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Metapopulation ecology of Notonecta in small ponds. 

Robert Andrew Briers 

Abstract. 

This thesis considers the application of metapopulation theory to a field system; two 

species of Notonecta (Hemiptera: Heteroptera, Notonectidae), a freshwater invertebrate 

predator, inhabiting a series of small man-made ponds known as dewponds, in the Peak 

District, Derbyshire. 

Surveys of pond occupancy and habitat characteristics examined the habitat preferences 

and spatial population dynamics of the two species, and associations between Notonecta and 

other taxa. Interspecific competition and predation between nymphs were investigated in the 

laboratory and in field mesocosms to determine their potential influence on field distributions. 

The two species have contrasting habitat preferences, and breed in a subset of all ponds in 

the area. Choice of oviposition substrate appears to be an important mechanism of habitat 

selection. The landscape scale population dynamics of Notonecta resemble those predicted by 

metapopulation models, but regional persistence is determined by the availability and 

distribution of suitable habitat across the landscape, rather than by a dynamic balance of 

stochastic colonisation and extinction. Where the species co-occur, competition is likely and 

the outcome is influenced by the amount of submerged vegetation present, which affects the 

feeding efficiency of the two species. Associations between Notonecta and other taxa largely 

appear to result from covariance in response to habitat factors; the distributions of Notonecta 

and potential prey do not seem to be strongly linked. 

Most metapopulation models assume that habitat is static, but in common with many 

other field systems, metapopulation dynamics of Notonecta appear to be driven by dynamic 

changes in habitat of individual patches. This suggests that in order to be of greater practical 

value, future developments in metapopulation theory must incorporate effects of habitat 

dynamics on regional persistence and distribution. 
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1. Introduction. 

1.1 General introduction. 

All ecological processes are made up of events that are unevenly distributed in space 

(Weins 1989, Kareiva 1990, McLaughlin and Roughgarden 1993). However it is only in the 

last decade or so that significant attention has been focused on the importance of space and 

spatial scaling in the understanding of a wide range of ecological phenomena, from 

community structure to population persistence (Addicott et af. 1987, Giller and Gee 1987, 

Ricklefs 1987, Weins 1989, Ricklefs and Schluter 1993, May 1994, Tilman and Kareiva 

1997). In community ecology, MacArthur and Wilson (1967) and MacArthur (1972) were 

among the first to focus attention on large scale processes and the importance of spatial 

scaling in patterns of species richness and diversity. In the field of population dynamics, the 

pioneering experiments of Huffaker (1958) and theories ofSkellam (1951) and Slatkin (1974) 

amongst others demonstrated the potential importance of spatial environmental heterogeneity 

in interspecific interactions, but the general importance of spatial effects was not realised until 

some time later. 

Prior to these developments, models of population dynamics and other ecological 

processes were based solely on local (within-population) processes, such as competition and 

predation (Kingsland 1985). The development of ecological theory that considers the effects 

of space, either implicitly or explicitly, has proved a challenge (Kareiva 1994), but significant 

progress has been made. In complement to this, there has also been considerable development 

in the understanding of large scale patterns in the distribution and abundance of species 

(macroecology, Brown 1995) and also processes acting at intennediate scales (mesoscale 

processes, Holt 1993). 

Within the field of population dynamics, spatial theory has developed rapidly, but 

empirical tests of the emerging theories have lagged behind, due to the difficulties in carrying 



out experimental or observational work over the spatial (and temporal) scales required by the 

theory (Kareiva 1990, Steinberg and Kareiva 1997). Particular attention has been paid to the 

dynamics of populations that are scattered across the landscape, either naturally or as a result 

of anthropogenic habitat fragmentation. The widespread habitat fragmentation in the majority 

of ecosystems as a result of the activities of man has led to large numbers of species 

extinctions (Wilson 1992, Ehrlich 1995, Lawton and May 1995) and to many species existing 

as isolated populations in habitat fragments. Conservation biologists have therefore focused 

considerable attention on the conservation of species both rare and common which are found 

in fragmented habitats and have looked to developments in ecological theory for the best way 

to manage and conserve these species (Soule and Simberloff 1986, Soule 1987, Simberloff 

1988, Doak and Mills 1994, Harrison 1994). Several approaches have been taken in 

investigating the implications for population dynamics of the spatial structuring of the 

populations across a landscape, such as reaction-diffusion and stepping-stone models 

(Kareiva 1990). However the most popular modelling framework for such populations has 

been that embodied by the concept of a metapopulation (Hanski and Gilpin 1991, Hastings 

and Harrison 1994, Hanski and Simberloff 1997, Hanski 1998). This thesis considers the 

application of metapopulation theory to the spatial population dynamics of insect species in 

small freshwater ponds at the landscape scale. 

1.2 Metapopulations and metapopulation theory. 

A metapopulation can be defined simply as a system of 'local populations which interact 

via individuals moving among populations' (Hanski and Gilpin 1991), and which show 

periodic local extinction and recolonisation. This definition highlights fundamental properties 

of meta populations. Local populations must be present in discrete patches of habitat and 

hence 'islands' of suitable habitat must be able to be distinguished from the surrounding 

matrix of non-habitat. There must also be some degree of population turnover; local 
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extinction of populations may occur, but regional persistence is achieved by complementary 

colonisation of unoccupied patches of habitat via dispersal. 

Patch models. 

The initial stimulus for the development of metapopulation theory was the model 

presented by Levins (1969, 1970), initially to explore strategies of pest control and group 

selection. Levins also introduced the term 'metapopulation' to describe the abstraction of the 

population to a higher level, where individual populations across a landscape are born and die 

in much the same way as individuals within a single population (Hanski and Simberloff 

1997). The central parameter of the model is p, the proportion of suitable habitat that is 

occupied. This kind of model subsequently became known as a patch or occupancy model 

(Hanski and Gilpin 1991), which only considers whether a patch of habitat is occupied or not; 

no attention is paid to population dynamics within the patch. The change in the proportion of 

patches which are occupied, in a landscape of infinite patches, was described by the following 

equation 

dp dt = mp(1- p) - ep (1.1) 

where m and e are the rates of local population colonisation and extinction respectively. This 

equation has a single stable equilibrium occupancy value of p = 1 - e / m. This highlights 

the fact that for a metapopulation to persist (i.e. p is positive) the rate of colonisation must be 

greater or equal to the rate of extinction. Stable equilibrial metapopulation level patch 

occupancy is an assumption common to all metapopulation models (Harrison and Taylor 

1997). Other assumptions that are built into this model are that all patches are discrete and of 

equal size, isolation and suitability, local population dynamics are asynchronous and 

migration into presently occupied patches has no effect on local population dynamics (Hanski 

1991). 
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From the original Levins model, there have been many developments and modifications to 

allow some of the assumptions to be relaxed (e.g. Hanski 1982, 1991). These have been 

intended to make the model more applicable to real population systems, which tend to deviate 

considerably from the structure envisaged by this model (Harrison 1991, 1994, Harrison and 

Taylor 1997). Most of these refinements have concentrated on incorporating a finite and 

explicit number of patches in the metapopulation, and their locations and sizes. This focus 

draws on empirical evidence that the probability of patch colonisation decreases with 

increasing isolation from sources of colonists, and that the likelihood of extinction declines 

with increasing patch (and by assumption population) size (Williamson 1981, Schoener and 

Spiller 1987, Hanski 1994b and references therein). 

Incidence functions. 

Hanski (1991, 1992, 1994a,b, 1997a,b, 1998, Hanski, Moilanen, Pakkala and Kuussaari 

1996) has developed an alternative approach to the Levins model of metapopulation dynamics 

based on incidence functions (Diamond 1975), which originally described the change in the 

likelihood of species occurrence with changes in patch or island area (see also section 3.3). 

The incidence function models include patch-specific area and isolation measures, and are 

particularly attractive for use in real population systems, as they can be fitted using snap-shot 

patterns of occupancy that can be obtained from single surveys. From this it is possible to 

estimate other important parameters, such as rates of colonisation and extinction. They can 

also be easily modified to take account of other factors, such as the 'rescue effect' (Brown 

and Kodric-Brown 1977) which describes the reduction oflocal population extinction 

probability through immigration from surrounding occupied patches. Their practical value 

has been extensively demonstrated through the studies of endangered butterfly species in 

Finland by Hanski and his colleagues (e.g. Hanski, Moilanen, Pakkala and Kuussaari 1996) 
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as well as other insect species (Eber and Brandl 1996) and plants (Quintana-Ascencio and 

Menges 1996). 

Structured models. 

Structured metapopulation models (e.g. Hastings 1991, Gyllenberg and Hanski 1992, 

Gyllenberg, Hanski and Hastings 1997) improve realism by explicitly incorporating local 

population dynamics within individual populations of the metapopulation, as opposed to the 

binary occupancy variable of the patch models. These models allow for migration between 

populations to influence the local population dynamics. Although they come to broadly 

similar conclusions to patch models, they demonstrate the possibility of alternative stable 

equilibria (Gyllenberg, Hanski and Hastings 1997) and have shown that optimal levels of 

migration may exist which enhance metapopulation persistence (Hanski and Zhang 1993). 

The chief drawback of these models is the complex mathematics involved and the proliferation 

of parameters which are hard to estimate in the field (Gyllenberg, Hanski and Hastings 1997). 

Metapopu!ations and species interactions. 

Although most metapopulation models consider single species dynamics, theory has also 

suggested that metapopulation dynamics may have a profound effect on interactions between 

species in a metapopulation (Nee, May and Hassell 1997). The basic premise of these models 

is that metapopulation dynamics allow regional persistence of species in the face of an 

unstable local interaction, whether that interaction be inter-specific competition (Slatkin 1974, 

Hanski 1983) or predator-prey and host-parasitoid relationships (Hastings 1977, Murdoch 

1977, Crowley 1981, Sabelis, Diekmann and Jansen 1991, A.D.Taylor 1990, 1991). Some 

progress has also been made in extending these models to 'metacommunities' of many 

interacting metapopulations (Caswell and Cohen 1991, Holt 1993, 1995, 1997). There have 

been a limited number of studies that have shown evidence for these effects in field or 

laboratory systems (Hanski and Ranta 1983, Bengtsson 1989, 1991, Kareiva 1987, Holyoak 
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and Lawler 1996, van de Meijden and van der Veen-van Wijk 1997) but the difficulties in 

studying multi-species metapopulations are even greater than for single species systems and 

most of the theoretical ideas remain to be tested convincingly in natural systems. 

1.3 Dewponds. 

The application of metapopulation models to field systems requires the clear and 

unambiguous delineation of habitat from non-habitat (Harrison, Murphy and Ehrlich 1988, 

Hanski 1997b, see above and also Chapter 3). In contrast to many other systems, the 

boundaries of habitat patches are clearly defined for most inhabitants of isolated freshwaters 

such as ponds, although some species such as amphibians and beetles spend part of their 

lifecycle away from the water. The analogy between isolated freshwaters such as ponds and 

oceanic islands has been repeatedly drawn (Keddy 1976, Barnes 1983, Probert 1989). Ponds 

are found scattered across the landscape, and therefore make ideal test systems for the study 

of population dynamics at the landscape scale. This thesis is based on studies carried out on a 

particular type of pond, known as dewponds. 

Form and jUnction. 

Dewponds are small, shallow, man-made pools created to provide drinking water for 

livestock. They are found in areas with calcareous bedrock, which have little natural standing 

water due to the porous nature of the underlying rocks. The traditional construction method 

involved creating a saucer shaped depression in the earth which was then lined with layers of 

straw, sometimes with an additional layer of lime to prevent earthworms burrowing through 

the liner, followed by a layer of impermeable puddled clay, which gave the pond its water 

retaining abilities (Pugsley 1939). This top layer of clay was then protected from damage by 

the hooves of livestock by a layer of flint or limestone blocks or 'pitchers' (Hayfield and 

Brough 1987). There have been many variations on this basic construction scheme in 

attempts to improve the longevity and effectiveness of the ponds, and there is a certain 
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mystique surrounding the art of successful dewpond siting and construction; in some cases 

methods have been passed down through several generations of the same family (Pugsley 

1939, Hayfield and Brough 1987). Ponds with this type of construction are claimed to have 

existed in some areas since the 17th century, but most have more recent origins in the 19th 

and early 20th century (Hanney 1953, Darby 1968, Carpenter 1995), although ponds may 

have existed in the same sites much earlier. A more modern construction method that has 

become common in some areas is to create the impermeable liner from concrete, a practice 

that continued until the 1930s when construction generally declined or ceased (Darby 1968). 

The concrete ponds commonly have concentric ridges running intermittently around the liner 

to give a safe footing to livestock coming to drink from the ponds. 

The name given to the ponds implies that they are dependent on dew and condensation for 

their water supply. This is far from true, as has been demonstrated exhaustively by the 

studies of Martin (1915, 1930) and Pugsley (1939). In fact, the majority of the water 

contained in these ponds is derived from rainfall, either directly, or indirectly via runoff from 

the surrounding pastureland. The collection of rainwater is facilitated by the siting of the 

ponds, which are often found in areas which naturally collect water due to their relief, and 

also through the design of the ponds. In many cases the ponds are not full to the top of the 

liner and hence the remainder of the impermeable liner above the level of water acts as an 

effective collecting surface for channelling water into the pond basin. Some of the more 

recently constructed concrete ponds adjacent to roads have channels built into their liners 

which extend towards the road to collect runoff. 

Habitat, flora and fauna. 

The physico-chemical environment of the dewponds is fairly consistent with most ponds 

being circum-neutral or slightly alkaline (Macan and Macfayden 1941, Warren et al. in 

press); this may be due to the geology of the land or in the case of the concrete ponds, their 
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method of construction. The ponds often have a high conductivity as a consequence of 

fouling by livestock using the pond. 

The extent and diversity of vegetation in the dewponds is variable, possibly due to 

isolation from sources of propagules and disturbance by cattle which can easily wade through 

ponds owing to their generally shallow depth and small size. However in some ponds the 

vegetation is well developed, and a considerable diversity of plants, both aquatic and 

terrestrial, have been recorded from dewpond sites (Chicken 1996). Lemna minor L., the 

common duckweed, is commonly found in dewponds (Macan and Macfayden 1941, Chicken 

1996, Warren et al. in press) and often covers the entire surface of very eutrophic ponds, 

shading other plants. Submerged pondweeds, such as Potamogeton, Ranunculus, and Elodea 

are also found in more established ponds (Chicken 1996, Anderson and Shimwelll981, 

Warren et al. in press). In a survey of ponds in the Peak District, Warren et al. (in press) 

found that concrete ponds tended to have less diverse vegetation compared to clay lined ponds, 

possible due to the poor rooting substrate provided by the liner. 

Ponds that are neglected rapidly silt up and a successional sequence of terrestrial 

vegetation encroaches into the pond (Chicken 1996), often forming floating mats over the 

remaining water. Clay lined ponds are particularly vulnerable to this process as the plants 

can grow easily over the liner and subsequently down into the water. Concrete ponds seem 

less prone such encroachment; the liner above the water level may act as an effective barrier 

to colonisation by terrestrial grasses and other plants. A more detailed description of the 

ponds on which this study is based is given in section 2.6. 

The dewpond fauna has not been particularly well studied although some general 

observations have been published by Gillespie (1932) and Hanney (1953) on ponds in 

Wiltshire and the Chiltern Hills respectively, but only a few studies have provided any 

detailed information on dewpond faunas. The hemipteran fauna of a series of fifty dewponds 
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in Wiltshire and Sussex was studied by Macan and Macfayden (1941). They found a 

moderately diverse community in the ponds, including three species of Notonecta, and noted 

some habitat associations of the corixid fauna. Beebee (1977, 1997) has carried out surveys 

of ponds on the South Downs with regard to the diversity of amphibians. Because of the lack 

of other standing water, dewponds appear particularly important for newt species, including 

the great-crested newt, Triturus cristatus L and this, along with other newt species, also 

occurs regularly in dewponds in the Peak District (Peak National Park Authority, unpublished 

records). Warren et al. (in press) surveyed forty dewponds in the Peak District and found 

moderately diverse plant and invertebrate communities, with between I and 6 plant species 

and 8-27 invertebrate taxa per pond. They found that the method of construction (clay or 

concrete) had effects on the composition of the invertebrate communities, with groups such as 

Coleoptera and Diptera being more diverse in clay ponds and Hemiptera and Mollusca more 

diverse in concrete ponds. 

Dewponds in the Peak District. 

The Peak District is an upland area which fonns the southern part of the uplands known 

as the Pennines in Northern England. It was the first of the British National Parks to be 

designated (December 1950) (Edwards 1962). The Peak District can be separated into two 

distinct regions, based on geology. The Dark Peak is an area of rugged acidic moorlands, 

with millstone grit as the predominant underlying rock type. The White Peak is an area of 

carboniferous limestone, which has been eroded by rivers, forming numerous dales separated 

by rounded hills. In the Peak District, dewponds are found only on the limestone White Peak, 

and despite their relatively recent vintage they have been regarded as 'historic features' 

(Berger 1979). Indeed the Peak Park Joint Planning Board makes provision for their 

conservation as a landscape feature within the structure plan for the Peak National Park (Peak 

Park Joint Planning Board 1994). In this area they are still reasonably numerous in 
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comparison to other areas of calcareous upland, such as the South Downs (Beebee 1977, 

1997), and many are still used for their traditional purpose. The survey by Warren et al. (in 

press) found that the ponds with concrete construction were more numerous than the more 

traditional clay-lined ponds, and this observation has been confirmed by the survey work 

undertaken during this study. Some landowners actively maintain the ponds for use by stock, 

even to the extent of piping or transporting water to them in times of drought. There are very 

few larger waterbodies in the area, but ponds are generally close together, with the nearest 

neighbour being typically no more than a kilometre away. The present studies are based on 

surveys of dewponds across an area of 380km2 of the White Peak (see figures 1.1 and 1.2 and 

Appendix 1). 

Rates of loss. 

In the Peak District, despite the active use of many of the ponds, a large number have 

been lost in the past century, either neglected or removed and replaced by modem cattle 

troughs. This situation appears to be common to all districts containing dewponds, and is 

part of a more general decline in ponds and small water bodies of all types in Britain 

(Rackham 1986, Heath and Whitehead 1992, Boothby, Hull, Jeffreys and Small 1995). 

Across the country, agricultural intensification and the increasing availability of piped water 

to fill modem cattle troughs meant the dewponds declined in use. Following the decline in 

construction and maintenance of the dewponds in the 1930s (Darby 1968), there appears to 

have been little active conservation or upkeep of the ponds until relatively recently (Carpenter 

1995). Limited protection or restoration (Peak Park Joint Planning Board 1994, Carpenter 

1995) has failed to slow the decline in pond numbers. 

It has been estimated that the life of a dewpond is approximately 100 years (Darby 1968, 

1975), and the older clay construction ponds appear particularly susceptible to the silting and 

gradual succession characteristic of dewponds that are not actively managed (Chicken 1996). 
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Figure 1.1 Map of the study area of the Peak District, showing the locations of the dewponds 
sampled during field surveys 1992-1998. The size of the grid squares is 5km2

. Figures along 
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Figure 1.2 Examples of Peak District dewponds, a) typical concrete lined pond, b) typical 
clay lined pond, note grass growing down edges of liner, c) clay lined pond with extensive 
submerged vegetation (Potamogeton spp.), d) neglected dewpond, showing mats of terrestrial 
vegetation which have developed as the pond silted up. 



Figure 1.2 Continued. 



The drought conditions of recent summers have probably increased the rate of dewpond loss. 

Despite their fabled water retaining abilities (Martin 1915, 1930, Pugsley 1939) immortalised 

in Kipling's poem, Sussex (1903), many of the ponds in the Peak District and other areas have 

dried out completely at least once in the last five years. Once dried out, the exposed pond 

liners, particularly in the clay lined ponds, are vulnerable to cracking, which is difficult to 

reverse. Concrete lined ponds are affected in a similar way by the action of frost, and many 

of the liners show signs of repair from cracking, with varying success. 

Rates of loss are difficult to estimate, given the general lack of recording and mapping of 

dewpond locations. However the data that are available for recent periods all show high rates 

of loss occurring. Figure 1.3 shows a comparison of rates of loss for the South Downs 

(Beebee 1977, 1997), the Yorkshire Wolds (Chicken 1996) and the White Peak (Peak 

National Park Authority, unpublished survey). It can be seen that the density of ponds varies 

widely; the largest area surveyed, 150 km2 of the South Downs (Beebee 1977, 1997) has the 

lowest density of ponds, whereas the density of ponds in the area of the White Peak surveyed 

(30km2) was very high during the 1970s, and despite the considerable losses is still of 

comparable density to other areas such as the Yorkshire Wolds, but the rate of loss appears to 

be higher than for other areas. 

1.4 Biology of Notonecta. 

Many species of pond organisms are capable of actively dispersing between sites, 

particularly highly mobile orders such as the Hemiptera and Coleoptera (Brown 1951, 

Popham 1951, 1952, 1953, 1964, Fernando 1958, 1959, Nurnberger 1996, Briers 1997), and 

hence may exhibit metapopulation characteristics. This thesis focuses on two species of 

Notonecta (Hemiptera: Heteroptera, Notonectidae), Notonecta maculata Fabricius and N 

ob/iqua Gallen which are common components of the dewpond fauna in the Peak District. 
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field verification of pond presence. Sources: South Downs, area of survey approximately 150 
krn2

, data derived from Beebee (1977, 1997), Yorkshire Wolds, area of survey 30 krn2
, data 

derived from Chicken (1996), White Peak area of the Peak National Park, area of survey 16 
krn2

, data derived from unpublished survey work by the Peak National Park Authority and 
personal survey work. 



Figure 1.4 Dorsal view of adult Notonecta, a) Notonecta obliqua, b) N. maculata, showing 
hemielytral patterns used in identification. Scale bar = 10mm. 



Distribution and life cycle. 

Species in the genus Notonecta, are commonly known as back-swimmers or greater 

water-boatmen. There are 63 species of Notonecta and a further 14 subspecies, which are 

widely distributed around the world, with species found in the majority of landmasses in both 

hemispheres (Hungerford 1933). Notonecta are primarily found in still or slow flowing 

freshwaters, although one species successfully inhabits brackish water. They are easily 

distinguished from other aquatic Hemiptera by their habit of swimming on their backs. Only 

the much smaller Pleidae and Helotrephidae share this habit, and these can be distinguished 

from Notonecta by the hemielytra, which are joined apically (Hungerford 1933). 

There are four species found in Britain, plus one variety. The following distributional 

information is summarised from Southwood and Leston (1959) and Savage (1989). N 

glauca L. is the most widespread species, found in a variety of habitats throughout the 

country, mainly in lowland areas. N obliqua (and its variety delcourti) tends to replace N 

glauca in higher and more northern regions, and is generally less abundant. N maculata 

tends to be found in barren or stony habitats, and is primarily a southern species, being absent 

from Scotland and infrequent in northern England. The final species N viridis Delcourt is 

again largely found in the south of the country, although there is evidence that it may be 

extending its range further north and inland (Pearce and Walton 1939, P.Kirby, personal 

communication, R.A.Briers, unpublished records). The chief habitat of this species is 

brackish pools and other waterbodies in coastal areas. 

The lifecycIe is wholly aquatic, although the adults are capable of flight. The British 

species of Notonecta have a single generation per annum with five nymphal instars which 

develop through the summer months. Adults overwinter, and oviposition occurs in the 

autumn and in the spring, depending on species. The life cycles of N maculata and N 
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obliqua have been described by Walton (1936) and Southwood and Leston (1959) with 

additional information from Giller (1979) and are summarised in figure 1.5. 

Respiration and locomotion. 

Notonecta are air breathers, maintaining an air store under the forewings and on the 

ventral surface of the body (which due to the peculiar orientation is functionally the dorsal 

surface), where air is trapped under long hairs extending from either side of the abdominal 

sternites. The air supply is renewed by visits to the surface, where the posterior tip of the 

abdomen breaks the surface film and the hairs part, allowing the supply to be replenished. 

This store is supplemented by the action of the abdominal air bubble as a physical gill. 

However the physical gill is rather inefficient, particularly at higher temperatures, showing a 

more rapid decline in efficiency with increasing temperature than that of Corixa punctata 

(Illiger) or Ilyocoris cimicoides (L.) (Popham 1964). 

Notonectids are active swimmers, using the long flattened meta thoracic legs, positioned at 

the centre of the triangular cross sectioned body, and fringed with long swimming hairs. The 

bugs move with a jerky rowing action, interspersed with pauses, during which the positive 

buoyancy created by the air stores causes them to float back towards the surface. The muscle 

structure and articulation of the front and middle legs are adapted for capture and 

manipulation of prey organisms (Gittleman 1974, Gorb 1995). 

Feeding. 

Notonecta are all exclusively predaceous, feeding on both a wide range of aquatic prey 

and terrestrial prey trapped in the surface film (Hungerford 1933, Walton 1943, Southwood 

and Leston 1959, Fox 1975a), the latter being facilitated by their orientation. Individual 

species have been used in investigations of general predator-prey theory (Cook and Cockrell 

1978, Fox and Murdoch 1978, Murdoch and Sib 1978, McArdle and Lawton 1979, Giller 

1980, Sib 1982, 1984, Chesson 1989, Streams 1994) and also as potential biological control 
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Figure 1.5 Life cycles of a) N maculata, b) N obliqua. Infonnation derived from Walton 
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agents for mosquito larvae (Ellis and Borden 1970, Toth and Chew 1972). However the 

majority of this work has been laboratory based, with one or a small number of prey species, 

and less is known about the diet of Notonecta in the field. This is largely due to the method of 

feeding, which in common with the majority of hemipterans, involves piercing their prey with 

stylet mouthparts and extracting the body fluids, making visual analysis of gut contents 

impossible. Giller (1982, 1986) addressed this problem by using electrophoresis as a method 

of determining the qualitative composition of the diet of insects in the field. Despite the well­

cited polyphagous nature of notonectid predation, it was found that although a wide range of 

prey items may be taken, the bulk of the diet consisted of one or two prey types only (Giller 

1986). The results of laboratory investigations into selective predation by Notonecta also 

suggest that relative attack rates for different prey are inflexible, i.e. its predatory behaviour is 

stereotyped (Scott and Murdoch 1983, Murdoch, Scott and Ebsworth 1984) and hence the 

natural diet may be more restricted than previously imagined. 

Dispersal. 

Adult Notonecta are strong fliers, capable of dispersing and colonising new habitats 

easily. Studies of the colonisation of new freshwater habitats have found that Notonecta may 

be among the first species to arrive at new sites (Macan 1939, Fernando 1959, Barnes 1983). 

The Notonectidae show some polymorphism in the development of wing muscles (Young 

1961) along with other aquatic hemipteran groups such as Corixidae (Young 1965) and 

Gerridae (Brinkhurst 1959, Fairbairn and Deslanreau 1987) and hence there is potential for 

dispersal ability to vary between species. It has been shown for the Corixidae that there is a 

relationship between the dispersal ability and the type of habitat occupied in terms of stability 

and permanence, with species found in temporary waterbodies having a greater tendency to fly 

(Macan 1939, Brown 1951, Popham 1951, Fernando 1958, 1959). There is also some limited 
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indirect evidence for similar variation in species of Notonecta (Streams and Newfield 1972, 

Streams 1987b). 

Dispersal of Hemiptera, including Notonecta, tends to occur on warm, calm days 

(Fernando 1959, Popham 1964) suggesting a strongly seasonal pattern, with dispersal 

occurring in spring for the overwintered adults and in summer to autumn during favourable 

weather for the new generation of adults. Throughout the period of nymph development, 

dispersal is negligible as most of the overwintered adults will have died. Hemipterans appear 

to react to the development of thermal gradients in the water, choosing to occupy the warmest 

water in advance of dispersal (Fernando 1959, Popham 1964), presumably warming their 

flight muscles in preparation for flight. Notonecta take to the air directly from the surface of 

the water, individuals inverting themselves and drying their wings before attempting flight, 

unlike corixids which often crawl out of the water before dispersing (Popham 1964). There is 

a threshold temperature which must be reached before flight can be successfully initiated. 

Popham (1964) states that N glauca failed to fly until water temperatures exceeded 18°C. N 

obJiqua and N viridis apparently have similar flight threshold temperatures, but N maculata 

requires a higher temperature (approximately 20°C) before it will fly (Southwood and Leston 

1959). The wingstroke in Heteroptera, including Notonecta, is highly automated, and the 

associated musculature relatively simple compared to other pterygotes, and hence flight is not 

particularly versatile (Betts 1986a). 

Once in flight, dispersing notonectids locate bodies of water using visual cues (Walton 

1935). In common with many other bugs and beetles inhabiting water or a moist substrate, 

they detect water by the polarisation pattern of light reflected by the water surface (Schwind 

1991, Horvath 1995). Light polarised in the horizontal plane causes Notonecta to exhibit the 

'plunge reaction' (Schwind 1984) where the wings are rapidly folded back onto the abdomen 

and the bug drops into the water. Walton (1935) describes how individuals of N maculata 
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were seen to gain height having located a waterbody, before dropping into the water, 

purportedly to increase the chances of successfully breaking through the surface film. Unlike 

other Heteroptera, the wings of Notonecta are not folded flat over the abdomen, but instead fit 

closely along the sides of the abdomen, aided by an additional line of flexion in the region of 

the clavus (Betts 1986b), maintaining a streamlined shape suited to rapid locomotion under 

the water. 

1.5 Overview of this study. 

The aim of this thesis was to determine the extent to which the patterns in regional 

population dynamics of Notonecta in Peak District dewponds conform to the assumptions of 

standard metapopulation models, by examining the relative roles of within population (local) 

and between population (landscape or mesoscale) processes in influencing occupancy and 

distribution of Notonecta over a regional area. 

The following chapter provides an overview of the methods used throughout this work and 

also gives some supplementary information on the biology of the species and the study 

system. Habitat preferences of the two species are explored in Chapter 3, in an attempt to 

determine the extent to which habitat influences pond occupancy, and define 'suitable habitat' 

for the species at the landscape scale. Chapter 4 focuses on the spatial population dynamics 

of Notonecta in relation to the proposition that they persist over a regional area as a 

metapopulation, and examines the processes driving the extinction of local populations and 

colonisation of unoccupied ponds. Competitive interactions between the two species of 

Notonecta are explored in Chapter 5, given the potential impact of competition on field 

population distributions and regional coexistence in a metapopulation. Chapter 6 provides a 

broader view of variation in the structure of dewpond communities, with reference to 

associations between predatory Notonecta and the rest of the invertebrate 'metacommunity'. 

The final chapter summarises the results of these investigations, with respect to the relative 
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role of local and regional processes in influencing landscape distribution patterns of 

Notonecta in the dewponds, and sets them within the broader context of meta population 

theory. 
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2. General methodology and biological background. 

2.1 Introduction. 

This chapter provides some background information on the biology of the study species 

and the dewpond habitat, and describes the general methods and techniques that were used 

throughout this study. 

2.2 Laboratory rearing of Notonecta. 

Several parts of this study required nymphs and adults of both species of Notonecta to be 

maintained in the laboratory and the following methods were used throughout. Adult 

Notonecta, collected from field sites, were kept separately in groups of between 10 and 20 

adults in large aquaria (45x30x30cm) containing approximately 40 litres of water. Strips of 

plastic mesh (mesh size approximately 4cm) were placed in the tanks to provide perch sites. 

The adults were fed a mixture of Daphnia magna Straus and a variety of nymphal and 

adult Corixidae (mainly Corixa punctata [Illiger] and Sigara nigrolineata [Fieber]), all of 

which were obtained from field sites. Other food sources such as Asellus aquaticus (L.) were 

used on occasion. All aquaria were maintained under semi-natural lighting conditions at 

temperatures varying seasonally between 8 and 20°C. 

In order to obtain nymphs, adults were collected in early spring each year and brought 

into the laboratory. The adults were observed intermittently and when they were seen to be 

mating a variety of suitable oviposition substrates was placed in the tanks (see also section 

3.4). At intervals the substrates and attached eggs were removed, the eggs detached gently 

from the substrates using fine forceps and placed in separate smaller containers under similar 

conditions to the adults. 

When the nymphs hatched, they were transferred using a wide necked pipette into 

transparent plastic cups containing 200ml of water and a small piece of plastic netting (mesh 
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size approximately 5mm) to provide perch sites. Instar I nymphs were fed with D. magna 

obtained from field sites and laboratory cultures. Food density was kept high to reduce 

cannibalism which can be a major source of nymph mortality throughout development (Fox 

1975a,b, Giller 1979). Subsequent instars were raised individually in the same plastic cups 

and fed a mixture of D. magna, instar I-III C. punctata nymphs and small Sigara spp. adults 

(mainly s. nigro/ineata) depending on their size. When they reached the adult stage they were 

returned to the large aquaria in groups as detailed above. 

2.3 Nymph identification. 

Although the adults of N maculata and N ob/iqua are easily distinguished by the 

patterns of their hemielytra (Savage 1989), with additional characters provided by the 

genitalia (Macan 1965, Savage 1989), the nymphs are less easy to separate. 

First instar nymphs can be separated on the basis of ventral abdominal colouration (Giller 

1979, personal communication) as shown in figure 2.1. In an attempt to develop a key to the 

nymphal instars, the two species were reared and samples of all instars preserved in 70% 

alcohol for subsequent examination and description. Rice (1954) and Streams (unpublished 

key) give a number of key taxonomic characters for separation of nymphs of Michigan and 

New England Notonecta respectively, but none of these proved valid for the British species 

under consideration. However the two species can be separated in instar V by the extent of 

colouration of the hind tarsus (see figure 2.2). The dark colouration at the distal end of the 

hind tarsus extends over one-fifth of the total length in N macu!ata, usually reaching the end 

of the anterio-ventral group of stout setae. The colouration extends no more than one-eighth 

of the total length in N obliqua. This character is consistent in all nymphs of instar V except 

those on the verge of the adult moult, when the colouration is difficult to distinguish due to the 

development of the adult legs under the nymphal cuticle. 
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Figure 2.1 First instar Notonecta nymphs, showing approximate extent of coloration on 
ventral surface of the abdomen. a) N obliqua, b) N maculata. After Giller (1979) and 
personal observations. Scale bar = Imm 
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Figure 2.2 Hind tarsi of fifth instar Notonecta species, a) N maculata b) N ob/iqua, 
indicating extent of dark coloration at distal end of the tarsus. Swimming hairs omitted for 
clarity. Scale bar = Imrn. 



2.4 Age:head width relationships. 

The samples of nymphs taken for the purpose of identification were also used to produce 

age (instar):head width relationships for both species. The instars are generally easy to 

separate on the basis of size, but size within instar can vary significantly with feeding regime 

(Toth and Chew 1972, Fox and Murdoch 1978) and hence formalisation ofinstar sizes was 

preferable for identification purposes. The nymphs used had been raised on consistent feeding 

regimes throughout their lives and hence provide a standardisation for the laboratory reared 

nymphs. Field samples of nymph instars were of similar average size but may show greater 

size ranges due to natural variation in food availability. Figure 2.3 shows the derived 

relationships using natural log transformation of head widths. There is a significant difference 

between the mean head width of the two species in all instars (two-way ANOVA, species term 

F[I. 193] = 246, P < 0.001; Tukey test, p < 0.05), with nymphs of N ob/iqua being larger in all 

stages. 

2.5 Field sampling techniques. 

A large part of this study uses data derived from field surveys of dewponds. In order to 

be able to effectively sample the population ofnotonectids in a given site, a 10m long x 1m 

deep seine-type net was constructed. A flexible lead-cored rope provided weight (50g per 

metre) at the bottom of the net, allowing it to trail along the pond substrate, even when it is 

uneven. The top of the net is supported at the water surface by a series of square expanded 

polyethylene floats which prevent organisms from escaping over the top edge of the net. The 

net itself is constructed of2mm polyester rot-proof mesh. In use the net was spread out 

around the edge of the pond with one end attached to a metal peg embedded in the pond bank. 

The free end was then slowly drawn across the pond and back towards the tethered end, and 

then gathered in until only a small amount of the net remains in the water. Both edges of the 

net were drawn in together to form a 'bag' which contained all the captured organisms. This 
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Figure 2.3 The relationship between mean head width (W) and instar number (1) for N. 
maculata andN. ob/iqua. Head widths were natural log transfonned. The standard errors 
are smaller than the symbols. Regression lines fitted by linear least squares regression, 
regression equations are; N. maculata: W = -0.183 + 0.297 I, F[1.8S] = 17907,p < 0.001, If = 
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bag was lifted clear of the water and the contents placed in a holding bucket for subsequent 

sorting. This method of sampling proved to be highly effective in the majority of the ponds 

surveyed. However it did not perform as well in ponds with abundant vegetation as the net 

rode up over the vegetation, allowing organisms to escape under the bottom edge. Therefore a 

three minute timed pond net sample was used in such environments, with all collected 

organisms removed to a holding bucket prior to sorting. 

The two sampling techniques are not necessarily directly comparable and tests were 

carried out in order to compare the relative efficiency of the two methods. An individual 

notonectid, marked on the elytra with a waterproof marker pen, was released into a pond and 

left for ten minutes before sampling began. The tests were carried out in the largest pond 

sampled during the study, with little submerged vegetation cover, and hence in smaller ponds 

with similar habitat the efficiency of the techniques are likely to be higher. 

Standardised sampling units were defined for each technique; for the seine-type net this 

consisted of one sweep of the net through the pond. For the pond net the standard sampling 

unit was a one minute timed pond net sweep, consisting of four fifteen second sweeps in 

different areas of the pond taken at equal intervals round the perimeter of the pond. The 

sweeps were carried out in a zig-zag fashion in concentric arcs from the sampling position, 

through the middle of the water column. For each technique this standard unit was carried out 

repeatedly until the notonectid was recovered. This allows the probability of recapture per 

sampling unit to be calculated (see figure 2.4). From this figure it is clear that the two 

techniques do not have comparable efficiencies in ponds of this type, with the seine-type net 

showing a much higher efficiency of recapture. However the use of the pond net is the only 

viable option in ponds with submerged vegetation cover, but this technique has a generally 

lower probability of recapture, even in ponds without submerged vegetation. Therefore the 
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Figure 2.4 The relationship between number of standard sampling units (SSU) and 
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differences in the sampling techniques have been taken into account when drawing 

conclusions from survey data in subsequent sections. 

2.6 Habitat survey and dewpond characteristics. 

In addition to recording pond occupancy by the species of Notonecta, a range of habitat 

variables were recorded at each site during the pond surveys. Pond basin and wetted width 

were estimated by pacing, and water, mud and Secchi disc depth measured at the centre of the 

pond using a graduated pole. Percentage cover of mud and macrophyte species were 

estimated visually. Conductivity and pH were recorded as the mean of five measurements 

taken at intervals around the pond using a portable meter. Altitude was estimated from 

1 :25,000 Ordnance Survey maps. 

These data are used in several subsequent sections, but a summary of the habitat variables 

recorded in each survey year is given in figure 2.5. The box-plots summarise the habitat 

variables recorded in surveys of68 dewponds during July and August 1996-1998. The filled 

symbols offset from the box-plots describe the habitat variables recorded from a subset of 32 

of the dewponds where the habitat variables were recorded in 1992, 1996, 1997 and 1998. 

The data for 1992 was obtained from the survey by Warren et al. (in press). Altitude and 

other variables that did not change over the survey period, such as pond basin width, are not 

included in the figure. Changes in the variables between survey years are generally 

consistent, whether they were calculated for all 68 ponds, or the subset of 32. Most of the 

variables showed no directional trends over the survey period, with the exception of 

percentage cover of mud which showed a significant increase over the survey period (linear 

least squares regression, Fh, 124] = 30.0,p < 0.001, R2 = 0.19, calculated for the subset of32 

ponds). 
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2.7 Seasonal population dynamics. 

Figure 2.6 shows the seasonal changes in the proportions of different instars in the 

dewponds for 1996. The data are derived from monthly samples ofnotonectids collected from 

18 dewpond sites. At each site efforts were made to collect at least 50 nymphs, and these 

samples were pooled to give totals of different instars across all the dewponds. No attempt 

was made to differentiate between the species and hence the data are for the combined 

populations of both species. The timing of hatching varies with the prevailing environmental 

conditions, particularly temperature (Sjogren and Legner 1989) and development of 

notonectids is dependent on food availability (Toth and Chew 1972, Fox and Murdoch 1978), 

but nymphal development generally takes between two and three months, with the first adults 

appearing in mid July. 
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3. Habitat preferences. 

3.1 Introduction. 

This chapter examines the habitat preferences of species of Notonecta in dewponds, in 

terms of habitat characteristics, and patterns of incidence in ponds of different area (incidence 

functions). I also explore one potential mechanism of habitat selection, oviposition substrate 

preferences, which may influence reproductive success in different habitat types. 

Habitat fragmentation, either natural or anthropogenic, results in species occurring as 

multiple populations, in discrete habitat patches over a geographic area. The distribution of a 

species in such a situation is influenced by the amount of suitable habitat available and its 

spatial distribution (Dunning, Danielson and Pulliam 1992, Webb and Thomas 1994, 

Kozakiewicz 1995). Where a species regional distribution is determined by a balance of 

colonisation and extinction of local populations, the species is considered to be a 

metapopulation (Hanski 1991, Harrison 1994, see section 1.2). Most of the models used to 

describe metapopulation dynamics make the simplifying assumption that all habitat patches 

are suitable for occupancy. In order to begin to be able to apply these models to field 

population systems, a clear and unambiguous method of grading habitat suitability is 

required, to allow distinctions to be made between patches of habitat that are suitable but 

presently unoccupied, and those that are unsuitable (Harrison, Murphy and Ehrlich 1988, 

Lawton and Woodroffe 1991, B.Taylor 1991, Thomas, Thomas and Warren 1992, Hanski 

1997a,b, Hanski and Simberloff 1997). However there is a growing awareness that 

metapopulation studies should take into account more explicitly the underlying habitat mosaic 

that the species inhabit (Wiens 1997) and that the models need to incorporate aspects such as 

patch area, isolation and habitat quality (Hanski 1994a,b, 1997a,b, Hanski, Kuussaari and 

Nieminen 1994, Gyllenberg and Hanski 1997, Moilanen and Hanski 1998). 
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Detailed autecological information, which would allow a priori definition of suitable 

habitat for a particular species, is very rarely available and most approaches to this problem 

rely on the use of multivariate statistical techniques to define the range of the habitat 

characteristics of suitable sites, based on observed patterns of occupancy (Harrison, Murphy 

and Ehrlich 1988, Jeffries 1989, Lawton and Woodroffe 1991). However, patches that are 

not capable of supporting a breeding population may be occupied temporarily, or even over 

many generations, through sustained immigration from surrounding patches, which offsets the 

population decline that would otherwise occur. Such patches, known as sink habitats 

(Pulliam 1988), complicate the assessment of habitat suitability based on occupancy patterns 

and may also be of ecological significance in terms of regional persistence and distribution 

patterns in their own right (Pulliam 1988, Howe, Davis and Mosca 1991). Definitions of 

habitat suitability are often linked to the reproductive success of a species at a site 

(Southwood 1977, Kozakiewicz 1995) and it is probably most ecologically useful to define 

'suitable habitat' as those patches able to support a local breeding population. 

Within the patches of suitable habitat, the effect of patch area on species occurrence is 

often considered separately (e.g. MacArthur and Wilson 1967, Hanski 1994a,b). All other 

things being equal, the area of a habitat patch imposes an upper limit on the population size, 

regardless of habitat quality, and hence there is a minimum patch area, below which a 

population cannot persist (MacArthur and Wilson 1967, Diamond 1975, Williamson 1981, 

B.Taylor 1991, Hanski 1994a). Diamond (1975) first described the species 'incidence 

function' - the pattern of increasing probability of occurrence with increasing island or habitat 

patch area, which has since been documented for a wide range of taxa (Diamond 1975, Gilpin 

and Diamond 1981, Adler and Wilson 1985, B.Taylor 1991, Hanski 1991, 1992, 1994b). 

Incidence functions typically take the fonn ofa sigmoidal curve (Gilpin and Diamond 1981, 

B.Taylor 1991), but individual species show considerable variation in the shape and slope of 

their incidence function, reflecting differences in area requirements, and these differences have 
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been interpreted in tenns of species biology (Diamond 1975, Gilpin and Diamond 1981, 

Hanski 1992). 

In a broad sense, notonectids are ecologically very similar (Hungerford 1933, Gittleman 

1975). However at the level of the individual species, there are still important differences in 

aspects of their ecology, including habitat preferences (Giller and McNeill 1981, Savage 

1989). Preferences for different habitat types may be evident as spatial segregation of species 

in relation to habitat within a patch (Streams 1987b) or on the basis of the patches occupied 

over a regional area (Taylor 1968, Streams and Newfield 1972, Giller and McNeill 1981). 

The size and pennanence of habitat patches may also influence the distribution of species, 

with some species being characteristic of small and temporary waterbodies while others are 

generally found in larger waterbodies such as lakes (Southwood and Leston 1959, Streams 

and Newfield 1972, Streams 1987b). Adult Notonecta are capable of dispersing over a wide 

area, and hence selection of particular habitat types may be initiated by ovipositing females 

via the selection of certain oviposition substrates (Walton 1936, Streams 1987b), given that 

different methods of oviposition and oviposition substrates are used by different species 

(Hungerford 1933, Walton 1936). 
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3.2 Habitat characteristics. 

In this section I aim to explore the habitat preferences of the two species of Notonecta in 

the dewponds using multivariate techniques, to quantify habitat suitability and hence provide 

a robust definition of 'suitable habitat' for use in subsequent sections. 

3.2.1 Methods. 

Pond survey. 

The habitat preferences of N maculata and N oh/iqua were investigated using data on 

pond occupancy and habitat variables collected in surveys of 68 dewponds carried out in July 

and August 1996-1998 (see sections 2.5 and 2.6 for more details). Adult notonectids were 

identified by the hemielytral patterns (Savage 1989) and returned to the pond. In addition to 

identifying the adult notonectids present in a pond, samples of instar V nymphs were also 

taken, preserved in 70% alcohol and identified in the laboratory at a later date, using the 

taxonomic characteristics detailed in section 2.3, to confinn that the species found as adults 

were breeding in the sites. 

Data analysis. 

Associations between habitat variables and pond occupancy by the two notonectid species 

were investigated using two methods of analysis; principal components analysis and logistic 

regression. 

Principal components analysis (peA) was carried out using habitat variables that were 

identified from the available literature (summarised in Giller and McNeill [1981] and Savage 

[1989]) as potentially influencing habitat selection by the two species of Notonecta, with the 

exception of pH, which did not show substantial variation (ponds were generally circum­

neutral to slightly alkaline), and hence was excluded from the analysis following initial 

testing. The variables included were pond width, mud depth, water clarity, conductivity and 
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submerged vegetation cover. The peA was repeated with other variables included in the 

analysis but in all years the inclusion of other variables did not markedly alter the overall 

ordination and hence the initial combination of variables was used. In this situation, by 

selecting the variables for entry into the analysis, peA is used in a confirmatory manner 

(Tabachnick and Fidell 1996) where the interest is in revealing the patterns of variation in the 

variables relevant to the question being asked (in this case the habitat preferences of the two 

species), rather than to summarise the variation within the entire dataset (exploratory peA). 

Suitable habitat was defined by drawing the minimum polygon that enclosed all the pond 

occupied by the species on a plot of the first two components of the peA. 

Logistic regression (Hosmer and Lemeshow 1989, Trexler and Travis 1993) was also 

applied to the analysis of habitat preferences, using the presence or absence of species as the 

binary response variable. Logistic regression was preferred to discriminant function analysis 

as it generally perfonns better under conditions of multivariate non-normality (Press and 

Wilson 1978, Tabachnick and Fidell 1996), which is the case in the dataset under analysis. 

Habitat variables were entered into the model using a forward stepwise procedure based on 

the likelihood ratio test. The probability for entry of variables into the model was set at p = 

0.1 to avoid excluding potentially important variables which may result from using more 

stringent significance levels (Hosmer and Lemeshow 1989). A separate binary logistic 

regression model was fitted for each species. The use of multinomial logistic regression, 

which allows the response variable to take three or more values, would have allowed separate 

models to be fitted to distinguish between ponds occupied by one or other of the species and 

those occupied by both, but the iterative algorithm used for parameter estimation failed to 

converge to a stable solution and hence no further analysis by this method was possible. 
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3.2.2 Results. 

Principal Components Analysis. 

Plots of the first two components of the peA of habitat variables for 1996, 1997 and 

1998 are shown in figures 3.1 to 3.3. Table 3.1 gives the peA summary statistics for each 

year. The habitat variable loadings on the first two principal components are highly 

correlated in different survey years, indicating that the variation in the habitat characteristics 

summarised by the ordination was very consistent between years, even if the habitat 

conditions in individual ponds changed. Although the first two components only accounted 

for just over 50% of the variance in all years, the ordination suggests that the two species do 

have different habitat preferences and despite considerable changes in the identity of the 

occupied ponds, the pattern of separation of the species is very similar in each year. In all 

years the maximum separation of the species is on the second component. The habitat 

variable loadings for this axis suggest that N maculata is predominantly found in smaller 

ponds with little mud cover and submerged vegetation, whereas N ob/iqua prefers larger 

habitats with higher mud cover and abundant submerged vegetation. The species show 

substantial overlap on component 1 suggesting less pronounced preferences. Subsequent 

components of the peA were examined but no clear separation of the species was observed on 

these axes and hence no attempt was made to interpret them. 

The habitat preferences of the two species, as defined by the peA, are not mutually 

exclusive, there is some degree of overlap in occupancy and there is temporal variation in the 

amount of overlap. Ponds where the two species occur together are generally intermediate in 

terms of ordination position to those occupied by one or other of the species. In 1997 and 

1998 there is a higher degree of overlap between the ordination position of the ponds occupied 

by the two species and also in terms of the number of ponds where both species are found (12 
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ponds as opposed to 6 in 1996) and hence the separation of the species in tenns of habitat 

occupied is less clear. 

Table 3.1 Summary statistics for principal components analysis of habitat data., a) 
cumulative percentage variance explained by each component, b) component loadings for 
habitat variables included in the analysis. 

Year 1996 1997 1998 

PC 1 PC2 PC 1 PC2 PCl PC2 

a) Cumulative % variance 31.1 54.1 30.9 55.8 36.0 57.6 

b) Variables 

Pond width -0.033 0.633 -0.060 0.438 -0.031 0.404 
Mud depth -0.310 0.625 -0.256 0.474 0.177 0.670 
Water clarity 0.678 0.091 0.706 0.092 -0.661 0.055 
Submerged vegetation 0.453 0.437 0.431 0.647 -0.566 0.460 
Conductivity 0.487 0.092 -0.497 0.395 0.458 0.417 

Logistic Regression. 

The results of the logistic regression analyses are given in table 3.2. Significant logistic 

regression models were fitted to the data in all years. Details of the model parameters at each 

step of the model building procedure have been omitted for the sake of clarity. 

The fitted logistic regression models also suggest that pond occupancy by the two species 

is influenced by different habitat variables and hence that they have different habitat 

preferences. The regression coefficients (~) indicate the direction of influence of habitat 

variables on the probability of pond occupancy. For N. macuiata, mud depth and 

conductivity have negative coefficients, indicating that the probability of occupancy decreases 

with increasing mud depth or conductivity, and water clarity has a positive coefficient, 

suggesting that N. maculata is more likely to occupy ponds with clear water. For N. obliqua 

all the variables included in the models have positive coefficients, hence the probability of 

occupancy increases with increasing values of percentage cover submerged vegetation, pond 

width and water depth. 

30 



4~--------------------------------------------~ 

3 -

2 -

N 
t: 1-
Q) 
c: o a. 
g 0-
o 

-1 -

-2 -

-3 

-3 

o 

o 

I I 

-2 -1 

". " . ..... . : 
........ '. ~ 

I I 

0 1 

Component 1 

I 

2 

Predicted 
o unoccupied 

• N. maculata 
• N.obliqua 
• Both species 

I 

3 4 

Figure 3.1 Plot of the first two components from PCA of habitat variables of ponds in 1996. For 
details of the PCA see table 3.1. Lines enclose groupings of ponds according to the species 
breeding. 
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Figure 3.2 Plot of the first two components from PCA of habitat variables of ponds in 1997. For 
details of the PCA see table 3.1. Lines enclose groupings of ponds according to the species 
breeding. 



4~----------------------------------------------~ 

N .... 
c: 
Q) 
c: 

3 -

2 -

1 -

8. 
E 
o 0-
() 

-1 -

-2 -

........ ~. 
/' \ 

// \ 
.......... '\ 

/' -....... . 
.""'" \ 

ri \ 
i • \ 
i ---~ \0 

o 

Predicted 
o unoccupied 

• N. macu/ata 
• N.ob/iqua 
• Both species 

I _--- \ '\ 
. - \. 0 
! _----- \ \. 0 0 
' .. _-- ........ \, JJ.\ 

_'>.'-; ..... G\ -. 10 '. ....... "\ tp 
~ '.. ......... • ~).o ~...... " .......• l~'~:O ............ ..... /~n ............ _ .>" ._ ._._. ~.fo /;"CT 

- ........ ~.-.- 0 
-..;.;~ 0 : ...... / :............ ..1 ....... 'I 
\ ............ . ..... :. ...... ............... _. 1 
i ................. · .... · .... ............ ~I 

-3~------.-,-----.1------'1-------1r------.-,-----.,------~ 

-4 -3 -2 -1 0 1 2 3 

Component 1 

Figure 3.3 Plot of the first two components from PCA of habitat variables of ponds in 1998. For 
details of the PCA see table 3.1. Lines enclose groupings of ponds according to the species 
breeding. 



Those variables that enter the model in more than one year always have the same direction 

of influence on the probability of occupancy, suggesting that the preferences for individual 

habitat variables remain similar between years. However, although some variables appear to 

consistently influence the probability of pond occupancy, for example percentage cover of 

submerged vegetation for N obliqua (see table 3.2), the variables entering the models are 

different in different years. This may be the result of changes in the relative importance of the 

habitat variables in determining occupancy in different years, but alternatively may reflect 

stochastic variation in the patterns of occupancy and pond habitat. 

Comparison o/Techniques. 

The primary separation of the species on the peA is on the second component, which has 

high loadings for percentage cover of submerged vegetation, mud depth and pond width, and 

the first two of these variables are also consistently important in the logistic regression models 

of occupancy (see table 3.2). This would suggest that the two techniques of defining 'suitable 

habitat' are identifying similar trends in the data. In order to test whether the two methods of 

analysis give similar definitions of 'suitable habitat' for the two species, predicted pond 

occupancy was derived from the logistic regression models. By entering the habitat variables 

for each site into the fitted logistic regression equations, a probability of occupancy is 

obtained. This can be used to predict occupancy; typically the cut-offprobability is 0.5 

(Hosmer and Lemeshow 1989, Tabachnick and Fidell 1996). Therefore any site with a 

predicted probability of~ 0.5 was defined as suitable habitat. This process was repeated for 

each species in each year. Although sites where the two species co-occur are not defined 

directly by the logistic regression models, indirectly they are defined as those ponds where 

both species are predicted to be found. 
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Table 3.2 Results of forward stepwise logistic regression of pond occupancy in relation to 
habitat variables. a) Significance oflogistic regression model. Model G2 = log-likelihood 
ratio of the model, df = degrees of freedom of the logistic regression model, p = significance 
of logistic regression model. b) Logistic regression equation parameter estimates. f3 = 

coefficient of the variable entered, SE = standard error of the coefficient, p = significance of 
the variable entered (degrees of freedom for all variables = 1). Order of variables in the table 
indicates the order in which they entered the model. 

a) 

Species Year Model G2 df p 

N maculata 1996 12.38 2 0.002 

1997 12.03 1 < 0.001 

1998 17.77 2 < 0.001 

N obliqua 1996 24.85 2 < 0.001 

1997 16.40 1 < 0.001 

1998 24.23 2 < 0.001 

b) 

Species Year Variable entered f3 SE p 

N maculata 1996 Constant 1.87 0.81 0.021 
Mud depth -4.32 2.13 0.042 
Conductivity -0.03 0.02 0.060 

1997 Constant -1.33 0.48 0.002 
Water clarity 0.05 0.01 0.006 

1998 Constant 4.11 1.40 0.003 
Conductivity -0.02 0.01 0.006 
Mud depth -5.21 2.25 0.021 

N obliqua 1996 Constant -6.89 2.06 < 0.001 
Submerged vegetation 0.06 0.02 0.009 
Pond width 0.69 0.23 0.003 

1997 Constant -1.44 0.35 < 0.001 
Submerged vegetation 0.06 0.02 0.002 

1998 Constant -3.43 0.99 < 0.001 
Water depth 4.65 1.65 0.004 
Submerged vegetation 0.04 0.02 0.040 

The predicted pond occupancy from the logistic regression models was superimposed on 

the plot of the first two components from the PCA and compared with the polygons of 

suitable habitat from the PC A, defined by the grouping of ponds that were actually occupied 
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(see figures 3.4 to 3.6). In all years the two classifications largely overlap, although the 

logistic regression predicted occupancy does not include all the ponds that were actually 

occupied in the surveys. Generally fewer ponds were predicted to be occupied by either or 

both of the species by the logistic regression classification and hence the suitable habitat does 

not include as many ponds as that defined by the peA. Despite these minor inconsistencies, 

the overall patterns of actual and predicted occupancy are similar and the groupings of ponds 

according to the species present are found in the same areas of ordination space. This would 

suggest that the two techniques succeeded in deriving similar definitions of 'suitable habitat', 

and that the two species do indeed show different habitat preferences. 

3.2.3 Discussion. 

The aim of this analysis was to explore the habitat preferences of the two species of 

Notonecta in the dewpond system. Two method of analysis were used to attempt to define 

'suitable habitat' for the species, and the resultant classifications of ponds were broadly 

consistent in terms the variables that appear to be important in determining pond occupancy 

by each species. The two sets of analyses taken together provide strong evidence that the two 

species have preferences for different types of habitat and that the preferences can be 

summarised by a relatively small number of habitat variables. The patterns of importance 

among variables defining habitat preferences do show some changes between years, but some 

variables appear to be consistently important in determining occupancy; for N maculata these 

are mud depth and conductivity, whereas pond occupancy by N oh/iqua is strongly 

influenced by the amount of submerged vegetation in a pond. The importance of the different 

habitat factorS may be related to the relative variation exhibited by the factors across the 

ponds in each year, but may simply be a result of stochastic variation in the relationship 

between the observed patterns of occupancy and habitat variables, given the impact of 

stochastic events in pond community composition (Talling 1951, Jeffries 1989, 1997) 

33 



4 ~----------------------------------------------~ 

3 -

2 -

1 --c 
cu 
c 
o 
c.. 

g 0-
C) 

-1 -

-2 -

o 

Predicted 
.~. -, / " . " 

/ . i ,.,. 
. , 
/ ". . , 

o unoccupied 

• N. maculata 
• N.obliqua 
• Both species 

/ ". 
i 0 0 ", 

i ". . ____ A , 

/ <. -----------G-~-_~ ". 
~. ').. O. • --"0) "~ . ~ ./ ........ 
o " ./ ./ , " ./ ./' ................ ..c::I.. •. -..... • ~./ ./. 

.,,", ~ ". ./.-' 
'.~ ..... "'e'"' '., 0"'" ..... ",./ 

...... ~. cJ ..... IF-t·~;~-·--· '. \9._._. ",: 
'. Ii~ ';:::"/ : 
...... 0 : 

"" .. 0 eO 
...... -. .. 

Actual 
........... N. maculata 

_._. N. obliqua 

--_. Both species 
-3 4-----~I------~I------~I-----~I-----~I-----I~----~ 

-3 -2 -1 0 1 2 3 4 

Component 1 

Figure 3.4 Plot of the first two components from PCA of habitat variables of ponds in 1996 with 
predicted occupancy derived from logistic regression model. For details of the PCA see table 3.1. 
Data points are labelled according to the species predicted to be present (see text for details). Lines 
enclose groupings of ponds actually occupied by the different species in the survey. 
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Figure 3.5 Plot of the first two components from PCA of habitat variables of ponds in 1997 with 
predicted occupancy derived from logistic regression model. For details of the PCA see table 3.1. 
Data points are labelled according to the species predicted to be present (see text for details). Lines 
enclose groupings of ponds actually occupied by the different species in the survey. 
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The preferences exhibited are consistent with the literature data on observed patterns of 

pond occupancy and habitat types (Giller and McNeill 1981, Savage 1989). The habitat 

preferences may be related to the foraging abilities of the species in different environments. 

Giller and McNeill (1981) found that the two species had different foraging efficiencies in 

environments of varying complexity, with N. maculata showing the highest foraging 

efficiency in simple environments, whereas N. obliqua was better able to exploit complex 

habitats with more abundant submerged vegetation. Foraging efficiency and competition 

between the two species in different environments is further explored in Chapter 5. There is 

also evidence that the species exhibit preferences for different oviposition substrates (Walton 

1936) which may serve to initiate habitat selection. This is explored further in section 3.4. 

Although the two methods produced similar results, the output from the two sets of 

analyses are suited to different purposes. The definition of 'suitable habitat' from the PCA 

analysis is in essence a summary of the type of habitat occupied by the species in anyone 

year. This method of assessing habitat suitability is best suited to situations where the interest 

is in the observed patterns of occupancy in the field data, for example the derivation of 

incidence functions (see section 3.3). 

In contrast, the definition of 'suitable habitat' obtained using logistic regression, which is 

becoming an increasingly popular method of defining habitat requirements (e.g. Peeters and 

Gardiniers 1998), can be used to derive a predictive model of pond occupancy based on the 

probability of observing the pond being occupied by a species given the habitat characteristics 

of the site. The inclusion of different variables in the models in different years of survey 

limits the value of the models in predicting the future pond occupancy. However alternative 

models can be fitted to the data, using just those variables that appear to be consistently 

important. For N. maculata these are mud depth and conductivity and for N. ob/iqua, 

submerged vegetation cover. Models containing only these variables still give highly 
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significant fits to the data in all years and have similar percentages of correct predictions 

(based on the ratio of observed to predicted occupancy) as the models fitted by the stepwise 

variable selection (see table 3.3). 

Table 3.3 Comparison of logistic regression models for predicting pond occupancy in 
different years. Stepwise = model fitted by forward stepwise procedure (see table 3.2), 
standard = model fitted with the same variables each year (N maculata: variables = mud 
depth and conductivity, N obliqua: variable = percentage cover of submerged vegetation). 
Model G2 = log-likelihood ratio of the model, df= degrees of freedom of the logistic 
regression model, p = significance of logistic regression model. 

Species Year Model Model G2 df P % correct prediction 

N maculata 1996 Stepwise 12.38 2 0.002 73.1 • 
Standard 20.64 2 < 0.001 75.8 • 

1997 Stepwise 12.03 1 < 0.001 66.7 
Standard 11.55 2 0.003 68.8 

1998 Stepwise 17.77 2 < 0.001 77.2 
Standard 17.77 2 < 0.001 77.2 

N ob/iqua 1996 Stepwise 24.85 2 < 0.001 86.5 
Standard 16.59 1 < 0.001 83.6 

1997 Stepwise 16.40 1 < 0.001 82.5 • 
Standard 16.68 1 < 0.001 82.8 • 

1998 Stepwise 24.23 2 < 0.001 82.5 
Standard 14.31 1 < 0.001 79.7 

• Although both of these models contain the same variables, the stepwise model included other 
variables for selection, and missing values in these variables reduced the number of cases used 
in the analysis, affecting the fit of the model. Only the two variables were entered into the 
standard model and hence all cases were used, leading to a higher percentage correct 
prediction. 

The differences between the two sets of models reflects the methods used in their 

construction. Stepwise selection of variables will tend to fit the most parsimonious model that 

is a significant fit to the data. In addition, the iterative procedure used to fit the models is 

biased towards the largest classification group (in this case whether or not the pond is 

occupied) (Hosmer and Lemeshow 1989). Given that there were more ponds with the species 

absent than present, the model is optimised to fit the observed frequencies of absence with the 

highest percentage correct prediction. However this may give a lower overall percentage 
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correct prediction when combined with the predictions of presence, and it is these data which 

are presented in the table above. 

In conclusion. this section has demonstrated that there are consistent effects of habitat 

type on pond occupancy by the two species and that the two species have different habitat 

preferences. Two definitions of 'suitable habitat' were obtained using different methods of 

analysis. 1bese definitions gave similar results in terms of the habitat types that appeared to 

be preferred by the different species, but are suited to different purposes. 
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3.3 Incidence functions. 

This section deals with the construction and interpretation of incidence functions for the 

two species of Nolonecla in the dewponds to establish whether there are any differences 

between the habitat patch area requirements of the species. 

3.3.1 Methods. 

Incidence functions were constructed for the two species of Notonecta in all survey years 

using pond area and occupancy data collected in the habitat surveys. Potentially suitable 

habitat was defined using the output from the peA of habitat variables (see section 3.2.1 and 

figures 3.1 to 3.3) by defining the ponds occurring within the minimum polygon enclosing all 

the ponds that were occupied by the species in question, as potentially suitable for occupancy. 

The PCA analysis used pond width as one of the variables and this variable had a fairly high 

loading on the second component in all years. Therefore some of the habitat variation 

summarised by the PC A incorporates an effect of pond size, and it has already been suggested 

that the species show different area requirements (section 3.2.2). However the purpose of 

constructing the incidence functions is to examine the distribution of the species in ponds of 

different area \\ithin the 'suitable habitat', regardless of whether the species shows a 

preference for generally larger or smaller ponds. 

Ponds that were occupied by more than one species were included in both species 

analyses. Ponds occupied by one species that occurred within the polygon of suitable habitat 

of the other species were counted as unoccupied as they could still act as potential habitat, 

and hence any effects of biotic interactions between the species were ignored. Ponds that 

were of suitable habitat were grouped by surface area into 10m2 classes and the proportion of 

ponds within each class that were occupied calculated. Logistic regression was used to 

analyse the pattern of occupancy in relation to pond area. The fit of the logistic function is 

sensitive to the number of samples in each size class and their distribution along the predictor 
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(area) axis (Hosmer and Lcmeshow 1989, B.Taylor 1991) and for this reason area classes 

with a sample size of less than 5 were excluded from the analysis. In all years this meant 

excluding ponds \\ith an area of greater than 40m2
. A jackknife cross-validation procedure 

(Efron and Gong 1983. BTaylor 1991. Manly 1997) was used to test whether there were any 

errors associated ''tith the fitted logistic function, due to the high influence of a single sample 

driving the shape ofthc function. This involved sequentially removing each of the samples 

from the dataset in tum and refitting the logistic function to assess whether the sample 

removed had a strong influence on the fit of the function. In all cases the error structure was 

consistent over the range of areas used to estimate the regression parameters, with DO 

individual sample strongly influencing the fit. The maximum and minimum deviation were 

calculated from the jackknifing procedure and plotted to indicate the amount of error 

associated \\ith the fitted function. 

3.3.2 Results. 

1l1e observed incidence functions and fitted logistic equations for the two species are 

shown in figures 3.7 to 3.9. Logistic regression gave a significant fit to the observed data in 

all cases except N. moal/ala in 1996. and the functions fitted indicated that proportional 

occupancy increases with increasing pond area. The test statistics and logistic regression 

equations are given in table 3.4. 

TIle observed patterns of pond occupancy may be the result of area-dependent habitat 

quality if changes in pond area arc correlated with changes in other habitat variables 

important in determining pond occupancy. However in all years there were no significant 

correlations between pond area and any of the other habitat variables recorded. 
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Table 3.4 Results of logistic regression of pond area and occupancy. a) Test statistics. Model 
G2 = log-likelihood ratio of the model. p = significance of the model. b) Logistic regression 
equation and parameter estimates. Note: logistic regression was not significant for N 
macu/olo and therefore no equation was derived. p = coefficient of the variable entered. SE = 
standard error of the coefficient. p = significance of the logistic regression model. Degrees of 
freedom for all tests := I. 

a) 

Species Year Model G2 p 

N. macu/ola 1996 0.02 0.961 

1997 4.71 0.030 

1998 4.57 0.033 

N. obliquo 1996 6.44 0.01l 

1997 3.91 0.047 

1998 6.56 0.010 

b) 

Species Year Variable entered p SE P 

N. macu/ola 1996 Constant 
Pond area 

1997 Constant -1.04 0.87 
Pond area 0.10 0.05 0.051* 

1998 Constant -0.97 0.78 
Pond area 0.05 0.03 0.100* 

N. obliquo 1996 Constant -2.12 1.45 
Pond area 0.14 0.06 0.029 

1997 Constant -2.03 0.93 
Pond area 0.07 0.04 0.069* 

1998 Constant -2.61 1.25 
Pond area 0.13 0.58 0.026 

* Note: although the probability does not reach the standard level for significance (p < 0.05), 
Hosmer and Lcmcshow (1989) recommend that a significance level of p < 0.1 is more 
appropriate to ensure that important variables are not excluded. 

Comparison of InCIdence fl4ncttons. 

In order to allow interpretation and comparison of the fitted logistic regression equations 

which describe the incidence functions of the species, the structure of the logistic regression 

model must be examined. 
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1be equation for a logistic regression model with one independent variable can be written 

as follows 

e lJo +IJ,X 

Prob (event) = 1 + elJo+IJ,X (3.1) 

where X is the independcnt variable and ~o and ~I are the coefficients of the constant and the 

independent variable respectively. 

This equation can be rewritten in terms of the odds of the event happening, i.e. the 

probability ofthc event occurring (Prob (event)) divided by the probability of it not occurring 

(1- Prob (event». This is known as the odds ratio. 

Prob (event) = ello+IlIX 
Prob (no event) 

(3.2) 

By taking the natural log of both sides of this equation, an equation analogous to a linear 

regression equation is obtained (the log odds). 

I{ Prob (event) 1 = ~o + ~IX 
Prob (no event) 

(3.3) 

From equation 3.3 is it casy to sec that the logistic regression coefficient PI describes the 

change in the log odds for a one unit ehange in the independent variable X, in this case pond 

area. It is therefore possible to compare the 'slopes' of the incidence functions by calculating 

point estimates of the odds ratio for the independent variable and appropriate confidence 

intervals (Hosmer and Lcmcshow 1989), as shown below. 

From the regression coefficient ~I of the independent variable (pond area), the odds ratio, 

~ which reflects changes in the probability of pond occupancy is calculated as 

'V = e~1 (3.4) 
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If", is greater than one then the probability of the event (in this case the pond being 

occupied) increases with increasing pond area and vice versa. Confidence intervals for the 

estimate of ",. at an appropriate level of a (typically 95%), can be constructed from the 

following equation 

100(l-a)% CI = explPl ± ZI-<Jl1 SE(Pl)] (3.5) 

Table 3.5 gives the odds ratio and 95% confidence intervals for the incidence functions of 

the different species in all years. Due to the large standard errors of the regression 

coefficients. the confidence intervals overlap completely in all cases, limiting comparison of 

the slope coefficients. Standard errors of this magnitude are commonplace in logistic 

regression and do not invalidate the fit of the model (Hosmer and Lemeshow 1989). 

1berefore further interpretation is based solely on the shape of the fitted incidence functions 

(figures 3.7-3.9) which can be interpreted to a limited extent. Although incidence functions 

generally exhibit the samc basic shape, the steepness of the curve and its relative position 

along the area axis can be interpreted in terms of the areas requirements of the different 

species (Gilpin and Diamond 1981). 

Table 3.5 Odds ratio ("') and 95% confidence intervals derived from logistic regression 
incidence functions. Dashes indicate no model fitted and hence no calculation carried out. 

Year N. maculata N. ob/iqua 

'" 
+ CI -CI 

'" +CI -CI 

1996 1.15 1.29 0.94 

1997 1.09 1.21 0.95 1.08 1.16 0.96 

1998 1.08 1.22 0.95 1.14 1.28 0.95 

3.3.3 Discussion. 

This section examined the incidence functions of the species of Notonecta in the 

dcwponds. Boch species of Nolonecta show the typical pattern of increasing proportional 

occupancy with increasing pond area. with the exception of N. maculata in 1996. Although 

41 



the species show generally similar patterns, there is considerable variation in the incidence 

functions exhibited by the species in different years, suggesting that stochastic variation in 

species' incidence functions may be considerable. The changes in the observed incidence 

functions may reflect changing availability of ponds of different areas within the 'suitable 

habitat' for each species. Pond occupancy is dynamic, with considerable changes in the 

identity of the occupied ponds between years, and there are also changes in the habitat of 

individual ponds. Therefore the pattern of incidence in ponds of different area may be 

influenced by the changing habitat mosaic on which it is superimposed. 

There are also some differences in the incidence functions of the two species. In all years, 

the intercept on the area axis of the fitted logistic function for N maculata is higher than for 

N obliqua, suggesting that it has higher proportional occupancy in the smaller ponds. This is 

confirmed by examination of the proportional occupancy of the smallest area class ofponds 

(0-IOm2
) and to a lesser extent for the next smallest area class, and is consistent with the 

types of habitat this species occupies. N. maculata is found in a range of small and 

temporary habitats (Southwood and Leston 1959) such as desert pools (Blaustein, Kotler and 

Ward 1995. Blaustein 1998), and has been found successfully breeding in metal cattle troughs 

in the Peak District (area approximately 0.5m2
). N. obliqua conversely bas generally low 

proportional occupancy of the smallest ponds, and shows a stronger area dependent 

occupancy effect. with proportional occupancy consistently high in the larger pond area 

classes, and hence the slope of the incidence function is steeper. Indeed a comparison of the 

mean area at which proportional occupancy equals 0.5 shows that N. maculata reaches this 

level of occupancy at a smaller pond area (mean area for N. maculata = 14.8m2
, N obliqua = 

21.4m2), although it is difficult to ascribe significance to this difference given the small 

sample size. Although the peA analysis suggests that N. obliqua prefers larger ponds in 

general. there is still a consistent area effect within the habitat defined as suitable. 
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Hanski (1991. 1992) has suggested that further interpretation of the slope of incidence 

functions is possible based on models of population extinction. According to this approach. 

the persistence of species with steep incidence functions is primarily influenced by 

demographic stochasticity. whereas species with shallow incidence functions are more 

strongly affected by environmental stochasticity (Hanski 1991, 1992). However, the 

differences in slope of the incidence functions for the two species of Notonecta are not of 

sufficient magnitude or consistency to draw any firm conclusions on this basis. The variation 

in the shape of the functions in different years suggests that longer term data on the patterns 

of incidence in the dewponds would be required to determine whether there are any consistent 

differences between the incidence functions of the two species, but the present data suggest 

that pond occupancy by N. macu/ala is less strongly area dependent than N obliqua. 
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3.4 Oviposition preferences. 

Given the potential mobility of adult N%necta via dispersal, any active selection of 

oviposition sites by females could be an important component in detennining patterns of 

occupancy and habitat preferences at the landscape scale. In this section I examine the 

oviposition preferences of the two species of N%necta, with regard to their potential role in 

habitat selection. In Britain, female N%necta lay batches of eggs, usually eight per batch up 

to a total of 64, in the autumn or spring depending on species (Walton 1936) (see figure 1.5). 

TIle majority of the species attach the eggs to the surface of substrates using a waterproof 

adhesive, but some species are capable of embedding eggs into the stems of aquatic plants 

(Hungerford 1933, Walton 1936). 

3.4.1 Methods. 

Oviposition preference experiments were carried out in plastic containers (27xlSx9cm) 

containing 2.S litres of water. The outer surfaces of the containers were covered in black 

plastic so that light penetrated only from above, giving a more natural lighting regime. All 

experiments were carried out under a 12hr light: 12hr dark regime in a constant temperature 

room at I SoC . A choice of four oviposition substrates were presented in each container (table 

3.6). 11tese substrates were selected to present the species with a range of substrates similar 

to those available in the dewponds. Additionally, the inclusion of pairs of similar substrates, 

such as natural and artificial plants, allowed me to investigate whether it was the fonn or 

shape of the substrate which was important, or other physical characteristics, such as surface 

texture. For example, the natural and artificial plants were of similar shape, size and colour, 

but only the real plants would allow eggs to be embedded into the stems. 

All N%ne,-(a used were obtained from field sites. Both sexes were collected and 

maintained in aquaria under conditions described in section 2.2 until mating was observed. 

Individual female Notonecta were then collected and placed in the experimental containers. 
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All trials lasted 72 hours, after which the Notonecta were removed and the number of eggs 

laid on each of the substrates recorded. Twelve replicates were carried out for each species. 

Table 3.6 Oviposition substrates presented to adult fernale Notonecta. 

Treatment 

Stone 

Supports 

Artificial 

Elodea 

3.4.2 Results. 

Substrate 

Autoclaved sandstone block (approx. 8Ox50x45rnm) 

Green plastic mesh strip (6Ox40mm. mesh size 15rnm) 

Artificial plastic aquarium weed (9Omm in length) 

Length of Elodea canadensis Michx. (9Omm in length) 

1be mean number of eggs laid on the substrates for each species is shown in figure 3.10. 

1bere were significant differences in the number of eggs laid on each substrate for both 

species (Kruskal Wallis test: N. maculala H(3) = 41.3.p < 0.001, N oh/iqua H(3) = 40.1,p < 

0.001). N. maculala showed a significant preference for stone oviposition sites andN 

oh/iqua for oviposition on Elodea. Very few eggs were laid on any substrate other than the 

preferred in both cases. 

3.4.3 Discussion. 

1be preferences for oviposition sites shown experimentally by the two species in this 

study are broadly consistent with previous field and laboratory observations (Walton 1936, 

Southwood and Leston 1959). However, although observations have been made previously, 

this is the first time that a comparative experimental study of the preferences has been carried 

out. N. ohliqua has a strong preference for oviposition on natural weed. Observations of the 

act of oviposition by this specics indicate that it normally uses its relatively long ovipositor to 

embed individual eggs into the substrate (Walton 1936), and macrophytes provide a suitable 
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substrate for this method of oviposition. When laying on solid substrates, N ohliqua rapidly 

runs shon of the waterproof' glue' used for egg attachment and hence the eggs arc more 

susceptible to dislodgement (Walton 1936). Only a very small number of eggs were laid on 

the artificial weed. which is structurally similar to Elodea, and none on the other substrates 

indicating that it is capable of accurate discrimination between substrates, and that it is the 

ability to embed the eggs into the substrate that appears most important for N ohliqua. 

N maculata was found to oviposit almost exclusively on stone, again only a small 

number of eggs laid on the supports suggesting that it can accurately discriminate between 

substrates. Oviposition on solid material of some description is the most widespread method 

of oviposition in the Notonectidae (Hungerford 1933), but N maculata rarely oviposits on 

any suppon other than stone, using the spines on its relatively shon ovipositor to scrape the 

surface of the substrate before oviposition (Walton 1936). 

The strength of the observed oviposition preferences suggests that they could strongly 

influence habitat preferences, and the selection of oviposition substrates is consistent with the 

habitat preferences demonstrated by the species in the dewponds (section 3.2). N obliqua 

was found primarily in ponds with submerged vegetation, its preferred oviposition substrate, 

whereas N. maculata was associated with ponds with low mud depth. The amount of mud 

present in the ponds affects the availability of solid substrate (primarily the concrete pond 

lining or the limestone blocks embedded in the clay linings) for oviposition. The close 

correlation between the habitat types occupied and oviposition preferences suggests that 

selection of different oviposition substrates by the two species is an important factor 

contributing to habitat preferences in the field (Bennett and Streams 1986, Streams 1987b). 
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3.5 Conclusions. 

This chapter examined the habitat preferences of the Notonecta species in the dewponds. 

It has been demonstrated fairly conclusively that the two species occupy markedly different 

habitat types and not all the sites constitute suitable habitat for either species. For the 

purposes of predicting distribution patterns, the preferences can be summarised in terms of a 

relatively small number of the variables recorded. The species also demonstrated different 

patterns of pond occupancy in relation to area, with N ob/iqua showing a stronger 

dependence of occupancy on pond area than N macuiata. This suggests that N ob/iqua 

prefers larger habitats, whereas N macuiala can be found across a wide range of habitats, 

including fairly small waterbodies. These habitat preferences, both in terms of the variables 

that appear to be important in habitat selection and occupancy in relation to pond area, are 

consistent with available literature data (Southwood and Leston 1959, Giller and McNeill 

1981, Savage 1989). Experimental examination of choice of oviposition substrate 

demonstrated that the species have strong and contrasting preferences. The preferred 

substrates are consistent with previous observational studies (Walton 1936) and with the 

observed habitat preferences in the dewponds. This would suggest that oviposition 

preferences have a significant impact on habitat selection by NOlonecla. 

Habitat preferences have implications for regional population dynamics and distribution 

of Nolonecla species. At the level of the individual species, not all the dewponds constitute 

suitable habitat for breeding populations and hence potential occupancy is likely to be limited 

to a subset of the total number of ponds. This may influence the regional population 

dynamics of the species, which are explored in Chapter 4, through the spatial distribution of, 

and temporal changes in, suitable habitat across the landscape. The habitat preferences may 

also affect coexistence of the species at the landscape scale, by influencing the degree of 
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overlap in distribution and hence the likelihood of competition between the two species. The 

competitive interactions between the species are examined in Chapter 5. 
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4. Spatial population dynamics. 

4.1 Introduction. 

Species occurring as multiple populations in a landscape of discrete habitat patches often 

show temporal changes in their spatial distribution. These changes in distribution result from 

extinction of local populations and establishment of new populations by colonisation of 

previously unoccupied patches of habitat. The colonisation-extinction dynamics of local 

populations are known as population turnover. The importance of local population turnover 

in population dynamics was first highlighted in the seminal text by Andrewatha and Birch 

(1954), who placed emphasis on frequent local extinction of populations and subsequent re­

establishment. Interest in population turnover over a regional area has crystallised in recent 

years into a distinct field of studies centred around metapopulation dynamics (Hanski and 

Gilpin 1991, Hanski and Gilpin 1997, Hanski 1998). 

Population turnover is of central importance in metapopulation dynamics because the 

persistence of a species as a metapopulation depends upon a balance between the rates of 

local extinction and recolonisation (Hanski 1991, Harrison 1994, see section 1.2). Although 

individual populations become extinct and currently vacant patches are colonised, the fraction 

of patches that are occupied remains at a dynamic equilibrium. If the rates of colonisation 

and extinction are not balanced, the system is termed a non-equilibrium metapopulation 

(Harrison and Taylor 1997) and the species will undergo a regional decline or expansion of 

distribution, depending on the direction of the inequality. 

This chapter explores the spatial population dynamics and turnover of N. maculata and 

N. obliqua in the dewpond system. The first section is concerned with general patterns of 

pond occupancy and population turnover in relation to the persistence of Notonecta species as 

metapopulations. The results of these analyses provide a framework for the development of 
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the subsequent sections, which focus explicitly on the processes of colonisation and extinction 

of local populations of Notonecta within the dewpond system. 

50 



4.2 Occupancy dynamics and population turnover. 

4.2.1 Introduction. 

Metapopulation models, starting with that of Levins (1969, 1970), make certain 

assumptions about the systems of populations under analysis. Although no field system is 

likely to meet all these assumptions (Hanski and Simberloff 1997, Harrison and Taylor 1997), 

there are certain suggested conditions that should be fulfilled in order for metapopulation 

dynamics to be considered important in regional persistence (Harrison 1991, 1994, Hanski, 

Pakkala, Kuussaari and Lei 1995, Thomas 1996, Hanski 1997a, Harrison and Taylor 1997). 

Here I will examine the patterns of pond occupancy and population turnover to assess whether 

the spatial population dynamics of Notonecta species in dewponds resemble those predicted 

by metapopulation models. Principally, I will investigate whether the levels of occupancy of 

Notonecta species appear to be at a dynamic equilibrium, whether all populations are at risk 

from extinction and the extent of population turnover over the period of study. 

All of the following data are derived from the annual surveys of dewpond habitat and 

occupancy described in sections 2.5 and 2.6. For univoltine insects such as Notonecta, 

annual surveys are the most appropriate for the study of population turnover. Longer census 

intervals are likely to result in inflated apparent turnover rates (Diamond and May 1977, 

Clark and Rosenzweig 1994). 

4.2.2 Changes in regional occupancy. 

Figure 4.1 shows the number of ponds occupied by the two species of Notonecta in all 

years which surveys were carried out. The data are shown for the annual survey of 68 ponds 

between 1996-1998 and also for the subset of 32 ponds which were sampled in 1992 (data 

from Warren et al. in press) as well as in the years 1996-8. The survey by Warren et al. (in 

press) was carried out using a three minute timed pond net sweep through different habitat 

types, which was the technique used in heavily vegetated ponds during this study (see section 
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2.5), and hence the pond occupancy data derived from this previous study is of similar 

accuracy to that derived from the surveys carried out in the course of these studies. 

From figure 4.1 it is clear to see that there are some changes in the number of ponds 

occupied by the two species over the period of survey. For N maculata there was a slight 

overall decline in occupancy of the 32 ponds that were surveyed between 1992 and 1998, 

although the scale of the changes relative to the number of ponds occupied is fairly small. 

Comparison between the occupancy recorded for the 32 ponds and that for the surveys of 68 

ponds (1996-8) indicates that occupancy over a wider area appears to closely follow the 

changes that were observed in the 32 pond sample. However in such a short time series it is 

difficult to ascertain whether the fluctuations in occupancy at different scales are 

synchronous. N obliqua however, showed a considerable increase in occupancy of the 32 

pond sample between 1992 and 1998, being found in only two ponds in 1992, compared to 13 

in 1998. These changes in occupancy are less clearly mirrored in the patterns of occupancy in 

the 68 ponds; the variation in this larger sample of ponds is again small compared to overall 

occupancy. 

The trends in occupancy that are evident may be the result of stochastic variation around 

an equilibriallevel of occupancy, which is of approximately similar magnitude for both 

species in the sample of 68 ponds (between 23 and 31 ponds occupied by N macu/ata, and 

between 19 and 24 by N obliqua). N macuiata appears to show fairly stable occupancy in 

both the 68 ponds and in the subset of 32 ponds, whereas N obliqua shows a definite trend of 

increasing occupancy over time in the longer time series available for the 32 pond sample. 

These changes in occupancy may be the result of changes in the habitat of the ponds. 

Evidence from Chapter 3 suggests that not all the ponds are suitable for occupancy for a 

particular species. Submerged vegetation is a key habitat characteristic for N ob/iqua and 

there is a significant positive correlation between the number of ponds with submerged 
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vegetation present, and occupancy by N ob/iqua (r[4J = 0.969,p = 0.031,1992-1998 dataset), 

although the small number of datapoints in the time series makes assessment of the 

relationship difficult. There was no evidence of any correlation between the changes in 

occupancy of N maculata and habitat variables that appear important in habitat preferences 

(see Chapter 3), but the changes in occupancy over the same period have no clear trend. 

4.2.3 Population turnover. 

The turnover of populations was fairly high over the survey period. Considering only the 

surveys of68 ponds between 1996 and 1998, only 12 ponds out of the 68 were occupied 

continuously from 1996 to 1998, five by N macuiata, four by N ob/iqua and 3 with both 

species present. Eleven of the ponds were never occupied, with the remainder undergoing at 

least one turnover event in the three years of survey. From the data on changes in pond 

occupancy over the survey period, it is possible to derive the rates of colonisation and 

extinction, and also the amount of population turnover (colonisation and extinction 

combined). Although the processes of colonisation and extinction will be dealt with in greater 

detail in subsequent sections, a summary of population turnover over the survey period is 

given in table 4.1. The information in this table was derived using the following formulae: 

Colonisation rate, C was calculated as: (the number of ponds colonised at t + 1)/(number 

of unoccupied ponds at time t), with t measured in years. This formula assumes that all the 

unoccupied ponds were suitable for occupancy. The rate of colonisation is likely to be 

influenced by the number of ponds that are presently occupied (in the original Levins 

metapopulation model [1969, 1970] and derivatives, the colonisation parameter, m is 

multiplied by the proportion of ponds occupied, p, see section 1.2). Therefore, in order to 

account for the potential variation in colonisation resulting from different levels of regional 

occupancy, a modified colonisation rate Cpop was defined as C/number of ponds occupied at 

time t. This effectively gives the colonisation rate per extant population. 
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The extinction rate, E was defined as: (the number of populations that had gone extinct by 

f + 1)/(the number of ponds occupied at time f), and the degree of turnover, T (not calculated 

as a rate) was defined as: (the number of turnover events [colonisations plus extinctions] 

between time t and t + I)/(number of populations persisting over the same time period). 

Table 4.1 Population turnover (colonisation and extinction) for the two species of Notonecta 
in a sample of68 dewponds from 1996-1998. For abbreviations and details of calculations 
see text. 

Variable 

Colonisations 

Extinctions 

C 

Cpop 

E 

T* 

Species 

N maculata 
1996-1997 

13 

7 

0.302 

0.0l2 

0.280 

1.111 

N obliqua 
1997-1998 1996-1997 1997-1998 

5 7 7 

13 8 2 

0.135 0.146 0.143 

0.004 0.007 0.008 

0.419 0.400 0.105 

1.059 1.250 0.529 

* Note: Values of T greater than one indicate that more populations underwent turnover than 
persisted over the same period. 

4.2.4 Discussion. 

Detection of trends in regional pond occupancy depends on the length of time over which 

the surveys are taken. In the surveys of 68 ponds in three consecutive years, the proportion of 

ponds occupied did not show notable variation over the survey period, suggesting that the 

levels of occupancy may be at a dynamic equilibrium. However when the trends in the subset 

of 32 ponds were examined over a six year period, there were more pronounced fluctuations 

in the number of ponds occupied, particularly for N obliqua, which showed a substantial 

increase in occupancy between 1992 and 1998. There is some evidence that the changes in 

occupancy exhibited by N ob/iqua were related to changes in the availability of suitable 

habitat (see also Chapter 3). 
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Proportional occupancy was examined assuming that all the ponds were suitable for 

occupancy by either species, but this is unlikely to be the case (see Chapter 3). Therefore, it 

is possible that the species exist at a dynamic equilibrium of occupancy within the set of sites 

that constitute suitable habitat, and it is changes in the habitat availability (i.e. number of 

suitable sites) that result in fluctuations in regional occupancy. Models have explored the 

implications of the destruction of habitat patches on metapopulation dynamics (e.g. Hess 

1996) but have so far largely ignored the effects of habitat dynamics on regional persistence 

(Wiens 1997, Thomas and Hanski 1997, but see Stelter, Reich, Grimm and Wissel 1997). 

Whatever the reasons behind the fluctuations in occupancy, the changes have implications 

for the choice of scale for studying regional population dynamics of Notonecta in the 

dewponds. The dewpond system is 'open', with no natural boundaries defining the edge of the 

metapopulation. It was not feasible to survey all the dewponds in the White Peak area 

(assuming that similar densities of ponds are found across the survey area, the total number of 

dewponds within the Peak National Park is estimated to be approximately 1500), but the scale 

of study affects the observed patterns of occupancy. The occupancy of N obliqua was very 

low in 1992 (two ponds occupied), suggesting that if observations were based on a sample 

size of 32, species may be observed to 'go extinct', even though it is likely that they will 

persist in the broader landscape. Simulations based on randomised resampling with 

replacement (Manly 1997) of the observed patterns of occupancy, for pond networks with 

differing numbers of ponds, show that the variation in observed proportional occupancy 

increases with decreasing number of ponds sampled (figure 4.2). Even for a sample size of 

68, there is considerable variation around the mean occupancy level, resulting from random 

variation in the ponds sampled. The species are likely to appear to be 'extinct' if the survey 

was based on a sample of between 9 and 21 ponds, depending on species and initial level of 

occupancy (see figure 4.2). These simulations assume that all the ponds are suitable for 

occupancy. In addition to the errors inherent in basing estimates of proportional occupancy 
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on a limited sample of ponds, variation in the number of ponds suitable for each species 

within the sample will potentially further increase the temporal variation in observed 

occupancy. 

The rate of population turnover is quite high in both species, with more populations 

undergoing turnover than persist over the same period in 3 out of 4 cases (table 4.1). 

Although the rates of colonisation seem quite high, they are comparable with other studies of 

annual insect species (e.g. Eber and Brandl 1996). The rates of colonisation and extinction 

are not constant, although N obliqua shows remarkably consistent colonisation rate between 

years. However the calculations do not take into account the suitability of patches for 

colonisation and hence may be slightly misleading. Between 60 and 90% of populations 

persist from one year to the next (population persistence = I-E), but the relatively small 

number of ponds that were continually occupied during the survey period suggests that it is 

reasonable to assume that all the populations have a substantial risk of extinction. The ponds 

that did have persistent populations showed no characteristics that would suggest that they are 

extinction resistant 'mainland' populations (Harrison 1991, 1994). 

The relatively high rates of turnover would tend to suggest that the dewpond system lies 

towards the high dispersal end of the continuum of metapopulation types, superficially 

resembling a 'patchy population' (Harrison 1991, 1994). However the ponds do appear to 

represent local breeding populations. The lack of transfer of individuals during the period of 

nymphal development (almost all adults die before the summer) prevents mixing of 

populations from occurring all year round. Dispersal is limited to certain periods of the year 

(Fernando 1959, Popham 1964, see section 4.3), preventing the individual ponds from 

becoming demographically united, which would blur the distinction between local and 

regional timescales that is central to metapopulation functioning (Hanski 1983, Harrison 

1991, Drechsler and Wissel 1997). Thus, at least from these data, it would seem reasonable 
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to conclude that the regional dynamics of Notonecta species in the dewponds show at least 

some of the characteristics of a metapopulation. 
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4.3 Colonisation and dispersal. 

4.3.1 Introduction. 

Colonisation and extinction are the key processes on which metapopulation persistence is 

based (Hanski 1991, Hanski and Gilpin 1991, Hanski 1998), yet both of these processes are 

relatively difficult to study empirically, and colonisation especially so, due to infrequent 

occurrence in most systems, and difficulties in distinguishing the different stages of the 

process involved (Ebenhard 1991, Ims and Yoccoz 1997). In this section I will investigate 

aspects of the colonisation processes for the species of Notonecta. 

In common with island biogeographical models (e.g. MacArthur and Wilson 1967), in a 

metapopulation setting all habitat patches are assumed to be suitable for occupancy, and 

colonisation is seen as an entirely stochastic process (Ebenhard 1991). The view of static 

underlying habitat, onto which stochastic patterns of colonisation are superimposed, is 

unlikely to be true in most natural systems. Habitat suitability will vary in different patches 

(see Chapter 3) and is likely to show temporal variation. In this situation, colonisation may 

be linked to habitat suitability (Thomas 1 994b,c). This contrasting view of regional spatial 

dynamics regards changes in spatial distribution as being driven by deterministic habitat 

change, with species attempting to track the suitable habitat through time (Southwood 1977, 

Thomas 1994b,c, Webb and Thomas 1994, Harrison and Taylor 1997). Successional 

processes and disturbance regimes may be of prime importance in these situations (see Stelter, 

Reich, Grimm and Wissel 1997); these are themes more closely associated with patch 

dynamics (Pickett and White 1985, Levin, Powell and Steele 1993) than metapopulation 

dynamics. However, in structured population systems, stochasticity in habitat selection is 

likely to be greater than in other situations, due to the limited scope for organisms to sample 

the available habitat, which is distributed unevenly in time and space (Ims and Yoccoz 1997). 

Therefore I aim to test whether the colonisation of dewponds is linked to habitat 
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characteristics or changes in the habitat, or is predominantly stochastic in nature as would be 

predicted for a metapopulation. 

The probability of colonisation is also influenced by the isolation of patches; empirical 

evidence has shown that the rate of colonisation decreases with increasing patch isolation, due 

to the reduced probability of individuals arriving at a given patch (Hanski 1994b and 

references therein). The distribution of dispersal or migration distances is commonly 

modelled by negative exponential or inverse power functions, or regression equations based on 

the logarithm of distance (Wolfenbarger 1959, Harrison, Murphy and Ehrlich 1988, Kovats, 

Ciborowski and Corkum 1996, Thomas and Hanski 1997). Most dispersing individuals will 

not reach a very isolated patch, reducing the probability of successful population 

establishment. To assess the likelihood ofrecolonisation of ponds following extinction and 

the degree of connectivity of the dewpond system, I investigate the rate and pattern of 

colonisation over a year and use mark-release-recapture experiments to examine the 

distribution of dispersal distance by adult Notonecta. 

4.3.2 Methods. 

Annual survey. 

Colonisation is one component of the turnover events analysed in section 4.2. Using the 

data from the surveys of 68 dewponds between 1996 and 1998, the number of colonisation 

events over each one year census interval was calculated for each species. Forward stepwise 

logistic regression, using the likelihood ratio method of variable selection and the same entry 

criteria as used in previous analyses (section 3.2.1), was used to test whether colonisation of 

ponds was related to the habitat variables recorded in the year which colonisation occurred, or 

the change in the variables between surveys. 
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Monthly colonisation rates. 

The 32 ponds remaining of the 40 sampled in 1992 (Warren et af. in press) were sampled 

monthly from April 1996 to May 1997, using standard methods (section 2.5), to assess the 

pattern of pond colonisation by adult notonectid over the course of a year. Each month all the 

adults captured were identified to species. The colonisation rate for each species was defined 

as: (the proportion of empty sites at time t colonised at time t + 1 )/(the proportion of ponds 

occupied at time t), where t is in months. The dewpond system is 'open' in so far as it has no 

easily definable boundaries, and it was not possible to survey all the ponds over the survey 

area. Therefore the above formulation makes the assumption that the ponds surveyed were a 

random sample, so that the proportion of ponds occupied by each species in the survey area is 

a reflection of the overall occupancy across the whole system. However it is likely to 

underestimate colonisation rates as it does not include immigration to already occupied ponds. 

As a result of the inverse relationship between the number of ponds occupied and the number 

available for colonisation, the calculated colonisation rates are not independent of the number 

of ponds occupied in each survey. Due to this non-independence, the relative magnitude of 

colonisation rates cannot easily be interpreted and hence only the pattern of colonisation over 

the year will be considered. The definition of colonisation in this section is distinct from the 

use of the term to describe the establishment ofa breeding population at a site, as it is used in 

Annual survey above and in population turnover calculations. 

Mark-release experiments. 

A mark-release-recapture study of adult dispersal distances was undertaken in the 

Autumn of 1997 and Spring of 1998 using a technique similar to that of Freilich (1989). A 

computer spreadsheet was used to generate three digit sequential numbers in a two point sans­

serif font. These numbers were printed on a 600 dpi monochrome laser printer and individual 

tags (size 3x2mm) made by cutting the numbers out of the paper. Notonectids were collected 
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in the field by standard sampling methods (section 2.5) and placed in a holding bucket. 

Individual adult Notonecta were removed using a small hand net and surface dried using 

paper towelling. They were then loosely restrained in the paper towelling and the tags were 

attached to the central region of the pronotum using cyano-acrylate adhesive (~ 

Superpower Universal Superglue, UHU [UK] Ltd, Middlesex). A liquid glue was used as this 

effectively penetrated the paper fibres and waterproofed the tag as well as providing adhesion. 

Following attachment of the tag, the tag number, the pond from which the individual was 

collected and the species were recorded. Due to the quick drying nature of the glue, 

individuals were generally out of water for one minute or less before being returned to another 

holding bucket and subsequently returned to the pond. 

Preliminary tests indicated that the tags did not affect the ability of the notonectids to fly, 

but it was not possible to assess whether there were any effects on duration or distance of 

flights. Given the small size and weight of the tags it seems reasonable to assume that they 

would have a negligible effect. Individual marked adults were maintained in laboratory 

aquaria in order to assess tag retention and adult mortality. Although cyano-acrylate glue is 

not recommended for use under water or on waxy or oily surfaces (Freilich 1989) such as the 

pronotum of hemipterans, tags were retained by captive individuals for 5 months and adults in 

the field were recaptured with the tag attached after 4 months. Similar tags have been 

retained by aquatic Coleoptera in the field for up to 18 months (1. Bowker, personal 

communication) No effects of tagging on the mortality of captive adults were observed. 

Following marking, a large number of surrounding dewpond sites were visited intermittently 

and collections of notonectids made. All adults collected were examined for tags and if any 

were found, the number, species and pond from which the individual was recovered was 

recorded. 

61 



4.3.3 Results. 

Annual survey. 

For N. maculata, none of the habitat variables recorded in 1997 were significant in 

predicting the colonisation of ponds. However when the analysis was repeated using the 

change in habitat variables between 1996 and 1997, a significant logistic regression model 

was fitted to the data. The results of the stepwise logistic regression of pond colonisation 

between 1996 and 1997 by N. maculata in relation to changes in habitat variables are 

summarised in table 4.2. Two of the habitat variables recorded, change in mud depth and 

submerged vegetation cover, caused a significant increase in the log-likelihood ratio (p < 0.1) 

and hence were included in the final model. The regression coefficients (13) indicate the 

direction of influence: in both cases the coefficients are negative, indicating that the 

probability of colonisation increases with a decline in mud depth and submerged vegetation 

cover between years. From the final logistic regression equation, the colonisation probability 

surface can be derived. This is shown in figure 4.3, over the range of habitat variables found 

in the field. In 1998 no significant model could be fitted to the data for either the habitat 

variables recorded in 1998 or the changes in the variables between 1997 and 1998, suggesting 

that there was no systematic link between pond colonisation by N. maculata and the habitat 

variables recorded. 

For N. obliqua in 1997, submerged vegetation cover in 1997 initially entered the logistic 

regression model, but the large standard error of the coefficient (standard error approximately 

6 times larger than the coefficient) indicated that the model was a poor fit to the data 

(Tabachnick and FideIl1996). Subsequent screening of the data indicated that the model was 

being driven by one outlying value of submerged vegetation cover in the ponds colonised by 

N. obliqua and hence the model was rejected. A similar situation occurred in 1998 and hence 

again no model was fitted to the data. 
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Table 4.2 Results of forward stepwise logistic regression of pond colonisation by N 
maculata. a) Test statistics and steps oflogistic regression. Model G2 = log-likelihood ratio 
of the model, df = degrees of freedom of the logistic regression model, p = significance of 
logistic regression model. b) logistic regression equation parameter estimates. p = coefficient 
of the variable entered, SE = standard error of the coefficient,p = significance of the variable 
entered. Degrees of freedom of all variables entered = 1. 

a) Test statistics 

Year df 

1996-1997 13.19 2 

b) Logistic regression equation 

Year Variable entered 

1996-1997 Constant 
Change in mud depth 
Change in submerged vegetation cover 

Monthly colonisation rates. 

-1.68 
-7.22 
-0.08 

p 

0.001 

SE 

0.56 
2.95 
0.05 

p 

0.003 
0.014 
0.074 

The colonisation rates for both species (figure 4.4) show a strongly seasonal pattern, with 

peaks of dispersal in spring and late summer. Following the spring dispersal phase, the adult 

population rapidly declines and hence dispersal is zero until the new cohort reaches maturity 

between July and August. There is then another peak of dispersal which gradually declines 

during the autumn as conditions become less favourable for flight. The dispersal rate of N 

ob/iqua appears to be generally higher than N maculata, but the significance of this cannot 

easily be judged due to the problems with the calculation of colonisation rates. Only three out 

of the 32 ponds were not occupied at some point during the study, and the ponds that were not 

occupied were very close to other ponds, suggesting that isolation was not the cause of the 

lack of occupancy in these cases. 

Mark-release experiments. 

A total of 248 individuals were marked during the Autumn of 1997 from 6 different 

ponds. Of these 30 were subsequently recovered, giving a recovery rate of approximately 
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12%. Only three of the 30 individuals recovered had migrated between ponds (post migration 

recovery = 1.3%), and hence the conclusions that can be drawn from these data are very 

limited. Two individuals moved 90m between ponds, and one individual migrated 1640m. 

4.3.4. Discussion. 

Annual Survey. 

The results of the logistic regression analyses suggest that there is some evidence for a 

link between colonisation of ponds and habitat variables, or the change in variables between 

years for N. maculata. There is no evidence of such a link between habitat and colonisation 

for N obliqua but problems with the distribution of the data affected the model fitting process 

in the logistic regressions. Therefore it is difficult to draw conclusions from these results. 

The variables included in the logistic regression model for N maculata make biological 

sense in relation to the habitat and oviposition preferences demonstrated by this species 

(Chapter 3). However the link between habitat and colonisation is not consistent between 

years, suggesting that habitat is not the sole determinant of colonisation. This may be the 

result of the influence of stochastic elements in the colonisation process (Ims and Yoccoz 

1997). For example, dispersal, and hence colonisation, is highly dependent on the prevailing 

weather conditions (Fernando 1959, Popham 1964). Therefore year-to-year variation in the 

timing and extent of suitable weather conditions for dispersal may influence the link between 

habitat and colonisation by restricting the chance of individuals dispersing and finding 

suitable habitat. 

Monthly colonisation rates. 

Both species of Notonecta showed a strongly seasonal pattern of colonisation common to 

other Heteroptera, both aquatic (Johnson 1969, Savage 1989) and terrestrial (Southwood 

1960, Johnson 1969). The two peak periods of colonisation coincide with prevailing weather 

conditions that are suitable for dispersal (Fernando 1959, Popham 1964, Savage 1989). The 
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seasonal pattern of colonisation prevents the exchange of individuals all year round, and 

during winter and the summer nymphal development period (see figure 1.2) the ponds are 

effectively isolated from each other. Therefore, although the rate of turnover is high (see 

section 4.2.3), each pond represents a local breeding population. 

Although N. obliqua appears to have a higher colonisation rate, it is difficult to assess the 

significance of the differences between the species due to the problems inherant in the 

calculation of colonisation rates, and the data on the annual rate of colonisation over the same 

period (table 4.1) suggest a converse pattern with N. maculata having a higher colonisation 

rate. There is considerable evidence for a negative association between dispersal ability in 

insects and stability of the habitat occupied (Southwood 1962, Johnson 1969), as 

demonstrated by Brown (1951) for species of Corixidae. N. maculata is commonly found in 

temporary or unstable habitats, whereas N. ob/iqua is more often found in larger and more 

stable habitats (Southwood and Leston 1959, Blaustein, Kotler and Ward 1995, Walton 

1943). If the relationship holds true for notonectids, it would suggest that N. maculata should 

have a higher dispersal rate than N. obliqua. 

Mark-release experiments. 

The very small number of individuals recaptured following dispersal limits the discussion 

of the results of these experiments. However the percentage recovery following migration was 

comparable to other studies (e.g. Nurnberger 1996) and this, combined with the successful 

retention of the tags for several months, suggests that it is a useful technique for examining 

dispersal and colonisation by mobile aquatic Hemiptera. The only conclusion that can be 

drawn from the results is that adult Notonecta are capable of dispersing at least 1.6km, but no 

further inferences are possible regarding the distribution of dispersal distances, and whether 

there are any differences between species. However, the distance to the nearest neighbour 

pond in the sample that were surveyed is generally less than lkm, and all but three of the 
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ponds sampled for the monthly colonisation rate calculations was occupied at some point. It 

seems unlikely therefore, that any of the study ponds were too isolated for recolonisation to 

occur. 

Conclusions. 

This section aimed to evaluate the factors influencing the colonisation of dewponds by 

Notonecta and investigate the rate and pattern of dispersal by the two species. There is some 

limited evidence for a link between changes in the habitat and colonisation for N maculata, 

but problems with the analysis prevent any conclusions regarding N obliqua from being 

drawn. The link between pond colonisation by N maculata and changes in habitat is not 

consistent between years; in 1998 there was no evidence of any habitat influence on pond 

colonisation. Stochasticity in the process of dispersal (Ebenhard 1991, Ims and Yoccoz 

1997) may mean that species may not show effective 'habitat tracking', possibly due to 

limited opportunities to sample the available habitat due to seasonal dispersal, and hence 

colonisation is influence by both habitat change and chance effects. 

The influence of isolation on dispersal and colonisation seems rather limited in the 

dewpond system, as the distance between ponds appears to be well within the dispersal range 

of the species. This would tend to suggest that connectivity between individual ponds is high, 

and hence individual ponds may be demographically united into a larger single population - a 

'patchy population' (Harrison 1991, 1994). However the strongly seasonal pattern of 

colonisation limits the amount of dispersal that can take place between ponds and hence the 

individual ponds can still be considered to be local breeding populations. 
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4.4 Local extinction. 

4.4.1 Introduction. 

Local extinction of populations can occur as a result of the influence of numerous factors 

(Pirnm, Jones and Diamond 1988, Lawton 1995), and it is the relative importance of the 

different factors that is fundamental to understanding the overall process of extinction in the 

content of a metapopulation or any population system showing local extinctions but regional 

persistence. 

May (1973) and Shaffer (1981) developed schemes to characterise these different factors 

and 'types' of extinction. The primary division is between deterministic and stochastic 

extinction events. Deterministic local extinctions occur when there is an inexorable change in 

the environment, for example changes in the habitat occupied by the population (such as 

succession) which lead to it being no longer suitable for occupancy. Stochastic extinctions 

however, are the result of chance events (Goodman 1987, Foley 1997) and can be further 

subdivided by the nature of the chance process that is acting to cause extinction. 

Demographic stochasticity refers to the chance events in birth-death processes that lead to 

population extinction (Goodman 1987, Pimm, Jones and Diamond 1988). Generally, the 

effects of demographic stochasticity are only important when the populations has been 

reduced to a fairly small size by the action of other factors (Goodman 1987, Harrison 1991, 

Foley 1997), although the precise population size depends on species' demographic traits 

(Ebenhard 1991). Similarly, genetic stochasticity, the effects of inbreeding and loss of genetic 

diversity on the likelihood of population extinction, are again generally only important in 

populations that have reached a critical size (Frankham 1995, Saccheri et al. 1998). 

Environmental stochasticity is concerned with random changes in population size due to the 

influence of external environmental factors such as food supply (Foley 1997); the final 

stochastic factor, catastrophes (Ewens, Brockwell, Gani and Resnick 1987, Lande 1993), 
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refers to the effects of infrequent extreme environmental events such as drought or fire, which 

result in extinction. These terms apply to individual local populations, but the same principles 

can also be applied over a wider scale. Hanski (1991) described immigration-emigration 

stochasticity and regional stochasticity; the metapopulation level equivalents of demographic 

and environmental stochasticity respectively. The former describes extinction events caused 

by chance imbalances in immigration and emigration at a site, while the latter describes 

correlated environmental events which affect all the sites across a region and may reduce the 

lifetime ofa metapopulation (Harrison and Quinn 1989, Gilpin 1990). 

Most metapopulation models make the assumption that local extinction of populations 

occurs solely as a result of stochastic processes (such as environmental or demographic 

stochasticity) (Hanski 1991, 1994b, Harrison 1991, Foley 1997) and that deterministic 

processes are unimportant. This stems partly from the fact that all habitat patches are 

generally assumed to be equally suitable (an assumption that began with the first 

metapopulation model of Levins [1969, 1970]). If habitat quality, including such aspects as 

habitat patch area, does not vary then deterministic habitat change cannot influence 

population persistence. Some models incorporate loss of habitat through destruction (Nee and 

May 1992, Moilanen and Hanski 1995, GyUenberg and Hanski 1997) which has the same end 

result as deterministic habitat change, but these models do not allow for habitat to be 

recreated. Obviously this simplifying assumption may limit the use of the current models in 

situations where changes in the habitat are an important driving force in spatial population 

dynamics (e.g. Stelter, Reich, Grimm and Wissel 1997). 

Harrison and Taylor (1997), reviewing the empirical evidence for metapopulation 

dynamics, state that environmental stochasticity is the most likely factor driving local 

extinctions in the majority of meta populations that have been studied (see also Harrison 1991) 

and it is this factor that is most commonly incorporated into extinction models (e.g. Foley 
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1997). However Thomas (1994b,c) suggests that the emphasis placed on stochastic factors in 

most metapopulation studies may be misplaced. Drawing mainly on studies of butterfly 

metapopulations, Thomas (1994b) suggests that most local extinctions are the result of 

deterministic changes in the local habitat which lead to extinction, and prevent recolonisation 

of the patch until further changes in the habitat have occurred to make the habitat suitable for 

occupancy again. Svensson (1985) and Sjogren Gulve (1994) also found evidence of 

deterministic extinctions of local populations of gyrinid beetles and pool frogs respectively, 

correlated with changes in the local habitat conditions in small ponds and Svensson (1985) 

documented recolonisation when the habitat became more suitable. 

Given that most metapopulation models are based on the assumption of stochastic 

extinction as a result of environmental stochasticity, it is important to assess the importance 

of different factors acting to cause local extinctions when studying field systems that resemble 

metapopulations. Here I examine the extinction of populations to determine whether there is a 

link between habitat change and local population extinction. I then investigate the relationship 

between notonectid population size and dewpond area. A positive relationship is a central 

assumption of incidence function and other spatially explicit metapopulation models, which 

substitute patch area for population size in calculating extinction probabilities (see section 

1.2). Finally I assess the rates of mortality experienced by overwintering populations of 

Notonecla to determine whether this is likely to be an important cause of local extinction. 

4.4.2 Methods. 

Annual survey. 

Extinction events, recorded as part of the study of population turnover (section 4.2) were 

analysed in the same manner as described for colonisation rates (4.3.2). The number of 

extinction events was calculated for each species over each one year census interval and 

stepwise logistic regression used to analyse the probability of extinction in relation to the 
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habitat variables recorded in the first census year or the changes in the habitat variables 

between years. 

Quantitative survey. 

A quantitative sample of the notonectid population was taken from 12 dewponds in 

August 1998, using the seine-type net method of sampling (section 2.5), to test whether there 

was a relationship between population size and pond area or other habitat variables. In order 

to attempt to reduce the variability due to differences in pond habitats, the ponds that were 

sampled were all concrete lined and contained no submerged vegetation. Ponds where both 

species occurred were also excluded due to the potential of interspecific interactions 

influencing the abundance attained by each species. The number of ponds within this 

classification that were occupied by N obliqua was very small and hence estimates of 

population size were only obtained for ponds occupied by N macuiata. 

Overwintering mortality. 

Monthly surveys of five dewponds were carried out from November 1997 to March 1998 

using the standard methodology (section 2.5). The counts ofnotonectids obtained from these 

surveys were used to provide a standardised population estimate for each pond in each month, 

allowing changes in overwintering population size to be investigated. The ponds were chosen 

to provide a range of starting population sizes whilst having broadly similar habitat 

characteristics. Only a total population census, regardless of species, was recorded and no 

comparison between the survival of the different species was made. In addition, intermittent 

visits were made to the ponds between surveys and relevant environmental conditions (for 

example extended ice cover) recorded. During this work it was noted that there was 

considerable variation in the degree of freezing of ponds following a frost. Therefore a survey 

of ice thickness at one metre from the pond edge was undertaken following a three day period 
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of sub-zero temperatures across the whole survey area, to test whether there was a 

relationship between the severity of freezing and pond altitude. 

4.4.3 Results. 

Annual Survey. 

The results of the stepwise logistic regression of local extinction are shown in table 4.3. 

For N. maculata, none of the habitat variables recorded in 1996 entered the logistic regression 

model. However when the change in habitat between years was used in the analysis, one of 

the habitat variables recorded, change in mud depth between years, was included in the final 

model, causing a significant increase in the log-likelihood ratio (p < 0.1). From the results it 

can be seen that an increase in mud depth between years caused an increase in the probability 

of population extinction (the regression coefficient for change in mud depth is positive, table 

4.3b). Figure 4.5 shows the function derived from the logistic regression equation plotted 

over the range of values of mud depth change recorded in the field. In 1998 a significant 

logistic regression model was fitted to the data which included mud percentage cover in 1997 

(table 4.3). A high percentage cover of mud in 1997 was associated with an increasing 

probability of extinction between 1997 and 1998 (figure 4.6). No model could be fitted using 

the change in variables between 1997 and 1998. 

For N. obliqua, when the analysis was carried out on extinction between 1996 and 1997 

using habitat variables recorded in 1996, one habitat variable entered the logistic regression 

model, percentage cover of submerged vegetation. A low percentage cover of submerged 

vegetation in 1996 was related to a increased probability of population extinction in 1997 

(negative regression coefficient of submerged vegetation cover, table 4.3b). The function 

derived from the logistic regression model is shown in figure 4.7. When the analysis was 

repeated with change in habitat variables between census years, no significant logistic 

regression model could be fitted. For the 1998 data no model could be fitted as only two 
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extinction events were recorded between 1997 and 1998. The small number of cases in one 

classification category (extinction events) lead to unstable parameter estimates and overfitting 

of the model due to the high variable to event ratio for this category (Tabachnick and Fidell 

1996). 

Table 4.3 Results of forward stepwise logistic regression oflocal extinction of Notonecta 
species in relation to habitat variables. a) Significance of logistic regression model. Model G2 

= log-likelihood ratio of the model, df = degrees of freedom of the logistic regression model, p 
= significance of logistic regression model. b) Logistic regression equation parameter 
estimates. P = coefficient of the variable entered, SE = standard error of the coefficient, p = 
significance of the variable entered (degrees offreedom for all variables = I). 

a) 

Species Year Model G2 df p 

N maculata 1996-7 4.71 1 0.029 

1997-8 6.59 I 0.010 

N ohliqua 1996-7 7.34 1 0.007 

b) 

Species Year Variable entered ~ SE p 

N maculata 1996-7 Constant -1.28 0.58 0.027 
Change in mud depth 9.80 5.33 0.066 

1997-8 Constant -5.03 2.30 0.029 
Mud percentage cover 0.06 0.03 0.029 

N obliqua 1996-7 Constant 0.74 0.72 0.305 
Submerged vegetation cover -0.08 0.04 0.061 

Quantitative survey. 

N maculata population size, as estimated by the quantitative survey, was not correlated 

with pond area (r(12] = O.lll,p = 0.732 using 10g\O transformed data, figure 4.8). Although it 

was examined over a limited range of pond and population sizes, there is little evidence of any 

relationship. The populations that were established between 1997 and 1998 did not appear to 

be any smaller than those that persisted over the same period, and one newly colonised 

population reached a very high abundance (350 individuals) (figure 4.8). Although no 
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Figure 4.5 Probability of local extinction between 1996 and 1997 of N. maculata in relation 
to changes in mud depth. Fitted line derived from logistic regression equation (see table 4.3) 
over the range of values in the field data. 
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Figure 4.6 Probability of local extinction between 1997 and 1998 of N maculata in relation 
to 1997 percentage cover of mud on the substrate. Fitted line derived from logistic regression 
equation (see table 4.3) over the range of values in the field data. 
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infonnation was obtained for N obliqua, there is no reason to presume that this species would 

demonstrate a significantly different relationship. 

Correlations were also calculated between N maculata population size and percentage 

mud cover, the variable which was included in the logistic regression model of extinction for 

the period 1997-1998, to test whether the changes in extinction probability were correlated 

with local population sizes. The correlation between population size and percentage mud 

cover was not significant (rs [J2] = -0.0 I, P = 0.974), suggesting this has little influence on 

population size. 

Overwintering mortality. 

There was a general decline in the overwintering population in all ponds throughout the 

period of sampling (figure 4.9a), with some suggestion of ponds with larger starting 

population sizes (e.g. pond 28) showing a more rapid numerical decline. However in order to 

test for differences between the proportional rates of decline in the different ponds, the 

population abundances were converted into survival data, with the population estimate each 

month expressed as cumulative survival from the start of sampling (figure 4.9b). These data 

were analysed using the logrank (Mantel-Cox) test of survival (Miller 1981, Pyke and 

Thompson 1986). There were significant differences between the survival of populations in 

different ponds (Z[4] = 46.0, P < 0.001). Pairwise comparisons of the populations were 

carried out (using a Bonferroni correction of the observed significance to correct for the 

number of comparisons being carried out [Norusis 1993]) to determine where significant 

differences occurred (see table 4.4). The population in pond 18 showed a significantly greater 

decline in overwinter survival than all the other ponds (figure 4.9b). 

Given the assumption that the survival estimates obtained from the different ponds (which 

had different starting population sizes) are independent estimates of a common survival curve, 

then the data from the individual ponds can be combined to obtain an overall survivorship 
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curve (figure 4.10). This survivorship curve can be used to estimate the minimum population 

size required to successfully overwinter and maintain a viable population in the spring. In 

order to do this, a survival distribution model must be fitted to the observed survival data. 

The common survival distribution functions that can be fitted are the exponential distribution, 

the Weibull distribution, the lognormal distribution and the gamma distribution (Miller 1981, 

Cox and Oakes 1984, Pyke and Thompson 1986). Each of these models were fitted to the 

data using a iterative non-linear least squares regression procedure and the goodness of fit (as 

indicated by non-linear R2) assessed. A simple two parameter negative exponential function 

had the best overall fit to the data (k = 0.911) and hence this model was used to describe the 

combined survivorship curve (figure 4.10), which is linear if a 10glO dependent axis is used. 

From this relationship, predictions of spring population size can be made from known autumn 

population sizes, assuming that the winter 1997/8 was a 'typical' winter (see Discussion). 

Table 4.4 Bonferroni corrected significance from logrank (Mantel-Cox) test of survival for 
pairwise comparisons between overwintering survival ofnotonectid populations in dewponds. 

Pond 18 Pond 27 Pond 28 Pond 30 

Pond 17 < 0.001 0.054 0.371 0.101 

Pond 18 0.002 < 0.001 < 0.001 

Pond 27 0.143 0.608 

Pond 28 0.895 

4.4.4 Discussion. 

Annual Survey. 

The results of the logistic regression analyses suggest that the probability of local 

extinction of populations is related to changes in the habitat, which may affect the suitability 

of the patch for the species concerned. The habitat variables included in the logistic 

regression models, and their direction of influence, appear to reflect the habitat preferences of 
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the two species (Chapter 3). The habitat preferences of the species may reflect a number of 

factors such as foraging efficiency (Giller and McNeill 1981, Chapter 5), but the habitat 

variables that were included in the model are consistent with the suggestion that the 

availability of oviposition sites may be an important factor in habitat preferences and hence 

habitat driven extinction events. 

The oviposition preferences of the two species are well known (Walton 1936, section 3.4). 

For N. maculata, the increase in mud depth between census years is likely to have led to a 

reduction in the availability of suitable hard substrate for oviposition. Given a thin cover of 

mud or silt, N maculata can still successfully oviposit, and may clear the silt off the substrate 

through the action of oviposition (personal observations). However, thicker layers of mud on 

the substrate may render the surface unusable for this species. N obliqua oviposits almost 

exclusively by embedding eggs into the stems of water plants. Therefore a lower percentage 

cover of submerged vegetation equates with fewer oviposition sites which may in tum serve to 

increase the probability of local extinction. In both cases, the paucity of oviposition sites may 

lead to smaller local population sizes and hence the probability of extinction via 

environmental stochasticity or chance demographic effects may increase. 

Quantitative survey. 

There appears to be no relationship between N maculata population size and pond size in 

the dewponds, at least over the size range of ponds sampled. The population size of N. 

maculata also appears to be unrelated to habitat variables that influence local population 

extinction (see Annual Survey above), although the small number of samples involved makes 

the detection of any relationship difficult. Therefore, although it was hypothesised that the 

habitat related extinction events may be caused through changes in availability of oviposition 

sites, which in tum affect local population size, there is little supporting evidence from the 

data here. 
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Overwintering mortality. 

The general decline in population size overwinter suggests that mortality during this 

period is a potentially important component of local extinction. When the proportional 

survival rates were examined, there were significant differences in the rate of decline 

overwinter between ponds, with one pond (pond 18) showing a significantly higher rate of 

decline than all the other ponds. The period of most rapid decline in this pond occurred 

between November and December and this coincided with extended ice cover on this pond, 

which was the only pond to freeze over this period. 

There was a significant increase in the thickness of ice cover with altitude (figure 4.11) 

suggesting that higher ponds are more likely to suffer more severe and extended periods of 

freezing, which may lead to higher mortality (due to the reduction in dissolved oxygen 

concentrations in the water). However the fact that altitude does not enter the logistic 

regression analysis of the annual survey data also suggests that the effects of altitude on the 

overall rate of extinction are not strong over the range of altitude sampled. The considerable 

residual variation in this relationship probably indicates the importance of local aspect and 

exposure. Localised freezing of ponds, such as that of pond 18, may also have a considerable 

impact on overwintering mortality. 

Despite the differences in survival rate detailed above, the overall numerical survivorship 

curve was well described by a simple negative exponential function. An exponential decline 

in population size over time suggests that although the proportional decline in survival is 

constant, larger populations will show a more rapid rate of decline in numerical terms. This is 

consistent with the numerical decline data (figure 4.9a) which suggests that the ponds with 

larger starting population sizes (for example pond 28) show a more rapid numerical decline, 

although the decline in proportional survival (figure 4.9b) is not significantly different from 

that of ponds with smaller starting population sizes. 
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The constant proportional decline in population size implicit in the exponential 

survivorship curve suggests that small autumn populations may still overwinter successfully 

and avoid extinction, as numerical decline will be slower. However the small population sizes 

will still make such populations vulnerable to extinction through demographic stochasticity. 

For N maculata, mating occurs in the autumn as well as in the spring so it is potentially 

feasible for a single mated female to produce a population if it overwinters successfully. For 

N ob/iqua a minimum of two individuals would be necessary due to the requirement of spring 

mating. If a more reasonable estimate of minimum spring population size of between 5 and 

10 individuals is assumed for both species, then by interpolating from the survivorship curve, 

this corresponds to a autumn population size of approximately 30-60 individuals. Many of 

the local breeding populations will maintain populations of this size or greater, but the 

transitory populations consisting of dispersing individuals, and other populations whose 

reproductive success is lower, may not be sufficiently large to survive over winter. 

Conclusions. 

This section aimed to evaluate the relative importance of different factors in determining 

local extinction of Notonecta populations in dewponds. The evidence from the annual pond 

surveys suggests a clear link between habitat change and the probability of extinction. 

Therefore deterministic habitat driven extinctions would appear to be of considerable 

importance in the dewpond system, consistent with the views of Thomas (1994b,c) that 

deterministic extinction is of major importance in most metapopulations. Habitat change 

appears to affect the suitability of individual ponds for the species involved and hence 

recolonisation by the same species is unlikely following extinction until the habitat becomes 

more suitable again. The two species of Notonecta have contrasting habitat preferences 

(section 3.2 and 3.3) and hence although the patch may become unsuitable for one species it 

may become more favourable for the other species. The changes in habitat recorded here are 
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over one year census intervals; in a previous study of population turnover of N maculata in 

34 dewponds over a four year census interval (Briers 1997), no link between population 

turnover and changes in habitat was found. However extinction was not analysed separately 

to colonisation, and changes in the habitat subsequent to those causing extinction may have 

left patches suitable again, but unoccupied due to the vagaries of colonisation. 

The restricted range of data collected in the quantitative survey limits the conclusions 

regarding relationships between population size and pond area. The assumption of a positive 

relationship between these two variables underpins the incidence function approach to 

modelling metapopulations (Hanski 1994a,b, 1997, Eber and Brandl 1996, Hanski, Moilanen, 

Pakkala and Kuussaari 1996) and the generality of the relationship has been demonstrated for 

a wide range of organisms (Hanski 1994b, Williamson 1981). There was also no evidence for 

relationships between population size and habitat variables, despite the link between these 

variables and extinction probability in the logistic regression analyses. 

Stochastic elements of population extinction in the dewpond system are largely 

represented by environmental stochasticity, in the effects of overwintering mortality. The 

survivorship curve derived from the data allows predictions of minimum population size 

required to successfully overwinter. Populations smaller than this may decline to such an 

extent that demographic stochasticity may begin to playa role in population extinction. The 

severity of the winter will obviously affect the viability of populations by altering the 

mortality rate. The conditions experienced by the populations will be broadly correlated due 

to the scale over which weather conditions act. However local variation in the severity of 

freezing due to factors such as pond altitude (see figure 4.11) and local aspect or exposure 

(pond 18, figure 4.9b) significantly affect population survival. Drought may also act as a 

catastrophic stochastic agent in the dewponds. In the summer of 1996, several ponds dried 

out completely and most had severely reduced water levels; again the conditions were broadly 
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correlated across all ponds and hence drought acts to increase regional stochasticity (Hanski 

1991). 

Overall, deterministic extinction resulting from local habitat change appears to play the 

dominant role in causing local population extinction in the dewponds, and the effects of 

environmental stochasticity, as represented by overwintering mortality, and catastrophic 

events, such as drought are of lesser importance. The evidence from the dewpond system 

supports the contention of Thomas (1994b,c) that deterministic extinction events have greater 

importance in metapopulation type systems than has been credited in the majority of current 

metapopulation theory and models. 

79 



4.5 Conclusions. 

This chapter examined the spatial population dynamics of Notonecta in dewponds, in 

relation to the proposition that regional persistence is the result of a balance of colonisation 

and extinction in a metapopulation. 

The species showed many characteristics of metapopulation dynamics, such as population 

turnover, but there is evidence that the availability of suitable habitat is an important driving 

force in regional dynamics, which violates the stochastic turnover assumption of almost all 

metapopulation models. The availability of suitable habitat across the landscape appears to 

influence regional occupancy levels. Changes in the habitat of individual patches alter their 

suitability, which in tum affects the persistence of local populations, through the probability 

of extinction. There is less evidence of a link between habitat and colonisation of ponds, 

suggesting that this process may be more stochastic. 

These results suggest that the regional population dynamics of Notonecta do not strictly 

conform to the assumptions of current metapopulation models, as regional persistence is more 

strongly influenced by the availability of suitable habitat across the landscape than a dynamic 

balance of colonisation and extinction. 
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5. Competition and coexistence. 

5.1 General introduction. 

Most metapopulation models consider single species dynamics, but extension of the single 

species metapopulation model of Levins (1969, 1970) and its derivatives to consider two 

competing species suggests that, contrary to the competitive exclusion principle (Hardin 

1960), two species competing for the same resources can show stable coexistence over a 

regional area, even if they have an unstable local interaction, through dispersal to competitor­

free patches (Levins and Culver 1971, Hom and MacArthur 1972, Slatkin 1974, Hanski 

1983, 1995, Lehman and Tilman 1997, Nee, May and Hassell 1997). However in field 

systems, such fugitive regional coexistence may be relatively rare (Hastings and Harrison 

1994, Harrison and Taylor 1997, but see Hanski and Ranta 1983, Bengtsson 1989, 1991). 

Natural systems of multiple habitat patches are likely to consist of a mosaic of different patch 

types rather than the homogeneous patches envisaged by metapopulation models (Holt 1997, 

Wiens 1997). In a landscape where there are qualitative differences between patches, 

contrasting habitat selection by species at the landscape scale may reduce the likelihood of 

competitive interactions between them, by reducing distributional overlap (Pimm and 

Rosenzweig 1981, Hanski 1995), in a similar manner to within-patch habitat partitioning 

(Schoener 1974). If competition does occur, the outcome of the interactions between the 

species may be influenced by the habitat type where the species co-occur (Danielson 1991, 

Hanski 1995) 

N maculata and N ob/iqua show preferences for different habitat types (sections 3.2 and 

3.3), but there is still some degree of overlap in their distributions (sections 3.2 and 4.2.3) and 

hence competition and other interactions such as mutual predation (Streams 1992) may 

influence regional distribution patterns. In this chapter I examine the competitive interactions 

between nymphs of the two species, to determine the extent to which competition where the 
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species co-occur may influence pond occupancy and hence modify regional population 

dynamics and distribution patterns. I use laboratory and field experiments to investigate 

competition between the species in different environments, and also examine mutual predation 

in the laboratory. 
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5.2 Competition between nymphs. 

The following section consists entirely of a paper accepted for publication in Freshwater 

Biology, with the exception that the figure and table legends have been altered and some 

minor re-formatting has been carried out to be consistent with the rest of the thesis, and the 

references are included with the other references at the end of the thesis. 
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5.2.1 Summary. 

1. Two species of freshwater invertebrate predator, Notonecta maculata and N. ob/iqua show 

a negative association in a series of small man-made ponds in the Peak National Park, 

Derbyshire, UK. This study examines the potential role of interspecific interactions among 

nymphs on this regional distribution pattern. 

2. Survival, development and feeding efficiency of nymphs were examined in laboratory and 

field mesocosm experiments with intra- and inter-specific competition and contrasting 

environmental complexity. 

3. Survival to adult and mean lifespan varied significantly in inter-specific competition 

treatments in both laboratory and field experiments, with N. maculata showing higher 

survival in the simple environment and N. obliqua higher survival in the complex 

environment. 

4 . Variations in feeding efficiency were consistent with the survival trends; N. maculata had a 

higher efficiency in the simple environment whereas N. ob/iqua had greater efficiency in the 

complex environment. There was evidence of a developmental response in feeding efficiency, 

with differences between species increasing with age. 

5. These results suggest that the relative competitive abilities of the two species are affected 

by habitat complexity, and that competition between species may modify the species 

distribution where they co-occur. 
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5.2.2 Introduction. 

Species of backs wimmer, Notonecta, are important invertebrate predators in small 

standing freshwater habitats, such as ponds, ditches and pools (Blaustein, Kotler and Ward 

1995, Jeffries 1996). Different species of Notonecta have broadly similar ecology 

(Hungerford 1933, Gittleman 1975), and there is the potential for strong competitive 

interactions between species when they co-occur, due to trophic niche overlap (Streams 

1987a,b). Studies ofnotonectid guilds have shown that although individual species often 

show overlap in their geographical distribution, some combinations of species rarely co-occur 

and there is evidence for species segregation by habitat type (Taylor 1968, Streams and 

Newfield 1972). 

Such partitioning of available habitats may be indicative of competitive, or other 

interactions between species (Gilpin and Diamond 1982, Connor and Simberloff 1983), but 

other factors influencing habitat selection in Notonecta, such as foraging efficiency in 

different environments (Giller and McNeill 1981), physical habitat characteristics such as pH, 

and preferences for different types of oviposition substrate (Hungerford 1933, Walton 1936) 

may also be important in influencing distribution patterns. 

Most previous studies of competition in Notonecta have relied on comparative studies of 

foraging efficiency, activity patterns and body size to infer the likelihood of competition 

between species, or the relative competitive abilities of species in different environments 

(Taylor 1968, Streams and Newfield 1972, Gittleman 1975, Giller and McNeill 1981, 

Streams 1987a). There is some evidence that the type of habitat occupied is correlated with 

foraging strategy, and differences in habitat use may reduce the likelihood of inter-specific 

competition (Giller and McNeill 1981, Streams 1987b). 

With the exception of Streams (1987b), these studies have been based on observations of 

adults. However in small habitats, nymph populations are often strongly food limited (Fox 
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1975a,b). Fox (l975b) found that in a series ofsmall stream pools, an average of only four 

percent of N hoffmani nymph populations successfully matured as adults, and Streams 

(l987b) cites between two and five percent survival to maturity of N insulata in a O.2ha 

pond. This would suggest that competition, and other interactions such as mutual predation 

(Streams 1987b, 1992) between the developmental stages ofnotonectids may also play an 

important role in determining patterns of distribution. 

In the present study, we examined the competitive interactions between the nymphal 

stages of two notonectid species, Notonecta maculata Fabricius and N ob/iqua Gallen, which 

co-occur regionally in the study area, but appear to have a negative association in their 

distributions. Previous studies of the adults of these species have shown an effect of 

environmental complexity on predation efficiency and habitat occupancy (Giller and McNeill 

1981), which may influence the outcome of competition between the species. In a 

combination of laboratory and field mesocosm experiments we tested the influence of habitat 

complexity on the outcome of nymphal competition. 

5.2.3 Study system. 

The two species of Notonecta considered in this study regionally co-occur in 'dewponds' 

in the Peak National Park, Derbyshire, UK and are the dominant top predators in this system. 

The dewponds are small (4-12m in diameter), shallow (less than 1m deep) and generally 

saucer-shaped. The ponds, which occur at relatively high densities across the study area, are 

all man-made for the purpose of supplying water to stock in limestone areas, which have little 

or no natural standing water. Many ponds have no macrophytic vegetation, but a minority 

have extensive growth of submerged species such as water crowfoot (Ranunculus spp.) and 

pondweeds (Potamogeton spp.). They are generally circumneutral (median pH = 7.1, range = 

6.4-8.6) and all ponds are fishless. 
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The two species are widely distributed in the dewponds, although N. maculata has a 

higher frequency of occurrence. Adult Notonecta have good dispersal mechanisms, being 

strong fliers, and pond occupancy is not constant over time; both species showing periodic 

local extinctions and colonisations. A survey of 68 dewponds over an area of 380km2 carried 

out in July and August 1996, found that the occurrence of breeding populations of the two 

species showed a negative association (X2
[2) = 6.62, P < 0.05). There is some evidence from 

these data that the negative association between the species may be partly related to 

submerged vegetation cover (figure 5.1): N maculata is found largely in ponds with little or 

no submerged vegetation whereas N obliqua is found over a much wider range of vegetation 

cover. This pattern of distribution is consistent with the differences in adult predation 

strategy and feeding efficiency demonstrated by Giller and McNeill (1981). Based on 

laboratory examination of predation efficiency, N maculata was expected to be a better 

competitor in a simple environment, whereas N. obliqua had a predation strategy that enabled 

it to exploit a wide range of environments, and hence it was expected to out-compete N. 

maculata in more complex environments (Giller and McNeill 1981). 

5.2.4 Materials and methods. 

Laboratory experiments. 

The laboratory experiments examined the survival and development of pairs of nymphs, 

either two conspecifics or one of each species, under conditions of differing environmental 

complexity and with increasing food limitation over time. 

Experiments were carried out in clear plastic cups containing 200ml of dechlorinated 

tapwater. Two levels of environmental complexity were used: complex, with two 8cm 

segments of artificial aquarium weed, and simple, with no artificial weed. Each replicate 

contained two instar II Notonecta nymphs, all of which were reared from eggs laid in 
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Fipre 5.1 Number of ponds occupied by species of Notonecta in relation to percentage 
cover of submerged vegetation, a) N maculata, b) N ob/iqua. Solid bars indicate number of 
ponds occupied, open bars indicate unoccupied ponds. Data derived from survey of 68 
dewponds in the Peak National Park in 1996. Mean cover for ponds occupied by N maculata 
= 4.8%, by N obliqua = 23.0%. 



laboratory aquaria by adults obtained from dewpond sites, and which had been fed on 

Daphnia magna Straus. 

Two competitor combination treatments were used for each species: conspecific, where 

each replicate contained two nymphs of the same species, and heterospecific, where one 

individual of each species was used. Experiments were initiated when the nymphs moulted 

into instar II due to high and unpredictable mortality of instar I. All experiments were carried 

out at 15°C under a I2h light: I2h dark lighting regime. The number of replicates in each 

treatment varied between 11 and 15. 

Food supply to each pair of nymphs was kept constant, at 25 D. magna every two days. 

The prey were graded with a series of sieves in order to present a consistent size of prey to the 

nymphs. Random subsamples of prey were taken, preserved in 70% alcohol and their lengths 

measured under a binocular microscope at x 20. The mean length of the prey was 2.27mm 

(SE = 0.03). In pilot experiments this feeding level was found to be sufficient to maintain 

two instar II nymphs or I adult. Therefore food limitation increased as the instars developed 

and their energy requirements increased. This mirrors natural conditions that may be 

experienced in field populations of Notonecta in small habitats (Fox 1975a,b). Dead D. 

magna were removed weekly and half of the water was replaced every two weeks. 

All replicates were censused daily. The lifespan of individual nymphs was measured as 

the number of days from the beginning of instar II to death. In addition the instar that the 

nymph had reached at death was recorded based on the head widths of the nymphs. Results of 

the conspecific treatments were based on the first nymph to die of the pair in each replicate. 

In the heterospecific treatments lifespan data was based on the nymphs which died. Once one 

nymph had died, the replicate was censored in terms of lifespan data for the surviving nymph, 

but this nymph provided data on survival to adult. 
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Mesocosm experiments. 

The purpose of the mesocosm experiments was to examine the outcome of competitive 

interactions between the nymphs, in terms of survival to adult, among larger groups of 

individuals in a habitat that more closely resembled the natural field conditions found in the 

dewponds. 

Mesocosm construction. Experiments were carried out in square green plastic tanks 

(50x50x30cm) containing approximately 60 litres of water, located in part of the University 

of Sheffield Experimental Gardens. The tanks contained a one centimetre layer of washed 

horticultural sand as a substratum. Twenty tanks were used, giving five replicates offour 

treatments. Three of these treatments contained just the sand substratum (simple 

environment) and the fourth had a more complex environment with the complexity provided 

by five equally spaced bunches of water crowfoot, Ranunculus sp. (each bunch containing 

approximately 20 stems of weed between 20 and 25cm in length) which were weighted down 

and placed in each tank. The weed was collected from one of the field sites and thoroughly 

washed and carefully examined before use to prevent uncontrolled colonisation. 

The 'simple' treatments contained either 16 N maculata, 16 N ob/iqua, or a mixture 

(8:8) of both species. The 'complex' environment treatment contained 8 nymphs of each 

species. The density used was within the range observed in the field. Practical constraints 

precluded the establishment of a full factorial design so there were no single species 'complex' 

treatments. All nymphs used were instar III, collected from dewpond sites known to contain 

single species populations. No attempt was made to control the age of nymphs other than to 

instar. 

Inoculation. Prior to the start of the experiments, the mesocosms were inoculated with 

samples of water, detritus and organisms collected from five dewpond sites to provide a prey 

assemblage similar to that found in the dewponds. The material was collected in the field and 
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brought back to the laboratory, where it was examined briefly on a light table and potential 

predators of Notonecta nymphs, mainly larvae of dytiscid beetles (Agabus spp.), removed. 

Following examination the material was placed in a large tank, mixed thoroughly and 500ml 

samples removed and added to the mesocosms. Equal amounts were added to each mesocosm 

until all the material was used up. This process was repeated weekly for four weeks and the 

mesocosms were then left undisturbed for another four weeks before the nymphs were 

introduced. During this time, and throughout the course of the experiments, the mesocosms 

were covered with fine white mosquito netting to prevent further uncontrolled colonisation and 

a layer of greenhouse shade netting to reduce light levels and prevent excess algal growth and 

overheating. Previous experiments using the same containers show that mesocosms set up in 

this way can support communities of invertebrates over periods well in excess of those used in 

this experiment (Warren and Spencer 1996, P.H.Warren, personal observations). 

A secondary inoculation of prey organisms was carried out approximately one month after 

the start of the experiment which gave some opportunity for new species to colonise, or 

species that had gone extinct to re-colonise. This second inoculation consisted of two 500ml 

samples of material added to each mesocosm, which did not substantially augment prey 

abundance. Prey abundance declined over time, mirroring natural food limitation which is 

common for notonectids inhabiting small pond or pool habitats (Fox 1975a,b). 

Sampling. Once the mesocosms had been stocked with notonectids, they were examined 

at two week intervals to check on the development of the nymphs. To maintain similarity 

between mesocosms, growth of duckweed, Lemna minor L. was removed during these 

inspections where extensive cover had developed. Frequency of examination increased to 

every two or three days as the nymphs reached instar V and each replicate was sampled when 

visual inspection showed that all the surviving nymphs in that replicate had become adults. 

All notonectids were removed using a hand net, identified to species in the field by their 
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hemielytral patterns (Savage 1989) and replaced. The experiment was then continued until 

the last nymph across all the replicates had become adult and the number surviving in each 

replicate was recorded again. The result of analysis of data from the first and second samples 

were very similar and hence only the results from the first sample of each replicate are given 

here. 

Feeding efficiency. 

These experiments were designed to test whether the feeding efficiency of notonectid 

nymphs was affected by environmental complexity in a similar way as it is in adults of the 

same species (Giller and McNeill 1981). 

The laboratory arenas and prey used were exactly the same as for the laboratory 

competition experiments. The use of standard prey size may increase variation in attack rate 

and handling time between instars (McArdle and Lawton 1979, Streams 1994) but the 

primary interest here was comparison of feeding rate within instars in arenas of different 

environmental complexity. 

Notonecta nymphs came from the same stock as used in the previous laboratory 

experiments, and prior to the experiments were fed ad libitum on D. magna. Nymphs that 

were near to moult were not used as they tend to have lower feeding rates (Fox and Murdoch 

1978). Each trial was set up by introducing a single nymph to each container and keeping it 

for 24hr under a 12hr light: 12hr dark regime at 15°C without food to standardise hunger 

levels. Then 40 D. magna were added to each container and the number remaining alive 

counted after 2hr. All experiments were carried out in the light at 15°C. Dead D. magna 

were examined to confirm that all mortality was due to predation, by their crumpled and 

ragged appearance. The experiments were carried out for instars I to V of both species, in the 

simple and complex environments. Eight replicates were performed for each 

specieslinstar/complexity combination. 
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5.2.5 Results. 

Laboratory experiments. 

Survivorship and mean lifespan. All replicates for the conspecific treatments are 

uncensored (i.e. all replicates were followed until death of one of the pair) and the mean 

lifespan (time from start of instar II until death) of the first nymph to die in different 

environments was analysed using a two-way ANOV A, with species and environment as fixed 

effects. Neither the fixed effects, or the interaction between them, was significant (species 

F[I,44] = 0.26, P = 0.609, environment F[l.44] = 0.78, P = 0.381, and interaction F[l,44] = 0.09, P 

= 0.767). Data from the heterospecific treatments, based on the survival of both nymphs, 

were censored, as once one nymph had died, no further lifespan information could be obtained 

for the other nymph. No a priori assumptions were made concerning survival distributions 

(Cox and Oakes 1984) and therefore the logrank (Mantel-Cox) test (Pyke and Thompson 

1986) was used to compare the lifespan of nymphs in these treatments, taking into account the 

censoring of replicates. 

There was a significant difference between the average lifespan attained by nymphs in the 

different treatments (Z(3] = 14.51, P = 0.002, see figure 5.2). Therefore pairwise comparisons 

of the survivorship curves were carried out, using a Bonferroni correction to allow for the 

number of comparisons being carried out (Norusis 1993) (see table 5.1). There was no 

significant difference between survival of N maculata in the different environments, whereas 

N. obliqua had significantly higher survival in the complex environment compared to its 

survival in the simple environment and that of N maculata in the complex environment (see 

figure 5.2). 

Instar at death. In order to test whether the proportion of individuals reaching a given 

insta.r varied between treatments a three-way contingency table (variables = instar at death [I], 

environmental complexity [E] and species combination [S]) was constructed. This was 
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analysed using a logit loglinear model (Wrigley 1985, Tabachnick and Fidelll996) 

implemented in SPSS (Norusis 1993) with [1] as the dependent variable. In the heterospecific 

treatments, only the nymphs that died were included, the censored replicates being analysed 

separately (see Survival to adult with heterospecijic competitors). Only three nymphs out of 

77 which died reached instar IV and hence for the purposes of analysis Instars III and IV were 

collapsed into category Instar III+ to minimise structural zeros which influence expected cell 

values and may affect the fit of the model (Fienberg 1970, 1977). 

Initially a saturated model, containing all possible effects and interactions, was fitted and 

then interactions and effects removed by backwards deletion based on the change in the 

likelihood ratio G2
, in order to obtain the best fit to the observed frequencies. The model with 

best overall fit to the data (likelihood ratio G2
[6J = 5.56, P = 0.475) contained no significant 

associations between the instar at death and species combination or environment. 

Table 5.1 Bonferroni corrected significance from logrank (Mantel-Cox) test for pairwise 
comparisons between nymph lifespans in heterospecific treatment. 

Environment 

Simple 

Complex 

Simple 

Species N. maculata N. ob/iqua 

N. maculata -

N. obliqua 

N. maculata 

N. obliqua 

0.365 

Complex 

N. maculata 

0.l40 

0.607 

N. ob/iqua 

0.189 

0.035 

0.011 

Developmental response. Although the effects of environmental complexity and 

competitors on lifespan and instar at death have been considered above, these analyses do not 

account for the fact that nymphs may show overall slower development when experiencing 

competition. Nymphs may have a long lifespan, but not develop beyond the instar at which 

the experiment was started. It was therefore necessary to factor out the variation in lifespan 

due to slow development within instars. A three-way ANOVA was carried out on the lifespan 
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data, with instar at death, species and environment as fixed effects. The heterospecific 

treatments were excluded due to the large number of censored replicates and hence the 

analysis only considered the effects of environmental complexity on intraspecific competition. 

There were no significant interactions between effects and the only significant main effect was 

that ofinstar at death (F(I.33] = 20.9,p < 0.001). Not unexpectedly, the mean lifespan of 

instar III nymphs was longer than that of nymphs which only reached instar II. 

Survival to adult with heterospecijic competitors. In the heterospecific treatments, once 

one nymph of the pair died, the replicate was censored with respect to lifespan data. However 

the surviving nymph of the pair was maintained under experimental conditions and was 

identified to species on reaching instar V by the colouration of the hind tarsi. Therefore the 

numbers of individuals reaching maturity (all surviving nymphs subsequently became adults) 

could be compared. N. ob/iqua had higher survival to adult than N. maculata in the complex 

environment and a reverse and slightly weaker trend was evident in the simple environment 

(table 5.2). 

Table S.l Survival to adult of Notonecta species with heterospecific competitors in 
environments of differing complexity. Frequency of survival varied significantly with 
environment (Fishers Exact test, p = 0.017). 

Environment 

Simple 

Complex 

Mesocosm experiments. 

Species 

N. maculata 

7 

I 

N. ob/iqua 

4 

9 

Proportional survival to adult (Sa) was calculated for each species as the number of adults 

remaining at the end of the experiment divided by the number present at the start (16 in single 

species treatments or 8 in the treatments containing both species). For analysis, the 

proportiOns were transformed using the arcsine square root transformation. 
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Simple environment survival. There were significant differences in the survival of 

nymphs in different species combinations in the simple environment (one-way ANOVA, F[3.16) 

= 8.45, P = 0.001). Taking each species separately, survival of N. obliqua was significantly 

lower with heterospecific competitors than with conspecifics (Tukey test,p < 0.05, figure 5.3) 

but there was no significant difference in survival of N. maculata with either competitor 

combination. 

Simple-complex comparison. Survival of each species in the presence ofheterospecific 

competitors was compared in different environmental complexities using a two-way ANOV A. 

There was a significant interaction between species and environment (F(I. 16] = 14.52, P = 

0.002), but the main effects were only borderline significance (both F[1.16) = 4.08, P = 0.06). 

N. maculata showed significantly lower survival in the complex environment (Tukey test, p < 

0.05), whereas there was no significant difference between environments in the survival of N. 

obliqua (Tukey test, p > 0.05, figure 5.4). 

Feeding effiCiency. 

For each species, the mean number of D. magna eaten was analysed in a two-way 

ANOV A, with instar and environment as fixed effects. For both N. maculata and N. ob/iqua 

there were significant effects of ins tar (F(4.70) = 279,p < 0.001 andF[4.1O) = 370,p < 0.001 

respectively), environment (F(I. 70) = 17.1,p < 0.001 andF[I.1O] = 27.0,p < 0.001) and the 

interaction (F(4.70] = 5.4,p = 0.001 andF(4. 70) = 8.7,p < 0.001) (figure 5.5). 

Considering only the within-instar comparisons, instars I and II of both species showed no 

effects of environmental complexity on predation rate. However later instars demonstrated a 

divergence in predation rate in different environments. Instar III and IV N. maculata had a 

significantly higher predation rate in the simple environment, and instar IV and V N. ob/iqua 

had a significantly higher predation rate in the complex environment. 
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5.2.6 Discussion. 

The results presented here indicate that differences in environmental complexity can alter 

the outcome of competitive interactions between the two species of Notonecta. 

In the laboratory experiments, there was no effect of environment on mean lifespan in the 

conspecific treatments and a similar lack of effect was evident in the analysis of 

developmental response. In the heterospecific treatments, environmental complexity 

significantly affected the mean lifespan of nymphs. N ob/iqua showed significantly higher 

mean lifespan in the complex environment. Similar patterns were evident in survival to adult, 

except that N maculata showed a more pronounced difference in survival between 

environments than N obliqua. There was no effect of environment or competitor species on 

the instar reached before death, but the small cell totals in the heterospecific treatments due to 

high censoring may have affected the analysis. 

Survival to adult in the mesocosm experiments showed slightly different patterns to the 

laboratory results. There was significant effect of competitor species on the survival of N 

ob/iqua in the simple environment, but the censoring of the heterospecific treatments in the 

laboratory experiments prevents direct comparison of survival of this species with different 

competitors in the simple environment. Contrary to the laboratory experiments, with 

heterospecifics N maculata had significantly lower survival in the complex environment, 

whereas N ob/iqua showed no difference. 

The feeding experiments suggest that the predation efficiencies of the nymphs of both 

species vary between different habitat types, with N maculata showing significantly higher 

efficiency in the simple environment and N obliqua higher efficiency in the complex 

environment. The exception to this is N maculata instar V which showed no significant 

difference in feeding efficiency between environments. This may be due to the small size of 

the experimental arenas relative to the nymphs in instar V, which may have limited the 
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efficiency of predation (Fox and Murdoch 1978). The difference in efficiency between 

environments increases with instar number in both species. This suggests there is a 

developmental response in feeding efficiency in habitats of differing complexity, with 

increasing habitat specialisation with age. These results further confirm the conclusions 

based on survival trends in both laboratory and field mesocosm experiments, and point to 

feeding efficiency being a factor in competition between the species in the nymphal stages. 

Although the details of the trends found in the laboratory and mesocosm experiments 

show some variation, the overall pattern is that nymphs of N maculata are superior 

competitors in a simple environment, while N ob/iqua nymphs are better able to exploit 

complex environments. The strongest effects are seen in survival to adult in heterospecific 

treatments, and the developmental response in feeding efficiency suggests that competition 

between the species in a given environment may become increasingly asymmetric as the 

nymphs develop. This is a possible reason why effects of competition were non-significant in 

early instars (see Ins tar at death and Developmental response). The young instars 

demonstrated no effect of environmental complexity on feeding efficiency and hence inter- and 

intra-specific effects of competition for food would be similar. 

In the presence of conspecific competitors, the effect of environment on survival is much 

less marked, despite the differences in feeding efficiency. Therefore in the field, in the 

absence ofheterospecific competitors, the species may successfully occupy habitats in which 

they do not have a high feeding efficiency. However if both species occur together, 

competitive interactions, mediated by habitat complexity, may lead to the exclusion of the 

subordinate competitor. A similar effect was demonstrated in species of water strider 

(Heteroptera: Gerridae) by Spence (1981, 1983). 

The results of this study are consistent with observations on adult foraging strategies and 

field distribution in different environments (Giller and McNeill 1981) and the observed pattern 
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of pond occupancy in the Peak District dewponds (figure 5.1). However the importance of 

competition between the two species depends upon the frequency of overlap in terms of field 

distribution. Differences in preferences for oviposition substrates (Walton 1936) and other 

habitat characteristics (Giller and McNeill 1981) may reduce the potential for competition by 

allowing partitioning of pond occupancy over a regional area (Taylor 1968, Streams and 

Newfield 1972) or partitioning of habitat within individual ponds (Giller and McNeill 1981, 

Streams 1987a,b). For example Streams (1987b) showed that two species of Notonecta 

coexisting in a pond partitioned habitat space and hence avoided potential competition, and 

that the habitat partitioning was a reflection of fundamental niche differences. In the 

dewponds, the ponds with high vegetation cover that are occupied by N maculata are also 

occupied by N obliqua and tend to have well defined areas that are free of submerged 

vegetation, which may allow habitat partitioning within ponds. 

However dispersal and colonisation of ponds by adults is liable to lead to some overlap in 

distribution and if the two species occur in the same pond by chance, the small size of the 

ponds and potential food limitation makes competition between nymphs likely. In this 

situation, competitive superiority will be mediated by habitat complexity. Therefore the 

observed distribution patterns in the dewponds are likely to be the result of habitat selection, 

modified by competitive interactions where the two species co-occur. 
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5.3 Mutual predation. 

5.3.1 Introduction. 

Cannibalism is an common interaction between notonectids, which can have important 

effects on nymphal survival rates, and the demography of populations of Notonecta, through 

changes in population age structure (Fox 1975a,b), as well as effects on nymphal behaviour 

(Sib 1981, 1982). However predation is not limited to the same species; one Notonecta 

species will also prey upon the nymphs of other congeneric species (Streams 1992). If species 

co-occur in the same habitats, mutual predation may be an important factor in detennining the 

overall survival of a species population. These experiments examine mutual predation of N 

maculafa and N. obliqua in the laboratory, to detennine whether there is any evidence of 

differential rates of predation of conspecific and heterospecific nymphs of different instars. 

5.3.2 Methods. 

Experiments were carried out in simple laboratory arenas, as described in the laboratory 

competition experiments (section 5.2); each experimental arena contained two nymphs, either 

two conspecifics or one nymph of each species. All nymphs were fed ad libitum with D. 

magna prior to use and kept individually. As with the feeding efficiency experiments (section 

5.2), nymphs near to moult were not used in experiments. Moulting nymphs are wlnerable to 

mortality unrelated to predation (Sih 1982) as well as having lower feeding rates. Due to 

difficulties in identifying the nymphs to species, one of the pair was chosen at random and 

marked with a permanent marker pen on the thorax. The nymph was blotted dry on tissue 

paper before the mark was applied and then returned to its container. The unmarked nymph 

was handled in a similar manner apart from the application of a mark to control for any 

effects of handling. The marks were retained by the nymphs for the duration of the 

experiment but faded after three or four days. 
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The nymphs were left for 48hr in the experimental arenas without additional food, at 15°C 

under constant dim lighting to avoid any diel periodicity in feeding (Streams 1982) and any 

incidence of predation noted after this time, along with the species and instar of the survivor 

and prey nymphs. Every combination of instars III to V was tested and ten replicates were 

carried out for each combination of species and instar. These stages were used for two 

reasons. Firstly, although intrageneric predation may occur throughout nymph development 

(Giller 1979), it is later instars that demonstrate the highest rates, particularly in food limited 

conditions (Fox 1975a). Second, nymphs in this size range are known to overlap in the field 

(section 2.7), whereas more extreme combinations (such as instar I and V) are unlikely to 

occur. Therefore it is the interactions between these combinations which are of most 

relevance to the dewpond system. 

5.3.3 Results. 

A three-way contingency table was constructed from the counts of predation events, with 

variables [S] - species combination, [P] - 'prey' instar and [Prj - 'predator' instar (where 

'predator' was the survivor and 'prey' the nymph that was killed). There were no instances of 

predation of a larger instar by a smaller instar, hence these totals were zero. However 

because this interaction was possible, these cells were defined as sampling zeros for the 

purposes of analysis, rather than structural or logical zeros, which would indicate that the 

combination was not possible (Fienberg 1970). 

The incidence of intrageneric predation in the different species-instar combinations was 

analysed using a loglinear model, implemented in SPSS. Initially a saturated model was fitted 

containing all possible effects and interactions, and then terms were removed hierarchically by 

backwards elimination (Benedetti and Brown 1978) using the likelihood ratio G2 statistic (p 

for removal = 0.05) to obtain the model with the best fit to the observed frequencies. The 

model with best overall fit to the data (likelihood ratio G2
[27J = 3.52, P = 1.00) contained the 
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term [P*Pr], the interaction between predator and prey instar (significance of term: likelihood 

ratio G2
[4J = 19.3, P = 0.007). There was no significant effect of species combination on the 

incidence of predation. The incidence of predation increased with increasing difference in 

instar between the nymphs (figure 5.6). 

5.3.4 Discussion. 

The results of these experiments show that incidence of intrageneric predation between 

notonectid nymphs in the laboratory increases with the size difference between the interacting 

nymphs. This result is broadly consistent with other investigations of intrageneric predation 

in species of Notonecta (Sih 1982, Streams 1992) and other predatory species of Hemiptera 

such as Gerridae (Jamieson and Scudder 1977). The increased risk of predation with 

increasing size difference between interacting individuals has also been shown to have other 

effects on the foraging behaviour and feeding rate of smaller instars of Notonecta in the 

presence of adults (Murdoch and Sih 1978, Sih 1982). However, Sih (1982) found that the 

predation risk from adult N hoffmani on instars IV and V was minimal in the laboratory and 

this was reflected in the lack of avoidance behaviour in field populations. In this study the 

rate of predation in the laboratory for instar V preying on instar IV was still quite high, but 

the rates of predation recorded may not reflect the predation experienced in the field. Streams 

(1992) found no evidence of size dependent predation rates in field enclosures, although there 

was strong evidence of such interactions in laboratory experiments. Changes in the encounter 

rate in the larger field enclosures and possible avoidance effects (Sih 1982) may affect 

intrageneric predation rates in the field, suggesting that although the laboratory experiments 

may provide information on the relative predation rates of ditrerent instar combinations, the 

observed rates in the field are likely to be much lower (Sih 1982, Streams 1992). 

The lack of any significant effect of species combination in the analysis suggests that the 

rate of predation is not affected by whether the prey is a conspecific or heterospecific nymph. 
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Figure 5.6 Number of predation events occurring between pairs of Notonecta nymphs of 
differing size combinations, totalled across all species combinations. 



Streams (1992) also found no evidence for any discrimination between species in tenns of 

incidence of predation and similar lack of discrimination between species had been 

demonstrated in Gerridae (Spence and Carcamo 1991). This points to size differences being 

the main factor in determining the rate of intrageneric predation. In the case of the two 

species under consideration in this study, there is a consistent size difference between the 

species throughout development, with N ob/iqua being larger in all instars (figure 2.3) 

suggesting that if the two species develop at the same rate, N ob/iqua may have a predatory 

advantage. However if the analysis is repeated on only the same instar combinations, there is 

still no significant effect of species combination (X2
[3) = 2.31, P = 0.511), suggesting that the 

size difference is insufficient to generate any strong selective effects. 

In tenns of the impact of intrageneric predation on species coexistence, rather than there 

being any effects via selective predation on heterospecifics, the timing of oviposition, hatching 

and subsequent development of the nymphs may be more important. If one species hatches 

before another species or has a faster rate of development, the size difference generated may 

lead to a higher rate of predation on the heterospecific nymphs, potentially affecting the 

species composition of the habitat (Morin 1984, Spence and Caccamo 1991, Streams 1992). 

This priority effect may have significant impact on the survival of the species with smaller 

nymphs at any given time, and the effect will be magnified with increasing size difference 

between the nymphs. Life history variation, such as timing of oviposition (see figure 1.5), 

will have an important influence in terms of restricting the potential overlap of nymphal 

jnstarS, but annual variation in the environment, which will affect subsequent nymph survival 

and development rates is likely to lead to a dynamic interaction between the two species over 

time. 
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5.4 Conclusions. 

TIlls chapter examined competitive interactions between Notonecta species with respect to 

the impact of competition on regional population dynamics and distribution. The outcome of 

competition between the two species in the nymphal stages is influenced by habitat complexity 

in a manner consistent with the differences in foraging strategy demonstrated for the adults 

(Giller and McNeill 1981) and feeding efficiencies of the nymphs (section 5.2). Mutual 

predation would also appear to be a potentially important interaction between the species, 

which may influence the survival of individual populations. However there is no evidence for 

selection of heterospecifics over conspecifics; the likelihood of predation appears to be 

governed by the relative size of the individuals (Streams 1992). Therefore the importance of 

mutual predation in species coexistence is dependent on the timing of oviposition and rate of 

development of the two interacting species. 

The importance of all these interactions in regional population dynamics depends on the 

amount of overlap in species distributions. The contrasting habitat preferences (sections 3.2 

and 3.3) will tend to reduce the overlap of breeding populations and hence fugitive coexistence 

via metapopulation dynamics is likely to be of limited importance in this system. However 

where they do co-occur, competitive and predatory interactions between the two species will 

modify the distribution patterns generated by habitat selection at the landscape scale. 
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6. Patterns in the dewpond metacommunity. 

6.1 Introduction. 

The majority of the work so far in this thesis has been focused on the spatial population 

dynamics and interactions between two species of Notonecta in the dewpond system. The 

dynamics of one, or two interacting species, has been the main area of development for theory 

and models of spatially structured population systems (Hastings and Harrison 1994, Hanski 

and Sirnberloff 1997, Nee, May and Hassell 1997, Hanski 1998) and this is also where 

empirical research has been concentrated (e.g. Harrison, Murphy and Ehrlich 1988, Sjogren 

Oulve 1994, Thomas and Hanski 1997). However these species do not (usually) occur in 

isolation and are likely to interact with the other species in the community. Together, these 

species make up a metacommunity, which can be defined simply as local communities linked 

by dispersal by one or more of their member species (Holt 1997). 

Many of the other species in the dewponds, and similar pond systems, are capable of 

dispersing between ponds, and show similar patterns of local population turnover as those 

demonstrated for the species of Notonecta (Macan 1939, Popham 1951, Fernando 1958, 

1959, Jeffries 1989, 1994, Briers 1997). Therefore pond invertebrate communities may be 

good examples of field metacommunities, although the spatial scale of metapopulation 

dynamics and temporal rates of population turnover of member species are likely to vary 

depending on species life history traits such as dispersal ability (Harrison and Taylor 1997). 

Here I examine some aspects of structure in the dewpond metacommunity, and focus in 

particular on the evidence of links between patterns in Notonecta distribution and putative 

prey species. Notonecta is the top predator in the dewponds; it is widely distributed and may 

reach high local abundances. Previous studies have demonstrated that Notonecta can severely 

reduce the local abundance of prey organisms, and may cause local extinctions (Murdoch, 

Scott and Ebsworth 1984, Jeffries 1996), and that these impacts may be reflected in changes 
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at other levels in the food web (Blaustein, Kotler and Ward 1995, Amer, Koivisto, Norberg 

and Kautsky 1998, Blaustein 1998). Such unstable local interactions between predator and 

prey can be stabilised over a regional area as a result of metapopulation dynamics (Hastings 

1977, A.D.Taylor 1991, Nee, May and Hassell 1997), where the prey species has a spatial 

refuge from predation via dispersal to predator-free patches. Therefore Notonecta may be 

negatively associated with prey species at the landscape scale. This type of interaction is the 

most thoroughly examined theoretically, but is only one of a range of potential interactions 

between the distribution and abundance of predator and prey at the landscape scale (Holt 

1997). In a metacommunity, the distribution ofa predator such as Notonecta may be nested 

within the distribution of its prey species, as a result of sequential trophic dependency (Holt 

1993, 1995, 1997). Therefore the predator may exist as a metapopulation with respect to the 

prey species. In this situation prey abundance is synonymous with patch quality, and hence 

distribution patterns may be influenced by donor control (Pimm 1982, DeAngelis 1992, Polis 

and Strong 1996) acting at the landscape scale (Holt 1997), with the predator positively 

associated with the prey, with respect to patch occupancy and local abundance. 

6.2 Methods. 

Field sampling. 

A serni-quantitative sample of the invertebrate population was taken from 28 dewponds in 

July and August 1996. The sample consisted of three 1m sweeps through the middle of the 

water column, and a 30cm benthic trawl, both collected with a standard pond net. All 

collected material was preserved in 70% alcohol in the field. Each sample was sorted at a 

later date in the laboratory. Large particles of substrate and debris were removed using a 

series of sieves of varying mesh size. The remainder of the material was examined on a light 

table and all invertebrates removed and re-preserved. Super-abundant taxa (Chironomidae 

and Helophorus spp.) were enumerated using a sub-sampling technique similar to that 
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described in Wrona, Culp and Davies (1982). Each sample was made up to two titres with 

water and mixed thoroughly by bubbling compressed air through it. Six 50ml subsamples 

were taken from the sample, and all the organisms in each sub sample counted. These counts 

were summed and the invertebrate count scaled up to the total volume of sample. These 

samples were used to give an estimate of the relative abundance of taxa. Most of the 

invertebrates were identified to species or genus, with the exception of Chironomidae. 

Data analysis. 

Many species were found in a limited number of ponds (often only one or two) and only 

reached very low abundances in these ponds. The data were grouped into broader taxonomic 

categories (see table 6.1) and taxa recorded from less than five ponds were excluded from the 

analysis. The inclusion of these species would degrade the analysis, as measures of 

association or correlations between variables are unlikely to be reliable given the small 

number of non-zero values (Tabachnick and Fidelll996) and hence any patterns of 

association, either in terms of pond occupancy or abundance, between these species would be 

difficult to assess. 

The association between taxonomic groups was measured using the Phi coefficient (Yule 

1912, Jackson, Somers and Harvey 1989), which has a range of -1 to + 1, indicating positive 

or negative associations. The group Helophorus was excluded from the group association 

analysis as it was present at all sites and hence measures of association cannot be calculated. 

The similarity of invertebrate community composition at different sites was measured using a 

similarity coefficient based on presence/absence data. Both the Jaccard index (q) and the 

Serensen index (C.) (Southwood 1978, Pielou 1984) were calculated, but in all analyses 

perfonned, the different indices gave similar results in terms of final clustering and only 

differed in the levels of similarity at which the clusters were divided. Therefore only the 

Jaccard index results are given. 
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Dendrograms of group associations and similarity of community composition were 

constructed using the unweighted average linkage method of clustering. Similarity and 

association coefficients are known to be affected by the relative occupancy of species (the size 

effect, Jackson, Somers and Harvey 1989), but the removal of species that have low 

occupancy should have reduced the influence of this effect, and there was little evidence for a 

strong effect of the number of sites occupied on the results of the analysis of group 

associations or community composition. 

Table 6.1 Taxonomic groupings of prey organisms used in analysis. 

Taxonomic grouping 

Notonecta 

Corixa 

Sigara 

Dytiscidae 

Chironomidae 

Helophorus 

Lymnaea 

Helobdella 

Excluded (low abundance and small 
number of ponds occupied) 

Species included in group 

N maculata 
N obliqua (adults and nymphs) 

Corixa punctata, adults and nymphs 

All Sigara spp. adults and nymphs 

Acilius sulcatus 
Agabus bipustulatus 
Agabus nebulosus 
Agabus spp.larvae 

Chironomidae larvae and pupae 

All Helophorus spp. 

Lymnaea peregra 

Helobdella stagnalis 

Cloeon dipterum 
Culicidae 
Erpobdella spp. 
Gyrinus substriatus 
Haliplus spp. 
Hydrobius jUscipes 
Hydroporus spp. 
Laccophilus spp. 
Nymphula spp. 
Planorbis spp. 

108 



6.3 Results. 

6.3.1 Association between taxonomic groups. 

The patterns of association summarised by the dendrogram (figure 6.1) show that the 

groups Dytiscidae and Sigara are not strongly associated with the other groups in either a 

positive or negative direction. The positive association between Dytiscidae and Sigara 

appears to be due to a bias in Phi, which overestimates the association between species when 

the distribution of one species is nested within that of another (Jackson, Somers and Harvey 

1989). There are only two sites where Dytiscidae are present and Sigara are absent, leading 

to an inflated association coefficient. Examination of the distributions of other taxa showed 

that none of the other associations suffered from this problem. The associations between 

Dytiscidae and the other groups (apart from Sigara) are all negative, but because average 

linkage takes into account the associations between Sigara and the other groups as well, these 

groups separate from the others with an average association of 0.023. All the other groups 

have positive values of Phi, indicating positive association to some extent, but this may be 

partly a result of the grouping of species into higher taxonomic groups, which will tend to lead 

to greater association between taxa than if individual species had been used to construct the 

dendrogram. The group Helobdella separates from the other groups at a fairly low positive 

Phi, and is not strongly associated with other taxa. The strongest positive associations are 

between Notonecta and Corixa, and Chironomidae and Lymnaea. 

6.3.2 Community composition. 

Five fairly distinct clusters, labelled A-E (see figure 6.2), with between two and nine sites 

in each cluster, were identified by the cluster analysis. Cluster E contains only one taxon and 

hence the clustering of sites into this grouping may be influenced by the size effect, but as the 

same taxon is found in all sites within this group, its separation is determined as much by the 
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absence of other taxa as the presence of the one taxon found. On this basis it would appear to 

be a reasonable ecological grouping. 

Following analysis of dewpond community composition using a binary presence/absence 

similarity measure, variation in the abundance of the different taxonomic groups across all 

ponds was summarised using PCA to assess whether patterns in abundance reflected the 

differences in community composition indicated by the cluster analysis. The abundances of 

all the organisms were transformed to normality using a natural log + 1 transformation. 

Figure 6.3 shows the first two components derived from the PCA, with datapoints labelled 

according to the clusters based on group presence and absence, and table 6.2 gives summary 

statistics and component loadings for the first two components. 

Table 6.2. Summary statistics for principal components analysis of grouped abundance data, 
a) cumulative percentage variance explained by each component, b) component loadings for 
taxonomic groups included in the analysis. All variables In + 1 transfonned. 

a) Cumulative % variance 

b) Taxonomic group 

Chironomidae 
Corixa 
Dytiscidae 
Helobdella 
Helophorus 
Lymnaea 
Notonecta 
Sigara 

Component 1 

30.4 

-0.389 
-0.371 
0.398 

-0.239 
0.348 

-0.246 
-0.555 
-0.074 

Component 2 

54.0 

0.064 
-0.445 
-0.268 
-0.422 
-0.431 
0.008 
0.048 

-0.599 

Examination of the loadings of the different taxonomic groups shows that the first 

component clearly separates the ponds with high abundance of Coleoptera from all others; the 

two coleopteran groups are the only groups to have positive loadings on component 1, all 

other groups having fairly high negative loadings. Most taxonomic groups have negative 

loadings on the second component, and hence this component describes a general decline in 
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abundance. Exceptions to this are the abundance of the groups ehironomidae, Lymnaea and 

Notonecta, which have very weak positive loadings on this component. The subsequent 

components of the peA were examined but they were not well defined in terms of group 

loadings. 

The clusters defined on the basis of presence-absence data are also fairly well separated 

on the peA analysis, suggesting that the use of binary similarity indices does not result in the 

loss of significant information in highly heterogeneous communities (Pielou 1984). The 

different clusters can be described in terms of the groups present and their relative abundance, 

as detailed in table 6.3. 

Table 6.3. Description of clusters according to the presence and relative abundance of the 
groups present in the sites. 

Cluster Sites included Description 

A 2,26 Species poor, high chironomid abundance. 

B 3,4,6,18,21,24,27,32,41 High abundance of Hemiptera and chironomids. 

C 17,20,29,35,38 Low chironomid abundance, dytiscids abundant, 
Lymnaea absent. 

D 5,10,13,22,28,30,34,40 High abundance of both Helophorus and dytiscids, 
Hemiptera poor. 

E 9,15,33,39 Only Helophorus present. 

The two clusters A and E are very distinct from the others. This is largely a result of their 

low taxonomic richness, E only containing one group, and A three groups. Sites within 

cluster A also have very high abundance of Chironomidae. The clusters B-D appear to 

represent a succession from Hemiptera dominated communities, to communities dominated by 

Coleoptera, both in terms of the number of ponds occupied by the two groups, and their 

numerical abundance, although the presence of other taxa is also important in defining the 

clusters (for ~xample the absence of Lymnaea in cluster e). The main separation of clusters 

is on the first component of the PCA, which appears to reflect the shift in community 
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dominance from Hemiptera (B) to Coleoptera (D). The low taxon richnesslhigh dominance 

clusters (A and E) also form distinct groups. 

Parametric correlation coefficients (Pearson product-moment) were calculated between 

the first two principal components and the habitat variables recorded from the sites (section 

2.6). Percentage cover variables were converted to proportions and transformed using the 

arcsine square root transformation prior to calculation of correlations; all other variables were 

not transformed. The table of correlations is shown in table 6.4. 

Table 6.4. Correlation coefficients of habitat variables and scores of sites from principal 
components analysis of group abundance, df of all variables = 28. ~ = variable transformed 
using the arcsine square root transformation. 

Habitat variable Component I Component 2 

Altitude 0.149 -0.194 

Conductivity 0.156 -0.460* 

Emergent vegetation<P 0.395* -0.105 

Mud percentage cover<P -0.221 -0.479* 

Mud depth 0.022 -0.253 

Pond width -0.1l4 0.102 

Submerged vegetation<P 0.052 -0.171 

Water clarity -0.062 0.342 

Water depth 0.073 0.232 

• p< 0.05 

Component I of the PCA is significantly positively correlated with cover of emergent 

vegetation. This component describes the shift in dominance from Hemiptera to Coleoptera, 

and the correlation of this axis with emergent vegetation cover suggests that the change in 

community composition may be influenced by changing habitat conditions, with increasing 

cover of emergent vegetation correlated with increasing dominance by Coleoptera. 

Component 2 has significant negative correlations with percentage mud cover and 

conductivity. The separation of clusters is less clear on this component, With the exception of 
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the taxon poor clusters A and E which are associated with low mud cover and conductivity, 

the component loadings suggesting a general increase in abundance with increasing mud cover 

and conductivity. 

6.3.4. Community composition and Notonecta. 

The analyses carried out in section 6.3.1-3 demonstrated that some taxa (for example the 

group Corixa) show positive associations with Notonecta, both in terms of co-occurrence and 

abundance. The purpose of this section is to further investigate the associations between 

Notonecta and other taxa, in relation to interactions between occupancy and abundance of 

Notonecta and its potential prey species, given the potential importance of Notonecta as the 

most abundant large predator in the dewponds. 

For the purposes of these analyses, only taxa that are known from the literature or from 

personal observations to be preyed upon by Notonecta were included (the 'prey community'). 

Therefore groups Heiobdella and Lymnaea were excluded from the analysis as these items 

have not been recorded as taken in any study of the diet or feeding preferences of Notonecta 

species (Jeffries 1984, Giller 1986 and references therein, P.H.Warren, unpublished data, 

R.A.Briers, personal observations). peA was used to summarise the variation in the 

abundance of the prey groups and explore whether the abundance of Notonecta was 

correlated with overall changes in the prey community. The results of the peA are given in 

table 6.5, and figure 6.4 shows the first two components derived from the peA with 

datapoints labelled according to the untransformed abundance of Notonecta. 

Examination of the plot of the first two components of the peA suggests that there may 

be some changes in the abundance of the different groups within the prey community, with 

changes in Notonecta abundance. The first component of the PCA reflects an overall decline 

in the abundance of three of the prey groups included in the analysis: Heiophorus, Sigara and 

Dytiscidae. Component 2 reflects increases in the abundance of three of the prey groups: 
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Corixa, Sigara and Chironomidae. It can be seen from figure 6.4 that ponds with high 

abundance of Notonecta are generally in the top right comer of the ordination, whereas the 

ponds with low numbers or no Notonecta are largely in the bottom left comer of the plot. 

Therefore there would appear to be some changes in the prey community with increasing 

Notonecta abundance that are evident as a diagonal shift in prey community structure with 

respect to components I and 2 of the PCA. Subsequent components of the PCA were 

examined but no evidence of any pattern in relation to the abundance of Notonecta was 

observed. 

Table 6.5. Summary statistics for principal components analysis of prey abundance data, a) 
cumulative percentage variance explained by each component, b) component loadings for 
variables included in the analysis. All variables In + 1 transformed. 

Component 1 

a) Cumulative % variance 

b) Variable 

Corixa 
Helophorus 
Sigara 
Chironomidae 
Dysticidae 

6.3.4 Notonecta and prey group abundance. 

35.0 

-0.172 
-0.609 
-0.470 
0.250 

-0.562 

Component 2 

65.3 

0.665 
-0.118 
0.484 
0.493 

-0.261 

The pattern of change in the abundance of individual groups with the abundance of 

Notonecta was assessed by calculating simple parametric correlations. The total abundance 

of the groups classified as potential prey was not correlated with the abundance of Notonecta. 

The abundance of four of the prey groups were significantly correlated with notonectid 

abundance; two groups were negatively correlated (Helophorus and Dytiscidae) and two were 

positively correlated (Corixa and Chironomidae) (see figure 6.5). The two numerically 

dominant prey groups (He/ophorus and Chironomidae) are correlated with the abundance of 
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Notonecta in opposite directions and hence any potential effect on overall abundance is likely 

, .... to be cancelled out by these contrasting correlations. 

Since the earlier analyses in this chapter suggest that there are links between habitat 

'~-'-' .. variables and changes in community composition, the interpretation of the variation in the 

prey community in relation to Notonecta is not straightforward. In order to assess the effects 

of Notonecta on the prey community, it is necessary to take account, as far as possible, of the 

possible confounding role of habitat variation. In order to do this, correlations between the 

abundance of prey groups and habitat variables (see section 2.6) were calculated for the sites 

where Notonecta was absent. Variables that were significantly correlated (p < 0.05) with the 

abundance of prey groups were subsequently included in a multiple regression of all sites, 

with abundance of the prey group as the dependent variable. The habitat variables were 

forced to enter the regression model and then abundance of Notonecta was entered into the 

model by a forward stepwise procedure (p for entry = 0.05) to test whether entry into the 

regression modelled to a significant increase in the F ratio, when the habitat factors affecting 

the abundance of the prey group were already entered. Following the multiple regression, the 

standardised multiple regression coefficients or beta weights (h') were examined to assess the 

relative magnitude of the effects of the independent variables included (Sokal and Rohlf 

1981). This procedure was carried out for the four prey groups that showed significant 

correlations with Notonecta abundance. 

Helophorus prey group. 

There was a significant positive correlation between Helophorus abundance and two of 

the habitat variables: emergent vegetation cover (arcsine square root transformed) and 

conductivity, in the absence of Notonecta (r[13) = 0.56, p = 0.048, and r[l2) = 0.58, p = 0.05 

respectively). Therefore these variables were forced to enter the multiple regression before 

attempting to enter Notonecta. However Notonecta still entered the model (using stepwise 

".,.\,-:;,;' lIS 
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entry) with a negative coefficient, indicating that abundance of Helophorus declines with 

increasing abundance of Notonecta, and the final regression model was highly significant 

(Ji(3.22) = 7.52, P = 0.0012, see table 6.6). From examination of the b' values, it would appear 

that conductivity has the strongest influence on the abundance of Heiophorus, followed by 

Notonecta and then emergent vegetation cover. 

Table 6.6. Results of multiple regression of Helophorus abundance with habitat variables and 
abundance of Notonecta. 

Variable Coefficient (P) SEofP b' t-value Significance of t 

Constant 2.69 0.69 3.90 0.001 

Conductivity 0.004 0.001 0.43 2.84 0.009 

Emergent 7.40 3.73 0.31 1.98 0.059 
vegetation cover 

Notonecta -0.50 0.69 -0.34 -2.20 0.039 

Corixa prey group. 

In the absence of Notonecta, there is a significant positive correlation between the 

abundance of Corixa and proportion of mud cover on the substrate (arcsine square root 

transformed), (r[13) = 0.58, P = 0.037). Therefore transformed proportion mud cover was 

forced to enter the multiple regression before attempting to enter Notonecta. However 

Notonecta still entered the model (using stepwise entry), with a positive coefficient, and the 

final regression model was highly significant (F(2.2S) = 5.43, P = 0.011, see table 6.7). From 

examination of the b' values, it would appear that mud cover and Notonecta abundance have 

approximately equal magnitudes of influence on the abundance of Corixa, and in this case 

high abundance of Notonecta is associated with high abundance of the group Corixa. 
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Table 6.7. Results of multiple regression of Corixa abundance with habitat variables and 
abundance of Notonecta. 

Variable Coefficient (P) SEofP b' t-value Significance of t 

Constant -0.36 0.62 -0.57 0.571 

Mud depth 1.25 0.56 0.38 2.24 0.034 

Notonecta 0.40 0.18 0.38 2.26 0.033 

Chironomidae prey group. 

There were no significant correlations between the abundance of Chironomidae and the 

habitat variables recorded in the absence of Notonecta. Therefore the positive correlation 

between Chironomidae and Notonecta would appear to be unaffected by any effects of the 

habitat variables recorded. As there were no habitat effects, multiple regression analysis was 

not carried out. 

Dytiscidae prey group. 

As for the prey group Chironomidae, in the absence of Notonecta there were no 

significant correlations between the habitat variables and the abundance of Dytiscidae. No 

further regression analysis was carried out. 

6.4 Discussion. 

Group associations and community composition. 

The most consistent pattern in the results of the taxonomic group association analysis is 

the negative association between the Dytiscidae and other taxa. Only Sigara is positively 

associated with this group and this association is artificially high as a result of bias in the 

coefficient when distribution patterns are nested. However a nested distribution pattern may 

be of ecological significance if it is indicative of trophic dependency. Although Dytiscidae 

will feed on Sigara species, the rate of predation in the laboratory is not high (P.H.Warren, 
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unpublished data, R.A.Briers, personal observations), and dipteran groups such as Culicidae 

and Chironomidae make up the majority of the diet of most species in this group (Nilsson and 

Svensson 1994, 1995). Therefore this pattern of distribution is unlikely to be the result of 

strong trophic dependence. Apart from the associations with the Dytiscidae, there are no 

strong negative associations between taxa, with most having positive values of Phi, although 

again the values are generally not high, with the strongest positive association between 

Notonecta and Corixa. This and other associations between Notonecta and potential prey 

taxa are further explored in section 6.4.2. 

Analysis of community composition suggests that some of the observed associations are 

the result of common responses by taxa to variation in habitat characteristics. The main 

pattern evident in the data is a shift from Hemiptera dominated communities (B) to Coleoptera 

dominated communities (D), suggesting that the clusters B to D may represent points on a 

continuum rather than separate and distinct communities. Although sites in cluster D are 

described as Coleopteran dominated, they are probably more accurately described as 

Helophorus dominated, as this group makes up the majority of the total Coleoptera, with a 

mean abundance of more than 10 times that of the group Dytiscidae. This shift in community 

composition from dominance by Hemiptera to Coleoptera is also reflected in the positive 

association between hemipteran groups, and the negative associations between Dytiscidae and 

other taxonomic groups (Helophorus was not included in the group association analysis as it 

was present at all sites and hence association measures cannot be calculated). 

The correlation between the first component of the PCA and emergent vegetation cover 

suggests that the changes in community composition described along this axis may be 

influenced by the habitat conditions within ponds. The shift towards Coleoptera dominance at 

high cover of emergent vegetation is consistent with the habitat preferences recorded for the 

species of He/ophorus (Friday 1988) which make up the majority of the Coleoptera. Warren 
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et af. (in press) found a similar negative correlation between the species richness of Hemiptera 

and Coleoptera in a survey of 40 dewponds in 1992 (including all 28 ponds sampled in this 

study), which appeared to be linked to the method of pond construction. Species richness of 

Hemiptera higher in concrete lined ponds, and Coleoptera higher in clay lined ponds. There is 

no evidence of a similar link to construction method in this study, although the small sample 

size of clay ponds (n = 6) makes analysis difficult. Re-analysis of the data from Warren et aZ. 

(in press) shows that emergent vegetation cover, which from this study appears to be 

correlated with the changes in community composition, was more abundant in clay lined 

ponds (Mann Whitney U test, U[8.32] = 56, P = 0.002, mean cover in concrete ponds = 5.5%, 

in clay ponds = 13.2%). Therefore the observed patterns in species richness in the study by 

Warren et aZ. (in press) may be linked to differences in habitat which are correlated with the 

method of pond construction. 

Notonecta and the prey community. 

There is no evidence for an overall negative impact on the abundance of the prey 

community, but individual prey taxa do appear to show some variation in abundance in 

relation to the abundance of Notonecta. Some of this variation is undoubtedly due to the shift 

in community composition in relation to habitat factors that is discussed above. However, 

there are still consistent patterns of variation in relation to Notonecta abundance when 

responses to habitat factors are taken into account, and the effects of Notonecta are of similar 

magnitude to the influence of habitat factors. The pattern of variation is not consistent across 

all taxa; both positive and negative correlations were found, and other taxa showed no 

response to the abundance of Notonecta. 

Prey groups Chironomidae and Corixa showed positive correlations with Notonecta. 

Both of these groups are known from laboratory and field studies to be prey items for 

Notonecta (Jeffries 1984, Giller 1986, Streams 1992, personal observations), and adult and 
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juvenile COrixa spp. have been used in the course of these studies to maintain notonectids in 

the laboratory (section 2.2). Jeffries (1984) ranked adult C. punctata as having low 

vulnerability to predation by N. glauca, but this was based on the interaction between adUlts. 

Personal observations in the laboratory have shown that the nymphal stages of Corixa species 

are highly vulnerable to predation by adults and nymphs of Notonecta. Therefore the degree 

of overlap between the different life stages of the two groups may be critical in determining 

the importance of predation. The strong positive association between the groups at the 

landscape scale is also suggestive of a link between the two groups potentially as a result of 

trophic dependency. 

Chironomidae are highly vulnerable to predation in the laboratory (Jeffries 1984), but in 

the field the benthic tube dwelling habit of the larvae act as a refuge from predation, reducing 

predation rates (Crowder and Cooper 1982, Folsom and Collins 1984, Warren 1988). Other 

life stages, such as pupae, would appear to be vulnerable to predation. This group often 

reaches very high abundances in the dewponds, and where Notonecta is very abundant, it is 

only found at high abundances (figure 6.5). Therefore even if only a small percentage of the 

total suffer predation, they may still act as an important food source for Notonecta. The 

positive correlation between the abundances of the two groups may therefore be the result of 

donor control, although the association between the two groups at the landscape scale is not 

as strong as would be expected if there was strong trophic dependence between them (Holt 

1995, 1997). 

The two groups of Coleoptera, Helophorus and Dytiscidae, showed negative correlations 

with Notonecta. In part, these correlations are likely to be related to the overall negative 

relationship between the abundance of Hemiptera and Coleoptera (section 6.3.3). However 

the negative correlations are still evident when habitat effects are factored out. A previous 

study of predation by N. glauca, involving field manipulation ofnotonectid predation in Small 
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enclosures (Jeffries 1984), also found that the abundance of species of He/ophorus was 

significantly depressed when Notonecta was added to the enclosures, and personal 

observations in the laboratory have shown that Notonecta readily prey upon species of 

Helophorus. Therefore it seems quite likely that the negative correlation between Notonecta 

and Helophorus is at least partly the result of an impact of predation. 

The negative correlation between Dytiscidae and Notonecta was not related to the habitat 

variables that were recorded. Notonecta are known to take larvae of large Dytiscidae (Jeffries 

1984, Giller 1986) but personal observations suggest that predation on adult Dytiscidae such 

as Agabus spp. is very rare. The Dytiscidae are found over a fairly wide range of abundances 

where Notonecta is absent or at low abundance, which suggests that other factors may be 

involved in influencing the abundance of Dytiscidae, possibly unmeasured habitat variables. 

Combined with the relative scarcity of predation, this would suggest that Notonecta is 

unlikely to be a significant detenninant of the abundance of this group. The observed 

response may be related to the overall changes in abundance of Hemiptera and Coleoptera 

that have been described in the dewponds. 

6.5 Conclusions. 

Patterns of association between taxa in the dewpond 'metacommunity' appear to some 

degree to be a reflection of common variation in abundance and likelihood of pond occupancy 

in response to habitat factors, which leads to overall shifts in community composition. The 

main variation in community composition is between Hemiptera dominated and Coleoptera 

dominated communities, which is influenced by the amount of emergent vegetation present in 

the ponds. 

There is some evidence for both positive and negative associations between Notonecta and 

other taxa, both at the landscape scale (pond occupancy) and local scale (abundance within 

individual sites). These patterns provide conflicting evidence for the role of prey species 
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dynamics in influencing the distribution and dynamics of Notonecta populations over a 

regional area. The degree to which both positive and negative associations between 

Notonecta and prey taxa are likely to be seen over a regional area in the field depends on the 

strength of the links between the predator and prey species (Holt 1995, 1997). Tightly 

coupled predator-prey systems are more likely to show strong sequential trophic dependencies, 

leading to nested distribution patterns (Holt 1997). Notonecta is a generalist predator, which 

is only weakly coupled to the dynamics of a particular prey species (Murdoch and Bence 

1987, Murdoch 1993). The generalist nature of Notonecta may result in greater local prey 

instability (Murdoch and Bence 1987) depending on the relative vulnerability of prey taxa 

(Scott and Murdoch 1983). However over a regional area, this means that the distribution of 

Notonecta is less strongly tied to the distribution of a particular prey taxon and hence the 

metacommunity dynamics of prey species are more likely to playa modifying rather than a 

driving role in the spatial dynamics of Notonecta. 
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7. Summary and conclusions. 

7.1 The aims reviewed. 

In this thesis I aimed to explore the extent to which the spatial population dynamics of 

Notonecta species conformed to standard models of metapopulation dynamics. The focus of 

metapopulation dynamics is on the persistence of multiple populations scattered across a 

landscape. A species is seen to persist as a metapopulation if the patterns of occupancy and 

distribution at this scale are determined primarily by a balance in the rates of regional 

stochastic extinction and colonisation (Levins 1969, 1970, Hanski 1991, 1994b, Harrison 

1994). For the most part, local processes are glossed over; patches are either unoccupied or 

at carrying capacity and there is no variation in habitat patch isolation or quality. More 

realistic metapopulation models, such as incidence function models (Hanski 1994a,b, 

1997a,b, 1998, see section 1.2) include information on patch locations and sizes, but the 

emphasis is still on persistence via a regional balance of colonisation and extinction, and other 

aspects of species ecology, such as changes in habitat or interactions with other species are 

largely ignored. To what extent is this an appropriate view of the dynamics of Notonecta in 

dewponds? 

7.2 Synthesis of results. 

Single-species patterns and dynamics. 

In ponds, and other isolated waterbodies, the edge of the water forms a clear boundary 

between habitat and non-habitat for the majority of the pond's inhabitants. Therefore, unlike 

many other field systems, where patch boundaries are less clearly defined (A.D.Taylor 1991, 

Wiens 1995, 1997), ponds are a good approximation of the patches envisaged in most 

metapopulation models. Due to this close similarity, and the relative physical uniformity of 

the dewponds, from an anthropomorphic point of view it is tempting to view all the ponds as 
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being part of a network of patches. However from the viewpoint of an individual, or 

population of, Notonecta, the ponds are not all of equal suitability. Chapter 3 presents clear 

evidence that the species have consistent and contrasting habitat preferences, which are likely 

to be initiated by differences in oviposition substrate selection. However the habitat 

preferences are not mutually exclusive; there is some degree of overlap in the species 

distributions and they tend to co-occur in habitats that are intermediate between the species 

preferences. At the landscape scale, the ponds represent a mosaic of patches of varying 

quality, rather than the binary patch-matrix landscape envisaged by most metapopulation 

models (Holt 1997, Wiens 1995, 1997). Therefore the effective patch network for each 

species, defined by the spatial distribution of suitable habitat (Dunning, Danielson and 

Pulliam 1992, Harrison and Fabrig 1995, Hanski 1997b), is considerably smaller than the 

extent of the total pond network. 

However the remaining ponds, which do not constitute suitable habitat for breeding 

populations, do not simply form part of the matrix of non-habitat surrounding patches of 

suitable habitat (Wiens 1997). They may still playa role in dispersal and colonisation by 

acting as 'stepping- stones' (Kareiva 1990). Although the species may not be able to 

reproduce successfully in these ponds, they can survive in the short term and this may enable 

individuals to disperse further in stages than they could in a single flight. Theoretical studies 

have also suggested that popUlation may persist in habitats where local reproduction does not 

balance mortality; 'sink' habitats, through immigration from surrounding 'source' habitats 

(Pulliam 1988, Howe, Davies and Mosca 1991). The implications ofa source-sink 

population structure for metapopulation dynamics remain largely unexplored (Harrison and 

Taylor 1997), but the study of a grasshopper metapopulation by Stelter, Reich, Grimm and 

Wissel (1997) demonstrated that populations which have low reproductive success and do not 

persist in the long term can nevertheless be important in maintaining overall persistence, if 

larger source populations are vulnerable to stochastic extinction. Sink populations may also 
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be of significant importance for Notonecta dynamics. During dispersal in late summer, 

numerous transitory populations of Notonecta are established, not all of which persist to form 

breeding populations the following year. However if they are of sufficient size to overwinter 

successfully (see section 4.4) they may contribute to the persistence of extant breeding 

populations and the establishment of new populations during the spring dispersal phase 

(section 4.3). In the case of N maculata, which can mate in the autumn, a single fertile 

female that overwinters successfully may contribute a propagule of sufficient size to establish 

a new population in the spring, whereas the spring mating N. ob/iqua would require a 

minimum of two individuals to potentially establish a new population. 

Having taken into account the fact that not all ponds are suitable for occupancy by the 

species of Notonecta, the dewpond system still bears a strong resemblance to a 

metapopulation. If the spatial population dynamics of Notonecta are examined over the 

survey area (section 4.2), the system displays many of the hallmarks of meta population 

dynamics (Thomas 1996, Hanski, Pakkala, Kuussaari and Lei 1995, Hanski 1997a). 

Regional levels of occupancy over the survey area are fairly stable, although at smaller survey 

scales there is greater variation in occupancy. Some of this variation is due to random 

sampling error, but there is some evidence that habitat affects the number of ponds occupied. 

Despite frequent population turnover, a good proportion of the populations do persist from 

year to year, and populations can be maintained for at least three generations (which is the 

limit of continuous observation in this study), and probably considerably longer. The species 

have good dispersal abilities, and judging from the patterns of transient pond colonisation 

during dispersal phases (section 4.3) the ponds are not too isolated to prevent recolonisation 

via dispersal. The strongly seasonal pattern of dispersal prevents individual populations from 

becoming demographically united with surrounding patches. Although the high dispersal 

rates would suggest that the system may resemble a patchy population (Harrison 1991, 1994) 

rather than a metapopulation, the populations do represent local breeding populations. 
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However, a more detailed examination of the processes of colonisation and extinction 

(section 4.3 and 4.4) throws some doubt on the assertion that Notonecta in dewponds exist as 

'classical' or Levins-type metapopulations. The assumption of meta population models is that 

regional persistence is based on a dynamic balance of stochastic colonisation and extinction, 

and in this respect Notonecta in the dewpond system clearly does not conform to this 

definition. Local extinction of populations of both species is linked to changes in the habitat 

of ponds (section 4.4), which appears to affect the suitability of the pond for occupancy. 

There is limited evidence for a similar link between colonisation and habitat (section 4.3), but 

problems with the analysis do not allow any firm conclusions to be drawn. If population 

turnover is driven by local changes in habitat quality, regional levels of occupancy and 

persistence at the landscape scale will be determined by the availability of suitable habitat, 

and the ability of species to 'track' its distribution (Thomas 1994b,c, Harrison and Fahrig 

1995, Harrison and Taylor 1997). The species will have stable levels of regional occupancy 

only if the rates of creation and destruction of suitable habitat are equal (Thomas 1994b) and 

any inequality in the rates will influence persistence at the landscape scale. Changes in the 

habitat mosaic will alter the spatial distribution of suitable habitat patches, and patches may 

become more isolated, affecting the ability of a species to track the available habitat (Webb 

and Thomas 1994, Harrison and Fahrig 1995). 

Isolation is unlikely to affect pond occupancy at the scale of this study due to the good 

dispersal ability of Notonecta (section 4.3) and the potential importance of stepping-stone 

habitats in reducing overall isolation of ponds. However not all suitable habitats are occupied 

by the species (section 3.2), and therefore there is clearly some stochasticity in the process of 

colonisation that prevents Notonecta from occupying all habitats across a landscape; the 

habitat tracking by this species is imperfect. Although colonisation and extinction do not 

determine regional persistence, they are still important in determining the spatial distribution 

of populations across the landscape (Harrison and Taylor 1997). In common with many, if 
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not most, species that occupy fragmented habitat patches which experience temporal changes 

in habitat quality (e.g. Stelter, Reich, Grimm and Wissel 1997, Thomas and Hanski 1997), 

Notonecta appears to exist as a mctapopulation within a dynamic mosaic of suitable habitat. 

Multi-species patterns. 

Metapopulation models of competition between two species emphasise fugitive 

mechanisms of coexistence, based on a trade-off betweenocompetitive and dispersal abilities. 

However in a mosaic landscape such as the dewponds, competition between Notonecta 

species appears to be largely avoided as a result of habitat partitioning at the landscape scale. 

However there is some overlap between the distribution of the species, mostly in ponds that 

have habitat characteristics that are intermediate between the preferences of the two species 

(section 3.2). In the ponds where the two species co-occur, the outcome of competition is 

dependent on the environment (section 5.2), and appears to be related to variation in foraging 

efficiencies in habitats of differing complexity, that have been demonstrated for both the 

nymphs (section 5.2) and the adults (Giller 1979, Giller and McNeill 1981). Although 

regional coexistence of the two species is largely habitat mediated, fugitive coexistence may 

playa role in the distribution of populations in the ponds where the species are likely to 

overlap. Species may occupy habitats that are more suitable for the other species, in the 

absence of that species, but will be displaced if the patch is colonised by the superior 

competitor. The number of ponds where the two species co-occurred varied between 6 and 12 

in different years of survey, and a small number of ponds contained successful breeding 

populations of both species in all three years of survey (section 4.2.3). This suggests that 

coexistence is possible over several generations at least; habitat heterogeneity within an 

individual pond may allow partitioning of habitats, promoting coexistence (Streams 1987b). 

Broadening the view yet further, patterns of association between Notonecta and the 

metacommunity of potential prey, in terms of pond occupancy and local abundance suggest 
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that unlike other studies (Blaustein, Kotler and Ward 1995, Amer, Koivisto, Norberg and 

Kautsky 1998, Blaustein 1998), in the dewponds, Notonecta does not exert a strong top-down 

influence on community structure. Dewpond community composition appears to vary largely 

in response to habitat factors (section 6.3.2). There is some evidence of both positive and 

negative associations between Notonecta and individual prey taxa (section 6.3.4), which 

suggests that donor control by prey species may have some impact on the abundance of 

Notonecta, but overall links between the dynamics of Notonecta and its potential prey at the 

landscape scale do not appear to be strong. 

7.3 Implications for the study system. 

Patterns o/regional distribution and coexistence. 

Regional occupancy and persistence of Notonecta species appears to be driven by habitat 

availability, but colonisation and extinction are important in determining the spatial 

distribution of populations. Given the importance of habitat conditions in determining 

occupancy (sections 3.2 and 3.3), changes in the amount of suitable habitat over a regional 

area will obviously have implications for regional distribution and persistence. If the amount 

of suitable habitat declines over the landscape, the number of occupied patches will also 

decline, although the proportion of suitable habitat occupied may stay fairly constant until the 

patch network reaches the critical size for persistence (Hanski, Moilanen and Gyllenberg 

1996). The spatial distribution of habitat change will also affect regional dynamics. If the 

changes occur randomly across the landscape, then the average isolation of patches will 

increase. Given the dispersal ability of Notonecta and its ability to use other ponds as 

stepping-stones during dispersal, this is likely to have less effect than it would on species with 

weaker dispersal powers. Alternatively, if the habitat change is concentrated in one area, the 

species may become extinct in that area, but it is likely to persist elsewhere in the landscape if 

sufficient habitat remains. 
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As a result of the contrasting habitat preferences, changes in habitat conditions across the 

landscape may have different effects on the two species. For example, as a result of the 

availability of piped water and modem cattle troughs, the use of dewponds for watering of 

livestock has declined and many are now neglected. In the absence of regular management, 

the ponds gradually silt up and become more heavily vegetated through successional processes 

(Carpenter 1995, Chicken 1996), particularly the clay lined ponds which provide a better 

rooting medium for plants. Indeed there is evidence that even over the period of study, the 

Peak District dewponds became on average more heavily silted (figure 2.5), although whether 

this is indicative of a long-term trend is difficult to establish. The overall change in the 

habitat across the landscape, particularly the increase in average silt cover and amount of 

vegetation in the ponds resulting from succession, will increase the amount of suitable habitat 

for N ob/iqua and decrease the amollnt suitable for N maculata. 

N obliqua has a higher foraging efficiency in complex environments (section 5.2) and 

oviposits in the stems of water plants (section 3.4); it would therefore be better suited to the 

prevailing habitat conditions. In the survey of32 ponds between 1992 and 1998, there was a 

significant correlation between the number of ponds containing submerged vegetation and the 

number occupied by N ob/iqua (section 4.2.2), suggesting that at this scale, occupancy was 

responding to the amount of suitable habitat available. N maculata however, oviposits on 

solid substrates, which are likely to become increasingly scarce as the siltation of the ponds 

progresses. Although there is little evidence of a decline in occupancy by N. maculata, 

despite the increase in average silt cover over the same period, it seems reasonable to assume 

that as oviposition sites become rarer, this species will decline in regional occupancy. 

Therefore in the absence of any other trends in habitat change, or active management, the 

natural successional processes within dewponds may lead to a shift in the patterns of regional 

occupancy exhibited by the species. 
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Competition between the two species may exacerbate the effects of the habitat change on 

regional occupancy. Metapopulation models have suggested that reducing the amount of 

habitat available over a regional area can alter the competitive balance between two species, 

and lead to an increase in the relative occupancy of an inferior competitor (Nee and May 

1992, Moilanen and Hanski 1995, Nee, May and Hassell 1997). In the dewponds, Notonecta 

species are largely separated by habitat preferences, but show some overlap in distribution in 

patches of intermediate habitat type (section 3.2). Under conditions of habitat change, the 

species occupying the declining habitat type will tend to show a more rapid decline when a 

competitor is present than if habitat change alone was influencing distribution (Danielson 

1991). 

Spatial dynamics and pond communities. 

At a more general level, the mesoscale spatial dynamics demonstrated by Notonecta in the 

dewponds have implications for the ecology and conservation of pond communities. Many 

pond dwelling species show similar patterns of population turnover and dispersal abilities as 

Notonecta (Brown 1951, Popham 1951, 1952, 1953, 1964, Fernando 1958, 1959, Jeffries 

1994, Nurnberger 1996, Briers 1997). Studies of pond community structure have generally 

found that although taxa often show patterns of variation in relation to physico-chemical 

attributes (Friday 1987, Hecnar and McLoskey 1996) and other habitat variables such as 

pond area (Moller and Rordarn 1983, Bronmark 1985), pond faunas are never entirely 

predictable (Friday 1987, Jeffries 1997). There is a strong 'element of chance' in the 

assemblage of species that is found in any individual pond within a regional area (Talling 

1951, Jeffries 1989, 1994, 1997). This stochastic variation in community structure is likely 

to be due, at least in part, to the dynamics of colonisation and extinction of species which 

show metapopulation or similar dynamics. Given the potential importance of mesoscale 

spatial population dynamics in pond community structure, it is important to move towards 

130 



conservation of 'pond landscapes'; regional networks of sites which have sufficient 

connectivity to potentially allow recolonisation if local populations go extinct (Boothby and 

HuH 1995, Briers 1997, Williams etal. 1997). 

7.4 Implications for metapopulation theory. 

The study system deviates from the strict definition of a metapopulation in so far as 

population turnover results from changes in local habitat conditions, rather than being 

primarily stochastic (sections 4.3 and 4.4). Therefore persistence at the metapopulation level 

is likely to be dependent on the amount of suitable habitat and its distribution across the 

landscape. 

Of the still relatively small number of studies carried out on field metapopulations, only a 

very small proportion fit within the framework of 'classical' Levins-type metapopulations 

(Harrison 1991, 1994, Harrison and Taylor 1997, but see Hanski, Pakkala, Kuussaari and 

Lei 1995). Models with greater realism and field application (e.g. incidence function models) 

have tended to incorporate more local attributes, such as patch-specific area and isolation 

measures. No model can satisfy the conflicting needs for generality, precision and realism 

(Levins 1966). Therefore as ecologists seek to improve the fit of meta population models to 

the observed patterns in real systems, the complexity of the models is likely to show a 

concomitant increase and the role of local processes will increase in relative importance 

(Harrison and Taylor 1997). This may reduce the conceptual strength of classical 

metapopulation dynamics, with the emphasis on regional persistence through balancing 

colonisation and extinction. Given the current vogue in the use of metapopulation models to 

address Questions in conservation biology (Harrison 1994, Hanski and Simberloff 1997), it is 

essential that the concepts and models put forward by ecologists deliver the right messages to 

those who apply them in the field of species conservation, to prevent inappropriate 

management of habitats or species populations. If there is only limited evidence for regional 
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persistence through colonisation-extinction dynamics then there may be a need to broaden the 

concept of a metapopulation to include other forms of mesoscale spatial population dynamics 

(Harrison and Taylor 1997). 

The failure to consider changes in the underlying habitat of individual patches within the 

metapopulation is a serious shortcoming of metapopulation models (Thomas and Hanski 

1997). Few species are likely to inhabit an entirely static environment; to a greater or lesser 

degree all ecosystems show temporal changes in local habitat conditions. Many of the field 

metapopulation studies that have been undertaken have demonstrated the importance of local 

habitat conditions, or changes in habitat, on patch occupancy and population turnover 

(Sjogren 1991, Thomas and Harrison 1992, Sjogren Gulve 1994, Kindval11996, Stelter, 

Reich, Grimm and Wissel 1997, Thomas and Hanski 1997). Gyllenberg and Hanski (1997) 

examined structured metapopulation models which incorporated variation in habitat quality 

and found that the patch quality distribution within a metapopulation had important effects on 

the relationship between the amount of suitable habitat and the proportion occupied at 

equilibrium. The incidence function model has been further developed by Moilanen and 

Hasnki (1998) to include the effects of habitat quality and landscape structure. In this model 

habitat quality modifies the effective area of each patch. However the improvement of the fit 

of the model with habitat quality included over the standard incidence function model, which 

only considers patch area and isolation, was not great when it was applied to a butterfly 

metapopulation. Moilanen and Hanski (1998) therefore suggest that in some systems, 

metapopulation dynamics may be effectively modelled without further increasing the 

complexity of the models by including habitat or other effects. 

The degree to which habitat change affects the persistence of the species as a 

metapopulation depends on the relative times cales of the dynamics of the species and of 

habitat change (Thomas and Hanski 1997). Over the times cales of most ecological studies, 
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species may be seen to persist as metapopulations, but in the long term, regional persistence 

and levels of occupancy may be determined by trends in habitat conditions (Thomas and 

Hanski 1997). Butterflies are seen to be prime examples of field metapopulations (Harrison, 

Murphy and Ehrlich 1988, Thomas and Harrison 1992, Hanski, Pakkala, Kuussaari and Lei 

1995, Thomas and Hanski 1997). However in many cases, long term trends in regional 

occupancy and persistence appear to be driven by changes in the habitat as a result of 

succession or anthropogenic habitat change (Warren 1993, Thomas 1994b,c). Butterfly 

population dynamics are fast relative to the speed of habitat change, therefore they still fit the 

predictions of metapopulation models in the short to medium term (Thomas and Hanski 

1997). 

Notonecta in dewponds show strong links between habitat change and population turnover 

on an annual basis (sections 4.3 and 4.4). Although the regional average habitat conditions 

remain fairly constant over time (see figure 2.5), the habitat conditions within individual 

ponds often show dramatic changes between years. Therefore the speed of habitat dynamics 

appears to be similar to that of Notonecta and hence habitat tracking is more important than 

stochastic colonisation and extinction in determining regional persistence. Over the timesca.les 

which most studies are carried out, it may be very difficult to assess the relative importance of 

metapopulation processes and long-term habitat change on overall regional persistence. If 

long-term habitat change influences regional occupancy, many fragmented population systems 

may not be at equilibrium, and are likely to exhibit an 'extinction debt' (Tilman, May, 

Lehman and Nowak 1994), where extinctions occur and the level of occupancy shows a 

further decline, even if no additional habitat change occurs. This makes application of 

equilibrial metapopulation models for the purpose of defining the 'minimum viable 

metapopulation' size (Hanski, Moilanen and Gyllenberg 1996, Hanski 1997a) or other 

conservation applications very difficult. 
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Incidence function models and other spatially explicit approaches to the modelling of 

metapopulation dynamics take account of the area and isolation of patches, which have 

historical importance in island biogeographical models (MacArthur and Wilson 1967). 

Incidence functions are easy to apply to a suspected metapopulation, as a result of this, may 

also be easily misapplied (Thomas 1994a). Given the diversity of 'types' of metapopulation 

dynamics that have been observed in field systems (Harrison and Taylor 1997), it is important 

to develop a flexible model framework which can accommodate differences in the importance 

of stochastic and deterministic factors in different systems. In the future development of 

metapopulation models, greater attention will have to be given to the dynamic underlying 

habitat mosaic which the species inhabit (Thomas and Hanski 1997). In order to achieve this, 

it may be possible to draw on the developments in patch dynamics (Pickett and White 1985, 

Levin, Powell and Steele 1993) which, by analogy, consider the metapopulation dynamics of 

the patches themselves, resulting from succession and disturbance. Although regional 

persistence as a result of metapopulation dynamics may be overemphasised in current theory, 

the persistence of local populations, and regional distribution patterns may be strongly 

dependent on the spatial location of habitat patches and dispersal from occupied patches 

(Harrison and Taylor 1997). Temporal changes in the suitable habitat, through patch 

dynamics, will alter the distribution of patch sizes and relative isolation, which will in tum 

influence metapopulation dynamics. In an example of an approach which combines aspects of 

patch dynamics and metapopulation dynamics, Stelter, Reich, Grimm and Wissel (1997) 

present a simulation model of grasshopper metapopulation dynamics which incorporates both 

stochastic and deterministic causes of population turnover. Although such models are much 

less tractable analytically, the model framework given by Stelter, Reich, Grimm and Wissel 

(1997) could easily be adapted for application to other species inhabiting dynamic habitat 

mosaics, including Notonecta in dewponds. 
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Most natural ecosystems are becoming increasing fragmented, largely as a result of the 

activities of man. Metapopulation theory, with its emphasis on regional species persistence in 

a network of habitat fragments, is being increasingly used by conservation biologists and 

others who are concerned with the protection and conservation of species, to infonn planning 

decisions and management regimes for endangered species (Hanski and Gilpin 1991, 

McKelvey, Noon and Lamberson 1993, Hanski 1994b, Harrison 1994). As such this 

represents a paradigm shift in conservation biology from island biogeographical approaches 

(e.g. the SLOSS debate, Soule and Simberloff [1986]) to metapopulation based conservation 

strategies (Hanski and Simberloff 1997), although the two approaches are clearly related. 

Despite the increasingly widespread use of metapopulation theory in conservation biology, 

there is still a large mismatch between the development of the theory and empirical studies 

aiming to test the theoretical predictions. Given that the majority of empirical studies that 

have been carried out have deviated in some way or other from the theoretical predictions 

(Harrison and Taylor 1997), it is essential that further empirical work is carried out to assess 

the applicability of current models to field systems, pinpoint weaknesses in model 

assumptions, and suggest areas for future development of meta population theory. The 

extensive spatial and temporal scales required to study the dynamics of most field 

metapopulations makes empirical examination of theoretical predictions difficult. Due to their 

close resemblance to the habitat patches envisaged by most metapopulation models, and the 

capacity of many of their inhabitants to disperse between sites, dewponds, and pond systems 

in general, (e.g. Jeffries 1994, Sjogren 1991, Sjogren Gulve 1994) provide ideal model 

systems for testing the predictions of metapopulation theory. 
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Appendix 1. 

Pond locations, construction types and years of survey. 

Note: Missing pond numbers are ponds that were recorded, but not sampled. 

Pond No. National Grid Reference Construction Surveyed 
Easting Northing 1992 1996 1997 1998 

01 420400 372700 Concrete • • • • 
02 420500 372800 Concrete • • • • 
03 420200 372300 Concrete • • • • 
04 420300 372700 Concrete • • * • 
05 420200 372700 Concrete • • • • 
06 419800 372800 Concrete • • • • 
07 422000 375400 Concrete • 
08 422200 375400 Concrete • 
09 421400 375200 Concrete • • • • 
10 421200 374800 Concrete • • • • 
11 421200 375300 Concrete • • * • 
12 419900 375200 Concrete • • • • 
13 420100 375000 Concrete • • • • 
14 420400 376300 Concrete • * • • 
15 420500 376200 Concrete • • • • 
16 418300 372600 Clay • 
17 417100 368700 Concrete • • • • 
18 416800 368700 Concrete • • • • 
19 416100 369000 Clay • • • • 
20 417300 369800 Concrete • • • • 
21 417000 369900 Concrete • • • • 
22 417000 369500 Concrete • • • • 
23 417300 369300 Concrete • 
24 417300 368900 Concrete • • • • 
25 416500 376200 Concrete • • • • 
26 416500 376100 Concrete • • • • 
27 416200 378400 Clay • • • • 
28 416100 378400 Clay • • • • 
29 414500 378200 Clay • • • • 
30 414400 377700 Concrete • • • • 
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Pond No. National Grid Reference Construction Surveyed 
Easting Northing 1992 1996 1997 1998 

31 413100 377400 Concrete * • • • 
32 412500 378400 Clay * • • * 
33 412600 378400 Clay * • • * 
34 412700 376700 Concrete * 
35 412200 378400 Concrete * 
37 412800 377300 Concrete * 
38 412700 377500 Concrete * • • • 
39 412600 377700 Concrete * • • • 
40 418400 370900 Clay * • * * 
41 418100 371200 Clay * • * • 
42 421830 360550 Concrete • * • 
43 421350 360520 Clay * * * 
44 421300 360430 Concrete * * • 
46 420310 359320 Clay • • • 
47 422600 360350 Concrete • * • 
48 422300 360270 Concrete • • • 
49 422010 360130 Concrete • • • 
50 422200 360200 Concrete • • • 
51 422100 359950 Clay * * * 
52 423300 360400 Concrete • * • 
53 421030 360650 Clay * • * 
54 421270 360900 Concrete • • * 
57 419550 358840 Clay • • * 
58 414340 377570 Concrete • * * 
59 414000 378400 Clay * * * 
60 413560 379210 Clay * * * 
61 413260 379190 Clay • * • 
62 413390 379030 Concrete • * * 
63 416040 377770 Concrete * * * 
64 413550 379840 Clay * * • 
65 413750 379940 Concrete • • * 
66 426850 360270 Concrete • • • 
67 426090 357650 Clay * * * 
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Pond No. National Grid Reference Construction Surveyed 
Easting Northing 1992 1996 1997 1998 

68 421850 359320 Clay • • • 
69 420950 360650 Concrete • • • 
70 418730 358710 Clay • • • 
71 418780 363980 Concrete • • • 
72 418410 363500 Concrete • • • 
73 417850 366750 Concrete • • • 
74 418270 373140 Concrete • • • 
75 418180 371250 Concrete • • • 
76 418470 370250 Concrete • • • 
77 418440 370300 Concrete • • • 
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Appendix 2. 

Species lists for dewpond sites (1996). 

Sites in bold type indicate records from the samples analysed in Chapter 6. Other records of 
Hemiptera and Coleoptera, excluding Notonecta, are from other survey work undertaken in 
1996 at all sites. Zooplankton were not identified to species and hence are not included in the 
table. 

Order/Class Family Species Sites present 

Clitellata Erpobdellidae Erpobdella octoculata 29 

Glossophonidae Helobdella stagnalis 3,4,17,18,20,26,29,32,34,38 

Coleoptera Dytiscidae Acilius sulcatus 5,22,49,67 

Agabus bipustulatus 3,4,5,10,13,20,26,27,28,29,30,34,35,41,42,43,44, 
47,48,49,51,52,57,60,61,62,65,66,68,70,71,74,75 

Agabus nebulosus 3,5,6,10,13,17,18,20,21,22,24,26,27,28,29,30,31, 
33,34,35,38,40,41,42,49,50,51,52,53,57,59,60,63, 
65,67,70,71,75 

Agabus spp. larvae 13,17,18,20,26,35 

Coelambus confluens 5,13,18,22,30,47,49,50,52,53,65,75 

Coelambus impressopunctatus 13 

Colymbetes /Uscus 13 

Hydroporus palustris 34,67,70 

Hydroporus spp. 10,13,34,42,44,47,50,52,57,59,67,70 

Hygrotus inaequalis 19,21,34,60,62,67,70 

Ilybius spp. 11,74 

Laccophllus minutus 5,18,20,21,26,40,41,42,51,59,63,70,72 

Gyrinidae Gyrinus substriatus 9,11,20,24,41,52 

Haliplidae Haliplus confinis 5,9,10,18,20,22,34,59,70,73,74 

Hydrophilidae Helophorus spp. 2,3,4,5,6,9,10,13,15,17,18,19,20,21,22.24,26,27,28 
29,30,32,33,34,35,38,39,40,41,43,47,48,49,50,51, 
52,53,57,59,61,62,63 

HydroblusjUscipes 5,15,17,19,27,33,34,35,40,41,44,57, 64,67,70 

Diptera Chironomidae spp. larvae and pupae 2,3,4,5,6,13,18,21,22,24,26,2730,32,40,41 

combined 

Culicidae spp.larvae 5 

Epbemeroptera Baetidae Cloeon dipterum 13 

Gastropoda Lymnaeidae Lymnaea peregra 3,4,6,13,18,21,24,27,28,41 

Planorbidae Armiger crista 41 

Hemiptera Corixidae Arctocorlsa germani 18 

Callicorixa praeusta 40 

Corixa punctata 1,2,3,4,5,9,10,17,18,20,21,22,24,26,27,28,29,38,40 
41 

Hesperocorixa sahlbergi 5,13,20,22,27,40 

Sigara conclnna 5,22 

Sigara lateralls 1,3,5,18,22,24,26,27,28,30,31,38,29 

Sigara limitata 13,20,22 
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Order/Class Family 

Hemiptera Corixidae 

Notonectidae 

Species 

Sigara nigrolineata 

Sigara spp. nymphs 

Notonecta maculata 

Notonecta ob/iqua 

154 

Sites present 

1,2,3,!!,6, 13, I S,17,18,20,l1,24,l7 ,29,30,31,31,3S, 
38,40,41 

5,6,13,17,18,20,14,18,29,30,32,34,35,38 

2,3,S,6,9, II, 13,17 ,18,l1,l4,26,19,41,47,48,49,S2, 
63,6S,71,73,7S,76,77 

4,9, I 0, II ,l0,29,l4,l9,32,38,40,42,S I,S7,S9,64,6S, 
66,72,74,77 


