
Sim. BADA Error Sim. BADA Error Sim. BADA Error 

B747-200  7211 7200 0.15% 135 136 0.71% 85 85 0.00% 

A320  7942 7930 0.16% 229 231 0.91% 71 71 0.00% 

Table 3-2: Manoeuvre durations (seconds) 

The results show close correspondence between the simulated and BADA-derived 

flight times, indicating that the database was correctly implemented. The small 

percentage error can be attributed to numerical and navigational error, and is well 

within the navigational tolerances of modern commercial aircraft (Kayton & Fried, 

1997). 

3.8.2 Evaluation of the Flight Control System 

The next step in the verification process was to evaluate the response of the lateral, 

vertical, and longitudinal controllers to step inputs. For this test, a Boeing 777-200 was 

used in the terminal phase of flight with the Ideal control mode.  
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Figure 3-14: Lateral controller response to 90 degree heading change 

In the first test, a 90 degree heading change command was sent to the lateral flight 

controller. The instantaneous heading, bank angle, and bank rate were recorded, and 

are plotted in Figure 3-14. The plots show that the controller applied bank 

incrementally until the 25 degree limit was reached. The bank was then proportionally 

reduced to zero as the aircraft completed the turn. The bank rate was limited to ±3 

deg/sec as desired with the autopilot control mode. 

In the second test, the vertical flight controller responded to a 2000 ft altitude 

change, from FL350 to FL370. As before, the altitude, vertical speed, and flight path 

angle were recorded and are shown in Figure 3-15. The flight path angle was increased 

to 3.1 degrees, until the ROCD reference value from the BADA database was met. The 

linear reduction of the flight path angle and vertical speed is due to the change in 
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aircraft performance with altitude. Finally, flight path angle was proportionally 

reduced to zero as the aircraft completed the climb. 

 

 

 
Figure 3-15: Vertical controller response to a 2000 ft climb 

The longitudinal controller was tested by commanding the aircraft to accelerate 

from 250 kts to 280 kts. Figure 3-16 shows the acceleration was correctly limited to 2 

fps2 until within 8 knots of the commanded airspeed, at which point the acceleration 

was reduced to 0.69 fps2. The acceleration was proportionally reduced to zero as the 

aircraft approached the target speed. 
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Figure 3-16: Longitudinal controller response to a 30 knot speed change 

All three controllers demonstrated the desired response, with the aircraft 

completing the manoeuvres within an interval that is reasonable for commercial 

transport aircraft (Pratt, 2000). 

The tests described above were repeated in a test matrix that covered a variety of 

airspeeds (50 to 500 kts), airspeed changes (5 to 50 kts), altitudes (10000 to 40000 ft), 

altitude changes (500 to 5000 ft), bank angle limits (15 and 25 degrees), and heading 

changes (15 to 180 degrees). Due to space constraints, only one set of test results 

could be presented (shown above). All the flight controller tests produced similarly 

satisfactory results. 

 

 

3.8.3 Evaluation of the Flight Management System 

The FMS was tested for inherent navigational accuracy (that is, without FTE) and 

correct path/terminator implementation.  
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3.8.3.1 Evaluation of Navigation Accuracy 

The purpose of this test was to evaluate the long distance navigational capability of 

the FMS and to verify correct Great Circle navigation. A Boeing 777-200 was flown at 

FL330 on 1000 nmi track-to-fix routes in the cardinal and intercardinal directions. In 

order to isolate inherent navigational accuracy from FTE, the flight control mode was 

set to Ideal. With all eight routes, the initial point was Heathrow Airport, since it was 

expected that any Great Circle navigation error would be accentuated at Northerly 

latitudes. Two tests were flown for each route – one with wind fields from the NPN 

wind module, and one without any winds. In all sixteen flights, the position of the 

aircraft was recorded every 111 nmi, as indicated in Figure 3-17. The MATLAB Mapping 

Toolbox was then used to independently calculate the intermediate waypoints with 

the same spacing along the Great Circle course between the start and destination 

points. The distance between the simulation points were compared to the MATLAB 

waypoints and have been plotted in Figured 3-18. 

 

Figure 3-17: Sample points in navigation test 
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Figure 3-18: Radar plot of navigational accuracy 

The results show that the FMS produces very accurate flight guidance for long-

distance Great Circle courses. The average error without wind was 90 m, and with 

wind was 93 m. Both cases are well below the 1852 m (1 nmi) threshold requirements 

for RNAV-1 and are a 90% improvement from the 926 m (0.5 nmi) navigational 

accuracy demonstrated by the original Airspace Simulator. The small differences 

between the simulator and MATLAB can be attributed to numerical errors and the 

limitations of proportional controllers with small feedback errors. The results also 

demonstrate that the FMS control is effective in the presence of winds. The 

asymmetrical error in the wind case is because the aircraft encountered different wind 

fields for each route due to the geospatially-referenced wind model. 

3.8.3.2 Verification of Flight Plan and ATC Instruction Following 

Next, a series of test flights for a Boeing 777-200 at FL330 were completed to verify 

the capability of the simulator to implement conflict resolutions by route modifications 

and ATC instructions. In all test flights, the original flight plan was the route shown in 

Figure 3-19 from the initial fix to Wpt2. 
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Figure 3-19: Test route 

This route was flown with both fly-by and fly-over transitions at Wpt1 to verify 

correct segment transitions. Figure 3-20 plots the fly-by tracks in solid red and the fly-

over in the blue dash-dot line. As can be seen, the fly-by case anticipates the turn, and 

the fly-over case flies past the waypoint and then turns to intercept the course. 

 

Figure 3-20: Segment transition test 

In order to demonstrate the ability of the FMS to automatically incorporate route 

modifications, a sequence of two waypoints was passed to the FMS after 60 seconds of 

simulation, representing a turning point manoeuvre with a 45 degree delay segment of 

15 nmi. Figure 3-21 shows the turn-away and turn-back points (red diamonds) were 

successfully inserted, changing the resulting trajectory (solid red line). 
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Figure 3-21: Route modification test 

The purpose of the next test was to verify heading instructions, track angle 

instructions, and direct-to-fix segments. A 30 degree heading instruction was give to 

the aircraft after 60 seconds of simulation. After an additional 180 seconds, a DF route 

modification was given to Wpt2. The flight was repeated with a 30 degree track angle 

instruction. In both cases, a steady wind-field was set to 100 knots from the west to 

make the difference between heading and track angle instructions more apparent. The 

results are plotted in Figure 3-22 for the heading case in solid red and track angle in 

blue dash-dot. The aircraft location when the DF instruction was given is shown by the 

red and blue diamonds; the difference in locations is due to the wind displacement on 

the heading segment. 

 

Figure 3-22: Heading, track angle, and direct-to test 

Lateral offsets were tested by commanding a 2 nmi offset to the right and left of 

the course after 60 seconds of simulation. The instruction was given a duration of 240 

seconds. As can be seen from Figure 3-23, the turn point was correctly translated for 
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both right of course (solid red) and left of course (blue dash-dot), to maintain the 

correct offset distance following the turn. 

 

Figure 3-23: Lateral offset test 

Finally, two test flights were conducted to verify the ability to give timed altitude 

and speed instructions. In the first, a 2000 ft climb instruction was passed to the FMS 

after 60 seconds of simulation, with an instruction duration of 6.5 minutes. Similarly, in 

the second flight the aircraft was instructed to accelerate by 20 knots. The resulting 

altitude and speed profiles are shown in Figure 3-24A and 3–24B, respectively. It can 

be seen that the aircraft correctly follows the instructions, and then returns to the 

flight plan altitude and BADA reference speed when the instructions timed-out. 

 

 
Figure 3-24: Test of timed altitude (A) and speed (B) instructions 
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These test flights have demonstrated the ability of the simulator to construct the 

required conflict resolution manoeuvres described in Section 3.1 using route 

modifications and timed- or manually-terminated instructions, as well as the ability of 

the FMS to correctly execute the manoeuvres. 

3.8.4 Verification of the Flight Technical Error Model 

In order to test the FTE model, two simulations of 30000 seconds each were 

completed with a B737-700 at FL290 and 431 kts. In the first simulation the aircraft 

was controlled by the autopilot, and in the second the aircraft was controlled by the 

flight director. The instantaneous flight technical error produced by the FTE module 

was recorded at each time step along with the actual cross track error, in order to 

determine if the cross track error (XTE) corresponded to the FTE as would be expected. 

Portions of recorded data from both simulations are show in Figures 3-25A and 3-

25B. As can be seen, the cross track error appears to closely follow the FTE, indicating 

that the FTE model causes the cross track error. 

 

Figure 3-25: Time series of flight technical error 

The mean and standard deviation of the sampled FTE position, δrFTE, and FTE 

velocity, δvFTE, were computed, and are compared to the desired values in Table 3-3. 
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The small errors indicate FTE model parameters have been correctly applied in the 

simulator. 

  δrFTE  (m) δvFTE  (m/s) 

  Desired Sample Error Desired Sample Error 

Flight 
Director 

Mean 0 -136 136 0 -0.0079 0.0079 

Std. Dev. 1296 1210 86 3.6011 3.4971 0.1040 

Autopilot 
Mean 0 -27 27 0 -0.0068 0.0068 

Std. Dev. 241 225 16 0.6688 0.6929 0.0241 

Table 3-3: Comparison of flight technical error parameters 

3.8.5 Evaluation of Module Execution Speed 

The new Navigation and Trajectory Module is a significant improvement to the 

original simulator in terms of functionality, flexibility and fidelity. However, this 

additional realism comes at the cost of additional computational complexity. In order 

to determine the speed performance of the module, a representative flight was 

simulated from London to New York, and replicated 29 times. The simulator execution 

time was categorised and recorded.  

 

Figure 3-26: Breakdown of simulator execution time 

The larger graph in Figure 3-26 shows the relative percentages of the execution 

time of the initialisation process, the Navigation and Trajectory Module, and all other 

simulator functions. The graph shows that the Navigation and Trajectory Module 

represents over 91% of the entire computation time, while initialization accounts for 
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only 2.1% and all other simulator functions represent only 6.3%. These percentages 

are not surprising, since updating the navigation and trajectory must be completed 

every time step for every airplane, while most other simulator functions, such as the 

communications modelling or writing the data block, apply less frequently.  

The smaller graph shows the breakdown of execution time within the module; the 

FMS model accounts for the majority (67.3%) of the module’s execution time.  TE 

represented only 4.6% of the module’s execution time, which indicates that the 

additional realism provided by the FTE model has a relatively small impact on the 

simulator’s overall speed performance. 

Despite the relative costliness of the Navigation and Trajectory Module compared 

to the other modules, the actual speed of the simulator remains very fast. In this case, 

more than 186 flight hours were computed in less than 3 seconds, which shows that 

the software was efficiently designed and implemented. Thus, it was decided that the 

functionality, flexibility and fidelity provided by the new module was worth the 

computational complexity. 

3.9 Summary 

The requirements of the Navigation and Trajectory Module have been discussed in 

terms of navigation accuracy, the ability to model navigation errors, and the ability to 

implement conflict resolution manoeuvres. The trajectory modelling process that was 

designed to meet these requirements was described, focusing on the performance 

model, FMS, APFDS, equations of motion, and the flight technical error. 

The evaluation of the module has shown that the BADA database has been 

correctly applied in the simulator. The Autopilot/Flight Director model was shown to 

produce the desired response to heading, altitude and speed commands generated by 

the FMS module. The FMS showed precise Great Circle waypoint-to-waypoint 

navigation, and demonstrated the ability to accept and execute flight plan 

modifications and ATC instructions in-flight. Finally, the flight technical error model 
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was shown to produce random lateral wander consistent with the desired model 

parameters. 

The next chapter will describe the Communications Module that enables 

connected CD&R tools to control the traffic using the route modifications and ATC 

instructions described in this chapter. 
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Chapter 4 

Communications Module 

 

The Communications Module has two purposes: to handle the exchange of 

messages between the simulator and any connected external systems such as CD&R 

tools, and to model those exchanges as either ADS-B, datalink, radio-telephony, or 

ASAS messages. The module enables external systems to monitor the traffic through 

ADS-B-like surveillance, and to control the traffic through instructions and route 

modifications. Section 4.1 identifies the requirements that are specific to the 

Communications Module. Section 4.2 then describes the communications process 

designed to meet these requirements. Sections 4.3 and 4.4 discuss the latency and 

surveillance sub-modules in detail, and finally, an evaluation of the module is 

presented in Section 4.5. 

4.1 Requirements for Modelling Communications 

A design goal for the project was the ability to integrate new CD&R tools with the 

simulator. By implication, the Communications Module must be able to output traffic 

surveillance information to conflict detection and traffic monitoring systems, and 

receive conflict resolutions as input from conflict resolvers. The module should 

simulate ADS-B-type surveillance – expected to be the baseline surveillance method of 

future ATM systems – by broadcasting the aircraft state, velocity vector, and intent 

data to any connected external systems. The input message set must include the 

conflict resolution types outlined in Section 3.1. 

Additionally, to enable the testing of separation management systems and 

concepts under non-ideal conditions, the module is required to simulate the errors 

and uncertainties associated with datalink and radio-telephony communications, and 

ADS-B surveillance. 
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4.2 The Communications Process 

The communications process used to pass conflict resolution messages to aircraft 

(input messages) is shown in Figure 4-1. Messages can be generated from two sources: 

 internal messages from other modules within the simulator 

 external messages from modules and systems connected to the simulator 

It is important that the method of integrating the simulator with external systems 

be flexible and minimise any modifications required of the external systems. To 

accomplish this, customised interface functions are used to map input from the 

external systems (i.e. conflict resolutions) to data structures that are compatible with 

the simulator, as well as to manage the relevant networking protocol and procedures. 

The interface functions must be adapted according to the specific system that is 

attached. 

 

Figure 4-1: The communications input process 

The message is then sent to a latency model to simulate the stochastic delays and 

timing-uncertainties of either datalink or radio-telephony communications, or the 

delays in flight crew response to ASAS-generated resolutions. Once given a delivery 

time from the latency model, the message is stored in the receiving aircraft’s message 

queue until the delivery time has been met. 

The communications output process (communication from the simulator to any 

connected modules) is shown in Figure 4-2. A surveillance model is used to simulate 

noise and failure of the surveillance data before it is broadcast. As with the input 
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process, customised output interface functions are used to connect the simulator to 

external tools. For example, because Tviz uses the messaging system developed for the 

Smart Skies Project, an output interface function was developed to convert the 

simulation surveillance data to a Smart Skies–compatible message and send it over a 

UDP network (Baumeister, et al., 2009). As a result, no modifications were required of 

the Tviz software to network it to the simulator. 

 

Figure 4-2: The communications output process 

4.2.1 The Message Set 

The input message set includes route modifications and instructions. Route 

modifications consist of a series of new flight plan segments of track-to-fix or direct-to-

fix waypoints, with fly-by or fly-over transitions, as well as the segment altitude, 

speeds and lateral offset. Instructions consist of a specified heading, track angle, 

lateral offset, altitude, or true airspeed for the aircraft to maintain. A flag is set to 

indicate if the instruction is to be manually terminated (upon receipt of another 

message) or automatically terminated after a given time. If time-termination is 

specified, then the message also stores the specified the instruction duration. 

When using the Datalink and ASAS communication modes, any of these message 

types may be used. However, in order to simulate the message complexity limitations 

of voice communications, radio-telephony messages are restricted to instructions or a 

single direct-to-fix segment. 

The output message set consists of the periodically-broadcasted surveillance data 

elements listed in Table 4-1. In addition, to ensure the conflict detection systems have 

accurate trajectory intent information, the flight plan is transmitting when an aircraft 
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is first generated and when any route modifications are made within the aircraft’s 

FMS. 

System Information: State: Air-Mass Velocity: Ground Velocity: 

 Aircraft identification 

 Active waypoint 

 Latitude 

 Longitude 

 Altitude 

 Bank angle 

 True airspeed 

 Heading 

 Ground speed 

 Track angle 

 Vertical speed 

Table 4-1: The surveillance output data set 

Although ADS-B is expected to be the primary surveillance source in future ATM 

systems and is assumed here, the surveillance data can be limited the aircraft position 

and altitude, in order to simulate the reduced information content of current Primary 

and Secondary Surveillance Radar (PSR and SSR) systems. 

4.2.2 The Message Queue 

The message queue is a linked list that stores messages until the latency period is 

completed; that is, the message is held by the message queue until the current 

simulation time is greater than the message’s delivery-time. Using a linked list allows 

multiple messages to be stored for each aircraft and also reduces the memory 

requirement in comparison to allocating a fixed-size message array. The data structure 

for the message queue nodes and the type definition of the ATC Instructions are 

shown in Figure 4-3. Simple interface functions can be added to the communication 

module to translate messages to and from this structure for CD&R systems that use 

different data structures. 
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Figure 4-3: Data structure message queue nodes  

and type definition of ATC Instructions  

The message queue for each aircraft is checked at every time step. If the queue 

contains any messages (e.g. not NULL), the delivery-time is checked. Once the delivery-

time is met, the message is passed to the FMS and the message node of the queue is 

freed from memory. If the message is an instruction, the FMS suspends the flight plan 

and produces flight guidance according to the instruction. The flight plan is reactivated 

when the message duration timer expires or upon receiving either a direct-to-fix flight 

plan segment or another instruction with the FPActive field equal to ‘true’. However, if 

the message is a route modification, the new flight plan segments must be merged 

into the active flight plan using the following method. 

4.2.3 Incorporating Flight Plan Modifications 

An algorithm was needed to automatically merge route modifications into the 

flight plan. The problem is simple if the final waypoint of the route modification 

corresponds to an original waypoint. In that case, the route modification waypoints 

struct ac_types_MSG_QUEUE_NODE 
{ 
    comm_MSGTYPE                   MsgType;  // 1 = Instruction, 0 = Route Mod 
    float                             DeliverTime; // Time at msg receipt + latency 
    ac_types_INSTRUCTION       Instruction; 
    struct ac_types_MSG_QUEUE_NODE    *PrevMsg; // pointer to prev msg 
    struct ac_types_MSG_QUEUE_NODE    *NextMsg; // pointer to next msg 
    struct nav_PATH_NODE       *RouteMod; // pointer to route modification 
}; 
 
typedef struct 
{ 
    char    TimeManFlag;    // 1 = timer terminated, 0 = manually terminated 
    char    HdgTrkOffFlag;   // 0 = no lat cmd, 1 = trk ang, 2 = hdg, 3 = lat offset 
    boolean FPActive;         // False = suspend flight plan, true =resume 
    float   LatCmd;       // Lateral command (rads or nmi) 
    float   AltCmd;       // Altitude command; 0 = no alt command (m) 
    float   SpdCmd;       // Speed command; 0 = no speed command (m/s) 
    float   Timer;        // Timeout value, from receipt of command (s) 
}  ac_types_INSTRUCTION; 
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simply replace any intermediate waypoints in the original flight plan between the 

aircraft and the final route modification waypoint. 

However, requiring the final waypoint of the route modification to correspond with 

an original waypoint forms a constraint on the generation of conflict resolution 

solutions, and not all conflict resolvers are designed to incorporate this principle. In 

current operations, route discontinuities are manually corrected by the flight crew 

(Palmer, et al., 2000), but an automated solution was needed for the simulator. 

Simplistic solutions, such as merging at the nearest segment/waypoint or inserting the 

sequence of new segments before active waypoint, can lead to unexpected and 

unrealistic behaviour. An algorithm was needed to merge route modifications in an 

intelligent, predictable way; however there is little published literature and no 

generally accepted solution. 

For example, consider the case of an automated tactical separation management 

system that has generated a flight plan modification consisting of three waypoints 

(squares in Figure 4-4) to correct a previous resolution that failed to resolve the 

conflict. These new segments must be merged with the active flight plan (diamonds). 

 

Figure 4-4: Scenario requiring merging of resolution waypoints ATC 1…3 into a flight 

plan defined by waypoints WPT 1…6 

Figure 4-5 traces the ground tracks of two incorrect outcomes produced by the 

simulator, illustrating the challenge of automatically modifying flight plans. The first 

case (dashed grey track) demonstrates the need for an intelligent method of merging 

flight plans. The flight plan segment was inserted directly into the active flight plan 

before the original active waypoint, resulting in a flight path that backtracks to the 

original active waypoint following the completion of the resolution manoeuvre. This 
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behaviour is undesirable and could be prevented using a more intelligent merging 

routine. The second flight (solid blue track) illustrates the limitations of overly-

simplistic merging routines. In this case, the final new waypoint was merged with the 

closest leg in the original flight plan. This again results in an undesirable flight path, by 

bypassing a significant portion of the original flight plan.  

 

Figure 4-5: Resulting ground tracks of two incorrect merges 

To avoid these errors, an algorithm was developed to merge the lateral 

components of two flight plans based on the principle of wayline leg sequencing. A 

flight plan segment with a fly-by transition can be sequenced when the aircraft crosses 

an infinite-length wayline at the bisector of current segment and next segment 

(Sptizer, 2001), illustrated in Figure 4-6A. For fly-over transitions the wayline is 

perpendicular to the final segment course, illustrated in Figure 4-6B. 

 

Figure 4-6: (A) Bisecting wayline (dashed line) for fly-by transitions; 

(B) Perpendicular wayline for fly-over transitions 

The algorithm, shown in Figure 4-7, operates by treating each new waypoint in the 

route modification list as a virtual aircraft. The virtual aircraft can then be tested in the 

original flight plan against the terminating wayline of the active segment. If the virtual 

aircraft has crossed the wayline, the next segment in the original flight plan is flagged 

and evaluated. The wayline test is repeated until the virtual aircraft fails to cross the 

wayline of the flagged leg. Then, the next new waypoint in the route modification list is 

considered the virtual aircraft, and evaluated against the flagged leg. 

(A) (B) 
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After all new waypoints have been treated as the virtual aircraft, the flagged 

waypoint indicates the merge point between the original flight plan and the route 

modification. The original waypoints up to the flagged waypoint are removed and 

replaced with the new waypoints, and the first of the new waypoints is then set as the 

active segment, completing the merge. 

 

Figure 4-7: An automated algorithm for merging route  

modifications into a flight plan 

For example, using the scenario described previously, the algorithm processed as 

follows: 

 Point ATC1 was the virtual aircraft. Point ATC1 did not cross the WPT1 wayline, so 

the active waypoint remained WPT1 
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 Point ATC2 became the virtual aircraft. Point ATC2 crossed the WPT1 wayline but 

not WPT2, so the active waypoint was updated to WPT2 

 Point ATC3 became the virtual aircraft. Point ATC3  crossed the WPT2 wayline but 

not WPT3, so the active waypoint was updated to WPT3 

Because ATC3 was the final new waypoint, the merger was completed by replacing 

WPT1 and WPT2 with ATC 1…3. The resulting flight plan and ground track are shown in 

Figure 4-8, demonstrating a predictable and desirable merge between the two flight 

plans. 

 

Figure 4-8: Resulting ground tracks after using the automatic merging algorithm 

The purpose of the algorithm is to provide an automated merging capability that 

models the way a human pilot would incorporate a conflict resolution described as a 

series of waypoints. Clearly, to fully model human behaviour and decision making, a 

much more complex algorithm would be necessary to take into account difficult 

situations and flight goals, such as maximising economy or meeting time-of-arrival 

constraints. Additionally, there are currently no regulations or protocols governing the 

merging of conflict resolutions into flight plans; this is an issue that will need to be 

further addressed before these types of conflict resolutions can be used operationally. 

For example, the problem would be resolved if CD&R systems issued route 

modifications complete to the destination, but this may be an inefficient use of 

datalink bandwidth. 

4.3 Latency Modelling 

Communications latency is any delay between the generation of a message (i.e. a 

conflict resolution), and when the message is executed by the flight crew. Latency can 

introduce stochastic variation to aircraft trajectories when completing conflict 
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resolution manoeuvres, and as a result, should be taken into account when designing 

and evaluating CD&R systems and concepts. Sections 4.3.1 through 4.3.3 discuss the 

default latency values used in the simulator; however, the latency can be redefined as 

desired in the configuration file. If the aircraft’s communications mode is set to Ideal, 

then latencies are set to zero. 

4.3.1 Datalink Latencies 

Uplink latencies (messages from ATM ground-systems to the aircraft) in datalink 

communications can be attributed to the link technical delay and pilot response delay. 

Link technical delay is defined as the time between when a message is sent by the air 

traffic controller to when it is ready to be displayed to the flight crew, including any 

data processing delays and network traversal times. Technical delay varies from 

system to system, but is typically less than 2 seconds (Grogan, 2007; Bolczak, et al., 

2004; Delhaise & Esposito, 2007). In order to keep the latency model technology 

independent, and because little information could be found on the distribution of 

delays, the link technical delay was modelled as uniformly distributed between 0.5 and 

3.5 seconds. 

The second source of latency is the pilot response delay. It is assumed that even in 

more highly automated future ATM systems, pilots will remain responsible for the 

safety of the flight and will examine any trajectory modifications before executing the 

manoeuvre – as is currently the case (FAA, 2004). As a result, the flight crew will need 

to recognise, review, and respond to any trajectory modifications, introducing a 

significant source of latency. There have been a numerous studies on human response 

time to datalink messages (Mackintosh, et al., 1999; Lozito, et al., 2003; FAA, 1996; 

Gonda, et al., 2005; Knox & Scanlon, 1990). The wide range of latency values reported 

suggest that the pilot delay is highly dependent on factors such as operational 

procedures, the human-machine interface design, cockpit distractions, message 

complexity, and crew training. 

Recognising these variations, the pilot delay model used in the simulator is based 

on the latency values published by Mackintosh, et al (1999). In this study, five flight 
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crews flew the NASA Advanced Concepts Flight Simulator with a B757/767 FMS, using 

datalink as the primary ATC communication medium. A mean pilot delay of 28.6 

seconds with a large standard deviation of 38.8 seconds was reported between the 

message alert (visual and chime) and when the crew was finished handling all the 

message elements. These values are supported by statistics of initial datalink 

operations in both the United States and Europe, which also report mean pilot delays 

of approximately 30 seconds with large variance (EUROCONTROL, 2007; Gonda, et al., 

2005). 

Statistics of pilot and controller message durations and response times tend to be 

skewed with a peak at a short time interval and a long tail for both radio-telephony 

and datalink communications (Gonda, et al., 2005; Hung, 2005; Knox & Scanlon, 1990; 

Graglia, 2002; FAA, 1996). The lognormal distribution was selected as a non-negative, 

left-skewed distribution to model these random variables. The lognormal distribution 

has been shown to fit empirical distributions of many communication parameters, 

including call durations both in mobile and fixed telephony systems, human reaction 

and response times, and speech segment durations (Ulrich & Miller, 1993; Ratcliff & 

Murdock, 1976; Hockley, 1984; Rosen, 2005; Guo, etc al., 2007). 

For each datalink message, the link technical delay and pilot response delay are 

randomly drawn from uniform and lognormal distributions and summed with the 

current simulator time to form the message delivery time. Messages are stored in the 

message queue until the simulator time is greater than this delivery time. 

4.3.2 Radio-Telephone Latencies 

Aircraft unequipped with data links or with inoperative data links must rely on 

voice radios to communicate. Latencies in radio-telephone communications can be 

attributed to communication transaction times and frequency occupation. 

Cardosi analysed 46 hours of voice recordings of en-route airspace 

communications in the United States in a study of communication transaction times 

(1993). Traffic avoidance instructions were found to have mean controller speech 
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duration of 4.85 seconds and the subsequent pilot reaction time was observed to have 

a mean of 3.31 seconds. Assuming the pilot-flying acknowledges the clearance to the 

pilot-not-flying before implementing the manoeuvre, the expected delay before an 

instruction is executed is 8.16 seconds. However, 16% of the messages required the 

controller to repeat or clarify the instruction at least once, primarily because the pilot 

failed to respond to the initial call. In the worst observed case, this led to a delay of 31 

seconds. Including these instances, the total time required to correctly communicate 

traffic avoidance manoeuvres had a mean of 10.85 seconds with a standard deviation 

of 5.91 and a 99th percentile of 40 seconds. 

A second source of uncertainty in radio-telephony communications is channel 

occupation. Communications over the standard amplitude-modulated VHF radio are 

half-duplex; if the controller is ready to transmit a conflict resolution instruction but 

another transmission (by either the pilot or controller) is underway, then the controller 

must wait. 

Graglia (2002) presented the results of an extensive analysis by the Centre 

d'Études de la Navigation Aérienne (CENA) of 60 hours of recorded pilot-controller en-

route communications from twelve French sectors. Controllers transmitted 45% of the 

19000 transmissions with mean speech duration of 3.7 seconds and standard deviation 

of 2.0 seconds, while pilot messages had mean duration of 2.9 seconds and standard 

deviation of 1.5 seconds. The physical occupancy of the channel – that is, the 

cumulative duration of transmissions over a given period – averaged 30%. However, 

over short periods of time, the physical occupancy was occasionally higher, and 

peaked to 75% over an 8 minute period. Using the CENA information, and by 

conservatively assuming independence between message durations and the channel 

occupancy, a model of the transmission delay as a function of the channel occupation 

percentage can be estimated, as shown in the pseudo-code of Figure 4-9. 
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Figure 4-9: Pseudo-code model of transmission delay  

given the channel occupation percentage 

Figure 4-10 shows the mean and standard deviation of delays due to channel 

occupation of simulations of 30000 samples each, for ten physical occupancy 

percentages. As can be seen, the range of transmission delays is relatively small. By 

default, the simulator conservatively uses the 60% channel occupation values, for a 

mean of 1.0 and standard deviation of 1.4 seconds. 

 

Figure 4-10: Transmission delays due to channel occupation 

For each radio-telephony message, the communication transaction time and 

frequency occupation delay are randomly drawn from lognormal distributions and 

summed with the current simulator time to form the message delivery-time. 
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rv1, rv2, rv3 = random numbers on unit interval 

IF rv1 < channel occupancy percentage THEN 

 IF rv2 < controller transmissions percentage THEN 

  rv4 = random controller transmission duration 

  tx_delay = rv4*rv3 

 ELSE 

  rv4 = random pilot transmission duration 

  tx_delay = rv4*rv3 

 ENDIF 

ELSE 

 tx_delay = 0 

ENDIF 
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4.3.3 ASAS Resolutions 

For conflict resolution generated by ASAS equipment, there is no delay caused by 

the datalink protocol and are no failed messages due to distance or interference, 

because the equipment is on-board the aircraft. However, there is still a delay 

between when a resolution is generated and when it is implemented due to pilot 

reaction and response times. It is assumed that delay in response to a conflict 

resolution generated by ASAS equipment will be similar to the reaction and response 

delay for data linked messages.  Thus, the latency for an ASAS resolution was also 

modelled with a mean of 28.6 seconds and a standard deviation of 38.8 seconds. For 

each ASAS resolution, the latency is drawn from a lognormal distribution and summed 

with the current simulator time to form the message delivery-time. 

The latency values discussed above can be redefined in the configuration file 

according to the specific experiment requirements. 

4.4 Surveillance Broadcasting 

The simulator periodically broadcasts the state and velocity of every active aircraft 

to provide traffic surveillance data to research and visualisation tools connected to the 

simulator. The broadcast rate can be specified in the configuration file, but is by 

default once per second. Thus, under ideal conditions, the surveillance update period 

for simulated ADS-B messages is 1 second. 

However, with the 1090 MHz ADS-B communication structure, ADS-B messages 

can fail to be received by its recipient due to the Mode-S broadcast range and 

interference effects (FAA, 2002), resulting in stochastic variation of the surveillance 

update period. Blom, et al, have shown that collision risk increases linearly with 

decreasing ADS-B availability and reliability (2007). Thus, it was important to model 

imperfect ADS-B message reception. 



Chapter 4. Communications Modelling 

 

97 

In order to minimise extraneous variables in simulation experiments, the causal 

factors of message failure were not independently modelled; rather, the stochastic 

failure behaviour is modelled by applying constant, uniform probability of success for 

surveillance broadcasts. The Effective Update Period (EUP) performance requirements 

for ADS-B surveillance in the terminal and en-route airspaces with 95% confidence are 

shown in Table 4-2 (RTCA, 2006). 

 
 TMA En-Route 

EUP (seconds) 5 10 

At (nmi) 80 150 

Table 4-2: EUROCAE Effective Update Period performance requirements 

The probability that the state data is updated within k seconds with a given 

confidence can be derived from the binomial distribution 

           
 
 
            

          
(Eq. 4-1) 

where x is the number of received messages in n transmissions with the single 

message probability of reception p, and m is the broadcast rate. Solving for p where x 

= 0 and b = 0.05 results in 

     
         
    (Eq. 4-2) 

Thus, the minimum p meeting the EUROCAE requirements can be derived, as shown in 

Table 4-3. p for a given experiment can be set in the configuration file. 

 TMA En-Route 

k 5 10 

M 1 1 

P 0.4507 0.2589 

Table 4-3: Minimum allowable single message probabilities of reception 

For every surveillance broadcast, a uniform random variable, rv, is drawn from the 

unit interval. If rv is less than or equal to p, the message is considered successful and is 

sent to the output interface; otherwise, the message is considered failed and the 

function exits without broadcasting the message. 
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Another source of surveillance error is estimation noise – any error between the 

estimated aircraft state made by the surveillance system, and the true aircraft state. 

As with own-ship estimation noise in the Navigation and Trajectory Module, provision 

has been made for this type of error through a placeholder function to add user-

defined noise to the true aircraft state data when it is copied to the communications 

data structure. The function can be further developed as necessary; however, it can 

generally be assumed that surveillance data use by CD&R systems will have first 

passed though a tracker that filters and smoothes the data, thereby minimizing the 

effect of estimation noise. 

4.5 Evaluation of the Module 

Four tests were conducted on the Communications Module to verify correct 

operation, including: verifying the model of stochastic surveillance broadcast failures, 

verifying the model of stochastic communication latencies, and demonstrating 

trajectory exchange with an externally connected CD&R system. 

4.5.1 Verification of Surveillance Broadcast Failure Model 

Correct implementation of the ADS-B message failure model was tested with a 

flight lasting 86400 seconds using a 1 Hz surveillance broadcast rate, resulting in 86400 

samples. The minimum en-route case was applied, where each broadcast was given a 

probability of success of 0.2589. 

During the simulation, 22361 of the surveillance messages were received by Tviz; 

or 25.88% of the broadcasts. The mean period between updates was 3.9036 seconds 

and the 95th percentile was 10 seconds, correctly corresponding to the 95% confidence 

bound of the ADS-B EUP performance requirements. 

4.5.2 Verification of Latency Modelling 

Next, the latency model was tested in order to verify that it generates random 

variables according to the desired distributions. 10000 samples were taken of each of 
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the latency components: the datalink technical delay (uniform), datalink/ASAS 

response delay (lognormal), radio-telephony transaction duration (lognormal), and 

radio-telephony channel occupation (lognormal). A chi-squared goodness-of-fit test 

was conducted for each latency component for the null hypothesis that the observed 

latencies from the simulator came from the distributions described in Section 4.3. In 

each case the null hypothesis could not be rejected at the 5% significance level, 

indicating a good fit of the simulator’s latency distributions with the desired 

distributions. The p-value – the probability of observing the given statistic or one more 

extreme, assuming the null hypothesis – is shown in Table 4-4, and in all cases is 

greater than 0.05 (Walpole, et al., 2002). 

For the lognormal distributions, the maximum likelihood estimates of the 

lognormal parameters, μ and σ, were computed with the 95% confidence intervals for 

the parameter estimates, in Table 4-4 (Walpole, et al., 2002). In each case, the 

confidence interval for the parameter estimates contained the desired parameters. For 

the uniformly distributed technical delay, the observed mean and standard deviation 

(stdv) are less than 0.0087 and 0.004 seconds, respectively, from the desired values. 

Variate p-value Parameter Desired MLE 95% Interval 

Datalink/ ASAS 
response delay 

0.4240 μ 2.8314 2.8246     2.8047; 2.8444 

σ 1.0218 1.0131 0.9993; 1.0274 

RT transaction 
duration 

0.3459 μ 2.2543 2.2622 2.2522; 2.2722 

σ 0.5097 0.5121 0.5051; 0.5193 

RT channel 
occupation delay 

0.1225 μ -0.5426 -0.5532 -0.5737; -0.5328 

σ 1.0417 1.0433 1.0291; 1.0580 

Link technical 
delay 

0.82 mean 2.0000 2.0087 N/A 

stdv 0.8660 0.8656 N/A 

Table 4-4: Sampled latency distributions 

The effect of latencies can be seen by the dispersal of aircraft trajectories in Figure 

4-11. Sixteen identical aircraft were simulated on a heading of 90 degrees. A 45 degree 

heading change instruction was sent to the aircraft after 20 seconds of flight. One 

aircraft was simulated without any communications delays, whose flight track is shown 
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by the thick black line. The radio-telephony model was used for the remaining 15 

aircraft, delaying the start of the turn and resulting in a cross track error from the zero-

latency case. Conflict resolution algorithms must take this uncertainty into account 

when generating resolutions, and should be evaluated for robustness against variable 

communication delays. 

 

Figure 4-11: The effect of radio-telephony latency 

on a heading change instruction 

4.5.3 Verification of Trajectory Exchange 

The final verifying test of the Communications Module was to connect the 

simulator to an automatic conflict detection and resolution system, in order to confirm 

the ability of the simulator to downlink aircraft surveillance and trajectory intent 

information to externally connected systems, and to uplink and respond to conflict 

resolutions from CD&R systems. 

The simulator was connected to a centralised CD&R system under development at 

the University of Sheffield, designed to provide safe aircraft separation for up to 5 

minutes into the future (Spence & Allerton, 2009). Conflict detection is provided 

through a linear prediction, state-based (does not account for aircraft intent) detection 

routine. The conflict resolver uses the genetic algorithm approach. The algorithm tests 

and costs a precompiled database containing a variety of horizontal manoeuvre 

sequences, in order to find suitable manoeuvre sequences for each involved aircraft 

while attempting to minimise off-track manoeuvring and aircraft separation incursions. 

The resolver uses a 5 minute look-ahead time when computing resolutions, but the 
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optimum time for the detector to flag a conflict is 150 seconds before the predicted 

conflict; at this point the genetic algorithm has the most choice and variety in the 

solutions. Input and output interface functions were developed to connect the CD&R 

system to the simulator using a TCP/IP connection, and the surveillance, flight plan, 

and trajectory modification commands data structures developed for the Smart-Skies 

project (Clothier & Walker, 2009). The speed-control method was used to maintain 

time synchronisation. 

A simple two-aircraft crossing conflict scenario was developed, as shown in Figure 

4-12A. The ability to downlink flight plans from aircraft to external systems was 

confirmed visually using TViz. Figure 4-12A shows a TViz screenshot before the conflict 

was detected. After the conflict was detected, resolutions were generated and 

automatically uplinked to the aircraft. The resolution flight plans can be seen in Figure 

4-12B, confirming the ability of the simulator to accept and execute resolutions from 

externally connected CD&R systems. 

 

Figure 4-12: TViz screenshot before conflict resolution (A)  

and after conflict resolution (B) 

 

(B) (A) 
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4.6 Summary 

The requirements for the Communications Module have been identified, and the 

communication process was described that enables external systems to monitor the 

traffic through ADS-B-like surveillance, and to control the traffic through instructions 

and route modifications. The evaluation of the module has shown correct 

implementation of the surveillance error model and the communications latency 

distributions. The flight plan merging algorithm was successfully demonstrated for a 

scenario that fails under simpler merging routines. The ability to integrate the 

simulator with a third-party CD&R tool, including the ability to output surveillance data 

and input conflict resolutions, was shown by connecting to a centralised, tactical CD&R 

system. The ability to generate internal messages and to respond to all message types 

in the message set (Section 4.2.1) was shown previously in Chapter 3. 

Next, Chapter 5 will discuss the new functionality added to the Scenario 

Generation Module and evaluate the overall speed performance of the simulator. 
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Chapter 5 

Scenario Generation 

 

In this chapter, an approach is described to automatically generate simulation 

scenarios. The rationale for adding this capability to the Airspace Simulator-II is 

discussed in Section 5.1. Section 5.2 reviews the design of the pair-wise encounter 

scenario generator, followed by an evaluation in Section 5.3. The performance of the 

simulator when computing large traffic scenarios is then presented in Section 5.4. 

5.1 Motivation 

As discussed in Chapter 2, air traffic scenarios can be manually defined in a 

configuration file by listing each aircraft to be simulated, assigning each simulated 

aircraft a BADA performance type, a flight plan, a start time, a flight control mode, a 

communication type, and a separation mode. The aircraft assignment list, stored in the 

Master Array, allows arbitrary traffic scenarios to be specified in detail, including the 

scenarios used as case-studies by Hoekstra, et al. (2000), Pallottino, et al. (2002), 

Spence, et al. (2008), and Chaloulos, et al. (2008) to evaluate CD&R system 

performance. Although such case-studies can be useful for initial evaluations, due to 

the number of possible aircraft interaction geometries and scenario variables, CD&R 

concepts and algorithms must be tested over a large range of cases to analyze and 

quantify system behaviour and performance. Farley, Kupfer and Erzberger argue that 

“candidate algorithms must be stressed by traffic volumes, densities, and complexities 

that are commensurate with today’s busiest airspace as well as that of the envisioned 

future. Further, it is necessary to expose the algorithm to the full breadth and variety 

of conflict situations that occur in real-world operations now or in the foreseeable 

future” (2007). It is impractical to manually prepare flight plans and traffic assignments 

for a large number of aircraft, so developing an automatic scenario generation 

capability was an essential component of this thesis. 
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A review of the literature reveals three scenario types are predominately used to 

evaluate CD&R concepts and systems: 

 Scenarios based on historical data: Real-world traffic scenarios can be extracted 

from recorded radar and flight plan data from the FAA or the European Central 

Flow Management Unit (CFMU), e.g. Farley, et al. (2007) and Vela, et al. (2010). In 

order to test systems at higher traffic densities and complexities than observed in 

current airspace, Paglione, et al., have developed a method of extrapolating 

historic traffic data to 2x and 3x the nominal level (2003). Unfortunately, such 

historic radar and flight plan data is generally not publically available to 

researchers, and furthermore, requires significant processing to extract and format 

the data for simulator use. 

 Pseudo-random pair-wise encounters: A second common scenario type requires 

pairs of aircraft to be placed on flight paths that, if not resolved, will lead to a loss 

of separation. The majority of actual traffic conflicts involve only a single conflict 

pair; Bilimoria & Lee have reported that over 80% of conflicts in U.S. high altitude 

airspace (FL180 and above) involve only two aircraft and have no interaction with 

other aircraft (2001). As a result, this method is often used as part of a Monte 

Carlo-style experiment series to test resolvers over a range of conflict geometries, 

as with Blom, et al., (2007), Cetek (2009) and Chen and Zhao (2009). 

 Random traffic patterns: Pair-wise encounters, however, do not fully ‘stress’ CD&R 

systems.  Detecting potential conflicts and searching for conflict free routes is 

more complex when there are other aircraft in proximity. Consequently, scenarios 

of pseudo-random traffic patterns are also used to evaluate CD&R concepts and 

systems, for example, Cetek (2009), Spence, et al. (2008), Archibald, et al. (2008), 

and NASA’s Safety Performance of Airborne Separation experiment series 

(Consiglio, et al., 2007, 2008; Karr, et al., 2009). There are many different 

implementations of this method, but most use pseudo-randomly generated flight 

plans and aircraft to ensure a desired traffic level or density in a given airspace 

region. 
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Out of these three scenario types, it was decided to develop an automatic scenario 

generator for pair-wise encounters. Historical data scenarios were precluded due to 

the restricted source data and the implementation complexity. The pair-wise 

encounter method was included because it permits greater control over certain 

experimental variables (such as the encounter geometry, local winds, etc) than using 

historical data or using pseudo-random traffic patterns. Additionally, neither Blom 

(2007, Cetek (2009) nor Chen and Zhao (2009) detail their method of generating 

conflict pairs, thus, developing a rigorous pair-wise scenario generator for this thesis 

would also contribute to the subject. 

Due to project time constraints the scenario generator currently only produce 

lateral scenarios – that is, all aircraft are at the same flight level. Bilimoria & Lee found 

that for approximately 75% of all encounters, both aircraft are in level flight, based on 

simulations using recorded radar data of US airspace operations (2001). It is possible, 

however, to extend the basic methods discussed in the next section to include vertical 

traffic scenarios so that the remaining 25% of encounters can be generated accurately. 

5.2 Pair-Wise Conflict Scenario Generator 

A Loss of Separation (LOS) event occurs when the distance between two aircraft is 

less than the required separation minimum. The pair-wise conflict scenario generator 

was designed to automatically prepare two-aircraft LOS encounters by pseudo-

randomly: 

 selecting BADA performance types, flight control modes, communication 

modes, and separation modes; 

 creating flight plans such that a LOS event will occur unless the conflict is 

resolved; 

 controlling start times, so only one aircraft pair is simulated at a time. 

A configuration text file was developed to contain the key scenario design parameters 

that can be controlled by the user (an example is provided in Appendix D). An 

overview of the scenario generation process is shown in the pseudo-code of Figure 5-1 
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and is described in more detail in the following sections. Section 5.3 then presents a 

verification and discussion of the implementation. 

 

Figure 5-1: The pair-wise scenario generation process 

5.2.1 Aircraft Type Selection 

The first step of the scenario generation process is to assign aircraft types from the 

BADA database; which is needed to determine the performance of the aircraft 

involved in the conflict. The scenario generator pseudo-randomly selects aircraft types, 

saving them into the Master Array. Two selection modes were developed, where the 

choice between the two modes can be set in the configuration file. 

The first mode uses a uniform distribution – that is, every aircraft type has an equal 

probability of selection. However, if the scenario altitude (the initial altitude of all 

aircraft in the scenario, as specified in the configuration file) is above the ceiling of the 

selected aircraft type, then a different type is selected. 

READ configuration file 

i = 0 

FOR i < (length of Master Array * 2) 

 DO Ac1 = random aircraft type 

 WHILE (Ac1 ceiling < scenario altitude) 

DO Ac2 = random aircraft type 

 WHILE (Ac2 ceiling < scenario altitude) 

 

 Modes1 = random comm., flt. control, separation modes 

 Modes2 = random comm., flt. control, separation modes 

 

 Fp1 = compute first flight plan 

 WRITE Fp1 to file 

 EncAng = random encounter angle 

 Radial = random radial from scenario centre 

 Fp2 = compute second flight plan 

 WRITE Fp2 to file 

 

 Master Array[i]   = [Ac1, Modes1, Fp1] 

Master Array[i+1] = [Ac2, Modes2, Fp2] 

 i = i+2 

END 
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The second mode models the frequency distribution of aircraft types in European 

airspace. The CFMU maintains daily records of aircraft types accessing European 

airspace, which have been correlated to aircraft in the BADA database by Sheehan 

(2009). Currently, ten types dominate European air traffic, accounting for nearly 50% 

percent of the total traffic as shown in Table 5-1. The observed frequencies of the 

remaining 308 BADA-modelled types are listed in Appendix-A of Sheehan (2009). The 

CFMU statistics were implemented in the simulator such that the probability of 

selecting a given BADA type matches the frequency distribution of European air traffic. 

Again, if the scenario altitude is above the ceiling of the selected aircraft type, then a 

different type is selected. 

Rank BADA 

Type 

Full Name % Total 

Traffic 

Cumulative 

% 

1  A320  Airbus A-320 11.37% 11.37% 

2  B738  Boeing 737-800 9.55% 20.92% 

3  A319  Airbus A-319 8.58% 29.50% 

4  B733  Boeing 737-300 3.96% 33.46% 

5  A321  Airbus A-321 3.92% 37.38% 

6  AT72 ATR-72 2.75% 40.12% 

7  B737  Boeing 737-700 2.58% 42.70% 

8  B734  Boeing 737-400 2.44% 45.15% 

9  CRJ2  RJ-200 Regional Jet 2.37% 47.51% 

10  B735  Boeing 737-500 2.37% 49.88% 

Table 5-1: The ten most frequent aircraft types in European airspace 

5.2.2 Mode Selection 

The communications mode, flight control mode, and separation responsibility are 

chosen for each aircraft, and are saved in the Master Array. The mode selections are 

made randomly according to probabilities defined in the configuration file, giving the 

user control over the resulting distributions. For example, 75% of the aircraft could be 

set to datalink communications and the remaining 25% set to radio-telephony 

communications. 
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5.2.3 Flight Plan Generation 

Flight plans are created for each conflict pair such that a LOS event will occur 

unless the conflict is resolved, as shown in Figure 5-2. 

 

Figure 5-2: A pair-wise conflict scenario at initialisation 

The flight plan generation method was designed to provide a large variety of 

encounter geometries, while giving the user control over four parameters: 

 Distribution of encounter angles, θ: The encounter angle is a commonly-used 

parameter to characterise conflict geometry. For example, Rantanen, et al., 

(2006) have demonstrated that controllers prefer different resolution 

strategies based on the encounter angle (such as the use of vectoring for acute 

angle conflicts), while Bilmoria uses a geometric optimisation approach for 

conflict resolution that produces ‘families’ of solutions based on the encounter 

angles and speeds (2000). Clearly, it is important to allow the user to specify 

the distribution of encounter angles in the configuration file. 

 Horizontal separation minimum, HSM: Required separation minimums vary 

according to airspace (Porras and Parra, 2007), so it is also important to allow 

the user to specify the HSM in the configuration file. 

 Time of first loss of separation, tLOS: This parameter is used to control the 

amount of time available for the CD&R system to detect and resolve the 

conflict. A small tLOS can be used to test the CD&R system for ‘pop-up’ conflicts 

that are detected only at very short notice, while larger tLOS can be used to 
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simulate conflicts detected at a long distance. Specifying tLOS in the 

configuration file allows the user to ‘stress’ the CD&R system appropriately. 

 Distance to the final waypoint, D3: This parameter is used to control the 

amount of ‘manoeuvring space’ beyond the conflict. In some cases, a small D3 

will force the resolver to implement more drastic manoeuvres than a large D3 

in order to clear the conflict while also satisfying the waypoint constraint. As a 

result, it was decided to make this a user-defined parameter in the 

configuration file. 

 

The flight plan generation method is based on the relationships shown in Figure 5-

2. Point 1 (Pt1) and point 2 (Pt2) are the locations of aircraft 1 (Ac1) and aircraft 2 

(Ac2) when loss of separation occurs, tLOS. Pt1 and Pt2 are not waypoints in the flight 

plan, but are the planned aircraft locations at the start of the conflict, around which 

the flight plans are created.  The coordinates of Pt1 and the course of Ac1 at that 

point, Crs1, are specified in the configuration file, fixing the geographic location of the 

scenario. For each conflict pair, the slower aircraft is always considered Ac1 in order to 

ensure that for small encounter angles the faster aircraft is properly configured to 

overtake the slower aircraft. 

The flight plan for Ac1 is written first. Given Pt1 and Crs1, the initial waypoint is 

found by projecting a point a distance of D1 in the initial bearing Crs1+π from Pt1 using 

Equations 3-8 and 3-9. Knowing the true airspeed of Ac1 from the BADA data and the 

wind velocity vector at Pt1, the ground speed of Ac1 can be found from Equations 3-2 

and 3-3. Assuming a constant wind field, D1 can be found so Ac1 will be located at Pt1 

at time tLOS, as 

             (Eq. 5-1) 

where tLOS is the desired time between aircraft initialisation and the first loss of 

separation. Similarly, Ac1’s second waypoint is projected a distance of D3 in the initial 

bearing Crs1 from Pt1. 

Once both waypoints are found for Ac1, they are written to a text file in the flight 

plan format discussed in Section 3.2.1, and the flight plan name is saved in the Master 
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Array. By default, the flight plans legs are written as track-to-fix (TF) with en-route 

(ENR) manoeuvring, at an altitude given in the configuration file. Lateral offset and 

speed control are set to zero. 

Next, the flight plan for Ac2 is generated, adding stochastic variation to the conflict 

geometry through the pseudo-random selections of the encounter angle and the 

location of Pt2. 

The encounter angle is selected according to the distributions specified in the three 

encounter angle bins in the configuration file: in-trail (0-60 deg), crossing (60-120 deg), 

and opposing (120-180 deg). These are the bins typically used to categorize conflict 

geometries. For example, to evenly sample all encounter angles, the bins can each be 

set to 33.33%. Alternatively, Bilimoria & Lee reported the distribution of encounter 

angles in high altitude U.S. airspace (2001), shown in Table 5-2. Using the values in 

column 3 will produce a more realistic distribution of encounter angles. 

Bin Range 

(deg) 

Encounter Type % Total 

Encounters 

Cumulative 

% 

0-60  In-trail (Passing) 50% 50% 

60-120 Crossing 20% 70% 

120-180 Opposing 30% 100% 

Table 5-2: Distribution of encounter angles (Bilimoria & Lee, 2001) 

The scenario generator pseudo-randomly selects a bin with an associated 

probability, and samples uniformly from the range of the selected bin. The result is 

then multiplied by either ±1 (with equal probability) so that both hemispheres are 

included. Thus, Crs2, the course of Ac2 at Pt2, can be found from the normalised 

angular difference between Crs1 and the encounter angle. 

Next, the location of Pt2 must be found such that the initial LOS occurs at time tLOS. 

This requires Pt2 to be located somewhere on the perimeter of a circle centred on Pt1 

with radius equal to the horizontal separation minimum. 
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However, the relative motion of Ac2 in respect of Ac1 must be taken into account 

in order to restrict Pt2 to the relevant hemisphere, as shown in Figure 5-3. 

 

Figure 5-3: Velocity triangle geometry 

First, the vector component of Ac2’s velocity in the direction of Ac1 can be found from 

the Law of Cosines: 

              
      

                   (Eq. 5-2) 

Next, the Law of Sines can be used to determine the relative angle: 

              
           
        

  (Eq. 5-3) 

To test for and correct the ambiguous case of Arcsine when determining Θ Ac2/Ac1 (for 

obtuse Θ Ac2/Ac1), the Law of Cosines is re-applied to check for consistency: 

                   (Eq. 5-4) 

                      
      

                     
(Eq. 5-5) 

                         
                         

(Eq. 5-6) 

Finally, the location of Pt2 can be found by projecting a point by the distance of HSM 

from Pt1 in an initial bearing chosen from a uniform distribution between a lower and 

upper limit, as shown in Figure 5-4: 

                           
 

 
 (Eq. 5-7) 

                           (Eq. 5-8) 

These steps of restricting the hemisphere of Pt2 were necessary to ensure that the 

initial LOS will occur at time tLOS. 
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Figure 5-4: A pair-wise conflict scenario at initialisation 

Once the encounter angle and Pt2 have been selected, the flight plan for Ac2 can 

be created in a similar way to the flight plan for Ac1. The initial waypoint is found by 

projecting a point a distance of D2 in the initial bearing Crs2+π from Pt2, where D2 is 

found from Equation 5-1. The second waypoint is projected a distance of D3 in the 

initial bearing Crs2 from Pt2. The waypoints are then written to a text file and the flight 

plan name is saved in the Master Array. 

This approach to generating flight plans produces a large variety of encounter 

geometries, while also preventing aircraft from being initialised with an immediate loss 

of separation – a simulation artefact that could cause erroneous results in 

experiments. For example, starting aircraft in conflict, which tends to occur with small 

encounter angles, could wrongly indicate that a given CD&R system is ineffective for 

certain geometries. Attempting to avoid the problem by simply eliminating small 

encounter angles would reduce variety in the solutions and would introduce a 

systematic gap to the scenario generator’s coverage. However, taking into account the 

aircraft relative motion and controlling the point of first loss of separation, as 

described above, eliminates the artefact without restricting coverage. 
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5.2.4 Start Time Control 

At this point in the scenario generation process, the final data field in the Master 

Array that has not been assigned a value is the start time. Rather than specifying the 

start time for each conflict pair during the setup phase of the simulation – as is the 

case when the scenario generator is not used – the Master Array is left sparse. The 

next conflict pair is only initialised once both aircraft have completed their flight plans 

(at which point their start times are recorded in the Master Array). This restricts the 

simulation to a single conflict pair at a time, minimising the computational load on the 

CD&R system. 

5.3 Verification and Discussion of Scenario Generator 

This section presents a summary and discussion of the evaluation and analysis 

effort undertaken to: 

 Verify correct implementation of parameters described in the configuration 

file; 

 Verify that the methodology used to generate flight plans satisfies the user 

parameters and produces variety in the encounter geometries; 

 Analyse the fast-time performance when using the scenario generator. 

In order to test the scenario generator, a simulation was run for 2000 conflict pairs. 

The scenario generator was configured as follows. Time to first loss of separation was 

set to 4 minutes (240 s). The horizontal separation minimum was set to 5 nmi, and the 

distance from first loss of separation to the final ways point was 20 nmi. The scenario 

altitude was FL320, and the traffic types were randomly selected according to 

Sheehan’s European traffic model. Encounter angles were randomly selected 

according to Bilimoria & Lee’s upper-airspace model values. All aircraft used ideal 

navigation, and were un-separated (that is, no CD&R services were used). The 

communications mode was set to 80% datalink and 20% radio-telephone. The 

simulator was configured to a 1 second time step and 4000 total aircraft. A Tviz screen 
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capture of one of the resulting scenarios is shown in Figure 5-5, with the red ring 

indicating the separation minimum centred on Pt1. 

 

Figure 5-5: A screenshot of a pair-wise conflict scenario at tLOS. 

5.3.1 Distribution Goodness-of-Fit 

The first step was to verify correct implementation of parameters in the 

configuration file that specify a desired distribution. During the simulations, the actual 

distribution of the BADA types, encounter angles, and communications mode were 

recorded, and a chi-squared goodness-of-fit test was conducted for the null hypothesis 

that observed frequency distribution came from the distributions listed in the 

configuration file. In each case, the null hypothesis could not be rejected at the 5% 

significance level. The p-values are summarized in Table 5-3 and indicate that the 

distributions supplied in the configuration file were correctly implemented.  

 p-Value 

BADA Types 0.1172 

Encounter Angle 0.0859 

Communication Mode 0.4768 

Table 5-3: Chi-Squared goodness-of-fit test results 

5.3.2 Scenario Geometry 

Two aspects of the scenario geometry are examined in this section: first, an 

analysis of tLOS in order to verify the method of controlling the first loss of separation; 
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second, an analysis of the Closest Point of Approach (CPA) in order to verify the variety 

in the resulting geometries. 

The 2000 recorded tLOS samples had a mean of 237 seconds and standard deviation 

of 12.2 seconds, compared to the desired value of 240s. However, the scatter plots in 

Figure 5-6 show that the spread of the sample points was larger for small encounter 

angles and speed differences. 

  

Figure 5-6: Scatter plots of tLOS verses encounter angle and speed differences 

To further analyse the data, the samples were sorted into a 2D matrix by 

encounter angle, XEA, and speed difference, XΔV. A factorial regression was conducted 

to fit the data to: 

                              (Eq. 5-9) 

The regression showed no significant trends for the mean of the binned data – that is, 

the average tLOS value did not vary with encounter angle or speed difference. However, 

analysis of the tLOS standard deviation showed significant main effects and interaction, 

as shown in Table 5-4 – tLOS varied the most when both the encounter angles and 

speed difference were small. This interaction can be explained: for slowly overtaking 

flights, the relative velocity vector of Ac2 in respect to Ac1 is very small. As a result, the 

initial aircraft separation is close to the separation minimum, from Equation 5-1. Thus, 

any numerical errors or rounding errors (such as those due to writing the waypoints to 

text files and then reading them during initialization) significantly affects tLOS. 
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 β0 Β1 Β2 Β3 

Coefficient 3.26 -3.04 -1.46 1.45 

p-Value 7.07E-17 5.15E-15 7.74E-05 0.000128 

Table 5-4: Regression results of tLOS standard deviation 

An additional result of numerical and rounding errors is non-conflict scenarios – 

that is, scenarios where an LOS event did not occur. However, this accounted for only 

5% of all cases, and the mean miss distance was less than 200 metres from 5 nmi. 

These events typically occurred when Pt2 was placed near the points where the 

relative velocity vector was tangential to the separation minimum circle around Pt1. 

Overall, the results of the tLOS analyses indicate the methodology of generating flights 

plans as described in Section 5.2.3 is generally satisfactory to control tLOS.  

The closest point of approach was also recorded for each conflict pair; the 

histogram is shown in Figure 5-7. The mean CPA was 3.24 nmi with a standard 

deviation of 1.5 nmi. Regression analysis did not reveal any significant trends; the 

mean and variance of the binned CPA data did not change significantly with either 

encounter angle or the speed difference, indicating independence and that the 

scenario generation method is not biased toward certain conflict geometries. 

 

Figure 5-7: CPA histogram 

During these tests, tLOS was relatively small, 240 seconds, representing last-minute 

conflicts not previously identified or corrected by long-distance CD&R systems. To 
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determine if the conflict miss rates and tLOS standard deviation are influenced by the 

size of tLOS, the test was repeated for tLOS of 15 minutes (900 s), with all other simulator 

and scenario parameters remaining the same. The resulting tLOS standard deviation did 

not significantly differ, increasing by only 1.3 seconds. The non-conflict scenario rates 

were also similar, increasing by only 0.1%. These results indicate that the selection of 

tLOS does not significantly affect the ‘correctness’ of the solutions. 

5.3.3 Fast-Time Performance 

Next, the fast-time performance of the simulator was evaluated in order to 

determine the component of execution time that can be attributed to the scenario 

generator verse the aircraft trajectory generation (i.e. the actual simulation). A 

scenario generator that requires an excessive amount of time to compute could 

marginalize the usefulness of a fast-time simulator. 

The scenario generator and the resulting 4000 simulated flights were executed 

three times. The total program execution time averaged 37.3 seconds with a standard 

deviation of 2.5 seconds on a laptop computer using a 2.2GHz Intel Core2 Duo 

processor with 2 GB of RAM. On average, approximately 40% of the execution time 

(14.8 s) was attributed to the scenario generator, and 60% (22.5 s) was attributed to all 

other simulation tasks such as initialization, simulation, and shutdown. This speed and 

percentage breakdown was considered acceptable given the number of flight plans 

generated and the number file writing operations. 

This evaluation also demonstrates that the simulator satisfies the design 

requirement of computing 4000 total aircraft faster than real time. Under this 

configuration, a total of 813,460 simulated seconds (225 hours, and 1,626,920 discrete 

movements) were computed in 37.3 seconds; a performance of more than 20,000 

times faster than real-time. The second component of the requirement – computing at 

least 300 concurrent aircraft in fast-time – will be discussed in Section 5.4. 

5.3.4 Discussion 

The primary advantages of this scenario generator are that: 
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1) Conflicts are ‘forced’ to occur for over 95% of scenarios, and as a result, 

resources are not wasted simulating ‘non-events’; 

2) Scenario parameters can be easily specified by the user, permitting many 

experimental variables to be controlled; 

3) A wide variety of scenario geometries are produced. 

The limitation of this approach, however, is that the complexity of the conflict 

detection and resolution problem is reduced by restricting the simulation to two 

aircraft.  In order to provide a means of testing CD&R systems under more complex 

situations, a random route-type scenario generator should be used. 

5.4 Verification of Fast-Time Performance 

At this point in the thesis, all the simulator requirements have been demonstrated 

except the ability to run faster than real-time for at least 300 simultaneous aircraft. To 

accomplish this and to establish a performance baseline, two tests were conducted: 

short-distance flights, and long distance flights.  

The flights are summarized in Table 5-5. The Madrid/Barcelona airport pair was 

chosen to represent short distance flights because it was the most popular airport pair 

within the EU-27 region (De La Fuente Layos, 2009). Similarly, the Heathrow/JFK pair 

was selected to represent long-distance flights, since it was the most popular extra-EU 

airport pair. The number of waypoints in a flight plan does not significantly influence 

computation time, thus, simplified ‘direct-to’ flight plans were used, initiated at 

ground level. 

Departure Destination Aircraft 

Type 

Cruise  

Alt (FL) 

Distance 

(nmi) 

Flight Duration 

(sec) 

Madrid Barajas Barcelona CRJ2 350 261 2115 

London Heathrow New York JFK B773 380 2993 22356 

Table 5-5: Flight summaries for concurrent aircraft test 
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The concurrent number of aircraft flying these routes was increased from 10 to 

2500. Each simulation (consisting of n concurrent aircraft) was repeated 3 times. The 

results of the test series is shown in Table 5-6, and are plotted in Figures 5-8 and 5-9. 
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10 0.3 0.0 21155 7052 

50 1.3 0.0 105773 1627 

100 2.5 0.0 211546 846 

500 12.2 0.2 1057732 173 

1000 24.2 0.2 2115463 88 

2500 61.1 0.4 5288658 35 
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10 2.6 0.0 223558 8598 

50 12.3 0.2 1117791 1813 

100 24.2 0.3 2235582 923 

500 120.1 0.9 11177912 186 

1000 254.1 4.4 22355825 88 

2500 658.3 10.2 55889562 34 

Table 5-6: Concurrent aircraft test results 

 

Figure 5-8: Execution time per concurrent aircraft 
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longer duration) trans-Atlantic flights resulted in more discrete events and 

computations (as can be seen in the Total Discrete Events column of Table 5-6). The 

fast-time gain, plotted in Figure 5-9, is the number of simulated seconds divided by 

program execution time. It can be seen that the number of concurrent aircraft is 

inversely proportional to the fast-time gain, and the duration of the flight is 

insignificant. Again, this relationship was expected due to the nested loop in the 

simulator architecture (the outer airspace loop and the inner aircraft loop), resulting in 

the quadratic performance behaviour. The test shows the simulator ran over 900 times 

faster than real-time for 300 simultaneous aircraft and over 30 times faster than real-

time for 2500 simultaneous aircraft, satisfying the design requirement. With these 

results, it is believed that the limiting factor in terms of execution time during CD&R 

simulation experiments will be the performance of the attached CD&R system, rather 

than the airspace simulator. 

 

Figure 5-9: Fast-time gain per concurrent aircraft 

5.5 Summary 

This chapter has argued the need for an automatic scenario generation capability 

to prepare flight plans and traffic assignments for a large number of aircraft. The 

design of the pair-wise scenario generator was outlined, which can be used to test 
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CD&R methods and systems over a large variety of two-aircraft encounters while 

allowing control over many experimental variables. The test described in Section 5.3 

demonstrated correct operation of a pair-wise scenario generator and confirmed the 

ability of the simulator to compute up to 4000 aircraft total faster than real time for 

225 flight hours. 

The overall speed performance was assessed for up to 2500 simultaneous aircraft, 

and the relationship was established between the program execution time, the 

number of concurrently simulated aircraft, and the duration of the flights. The 

simulator was able to compute the trajectories of 2500 concurrent aircraft flying 

nearly 3000 nmi in less than 11 minutes – that is, nearly 34 times faster than real-time. 

Next, chapter 6 will describe the application of the simulator to evaluate the 

potential for vector navigation to provide a means to control aircraft lacking datalink 

capability in a more highly automated ATM system. 
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Chapter 6 

Research Application - Vector Navigation 

 

The application of the simulator to an active ATM research question was 

considered an integral part of this thesis in order to: 

 Confirm the simulator meets the goal of a simple, flexible, and accessible fast-

time simulator suited for exploratory separation management research; 

 Demonstrate the utility of the simulator with a novel application; 

 Identify strengths and weaknesses of the simulator design. 

Thus, this chapter does not directly discuss the development of the Airspace 

Simulator- II, but uses the simulator as a platform to provide initial insight into 

controlling air traffic containing aircraft that are not equipped with datalink in highly 

automated ATM systems. Section 6.1 presents the need for automated support for 

separating mixed-equipage traffic. Section 6.2 then introduces the design and 

implementation of a simple method of automatically providing track angle navigation 

through verbal vectors. Finally, an evaluation of the prototype system is presented in 

Section 6.3, addressing the experiment design, the simulation results and a discussion 

of the findings. 

6.1 Automation Support for Mixed-Equipage Traffic 

The NASA NextGen-Airspace Project has studied the effect of integrating mixed-

equipage traffic in the same airspace (Doble, et al., 2005; Prev t, et al., 2008; 

Kopardeker, et al., 2009). As discussed in Section 1.3.2 of this thesis, Doble, et al., 

conducted a controller-in-the-loop simulation study of a mixed ASAS and IFR 

operations, and found that integrating self-separating aircraft and centrally-controlled 

traffic in the same airspace may be feasible within certain constraints (2005). 

However, the study did not attempt to establish the limits of feasibility or assess the 

implications for airspace structuring. 
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To address these issues, Prev t, et al., conducted a follow-on study of an 

operational concept where ground-based CD&R automation was used to control traffic 

that was equipped with an FMS-integrated datalink, while air traffic controllers 

managed the remaining aircraft using current IFR methods and the limited aid of CD&R 

automation (2008). The ground automation could be used to detect conflicts for both 

the datalink-equipped and voice-only traffic, as long as the voice-only aircraft 

maintained their original flight plan. Additionally, controllers could request the 

automated system to produce a turn-point resolution for unequipped aircraft. 

Prev t used four controller-in-the-loop simulations with 0, 15, 30, and 45 datalink-

equipped aircraft in a sector. Over the course of these simulations, the unequipped 

traffic count was increased linearly from 5 to 20 aircraft. The results of the study 

suggest that “a limited number of I R aircraft may be manually controlled in the same 

airspace as a potentially large number of aircraft that are controlled by a different 

entity – the ground automation in this case.” However, Kopardeker, et al., further 

examined the data and found that the complexity of the IFR (voice-only) traffic was a 

significant limiting factor (2009). Specifically, workload was very high when IFR traffic 

was being manoeuvred off the original trajectory, because the controller was required 

to closely monitor these aircraft in order to issue a turn back clearance at the 

appropriate time and to detect possible conflicts. Controllers in the study indicated 

that they could only safely manage a maximum of three such aircraft concurrently 

before the airspace became too complex, however, if IFR aircraft maintained their 

course, then up to twelve aircraft could be managed effectively. 

6.1.1 The Need for Improved Automation Support 

Kopardeker highlighted the difficulty of monitoring aircraft in different states in a 

mixed airspace environment, suggesting that an improved automation tool with “an 

ability to monitor the turn back point in the voice-initiated lateral route change could 

lessen the overall monitoring workload and increase safety.” Rantanen, et al., drew a 

similar conclusion when analysing controller resolution manoeuvre preferences 

(2006). Vectoring was considered the least favoured resolution strategy by controllers 
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because it adds to their workload – due to the additional duty of monitoring and 

managing navigation. 

Thus, in order to support traffic not equipped with an FMS-coupled datalink, there 

is need for a Resolution Monitoring and Advising Tool (RMAT) that could: 

 Accurately implement lateral resolution manoeuvres generated by CD&R 

systems through voice communications; 

 Reduce the task of monitoring aircraft not on the original trajectory. 

RMAT could facilitate mixed-equipage operations and could also form the basis of 

a backup system in the event of datalink failure by reducing reliance on human 

cognition to manage separation. Additionally, with automated support, vectoring 

could become a more favourable resolution option for controllers, which is important 

as the airspace becomes more crowded. 

Several ground-based decision support tools have been previously developed that 

include provision for verbal lateral route change advisories, including the Problem 

Analysis, Resolution and Ranking (PARR) tool, the TSAFE CD&R system, the suite of 

PHARE Advanced Tools (PAT), and the En Route Descent Advisor (EDA). These systems 

were examined to determine if they could meet the need for improved automation 

support of unequipped traffic. 

PARR is a decision support tool developed by MITRE CAASD as an enhancement to 

the URET tool, providing conflict resolution advisories for conflicts detected up to 20 

minutes ahead (Kirk, et al., 2001). For short-term CD&R, TSAFE is a tool developed by 

NASA to provide a ‘safety net’ for situations where the loss of separation is predicted 

to occur in less than 3 minutes (Erzberger & Paielli, 2002). PAT is a suite of DSTs 

designed by EUROCONTROL to demonstrate the merits of air-ground integration, 

including conflict detection and resolution tools and traffic flow management 

functions (van Gool & Schröter, 1999). One design feature that PARR, TSAFE, and PAT 

have in common is that for aircraft not equipped with datalink, lateral trajectory 

modifications are displayed to the controller as heading vectors. Heading vectors 
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specify the magnetic heading to be followed by the aircraft. If the wind direction and 

speed are known, a heading can be derived that will provide the ground track angle of 

a given leg of a lateral manoeuvre. 

A limitation of heading guidance, however, is that it is susceptible to wind 

prediction errors, resulting in trajectory prediction uncertainty. Additionally, PARR, 

TSAFE, and PAT do not provide automatic monitoring of aircraft – that is, the controller 

must keep track of when to issue both the turn-away vector and the turn-back 

instruction. These limitations support concerns that the CD&R tool used in the 

Kopardeker study was not acceptable for aircraft vectored off their original trajectory. 

The CTAS EDA attempts to overcome these limitations by taking advantage of the 

RNAV capability of modern FMS. The EDA tool, developed by NASA, provides terminal 

controllers with advised speeds, turns and descents to achieve timed arrivals in the 

terminal area (Green & Vivona, 2001). If speed control is insufficient to achieve spacing 

or separation, the EDA calculates a lateral path stretch manoeuvre. The position of the 

manoeuvre points are verbalised in EDA clearances relative to existing waypoints by a 

bearing relative to magnetic north and a distance on the bearing. This is the Place, 

Bearing, Distance (PBD) method. The advantage of PBD is that the manoeuvre can be 

accurately flown using FMS lateral navigation. The disadvantage of PBD, however, is 

that defining multiple waypoints in this way can result in highly complex clearances, 

especially if combined with other message elements such as speed instructions to 

meet a time of arrival constraint (Schoemig, et al., 2006). Multiple studies have 

demonstrated that message complexity is strongly correlated with miscommunication 

and operating errors (Loftus, et al., 1979; Grayson & Billings, 1981; Morrow & Rodvold, 

1993; Bürki-Cohen, 1996). Air traffic controllers have been warned that even for 

named waypoints from predefined databases, errors in manual waypoint entry are the 

single most common cause of pilot 'blunder' errors in RNAV operations 

(EUROCONTROL, 2010c).  

To summarize, heading vectors are familiar to pilots and controllers and use simple 

phraseology, but can result in inaccurate flight guidance. PBD waypoints can produce 
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accurate flight guidance through RNAV, but at the cost of increased message 

complexity. As a result, neither of these methods are ideally suited for automation 

support of mixed-equipment operations in high density, high complexity airspace. 

However, a third possible method is available that may be able to address these 

limitations. Many modern automatic flight control systems have sufficient functionality 

to control the direction of the inertial velocity vector (track angle) in addition to the 

air-mass velocity vector (heading), by correcting for wind drift (Vakil & Hansman, 2002; 

Lambregts, 1998; Roskam, 2003), as measured by the inertial navigation system, GNSS, 

or Doppler radar. Thus, the desired ground track of any leg of a lateral conflict 

resolution could be specified directly as a track angle vector, making the instruction 

more robust against the effects of wind estimation error in the ground automation. If 

track angle vectors were automatically generated and executed at the appropriate 

time, aircraft using this method could closely mimic the trajectory of datalink-enabled 

aircraft, enabling the same trajectory-based separation management system to be 

used for both datalink equipped and voice-only traffic, as shown in Figure 6-1. 

Controllers could be automatically signalled to issue these vectors at the required 

time, significantly reducing the monitoring task, improving turn-timing precision, and 

providing a means of avoiding full reliance on human situational awareness. This 

control approach may provide a way to take advantage of the simplicity and familiarity 

of vector navigation, but with reduced trajectory error. 
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Figure 6-1: Mixed-equipage operations using an RMAT system 

to interface voice-only aircraft with the CD&R system 

It was decided to develop a prototype RMAT system that would use track angle 

vectors to provide semi-automatic lateral flight guidance to non-datalink traffic. The 

prototype was implemented in the Airspace Simulator-II, and evaluated using 

stochastic simulations to assess the design and to evaluate effect of communications 

timing uncertainty in verbally issuing the vectors. 

6.2 Design of an RMAT System 

The prototype RMAT system was designed to issue the vectors progressively as the 

aircraft completes the manoeuvre, in contrast to providing one message that contains 

information for every leg of the resolution trajectory (i.e. vectors and execution times). 

Progressive vectoring has two advantages. First, it avoids the complexity of issuing 

multiple commands in one transmission. Morrow and Rodvold have shown that 

messages with more than two commands increase pilot requests for clarification and 

the number of incorrect readbacks (1993). Secondly, progressive vectoring allows the 

system to control any trajectory errors at subsequent waypoints. However, progressive 
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vectoring comes at the cost of additional radio transmissions, requiring at least one 

transmission per leg of the resolution manoeuvre. Despite the additional 

transmissions, the controller monitoring task can still be reduced by automatically 

issuing visual or aural alerts of upcoming transmissions. 

Timing the execution of a track angle change instruction is also an important 

design consideration to ensure the aircraft completes the turn on the desired path; 

turning early or late will lead to a cross track error. Standard air traffic control 

procedures for radar vectoring require the flight crew to promptly comply with vector 

instructions and initiate the turn (Nolan, 2004). On this basis, the RMAT system was 

designed to control the execution time of the turn by issuing the instruction ‘just-in-

time’ before the desired execution point, taking into account the time required for the 

controller to communicate the vector and for the flight crew to respond and 

implement the instruction. However, the actual time required to successfully transmit 

the message cannot be known a priori.  For example, if the pilot does not correctly 

read back the instruction, it must be retransmitted. Similarly, because the standard 

DSB-AM voice radios are half-duplex, the controller must wait to transmit the 

instruction if the channel is already occupied by another transmission. The effect of 

this timing uncertainty on the resulting trajectory accuracy will be examined in Section 

6.3. 

The system architecture shown in Figure 6-2 was derived around the concept of 

progressive, just-in-time track angle vectoring. The architecture consists of two 

primary modules that interact with a list of active resolutions: the Initial Processing 

Module and the Resolution List Manager.  
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Figure 6-2: RMAT system architecture 

The purpose of the Initial Processing Module is to accept resolution manoeuvres 

from the CD&R system, validate the manoeuvre, and store the resolution in the 

resolution list. The resolution list contains information on the state of every active 

resolution, enabling the RMAT system to manage conflict resolutions for multiple 

aircraft. Each resolution is allocated to a separate node of the resolution list. The 

Resolution List Manager periodically checks and updates each node in the list, issues 

alerts and instructions to the controller and removes nodes from the list when aircraft 

are returned to normal navigation. 

The input to the RMAT system comes from the conflict detection and resolution 

system and the surveillance system. Conflict resolution trajectories generated by the 

CD&R system are sent to the Initial Processing Module, and the surveillance system 

provides the information necessary to calculate the vector instructions and to 

automatically monitor the traffic under RMAT control. For these purposes, the near-

term weather forecast and the trajectory intent information (i.e. the original contract 

trajectory) are considered as part of the surveillance system. 
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The output of the RMAT system, sent to the controller interface, can contain alerts 

of upcoming instructions, the text of the instructions, a signal to transmit the 

instruction, as well as warnings of possible errors. 

6.2.1 Initial Processing Module 

This module is called every time a new conflict resolution is received from the 

CD&R system, and performs the five following steps, as indicated by the diagram in 

Figure 6-3. 

 

Figure 6-3: Initial Processing Module control flow 

Step 1) Check for node overlap: The first check ensures there are no pre-existing nodes 

for the target aircraft in the resolution list. This might be the case if a revised 
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conflict resolution is issued by the CD&R system, before the initial resolution 

has been completed. If an identical aircraft identifier is found in any node of 

the resolution list, the module sends an alert the controller interface since this 

event would require the controller’s intervention. 

Step 2) Merge resolution with the contract trajectory: If no overlap is found, the 

sequence of waypoints defining the resolution is then merged into the original 

contract trajectory, using the algorithm outlined in Section 4.2.3. This step is 

necessary to correctly calculate the turn parameters of the initial and final 

vectors. 

Step 3) Check minimum leg distances: The module must ensure minimum leg distances 

are met. If the legs of the resolution trajectory are too close together, the 

aircraft may not have completed the turn when the alert trigger is crossed. This 

could lead to erroneous calculation of the transmission trigger placement 

(these triggers are discussed in the following step). The controller is warned if 

this criterion is not met. 

Step 4) Sets first alert trigger: Using the method of progressive, just-in-time track angle 

vectors, the RMAT system must signal the controller to issue the instruction at 

the appropriate time before each waypoint. This event can be automatically 

triggered by computing the ideal transmission point along the current flight 

path such that the aircraft completes the turn on the desired path, taking into 

account the manoeuvre geometry and communication delays. Practically, 

however, the controller should be alerted of an upcoming vector before the 

transmission point in order to prepare and plan for the transmission, thus, an 

alert point is set 15 seconds before the transmission point, as shown in Figure 

6-4.  

Step 5) Append a new node to the resolution list: Finally, a new resolution node is 

created and appended to the list, initialised to the alert trigger of the first 

resolution waypoint. Every node contains the aircraft identifier, the merged 
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trajectory, a flag indicating the active waypoint, the location of the current 

trigger point and a flag indicating the type of trigger (alert or transmission). 

 

Figure 6-4: Location of alert and transmission trigger points 

6.2.2 Resolution List Manager 

The purpose of the Resolution List Manager is to automatically monitor the 

progress and generate flight guidance for all aircraft identified in the resolution list, 

minimizing the need to manually monitor the progress of vectored aircraft. Every node 

in the resolution list is periodically checked to determine if the aircraft has crossed the 

current trigger point. If a trigger is crossed, the module outputs the appropriate cues 

to the controller. This process is summarised in Figure 6-5. 

The first step is to test if the aircraft has crossed the current trigger point, using the 

wayline method discussed previously in Section 4.2.3. If the trigger point has not been 

crossed, then the node check ends and the List Manager cycles to the next node, 

which is tested in the same way. 

When the alert trigger is crossed, the transmission point is recalculated. This is 

because crossing the alert trigger with any cross-track error or track angle error (TAE) 

will change the geometry of the manoeuvre, and as a result, the location of the ideal 

transmission point. Track errors may occur for various reasons such as variable wind 

fields or flight technical error. 
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Figure 6-5: Resolution List Manager control flow 

After the transmission point is recalculated, the controller can then be alerted of 

the upcoming vector and provided with the text of the instruction. If the aircraft is on 

the final waypoint of the resolution route, the text specifies a direct-to instruction and 

included the phrase “resume own navigation.” Otherwise, a constant track angle is 

commanded between the current waypoint (φ1, λ1) and the next waypoint (φ2, λ2) of 

the resolution route, calculated using the Rhumb Line equation 
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    (Eq. 6-1) 

where atan2() is the four-quadrant arctangent(y/x) function, Ln is the natural log, and 

Δλ is the smaller angular difference between λ1 and λ2, less than 180o (USAF, 2001). 

The next time the trigger is crossed (approximately 15 seconds after the alert), the 

controller is signalled to transmit the instruction and the aircraft executes the 

manoeuvre. If the resolution manoeuvre contains additional waypoints, the active 

waypoint in the node data is incremented by one, and the next alert trigger is 

calculated. When there are no remaining waypoints, the node is removed from the 

resolution list. 

6.2.3 Manoeuvre Modelling 

This section will describe how the locations of the trigger points are set by 

modelling the turn manoeuvre, the communications delay, and the planning delay. 

6.2.3.1 Placement of the Alert Trigger 

The alert trigger point is projected a distance of dAlert Trig from the current 

resolution waypoint on the reverse course of the flight plan leg. dAlert Trig is composed 

of the turn anticipation distance (dTurn) as well as the distance needed to account for 

system delays (dDelay), as shown in Figure 6-6. 

 

Figure 6-6: Placement of the alert trigger 

The RMAT system was based on the same turn modelling assumptions made for 

the simulator FMS in order to calculate the turn anticipation distance – that is, the 

assumption of constant bank turns, and that the heading does not change until the 
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bank is fully established. A nominal bank angle of 15 degrees is assumed, with a bank 

rate of 3 degrees per second. 

In addition to the turn anticipation distance, the alert trigger point must account 

for system delay, including the review delay and the predicted communication delay. 

Given the groundspeed and delay estimates, the distance flown during the delay, 

dDelay, is 

                             (Eq. 6-2) 

where tAlert is the 15 second buffer between the alert point and the transmission point, 

and tComm is the predicted communication delay, including the predicted message 

duration, predicted pilot response and reaction delay, and any delays caused by 

readback errors and delayed transmissions. The RMAT system has been designed with 

a tComm of 10.85 seconds, which Cardosi found to be the mean transaction time 

required to correctly communicate a heading vector, including cases that required the 

controller to repeat or clarify the instruction at least once (1993).  

Once dDelay and dTurn have been computed, the distance of the alert trigger from the 

current waypoint is given by 

                           
(Eq. 6-3) 

Finally, the coordinates of the alert trigger can be calculated by projecting the alert 

point a distance of dAlert Trig from the current waypoint along the reverse course of the 

current route, using Equations 3-8 and 3-9. As discussed previously, when the aircraft 

crosses the wayline perpendicular to the leg course at this point, the Resolution List 

Manager calculates the ideal transmission point, and alerts the air traffic manager of 

an upcoming instruction. 

6.2.3.2 Placement of the Transmission Trigger 

If the aircraft crosses the alert trigger with any cross-track error (XTE) or track 

angle error (TAE), the geometry of the manoeuvre is changed. In order for the aircraft 

to correctly intercept the next path, the turn is recalculated using an effective 
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waypoint rather than the true waypoint when computing the coordinates of the 

transmission trigger, as illustrated in Figure 6-7. 

 

Figure 6-7: Effective waypoint and transmission trigger point geometry 

Given the estimated aircraft position and track angle, and the coordinates of 

waypoint n and waypoint n+1, the navigational method of finding the intersection of 

two radials can then be used to derive the coordinates of waypoint n_effective 

(Hofmann-Wellenhof, et al., 2003). To find point C of the ABC spherical triangle, the 

interior angles are given by 

                     (Eq. 6-4) 

                     (Eq. 6-5) 

where θ is the relative bearing between two points from Equation 3-5. The Spherical 

Law of Cosines is used to derive the remaining angle 

                                                
   
  

   (Eq. 6-6) 

Finally, the distance between points A and C is given by 

              
   
  

                                               (Eq. 6-7) 

Using this method and letting point A be the true waypoint, B be the aircraft position 

and C be the effective waypoint, the coordinates of the effective waypoint point can 

then be projected from the true waypoint a distance of dAC at bearing θAC. 

When the effective waypoint has been calculated, the ideal transmission trigger 

can then be computed in the same way as the alert trigger described in Section 6.2.3.1, 
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albeit without the alert delay, tAlert, and substituting the true waypoint with the 

effective waypoint. When the aircraft crosses the wayline at the transmission point, 

the Resolution List Manager cues the controller to transmit the instruction and 

calculates the next alert point, if applicable. 

6.2.4 Implementation in the Airspace Simulator II 

The modular design of the simulator made it relatively straightforward to 

implement an RMAT prototype. Many of the manoeuvre modelling functions used 

functions developed for the Navigation and Trajectory Module, simplifying the 

software design and coding process. 

The RMAT system was added between the CD&R system and the Communications 

Module as shown in Figure 6-8. The Initial Processing Module allows resolutions 

intended for datalink-equipped aircraft to pass through, but separates and processes 

resolutions intended for voice-only aircraft using the process described in Section 

6.2.1. 

 

Figure 6-8: RMAT Implementation 

The resolution list was implemented as a singly-linked list, where each node in the 

list contains a pointer to the next node. The Resolution List Manager was called in the 

outer simulation loop to ensure that the message trigger for every node was checked 

once per time step. When the transmission triggers were crossed, the RMAT 

instructions were formatted as verbal track angle instructions with manual 

termination, according to the message set described in Section 4.2.1, and sent to the 
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Communications Module where they were given a random latency value and were 

added to the aircraft message list, as described in Section 4.2. However, the final 

RMAT instruction for each node was formatted as a direct-to-fix clearance, 

representing the command to resume normal navigation.  

It should be noted that the RMAT system could also have been implemented 

independent of the simulator using the same network interface as the CD&R system. 

This would have been useful if RMAT had been developed as a stand-alone program. 

6.3 Initial Evaluation of RMAT 

The remainder of this chapter provides an evaluation of the RMAT prototype 

described above. First, the ability of RMAT-guided aircraft to follow conflict resolution 

manoeuvres is compared to datalink-equipped aircraft in order to verify correct 

operation and to establish a performance baseline. The RMAT method necessarily 

relies on trajectory predictions. Errors in the trajectory prediction process can reduce 

the RMAT performance from the baseline. Therefore, the second aspect of the 

evaluation focuses on the effect of communication timing uncertainty on conflict 

resolutions. This evaluation is not intended to fully analyse every aspect of the concept 

or the prototype system, but to offer initial insights into the capabilities and limitations 

of this approach to supporting mixed-equipment traffic in the same airspace. 

6.3.1 Comparison of RMAT to Datalink 

If the logical design and implementation of the RMAT system is correct, the mode 

of communicating a conflict resolution instruction to an aircraft should not change the 

outcome of that resolution; the performance of an automated CD&R system should be 

similar regardless of whether the resolution instruction is sent directly to the aircraft 

via datalink, or whether the resolution instruction is issued as progressive verbal 

vectors via the RMAT system. 

To test this conjecture, a simulation study was conducted for 1000 pairwise 

encounter scenarios created using the scenario generator described in Chapter 5. The 



Chapter 6. Research Application - Vector navigation 

 

139 

scenarios were applied to three simulations runs. In the first run, the CD&R services 

were not used and the aircraft were uncontrolled. In the second run, the centralised 

CD&R system described in Section 4.5.4 was used, and both aircraft were datalink-

equipped. In the final run, the centralised CD&R system was used with the RMAT 

system. The closest point of approach (CPA) was recorded for each scenario to 

determine if RMAT significantly affected the result of the CD&R system on the 

conflicts. 

The Sheehan traffic model described in Section 5.2.1 was used and encounter 

angles were distributed uniformly so that conflicts would occur with a variety of 

airspeeds and geometries. The scenario altitude was FL320. Time to first loss of 

separation was set to 5 minutes, and the post-conflict distance, D3, was 15 nmi. A 5 

nmi conflict separation minimum was set for the CD&R system and for the scenario 

generator. Winds and flight technical error were omitted. 

The results of the simulations are shown in the following two figures. Figure 6-9 

shows a histogram of the measured CPA for each of the three runs, and Figure 6-10 

compares the means and standard deviations of the CPA. 

 

Figure 6-9: Histogram of the closest points of approach 
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Figure 6-10: Summary of CPA statistics by run 

First, it should be noted that although the use of the CD&R system increased the 

average aircraft separation by approximately 1 nmi, the resolver did not consistently 

satisfy the 5 nmi separation minimum. The reason for this anomaly was that the 

resolver was under development; in particular, the weights of the genetic algorithm’s 

cost factors had not been optimized. 

Despite the limitation of the CD&R system, it can be seen that the RMAT did not 

significantly alter the CPA compared to datalink-equipped aircraft. On average, the use 

of RMAT reduced the separation by only 0.01 nmi. Furthermore, a linear regression 

was conducted for the scenario encounter angle and airspeed difference, shown in 

Table 6-1, and did not reveal any significant trend differences between the datalink 

and the RMAT simulation runs; that is, the error between RMAT and datalink was not a 

function of encounter angle or speed difference. Thus, under ideal conditions RMAT-

guided aircraft closely match the trajectories of datalink-equipped aircraft, confirming 

the logical design and implementation of the RMAT prototype. 
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 x 

Enc. Angle (deg)  Speed Diff. (kts) 

y (nmi) 
Datalink CPA y = 0.0038x + 3.7645 y = 0.0034x + 4.0198 

RMAT CPA y = 0.0037x + 3.7699 y = 0.0034x + 4.0092 

Table 6-1: Linear regression results on datalink and RMAT CPA 

6.3.2 Effects of Communication Timing Uncertainty on CPA 

However, under less than ideal conditions there are several potential sources of 

error that could reduce the system’s performance, including: 

 Communication timing uncertainty, 

 Wind direction or magnitude forecast error, 

 Cross track or along track position estimation error, 

 Groundspeed or track angle estimation error, 

 Bank angle or bank rate prediction error. 

For example, any difference between the predicted and the actual bank angle and 

bank rate will alter the turn radius, affecting the location of the trigger points. This 

section focuses on one specific error source – communications timing uncertainty – 

and examines the effect of the uncertainty on the resulting closest point of approach. 

As discussed in Section 6.2.3.1., the RMAT system was designed with an expected 

verbal transaction time of 10.85 seconds, based on a study by Cardosi into the time 

required to correctly communicate a heading vector (1993). Thus, if the actual 

transaction time is greater than 10.85 seconds when using the RMAT system, then the 

aircraft will turn after the desired point as illustrated in Figure 6-11. Similarly, if the 

actual transaction time is less than 10.85 seconds, then the aircraft will turn before the 

desired point. 

To test the effect of the flight path variation on the CD&R system, a study was 

conducted for 250 pairwise encounter scenarios created using the scenario generator. 

The scenarios were applied to seven simulations runs. In the first run, the CD&R 

services were not used and the aircraft were uncontrolled. In the second run, the 
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centralised CD&R system was used and both aircraft were datalink-equipped. In the 

remaining five runs, the centralised CD&R system was used with the RMAT system. 

Every RMAT message was assigned a random radio-telephony latency drawn from the 

Lognormal distribution specified in the simulator configuration file, as discussed in 

Section 4.3.2. The means and standard deviations of the specified latency distributions 

are listed in Table 6-2; the mean was incremented by 10 seconds for each run. The 

final column shows the resulting average error between the RMAT-predicted 

communication delay and the actual communication delay. 

 

Figure 6-11: Effect of communication timing errors on the RMAT flight path 

Run 
Name 

Communication Delay (sec) 
Mean Error 

(sec) Mean 
Standard 
Deviation 

No CD&R N/A: CD&R Not Used 

DL N/A: Datalink Run 

10 10.85 5.91 0 

20 20.85 5.91 10 

30 30.85 5.91 20 

40 40.85 5.91 30 

50 50.85 5.91 40 

Table 6-2: Radio-telephony latency settings and the resulting average error 

The CPA was recorded for each scenario to determine if RMAT communication 

timing error significantly affected the outcome of the conflict resolutions. The resulting 

mean and standard deviation of the CPA for each run is shown in Figure 6-12. 

Surprisingly, it appears that increasing the average timing error did not have an 

appreciable effect. 

Desired Path 

Delayed Execution Early Execution 
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Figure 6-12: CPA statistics by simulation run 

However, by taking the difference of the RMAT CPAs against the datalink CPAs for 

each scenario, it can be seen that the CPA differences are symmetric around zero. This 

is plotted in Figure 6-13 and explains the unexpected statistics of Figure 6-12. Figure 6-

14 shows the resulting mean and standard deviation of the CPA for each run of the 

absolute value of the CPA differences. It can be seen that both the mean and standard 

deviation increase with the mean RMAT communication timing error. When the mean 

communications delay error was 40 seconds, the CPA varied on average by 0.52 nmi 

from datalink-equipped aircraft for identical resolution manoeuvres. 
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Figure 6-13: Difference of RMAT and Datalink CPAs, plotted by scenario CPA 

 

Figure 6-14: The absolute value of CPA difference statistics by simulation run 

The results of the test reveal several significant points. First, communications 

timing uncertainty had only a small effect on CPA when the mean of the 

communication delay distribution correctly matched the RMAT expected value; during 

that run, the CPA varied by only 0.08 nmi from the datalink-equipped aircraft. As the 

mean of the communication delay distribution increased from the RMAT expected 

value, the CPA difference grew. To minimise this effect, RMAT may need to be ‘tuned’ 

to the communication delay distribution of the local airspace. 
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Secondly, for the CD&R system used in this test, delaying the turn did not 

necessarily increase the severity of the conflict. In nearly half the cases, 

communication delays actually increased the closest point of approach and therefore 

reduced the severity of the conflict. This may be due to the relative cost weightings 

used by the CD&R genetic algorithm to select resolution manoeuvres, such as distance 

added to the flight plan verse CPA. 

Finally, it must be noted that the trajectory error due to communication delays is a 

function of the turn angle. Figure 6-15 illustrates a scenario where the aircraft has over 

flown the turn point by a distance of DTrn ATE. The cross track error (XTE) resulting from 

DTrn ATE can then be solved by Napier's rules for right spherical triangles: 

                                  (Eq. 6-8) 

The cross track error can range between 0 and DTrn ATE, for α between 0 and 90 

degrees. Thus, the CPA difference would probably be more pronounced for conflict 

resolutions that required larger turn angles. 

 
Figure 6-15: Illustration of cross track error resulting from 

 along track error in the turn point location 

6.4 Chapter Summary 

The study described in this chapter has confirmed that the simulator meets the 

goal of a simple, flexible, and accessible fast-time simulator suited for exploratory 

separation management research. The argument was made of the need for improved 

automation support to support traffic not equipped with an FMS-coupled datalink in a 

α 

XTE 

DTrn ATE 
 

Wpt 
Actual 
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more highly automated ATM system. The Resolution Monitoring and Advising Tool was 

presented as a novel concept of providing semi-automatic lateral flight guidance to 

non-datalink traffic using progressive track angle vectors. 

The design of an RMAT system was described, focusing on the Initial Processing 

Module to accept conflict resolutions from the CD&R system and the Resolution List 

Manager to periodically check the resolution list and signal the controller to transmit 

the vector at the ideal time. The maneuver modeling section then discussed the 

calculation of the alert and transmission trigger points, followed by a description of 

how RMAT was implemented in the simulator software. 

The first set of simulation experiments showed that the closest point of approach 

did not significantly vary when using RMAT as opposed to datalink under ideal 

conditions, indicating that RMAT was correctly designed and implemented. The mean 

CPA difference was less than 0.01 nmi. In the second set of simulation experiments, 

communication timing uncertainty was added with an increasing mean delay. The 

addition of the timing variance changed the mean CPA difference to only 0.08 nmi. 

However, increasing the mean delay from the RMAT expected value caused both the 

mean and standard deviation of the CPA difference to increase. 
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Chapter 7 

Discussion and Conclusion 

 

The main aim of the research presented in this thesis is to redevelop the Airspace 

Simulator to provide a more useful platform to design and verify new methods, 

algorithms, and strategies for separation management in future airspace. In this 

chapter, Section 7.1 will further discuss the major achievements and engineering 

trade-offs made over the course of the research, and will highlight the benefits and 

limitations of the software design. Section 7.2 then concludes with a review of the 

success in fulfilling the requirements and presents ideas for future work. 

7.1 Discussion 

There were three overarching considerations during the research and development 

of the simulator: execution speed, fidelity, and functionality. 

7.1.1 Execution Speed 

As discussed previously, execution speed is a fundamental performance parameter 

for fast-time simulators, and was an important design consideration for the algorithms 

and data structures developed for the simulator. 

Section 5.4 of this thesis demonstrated that the speed of the simulator was 

primarily a function of the flight durations and the number of simulated aircraft (when 

the scenario generator is used, the flight plan file writing operations also significantly 

contribute to the execution time). The relationship between execution speed, flight 

durations, and the number of aircraft is due to the nesting of the outer and inner 

simulation loops of the basic logical design; each active aircraft is updated each time 

step as described in Section 2.5. One technique of minimising the effect of the nested 

loop is dynamically resizing the time-steps, which enables faster execution by reducing 

the total number of discrete steps (Sokolowski & Banks, 2009). However, this option 
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was not used for two reasons. First, maintaining a steady clock was necessary for 

consistent surveillance so that conflict detectors and traffic visualization tools could 

correctly monitor the traffic. Secondly, conflict resolution inputs are asynchronous and 

unexpected – a variable step size could introduce undesirable latencies to the aircraft 

response. 

An additional challenge during the project was balancing speed optimization with 

the clarity and simplicity of the source code. For example, the APFDS was implemented 

by the functional decomposition shown in Figure 7-1. Thus, seven separate procedure 

calls are required during execution. Alternatively, a more optimised approach would 

be to write the entire APFDS functionality into a single C function, requiring only one 

procedure call. Profiling the APFDS code (as implemented) showed that procedure call 

overhead accounted for 6.5% of the function execution time. The disadvantage of the 

more optimised approach is that a large block of inline code can be hard to understand 

– modifying, replacing, or testing code becomes more complex, and learning the 

operation of the APFDS becomes more difficult. 

 

Figure 7-1: Functional decomposition of the APFDS 

Given the performance of modern computer processors and C compilers, the time-

savings from a more understandable implementation will likely be greater over the life 

of a research project than the time-savings due to greater execution speeds from 

extensive code optimisation. That is, using a simulator that is easy to learn, 
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understand, and modify may result in a shorter project timeline than using a simulator 

that can compute experiments very fast but requires a steep learning curve. The 

exception is if the simulator is dedicated to a single, repeated purpose. In that case, 

over the course of multiple simulations the time-savings from speed may be greater 

than the savings from the learning curve. 

Despite the limitations of the nested loop, and the balance of simplicity and 

optimisation, the simulator was demonstrated to run over 900 times faster than real-

time for 300 simultaneous aircraft. This raises the point that the speed of the CD&R 

system is an equally important design issue. The computational complexity of 

identifying and resolving conflicts can be greater than that of simulating traffic 

trajectories – in fact, many CD&R systems incorporate internal trajectory predictions 

and are effectively small-scale simulators. Thus, if run in parallel, the limiting factor to 

the speed of an experiment may be the CD&R system, not the simulator. This was the 

case when the genetic resolver was connected to the simulator, necessitating the 

synchronisation methods discussed in Section 2.6. 

7.1.2 Fidelity 

The level of fidelity was another critical design consideration for the simulator. As 

discussed in Chapter 2, increasing the realism typically reduces speed and increases 

complexity. 

The challenge of balancing speed and fidelity was most evident during the 

development of the Trajectory and Navigation Module. The module needed to model 

the behaviour of modern commercial aircraft with sufficient realism to be useful for 

separation management research, while maintaining fast execution. As discussed in 

Section 3.3, the tabulated BADA database was selected as the basis for the 

performance model because of its wide coverage of commercial aircraft and also 

because it significantly increases the speed of the simulation by reducing the 

computational complexity of generating aircraft trajectories. Additionally, the 

tabulated data simplifies the simulation by removing the need to model detailed flight 

data such as airline procedures and speed schedules. However, this implementation 
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comes at the cost of reduced fidelity in comparison to more complex performance 

databases, for example point-mass or six degree-of-freedom models. Furthermore, the 

use of tabulated data limits accurate speed control and precise vertical navigation due 

to the interdependence of thrust, airspeed, and vertical speed, as described in Section 

3.4.2. 

The balance between fidelity and complexity can be seen with the radio-telephony 

communication model. Unlike the air-ground communications model by Monticone, et 

al, the Airspace Simulator-II model does not implement the full set of pilot and ATC 

voice messages, such as transponder settings and communications handoffs (2005). 

Rather, it models ATC instructions, and uses the latency model to take into account 

errors and frequency congestion. Thus, the effects of non-directive messages are 

captured in the model, even though the actual messages are not directly simulated. 

The simplification eliminates the need for extensive input data such as airspace sector 

boundaries and additional modules, such as intelligent message generators. 

Furthermore, the approach eliminates the need to simulate large amounts of traffic 

merely to produce a desired level of frequency congestion. For example, when testing 

the RMAT system in Section 6.3, the random latency values included the effect of high 

frequency congestion, even though only two aircraft were simulated. 

7.1.3 Functionality 

The simulator was also made more versatile. New functionality was added 

including navigation, surveillance, and communications error modelling, enabling the 

simulator to be used to investigate new separation management systems and 

concepts. The simulator was specifically designed so that many parameters and 

experimental variables could be easily controlled, such as latency parameters, FTE 

parameters and the time-step size. The software was organised into functional 

modules in order simplify the expansion or customisation of simulator functionality. 

The synchronisation and network code was added to allow the simulator to be 

connected to other systems, enabling CD&R tools to be interfaced to the simulator 

without the need for extensive modification or translation to C. Additionally, 
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networking also allows the simulator to be used for other ATM applications; for 

example, the use of the simulator to augment the traffic of other simulation systems. 

Many aspects of the research presented in this thesis contribute to the wider ATM 

research community, apart from the simulator. The scenario generator designed for 

this thesis provides an efficient way of creating a large variety of pair-wise conflicts 

while also giving the user control over many scenario variables. The approach reduces 

artefacts such as scenarios with non-conflicting aircraft and helps ensure efficient use 

of simulation resources. The same method can be applied by researchers using other 

airspace simulators to provide more rigour and confidence in the scenario coverage of 

Monte Carlo experiments. 

Similarly, the novel flight plan merging algorithm described in Section 4.2.3 also 

applies to Unmanned Aerial Systems (UAS). Flight plans for UAS missions may involve 

many waypoints, and as a result it would be an inefficient use of bandwidth to 

transmit an entire modified flight plan when only several waypoints are altered. The 

flight plan merging algorithm could be a solution to minimise data loads and 

consistently construct the desired flight plan. 

7.2 Conclusion 

As a result of the limitations of the original design, the Airspace Simulator was 

significantly redesigned to enable the simulator to be used for the specific application 

of CD&R research. 

The simulator remains accessible to most researchers, in keeping with the purpose 

of the original Airspace Simulator. The BADA database is freely available to academic 

researchers and the GCC compiler is also open source and can run on several 

platforms. Similarly, the modular design makes it relatively simple to tailor the 

simulator to specific research applications, and the translation to the more familiar 

ANSI C language makes it easier to work with. Configuration and setup was simplified 

from the original simulator, making the Airspace Simulator-II easier to learn and use. 
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The fast trajectory modelling allows many cases to be studied quickly, and makes it 

feasible to use the simulator for large-scale, stochastic experiments. 

7.2.1 Satisfaction of Requirements 

The 14 functional and performance requirements set for this project were 

considered necessary for the software to be a useful tool to investigate new 

separation management methods. Over the course of the thesis, each requirement 

was shown to be satisfied, as follows: 

Req. 1, Capable of fast-time simulation of up to 300 aircraft simultaneously: In 

order to be capable of conducting stochastic simulations of new CD&R algorithms and 

concepts over a range of conditions and traffic scenarios, the simulator needed to be 

able to compute multiple, simultaneous aircraft in fast-time. Requirements 1 and 2 

represent twice the projected 2020 peak traffic level at the busiest airport in Europe. 

Achievement of Requirement 1 was demonstrated in Section 5.4; simulations of short 

distance and long distance flights show the Airspace Simulator-II ran over 900 times 

faster than real-time for 300 simultaneous aircraft and over 30 times faster than real-

time for 2500 simultaneous aircraft. 

Req. 2, Capable of simulating of up to 4000 aircraft in total: As with Requirement 1, 

this requirement was achieved with a large margin. Section 5.3.3 showed that 4000 

aircraft (representing a total of 225 flight hours) could be computed in 37.3 seconds on 

a laptop computer. Aircraft can be simulated with the flight performance of any of the 

318 aircraft types in the BADA database. 

Req. 3, Simulates waypoint-to-waypoint flight guidance within 1 nmi: Developing a 

navigation and flight control system that was modular, flexible, and accurate formed a 

significant portion of this project, as described in Chapter 3. In order to accurately 

model Trajectory Based Operations, as called for by SESAR and NextGen, FMS flight 

guidance was needed within 1 nmi. Section 3.8.3.1 demonstrates that the FMS and 

Autopilot/Flight Director were able to maintain an average cross track error of less 

than 0.051 nmi for 1000 nmi waypoint-defined routes, including the presence of 
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winds. This average error represents a 90% improvement over the average cross track 

error reported of the original Airspace Simulator. 

Req. 4, Capable of connecting with external CD&R software: A central requirement 

of the simulator was the capability of integrating both centralised and decentralised 

CD&R systems with air traffic models. The core simulator functions were reorganised 

to better support the integration of new CD&R tools into the simulator and minimise 

modifications. By incorporating both UDP and TCP/IP network interfaces and by 

maintaining time synchronization, the simulator was successfully integrated with a 

third-party, closed-source CD&R tool, as discussed in Section 4.5.4. The network 

capability enabled the CD&R tool to be used to evaluate the RMAT system described in 

Chapter 6. 

Req. 5, Simulates broadcast of traffic state and trajectory intent: This requirement 

was necessary to provide the information required by conflict detection routines; 

many conflict detectors use a combination of traffic state and traffic intent 

information. The simulator models ADS-B-type surveillance systems by broadcasting 

aircraft state and velocity data and periodically down-linking the flight plan. This 

requirement was shown to be met by connecting the simulator to the TViz 

visualisation tool described in Section 2.7.2 and confirms the traffic progression. In 

addition, the simulator was integrated with the CD&R tool in Section 4.5.4, which used 

the traffic data provided by the simulator to predict conflicts and compute resolutions. 

Req. 6, Allows input and execution of conflict resolutions: The simulator must be 

able to receive and implement the most common conflict resolution manoeuvres 

issued by resolvers. The ability to monitor for conflict resolution messages was added 

to the logical design, as discussed in Chapter 2. The ability to accept resolutions was 

confirmed by the successful integration with the CD&R tool in Section 4.5.4. The ability 

to correctly implement resolution manoeuvres was illustrated in Section 3.8.3.2. 

Req. 7, Simulates datalink and voice communication: Datalink is expected to be the 

primary mode of communications for future ATM systems, so simulation of datalink 
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exchanges was considered a basic requirement. However, voice will continue to be 

used to control unequipped traffic and for off-nominal events. A voice communication 

model was necessary to investigate the effects of datalink failures, mixed-mode 

operations and new voice-based automation tools. The communications module was 

rewritten to include both communication modes, expanded message sets and 

communication latencies. A communications message queue was added to store 

conflict resolution messages and ATC instructions until they could be delivered to the 

recipient aircraft. The ability to simulate communications between the CD&R system 

and aircraft was demonstrated in Section 4.5.4, and during the RMAT testing in Section 

6.3 over 1250 datalink and voice messages were exchanged between the CD&R 

system, the RMAT system and the aircraft. 

Req. 8, Simulates navigation errors and uncertainties: Separation management is 

essential to the safety of fight, so any conflict detection and resolution process must 

be shown to be robust against errors and uncertainties in communication, navigation 

and surveillance systems. This requirement was met by adding navigational wander to 

the aircraft flight paths through the FTE model, as demonstrated in Section 3.8.4. 

Additionally, the Aircraft Array data structure was redesigned to support localised 

information states, allowing the navigation and surveillance functions to use distinct 

estimations of position, velocity and the winds aloft. Information states enable the 

simulator to be used to gain a better understanding of the effects of localised, noisy 

data. 

Req. 9, Simulates surveillance errors and uncertainties: A simple probability of 

reception model was described in Section 4.4 and evaluated in Section 4.5.1. The 

stochastic failure behaviour of ADS-B broadcasts was modelled by applying a constant, 

uniform probability of success for surveillance broadcasts. In addition, a placeholder 

function was included to enable user-defined noise to be added to the true aircraft 

state data when it is copied to the communications data structure, in order to simulate 

the errors due to localised information states. 
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Req. 10, Simulates communications errors and latencies: Latency models were 

designed for both the datalink and voice communication modes, representing the 

communications delay between a conflict resolution or ATC instruction being 

transmitted and executed by the flight crew. The voice communication transaction 

times also include delays due to repeated messages and blocked transmissions. 

However, in order to provide flexibility in the model and because latency statistics are 

known to vary by airspace, the latency parameters can be defined in the simulator 

configuration file. The latency models were verified in Section 4.5.2. 

Req. 11, Simulates mixed-mode traffic: Because the study of separation 

management in mixed-mode operations is ongoing, it was important for the simulator 

to be capable of specifying and modelling different communication modes (datalink or 

voice) and navigational accuracies for different aircraft, and be able to designate either 

self-separation or centralised-separation responsibility for each aircraft. Simple mode 

flags were added to the Master Array, allowing the simulator to make distinctions 

between the flight control mode (autopilot, or flight director), communication mode 

(ideal, datalink, or radio-telephony), and separation mode (centralized, self-separation, 

or uncontrolled). This capability was discussed in Section 2.3.1 and confirmed in the 

flight tests of Section 5.3. The modes proved particularly useful during the RMAT 

simulation experiments described in Section 6.3. 

Req. 12, Allows automatic generation of pseudo-random traffic scenarios: To better 

facilitate large, stochastic experiments, the simulator needed the ability to 

automatically generate pseudo-random traffic scenarios. Chapter 5 addressed the 

design and validation of a pair-wise scenario generator that can automatically produce 

flight plans and traffic assignments resulting in a large variety of horizontal two-aircraft 

encounters. 

Req. 13, Allows manual setup of traffic scenarios: During the development of the 

simulator, it became apparent that in addition to automatically generating scenarios, it 

is also necessary to prepare arbitrary traffic scenarios manually. This feature is 



Chapter 7. Discussion and Conclusion 

 

156 

described in Section 2.3.1 and was used for all of the simulation tests of Chapters 3 

and 4. 

Req. 14, Capable of running on a single PC: The final requirement was that the 

simulator must be capable of running on a single desktop computer, which was a 

constraint on the solution but helped ensure the simulator would be easily accessible 

to researchers. All the simulations conducted for this thesis used either a single 

desktop or laptop PC. 

7.2.2 Suggestions for Further Work on the Airspace Simulator – II 

The simulator presented in this thesis is complete, and as discussed above, it meets 

all of the requirements that were set for this research project; however, there are 

three main areas where further work could expand and improve the usefulness of the 

simulator as a research platform. 

7.2.2.1 Expanding the FMS Functionality 

The FMS could be improved with the addition of waypoint time-of-arrival control 

and precise vertical navigation (such as Top-of-Descent calculation). As discussed in 

Section 3.4, the FMS is capable of these functions, but is limited by the tabulated BADA 

performance data. Converting to the full BADA model instead of the tabulated data 

would provide these functions as well as improve the performance fidelity. However, 

the additional computational load would likely have an impact on the runtime 

performance, it would be necessary to allow the user to optionally select the 

performance modelling mode appropriate to their need. 

7.2.2.2 Expanding the Scenario Generation Method 

Due to project time constraints, the scenario generator only produces lateral 

scenarios, which accounts for approximately 75% of encounters. However, the same 

basic method discussed in Chapter 5 could be expanded to include vertical traffic 

scenarios. The challenge is that this would require the aircraft climb performance to be 

calculated from the BADA data during scenario generation, effectively requiring a 

small-scale simulation before the actual simulation. Several approaches could be 
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useful in order to minimise the additional computational load caused by doubling the 

simulation, such as using a larger time step to reduce the number of discrete 

movements, or by assuming small change over the climb/descent and simply averaging 

several points. These options would need to be investigated to evaluate the time-

savings in comparison with correctly generating vertical encounters. 

A further improvement to the scenario generation would be complementing the 

pair-wise generator presented in this thesis with the addition of a random traffic 

pattern scenario generator or a scenario generator based on common airport pairs. As 

discussed in Section 5.1, detecting potential conflicts and searching for conflict free 

routes is more complex when other aircraft are in proximity, and as a result, pair-wise 

encounters do not fully stress CD&R systems. A number of approaches are available to 

maintain a desired traffic level in a given airspace region with pseudo-random flight 

plans, which could be adapted for use in further developments of the Airspace 

Simulator-II (Feigh, 2003; Singor, et al, 2004). 

7.2.2.3 Incorporating a Native CD&R System 

A final suggestion is to implement a CD&R system within the simulator. Although 

this was beyond the scope of the thesis, a native CD&R system would be a useful 

addition to the functionality provided in the simulator. Some users may elect to use 

their own CD&R systems, but even a relatively simple native CD&R system could 

provide a ready-to-go option for users, or could be used as a baseline for comparison. 

The simulator architecture was designed to readily support extensions such as one or 

more native CD&R systems. 

7.2.3 Suggestions for Further Work on Automated Vector Navigation 

The RMAT discussion presented in Chapter 6 only covers an initial analysis of 

automated track angle vector navigation. Additional work remains to determine the 

full potential and limitations of the RMAT approach. For example, RMAT is effectively 

an open loop control system; that is, instructions are issued to aircraft only once per 

vector. The aircraft do not know the true resolution trajectory and so cannot correct 
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errors, unlike normal trajectory based operations where the full resolution can be 

communicated via datalink and implemented in a closed-loop FMS. As a result, there 

would need to be more analysis of the navigational accuracy that could be expected 

from an RMAT system in the presence of errors, examining both the main effects and 

interaction effects of error variables, particularly weather forecast errors and 

surveillance errors. The simulator could be used as a platform for these tests. 

Similarly, the effect of the additional communication load needs to be examined in 

more detail. For two aircraft in conflict, both messages may need to be delivered in 

short succession, possibly causing an additional delay to one of the messages. As a 

result, the message latencies would no longer be independent, identical random 

variables, as was assumed in the initial analysis. 
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Glossary 

 

ACES Airspace Concept Evaluation System 

ADS-B Automatic Dependent Surveillance – Broadcast 

ANSP Air Navigation Service Provider 

APFDS Auto Pilot/ Flight Director System 

ASA Automated Support to ATS (Air Traffic Services) 

ASAS Airborne Separation Assurance Systems 

ASSTAR Advanced Safe Separation Technologies and Algorithms 

ATC Air Traffic Control 

ATE Along Track Error 

ATM Air Traffic Management 

BADA Base of Aircraft Data 

CATS Complete Air Traffic Simulator 

CD&R Conflict Detection and Resolution 

CDTI Cockpit Display of Traffic Information 

CFMU Central Flow Management Unit 

CORA Conflict Resolution Assistant 

CPDLC Controller-Pilot Data Link Communication 

CTAS Center-TRACON Automation System 

DAG-TM Distributed Air/Ground – Trajectory Management 

DL Data Link 

DSB-AM Double Side Band – Amplitude Modulation 

DST Decision Support Tool 

ECC EUROCONTROL Experimental Centre 

EDA En Route Descent Advisor 

ESCAPE EUROCONTROL Simulation Capability and Platform for Experimentation) 

FA Area Forecast 

FACET Future ATM Concepts Evaluation Tool 

FCS Flight Control System 

FMS Flight Management System 

FREER Free-Route Experimental Encounter Resolution 

FTE Flight Technical Error 

HITL Human-In-The-Loop (or Hardware-In-The-Loop) 

IFR Instrument Flight Rules 

LNAV Lateral Navigation 

MTCD Medium-Term Conflict Detection 

NARSIM NLR ATC Research Simulator 

NLR National Aerospace Laboratory of the Netherlands 

NPN NOAA Profiler Network 

PARR Problem Analysis, Resolution and Ranking 

PAT PHARE Advanced Tools 

PBD Place, Bearing, Distance (or Point, Bearing, Distance) 

RMAT Resolution Monitoring and Advising Tool 

RNAV Area Navigation 

RNP Required Navigation Performance 
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RSP Required Surveillance Performance 

RT Radio-Telephone 

SM Separation Management 

SSR Secondary Surveillance Radar 

TAAM Total Airspace and Airport Modeller 

TBO Trajectory Based Operations 

TCAS Traffic Collision Avoidance System 

TCP Trajectory Change Point 

TIS-B Traffic Information System – Broadcast 

URET User Request Evaluation Tool 

XTE Cross Track Error 
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Appendix A 
Simulator Configuration File 

The simulator configuration file is a plain text file named ‘ATMSim_Config.txt,’ read 

during simulator initiation in order to configure simulation parameters and to define 

the traffic scenario. The file is separated into the following sections: time, system, 

global scenario parameters, communications, and air traffic. Section titles are written 

in all capitals and used to parse the file. The order of data within a section is 

significant. Data is separated from plain text by an equal sign and is followed by a 

semicolon. The exception is the list of aircraft assignments, which follows the format: 

BADA type, flight plan name, aircraft start time, control mode (ideal – ‘ID’, autopilot – 

‘AP’, or piloted – ‘ D’), communication mode (ideal – ‘ID’, datalink – ‘DL’, or radio-

telephone – ‘RT’), and separation mode (centralised – ‘CENT’, ASAS – ‘ASAS’, or 

uncontrolled – ‘UNCO’), ended with a new line.  igure A-1 shows an example 

configuration file. 
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Figure A-1: Example configuration file. Continues on following page...

Airspace Simulator-II Initial Conditions 
Updated: 15/Sept/2010 
--------------------------------------------------- 
TIME 
 
Fast time = Y;  (Yes/No) 
Time step = 1.00;  (sec per step) 
Time limit = 500000; (sec) 
 
--------------------------------------------------- 
SYSTEM 
 
Data resolution:          = 1;       (time steps between recording data) 
 
Enable TCP/IP network? = N;       (Yes/No) 
  Port    = 52000; 
  IP    = 127.0.0.1; 
 
Use traffic visualisation? = N;       (Yes/No) 
  Port    = 52000; 
  IP    = 127.0.0.1; 
   
Use scripted ATC?  = N;  (Yes/No) 
 Script address  = folder\filename.atc; 
Random number seed  = 2;  (if 0, fully random) 
 
--------------------------------------------------- 
GLOBAL SCENARIO PARAMETERS 
 
Number of Aircraft 
  Total                 = 30; 
  Concurrent max       = 30; 
 
Wind                = 150015; (NPN, or dirmag in deg/knots) 
Time of day           = 8;  (hh, 24h) 
Surveillance period     = 2.0;  (sec/cycle) 
Prob. of Reception    = 1.0;  (0...1) 
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Figure A-1: Example configuration file. Continued from previous page.

--------------------------------------------------- 
COMMUNICATIONS 
 
Datalink (CPDLC) 
 
Link technical delay  (uniform, sec) 
  Lower limit  = 0.50; 
  Upper limit  = 3.50; 
 
Pilot response delay  (Lognormal, sec) 
  Mean   = 28.60; 
  S.D.   = 38.80; 
 
Voice (VHF DSB-AM) 
 
Transaction time  (Lognormal, sec) 
  Mean   = 50.04; 
  S.D.   = 5.90; 
 
Channel occupation delay (Lognormal, sec) 
  Mean   = 0.0; 
  S.D.   = 0.0; 
   
ASAS 
 
Pilot response delay  (Lognormal, sec) 
  Mean   = 28.60; 
  S.D.   = 38.80; 
 
--------------------------------------------------- 
AIR TRAFFIC 
 
Flight plan directory = drive\folder; 
Random Traffic          = No;  (No, Pairwise) 
Scenario config file = drive\folder\PairwiseEncounters_Config.txt; 
 
Assigned Traffic   (BADA FP TIME CONT COMM SEP) 
B772 LHR_2_JFK 0 AP DL CENT 
A320 LHR_2_JFK 0 AP DL CENT 
B772 LHR_2_JFK 50 FD RT ASAS 
B772 LHR_2_JFK 100 AP RT ASAS 
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Appendix B 
Output File Format 

Simulation data is periodically recorded to a binary-format random access data file 

for post-simulation analysis. The file consists of a header, the master array, and the 

time series of traffic state data, as illustrated in Figure B-1.  

 

Figure B-1: File organisation 

The header data consists of the data fields in Table B-1. Every element of the 

Master Array consists of the data fields in Table B-2. The length of the array is 

MaxTotalAc, from the header. The traffic state data consists of the data fields in Table 

AX-3. Every time block, m, represents the traffic at m x (TimeStepSize x DataRes). 

There are a total of (TimeStepSize x DataRes)/ TotalSimTime time blocks, with data for 

MaxConcurAc aircraft per time block. 

Variable 
C data 
type 

Size 
(B) 

Notes 

NumAcFinished 
short 

unsigned 
int 

2 Total number of aircraft simulated 

MaxTotalAc 
short 

unsigned 
int 

2 
Length of the Master Array. May be 
different than numAcFinished 

MaxConcurAc 
short 

unsigned 
int 

2 Length of the Data Block 

DataRes 
short 

unsigned 
int 

2 Time steps between recording data 

WindType short 
unsigned 

2 If a number: the wind dir/mag as format 
xxxyyy deg,knots. Else, the wind source: 

Header File Header 

Ac1 Ac2 Ac… AcN Ac3 Ac4 Ac5 Ac6 Master Array 

Ac1 Ac2 Ac3 Ac4 Time 1 traffic data 

Ac1 Ac2 Ac3 Ac4 Time 2 traffic data 

… … … … Time … traffic data 

Ac4 Ac5 Ac6 Ac7 Time K traffic data 
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int NPN = NOAA Profiler Network, FD = Area 
Forecast, or N = None 

RndSeed 
short 

unsigned 
int 

2 Random number seed 

TimeStepSize float 4 Time step for integration (s/step) 

TotalSimTime float 4 
Duration of simulation in simulated 
seconds 

ExecutionTime float 4 Duration of simulation in actual seconds 

ChanOccDelayVoice_Mu 
float 4 Logn mu: Channel occupation delay 

ChanOccDelayVoice_Sigma 
float 4 Logn sigma: Channel occupation delay 

LinkTechDelay_Lower_lim 
float 4 

Uniform lower bound: Lnk technical 
delay 

LinkTechDelay_Upper_lim 
float 4 

Uniform upper bound: Link technical 
delay 

RespDelayASAS_Mu 
float 4 Logn mu: ASAS crew response delay 

RespDelayASAS_Sigma 
float 4 Logn sigma: ASAS crew response delay 

RespDelayCPDLC_Mu 
float 4 Logn mu: Datalink crew response delay 

RespDelayCPDLC_Sigma 
float 4 

Logn sigma: Datalink crew response 
delay 

TransTimeVoice_Mu 
float 4 

Logn mu: Radio-telephony transaction 
times 

TransTimeVoice_Sigma 
float 4 

Logn sigma: Radio-telephony transaction 
times 

Table B-1: Header data fields 
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Variable C data type 
Size 
(B) 

Notes 

ContMode unsigned char 1 1 = autopilot, 0 = flight director 

CommMode unsigned char 1 1 = datalink, 0 = radio-telephony 

SepMode unsigned char 1 
2 = centralised, 1 = self-separation, 0 = 
uncontrolled 

FpName[20] char 21 Flight plan name 

CurAcInd 
short unsigned 

int 
2 Aircraft index in the current aircraft array 

BadaInd 
short unsigned 

int 
2 Index of aircraft performance model 

AcID unsigned int 4 Unique aircraft ID 

Start float 4 Start time in seconds from simulation beginning 

Finish float 4 End time in seconds from simulation beginning 

Table B-2: Master Array data fields 

 

Variable Units C data type 
Size 
(B) 

Notes 

AcID  unsigned int 4 Unique aircraft ID 

Lat rads Float 4 Geodetic latitude 

Lon rads Float 4 Geodetic longitude 

Alt m Float 4 Altitude above mean seal level (MSL) 

Mass kg Float 4 Mass 

Vtas m/s Float 4 True Airspeed 

Vgnd m/s Float 4 Groundspeed 

Trk rads Float 4 Ground track angle 

Hdg rads Float 4 Heading (air-mass track angle) 

ROCD m/s Float 4 Rate of Climb/Decent 

Xte m Float 4 Cross track error from flight plan leg 

Table B-3: Traffic state data fields 
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Appendix C 
Flight Plan Format 

Flight plans are ASCII text files with .fpl file extensions, and consist of the initial fix 

followed by a sequence of flight plan segments. An example flight plan is shown in 

Figure C-1. A description of the segment data fields is presented in Table C-1. Data 

fields are separated by white-space. Segments are separated by a new line. 

 

Figure C-1: Example flight plan 

  

INIT ENR IF FB S25:00.00 E0131:00.00 30000 0 0.0 

WP01 ENR TF FB S25:00.00 E0131:30.00 30000 0 0.0 

WP02 ENR TF FO S25:30.00 E0131:30.00 30000 0 0.0 

WP03 ENR TF FO S25:30.00 E0132:00.00 30000 0 0.0 

WP04 ENR TF FB S25:00.00 E0132:00.00 30000 0 0.0 

WP05 ENR TF FB S25:00.00 E0132:30.00 30000 0 0.0 
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Leg data Format Units Notes: 

Leg name 8 character string  The leg identifier. Up to 8 characters 

Phase of 
flight 

3 character string  The phase of flight 
ENR: en-route 
TMA: terminal 

Leg Type 2 character string  IF: Initial Fix 
TF: Track-to-Fix 
DF: Direct-to-Fix 

Transition 
Type 

2 character string  FB: fly-by 
FO: fly-over 

Latitude 1 character 
Integer:Integer. 
Integer 

Degrees, 
minutes, 
decimal 
minutes 

Latitude of terminating waypoint, using 
single character North/South indication 

Longitude 1 character 
Integer:Integer. 
Integer 

Degrees, 
minutes, 
decimal 
minutes 

Longitude of terminating waypoint, using 
single character East/West indication 

Leg Altitude Integer Feet The target altitude of the leg above mean 
seal level. 

Leg Speed Integer Knots (optional) 
The target true airspeed of the leg. If set to 
0, the target airspeed is set from the BADA 
performance data. 

Lateral 
Offset 

Floating point Nautical 
Miles 

(optional) 
The target parallel offset distance, using 
the convention of positive for right of path, 
and negative for left of path. 

Table C-1: Leg segment data field
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Appendix D  
Scenario Generator Configuration File 

The scenario generator configuration file is a plain text file named 

‘PairwiseEncounters_Config.txt,’ read during simulator initiation if the simulator 

configuration file indicates the scenario generator is to be used. The order of data 

within the file is significant. Data is separated from plain text by an equal sign and is 

followed by a semicolon. Figure D-1 shows an example configuration file. 

 

Figure D-1: Example configuration file. Continues on following page... 

Pair-wise Encounters Random Scenario Generator configuration 
 
Prefix 
 = RMATtest1_; 
 
Centre Point (N/S deg:min.dec E/W deg:min.dec) 
 = N00:00.00 E000:00.00; 
 
Time to first loss of separation (sec) 
 = 200; 
  
Horizontal Separation  Minimums (nmi) 
 = 5; 
  
Distance beyond conflict to final waypoint (nmi) 
 = 40; 
 
Aircraft type model (UNI, Uniform from BADA list, EUR, Sheehan European traffic 
model) 
 = EUR; 
  
Encounter angle distribution model (0-100, must sum to 100) 
 In-trail (0-60 deg)  = 33.33; 
 Crossing (60-120 deg)  = 33.33; 
 Opposing (120-180 deg) = 33.33; 
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Figure D-1: Example configuration file. Continued from previous page. 

 

Probability distribution of communications modes (0-100, must sum to 100) 
 Ideal   = 100; 
 Radio-telephone  = 0; 
 Datalink  = 0; 
 
Probability distribution of flight control modes (0-100, must sum to 100) 
 Ideal   = 100; 
 Autopilot   = 0; 
 Flight Director  = 0; 
 
Probability distribution of separation modes (0-100, must sum to 100) 
 Centralised  = 100; 
 Self-separation  = 0; 
 Uncontrolled  = 0; 
 
Altitude (ft) 
 = 32000; 
 
Terminator Type (TF, DF) 
 = TF; 
  
Overfly (FO)/ Fly-by (FB) 
 = FB; 
  
Phase of Flight (DEP, ENR, MNV, TRM, MAP) 
 = ENR; 
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